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ABSTRACT

The behaviour of ion orbits in the magnetic and electric fields at the
centre of a cyclotron is studied in detail. The objective is to optimize
the phase acceptance and beam quality for a 500 MeV H™ isochronous
cyclotron.

Since accurate electric fields are necessary‘forborbft calculations,

a numerical method for calculating these fields is examined in detail. The
method is suitable fof complicated electrode shapes and converges rapidly,
yielding potentials in three dimensions with aVerage errors of less than
O;O]%.b The magnetic fields used in the orbit calculations are measured on
model magnets.

The axial motions are examined using a thick lens approximation for
the accelerating gaps. A methoa is demonstrated for calculating the axial
acceﬁtance of the cyclotron as a function of RF phase. This method is used
to evaluate the merits of various central geometries and injection energies.
This method is also used to examine ‘the effects of flat-topping the RF
voltage by adding some third harmonic to the fundaménta] waveform, It is
found that addition of the optimum émount of third harmonic increases the
phase acceptance by about 20 deg. Finally, the effects of field bumps on
the axial motions are investigated.

To allow accurate radial motion calculations to high energy, an approxi-
mate formula is developed which yields accurate (<1%) values for the changes
in orbit properties of an ion crossing a dee gap. The geometry of the
orbit on the first turn is discussed in detail. The radial centring is
studied by tracking ions from injection to 20 MeV, and a method is described
for choosing the starting conditions of the beam so as to minimize the

radial betatron amplitude over a desired phase range.’



The problems associated with using a three-fold symmetric magnetic
field with a two-fold symmetric electric field are also discussed. Besides
the well-known gap-crossing resonance, a previously ignored phase-
oscillation effect is found to be important for cyclotrons operating on a

high harmonic of the ion rotation frequency.
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CHAPTER 1.  [NTRODUCTION

A. Problems in ‘the Cyclotron Central Region

The central region of a cyclotron requires special attention because.
the internal beam qUality and phase acceptance are primarily determfned
during injection and the first few turns within the machine. During these
initial turns, the beam has low energy and is therefore strongly influenced
by the phase-dependent lens effects of the dee gaps. The objective of this
work is to study the behaviour of ion orbits in the magnetic and electric
fields at the‘cyclﬁtron centre, and thereby to choose the beam injection
conditioﬁs and mégnet and electrode designs for optimum beam performance, -
i.e. a beam which is centred, has minimum spot size in both the radial and
axial directions, and is in a phase interval which optimizes the accelera-
tion process.

1

The usual studies of cyclotron central regions, for example Rose,® and

2-4

others, are concerned with machines with internal ion sources where the

ion starts with zero energy and spends its first turn mainly within the &%
electric field produced by the dee gap. With an external ion source, the
problems are quite different; to solve them this study was undertaken.

Injection of ions into a cyclotron from an external source has been
sfudied by Powell and Reece;® howéver, the injection energy in their case
was 11 keV,compared to a maximum energy.gain of 50 keV periturn, whereas 'in
this case the injection energy is 300 keV, compared to 400 keV per turn.
Also, the electrode'geémetry is very different.

This thesis considers ion injection for a H™ cyclotron where the ions
are extracted.by electron stripping and the duty cycle i; determined by the

phase band the central region will transmit and not by the extraction

system, as in some cyclotrons with resonant extraction schemes. Thus there"



is considerable emphasis on reducing phase-dependent effects in the central
region.

The central region problems fall naturally into two groups, those con-
cefrning the axial motions and those concerning the radial motions.

The basic problem in the axial motion’ is that the focusing provfded
by the magnetic field becomes very smali near the centre of the machine,
while the (phase-dependent) .electric forces due to the dee gaps become very
strong. It is well known! that the electric forces are defocusing for half
of the RF cycle. Since these electric forces will be larger than the
(focusing) magnetic forces at low energy, a detailed study of the axial
motions is required if a large range of RF.phases is to be accepted. The
situation is further complicated by the fact that space cHarge effects will
also tend to expand the beam. Space charge effects will be most important
at low energy and high current.

The basic problem in the radial motion is not lack of focusing but
rather how to minimize.the radial oscillation amplitudes of the ions. Since
the ions are extractea when they reach a particular radius, a large spread
in radial amplitudes means that ions from different turns may be present at
the extraction radius, resulting in a large energy spread in the extracted
Beam. The initial motion of the ions in the cyclotron requires that tHe
beam be injected off centre if it is to be centred at extraction; however,
this effect is phase dependent, haking it difficult to centre ions with a
wide range of phases.

Since a know]edge of the electric fields involved is required for
studies of both the axial and radial motions, Chapter 2 describes in detail
a method for calculating these fields.

Chapter 3 considers the axial motions. A method is presented which



a]léws calculation of the axial acceptance of the accelerator as a
function of RF phase. . This method is used to study various ‘injection
energies and the effects of adding third harmonic to the RF. Finally, the
effects of field bumps, used tq'induqe.phase slip, are considered.

Chapter 4 considers the radial motions. The geometry of the first
turn .and how this is .influenced by the accelerating electrodes is studied
in detail. The radial centring is studied by tracking ions from injectibn
oﬁt to 20 MeV. FinaiTy, the effects of a finite beam size are considered.

Chapter 5 describes an approximation which allows the changes in
orbit properties of an ion crossing a dee gap to be evaluated to high
accuracy without numerical integration through the electric field, The
accuraéy of the method is given as a function of RF phase and fncident ion
energy. This approximation is used in the tracking of the radial motions

in Chapter 4 between 5 and 20" MeV where this approximation is very accurate.

B. The TRIUMF Cyclotron

The studies described in this thesis were performed for the TRIUMF
cyclotron,® which because of its unique design has several special problems.
The TRIUMF cyclotron is a six-sectorjazimuthally varying field (AVF),
isochronous machine, designed to accelerate 100 uA of H™ ifons to 500 MeV.
The acceleration of H™ ions provides a convenient method of'extractién by
stripping two electrons from the H™ ions by passing the beam through a thin
foil. This.method gives an extraction effi@iency of nearly 100% whereas
conventional proton machines have not achieved efficiencies greater than
80% with a 1arge:duty cycle. Two other advantages of extraction by electron-
stri;ping-are variability of extraction energy by.adjusting the foil posi-

tion and simultaneous extraction of several beams at different energies.



The disadvantage of this technique is that the lifetime of the H-
ions requires that the maximum magnetic field that the ions pass through

i
must be low (5.7 kG at 500 MeV)7to prevent dissociation of the H™ ions, .
and also there must be a vacuum < 7 x 1078 Torr to prevent H™ stripping
by residual gas molecules. The 1ow magnetic field means that the radius
of the machine is very large (500 MeV orbit radius of 311 in.), and the
central magnetic field (3.0 kG) is five or six times lower than in conven-
tional cyclotrons.

The accelerating voltage is provided by four resonant cavities which
provide 0.4 MeV energy gain per turn. The low magnetic field means that
the ion rotation frequency is low (k.53 MHz). To allow the cavity resonators
to fit inside the vacuum tank, the RF is operated atAthe fifth harmonic of
the ion frequency. The fact that the accelerating structures are cavity
resonators means that some third harmonic of the ion frequency can be intro-
duced into the cavity, squaring the RF waveform and giving significant
improvements in orbit properties.

The arrangement of the TRIUMF central region is shown in Figs. 1.1 and
1.2. The centre post is required to suppoft part of the weight of the
upper magnet éores, the magnetic force between the magnet pole pieces and
the atmospheric load. The H™ beam is produced in an external (Ehlers) ion
source and accelerated to 300 keV before being transported to the cyclotron
and bent jnto the median plane by the spiral electrostatic inflector. The
beam leaves the centre post at the '"injection gap', which provides an
auxiliary 100 keV (the dee-to-ground potential) aéceleration on the first
turn. The beam then spirals outward, gaining a maximum of 400 keV per
turn.
| Several types of operating conditions must be considered. One of the

principal uses of the machine will be to produce mesons. In this case, the



current required is large, but the energy resolution is not important (since
the mesons are produced in a gecondary target). Therefore, the duty cycle
may be maximizéd at the expense of energy resolution. |t is also plann;a

to produce a high resolution proton beam. |In this case, high current is not
required so a smallef duty cyélé may be considered, giving smaller radial
oscillation amplitude and thus fmproving energy resolution. It is also
hoped that with the addition of third harmonic¢c to the RF, separated turn
acceleration will be possible, i.e. spatial turn separation will be
maintained out to extraction so that the beam can be extracted from one
turn, giving very high energy resolution (hopefully, 50 keV). '~ Again, the

phase band accelerated wouid<§e quité narrow.

C. Equations of Motion

The force on a charged particle moving in electric and magnetic fields

is given by the sum of the Lorentz and electric forces
F=q(E+V xB) (1.1)

F is the force on the particle which has chargé g, mass m and velocity_?l
The electric field is E and the magnetic field is B.

We define a Cartesian co-ordinate system with the z axis upwards in
the axial direction (perpendicular to the plane of the orbits), the
x direction is aldng the centreline of the dee gap, and y is perpendicular
to the dee gab and the axial direction. |

In a Cartesian system, eqn.(1.1) can be written

-n
I

x CI(EX * (vyB, - vZBy)], | (1.2)

'l'l
1]

q[ﬁy + (VZBx - vaZ)], \ (1.3)



FZ = q EZ +'(VXBy - VyBx)}' (1.4)

The ion circulates in its orbit near the x-y plane; hence the compon-
ents of the velocity in this plane (vx and vy) are much larger than v, Due
to the symmetry of‘the magnet, the magnetic field in the median plane is in
the axial direction only, i.e. Bx = By = 0. Errors in the construction of
the magnet may cause the magnetic median surface to be different from the
geometric.median~p1ane, giving non-zero values of Bx and By in the geometric

median plane; however, these will be small, and we may write eqns.(1.2) and

(1.3) as

S = qlEx + vyB,), (1.5)
Smvy) = q(Ey - vxBz). (1.6)

Egns.(1.5) and (1.6) are relativistically correct, provided the changes

in mass due to acceleration are not neglected. The relativistic mass is

m = ym
YO

where m is the rest mass and y is the usual relativistic factor

T -1
= = - p2f ?
Y ] + m0C2 [l R ]

where T is the kinetic energy of the ion, c is the velocity of 'light and
B = v/c.

The approximation used in deriving eqns.(1.5) and (1.6), i.e. that
terms in Vsz and vZBX are negligible, has removed couplihg between motion -

in the medfan plane and motion in the axial direction, greatly simplifying



the calculations. The solutions of egns.(1.5) and (1.6) [obtained by
numer{cal integration through realistic electric and magnetic fields] are
discussed in Chapter 4.

The axial moFion is described by eqn.(1.4). The terms in B, and By
cannot be neglected in this case since they are multiplied by the (large)
velocitieS‘vx and Vy' It is these terms whfch describe the axial magnetic

focusing produced by flutter and spiral in the magnetic field when the ion

is not in the median plane. .The axial motion is discussed in Chapter 3.



Chapter 2. -~ ELECTRIC FIELD CALCULATIONS

A. Choice of Method

Accurate orbit calculations in the centre region require a detailed

knowledge of the electric and magnetic fields involved. The magnetic field

can be obtained from measurements on model magnets. The electric field is

produced by complicated electrode shapes (see Figs. 1.1 and 1.2) and hence

cannot be calculated analytically. There are several methods which can be

used to obtain the electric field in these circumstances:

1)

3)

b)

Electroconductive.analogies in which the potential is obtained by
measuring the voltage in a conducting medium surrounding a model
of the electrodes.® This method yields potentials (in two or
three dimensions) with errors of about 0.3%.°

Numerical solution of Laplace's equation. This method yields
potentials with average errors of 0.1% or less, depending on the
time available for computation. This method is described in
detail below.

The induced current method in which a vibrating charged probe
induces a current in the electrodes proportional to the component
of the required field at the probe in the direction of vibration
of the probe.lx0 This method gives field values with errors of 5.0%
or less.

The magnetic analog in which the components éf the magnetic field

are a measure of the corresponding electric field components.11

Methods 3 and & yield field values which can be used directly in orbit

calculations while methods 1 and 2 give potentials which must be numerically

differentiated to obtain the field components.

From this point of view, method 3 or 4 is more attractive. However,

methods 1, 3 and 4 require a model. of the electrode structure to be built.



This means that changes in the electrodes require time-consuming and expen-
sive changes in the modél. In addition, these three methods involve
mechanically-driven probes which are subject to alignment errors. Aiso,
these methods use complicated electronic circuits which are subject to

drift over long periods of time. For these reasons, the numerical solution
of Laplace's equation which avoids these difficulties is the most attractive
choice. Solving Laplace's equation for a complicated boundary shape is a
difficult computational problem; however, the availability of large, fast
computers enables large problems to be.solved in a reasonéb]e amount of

time.

B. Finite Difference Approximation

We wish to find the electrostatic potential ¢ which is the solution of

Laplace's equation, i.e.

within the rectangular parallelepiped shown in Fig. 2.1. This volume is
bounded by the planes x = 0, x = ph, 9 =0, y=gh, 2=0, z= rh. In the
usual problem either the potential or its derivative is known on the
surface of the volume (Dirichlet or . Neumann boundary conditions, respec-
tively) while the potential is unknown inside the volume. |In the problems
to be studied here every boundary plane has Dirichlet boundary conditions
or is a plane of symmetry (described below). In addition, parts of the
interior of the volume may have fixed potential values, i.e. the boundary
conditioné may extend inside the volume.

To solve eqn.(2.1) numerically we transform the differential equation
to a difference equation and solve for the values of ¢ at discrete nodes

within the volume. Fig. 2.1 shows a rectangular grid with uniform spacing h
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in all three directions. The nodes occur at the intersections of the

planes x = ih, y = jh and z = kh where i =0,1...p, j =0,1...q9 and

k =0,1,..r. The number of nodes in the grid (N) is (p + 1)(q + 1)(r + 1).
To derive the finite difference approximation, we consider the

potential ¢ijk at some node ijk. Expanding the potential in a Taylor

series at the six nodes nearest to i, j, k we obtain

I+

_ ), h2fa%g) , hifa? ' (o
¢ii‘],_j,k d>I_]k + h.[BX I_]k+ 2 _&%i_jk 6 |ox i_]k+ 24 {9x ijk+ e

3 h2(52¢) h3{a3¢} h“(a%}
.. = * h k12 + = * a7 + i +
d)I,_ji],k ¢I_]k [BYuijk 2~3y ijk 6 oy ijk 24 oy i jk
] s L m2fa%g) L il mefat
¢i o J k1 ¢iJk £h [32‘ ijk * 2 {9z7) ijk * 6 {5z ijk * 2413z I_]k+

Adding these, we obtain

Pietgk t etk ek T otk T igk-1 T ke T 80k

2
+ Dz-—v2¢ + 0(h*);

using (2.1) and neglecting terms in h"* and higher, we have,

] . :
ik "€{¢i+1 Fhg e oyt b Y ¢k-l] (2.2)
' [interior points]
= bijk' [boundary points]

In the right side of eqn.(2.2) we have abbreviated the notation by
writing only those subscripts which are not equal to i, j or k.
Eqn.(2.2) describes a linear system of N equations which can be

written

Ad=b ' (2.3)
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where A is an N by N matrix containing the coefficients of the system, d:is

a column vector containing the unknown potential values

and b is a co{umn vector containing the potential values for those nodes
which fall in the boundaries.

Now the solution of eqn.(2.1) is reduced to the solution of the linear
system eqn.(2.3). It should be noted that the order of the system 2.3 is
equal to the number of nodes in the mesh, which will be of the order of
many thousands or millions,

Direct methods for solving linear systems such as Gaussian elimination
or use of determinants have two disadvantages in the present case. Firstly,
they require that the matrix A be stored. This is clearly unnecessary
since the elements of A can be generated using eqn.(2.2). Secondly, they
require about N3/3 multiplications to solve a system of order N.. To solve
a system with N = 106 would take 1012 sec (many years) allowing
3 usec per multiplication. Such a system can be solved in about 2 hours
using the iterative method described below.

Iterative methods offer two advantages over direct methods in this
case. Firstly, they require only the current solution vector x to be
stored and secondly, they are much more efficient for solving large systems
when the coefficient matrix (A) contains many zero elements.

Many iterative methods for solving systems such as 2.3 have been
deve]opéd and studied theoretically. An excellent review of the methods

available is given by Forsythe and Wasow.12
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The method used here is based on a program developed by D. Nelson.!3,1%
Basically this program uses successive over-relaxation by points to solve
the linear system.* This method is applied in a manner which allows ex-
tremely large problems to be solved using a modest amount of computer
memory. The theory of successive over-relaxation by points is reviewed in
Appendix A. The important results are as follows:

We start with an initial approximation (usually zero) to the potential at

each node ¢i2k; then we obtain successive approximations using

ntl _ n af n+l n n+1 n n+1
ik T gkt 6(¢i-ljk gk T e Y %k T %k
n L ¢.n
et T Ok (2.4)

where the best value of the '"over-relaxation factor' « for the ordinary

successive over-relaxation method is given by

, )
2 /l 1 ] 1
= —= 2|1 - -+t =5+ = 2.
"1+ sine Ty 3lp2 q rZJJ (2.5)
where
_1f o m il ) ., _ %] 1 1
cosb = 3|08, + cos, + cosr] = ] 6 (pz + 2 + rZ].' , (2.6)

So solving the system consists of iterating over the nodes of the mesh
in some order, replacing the value of ¢ of each node by the values given
by eqn.(2.4). The order we shall choose is, giving the ijk values of the

point to be iterated,

* For this problem it appears that the Peaceman-Rachford method!® gives
faster convergence.l® However, as has been pointed out by Young,l® it is
difficult to devise an efficient storage scheme which allows the matrix A
to be accessed alternately by rows and columns. Any increase in conver-
gence rate would probably be negated by increased time spent retrieving.
the data from the mass storage device.
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(0,0,00, (1,0,00 ... (p,0,0)(0,1;0) --- (Ps1,0) --- ... (p,q,0)
(0,0,1) -.v ... e (pyg,)
(O,o.,r) CIRIR ”,' (pa(-]ar)

or the reverse order.
It is shown in Appendix A that the convergence of the method is
determined by the largest eigenvalue of the matrix A. If the best value of

o, i.e. ap s is used, this eigenvalue is

Cl-sine L, Lo /T LAV ..
)\m = ——]+sin6 ~ 2Tr/3{p2 + q2 + FZI_ OLb ]. (2-7)

Values of Am and ap for the problems which are discussed in this

chapter are given in Table I. -
The number of iterations required to reduce the error by a factor f is

approximately
n = log f/log A (2.8)

C. Computational Details

The program as described by Nelsonl* used an iteration subroutine coded
in FORTRAN. This was rewritten in assembler language giving a factor of
twelve increase'in‘speed. in addition, the new iteration routine allows
~the iteration to be done in alternating directions. Details of these
changes are given in Appendix C.

The advantage in itérating in alternating directions is that it
ensures that the effect of the boundary conditions is quickly propagated
through the volume. |f, for example, uni-directional iteration was used
going from small ijk to large ijk, and all boundaries were zero except the

plane with the largest k value, many iterations would be required before
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TABLE |

Largest eigenvalue (A ) and best over-relaxation
factor (ab) for varlous size relaxation problems

Total number

Problem size of mesh points Am ay
32 x 32 x 16 16,384 0.7569 1.7569
64 x 64 x 32 131,072 0.884] 1.8841
128 x 32 x 8 32,768 0.6245 1.6245
256 x 64 x 16 262,144 0.7946 1.7946

512 x 128 x 32 2,097,152 0.8895 1.8895
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the effect of the boundary at large k would be felt at small k. Alternating
the direction of iteration avoids this difficulty.

The values of the ¢ijk's are stored‘on a mass storage device (tape,
disc or drum). Subsets of this total ''volume'' are transferred to core
storage, iterated over and returned to the mass storage device. To increase
efficiency (by decreasing the number of data swaps) several iterations are
done over each subset of the total volume while it is in core storage. This
causes the convergence rate to be very slow; however, the program has a
novel feature, described below, which allows good starting values to be
found, hence reducing the number of iterations required. The iterations
over the subsets of the total volume must be done carefully, to avoid dis-
continuities where the edges of these subsets occur. Consider the volume
shown in Fig. 2.1 broken into blocks, each block containing 16 x 16 x 8
points; then there are b1 = (p+1)/16 blocks along the x co-ordinate,
b2 = (q+1)/16 blocks along the y co-ordinate and b3 = (r+1)/8 blocks along
the z co-ordinate. The data area in core storage in which the iterations
are done (the physical work area) contains a 2 x 2 x 2 block subset of the
total problem. The iteration is done as follows:

The physical work area is loaded starting at block co-ordinates (1,1,1)
and then iterated. During this iteration all potentials on the boundaries
of the physical work area are held fixed except boundaries which are
symmetry planes of the total volume. The next load origin is (2,1,1), and
this iteration is repeated. Since two blocks along each co-ordinate are
iterated each time while the increment between iterations is one block, dis-
continuities in the data should be reduced. The sequence of load points

for the iteration is either
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(1,1,1), (2,1,1) .... (bl,l,l)dl,Z,l)AZ,l,l) e e (bl’bz’])

(1,1,2), (2,1,2) .... (bl,l,z)xl,z,z)xz,l,z) cee e (bl,b2,2)

(1,1,b,) (2,1,b,) v (by,1,6,0,(1,2,b,(2,1,b,) ... (b ,b_,b.)
or the reverse one (alternating direction iteration over the blocks).

It should be noted that in one sweep over the data using this pro-

cedure 8(b1-l)(b2-l)(b3—]) blocks are iterated. On the average, this is

8(b,-1) (b
,bl

1) (by-1) o
b& '(2.9)

)"
b2
iterations over each block.

The novel feature mentioned above which\allows good starting va]qes to
be found operates as follows. After the boundary values have been assigned
but before any iterations have been done, the mesh size is doubled reducing
the problem to one with an eighth as many data points as the original
problem. This process is repeated until the problem size is close to the
size of the physical work area (32 x 32 x 16 points). This Hreduced"
problem is solved iteratively and expanded back to the original size prob-
lem. During the expansion process, the value assigned to each unknown
point is the value for the nearest known node with smaller or equal i, j
and k values, i.e. if ¢ijk is known, the pfogram sets (omitting subscripts

which are i, j or k)

Pie1 T % T T %kl T Ykt T ke T etk T 9

This procedure provides good starting values for the final iteration.
The boundary values are assigned either by calling a user-supplied

subroutine which returns the value of the potential at each point, or by



17

the method given in Appendix B or by a combination of both.

In many situations, the boundary values at an edge of the problem are
not known, but this edge is a plane of symmetry. In this case, the
program calculates the potentials on the symmetry plane using the fact
that the potentials outside it are the same as those inside. For example,
if the i = 0 plane were a plane of symmetry, then on this plane eqn.(2.4)

would be

n+l n+1 n+l n+]

_.n a n n n -
%k = %0jk Y 5%k T Grgk T Goj-1k T %0geik Y f0jk-1 Tt %0k
n
690k .

When estimating the convergence rate for a problem which contains
planes of symmetry, it is important to remember that the‘errors are not
zero at the plane of symmetry (as they‘would be if the plane were a L
boundary plane). Thus the errors and convergence rates will be those
appropriate for the 'effective size' of the problem which is the size the
problem would be if the symmetry properties were not utilized. Thus, if
a problem contains one plane of symmetry, the effective size is twice the
actual size, in general;‘if there are n symmetry planes, the effective

. . n . .
size is 2 times the actual size.

D. Convergence Tests

To test the convergence and accuracy of the method, a problem for
which the analytic solution was known was solved using the relaxation

3 45 a test case; it con-

method. The problem is the one used by D. Nelsonl
sists of a 64 x 64 x 32 point '"box" with boundary values of zero on all

sides except the k = 32 surface where the potential is
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.| 2mi . [2m]
V-5|n{zﬂ% snn[64].
The sequence of operations carried out in solving this problem is
given in Table 11.
The first question which must be answered is how many iterations are
required on the reduced problem. To answer this, several runs were done.

For. each run n sweeps were done with a = 1.5, n with a = 1.3 and n with

1.0 (a total of 3n sweeps). The value of o used was reduced from 1.5

ol
(close to the best value) to 1.0 to ensure that the difference equations
are solved as exactly as possible when the iterations are finished. The
problem was then expanded to full size, and two iterations were done on
the full volume. All iterations were done with alternating directions.
The results are summarized in Table '|I}. In all cases the error is very
small. Since iterating over the small volume is relatively fast, there is
no large penalty paid for over-estimating the number of iterations
required, and n = 100 was chosen. For this case (n = 100), the average
change per iteration before expanding was < 10-8, i.e. the reduced problem
hqd been solved exactly to the precision of the arithmetic used. Thus the
error of 0.25% after expanding is due to the expansion process.

Now the problem was expanded back to full size 64 x 64 x 32 points,
and the convergence of this problem was investigated. Since we are doing
the iterations over subsets of the problem each containing 32 x 32 x 16
points, the best value of o is, from eqgn.(2.5), o = 1.75. Two other
values of a were used, 1.87 because this is o for a problem containing
64 x 64 x 32 points and 1.50 for reasons discussed below. Fig. 2.2 shows

the average error as a function of the number of iterations for these

values of a. The discrepancy in the error after two iterations over the
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TABLE (I

Sequence of operations used to solve a 64x6L4x32 node relaxation problem

Average change
’ Problem size | Number of per iteration
Step Operation after this step| iterations |“aftersthis step
1 |set boundary conditions| 64 x 64 x 32 - -
2 re&uce to coarée grid 32 x 32 x 16 - -
3 |iterate (o = 1.5) 32 x 32 x 16 100 0.9 x 1073
L |iterate (o =1.3) 32 x 32 x 16 100 0.6 x 107°
5 |iterate (o = 1.0) 32 x 32 x 16 100 0.5 x 1076
6 |expand to fine grid 6h x 64 x 32 - | ?
7 |iterate (o - 1.5) 64 x 64 x 32 see Fig. 2.3 | see Fig. 2.3
TABLE 111

Average error after various numbers
of iterations over the reduced problem

Case n ~Ave£ageigrror (%)
] 25 ”g:io‘
2 50 0.30
3 75 0.31
) k4 100 0.25
5 200 0.28
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fine grid between Table II and Fig. 2.2 is due to different iteration
directions where iterating over the fine grid. As expected, a = 1.75
produces the fastest convergence, but the convergence is satisfactory in

all three cases. Egn. (A.23) predicts that the number of iterations
log f

log A °
Am appropriate to a = 1.75 is 0.75; hence the number of iterations

required to reduce the error by a factor of 10 is : -1 =8.0. As
: 1091030.755
can be seen from Fig. 2.2, about 40 sweeps over the data are required to

required to reduce the error by a factor f is n = The value of

achieve the same reduction (o = 1.75). Since the problem contains
L x 4 x 4 blocks of data, by eqn. (2.9), each sweep corresponds to

8(h-1) (4=1) (h-1) _
ONONORNMESELS

iterations. Hence the 40 sweeps correspond to 135 iterations, indicating
that the éonvergence is about sixteen times slower than the theoretically
expected rate for ordinary successive over-relaxation. This slow conver-
gence rate is probably. due to the way in which the iterations are done,
i.e. many iterations over a small subset of the total volume. However,
with the good starting values provided by the reducing and expanding
procedure, the convergence of the problem is acceptable.

For practical problems it has been found by the author and by
D. Nelsonl? that a = 1.5 gives the best results. This is probably due to
the fact that, in practical cases, fixed points occur within the volume.
This means that the "‘wavelength' of the errors will be smaller than that
assumed in eqn.(A.8), leading to smaller values of oy . Sinée o= 1.5
seemed to be best for ''real’ problems and since o = 1.5 still gives
acceptable convergence for the test problem, only this value was studied

further.
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Fig. 2.3 shows the average error and the average change per iteration
for the o = 1.5 case. The bars on the points giving the average error
indicate the error at which the number of points vs error curve (Fig. 2.4)
has fallen to half its peak value. As we would expect, since we are using
a > 1, the change per iteration is always larger than the error. O0f course,
there may be a few large local errors which do not produce a large average
error.

Fig. 2.4 shows the distribution of errors for various numbers of
iterations. The graph is actually a histogram; the vertical lines give the
(approximately equal) intervals in which the numbers of points are counted.
Several points are worth noting. Even after many iterations, about 0.04%
of the points have errors larger than 5.0%, despite the average error being
less than 0.04%. It appears that this situation will not change signifi-
cantly even if many more iterations are done. It seems that the large
errors must be removed before the smaller ones are affected. This is shown
more clearly in Fig. 2.5 where the number of points with a given error is
plotted as a function of the number of errors. |t can be seen that the
number of points with small errors remains relatively constant until the

number of large errors has been reduced.

E. The Practical Problem

Problems which are useful in practice usually contain many more
points than the case discussed in Section D. The same reducing and expand-
ing procedure is followed, so that the starting values for the iterations
on the large problem-are quite good. However, since the number of points
is larger, the convergence will be slower (as predicted by eqn.(A.22)) and

each iteration will take longer.
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The practical case discussed here is a 128 in. by 32 in. by 8 in.
section from the centre of the TRIUMF cyclotron. The 8 in. dimension is
in the axial direction and extends from the cyclotron median plane to the
vacuum tank. The 128 in. dimension is along the dee gap, and the 32 in.
dimension is perpendicular to the dee gap. The geometry in the median
plane and the electric equipotentials calculated using thfs method are
shown in Fig. 1.1. The geometry in the axial direction is shown in
Fig. 1.2. 1t was felt that a.0.25 in. grid size adequately defined the
boundaries; hence the problem contained 512x128x32 = 2]097,152=data points.

The sequence of operations used in solving this problem is given in
Table 1v. At the end of step 6, the change per iteration at each point
is less than 1077, so after expansion to 256 x 64 x 16 points, we would
expect the average error to be about 0.40% as it was in the test case.

The errors are of course unknown, but the average change per iteration at
the beginning of step 8 was about 0.1%. The reason for this value being
smaller than the value for the test case is probably that there are more
fixed points in the real case. After 75 iterations over the 256 x 64 x 16
problem, the average change per iteration is less than 10-6., The itera-
tions on the full-size problem (step 12) are very costly since we now haVe
over two million data points; however, very few iterations are required.
Step 12 consisted of four iterations over the full volume to smoofh out
any bumps left by the expanding process. The average change per ltera-
tion at the end of step 12was less than 0.01%. Local errors will be
larger than this, of course. In the test probtem the largest erroré were
more than 100 times as large as the average error but only for 0.04% of
the points; hence in this case we can expect local errors of the order of

1 or 2% at a very small number of points. However, the convergence of the
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TABLE 1V

Sequence of operations used to solve a
512x128x32 node. relaxation problem

Average change

Problem size Number of per iteration
Step Operation after this step iterations jafter this step

1 |set boundary conditions|512 x 128 x 32 - -

2 |reduce to coarse grid .[256 x 64 x 16 - -

3. |[reduce to coarser grid |128 x 32 x 8 - -

L |iterate (o = 1.5) 128 x 32 x 8 100 0.3 x 1073

5 |iterate (o = 1.3) 128 x 32 x 8 100 <10-7

6 |iterate (a = 1.0) 128 x 32 x 8 100 <1077

7 |expand 256 x 64 x 16 - ?

8 literate (a = 1.5) 256 x 64 x 16 25 0.2 x 107"

9 |iterate (a = 1.3) 256 x 64 x 16 25 0.2 x 1078
10 |iterate (a = 1.0) 256 x 64 x 16 25 0.1 x 1076
11 |expand to full size 512 x 128 x 32 - ?

12 |iterate (a = 1.5) 512 x 128 x 32 4 <1074
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problem is very satisfactory. As can be seen in Fig. 1.1, the equipoten-

tials have no unexpected kinks and fit the boundary conditions extremely

well.
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Chapter 3. -AXIAL MOTIONS

A. Introduction

The axial motions of ions within a cyclotron are influenced by three
effects; ‘magnetic forces due to slope, flutter and spiral of the magnetic
field, electric forces due to the lens effect of the dee gap and space
charge forces due to the electric field produced by the beam. The magnetic
force is small and focusing at the centre of the machine. The electric
force is very strong and phase dependent (focusing for some phases and
defocusing for others). The space charge force is weak and always defocus-
ing. It will be shown that the axial motions during the first few turns
are controlled almost entirely by the electric forces.

Since one of the main design objectives of TRIUMF is to accelerate
ions over a wide interval of the RF waveform :(i.e. ions with large dif-
ferences in their initial RF phase) careful design is required to prevent
loss of those ions which start at unfavourable phases. The improvements
which can be achieved by ''squaring'" the radio-frequency waveform (by adding
a small fraction of 3rd harmonic to the fundamental) will be demonstrated.

Obviogsly, the axial displacement of the beam must not exceed the
aperture of the dees but a more stringent limit on the amplitude of the
axial oscillation is set by the fact that passage of the beam through
regions where the forces are not linear causes distortion of the beam
emittance. This causes a decrease in the ''effective density' of the beam
within the elliptical contour enclosing the beam's phase space. Recent
work by Hanl” indicates that about 60% of the dee aperture is linear to.

within 5%.% The axial motions must be adjusted so that as wide a range

8
w

C. Han integrated the equations of motion numerically through fields for
three gap geometries. For a gap height of 1.6'" and gap widths of 3.0",
6.5, and 7.4, the deviations from linearity were less than 5% over 60%

of the gap height.
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of phases as possible is transmitted. |In addition, the beam must be
matched to the magnetic field so that the amplitude of the axial oscilla-

tions is minimized.

B. Magnetic Field

The axial restoring force (FZ) exerted on an ion by the magnetic field
can be expressed in terms of the axial oscillation frequency (vz) which an
m

ion would have in the absence of other forces in the axial direction. The

oscillation frequency is related to the force by

where W, is the ion rotation frequency. This is a linear approximation
valid only for z << g, the magnet pole gap height. In a sector-focused

cyclotron the oscillation frequency is givenl® approximately by

(v.}z = -u” + F2(1 + 2 tan2e). (3.1)
Zm

|o.

-u° = %— describes the radial variation in the magnetic field. The azi-

a

r

muthal variation of the magnetic field is described by the flutter

function F2 where

F2 = <(B-§)2> /§2...

B is the mean field at a given radius and the angular brackets denote a
mean at one radius. Near the centre of the cyclotron the magnetic field
is given to a good approximation by B = E{I + f cos 6(e-em)} where f is
the amplitude of the sixth harmonic component (= BG/E) and 8 is the
azimuth angle of the peak field. |If the azimuthal Qariation of the field

is related to one harmonic only, the: flutter function F2 is related to

the amplitude of the harmonic f by F2 = 1f2, The anglie ¢ is
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the so-called ''spiral angle'' defined by tane = rdem/dr. For an isochronous
field, u” is positive and, near the centre of the cyclotron, the spiral
angle e is zero, hence the focusing provided by the magnetic field is due
only to the ''flutter' in the field. |If the net effect of the magnetic
field is to be focusing, the term due to the flutter must be larger than
the defocusing term due to the field slope. Unfortunately, it is difficult
to obtain large flutter in the central region of a.cyclotron magnet because
the vertical magnet gap is much larger than the horizontal distance between
pole pieces. A typical plot of (vi]m as a function of radius is shown in

Fig. 3.1. We plot [vi] rather than [vz] since [vi] is proportional to
m m

m
- the force exerted on the ion. Some cyclotrons use a magnetic ''cone'’ in the
central region to increase focusing. This consists of a central 'bump' on
the isochronous value of the fie}d. This means that u” is negative, hence
the magnetic focusing is increased. |In addition, phase slip is introduced
due to the fact that the field is not isochronous. The ions must be
started at positive (late) phases so that they have slipped into phase by
the time they have reached the isochronous field region. The positive
phase histories are advantageous fromthe point of view of electric focusing.
In the absence of ''squaring'' of the RF, it will be shown that the
phase acceptance has a sharp cutoff at -5 deg, i.e., only phases more posi-
tive than this can be accepted. A small field bump could be used to shift
these positive phases into isochronism so that the range of phases which is
accelerated is centred about 0 deg. It is shown in Section H of this chapter
that this field bump does not contribute appreciably to the focusing.
A field bump will not be required when addition of third harmonic to
the RF shifts the lower limit of the phase accepfance from -5 deg to

-25 deg. Field bumps are undesirable for three reasons.
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Firstly, the ions start off phase and since the error in centring
depends on the cosine of the largest phase angle, the centring errors are
increased.

Secondly, since the ions start off phase the energy gain is reduced.
Because of the relatively high injection energy, this makes the clearance
between the centre post and the beam small on the first turn.

Thirdly, the field bump will cause the beam to pass through the
Vo= 1 resonance (when u~ =»O) possibly leading to an increase in the
radial oscillation amplitude.

Another way to increase the focusing is to increase the flutter. This
may be achieved by cutting three of the pole pieces at a radius of 30 in.,
giving a three-sector geometry in the central region. This produced a v,
of about 0.2 from r = 10 in. outwards; however, the large flutter with
three-fold symmetry caused undesirable effects in the radial behaviour of
the beam (see Chapter 4) and had to be abandoned.

Tests have also shown that a set of ''floating' pole pieces 1.66 in.
above and below the median plane between 12.5 in. and 30.0 in. radius,
with six-fold symmetry, can also provide [szm = 0.2 in the central region.
However, it is virtually impossible to mount pole pieces in such a position
without disturbing the alignment of the resonator hot arms.

At this time it seems that the best magnetic focusing that can be

achieved is that shown by the solid curve in Fig. 3.1.

C. Space Charge Forces

The ions in the beam produce an electric field which exerts a force
on each ion in the beam. This is the space charge effect. This effect can

be analyzed by considering the force on an ion on the surface of a bunch
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due to the other ions in the bunch and the force due to the ions in other
bunches. Reiser!? has analyzed this problem; we find for the case of
TRIUMF (400 kV voltage gain per turn and low magnetic field) that at low
energy, more than 90% of the space charge force on an ion is due to the
field produced by the other ions in the bunch. This force is directed

radially outward from the centre of the bunch and can be writtent?

where z and A¢ are the maximum height and the length of the bunch in
degrees of RF, respectively, v is the velocity of the ions, I is the
average current, gq is the charge on the fion, €, is the permittivity of free
space, and G is a factor which depends on the height-to-width ratio of the
beam bunch.

The vertical oscillation frequency produced by this force is

2| = - G T1
NS E=3-12 .2

(o]

In the case of TRIUMF, the source will produce about 2 mA, hence without
bunching we can expect I/A¢ = 5 pA/deg. Since the axial focusing is four
or five times weaker than the radial focusing, we can expect beam width-to-
height ratios of the order of 0.5. For this value, the geometrical factor
G is 4.8. Fig. 3.2 shows how [vi]sc varies with energy for various values
of I/A¢ and z -

A graph showing the variation of G with the gap and height of the dee
can be found in the paper by Reiser.!? |

This force is roughly the same order of magnitude as the magnetic

force and can be accounted for by using an "effective' magnetic vi which
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is the difference between the actual magnetic v, and the space charge v,

for the beam intensity under consideration.

D. Electric Lens Effects

The importance of electric focusing effects in cyclotrons was recog-
nized soon after the invention of the cyclotron. Rosel! developed
approximate expressions for the lens effects of cyclotron dee gaps using
the symmetry properties of the electric fields and a description of the
field derived by Kottler.20 . These studies indicated that the lens prop-
erties arose from two effects. As can be seen in Fig. 3.3, the first part
of the gap is focusing, while the second part is defocusing. These would
cancel exactly, except that

(i) the field is changing, and

(ii) the ion is accelerated.

The deflection due to the field variation arises because the ion sees
a different electric field in the second half of the gap than in the first.
Since the first half of the gap is focusing and the second half is defocus-
ing, there is a differential focusing effect. The change in z° = dz/dx

due to this ''field variation'" effect is, to first order in qu/Ec

v, 1
(Az7) g, =-qE_C°-r—z sin ¢ (3.3)

where VO is the dee voltage .and Ec’ r and ¢C are the energy, radius and RF
phase of the ion at the gap centre. This effect is linear in z and is
focusing when the field is falling (positive phases) but defocusing when
the field is rising (negative phases).

The second effect is due to the ion spending less time in the second

half of the gap, hence the defocusing force in the second half of the gap
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produces less deflection than an equal force would in the first half. This
effect is always focusing and is given by

ec EC

qVy)?
(8z7) = ‘g(——Q} z cos2¢ : " (3.4)
where g is a numerical factor depending on the geometry.
There is also a collimation term due to the fact that the forward
momentum p; increases while the transverse momentum p, remains constant;
however, this term disappears when the change in p, rather than z~ is

considered.

In addition, Rose predicts a change in axial position

az = |1 - Ho 080 (3.5)
Ec 0

Rose's analysis was extended by Cohen3 who used an electric field

21

developed by Murray and Ratner. This more detailed analysis showed that

the expressions developed by Rose are the first two terms in a series in

V1/E.. More recently, the analysis has been further extended by Reiser.22

This most recent analysis includes the effect of the dee liner, i.e., c is
not © (see Fig. 3.3) as was assumed in the previous analyses. Reiser's

expression for the deflection is

2
NaYo] sing, +

Az” = -z [
°Ar Ec

2F (a,b,c) [qvo]
)

c052¢c - ﬂ!g.cos¢cza (3.6)
b E

EC o

where z is the axial displacement of the ion when it enters the lens, N is
the harmonic ratio of the RF frequency to the ion frequency and F(a,b,c) is
a dimensionless function which depends on the geometry (a, b and ¢ are

described by Fig. 3.3).
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The linearity in z of the above expressions for the deflection and
‘displacement permits an enormous simplification in the axial motion calcula-
tions. However, this formula is based on the assumptions that the transit
time of the particle across the gap is small and that the energy gain across
the gap is much smaller than the incident ion energy. Since the electric
forces become strong just where these approximations are likely to become
invalid (i.e. at low energy), it is important to investigate the validity
of this formula. For the case of TRIUMF, the RF operates at the fifth
harmonic of the ion frequency (N=5) and the transit times are of the order
of 60 to 70 deg of RF on the first turn so the small transit time approxi-
mation is not valid;vhowever, the relatively high injecfion energy
(300 keV) means that the approximation that the energy gain is small com-
pared to the incident energy is reasonably valid after a few accelerations.
Recently, Han?3 has published a compilation of the focusing effects of
cyclotron like gaps for geometries applicable to TRIUMF. These results
were obtained by numerically integrating the equations of motion through
electric fields calculated using the relaxation method described in
Chapter 2. The data given in Han's Tables 6-1 to 6-7 provide a relevant
source of numerical results to compare with the theory. To allow compari-
son of the electric forces to the magnetic and space charge forces, we can
approximate the focusing effects at the dee gaps by an equivalent [vi}e
which would give the same deflection over a half-turn.

1f Az” << zo/ﬂr
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For the numerical results given by Han23

(9.

wheré F2 is the forward focal power of the lens.

"Fig. 3.4 compares values of Fi]e obtained by exact numerical integra-
tion with those obtained from eqn.(3;6) for various phases and energies.
The agreement is better for negative phases than for positive ones. In
all cases the analytic description given by eqn.(3.6) overestimates the
strength of the electricvforces. it should be notéd that for TRIUMF the
injection energy is 300 keV, and the ion eﬁergy after the first main gap
crossing is about 600 keV, so the approximation is valid to within 15% in
the first turn. Hence we can use the expressions given in eqgns.(3.5) and
(3.6) and obtain a reasonable estimate of the axial motions.

It should be noted that the électric forces are much larger than the
magnetic and space charge forces. In addition, fhe electric forces are
defocusing for, roughly speaking, negative phases. This causes a sharp
cutoff in the phase acceptance near 0 deg. This cutoff can be shifted to
more negative phases by providing additional (for example, magnetic) ~
focusing.. To shift this cutoff to -30 deg at 500 keV, magnetic focusing
equivalent to a [yz]i of (0.3) would be required to overcome the defocus-
ing effects of the’electric field.

This sharp cutoff for negative phases is due to the field Qariation
_effect. The deflection due to field variation is proportional to sing,
hence rapidly becomes large for negative phases. The.focusing due to the
energy change is proportional to cos2¢ and is multiplied by a smaller

coefficient than the field variation term. The relative magnitude of

these two effects is shown in Fig. 3.4. The maximum contribution to
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(\)Z)2 from the energy change term is given by the curve for ¢:= 0. Hence
the net effect of the electric field closely follows the field variation

effect and is defocusing for negative phases.

E. Calculation of Cyclotron Acceptance

Since the linear description of the electric lens effect is reasonably
accurate, and the magnetic and space charge focusing can be described in a

linear manner, we can track the axial motions of the ions using the matrix

method for tracking beams as suggested by Penner.2%

If the axial focusing frequency due to the combined effects of the
magnetic field and space charge is Vs then in a region where v, is

constant, the axial motion will be given by

'

rz,” .
Zo cos v_0 + "% sin v_6 (3.7)
z \)z Z"

z(s)

V,Z . .
z7(s) =-2270 sin v,0 + 2, cos v 8
= )

where z, and z_ ~ are the initial (axial) displacement and slope, respec-

0 0

tively, 6 = s/r is the azimuthal angle subtended by the ion, s is the path
length, and r is the radius of curvature of the ion.
We are dealing with low energies so we can use a non-relativistic

energy - momentum relationship

- pZ

z7 = 17? (3.8)

where P, is the axial momentum, E is the kinetic energy and k = /ZE;.

It is convenient to measure momenta as Bﬁ{re° where B and vy are the usual
relativistic factors and r_ is the ''cyclotron radius" (= moc/qBC). This
‘momentum is numerically equal tothe radius of curvature the ifon would

have in the central magnetic field (B.). For the TRIUMF centre region
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BC = 3.0 kG, Byr_ (in.) = 18.94 VE (MeV).

Using eqn.(3.8), we can write the magnetic transfer matrix

r
z cos v_0 —=sin v, 0 z z
z v, VE z 0 o
= /_ z = Tm (3-9)
Pz “Y2'E sinv.oe cos V20 Pz Pz
k r z k o k o

The expressions given in eqns.(3.5) and (3.6) can also be written in

this form. |If we call the transfer matrix for the dee gap
a b
T. =
€ c d
then
a =1 - Syg-cos ¢ (3.10)
E¢ '

O
|

2
-VE¢ E-[SY—Q-]sin b + 2F(a,b,c) {qvo) cos?¢ (3.11)
r{ Ec E

mh c

where EC and Ef are the ion energies at the centre and end of the dee gap,
respectively.

The expressions derived by Rose and Cohen do not include any depend-
ence of the final position on the initial divergence, i.e. b is assumed to
be zero. The numerical results given by Han indicate d = 1, and since

Liouville's Theorem required ad - cb = 1, we choose

d=1 (3.12)

o
]

Lad - ). (3.13)

The fact that b is non-zero means that there is a displacement term
which depends on the initial slope (z;”). The existence of this term is
confirmed in the numerical results given by Han; however, it is a small

effect.
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Now that the transfer matrices for the various parts of the trajectory
are known, the complete trajectory can be calculated by the usual matrix

multiplication method

) Z,
=T

pZZ 1 pzl

K ] \ J

() )

23 r22
=T

Pz, 2 Pz,

L k J L P,

fz3 3 (Zl W
=T,T

pz3 21 pz1

e L

J .

A method for analyzing optic systems, much more powerful than trajec-
tory tracking, has been developed by Steffen.2% This method allows the
tracking of elliptical beam phase space areas through the system; It is
usual to consider elliptical emittances, since ellipses can be specified
by only three parameters, and make a good approximation to the actual phase
space shape, which would présumably be polygonal.2® We will use Steffen's
notation to describe the phase space ellipses. [f. the ellipse is described

by the equation

2
P P
2 Zz zl -
vz©é + 2 azk + B(k] £

then, as derived by Steffen, the maximum displacement and momentum are

Vep

N
1

max

Pz max /E?



37

lf we define the transfer matrix which transforms the vector

y4

Pz

K

L
by

z, c s z,

Pz, B ¢ s-|| Pz
k k

then Steffen shows that the ellipse parameters are transformed according

to

2 P 2
B, c 2¢is S B,
uz = -CcC CS +$C~ =SS al
Y, 2 .a¢s” 572 Y1

This allows tracking of the beam ellipse through the system by multiplica-
tion of 3x3 matrices.

Since the electric and space charge forces decrease with increasing
energy, the only important focusing force outside .the central region is
the magnetic field. At this point (where electric forces have become
negligible) the beam must be matched to the magnetic field; that is, the
amplitude of the axial oscillations must be minimized and a beam of uniform
envelope obtained. For a constant vz.the phase space ellipse which mini-

mizes z is given b
max g Y

a =-0
m
v,vE
1 z = .
Y - constant v,
1
Bp = =
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Once the central region geometry has been decided, the transfer matrix
from injection to the radius where electric forces are negligible can be
calculated (T). Now if this matrix is inverted (TL), the phase space

ellipse required at injection to provide a beam matched to the magnetic

field is
S| Bm
o = TL| o
i m
Y Ym

Unfortunately, due to the fact that the electric forces are phase de-
pendent, TL will be different fof every initial RF phase. This means that
the required initial phase space shape will be phase dependent; however,
the initial phase space shape cannot easily be varied with phase. The best
that can be done is to choose the initial ellipse shape for one RF phase
and accept the fact that for other phases only those ions whose points in
phase space fall within the chosen ellipse shape will be accelerated with

z < This provides a method for calculating the phase

Zideal envelope’
acceptance of an accelerator. The ellipse shape required for one phase is
chosen as the one to be provided; then the overlap of the ellipses for other

phases with the chosen ellipse gives the acceptance of the accelerator for

each phase.

F. Phase Space Acceptance for Various TRIUMF
Central Geometries and Injection Energies

Early in the design of TRIUMF it was necessary to fix the injection
energy and injection geometry. The original suggestion was that the injec-
tion energy should be 150 keV; however, it was soon realized that the strong

and phase-dependent electric forces would allow only a poor duty factor for



39

this injection energy. Raising the injection energy would alleviate this
problem and also reduce the spread in orbit centre points due to different
energy gains for different RF phases; thus impréving the radial beam quali-
ty. However, a higher injection energy makes bunching, chopping and the
design of the spiral electrostatic inflector more difficult. Thus we must
investigate the axial motions to determine how the phase acceptance varies
with injection energy and make a compromise between increased phase accept-
ance and the difficulties mentioned above.

Various initial orbit geometries had been suggested, ranging from the
one injection gap case shown in Fig. 1.1 to>the multi-gap case shown in
Fig. 3.5.

At the time of these studies it was hoped that a three-sector magnetic
field could be used in the central region. Model tests showed that this
three-sector geometry produced a magnetic v, of about 0.2, and so the axial
motion studies were done with this value. The three-sector magnetic
geometry was later replaced by a six-sector geometry for reasons which are
explained in Chapter 4. The six-sector geometry produces much smaller
values of v_ at small radius (see Fig. 3.1); however, tests with smaller v,
values show that the conclusions reached here are still valid even With
much reduced values of v |

Most of the geometries studied had posts defining the first two gaps.
It was. estimated that these posts would reduce the electric forces by a
factor of 4, and this is included in the calculations.*

For each geometry the transfer matrices and the ellipse shapes

requiFed at injection were calculated. Fig. 3.6 shows the ellipses:

* The study by Han43 indicates that the presence of posts in the dee gap
actually reduces the focusing forces by a factor of six or.seven.
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required for one geometry. The cyclotron acceptance was calculated as dis-
cussed above. For comparison purposes, the overlap of the ellipses with
the ellipse for 20 deg is used, since this is approximately in the middle
of the acceptance interval and gives as good matching with other phases as
is possible.

Fig. 3.7 shows the overlap with the ellipse for a phase of +20 deg
for injection energies of 150, 306 and 472 keV with one 100 keV gap in the
first turn. The sharp cutoff at about -15 deg is due to the defocusing
action .of the e]ectrfc field. Fig. 3.8 shows the overlap with the ellipse
for a phase of +20 deg for injection energies of 120, 286 and 454 keV with
three 100 keV gaps in the first turn. This geometry gives no significant
improvement in the phase acceptance, and the multi-gap geometry worsens
the radial centre point spread and complicates the resonator design; hence
multi-gap geometries were abandoned.

The data for the one gap geometries is summarized in Fig. 3.9. The
average acceptance (averaged from =30 deg to +60 deg) seemed to flatten
out above 300 keV, and this seemed to be the highest reasonable energy froml
the point of view of bunching and inflection, so it was decided to raise
the injection energy from 150 to 300 keV.

Now after it was decided that a three-sector magnetic geometry could
not be used, the code was rewritten to accept a magnetic v, varying with
radius, and the calculations for 300 keV injection energy were repeated
using the much smaller v measured on the six-sector magnet model (Fig. 3.1).
Fig. 3.10 shows the acceptance as a function of phase for this case for
various choices for the initial ellipse. |If the 20 deg ellipse is chosen
as the axial phase space shape of the beam at injection, over 90% of the

beam would be accepted at phases greater than 10 deg while the fraction of
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the beam accepted would be 64% at 0 deg, 30% at -10 deg and zero for phases
less than -10 deg. For this choice .of initial ellipse shape the amplitude
of the beam envelope does not exceed 0.55 in. for phases between -10 deg

and 60 deg.

G. Effects of Third Harmonic in the RF on Axial Motions

The unique features of the TRIUMF resonators allow the addition of
higher odd harmonics to the fundamental mode.2” If the third harmonic of
the fundamental is added, the resonators operate as a 3\/bL cavity as well

as a A/4 cavity. We now have an RF voltage given by
Vo= VO {cos 6 - e cos (3¢ + 8) - (3.14)

where € = (amplitude of third harmonic)/(amplitude of fundamental) and § is
the phase of the third harmonic with respect to the fundamental. Small
positive values of € are required to square or ''flat-top'' the fundamental.
A fraction e = 1/9 produces perfect flét-topping at 0 deg, while mofe third
harmonic than this produces a slight dip in tHe total voltage at 0 deg (see
Fig. 3.11).

Now we must modify the formulae descfibing the lens effects of the gaps
(egns. 3.10 to 3.13) to reflect the fact that the acceierating voltage is
given by eqn.(3.14) iﬁstead of a pure cosine waveform. The field variation
term given in eqn.(3.3) is essentially proportional to dV/d¢, i.e. to the
rate at which the field is changing,.and the energy change term given in
eqn.(3.4) depends on the square of the energy gain. Hence with the RF

voltage given by eqn.(3.14). we have
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c = /E;' g{%¥QJ[sin 6 - 3e sin(3¢ + 6)] +2F(a’919){1y0]2(c05 ¢
c

c b

2
- e cos(3¢ + 6)] (3.15)

and

o]
|

=] - S!Q{cos 6 - € cos(3¢ + 5)}, (3.16)

C

[cf. eqns.(3.10) and (3.11) for no third harmonic.]

As before,

d=1

o
I

-(]-:-(ad - 1.

The negative limit on the axial phase acceptance is determined by the
most positive phase for which the total force acting on the ion is defocus-
ing (see Section H of this chapter). The electric force is defocusing due
to the field variation effect when the field is increasing, since the
(always focusing) energy gain effect is much smaller than the field varia-
tion effect. Hence we want to choose € and § so that the negative of the

slope of the voltage (@vi due to the field variation effect)

d{V . .
d¢[VO] = +sin ¢ - 3¢ sin(3¢ + &) (3.17)
. - . . . X d(V
remains positive over as wide a range as possible. Fig. 3.12° shows FTICN
o}
for various values of € and §. The widest interval where -g%{v—J remains
)

positive is produced by § = =10 + 2 dég)and g = 0.15 £ .01; however, when
§ ¥ 0, the presence of the beam causes coupling between the first and third
harmonics in the resonators, so that the third harmonic becomes detuned

increasing, by a large amount, the power required to maintain the third
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harmonic voltage. These coupling effects are not yet fully understood, so
we will consider two cases, § = 0 and 6 # 0. When § = 0 the limit on ¢ is
set by the value which causes -é%{eL} to become negative; € = 0.17, for
O l
example, produces a '"hole' in the phase acceptance for 5 deg < ¢ < 25 deg
d
d¢

the maximum value of e which can be tolerated is e = 0.12 £ .01. The phase

(see Fig. 3.13) due to the fact that -——k%jis negative there. With § # 0,

acceptance produced by this value is shown in Fig. 3.1&. If we allow non-
zero values of &, the best choice is 6 = ~-10 deg, € = 0.15. The phase
acceptance for this case is shown in Fig. 3.15.

The optimum values of € and § will depend to some extent on the final
details of the magnetic field, the current being accelerated and on the RF
system, since the amount of power required to keep the peak voltage at
100 keV increases as € increases; however, the use of third harmonic in
the RF appears to shift the cutoff in acceptance due to electric defocusing
from -5 deg to -25 deg.

These conclusions are based purely on approximate analytic formulae
and should be confirmed by numerical orbit tracking, i.e. by integrating
the equations of motion numerically through three dimensional electric and

magnetic fields.

H. Effects of Field Bumps

By a field bump we mean here an increase in the magnetic field above
the isochronous value. The usual procedure in cyclotrons is to make the bump
largest at the centre of the cyclotron and decrease with radius. This pro-
duces additional axial magnetic focusing due to the negative field gradient
[see eqn.(3.1)]. - In addition, the bump causes the phase of the ions to

change, since the magnetic field is no longer isochronous. The change in
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the sine of the phase angle is given by Smith and Garren28

f §Brdr = 1 _____ f sBrdr.  (3.18)

6858 G+in2

_2mNg%B,

Afsin ¢) =
‘ m, AE

éB is the field bump, B. is the central magnetic field, AE is the energy
gain per turn, N is the harmonic number, and q and m, are the ion charge
and mass, respectively, and the constant is appropriate to the TRIUMF
cyclotron. If 8B > 0, the ions ''catch up', i.e. positive phase (late) ions
(favourable for electric focusing) are brought into phase as the energy
increases and the electric focusing becomes less important than the
magnetic flutter focusing. |In a conventional cyclotron with the RF not
operating at a high harmonic oflthe ion frequency, a carefully chosen field
bump can be of great help in overcoming the electric forces, since the two
effects mentioned above both help to increase the useful phase acceptance.
For the case of TRIUMF, the operation of the RF at the fifth harmonic
of the ion frequency means that the electric focusing ig very strong, and
the two advantages mentioned above are reduced. For example, a bump of
25 G at 10 in. diminishing to zero at 25 in. gives the required phase shift
of about 30 deg and an equivalent vi due to the field gradient of 0.01. As
can be seen 'from Fig. 3.4, however, this is much smaller than the force
produced by the electric fields, and hence would have only a small effect
on the phase acceptance. Larger field bumps cannot be used because (i) they
produce more phase shift, causing ions to be shifted to a phase where the
electric forces are defocusing, and (ii) ions starting at large positive
phases will not gain enough energy to clear the centre post on the first
turn. A field bump can, however, be used to shift the range of phases

which is accepted (-5 deg to +25 deg) to a range which is centred about
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0 deg. This must be done carefully so that none of the useful phase range
is shifted to a phase where the electric field is defocusing before the
magnetic focusing is strong enough to make the total focusing positive.

Fig. 3.16 shows the total effective vg produced by the magnetic and electric
fields. It can be seen that the sharp cutoff in phase acceptance at

-5 deg demonstrated in Fig. 3.]0 is caused by the fact that ions with

phases more negative than -5 deg experience a force which is defocusing at
about 1.5 MeV. Since Fig. 3.16 shows at what energy the total focusing
becomes positive as a function of phase, we can calculate how the phase of
the ions should be 'programmed' so that tﬁe ion is brought into isochronism
as soon as possible but not subjected to defocusing forces. Fig. 3.17

shows the phase at which the focusing becomes positive as a function of
energy. An ideal magnetic field would produce no phase gain out to 1.5 MeV;
then it would cause the phase of the ion whose phase was -5 deg at 1.5 Mev
to become more negative, as shown in Fig. 3.17. The amount_of phase gain
desired is determined by the phase range to be accepted. If we aim to
accept all ions with phases between -5 deg and +45 deg, the amount of phase

gain is given by A sin ¢ where, after the phase gain has taken place,
[sin(-5°) + A 5ing]l = -[sin(45°) + A sinol.

This gives A sin ¢=-0.31, and the final range of phasés is £23.4 deg. The

phase history shown in Fig. 3.17 is produced by the A sin ¢ shown in |
!

Fig. 3.18. The field bump required to produce this variation in A sin ¢ is

shown in Fig. 3.19. A bump with such a sharp cutoff cannot be produced in

practice; however, a bump with the same’ fGBrdr as the one shown in

Fig. 3.19,and which shifts the phases no faster than the bump shown in

Fig. 3.19, could be used. It should be noted that the positive slope of
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2
this bump will decrease [vz] by about 0.005. Another disadvantage is that

m
the ions will spend 5 or 6 turns far from the optimum phase. This may
cause a large spread in centre points to develop unless the radial starting
conditions are carefully chosen. This problem is considered in Chapter 4.

0f course, with third harmonic in the RF, the negative phase limit due

to electric focusing is -25 deg and a field bump is not required.
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Chapter 4. RADIAL MOTIONS ' t

A. Introduction

The central region of the.cyc]otron must be designed with two general
objectives in mind. Firstly, the geometry of the electrodes must be
arranged so thaf ions with the desired range of phases can be accelerated
without hitting the electrodes. Secondly, the central region must produce
a beam which is centred to within the desired tolerances.

We have shown in Chapter | that the motion in the median plane and
the axial motion are independent to a good approximation. This chapter
will discuss motion in the median plane on]y;

Fig. 1.1 is a section through the median plane of TRIUMF. The beam is
injected down the axis of the cyclotron, then bent into the median plane
bf the spiral electrostatic inflector. The problem of the inflector is
discussed elsewhere?? We will assume that af the exit of the inflector we
have a mono-energetic beam whoée shape in phase space is a free parameter.
The fact that the RF operates at the fifth harmonic of the ion frequency
allows the ''injection gap' to provide an extra 100 keV acceleration on the
first turn. This eases the geometrical problems somewhat but causes the
co-ordinate of the orbit centre point, perpendicular to the gap, to vary
with phase. After reaching the first main gap, the ions are accelerated
and spiral outward as in an ordinary two-dee cyclotron. The main geometri-
cal constraint is clearance of the centre post onthe first turn. lons more
than 45 deg from peak phase will hit the dee and be lost; however, centring
requirementsAlimit the acceptable phases to a range smaller than this.

The use of fifth harmonic acceleration means that transit time
effects are large. This reduces the energy gain at low energy. To allevi-

ate this situation, the dee gap is tapered in both the horizontal and axial
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directions (see Figs. 1.1 and 1.2) so that the electric fields are
compressed and the energy gains are . incréased. |In addition, the injection
gap and first main gap are defined by posts which compress the electric
field further and decrease axial focusing effects, as described in

Chapter 3. These refinements make the geometry quite complicated and
necessitate numerical tracking of the orbits at ieast out to the radius
where the taper ends (30 in. or about 3 MeV). The orbit tracking was done
using a slightly modified version of the computer program PINWHEEL 30 The
magnetic fields were obtained from measurements on a 1:20 model magnet,
and the electric fields were calculated using the methods described in

LChapter 2.

B. Basic Design

The first ion orbit in the cyclotron is shown schematicélly in
Fig. 4.1. After leaving the inflector the ions travel, under theﬁinfluence
of the magnetic field only and with centre of curvature S, until they reach
the injection gap. At the injection gap the ions are accelerated, gnd
hence the centre of curvature changes. In addition, if the centre line of
the injection gap is at an angle to the beam, the ions are deflected. Since
the energy gains and deflections are phase dependent, the centre points and
radii of curvature will be different for different phases. The ions now
travel, again under the influence of the magnetic field only, to the first
main gap where they are again accelerated. Due to the phase-dependent
effects at the injection gap, the radius and RF phase at which the first
main gap is crossed will depend on the initial RF phase and so will the
centre points. |In designing the central geometry it is desirable to choose

the position and orientation of the injection gap so that as wide a phase
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interval as possible clears the centre post on the first turn and is close
enough to beinmg centred to be useful.

As far as the placement of the injection gap is concerned, the quanti-
ties of interest are the radius, RF phase, energy and angle at which ions
with various ‘initial phases cross the first main gap.

To get a first order description of the effects we can use the
approximation that the energy gains are instantaneous and give the ions
93.0 cos¢ keV-at the injection gap and 174.5 cos¢ keV at the first main
gap. These values are based on the results of numerically integrating ion
trajectories through the gaps. We will also use a non-relativistic
expression for the radius of curvature of the ion which, for a 3 kG mag-

netic field, is
r(in.) = 0.60 VE(keV) = 18.94 VE(MeV) . (4.1)

Since in most cases we will be interested in differences between ions
with different phases, we will label the ion whose centre of curvature is
(xC,O) [i.e: its centre of curvature is on the centreline of the dee gap] by
the subscript 1. We label an ion at some other phase by the subscript 2.
Quantities referring to the injection gap are further labelled with the
superscript ig, while those referring to the first main gap have super-
script mg. |

The geometry of the orbit near the injection gap and first main gap is
shown in Fig. 4.1. If the ion reaches the injection gap making an angle B
to the gap axis, then for a peak dee voltage V0 an ion with charge q
experiences a force-qVVcos¢ig cosp along the orbit and a force

--qVVcosq)‘g sinB perpendicular to the orbit. The injection gap causes a
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straightening or ''collimating' deflection, given by

A = tan 1 [E_%EZEiEEEEJ - %%fcos¢ig sinB (4.2)

where p and Ap are the initial momentum and momentum gain, respectively.
The approximation is valid if Ap << p. Because of radial centring consid-
erations, two quantities of interest are the radius and angle at which the
ions cross the first main gap, or ‘the differences in these quantities for

different phases. The length a s given by

a® = r;2 + r,2 - 2ryry cos (A, - A)) (4.3)

and the angle E by

£ = sin”! '[Eg (a, - Al)], (1.1)

a

The radius difference at the first main gap (6r) is given by

8r = a cos (E-y) - ry + /r22 + aZsin?(E-y). (4.5)

The angle at which the ions cross the centreline of the gap is given by

¢ =sin’! [i sin(E-w)]_ (4.6)

r2
The RF phase at which the ion reaches the main gap is given by

m

" = 69 + 50y + A, - A - 0). (4.7)
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The co-ordinate of the centre point perpendicular to the dee gap is given

by

y, = -a sin(E-y). (4.8)
It appears from eqns.(4.2) and (4.5) that if B # 0, the radius and
angle at which the ion crosses the main gap can be varied with phase. This

would be useful because it provides a method of improving the 'match"
between the orbit starting conditions provided by the injection gap and
thése required for centred orbits. However, because of the posts, the in-
jection gap acts as a lens (similar in properties to the lenses studied in
Chapter 3). Han23 has studied the properties>bf a lens similar to the
injection gap and found that it is.convergent fpr positive phases and
divergent for negative phases. The deflections due to the lens effects are
larger than those produced by placing the injection gap at an angle to the
beam. This effect has been confirmed by numerical o?bit tracks through
electric fields with the injection gap at various angles. Since radial
centring considerations require r™ for both positive and negative phases
to be fesg than r"™ for zero phase, slanting the injection gap to the ion
path does not improve the centring and will not be considered further.

Now with B8 = 0, eqns.(4.2) to (4.8) are much simplified and will be

stated again:

A=A, =0

a =ry -r, =102 " (cose, - coso,) (4.9)
2 /Eg'

E =0

Sr = a cos¢ - rp + V/rp2 + a%sin?y (4.10)
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sinC="2""1 siny = -9 siny L.11)
rz T2 .
yc = (rl - r2) Sinw = "I"2 SinC (L}_IZ)
ig .
~ To AE ° siny (cos¢, - cosg,)

2 E

0
¢mg = ¢'g + Slp - 5C- (’4-]3)

The subscript o refers to quantities before the injection gap is reached.
In the central region of TRIUMF the radius of curvature is given by

eqn.(4.1). The quantities AE'S and EO are 93 and 300 keV, respectively;

ro AEig

hence the constant appearing in eqn.(4.12)is 5" = 1.61 in.

0
The first order choice for the available parameters is ¢ = 36 deg and

¢1ig = 0 deg, i.e. the ion with zero phase at the injection gap has Yo = 0
after the injection gap. |If we use this geometry, then the centre points
predicted by eqn.(4.12) are as shown by the solid curve in Fig. 4.2. The
energy gain calculated as 93,cos¢ig + 174.5 cosémg,with ¢mg given by

eqn. (4.13), is shqwn'by the solid curve in Fig. 4.3. As expected, the
centre points for all ions which gain less energy than the ion with zero
phase lie above the centreline.of the dee (positive values of yc). The |
asymmetry in the energy gain is due to the fact that negative phases are
favoured by this arrangement, which delays all non-zero phases. Consider
two ions which reach the injection gap with phases ¢ig=:130 deg; the
energy gains will be identical here but the ions will arrive at the main
gap at +30 deg - SC,vas predicted by eqn.(4.13). Since C is ébout

-0.55 deg for this case, the ion with phase -30 deg at the injection gap

will reach the main gap;at -27.25 deg, and the ion with phase +30 deg at
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the injection gap will reach the main gap at +32.25 deg. The phase at the
main gap as a function of phase at the injection gap for this case is shown
by the solid line in Fig. 4.k, |

The different values of Yo for various phases are inherent in the use
Qf the injection gap at an angle to the main gap. This centring is unde-
sirable because it leads to a phase oscillation. An orbit with radius of
curvature r and off centre by an amount Yo must turn through an angle of
T + ZyC/r between dee gap crossings. This means that the ion will arrive
at one gap early by lch/r deg of RF phase and late at the next gap by the
same amount. Fig. 4.5 shows the magnitude of this phase oscillation as a
function of Ye for various values of r. Fig. 4.2 indicates that we can
expect values of Ye of about 0.10 in. for an ion with ﬁhase of +30 deg.
This leads to a phase oscillation amplitude of 4 deg at a radius of 14 in.
(the radius of the first turn). The existence and order of magnitude of
these phase oscillations are confirmed by the phase histories shown in
Fig. 4.6. These phase histories are from a numerically integrated orbit.
The +30 deg ion has an oscillation ‘amplitude of about 4.5 deg, in good
agreement with thebexpected value. The asymmetry between positive and
negative phases in Fig. 4.6 is probably due to the zero phase ion not
being exactly centred. The phase oscillation damps out as the energy (and
hence r) increases. The magnitude of the centring errors (and hence the
phase oscillations) can be reduced by centring the spread of yc's about
the centreline of the dee instead of having all the Ye of one sign, as was
assumed for the solid curve in Fig. 4.2. This is achieved by moving the
injection gap closer to the main gap without changing its orientation. To
Centre the spread of yc's for a phase interval of *A¢, the phase of the

ion whose Ye value is zero is ¢1|9 = cos'l[(li-cbsA¢)/2]; hence
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29 ='7? Sinj{', (h.14)
So; if we wanted to centre the yc‘s for a phase range of *45 deg, we would
choose ¢1ig = 31.4 deg. This produces the Ye and AE values shown by the
dashed lines in Figs. 4.2 and 4,3. In order to make Yy, 2zero for a phase
of 31.4 deg, the injection gap must be shifted 0.12 in. (see Fig. 4.2)
closer to the main gap. The maximum phase oscillation is now réduced to
about *5 deg rather than %10 deg, The phase change between injection gap
and main gap [given by eqn.(4.13)] is now less than 180 deg; hence we are
shifting the ions towards negative phésesjfbriiéﬁé wifh l¢ig| < 31.4 deg
where they tend to be defocused in the axial direction on subsequent turns.
In fact it is useful to reduce the angle ¥ (i.e. rotate the injection gap
towards the main gap about the centre poinf for ¢1). This reduces the
energy spread for positive phases; for example ¥ = 32 deg produces the -
energy gain curve given by the dotted line in Fig. 4.3. The maximum is
shifted towards positive phases because reducing ¥ reduces wmg [see

eqn. (4.13)]; hence positive phases gain more energy. The reduced energy
spread a]]eviétes the problems of centring and clearing the centre post on
the first turn. However, as can be seen from eqn.(4.13) and the dotted
curve on Fig. 4.4, reducing ¥ to 32 deg causes a large phase shift (about
23 deg) towards negative phases. The small shift towards negative phases
required to centre the spread of yc's is tolerable, since it produces a
~large improvement in the centring; however, reducing ¢ to, say, 32 deg pro-
duces an unacceptably large shift towards negative phases. Hence ¥ must
be chosen so that the ion with phase ¢1ig [see egn.(4.14)] has Y. =0

after passing through the injection gap. The radius of the injection gap



55

is fixed because the injection energy is fixed; hence the injection gap

position is determined.

C. Problems with Three-Sector Magnetic Fields

As demonstrated in Chapter 3, the lower 1imit on the phase acceptance
is set by axial focusing requirements. The acceptable range of phases can
be increased if a phase-independent focusing force can bg found to counter-
act the defocusing effects of the electric field. The only phase-
fndependent source of axial focusing is the magnetic field; hence efforts
were made to incrgase (vz)m near the centre of the machine. Increasing
(\)Z)m requireé that the ''flutter' of the magnetic field be increased. Un-
fortunately, the central geometry of TRIUMF makes this very difficult
because the magnet gap is large and there are six sectors, making the
spacing between the magnet sectors small at small radius. One way of in-
creasing the flutter is to transform the field from a six-sector geometry
to a three-sector geometry in the central region. This is done by cutting
off alternate magnet pole pieces at r = 40 in. and adding to the remaining
pole pieces steel wedges (see Fig. 1.2) extending to the centre of the
cyclotron. Thié produces a field which is dominated by the third harmonic
rather than the sixth. This ''‘three-sector geometry'' produced a considerable
improvement in (vz)m, as is shown bY the dashed line in Fig. 3.1. With the
three-sector geometry, (vz)m is greater than 0.1 for r » 10 in.‘ However,

" the large third harmonic caused undesirable effects in the radial orbit
behaviour. ‘

There are two effects caused by the three-sector geometry, an increase
in phase oscillation amplitude and the gap crossing resonance. Which of

these effects is most important depends on the orientation of the electric
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field to the magnetic field. We define this orientation by the angle §
shown in Fig. 4.7. |

The phase oscillation effect results because, if § + 0, the orbit
covers 2 valleys and‘] hill on one half-turn and 1 valley and 2 hills on
the next half-turn. Hence, the lengths of the orbit on successive half-
turns are different, as can be seen in Fig. 4.7. If the nth harmonic
dominates the variation in the magnetic field, the orbit equation may be

written in the abproximate form (e.g. Walkinshaw and Kinggl)

1
n2-1

1 +

%§.cosne (4.15)

where L is the radius of the (circular) orbit if the field had no azi-

muthal variation, Bn is the amplitude of the nth harmonic in the field and

B is the average field. For the present case with n=3,

-
It

ro(l + a cos39) (4.16)
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8 B

where a

Now we wish to calculate the path length (s) between dee gaps. Using

eqn.(4.16), we have

o
w
1
——
Q.
i
'
N
+
-
N
N~

~ r |1 + a cos39|.
\ J

The approximation which has been made is that B3 << 8 B. Hence, over one

half-turn we have
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f=4+m
s .
Fl- = (1 + a cos36)de = 7 + _L.Eg.sinBG (4.17)
0 ' 12 B
6=§
and over the following half-turn
g=38+2m
1= (1 + a cos368)de = -.l_.z; sin3s (4.18)
r 12 B
[¢]
8=8+m
. 1 Bg |
So, between successive gap crossings the phase oscillates by 5 x TEKE'SIHBG

(since the RF operates on the fifth harmonic of the ion frequency).

The variation of this phase change as a function of § is shown in
Fig. 4.8 for a third harmonic amplitude (B3) which will produce v, = 0.2.
Phase histories for a numerical orbit track corresponding to the wérst case
(8§ = 30 deg) are shown in Fig. 4.9. The amplitude of the phase oscillation
is about 8.5 deg for the zero phase ion (for which the phase oscillation
would be zero without the three-sector magnetic field). This is in
reasonable agreement with the theory. Since any phase oscillation such as
this will decrease the duty 1"actor,3.2 G-mQSt be small, i.e. the centreline
of the dee gap should be close to the line running from a hill top at
§ = 0 to the opposite valley bottom at § = 180 deg. To keep the amplitude
of the phase oscillation less than 5 deg, we must have § < 16 deg. The
effect of this phase oscillation is important here because the RF operates
at the fifth harmonic of the ion frequency. It has been dismissed as
unimportant for three-sector cyclotrons operating with N = 1.33"

This phase oscillation effect can be eliminated by placing the dee gap
along a hill-valley centreline (§ = 0 in Fig. 4.7). ‘Unfortunately, this

orientation maximizes another undesirable effect, the gap crossing
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resonance. This is essentially a shift in the orbit centre points along

the dee gap caused by a larger magnetic field at one dee gap than the other.
This effect has been discussed in detail by Gordon,3? ‘but we can make an
estimate of the effects as follows. Referring again to Fig. 4.7, we can
refer to the dee gap on the right side by the subscript 1 and on the left

side by the subscript 2; then the magnetic fields at the gap are

B, = B + B, cos ¢, (4.19)

B, =B - 83 cos §.

Since these effects are important at low energy, the radius of curvature

can be approximated by

. 6.92 —
p(in.) = gTE%T VE (MeV) .
| f the increase in energy at the dee gap is AE MeV, the change in radius of

curvature at the gap, assuming the ions always cross normally, is
Ao (E) = 5'_65';_% JE+ AE -/E| (4.20)

The radial position of the ion does not change appreciably as the gap is
crossed, so the change in radius of curvature is reflected in a change in
the position of the centre of curvature. As the ion alternately crosses
gaps | and 2, the centre of curvature oscillates back and forth approximate-
ly along the centreline of the dee. If the magnetic fields are different

at the two gaps, there is a net drift of the centre of curvature towards

the higher field, given by

k : k+1
o= 56.92 | ] gl - - ]

i=1 81 “i+1
odd i ' even i
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where Ei+] = Ei + AEi; i is the half-turn number and‘AEi is the energy .

gained at the ith dee gap.

Using eqgn.(4.19) and the fact that B3/§'<< 1, this can be expressed as

56.92 '{ AE; [‘(‘_.])m B,

.E7é= - T?-COS35] . (h.22)
b >

i=]

The first term in the square bracket is the displacement of the orbit centre
from the cyclotron centre. This term oscillates, hence its sum dépends on the:
differences of the AE's. The second term in the square bracket is the centre
point drift due to the third harmonic component in the magnetic field. This
term always has the same sign, hence will accumulate rapidly if B3 is large.
B; varies widely with radius (see Fig. 4.10); hence the sum depends on the
magnetic field used. Numerically summing the series fof the values of Bgy
shown in Fig. 4.10, and using AEi = 0.2 MeV at all gaps, produced a centring
error of 0.3 in. Numerical tracking of ions through the measured magnetic
fie]d using the computer code GOBLIN gave a centring error of about 0.5 in.
for this field. Eqn;(h.22) shows that the centre point drift due to B, is
proportional to cos3§ and hence could be eliminated to this approximation by
choosing § = 30 deg. This means that the dee gap run; along a hill-valley
interface;’but this ‘is unfortunately the situation which produces the large
phase oscillations discussed above.

The drift in centre point could be reduced by putting a first harmonic
in the Tagnetic field. The first harmonic causes thé centre poin£ to drift
and could be arranged to cancel out the drift due to the gap crossing

resonance, as has been described by Gordon33

and van Kranenburg et al.3"
However, producing a first harmonic varying accurately enough with radius

would be extremely difficult and necessitate special coils -or shimming of
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the magnet. In addition, the compensation is exact for only one RF phase.
‘ [n summary, aligning thé dee gap along the centreline of a hill (or
valley) produces a phase oscillation of about lb deg. Aligning the dee gap
along a hill-valley interfahe excites the gap4cfé§sing'resonance causing a
centring error of about 0.5 in., which can be only partially cancelled by a
first harmonic in the magnetic field. Orieﬁtations between the two
described above do not bring the phase oscillation and the centreApoint

drift within acceptable limits, and hence the three-sector magnetic field

has not been adopted.

D. Radial Centring

The central region of a cyclotron must pfoduce a beam which is centred
at extraction. By centred we mean that the oscillations of the orbit centre
point approach the geometric centre of the machine as the energy increases.
In TRIUMF the large energy gain per turn énd low magnetic field produce
large oscillations of the centre point at low energy. The centre point at
injectioﬁ must be off centre by ébout half the radius gain per half-turn
(see, e.qg., Gordoﬁs% if the orbit centre point is to approach the centre of
the machine as the energy becomes large. This centre point displacement
required because of the acceleration can be derived in a manner similar to
the derivation of edn.(h.ZZ). If we assume circular orbits, then the change

in centre of curvature at one gap is

Pl

Xei T %eier TP T Pimr

and at the next gap
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Hence over one turn.the change in centre point is

X - X = -p

Ci42 c +‘2p, - p.. (4.23)

i+2 i+] i

- If the energy gain per gap crossing (AE) is << the energy E and the change
in radius per gap crossing (Ar) is << the radius r, we can approximate

eqn.(4.23) by a differential equation

2 .
dxe o _AE d% (4.24)
dE 2 dEZ -

Now if the centre point (xc) at infinite energy is zero, i.e. the beam is

centred, integrating eqn.(4.24) once yields

AE -dp r. AE 1
E) ===~ X = _
x(E) == == e By (4.25)

where p and § are‘the usual relativistic factors and r, is the cyclotron
radius =‘£§i (=410 in. for TRIUMF). The right-hand side of egn.(4.25) is
just one-half the radius gain per half-turn at energy E. The above estimate
provfdes a good starting point for finding central orbits, eépecially at
high energy. However, at low energy where the geometry is complicated by
the presence of the injection gap, we must resort to numerical orbit tracks
to optimize the centring.
The determination of what constitutes a centred orbit is complicated by

-several factors. The azimuthal variation of the magnetic field causes
scalloping of the orbit; hence the instantaneous centre point depends on the
azimuthal angle. The average orbit fadius-and maximum scalloping are shown

in Fig. 4.11 as a function of energy.

The quantities we will mainly be concerned with in this section are r,
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the radius -of the ion from the geometric centre of the cyclotron, and P

the radial momentum. The momentum will be written in the form
p = B Y roo . : (1}.26)

In these units, the momentum.of the ion is represented by its radius of
curvature in the central magnetic field (BC). The radial momentum is that

component of the momentum which is directed in the radial direction,.i.e.

where tany = in the central region, the flutter in the magnetic field

Lr
rdg”
is small, hence the orbit scalloping is small, and we can roughly approxi-
mate B by BC and Py by p; then the component of the centre point perpendicu-
lar to the dee gap (ye)equals P, at 8 = 8§, i.e. the dee gap.

The essential features of the centrél orbits of TRIUMF are shown in
Fig. 4.12. The magnetic field has six-fold symmetry. The centreline of
the dee gap is 5.5 deg from the centreline of a valley. The azimuthal angle
8 is measured from the centreline of the dee gap as shown.

One way to remove the complicating effects of orbit scélloping, and to
determine how close the orbit is to an ideal centred orbit, is to calculate,
at some azimuthal angle, the difference between the radius and radial
momentum of the actual accelerated orbit (a.o.) and an equilibrium orbit
(e.o.) at the same énergy. An e.o. is a fixed energy orbit which closes
upon itself, has average centre of curvature at the centre of the machine,
and is stable for small displacements in radius and momentum.. The e.o.'s

are calculated by the program CYCLOPS.* Now for any energy at one azimuth,

* CYCLOPS was kindly made available to TRIUMF by Dr. M. Gordon of Michigan
State University.
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we know the radius and radial momentum (reoand preo) of the equilibrium
orbit. Hence, when tracking an'a.o., we can calculate the differences in
radius and momentum between the e.o. and the a.o. at this azimuth. If an
orbit is to be centred at the final energy, the differences between the
e.o. and the a.o. during acceleration (i.e. Ar = r__ - r_ _ and bp_ =

ao €eo

Prag ~ preo) are due to centre -point displacements along the dee gap

only (changes in xc) due to acceleration. Hence, as -the energy increases
and the changes in X decrease, the values of Ar and Apr (due only to a
non-zero value of xc) will decrease, and the a.o. will approach the e.o.
The locus of the point (Ar,Apr) in phase space on successive turns (at one
azimuth angle) as the acceleration proceeds forms an 'accelerated phase
plot''. The gross features of the accelerated phase plot depend on the
amount the instantaneous centre point of the a.o..differs from the instan-
taneous centre point of the e.o. (AxC and AyC in the x- and y-directions,
respectively) and on the azimuthal angle at which the accelerated phase
plot is calculated.

Suppose at some angle eo the a.o. has energy E, radius LW and radial
momen tum prao' We interpolate in a table of equilibrium orbit radii and
radial momenta values for azimuth 6, to obtain Feo and Preo’ which are the
radius and radial momentum of the equilibrium orbit at energy E. Now if
we neglect the variation in the magnetic field along eo between Feo and
rao, then the radii bf curvature are the same, f.e. Poo = Pag = P> and we
have the situation shown in Fig. 4.13. The angle ¥ will be small since P,
is much fess than p éﬁd,APr_WiT[_éTSO be much less than p hence we can

approximate the arc pé%-by a straight line and the centre point components

are related to the differences in radius and radial momenta by
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[ Ay ' cos(eo - x) sin(eo - x)| | PP
- P (4.27)
l AX sin(eo - %) cos(eO - X) Ar |

Thus the accelerated phase plot removes the ''motions'' in the orbit centre
point due to scalloping of the orbit and allows the actual errors in
centring to be determined. Fig. 4.1k4 shows Ax. calculated using eqn.(4.27)
[using Ar and Apr values from a numeri;al track of a centred orbit] compared
to the values of AX predicted by eqn. (4.25). ]xc| is plotted rather than
x. to allow comparison of the curves for 6 = 54.5° and 6, = 234.5°, The
vélues of x_ are all.negative for 6, = 54.5°and all positive for 8, =.234.5°,
The agreement is fairly good; however, the only way to do the final optimi-
zation of the centring seems to be to work backwards from the centred orbit.
That is, we start an ion on a centred orbit at high energy and numerically.
érack it backwards into the centre of the machine. If we do this for
several RF phases, we will know what the starting conditions should be if
ions with various phases are to be centred. Using a typical magnetic field
(01-03-06-70), ions with various starting phases weretracked backwards into
the centre of the machine.

The procedure which is used for tracking orbits is as follows. For
energies less than 5 MeV the program PINWHEEL is used. This solves the
relativistic equations of motion using measured magnetic fields and electric
fields calculated by the method described in Chapter 2. For energies
greater than 5 MeV the program GOBLIN is used. This program solves the
relativistic equations of motion using measured magnetic fields but approxi-

mating the effects of the electric fields by the "impulse' approximation
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described in Chapter 5. The transition is made at 5 MeV because above this
energy there is no significant radial variation in the field across the dee
gap, while for energies below 5 MeV there is such a variation because of
the tapering of the electrodes.

The ions were started at 20 MeV at the centreline of a valley
(6 = -5.5 deg), with Ap_ = 0 and with Ar equal to one-half the turn separa-
tion per half-turn, as indicated by eqn.(4.25). The accelerated phase
plots at 6, = 54.5 deg and 6, = -125.5 deg (see Fig. 4.12), i.e. at the
ceﬁtreline of a valley, are shown in Figs. 4.15, 4,16 and 4.17 for ions with
starting phases of -30 deg, 0 and +30 deg, respectively. For the ideal
case where Ye is always zero and X, becomes zero at high energy, then
eqn.(4.27) shows that the Ap_ and Ar values will always lie on the straight
line passing through Ar = 0 and Apr = 0 and at an angle of 7 - eo to the
Ar = 0 axis. This is the straight line shown in Figs. 4.15, 4,16 and 4.17.
Using eqn.{(4.27) and the data shown in Fig. 4.16, the values of X shown in
Fig. 4.14 were calculated. Extrapolation of this curve down to 0.4 MeV
(the energy of the beam between the injection gap and the éifst main gap)
indicates that the beam shéuld be off centre by about 1.32 + .05 in. at this
energy. Since the radius of curvature of the beam is 11.88 in., this means
that the radius at which the first main gap should be crossed is
13.20 £ .05 in. Accelerated phase plots for three different choices of
radius at the first main gap crossing are shown in Fig. 4.18. The arrow on
Fig. 4.18 gives twice the radial oscillation amplitude. The curve for
r =13.20 in. clearly leads to the smallest amplitude radial oscillation.
To determine what happens to other phases an ion was tracked backwards from
r =13.20 in. at the first main gap through the injection gap, into the

centre post, providing initial conditions for outward tracks. Using these *
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initial conditions, trajectories were followed outwards for various phases,
producing the phase plot shown in Fig. 4.19. The -25 deg ion gives a

radial oscillation amplitude of about 0.5 in., while the +25 deg ion gives an
amplitude of about 0.8 in. These oscillations are much too large, as they
would lead to a very large energy spread at extraction. In order to
achieve more than a very narrow phase band, the starting conditions must be
adjusted to favour ions which start with phases other than zero. Since the
difference in the accelerating conditions which causes the large oscillation
amplitudes to develop is essentially the energy gain, which varies roughly
as cos ¢, it is reasonable to centre an ion whose phase corresponds to the
average cosine in the phase band to be accelerated.

Since in the absence of third harmonic in the RF we are restricted
essentially to positive phases, we will choose starting conditions so that
various positive phases are centred and observe how this affects the magni-
tude of the radial oscillations. . Fig. 4.20 shows accelerated phase plots
for ions with the same phase range as in Fig. 4.19 but with starting condi-
tions chosen to'give centred orbits for starting a phase of +17 deg. Phase
plots such as shown in Fig. 4.20 were calculated using starting conditions
to give centred orbits for initial phases of +15 deg, +17 deg, +19 deg and
+21 deg. The results are summarized in Fig. 4.21. For a phase range of
-5 deg to +25 deg, the amplitudes of the radial oscillations are
minimized if an ion with initial phase of 15 deg to 17 deg is centred. |If
a small amplitude of oscillation were desired (and a small phase width
could be tolerated), one would choose the case where the 0 deg ion was
centred.

To first order the energy .resolution obtainable in-the extracted beam

is related to thé radial oscillation amplitude by .the enérgy gain per turn.:
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For the case of TRIUMF, the maximum energy gain per turn (400 keV) produces
a 0.064 in. increase in radius at 500 MeV. When operating with a wide
phase spread, the beam will be spread out fairly uniformly with radius, so
that a +0.064 in. oscillation will worsen the energy resolution by +400 keV
(or alternatively 20.1 in. will produce %600 keV).

Eqn. (4.25) shows that the x. required to allow for centre point
motions due to acceleration is prbpqrtional to AE and hence is also propor-
tional to cos¢ since AE = qVO cos¢. Therefore, if the zero phase ion is
centred at high energy and has centre point xcEl at injection and xcE2 at
some other energy, an ion with some other phase (¢) will have a centring
error (1 - cos¢)xcE1 at injection. |[If this centring error did not alter
the behaviour of the centre point motions with energy, we would expect this
initial centring error to produce a centring error (I - cos¢)(xcE1 - xCEz)
at energy E,. The dashed line in Fig. 4.21 shows this centring error as a
function of phase at injection. Fig. 4.21 shows that the oscillation
amplitude is much larger than this, so some mechanism is causing this
centring error to produce a large amplitude radial oscillation. One such
mechanism is described in Section E of this chapter.

0f course, the ion beam will contain particles with various displace-
ments and divergences from the central ray, and we must investigate how the
beam as a whole is centred. This is discussed in the next section.

in Section H of Chapter 3 it was shown that a field bump could be used
to shift the acceptable range of phases so that the accepted phase interval
is centred about zero degrees. Fig. 4.22 shows the phase histories for
four ions in a field which has the‘bump described in Fig. 3.19 added to it.

As expected, the initial phase interval of 0 deg to +50 deg is shifted to

about -21 to +25 deg. The dashed line shows the theoretically expected
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phase shift for the ideal bump. Note that the phase change is never faster
than ideal, so no ions which are initially focused are shifted to defocusing
phases. Accelerated phase plots for ions with Various starting phases in
the magnetic field with the bump added are shown in Fig. 4.23. The starting
conditions are adjusted to favour the +17 deg ion (as in Fig. 4.20 without
the field bump). The oscillation amplitudes for phases of 0 deg, +15 deg
and +30 deg are 0.13, 0.12 and 0.42 in., respectively, while without the
bump they are 0.20, 0.14 and 0.46 in. Thus the effect of the bump is to
slightly decrease the oscillation amplitudes in this case. We would expect
(from Fig. 4.21) that large positive phases would have very large oscilla-
tion amplitudes, and this is confirmed in Fig. 4.23, which shows that the
ion that starts at +45 deg is unacceptable. This undesirable behaviour for
large positive phases is not significantly improved if we arrange the start-
ing conditions to favour the +21 deg ion. Note that the radial centring
requirement effectively sets a positive phase limit of about +25 deg, so
that the field bump used (designed for a phase interval of -5 deg to +45 deg,
see Section H of Chapter 3) is too largé. However, the effects of the bump

on the radial motion are small.

E. Effects of Finite Beam Emittance

Now we will consider how the centring varies over a beam with a
realistic size.. The expeéted emittance of the TRIUMF ion source is 0.50 «
in. mrad (at 300 keV). We will assume that this is not significantly
increased by thé transport syétem up to the point of injection into the
cyclotron-dees.” To minimize the amplitude of the radial oscillations we
want to choosetthe initial ellipse shape to match the radial focusing, as

described in Chapter 3 for axial focusing. Since the lens effects of the
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dee gaps are small, we first try matching to the magnetic focusing, for
Which'\)r = 1,0 in the central region. To see how the emittance is trans-
formed as the beam is accelerated, four particles were tracked, starting on
the edge of the emittance é]lipse. Figs. 4.24(a), 4.25(a) and L.26(a)

show accelerated phase plots fér these four points for initial phases of

0 deg, +15 deg and +25 deg, respectively. As can be seen from these
figures, the ellipse is ''stretched" as the acceleration proceeds, produc-

ing a large amplitude radial oscillation. This is due to an effect

35f

explained by Mackenzie.. Briefly, the effect is important in this case
because of the low field and large energy gain per turn causing the initial
orbits to be far from the equilibrium orbits. Consider the trajectories
in phase space of two ions with initial phases of +¢ and -¢. An initial
displacement from the origin (Ar # 0 or Apr # 0) will cause precession
through an angle of approximately (if v, is close to 1) Tr(\)r - 1) during a
half-turn in the magnetic field. Since Ar # 0 or Apr + 0 means that the
beam is not centred, the ions arrive at the next dee gap later or earlier
than they left the previous gap (as described in Section B). Hence the
energy gain is not the same for the +¢ ion as for the -¢ one. This means
that on the next half-turn one ion will be closer to its e.o. than the
other to its e.o., and while they both precess through the same angle,

the -¢ ion will precess so as to reduce its displacement from the origin
in phase space, while the displacement of the +¢ ion increases if v > 1.
The effect is reversed if v, o< 1. These displacements in phase space
cause ''stretching' of the emittance ellipse, producing a large amplitude
radial oscillation. This effect is important when the ion energy is

small and when v, is different from one, so that the precession is large.

Numerical orbit tracks have shown that the effect is unimportant above

10 MeV.
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The amplitude of these oscillations can be reduced by choosing a
different initial ellipse shape. |If, for example, we choose an ellipse
which.is reduced by a factor of two in the Ar direction but increased by a
factor of two in the Apr direction from the ellipse that is matched to
v = 1, we obtain the phase plots shown in Figs. 4.24(b), 4.25(b) and
L.26(b) for the same three initial phases as used previously. These phase
plots show that the oscillation amplitude is reduced to 0.25 in. over the
phase range 0 deg to +25 deg. This represents an effective increase by a

factor of almost four in the oscillation amplitude due to the phase-

dependent acceleration.
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CHAPTER 5. RADIAL LENS EFFECTS OF CYCLOTRON DEE GAPS

A. Introduction

The calculation of radial motions in a cyclotron at low energies re-
quires a detailed know]edge of the electric field produced by the dees. The
calculation or measurement of this field is a difficult problem (see
Chapter 2), and the numerical integration of the equations of motion through
the field is a slow procedure. To integrate the equations of motion from
injection to extraction would require a prohibitively large amount of com-
puter time. |t is therefore useful to have an approximate method of calcu-~
lating the radial motions. One way of doing this is to represent the radial
motion as half-turns in a purely magnetic field sebarated byvaccelerating
impulses induced by the electric fields atvthe dee gap. The magnetic field
is approximated by an isochronous field with v, (the radial oscillation
frequency) constant over each half-turn and determined by interpolation in
the values computed by the equilibrium orbit code for the real field. The
effects of the dee gaps are approximated by instantaneous changes in the
energy (6E), RF phase (8t), radial position (Gx) and angle to the gap (8g)
when the ion reaches the azimuthal angle of the centre line of the dee gap.
Thus in a two-dee cyclotron sﬁch as TRIUMF the ion will pass through a
180 deg long magnetic field region (with v, constant), then have its energy,
radial position, RF phase and angle to the dee gap instantaneously changed
as it crosses the gap, then pass through another magnetic field region and
dee gap, etc. This chapter investigates various approximations which give
the quantities describing the dee gap (8E, &t, 6x and 8&). The results
from the approximations are compared to numerical orbit tracks through a

real electric field.
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Since we have Ve constant over each half-turn, we can approximate the
radial motion in the magnetic field by a sinusoidal oscillation about the
equilibrium orbit. There will also be a significant oscillation at the
principal flutter frequency, but this will produce no change over 180 deg

in a six-sector machine.
, Ap
We will call the amplitude of this oscillation Ar and the slope‘;ai/f
where p and p. are the total and radial momenta, respectively. The
transformation of these quantities are given by an equation equivalent to

eqn.(3.9), i.e.

Ar cos v O L sinvoe Ar
r Vp r o}
= : 5.1
Ap Ap (5.1)
- r \)r . i npP |
— -—sin v 6 cos v _0 |
p . r r r p o

where r is the radius of curvature and 6 is the azimuthal angle in the
magnetic field.

Now we need a description of the changes in momentum and position pro-
duced by the dee gaps. Fig. 5.1 shows a typical dee gap. The radial
motion of the ion is confined close to the median ﬁlane z =0. Fig. 5.2
shows a plot of the instantaneous electric potential in the median plane.
This figure suggests that a first approximation to the effects of the dee
gap can be obtained by assuming that the gradient of the electric field is

constant over some region and zero elsewhere.

B. Constant Gradient Approximation with No Magnetic Field

We assume the gap is as shown in Fig. 5.3, uniform in the x-direction,
with a gap width of % and a total voltage across the gap of VO. At time

t = 0, the ion is at x = X s ¥ = 2/2 with velocity x = ko’ Yy =Y,

X = %%3 y = %%—. The phase of the accelerating voltage at t = 0 is ¢O and
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its frequency is w. The equations of motion are

X =0 | (5.2)
y = %f = k cos (ut + ¢,) (5.3)
where k = %;fj g and m being the charge and mass of the ion, respectively.

Integrating eqn.(5.2) gives

X = X (5.4)

0

X =x + kot . (5.5)

Integrating eqn.(5.3) gives

<L
I

y, o+ 5 sin(ut + ¢,) - sin(o ) (5.6)

<
il

Yo t Vot + E—&-cos(¢o) - cos (wt + ¢O)] - tsin(¢,) ﬁ5.7)

In practical cases, the electrodes which produce the field are located
above and below the median plane, and so the width of the field theré is
larger than the physical gap between the electrodes (as demonstrated in
Fig. 5.1). We therefore treat % as a free parameter to obtain the best
agreement with numerically integrated orbits. The time required for the
jon to cross the gap v (the transit time) is also as yet unknown. Within
the validity of the approximation, the width of the electric field will
depend only on the geometry, while the transit time will depend on the
electric field and the velocity of the ion; hence we choose £ so that the
constant gradient approximation gives the same energy gain as the numerical
results for one case, i.e. one incident energy and RF phase. Now, using

this value of 4, we calculate the transit time T which is the value of 1



that solves eqn.(5.7) when y - Y, = -2, i.e.

L+ YT+ E’ i{cos¢o - cos (wT +,¢o) - tsing | = 0. (5.8)

This can be solved by any standard numerical technique, for example
the Newton-Raphson method.36 Once T is known, the changes in x, y, % and
y across the gap can be calculated. We will call the above approximation
the iterative approximation, since it requires an iterative solution of
eqn.(5.8) to find the transit time.

Now, within the validity of the approximation, the value of % found to
be best in one case should also give the best results for other incident
energies and phases. To select an appropriate value of &, the best method
seems to be to compare the results of numerical integrations to the results
predicted by the constant gradient approximation at high energy, where we
expect the approximation to be most valid.

Since the fterative solution of eqn.(5.8) may be time consuming, one
is tempted to look for simpler approximations. |f the transit time is
small enough so that we can approximate sinwt by wt and coswt by 1, then we

obtain the "linear' approximation

<
il

90 + kt cos¢_ (5.9)

y =y, tyt (5.10)

and the transit time is
=X (5.11)
In this case the assumption of small transit time is equivalent to assuming

that the velocity of the ion is constant across the gap.

A more exact approximation is obtained if we keep terms up to (wt)? in
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the expansions of sinwt and coswti then we obtain the ''quadratic'' approxima-

tion which is

CR w0 .
y = ¥, * kftcosg, - 5t% sing, (5.12)
and
- . k.2
Y = ¥ + Yot + 5t% cosé . (5.13)

The transit time is obtained from egn.(5.13) when y = -%—and is

T = =V, = VYo% + 2k & cosé, . (5.14)

kycosq)0

This approximation is equivalent to assuming that the ion velocity across
A
the gap is the average of the initial and final velocities.
A still better approximation can be obtained by retaining one more

term in the expansion of sinwt; :then we obtain the ''cubic'' approximation

2¢3

Y=y, tk [tcos¢o - %&2 sing, - —7;—-cos¢o]. (5.15)

The last term in eqn.(5.15),which was neglected in eqn.(5.12), is usually
as large as the second last term in eqn.(5.15). In the cubic approximation
we still calculate the transit time using eqn.(5.14).

The validity of these approximations was tested by comparing the
changes in x, x, y and y to those given by numerical integration through a
real electric field. The numerical calculations solve the exact
relativistic equations of motion. The various constant gradient approxima-
tions assume that the mass is constant across the gap; however, the mass
used is the relativistic mass appropriate to the initial ion energy. The
electric field used was that for the gap shown in Fig. 5.1, i.e. a total

gap height of 4.0 in. and a total gap width of 6.0 in. [In the TRIUMF
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cyclotron the field produced by a gap of these dimensions is reached at a
radius of 40 in. (about 5 MeV). The value of % was selected so that the
iterative approximation gave the same energy gain as the numerical integra-
tion for ¢o = 0 deg and Eo = 100 MeV. The value selécted was 8.3? in.,
considerably larger than the physical gap width of 6.0 in. The gradient
used for the approximation is shown by the dashed line in Fig. 5.2.

in this case, there is no force in the x direction; hence px remains
constant and displacements in the x-direction are just Xt. The change in
py causes the energy of the ion to increase. We will express the energy
gain by the so-called gap factor G,

AE

57 qv, cost,

x 100%, (5.16)

where AE is the actual energy gained by the ion and ¢C is the RF phase at
which the ion croéses the centre of the gap.

Fig. 5.4 compares the energy gain obtained by numerical orbit tracking
in the real field for ¢C = q deg with the energy gains predicted by the
various constant gradient approximations. The small transit time approxi-
mations give very much less accurate résults than the. approximation based
on exact computation of the transit time, and hence they will not be con-
sidered further.

Values of G for various phases and energies from the iterative
cénstant-gradient approximation and from numerical integration are given in
Table V. Figure 5.5 shows the differences between the values calculated
by numerical integration and those from the iterative constant gradient
approximation. In all cases, over a phase range of -45 deg to +45 deg and
an energy rangefof 1 to 100 MeV, the differences are less than 0.5%.

The errors displayed in Fig. 5.5 are inherent in the constant gradient



TABLE V

Gap factors given by numerical integration and by the
constant gradient approximation (no magnetic field)

gyl -3 -15 0 +150: +30 +h5

- (MeV) N o oN A | N TA N A N TA N 1A N 1A
1 |78.599]78.319 578.921 78.840 | 79.242|79.302 | 79.512|79.683 | 79.697|79.963 | 79.780|80.131 | 79.73080.177
2 188.718188.726| 88.775/88.888 | 88.847|89.034 | 88.905)89.157 | 88.935)89.249 | 88.925)89.306 | 88.852)89.323
5 95.351 95.349 95.318[95.381 | 95.304{95.412 | 95.291[95.440 | 95.272/95.462 | 95.241{95.478 | 95.183195.467
10 |97.663]97.633| 97.627|97.642 | 97.601|97.651 | 97.580|97.660 | 97.559|97.668 | 97.351{97.674 | 97.487)97.680
20 |98.833]98.790 | 98.802(98.791 | 98.780(98.794 | 98.762[98.796 | 98.743|98.800 | 98.720|98.803 | 98.687(98.806
50 99.529|99.488 | 99.508|99.487 | 99.493(99.487 | 99.479|99.487 | 99.466|99.488 | 99.449]99.490 | 99.426199.492
100 99.759]99.722| 99.742]99.720 | 99.730 93.720 99.719/99.719| 99.709|99.720 | 99.697|99.721 | 99.681|99.723

=
]

numerical results

>
1

results from iterative approximation

LL
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approximation and not a result of an inappropriate choice of %, since chang-
ing & merely displaces the family-of‘error curves.
The other quahtity of interest is the transit time. In all cases, the

transit time was within 0.1% of the expected time of L/v, where v, is the

a
average of the initial and final velocities.

Thus in this case the effect of the gap.can be approximated by instan-
taneous changes at the centre line of the gap as follows: 8E is the energy
change appropriate to the velocity change giveh by eqn.(5.6), &t and §x are
zero and 8% is the change in ang]e due to the energy gain. This chénge in
angle results because py changes while Py remains constant and is

Px

8 = tan-l —_—
g Py * Bp

-~ tan"! Px . : (5.17)
Py

where Ap is the increase in momentum given by eqn.(5.6), and Py and py are

the initial momentum components.

C. Sine Gradient Approximation

To .improve the results given by the constant gradient approximation,
we should use an electric field which more closely approximates the real
field. Fig. 5.2 suggests that a better approximation than a linearly vary-

ing potential (constant gradient) might be a pétential of the form
v _ i, L) o
Vo T cos(wt + ¢,) cps[L(y 2)] (5.18)

where L is a wavelength which describes the electric field. |f we define
the average velocity v, = 2/t (gap width & # L, see below), the equation

of motion is, in so far as the actual velocity can be approximated by the
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average velocity,

y = km cos(wt + ¢,) sinﬂ%?in (5.19)

Integrating eqn.(5.19) [assuming v, is constant] gives

g - _ km |cos¢, - cos(t(w- + mvg/L) + ¢o} (5.20)
°© 2 ’ w ¥ v/l
cos(t(w - qvg/L) + ¢o}-‘cos¢5.
+ w+ mv /L
and . - (5.21)
v - yg = 9Ot . %;_ snn¢? - S|n[t(w2+ nva/L) + ¢OW +t:cosd)o
w + mva/L) w+mvy/L

+ sin{t(w - nva/L) + ¢o] -sing, _ t cosdgy
B (w -r'rrva/L)2 w-Tva/L

It was found that the results were improved if we allowed the gap
width (%) to be less than the wavelength which describes the electric
field (L). Thus we use only part of one cycle of the sine function to
describe the electric field gradient. O0f course, if £ < L, Vo must be in-

creased to

to maintain the same total voltage across the gap.
Since v, and the time required to cross the gap are both unknown, we
must solve eqn.(5.21) for the transit time T when y - Y, = ~%. We define

v, = 2/t so the transit time is given by
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ki [sing, - sin(wt + n2/L + ¢,) L T cosd,

Lo+ y,T + 2D : (5.22)
(0 + we/L1)2 w+ TR/t

;-sin(wr - m/L + ) - sing, _ T cosd,
(w - 7o/Lt)? w=- m&/Llt}

This approximatiop was compared to the results gf numerical integra-
tion through the real field as described above for the constant gradient
approximation. Over a phase interval of -45 deg to +i45 deg and an energy
interval of 1 to 100 MeV, the errors for the sine gradient approximation
were several times larger than for the constant gradient approximation;

" hence the sine gradient approach was not pursued further.

D. Constant Gradient Approximation with
Third Harmonic in the Electric Field

Since it is planned to ''flat-top' the RF voltage by adding a small
fraction of third harmonic to the fundamental, it is useful to derive the

constant gradient approximation for the case where the RF voltage is given

by
Vv
v = cos(wt + ¢.) - € cos(3wt + ¢, + §). : (5.23)
o]
£ is the fraction of third harmonic and § is the phase of the third

harmonic.with respect to the fundamental. The equation of motion in the

y-direction is now

y = k {cos(ut +;¢o) - ¢ cos (3wt + o, + 6)] : (5.24)

which when integrated gives

Yy © Y, = g-sin(wt + ¢5) - singy - %-sin(Bwt + ¢+ 8) - sin(¢, + 6)

(5.25)
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and

Y = Yo = yot + E— -%{cos(wt + ¢O) - cos¢o] - t sin¢o (5.26)

+ % (ﬁ-[cos(&ut + q)o + 6) - cos(¢o+ 6)] _,t\. sin(¢o+ §

The validity of eqns.(5.25) and (5.26) have not been checked by comparison
with numerical integration. However, it is reasonable to expect them to be
at least as accurate as (5.6) and (5.7) when the RF voltage is not changing
more rapidly than it does for the fundamental only. Fortunately, the phase
region of interest is precisely where the wavefgfm given by (5.23) is flat,
so that egns.(5.25)and (5.26) should be .of as mﬁéh utility as (5.6) and

(5.7).

E. Constant Gradient Approximation with Magnetic Field

We now consider the case where the ion being accelerated sees a mag-
netic field B perpendicular to its plane of motion and an electric field

with constant gradient. The equations of motion are

e _ g .
and

k cos(wt + ¢o) - %—B X (5.28)

<
I

where as before k = gV /ms.
If we assume that the magnetic field is isochronous, then the ion

rotation frequency is constant and equal to qB/m. Integrating eqn.(5.27)

once and using w NgB/m (the RF frequency), we obtain

%o = 5y = ¥o) (5.29)

K
]

and

~<:
]

k'cos[mt + ¢o] - ﬁ{kg + ﬁ(y - Yo) . (5.30)



The solutions to eqns.(5.29) and (5.30) are, for N % 1,

and

The transit time

g|=

Yo *

e|x

el=

Note that eqn.(5.35) takes into

the magnetic field.
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k N2 . ) wt
B-T:Ng-51n¢oJ cosY~ 1 (5.31)
Y
E——Jig cos¢ sinit
w T-N2 COS%0) simy
{sin(wt3+ $o) - sin¢o],
siné ] sinSt (5.32)
0 N .
T%%Q cos¢0] cos%}-+ E‘_%%Q cos (wt + ¢,),
. k N2 . . wt
[yo + B'T:N7'5|n¢°] sing (5.33)
k N ut K N cosut + 4,)
% T-N2 cosd, cos~ + 52 T-N2 COS (W ¢o ’
i et (5.34)
smqbO cos N .
N . wt ok 2 .
T2 cos¢o] sing- ~ T Ton2 sin(wt + ¢4).
k N2 . . WT
+ TN snn¢oJ sinyg- (5.35)
N WwT k N2
ToN2 S08¢o| oSl *+ o2 o cos (wt + ¢,) .

account the increase in path length due to
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Cohen,3 Comiti37 and Reiser3® have derived equations similar to
eqns.(5.33) and (5.34), but they give no method for calculating the transit
time nor any indication of the accuracy of their approximations.

For the case without a magnetic field, displacements in the x-direction
depend on p, only, since the electric field produces no component of force
in the x-direction. Similarly, when a magnetic field is present the change
in Py should be that due to the magnetic field only, as if the electric
field were not present. That this is true is verified by the work of
Comiti37 and by the results of numerical integration in the present case.

The energy gains predicted by eqn. (5.34) and those obtained from
numerical integration are given in Table VI. The value of & (the gap width)
used was the one chosen for the zero magnetic field case, i.e. 8.97 in.

The differences in the gap factor G are shown in Fig. 5.6. The errors in
this case are about ten times larger than for the case where no magnetic
field was present. This is possibly due to the fact that the curvature of
the ion path causes the ion to spend more time near the edges of the field
where the constant gradient approximation is least accurate. However, over
the region of interest (-30 deg < ¢ < + 30 deg and E > 5 MeV), the errors
are still less than 1%. Fig. 5.7 shows the phase variation of the error in
G. A more accurate description of the energy gain could be obtained by
fitting some function to the curves shown in Fig. 5.7 and using this as a
correction to the energy gain predicted by eqn. (5.34).

The errors in timing causes by assuming that the change in energy
occurs discontinuously at the centre of the gap are about 1.5 deg (RF) at
-45 deg and 1 MeV, 0.2 deg at 0 deg and 1 MeV, decreasing rapidly with

energy (<0.01 deg at 100 MeV).



TABLE VI

Gap factors given by numerical ‘integration and by the constant
gradient approximation (isochronous magnetic field)

Energy ~h5 -30 -15 0 +15 +30 +45
(MeV) N 1A N A N IA N TA N 1A N 1A N TA

1 |75.487|78.126 | 77.009|78.654 | 78.199|79.124 | 79.207|79.510 | 80.118]79.795 | 81..026{79.965 | 82.086(80.013
2 |86.375|88.681 87.39§ 88.844 | 88.166(88.991 88.824|89.115 | 89.454(89.208 | 90.131{89.265 | 90.990{89.284
5 93.836(95.345 | 94.459195.378 | 94.919(95.409 | 95.318 95-437‘ 95.709 95;459 96.151(95.475 >96-745 95.484
10 |96.590]97.634 §7.028 97.643| 97.352(97.652 | 97.631|97.661 | 97.908|97.669 | 98.225|97.676 | 98.652{97.68]
20 |98.080(98.791| 98.390|98.793 | 98.618(98.795 | 98.816(98.798 | 99.013|98.801 | 99.240(98.804 | 99.547]98.807

50 99.064199.489 [ 99.264/99.488 | 99.411/99.488 99.539/99.489 | 99.667(99.489 | 99.814|99.491 1100.014|99.493

100 99.429(99.722 | 99.577 99.721 | 99.685/99.720 | 99.778|99.720 99.872199.721 | 99.979]99.722 {100.12699.724

)

numericallj'}ﬁpegrated results

=
it

>
n

results from iterative approximation

8
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In the present case (with a magnetic field), there is an apparent dis-
placement of the ion due to the change of radius of curvature. The
numerical integration of the ion orbit is done over a distance d in the
y-direction. If the radids of curvature before the gap is pj, and after the
gap isupz, the displacement we would éxpect from y = %;to y =- %3 if the

change in radius of curvature occurs discontinuously at the centre of the

gap with no displacement along the gap, is

Ax = p, cos[sin—l(d/sz)] - (p2 - pq) - Py cos[sin'l(Q/Zpl)}

1

& [% pl_z] (5.36)
In Fig. 5.8 the values of Ax found from eqn.(5.36) are compared with the
numeriéally tracked orbits. The agreement is excellent. This means that
8x, the>disp1acement}of"the orbit at the.dee gap,.is effectively zero, and
.the energy géin results. in-a displacement of the centre of curvature.

Thus, in this case as in the case where no magnetic field was present,
we approximate the effect of the gap by instantanéous changes at the
centre line of the gap as follows: SE is the energy change corresponding
to the velocity change given by eqn.(5.34), 8t and 8x are given zero

values, and 8¢ is the ''collimation'' given by eqn.(5.17).

F. Constant Gradient Approximation with Magnetic Field
and Third Harmonic in the Electric Field

Using the RF voltage given by eqn.(5.23) and including the effects of

an isochronous magnetic field, the equations of motion are

=Y

o = v = ve) | (5.37)

X - X

and



y +

For N # 1, the solutions to eqns. (5
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.37) and (5.38) are

(5.38)

k [éos (wt + ¢5) - € cos(But + ¢+ 6)].

( B
. e k y2[sing 3¢ . o . ggf _
x = LYO N [TT\PO’ T=9NZ sin(¢, + 5)]J Sm{N, (5.39)
. _k cos¢. € EE;
+ X, " N LT:Nél Ton? cos (¢, + 6)] COS[N}
k ek N
M cos(wt + ¢,) - T cos (3wt + ¢, + 8),
( ) B
N |. k sing 3e . S wt
X = Xy = -— + —-Nz[ o - sin{¢, + 6)} cos ——} -1 (5.40)
° LYO o we T TNz 0 Mo TN
{ . 3 )
N |. k cos¢ > . ot
+ — |x. - =N 0 - cos(¢p_ + 6)] sin __}
w ° w [I-N2 1-9N2 ° ) UN
1 kN (. _
- T TLe sin{wt + $,) - snn¢o]
] ekN (. . .
302 ]_9N2\sm(3wt + 6, + §) - sin(¢, + 6)],
k ing 3 ' W
I k y2(sine, € . : jut
Yy [yo + m N _[1-NZ ]_9N2,sm(¢o + 6)] cos{_N_] (5.41)
e ._ k cosd, _ . [wt
[xo Z.N [I-Nf Ton cos(¢o»f 6)] SIWLNJ
k . 3ek N2 .
"o Tz sinlet +00) + T e sin(ut + 6, + 6),
- = Nxg L E.NZ[Sin¢0 -3¢ sin + 6)] -sin{ffi (5.42)
Y < Yo ¥ = [Yo s e v (9o 5 :
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N |. | k cos¢ € wt
+ = (%, = =N 0 - cos (¢, + 6)] cos[__J
w | % W 1-N2  1-9N2 © N

N2 - ek N2
+— t o+ - E
TN cos (w ¢o) "BZ.I—SNZ

cos (3ut + ¢y + 8).

These equations have not been compared to the results of numerical
integrations, but the differences should be comparable to those quoted in

the previous section over the region of interest.
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CHAPTER 6. SUMMARY AND CONCLUSIONS

The motion of the ions at the centre of a cyclotron has been studied
with particular reference to the TRIUMF cyclotron.® The object was to
investigate the factors determining the phase acceptance and beam quality
of the cyclotron, and to consider how the design ﬁight'be adjusted to
optimize these quantities.‘

The calculation of both axial and radial motion requires knowledge of
the electric and magnetic fields. The magnetic fields used were measured
on model magnets. The electric fields were calculated by numerically
solving Laplace's equation using the relaxation method. The convergence
and accuracy of this method was investigated in detail. Numerically solv-
ing a problem for which the solution could be found analytically showed
that the numerical solution contained average errors less than 0.01%. The
method uses a novel feature to obtain accurate starting values for the
iteration, and the solution time for a very large problem (2 x 106 data
points) is about 3 hours on an IBM 360/67.

The axial motions were studied using the thick lens description of

22 A method was

the dee gaps developed by Rose,1 Cohen3 and Reiser.
developed for calculating the axial acceptance of the accelerator as a
function of RF phase. It was found that the axial acceptance exhibits a
sharp cut-off at about -5 deg, i.e. ions with phases more negative than

-5 deg cannot be accelerated. This effect results because, for negative
phases, the field is rising, and the field variation effect causes the dee
gaps to defocus the ions. This effect is more important for TRIUMF than
for other cyclotrons because the RF operates at the fifth harmonic of the

ion frequency, causing the electric forces to be much stronger. The

negative phase limit can be shifted to more negative values by flat-topping
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the RF waveform. This flat-topping can be produced by adding some third
harmonic of the RF frequency to the fundamental waveform. |t is shown that
addition of 12% of third harmonic in phase with the fundamental shifts the
cut-off due to the field variation effect to aboﬁt -15 deg. This situation
can be further improved by adding 15% of third harmonic shifted 10 deg from
the fundamental. For this case the negative phase limit is shifted to
about -25 deg.

The effect of field bumps is investigated. For the case of TRIUMF a
radially decreasing field bump at the cyclotron centre cannot produce
enough axial focusing to overcome the strong electric forces. However, a
carefully designed field bump can be used to shift the phases of the ions.
It i.s shown how to design a field bump to shift those phases initially
favoured by electric focusing {(positive phases) into phase with the peak
of the RF voltage when electric focusing is less important. This is done
without shifting the ions to phases where fhey are defocused by the
electric field.

The radial motions of the ions in the first turn were studied to find
the best position of the injection gap. A position close to 36 deg back
along the orbit from the main gap was found to provide the best centring
and phase histories.

To allow economical orbit tracking out to high energies, an analytic
description of the changes in radial orbit properties on crossing a dee
gap was developed. The results of this approximation differ from the
exact changes (found by numerical integration) by less than 1% for energies
above 5 MeV.

The beam centring was studied by tracking ions through realistic

electric and magnetic fields (to 5 MeV), then to 20 MeV by integrating
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through the magnetic field and using the approximation mentioned above. The
results of these orbit tracks showed that the transformation of the radial
beam e]]ipsevis quite phaseidependent. This may be reduced by reducing
phase-dependent effects at the dee gaps. The energy resolution of the beam
is investigated by tracking ions to 20 MeV. The radial oscillations present
at 20 MeV are reduced by a factor of about 1.5 during acceleration to

500 MeV due to adiabatic compression. The finite emittance of the beam
also worsens the energy resolution by +300 keV.

If the ion with fnitial RF phase of 0 deg is centred large radial
oscillations develop for ions with other initial RF phases. For example,
if we require an energy resolution of #600 keV, then half of this can be
allowed to the coherent radial oscillations, meaning that the oscillation
amplitude allowed is 0.05 in. at 500 MeV or 0.07 in. atv20 MeV. This
allows a phase acceptance of 16 deg. For an energy resolution of %1200 keV
the phase acceptance is 26 deg. For the case where large duty cycle is
required, the largest phase acceptance is obtained if an ion in the centre
‘of the phase interval is centred (rather than the-ion with 0 deg initial
phase). For =1200 keV energy resolution, for example, the phase acceptance
can be increased to -17 deg to +26 deg by centring the ion with initial
phase of 17 deg.

CIn summary, the axial motions place a positive limit >60 deg on the
phase acceptaﬁce. The negative limit is -5 deg without third harmonic,
-15 deg with 12% of third harmonic in phase with the fundamental, and
-25 deg with 15% of third harmonic shifted by 10 deg from the fundamental.
The radial motions allow a phase acceptance of -8 deg to +6 deg for an
energy resolution of #600 keV or -17 deg to +26 deg for an energy resolution

of #1200 keV, in both cases with RF fundamental only:
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Appendix A: THEORY OF SUCCESSIVE OVER-RELAXATION

We wish to solve a system of equations described by

i
1915k T ik T e T ek T %ike1 T %k

ik

[interior nodes]

= bijk [boundary nodes]
i=0,1, 2 ..... p
j=0,1,2 ..... q
k=0,1,2..... r

The system contains N equations where N = (p+1) (gq+ 1) (r +1).
We will start with some initial approximation for each unknown value
of ¢ denoted ¢i2k' We will sequentially modify each of these values in the

order

.......

¢ ¢ I T SR b 6 b ...0 b e
111 211 P11 121 221 P21 PA1 112 212 pPl2 p22

TSP TT S

or in the opposite order.
The successive over-relaxation method can be described by the

iterative sequence.

n+1 n af. n+l - n n+i .- n n+1 n
Yk T %k MR ST R P A TS S S IR S TS

n . L
6 ¢ijk [:nter|qr nodes]

= bijk [boundary nodes] (A1)

¢?jk is the nth estimate of the value of the value of the potential at the
node ijk and « is a constant.

Now we define the error at the node ijk at the nth iteration as
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n _ .n v
Sk - Pigk T ik (A.2)

where ¢ijk is the correctvvalue at this node, then
= o n
“iik T %5k T Sigk T %k T ElSi-gk T -tk TSk T ek T
n+1 W N n+1

Sii-tk Y Og-Tk Y Sk Y ek T Sk Y 9k

n+1 | n a[ n+1
€

+

n n '
Skl Pk T Bei 6¢ijk]'

According to egn.(2.2), the terms in ¢ in the square bracket cancel, leaving

€n+l = " + gi€n+l " en+l + N + En+l + N
ijk - Sigk T lTimtgk T OFiegk T Sig-tk T O Eigetk T Sigk=1 T Eijk+d

:‘ée?jk] [interior points]

=0 [boundary points] (A.3)
or _
€n+l _;g:€n+l ' En+l + N1l L + "
ijk 6| i-1jk ij-Tk Cijk-1| ijk = gl i+1jk ij+lk
n
* €ijk+1]'
Clearly this method of iteration leads to a linear dependence of the e?;;
on the e?ﬂi, SO we may write
ijk
" 2 ke (A. L)
and €n+l = Ke" = Kzen_] = ... = K0

+
where €" ] and € are N-vectors whose elements are the N errors after n+l
and n iterations respectively. K is on N by N matrix which depends on

a, p, g and r, but not on n.

For an individual error €1k eqn. (A.L4) can be written

Mgk ik Bk (A.5)

n+l _ z
i7jok”

ik
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Now we denote the N eigenvalues of k by A (. =1, 2, .... N) and the

corresponding eigenvectors by 82‘

KBQ = A,QBSZ,' (A.6)

Since the eigenvectors form an orthogonal set, we can express the error

vectors as a sum over the eigenvectors

n n
e’ =] c,8, (A.7)
2
from eqn. (A.4)
ntl _ _
€ = z CQKBQ = 2 c XQBQ (A.8)
L , 2 .
ntl _ n _ _ 40+l g
hence _ ) _.XRCZ = ..., = XQ cy

Now to evaluation the eigenvalues, we substitute ggns.(A.7) and (A.8)

into (A.3), giving

Z Cn+l8 - Z.CnB + & Z Cn+lB + 2 Mg
L AR I [3 [ A D s
ijk ijk £ i-1jk 2 i+1jk
* [Z CZHBQ] * [Z CE%] " [Z CQHBJL]
2 s ety 2 L -
ij=Tk ij+1k ijk-1

1 %)

+

- 6{% CQBQ]

P jk+1 k)"

Using the second part of eqn.(A.8), this becomes

/

n | BRI N IPOE N OL? PR ) :
o [ A, =1 + a8, - =, e, 0
% C“‘[ . al[sﬂJﬁjk 6 52{Bﬁli-1jk * (82]i+1jk * AQ[Bl]ij—lk

e e+ ]| -
{ Lijeik o AU 55k L1 ik
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n
9

TR YRS (8 C IR (YRR (Y
[9“ g U e U AU

But this must be true for any error sn, i.e. for any set of c_ ; hence

+ [B } + 2 {B ] +{B ]  {(A9)
Misek o PO 2)5 k1) o

g=1,2 ....N

AR O A R AT

To evaluate the eigenvectors.and eigenvalues we will follow the pro-

and

cedure first given by Frankel 3% A more general treatment has been given by

Young}@'The elements {BZ} - of the eigenfunctions are evidentlygl’
ijk ~
(B ] = Al sin®Sl pd gipThL K gipmuk (A.11)
2 . p q r
ijk

where s = 1, 2, ..... p - 1

t=1,2, ..... qg -1

u=1,-2, ..... r -1

Substituting eqn.(A.11) into eqn.(A.9) gives

(A-1 + o)Al sin™t Bd inTl ¢k gypmuk o (A.12)
“p q r
. . f . . X .
%—BJ sinEEi.Ck sinEEE-AAI ] sinjfjl—ll-+ A'+] sinffji:le
q r{ P P

+ Al sinTl ¢k gipTuk|ypi-] sinﬂf}i:ll-+ gl*! Sinﬁt(j+])]
p r \ q q

~+ C =
p g\ r r

+ AL gin™Sl gd g, Tt ACk-] . qu(k:])\ k+1 sinnyﬂk+l)]
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For eqn.(A.12) to be satisfied for all values of i, j and k, we must

have

Since multiplication of A (or B or C) by -1 is equivalent to replacing
s by po-s (or t by q -t oruby r-u), we may take A = +B =.+C.

Then eqn.(A.12) becomes

(A2-1"+ a)A' sinzgl-AJ sin™t Ak MUk -

%{AJ sinEEi-Ak sinEEE-ZAI+] sinﬂij—-cosEi
q r P P

+ A’ sinEEl:Ak sinIEE-ZA'+] sinEEi-cosﬂg
P r q
+ A sin>l pJ sinIEi-2A|+' sinEEE-cosElq
\ “ q r r

éZ%A A' sinﬂil-AJ sinfgi-Ak sinfgb{cosji.+ cosI£.+ cosfﬂ}

p q r

SO

(AZ-1 + a) ==EA(cosE§-+ cosIE-+‘cosIE}

3 P q r

AZ - Aav + (a-1) =0 (A.13)

A = %{dv + vV a2v? - h(af])] (A.1h)
where v = %{cosﬂ§-+ cosEE-+ cos%#} = cos 0,

P

Now in order to investigate the convergence rate we note that we have
expressed the error vectors as linear combinations of the eigenvectors,

and eqn.(A.8) can be written



. n n 0
e = §‘c2 B, = % Ao €y By (A.15)

We will call the A with the largest absolute vaer_km We can=then write

2
eqn. (A.15) as

n
€1 ) T Agin o N
(e == + 3
PNi% Cm Bm 2 %r% €2 Bl’
m m .

2
- LFm

but since Xm > kg, [%&}n goes to zero as n becomes large and we obtain, for
L

large n,

n o] n

e =c 82 Xm. (A.16)

So, to achieve the maximum convergence rate, we want A_ (= A2, etc.)
to be as small as possible (Am must be less than one if the process is to

converge.) Returning to our equation for A, then if we consider

02v? < 4(a - 1), ' (A.17)

the roots of eqn.(A;lh) are complex conjugates with magnitude |A!2 =q - 1;
however, if a?vZ > L4(o - 1), the roots will be real and unequal. Since the
product of the roots is (o - 1), one of the roots must have .a.magnitude
greater than Jo = 1. Hence, the minimum Ay = max (lA1|2, |Agl2] occurs for
o in the range ‘a?vZ < 4(o - 1). Since the magnitude of A, in this range is
(d - 1), the value of wchalled db) giving the smallest A is the smaller

(

of the two roots of’

202 = hin -
apV; 4(ab 1),

% T 1+ sine v2

2 _ 2= 2/1-v2 - ( (v ]2 (A.18)
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and
2 - gi i
A= A? =-[QQX} = l———3429-=-ab - 1= EE(I - /1-v2) - 1. \
-om ' I+ sin v
Since we are calculating the minimum of the maximum values of A, we must"

take the worst case; i.e. the largest value of v, which is

v = ;— (cos%Jr cosg—+ cbs:—}. . : (A.19)

\

In practical problems, p, q and r are >> 1, and we can obtain approxi-

mate expressions for o, and A_

w21 ] ] ) /1 P ]
V—]-—6-p—2—+q—2—+r—2—,SIn9(’iw 5—2-+a7+r—2’| (A.20)

(A.21)

jo
o

1
SN

1
N
A
w |—
———
T |
N
+
[ = I N
N,
+
-11._.
N
—— A

) 1(1 1 1 ¢
A =1 -2 =t =+ =] = - 1. A.22
m 1T/3[p2 q2 rz] “b ( . )

Now- that we have fouﬁd the value of a which gives fastest convergence,
the question of interest is how fast does it converge. Referring to
eqﬁ,(A.S), each .iteration reducés each error by at least a factor A_; hence
ni-iterations reduce the-error by at least a facIor‘(Am)h. Hence, to

reduce the errors by a factor f, the number of iterations required’is

“n = ]_091:_ (A.23)
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Appendix B. BOUNDARY CONDITIONS FOR RELAXATION CALCULATIONS

The relaxation program requires that boundary conditions be set
before calculation starts. This consists of setting the boundary value
for every poin% which lies on a boundary. Since typical problems contain
_]05 to IO6 points, some automatic method must be found.

The relaxation program allows the user to supply a subroutine (BOUND)
which returns boundary value when given the co-ordinates of each point.
For complicated boundary shapes, this subroutine may be complicated to
write and slow to execute. The program described here is fast and easy
to use because it takes advantage of two characteristics of cyclotron-
like geometries. Fif%ﬁ} these (three dimensional) geometries cénfbé
separated into several two dimensional geometries (planes) then the
description of each plane and_ifs vertical extent completely describes the
three dimensional geometry. In the case of cyclotrons, it is natural to
take these planes parallel to the median plane.

Secondly, the geometry is each of these planes can be made up from
relatively simple shapes. |{f both these cpnditions are met then it is
possibie to devise a linked list structure which allows the boundaries to
be entered in a simple way and produces output suitable for the relaxation
program to read. |In addition, the storage used by the program depends on
the first power of the grid size (the storage required would vary as the

\1hiﬁd?power of the grid size if all points were stored).

Con;ﬁder a grid as shown in Fig. 2.1, a line of points with 1 and K
constant is a column, with J and K constant is a row‘and a plane with
K constant is a level. Now we choose to store information only about

those points which fall on boundaries. The information stored is, for each
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level, those rows whfch have boundaries in them, and for each of these

rows, the start and end.column number of the boundary and its boundary

value.

hence there may be several entries for one row.

Note that one row may have several

"oieces'' of boundary in it

The list scheme may be

depicted schematically as follows, for level K, supposing rows J] and J2

have boundaries in them.

. pointers to
the start of
the information
for each level

pointer

row number

to next

pointer to

information

)|

column # of
start of
boundary

column # of
end of

value

pointer to more
information
for this row

boundary

column # of
start of

column # of
end of

boundary

boundary

value

pointer to more
information
for this row

Lot

end marker

pointer to

information

For example, if in level three we have the boundaries shown in the

following figure
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1 | ! | | ! { [ |
i T i i : T ‘ ] ]
N boundary Jalue =3
= A7
.
i “
: ® starting column #
T X ] #
e ending column
B (G
//'f// \\ %
(: \\\ boundary jvalue = 2
§ \\ //J//)%OLndary value =
\ |
\//
I
1 2 3 4 5 6 7 8 510111213 1L
column numbers
Then the list which describes this would look 1ike
=3
2 1 hlbll 0|
o— 3 f - 36 1{0
k | 3161 ]0]
5 f '-——DlZé]O
6 { i 3|5 |1 ]| eT® 9|11
7 r o——p—55 1 o———>9”
g 1 —t——3=-10| 10(2 | 0
4| o |——mf10[10]|3]0




There is no restriction on the number of boundaries which may cross
any row. All of the storage comes out of one pool as required so that
it is not necessary to know in advance how much storage will be required
for each level or row. A test problem containing about 105 grid points
required about 1500 words to store the boundary information.
. Building the lists consists of reading a piece of the boundary and
performing the following steps:
1. for each level involved, has a list been started?
if not, start it..
2. search along the list for this level looking for the appropriate
row number, if the row number is not in the list, enter it.
3. search along the .list for this row, for an entry which overlaps
. the column numbers of the current entry. If an overlappnng
‘ entry is Found modify-its. startnng*and endlng column “numbers
so that is |nc1udes both the old. entry and the current entry.
If no . overlapping entry is found insert the current entry.
L. go on to the next row
The 1ists are maintained in order by(row number but the entries for
each row number are unordered.
Writing a tape containing valués for every point requires an
\ékhaustive search of .the list for each point.since it is not known that
a point is not on a boundary until an entry for this point cannot be found
in the list.® This is done taking advantage of the fact that many levels
are the same and is quite fast. . The sample problem mentioned above

required 0.6 minutes on an IBM 360/67 to set the boundaries and write the

tape for the relaxation program.



164

DATA REQUIRED
1. Problem Setup
first card (3F10.0, 31S)

1) minimum X of grid

2) minimum Y of grid

3) grid spacing-

LY # rows (a row has X = constant)

5) # columns (a column has Y = constant)
6) # levels

~second, third . . . cards"(Bhé)fj
1) representative level number
2) level number of bottom of this representative level

3) level number of top of this representative level

subsequent cards define other representative levels, up to 32 are
allowed, -they can be entered in any order.

This input should be terminated by a blank card.
Next card (3F10.0)

1) the potential value to be dumped for boundary value 1

2) the potential value to be dumped for boundary value 2

3) the potential value to be dumped for boundary value 3
The  relaxation program requires that the boundary conditiohs be
in the- range 0.0 to -1.0. BDRY requires that the boundary values
be 1, 2 or 3. The above input allows the conversion to be made.

2. Description of Boundaries

The sh%bes which the boundary must be broken into are

type =1 _ - ‘ type = 2 type = 3
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S
These areas may overlap .and may extend outside the grid.

One data card is required for each area.

(215, 6F10.0, 12, IX, 212)
P1, P2...P7,P8, P9,P10

Rectangle Circle Annulus
P1 =1 Pl = 2° Pl = 3
P2 X X, X
P3 Y Y Y
PL ] R 81
P5 A 62
P6 B R,
P7 R2
P8 the representative level number of the start of this section of
... boundary
- P9-" the representative level number of the end of this section of
boundary

P10 the boundary value
The program requires'e,<62'and.theijnterva} 9], 62 must not contain
zero (some annuli will have to bémgntqggdvlh two;barts).
As many data cards as .required can be Used,gterminated by a blank
. card. o
3. Output of Results. (2F10.0)
P1, P2
Two types of output are available
1) a printout of ‘the boundary values at each grid point for one
level : ,
2) a dump of .the boundary information in a form that the
relaxation routine RESTOR' can read.

A'single card is required (for either output).

Pl 1 for dump of one level onto printer
2 for dump of all boundaries for.relaxation program

po if dump on printer, = level number to be dumped
if dump for relaxation program, = logical unj; to dump onto

A series of these may be used (for example to display several
levels on the printer then dump onto tape).

This input should be terminated by a blank card.
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INTEGER LOROW ,HIROW,LOCOL,HICOL
INTEGER ISTART(10)4IEND(10)yVAL(L10),HEADL(20)4HEADR(500,3),
LINFO(6000),POINT
COMMON IPLACE,ISTART,IENDysVALyHEADL yHEADR,INFOy IINFO, IHEADR,POINT
CALL SET(BEGIN)
COMMON/QUA/QUAL(3)
COMMON/STZE/NROW,NCOL 4NLEYV
COMMON/CORR/UNRL (20)4BQOT(20),TOP(20) y NUMB
INTEGER UNRL 4BOT,TOP
C READ GRID SPECS
READ(5,100)X0 YO sDELT yNROWsNCOL ¢ NLEV
100 FORMAT(3F10.0,315)
WRITE(6,101)X0,YODELT yNROW,NCOLsNLEV
101 FORMAT('1?,
L' ', 'GRID POINT 141 IS AT X= '4F10.3,"' Y= '",F10.3,/
1 ' VY oIGRID SPACING IS= ',F10.3/ .
2 ' t,'GRID SIZE (ROW BY COL BY LEVEL) ISt,
615, BY ',15,' BY ',15/ '
3% INCREASING ROW NUMBER IS IN DIRECTION OF INCREASING X'/
4% INCREASING COLUMN NUMBER IS IN DIRECTION OF INCREASING Y'//)
I=0
234 I=1+1
READ(54232)UNRL(1)4BOT(I),TOP(I)
232 FORMAT(315)
IF (UNRL(I).NE.O)GD TO 234
NUMB=1=1
DO 236 I=1,NUMB
WRITE(64237)UNRL(I),BOT(I),TOP(I)
237 FORMAT(' LEVEL ',I3,' EXTENDS FROM ',I13,' TO ',1I3)
236 CONT INUE '
WRITE(6,803)
803 FORMAT(//)
READ(5,805) (QUAL(I),1=1,3)
806 FORMAT(1X, *INTERNAL VALUE= ',I3,'VALUE DUMPED='"4yF10.7)
DO 804 1=1,3
WRITE(6,806)1,QUALI(I)
804 CONTINUE
805 FORMAT(3F10.0)
WRITE(6,802)
802 FORMAT(1X, 'INPUT DATA!')
C READ BOUNDARY SPECS
900 READ (59102 yEND=996)ITYPE,VALUE s T1,T29T3,T4yT5,T6,1AA,IAB
CALL CLOCK
102 FORMAT(21546F10e0491291X412)

C CHECK FOR INVALID CODE
IF(ITYPE.EQ.O0)GO TO 996
IF{ITYPE.GT«O.ANDJITYPEL.LT5) GO TO 5
WRITE(64103)ITYPESVALUEsT19sT2,T39T4,T5,T64y1AA,1AB
103 FORMAT (' INVALID TYPE CODE 4 OFFENDING CARD 1S'/
11X4215496F10.34214)
GO TO 900

BRANCH FOR DIFFERENT BOUNDARY AREA TYPES
GO TO (1424+3)4ITYPE

TYPE 1 THE AREA IS A RECTANGLE

X=T1

Y=T2

THETA=T3

-V O
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A=T4 ‘

B=T5

WRITE(645110)XsYsTHETAyA,ByVALUE,IAA,IAB

FORMAT (' RECTANGLE'3T1ly'X= '4yF9e3,T244'Y= ',F9.3,T37,
IVTHETA= "3F9.3,T55,'A= ',F9.3,T73,'B= ',F9.3,T103,'VALUE=
1T113,'LEVELS'y12," TO ',12)

THETA=THETA/57.29578

DIAG=SQRT(A%A+B*B)

ANG=ATAN(B/A)

LOCOL=IFIX ((Y=YD)/DELT)

HICOL=IFIX ((Y+DIAG*SIN(THETA+ANG)=YO)/DELT)+1
LOROW=IFIX ((X=B*SIN(THETA)=X0)/DELT)

HIROW=IFIX ((X+A%COS(THETA)=X0)/DELT)+1

IF (LOROW.LT+1)LOROW=1

IF(LOCOL.LT.1)LOCOL=1

IF(HIROW.GT «NROW)HIROW=NROW

IF(HICOL .GT«NCOL)HICOL=NCOL
WRITE(6,876)LOROW,HIROW,LOCOL,HICOL

'7127

FORMAT (' LOROW=',14,"' HIROW='y14,"' LOCOL="314,' HICOL=',14)

DO 10 I=LOROW,HIROW
DO 11J=L0OCOL,HICOL
XX=FLOAT (I=1)}*DELT+XO
YY=FLOAT (J=1)*DELT+YO

TRANSFORM TO COORDINATE SYSTEM ORIENTED WITH RECTANGLE
XS=XX

YS=YY

XX=(XS=X}*COS(THETA)+(YS=Y )*SIN(THETA)
YY=(YS=Y)*COS (THETA)=(XS=X)*SIN(THETA)
IF(XXeGEeOeOeAND e XX e LE«As ANDeYYeGE«OoOcANDYYLLELB)
#*WRITE (64884)XS,YS

FORMAT (1X42EL12.3)

IF(XXeGEeOeO e AND e XX eLE«AeAND WYY eGE2eOeOeANDYYLELB)
1CALL SAVE(J,VALUE)

CONTINUE

IF(IPLACE.NE.O)ICALL INSERT(I,IAA,IAB)

DO 781 1QZ=1,IPLACE

ISTART(IQZ)=0

IEND(IQZ)=0

VAL(IQZ)=0

IPLACE=0

CONT INUE

GO TO 900

TYPE 2 4 THE AREA IS A CIRCLE
X=T1

Y=T2

R=T3
WRITE(6,120)X,sYsRsVALUE+TAA,IAB

FORMAT(' CIRCLE"yT1ly'X= '"4WFO.3,T24,'Y= ',F9.3,T37,'R= ',F9,3,

1T103,4'"VALUE= ', 124T1134'LEVELS"y12,' TO ',12)

LOCOL=IFIX((Y=R=YQ)/DELT)
HICOL=IFIX{{Y+R=YQ)/DELT)+1
LOROW=IFIX((X=R=X0)/DELT)
HIROW=TIFIX{{X+R=X0)}/DELT)+1
IF(LOROW.LT«1)LOROW=1
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IF(LOCOL.LT.1)LOCOL=1
IF(HIROW «GT eNROW)IHIROW=NROW

IF(HICOL .GT.NCOL)IHICOL=NCOL

DO 20 T=LOROW,HIROW

DO 21 J=LOCOL HICOL

XX=FLOAT(I=1)#*DELT+XO

YY=FLOAT (J=1)*DELT+YO

IF { (XXX )k%k2+ (YYmY }%%2 L ER*¥RIWRITE(6,884) XX,YY

IF( (XXX )%%2+(YYeY }5x2,  E.R*R)CALL SAVE (J,yVALUE)

CONT INUE

IF(IPLACE «NE.O)CALL INSERT(I,IAA,IAB)
DO 782 IQZ=1,IPLACE

ISTART(I1QZ)=0

IEND (1IQZ)=0

VAL(IQZ)=0

IPLACE=0

CONTINUE

GO TO 900

TYPE 3 4 THE AREA IS AN ANNULUS

X=Tl

Y=T2

THETA1=T3

THETAZ2=T4

R1=T5

R2=T6
WRITE(64130)}X,Y4THETAL,THETAZ,R14R2yVALUE,sI1AA,IAB

FORMAT (' ANNULUS'3T11ly'X= 'yF9e39T2449'Y= '4F9.¢3,T37,'THETALl= "

1F9.3,T559'THETAZ2= '4F9.3,T773,'R1l= '"4F9.3,T88,'R2=
1'VALUE= '412,T113,'LEVELS'"y1I2,* TO ',12)

THETAL=THETAL1/57.,29578
THETA2=THETA2/57.29578

C90=1.5707963

C180=3.1415927

C270=4.7123890
IAX=TFIX({X=R2#COS(C180=THETAZ2)=X0)/DELT)
TAY=IFIX((Y+R2*SIN(C180=THETAZ2)=YO)/DELT)
IBX=IFIX({(X=R1*%COS(C1l80=THETA2)=X0)/DELT)
IBYSIFIX((Y+R1*SIN(C180=THETAZ2} =YD} /DELT)
ICX=TFIX((X+R2*COS(THETAl)=XQ)/DELT)
ICY=IFIX((Y+R2*SIN(THETAl)=YO)}/DELT)
IDX=IFIX({X+R1*COS{(THETA1)=X0O)/DELT)
IDY=IFIX((Y+R1*SIN(THETAl)=YO)/DELT)
IX=IAX

- 1Y=1AY

JX=TAX
JY=T1AY

'vyF9.3,T7103,

IF(THETAL «LTeC90.ANDTHETAZ2.GT.C90) IY=IFIX{(Y+R2=Y(Q)/DELT)
IF(THETAL«LTeC180.AND. THETA24GToC180) JUX=IFIX((X=R2=X0D)/DELT)
IF(THETAl .LT.C270.ANDTHETAZ2,GT.C270) JY=IFIX{{Y=R2=YD)/DELT)
IF(THETALLT 00 ANDTHETAZ.GT+04.0) IX=IFIX((X+R2=X0)/DELT)

LOCOL=MINO (IAY,IBY,ICY,IDY,dJY)
HICOL=MAXO(IAY,IBYsICY,IDY,1Y)+1
LOROW= MINO(IAX,IBXsICX,IDXsJX)
HIROW=MAXO (TAX,IBXsICX,IDXyIX)}+1
IF(LOROW.LT.1)LOROW=1

k4
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IF(LOCOL .LT.1)LOCOL=1
IF (HIROW.GT «NROW)HIROW=NROW
IF(HICOL «GT «NCOL)HICOL=NCOL
DO 30 I=LOROW,HIROW
DO 31 J=LOCOL,HICOL
XX=FLOAT (I=1)*DELT +XO
YY=FLOAT(J=1)%DELT +YO
C TRANSFORM TO POLAR COORDINATES

RR=SQRT ( { XX==X )%k 2+(YYmY }%%2)
IF(RR.EQ.0.0)GO TO714
TT=ATANZ2 (YYmY 4 XX&=X)
IF(TT LT 040)TT=TT+6.2831852
IF(TT.GETHETAL.AND+TTsLE.THETAZ2.AND.
%RR eGE eR1 e AND eRR<LER2)WRITE(6,823)
*TToTHETAL s THETAZ yRR9yR1 4R2 4 XX 4YY
823 FORMAT(1X,8E12.3)

aOOO0O0O0

IF(TT eGE«THETALANDTT LE.THETAZ24AND.
1 RReGE «eR1.AND RR.LELR2)CALL SAVE(JyVALUE)
714 CONTINUE
C
31 CONTINUE
IF(IPLACE.NE.O)ICALL INSERT(I,IAA,IAB)
DO 783 1QZ=1,1PLACE
ISTART(IQZ)=0
IEND(IQZ)=0
783 VAL (1QZ)=0

IPLACE=0
30 CONT INUE
GO TO 900
c
C
C

999 READ(5,4231,END=9999)1J,1K
231 FORMAT(213)
IF(IJ.EQ.0)GO TO 9999
IF(IJeEQs1)CALL OUTPUT(NROWsNCOLyBEGINy TLAST,IK)
IF(IJ.EQ.2)CALL DUMP(IK)
996 WRITE(64107)IHEADR,IINFO
107 FORMAT(1X,I5,' PLACES USED IN ROW HEADR ARRAY!'/
11XyI5,' PLACES USED IN INFORMATION ARRAY?')
GO TO 999 )
9999 STOP
END
SUBROUTINE SAVE (NCOL 4VALUE)
INTEGER ISTART(10),IEND(10),4VAL(10),HEADL(20),HEADR(500,3),
1INFO(6000),POINT
COMMON IPLACE,ISTART,IEND,VAL,HEADLyHEADRyINFO,IINFOyIHEADR,POINT
INTEGER VALUE
IF (IPLACE.EQ.0)GD TO 1
IF(VALUE.EQ.VAL(IPLACE))IGDO TO 2
1 IPLACE=IPLACE+1
ISTART(IPLACE)=NCOL
IEND(IPLACE)=NCOL
VAL ( IPLACE)=VALUE

C WRITE(6466)IPLACEsVAL(IPLACE)
C 66 FORMAT(' IPLACE='415,' VAL(IPLACE)="',15)
RETURN

2 IF(NCOL .NE.TEND(IPLACE)+1)GO TO 1
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TEND(IPLACE)=NCOL -

RETURN '

END

SUBROUT INE SET

INTEGER ISTART(10),IEND(10)4VAL(10),HEADL{(20),HEADR{(500,3),
1INFO(6000)sPOINT

COMMON IPLACE,ISTART,IEND,VALyHEADL,HEADR,yINFO, IINFO, IHEADR,POINT
DO 1 I=1,20

HEADL(1)=0

DO 2 I=1,500

DO 2 J=1,3

HEADR(I,J)=0

b0 3 1=1,6000

INFO(I)=0

DO 4 I=1,10

ISTART(I)=0

IEND(I)=0

VAL(I)=0

IINFO=1

IHEADR=1

IPLACE=0

RETURN

END

SUBROUT INE INSERT(NROW,IAA,IAB)

DIMENSION LEVELI(20)

INTEGER ISTART(10),IEND(10),VAL(10)yHEADL(20),HEADR(50043),
1INFD(6000),POINT

INTEGER START,,END,sVALUE

COMMON IPLACE,ISTART,IENDsVAL+HEADLyHEADR,INFO,IINFO,IHEADR,POINT
INITIALLY s LEVEL HEADERS ARE SET TO ZERO

TINFO POINTS TO THE FIRST EMPTY SPACE IN THE INFO ARRAY
IHEADR POINTS 70 THE FIRST EMPTY SPACE IN THE HEADR ARRAY
LOOP OVER THE ARRAY LEVEL TO SEE WHICH LEVELS

TO ENTER THE BOUNDARY CONDITIONS INTO

CONTINUE
DO 800 I=IAA,IAB

HEADL(I) POINTS TO THE FIRST ENTRY IN THE LIST OF ROW NUMBERS
INDEX=HEADL (1)

IF INDEX=0 , THE ROW LIST FOR THIS LEVEL IS EMPTY , START IT
IF(INDEX.NE.O)GOD TO 150

HEADL (1) =IHEADR

INDEX=THEADR

"ITHEADR=IHEADR+1

HEADR(INDEXy1)=NROW
WRITE(6+4503)HEADR(INDEXy 1) sNROW

FORMAT{(' HEADR(INDEX,y1)='y1545X, "NROW=",15)
GO 70 600

IS THE CURRENT ENTRY IN THE ROW NUMBER LIST THE REQUIRED ONE ?

IF(NROW.EQ.HEADR(INDEX,1))GO TD 600

IT IS NOT THE REQUIRED ONE SHOULD IT BE INSERTED BEFORE

THE FIRST ENTRY IN THE LIST ?

IF({(NROW«LT .HEADR(INDEX 1)) AND (INDEX.EQ.HEADL(I)))GD TO 197
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C
C IT IS NOT THE REQUIRED ONE IS IT THE LAST ONE ?
C
IF(HEADR(INDEX+3).EQ.0)GO TO 198
C
C IS IT BRACKETED BY THE CURRENT ONE AND THE NEXT ONE ?
c _ AN _ _
IF(NROW.GT «HEADR (INDEX 31) o ANDoNROW.LT.HEADR(HEADR( INDEX,3) 41)
1)60 TO 198
C
o OTHERWISE 4y GO ON TO THE NEXT ONE
o
INDEX=HEADR( INDEX,+3)
GO TO 150
C
C INSERT A ROW HEADER FOR NROW AFTER THE CURRENT ENTRY

198 ITEMP=HEADR( INDEX,3)
HEADR(INDEX,3)=IHEADR
HEADR ( ITHEADR 31 ) =NROW
HEADR(IHEADR,3)=ITEMP
INDEX=IHEADR
IHEADR=I1HEADR+1
GO TO 600
o INSERT A ROW HEADER FOR NROW BEFORE THE FIRST ENTRY IN THE LIST
197 ITEMP=HEADL(I) '
HEADL (I)=IHEADR
HEADR( IHEADR 41 ) =NROW
HEADR(IHEADR,3)=I1TEMP
INDEX=THEADR
IHEADR=IHEADR+1

THE LIST FOR NROW IS STARTED s INSERT THE ENTRIES

]
e}

DO 300 K=1,10
WRITE(6,1021)ISTART(K) sIEND(K) s VAL(K)yNROW, I1AA, IAB
FORMAT(1X,618)

IF ISTART IS ZERO s ALL ENTRIES HAVE BEEN MADE
WRITE(643504)ISTART (K)

504 FORMAT (' ISTART(K)=',15)

IF(ISTART{(K).EQ.O0)GO TO 301

OO0 O0O0O0O
fo—n
(e}
[AS]
[

o

NDEX=HEADR( INDEX,2)
WRITE (64505 )NDEX
505 FORMAT(' NDEX=%',15)

IF NDEX=0 , THE LIST IS EMPTY , START IT
77 TF{NDEX.NE.O)GO TO 700
INSERT A NEW ENTRY
HEADR{INDEX2)=1INFO
NDEX=TINFO
CALL PACK(ISTART(K)sIEND(K) VAL(K) 0y INFO(NDEX))
TINFO=TINFO +1

O~NOOOO

GO TO 300
c ;
C UNPACK THE CURRENT ENTRY
700 CALL UNPACK(START+ENDVALUE,POINT,INFO(NDEX))
C DO THE INTERVALS INTERSECT ?

IF(START eLEISTART(K) e AND.ENDGE.IEND(K} s ANDeVAL(K).EQ.VALUE)
160 TO 300
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C IF THEY DON'T INTERSECT GO ON TO THE NEXT ONE
IF(START«GTIEND(K)eDRENDLLTLISTART(K))GO TO 701
C IF THEY 'INTERSECT CHECK VALUES
706 IF{VAL(K).NE.VALUE)GO TO 707
C VALUES ARE THE SAME MODIFY END POINTS

IF(ISTART(K).LT.START)START=ISTART(K)
IF (IEND (K ) +GT .END)END=IEND (K)
CALL PACK(START,END,VALUE,POINT,INFO(NDEX))
GO TO 300
707 WRITE(6,818) ISTART(K), IEND(K)sVAL(K),START,END,
*VALUE yNROW 5 1
818 FORMAT(1X,'ATTEMPT TO INSERT ENTRY START=',I4,
¥VEND=', 14, 'VALUE=",14,'CONFLICTS WITH ENTRY START=',
%14y VEND=" 3 T4,y "VALUE=", 14, 'AT ROW', 14, 'LEVEL',4)

G0 TO 300
C
C GO ON TO THE NEXT ENTRY
701 NSAVE=NDEX A
NDEX=POINT
C IF NDEX=0 , THE END OF THE LIST HAS BEEN REACHED
IF(NDEX.NE.O)GO TO 700
C INSERT A NEW ENTRY
C SET NEW POINTER
CALL PACK(START,,ENDyVALUE,sIINFO,INFO(NSAVE))
C PUT THE INFO IN

CALL PACK(ISTART(K),IEND(K)yVAL(K)yOyINFO(IINFO))
IINFO=1INFO+1

300 CONT INUE

301 CONTINUE

800 CONT INUE

556 CONTINUE

RETURN
END
SUBROUTINE PACK{START,END,yVALUE,POINT,2)

C THE INFORMATION IS PACKED AS FOLLOWS , BITS NUMBERED RIGHT TO LEFT
C POINTER FIRST 13 BITS
o COLUMN NUMBER QOF END NEXT 8 BITS
c VALUE OF BOUNDARY CONDITION NEXT 2 BITS
C COLUMN NUMBER OF START NEXT 8 BITS
C 2=2%%23%START+2%%21%VALUE+2%%13%END+POINTER
INTEGER ST4ENysVA,PO,2Z
INTEGER START,ENDsVALUE sPOINT,Z4SHFTL
Z=POINT+SHFTL(ENDy13) +SHFTL(VALUE21)+SHFTL(START,23)
C CALL UNPACK(ST.ENyVA4P0O,Z)
C IF (START «NE e STeOREND NE cENeOR«VALNELVALUE.OR<PO.NE.POINT)STOP 1234
RETURN :
END
SUBROUTINE UNPACK (START,ENDyVALUE,POINT,Z)
INTEGER START yEND,VALUE yPOINT,ZySHFTR
DATA M1/Z0O0001lFFF/4M2/Z001FEQ00/4M3/Z00600000/4M4/27F800000/
START=SHFTR(LAND (M4,72),23)
VALUE=SHFTR(LAND(M3,2),21)
END=SHFTR(LAND(M2,Z2)413)
POINT=LAND (M1,2) '
RETURN
END
SUBROUT INE OUTPUT (NROWsNCOL yBEGINy TLAST4K)
o THIS SUBROUTINE EXAMINES THE VALUE OF EACH POINT IN

C THE ARRAY WHICH HAS BEEN SET UP FROM THE BOUNDARY CONDITIONS



eleNeNeleoNaNeRe]

173
THERE ARE FOUR POSSIBLE VALUES AT EACH POINT
THESE ARE AND WILL BE PRINTED AS FOLLOWS

BOUNDARY VALUE 1
BOUNDARY VALUE 2
BOUNDARY VALUE 3
NG BOUNDARY VALUE

O LN

DIMENSION 1J4(100)

INTEGER ONEsTWO,s THREyBLANK,X

INTEGER IEND(10),ISTART(10) .

DATA ONE/'1'/,TWO/'2'/THRE/"3"'"/4BLANK/Y Y /4y X/' XY/

INTEGER VAL (10),HEADL (20) yHEADR(50043), INFO(6000)4POINT

COMMON IPLACEsISTART,IEND,VALyHEADLyHEADRsINFO, IINFO, IHEADRPOINT
COMMON/L/LINE(250)

CALL CLOCK
IF (HEADL(K).NE.O)GD TO 1
WRITE(6410)K
10 FORMAT(' LEVEL 1,1243% IS EMPTY?')
GO TO 99
1 WRITE(6,411)K
11 FORMAT('1','LEVEL ',12)
I1S=1
IJK=0
IE=NCOL
IF(NCOL.GE.101) IE=1S5+99
13 DO 100 I=1,NROW
DO 201 J4=1,100
201 IJ(J)=BLANK
CALL BOUND{(K,I,ISsIE)
DO 101 J=1S,I1E
IB=L INE(J)
IND=J=1JK
ITEMP=X
IF(IBEQ.O)ITEMP=BLANK
IF(IB.EQ.1)ITEMP=0ONE
IF(IB.EQ.2)ITEMP=THWO
IF(IB.EQ«3)ITEMP=THRE
101 IJ(IND)=ITEMP
WRITE(64222)(1J(J)4J=14100),1
222 FORMAT(1X,100A145X,415)
100 CONTINUE
IF(IE.GE.NCOL) GO TO 99
IS=1E+1
[JK=1S=1
IE=1S+99
IF(IE.GTNCOL)IE=NCOL
GO TO 13
99 RETURN
END
SUBROUT INE DUMP (NTAPE)
COMMON/SIZE/NROWsNCOLyNLEV
COMMON/CORR/UNRL (20)4BOT(20),TOP(20) s NUMB
COMMON/L/LINE(250)
COMMON/QUA/QUAL (3)
INTEGER UNRL,,BOT,TOP
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C 327
429

94

50
19
93
427

555
20
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DIMENSION B(l164516,8) -
CALL CLOCK
IBLKSZ=2048
WRITE(6,100)INTAPE
FORMAT(18H DUMP ON LOGICAL 13)
NB X=NROW/ 16
NBY=NCOL/16
NBZ=NLEV/8
ITOTAL=NBX*NBY*NBZ
IPROD=ITOTAL/NBZ
REWIND NTAPE
WRITE (NTAPE)ITOTAL
DO 20 I=1,ITOTAL
DO 500 Ill=1,16
DO 500 122=1,16
DO 500 133=1,8
B(I11,122,133)=0.0
FIND BLOCK COORDINATES
KBLK=((I=1)/IPROD)+1
NPLACE=1I= (KBLK=1)%I1PROD
JBLK=((NPLACE=1)/NBX)+1
IBLK=NPLACE= (JBLK=1)*NBX
FIND GRID COORDINATES
IS=(IBLK=1)*16+1
IE=IS+15
JS=(JBLK=1)*16+1
JE=JS+15
KS=(KBLK=1)*8+1
KE=KS+7
WRITE(64327)1S41E4JSsJE4KS,HKE
FORMAT(6110)
DO 93 KI=1,NUMB
IF(KESLT«BOT(KI)eORKS<GT.TOP(KI))IGO TO 93
KK=UNRL (K1)
KBOT=KS
IF (BOT(KI)oGTKS)IKBOT=BOT(KI)
KTOP=KE
IF(TOP(KI)«LTKE)KTOP=TOP(KI)
DO 19 I11Q=IS,IE
IB=11Q=(IBLK=1)%*16
CALL BOUND(KKsIIQyJSyJE)
DO 50 K=KBOT,KTQP
KB=Km= (KBLK=1)%8
DO 50 JQ=JS,JE
JB=JQ= (JBLK=1)%*16
ZQUA=0.0
IF(LINE(JQ)«NE.O)ZQUA==QUAL(LINE(JQ))
B(IByJByKB)}=ZQUA
CONT INUE
CONTINUE:
WRITE(NTAPE)B
IF(I1.EQ.23)WRITE(6,555)B
FORMAT (' ',16F6.3)
CONTINUE
REWIND NTAPE
CALL CLOCK
RETURN
END
SUBROUTINE BOUND (NLEV,NROW,IS,I1E)
INTEGER VAL (10),HEADL(20) yHEADR(500,3) 4 INFO(6000),POINT
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INTEGER IEND(10),ISTART(10)
COMMON IPLACE,ISTART,IEND,VAL,,HEADL,HEADR+INFO, IINFO

%9 IHEADR ¢ POINT
COMMON/L/LINE(250)
DO 1 I=1,250
LINE(I)=0
INDEX=HEADL (NLEV)
IF(INDEX.EQ.O)}RETURN

IF (HEADR(INDEX 1 )=NROW)3 4445

ITI=HEADR(INDEX,2)
IF(IIT.EQ.O)RETURN

CALL UNPACK(IST,IEN,sIIVA,IOINT,INFO(III))
IF{IST.GT«IE.OR.IEN.LT.IS)GO TO 8

IF(IST.LT.IS)IST=IS
IF (IEN.GT.1E) IEN=TE
DO 7 I=IST,IEN
LINE(I)=TIVA
ITI=I0INT

GO TO 6

INDEX=HEADR (INDEX ,3)
G0 TO 2

RETURN

END

SUBROUTINE CLOCK
LOGICAL START

DATA START/ FALSE./
IF(START) GO TO 1
BEGIN=SCLOCK(0.0)
START=.TRUE.
TLAST=0.0

T=SCLOCK (BEGIN)/604.0
ETIM=T=TLAST

TLAST=T
WRITE(652)T,ETIM
FORMAT (' TOTAL TIME USED=
RETURN

END

VyF8e¢39 "INCREMENT=

'1F8o3)
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Appendix C. NEW RELAXATION ITERATICN ROUTINES

Changes were made in the relaxatiqn program to allow the sequence
that the blocks are iterated to be either forward or backward and to
allow the iterations over the physical work area to be either forward or
backward. In addition, the routine RLX3D was rewritten in assembly
language to increase the speed. The increase in speed achiéved was about
a factor of 12. Listings of the new routines MAINB and RLX3D are given on
the following pages. These are compatible with the program as distributed

by Nelson.l*
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SUBROUT INE MAINB(A,IDsJDyKDyIDIRyJIDIRy*)
COMMON/CORSIZ/I1Z4JZ9KZ4IHyJHsKH
DIMENSION A(ID,JD+KD)
COMMON /TAU/TIME

COMMON /SSW/ SS24+5S53,S5S54
LOGICAL §$524553,SS4
COMMON /CARD/PlyP23sP34P44P5,P6,P7,P8
COMMON /BC/EP(6)

DIMENSION EQ(6)

COMMON /PSA/ LXsLYsLZ4P(22)
COMMON /VOLUME/ NXyNY JNZyNB KXyNB KYyNB KZ4LXSyLYS,LZSy IDELJDEL KD
XDEL

CALL DATA(£999)

IF(IDIRLEQ. 1)GO TO 201

IF(IDIR.EQ.=1)GO TO 202

PRINT 203

FORMAT ('Y UNDEFINED ITERATION DIRECTION IDIR=1 ASSUMED?')
IDIR=1

GO TO 201

LXS=MAXL((P1+P2=2.)s1l.)

NBLKX=P2

LYS=MAX1((P3+P4=2,}),1,.)

NBLKY=P4

NBLKZ=P6

IDEL ==1

JDEL==]

KDEL ===1

LOOPX=P1

LOOPY=P3

LOOPZ=P5

GO TO 205

LXS=P1

NBLKX=P2

LYS=P3

NBLKY=P4

LZS=P5

NBLKZ=P6

IDEL=1

JDEL =1

KDEL=1

LOOPX=NBLKX=1

LOQOPY=NBLKY=1

LOOPZ=NBLKZ=]

N=P7

IF(JDIREQoe=]1 )N===N

C=pP8

K=1

PRINT 14K ¢N,yC

FORMAT(10H ITERATE 2164F10.5)

LZ=LZS

LY=LYS

LX=LXS

CALL LODA(LX4LY9LZ4A3IDyJD9yKD9&E999)

DO 31 1=1,6

EQ(I)=1.

IF(LX.EQe1)EQ(1)=EP(1)

IF(LY.EQ.1)EQ(3)=EP(3)

IF(LZ.EQ.L)EQ(S5)=EP(5)
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IF(LXeGE «NBKX=1)EQ(2)=EP(2)
IF(LY<GE «NBKY®=1 )EQ(4)=EP(4)

IF(LZ «GE .NBKZ=1)EQ(6)=EP(6)

CALL CLOCK({&999)

PRINT 100

IF(SS3)PRINT 100

100 FORMAT(12H RELAXATION )

R=0.,

RN=0.,

L=(NBKX=1)%*( (NBKY=1)%(LZ=1)+LY=1)+LX

CALL RLX3D(A31ZyJZyKZsLlglylyMINO(NX=TIH®(LX®=1)4IZ)yMINO(NY=JH®(LY=1
X)eJdZ)yMINO(NZ=KH(LZ=1)4sKZ)sCylyeNsyR,RNyEQ)
PRINT 101 ,R,RN

IF(SS3)PRINT 101,R4RN

101 FORMATI(12H RESIDUE = 12E14.5)
IF(IDIR.EQ.1)GD TO 214
LX=LX+IDEL
IF(LX.GE.LOOPX)GO TO 30
LY=LY+JDEL
IF(LY+GE.LGOPY)GO TODO 20
LZ=LZ+KDEL
IF(LZ.GE.LOOPZ)IGO TO 10
GO TO 211

214 LX=LX+IDEL
IF(LX.LE.LOOPX) GO TO 30
LY=LY+JDEL
IF(LY.LE.LODOPY) GO TO 20
LZ=LZ+KDEL
IF(LZ.LELLOOPZ) GO TO 10

211 K=Km=}

IF(K.GT.0) GO TO 5
L X=L XS

LY=LYS

LZ=LZS

CALL CLOCK(&999)

800 CALL UNLOAD
RETURN

999 RETURN 1
END
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&LABEL

&LABEL

MACRO
BOT
LE
LTER
BM

AR

LE
LPER
LE
LPER
AUR
LE
LPER
AUR
LE
LPER
AUR
AR
LE
LPER
AUR
AUR
SR
DE
LE
SUR
ME
AUR
L PER
STE
SR
MEND
MACRO
TOP
LE
LTER
BM
AR
LE
LPER
LE
LPER
AUR
LE
LPER
AUR
LE
LPER
AUR
SR
LE
LPER
AUR
AUR
AR
DE
LE
SUR
ME
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&D1 46D24,6D3 ,ED4, GELABEL
04128(1,5)
0,0

*+T74

145
0,6D1.(1)
2,40
0,6D2.(1)
0,0

2,0
0,6D3.11)
0,0

2,40
0,8D4.(1)
0,0

2,40

1,8
0,128(1)
0,0

240

240

1,8
2.=E'6!
0,128(1)
240
2972(0414)
0,2

0,0
0,128(1)
1,45

&D1,6D2,&D3,86D4,&LABEL
0+128(1,45)
0,0

*+74

1,5

0+s&D1a (1)
2,40
0,8D2.(1)
0,0

2,0
046D3.(1)
0,0

2,0
0,&D4.(1)
0,0

240

1,8
0,128(1)
0,0

2,0

2,0

1,8
24=E16"
0+128(1)
2,0
2972(0414)
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AUR 0,2

LPER 0,0

STE 0,128{(1)

SR 1,5

MEND

MACRO

INT &D]1 ,&D2,ED3,6D4,&LABEL
&LABEL LE 0,128(1,5)

LTER 0,40

BM *+84

AR 1,45

LE 0,6D1.(1)

LPER 2,0

LE 0,6D2.(1)

LPER 0,0

AUR 240

LE 0,6D3.(1)

LPER 0,0

AUR 2450

LE 0,6D4.(1)

LPER 0,0

AUR 240

AR 1,8

LE 0,1281(1)

LPER 0,40

AUR 2+0

SR 1,8

SR 1,8

LE 0,128(1)

LPER 0,0

AUR 2,40

AR 1,8

DE 2+=E'6!?

LE 0,128(1)

SUR 240

ME 2+72(0414)

AUR 0,2

LPER 0,0

STE 0,128(1)

SR 1,5

MEND

MACRO

SYM &Dy EBRANCH

L 10,76{0,414)

LE 0+6D0.(10)

LTER 0,0

BNZ EBRANCH

MEND

TITLE 'RLX3D VERSION 4!
RLX CSECT

ENTRY RLX3D
‘ USING *,12
RLX3D STHM 14,12,12(13)

LR 12,15
ST 13,ASAVE

*%x%%kR]1 CONTAINS ADDRESS OF FIRST CALLING PARAMETER

<xxxxSET UP LOOPS FOR 32 BY 32 BY 16 ARRAY

AaxskCALL RLX3D(A,1Z4,JZ4KZy 1y 1y 1eILyJdbLsKLy Cy 19 Ny RyRN,LEQ)
sk Hox 04 8 12 16 20 24 28 32 36 40 44 48 52 56 60
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REGISTER USE =

#o3 % % 3

GENERAL
0 NUMBER OF ITERATIONS LEFT
1 I
® 2 I INCREMENT (4)
* 3 I LIMIT
* 4 K
* 5 J
* 6 J INCREMENT (128)
® 1 J LIMIT
* 8 K INCREMENT (4096)
« 9 K LIMIT
% 10
% 11
* 12 BASE REGISTER
% 13
* 14
* 15
* FLOATING POINT
* 0
* 2
x 4 SUM OF ALL RESIDUES
* 6 SUM OF NEGATIVE RESIDUES
woxasackxaxsk [N ORDER TO HAVE ALL DISPLACMENTS POSITIVE
xRk SUBTRACT 128 FROM AA AND ADD 128 TO DISPLACMENTS
L 14,4=V(REGS)
L 2y=F 140
ST 2+4(0,414)
LNR 242
ST 2y40(0,14)
L 2,=F1128"
ST 2920(0,414)
LNR 242
ST 24956(0,14)
L 2+9=F14096"
ST 2928(0,14)
LNR 242
ST 2964(0,14)
ST 1,ALIST
L 9,0(0,1) LOAD ADDRESS OF A
S 9,=F'128" ADDRESS OF A = 128
ST 9,AA A(A)=128=C(AA)
L 10,28(0,41) ADDRESS OF 117
L 11,0(0,10) LOAD 127
S 11,=Ft2¢ CALC T LIMIT
M 10,=F "4
ST 11,8(0414)
A 11 ,=F4?
ST 11436(0,14)
L 10,16(0,1)
L 11,0(0,10)
S 11,=F1t1"!
M 10,=F'4?
ST 11,0(0,14)
ST 11444(0414)
L 10,32(0,1) ADDRESS OF Jz7
L 11,0(0,10) LOAD JZ
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S 1l1,=Ft27 CALC J LIMIT
M 10,=F 128"
ST 11,24(0414)
A 11,=F"128"
ST 11,52(0,14)
L 10,20(0,1)
L 11,0(0410)
S 11,=F'1"
M 104=Ft128"
ST 11,16(0,14)
ST 11,60(0,14)
L 10436(0,41) ADDRESS OF KZ
L 11,0(0,10) LOAD KZ
S 1ly=F'2" CALC K LIMIT
M 10,=F14096"
A 11,AA
ST 11,32(0,414)
A 11,=F'4096"
ST 11,48(0,414)
L 10,24(0,1)
L 11,0(0,410)
S 11,=F'1"
M 104=F'4096"
A 11,AA
ST 11,12(0,414)
ST 11,68(0,414)
L 10,48(0,1) LOAD ADDRESS OF N
L 0,0(0,10) LOAD N
L Q.=F1']?
LTR 0,0 DETERMINE STARTING ITERATION DIRECTION
BP ST
LPR 0,0
L NR 949
ST ST 9,IDIR
L 10,40(0, 1) LOAD ADDRESS OF C
LE 0,0(0,10) LOAD C
STE 0472(0414) STORE C
L 10452(0,1) \ LOAD ADDRESS OF R
LE 440(0410) LOAD R
L 10,56(0,41) LOAD ADDRESS OF RN
LE 640(0,10) LOAD RN
L 10,60(0,1) LOAD ADDRESS OF EQ
ST 10,76(0,414) STORE ADDRESS OF EQ
LA 144,SAVEAR ADDRESS OF SAVE AREA
ST 14,8(0,13) SET FORWARD POINTER
ST 13,4(0,14) SET BACKWARD POINTER
LR 13,14
¥xmwwxxxxSTART ITERATION LOOP
ITER L 14,IDIR
LTR 14,14
BP FWD
L 15,=V{(RLXBWD)
B SWTCH
FWD L 154=V{(RLXFWD)
SWTCH LNR 14,14
ST 14,IDIR

BALR 14,15
I BCT 0,ITER
Fxu¥xxxx I TERATIONS FINISHED, SAVE REQUIRED VALUES
L 1,ALIST LOAD ADDRESS OF LIST

# T
=z



ASAVE
IDIR
AA
ALIST
SAVEAR

REGS

RL XF

RL XFWD

L 10,52(0,1) ADDRESS DF RS

STE 4430(0410) STORE RS

L 10,56{(041) ADDRESS OF RN

STE 64,0(0,10) STORE RN
dokmwwaxk*RESTORE REGISTERS AND RETURN

L 13,ASAVE

LM 14412412(13)

SR 15,415

BCR 15,14

DS A

DS F

DS A

DS F

DS 18F

LTORG

C OM

DS 20F

END

CSECT

ENTRY RLXFWD

USING =#*,12

STM 14,12,12(13)

LR 12,15

ST 13,ASAVE

L 14,=V(REGS)

LM 1,9,0(14)

LQl
I1LOOPL

LQ2

LL]
JLOOP1

LL2

ILOGPZ

SYM 16, INSIDE

LR 544 SET J TO CURRENT K

LR 745 SET J LIMIT

A T424(0414)

L 1,0(0,414) SET 1

SYM 0,4LQ1

BOT 132+,132,256,4256 CORNER

AR 142 INCREMENT

SYM 8,L0Q2

BOT 13241244256,2564,1L00P1

BXLE 1,2,IL0O0P1

NOPR 14

SYM 44001

BOT 124,124 42564256 CORNER

AR 546 INCREMENT

L 140(0414) SET 1

SYM O,LL2

BOT 132,132,04256

AR 1,2 INCREMENT
FHRExaorxxx®xpD0 INTERIOR POINTS IN BOTTEM PLANE

LE 0,128(1,5)

LTER 0,0

BM SKIP

LE 04132(1,5)

LPER 2,0

LE 04124(145)

LPER 0,0

AUR 240

LE 04256(1,5)

LPER 0,0

AUR 240

LE 0,0(1,45)
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#**START LODP OVER K
*%D0 BOTTEM PLANE



PGS

SKIP

LQ3

LQ4
ILOOP3

LQ5

ale we aly whe wbe ot ole
O 38R K

INSIDE
KLOOP1

LL3
I1LO0OP4

LL13

NEXT
JLOOP3

NE XU
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EDGE
SET X INDEX

CORNER
INCREMENT 1

CORNER
INCREMENT K
RESET Y INDEX
SET J LIMIT

RESET X INDEX

INCREMENT X

INCREMENT J
RESET X INDEX

EDGE
INCREMENT 1

Fuxxxxxxx [INTERIOR POINTS OF INTERIOR PLANES

ILOOPS8

LPER 0,0

AUR 240

AR 1,8

LE 0,128(1,5)

LPER 0,40

AUR 2,0

AUR 2,40

SR 1,8

DE 24y=E'6!

LE 0,128{1,5)

SUR 2450

BP POS

AUR 642

SUR 442

ME 2+72(0414)

AUR 042

LPER 0,0

STE 0,128(1,5)

B SKIP

AUR 442

ME 2972(0414)

AUR 0,42

STE 05128(1,45)

BXLE 1,2,1L00P2

SYM 441Q3

BOT 1244124,0,256

BXLE 546,JL00P1

L 1,0(0,414)

SYM 04+LQ4

BOT 132413240,0

AR 1,2

SYM 12,LQ5

BOT 124,132,0,0,1L00P3

BXLE 1,2,1L00P3

NOPR 14

SYM 44 INSIDE

BOT 1244124,0,0
*%*BOTTEM PLANE DONE

AR 448

LR 594

LR T45

A 7+24(0,14)

L 1,0(0414)

SYM O,.LL3

INT 132413242564256

AR 1,2

SYM 84LL13

INT 132,124,256,256,1L00P4

BXLE 1,2,IL00P4

NOPR 14

SYM 4 yNEXT

INT 12441244256,4256

AR 546

L 1,0(0,14)

SYM 0 9yNEXU

INT 1324132,0,4256

AR 1,2

LE 04128(1,5)

LTER 0,0
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BM SKJP
LE 0,132(1,5)
LPER 2,40
LE 04124(1,45)
LPER 0,0
AUR 250
LE 04256(1,45)
LPER 0,0
AUR 2,40
LE 0+,0(1,5)
LPER 0,0
AUR 2,0
AR 1,8
LE 04128(1,45)
LPER 0,0
AUR 2450
SR 1,8
SR 1,8
LE 0,128(1,5)
LPER 0,0
AUR 240
AR 1,8
DE 24=E'6"
LE 0+128(1,5)
SUR 24,0
BP POZ
AUR 642
SUR 442
ME 2972(0414)
AUR 0,42
LPER 0,0
STE 04+128(1,5)
B SKJP
POZ AUR 442
ME 2472(0414)
AUR 042
STE 0,128(1,5)
SKJP BXLE 1,2,IL00PS8

SYM 44 NEXV
INT 1244124404256
NEXV BXLE 54+6,JL00P3
L 1,0(0,14) RESET 1
SYM OsLL12
INT 132,132,040
LLl1?2 AR 142 INCREMENT I
SYM 124LL14
I1LOOP6 INT 1244132,0,0,1L0O0OP6
BXLE 142,IL00P6
LL14 NOPR 14
SYM 4 9¢NEXS
INT 124412440,0
NE XS BXLE 4,48,KLO0OP1 '
#acraxxxx INTERIOR PLANES DONE DO TOP PLANE
SYM 204FIN

L 1,0(0,414) RESET 1
LR 544 RESET J
LR 745

A T4924(0414)

SYM 0,LQ10
TOP 132,132,256,256 CORNER



LQ10
ILOOPY

LQL1

LL4
JLOOP4

POR

SKKP

LL6

LQl12

1LOOPY

LQ13

1,2
8,LQ11

186.
INCREMENT I

13241244256,256,1L00P7

1,2,1L00P7
14
GaLL 4

1244912442564256

546
1,0(0,14)
O4LLS

132,132,04256

142

0,128(1,45)
0,0

SKKP
04132(1,45)
2,40
04+124(1,45)
0,0

240
04256(145)
0,0

240
0,0(1,+5)
0,0

240

1,8
0,128(1,45)
0,0

240

2,40

1,8
2y=E16!
0+128(1,5)
2,0

POR

642

442
2+972(0,414)
0,2

0,0
04128(1,45)
SKKP

442
2472(0414)
042
0,128(1,5)
1,2,IL0O0PX
440 L6

124,124,0,4256

54,64,JL00P4
1,0(0414)
0.,LQL2

132,413240,0

142
12,L013

124,132,0,0,ILO0CPY

1,2,1L00P9
14

CORNER

RESET 1

EDGE

INCREMENT I

*DO INTERIOR POINTS IN TOP PLANE

SET 1

INCREMENT I



RLXBWD

SYM
TOP

L

LM

SR
BCR
DS
LTORG
CGoM
DS
END
CSECT
ENTRY
US ING
STM
LR

ST

L

LM

44FIN
1244,124,0,0

*%%xx%RTOP PLANE DONE

13,ASAVE
14412,12(13)
15,15

15,14

A

20F

RLXBWD

*412
14412412(13)
12415
134ASAVE
14,=V(REGS)
199436(14)

sokskkokskSTART LOOP OVER K
sksokskkRkkD0 TOP PLANE

LQl
1L 00P1

LQ2

LL1l
JLOOP1

LL2

Aok sk Aok Rk D O

ILOOP2

SET J TO CURRENT K
SET J LIMIT

CORNER
INCREMENT I

CORNER
INCREMENT J
SET 1

INCREMENT 1
IN TOP PLANE

SYM 204, INSIDE

LR 594

LR T4+5

A 5¢52(0414)

L 1,36(0,14)

SYM 44101

BOT 04041244124

AR 1,2

SYM 12,LQ2

BOT 132,124,0,0,1L00P1

BXH 1,24I1L0O0OP1

NOPR 14

SYM O.LL1L

80T 040,132,132

AR 546 '

L 1436(0,414)

SYM G912

BOT 1244124404256

AR 1,42
INTERIOR POINTS

LE 0,128(1,5)

LTER 0,0

BM SKIP

LE 0,132(1,45)

LPER 2,0

LE 04+124(1,5)

LPER 0,0

AUR 240

LE 04256(1,45)

LPER 0,40

AUR 2,0

LE 0,0(1,5)

LPER 0,0

AUR 240

AR 1,8

LE 0,128(1,5)

LPER 0,0

AUR 240



POS

SKIP

LQ3

LQ4

ILOOP3

LQ5

INSIDE
KLOOP1

LL3

ILOOP4

LL13

NEXT
JLOOP3

NE XU

1LOCP8

188

AUR 2,50
SR 1,8
DE 2.=E'6!
LE 0+128(1,45)
SUR 240
BP POS
AUR 642
SUR 442
ME 2472(0414)
AUR 0,2
LPER 0,0
STE 04128(1,5)
B S SKIP
AUR 442
ME 2+72(0414)
AUR 0,2
STE 0+128(1,5)
BXH 1,241L0O0P2
SYM 0,LQ3
BOT 132,132,0,256 _ EDGE
B XH 546,JL0O0P1
L 1436(0,14)
SYM 440104
BOT 1244,12442564256 CORNER
AR 1,2 INCREMENT 1
SYM 8,LQ5
BOT 124,1324,2564,256,1L00P3
BXH 142,I1L00P3
NOPR 14
SYM 0, INSIDE
80T 25642564132,132
FoadknAknxxkTOP PLANE DONE
AR 448 INCREMENT K
LR 5¢4 RESET Y INDEX
LR T+5 SET J LIMIT
A 5952(0414)
L 1,36(0414) . - RESET X INDEX
SYM 44113
INT 1244124,0,0
AR 1,2 INCREMENT X
SYM 12,LL13
INT 132,124,050, 1IL0O0OP4
BXH 14242I1L00P4
NOPR 14
SYM 04 NEXT
INT 0,04132,132
AR 546 INCREMENT J
L 1,36(0,414) RESET X INDEX
SYM 4 ¢ NE XU '
INT 1244124404256 EDGE
AR 1,2 INCREMENT 1
xRk RXR[NTERIOR PDINTS OF INTERIOR PLANES
LE 0,128(1,5)
LTER 0,0
BM SKJP
LE 0,132(1,5)
LPER 2,0
LE 04124(1,45)
LPER 040
AUR 240
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LE 04+256(145)
LPER 0,0
AUR 2,40
LE 0+0(1,5)
LPER 0,0
AUR 2,40
AR 1,8
LE 0,128(1,45)
LPER 0,0
AUR 2,0
- SR 1,8
SR 1,8
LE 0,128(1,5)
LPER 0,0
AUR 240
AR 1,8
DE 24y=E'61
LE 04+128(1,45)
SUR 2,0
BP POZ
AUR 642
SUR 442
ME 2+72(0414)
AUR 0,42
LPER 0,0
STE 0,128(1,5)
B SKJP
POZ AUR 442
ME 24+72(0,14)
AUR 0,2
STE 0,128(1,5)
SKJP B XH 1,2,IL00PS8

SYM 0 ,NEXV
INT 132,132404256
NE XV BXH 546,JL0O0P3
L 1,36(0414) RESET 1
SYM 44LL12
INT 124412442564256
LL1Z2 AR 142 INCREMENT 1
SYM ByLL14
ILOOP6 INT 12441324256,4256,1L00P6
B XH 1,2,IL00P6
LL14 NOPR 14
SYM 0 yNEXS
INT 256425649132,4132
NE XS B XH 4 48,4KLDOP1
Fugxxwaxaxx INTERIOR PLANES DONE DO BOTTEM PLANE
SYM 164FIN

L 1436(0,14) RESET I
LR 594 RESET J
LR 745
A 5452(0414)
SYM 44LQ10
TOP 124,124,40,0 CORNER
LQ10O AR 1,2 INCREMENT I

SYM 12,L011

ILOOPY TOP 132,124,0,0,ILO0OP7
BXH 1,243ILO0OP7Y

LQ11 NOPR 14
SYM OyLLG



LL&4

JLOOP4

LL

Rk 0 INTERIOR POINTS IN

5

ILOOPX

PO

R

SKKP

LL

6

LQl2

ILOOP9

LQl3

% %k

2
x

TOP
AR
L
SYM
T0P
AR

LE
LTER
BM
LE
LPER
LE
LPER
AUR
LE

L PER
AUR
LE
LPER
AUR
SR
LE
LPER
AUR
AUR
AR
DE
LE
SUR
BP
AUR
SUR
ME
AUR
LPER
STE
B
AUR
ME
AUR
STE
B XH
SYM
TOP
BXH
L
SYM
T0P
AR
SYM
TOP
B XH
NOPR
SYM
TOP

1324132,0,0
546
1,36{(0414)
441LLS
124,124,4,0,4256
1,2

04+128(1,5)
0,0

SKKP
04132(1,45)
240
0,124(145)
0,0

240
04256(145)
0,0

2,0
0,0(1,5)
0,0

240

1,8
0,128(1,45)
0,0

240

240

1,8
24=E'6"!
0+128(145)
240

POR

642

442
2+,72(0,414)
0,2

0,0
04128(145)
SKKP

442
2972(0414)
0,2
0,128(1,5)
1,2,IL00PX
Os,LL6
1324132404256
5,6,JL00P4
1436(0414)
440LQ12
124412442564256
1,2

8,L.0Q013
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RESET 1

EDGE
INCREMENT 1

BOTTEM PLANE

SET 1

INCREMENT 1

124413242564256,1L00P9

1,2,1L00P9

14

OyFIN
25642564132,132

*BOTTEM PLANE DONE

L
LM
SR

13,ASAVE
14412,12(13)
15415



ASAVE

REGS

BCR 15414

DS A
LTORG

COoOM

DS 20F

END

91
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Appendix D. PROGRAM AXCENT.

This program performs the axial acceptance calculations described
in Section 3. The data input consists of a description of the beam
(emittance and energy) followed by data describing a sequence of focusing
elements (dee gaps or magnetic field regions). The vé used for the
magnetic field can be entered on the data cards or determined by inter-
polation from a table of values. The program tracks particles with
various phases through the focusing elements up to some maximum energy.
When the tracking is complete, the program can match the beam to a
specified v, and then calculate, for.each phase what elliptical emittance
shape is required at injection to produce a beam matched to the finaltvz.
Various plots of ion trajectories and beam envelopes are available.

Description of Data for AXCENT

All data is read in free format by subroutine DATA. Each card has

8 numeric fields {(cols 1 to 40) and an alphanumeric (comment)

field (cols 41 to 60). Trailing parameters not specified are set to

zero. Fields are separated by any character except +, -, ., 1,

9, 0.

In general, the first number on each piece 6f data is an index which

specifies what operation is to be performed while the other fields

contain data.

1, P2, P3, P4, P5, P6; Initialize the problem

if P2 #.0 initialize transfer matrix, E and S only (no data
required)

P3 =C = ¢ cos & e = amplitude of 3rd harmonic
amp i tude of Ist harmonic
P4 = phase of third harmonic wi'th respect to the fundamertal (&)

if P5 # 0 use table of phase slips read_ffom logical unit 1
if P6 # 0 use table of v, values read from logical unit 2
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one data card required

Pl = initial energy (M V)

P2 ='emittance .in in. " mrad. at energy Pl

P3 = zZmax (21_})

P4 = % (ellipse paramater as defined by Steffen )

P5 # 0 then track backwards (otherwise forward)

P6 = maximum energy for outward track if P6 = 0, no maximum
is set

P7 = initial phase of ''zero'" phase

2 Transfer to subroutine TRACK, requires data as follows:

1, P2, P3 thin lens
P2 = peak voltage across gap (MV)
P3 = reduction factor (set to 1.0 if not specified)
2, P2, P3 constant v, maghetic field region
P2 = v_ (not used if a table of values is provided)
P3 = afigular length (degrees)

3, P2 repeat the previous two elements (which must be
different i.e. one thin lens and an v, region) P2
times

4, p2 print after each element (initially yes)

P2 = 1 vyes
P2 =0 no

5, P2, P3, Ph
P2 = 1 turn plot output on (must be done before start
of tracking)
P3 = # turns/inch on X axis (default to 1.0)
P4 = # z inches/plot inch on Y axis (default
to 0.5)

P2 = 2 turn plot output off

P3 = 3,4,5,...9 causes plots to be produced
according to the fellowing table

P2 1 12 ~ envelope
3 X

4 X

5 X

6 X X

7 X X

8 X X

9 X X X

if P4 =999 a1y phasés,are,bléiféd, othéfwise phases
P4 to P5 are plotted

6 RETURN to MAIN
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3, P2 Transform back to initial starting point, matanh to
v P2 '
Z = N .

L, P2, P3 Draw ellipses

P2 = # z inches per plot inch (typically 0.1)
P3 = # z1 radians per plot inch (typically 0.01)
5 Compute overlap of current ellipses

6 Stop
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Po e d, s wls ols b ale Js 1, wts 3 . s e ale ale W s sl v e als wle abe Vo ylo als Wl o o abe Wls s e wls wle o, b aby b g als
3R 3K K 3K 3 S e e Sk 3 e e **m*’r*******ﬂ*m'v*'r*’r*—r-v"ﬁ—h**:r:hm*-r*q‘**'h*'n%mn:***«‘—w*«"rMAIN

THIS PROGRAMME CAN PERFORM THE FOLLOWING TASKS:

3
¥

k3
3¢

(1) TRACK PARTICLES AND PHASE SPACE ELLIPSES THROUGH
A SERIES OF ELECTRIC THICK LENSES AND MAGNETIC FIELDS

WITH CONSTANT FOCUSSING PROPERTIES
(2) MATCH A PHASE SPACE ELLIPSE TO A SPECIFIED MAGNETIC FIELD

(3) TRANSFORM BACK THROUGH A SYSTEM TO DETERMINE
WHAT INITIAL ELLIPSE IS REQUIRED TO PRODUCE THE REQUIRED
FINAL ELLIPSE

(4) CALCULATE THE COMMON AREA BETWEEN PHASE SPACE ELLIPSES
FOR DIFFERENT PHASES

(5) DRAW PHASE SPACE ELLIPSES ON A CALCOMP PLOTTER

(6) PLOT TRAJECTORIES AND ENVELOPES ON A CALCOMP PLOTTER

=THIS ROUTINE READS DATA AND TRANSFERS
CONTROL TO THE SUBROUTINES.
=TRANSFER IS CONTROLLED BY THE FIRST
NUMBER ON THE DATA CARD.
=ALL DATA IS READ IN FREE FORMAT BY
SUBROUT INE"DATA®AND TRANSMITTED THROUGH
COMMON AREA "CARD".
COMMON/CARD/P(8) yMNT (5)
COMMON/PLT/ IS ,PRNT
COMMON/START/ESTART,Z1(13),Z1P(13),22(13),Z2P(13),EPS,EMAX
COMMON/START2/F10,DELTA,C,THTA
COMMON /SLIP/NPS,EQS,DELES,PS(100)
COMMON /VNUZ/NNUZ,EOZ,DELEZ,UZ (100)
LOGICAL IS,PRNT
1 CALL PAGE(2)
CALL DATA(£&999)
I=P(1)
GO TO(100,200,3004400,500,600),]1
CALL PAGE(1)
WRITE(6,20) _
20 FORMAT(' INVALID DATA IGNORED')
GO 70 1

INDEX=1 INITIALIZE
=IF P2=0 INITIALIZE TRANSFER MATRIX
ENERGY AND S ONLY (THROUGH ENTRY "INITA")
100 IF(P(2).EQ.1)G0O 7O 101
C=P(3)
DELTA=P(4)/57.29578
NPS=0
NNUZ=0
IF(P(5).EQ.0.0)G0 TO 50
READ(1,111)NPS,EQ0S,DELES
READ(1,112)(PS(I),1=1,NES)

50 IF(P(6).EQ.0.0)G0 TO 51
READ(24111)NNUZ,EOQOZ4DELEZ
READ(2,112){(UZ(T1),I=1,NNUZ)

111 FORMAT(1I545X42F10.0)



112
51

68
19

101

11

200

12

oo

300

13

400

14

500

15

600
16

999

eNeNelaNe]

ek

FORMAT(8F10.0) 196

CALL PAGE (1)
WRITE(6419)
WRITE(3,68)MNT
FORMAT (' ',5A4)
FORMAT(* INITIALIZE"')
CALL INIT

GO 70 1

CALL PAGE(1)
WRITE(6,11)

FORMAT (' INITIALIZE TRANSFER MATRIX ONLY!')
CALL INITA

GO TO 1}

=TRANSFER TO SUBROUTINE "TRACK"Y
CALL PAGE(1)

WRITE(6,12)

FORMAT (' TRACK!')

CALL TRACK

GO TO 1

=MATCH TO NUZ=P2

CALL PAGE(1)

WRITE(6,13)

FORMAT (' TRANSFORM BACK!')
CALL UNTRK(P(2))

GO 70 1

=DRAW ELLIPSES ON PLOTTER
CALL PAGE(1l)

WRITE(6414)

FORMAT (' DRAW ELLIPSES')
CALL DRAWI(P(2)4P(3))

GO T0 1

«CALCULATE ELLIPSE OVERLAPS

CALL PAGE(1)

WRITE(6415)

FORMAT(' CALCULATE ELLIPSE OVERLAPS!')
CALL COMP

GO TO 1

=END OF RUN
WRITE{(6,416)

FORMAT (' END OF RUN'")
IF(IS)CALL PLOTND
STOP 1

STOP 999

END

SUBROUT INE INIT

3R AR AR AR R RN 3 A A A IR RN N RO A R AR KA N RN AR R R BN AR

=THIS ROUTINE DOES ALL INITIALIZATION
AND SHOULD BE CALLED ONCE FOR EACH
CASE TO BE RUN.

=(NE DATA CARD IS REQUIRED
COMMON/USD/USED
COMMON/ELST/AL(13)4BE(13)yGA(13)
COMMON/ELLIPS/ALFA(13),BETA(13),GAMMA(13)
COMMON/CARD/P(8) yMNT (5)
COMMON/TT/T(242313)4E(13)4S(13),PASE(13)
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COMMON/DIR/BKWD,END(13),BAD(13)
COMMON/START/ESTART21(13)421P(13),22(13),22P(13),EPS,yEMAX
COMMON/START2/FIOZDELTA,C»THTA
COMMON/PLT/ISsPRNT
COMMON/MORPLT/1Z1,122,41EV
COMMON/PGE/N4NPAGE yNAME (5)

DATA IFST/0/
IF(IFST.EQ.1)GO TO 5674
IFST=1
USED=0.0

5674 CONTINUE
DOUBLE PRECISION AL,BE,GA
DOUBLE PRECISION ALFA4BETAsGAMMA,T,E
LOGICAL BKWD.ENDyPRNT,IS,ERR4BAD
LOGICAL IZ1,122,I1EV
1Z1=.FALSE.
122=.FALSE.
IEV=l.FALSE.
PRNT=.TRUE.
BKWD=o4FALSE.
N=0
NPAGE=0
DO 239 I=1,5

239 NAME (I)=MNT(I)
CALL PAGE(61)
CALL PAGE(2)
CALL DATA(&999)
FIO=P(7)/57.29578
FISAVE=FIO
THTA=FIO
IF(P(5) eNE.O.O0)BKWD=uTRUE.
EMAX=100000.
IF(P(6).NE.O.O)EMAX=P (6)
ESTART=P (1)
SQE=SQRT (ESTART)
ALF=P(4)
IMAX=P(3)
EPS=P(2)*SQE/1000.
BET=ZMAX*%2/EPS
GAM= (1 .0+ALF*ALF)/(BET)
SQEPS=SQRT(EPS)
DO 94 1=1,13
ALFA(I)=ALF
BETA(I)=BET
BAD(I)=.FALSE.

94 GAMMA(I)=GAM

=THIS ENTRY INITIALIZES THE TRANSFER
MATRIX ENERGY AND S ONLY
ENTRY INITA

THTA=F IO

THTA=0.0

DO 96 I=1,13
PASE(I)=({I=7)*%10.+FISAVE) /574295779

AL(I)=ALFA(I)

BE(I)=BETA(I)
GA(I)=GAMMA(I)
Z1(I)=SQEPS/DSQRT(GAMMA(I})
Z1P(1)=0.0

22(1)=0.0
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Z2P(1)=SQEPS/ (DSQRT(BETA(I)))
END(I)=.FALSE.

E(I)=ESTART

S{I)=0.0
T(19171)=1.0
T(1’271)=0.0

T(24141)=0.0
96 T(242,11=1.0
CALL PAGE(1)
WRITE(6,100)
100 FORMAT(* INITIAL VALUES!')
CALL PRINT
CALL POINTS
RETURN
999 STOP 998
END
SUBROUTINE TRACK
ok s s ok R g e ol R R R R R R R Rt R R s R ok 3k TR A C K
=THIS SUBRQOUTINE READS THE DATA CARDS
WHICH DESCRIBE THE ELEMENTS AND
TRANSFERS CONTROL TO SUBROUTINES WHICH
CALCULATE THE ACTUAL MATRIX ELEMENTS.
COMMON/CARD/P(8) 4MNT (5)
COMMON/PLT/ IS yPRNT
COMMON/MORPLT/17Z1,122,41EV
COMMON/SQALE/ XSKALE,YSKALE
COMMON /SLIP/NPS,EOS,DELES,PS(100)
COMMON /VNUZ/NNUZ,EQZ,DELEZ,UZ{100)
LOGICAL IZ141Z2,1EV
LOGICAL LENS4PRNT,1IS
LOGICAL LLLsLALL
LLL=.FALSE.
11 CALL PAGE(2)
CALL DATA(&999)
KOUNT=1
I=P(1)
GO TO(14293944+5496) 41
CALL PAGE(1)
WRITE(64100)
100 FORMAT{"' INVALID DATA IGNORED BY TRACK?')
GO T0 11
C THIN LENS
1 LENS=.TRUE.
T2=P(2)
T3=P(3)
21 CALL TLEN{(T2,T3)
IF(PRNT)CALL PRINT
IF{LLL) CALL POINTQ
KOUNT=KOQUNT=1
IF (KOUNT.NEL.O)GO TO 22
GO TO 11
C CONSTANT NUZ REGION
2 LENS=.FALSE.
Q2=P(2)
Q3=P (3)
22 CALL NUZ(Q24+Q3)
IF(PRNT)CALL PRINT
IF(LLL)ICALL POINTQ
KOUNT=K0OUNT=1
IF (KOUNT «NE.O)GO TO 21

[eNEeaNeNe]
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200

201

61

62

63

64

65

66

6
999

GG TO 11
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SET UP KOUNT FOR REPETITION OF PREVIQUS TWO ELEMENTS

KOUNT=2.*(P(2)=l.)
IF(LENS)GO TO 22

GO TO 21

SET PRINT ON OR OFF

IF(P(2)«NE.O.O0)GO TO 8

CALL PAGE(1)
WRITE(6,200)
FORMAT (' PRINT OFF?"')
PRNT=4FALSE.

GO TO 11

IF(P(2).NE.1.0)GO TO 11

CALL PAGE(1)
WRITE(6,201)
FORMAT (' PRINT ON')
PRNT=.TRUE.

GO TO 11

SET SWITCHES TO CONTROL PLOTTING OF Z14Z224 AND ENV

I=P(2)
IF(I.NE.1)GD TO 61
LLL=L.TRUE.
XSKALE=P(3)
YSKALE=P (4)

IF (XSKALE+EQ+O0.0)XSKALE=1.0
IF(YSKALE.EQ.O.O0)YSKALE=0.5

GO TO 11
IF(I.NE.2)G0O TO 62
LLL=.FALSE.

GO TO 11

1Z1=.FALSE.
172=.FALSE.
IEV=.FALSE.
LALL=.FALSE.
IF(I1.EQe3)121=.TRUE.
IF(I«EQe4)I122=.TRUE.
IF(I.EQ.5)IEV=.TRUE.
IF(INE.6)GO TO 63
1Z1=.TRUE .
122=.TRUE.,
IF(I.NE.7)G0O TO 64
1Z1=.TRUE.
IEV=.TRUE.
IF(I.NE.B8)GO TO 65
172=4TRUE .
IEV=L.TRUE.,
IF(I.NE.9)GO TO 66
1721=.TRUE.
172=.TRUE .
TEV=.TRUE.

IF(P(3).EQ.999.)LALL=.TRUE.
CALL PLO(IZYIZ24IEVoLALLSIFIX{(P(3))yIFIX(P(4)))

GO T0O 11

RETURN TO MAIN

RETURN

STOP 1234

END

SUBROUTINE NUZ{(P1,P2)

o
b

3R 4 33 30 A AR AN RO R AR NSRRI KRR RNY Z

=THIS ROUTINE CALCULATES THE MATRIX
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C ELEMENTS FOR CONSTANT NUZ MAGNETIC
C FIELD REGIONS.
COMMON/DIR/BKWD4END(13),BAD(13)
COMMON/TT/T(242413)4,E(13)4S(13),PASE(13)
COMMON/ELEM/EL(2,42)
COMMON/PLT/ 1S 4PRNT
COMMON/START2/FIQ4DELTA,C,THTA
COMMON /SLIP/NPS,EDS,DELES,PS(100)
COMMON /VNUZ/NNUZ+EOZ,DELEZ,UZ(100)
DIMENSION REM(13)
LOGICAL IS ,PRNT
DOUBLE PRECISIONTEL,E
LOGICAL BKWD,END,BAD
Ti=P1
THT=P2%5,0/57.29578
FIO=F I0+THT
THTA=THTA+THT
T2=P2
IREM=1
REM(1)=P1
105 FORMAT('OMAGNETIC FIELD y ANGULAR LENGTH=',F7.2,
+' NUZ=',13F6.2)
DO 70 I=1,13
IF(END(I))GO TO 70
IF(BAD(I))GO TO 70
EE=E(I)
SQE=SQRT (EE)
IF (NNUZ.EQ.0)GO TO 117
T1=UTERP (EE)
C WRITE(6,129)T1
C 129 FORMAT(' ',E16.8)
IREM=IREM+1
REM( IREM=1)=T1
117 R=18.94%SQE
SS=R*T2/57.2957795130823209
S(I)=S(1)+SS
PASE(I)=PASE(I)+THT
IF (NPS.NE.O)PASE(I)=PASE(I)+STERP (EE)
Q=T1*SS/R
SI=SIN(Q)
CO0=C0S(Q)
EL(1,1)=CO
EL(142)=SS*SI/(Q*SQE)
EL(291)==Q*%SI*SQE/SS
EL(2,2)=CO
CALL MATMUL(I)
CALL UPDATEI(I)
70 CONTINUE
IF(.NOT.PRNT)IGO TO 32
IREM=IREM=1
CALL PAGE(2)
WRITE(64105)P2y(REM(I)yI=1,IREM)
32 RETURN
END
SUBROUTINE TLEN(P1,P2)
C eale g 3o e esie e si e ook 3 3l 34 i ke 3o 3t 3ie e i 3k afe sk sl sk sl sie sie s ode e sl afe sk sk e R ofe sl sk o ik stk ek sk Rk K TL EN
=THIS ROUTINE CALCULATES THE PHASE
AND ENERGY GAIN REQUIRED TO COMPUTE
THE ELECTRIC LENS EFFECTS.
wSUBROUT INE TLENS CALCULATES THE

aNeXeNe
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c CHANGES 1IN SLOPE AND DISPLACEMENT
C CAUSED BY THE LENS.
COMMON/DIR/BKWDEND(13),BAD(13)
COMMON/TT/T(292913)sE(13)9S5(13),PASE(13)
COMMON/ELEM/EL (2,42)
COMMON/START/ESTART$Z1(13)421P(13)422(13)422P(13),EPS,EMAX
COMMON/PLT/ IS sPRNT
COMMON/START2/FI0WDELTA4C,THTA
LOGICAL IS,PRNT
DOUBLE PRECISION TyEL,E
DPl=pP1
DP2=P2
LOGICAL BKWD.END,BAD
104 FORMAT('OTHIN LENS ENERGY GAIN= '4,F7.3,' REDUCTION FACTOR= !
+4F7.353" R.F PHASE AT GAP WITH NO PHASE SLIP IS'F8.2,
+1 (V4F6424" )1V)
DIMENSION ZZ27Z(13)422X(13)
DO 60 I=1,13
FI=PASE(I)=THTA
THE FOLLOWING EXPRESSION FOR THE ENERGY GAIN ALLOWS THE
MIXTURE OF THIRD HARMONIC TO BE SPECIFIED BY DELTA (THE PHASE
DIFFERENCE BETWEEN THE FIRST AND THIRD HARMONIC) AND C WHERE
C=EPSILON*COS(DELTA); EPSILON IS THE RELATIVE AMPLITUDE OF THE FIRST
AND THIRD HARMONICS
DELE=DP1*(COS(FI)=C*COS(3*FI)+C*TAN(DELTA)*SIN(3.%FI))
IF(BKWD)DELE==DELE
IF(E(I)+DELE.LT.0.0)END(I)=.TRUE.
IF(E(I).GT.EMAX)END(I)=4TRUE.
IF(END(TI))GO 70 60
IF(BAD(I))GO TO 60
CALL TLENSH(E(I)+DELE/2.,4F1,4DP1,4yA)
ZA= DSQRT(E(I))/DSORT(E(I)+DBLE(DELE))
IA=1.0=7A
IF(BKWD)A=m=mA
IF(BKWD)ZA==7A
IF(DP2.EQ.0.0)G0 TO 20
A=DP2*A '
ZA=DP2*ZA
20 ZZZ({I)=A
22X(1)=ZA
EL(1y1)=1.0=ZA
EL(2,31)==A%(DSQRT(E(I))+DSQRT(E(I)+DBLE(DELE))) /2.
EL(242)=1.0
EL(192)==(1.0=EL(1y41))/EL(241)
E(I)=E(I)+DELE
CALL MATMULI(I)
CALL UPDATE(I)
60 CONTINUE
IF(.NOT.PRNT)GO TO 734
CALL PAGE(4)
THPN=THTA%57,29578
THPM=AMOD (THPN ,360.)
WRITE(64104)P1 4P243THPNyTHPM
WRITE(641001)2722422X
1001 FORMATI(' ',13F7.3)
734 RETURN
END
SUBROUTINE TLENS(E,THETAR,DELE,ZZ)
C 3313 3 sl siesie s v ol sfe e >ie sl sl e sk 3le 3k e ksl 3¢ 3l s 3ol e sl sie sk e e sl sie s sie sfersle sje sl sk sl sl s skosie siosico sk skl skoslok ek *TLENS
C

=THIS ROUTINE CALCULATES THE DISPLACEMENT

OO0 OO
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AND SLOPE CHANGES CAUSED BY THE THIN LENS.
=F] AND F2 ARE THE FACTORS DESCRIBED BY
ROSE IN=
PHYS, REV. VOL(53),392(1938)
= F3, F4, AND F5 ARE THE FACTORS DESCRIBED
BY COHEN IN=
'REV.e SCC. INSTR. VOL.24y 589(1953)
=THE NUMERICAL VALUES ARE THOSE APPROPRIATE
TO THE TRIUMF DEE GEOMETRY.
COMMON/START/ESTART2Z1(13),Z1P(13),22(13),722P(13),EPS,EMAX
COMMON/STARTZ2/FIQsDELTA,Cs THTA
P1=3,1415926535897932
SI=SIN(THETAR) =3 s %C*COS{3*THETAR)}*TAN(DELTA)=3,%C*SIN{(3.*THETAR)
CO=COS(THETAR)=C*COS (3. *THETAR)+C*TAN(DELTA)*SIN(3.,*THETAR)
EVOEC=.5*DELE/E
WRITE(64100)ETHETARDELE,S1,CO,EVDEC
IF(E.LT.0.0)STOP 456
R=18+94*SQRT(E)
IF(DELE.NE.O.1)GO TO 1
F=4975
GO TO 3
IF(R.GT.30.0)G0 TO 2
F=1.07=0.0155%*R
GO T0 3
F=0.605
F1=5.%EVOEC=*SI/R
F2=2*F*EVOEC*EVOEC*CO*CQ/(PI%*2,0)
F3==tVOEC*EVOEC*SI*S1/(+2%R)
Fb4=w 4 %EVOEC*EVOEC*CO*CO/R
F5= 5,.*EVOEC*EVOEC=®SI/R
F12=F1+F2
F15=F12+F3+F4+F5
11=F12
Z7=F15
WRITE(64100)F14F24RyZZ
RETURN
FORMAT(' '",6G10.3)
END
SUBROUTINE UPDATE(1)
A< 3¢ sje e 3 3 sl sy s sl ke 3k sfe sl e e Kol Sk 33 e sl e sl 3 s 3 sk sl ok e el sk sl s R R ek R kosksk ok ikok Sk U PDATE
=THIS ROUTINE CALCULATES
THE NEW ELLIPSE COEFFICIENTS FROM THE
INITIAL VALUES OF THE COEFFICIENTS AND
THE CURRENT 2X2 TRANSFER MATRIX.
COMMON/ELST/AL(13)sBE(13),GA(13)
COMMON/ELLIPS/ALFA(13),BETA(13)4yGAMMA(13)
COMMON/TT/T{(242413)5E(13),S(13),PASE(13)
COMMON/ELEM/EL(2,42)
COMMON/DIR/BKWDEND(13),BAD(13)
LOGICAL BKWD,END,BAD
DOUBLE PRECISION AL4+BEsGA,TEST
DOUBLE PRECISION T,ALFA,BETA,GAMMA,EL
DOUBLE PRECISION C,CPySSySPyALF+BET,GAM,E
C=T(1l,1,1)
CP=T(291QI)
SS=T(1,2,1)
SP=T(2,2,I)
ALF=ALI(I)
BET=BE(I)
GAM=GA (1)
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THE FOLLOWING THREE TESTS CAUSE TERMINATION OF THE
CALCULATION FOR ANY PHASE FOR WHICH ANY ONE OF THE
FOLLOWING CONDITIONS OCCUR:

(1) BETA < 0
(2) GAMMA > 0O
(3) BETA*GAMMA=ALFA#%:2=l > 0.001
THESE CONDITIONS OCCUR WHEN BETA OR GAMMA BECOME LARGE
SO THAT THERE IS NOT SUFFICIENT PRECISION TO
CALCULATE THEM PROPERLY
BETA(I)=C*C*BET=m2 . *C*SS*ALF+SS%SS*GAM
IF (BETA(I).GE.0.0)GO TO 200
CALL PAGE(1)
IP=(I=7)*10
WRITE(6,1) 1P
BAD(I)=.TRUE.
BETA(I)==BETA(I)
RETURN
ALFA (1)==C*CP*BET+(C*SP+SS*CP )% ALF =SS%SP*GAM
GAMMA (1) =CP#CP*BET=2 . %CP*SP*ALF+SP%SP*GAM
IF (GAMMA (1) .GE.0.0)GO TO 201
CALL PAGE(1)
IP=(I=7)%10
WRITE(642)1P
BAD(1)=.TRUE.
GAMMA (1) ==GAMMA (1)
RETURN
TEST=BETA (1) %*GAMMA (I )=ALFA({I)*ALFA(I)=1,
IF(DABS(TEST)«LT40.001)RETURN
CALL PAGE (1)
IP=(Im7)%10
WRITE (643)1P
BAD(1)=.TRUE.
FORMAT (' CALCULATION OF FI= ',I4,' TERMINATED DUE!
X' TO NEGATIVE BETA')

FORMAT(' CALCULATION OF FI= ',14,' TERMINATED DUE®
X' TO NEGATIVE GAMMA')

FORMAT (' CALCULATION OF FI= ',14,' TERMINATED DUE"
X' TO B=*G=A=xA NOT EQUAL TO 1.')

RETURN

END

SUBROUT INE MATMUL (1)

(C 3l ke 3 33 3 e 3403 3¢ 3l 3¢ 36 3k 3¢ 3l sje 3 33 e e slkoske sl 3 s sl e s sosi sle o e s sk ook e ko sk sk i ko ok B MA T MUL

c
C
C

=THIS ROUTINE MULTIPLIES THE OLD

TRANSFER MATRIX BY THE MATRIX FOR THE CURRENT ELEMENT TO
PRODUCE THE NEW TRANSFER MATRIX
COMMON/TT/T(242+13)4E(13),S(13),PASE(13)
COMMON/ELEM/EL(242)

COMMON/DIR/BKWDEND(13)4BAD(13)

LOGICAL BKWD,END,BAD

DOUBLE PRECISION TyELSE

DOUBLE PRECISION T114T7124721,T22,TA

LOGICAL ERR

Ti1=T(1l,1,1)

T12=T(142,41)

T21=T(241,1)

T22=T(24241) -
T(Ll9lsI)=TLI*EL(191)+T21%EL(142)
T(1l9291)=T1l2*EL(L1s1)+T22%EL(142)
T(24141)=TL11*EL(241)+T21%EL(2,42)
T(242+1)=T12%EL(24y1)+4T22%EL{(2+2)
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=THE FOLLOWING STATEMENTS CHECK THAT THE DETERMINANT
OF THE TRANSFER MATRIX IS WITHIN .001 OF 1
=]F NOT, THE CALCULATION IS TERMINATED
=THIS OCCURS WHEN THE MATRIX ELEMENTS BECOME LARGE
SO THAT THE DETERMINANT CANNOT BE CALCULATED ACCURATELY
TA=T(L gLy I)%kT (2429 1) =T(L142y1)%T(2,1,1)=],
IF(DABS(TA)«LT.04,001)RETURN
CALL PAGE(1l)
IP=(Im7)*10
WRITE(6,100) 1P
100 FORMAT(' CALCULATION OF FI= '4,14,' TERMINATED DUE!
X' TO DET OF T NOT EOQUAL TO 1. )
BAD(1)=.TRUE.,
RETURN
END
SUBROUT INE UNTRK (XNUZ)
35 3 e e i e 3k ol B e 3 sk i 3t Rk AR SO B 3R R R A K 3 33RO e e e e e e sk ek ke YNT RK
PARAMETERS WHICH ARE REQUIRED TO MATCH
THE BEAM ELLIPSE TO THE GIVEN NUZ.
THEN IT CALCULATES THE INVERSE OF THE
CURRENT 3X3 TRANSFER MATRIX FOR THE
ELLIPSE COEFFICIENTS, AND MULTIPLIES THE
REQUIRED FINAL VECTOR BY THE INVERSE
MATRIX TO DETERMINE WHAT STARTING ELLIPSE
PARAMETERS WILL GIVE THE REQUIRED FINAL VECTOR.
COMMON /CARD/P(8)¢MNT(5)
COMMON/TT/T(2+2+13)4,E(13),S(13),PASE(13)
COMMON/ELLIPS/ALFA(13),BETA(13),GAMMA(13)
COMMON/START/ESTART$Z1(13),Z21P(13),22(13),422P(13),EPS,EMAX
COMMON/DIR/BKWD,END(13),BAD(13)
COMMON /VNUZ/NNUZ,EOQZ,DELEZ,UZ(100)
LOGICAL BKWD,END,BAD
DOUBLE PRECISION T,ALFA,BETA,GAMMA,E
DOUBLE PRECISION T11,T12,721,7T22
DOUBLE PRECISION EO(3,3)},4,EI(3,3)yST(3),EN(3)
IF (NNUZ eNE.O)YXNUZ=UTERP (EMAX)
CALL PAGE(1)
WRITE(64109)XNUZ
109 FORMAT(' MATCH TO NUZ= ',F7.3)
ST(1)=18,94/XNUZ
ST(3)=1./ST (1)
ST(2)=0.0
DO 800 K=1,13
IF(BAD(K))GO T0O 800
FI=FLOAT(K=7)}=10
CALL PAGE(8) )
WRITE(64103)FI
103 FORMAT('OPHASE= ',F4.0/
Xt MATRIX?'440X,'INVERSE")
T11=T(1,1,K)
T12=T(142,+K)
T21=T1(2 e 1 9K)
T22=T{2424K)
C 3 X 3 MATRIX COMPONENTS
EO(Ll,1)=TL11%T11
EO(142)==2.,%T11%T12
EOQ(1,43)=T12%T12
EC(2,1)==T11%T21
EQ(2,2)=T11%T22+T21*%T12
EO(243)==T12%T22

OO0
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EO(3,1)=T21%T21
EO(3,2)=m2 ,%T21%T22
EO(3,3)=T22%T22
3 X 3 INVERSE MATRIX COMPONENTS
EI(ly1)=T22%T22
EI(l,42)=2.%T12%T22
EI(1,3)=T12%T12
EI(2,1)=T21%T22
E1(2,2)=T11%T22+T21%T12
EI(2,3)=T11%T12
EI(3,1)=T21%T21
EI(3,2)=2.%T11%T21
EI(3,3)=T11%T11
DO 10 I1J=1,3
WRITE(653100)(EO(IJyIL)sET(IJyIL)yIL=1,3)
100 FORMAT(' '"33E1143,13Xy3F11.3)
10 CONTINUE : '
DO 67 I=1,3
67 EN(I)=EI(I1)%STAL)+ET(I1,2)%ST(2)+EI(I143)%ST(3)
WRITE(64102)ST,LEN
102 FORMAT(' INITIAL VECTOR '43FE16.8/
X' FINAL VECTOR 'y3E16.8)
BETA(K)=EN(1)
ALFA(K)=EN(2)
GAMMA (K)=EN(3)
800 CONT INUE
RETURN
999 STOP 999
END
SUBROUTINE DRAW(S1,S2)
338 3e ) 3R REARK A2 AR e I N A HE K KK S N K K 2K 3K 3K N S 3R K K HE 3¢ S NE K 3K e AR ek AR R AR NORR DR AW
=THIS ROUTINE DRAWS THE ELLIPSES ON A
CALCOMP PLOTTER. THE SCALE USED 1S
READ IN ON THE DATA CARD WHICH CAUSES
TRANSFER TO THIS ROUTINE
=ELLIPSES WHICH WOULD GO OFF THE PAGE
ARE TRUNCATED
COMMON/USD/USED
COMMON/PLT/IR4PRNT
COMMON/ELLIPS/ALFA(13)4BETA(13),GAMMA(13)
COMMON/START/ESTART 4Z1(13)4Z1P(13),722(13)4,22P(13)4EPS,EMAX
COMMON/TT/T(2+42+913)4E(13)4S(13),PASE(13)
CDMMON/DIR/BKWD,END(13)yBAD(13)
LOGICAL BKWD,END,BAD
COMMON/ PGE/N ¢yNPAGE yNAME (5)
DOUBLE PRECISION T,ALFA,BETA,GAMMA,E
LOGICAL IR4IS.PRNT
DIMENSION X(1000),Y(1000)
DATA DELPHI/.00628318/
DATA IS/ .FALSE./
IR=1S
IF(IS)GO TO 1
CALL PLOTS
IS=.TRUE.
IR=.TRUE.
1 CALL PLOT(USEDy0e0y=1)
USED=12.0
CALL AXIS(54954910HZ (INCHES)310954650.0504045S1)
CALL AXIS(5435¢912HZ" (RADIANS)$1295¢9904+0.04552)
CALL AXIS(S.,S. 71H y"115071800 90.09“51)
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CALL AXIS(5¢95¢31H 3=145452704,0.0,=52)
CALL SYMBOL (54199404425 yNAME(1),0.0,20)
DO 2 K=1,13
IF (BAD(K))GO TO 2
SQE=DSQRT(E (K))
A=ALFA (K )
B=BETA (K )*SQE
G=GAMMA (K ) /SQE
TEM=G%S1 %S 1mB*S2%S2
IF(TEM.GT.0.1E=25)G0 TO 521
ANG=1.5708
G0 TO 522
THE FOLLOWING 5 STATEMENTS CALCULATE THE ANGLE AT WHICH
TO LABEL THE ELLIPSE.
521 ANG=5*ATAN(2.%A%S1%S2/TEM)
522 IF(TEM.LE.0.0)GO TO 634
IF(A.LT.0.0)ANG=ANG+1.5708
IF (A.GE .0 .0)ANG=ANG=1.5708
634 1F(ANG.LT.0.0)ANG=ANG+6.28318
EPQ=EPS/SQE
PHI=0.0
DO 3 1=1,500
C0O=COS (PHI)
SI=SIN(PHI)
C SCALE FACTORS
C S1=7 INCHES PER PLOT INCH
C S2=7' RADIANS PER PLOT INCH
TEN=G#S1*S1*CO*CO+BHS2%S2%SI*ST+2, 0%A%S1%S2%ST*CO
IF(TEN.GT.0.1E=25)G0 TO 523
R=100.
GO TO 524
523 R=SQRT(EPQ/TEN)
524 X (1)=R*C0O+5.
Y{I1)=R*S[+5,
X (1+500) ==R*C0O+5.
Y(1+4500)==R*SI+5.
PHINEW=PHI+DELPHI
IF (PHT oL T «ANG+AND o PHINEW .GT o ANG) LAB=1
PHI=PHINEW
3 CONTINUE
IRST=1000
C WRITE(3,2345)LAB
C2345 FORMAT(?' 1,16)
DO 5 1=1,1000
IF(X(I)eLTe0e0e0RX(I)eGToa1l0.040R.
X Y(I)eLT.0.0.0R.Y(I1).GT.10.0)G0 TO 5
IF(I1.LT4IRST)IRST=1I
5 CONTINUE
CALL PLOT(X(IRST)sY(IRST)y3)
XNUM=FLOAT (K=6)%10.
DO 4 I1=1,1000
TF(X(I)eLTe0eeORX(I)eGToe10¢eORMY(I)elTo0uoORLY(I)eGTo104)
XGO TO 12
XX=X(1)
YY=Y (1)
CALL PLOT (XX sYY42)
12 IF(I.EQ.LAB)CALL NUMBER(XXsYYyelbyXNUMy0.0,0)
4 CONTINUE
2 CONT INUE
CALL PLOT(XXyYY,3)

OO0
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RETURN
END
SUBROUT INE PRINT
C 3 skt e e s e sk st sfeofe s s sk st e ool s stk st st ok st e e ofe st e st s st ook sk kot ook sk Rokok ROk kX PR INT
C =THIS ROUTINE PRINTS THE CURRENT TRANSFER
C MATRIXs ENERGY, S, ELLIPSE COEFFICIENTS,
C ENVELOPE, AND PRINCIPLE TRAJECTORIES FOR
C EACH PHASE

COMMON/TT/T(2424913)4E(13),S(13)4PASE(13)
COMMON/ELLIPS/ALFA(13),4BETA(13),GAMMA(13)
COMMON/START/ESTART2Z1(13)4Z1P(13)422(13)422P(13),EPS,EMAX
COMMON/DIR/BKWDEND(13),BAD(13)
LOGICAL BKWD,END,BAD
DOUBLE PRECISION ALFA,BETA,E,GAMMA,T,TA
CALL PAGE(3)
WRITE(6,101)
101 FORMAT (/' AFTER LAST ELEMENT
X/ 4X9'PHASE " 96X, 'T11'y8Xs'T12",9X,'T21"
XeBXg'T22" 3 TXy "E' 95X, 'S? 45Xy YALFAY,
X6Xqs "BETAY,6Xy '"GAMMAY,2X
Xe2Xg VENV Y 92X g PENV YT 132X 3 V210 42XV Z1P 113Xy 2722 34X,122%11)
DO 40 I=1,13
IF(BAD(I))GO TO 40
SQE=DSORTI(E(I))
CALL PAGE(1l)
FI=FLOAT(I=7)%*10.
TA=BETA(I)*GAMMA(TI)=ALFA(I)*ALFA(I)=1.0
IF(DABS(TA).LT.0.0001)G0 TO 236
CALL PAGE(1l)
WRITE(6’667)TA
667 FORMAT (v ckxsusckxWARNING**%xx%k%x BETAXGAMMA=ALFA**2=]1 NOT ZERO'
Xy!' VALUE= '4El6.8)
236 IF(BETA(I)eLT.0.0.0R.GAMMA(I).LT.0.0)GO TO 500
100 FORMAT(1X9F4e091X9Fbel194EL1e34F6.34F642493E10.346F5.2)
EX=DSQRT(EPS*BETA(I))
EXP=DSQRT (EPS*GAMMA(I))/SQE
GO TO 600
500 EX=0.0
EXP=0.0
600 ZPA=T(141,1)%Z1(1)+T(142,1)%Z1P(1)
ZPB=(T (241, 1)%ZL(1)+T(292,1)%Z1P(1))/SQE
ZQA=T(1 914 1)%Z22(T1)+T(192,1)%Z22P (1)
ZQB=(T(2y141)%Z22(1)+4T(242,1)%22P(1}))}/SQE
PSE=AMOD(PASE(I1)*%57.29584360.)
WRITE(643100)FI4PSEsT(1ylyI)sT(1y2y1),
XT(29141)9T(29251)9E(T)4S(I)sALFA(T)4BETA(I),GAMMA(T)
XyEXyEXP,ZPALZPB,ZQA,ZQB
40 CONT INUE
RETURN
END
SUBROUTINE COMP
C % oo sk oot o s ek e st stk skttt stk skl s ksl ok sk ok ok
C =THIS ROUTINE SETS UP THE CALLS TO SUBROUTI
C CALCULATES THE ELLIPSE OVERLAPS
COMMON/START/ESTART4Z1(13),Z1P(13),22(13)422P(13)4EPS,EMAX
COMMON/ELLIPS/ALFA(13),BETA(13),GAMMA(13)
COMMON/DIR/BKWD,END(13),BAD(13)
LOGICAL BKWD,END,BAD
DOUBLE PRECISION ALFA,BETA,GAMMA
DIMENSION A(13),VALUE(13,13),SUM(13)

OOOOO0
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59

549

101

103

CALL PAGE(18)
WRITE(6,102)
102 FORMAT('OFRACTIONAL OVERLAP OF ELLIPSES')
WRITE(6,100)
100 FORMAT('0',6X,!

X1 'm4()
Xt 0
X!

DO 1 I=

=30
10
30
1,13

N=(I=7)%10
DO 2 J=1,1
A(J)=99.

IF(BAD(J)ORBAD(I))
CALL REGION(I,JsA(J)
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=60 =50 '
=20 =10 '
20" '
40 50 60")

GO TO 59
)

CONT INUE
VALUE(T,J)=A(J)
WRITE(2,549) A(J)
FORMAT(' ',G16.8)
Jd=J '
CONTINUE

WRITE(64y101)INy(A(K)sK=14yJdJ)

FORMAT (

CONT INUE

DO 8 1=

JJd=1

1,13

SUM(1)==1,0
DO 62 J=1,JJ
IF(VALUE(TI9J)eLEe1+0)SUM(I)=SUM(I)+VALUE(I,J)
DO 11 K=JJ,13
IF(VALUE(K3JJ)eLE«1e0)SUM(T)=SUM(I)+VALUE(K,yJJ)
CONT INUE ’

DO 9 I=

1,13

"9 I14413(2X9F5.3,2X))

SUM(I)=SUM(I)/13.
IF(SUM(I)eLT.0.0)SUM(1I)=99.
CONT INUE
WRITE(64103)SUM
FORMAT (' ', SUM',13(2X9F543,2X))

RETURN

END

SUBROUT INE REGION(I,J,FRAC)

C sk ek s ok e s s e ok s s sk s e st kol s e sl sk sk ol sl e st o sk i kol stk ssoklok % REG T ON
SUBROUT INE REGION CALCULATES FRACTIONAL OVERLAP OF ELLIPSES
COMMON/START/ESTART,Z1(13),Z1P(13),22(13),22P(13),EE,EMAX
COMMON/TT/T(2+2413),EAB(13),5(13),PASE(13)

DOuBLE PRECISION T,EAB
COMMON/ELLIPS/ALFA(13),BETA(13)yGAMMA(13)

DOUBLE
DOuUBLE
DOUBLE
DOUBLE
DOUBLE

PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

ALFA,BETA,GAMMA ,A1,B1,G1,A2,B2,G2,4E
SUM1,SUM2,DIFF14DIFF2,RATIOL,RATIO2
AyByGyBINVyDISCRySTUFFLySTUFF2sX1yX2,TEMP
PSIPOSyPSINEG,H14yH24BASIC14BASIC2,CHI1,CHI2
DP1,DP2yDN14yDN2sTPLUSy TMINUS,FIPOS,FINEG

SQEI=DSQRT(EAB(I))
SQEJ=DSQRT(EAB(J))
Al=ALFA(T)

A2=ALFA(J)

Bl1=BETA(I)*SQEI
B2=BETA(J)=*SQEJ
Gl=GAMMA(I)/SQEI
G2=GAMMA (J)/SQEJ

E=EE
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LOGICAL L1,L2,4L3,LL1,LL2 o
REAL*8 MAJ1,MAJ2yMINI,MIN2ysMAJUDIF
SUM1=G1+B1
SUM2=62+B2
DIFF1=G1=B1
DIFF2=G2=B2
RATIO1=045%(SUML+DSQRT(SUM1*SUM]lm4, ) )
RATI02=0.5%(SUM2+DSORT(SUM2%SUM2=m4, ) )
MAJ1=DSORT(E*RATIO1)
MAJ2=DSQRT (E*RATIOZ)
A=Al=A2
B=Bl=B2
G=Gl=G2 .
L1=A.EQeO«ANDB.EQ.0Os
L2=AEQeO 4 AND.G.EQ.C.
L3=B+EQeO+eAND«G.EQ.O.
THE ELLIPSES COINCIDE
IF(L1.0R.L2.0Rs(L1.AND.L2))} GO TO 621
POINTS OF INTERSECTION ARE AT O AND 90 DEGREES
IF(L3) GO TO 622
ONE POINT OF INTERSECTION IS AT 90 DEGREES
IF(BeEQaOoeeANDeGaNELOs) GO TO 623
NONE OF THE ABOVE SPECIAL CASES
CALCULATE ANGLES OF INTERSECTION
BINV=1./8
DISCR=DSQRT (A*A=mB=*(G)
STUFF1==B INV*A
STUFF2=B INV*DISCR
X1=STUFF1+STUFF2
X2=STUFF1l=STUFF2
IF(B.GT.0.) GO TO 624
TEMP=X2
X2=X1
X1=TEMP

624 PSIPOS=DATAN(X1)
PSINEG=DATAN(X2)
GO TO 686

623 PSIP0S=1.5707963
PSINEG=045%G/A
GO TO 500

622 PSIP0S=1.5707963
PSINEG=0.

CALCULATE ORIENTATIONS OF MAJOR AXES
TEST TO SEE IF ELLIPSE #1 IS A CIRCLE
686 IF(DIFF1.EQ.0.0)G0 TO 400

500 H1=2.*%A1/DIFF1
BASIC1=0.5*DATAN(H1)
IF(DIFFl1.LT,0.,)GO TO 503
IF(A1)501,502,502

501 CHI1l=BASIC1+1.5707963

GO TO 687

502 CHI1=BASICl=1.5707963
GO TO 687

503 CHI1=BASICl
GO TO 687

400 CHILl=0.
TEST TO SEE IF ELLIPSE #2 IS A CIRCLE
687 IF(DIFF2.EQ.0.0)G0 TO 401
H2=2.*A2/DIFF2
504 BASIC2=0.5%DATAN(H2)
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IF(DIFF2.EQ.0.)GO TO 401 210
IF(DIFF2.LT.0.)G0 TO 507
IF(A2) 505,506,506

505 CHIZ2=BASIC2+1.5707963

GO TO 508

506 CHIZ2=BASIC2=1.5707963
GO TO 508 ‘

507 CHIZ2=BASICZ
GO TO 508

401 CHI2=0.
THERE ARE 3 POSSIBLE CASES:
(1) ONE MAJOR AXIS LIES OUTSIDE PTS. OF INTERSECTION
(2) BOTH AXES LIE INSIDE
(3) BOTH AXES LIE OUTSIDE
508 DP1=PSIPOS=CHI1
DP2=PSIPOS=CHIZ2
DN1=PSINEG=CHI1
DN2=PSINEG=CHIZ2
LL1=DNl1.LE.O++.AND.DP1l.GE.O.
LL2=DN2 LE.O+.AND. DP2.GE.O.
TEST CASE (2)
IF(LL1.ANDJLL2) GO TO 511
TEST CASE (3)
IF(.NOT.LL1.AND..NOT.LL2) GO TO 512
CASE (1) A
IF(LL1<AND«.NOT.LL2) GO TO 509
IF(«NOTJLL1.AND.LL2) GO TO 510
MORE CALCULATION AND TESTING REQUIRED TO DETERMINE
WHICH ELLIPSE TO USE FOR AREA SECTOR CALCULATION
509 TPLUS=DSIN(DP2)/DCOS(DP2)
TMINUS=DSIN(DN2)/DCOS(DN2)
GO TO 513 ‘
510 TPLUS=DSIN(DP1)/DCOS(DP1)
TMINUS=DSIN(DN1)/DCOS(DN1)
GO TO 514
511 MAJDIF=MAJ1=MAJ2
IF(MAJDIF)510,510,509
512 MAJDIF=MAJ1=MAJ2
IF(MAJDIF)509,509,510
513 FIPDOS=DATAN(RATIOG2*TPLUS)
IF(DP24GE+=1.5707963 .ANDDP2.LE.1.5707963)G0 TO 402
FIPOS=FIPDOS+3.1415927
402 FINEG=DATAN(RATIOZ2*TMINUS)
IF (DN2 ¢GE e=1.5707963 . AND.DN2.LE. 1. 5707963)60 TO 450
FINEG=FINEG+3.1415927
GO TO 450
514 FIPOS=DATAN(RATIOL*TPLUS)
IF(DPleGE =1 45707963 ANDDP1.LE.1.5707963)G0 TO 403
FIPOS=FIPOS+3.1415927
403 FINEG=DATAN(RATIOL*TMINUS)
IF(DN]1 «GE «=1 45707963 .AND«DN1.LE«1.5707963)G0 TO 450
FINEG=FINEG+3,1415927
GO TO 450
621 FRAC=1.0
GO 70 700
450 FRAC=(24/3.1415927)%(FIPOS=FINEG)
700 CONTINUE
RETURN
END
SUBROUT INE PAGE(NREQD)
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=THIS ROUTINE WRITES THE TIT

PAGE NUMBER ON EACH NEW PAG
COMMON/PGE/N4NPAGE yNAME (5)
COMMON/START/ESTART $Z1(13)4721P(13)422(13),22P(13),EPSyEMAX
COMMON/START2/FIO4DELTA,C,THTA
DIMENSION D(2),T(2)
IF(N+NREQD.GT.60)G0O TO 1
N=N+NRE QD
RETURN
NPAGE =NPAGE+1
CALL DATE(D,T)
DZA=DELTA%57.29578
WRITE(649101 )NAME 4C4DZA4D,yT4NPAGE
FORMAT( 'l CASE ',5A4,3X,'C= !

L
E

XeFT7e343Xy'DELTA= !
XoFTe393X320442X92A4442Xy"PAGE  '4,13//)

N=4+NREQD

RETURN

END

SUBROUT INE POINTS

WRITE(5,9)

FORMAT (' ', 'POINTS CALLED?')

DIMENSION C(13),Q(13)
COMMON/PTS/X(13,200)4+Y(3413,200)4PH(13),4yM, TURNS
COMMON/START/ESTART 9Z1(13)421P(13)4+22(13),22P{(13),EPS,EMAX
DOUBLE PRECISION ALFA,BETA,GAMMA,T,E
COMMON/TT/T(24+2513),E(13),S5(13)
COMMON/ELLIPS/ALFA(13),BETA(13),GAMMA(13)
COMMON/START2/FIODELTAZCDUM,THTA
COMMON/SQALE/XSKAL s YSKAL

DATA A4B/.01745329,.03183098/
WRITE(S5y10)(BETA(I)yI=1913)9(T(1glsI)sT(192s1)yT(291451},

2T(2127I)1I=1913)1THTA

FORMAT(1X410E13.6)

DO 200 I=1,13

IF(I+EQel) WRITE(5,15)
FORMAT('0'yT104'1'yT30,'PHI'"yT50,'C',//)
PH(I)})=10.%(1I=6)

C(I)= COS(PH(TI)*=A)=B

WRITE(54,20) 1.PH(I)},C(I)

FORMAT(' '3T9,124T274F6e413T464F10.6)
CONT INUE

J=1

RETURN

ENTRY POINTQ

DG 400 1=1,13

IF{I +EQ. 1) WRITE(5,40) J

FORMAT('0'4T30,"' J = ',14,//)
IF(I1.EQ.1)IWRITE(5,30)
FORMAT (' '3T204'Y1'3T40,'Y2"',T60,'Y3¢,T80,"'X'y//)

Y{1l9I19J)=(T(1ylyI)*Z1(I) + T(1,2,1)%Z1P(1))/YSKAL + 5,
Y(24T19J)=(T(1ylyI)%Z2(1) + T{192,1)%72P(1))/YSKAL + 5.
Y{(3414J)=(DSQRT(EPS*BETA(I)))/YSKAL + 5, '

X(I9J) = THTAXC(I)/XSKAL
WRITE(8935)Y(1419J)aY(2919Jd)sY(39T9J)sX(T4J)

FORMAT (' '"44F10.4)

CONTINUE

M=J
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10

120
200

220
300

320

=212
J=J+1 2
RETURN
END

SUBROUTINE PLO(LZ14LZ2yLENV,LALL,IST,LAST)

333 3 i sl o e sk ok 3 e 3o e e sl R KoK el koo ook Rekok Rk ok Rk ek ook ek ok IR kR P

THIS SUBROUTINE DRAWS AXES AND LABELS AND DECIDES
WHICH PHASES ARE TO BE PLOTTED

WRITE(5425)
FORMAT (' ', *PLO HAS BEEN CALLED'//)
INTEGER IST,.LAST4M4PN

COMMON/PLT/ISsPRNT

COMMON/USD/USED

COMMON/PTS/X(13,200),Y(34513,200),4PH(13),M, TURNS

COMMON/ PGE/N yNPAGE yNAME (5)
COMMON/SQALE/XSKALE o YSKALE
COMMON/DIR/BKWD,END (13),BAD(13)

LOGICAL BKWD,END,BAD

LOGICAL LZ1yLZ2sLENVsLALL,LPN,IS,PRNT
TURNS=M/6

TURNS=TURNS/ XSKALE

HALF=TURNS/2.

WRITE (5,105) TURNS ,HALF

FORMAT (103730, "TURNS="yF10.5,T50, "HALF="',F10.5,//)
IF(IS) GO TO 10

CALL PLOTS

1S=.TRUE.

CALL PLOT(USED,0.0y=1)

YSTT==5.%YSKALE

CALL AXIS(04y0e9®Z'31510¢,90.,YSTT,YSKALE)
CALL AXIS(0u35ey'TURNS X COS(PHASE) 'y =18 TURNS;04 0.0y XSKALE)
CALL SYMBOL (HALF=1.84949.21,NAME(1),04,20)
IF (.NOT.LZ1) GO TO 200

CALL SYMBOL (HALF=.9,847594214'21",04,2)
DO 120 1=1,13

PN=PH(I)

LPN=(PNoLT+IST)eORe (PNeGT.LAST)
IF(LPN.AND. NOT.LALL) GO TO 120

IF (BAD(1))GO TO 120

CALL DP(1,1)

CONTINUE

IF(.NOT.LZ2) GO TO 300

CALL SYMBOL (HALF=.36984759¢215'22'30442)
DO 220 1=1,13

PN=PH (T )

LPN=(PNLToIST)<OR4 (PN.GT.LAST)

IF (LPN +AND..NOT.LALL)GO TO 220
IF(BAD(I))GO TO 220

CALL DP(2,41)

CONT INUE

IF ( LNOT.LENV) GO TO 400

CALL SYMBOL (HALF+¢1848.7554219'ENV',04,3)
DO 320 I=1,13

PN=PH(I)

LPN=(PNoLT+IST)e0Rs (PNeGT.LAST)

IF (LPN.AND..NOT.LALL) GO TO 320

IF (BAD(I))GO TO 320

CALL DP(3,1)

CONT INUE



400  IF(LALL)GD TO 500 213

CALL SYMBOL(HALF=1,98,8.549.21,'PHASES TO INCL',
10.422)
FLTL=IST
FLT2=LAST
CALL NUMBER(HALF=.7248453¢219FLT1y049y=1)
CALL NUMBER(HALF+45448¢594219FLT29069=1)

500 CONT INUE
CALL WHERE (XNOWyYNOW)
CALL PLOT (XNOW,YNOW,3)
USED=TURNS+2.
RETURN
END
SUBROUTINE DP
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THIS SUBROUTINE DRAWS THE LINES

aEelele

COMMON/PTS/X{134200)4Y(3413,200),4PH(13)4MyTURNS
INTEGER PyKoNsM
LOGICAL LYBsLYSyLXB,4LMOD,ON
666 CONTINUE
DIMENSION V(200)4sW(200)
C V IS X=COORDe. W IS Y=COORD.
C WRITE(5,115) N,K
Cl115 FORMAT('0',T7204'DP CALLED'y T30,y 'N=1,12,T40,'K=1',12,//)
CALL QPRS{P,40ON)
DO 100 J=14.M
IF(J.EQ.l) WRITE(5,50)
50 FORMAT('0C'yT10y'J"3T259 W (J) "4 T454'W(J)"'y//)
WRITE(54135)J,V(J)yW(J)
135 FORMAT(Y ', 78,4144T204F10464T404F10.6)
LYB=(Y(N,KyJ)elLT«10.)
LYS=(Y(NyKyJ)eGT0,)
LXB=(X(KsJ)LT.TURNS)
LMOD=(MOD(Jy24).EQ. 0O)
IF (LYBeAND «LYSeAND ¢LXB AND.LMOD)CALL NUMBER(V(J)sW(J),
lol,PH(K),Ooy"l)
IF(LYB.AND.LYS) GO TO 120
IF(LYS) GO TO 110

OO0

C Y T0O SMALL STOP LINE AT BOTTOM OF PAGE
CALL OPQ(ONyN,4K,&100,86130,8121)
121 P=P+1
VIP)=(X(KsJd) X (Kgyd=1))H#Y(NyKeJ=1) /(Y (NyKyJm1)=Y{NyKyJ))}+X{(KyJd=1)
W(P)=0.
C WRITE(5,65)
C 65 FORMAT(' ','LAST Y TOO SMALL',T20,"NEWX=",F10.5,
C 2T40 4 '"NEWY='4F10.5)
CALL NUMBER(V(P)sW(P)ye29PH(K)yOuyg=1)
GO TO 100
C Y IS TOO BIG. STOP LINE AT TOP OF PAGE
110 CALL OPQ(ONyN4K,&100,&130,486122)
122 P=P+1
VIP)=(X(Kyd)=X(KyJ=1))*(10a=Y(NsKyJ=1))/(YINyKyJ)=Y(NsKyJ=1))
X+X(Kygdml)
W(P)=10.
C WRITE(5495) VIJ)yW(J)
C 95 FORMAT(' ', 'LAST Y T0OO BIG'yT20s'NEWX='yF10.5,
C 3T404 'NEWY='4F10.5)

CALL NUMBER(V(P)+.01yW(P)=™e059¢14yPH(K)¢O00yml)
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GO TO 100
120 IF(LXB) GO TO 99
c X IS TOO BIG STOP LINE AT END OF X=AXIS
CALL OPQ(ONyNyK,6100,6130,6123)
123 P=P+l1

WIP)=(Y(NyKeJ) =Y (NyKyd=1))*(TURNS=X(KyJ=1))/(X(KeJ)=X{KyJd=1))
X+Y(NyKogd=1)
V{P)}=TURNS
C WRITE(5,60) V(J)W(J) ]
C 60 FORMATI("' ', 'LAST X TOO BIG'9yT204"NEWX='"4,F10.5,
C 4T40 4 "NEWY=1'4,F10.5)
CALL NUMBER(V{(P)+eO01lyW(P)=e0549¢e13PH(K)9y049=1)
GO TO0 100 )
99 P=P+1
VIP)=X{KyJ)
WIPI=Y(NyK,yJ)
ON=.TRUE .
100 CONTINUE
130 WRITE(84669)(V(NM)W(NM)yNM=1,P)
669 FORMAT(' 1',2Gl2.3)
CALL LINE(VsW4P,1)
C WRITE(54125) NyK,P
Cl25 FORMAT('0',T20,'LINE CALLED FOR N='41242Xe'K=V41242X4'P=',14%,
C 5T60,'RETURN TO PLO')
667 CONTINUE
RETURN
END
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LOGICAL OFF(13),40N
INTEGER P
IF(.NOT.ON)} RETURN 1
ON=.FALSE.
IF(OFF(K)) RETURN 2
OFF{K)=.TRUE.
RETURN 3
ENTRY QPRS(P,0ON)
DO 1 I=1,13
1 OFF(I)=.FALSE.

ON=.FALSE.
P=0
RETURN
END
SUBROUT INE DATA ()
COMMON /CARD/P(8)¢MNTI(5)
DIMENSION A(40)
READ 100 ,A4MNT

100 FORMAT(40A145A4)
PRINT 1014A4MNT

101 FORMAT(6HODATA/40A1,1H/5A4,1H/)
DO 15 I=1,8

15 P(1)=0.
CALL SCAN(A,+40,P,48)
CALL CLOCK($999)
RETURN

999 RETURN 1
END
SUBROUT INE SCAN(A,NCH,T ¢MAX)
DIMENSION A{1),T(1),C(12)
LOGICAL MINUS,NUMBER,PERIOD,FRACT,0PEN
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DATA C/lHO,lHl,1H2,1H3,1H4,1H5?1H6,1H7,lH8,1H9,1H.,1H-/
K=0
NFPT=0
CONT INUE
OPEN=.FALSE.
FRACT=.FALSE.
MINUS=.FALSE.
FPNINT=0.
FPNFRC=0.
NFRACT=0
SGN=1.,
K=K+1
IF(KeGT «NCHoORNFPT.GT«MAX)RETURN
CH=A(K)
DO 10 1=1,12
IF(C(I).EQ.CH)IGDO TO 15
CONTINUE
IF(OPEN)GDO TO 20
GO TO 5
PERIOD=1.EQ.11
MINUS=1,.,EQ.12
NUMBER=T.LT.11
OPEN=.TRUE.
IF(PERIOD)FRACT=4TRUE.
IF(FRACTINFRACT=NFRACT+1
IF{MINUS )SGN==1,
FPT=]m]
IF(NUMBER.AND «FRACT)FPNFRC=FPNFRC+FPT/FLOAT(10%%(NFRACT=1))
IF {NUMBER sAND « e NOT  FRACT )FPNINT=FPNINT*10.+FPT
GO 70 5
NFPT=NFPT+1 .
TINFPT)=SGN*(FPNINT+FPNFRC)
GO TO &4
END
FUNCTION UTERP(E)
COMMON /VNUZ/NNUZ,E0Z,DELEZ,UZ(100)
P=(E~EQZ)/DELEZ
IT=P
P=pPm=IT
IT=1T+1
P2=P+P
P3=P2+P
PP=P%P
UTERP=(PPaP3+2 ., )%UZ(IT)/2.+(P2=PP)*UZ(IT+1)+(PP=P)*UZ(IT+2)/2.
UTERP=ABS (UTERP)
RETURN
END
FUNCTION STERPI(E)
COMMON /SLIP/NPS,EOS,DELES,PS(100)
P=(E=EOS)/DELES
IT=P
P=pm]T
IT=1T+1
p2=p+pP
P3=P2+P
PP=P*P
STERP=(PP=mP3+2,)%PS(IT)/2.+(P2=PP)%PS(IT+1)+(PP=P)*PS(1T+2)/2.
RETURN
END



