
SOME CONSIDERATIONS CONCERNING NEWTONIAN CHARTS 

by 

JACK DAVID GEGENBERG 
B.A., University of Colorado, 1970 

A THESIS SUBMITTED IN PARTIAL FULFILMENT 
OF THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

in the Department 
of 

Physics 

We accept this thesis as conforming to 
the required standard 

THE UNIVERSITY OF 

April, 

BRITISH COLUMBIA 

19 7 2 



In presenting t h i s thesis i n p a r t i a l fulfilment of the requirements for 
an advanced degree at the University of B r i t i s h Columbia, I agree that 
the Library s h a l l make i t freely available for reference and study. 
I further agree that permission for extensive copying of t h i s thesis 
for scholarly purposes may be granted by the Head of my Department or 
by his representatives. I t i s understood that copying or publication 
of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my 
written permission. 

Department 

The University of B r i t i s h Columbia 
Vancouver 8, Canada 



A B S T R A C T 

In Part I, spherically symmetric solutions of Rastall's 
1971 gravitational f i e l d equations for empty space-time are 
examined. One static solution is found to be just a static 
spherically symmetric Newtonian metric; i.e., the metric of 
Rastall's 1968 scalar theory of gravity. However, there are 
other solutions which satisfy the same boundary conditions at 
spatial i n f i n i t y . It is observed that the time-like vector f i e l d 
n y appearing in the f i e l d equations is not uniquely defined when 
the metric is assumed to be spherically symmetric. Part I con
cludes with a discussion of the effects of this ambiguity upon 
the solutions of the f i e l d equations. 

Part II is a discussion of an alternative procedure for 
generalizing Rastall's 1968 theory of gravity. The new, gener

alized Newtonian metric is assumed to satisfy the linearized 
vacuum f i e l d equations of General Relativity in the weak-fi^ld 
limit. The quantities from which generalized Newtonian metrics 
are constructed are then found to exhibit wave-like behavior. 
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I N T R O D U C T I O N 

A physical theory is said to admit a class of pre
ferred charts (or "co-ordinate systems," the differential 
geometric definition of which appears in Section I (a)) i f the 
members of the class can be distinguished from charts not in 
the class by a well-defined physical procedure. For example, 
the Special Theory of Relativity admits the class of " i n e r t i a l 
charts" as preferred charts. It has been suggested ( c f . Ein
stein, 1956) that the notion of preferred charts leads to 
philosophical ambiguities. » 

The General Theory of Relativity, as usually formu
lated, is without preferred charts. This lack, while perhaps 
a philosophical strength, often presents technical d i f f i c u l 
ties and hinders our understanding of many aspects of the 
theory (for example, the d i f f i c u l t y in defining local gravi
tational energy stems in large measure from the lack of pre
ferred charts). Some gravitational theorists have attempted 
to surmount these d i f f i c u l t i e s by introducing "co-ordinate 
conditions," a procedure by which most of General Relativity 
remains intact, but in which preferred charts are introduced. 
Examples of this are Fock's "harmonic co-ordinates" (Fock, 
1959), and the "canonical co-ordinates" of Arnowitt, Deser and 
Misner (Arnowitt, Deser, Misner, 1962). 
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However, i f one is willing to put aside the philoso
phical arguments against preferred charts, then i t seems that 
one should look more carefully at theories in which preferred 
charts enter on a less ad-hoc level than they do in the theories 
mentioned above. Examples of such theories are the numerous 
Lorentz covariant theories of gravitation (for a recent example, 
see Coleman, 1971) and Rastall's scalar theory of gravitation 
(Rastall, 1968). However, these attempts, to date, have not 
been as successful as General Relativity in satisfying certain 
experimental or mathematical c r i t e r i a . 

In this thesis, I shall examine two possible generali
zations of Rastall's 1968 scalar theory. One of these generali
zations is a generally covariant theory (Rastall, 1971) in which 
the preferred charts, called Newtonian charts, of the scalar 
theory are in general not present. In Part I, I w i l l examine 
spherically symmetric solutions of the f i e l d equations of the* 
1971 theory and show that i t is conceivable that, in this case, 
Newtonian charts reappear, in a sense, as preferred charts. To 
establish this rigorously, however, entails proving an analogue 
in Rastall's 1971 theory, of Birkhoff's theorem in General Rela
t i v i t y , which states that a l l spherically symmetric solutions of 
the vacuum f i e l d equations differ from the Schwarzschild solution 
only by a co-ordinate transformation (Bonner, 1962). In Rastall's 
theory, the establishment of this theorem depends upon overcoming 
two problems, neither of which I was able to solve: 
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(i) what is the nature of the boundary 
conditions on the f i e l d equations? 

(ii) do a l l the mathematical objects 
appearing in the f i e l d equations have unambiguous 
definitions? 

The second possible generalization of the scalar 
theory involves generalizations of the Newtonian charts. At 
this writing, these sorts of considerations (Rastall, unpub
lished notes, 1972) have not attained the status of a f u l l 
theory of gravitation. However, the "generalized Newtonian 
charts" should constitute a class of preferred charts in some 
new theory in a manner roughly analogous to the way Newtonian 
charts are preferred charts in the scalar theory. In Part II, 
I w i l l define Generalized Newtonian charts, and show that the 
metric tensor in a space-time admitting these charts as pre
ferred charts, constitutes a rather interesting solution of 
the linearized vacuum equations of General Relativity. 



I. (a) Newtonian Metrics and A Scalar Theory of Gravitation 

We assume, as in General Relativity, that space-
time, M, is a smooth, pseudo-Riemannian manifold of dimension 
4 and metric signature +2. We depart from General Relativity, 
however, in assuming that space-time is also endowed with pre
ferred charts, called Newtonian charts: at each point in the 
manifold there exists a chart (u,x) in which the components 
of the metric have the form 

- 2 * * 

Sab = e 6ab 

§ou = ho = " e 2* 6ou ( 1 ) 

where M + R i s smooth. Our convention on the range of in
dices is that lower-case Latin indices have range 1, 2, 3, 
while lower-case Greek indices have range 0, 1, 2, 3. The 
summation convention applies t° repeated lower-case indices. 

We can promote these considerations to a theory of 
gravitation by (i) identifying the orbits of test-particles 
and photons with the geodesies of the manifold (more properly: 
the geodesies of the metric connection on M); and ( i i ) by postu
lating f i e l d equations. In particular, we choose (Rastall, 1968) 

7 4.TT.Gp 

V Z * = + e G ) (2) 
CE 

2 
where v is the ordinary spatial Laplacian operator, Ĝ  and Cg 

(u,x) is a chart at p in M i f and only i f u is an open 
set containing p and x : u R is a homeomorphism. 



5 

are the classical gravitational constant and speed of light, 
respectively; e is the energy-density of non-gravitational 
matter and fields, and is the energy-density of the gravi
tational f i e l d . For weak fields (e^ ~ 0) and slow speeds, 

2 
equation (2) is just Poisson's equation and tyC-^ is the classi
cal gravitational potential. In vacuum, when e = 0 , i t is 
postulated (Rastall, 1968) that 

7 
V <f> = %V<j)' A(J> (3) 

Newtonian charts differ from the i n e r t i a l charts of 
"Special Relativity in a very important aspect; namely Newton
ian charts, in most cases, define a state of absolute rest. 
Thus a particle at rest in one Newtonian chart, is at rest 
in a l l Newtonian charts whose domains include the location 
of the particle (Rastall, 1968, Appendix). So when one wishes 
to calculate the gravitational f i e l d produced by a given source, 
one must specify the motion of the source with respect to the 
local Newtonian chart. This leads to d i f f i c u l t i e s in at least 
one important problem -- the calculation of the paths of pla
nets in the spherically symmetric f i e l d of the sun. In particu
lar, the following situation occurs (Rastall, 1968, 1969): 

(i) Assume the sun is at rest in a 
local Newtonian chart. Then the predictions 
of the theory are in .reasonable agreement with 
experiment (perhelion advance is 92% of that 
predicted in General Relativity). 

( i i ) Assume the sun has some non
zero speed in a local Newtonian chart. Then 
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the paths of planets calculated do not 
agree with observation except for implaus
ibly small speeds. 

Since there is no reason for assuming that the sun 
is at rest in the local Newtonian chart, i t is clear that the 
scalar theory of gravity is incomplete. As a theory of static 
gravitation, i t is acceptable, but in non-static cases one needs 
a more generaly theory. 

In principle, at least, a solution to this d i f f i c u l t y 
consists in postulating a set of generally covariant f i e l d 
equations which have the property that they reduce to equation 
(2) in the case of gravitostatics. Rastall proposed such a 
theory (Rastall, 1971), the f i e l d equation of which are 

Q . + n n. R, = S (4) 
x y [ v ; i r ] y [ v 'IT ] y [ v i r ] 

The symbols appearing here have the following definition: 
[ y , v ] denotes anti-symmetrization in y , v ; 

R are the components of the Riemann tensor in a 
y v r r p r 

given chart. 
In particular, i f in this chart the metric has components g y v> 
then 

a 8 R = £ " S. + S [ r r - r r i 
y v r r p 6 y [ p , T r ] v tov[p,7r]y b y p , a VTT,8 y T r , a v p , 8 

where the r = g rp and r° are the components of the 
y v , TT ° t t p | i v y v 

metric connection; R̂ ^ are components of the Ricci-tensor, 
R = girpR ; R is the curvature scalar, R = g y vR ; n y is 

y v 6 T r y v p ' ' to y v 



7 

a time-like vector f i e l d which we w i l l discuss in detail below; 

Q = R + n , rn p R ; uv yv iryvp' 

S r . is a tensor giving the distribution of sources." For an y [ v TT ] ° ° 

ideal f l u i d , Randall chose 

Sy[vrr] = 2 T y [ v ; T r ] + ^ eE " P E ^ f v ^ J y + 2 ( > E + Pfi) ' [ v11* ] n„ 
(5) 

where is the stress-energy-momentum tensor of an ideal 
f l u i d , eg is the (non-gravitational) energy density, and the 
pressure density of the f l u i d . In general, S tay be con
structed from (5) by defining E^ and p^ by 

• e P = -n Mn VT 
h yv 

P P = " T (g + n n ) T Y V  
rE 3 6 y v y vJ 

Now i f we write equation (4) and (5) in a static New
tonian chart (the metric has the form given by equation (1) 

with <f> independent of time) , and define 

n y = 6 e"* (6) y O v J 

then equation (4) reduces to equation ( 3 ). So we seek a geo
metric definition of the time-like vector f i e l d n y which reduces 
to equation (6) in the case of a static Newtonian chart. Such a 
definition is provided by the following consideration: 
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Consider an orthonormal tetrad (W ) = (W , Wn, W0, 
^ o r v o' 1' 2 * 

Wj). The tetrad or p h y s i c a l components of the Riemann tensor 
with respect to (W ) are 

R . = Wy W* Wp R 

One can show (Landau and L i f s h i t z , pp. 305-306) that the Rie
mann tensor is uniquely determined by a pair of complex 3 x 3 
matrices, S and H, defined by 

Sab = ^ [ " R ( a ) (b) + R(a+3) (b + 3) ~ i ( R ( a ) (b + 3) + R(a+3) ( b ) ) ] 

Hab = % [ R(a) (b) + R(a+3) (b + 3 ) + i (" R(a) (b + 3) + R(a+3) (b) } 1 

( 7 ) 

where Latin indices enclosed by parentheses denote pairs of 
indices with the convention: 12=(3), 23=(1), 31=(2), 10=(4), 
20=(5), 30=(6). If S is non-degenerate and of Petrov type I 
(i.e., can be diagonalized), then there exists a unique ortho-
normal tetrad ( w ), called the P r i n c i p a l tetrad, such that S 
is diagonal. Rastall defines the time-like vector f i e l d n y in 
equation (4) to be the time-like vector f i e l d of the principal 
tetrad; i.e., n y = W . Now i f we construct the Riemann tensor ' ' o 
from the metric (1), then we find that, except for certain t r i 
v i a l functions <$>, the corresponding matrix S is non-degenerate 
and of Petrov type I, so we are able to calculate the principal 
tetrad (W ) and in particular, we find that a 
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o pO 

as desired. In general, n y w i l l be a function of the metric 
and i t s f i r s t and second derivatives. 

In many cases of physical interest the matrix S and 
hence nMmay not be uniquely defined. In such cases, one hopes 
that the physics w i l l not be affected by the choice of any par
ticular mathematically permissible n y. 

I. (b) The Spherically Symmetric Field Equations 

Let us consider the case of the metric having the 
form 

g u - e a 

§22 = r 2 

2 - 2 g 3 3 = r sin e 
Y 

Soo = " e 

gpv = 0 i £ ^ v < 8 ) 

with respect to so-called "curvature co-ordinates" (r, 6 , $, t ) . 
The functions a and y depend on r, t only. This is one form of 
a spherically symmetric metric. We can now write down the con
nection components rj^v and find the only non-vanishing ones are: 

il = Ha' 
• = ha ea^ 

'12 13 r 
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x10 

hi 

r 3 

'23 
r 1 

T T  
!33 
2 

= cote 

= -re 

33 
1 

00 
r o 

•r s in 2ee" a 

= - sine cose 

= *2Y ( 9 ) 

where ' denotes 3/3r and • denotes 3/3t. 

The only non-vanishing components of the Riemann ten
sor are: 

R1212 %ra 1 

R1313 s i n 2 e R l n 2 

R2323 r 2 s i n 2 e ( l - e ~ a ) 

R1220 -hx'a 

R1330 s i n 2 e R 1 2 2 Q 

R1010 e aA(a,Y) + e YB(a, Y) 
R2020 

i Y " a i 

hre1 Y 

R3030 
. 2 

s i n 9 R2020 

(10) 

where 

A ( C X , Y ) = ~ha - %(a) + vay 

B(a, Y) = ky" + % ( Y ' ) " %a'Y' ( I D 
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The Ricci tensor and the curvature scalar are 

R l l • = - I a' + e a " Y A ( a , Y ) 

R22 : = h re a(y'-a') + e ' a - l 

R33 = 
. 2 

- s i n 8 R22 
R00 = -- -e Y" a[B(a,Y)+^Y] - A (a 

R01 = - Rir> - - —a 10 r (12) 

a l l other R vanish. 

R = 2[e~ u(B(a,y)+ $(y'-a') + K) + e" YA(a, Y) - ±7] 
r r 

(13) 

It is easy to check that a principal tetrad of the Rie-
mann tensor of equation (10) is ( w

a)> given by 

X
Y E wy = s t e " a / 2 

1 ul 
y y = Wy = ±6 9 

2 r y2 
- z M s Wy - 1 * 3 rsinO u3 

n y = Wy = 6 e " Y / 2 (14) o uo 

If we now construct the physical components of the Rie-
mann tensor with respect to (W ) and thence construct the matrix 
S, we find that S is diagonal but degenerate 
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0 

0 

0 0 

s 2 0 

0 

(15) 

So the tetrad of equation (4) is not a unique principal tetrad 
for the system. Nevertheless, for the present we shall assume 
that the vector f i e l d n y is given by n y = &uQ

e • 
Finally, we construct the tensor Q and find 

r ^11 
Q22 = " hre a' + e -1 
Q 3 3 - sin 8 Q 2 2 

Qoo = 

Qoi = Qio 

e Y °B(a , Y) - A (a , y) 
1-- —a r (16) 

a l l other Q vanish. 
Now we can write out explicitly the left-hand sides 

of the f i e l d equation (4). The only components which do not 
identically vanish are: 

Q1[1;0] + n l n [ l R , 0 ] = ~k'a (% +B(a, Y)+e a" YA(a, Y) )(17) 

Q0 [0;1] + n 0 n [ 0 R , l ] 

r 
e Y _ C i [ % B ' ( a , Y ) - % Y ' B ( a , Y ) - % a ' B ( a , Y ) 

+ h ^ Y " - h ^ ( Y ' ) 2 - | | « ' Y ' - h V' - -̂+(̂ )2-
+ W ( « , Y ) - | Y ' A ( a , Y ) - k | ( a - Y ) a + ^ e Y (18) 

Q 2 [ 2 ; l ] + n 2 n [ 2 R ' l ] = ^e"G(-^a'^r(a')24) + 1̂ ( 1 9 ) 

^2[2;0}+ n2 n[2 R'0] = % r e ~ ( _ a ' + a a , ) (20) 
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In the next section, we w i l l find solutions for the 
vacuum f i e l d equation, 

Q . . + n n r R, = 0 xy [V;TT] y [v 'TT] 

In particular we w i l l solve for a and y in the following four 
equations, which are merely equations (17) - (20) with the 
right-hand sides set to zero (and common, constant, non-zero 
factors divided out): 

a(±j + B(a,y) + e a _ YA(a, Y) ) = 0 (21) 
r 

e - <V 2B' ( a , Y ) - %Y*B (a , Y ) - %a'B(a,Y) + k\v" ~ %^(V) 2 

- 4 - a ' Y * - k-j Y* " F « + ? ( a ) - -3] + -3-

+ e ~ Y [ W ( a , Y ) " ^ Y'A(a , Y ) . " ^ ( a - Y ) a ] = 0 (22) 

e" a(-%ra" + % r ( a ' ) 2 - I) + I = 0 (23) 

e" a(-a' + o a » ) = 0 (24) 

I. (c) The Solutions of the Field Equations 

Consider equation (24). It is equivalent to 

^ - 0 

The general solution of this is well known to be 

e" a = f(r) + g(t) (25) 



14 

where £ and g are at least c in their respective arguments. 

Now we may re-write equation (23) as: 

% r ( e ' a ) " - i ( e " a ) + ±- = 0 
or 

r 2 ( e ~ a ) M - 2(e" a) - -2 (26) 

So for equations (23) and (24) to be consistent, we must have 
[substitute (25) into (26)] 

r 2 f " ( r ) - 2 f ( r f = -2(1 - g(t)) (27) 

But this is nonsense unless g(t) is a constant, say g(t) = g Q. 
Equation (27) is an inhomogeneous Cauchy differential equation 
and the general solution i s : 

f(r) = ^ + c 2 r 2 + 1 - g Q (28) 

So we f i n a l l y have: 

e" a = ^ + c 2 r 2 + 1 - g Q + g Q 

= p- * c 2 r 2 + 1 (29) 

We shall now impose the boundary condition that the 
metric by asymptotically f l a t ; i.e., that e Y+l, e a-^l as r->°°. 

This implies that we must choose the constant of integration, 
c 2 = 0. Thus, e = CI + — ) 
or c, 

a(r) = - l n ( l + ^ (30) 
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Now note that a = 0 is a solution of equation (21), 
so we are l e f t with equation (22), which becomes: 

e" a[%B' (a, Y) - % Y'B(a, Y) - %a'B(a,Y) + k\y" - k\{y')2 

" £ V Y * " k±z?' ~ |a" + i ( a ' ) 2 - ^j] + = 0 
r r r 

This can be further simplified by noticing that the last four 
terms in the above equation are identically zero by equation 
(23). Now use equation (11) and simplify to get: 

Y"' " % ( Y * ) 3 + %Y'Y" + (-fa» + | ) Y " " (%<*' + ^ ) ( Y ' ) 2 

+ C-Jsa" + %(a')2 - |a' - lj) y • = 0 (31) 
r 

It would be very d i f f i c u l t to solve (31) directly. 
But one solution caibe found by the following trick, and in 
the next section I shall prove that this solution (for which y 

is a function of r alone) is the only analytic solution given 
the appropriate boundary conditions. 

The metric (8) is only one example of a spherically 
symmetric metric. . By transforming from the "curvature co-ordi
nates" (r, e , ip, t) to "isotropic co-ordinates" ( p , 0 , \j>, t) 
we obtain another form for the spherically symmetric metric. 
The transformation from (r, 0 , i\>, t) to ( p , 0 , [l, t) is given 
by (Landau and Lifschitz, p. 331): 

c 1,2 
P ' 

t = t ' (32) 
r = (1 - j-) P <J> = * 
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The metric g in isotropic co-ordinates has the 'y v 
form: 

§11 = e S 

3 2 
§22 = 6 p 

3 2 . 2n 

§33 = e p s i n 

g 0 0
 = - e < S (33) 

where 3 and 6 are functions of p and t only. In particular 

B(p) = 4 l n ( l - ̂ -) (34) 

Now notice that i f we demand 3 = -6 ^-2^, <j> independent 
of time, then (33) looks like the metric in a spherically symmet
ri c Newtonian chart. In the case we know that the f i e l d equa
tions reduce to just 

2 , 
V (J) = %V (j) • V <J) 

Rastall has already found a spherically symmetric solution for 
this equation (Rastall 1968), and, in the appropriate notation 
i t is just equation (34). So we suspect that 

Y ( r ) = 6(p(r)) = - 3 ( P ( r ) ) = - 4 l n ( l - ^ r ^ , ) 
(35) 

is a solution of equation (31). Transforming back to curvature 
co-ordinates, we obtain 

Y ( r ) = 4 ln[%(l±/l + p-)} 

and i f we demand eY->l as r->°°, we have 

Y ( r ) = 4 In A + p-)} (36) 
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Indeed, when we put (36) and (30) in (31) , we see that we have 
found a solution. 

Unfortunately, there may be at least two more solu
tions of the f i e l d equations, namely 

a = - i n ( l + p.) 
Y = constant (37) 

and 
a = 0 

Y = Y ( r ) (38) 
a solution of (31) with a = 0, i f such a solution exists. 

It is obvious that neither solution agrees with 
experiment (e.g., (38) gives no perhelion advance). Presumably, 
to obtain a unique solution of the f i e l d equations, we would 
have to impose other boundary conditions. Since asymptotic 
flatness requires the vanishing at spatial i n f i n i t y of the par
t i a l derivatives of a l l orders of the metric, these yet-to-be 
specified boundary conditions would relate in some way to the 
sources of the gravitational f i e l d . 

I. (d) Uniqueness 

The general uniqueness theorems for solutions of dif
ferential equations (Birkhoff and Rota, 1962) are very d i f f i c u l t 
to apply in equation (31). However, i t can be shown by a straight
forward procedure that i f we demand YCX)-* 0 as r-*°°, then the non-
t r i v i a l solution of (31) near i n f i n i t y is unique to analyticity, 
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i.e., there is only one analytic non-zero solution near in
f i n i t y . 

c l 
In equation (31) set a = -ln(l+—) and change the in-

c l r 

dependent variable to x = — to obtain 

Tt ! - U Y J + - * Y Y +
 9v./-, + Y\Y + / i v r n v i u J Y -<UY J + Y + 2x(l+x) Y + 4TT1T7) 

+XTTWY' = 0 (39^ 
This can be written as a second order differential equation by 
writing 

f(x) = Y'(x) (40) 

Note that f(x) is analytic at x = 0. 

f" +-j.ff + Cllx+8), f, r_^f3 (9x+8 ) f2 1 n _ 
f ^ C f + x(l+x) ) f C ^ f 4x(l+x) f + x(l+x) £ : ) " 

(41) 
let us examine analytic solutions of (41) in the 

neighbourhood of x = 0; i.e., set 

f(x) = Z a X n (42) 
n=0 R 

Using the result that 
( Z a Xn) ( z b x11) = Z c X n 

n=0 n n=0 n n=0 n 

where 
c = Z a, b , n k = Q k n-k 

(See Fulks, p. 398) for x in the intersection of the circles of 
OO 0 0 

convergence of Z _ Yn and Z b Xn, we obtain 
Oa A r> n 

n n=0 
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f 2(x) = E b Xn; b = E a, a , (43. a) 
n=0 n n k=0 K n K 

x
 00 n 

f~(x) = E c Xn; c = E a,b , (43.b) 
n=0 n n k=0 K n K 

£ , ( X ) =
 nlQ ( n n ) a n + 1 X n (43. c) 

f(x)f'(x) = E , xn. d = E fn-v+lla f43 dl n=0  dn ' n k = 0 V n  K i J an-k+l <.45.aj 

£"(X) =
 nl0 (n+1) (n+2) ^ 4 3 ' ^ 

Substitute this into equation (41), simplify, and 
group like powers of x to get: 

n f 0 ( C „ + l ) ( n + 2 ) a n + 2 • ,» • 1* « n • 4 g n - £ * 1^ + 2J„ • kn>Xn  

+ + 2 b 0 * V JTTW = 0 ( 4 4 ) 

where 
n e = E r, (n-k+1) a , .-n k = Q k^ n-k+1 

n 
Q = E r, (n-k+2) a , . 0 k=0 n-k+2 

n 
la = E r, b , C 4 5) n k = Q k n-k 

n 
j = E r. b . , Jn k = Q k n-k+1 

n 
K = E r a n k=Orkan-k+l 



20 

and 

1 = E r X n = 1 - x + . . . 

and 

1+x n n n=0 
So we see that Za X is a solution i f 

n=0 n 

4a r + 2bQ + a Q = 0 (46) 

d c 
(n+1) (n+2)a + *1 + *Ie +4g - + fh +2j + k = 0 ^ J ^ J n+2 2 2 n 6n 4 4 n Jn n 

(47) 
I claim that (46) and (47) imply that given a Q(i.e.,given 

f(0) = Y'(0)) the coefficients a^, i > 0 are unique. Thus there 
is only one analytic solution, given f(0). 

Proof: 
From (43.a) and (46), we have 

& 1 = -a Q(2a 0 + l)/4 (48) 

Thus given , a^ is unique. Now use equations (43) and (45) 
in (47) to get 

[(n+1)(n+2) + 4r Q(n+2)]a n + 2 = (terms in a^, m<n+2) 
(49) 

i.e., (49) is linear in a-n+2' This proves the uniqueness of 
a , given a . n' & o 

Does this imply that y ( x) is unique near x = 0? 
Suppose 8(x) is also a solution near x = 0 and that B'(0) = y'(0) 
Then 6'(x) = y'(x) near x = 0, or p(x) = y(x) + c(t). But i f we 
demand that the metric be asymptotically f l a t , then we also have 
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f3(0) = y(0) = 0, which implies c(t) = 0. Thus, in terms of r, 
y(r) given by (36) is the only analytic solution of (31) i f the 
metric is assumed to be asymptotically f l a t . Note that both 
a and y are time - independent. 

I. (e) Uniqueness of the Vector Field n y 

Instead of the orthonormal tetrad defined by equation 
(14), consider a new tetrad defined by 

W.a " (50) 
where L yv is a 4 x 4 real matrix which has the form of a Lorentz 
transformation in the (r,t)-plane, in particular, at a given 
point in space-time 

(L a6) " 

- 0 0 -

o 0 
0 1 
0 0 

0 

0 
0 
1 
0 

•6o 
0 
0 

(51) 

where 

a = (1-8') 2 

to (W ) 
a 

Now form the physical components of R with respect 
r c y \JTT p 

R „ * = Wy Y!V
a W71 Wp R 

a g Y ° a 8 Y o y v r r p 

If we now construct the 3 x 3 matrix S [equation (7)] from 

Ra6 Y6' w e f i n d t h a t S=S, where S is' constructed from R a 6 a ( 5 [equa
tion (6)]. Thus a l l orthonormal tetrads of the form 
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(50) are also principal tetrads. In particular, our spheri
cally symmetric, system admits an in f i n i t e number of time-like 
vector fields of the form 

(n y) = (-Be"Y/2, 0, 0, e " Y / 2 ) a (52) 

where 3 is a smooth function of (r,t) and a = (1-8 ) 2 

We have shown that for the choice of a particular 
n y namely that for which 8=0 in equation (52), there exists a 
physically acceptable solution of the f i e l d equations. If our 
theory is to be physically acceptable, other choices of n y must 
yield no distinct physically meaningful solutions of the f i e l d 
equations. So far we have not been able to prove this; indeed 
the question is not even well-posed until we say what we mean 
by "physically acceptable solutions." We shall, however, give 
a partial answer to the question of whether there are solutions 
of the f i e l d equations that are independent of the choice of 8 
(i.e., in the choice of principal tetrad). 

We demand that the f i e l d equations (vacuum) hold for 
the following two choices of the time-like vector f i e l d n y: 

n y = 6 e " y / 2 (53) uo v J 

n y = L y n v (54) v 
where L y

 vis a rotation in the rt-plane. Thus 

Q . + n n r R , =0 (55) 

Q . . + n n r R , . =o . (56) 
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where 
6 =• R + i i p n a R yv yv pyva 

= R + L paL aBn an B R . yv pyva 

= R + M p a R yv pyva (57) 

and where 
upa _ Tp T a „ a 6 M = L FaL 3n n 

Equation (56) becomes 

R r . - (MpaR ). + M R , .=0 (58) y[v;ir] pyatv - ' jTr] y [v 'IT] J 

where 
M = g g M p a 

yv &py°av 
and we have used R = -R 

pyva pyav 
But from (55) , 

R . = (n pn aR n n. R, . y v ; IT pya [v; ; ir ] y [v ' TT ] 

Using this in (58) and defining 

K p a = n pn a - M p a (59) 
we obtain 

(K p aR . ) . - K r R, = 0 (60) pya[v J ;7r ] y[v'ir] 

This is a set of f i r s t order linear equations in the 

quantities K p a ( f i r s t order non-linear equations in L yv). If 
the only solutions of equations (60) were L yv = 6yv, then i t 
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would follow that there are no solutions of the f i e l d equations 
that are independent of the choice of 8. In general, equations 
(60) are quite intractable, so we consider a special case, name
ly that L y

y is an infinitesimal Lorentz transformation, i.e., 

n y = n v + X l y n v (61) 

where 

l y v = - l v y and l 0 y = 6 l y l ( r , t ) 

Then to f i r s t order in X, we have 

K p a = - X ( n p l A B + n a l p 8 ) n B 

= -X(6 +6 )e(r,t) (62) v po l a oo Ip-̂  ' J v J 

where 

E ( r , t ) = e " Y l ( r , t ) . 

Using (62) in (60) and evaluating covariant derivatives, we 
obtain (to f i r s t order in X) : 

- X{(R , + R, )e - (R , + R, )e 
v o y l v l y O v , TT Oy 1 TT l y o r r }\j 

+ e [R i + R-i ' R i " R i « 
o y l v , T r l y o v , T r o y l T r , v l y O T r , v 

- r a (R , + R, ) + r a (R , + R, ) 
y j T o a l v l a o v y v O a l i T l a o i r 

+ C f i lyWVl[v> R,,r e a + Y]} = 0 (63)' 
In particular, (63) contains four non-trival 

equations: 
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R1220 e»l + e( R1220,l • ri2 R1220 } = 0 ( 6 4^ 

R1220e,0 + e ( R1220,0 + ^ ^ ^ l o i O ^ = 0 ( 6 5 ) 

R i o i o S i + £ ( R i o i o , i + ( r o i " r i ^ R i o i o " e * + Y R , i ) = 0 

(66) 

R i o i o £ > o + G . ( R i o i o , o + ( r o i r o o ) R i o i o " e a Y R»O : ) = 0 

(67) 

Now R^220 = ~liTa> a n <^ w e b- a v e shown that in order for 
(55) to hold we must have ct = 0. Thus R-̂ 220 = ^ a n c* (^4^ 
comes t r i v i a l . However, (65) becomes 

h e r22R1010 = 0 

or 7 

-hre~a
 Y ( % Y " + % ( Y * ) " %a ' Y ' ) e = 0 

or 

( Y " + % ( Y ' J 2 " %a»Y ')e = 0 

If ( Y" + % ( Y ' ) 2 - %a'y') f 0, then we must have e = 0. This then 
gives us the desired result n y = n u. It' is worth verifying that 

2 
CY" + h(y') • ^CC'Y 1) = 0 is not consistent with any solution of 
the vacuum f i e l d equations (21) - (24). 

2 
So we assume Y " + % ( Y ' ) " ho.' y' = 0. This implies 

that the quantity 3(a,y) appearing in equation (22) is zero. 
Using this and equation (23) brings (22) into the form: 

%re" a(y" - % ( y ' ) 2 - f a V " | Y ' ) = 0 

or ? ? i 

%re" a(y." + h(y') - % a ' Y ' -CY') - CX'Y' - ^ Y ' ) = 0 
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or 
Y ' (y1 + «' + i ) = 0 

Clearly (y * + a' + i) = 0 is incompatible with any of 
the solutions discussed in section 1(c). However y 1 = 0 is 
compatible with the solution (37). But i f we reject solutions 
(37) and (38) on physical grounds, then we have established 
that 

( Y " + % ( Y * ) 2 - W Y ' ) f 0 

so that we must have e = 0. 

We have thus shown that infinitesimal changes of 
the form (63) in the definition of n u [equation (53)] lead 
to f i e l d equations with t r i v i a l solutions only. It remains 
a problem to examine the effect of more general changes in 
n y [equation (54)] on the solution of the resulting f i e l d 
equations. 



II. (a) Generalized Newtonian Metrics 

We shall now examine space-times that admit a class 
of preferred charts, called generalized Newtonian charts, 

which include Newtonian charts as a special case. 

Let M be a smooth, four-dimensional manifold. A pseudo-
Riemannian metric g on M is a 2-covariant, non-degenerate, sym
metric, smooth tensor f i e l d on M with signature +2. Given a 
metric g on M, define a new metric g by 

g = e" 2 < ! >(g + f n x n) . (1) 

where f and <j> are smooth real-valued functions on M and n is 
a smooth covariant vector f i e l d on M. It is easy to see that 
g satisfies the definition above of a pseudo-Riemannian metric 
on-M. If (u,x) is a chart at p in M, then the covariant com
ponents of g, g, n at p with respect to (u, x) are g a g , g , n a, 
while the contravariant components of these objects are, 
respectively g a B , g a^, n a. It is straightforward to show that 
(Rastall, unpublished notes 1972) 

2<j) -f 

= e ( g a 3 - £ ( ! + £ j ) _ 1 n a n p ) (3) 

where n a defined by n a = g a^n 0 and where ga^n n = j . Now let us 
P a p 

require n to be a unit time-like vector f i e l d with respect to g, i.e 
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g n n. = j = -1 

Let {e } be a basis of the tangent space to M at p, 
and let {eP } be the dual basis of the cotangent space (i.e., 

e y(e ) = 6 ). Then we can choose (e } such that the follow 
v yv y 

ing are true: 
(i) {ê } is an orthonormal basis with respect 

to the metric g, i.e., 
g(e , e ) = n ° y ' v y v 

where 

nab = 6ab 
n = n ' = - 6 

Oy yO yo 

C i i ) e° = n 

It follows that 

In particular, 

= e~2(f)[n + f 6 6 ] yv oy ov 

S(ey> Sa^ = e " 2 * % a
; a = 1, 2, 3 

i(e , e ) = e"2<l>(n + ffi ) 5 y ' ov v yO yO 

Let a be in the tangent space of M at p. Define the length 
a with respect to the metric g and g by 
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A 

Let a be any tangent parallel to n (p) and 3 any tangent 
orthogonal to n (p), where n (p) is the contravariant vector 
f i e l d corresponding to n. Then 

L = e " * ( l - f ) % L a a 

If we choose 
(l-f)'= e 4* (5) 

then 
L = e*L 
a a 

L = e"*LQ 

a 3 

Roughly speaking, g "stretches" tangents parallel to n by a 
factor and tangents orthogonal to n by a factor e ^ in com
parison to g. 

If we then define j and f appearing in equations (2) 
and (3) by (4) and (5), then we obtain: 
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g o  = e 2*g o  + ( e 2* " e 2*)n n D 

-a8 2<J> aB /• -2* 2*, a 3 
g = e y g - (e - e y)n n p (6) 

We can now define a generalized Newtonian metric; namely, let 
g be a f l a t metric, then g, defined by equation (1), is a 
generalised Newtonian metric i f n is time-like and (1-f) = e ^ 

A chart in which |gag| = 5
a g i n equation (6) is called a gen

eralized Newtonian chart. Newtonian charts are a special case 
of generalized Newtonian charts, defined by the condition 

n = &' p po 

which i m p l i e s t h a t g reduce to 
F 6a3 

-2<j> 
^ab & ab 

g = -e 6 6Oa oa 

as in equation (1) of Part I. 

II. (b) The Linearized Einstein Equations and Generalized 
Newtonian Metrics 

The eventual goal of these considerations is the con
struction of a geometric theory of gravitation based upon gen
eralized Newtonian metrics. However, in the" remainder of this 
essay I shall undertake a less ambitious task; namely, I shall 
show that generalized Newtonian metrics which differ i n f i n i t e s -
imally from fl a t metrics are not uninteresting solutions of the 
linearized vacuum f i e l d equations of General Relativity. 
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In equation (6), expand e 9 in a parameter \: 

• 2* 2 
e = l + x<$> + 0 ( x ) a s x - > o (7) 

(So we must have X<j> = 2$). 
Then equations (6)have the form 

§ a B = § a B + X h a B + 0 ( x 2 ) 

g a B = g a S - Ah a B
 + 0(A 2) (8) 

where g is a fl a t metric in Minkowski co-ordinates, i.e., 
g . = n . and where &a3 aB 

h = -(g + 2n n j $ (9) 
aB ° a B a 3 

and 
v a B a y 36, h = g 'gp h 

Y<5 

The components (in a Minkowski chart) of the Ricci 
tensor defined by g are then 

R a B = h X C h'a3 " ^*>** ^ * > a i T + D ^ g ) + °(^) (10) 
where a comma preceding an index denotes the partial derivative 
with respect to the co-ordinate labelled by that index and 

h = h a 

O = g a 3 — a —g ( i i ) 
c X 3 X 
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Also, R, the curvature scalar i s , in the linear approximation: 

R = g a \ g = J s U D h - 2(h a S -%g a 6h), ag] + 0 ( x 2 ) (12) 

As usual, when deaing with the linearized Einstein equations 
great simplification results i f the "Hilbert gauge" is imposed, 
i.e., i f we demand that h a B satisfies 

( h a 3 - %g a Bh) ,a = 0 (13) 

In this case 

R a g = ^ D \ g + . ( 1 4 > 

R = %XQh + 0(X 2) (15) 

Notice that h „ - kg „ h = -2n n.$ so the linearized Einstein a g toag a g 

tensor 6- D = R 0 - kg DR has a very simple form: ag a g ° a g r 

G a B = -*D(vy) + 0(X 2) (16) 

Now we impose the condition that the metric g be Riaci-flat, i.e., 
that R „ = 0 + 0(A 2) or equivalently G „ = 0 + 0(X 2) either of ag 1 J ag . 

which require 

P ( n a V ) = 0 , ( 1 7 ) 

If R = 0 + 0(A 2), then we also have R = 0 + 0(X 2), or 
a 8 

• $ = 0 (18) 
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Thus i f we demand that g be R i c c i - f l a t , then the function $ must 
satisfy the wave-equation. We may also have 

• n a = .0 (19) 

i f n a and $ have the following form: 

$ = 4(s x a) 
a 

n = n (s x 6) (20) 
a a g 

where s^ is a constant n u l l vector with respect to the f l a t 

metric g. It is easy to check that (20) i s a solution of (17) 

by d i r e c t s u b s t i t u t i o n : 

P i (n n.$) = $(n n n . + n . n n ) + n n„ n $ + 2($Vn • vn. 
1 — 1 a B a 1 — 1 B B 1 — ' a a B a B 

+ n„Vn -v$ + n vn • v$) (21) 
B a a B 

where 

v A • VB = g y v ^ - M _ = t 3A 8B 8A 8B 

3x y 8x y a=l 3x a 3x a 9x° 3x° 

Now i f (p and n„ satisfy (20) , then clearly (18) and (19) hold, 
so the f i r s t two terms of (21) vanish, and the last term becomes 

2s s y($n' n' + n„n' $' + n n' $') 
u a B B a a B 

where 1 denotes differentiation with respect to (s^x01) . But 
since s is n u l l , i.e., s s y = 0, the above expression is zero, y y 
Notice that $ and n must both be advanced (s° > 0) or both re 

a 

tarted (s° < 0) solutions of the wave-equation. 



C O N C L U S I O N 

In Part I we examined spherically symmetric solutions 
of Rastall's 1971 gravitational f i e l d equations, which are 
third order, non-linear,partial differential equations. The 
imposition of the boundary condition that the metric by asymp
tot i c a l l y f l a t proved to be insufficient to guarantee a unique 
solution. One solution that is compatible with this boundary 
condition is equivalent, in appropriate co-ordinates, to a 
static Newtonian metric. We already know (Rastall, 1968) that 
such a metric gives experimentally satisfactory results for the 
case of planetary motion and the deflection of light by the sun. 
It is possible that by imposing other boundary conditions, or.:, 
by considering the relation of the f i e l d to its sources, one 
would be able to prove that this metric is the unique spheri
cally symmetric solution of the f i e l d equations. In addition, 
i f this were the case, we would have an analogue of "Birkhoff's 
Theorem" in Rastall's theory. 

Another d i f f i c u l t y is that the time-like vector f i e l d 
appearing in the f i e l d equations is not unambiguously defined 
in the case of spherical symmetry. This is clearly an unphysi-
cal situation, unless i t can be shown that the ambiguity in n M 

does not lead to ambiguity in the solution of the f i e l d equa
tions. We found in section 1(e) that infinitesimal changes in 
n y do not lead to distinct solutions of the f i e l d equations. 

34 
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In fact, i t was shown in that section that the structure of 
the f i e l d equations rules out infinitesimal changes in n y. 

Rastall's 1971 theory is a generalization of his 1968 
scalar theory of gravity. Another generalization involves a 
larger class of metrics, called generalized Newtonian metrics. 

The effect of these metrics is to "stretch" the length of vec
tors parallel to a certain direction, and "compress" the length 
of vectors orthogonal to that direction. We have shown that 
there exist wave-like solutions of the linearized vacuum Ein
stein equations that have the form of a generalized Newtonian 
metric. 
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