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ABSTRACT

The differential cross sections for the production of definite lambda
hypernuclear states, within the single scattering, impulse approximation,
are calculated from the reaction n(kK ,M)A on nuclear targets of helium,
carbon and oxygen at various K-meson incident momentum. It is shown that
these predictions are very sensitive to the three momentum transfer and to
the wave function of the bound lambda in the hyperﬁucleus. From the cal-
culations, it 1s shown thgt:it is possible to observe their_production by

studying the missing mass spectrum of the emitted pion.
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" Introduction Chapter 1

The production and siudy of hypernuclei has been and continues to be a
very fruitful and exciting overlap between nuclear and particle physics,
Since the early fifties, hypernucleaxr physics has provided basic information
concerning the lambda-hyperon-nucleon interactions and hypernuclear studies
have also supplied the nuclear physlcist with information basic to under-
standing nucleon-nucleon forceg in matter (Davis, D.H. and Sacton, J., 1967.
and referencés therein),

Unfortunately, however, thelr production has largely been limited to
manufacture from slow negative K-mesons, which are captured in Coulomb
- orbits about a nucleus. The captured K-meson cascades down toward its
atomic (is) orbital. As it does, it has a larger and larger overlap Qith
the nucieus. But because the K-meson reacts strongly with nucleons, the
cascading kaon is absorbed’by the nucleus., The energy released in the
reaction n(K", T )A’ may leave the produced lambda-hyperon in the nucleus,
~in some "bound" state or mofe often both.the lambda and pion will escape,
leaving an excited nucleus. The nucleus may even "explode', perhaps pro-
ducihg a hypernucleus fragment. The 1life and death of hypernuplei are
usually recorded by the tracks left (before and after decay) in emulsion
photographs. It is the study and ag&lysis of these tracks that have yield-
ed binding energies, angular'distributions. and branching ratios of decay
channels, This data has then been used to study, phenbmenologicélly, the
lambda-nucleon force and nucleon-nucleon forces in nuclei, From this theory,
it is possible to make models of the hypernucleus states and to check nuclear
mddels. |

Capture from Coulomb bound orbits is the easlest way to make hyper~
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nuclei, but the process has an unfortunate drawback., In the capture of a
K-meson at rest, the momentum transfer to the iambda is typically 250 MeV/e.
As a tesult, the production rate from captured K-mesons is limited to iess
than 2% for all Stopped kaons, For example, in 120, only one in approk-
imately 350 K-mesons that are capturéd in Coulomb orbits produce lambda
»hypernuclei (Davis, D.H. and Sacton; Jes, 1967). This is quite easy to
understand when one considers what the productibn rate will depend upon.
If one can consider the reaction uC(K}TF)ﬁ:A occurring with only a single
~ nucleon, the prbduction rate will be rougﬁly proportional to the Fburier
¢ transofrm of.the<product of the struck neutron énd the final bound lambda
wave functions. But because the lambda is bound (for p-shell hypernuclei)
by only ~ 10MeV, in its s-state, the high momentum components in the form
factor will be suppressed. As a result, the production rate will be re#
duced. This method makes it almost impossible to study excited hyper-
nuclear states if they exist,

In order to study hypernuclei and their excited states, this problenm
of high momentum transf?r must be overcome. Dalitz (Dalitz, R.H., 1969)
proposed that it may befpossible to study hypernuclear levels, by using
"*fast"kaon beams of a#proximately 600 MeV/c. The reacti?n
(1) \\ K+ — N T
at 600 Me&/c has one very encouraging feature. When the incident kaon has
roughly 550\¥eV/c, the emitted pion comes' off with 550 MeV/c momentum at
Zero degrees.énd hence the produce@ N comes at rest in the laboratory.
Thus, at_fﬁeseaincident momeﬁta, it is possible to "deposit" a lambda into
the nuclear system. This peculiar behaviour in the kinematics 1s basic-

ally because the reaction (1) is strongly exdvthermic with a Q value of
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178.19 MeV. This method for producing hypernuclei has become known as
"producing hypernuclei with walking lambdas", (Bonazzola, G.C. et al, 1970).

By detecting the pions emitted at forward angles in the reaction

K™+ nucleus —» hypernucleus +T7

the determination of hypernuclear levels can then be made from a &1rect kine~
matical analysis for the missing mass or energy loss. The missing mass then
gives, the binding energies of the hypernuclear levels produced, For excited
states, 1f production rates are appreciable, more compiex decay schemes of

the hypernucleus will be available for study, by using ¥ -rays in éoin—
| cidence with the emitted pions (Bonazzola, G.C. et al, 1970).

One can estimate that the total differential cross section for reaction

will be given by

da | . AT
2 g = N (A oo ) (25
@ d Q) ngper. BT (a-a)

vee
where(gvfafﬂfree is the differential cross section for reaction (1) at the
same incident K-meson momentum and Neff(chn,wa) the effective neutron
number (Kolbig; K.S., Margolis, B., 1968). This estimate contains a sum
over all possible final statés and also contains approximate absorptive and
multiple scattering effects in N pr(A, T ,03), 05 1s the total K-N cross
.section, T, theT-N total cross section. Calculations for a uniform
sphere model for O16 reduce the effective number of p-shell neutrons from

6 to 1.85 (~ 2). (du/dr)free at 600 MeV/c 0°, is 4mb/st (lab). From
this model one gets that the (do~/d.Q)hyper. at 0° is roughiy.8 mb/st.
Ne‘glecting’multiple scattering and absorptive effects (4o /A Q) hyper. at
0° is~24 mb/st. The true answer will probably fall between these two

estimates,

With only these rough estimates available and the experiments scheduled
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to start in the spring of this year, it became interesting to make more
accurate estimates for the differential cross sections and to study not the
closure approximation to (clc‘/ol.()_)hyper. , but the contribution from various
hypernuclear states (Tanner, N. 1971). It is to these questions that the |
present work is addressed.

- The differential cross sections for hypernucleus production én qu,
120'and 16O have been calculated in the single scattering, impulse approx-
imation at incident momenta 500, 600, 700 and 800 MeV/c to definite hyper-
nucleus states,

The predictions made here are found to bé very sensitive to the momen-
tunm tr#nafored to the bound lambda and to the wave function of the lambda.
The treatment presented here consists of essentially four steps:

(1) phenomological description of reaction (1) at incident K-meson lab.
momenta 500, 600, 700 and 800 MeV/c; |

(2) a proper freatment of the nuclear wave function, including anti-
symmetiry;

(3) some appropriate description of the A ~hyperon wave function and

(4) a proper treatment of kinematics in the initial and final states.
When these steps are.completed, they can be put together under the single
scattering impulse approximation (Appendix 1) to yield theoretical |
estimates for the production of vartbus hypernuclear energy levels at

forward angles.,
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Chapter 2 Reaction n(K , W A’

In the description of hypernucleus production, as in all descriptions
for the interaction of a particle with a many particle system, it is nec-
essary to relate in some logical way, the elementary two body interactions
to the total target-projectile interaction. In the formal theory of mul-
tiple scattering (Goidberger, M.L. and VWatson, K.M., 1964), the single
scattering impulse approximation tells one that the inelastic or collision
cross section will be essentially ﬁ%e product of three factors: (1) the
number of effective scatterers, (2) the inelastic form factor squared and
(3) the elementary free two body differential cross section. The struct-
ure of the target has no dynamical effect on the process except in a triv-
ial kinematical way (see Appendix 1) and (Figure 1), In this section, we -
‘present the information concerning the free differential cross section for
the reaction which is necessary for our theoretical prediction of the
hypernucleus production cross section,

At low energies (less than 300 MeV/c. kaon momentum) the reaction
n (K5, M)A is predominantly s-wave and has been extensively discussed

(X&11lén, G., 1964), In the region between 300 MeV/c, to 600 MeV/c., the
| experimente have been scarce and not a great deal is known, but p-wave
‘effects are noticeable. From 600 MeV/c. to 800 MeV/c., the experimental
data is not very good but fits to the differential cross sections have
been made by expanding the differential cross section in terms of Legendre

polynomials of the cosine of the scattering angle in the center of mass

. [

: do- =
G (Zﬁ <1<)‘ ; Puose)

with R_the momentum in the center of mass (¥\ C= 1) The coefficients are
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incident momentum dependent and the Legendre polynomial coefficients versus
incident K-meson momentum are shown in Fig. 2 (Armenteros, R. et al, 1968).
In Fig. 3 ‘the experimental differential cross section is éhovm for reaction
(1)‘3.1; 777 MeV/c. incident kaon momentum, Fron these graphs it is clear
that the reaction in the momentum range 500 - 800 MeV/c. is predominately
s-wave and p-wave with little interference between them. Briefly, if we
expand the scattering amplitude §(k,8) in terms of Legendre polynomials

and keep only terms up toAL=1{ , one has

. < do 23,

®) fke) = L {(Vloezs 1) + 3 (e =) ces e»g .
ALK |

The differential cross section is |$(ke)™ To this order

(5) Z\%X: 2§ At Aesso + Au(Zase-4)] -

" From the Fig., 2, A, for reaction (1) is approximately zero and in this work,

it was taken as identically zero. This is not necessary but it simplifies

. the work without introducing a significant error.

Now from relativistic scattering theory, the differential ci‘oss_ sect-

ion in the center of mass is given by

h )
dey = A lfﬁ'\ k™
(6) el HIT*s ) &
a 1ﬁ
= l \/7)&5,%,%\ ) gkl
64T s ¥ Als ,mE m}) _

where s is the square of the total energy in the center of momentum, k{-: k
are final and initial momentum and |

(7)) Ax,y,2)= X*+yr+zt- 2xy - 2yzm —2Axe

From equations (5) and (6),v the square of the absolute value of the free

two body transition amplitude is

8) 1 = &S 7 A (k) P(cos o) ]
. ) kk‘ n

In the calculations, that have been completed, we used the exper-~
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imental fit to the free two body ﬁransition amplitude. The coefficients
are momentum dependent. But because little more is known about £, it is
not possible to carry out more than the simple single scattering, impulse
approximation to the hypernucleus production rates, In the region 500 -
800 MeV/c., the sum was truncated at n; 2 because of the difficulty in de-
fining the other coefficients, If the cross sections where measured more
carefully at many angles then it would be possible, in the framework of
.the modél presented here, to put all the experimental information into the
_calculation. However this has not been done and would not be a significant
improvement considering many other effects are more important and will also
be neglected like nuclear d.istortio;x, spin‘—orbi"c splitting and multiple

scéttering effects.
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Chapter 3 Nuclear Wave Function

For the purpose of this work, only doubly magic (N = 2) nuclei will be
considered and the choice'for a mddel wave function of the nucleus will be

based on the physical process we have under consideration, For example,

.

suppose that a deep one hole state is created in the final hypernucleus,
say 053-,!Liv\ *o , then the system will be in a very highly excited state and
will have many fast decay channels with lifetimes much shorter than the
lambda's lifetime in the nucleus. Processes, like the aforementioned, are.
interesting in their own right but reactions where the final hyvernucleus V
has a small percéntage of 'the available energy are more likely to form
"stable'" hypernuclei, Therefore, it is reasonable to take the interaction
between the incident kaon and the nucleus to be cne with only those nucleons
on the top of the nuclear fermi sea, For example, in the case of 160‘it is
agssumed that we have an inert helium core on which we build an anti-symmetric
state of 6 protons and 6 neutrons. To describe the nucleons near the top
of the fermi sea, independent particle wa&e functions, with épin and isospin,
are used in an L-S coupling scheme, neglecting the spin - orbit interactions.
The average nuclear potential is taken to be given by a harmonic oscillator
with an experimentally determined oscillator strength (Harmonic oscillatof
wave functions are used because of the facility for expressing the cross
sections in a closed form). |

The single particle wave functions are denoted (bn(£)4”;t) n&,nu,hu,)or
simply 4%(&), where n is the radial total quantum number, 1, s, t, are the
orvbital, spin and isospin gquantum numbers and my, ms, m,, are the z-compo-
nents of 1, s, t respectively,

Since it has been assumed that only two body interactions are important-
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for the K-Nucleus interaction, it 1s useful to factorize the target wave
function into oné for a single nucleon times a wave function for the remain-
ing nucleons, summed over possible single particle states. This factor-
ization is the well known fractional parentage expansion (Elliott, _J.P. and
Lane, A.M., 1957). 3
To conclude this section the method of fractional parentage expansions

is skefched in order to esta.biish notation., (McCarthy, I.E., 1968) If the
anti-symmetric state of A nucleons in the configuration w* is denoted by

’XA(iA, "‘A} where o4 = (La SA>Ta, "‘L,.:Msm”"m) and the anti-symmetric
state of A-1 nucleons in the configuration QQA-‘by XA-‘( JZ.A—') dp-, ) then it
is possible to write
(@ U ) = ZZ <X LR TR 4y ot
where 434(4) is the s:anrle particle state of the Ath nucleon and < §{ >
is the one-particle fractional parentage coefficient. The summation
_ extends over all possible states %‘A(vt) allowed to the Ath nucleoﬁ.
Finaliy { R SAA denotes the vector coupling of the Ath particle to the state
-of the A-1 nucleons to give the quantum numbers of the total wave function
of the A nucleons, In‘ the case when spin-orbit interactions are neglécted

one has; .

ll‘-,x‘\ ')¢A§ Z (LA-c L M, Mo [La MLA) (SA-l 4 'MSA-. W, ISA MSA)
Mg Wy My
: La, Sa
(10) (T kMg, oMy \ TA mm\ (LA Mg, Sa my, | :SA W‘TA)

A-l 7 oA -l
X X (-’Q )’(A—l\ ¢n(£¢t Ma M, mx)
The fractional parentage coefficients are determined by requiring <{i»to be

anti-symmetric and normalized to unity. The coefficients such as

CLay & m,_ me | La my) are Clebsch-Gordan coefficients,
A=l
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¥For conciseness £q. (9) will be abbreviated

() 1° = Doy, 2 Eo

- with

Crpdam = <XMEIEMEN02 (g L owm me | by mg )

(SA-\ A’i MS,\.( w, ‘SA MSAB ( LI\S-A NLA MSA \—SA M'IABA

/

( ‘r‘.‘v,"‘ x Ma- W\k\TA MTA)

N A
and the summation extending over Cbn (), WMy My, and Wi .,
In a similiar way the wave function-of the final hypefnucleus is ex~
.pressible-as\the lambda wave function coupled to the A-1 nucleon sysiem to

give a final state with the total quantum numbers of final hypernucleus:

I G O R R A RE S PR ER ORI

-1 )‘lA -t

1
The fractional parentage coefficient contained in C . is unity since
A

-y 7 XA"

the hypernucleus must only be anti-symmetric with respect to the A-1

nucleons, not the total A-(A-l)nuclear system,
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.Chanter 4 Differential Cross section

| The initial staté of the K’-Nucleus system will be given by the. product
of the meson wave function and the nuclear state in the overall‘center of
mass;.
(13) | ‘H) = 1k -k, (AL, AP
‘where EF is the momentum of the kaon in the overall center of mass(0.C.M.).
The wave function 6f the nucleus is the product of the internal wave function
\’kA[,Q" ;44)> and the motion of the center of mass of the nucleus,
described by the plane wave \*&“)} . If v, andRare the coordinates of
the kaon and nuéleus in the 0.C.M. the plane wave states are giveﬁ by
< Ex)K = m exp CLke )
(14)
SRISkeVn = Y2wa exp it R)
) and whereCJKandchare the relativistic energies of the kaon and nucleus
respectively., The normalization used here is the same as that used in the
parametrization of the transitién'amplitude for n(KT,TI')A given in Chapter
2 (Kdllen, ‘G., 1964 ; Ma:rtih, A.D., Spearman, T.D., 1970) in defining % .
| Similarly the f%ngl state will be the product of an outgolng pilon

state and the hypern#cleus wave function;
' - A-l A~
(15) Y = e ke, LT e A
with for the'0.C.M. momentum of the outgoing pion.
Because the cross sections we are describing involve the initial
struck nucleon and the final lambda both in bound states, 1t 1s necessary to

know their wave functions in momentum space relative to the residual A-1
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nucleons, Ifx 1s the position of the nucleon relative to the center of
mass of the A nucleon sysitem, the wave function in momentum spacé is given:
by

(16) : b, (k) = dir exp(iler) Puln)

. . S
QoY

where E is the momentum of the nucleon relative to the center of mass of the
nucleus. A similar expression holds for the bound lambda's wave fuﬁction.

In order to find the momenﬁum of the neutron relative to the A-1
nucleons, cansider Fig. &4, If'I}_is the coordinate of the nucleon relative
to the 0.C.M., R the center of mass of the nucleus and ¥, of the A-1

nucleon system, then the momentum conjugate to ¥ = Ya-Yp is

(17) ke = Mpkn — mnl,

From these results the momenta of the nucleon and the residuai nucleus in

the 0,C.M. are given by

(18) A
E? = —kr - Mp T<K

Because single particle wave functions will be used to describe both the
nucleon and the lambda, it is necessary to relate the wave functions which
are defined with respect toltﬁe center of mass of the nucleus to wave
functions expressed in terms of the separation betwéen tﬁe nucleén (lambda)
and the C.M., of the A-1 nucleon system., The separation between. the nucleon

and the nucleus center of mass is given by

(19) - , o= My oy .
My
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It is yz which is used in the description of the single particle wave function.

The initial state of the nucleus is given by

(20) <R R\/)LA> Vaus exploikeR) 2 s, ¢ Ch,d) fx" e AA-.)
Using Eq. (16) one finds

' - dk' &, (k' k' -ikeR) X
(22) < BI/x’A> = "l)\b)Al Z C’(A)AA-I & Cm)'ﬂl(b )exP(k ]7. X.

However it is simple to show that

(23) K'n - kR 2w 4 ke
ith
" kp = e k'— ma K,
- M Wa ~
‘(‘? = sl“‘&(&‘*‘t{\cy L -
Ma , |

Then the initial wave function becomes

(24) <t el =Vawg A &:;n (ol explibn i) axelibpnn) K

Similar'expressions hold for the final state lambda-pion sysﬁem.

As remarked earlier, the choiée of plane wave normalization was related
to the definition for the transition amplitudé of the process H(%ijﬁT_>/\ .
Consider Eq. (24), it is clear that one can interﬁret the exponentials as
plane waves for the nucieon and theéfesidual nucleus if normalization factors

are introduced. The initial nuclear wave function is then given by

‘(25) ‘,X'q ' ‘/QT_—\ Z CAA ha -t Ak (b (&' ‘0 H"D Hﬁp) e >

( m) 2



14,

Similiarly the final hypernucleus wave function is

(26) !9("') Da )l gd‘f N 86) Vea? L, >ML“

XUJACJP “A-ll A=\ (1“)3‘
Using these expressions the transitjon operator for the reaction K_'+
nucleus = T+ hypernucleus is given by
T "\)A,\ ('OA M s c A * : 'A—\l -t
- A , A -t
“5’;. ~ N M M‘ '(A'")'(A/—l C'(A) J'A-l <¢ T/X_ >

O Wa

W\.«;A

. ! A ¥ ' ' :
(27) x j d% nmﬂ.«&w,”s,(@ <\>n(g‘) <) <k fal *_H& ka?

where N is the number of identical scatterers and

f} -tk) kv -

Finally if we assume the initial and final residual nuclel are unaffeCued

by the reaction, so that <’}(*"’| A = S’P’[’ . then the total transition

amplitude 1is

= . (‘OA/\(") * .
_r:gi A) ( 3 Z Q dat Aa -‘A,JA-l

ch Wn

t A ¥
(28) - Sag Ml by, O RuLES ) < e ] e o 7

By ma.king‘ this assumption, we assume that there is no nuclear deformation
in the reaction and hence, the nucleus only plays a kinematical role and
acts as a source of scatterers. Fortunately, if we are only interested in
doubly magic nucleli like' helium, carbon and oxygen, then the fractional
one particle parentage coefficients are equal, hence K {| 7| = ‘/m ,

because they are normalized to unity, and

(29) . CJA’JA-'\ = ('pb\oae.)x( Qlehsg‘\—c‘brdqv\ cot*&‘ﬁ.l{n‘\'s)A.».
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The transition amplitude is then given by

V -~ LA (.,\);\ Y2<W]A [} ’
T—&,‘_ \J—I\T( on o ) ) Z A_“ At dA,JAA

(30) &om n, Mﬂm(ew (') < fen Lt cm>

.A | o, ]
C"(A-‘l‘\[v( C"A v A o (L "Q’\ ML mﬂ l L&ML\") ( L L M —MLP‘OO)

x (SPAA s, VVLAP\S+MS+)(SPA. W\SO—Mg\,‘OO)

x /(fTP x mrp~m,.‘,\oo) (g Sg My M‘-&\T&f';%\;)

where wé have uéed tLe fact that the initial nucleus has L, = S, =Te=0 .
In Appenciix 2 the factorm times the amplitude 1s explained in terms of
Slater dete’rminants.

The integral in BEq, (30) is rather complicated and so it is desirable
.to replace it be some convenient approximation., 3Because of the use of
harmonic oscillator wave functions, the integral will be dominated by small
momenta and will have va.niéhing contributions for large &' .. Similarly
CTALRIRNS will not be a strong function of g for small E',. Hence as
~a first approximation to.the integral in Eq. (30), {ff“%h\ Rleeln?y 1is
replaced by its value when \é’:o . The total transition amplitude may hence-
forth be written as: o
(31) Ty = AN wAA°°"> <1r/\l;blKn> O} (g_)

_ Wadn
with <Al lev\} to be evvaluated in the K-nucleus center of mé,ss. This
: o

is now a high en!:rgy a.pproxima.tion to the total transition ~amplitude, that

neglects most of the nuclear effects and puts the major structural effects
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into the inelastic form factor - 4 Where ? ( 3 has been defined as
fu $£ 1

- - = My, ¥ N
(32) ‘gi; - ( A) Z “A |)‘LA -1 C“An"A -1 gd&‘ ‘YLIAAAM‘A(M%}(%)H(&)&)

¢ - aql
,% - —&) EK i Ty .
Wi ~ v .
Here —-%"is the three momentum transfer. When n, = m, it reduces to the
A

momentum transfer for elastic scattering,

The differential cross section is then given by (K&llén, G., 1964),

4TS\ Conwn MS md, mZ)

(33) ((m) _ N wAAwA> NERTRACD) ltlf(z 1036:“(3)\ )

S is the total energy squared.



17.

Chapter 5 Applications

(a) Heltun

In the reaction *Hel.Kf}ﬂ-yﬂtk, the production of the lambda-hyperon
occurs with a neutron in a (1s) state in the nucleus, The hypernucleus uHeA
"has only one state in which the binding energy is positive and this state
has thé shell model configuration (1s);’1(1s)A , - both the nucleon and the
bound lambdé are in states of zero angular momentum relative to the cgnter
of mass of the hypernucleus., The parent or reSidual'nuclear'system 3He,

has the quantum numbers Lp:O, Sp:%, TD=% and mg =+3. The bound lambda

hyperon has the Quantum numbers 1 =0, s =5 and E =0. Because the inter-
action contains no spin-flip terms, the bound lambda must have tﬁe same spin
quantum numbers as the struck neutron. That is, the total spin (spin ié a
good quantum number in our ﬁédel) of the hypefnucleuS'uHeA must be ldent- -
ically zero.

| Three dimensional harmonic oscillator wave functions are used to

describe both the struck neutron and the bound lambda. The radial wave

functions are given by

Y ES X
Rl = (grg, ) - oxp Crtlaan)

(34) .

R{s‘(n.‘) = (m)‘ exp C*fg‘/laAl)
with the oscillator strenéth G,, and a, for the nucleon and lambda reséect-
ively. The value of &, is well known from electron scatiering and has the
value 1.38fm, The value of @, for thils form of the lambda wave function is
not well defined. Thls is basically because the Gaussian form for the wave
function is not a veryigoﬁd description of the lambda hyperon s-state in

uHeA « In order to assign a value to q, for our calculations, the non-
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_ relaiivistic Schrodihger equation was integrated numerically for a Woods-
Saxon poténtial of range 2,0 fm. and diffuseness 0,6 fm., given that the
1ambda.in quAhas a binding energy of 2.25 MeV. The resulting wave function
is shown in figure 5. The wave function is seen to peak just inside the
well radius. In order to fit this curve with a Caussian form, one must take

|

‘an oscillator strengtF £A=1.9O fm. approximately. This was the value used

in all the calculati?ns that are reported here.
| The\}nelastic form factor ?EL ﬁas calculated using the ébove wave

functionsg\and is given by

‘\ ¢ \3 “C \11
T o= (el (B ) ey (Catq/4)
Gs) T8 7 \ e \aras | 1
" with [ T T m__)_x_
CL“‘ Ay M e 1(1,:'
and q3 = (W\‘H“ ) ‘;/‘JT - E“
M,“"Ha.

The differential cross section for production of 4He,: is

dr \ - f fstr\ 4y, ) |0y
6 A = —_— . kU 2 Ha K 2 .

At forward angles, where the momentum transfer will be small, the.
inelastic form factor will be maximum. Figures (6,7) show (clwlcijj_)ﬁmk
as a function of the incident kaon laboratory momentum and as a function of
the scattering angle in the center of mass. The rapid drop in the cal-
culated cross sections as' a function of angle illustrate the large momentum
‘transfer encountered as one goes to larger scattering angles. The slope of

the curves 1s a measure of the value of a*2; which is a direct measure of

the value of oL taken in our calculations,
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(b) Carbon

The production of 12CA is the production of a "p-shell hypernucleus",
| (p-shell refers to the nuclear shéll of the struck nucleon, not the A wave
function).» These have been discussed in some detail (Gal, A., Soper, J.l.,
Dalitz, R.H., 1971). 1In the calculations we have performed, it is the
'p-shell nucleons which are responsible for the production of the hyper-
.nucleus, The s-shell nucleons femain inert throught the reaction., The
residual nucleus which couples to the lambda-hyperon wave function can then
be considered to be QPY:L hole state, with L= 1,Se=4 ,Te=4 and
Wh} = lJ, « 1In p-shell hypernuclei there is also the possibility of
states other than the lambda in a s-state which may be bound. In our cal-
culations, we have taken both the s-state and the p~state of the A-hyperon
és "bound" by 10.0 MeV. and:.5 MeV, respectively. One word concerning the
p-states of the lambda which we have considered bound., Experimentally and
theoretically, it is not clear whether some, all or none of these states .
will be bound. Hence our calculations concerning the p-states of the lamﬁda'
actﬁa.]_.ly mean that if all the p-states (\p\‘{,g(\P\f,: , ( \P\’,',l (\P)\Z )
('FN;;(lPBQA.' (lPY;L(\P)QQ ‘are degenerate and bound by 0.5 MeV., then one
should expect p-state cross sections of the approximate size and shape
predicted by our calculations.. Clearly, our results should therefore be
taken with a grain of salt and considered very speculative. "Again because
there is no spin flip involved in reaction (1) in our model, the final spin
of the hypernucleus is taken as zero, The final states of the hypernucleus
are then Lg =.2.,|,O,S4=0,T_;=Ji . The radial wave function of thc—_z.struck
'_ﬁucleon.is

. y | |
S | g X . .
(37) Rt?(n> = '(3{_11‘ QS) J—;‘-n exp (—r / 24,2 )
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with anﬁthe'measured value 1.56 fm, from electron scattering data. TFor the

final state of the lambda in a s-state, the radial wave function is given by

| | | . o
(38) Ru(n) = (wk‘a,z\ exp (- 7*/20,2)

For p-shell hypernuclei it is foundythat G, = 1.74 fm. gives a reasonably
good fit to the calculated wave function (Gal, A., Soper, J.M., and Dalitz,
R.H., 1971). In this case, the final state produced is (tp\"h (1s)A and the

inelastic form factor becofnes

(39) T - = (= )Vl(mm)}a%exp(-a‘ﬁllu})

A Q,\SCL: Mo
where 4 = L oy [ M \3 A
: a'z 2a,” Mo ) 268
and 4 = (W“‘c,\ w ~ ke
MQ\L ~

The differential cross section for the production of the state

is then given by

da W wh t‘,o

4T = 3 Q"‘{ ( Woe Wi, \ fawratzl t

et e el A K
e4n*s l&.; — |

(40) '

} -GL (%Y( or® s_)ov‘“l‘ exp(—cx“q}/z) .

me.) \aga

‘The differential cross sections are plotted in Figures (8,9,10,11)(curve a)
as functions of the COsiné of the écattering angle in the kaon&xucleus
center of mass, At forward angles the cross section vanishes because

q‘-a O but it rises to an appreciable value for cos ec.m‘=.95. At \these
angles, the production of the state (lPY‘,\UQA is seen to be an appreciable
part of any reasonable estimates for the total differential cross section

for A production summed over all possible final states.
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For the production of the lambda-hyperon in a bound p-state the lambda
~ wave function was integrated for a Wood-Saxon potential of range 2.6 fm.,
diffuseness 0.5 fm. taking the A to be bound by only 0.5 MeV, The wave
function is plotted in figure (12). It peaks at Ji= 2.50 and for a 3-
dimensional harmonic oscillator fit, this implies that the approxima"te
oscillator strength is 1.76 fm. This value is in very close a.greemént with
that used by Gal et al for the lambda in s-states (for models of hyper-
nuclel, see Iwao, S., 1971; Shakin, C.H., et al, 1967). The hypernucleus
state will then be (Ip):i (1p)n  which will have the possibility of

Lg = 2,1,0. 'I‘hé sum over these states, gives an inelastic form factor

squared,
. 1 ’ 6 5 t .
(51) 2 \Si(,a‘})l = 1 ( Miy (20,\0-\){ I- La'}y 4 Latgt e&?(_‘}lj‘z)
2\ wec/\Nag tan 3 i ™2
when the radial wave function of the lambda is ‘given by
(42)' R ( ) = 2L exep ( )

Thus the differential cross section for the production .of the hypernucleus

state (lPY:\ (ip)a is given by

_ | | . .
@3) &€ <= 3 __ Nl (w‘k(*o_“c,\ (m“c;\) KAtk IKNnY |
a2 s L&l Lo O W k=0

x 1 2&;\0;\} Sl \ — Q_“-q_ ..L q_‘toL § exp (-a“g "_)
Asq*—vo0, this differential cross section has a rﬁaximum. This corresponds

roughly to changing the struck neutron into a lambda without any momentum

transfer and without changing the spatial distribution of the system by
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a great deal. Notice that as a,-»Q, , and éfao that this differential
. cross section would tend to ~+ K(dq;',_/df))free. This corresponds to the
case in which the struck neutron and bound lambda have exactly ihe same
spatial distribution and inelastic form factor becomes a quasi-eiastic form
factor which is unity for zero momentum transfer. The differential cross
sectlons are plotted in Pigures 8,9,10,11, (curve b) for the production of’
the (1p), states, at incident kaon momenta of 500, 600, 700,.and 800 MeV/c.

The apparent dip in fhe cross section comes from the state GJA-L(lP)A
coupled to zero anéular momentum, When dq}c-c, this term becémes zero, in
analogy with elastic form factor from electron scattering. It is the
contribution from H;L which fills in the gap in this region (see momentum

transfer graphs 18,19),

(e) Oxygen

The calculations for}oxygen follow exactly the same pattern as for
carbon, In order to find a value for the oscillator strength for the .p-state
in'160,\, the Schrodinger equation was integrated for Woods-Saxon well.of
radius 2.90 fm., diffuseness 0.6 fm., and with binding energy of 1.0 MeV.
The wave function is plotted in Fig. 13. An appropriate oscillator fit
gives an oscillator strength of @, = 1.91 fm. This is the value used in
our‘caléulations. The only other trivial changes from carbon to oxygen are,
the effective number of scatters and the kinematical changes. The
oscillator strength for the nucleons was taken as 1.56 fm,

In Figs. (14,15,16,17) the differential cross sections for both s and

" p state production are presented for various incident kaon momenta. These

results have the séme structure as the carbon results,
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Chapter 6 Conclusion and Discussion

. (a). General Comments

The first and most obvious comment is that the differential cross
sections are strongly momentum dependent, This occurs from two sources;.
the inelastic form factors v?(q}) and from the behaviour ofdw/ OLQ) free in
.the lab., At high incident kaon momenta,. the momentum transfer is lérge
everywhere except in a very narrow cone around the zero scattering angle,
As a result of the rapid increase in l%l with angle, all the differential
-cross sections a.fe strongly peaked toward forward scattering anvgles. |

One of the <most impc;r‘l;ant parameters in the model we have presented
is 0, i the parameter which determines the spatial wave function lof the
lambda hyperon. In all the model calculations we have presented, these
o_sciliator parameters where choosen with some care. Either the existing
values in the literature where used or in cases of uncertain£y, the wave
equation was integrated numerical and fitted by eye to an appropriate
oscillator value. The final results are very sensitive to iis choice é.nd
can vary by as much as a factér of 2, As an example., in the productic;n of
the hypernucleus state (IP)':\UP),\‘"OA , the squa.ré of inelastic form factor
- is proportional to 2Q.Qn /(a,(‘&d.';\ to fhe fifth power, When Qa=Q,,, this
factor is unity but in the actual case of 16O this factor to fifth power
is .73 . As @, 1is made lé.rger or smaller than Q.,, this factor decreasevs
from its maximum value of 1. Q, also determines the peak in tl'lme‘different—
ial cross section for ‘the’st;ate C‘PYJ USX\ throuzh a % Changes in Q. ,
move the peak outward wiuen Q,vas and inward . when QxA<Q, . Thus the
predicted cross sections are indeed sensitive to Qp

F‘irla.lly, throug‘hout the calculations, the kinematlics whére treated
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relativistically. Only the motion of the nucleons and bound A. where
treated non-relativistically. Alsd,'wheg the dependence on &‘ in X was
ignored, this aésumption neglected the fact that the interaction actually
occﬁrs in a nuclear potential, This means that the reaction n(K7,TT)A
proceeds at a slightly higherAeneréy than was assumed in the calculations
by an amouﬁt equal.to the depth of the average potential well for the
lambda. These off-shell affects, should not be signifigant however for the

high momentum cases studled in this worlk.

(b) Experimental Consequences

The resulté we have predicted mean little until we ask what'ére the
experimental consequences} if any of our results.

The model we have used is rather simple, lacking in many fine detéils
but thé_essential features of the galculations are significant., The cal;
culations concerning the p-shell hypernuclei are the most interesting,

because it 1s here that the possibility of excited hypernuclear states
»exist and the possibility of being able to study them intriguing to the
- experimentalists, Py

In this section, we shall confine ourselves to discussions related to

16 ‘ '
- 0, + What is said is equally true for lch . In our calculations of
Olé\ . the A was taken as bound by 10.0 MeV. in it'’s relative 1s state and

by 1.0 MeV. in it's relative 1p state., But in point of fact this is an
extreme simplification there are two ls states; (‘P)gb_(\S)A - and
(\pYLl (\})A separated by roughly &6 Mev. (Ajzenberg-Selove, F., 1970).
These states are again split by the spin-spin interaction into 4 states,
each separated by appréximately 1 MeV., No evidence for the.exiétence of

the p-étate exists. - If it did however, it would in point of fact be the
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following states (\“b 3,1(1‘)) Ya ,(\p\ 3 (-‘P>5[,_ R C'P)Y; Cip) y, and (IPT;J_(IPY;,L
a total 6£.4 different configurations, with‘total of 8 different states,
when spin—épin forces are takenlinto account, DMany of these states will be
unbound and Some will probably be just slightly bound. No one knows how
many will be bound, if any, and the hope is that experiments may be able
to see these states if background is not high.

The experimental missing mass plot, assuming our s-states and p-states
are separately degenerate, would look something like figure 20 (a)., The
peak at 10 MeV. represents production of the <1S)A state., The peak at 1.0
MeV. represents the froduction of the”(lp)A state, However if one considers
the situation somewhat more carefully the results would look more like
figure 20 (b). The strength to the (15) state is now spread into 4 states
while the (1p) state strength is~a1most completely washed out by the large
ngmber of states. It is clear from these simple considerations that it may
be very difficult in point of fact to see the excited states *p-states”
ﬁhen experimenfally one must fight both the'ﬁ- background associated with
K-beams and the problems'of good resolution,mso necéssary for meaningful
intérpretation of the data.

Furthermore, one is féced with absorptive effects associated with the
finite size of the nucleus and the other reactions which could remove kaons
frém undergolng reactlon (1). In our calculations, no account was talon
of these absorptivo effects, but estimates (Chapter 1) of those effects are
something like é correction factor of 2 or 3 down from our calculated
results, These estimates are not excessive or outrageous, They are related
"to the total K-N cross section (Kolbig, KX.S., Margolis; B., 1948). Vhen all
these effects are put together it appears that the production of tﬁe lowest

s-state will be less than 0.5 mb/st at 18° in the lab, For “p-states' of
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ﬁhe lambda o;e is in much greater doubt about thelr observablity in these
- reactions, eséécially when one considers their low binding, background
effects and finite resolution problems. But however difficult it may be to
see these states, if they exist, if some selection rules operate then a

careful experiment of this kind probably has as much chance seeing these

states as any other. We eagerly await the experimental results,
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APPENDIX 1

Scattering by a Many Body System

For completeness in this section, a summary of the formal theory of
scattering of a particle by a general many body system is described, in
order to show the relatlion of this scattering compared to the scattering
from ﬁhe separate constituents and to show the logical connection to the
single scattering, impulsg approximation. (Rodberg, S.L{, and Thaler, R.M.,
1967). |

All approximations t§ the many body problem seek to reduce the problen
‘to a series of tﬁo-body interactions. The multiple-scattering equations
can be expressed in terms of two-body scattering amplitudes appropriate to
the target.

Consider the scattering of a projectile by a compléx targgt composed
of N particles which‘may each iﬁtef;et with the projectile. If the térget
'has a finite size, the-incident projectile and the final outgoing particle
will be‘free before and after the interaction respectively. |

‘The initial and final states are described by the Hamiltonian
(1.1) H, = K.+ H,

wheI"e"K° is the kinetic energy operator for the projectile and ¥4T ié the
Hamiltonian for the target,—including whatever interactions bind its
constituents together. Iet.¢kﬁe eigenstates of H, . To distinguish the
many body operators from two-body operators, upper and lower case symbols
are used respectively, The projectile-target interaction is the sum of two-

body interactions

(1.2) V = 2 va

Ney
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. where v, 1s the interaction between the projectile and particle n of the
target. In inelastic processes, v, may be an operator wﬁich creates and
.‘destroys.particles. For example in the reaction K +wn — Awarh . {rh
annihilates the kaon and neutron and produces a lambda and pion in the final
state, | |

The final outgoing state is given by the integral equation

‘)’-&) = ¢ =+ ) A A

E- H9+}:€

(1.3)

N
- ¢/~ -+ —t Z\ Vn +§+)
E"' Ho‘(’i‘. n=y

with @, the initlal free particle state (Schiff, L., 1970), The tran-

sition amplitude for elastic or inelastic scattering is
~N
' )
(1.4) Ty = <l 2 val 9

net
If the potenial V 1is sufficiently weak, l5: may be expanded in powers of
vV . But a more general result, separates two-body effects,from the |
multiple-scattering.effects. It is possible to completely describe the
scattering by a single pérficle and will generate a serles showing a

succession of scattering by different target particles.

Equations (1.3) and (1.4) can be rewritten as

(1.5) 7 SR YU I U

E~Hotie "=

(1.6) Y. o= & o+ ‘ 2. At

E-Hoti€ na+4n

(1.7) ks = Un o+ v Lk
, E- Ho tA¢

N
and (1,8) T—f* = < ¢_s_ l Z= dopn l\{/v\>

This édditional‘complexity is justified by the fact that these equations

y ' ,
provide a description of the scattering process in terms of a multiple-

/
|
|
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~ scattering sequence, Substituting Eq., (1.6) and (1.5) we expand I5, in

powers .of the transition operator An

PN A S S .

Nns| nmin E- \"\D'\'Ae
(1.9)
! B T i R L 1
E-H, ¢ E-H,tie
vw#n ‘
L3m

Each term in this series is a multiple-scattering sequence in which the
projectile scatters successively from different particles in the medium.
In the first term the projectile enters the target, scatters from particle
n , and emerges. In the double scattering term the projectile scatteré
from m, propagates to particle vi , where it scatters again and. then
: , ,

emerges., f

/

[
Single Scattering ‘

- If the target is sufficientiy small, then only one scattering is

likely to oceur, then-f;.may be approximated by the first term in Eq. (1.9).

It will be a valid assumption if the target thickness is small compared to

the mean free path of the prOJectile. With this asaumption

(1.10) Z<¢4\*V\ld v

n=g

This expression for the transition operator is still rather complicated,
because it requires knowledge of :kn in the target, But it may be evaluated
- 1f the impulse approximation invoked. The impulse approximation basically

reﬁlaces.the two body transition operator 4, by the free two-body transition

amplitude j:free,‘fqr the elementary process on one of. the free particles

in the target . o
(1.11) Ty, = 2y <l ki 14

ney

= 3 cn il ?F’ L9

nai
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where ?iKQDiS the Fourier Transform of the product of the initial target
wave function and the fiﬁal residual system's wave function. The last
equation above is the'high energy approximation, where one assumes that the

.;tf?eé is not a strong function of the momentum of the struck particle. 1In
thé case under‘consideration, the struck neutron has a much smaller momentum
~than the incident kaon and hence this approximation would probably be rather
good, If all the target particles are identical

(1.12) o Tao= N LSV B

The differential cross section in the center of momentum, is given by

(%Ez - mrs' \R*\ ‘TML

N |l TR ()

(1.13)

re e

NEYE -‘\%@\‘(f}\

free

~ with B¢, pu are the final and incident momenta of the particles in the center
of momentum of theAtarget-projectile systen, g;;&; are the initial and final
momenta in the equivalent system for the elementary process under discussion
and S, s are the total energyfsquared of the target-projectile and the
-nucleon-projectile systems respectively,

The assumption of replacing the two-body scattering amplitude %, by the
free K:N amplitude implies that the structure of the target nucleus has no
dynamical effect on the elementary process under consideration. The
corrections to the impulée approximation involve the nuclear structure
corrections and these are closely related to the multiple scattering
corrections,

.Furthermore the impulse approximation assumes that one knows the free

T matrix off the energy shell. In practice one must extrapolates the off-
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:shell value from the on-shell T matrix for similiar kinematics. The struct-
ure Cf the target system then only enters the impulse approximation in a

* kinematical way and higher order corrections in the multiple scattering

theory may be calculated using the extrapolated off-shell T matrix.
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APPENDIX 2

Why the factor YN in Ty

In this appendix, we show how the factor of'JN inT;; arises naturally,
when one considers nuclear wave functions as Slater determinants, instead of‘
the abstract fractional parentage coefficients used in Chaptexr 3

To describe a nucleus with an independent particle nodel wave function,

‘we start with a nuclear Hamiltonionian for N ideniical fermions:

N
(2.1) HNu.—.lw.s = L H5?(":),

A=

with L HGWY = TW A V()

The single particle po,tential,V(JO may be a Woods-Saxon, square well or
harmonic oscillator potential. The nuclear wave function 1s then a pure

- Slater determinant

G by -y (N)

(2.2) ”(N ( 4,2, D-N) = \I_Jﬁl- (t)d:"(‘) q).(:_(l) "" " Q-(z‘(N)

¢ . G (D - G W)
where the single particle wave functions ck(.(;\ are the solutions of the

"~ Schréodinger equation

(2.3) I TL +V()u\§d>*()¢;)= e b, )
' The normalization is | ' :
T S oo dR =

and f l’xu\lo\i)}. dfj},_... d.s);LN = 1

Consider the reaction K +nucleus -— nucleus, + W, In order io extract
the two-body matrix elements of reaction K +tnN-="N+W | we can write the

Slater determinant in terms of the co-factors of one of the columns as

(2-5) ) «N(‘” N) = 7 i Et"_k_(l). /XN-\(D‘)-&).;'IN)
‘ , A=k, W .
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where the expansion has been choosen so that
(2.6) IlXN,,(x,---,N)\‘A"}h&’ny--A%N = {
Since all the particles are identical, it is only necessary to consider the
interaction of the incident K-meson with particle 1, The initial_state will
be product of nuclear wave function and the reiative notion between the
center of mass of the nucleus and the incident X-meson
(2.7) '%; ~  exp L*‘-%\‘(t&"l‘:ﬂ)) Kn
If we neglect multiple scattering effects and changes in the N-1 nucleusi
the final state will be
(2.8) e~ exp il O tad) Lo Malad
where 7,(r)is the lambda wave funétion. The matrix element, neglecting center

-of mass motion, Clebsch-Gordan coefficients and other complications will be

T = Z.? S 44# £ 8 - v:ﬂS"’Cac—xA) Sﬁ(’b“{h\ dhdR, - ofny o\’n\?d’m

~ N- e . Xexwa{m NX) P, () dr - S’xﬁ’fﬂu_, dc

(2.9) N

4 '\H\\—l ‘ 't-{-ree . Of-‘*(%)

lTsL‘l S N ‘Off‘.(%\ll )k'free.lz,

The'factorqha instead of N comes basically from the reaction being in-
i
. | :
elastic and the lack offanti-symmetry of the lambda-nuclear system. In

\

elastic scattering tht initial and final system would bes anti-symmetric

with respect to N particles and one woﬁld have a double sum over initial

\

and final\states resulting in a factor of N times the free transition

amplitude. \\
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Filzure Captions

Figure 1: Dia%ramatic Interpretation of the X ~Nucleus Interaction,
Figuré 2: The coefficients of the Legendre polynomial expansion Eq. (3)
| versus the incident K~ lab. momentum. Eacﬁ of the curves is the
result of a 9th order polynomial fit in momentum, to the
coaefficients obtained by averaging the K -proton and K -neutron

I
results, (%dapted from Bonazzola, G.C., et al, 1970)

Figure 3: The expetimental differential cross section for K+ n—=-> A+ W~

) at incident lab. momentum 777 MeV/c. measured in the center of
\  mass,

\

Figure L: \\This diagram illustrates the.position of the nucleon relative to
éhe (A-1) nuclear system and the overall center. of mass. The
nStation is theAsame-as is used in.ihe_text.

Figure 5: A plot of wir)= v RLIv), whe.re R(r)is the radial wave function of
the bound lambda in uHeA . The peak in the wave.function is
reproduced by an appropriate Gaussian fit toR{r)when a oscill-
ator parameter of o,= 1.90 fm. is used. The depth of the well,
which reproduced the known binding energy of 2.25 MeV/c., was
29.34 HeV, o

Figure 6: Differential’cross section for the production of 4ﬁek at incident
kaon momentum of 800 MeV/ec.

Figure 7: Differential cross sections for QHeA production at incident kaon
momenta (a) 500 MeV/e., (b) 600 MeV/c., and (c) 700 MeV/c.

Figure 8: Differential cross sections for the production of 1ZCAa’c 500

MeV/c. Curve (a) corresponds to a sum over the states of the
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configuration (!§Y11C\%DA . Curve (b) corresponds to a sum
over the stafes of the configuration (lﬁfk(lp)A.
'Figure 9: Differential CYOSS sectigns for the production of 12CA at 600
.MeV/c.
. Figure 10: Differential cross sectiéms for the production of 12CA at 700

MeV/c.

12,

A at 800

Figure 11: Differential cross sections for the production of
MeV/c.
Figure 12: A plot of ulr)= v R(r), where.RG)is the radial wave function of ,
the bound lambda in.lzc A ih'p-state. The peak in the w$ve
- function is reproduced by a 3-dimensional harmonic oscillator
wave function with an oscillator parameter a, = 1,76 fm. The
depth of the well, which reproduced the assumed binding of 0.5
MeV. was 37.06.MeV.
Figure 13: A plot of wir=v»R(, where R(x) is the radial wave function of
- the bound lambda in 16OA in a p-state. The peak in the wave
function is reproduced by a 3-dimensional harmonic oscillator
wave funétién with an oscillator parameter 4, =.1.91 fm. The

depth of the well, which reproduced the assumed binding of 1.0

MeV, was 30.61 .MeV,
16

Figure 14: Differential cross sections for the production of “~0, at 500
MeV/c.
Figure 15: Differenﬁial cross sections for the production of 16OA at 600
' MeV/c. '
FPigure 16: Differential cross sections for the production of 16OA_ at 700

MeV/c.

Figure 17: Differential cross sections for the production of 160A at 800

MeV/c.
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Figures 18 and 19: The momentum transferlqjas a function of the cosine of

\

TN
\
N

Figure 20:

{

v the scattering angle €>c.m. at incident kaon momenta 500, 600,

700 and 800 MeV/c. for 4HeA. and 160A respectively. The dashed

\}ine corresponds to the momentum transfer resulting fronm a stop-

ped K -meson.

In this figure Ve try;to interpret our results experimentially
for 160A . (a) corré§ponds to the ideal case in which there

is no background, thaﬂpyt(rikstates are degenerate and
similarly the QP):(lp)Astates. The missing mass corresponds‘to
the energy Qf any bound states that exist, The UFDiQSkstate
has a binding of 10,0 MeV: and the (pa(ipr state a binding of

1.0 MeV, In (b) we have tried to put some real physics into

‘the picture. The(\ﬁy(vﬁh_states are split by roughly 6 MeV,

and further by spin-spin interactions. The p-stafes are almost

washed out by energy splitting and backsround.
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TABLE I

° PARTICLE MASS (MeV) PARTICLE MASS (MeV)
T 139.578 K 493.82
N 1115.60 n 939.55
e 3727.32 uHeA;(ls);i(ls& 3910, 44

\‘ (10)71(1s) 11357, 44
12¢ 1117467 120, ——
(1p)7 (lp)’\ 11366.44
(1p)zi(1s) 15073.53
16 ) 16 n A -
° Hhos. 02 % (o)), | 15002.53
L"He 12(} 160
an 1.38 fm. - 1,56 fm. 1.56 fm,
aﬁfis) 1,90 fm. 1.74 fn. 1,90 fm.
aL'\(1p) 1,74 fm, 1.90 fn.
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