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ABSTRACT

Two experiments are described. One is the successful observation
of the resonant deflection of a beam of neutral potassium atoms at a
frequency of 7.2 Mhz, in agreement with the predictions of the theory
of the Transverse Stern-Gerlach (TGS) experiment. The other is a
proposal for a charged particle Stern-Gerlach experiment, which is based
on an extension of the TSG experiment to time independent, inhomogeneous

magnetic fields having the form

B(F,2) = Bk + B (Fe'
If the field El(f) is well chosen, the charged particle trajectories
are confined in a stable beam by the resulting Lorentz forces for
motion generally along the z axis. This is, in fact, the principle of
strong focusing which is now widely used in accelerator design. But
in such a system it is also possible to satisfy the criterion for a
TSG experiment, since in a frame of reference moving with a particle

in the z direction, the field §1(§) is rotating in time.
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CHAPTER 1

Introduction

In the conventional Stern-Gerlach experiment a beam of atoms
having magnetic moment U is passed thrqugh a time-independent inhomo-
~ geneous magnetic field §(f). For simplicity, suppose that U = yﬁj,
where JH is the angular momentum and y is the gyromagnetic ratio, and
that B(F) consists of a large homogeneous part Eo oriented along the
z axis and an inhomogeneous part §1(f) with [B, (%) [<<|B_ |. The atoms
acquire momentum while in the region of the inhomogeneous field because
of the Stern-Gerlach force F = (T .i?)ﬁ(f). Since J precesses about
the z axis at the Larmor frequency W, = —yHo, the oﬁly time-independ-
ent c?ntribution to F arises from JZ. Therefore, the net change in
momentum for t >> wo_l is proportional to JZ. One of the most
important and best-known results in modern physics is that JZ is found
experimentally to take on only the discrete values M = -J, -J + 1,
+ J. We can say that the Stern-Gerlach experiment provides us with a
method for preparing a spin system in any one of the discrete quantum
states M. |
A few year ago it was shown fheoretically (Bloom and Erdman 1962)
.that a more general form of the Stern-Gerlach éxperiment may be defined,

using time-dependent inhomogeneous magnetic fields, i.e.



B(f,t) = B+ §1(i") cos wt (1-1)

This generalized form of the Stern-Gerlach experiment was named the
"Transverse Stern-Gerlach' experiment (TSG) because it was predicted
that for w = wo,ZJ + 1 deflected beams should also be observed, the quantum
number M' = -J, -J + 1, ... + J associated with each of these deflected
beams in the TSG experiment being associated with JZ, the projection of
J along.the x axis of a coordinate system rotating with angular velocity
W, about the z axis. This arises from the fact that, if the oscillating
inhomogeneous magnetic field at a given position is split into two
rotating fields, one of them is synchronous with the precessing J vector
at. resonance. Thus, the cumulative changes in momentum are proportional
to Jz'

In this thesis we describe two experiments. One is the successful
observation of the resonant deflection of a beam of neutral potassium
atoms at a frequency of 7.2 Mhz, in agreement with the predictions of
the theory of the TSG experiment. The results of this experiment have
already been published (Bloom, Enga, Lew 1967). The other is a proposal
for a charged particle Stern-Gerlach experiment, which is based on an

extension of the TSG experiment to time-independent,

inhomogeneous fields have the form
T)e = (1-2)

If the field El(f) is well chosen, the charged particle trajectories



will be confined in a stable beam by the resulting Lorentz forces for
motion generally along the z axis. This is, in fact, the principle of
strong focusing which is now widely used in accelerator design. But

in such a system it is also possible to satisfy the criterion for a

TSG experiment, since in a frame of reference moving with the particle
in the z direction, the field §1(f) is rotating in time. In analogy to
the TSG experiment, it appears now to be possible to observe the 2J + 1
beams in such an experiment.

The classical theory of the neutral particle TSG experiment is
presented in Chapter 2. The experimental procedure and the apparatus
are described in Chapter 3, while the experimental measurements and
their interpretation are given in Chapter 4.

We develop the extension of the TSG experiment to time independent,
space varying fields in Chapter 5 and propose a Stern-Gerlach experiment
for charged particles which is developed in Chapters 6 through 9. 1In
Chapter 6 we consider the beam behavior for thé Lorentz forces only.

In Chapter 7 we introduce the Stern-Gerlach force in the limit fhat the
Lorentz force is comparible to, or weaker than, the Stern-Gerlach force,
and examine the beam trajectories. The case when the Lorentz force is
larger than the Stern-Gerlach force is treated in Chapter 8. In
Chapter 9 the experimental problems of this experiment are examined and
the results of some preliminary experimental work developing a suitable

ion beam are presented.



CHAPTER 2
Classical Theory cf the Neutral Particle Transverse

Stern-Gerlach Experiment

A neutral atom of mass m and magnetic moment T having initial

position T(0) and momentum P(0) is assumed to interact with the

magnetic field §(T,t) given by equation (1-1). The position and

momeéntum of the atom at any time t are given by

1 t
T(t) = F(0) + Ef p(t)dt!
(0]

t
B (1) '13(0)+)' Ferde:
.

where the instantaneous Stern-Gerlach force F(t) is given by
F(t) = BT (1) DIBED),1)

while the time dependence of J(t) is governed by the equations

I

dJ/dt = vJ x B(F(t),t)

Solution of equations (1-1), (2-1)-(2-4) gives T(t), P(t), a

(2-1)

(2-2)

(2-3)

(2-4)

nd

E(t) as a function of T(0), p(0), t and 3(0). In many cases, if t is



made sufficiently large, there is a correlation between T(t) and J(t),

so that measurement of the intensity distribution in the beém enables

one to draw conclusions about the allowed values of J. It is difficult
to solve equations (1-1), (2:1)-(2-4) for a general B(f,t). The
essential features of the Stern-Gerlach experiment can be found by using
the "impulse approximatdon', which, in fact, is a very good approximation
for the experimental arrangement used here and described in the next

chapter.

Impulse Approximation T(t)=r(0)=T=constant in the region Bl(f)#o

In this approximation the change in momentum AF due to the Stern-
Gerlach force is calculated, assuming that the displacement of the atom
in the region of the inhomogeneous field is negligible. This change in
momentum can be measuréd by allowing the atoms to undergo free flight
for a time t between the inhomogeneous field region and the detector,
so that the displacement due to the Stern-Gerlach force is related to
the momentum change by

AT = (T/m) 4D (2-5)

Now, if one calculates any component Fl(t) of the Stern-Gerlach
force, using equations (1-1), (2-3) and (2-4) one obtains a plot such
as that shown in Fig. 2-1 in which Fl(t) is made up of a constant term
plus other terms which oscillate sinusoidally with time. For times
that are long compared with the period of oscillation T, of Fl(t),
Apl(t)’is proportional to the time-averaged value of Fl’ which is the

constant term, i.e.
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Figure 2-1. Schematic plot of a component of the Stern-Gerlach force

versus time in the impulse approximation.

«:2*,

Figure 2-2. Representation of the rf field in the rotating coordinate
system (%X,¥,z). It has been assumed that El(i) is in the
X,y plane and makes an angle -¢ with respect to the x-axis.

J3 is the component of J along the effective field at t = 0.



(Ap(t))"t > 1, a t<F(t)> (2-6)
The component of J which is quantized in each of the 2J + 1
deflected beams is found by examining the dependence of éf(t)> on J.
For the conventional Stern-Gerlach experiment, w = 0 and it is obvious

from equations (1-1), (2-3), and (2-4) that

3B, (T)

(AP (t)) . = Ot —— (2-7)
o .

t >>
so that JZ is quantized. For w # 0, this is no longer true, as will be
seen below.

We first write down equation (2-4) in the impulse approximation

after making the transformation
J =J_+1iJ =J e (2-8)

Jx’ Jy’ and JZ are the components of J in a coordinate system rotating

with angular velocity & about the z axis.

A

aT /dt = Ti(red. + 1/20. 3 ) +i(w. cos wtd. - 1/2w et2iuty (2-9)
+ T o+llAed, Vel =10, Wty “1%° B
_ o~ ~ o~ 2ipt = 2ipt
dJ_/dt = -1/4i(F,0; - I w),) - 1/4iT,0, e - T e ) (2-10)

where



Aw = w-w_, w_ = -yB (2-11)

+ i (2-12)

€
n
1
<
lon}
[—
—_
2]
~—
-
e
1
e

It is well known (Winter 1955) that the term involving wy, €os wt
~gives rise to resonance effects at w = wo/Zn, while the terms in wl+e+2lwt

~ give resonances at wo/(2n+1), where n is an integer. These multiple
quantum effects are important when the inequality B1 << Bo is not satis-
fied. As we shall demonstrate in Chapter 4, a large resonance is indeed

observed in the TSG experiment near w = wO/Z for large values of Bl'

Replacementbof the Linear Oscillating Field by a Rotating Field

We now assume that the Qalue of Bl is sufficiently small that the
influence of the terms which are explicitly time dependent in equations
(2-9) and (2-10) is negligible, so that these terms may be dropped.

This corresponds to assuming that B, = 0 and to replacing the magnetic

1z
field §1(§) cos wt by (1/2)§1(T)eiwt, i.e., one of amplitude (1/2)B1(f)
and rotating with angular velocity w about the z axis. Of course, a
linear oscillating field is decomposed into two oppositely rotating
fields, but only the one that rotates in the same sense as the spin
preceséion is effective near resonance for small B1 (see, for example,
Ramsey 1963, p. 146). It is well known that under these conditions the
vector J = (Jx’Jnyz) precesses about the effective field at an angular
frequency

2.1/2

w = [(w)? + 1/4 0,°] (2-13)

(S



H)'e is oriented at an angle ® with respect to the z axis, as
illustrated in Fig. 2=2 for an r-f. field oriented in the x-y plane
in the laboratory frame at an angle -¢ with respect to the x axis at

the position r. Representing this by a complex number,

Bl(r) = B (F) + iB) (F) . (2-14)

1}
o
~
1]
~—
]
1
=
©

the angle 6 is given by

w
1
tan 6 = 1/2 ——— = - 7= (2-15)

We specify the initial conditioﬁs'foy_} in terms of a coordinate
system fixed in the rotating frame. J3 is the component of Jatt=0
along the effective field, which has polar angles (6, -¢) as shown in
Fig. 2-2. J1 and J2 are the components along the axes Héving polar
angles (1/2m + 0, -¢) and (1/2m, 1/27 - ¢), respectively. 1In terms of

these initial conditions, the solutions to equations (2-8), (2-9), and

(2-10) are as follows:

J (t) = J_*(t) ='{1/2(1+cose)(Jl+iJ2)exp[i(m+we)t]+1/2(1—cose)
(Jl—iJz)exp[i(m-we)t]+Jssineexp(iwt)} exp(-i¢), | (2-16)

Jz(t)= -1/251ne[(J1+iJ2)exp(iwet)+(Jl—iJz)exp(-iwet)]+J3cose (2-17)
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Using equations (2-3) and (1-1), the Stern-Gerlach force may be

written

_ 3B, () 3B, (T) 5B, (T)
F(t) = Y‘ﬁ[Jx(t) X + Jy(t) ———337—— + Jz(t) 57 ]coswt

Special Case

In the experiment to be described in the next two chapters the
oscillating field was produced by a four-wire system, as shown in
Fig. 2-3. Near the center of symmetry of the four wires (r << Ro), the

field is well approximated by
Bl(f) = G(x-iy) = GT (2-19)

where G is the gradient of the field having dimensions gauss/cm and is

~given by

G=0.81 (2-20)

[¢)

=

where I is the current in each wire in amperes and Ro is the distance in
centimeters from the center of symmetry to the center of each wire. The
orientation of this field for a position T = x+iy is shown in Fig. 2-3.

Using eqs. (2-18) and (2-19), it is seen that

F(t) = yhGJ(t)coswt (2-21)
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Figure 2-3. Illustration of the orientation of El(f) = G(x-1iy) at a

position T = x+iy.
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From equations (2-16) and (2-21), we see that f(t) consists of terms which
oscillate at frequencies Wes 2w, and 2w * W In addition, there is one

time-independent term which gives the time-averaged force to be
<F(t)> = 1/2 viGJ, sins et? | (2-22)

This expression contains the following information.

(a) The time-averaged force is proportional to the value of the compon-
~ent of J along the effective field in the rotating frame. It is this
component of J which is quantized in the generalized Stern-Gerlach
experiment on neutral atoms. It may be noted that this component of J
is independent of time in the inhomogeneous field region.

(b) The change of momentum Ap is‘in the radial direction in the x-y
plane. Since J3 is quantized, a circular beam is decomposed into 2J + 1
rings. The same effect is-obtained for the conventional Stern-Gerlach
experiment for this geometry (Beenewitz and Paul 1954).

(c) The dependence of AP on frequency is contained in the factor

Y1

sind = ,
72[(Aw)2+w12/4]

1/2

Therefore, when the rotating field approximation is valid, the change
in momentum is maximum at the Larmor frequency and is an even function
of Aw. It may be noted that the conventional Stern-Gerlach experiment
for this geometry (Bo = 0 = w) is also described by the theory.

In addition, one can say from the argument presented in going .from

equation (2-21) to equation (2-22) that, in order to establish -
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quantization of J along the effective field, the time spent by the atoms
in the inhomogeneous field region must be much greater than the period
of precession in the effective field, i.e., t >> wl_l.
Finally, the results given here may be compared with the quantum
mechanical calculation of Bloom and Erdman (1962) for J = 1/2. A
potassium atom having the average velocity in a typical beam experiment
has a de Broglie Qavelength much less than 10—8 cm, while the collimation
system used in this experiment (and other typical beam experiments)
localizes the atoms.to not less than 5 x 10_3cm. Thus, quantum mechanics
is only needed to describe the angular momentum properties of atoms.
When the spin functions associated with different localized wave packets
(in momentum space) in the quantum mechanical calculation (Bloom and
Erdman 1962, equations (28)-(36)) are examined for arbitrary w, it is
seen that they correspond to spins quantized along the effective field.
For J = 1/2, there are only two such spin states. However, at the low
fields at which the present experiment was done, the nuclear spin, I =
3/2 is strongly coupled to the electron spin J to form a total angular
momentum F = 1,2, In weak external fields, these split into eight Zeeman
components with five distinct effective magnetic moments MFgJﬁOM,MF = 2,
1, 0, -1, -2, where Ko is the Bohr magneton and g5 is the Landé g factor

of the 2 ground state of potassium.

$1/2



CHAPTER 3

Experimental Procedure

The main aim of this experiment was to detect the predicted trans-
verse Stern-Gerlach resonance and to check the theory of chapter 2. Since
measurement of the resonance frequency to an accuracy of a few percent
was sufficient for this purpose, it was possible to keep the design of the
equipmenf relatively simple. A schematic diagram of the overall system
is shown in Fig. 3-1.

A potassium beam was chosen since potassium atoms are easy both to‘
produce and to detect. The beam was produced by heating potassium metal
to 300°C in an iron oven, with a hole of diameter 0.005 cm to form the
beam. This temperature corresponds to a vapor pressure for potassium
of about 1 Torr. A single filling of the oven was sufficient to last
for 60 hours of continuous operé£ion. Micrometer adjustments were
provided to position the oven in the plane transverse to the beam.

The collimation was done with a hole placed 31.4 cm from the oven.
Any one of three different sized holes of diameter 0.17 cm, 0.0125 cm,
0.005 cm, respectively, could be brought into position by admustment of
a single micrometer.

The center of the deflection system, which was 10 cm in length,
was placed 15.6 cm from the collimating hole, and the detector opening

was 196 cm from the collimating hole. The long free-flight region of
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about 180 cm which this provided had the advantage of increasing the
size of the deflections and correspondingly reducing the tolerances
necessary for the detector positioning and opening.

The detector was a tungsten hot-wire ionizer. The ions were
collected on an electron multiplier after crude mass analysis. The mass
spectrometer was really not necessary but was used because it was an
integral part of the ionizer which was already on hand. The détector
opening was rectangular and was formed by four knife-edged jaws which
were each positioned by a micrometer. The hot wire was 0.018 cm in
diameter and was placed 25 cm from the detector opening.

The beam was chdpped at 30 c.p.s. with a toothed wheel driven by a
synchronous motor. The output of the electron multiplier was amplified
with a narrow-band 30 c.p.s. preamplifier, with a gain of 100, and then
fed into a commercial lock-in amplifier (Princeton Applied Research
Model JB4).

With the K oven at about 300°C a beam collimated with the 0.005 cm
diameter hole gave a maximum output current of 10_9 A from the electron
multiplier. With an estimated gain of 105 for the multiplier, this
meant that the incident K beam corresponded, after ionization, to an
ion current of about 10_14 A (neglecting losses in the mass spectrometer).
Commercial tungsten wire, even the so-called undoped kind, contains large
amounts of K impurity and an initial trial showed that the noise from
the wire would swémp any expected resonance signal with observation time
constants of a few seconds. Hence it was necessary to go to a potassium-
free wire grown from W(C0)6, according to the recipe-described by Greene

(1961). With such a wire and the maximum usable oven temperature of 300°C
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we obtained a signal-to-noise ratio for the direct beam of 30 to 1 with
a 3-second time constant on the lock-in amplifier.

The vacuum system was built partly of brass and partly of nonmagnetic
stainless steel. Three oil diffusion pumps with liquid nitrogen cooled
baffles were used, one in each of the two end chambers and one in the
free-flight region. The three regions could be isolated from each other
by valves. A pressure of 3 x 10_7 Torr was obtained, except in the oven
region, where the pressure was 8 x 10-7 Torr.

The deflection system consisted of a solenoid and a quadrupole
wire system, as illustrated in Fig. 3-2. Four push rods at each end of
the solenoid allowed a three dimensional positioning of the entire
assembly within the vacuum envelope.

The solenoid had overwound ends and gave a measured homogeneity of
1 part in 600 over the 10-cm center region.

The method used to match the very low resistance of the quadrupole
wires to the nominal 50-ohm output of the r-f. source was to make the
quadrupole wires part of a parallel resonant circuit, as shown in Fig.
3-3. The circuit used had an impedance of 120 ohms at a resonant fre-
quency of 7.22 Mhz.

The maximum current used in the wires was 11.3 A (peak). This
corresponds to a driving voltage across the circuit of 65 V r.m.s., and
a total power dissipation of 35 W in the circuit. To absorb this heat,
the wires were cemented with epoxy into accurately machined brass blocks,
and the silvered mica capacitor was glued to a copper plate in thermal
contact with the rest of the system. This assembly was all mounted in a

water-cooled copper tube on which the solenoid was wound.
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The brass backing blocks produce image currents which act as a second
quadrupole system with twice the relative spacing of the wires. These
image currents reduce the field gradient due to the wires by about 25%.

The maximum wire currents used (11.3 A (peak)) corresponded to a gradient
of approximately 680 gauss/cm, as calculated by using equation (21), taking
the image currénts into account.

To facilitate the alignment of the quadrupole wires with respect to
the beam, two holes 0.073 cm in diameter, one at each end of the solenoid,
were fixed relatively accurately on the axis of the quadrupole system.
These holes could then be located and the deflection system centered,

using the beam intensity as the indicator.

A crystal controlled oscillator (Heathkit SB-400) driving a one-
kilowatt linear amplifier (Heathkit SB-200) was used for the r-f. power
source.

The deflection of an atom having initial velocity v parallel to the
z axis 1s Cv_z, where the constant C is obtained from equation (2-22) (at
resonance, put sin 6 = 1) and equation (19.3) of Kﬁsch and Hughes (1959).
The average deflection is found by first showing that (v_z) = m/ (2kT),
using the velocity distribution function of the beam. For our system T =
573°K. For 39K in a small field Bo’ it is appropriate to calculate the

deflection of an atom in a spin state M_ = 1, since the statistical

F
weights of the states M

£ 2, 1, 0, -1, -2 are 1, 2, 2, 2, 1, respectively.

In order to compare with experiment, we give here the result of 0.011 cm

for the average deflection for a gradient of 430 gauss/cm.



CHAPTER 4

Experimental Results

The theoretical predictions which have been verified are contained
in eq. (2-22). The significance of this equation is discussed
immediately following it in Chapter 2.

To verify the existence of the radial force field, a large diameter
beam collimated only by the 0.073-cm hole in the deflection system was
produced. This beam was of essentially uniform intensity over a diameter
of 0.3 cm at the detector. Since the expected most probable deflection
was less than 0.03 cm, no large change would occur in the intensity
profile except near the point corresponding to the origin of the radial
force field. Here an increase in intensity should occur with a radius
approximately equal to the average deflection, reéulting in a sort of
"pip" at the center of a uniform field. This is due to those atoms
which are forced inwards and converge on the center area. This focusing
effect is a consequence of any deflection system that produces a
constant radial force field, and is identical, for example, with that
obtained in a conventional quadrupole focusing experiment (Bennewitz
and Paul 1954). This "pip" or focused spot was explored in considerable
detail by moving the detector aperture, previously described, over the
area of the pip. The aperture dimensions were set at 0.010 x 0.010 cm.
The results are shown in Fig. 4-la.

In Fig. 4-la each curve represents a step-by-step scan of the beanm
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field in the vertical direction. The different curves correspond to
different horizontal settings of the aperture. Each point on the curves
was obtained by measuring the beam intensity first with the deflecting
field off (strictly speaking, with the solenoid field off so that the
quadrupole field was off resonance) and then with the deflecting field
on. The percentage increase in intensity is plotted along the ordinate
of the figure. From this family of curves a rough contour ﬁap of equal
intensity lines may be constructed, as shown in Fig. 4-1b. Neglecting
for the moment the secondary peaks in Figs. 4-la and 4-1b, it may be
noted, first, that the focusing effect is approximately cylindrically
symmetric; secondly, that it occurs completely within a diameter of
about 0.1 cm, with no other observable fluctuations within the 0.3—cm
diameter circle, over which the whole beam extended; and thirdly, that
the half width at half maximum of the focused spot for a gradient of
430 gauss/cm is about 0.025 cm, which is in agreement with the ordér

of magnitude calculated in a previous section.

The center of the focused spot is assumed to be the position of the
symmetry axis of the quadrupole wires in the plane of the detector.

The secondary peaks shown in Figs. 4-1la and 4-1b probabiy arise
from some aberration in the focusing system. They almost certainly(ﬁo;?
not arise from any spatial resolution of fhe beam into its varioﬁs5¢§m—
ponents since the beam is broad compared to the deflecting power
available.

The focusing effect was then studied on a very fine beam. With a
collimator hole 0.005 cm in diamter, the undeflected beam profile is

shown in Fig. 4-2.
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The full width at half intensity is about 0.030 cm. The effect

of turning on the quadrupole field is as shown in Fig. 4-3, the results
having been obtained and plotted in exactly the same manner as those
in Fig. 4-la. One can see that the curveé are roughly symmetrical about
the vertical = -20 x (0.001 cm) position and that there is a strong
focusing action at vertical = -20 x (0.001 cm) and horizontal = -15 x
(0.001 cm). This position coincides with the center of the focused
spot represented in Figs. 4-la and 4-1b. In other words, it is the
position of the symmetry axis of the quadrupole wires at the detector.
Since the zeros of the axes in Fig. 4-3 correspond to the center of the
undeflected beam, the quadrupole wires and the undeflected beam were
aligned to about 0.02 cm in 180 cm (the free-flight length) or 1 part in
104.

As shown in Fig. 4-3, there is a depletion of atoms at about 0.025 cm
from the deflector axis (as measured in the plane of the detector).
Father out in the wings of the beam there is a positive change in
intensity again, indicating that some atoms have been thrown outwards
from the center of the beam. These are defocused atoms, i.e., atoms
which, in the rotating frame, have effective magnetic moments in the
X direétion of opposite sign to those of the focused atoms. If that
is so, then we have resolved the beam into two components. Apparently,
our low deflecting power, coupled with the Maxwellian distribution' of
yelocities in the beam, has precluded our observation of all five of
the expected components. It should be pointed out that, because of the
preliminary nature of the present experiment, no attempt has been made
to achieve the ultimate in resolution or line shape.

Fig. 4-4 shows the field dependence of the resonance.. The
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detector position and opening were held fixed with respect to the beam,
in a position that had é good signal-to-noise ratio. The strength

of the quadrupole field‘Bl, at constant gradient, acting on the beam
was varied by moving the deflection system and holding the beam fixed,
in other words, by sending the beam down the deflection system at
different distances from the zero axis. The field gradient was changed
by changing the r-f. voltage drive across the system.

The curves were obtained by holding the frequency fixed at 7.22 Mhz
and changing the solenoid field (Bb) in discrete steps, and reading the
output meter of the lock-in amplifier. The undeflected beam intensity
was periodically checked to ensure that the system was not drifting.

These curves are in agreement with eq. (2-22). The resonance
maximum occurs for Bd = wo/y = 10.4 gauss, the field for a Larmor
precession frequency of 7.2 Mhz, and the line width for each curve,
~given by the plot of sin.,6 versus B> is approximately equal to By- No
attempt has been made, however, to make a detailed theoretical fit of
the observed line shape.

The double quantum resonance which appears in two of the curves of
Fig. 4-4 is discussed theoretically in chapter 2. It occurs for large
B.1 (10 to 16 gauss) as predicted, but in this experiment a large Bl
only occurs in the region of the quadrupole field where the higher-

order terms of the expansion B, = Gl(xi - yj) + Gz(x2 - yz)i + ... are

1
becoming important. The effects of these higher-order terms have been
neglected in the theory, as have been the components of B1 parallel to
Bo’ which occur nearvthe ends of the wires.

The shift of the double quantum resonance towards lower fields

which is apparent in the two curves is probably a Bloch-Siegert shift
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(Ramsey 1963, p. 222), which results from the use of a linearly

oscillating field B1 instead of a true rotating field.
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CHAPTER 5

A Proposal for a Charged Particle TSG Experiment

The major obstacle to performing a conventional Stern-Gerlach
experiment on charged particles is that the Lorentz force associated
with a charged particle moving in a magnetic field is far larger than
the Stern-Gerlach force. The spread of velocities inherent in any ionic
beam would give rise to an uncertainty in the Lorentz force which would
undoubtedly mask the effect of the Stern-Gerlach force.

When thg neutral particle TSG experiment was proposed it seemed
likely that it would be adaptable to charged particles, since it would
be possible to send a charged particle beam parallel to the large
homogeneous magnetic field and to observe resonant displacements in the
plane perpendicular to this field due to an oscillating inhomogeneous
magnetic field. Some of the difficulties associated with one special
type of charged particle TSG.experiment have already been discussed
(Bloom and Erdman 1962; Rastall 1962; Byrne 1963).

In adapting the neutral particle TSG experiment to charged particles
‘our preliminary thoughts were that in this geometry the amplitude of
the ion beam oscillations produced by the oscillating Lorentz force
would be inversely proportional to the frequency of the oscillating
magnetic field, so that by using a high enough frequency these oscillations

would not seriously impair the spatial resolution of the beam or the
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Stern-Gerlach effect. In general terms these conclusions were correct,
although at the time it was not realized that this system is one of a
broad category of strong focusing systems.

Preliminary work was begun on the extension of the ac quadrupole
system, which was used in the neutral particle TSG experiment, to charged
particles. Much of the work at this stage went into producing an ion
beam, but several prototype ac quadrupoles were also built. At the
outset, it was realized that two major problems would have to be over-
come to utilize the ac quadrupole for a TSG experiment with ionic beams.
The first problem was to reduce the electric field produced by the voltage
drop along the wires. This electric field was sufficiently strong, for
the low energy beams which must be used, to produce very large oscilla-
tions in the beam. It was realized much.later that this electric field
could be utilized to good édvantage to cancel the magnetic Lorentz force
oscillations, but this did not eliminate the problem of reducing it
without significantly reducing the oscillating magnetic field.

The second problem was to cool the quadrupole wires sufficiently
well that very high field gradients could be produced.

Most of the work which went into the ac quadrupole was centered
on these two problems; however, the auxilliary problems of generating
high power RF (the designs were based on an RF power input of 4000
watts), grounding and shielding it, and matching the impedances, also
took considerable time.

In the middle of this development it was realized that a much
simpler system could be built using time independent currents in a

helical quadrupole, such as is illustrated in Fig. 5-la. This idea led



Figure 5-la. A helical quadrupole wire system.

¢

Figure 5-1b. A quadrupole wire system showing the electrodes necessary
to produce an electric field orthogonal to the magnetic

field.
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to the extension of the TSG experiment to space varying fields as
mentioned in Chapter 1, and finally we realized that we had been
working all along within the general concept of strong focusing systems.
Several months later we added an electric field orthogonal to the
magnetic field in the quadrupole,as illustrated in Fig. 5-1b, which
serves the important function of neutralizing the major portion of the
Lorentz force, for a particular beam velocity.

When the dc helical quadrupole is used, rather than the ac quadru-
pole, the following important simplifications occur. There are no skin-
depth or induced current phenomena, so that additional electroges; for
control of the electric field may be inserted into the quadrupole
without attenuating the magnetic field. Also, the full cross-section
of the quadrupole wiresca;rieé the curreﬁt so that the resistance and
the power dissipated are both less than for the ac case. In fact, it
should be appreciated that since the magnetic field gradient and resistance
are each inversely proportional to the cross sectional area of the wires,
and since the cooling capacity varies at ieast in proportien to the area,
one can make this system as large as necessary without having the cooling
capacity lag behind the power reﬁuired to maintain a given field gradient.
Finally, it is much easier to produce, shield and ground, and match
impedances, for dc currents than high frequency ac currents.

So far, we have restricted this discussion to a helical quadrupole
formed from current-carrying wires, since this is a form of construction
which is simple and straight forward, and which has the important
advantage that the additional electrodes which are inserted to produce

the orthogonal electric field may be made concentric with the quadrupole
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" wires, as illustrated in Fig. 5-1b. Such a construction should give a
very high degree of field orthogonality. However, a helical quadrupole
field may also be produced using iron-cored magnets, as illustrated in
Fig. 5-2. In this case the electrodes producing the orthogonal
electric field must be placed between the iron poles, and the ortho-
gonality achieved may not be very good. Finally, it is possible that
super-conducting quadrupoles can be developed which would significantly
increase the magnetic field gradients which can presently be attained.

In Chapter 2 we have given tﬁe classical theory of the transverse
Stern-Gerlach experiment for a neutrél particle. It is clear that the
conclusions presented there regarding the Stern-Gerlach force may be
carried over directly to the charged particle case, since it is not
necessary to consider the Lorentz force unless one wishes to compute
trajectoriesQThat is, a neutral particle or a charged particle, if
placed in the same field configuration, will experience the same Stern-
éerlach force.

In the following,‘we essentially repeat much of Chapter 2 for the
particular case of a particle moving generally in the z direction in
a time-independent helical quadrupole field.

The Stern-Gerlach force is given by:

FSG = (U -Q)B(F,2) (5-1)
or
- 3 3_ 9 _
Fsex = (g 3x * Yy 3y MR TIRL (5-2a)
- 9_ 3 9_
FSGy w5z * Yy gy Yz 5z )By (5-2b)
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Figure 5-2. An iron core quadrupole, showing the electrodes necessary

to produce an electric field orthogonal to the magnetic

field.
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In the helical quadrupole B(F,z) is given by:

- . ~ ”» A
B(r,z) = B i+ By% + B K

BX = GB(x sin 2@z - y cos 2wz)
By =-GB(y sin 2wz + X cOs 2ywz)
B_ = constant

0

Therefore, substituting equation (5-3) into (5-2) yields:

Foax = GB[uX sin 2wz - u, cos 2wz ]
FSGy = -GB[uX cos 2wz + uy sin 2wz]
Fsgz = O

If we rewrite equation (5-3) in the form:

B(F,z) = By(P)e % + B &

Bl(r) GBr'

(5-2¢)

(5-3)

(5-4)

(5-5)

(5-6)
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then it is obvious that in a coordinate frame moving in the z direction
at velocity Vs the field B(f,z) will consist of a component §1(T)
rotating with the angular velocity ZQyO, and a solenoid field Bo'

We now define a coordinate frame X,y which is centered on the
particle and which rotates in time at the angular frequency w about the
z axis, such that the angular velocity of the component §1(f) about
the z axis in the frame X,y is zero.

Since in éeneral the particle may have an angular frequency S0 in

time about the z axis (arising from the Lorentz forces, for example)

we have the result that;
w= 2wV - w (5-7)

where

w o= angular frequency in time of the particle about the z axis

In the coordinate frame X,¥, jnprecesses about the effective field

<

at an angular frequency

o = [+ 0 Y2 (5-8)
e 1
where
Aw = W s Wy = —yBO (5-9)
wy = -vBy (F) (5-10)
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The effective field is oriented at an angle @ with respect to the

z axis (as illustrated in Fig. 5-3a) where:
tan 6 = - — (5=11)

If, as in Chapter 2, we take J., as the component of T along the

3

effective field at t = z = 0, and then calculate the time-average of the

Stern-Gerlach force, it is clear that only the components of J3 will

yield a cummulative force, since only J, is synchronous with the

3
field Ta'l (F) (This is shown explicitly in Chapter 2).

Noting from Fig. 5-3b, that;

B
u, = yﬁJ3 sing X + terms oscillating at w, (5-12a)
B,
B
u = YﬁJS sing —X— + terms oscillating at u% (5-12b)
g B, ()]

we can substitute equation (5-12) into (5-4) to yield, for times large
1

compared to ;—‘
e

<Fon.> = yRJ, sine |G | =

sex” T Yhz St Bl T

<Fo..> =vyhJ, sing |G,| Z

SGy 3 B! T

This may be written

A
1
\'
1

- viI, sim |Gyl (5-13)
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with

!
sinf = (5-14)
[(Aw)Z . w12]1/2

Therefore the time averaged Stern-Gerlach force is radial, with a
magnitude that depends on the sin 6 factor noted above. This result is
essentially the same as equation (2-22) in Chapter 2, except for a
factor of 2 which enters because the linear oscillating field of the
Chapter 2 system is‘decomposed into two rotating components which have
1/2 the magnitude of the original field.

We have discussed the detection of the neutral particle Transverse
Stern-Gerlach effect in Chapters 3 and 4, and indicate in this Chapter
that other detection techniques may be more suitable for the charged
particle case. We can suggest four methods of detection as follows;

1) Resonant Deflection Method

The method used for the neutral particle case may also be used for
charged particles. This method involves a resonance in tﬁe Stern-Gerlach
force via the.sin 6 factor .(see equation 5-14), and the detection of a
consequent change in the intensity distribution of the bean. >The
resonance in the case of the helical quadrupole field could be produced
by fixing Vs thus fixing the apparent angular frequency of the helical
quadrupole field in the rest frame of the particles, and then tuning the
precession of the magnetic moment to this frequency using the longitud-
inal magnetic field Bo' As we shall see later, the width of the resonance
is anticipated to be very large. The fact that the longitudinal field

also produces a direct effect on the beam intensity distribution makes
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the resonant deflection method much more difficult than for the neutral
particle case.
2) Computational Method

The computational method involves a detailed comparison of the
experimental beam intensity distribution as a function of the various
experimental parameters with that computed from the equations of
motion for the charged particles. It would be necessary to pick out
those features of the intensify distribution which are associated with
the small Stern-Gerlach force.
3) Comparison Method

In this method the intensity distribution of beéms of similar ions
having differen; magnetic moments Would be compared and the effects
characteristic of the Stern-Gerach force exhibited. For example,
4He+ ions in the ground state would have two magnetic states correspond-
ing to magnetic moments of approximately tu;, where “Q is the magnetic
moment 6f the electron. On the other hand, 3He+ would have 3 values
for the projection of the magnetic moment along the external magnetic
field in low magnetic fields because of the effect of the nucleus of
spin 1/2. The magnetic moments of these states would be approximately
Hes O and -y wi?h vrobabilities, 1/4, 1/2, and 1/4, respectively.
45 The Rabi Magnetic Resonance Method

The Rabi method (Ramsey 1963) consists of sending the ions through
a system composed of a "polarizer'", a ”depolérizer" and an '"analyzer'".
The polarizer and analyzer for charged particle Stern-Gerlach experiments
would be helical quadrupole systems which each produce a ceftain intensity

distribution at the output given a certain distribution of intensities and
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spins at the input. If the distribution of spins at each position in
the beam were changed in the region between the polarizer and analyzer,
the intensity distribution at the output of the analyzer would also be
changed. Transitions between different spin states can be produced by
a depolarizer in which the spins undergo magnetic resonance. For
charged particles the depolarizer would consist of a longitudinal time
independent field and a transverse nf. field, both of these magnetic
fields being homogeneous. When the usual magnetic resonance conditions
are satisfied, the probability of a particle undergoing a transition
from one spin state to another in the depolarizer is large. When the
beam passes from the polarizer through the depolarizer to the analyzer,
it is necessary to satisfy conditions of "adiabatic passgge" (Abragam,
1961) in order to preserve the direction of quantization of the spins
when the magnetic resonance éonditions in the depolarizer are not
satisfied. |

It would seem that of the four methods described above the Rabi
method is the best oné. This method differs from the other three in
that a change in the inténsity distribution of the beam is achieved by
varying a parameter (the frequency of the rf. field in the depolarizer)
“which has no appreciable direct effect on the intensity distribution,
but whichveffects the intensity only by changing the populations of the

spin states.



CHAPTER 6
The Trajectories of an Ton with Zero Magnetic Moment in a DC Helical

Quadrupole

In the following chapters we are attempting to find out whether a
helical quadrupole system can be used to separate spin states in a
Stern-Gerlach experiment. A basic theoretical requirement for such a
study is the calculation of reasonably precise expressions for the
particle trajectories. The ‘direct approach, of finding the Solutiops
to the equation of motion of an ion with a non-zero magnetic moment in
a helical quadrupole system is complicated because the equation 1is
non-linear. It has not, to our knowledge, been solved. We have, however,
developed approximate, but useful solutions which are based on the
characteristics of the average Stern-Gerlach force given by equation
(5-13). In this chapter we are only considering the trajectories of
ions with zero magnetic moment. For this case the equation of motion
may be solved exactly in the axial region, and we have done this in
appendix B.

In Chapter 7 we have developed solutions for a charged particle
with non-zero magnetic moment which are valid in the limit that the
Lorentz force is comparible to the Stern-Gerlach force. In this limit’

it is a valid approximation to decouple the radial motion from the
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tangential motion. The radial equation of motion which results is linear
and is solved in Chapter 7.

In Chapter 8 we have developed approximate solutions based on the
similarity between the radial nature of the average Stern-Gerlach force
given by equation (5-13) and a force of the form @, where ¢ is a constant.
We show that the coefficient ¢ may be chosen to represent the cummulative
~effect of the Stern-Gerlach forFe over a range of z which must be specified.
The substitution of the force 6@ for the average Stern-Gerlach force
reduces the equation of motion to a linear equation, and the solutions to
this equation, evaluated at the end point of the arbitrary interval
over which ¢ represents the cummulative effect of the Stern-Gerlach force,
yields for each interval a point of the trajectory.

In thg test of this chapter we are only considering the motion
caused by the Lorentz force with the solenoid field absent, since an
understanding of this motion is very helpful béfore considering the
additional effect of the Stern-Gerlach force. We show that this motion
has a very simple character in the two extreme regions of operation.

For very weak forces the motion is almost planar with a sinusoidal
amplitude. For strong forces a magnitude of the Lorentz force is

defined beyond which the motion is divergent. This may be called the
point of instability, since .the beam 'blows up' quite rapidly beyond this
point. At this point the trajéctdries are closely approximated by
diverging spirals, with the radius growing linearly with distance along
the optiq axis, and the spiral pitch synchronous with the helical
winding. |

Between the two extremes, the trajectories are bounded and periodic
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with four characteristic frequencies, which reduce to twe 'in the helical
frame of reference defined in appendix B. . The motion is rather like a
corkscrew twisted about the optic axis in this region.

In appendix B, we give the derivation of the equation of motion
for a helical quadrupole which includes both magnetic and electric field
~ gradients (GB and GE) and a solenoid field (BO). As we have mentioned,
a radial force term (&) is also included, but for the rest of this
chapter we are considering only the case for ¢ = 0.

Except for the inclusion of ¢ and Bo, these equations are discussed
quite extensively in the 1iteréture. G. Salardi et al. (1968) studied
the device as a lens to collect and focus charged particles. K.J.

Le Couteur (1967) studied particle guiding in helical.multipole fields
and the quadrupole in particﬁlar. He also considers the higher order
terms which are important in the off-axial region, and shows that the
device can be bent into a circle and still confine a beam. L.C. Teng
(1959) studied the device in the axial region. A.M. Strashkevich et al.
(1968) shows that at relativistic velocities it is possible to make

the device somewhat achromatic by adding the equivalént of the term GE
described in appendix B. N.I. Trotsyuk (1969) shows that the device can
be used to focus atoms and molecules under certain conditions.

Note that the electric and magnetic fields are orthogonal to one
another, and as usual under this condition, the respective forces are

colinear. For this reason the gradient terms appear in a single parameter
O:

- 2
Q@ - 5 (GE + voG
my
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In most of the literature this point is not explicitly noted, since
the concern is usually only with the magnetic field, because of its
strong focusing properties.for energetic particles. For our purposes
this is an-important.point because by choosing GE to cancel the term
VOGB we can make @ arbitfarily small without sacrificing the magnetic
field gradient, which of course produces the Stern-Gerlach effect.

The solutions in appendix B are stric%ly valid only for small
displacements from the optic (z) axis. Pearce (1969) has shown by
 numerical integration that for displacements less than L/20, where L is
the helical step length, the equations are valid; When the displacements
are greater than L/20, the axial magnetic field becomes appreciable, non-
linear terms appear in the equations of motion, and the sysfem becomes
more sfrqngly fbéusing.

If, in appendix‘B, we put Bo = 0, the term W reduces to w, and if,

in addition, & = 0, we can write the trajectories, equations (b-22), as:

x = x cosyg.z + 2Ly sing z + Zo [cosw,z-cosw, z]
- o .T=2 w ‘o 1 =27 7T=1
wX W
+ =2 [—g singlz; —g-singzz] ’ (6-2a)
@ 23.1 W
W Qi
Y = Y C0swz - —= X sing,z + [c05glz-costz]
=2 @
W, W
+ 0 [—i sing z- & singz] (6-2b)
(5] = =2

where
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9.)22=<.v.2- o
w—ﬁr—
- L

(6-2c¢)

If @ is small, we can rewrite these equations by expanding 9y

and (o

@, re* /2@ )
}@Q << 1
W, =w - 1/20/

(6-3)

Then applying simple trigonometric transformations, equation (6-2)

takes the form:

il @
X = X COsw,z + y sinw.,z + sinwz sin =—
- o =2 o] -1 - 2
i8)) Y
29).(0 _ @ 7
+ coswz sin 55
@ . &
29)20 Oz
Y T Y c0sez - XoSlngzz.- singz sin 5—
A (i) W
2wy Q:
+ coswz sin x—
o ~
2
for Q/u" <<1

Transforming to the laboratory frame;

(6-4a)

(6-4b)
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~
1}

XCcoswz - ysingz

«
1l

ycoswz + X Singz

©: O:

X & X _COSs + y sin =—— +
o} 2w o] 2
- 2 ¢ @
0: @z 2w
Yy® y COS —=— + X Ssin + —
o} 2w W
= ©

where

(6-5)

@ :

sin —2-—
(6-6)

Q:

sin '2—9-)—
(6-7)

then this motion is nearly planar, and we can describe it by the radius

r; (Note 1)
ZQI.‘O Q:
T = sin 7o +
@ -

(6-8)

Note that taking the limit as @ - 0 in equation (6-6), one gets

simple free flight, as expected:

Note 1:

T as used here is.strictly a one dimensional coordinate rather

than |F|, since both positive and negative values are allowed.
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0 o) (6-9)

We can make the following observations. The trajectories are
bounded provided @ < gz. For very small @, the motion is modified from

simple free flight to a long wavelength sinusoidal motion, with a half

period given by:

ZA) (6-10)
(i3)]

zp =
As @ becomes larger, the motion becomes more complicated with two
characﬁeristic frequencies, or modes, Wy and Wy- In this region one
must be careful about the relative importance of the axial (ro = 0) and
off-axial pérticles when @aking generalizations. Generally, when
discussinggthe.fécusing properties of these systems, only the axial

particles are considered. This involves the implicit assumption that:

wr
lr | <<] P | (6-11)

In many beam handling experiments this is a good assumption, but

in this experiment we are considering beams with

From equation (6-11), this means that we are only justified in
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~generalizing to axial particles if

® 5510 lq (6-12)

@

We introduce the useful dimensionless parameter "a'':

a=— (6-13)

Then the condition of equation (6-12) for a typical step length L = 2 x

1072 m, becomes;

a << 2 (6-14)

As will later be shown, this corresponds to a rather small value
of @.
Finally, we consider what happengﬁ,when Q© - 22, i.e., a = 1.

Taking the limit in equation (6-2), as @ >w 2, we get;

L]
X=x *ty, sin /2 gz + io sin V2 @z, ~9'[1-cos/§-22]
z /7 2
io :
Yy = -@x_z + y Cos /f'gz + Zr—[cos/E-gz - 1] (6-15)
.8 [/5 sinv2 wz _—
Yo‘————‘ig—‘*—‘
for a =1

Comparing terms, we note that the dominant term becomes;
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I.‘o
an[ro + 9—]
¢
¢ r0
ys -(@x +y )z + Ofr_ + Q_] (6-16)
for
. f'0
|(Q_xo + yo)z] >> O[ro + . ] (6-17)

For the values quoted earlier, i.e.

T = 10_4m
0
£ w1070
L = 2x 10 “m (6-18)
Condition (6-17) becomes
(6-19)

z» 3 x 10"°m

Under these conditions it can be seen that the motion is very soon
a simple spiral in the laboratory frame, with the spiral synchronous

with®the helix and the radius growing linearly with (z).



CHAPTER 7
The Trajectories of an Ion with Non-Zero Magnetic Moment in a DC Helical

Quadrupole for Weak Lorentz Forces

In this chapter an approximate equation of motion is developed
for the radial motion of an ion with non-zero magnetic moment in a dc
helical quadrupole system which is valid when the Lorentz force is
comparable to, or wéaker than, the Stern-Gerlach force. In the limit
that the Lorentz force is zero(@® - 0), the expressions yield the
exact trajectories of é particle experiencing the average Stern-Gerlach
force given by equation (5-13).

In order for @ to be small while maintaining a large Stern-
Gerlach force, orthogonal magnetic and electrig fields must be utilized
as shown in Fig. 5-1b. 1In this way the Lorentz force;

F = d(ﬁ . ¥ x B)
can be made arbitrarily small for a particular velocity, while maintain-
ing a large magnetic field gradient. From a practical point of view it
is probably not desirable to reduce the Lorentz force much below a few
percent of its value for the magnetic field alone, since this would

require an extremely monochromatic beam and also a very high mechanical

tolerance in the apparatus.
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In Chapter 6 it was shown that the trajectories in a helical
quadrupole in the absence of the Stern-Gerlach force are nearly planar
for small @ and near axial particles. Under these conditions the

radial dependence of the trajectories is given by equation (6-8);

(Note 1)
. |r0|<<| 29?0[
20r @ z :
T = 0 sin 29 * rO o (7-1)
@ @
T << 1
@
where
r(z=0) = T,
dr _ _ e
EE(Z—O) = ro

This equation is the solution to the equation of motion;

2
_ 2 d'r
Fy=m, 5~ —= : (7-2)
dz
where;
_ 2 2
FH = -mv_ (EQ—J (r—ro) (7-3)

In the region in which equation (7-1) is valid, we can approximate
the Lorentz force in the helical quadrupole by FH (equation 7-3). If
the average Stern-Gerlach force (equation 5-13) is added, a one

dimensional equation of motion is obtained which yields the desired

Note 1: r as used here is strictly a one dimensional coordinate rather
than |r|, since both positive and negative values are allowed.
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radial dependence of the trajectories in this region:

where

2 (¢§) u,|G,| ()]
d°r 2. A U317 2
£~§'+ (*EE? r=3—¢ )T, (7-4)
Z -
ug = yﬁJ3 sin ¢ ,(Note 2)
(7-5)
9 = I(sign r))(Note 3)

The solution to equation (7-4) is expressed in terms of the initial

displacement LN and the initial radial velocity fo as follows;

uSIGBI @: 2uT O:

o}

29 2 .
r=r + (=)9———-[1 - cos —— 1] + sin = (7-6)
o ) 2E 20 o 2w

It should be kept in mind that these solutions are valid approxi-

mations only for;

Note 2:

Note 3:

In Chapter 5 we have shown that the Stern-Gerlach force will be
radially inwards or outwards depending on the orientation of the
magnetic moment with respect to the effective magnetic field in
the system. The radial sense of this force will not change if
the adiabatic condition is not violated. However, in this one
dimensional formulation the adiabatic condition can be violated
in the axial region since the effective field goes to zero as
the particle crosses the axis. Thus, associated with Jz is a
probability that it may change in this region if the adiabatic
condition is violated. ' '

The factor 3 must be inserted because in this one dimensional
representation the sign of the Stern-Gerlach force depends on
the sign of r. '



(7-7)

Note that in the limit of @ -» 0, we obtain the exact trajectories
for the average Stern-Gerlach force alqhgé
. 2%l6]
+ Z

r=1r + T 2

ot Tt TaE 2 @ = (7-8)

This would apply to a neutral particle in a magnetic helical
quadrupole, or to a charged particle when the Lorentz force cancelation
is complete for orthogonal electric and magnetic fields.

A focal length is defined by;
r(zg) =T, (7-9)

From equation (7-6);

<<1

f
tan = - (7-10)
4w Qu- GBI © '
23.2

Also note from equation (7-6) that all particles are refocused

for:

@ :

Zz— =2m; n=1, 2, 3.... (7-11)

Since this focal point is independent of Uz, MO Stern-Gerlach effect
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would be observed.

From equation (7-8) the focal length for Q@ =0 is;

4ET
(o]

Z,= - ; @ = o0 (7-12)
f u3!GB

This focal length is only defined for ug < 0. Differentiating equation

(7-10) yields the change of focal length (Azf) for a change in u

3$
2uT
. 4ET Au3 lro|<<| = °|
o
bz = ( ) (48 (7-13)
£ W26, B @ is)
3I7B 1+ o) - )2 — << 1
(_1_)113 B w
Or, expanding about u; = 0;
QznglAu3
Azf e (7-14)
_ E1'~0®

From equation (7-6) the maximum excursion, r ax? oceurs for z = z

where;

cre [ Izl 12
T E@ o R
z = Z—‘“*—z-tam_1 (- ° ) O
m © wug GB o (7-15)
-——2— << 1
W,
From equation (7-6), if ug = 0 the focal length is;
u, = 0
5 2@5
' 2mw [T <<l Oi ‘
Zf = = O{ @ (7-16)
o @
3
—2- << 1

W
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From equation (7-6), if u, = 0 the focal length is;

3
U = 0 2t
z - 2my .| << l O[ (7-16)
f o}
0 © (&)
o
~5 << 1
w
Then equation (7-14) can be written:
1G, |L au
i JIY A (7-17)
z T ET_ a 4x
f o
o
Diffetentiating equation (7-6) yields the change in radius for a
change in Ugt
Ar |GB]L Mg O: }
r(u,=0) ~ Zn aEf_ tan 75 (7-18)

From equations (7-17) and (7-18) it can be seen that the relative

effect on the trajectories for a change in u, scales approximately as;

3

|GpIL
ak

In Chapter 9 these parameters are discussed from the experimental
point of view, considering such things as the power requirements and
cooling capcities needed to produce a given value of GB’ and the

energy range and collimation range in which a beam might be produced.
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This juétifies, to some extent, the values chosen for the trajectories

in Fig. 7-1, but, of course, only a successful experiment is the final

justification. Clearly, one desires large IGB]L, but small aE.
Chromatic aberation‘is present in these systems. Both the para-

meteré "E'" and "a'" change if the energy changes.

We have;
f’LZ 2E
a = — > (GE + Jm GB) (7-19)
81 E
Differentiating, this becomes}
ra _ AE , qL® o8 Cp
2 e ol 2= 2] (7-20)
a E. m a ,

16ﬂ2E

If the term in the brackets is zero, the chromatic effect of "a'" vanishes.
This is the condition for minimum chromatic aberration in the system.

It is useful to solve for the product L ‘ZE- from equation (7-20)

with é% = 0, in the following form;
‘ 2
2E 167
L | — = : 7-21
m (T73) (65/E)q | (7-21)

This represents the condition for minimum chromatic abérration for given
(L/a) and (GR/E)-.

Note that equation (7-6) may be written in terms of the ratios

i

(L/2) and (|G5|/E), i.e.;

u
 ? =T+ (L/a)23;§§-(LGBL/E)[1~cos(a/L)ﬂZ] + (L/a).§o (7-22)
- T o e

éin(a/L)wz N



- 60 -

Figures 7-1 to 7-4 are plots of the trajectories obtained from
equation (7-6) for various values of (L/a) and (|GB|/E). Each figure

shows six trajectories, obtained from the three initial conditions

r =0, ;o = 10_5, 10_4, 10—3, and two values of the magnetic moment
ug = +u0, and U -

The condition for minimum chromatic aberration (equation 7-21) is

in order, for figures 7-1 to 7-4;

= 23.7; 15.8; 7.9; 1.6.

)
=2|m

This will illustrate that it is very difficult to satisfy the
condition for minimum chromatié aberration, especially if the product
(2;— ) is large, which is the case when the Stern-Gerlach effect is
large. For example, in Fig. 7-1, if we méke L=2x 10_2 m, then a
He' beam would require an energy of about.02 eV to satisfy this
condition. It is still harder to satisfy the condition for the other
figures, although particles of larger mass than He® would help.

As an example of the chromatic effect in these examples, consider

Fig. 7-2. From equation (7-20) we obtain:
— = 11.5 — (7-23)

In this case the dominant chromatic aberration occurs for the "a' terms.

For a He' beam, ''thermal" energies correspond to E =~7.4 x 10_2

eV (300°C); for a 2 eV beam this gives;
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Putting this into equation (7-23) we have for the parameters used in
Fig. 7-2;

Aa

— ~ 50%
a

"This points out the fact that the chromatic effects due to a thermal
spread in the beam energy will cause large trajectory modifications.
In this case they are as large as those caused by changing "a" by 50%.

Obviously, the chromatic effects must be carefully considered in
a detailed design. Some velocity'selection might prove useful, but it
seems more likely that it would not be necessary in many cases since
such a large Stern-Gerlach effect can be obtained.

Figures 7-5 and 7-6 illustrate a simple system of stops which
could be placed at the exit of the Stern-Gerlach polarizer region to
obtain beams polarized in either of the two senses shown schematically
in the diagrams. Obviously, other systems of stops can be devised,
depending on the degree of polarization which is required. The conditions
depicted in Fig. 7-5, for example, which involve a hollow converging
ion beam would give 100% polarization for both polarization senses,
whereas removing the restriction of having a hollow beam pfoduces 100%
polarization for one sense of polarization but only partial polarization
for the other.

An inherent advantage which these systems possess is that the ion

beam is guided by the combined Lorentz and Stern-Gerlach forces at all
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times. This means that perturbing forces which are bound to be present
are not necessarily serious, since a small beam displacement from the
optic axis will be compensated for by an additional focusing force.

By extending the strong focusing Lorentz force beyond the polarizing
region on both ends one can also pre-focus and post-focus the beam.

If velocity selection was required this could be accomplished in a
section of the helical quadrupole prior to the polarizing region by
using the velocity dependence of the focal points.

In Chapter 9 the experimental problems of achieving a high magnetic
field gradient GB’ and a low beam energy E, are considered. From Fig.
9-3, if we assume E = 2 eV, it seems very easy to produce a value
GB/E = 500 gauss/cm/eV for apertures of a few mm and step length L =
2 cm. It is much harder to produce GB/E = 5000 gauss/cm/eV, but it
should be possible if the aperture is as small as possible and a long
step length is used. Pulsed operation is very sensible for producing
high field gradients since it lessens the fundaméntal restriction
imposed by the limited cooling capacity of the system. Any value of
L/a may be produced within the range of "a" (0 < a < 1). O0f course,
it is necessary to have very good orthogonality between the electric

and magnetic fields if very small values of "a'" are used.
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Figure 7-1. A plot of trajectories from equation (7-6). The dotted
trajectories are those obtained when the adiabatic condition
is satisfied as the particle crosses the axis. The solid
trajectories are those obtained when the sign of Jz changes

as the particle crosses the axis. .
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Figure 7-2. Trajectories similar to those of Fig. 7-1.
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Figure 7-4. Trajectories similar to those of Fig. 7-1.
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Figure 7-5. An illustration of a system of stops which would give 100%

polarization of the emerging beam.
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Figure 7-6. A somewhat simpler system to that illustrated in Fig.
7-5 which would give partial polarization of the inner

bean.



CHAPTER 8
The Influence of the Solenoid Field on the Trajectories, and the Stern-

Gerlach Effect for Large Lorentz Forces in a DC Helical Quadrupole

In this chapter we wish to compare the influence of the solenoid
field BO on the trajectories to that of the Stern-Gerlach force, to
determine, for one thing, if it is possible to utilize the resonant
nature of the sin 6 term in the average Stern-Gerlach force (Equation
5-13). We also wish to estimate the Stern-Gerlach effect when the
Lorentz force is large compared with the Stern-Gerlach force in the dc
helical qqadrupole system. Our conclusions are rather negative. It is
doubtful that the resonant effect of‘the sin 6 term can be detected
by simply sweeping the field Bo on and off the resonance condition
(sin 6 = 1) because the trajectories are modified too much by the
resulting change in the Lorentz force. It is also doubtful that the
Stern-Gerlach effect is usable when large Lorentz forces are present
in the dc helical quadrupole. We show in this chapter that the Stern-
Gerlach effect is generally small, for this case, and that to detect it
would require a prohibitively stable and mechanically accurate apparatus,
and a very monochromatic beam. In the light of Chapter 7, it appears
that the key to a successful experiment is the near cancellation of the

Lorentz force using orthogonal magnetic and electric fields.
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For very small values of '"r'" the Stern-Gerlach force will dominate
the motion, since the Lorentz force goes to zero on the optic axis,
but it should be remembered that the Stern-Gerlach force is at all times
very small. In equations (8-16), (8-17), and {8-18) we have
expressions for the radius ** which marks the transition between the
region of space in which the Lorentz force deominates and that in which
the Stern-Gerlach force dominates. If the Stern-Gerlach force
dominates, the Stern-Gerlach effect will be large, but as we will show,
the radius r* usually is extremely small. Outside of the radius r*, in
the Lorentz force dominant region we have made a simple approximation
to the equation of motion for a non-zero magnetic moment to estimate
the minimum Stern-Gerlach effect.

Although the average Stern-Gerlach force is of a very simple form,
being radial and of constant magnitude, a non-linear equation results
when it is incorporated into the equation of motion.

From equation (5-13) we have;

(8-1)

G

<Fg> = (yhJ; sin e|GB|)

we define;

Kat
"

vha sing|G (8-2)

gl
Following the development of the equation of motion in appendix B, the

resulting :equations when <ﬁSG> is included are



(8-3)

<2
+
[\]
'5.
1
~
=
N
1
[}
B
pLN

The presence of the &/r term makes these equations non-linear.

The basis of most of this chapter is the simple approximation of
:replacing 1/r by 1/<r>, where <r> is a constant, representing a radius
averaged over the length of the trajectory of the particle. This
replacement reduces the equations (8-3) to the linear equations (b-13)

by making the identification:
¢ = g/<r> (8-4)

If we put <r> =r this amounts to replacing the Stern-Gerlach

max’
force by a force everywhere smaller, and will certianly give a
minimum for the Stern-Gerlach effect.

We cannot justify this approximation any further. It seems very
reasonable, and since the results are not very encouraging we are not
inclined to carry the analysis any further at this time, since an
experiment based on the alternative presented in Chapter 7 appears to
be very promising. Nevertheless, this kind of analysis should be quite
helpful in conjunction with computor calculations of the trajectories.
We believe that a computor used alone may not give as much insight as
approximate solutions such as these.

It is helpful to do some preliminary analysis of the equations

(b-13) which we will use as the basis for our approximate solutions.
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These include the term &, and can be solved exactly. If both the roots
Rl' and RZ‘ are real, thé trajectories are bounded, and the solutions
are as given in equation (b-22). Note that the term ¢ can change the
focal length, the maximum exéursion, or cause a rotation about the optic
axis.

If one or both of the roots become complex, the trajectories are
no longer bounded, since divergent terms appear in the solutions.
' and R,' are

1 2

real or complex. The light regions indicate that both are real, and

Fig. 8-1 indicates the regions where the roots R

correspond to bounded solutions, and the shaded regions indicate that
one or both are complex, cdrresponding to divergent solutions.
This figure is derived in the following way.

The roots may be written, from appendix B:

WL

R, =
(8-5)
R, = W(L -
or;
R,' = W(L - ab - a,’ 1 - 4bja )H/?
(8-6)
R, = W(l - ab + a,, 1 - abja )1/?
where;
(3 q(G, + v G,) '
a= — = E.ob (8-7)
W W mv
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Figure 8-1. A chart of the regions where the roots R.' and R,' are real

1 2
or complex. The light regions indicate that both are
real, and the shaded regions indicate that one or both

are complex.
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b=£f/@ (8-8)
2
1 -y (8-9)
T Ty o/ - 8-9
(GE + VOGB) 4m
The inside radical is imaginary for;
0<a<4b
(8-10)
-4b < a < o
The 1line,
a = 4b (8-11)

marks this boundary in Fig. 8-1.

The entire root may be zero. Putting equations (8-6) equal to zero

yields;

Rl' =0 for a = I%B- bg 1/2
(8-12)

a =T bg -1/2

R,' =0 for a = L bz 1/2

2 1-b i
(8-13)
-1
a = 1+b b; —1/2

These lines are drawn in Fig. 8-1.
The symmetries in this system can be utilized. They show, for
example, that the lower half of Fig. 8-1 is redundant.

The transformationj
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1
v
1<

(8-14)

©~+-0©

leaves the equations of motion (equation b-13) invarient. This is also
true, of course, for the solutions.

Since the interchanging of the x and y axis corresponds to a
rotation of ;/2 about the optic axis, or a translation of L/4 along
the optic axis; the transformations W + -Wand @ -» -@ are
equivalent to one another, except for a rotation or translation.

Also, a helical field has the property that the transformations
V. - —vé and w -y are equivalent, except for possible rotations
about, or translations along, the optic axis.

Since the roots Rl' and R2' do not change for any of these
transformations, the solutions can differ only in the initial conditions
which they represent. For a beam with cylindrical symmetry no chang¢
would be noticed for the above transformations, since all initial
conditions are represented. Thus the lower half of Fig. 8-1 is

redundant since it represents one of the above transformations.

Referring to Fig. 8-1, a line defined by
"a" = constant
crosses three boundaries between the bounded and unbounded solution

regions, provided |a| < 2. At each boundary, where a root or radical

is zero, we can solve for ¢ from equation (8-9), (8-11), (8-12) and
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(8-13). This value of & defines a radial force which is the transition
between a region in which the radial Lorentz force dominates and a
region in which the ¢ force dominates. Since these relations are

independent of z, we can equate:
o* = g/r* (8-15)

where the asterisk denotes that a root or radical is zero. This
relation defines a radius, which marks the transition in space between
the region in which the Lorentz force dominates and that in which the
Stern-Gerlach force dominates. This means that near the zero of the
roots, the Stern-Gerlach force can precipitate or delay the onset of
the d;vergent behavior within this radius.

Using equation (8-15) to define r*, and solving for ¢* from

equations (8-9), (8-11), (8-12), and (8-13) we obtain;

rox = 28 R (8-16)
E(a2W2 + (2_9)2)
ITIVO

for the line a 4b in Fig. 8-1, and;

£

T * = (8-17)
2 : qB
1 2 0,2
26(1-2yan’ + 1/4 G2 )
for the line a = T%E in Fig. 8-1, and;
re - 3 (8-18)

. qB
2E(-(1 + ;})aw2 + 1/4(55502)
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for the line a = in Fig. 8-1.

-1
a+b

The Solenoid Field B0

The influence of the solenoid field B0 on the Stern-Gerlach effect
can be estimated from the equations in appendix B. Bo appears in the

roots of the equation of motion in the terms, (equations b-14 and b-16);

qB
W= Lt v (8-19)
o

qB
_ 0 0,2
f = 5 - 1/4(ﬁv—a (8-20)
mv o]

In terms of the dimensionless parameters '"a" and '"b" of Fig. 8-1, these

are;

2 _ a(Gg + v Gp)

a= /W 5 5 (8-21)
Womv '
o]
' 1 qBo2
Clearly, BO becomes the dominant term in equation (8-22) when;
IqBoz | .
> ® -
- /9 (8-23)
and, in equation (8-19), Bo is the dominant term for
qBO
lomw | > a : (8-24)
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The Stern-Gerlach force can be approximated by replacing ¢ with
&/ <r>, where <r> is approkimately the aperture size of the apparatus,
as outlined at the beginning of this chapter.

For a beam of particles described by;

He' ions
E = 2eV
thS = U (Bohr magneton) (8—25)
L =2x10%m
sinf = 1
and putting
a> =10%n
equation (8-23) becomeé;
B2 >9.6x 107°[6,| (MKs) (8.26)
or, for GB = 100 gauss/cm;
]Bo| > 3.1 gauss (8.27)
and equation (8-24) becomes;
|Bo| > 2600 gauss (8.28)

It can be seen from equation (8?27) that rather small values of
Bo will dominate the Stern-Gerlach effect. This seems to preclude
using a swept Bo mode for detecting the effect, as we will further
illustrate.

The reason for including the solenocid field B0 is, of course, to
maximize the Stern-Gerlach effect via the term sin 6 (eqn. 5-14). To

illustrate, we can calculate Bo to maximize sin 6, and also determine
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the resonance width, for the case with;

L = 2x 10-2cm
GB = 1000 g/cm
E = 2eV
He' = bean ion
¢ = (8-29)
YﬁJS = %
T = 6 X 10-4m

W << 2uv
v L £ o)

These values could apply, for example, to the trajectories drawn in
Figs. 7-1 to 7-3.
Putting Aw = 0 to maximize sin 6, yields, from equations (5-7) and

(5-9);

B = v—-—L—‘ gauss (8.30)
The half-width at half-maximum of sin 6 is;

(Bw)y,= +V/3w (8-31)

1

It is, of course, determined by the maximum radius of the particle

trajectory, and for the example cited, Trhax = 6 x 10_4 m ; we have;
Bl(r)max = GBrmax (eqn. 5-6)
(8.32)
= 60 gauss

Therefore the half-width is;
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Eﬁfzilg- ~ 100 gauss (8-33)
Comparing equations (8-30) and (8-33), we can conclude that the
resonance is essentially centered about BO = 0, and that this broad
resonance would be difficult to distinguish from the trajectory changes
produced by the Lorentz forces for changing Bo’ as noted earlier.
It is possible to design the apparatus to enhance the resonance

effect in order to simplify detection. This could involve chosing an

, Or

ion with a smaller vy, increasing w, increasing E, decreasing T oax

decreasing GB. These steps all seem to reduce the overall effect;
so the comﬁromise which must be made, sacrificing the size of the signal
in order to sharpen the resonance, must be decided entirely in terms of
signal to noise with whatever detection scheme is proposed.

We have treated the case for small @ in Chapter 7, now we
consider the remaining range of () wusing the approximation outlined
in the introduction to this chapter. The easiestvway to do this is to

put G, = B0 = 0. This does not leave out much information for the

E
practical reason that the magnetic field gradient GB alone is sufficient
to make @ large. The only reason for introducing GE is to reduce

® ., to minimize the effects of a large @ on the Stern-Gerlach effect.

The effect of B, has been considered separately in this chapter by

noting when it becomes the dominant term in the expressions f and W.

The simple magnetic helical quadrupole
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The term "b" has a simple interpretation for this case. From

equation (8-9) we have;
b= —2 B =G. =0 (8-34)
qGBV0 o E

This is just the ratio of the radial force term (¢r) to the Lorentz
force (qGBvOr). If ¢ representsthe Stern-Gerlach force, then one
would expect 'b'" to be rather small.

If we take, as typical values, the experimental parameters of
equations (8-25), and put & = g/<r>, then;

b~ 6x 10°°

(8-35)
The region of interest is clearly close to b = 0 in Fig. 8-1.

Some simple estimates of the effects on the trajectories due to
different values of '"b" can be made.

Differentiating equation (8-6) we get, for constant 'a';

2
W~ Ab 2
AR1'= 2R ! ( - a)
1 v1-4b/a
(8-36)
2
aR.1= - Wb 2, 4

t
2 2R2 v1-4b/a

If we consider only changes about b = 0, 'and find the relative

change by dividing through by the root Rl' or RZ', we get;
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1
AR1 _ Ab 2-a b =0
R
(8-37)
t
AR, ob 2+ay g
R0 T2 T PC

Except for the regions near a = +1, these terms are very small
since Ab is very small. Using the approximation ¢ = g/<r>, and

differentiating equation (8-34)

vyh sin © |GB|
b = ( v <r> ) 3 G
a o} : B

(8-38)

Using the parameter values of equations (8-25), and putting YhAJg =
2uo, we obtain;

b~ 1074 (8-39)

From equations (8-37) and (8-39) it is obvious that the trajectory
changes that this will cause will be of the order of 1 part in 104,
unless "a'" is very near * 1.

If we suppose that the focal point changes by 1 part in 104 due to
the Stern-Gerlach effect, then the most obvious difficulty in detecting
it is the chromatic aberration of this system. If we take as a first
approximation, that the focal length varies as (equation 6-10);

Zﬁgmvo

. © (8-40)
s) qCp

21w

Zg



- 81 -

then the velocity of the beam and hence its energy must be constant to
better than about 1 part in 104. This result seems typical of operatioh
in the region between very small '"a" (a N 0) and large "a'" (a = #1).
That is, a small effect is present, but to detect it requires a nearly
monochromatic beam.

From equation (8-17), for a = 1/2, yflJ3 = U, E = 2eV, Bo = 0, we
obtain;

r* ~ 1078 m

Thus, only within this very small radius would we expect a large
Stern-Gerlach effect for the operating fegion just discussed, which
is consistent with our conclusion that at a raaius of 10_4 m, only a
very small effect is present.

Now consider the regions very near a = 11, if we put a = =1, we
note that for small '"b", the foots given by eqﬁatidn (8-6) can be

expanded. Consider the case for a = 1 then;

R = wh
R2' = 9V535§
(8-41)
also § zgz (from equation b-19)
(5] :92 (from equation b-15)

Put X, =V, = 0

Then for b > o, the roots are real, and we can simplify equation (b-22)

with the above terms:



- 82 -

: Y
X =% sin 2wz Eg (cosw/b:z - cosv2 wz)

% W7 (8-42)
io io : sinvh wz
y = - — (cosvb wz - cosv2 wz) + — (V2 sinv2 gz - >——=25)
with 4b << 1
a =1
B =0
b> 0

Z, % —b : | (8-43)

If we put ¢ = £/<r> to represent the Stern-Gerlach force over this
focal distance, we can estimate "b'" as in equation (8-35), for "typical"

parameter values such as those in equation (8-25).

Taking;
b= 107"
=2 (8-44)
L =2x10 m
we obtain from equation (8-43)
> 1 meter

Z¢

The maximum excursion of the equation (8-42) is determined mainly by

the factor:

(8-45)

R
R

max
by
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If we again put ¢ = g/<r> to represent the Stern-Gerlach force
over the range of one focal length (zf), then Toax will be somewhat
~greater than <r>. A conservative estimate is to put Toax - <T>- Tﬁeﬁ
we can say, from equation (8-45), that all particles éntering the

system within the angle given by:
y, = <r> u/b (8-46)

will be focused within the distance Z¢ (equation 8-46). Using the values

of equation (8-44).
o -4
Yo =T X 10 (8-47)

This establishes that a cone of particles with b >0 will be
focused within a reasonable distance in this system. Consider now the

particles with b < o. The root Rl' in equations (8-41) is imaginary,

so that the solutions (8-42) will be diverging. Computing;

-2 .2 2
T =Xty

we have from equation (8-42):
« 2 A4 ¢ 2

. 2 T

2 2.2 v

r- o= ( Z + 90 ) 51n2 2T 02. (coshzgv bl z + cosz/ZQ;
© @

- '2cosh9§ﬁgfz';ds/féz) - io§o'/z% sin/2gz (céghg Thl z

133

. (8-48)
2/2y _ g2
> sinv2 wz sinhv|b|wz f'ﬁfl‘_

Q “w |b

-cos/fgz)—

2 —
I sinh V|b|@z

2% y
=2 sinh T wz - 20 O sinhy/ blwz  cosV/2yz
w

[¢]
w5 ToT w*/TBT




- 84 -

where /] << V2

b <o
a=1
B =0
o)

For small z this is oscillatory at /Zgz, but as z gets larger, the

oscillating terms become less important and the dominant term becomes;

<o

rel/2 —2>— sinh /B[ a2 (8-49)
If we make the conservative estimate that;
r = <r> = T aperture

and if we put & = £/<r> to represent the Stern-Gerlach force over a

distance equivalent to the focal length for particles with b > o;

z —_
f s
"bl&
then equation (8-49) gives a conservative estimate of the minimum angle
which a particle may enter the system with in order to be expelled
beyond the radius of the aperture in the distance Zg-

Using the parameter values of the previous example, except that

b = 10—4, we obtain from equation (8-49)

L) -5
Yo > 5 x 10



This is a very conservative estimate, and it indicates that most
particles with b = -10_4 would be expelled from this system out to
the radius of 10~4 meters within a distance of one meter of flight.

This example has shown that it might be possible to operate a
magnetic helical quadrupole in the a = 1 region and achieve a
particle separation from the Stern-Gerlach force. An obvious problem
is to maintain the a =1 conditibn with sufficient precision. For
example, noting in Fig. 8-1, that the slope of the line Rl' = 0 at
a=11s 1, we can gstimate that "a'" must be constant to at least the
order of 'b", if the épparatus is to separafe the b < o particles in a
diverging mode, and focus the b > o particles. If b n i0~4, then "a"
must be constant to about 1 part in 104 or better. We have, from

equation (8-21);

Thus both the gradient GB’ and the beam velocity Vv, must be constant
to about 1 part in 104 or better.
We can arrive at the same conclusions from equation (8-17) which
for this case can be written;
YhJ,sin® |G

* = 3 .
r,* =
2 qvo(l—l/a) G

N
B

(8-50)

Putting a = 1 yields rz* = «, which confirms the result that a
large effect can be expected for the a = 1 region, and indicates that

at the point of instability for the Lorentz force alone (a = 1), any
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small additional radial force is sufficient to dominate the motion, in

the sense that it will precipitate or. delay the instability, for any r.
Equation (8-50) also yields the same stability criterion, for if

we put r2* = 10—4 m, the average radius which we have considered, we can

solve for '"a" to obtain a = 1 + 10—4. Thus "a'" must be constant to

about 1 part in 104:or better, if the Stern-Gerlach force is to dominate

out to the radius of 10_4 m.



CHAPTER 9

Experimental Considerations

In this chapter some general remarks are made concerning the design
of helical quadrupoles and some justification is given for the choice
of the parameter values used in the examples of Chaptems 6 to 8.

To begin with we will determine the relations between step length,
aperture size, gradient and minimum power for a helical quadrupole system.
Let Ro be the radius of a helix, let L be the step length, and LT the

total length as shown in Fig. 9-1. Then the total length of the helical

line 1is LHT;

o
|

HT = LT.ll * q2/4 (9-1)

4mR

(9-2)

If d is tﬁe width of a helical strip, (Fig. 9-1) then D, the width

measured longitudinally is;

D =d 11 v 4/q° (9-3)

If four wires are to be wound then the width of each wire cannot exceed
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a’f f’r
, I'd '
Ve / ‘ -
/
!
\

D >

R

Figure 9-1. Illustration of the dimensions of a helical line and a

helical strip.

a_k—d——y
RIT
o Rr

L - -

Figure 9-2. Illustration of the dimensions of a rectangular wire

helical winding.
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R
dg —— - (9-4)

2 f1 + q2/4
For a fixed amount of power (P), the maximum magnetic field gradient
(GB) is obtained if the depth of the wire (B) is 2/3 the inner radius
(RI) of the wire, for fixed wire width (d) (see Fig. 9-2), assuming rect-

-angularwire is used. To show this we have, from appendix A;

(9-5)

where RO is the radius to the center of the wire and R is the wire

resistance. Assume d is constant, and RI is constant, then;
GB a /B > (9-6)
(RI + B/2)
dG
differentiating, we find T is a maximum for;
B = 2/3RI (9-7)

The minimum resistance occurs when B satisfies equation (9-7) and "d"
satisfies the equality in equation (9-4). For a single helical windihg

of solid, rectangular, copper wire, this resistance is

4(1.7 x 10'8)LT(1 s g2 /M)A

Rmin = > (MKS) (9-8)
WRO

where A is a ''filling factor" to allow for insulation on the wires.
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sing¢

For the case of wires with a finite width "d", the factor 3 must
be included in the expression for GB’ from appendix A;
(8 x 10—7)1 sing
Gp = C(q) (MKS) (9-9)
B 2 ) :
R
0
where ¢ = wd
When the space between the wires is very small, 51$¢ is at its
smallest value which is;
Sl$¢ = .63, ¢ =1/2 (D = L/4)’ (9-10)

From equations (9-9) and (9-10), for conditions of minimum resistance;

| (3.94 x 1012)GBZRO4Rmin
P . = (MKS) (9-11)

m 2
m c“(q)

To illustrate, consider systems similar to those used as examples in

Chapters 7 and 8. Typical values are;

L=2x 102 m, 4 x 1072 m, 6 X 1072
GB = 1000 g/cm
LT = 1m

The radius RO may chose to minimize the power, consistent with the
aperture required for the beam. Fig. 9-3 is a plot of pmin from

equation (9-3) versus RO for the values given above.
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A= 9

R = o2
Gg= 1000 9avss/cm L=2%i10%m

"~ L = 43%10°m

"—L= 6%10°m

-
X
-
_

10

Figure 9-3. Plot of minimum power versus wire radius for a rectangular

copper

wire helical winding at room temperature, from

equation (9-11).
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Quite clearly, the relation between the aperture size, pitch
length, and the power required to produce a given gradient GB is an
important consideration in design. Fér a given system, the maximum
~gradient (GB) will be determined By the cooling capacity. The value
chosen for most of the examples in Chapters 7 and 8 was GB = 1000 gauss/
cm. This is a very conservative value. It can easily be produced as
illustrated in Fig. 9-3 for aperture sizes consistent with the beam

size. It should be possible to increase G, to at least 104 gauss/cm

B
in a practical system; which would apply, for example, to the trajectories
plotted in Fig. 7-4, for a 2eV bean.

Increasing the Stern-Gerlach force (i.e., by increasing GB) has the
important additional advantage, besides increasing the Stern-Gerlach

effect, that the slow ions will be less subject to stray fields and

"dirt" effects, because of the focusing effect of this force.

The Ion Beam

From the theory of Chapters 6 through 8 it is evident that the
ion beam is a very important consideration in designing the apparatus.
Foremost, it is necessary to have a beam which is small in cross section
and well collimated, secondly, itbshould be as intense, pure, and
monochromatic as possible, consistent with a very low energy. Obviously,
a compromise must be made between these requirements.

For the purpose of giving examples in Chapters 7 and 8 we assumed
a beam energy of 2eV. With care, it seems possible to achieve such a
beam with the required size and collimation, and an intensity measured

at least in tens of particles/sec. It should be kept in mind,however,
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that the Stern-Gerlach effect is approximately proportional to GB/E
(sge, for example, equation 7-23) so that reducing the beam energy is
equivalent to increasing the magnetic field gradient by a like amount.

A large literature exists on ion sources, but most of this work
has been to develop intense sources of fast ions, .and typically the
energy spread is of the order of a volt. An intense source of slow
Argon ions has been reported by F. Hushfar et al. (1967). They obtain
a beam intensity of 1014 particles/cmzsec at an average energy of 2eV
using a plasma source and a novel extraction system which allows both
electrons and ions to be simultaneously extracted in a space charge
neutralized beam. However, the energy spread appears to be large,
about a volt, which is typical of most plasma sources.

Two good sources of slow ions adaptable to a wide variety of ioms,
are photoionization and electron bombardment sources. Of the two,
photoionization can produce the most monochromatic beam. Weissler
et al. (1959) using a well defined beam of ultraviolet radiation
obtained from a Seya—Ngmioka grating monochromator could produce ions
at 9 eV with.an energy spread of .04 eV. However, the yield of ions is
much lower than that attainable with electron bombardment.

It is useful to give a brief analysis of the electron bombardment
source as a source of ions for this experiment. The rate of ion
production is given approximately by the formula;

_ ions _
R = noo(ve)n v —5 (9-12)

e e
cm sec

where



n, o= number density of atoms
o(ve) = the velocity dependent ionization
cross section in square centimeters
2
nyv, = the number of electrons/cm™/sec

. .. . + .
If we consider the ionization of He to He , with a source pressure

of 5 x 1074 Torr, then;

1.6 x 1013 atoms/cm3

3.3 x 107 cm?
(W.E. Lamb, Jr., and M. Skinner, 1950)

n-
(o}

o(ve)

Typical electron densities are from 1 x 1016 electrons/cmz/sec
with a "weak'" source up to 38 x 1016 electrons/cmz/sec in a "strong"
source such as that of Plumlee (1957).

If we assume nyv, = 5 x 1016 electrons/cmz/sec, then

R =2.6x 1013 ions/cms/sec (9-13)

We now omit all details of ion extraction and focusing, and
simply assume that the ions all originate in a small sphere which
radiates ions at the rate R into the solid angle 4w. If we take the

diameter of this sphere to be equal to the diameter of the beam, then

we would expect a beam of diameter .050 cm, and a divergence %o = %§-=
10_3 to have an intensity of;
13 3 (2 x 10"3)2
2.6 x 1077 x 4/37 (.025)" x ~—————~<— =~ 540 ions/sec (9-14)

4w
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This performance was achieved at a beam energy of 4eV in the ion
- gun described in appendix C.

The rate of ion production given in equation (9-13) is typical.
Lipeles (1966) reports this value in an ion source similar to that of
Novick and Commins (1958). With a beam diameter of about .4 cm
and a divergence of fo = 0.6, he obtains a beam intensity of 3 x 1010
ions/sec. at a beam energy of 10 eV. He also measured the energy spread
to be almost .4 eV or 4% for his beam. His beam intensity, compared
with that of equation (9-14) illustrates the very large decrease in
total particles/sec which one must expéct when the same source is
used to produce a smaller diameter and better collimated beam.

A very serious problem with slow ion beams is the rapid fall in
intensity below an energy of some 10 eV. For example, the ion gun
described in appendix C would produce a beam about two orders of
magnitude more intense at 10 eV than at 4 eV beam energy, as illustrated
in Fig. C-2. Much of this is due to the collimating effect of the lens
system, which increases the effective solid angle at the ion source at
higher beam energies. However, at a beam energy of 3 eV, the ion count
was equal to the metastable background count, some two orders of
magnitude below the intensity at 4 eV. This very rapid fall (beam
cut off) is typical of these sources and is apparently due to stray
fields. Our éwn experience was that the cleanliness of the aperture
next to the ionizer exit aperture had a pronounced effect on the beam
cut-off. This aperture is presumably intercepting a large flux of
electrons and ions from the ionizer and could conceivably contaminate
very quickly.

We have tentatively concluded that an ion beam at 2 eV
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with an intensity of some tens of particles/sec can be produced with an
electron bombardment source in a clean vacuum system; and with the
required size and collimation for the examples given in Chapter 7.
However, we believe that an apparatus could be designed to polarize

a much larger and more intense beam, but this would require a major

effort of engineering.



CHAPTER 10

Concluding Remarks

This thesis has added essentially two new ingredients for
consideration to the conditions for which a charged particle generalized
Stern-Gerlach experiment can be successfully performed, from those
previously reported (Bloom and Erdman 1962; Rastall 1962; Byrne 1963;
Bloom, Enga and Lew 1967). These new considerations are the extension
of the Transverse Stern-Gerlach experiment to time independent, space
varying inhomogeneous magnetic fields given by equation (1-2), and the
introduction of an electric field E(T) which is orthogonal to the magnetic
field El(f) (equation 1-2) in the plane transverse to the general
particle motion. The development of these new considerations in
Chapters 5 through 9 indicates that the experiment is considerably
simplified from that previously envisaged, and that no fundamental
difficulty remains to the successful execution of a charged particle
Stern-Gerlach experiment.

The most fruitful application of such an experiment would probably
be the precision measurement of the low-lying energy levels of a wide
variety of ions and molecular ions, which are of great interest in
chemistry and astrophysics. Very few methods have proven useful for

such measurements. We believe that the generalized Stern-Gerlach
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experiment will now allow the study of such ions in the same general
way that the Stern-Gerlach experimenf has been applied to the study
of atoms and molecules. |

Another application is the construction of a polarized ion source
for use in nuclear physics. Such sources as are presently in use ionize
after atomic state selection, whereas this experiment makes possible
the state selection after ionization. This difference may prove to be
important in future designs. A short review of polarized ion sources

now in use is given by Drake (1967).
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APPENDIX A

The Helical Quadrupole Magnetic Field

The magnetic field of a quadrupole wire system near the center

of symmetry is well approximated by;

B (§) = -G(y + ix) (a-1)

e
at the position ¥ = x + iy, where;

G =0.8 L gauss/cm (a-2)
R 2
o

with, I = current in each wire in amperes, Ro = distance in centimeters
from the center of symmetry to the center of each wire. The orientation
of this field is shown in Fig. A-1. This field is similar to the field
illustrated in Fig. 2-3, except that the orientation of the axes x,y
with respect to the quadrupole wires is different.

If this system is twisted to form a helical quadrupole, as
illustrated in Fig. 9-1, the field will rotate with z at twice the
rate which the wires rotate with z, i.e., the field is represented in

the axial region by a field of the form;

§1(F,z) = -GB(y + ix)eiZEZ (a-3)
Gp = C(q)G (a-4)
g= = (a-5)



- 102 -

Figure A-1. Illustration of the orientation of the field E(f) =

-G(y + ix) at the point T = x + iy.
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L = helical step length (a-6)
41TRO
q = I (3—7)

The factor C(q) can be calculated from the paper of Le Couteur
(1967), who solves for the general helical multipole case and the helical
quadrupole in particular. He also considers the higher order terms
O(rs), which are left out in the above relation.

We give;

C@) = 1/20°K,(a) + 1/4¢°K (a) (a-8)

where Kn is a modified Bessel function of the seconddkind. .
In order to make the identification with Le Couteur we give the

relation (Watson 1962, Eqn. 3, pg. 79)
t
zKV (z) —-VKV(Z) - sz_l(z) (a-9)
The factor C(q) is plotted in Fig. A-2.

Equation (a-3) may be written with a homogeneous solenoid field

(BO) superimposed élong the z axis.

§(r,z) = Bx; + Byf + Bzi . (a-10a)
BX = GB(x sin égz -y cos 2wz) (a-10b)
B} = —GB(y sin 2wz + X cos 2wz) {(a-10c)
B, = B | | (a-10d)
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Figure A-2. Plot of the factor C(q) defined by equation (a-8).
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APPENDIX B
The Derivation of the Trajectories of an Ion in a Helical Quadrupole
Field Consisting of Orthogonal Electric and Magnetic Fields Superimposed

on a Homogeneous Field and.on which an Additional Radial:Force is Introduced

From appendix A we have the magnetic field of a helical quadrupole;

B(F,z) = B 1 + B)j + BZiE (b-1a)
B, = GB(x sin 2gz - y cos 2wz) (b-1b)
By = -GB(y sin 2wz + X cos 2wz) (b-1c)
B =B

zZ 0

where;

w= 28

= L

L = helical step length
GB = magnetic gradient

The corresponding electric helical quadrupole field which is

orthogonal to B(¥,z) in the x,y plane can be found by putting;

E(®) . B(F) = 0 with B =0 (b-2)
thus;

E@) = Ex'i‘ + Ey'j‘ * EZ'E (b-3a)

EX = GE(y sin 2wz + x cos 2wz) (b-3b)

Ey = GE(X sin 2wz - y cos 2wz) (b-3¢)



E =0 (b-3d)
where;
GE = electric gradient
It is very useful to include in these solutions a radial force

term ﬁ} which we define as;
F_ = oF (b-4)

% is a constant, and is left arbitrary in this derivation.
It is discussed in Chapter 8, where this additional force term is used.

The equation of motion which we wish to integrate is;

F
S = a/m@E x B@E) + E@) + — (b-5)

This may be written as;

d g q/m(Ex + vyBZ -V, By) + %-x (b-6a)

d g q/m(Ey + vZBX - VXBZ) + %—x (b-6b)

.'.

> q/m(vay - vyBX) (b-6¢)
We make the restrictions that;

d d . \d
e B o B P R (b-7a)
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dz

vV, = 35 T VYV, = constant (b-7b)

then;
_ dx _ dx dz _ .
VX = E = '&‘Z E‘E = VOX (b-Sa)
- Yy s i,

vy = 3¢ = VY (b-8b)
where;

] dx

X = 37 (b-8c)

. dy

y = = (b-8d)
it follows that;

2

g—% = Vozf , (b-8e)

dt

2

dy . v’ (b-8£)

dt

2

dz = (b-8g)

dt

With these restrictions equation (b-6c) drops out. Substitution of

equation (b-8) into (b-6) yields;

- 94 - _
X > (EX + VyBo VOBy) + 5 X (b-9a)
mv mv
0 0
0o - q _ o) _
y 5 (Ey + VOBX VXBO) + 5 Y {(b-9b)

mv mv
o} o



We wish to transform these equations to a set of axes

at the ratewz, i.e
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.3

[ 1o
1]

24

y cos

differentiating with respect to

and differentiating

X COs wz + y sin wz

wzZ - X Sin wz
-~ —

Z, we obtain;

[ ) * .
X = X COs Wz + Yy sSin wz + wy
[ ] [ .
y = Y COS Wz - X sin wz - wX
again;
e . e o0 .
X - 20y - WX =X COS Wz +y sin wz
(44 L] 2 L4 e .
Yy + 2wX - wy =Yy cos wZ - X sin wz

(x,y) which rotate

(b-10a)

(b-10b)

(b-11a)

(b-11b)

(b-12a)

(b-12b)

Substituting for X and y from equation. (b-9), equation (b-12) can be

expressed after some manipulaton in the following form;

where

K- - W+ @ + Hx =0

(o)

¥ o+ 2Wx - (wz-- @ + fly =0

W= o
T o= 2mv
. (o]
. _9q
O - 5 (G + V.Gp)
. nv

(b-13a)

(b-13b)

(b-14)

(b-15)
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£ = —2 . 1/4(=3 (b-16)

Equation (b-13) can be combined into a single fourth order, linear,

homogeneous equation;

20 - X W @ DWW - @ + Hx =0 (b-17)

Solutions of the form eRZ are assumed. Four roots R are obtained;

L= (Wt N T S R R R S SV (b-18a)

R. =
R, = (w2 + £ - §)1/2 (b-18b)
R, = -R, (b-18¢)
R, = R, (b-18d)
where;
s = @ - awle (b-19)

The solutions can be written as;

R.z R,z -R.z -R.z
X = Cle 17 + C2e 27+ C3e 1™ + C4e 2 (b-20a)
2 2 2 2

W'+ @ +f-R1 R 2 W +@ +f-R2 R 2

Y= “7WR Cje 1+ “IWR Cye 2
1 2 (b-20b)

we o+ @+f—R12 R W+ @ +f-R22 Ny

C.e 1 C ey
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The constants, C, can be obtained in terms of the initial conditions.
Denoting values at z = 0 by subscript o, we obtain the following from

equations (b-10) and (b-11);

= x
=0 )

I T Y

X = X+ wy (b-21)
=0 0 2o

Yo T Yo T ¥

The equations(b-20), together with their first derivatives,
evaluated at z = 0 using the valueslfrom equétions (b-21), give four
equations which can be solved for the four unknown C's. For the case
where the four roots are all pure imaginary so that they may be written
in the form R = iR', where the pfime denotes a real number, then the
solutions to equation (b-17) can be written as follows, where the
constants have been solved for in terms of the initiél conditions given

by equation (b-21).

x . 2 : : y sinR, 'z
_ o , ; 2W7-2uW+ @ ' ; ‘o 1 )
X 2[(cosRl z+cosR2 z)+ —————-S—————-(cosR1 z cosR2 z)]+2 [Q(——ﬁzT——
. t . ] . ' L] . ]
51nR2 yA 2W(QW—W2+® _f)_‘@-Q 51nR2 z 51nR1 z X 51nR1 yA
Yo 5 g - ) g
2 2 1 1
1 t 3 1] 3 t
. S1nR,'z . ZW%GD(SlnRZ z _ SInR, 'z )1+ ;Og{cosRl'z—cost'z]
R2' 8 RZ' ’Rl' (b-22a)



I<
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- 1 3 1 < 1] 1 1
) Xo [w(51nR1 yA . 51nR2 Z )+(2W(QW-W2— o) 'f)‘*w.@j(SlnRz Z ) 51an z)]
- 1 1] 1] ]
2 R1 R2 S R2 R1
Yo W 2uW- @
_— 1 1 [ 1
5 [cosR1 z+cosR2 z + 3 (cosRl z cosR2 z)]
- X E[c:osR 'z-cosR,'z]
o3¢ 1 2
e . . . ' . \ . '
o [51nR1 z . 51nR2 yA 2W2+ ®r51nR2 ya ) 51nR1 z)]
2 Rl' R2' s Rz' Rl'
(b-22b)
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APPENDIX C
An Ion Gun Design Suitable for Producing Small Diameter, Well-Collimated,

Ion Beams

The ion gun described in this appendix was developed specifically
to produce small diameter, well-collimated ion beams using an electron
bombardmgnt ion source. The major inovation from standafd designs such
as given by Novick and Commins (1958) or Plumlee (1957) is the incorpora-
tion of the ring focus electron gun, which is well suited to ionizing
small diameter beams because of its geometry. A diagram of the ion gun
is given in Fig. C-1.

The ring focus electron gun has been used by others for various
purposes but it has not, to our knowledge, been incorporated into an
ion gun suitable for adaption to this experimenf. Bas and Gauz (1968)
have analyzed its design in some detail. Zankel (1968) has calculated
electrode shapes to maintain a coaxial current flow by compensating for
end effects, although our design does not include this compensation.

The advantages of the ring focus design are threefold. It is a very
compact, simple structure, with a cylindrical geometry which matches

the beam geometry and reduces the various field asymmetries to a minimum.
It utilizes an electrostatic focusing system which is self-focusing at

all bombardment energies. Electrostatic focusing in the electron gun

has the advantage that it does not affect the ion beam as would a magnetic
focusing system. Finally, the ring focus design produces a very intense
electron beam in the axial region where the ionizing events are most

useful.
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" The major problem with the ring focus design is the magnetic field
produced by the filament heater current which deflects the electrons so
that they -do not enter the axial region where the ionization is to
occur. For our purpose this problem was overcome by using 'on-off' heater
current with a filament having a large thermal mass. The useful beam is
produced during the "off" period, which may be a large fraction of each
cycle. The detector may be gated in synchronism with‘the heater current
to increase the signal to noise. This '"on-off" cycle has the additional
advantage that the magnetic field from the filament current lead-in wires
does not affect the ion beam, so that these wires may be placed conven-
iently to simplify construction;

vThe lens system consists of a Pierce lens (Pierce 1954) to initially
collect and focus the ions, three single aperture lens, and a three
element unipotential lens (Lippert and Pohlit, 1952 and 1953), followed
by a collimating aperture.

The Pierce lens was chosen bgcause its focal length and aberation
constants may be closely calculated. The Pierce lens, together with the
unipotential lens, may be designed to correct.to first order for
chromatic aberration, and partly correct for spherical aberration.

They may also be designed as a crude monochromator by making the system
very chromatic.

Referring to Fié. C—i for an explanation of the symbols, we give the
following design formulae;

The ion gun will focus the beam at infinity if;

2
v A LA
VS o3 * - B (c-1)
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where;
[S(g—il) + 3b' + 4h]

A= - 4[h +b' + g - 1] (c-2)

b'[5(g-i;) + 4h]

B - Tehm+ b+ g - il (c-3)

i = 3o (c-4)

The variation of the focal point (zf) of the unipotential lens
as a function of the spread in beam energy (AUO) is given by; (Hanszen

and Lauer 1967)

AU
0

bzp = Cp (=) —~ ' | (c-5)

where Cchém) is the chromatic aberration constant of the unipotential
lens.

For achromatic operation of the ion gun we put;

Az, = -Ai ' (c-6)

where Ai, is the variation in the image point of the lens preceding

3
the unipotential lens as a function of the spread in beam energy. We
- give the formula;

2 . 2

AU i i
. 2 o] 2 1 1 1
pig = 0% <21 ( . )+ ()
3 Vomei? e eeip? T IR T
where;
_-4d'1
£) = (c-8)
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£, = an VT (c-9)
o= - %9- (c—lb)
S = - (c-11)
i, = -Z%i(—j:—%i (c-12)

The minimum chromatic aberration constant for a unipotential 1lens
is;

Copy (=) = -3 2 (c-13)

The condition for achromatic operation, equation (c-6), and
equation (c-7), yield for this particular case the unipotential lens

length (2);

i 2 i 2
2 1 1 1
VAR N )+ ] (c-14)

1

GO
= - 3 [

In the normal operating range (S >K0) we have f2’ f, < 0, while

3
f1< 0 for all S. Such values yield £ > 0 which indicates that achromatic
operation is possible in the normal operating range if the gun dimensions
are chosen to give a reasonable value of "Q'".

The ion gun which we have built has the following nominal dimensions,

in inches,
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L' = 0.20
d' = 0.25
g = 0.075
h = 0.160
b' = .158
d = .020
o)
yA = 1.7
c

The unipotential lens has the nominal dimensions;

a = 0.176

b = 0.176

d = 0.088

2 = 0.44
for which;

2g = 0.145

Cen™)

L

From equation (c-1), this ion gun should focus at infinity for;

vt o= -3V

W/

1

or V!

In practice, it is very difficult to build the ion gun accurately
enough to expect precise agreement between experiment and theory. For

our gun we obtained the best results by operating the unipotential lens
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somewhat below (V), with V' = -2V,

Note that the condition V' = (1/2V is an unfavourable one because
the positive ions experience only a very weakly accelerating electric
field on exit from the ionizer.

Fig. C-2 gives typical results for a He' beam with a pressure in
the ionizer of apﬁroximately's X 10_4 Torr (He). These results
were obtained by directing the beam thrqugh a field-free regiOnPSO cm
long between the ion gun exit aperture and four knife-edge jaws-which
could be independently moved to explore the beam intensity. The ions
were collected by an electron multiplier (Bendix, model 306). The -
pressure in the field free region was 5 x 10_7 Torr.

The ion gun was constructed of Type 304 stainless steel with alumina

insulators.
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Figure C-1. Diagram of the ion gun described in appendix C.
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Figure C-2. Typical performance of the ion gun described in appendix

C. V is the potential of the ionizing chamber.



