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ABSTRACT

The purpose of this thesis is to examine the‘gravi—
tational scattering of massless scalar particles, photons,
four component neutrinos, and two component neutrinos
by one another. A modification of the quantum theofy of
the weak gravitational field deveioped by Gupta is used
as a basis for the considerations., Cross—-sections are
given for the gravitational scattering of‘scalar particles
by: scalar particles, photons, four component neutrinos,
and two component neutrinos; of photons by: photons, four
compénent neutrinos, and two component neutrinos; of four
component neutrinos by four component neutrinos, and of
two component neutrinos by two component neutrinos. The
cross—sectidn given by Barker et al and by Boccaletti et
al for the scattering of photons by photons is confirmed.
The cross-~section for the scattering of massive scalar
particlés by massive scalar particles quoted by DeWitt
and the cross-section for the scattering of photons by
massive scalar particles given by Boccaletti et al are

found to be in error and are corrected.
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INTRODUCTION

During the past decade several articles, for which
references will be given shortly, have appeared dealing
with the quantum mechanical treatment of the gravitational
interaction between particles, 1In ﬁost of these the
interacting particles have had a non-zero rest mass.
Because of the all pervasive nature of the gravitational
field, particles of zero rest mass also interact gravita-
tionally. In this thesis the gravitational interaction of
particles of zero rest mass--photons, neutrinos, and mass-—
less scalar particles, is studied, using a modification of
the quantum theory of the weak gravitational field developed
by Gupta(l852),

This latter theory allows one to treat the gravita-
tional interaction in much the same manner as the electro-
dynamic interaction is treated in quantum electrodynamics.
The particle corresponding to tre photon is the graviton,
Ten types of gravitons are possible. In a free gravita-
tional field eight of these can be eliminated by means of
a subsidiary condition Jjust as longitudinal and time-like
photons are eliminated from the free electromagnetic field
by the Lorenﬁz condition. When sources are present the
~eight gravitons cannét be eiiminated, but instead mediate
the interaction. The interaction Lagrangian for a given
field and the gravitational field may be found in the
fqlloﬁing manner, Essentially, one starts from the Lorentz
covariant Lagrangian for the field and replaces allvpartial

derivatives with covariant derivatives. The covariant



derivative of a spinor has been given by Fock(1929),
Alternatively, one may use the method of the compensating
field(Utiyama 1956) which yields the same result. The
Lagrangian thus obtained transforms as a scalar density
under general coordinate transformations. One expands
this Lagrangian in terms of the gravitational coupling
constant and extracts the interaction Lagrangian, One
may now apply the S-matrix formalism(Bogoliubov and
Shirkov 1959) and work out matrix elements and cross-
sections just as 1s done in quantum electrodynamics. This
is the procedure which is followed here.

Though there are no experimental observations to
either confirm or refute the results of the calculations
performed to date, there are some problems in the quantum
region in which the gravitational field does not play an
insignificant role. For example? the gravitational con-
tribution to the cross-section for the scattering of photons
by photons dominates the electrodynamic contribution, for
very low and very high frequencies. This result follows
upon comparison of the gravitational cross-section to be
giveh here and_the electrodynamic cross-section given by
Akhiezer and Berestetskii(1965). Another example is the
following. If one sets the mass to zero in the Dirac
equation one obtains the equation for a four component
neutrino(Muirhead 1965, Lurié 1968). Altogether there are
four types of particles--two neutrinos and two antineutrinos.
These can be put into correspondence with the electron and

muon neutrinos and their antineutrinos(Appendix G). If one
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wants to discuss Jjust the electron neutrino, then one imposes
a subsidisry condition. This has the effect of reducing
the Dirac four component spinor to a two component spinor.
These mathematical entities are treated in the books by
Corson(1953%), Roman(1960), and Aharoni(1965). Before the
discovery of the muon neutrino, Kobzarev and Okun(1963)
pointed out that the gravitational interaction could be
used to detect the then so-called anomalous(muon) neutrinos.
Here, cross-sections aré given for collisions involving

two component neutrinos and for collisions involving un-
polarized beams of four component neutrinos,

The history of the subject runs as follows. The weak
gravitational field was quantized, as mentioned earlier, by
Gupta in 1952. The formalism was used by him in the same
year in considerations on the gravitational self-energies
of the photon and the electron. Corinaldesi(1956), using
Gupta's formalism, considered the two-body problem.
Vliadimirov(1964) treated the gravitational annihilation of
fermions. -Barker et al(1966) worked out the matrix elements
for the scattering of maséive particles of various spins
and in 1967 gave the gravitational cross-section for photon-
photon scattering. Boccaletti et al(1969) considered this
problem again and arrived at the result of Barker et al.
Kuchowicz(1969) reviewed neutrino dynamics in quantum and
non-quantum theories of gravitation. In the present ﬁork
cross-sections are given for collisions(due to the gravita-

tional interaction) between scalar particles and: scalars,
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photons, four component neutrinos and two component neutrinos;
between photons and: four component neutrinos and two
component neutrinos; between four component neutrinos and
four cemponent neutrinos; ahd, between two component
neutrinos and two component neutrinos.

In Chapter 1 the relevant notions of the classical
(Einstein 1918, 1956) and quantum(Gupta 1952) theories of
the weak gravitational field are given. The scalar field,
photon field, four component neutrino field and two
component neutrino field are described and the gravitational
interaction Lagrangian for each is given in Chapters 2, 3,
4, and 5, respectively. The matrix elements for the various
collisions are given in Chapter 6 and in Chapter 7/ the cross-—
sections are calculated. The thesis is concluded in Chapter
. 8 with a discussion of the results.

Natural units (M=c=1) and en imaginary time coordinate
are used. All Greek indices run from l1l-4 and are summed 1if
repeated, unless otherwise stated. The Latin indices i, J,k,
l,m, and n run from 1-3 and are summed if repeated, unless
otherwise stated, The Latin indices p,q,r,s, and t run
from 1-4 and are summed if repeated. The Latin indices D
and ¢ run from 1l-4, unless otherwise stated, and are never
summed if repeated. The symbols |, *, ¥, and T signify
respectively, partial differentiation, complex conjugation,
Hermitian conjugation and transposition, The scalar
product of 4-vectors is denoted by (V,W) or just VW, and

of 3-vectors by D-q.



1. The Classical and Quantum Descriptions of the Weak
Gravitational Field ‘

a) Classical Theory
According to Einstein(1956) the gravitational field
variables, gpv, are the coefficients which appear in the

definition of the scalar product, (V,W), of two vectors

in space-time, V and W, whose components are vt and wV:

(L1 (VW) = g, v*w” .

The scalar product is assumed to be symmetric so that

(1.2) g, =8,, «

bV u

If one can find a coordinate system such that

<<1l,

(1.%) By = Oy * B, ‘uh

o]

8

one says that the gravitational field is weak. In (1.3)

6pv is the Kronecker delta and » 1s a constant whose

value will be given shortly. The hpv could be used as

field variables, but the field equations have a simpler

form if one introduces new variables va defined by

(1.5) v, = h,, - (ho

o " ) /2, h=Trace(th).

ny
According to Einstein(1918) one may impose on the Y v
the subsidiary condition

(L.5) v 0.

pv| v -

The Lagrangian for a weak gravitational field is(Gupta

1952)
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(1.6) clg = —(1/4)[le~T You r = (e Y,T)/2}, y=Trace(y ).

The Lagrangian density which describes the interaction
between the gravitational field and any one of the fields

to be considered, whose energy-momentum tensor is T is,

hv?
as will be shown in Chapters 2, 3, #, and 5,

L oLy = /)Yy = (0,)/2]7,,
The field equations which follow from the Lagrangian density

(1.8) 4?= I;_+ ‘z;nt

are those given by Einstein for a weak gravitational field

with a source whose energy-momentum tensor is Tpv=

(1.9) []2 Toy = KTHV .

An examination of the solutions of these equations for
two choiqes of Tpv provides the link with Newton's law of
gravitation and provides an introduction to the quanfum
treatment.

If one assumes a static distribution of mass with

density p, the only non-zero component of Tpv is

(1.10) Tyy = B o

If the YHV are assumed to be time independent and O at
infinity, then it follows from (1.9) that all the Y,y are O

except for Yy o which is,

(1.11) Yyy = -(H/4T}/Zp/r) at .

The equation of motion of a test particle is(Einstein 1956)



(1.12) d°5/dt° = —(n/4) grad(y,,)

This agrees with Newton's law of motion if one takes

(1.13) we = 16nG .

In c.g.s. units the relaticonship is
(1.14) #° = 1emG/c” .

If one sets Tpv to zero in (1.9), the wave equations

for a free gravitationél field are obtained:
(1.15) %, = O
. R .
Solutions of (1.15) are
_ 2y dikx | =y -ikx
(1.16) Yo = (1//V) §<l//2wk)(apv(k) e + apv(k) e ).

The apv satisfy the following reality properties:

% ' %k

* —
(lo l7> aij = ai,j ’ ai4 = "aiq_ ’ a!“ : = all T
5

If it is assumed that the wave propagates along the x” axis,

the subsidiary condition (1.5) yields
(1.18) 2,3 + iap4 = 0, p=1,4
The Hamiltonian density in such a wave is
/ A4 . L] .
(1.20) A = (1/2) v, Y, - AW ¥ ¥ =L
7 Tpv Tpv
The Hamiltonian, H, is

(1.21) H i//k/dax = 3 wk(l(all - a22)/2‘2 + la12|2)
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where the conditions (1.18) and (1.19) have been used., If

one makes the substitutions

] ' v

H becomes
vy o
(1.25) = 5w o] ? ol .

Thus, in a free gravitational wave the energy depends onlyl
on two independent modes. The subsidiary condition (1.5)
prevents the other modesAfrom contributing to the energy.
On the other hand, particular solutions of the
inhomogeneous equations (1.9) automatically satisfy (1.5) -

as a consequence of the vanishing divergence of THV°



b) Quantum Theory

The moments npv, conjugate to the y which followb

wv?
from the Lagrangian (1.6) are

1l
i}

(1.24a) =

w T oYL, =Y, e

(L.24b)  my = DY = Y2 - YA

The va and nuv are defined to be operators which satisfy

the commutation relations(at equal times)

it

(1:252) 1, @y (3] = [1,y () riggh)] =

i(6 6

pe Ovp t 698 6VQ)6(3“5'), pFEV, a#B,

(1.25b) [Ybb(?),nbb(?'ﬂ = 16(F-T").

A1l obther basic commutators are zero. Fronm (1.24b),

(1.25b), and the condition

(1.26) [Ybb’”cc] = 0, bc,

it follows that

(1.27) '[Ybb’fob] = ié(?“i')

and that

(1.28) [Ybb(’ﬁ),i(cc(f')] = -18(F-F'), bre.

One may study the spectrum of the operators Yov by

decomposing the Yy according to (1.16). The relations

(1.25a), (1.27), and (1.28) lead to

(1.29a) [aw,aaﬁ] = (0,,0yp * 0,50,4)s BFV, aFe,



10
(1.29b) [abb’abb] =1
(1.29¢) [abb’acc] = -1, b¥c.

Al]l other basic commutators are zero.

The reality conditions (1.17) now read

T - T - T -
One would like to, in the customary fashion, use a

representation in which the operators

(1.321) N = (no summation implied)

ny apvapv
are diagonal. This is not possible because, by (1.29c),
Nbb and Ncc do not commute, This is a direct consequence
of the appearance of y in the Lagrangian (1.6). In the
treatment given by Gupta(l952) this problem does not
appear explicitly. There, Gupta treated y as an independent

variable and imposed a subsidiary condition
(1552) Y = Trace(Yuv).

Here, a different method of circumventing the problem
is followed. One first of all writes the Lagrangian (1.6)

in the form

(1.33) L = ~(u/mL + L)
where
(.38 Ly = v, 10 Ve

and
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ES

( Z = ~ p . /
\10.)5) CJE - 2 lbeT ‘\bblr - (l/2>" lrL- YIT .

The bar under pv in {i signifies summation over the off-
N

diagonal teéerms only. If one now introduces new variables

YLV defined by

(1.36a) Yo T Tpur BV

(1.36Db) }ilj 12 -1/ 0 ol Hll
1
Yool = (1/4/2) 0 o 142 -~1//2 Yoo
Y33 - 1/ /2 =12 -1/2| Y55
i 1/2 1/2 1/2 1/2J Y””U
L - L. . |

then dg reduces %o
(137 oL = 20 2y ' . )
. 2 2 Yoot Yob|r T Yaalr Yauyr /-

In (1.37) the quadratic form¢Z; has been reduced to a sum
and difference of squares, in contradistinction to (1.35)
which contains the term Y‘TY\T' A commutetion relation

like (1.29¢) will not arise now. The conjugate momenta are

1

(1.%28a) =

LV \" ' ’ (P’V)%(M)

BV

i

(1.38b) mjl, = -Yi, .

The commutation relations for the Y&v and n&v, which are
equivalent to the relations (1.25a,b) for the Yoy and Ty are
1 e v (P - 3 ' 3 oRtY)
(1.39a) F v (F)sml e (E ﬂ = 3(6,,8,p *+ 8,00,,)8(x-T"),
» : CRAV, oFB,
Z0h e e = SA(T_T
(1.590) [y (2 sm iy (F | = 18(3-FY) .

The YLV are expanded as
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(1.50) vj, = (/D) 2 /M) (o, (6™ + 5 (™),

The com?utation relations (1.3%9a-b) together with (1.38a-b)

imply

(1.41a) [Cp,\)’aocB] = (émbvﬁ + %sta), LAV, a#B,

1, b4

]

(1.41b) [F’bb’abb]
(1.41c)  [eyyq8,) = -1.

A1l other basic commutators are zero., A commutation relation

like (1.29¢c) does not appear now,

From the.expansions (1.16) and (1.,40) and the trans-

formation (1.36b) it follows that the ¢  and ¢, are

A pv

related to the apv and a“v by

(1.422a) Chu = Buy o BFEV,

(1.42b) Teqq” /(2 -1/17 0 0 [eqq]
33 - 1/2 1/2 -1/2 -1/2 8z
Cus L1/2 1/2 1/2 1/2‘ ?44J

and the above two equations with cpv and apv replaced

with cpv and apv’ The symbols va and va were used 1n

ot
(1.40) instead of the symbols a&v andvapv, which are more

natural in view of (1.36a,b), in order to abbreviate the

notation., It follows from the conjugation properties (1,30)
i

for the 2y and the transformation (1.42a,b) that the

conjugation properties of the cpv are

¥ _ - i -

-
(L.43) c.. = C.. , Cin = =Cy4 » Cuy

1d 1d
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The operators Nﬁn<E> defined by

(1.443) Nijgﬁ) = Eij(ﬁ)cij(ﬁ) (no summation implied)
(1.840) 25 6(R) = o36(1)3;0(k)

(Losie) 1, (R) = ¢, (8)5,,(K)

where

(1.45) cyq = cpy = =icyy » O45 = Cg; = -iCyy

form a complete Set'of commuting operators. From the
commutation relations and conjugation properties of the va
and T, it follows that the eigenvalues, n_ (k), of the
Nﬁn(§> are the non-negative integers. For given % and
given (mn) the eigenvectors, lnmn(E>>? of Nmn(i) are just
the eigenvectors of the harmonic oscillator. If Emn(?)
denotes the vector space spanned by these eigenvectors,

the space E of all possible dynamical states can be written

(1.46) E = .(TéEﬁn(E)

m,n, k
l .
where TT@ denotes the tensor product with the proviso that
i E i i d i N

only one of the pair Emn and nm 1$ to be included since o
is symmetric in m and n. An arbitrary vector | > in E
can be written as a linear combination of tensor products

of vectors in ¢ E (k). The overators c.., c. c and

f 0 in the umn(k> oT 0 150 Ci00 Cuu
their conjugates act in the following manner where, for

. R _

brevity, the argument k has been suppressed, and only the

~relevant non has been written in | >:

(1.47) Cijlnij>>='/nijlnij-l>
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¢i0lm507 = {Piglmig=17

Sy | Py 7 = {0y [0y =1>

cijlnij7w=lnij+1|nij+l7

¢i0 R307 = [Bio*t|Riotl >

Cun |n447 = ,n44+1 |n44+1 >
One says that 544, the EiO’ and the cs 4 destroy gravitons
of momentum k and polarizations (44), (i0) and (ij)
respectively., Similarly, Cpsps the 0 and the Cij create
gravitons of momentum k and polarizations (44), (i0) and (i3).

At this point however, a new problem arises. The

gquantum mechanical form of the subsidiary cendition (1.5) -

is(Gupta 1952)

(1.48) lev] > = 0,

where Y;v is the negative frequency part of vy This

A
condition, together with the inverse of (1.42b), yields

0

il

(1.492) (oq5 + iog,)] 7

]

(1.49b) (023 + ic24)‘ > 0
(1.890)  (opp ~(egy - e )WZ + degy)| > = 0
(1.49(1) (1045 + 022"'(055 - CL}-AI-)//E)I > = 0,

The last two imply

(1.50a) (cop, + 1054)| > =0
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(1.50Db) .(055 - 044)|> = 0,

That part of_an arbitrary vector which describes the (33)

and (44) polarizations can be written as
(1.51) |33,44> = = = A0 5470 | Pz o Byy >

It follows from (1.50b) that

(1.52) £ % A(nBB,n44)[(ﬁgélnBB—l,n44)>— !n44+1|n55,n44+1>}0o

It can be shown(ikhiezer and Berestetskii,l965,page 163)
that a relation of this form implies that |55,44> cannot
be normalized. Similar conclusions can be drawn from
(1.49a), (1.49b) and (1.50a).

A solution to this problem is to introduce the

indefinite metric formalism. One assumes that the operators

Yyus Youo Y54 and ¥,,, which is defined by
: o
(1053> Yq_q_ = l‘YL{.I_l. ’

are Hermitian. Then Ciur Cour Czus and ¢44 are the Hermitian
conjugates of 614, 624, 554, and 844 where ¢,, and 244 are
defined by

(1.54) ¢y, = icy, » By = iC,.

The commutation rule for ¢,, and 244 is, from (l.41lc),

(1.55)  [yyoBus] = 1-

The eigenvalues, Ry of the operators

(1.562) N (k) =.EHV(E)cpv(i)', (o) Alan)
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(1.56b) W, () = 2, ()¢, ()

are the noh—negative integers because of the commutation
rules (l.4la), (1.41b) and (1.55). The eigenvectors of
each NHV(E) are just the harmonic oscillator eigenvectors,
The space E of dynamical states is the space spanned by the
tensor products of the eigenvectors of the NPVCE).

One now defines a unitary and Hermitian operator n

by its matrix elements

n +n +n +n
(o) 24 2 s

(1.57) <n'|n|n> = 6

nn'
where |n) and |n'> are basis vectors of E formed from the

_ tensor product of eigenvectors of the va(ﬁ). A generalized
scalar product and a generalized expectation value are
defined by

(1.58) <¥l¢2, =<¥|n| )

and -

(1.59) <h>, = <hal>

One now interprets all expectation values as generalized
expectation values, If an Hermitian operator commutes with
n it has a rcal generalized expectation value and if it
anti-commutes with n it has a pure imaginary generalized
expectation value. From (1.57) it follows that Ci4 Cons
054, and ¢44 together with their conjugates anti-commute
with n; hence, Yiy» Yhy» Y3, @nd ¥, have pure imaginary
generaliged expectation values., All the other va comnmute

with n and hence all the other YLV have real generaiized
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expectation values. Therefore, the correct reality properties
) .
for the<7¥pv7g are obtained.
The operators va act on the eigenvectors of va(k) in

the following fashion:

(1.60) cy4n;5> = (ﬁ;d lnij—l >
ciqlniyy = -1{pyy|n;-17
Pun|Puy? = =104 Ry -12

by |
Ci5ln3457 = lnij+l‘nij+l7’

1

Cynlnn> = il l]ng, 1y
By |Ryn> = 1 n44+1|n44+lj7

The subsidiary condition (1.50b) now reads

(1.61) (exy + if,,))| v =o0.

If one expresses, as in (1.51), that part of an arbitrary
vector which describes the (33) and (44) polarizations,

one obtains from (1.61)

(1.62) L X A(nBB’nM>[{—{{;5 |n55—l,n44_? + m lnaa,nq#“].?]f: O.

- It can be shown(Akhiezer and Berestetskii,1965) that this
condition implies that l55,44>-is normalizable with non-
negative norm. Similar conclusions follow from the subsid-
iary conditions (1.49a,b) and (1.50a). Thus the problem

of infinite norms.has been removed.

The condition (1.61) together with its conjugate
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leads to
(1.64a) <N§5>G + <N, > = 0.

The subsidiary conditions (1.49a), (1.49b) and (1.50a)

and their conjugates lead to
(1.64b) <N157G + <Ny,72. =0

(1.64c) <N

|
o

(1.64d) <N, >, + <N,,”

227G 347G = O.

Equations (1l.64a-d) are useful in the computation of
the dynamical variables of the free field. For example,

the Hamiltonian which follows from the Lagrangian (1.33%) is
(1.65) (1/2) (k) TN ()
1.65) H = (1/2) T w [N k) + 2% N k].
| x k| kv 1 bb
Hence, because of (1.64a-d)
(1.66) <H> = 1§ wk[<1\112(k)7G+<Nll(k))G]

This ié just the qﬁantum mechanical form of (1.23) if one
takes into consideration (1.42a,b). The subsidiary condition
allows only the (11) and (12) gravitons to contribute to
the Hamiltonian.

From (1.60) it follows that teﬁ types of gravitons
are possible, though in the free field, only the (11) and
(12) gravitons contribute to the dynamiéal variables as
exemplified'in (1.66). In Gupta's treztment eleven types
of gravitons are possible., This is because he treats y as
an independent wvariable. Contributions from y to the free

field variables are removed by imposition of the additional
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subsidiary condition (1.32).

The covariant commutation relations for the fields Y&v

N
are, from (1l.4la,b) and (1.55),

(1.67a) [Y;LV(X),Y&B(y)] = 108,48, *+ 8,00,,)D(x=7) kv, arp

Il

(1.670)  [ryp () s iy (7)) = 1DGey), b

(1. 67¢) [",L'LLL(X) ,YL'M(:Y)] - [7(4_4(32) ’7(41—1-(37)] | = —iD(X"‘y)

where

(1.68) D(x-y) = (1/(2n)5)j/(l/wk) sin(k(x-y)) d5k

If one uses the commutation relations (l.4la-c) for the

S and the transformation (1l.42a,b) relating the Ly and
the apv, one obtains for the commutation relations for the
apv the relations (1.29a-c). The covariant commutation
relations for the fields Vv which follow from (1l.29%a-c) are

(1.692) v, (0,7 = (o NNRRIC S O INTEAN:

pabﬁv

(1.699) [y () ¥ (7] = 1DCemy)
(1.69¢)  [ryp (0 7] = =1D(xy)
Also useful afe

(1.70a) [y (2, Y(y) = -2iD(x-y)

(1.70b) [Y(X),Y(y)l = -8iD(x-y)

The covariant relations for the hHV are

(1.7 [,y G0 m06 )] = i

(=8, Y () /2, w'aB<y>-aaBY_zgﬁ=



106,088 * Oup8ya = Ouy8ep) DY),

an expression-which is good for all (pv) and all («B).
The vacuun state, |O), can be defined as the state

for which
(1.72) ¢ ,[07 = 0, (u)A(4);5 £,,[07 = iy, [0) = ¢4y 0) = O,

The vacuunm expectation value of‘P(hpv(x) haB(y>)’ where P
is the time ordering operator, is required for later use.
By fo;lowing the same procedure as was followéd for the
commutators, that is, transforming back from the v' to

pv

the vy . to the hpv’ one obtains

Y

(1.75) <OnB(n,,(x) Byg(r))[0> = <O[B(n,, () B s(x)) 0> -

_i(épaévﬁ * 6pBéva - épvéaB)DF(X_y>

where

(1.74) Dy(x-y) = lim (1‘/(2n)4)/(1/(k2-i¢)) IEE=T) gty |
: e-0

This résult is good for all (pv) and all (aB). It agrees

with the expressign given by Gupta(1952),

\ As an exgmple of the formalism constructed, the change

in energy ot two non-guantized mass points, situated at iﬁ

and'fé, due.to their gravitational interaction is computed,

A suitable interaction Hamiltonian density is, since it

leads to the correct field equations (1.9),



where
2 N
(1.76) u = nSl m 6(%-x)
and
(L.77) by = Yy = Y/2 = =¥y = ¥33/(2 + vju /2 = v/2

= —Yég - Yéa/fg*' 17(’44/\/—5

Since the Hamiltonian (1.75) affects only the (22), (33)
and (44) gravitons it is sufficient to label a state by
|n22,n53,n44>. The initial and final states contain no

gravitons, The non-zero matrix elements are

(1.78) <boo]H|1oo>-= <001 |H|000>

- A
<000 |H 010> = <010 |H|000> = A//Z
<000|H|001) = -<100|H|0005 = 4//Z ,

where

(1.79) E =U/6§;nt a’x

and b

(1.80) & = ~Ge/ WD) 2 my %

s

The first order correction to the energy is zero since
there are no non-zero matrix elements of the form <O |H|OM.

The second order correction is

(1.81) U = 12{:<OOC]Hlneg(_l;)nBB(—lz)n%(_l\c»<n22(fc)n55(~12)n44(fc)l

H|0007/(~w, )
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= (-1/8V) 2235 m ym, e (1+1/2-1/2) /(")
knn'
n#n'

nl

R )
-(H2/4V)mlm2 % e 17e /(wkg)
<

2 -~
-; mlmg/(16nr), r=\xl-A2‘.
From (1.1%) one has
(1.82) U = —Gmlmg/r

which is just the Newtonian potential energy.

Attention is now turned to a more detailed treatment

of interactions,
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2, The Description of the Scalar Field and Its Interaction
with the Gravitational Field

In a flat space~time the Lagrangian density for the
massless and Hermitian scalar field ¢, when referred to

rectilinear coordinates, is(Corson 1953%)

(2.1) o= (6" Plu $ /2

Thevfiéld equation which follows from the Lagrangian (2.1) is
(2.2) []7% = ©

for which a solution is

(2.3) ¢ = (1/7) = (1//55?)(a(§>eipx N a?(ﬁ)e_ipx) .
p

When one makes the transition to quantum field theory afﬁ)
is interpreted as an operator which destroys a scalar
particle of momentum p and aTCﬁ) is inﬁerpreted as an
operator which creates a scalar particle of momentum p.

The canonical energy-momentum tensor which follows from the

Lagrangian (2.1) is

- . lo la_ oB
(2.4 Ty, = =B, By Oy (BT 8102, 1% g

.

In general relativity one seeks, for a tensor field,’
a Lagrangian density which
1) transforms as a scalar density under general coordinate
transformations, and
2) reduces to the known flat space-time Lagrangian when no
gravitational-field is present and rectilinear coordinates
are used.

Such a Lagrangian density can be obtained from the flat
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5

space-time form by
1) replacing the pa{ﬁial derivative by the covariant

derivative, |
2) replacing the metric &

v by the metric g .., and

B BV
%) introducing a factor /g where g is the determinant of

the metric tensor.
For a scalar field the covariant derivative is the
same as the partial derivative, Hence, the appropriate

generalization of (2.1) is
2.5) L = -/5 & Bl #1023
When the gravitational field is weak
(2.6) " = 6HY — wnt
and
(2.7) Vg =1+ uéthaB/2
so that
(2.8) L= o né“Bth/e)(aEVv_ xhtY) #lu f1v/2
= ="V g, B )/2 = (n/2)nyg TP

where B is the energy-momentum tensor defined by (2.4).
Therefore, the desired quantity, the interaction Lagrangian,
is

where the distinction between upper and lower indices has

been dropped since 6pv is the Kronecker delta.
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3. The Description of the Photon Field and Its Interaction
with the Gravitational Field

In a flat space-~time the Lagrangian density for the
photon field Ap’ when referred to rectilinear coordinates,

is(Corson 1953%)

(3.1) L= —(1/8)6%" &PV NS

where

(3.2) F,, = A

- 4
pv v

(and Ap\p = 0) ,

v
The field equations which follow from the lagrangian (3.1)
and the relations (%.2) are

(3.3) []2A“

for which solutions are

Gy a4 = /D 3 (1/J§EP>(aT(-§)eTp e1P% aTT(i)eT; e~1pXy.
p .

where the eT“ are polarization vectors. When one makes the
transition to guantum theory, aT(ﬁ) destroys a photon of
momentum P and polarization e’ and aTTC§) creates a photon
of momentum D and polarization e'.

The energy-momentum tensor which follows from the

Lagrangian (3.1) is, after symmetrization,

' A _ o aB
(3.5) THV~~ -Fp Fva + (1/4)6vaaBF o

In order to find a Lagrangian for the photon field in
the realm of general relativity, one applies the rules laid

down in Chapter 2. The result is

, ]
(3.6) L= -(/myEe™ g™ T
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where
[\

(3.7) F,, =4 - A = A

g = A
Y Vi Hiv vip

plv

The semicolon denotes covariant differentiation.

When the gravitational field is wealk one obtains using
(2.6) and (2.7)
/ , ' :
(3.8) L= (/) (L + un . 87T /2) (6% <o) (6PY - nPV)x
FaBva

= —(1/4)6%H gPY FooF --'(1/2)~41:1&BT°‘B

where TaB is the energy-momentum tensor defined by (3.5).

Therefore, the desired quantity, the interaction lLagrangian,

is

where the distinction between uvper and lower indices has

been dropped since 6pv is the Kronecker delta,
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4, The Description of the Four Component Neutrino Field
and Its Interaction with the Gravitational Field

In a flat space-time the lagrangian for the massless
four-spinor field ¢-the four component neutrino field, when

referred to rectilinear coordinates, is(Corson 1953%)

4.1) L

]

(1/2)(3, P o - yP )p)

where

(#2) T =0 y*

i
<
-2

and where the y matrices are 4x4 matrices which satisfy
(4.3) Yqu + Yqu = 26P9

Calculations are easier if one uses the representation

0 -icP , yr=[1 o
ic® o 0 -I

(4.4a) vP

where.

(4.40) ot = [o 1] yoo=fo-d] , =1 0] ,1-= [1’ 0
| 1 0f - i o 0 - 0 1

The only additional properties of the y matrices which are

il

required are the following trace theorems which follow from

the equation (4.3%)
(4.5) Te(yPy?) = 4674
Pr(yPyOyTyS) = 4(6P9eTS - §PTAS . gDPSEATY

Under an infinitesimal Lorentz transformation with
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parameters wpq, ¢ and ¢ transform as follows

(4.6a) ¢-=0¢' = (1 + (1/2)wqupq)¢

(4.6b) T-T' =51 + (1/2>wpqﬂpq>

where
(4.60) 1PL = (1/2)yPy¢
(4,60) FPY = (1/2)v%yP,

These expressions are required later when gravitation is
introduced.
The field equations which follow from the Lagrangian

(4.1) are

a7y ¥Ry = 0, B YR =0

for which solutions are

(#.8) o, = u(p)ei(_ls’?C - |El £ i(P-X +|E|®)
+

b = v(ple
where u and v satisfy

= 2 . 4. A A . n
(#.9) F.p + ilElyDu =0, (7.7 - i[E[¥vv = 0.

Solutions for u and v are

A(4.1o) u, (8 =J% N9 » (@ = 110, ,

-

vy () z{%P ny]» vo(@) = 1M,

where



29

(#.11) 7 =P/ |E|

and where

(4.12) n{ = (l/J2(1+nZ)) 1+mn, if n, >0
‘nx + inyJ
M= % ]
ny = (1//2(Tp,D) [n, - ing} if n <O
i LR
rng = (l/J2<l+nz)) ~-nX + iny- if n,%»0
1 +'nZ
UPER : : |
UE = (l/J2(l+bZD) 1+ ]nz| if n,¢O
X -y - ing]

. Thé components Uk and uP satisfy

(4.13) G°iﬂl = T s G'-Emg = =No

and have the normalization

(4.14) n1T Ny = n2T o, = 1.

With this normalization for ni and Nos U and V., have the

normalization

15) wtu = fv =1

The solutions u, and v, can be characterized according to

the following scheme(Lurié 1968)



>

where h, the helicity operator, and vy~ are

~>

(4#.16¢) h = [3.3 O v = [0 -1
0 &.n -I 0

The solutions u_ and V. have the following additional

T

properties which are reguired later

(4.172) vy (1) = uy(R)

(5.170)  v,o(-B) = uy(B)
ur(ﬁ> ﬁr(ﬁ) = % v_(<n) v.(-n) = -i(yn)/2

2
(4,17¢c) =
=1 T=

T

where
(4018) n = (ﬁ,j-)o

An arbitrary solution of the field equation (4.7) can be

expanded as

(4.19) ¢ = (L//V) = = (ar(ﬁ)ur(ﬁ)eipx + bfr(ﬁ)ur(ﬁ)e_ipx).
P T

When oné makes the transition to quantum field theory the

KX
1

a b’ are interpreted as operators such that the

a b - r

T? “r?

. . . . T
a, destroy neutrinos, the br destroy antineutrinos, the a T
. , T . . ’
create neubtrinos and the b T create antineutrinos.

The symmetrized energy-momentum tensor is
4,20) T = (L/4)(D -0 + O, Y - ;
( ) pq = (1/ )(quYp¢ Dplg * O pYe? $Yq¢|p)

The system described by. the Lagrangian (4.1) is invariant
under the charge conjugetion operation and under the’space
inversion operation in contrast to the system to be described

in Chapter 5.
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The genecralization of the Lagrangian (4.1) to general
relativity is not_as simple ;; it was in the previous two
cases where tensor fields were considered. This is because
¢ transforms according to a representation of the Lorentz
group which cannot be extended to the group of all linear
transformations; which general coordinate transformations
are when considered as changes of the natural basis (to be
defined shortly) at each point of the space-time manifold
(Weyl 1929), Thus a definition of a covariant derivative
of ¢ reguires special attention. Tock(1929) arrived at a
suitable definition by.considering the transformation
properties of the vector determined by ¢, His method will
be applied to the two component spinor in Chapter 5. In
this chapter the method of Utiyama(l956) will be used which
is similar to that of Weyl(1931). No matter which method
is used, the vierbein formalism is required and so this is
now described.

| At each point of the manifold the set of vectors {eag
which are tangent~to the coordinate lines at the given point
span a vector space called fhe tangent space. The set of
vectors {eagis called the natural basis., It is not in
general orthonormal at every point but if it is, the space
is flat. Contravariant vectors and wmore generally tensors
can be defined with respect to this basis and its tensor
products. By the Gram-Schmidt pfocess one can introduce
an orthonormal basis {Ep} at each point which is variously
called a vierbein basis, a tetrad or an orthogonal cquad-

ruple. Thus, one can write
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ll‘l'o 21 -é- = f e
(#.218) B, = £7pe, ¢
and
2 = P 3
(4.21b) ey = F oCp
where

4,22) % FP. =% o pd o 4
(4.22) £7,F7p =0y, 7,10, = &

From the definition (1.1) of the metric tensor one obtains

a2y _ oD wd - - ¢ B
(4.23) gy = T o g0hq 1 Opq = LT gBup

Gliven a contravariant vector A, its components }Aaf in

the natural basis are related to its components {Kpf in the

vierbein basis by

(4.24) ZP = FP A%,

For é covariant vector one has
(4.25) E_ =% 4

and in particuler if

(4.26) 4 = d/ox%

one may call

4.27) a_ = f%* &
(4.27) D f p A

the vierbein partial derivative. For a curved manifold
there does not exist a set of coordinates yp which would

allow one to .write

(4.28) a, = 3nyP .
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If at each point of the mani@gld a vierbein framé‘is
defined, so that one has a set of vierbein frames, one can
obtain a new set by applying a Lorentz transformation to the
original set. The new set of vierbein frames is just as
good a set of basis frames as the old set, even when the
Lorentz transformation at each poiﬁt of the manifold
depends on the point. Under such a reorientation of frames
the components of a vector transform according to a Lorentz

transformation. However, the quantity
(4.29) deq = f“p DI /ax™

which may be called the vierbein partial derivative of the
vector A does not transform as a mixed tensor of rank two
under coordinate dependent Lorentz traﬁsformations. One
can, however define a new derivative Dp such that Dpﬂq
does transform as a second rank tensor under coordinate
dependent Lorentz transformations., This is done by

adding the term(Utiyama 1956)

(4.30) -t* B

b By Mpg/2

to dp to obtain Dp. The Mrs are the matrices which rep-

resent the infinitesimal Lorentz transformations for the

rs

vector A, and the Ba are given by

]

(4,31) BT®

(04

Sp LT T r T8
e} £ p(F o~ F Bl ma )

'_ Sp (rq b a0 s B
6 o} F qs £ D3 B F o f t)

i

B . )
where the e 2Te the Christoffel symbols and the qut

the Riccl coefficients of rotation. The new quantity
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Z q _ ex q (¢4 TS/ q =t
(#.32) D EY = £5 0 (OE/ex™ - (1/2)B 71, 0% B)

(/‘J

is related to the usual covariant derivative by

(4.33) A“;B = f“q FPB (;bxq>.

Hence,.DpKq can be called the vierbein covariant derivative,
In summary, DPKq is a quantity which transforms as a second
rank mixed tensor under coordinate dependent Lorentz
transformations, and is an invariant under general coor-
dinate transformations,

Utiyama has shown that if ¢ is a spinor, then under
coordinate dependent Lorentz transformations the quantity
Dp¢ defined by |
),

(4.34) Db = f“p(a¢/ax@ - (1/2)13061'S M.

where the Mr are the matrices which represent the

S
infinitesimal Lorentz transformations of ¢, transforms as a
covariant vector and as a spinor simultaneously.
The passage to general relativity can now be made for
a spinor field. One seeks a Lagréngian which
1) transforms as a scalar density under general coordinate
transformations,
2) is invariant under coordinate dependent reorientations
of the vierbein frames, and
3) reduces to the flat space~time Lagrangian when no
gravitational field is present and rectilinear coordinates
are used. | |

Such a Lagrangian density can be obtained from the flat

space-time form by
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1) replacing the partial derivative by the vierbein
covariant derivative D o, o
2) replacing the metric 6pv by the metric gpv', and
%) introducing a factor (g where g‘is the determinant of
the metric tensor.
When the above rules are applied to the Lagrangian (4.1)

one obtains
(4.35) L= B, B¥Po - TrP(ae))/2
_ /T O Trs P _.P
/é¢»f P Ba <PIrs Y Y Mrs>¢/2 y
When the gravitational field is weak one writes

D _ £D b o Q&
(4056)Fa~6a+na’fp_6p+¢ap

but the orthogonality conditions (4.22) imply

;
<

(4.37) & = -n%

Y Y

and the conditions (4.23) imply

(4.38) 7 ®h_ .

pa * Ngp T "Ppq

The system is invariant under change of vierbein frame so

one may choose

7 =
(4.39) Npa %hpq/2.

rs

The ternm Ba becomes

Pa _ ., «PB QO
(4.40) B P% = woPr & (haGlB - haBlc)

It is shown in Appendix A that when (4.40) and (4.6¢,d) are

substituted into the Lagrangian (4.35) the second term on
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the right in equation (&4.3%5) vanishes as pointed out by
Vladimirov(1964). Therefore, e

(1) L' /22 + w658/ ] (6%, - 03B ¥ b -
T yP(s% - 1500 ]
= 2@, e -7 Yp:¢|p) -
/2By Y2 0 = TP 0,0
(/) 872 (15 ¥ 0 = TP o))

The third term vanishes when the field equations are

satisfied. Therefore, one obtains

(4.42) «fgnt

Il

'—(1/4)nh“p($la Yo - o)

I

—(l/2)%th TaB

where the symmetry of haB has been used to write the last

line and where the distinction between upper and lower

indices has been dropped since 6pv is the Kronecker delta.



5. The Description of the Two Component Neutrino Field
and Its Interaction with the Gravitational Field
Y}

In a flat space-time the lagrangian density for the
massless two‘component spinor field ¥ - the two coﬁponent
neutrino field, when referred to rectilinear coordinates,
is(Corson 1953)

- (s vt Py _ oyt D w
(5.1) [= G2 Py -v' P ¥

| P

where the of are the fundamental spin-tensors. A suitable

representation is

(5.2) ot = (cl‘k‘B) = {O lJ R o = [O -i} R &> = [l O]
1 0 i

These spin-tensors have contravariant spinor indices. The

corresponding spin-tensors with covariant spinor indices are

(5.3) &t = (GlAB) = (&3¢ €pp oléD) -To 1170 1o _'] =
| . -1 011l O] |1 0

The o and ¢ satisfy

T _aT
(5.42) P o + 5% oP = —28P4

T

i

- - ¥
(5.4b) oP 3% + o4 5P —26P4

from which follow the trace theorems
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T L
(5.5a) Tr(5P o%) = Tr(cP 5% ) = -26P4
N o T ks
(5.50) Tr(cP o 3F 6°) = 2(eP%T® - ePTE4S , gPSpaT)

Under an infinitesimal Lorentz transformation with

parameters wpq

Py

(5.6a) ¥Y-¥' = (I + (1/2)wpq

1.

(s.6p) vhwiTowf(r . <1/2>wpqmpq)_

where
(5.60c) MP% =-(1/2)5°" o
(5.6d4) MPY =-(1/2)0% 5P,

The field equations which follow from the lagrangian

(5.1) are

KX
|

v

D _
0 lP a 0

1Y
(5.7) C» W\p 9

for which solutions are

i(p-x —V|Elt) i(3.% + |E[4)

(5.8) ¥, = ulple » ¥_ = v(ple
where u and Q satisfy
(5.9) (_60-5 - |E| )u =0 ) (6}0_'2) + lEI )V =0 ,

Solutions for u and v are

where T is given by (4.11) and where by and n, are given by

(4.12). They are eigenvectors of the helicity opérator 5.7



The solutions u and v have the following additional properties

which are required later

(5.122) u(@)u' @)

~(n5") /2

(5.12b) v(ﬁ)vT(ﬁ)

i

~(no)/2

il

u(n)

(5.13)  v(-1n)

where n is defined by (4.18). An arbitrary solution of the
field equation (5.7) can be expanded as

(5.14) ¥ = (1//T) = (a@ul®) e + v (B)u@)e™1P¥),
' D

When the transition to quantum field theory is made, a(®)
aestroys antineutrinos, a?(ﬁ) creates antineutrinos, b(D)
destroys neutrinos and bT(ﬁ) creates neutrinos. ,Here,>the
usual convention is followed--neutrinos have negative
helicity and antineutrinos have positive helicity.

The symmetrized energy-momentum tensor is

G.15) T, = (imioy s, 9).

i i i
- - ¥
o AT AR IR AN

o |

The s&stem described by the Lagrangian (5.1) is not
Anvariant under the space reflection . and charge conjugation
0perations'but it is invariant under the combined space
reflection and charge conjugatioh operations.

The Lagrangian for the two component neutrino in
general relativity, which satisfies the criteria laid

down in Chapter 4, can be found by using Utiyama's
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prescription where the matrices representing the infinit-
esimal Lorentz transformatioms are given by (5.6¢,d).
However, instead of using this method, Fock's method(1929)
of generalizing the Dirac equation will be used. Fock's
method runs as follows.

From YT, of and Y one can form a contravariant (under

Lorentz transformations) vector A with vierbein components

(5.16) AP = (v'oP¥) /2 .

This vector is defined at each point of the space-time
manifold. If one displaces the vector A an anount axt by
parallel displacement, the change in the vierbein components
is |

AT FS oaxM

Py __ P4
(5.17) &5(AY) =-b6 qus "

Following Fock, one writes, from (5.16)
(5.18) 8(aP) = (1/2) (6¢T)oP¥ + ¥ToP(s¥)

and assumes that under parallel displacement

.i.

: _ s B oyt AT s v
(5.19) ‘o¥ =-C, ¥ F° ax" , & =¥ C  F dx

where the C_ are to be determined. By substituting (5.19)
into (5.18) and equating the result to (5.17), one obtains

s v Ty 75 axt

Teal D P s kL _ £PQ
(5.20) ¥'(Clo® + oPC )Y F L axt o= 8y "

qr

or

T p _ &Pa r
(5.21) Ci o0 +0° C =0 Yqrs ©
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for which sclutions are

il

(5.228) C. = (/)P o)y

s olefs

T
(5.22b) Cg

]

T
~(1/8) (0 5 Dy o

One now defines the vierbein covaeriant derivative of _

the spinor ¥ to be

(5.23) DY = f“p Yig = OpY

This is a satisfactory definition because under coordinate
dependent Lorentz transformations it éan be shown that DPY
transforms as a vector and a spinor simultaneously. The
definition (5.23) is the same as that obtained from Utiyama's
procedure.,

In general relativity, a Lagrangian which is suitable
fbr describing the two component neutrino can be obtained
from the Lagrangian (5.1) by applying the rules laid down
in Chapter 4. Thus one replaces Ylp and Yjp with DPW and

and Dp\y'r to obtain

5.25) L

/et ¥" P - (0rho? v

/5(1/2){¥T a®(a ¥) - (deT)ap w} -
/@(i/2)WT(C; o® - oP c ¥

In the weak field approximation the second term can
be shown to vanish by exactly the same procedure as given

in Appendix A for the four component neutrino. The first

term becomes, with the help of (4.36) and (4.39),
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(5.26) Jf = (i)t oP w'p - wjp P v +

(i/4)%haa(WT P v - WID o ¥) -

|p

(1/mun% (2" P v - ¥l oPY)

Kol
The second term vanishes when the field equations are

satisfied so that

(5.27) fing = ~(1/2)nh 5 T o

where TaB is the energy-momentum tensor defined by (5.15).
The symmetry of haB has been used to obtain (5.27) from
(5;26) and the distinction between upper and lower indices

has been dropped since 6pv is the Kronecker delta.
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6. The Matrix Elements for the Collisions

In the interaction picture

(6.1) i%lyf(t» = 2 (6) [g(6) > .

One lets

(6.2) |i> =|g(-)>

and looks for a solution of (6.1) such that
(6.3) |g(+m)> = 8|i>

Such a solution is(Muirhead 1965)

(6.4) s §O (—i)n/h{/['y/vdxl dx P[ di;t(xl>"' dint(xni

n

i

224

S
n=0

i

n .

where P is the chronological product. One is interested
in the matrix element <f|S|i)> where |[f)> is some particular
final state.

The collisions under considération are those which
take place through the creation and annihilation of a
single graviton. The lowest order contribution to such

events is éontained in 82 which is
6.5) 8, = (-1/2)/ [ e ay o L0 L@

The quantity P[ ] can be decomposed by means of Wick's
Theorem. The term in the decomposition which contributes

to the aforementioned collisions is

(6.6) T = (x%/m) b () Bop(y) N[, () Tog(y)

Lt



4_4_

where hpv<x) haB(y) is the graviton propagator? given by
(1.73), N is the normal product and Tpv is the energy-
momentum tensor for the two fields which describe the
particles being scattered--if the scattering of a scalar
particle and a photon is under consideration then Tpv is
the sum of -(2.4) and (3.5). The quantity I, given by (6.6),
will be referred to as the integrand of the scattering matrix,
One is now in a positioh to calculate the matrix elements
for the scattering ﬁroblemé listed in the Introduction.
Only the highlights of the calculations are given in this
Chapter. This is because any one calculation can serve. as
an example, and in Ap?endix F the detailed calculation for
the scattering of two massive scalar particles is given.
The latter calculation can serve as the example for the
results presented in this Chapter. |
Briefly, howeﬁer, to work out a matrix element . one

substitutes the appropriate T into the integrand I

VA
and expands the product Tpv(X)TaB(y)’ thus obtaining an
expansion of the integrand I. The Feynman graphs then

- follow from the expansion of I. The_matrix element, s,
is computed by performing the integrations indicated in
‘(6,5) and evaluating the scalar product <flS,|i).

"In the following pages the individual scattering

problems afe considered, For each, the relevant energy-
momentum tensor, the expansion of the integrand I, the

. Feynman graphs and the matrix elements are given, The

positive and negative frequency parts of the fields,
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s +3
ikx and e ikx

that is, those parts which contain e
respectively, are denoted by affixing a + or - to the
symbols for the fields. The initial momenta of the two
interacting particles are denoted by p and q and the final

momenta are denoted by p' and q'. The center-of-momentum

frame is used so that

;' -

(6.7&) _]5 = "'_qA ’ P = "q' .

The particle energies are all equal ‘and this common energy

is denoted by p,. The quantities k° and B° are defined by

]
It

(6.70) 32 = [33'| % = & 5,7 sin(er2)

il
]

22 = |5+'|° = 4 p, 2 cos®(6/2)

where © is the scattering angle:

In fhe Feynman graphs a dashed line represents a graviton
and a solid line represents a scélar particle, photon or
neutrino, IWhere necessary, scalar, photon; and neutrino
lines are distinguished by juxtaposing an n, Y or v

respectively., Finally, : : denotes normal ordering;b
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a) The Matrix Elements for Scalar-Scalar Scattering
'~ The energy-momentum tensor for two massless, Hermitian

scalar fields 6 and % is

J

2 2 i i
2:0 8, 9, - b, I Fp/2s

"(6.8) T =3
e i=1 j=1
When this is substituted into I, defined by (6.6), one

obtains, after algebraic manipulation

(6.9) I

il

O /) By, (OB (r) W[, GO T ()

(21°) ngffz_?aﬁ(y>*
[F1u00 51,60 #7,) #p @

~(6g/2) 81,00 ¥, ¢ H70()
~(5,,/2) #0060 #7,.) F )

+<6uv 8o /™) éﬁr<x> AMCONFMCOR FNe)

lﬂ

IP(X) (y) # MCON Z]B(y)

|a
"(6a8/2> (X) lr(y) 6, (x) B (3)

(0y/2) 6]T<x> o) 9100 Fp@
+(8,, aB/4) (X) IT(y) ln(x> (y)

[H(X) zﬁa(y) ¢]B(y) ¢7v(X)

~(6yg/2) B B3 o) B, (0

|
~(8,,/2) #1:0) B) () 67p() ¢7T<x>

«(s,, QB/4> 0 B #.) F 6
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Upon inspection of (6.9) one sees that:
1) the fifth to ninth terms contribute to a process whose

graph is

2) the last four terms contribute to a process whose graph is.

2

Co(2) \I

. 3) the first four terms contribute %o a process whose graph is

The corresponding matrix elements follow from (6.9).

They are, in the center-of-momentum frame,

(6.102) s, = 1(x2/v2)(2m)" a(p+q-p'_q'){cos2<e/2>/sin2(e/e>§ /2
(6.10b) s, = 1(%/v7)(2n)" 6(p+q-p'—q'){Sin2(9/2)/cosg(9/2)}/2
(6.100) s5 = 1(x2/v2)(21)* 8(pra-p'-a*){sin%0f/8

where p and g denote the initial momenta of the two particles

and p' and q' denote the final momenta,



48

b) The Matrix Elements for Scalar-Photon Scattering
The ehergy—momentum tensor for the combined scalar

field ¢ and photon field AH is

(6.11) THV = :_¢|P¢lv + 6HV ¢|T¢|T/2 - F“aFva + 6HVFGBFQB/4 :

When this is substituted into the integrand I, one obtains

(6.12) I

/83 B G Boe () 2,60 TG

1

(2% By, () B

i¢ju A?la v A;IB - ¢iu A;Ia ¢Tv A%]Y

"¢ju A;IY v A;[B +'¢7u A;IY lv 48y

..(530@/2);;5“]}l A;IT 2N A;‘T + (aaB/e);;*iH A;IT v A;IY
=0/ K10 FTe K7)p + /D9 Ayje e 45y
RCWOLE A&IY #le 436 - (6,,/2)¢ 7 A;IY I 45y

, + + - - + + - -
+(6uV~6aB/4>¢IT AYln ¢lf AYln - (6uv 6&8/4)¢IT Avln ﬁlf AHIY}

In (6,12) # is a function of x and ApL is a function of y.
All the terms in (6.12) contribute to a process whose

graph is

The corresponding matrix element is, in the center—of-

momentun frame and in the Coulomb gauge,
3 i R s
(6.13) s = i(x"/v)(2m)" 8(pra-p'-a') (1/k7)x

B3, 2 + 33 - B HEBO] .
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where p and p' denote the initial and final momenta of the
scalar particle, q and q' denote the initial and final
momenta of the photon, and € and €' denote the initial and
final polarization vectors of the photon.

The equation (6.13) has a simpler form if expressed in
a different basis. If ?l is a unit vector perpendicular

to the plane determined by 4 and Q', then
— -_ .
(6.14) ‘e, = axe,/p,

is a second unit vector which together with'@l can be used

as. a basis for the space spanned by the polarization vectors,

=21/

€, 7

==
€,
S
Thus, e can be expressed as

P N

(6.15) @ = ai@l + azgé .

In a basis &, &_ defined by
(6.16) e, = (8, +ie)//2, &_= (8 - ie,) /2
one has

-—

(6.17) & = 2%, + a_®e_

where
(6.18) a, = (al - iae)lg., a_ = (al + ia2)/f§ .
Similarly one can write, for the scattered photon,

(6.19) @' = ajel + ate}



where

(6.20) By =78, , B4 =TS/, -

If one introduces

(6.21) 8; = (éi + 1§é)//§ s 5: = (?i _ 1eé Y/ /2
a) = (ai - 1aé)//§ , a' = (ai + iab Y/ /2

then ' becomes
(6.,22) = = ajel + a'e! .

In the basis {€+, e_, &), éij the matrix element (6.13)

is
(6.23) s = i(/v2)(2m)"* o(pra-p'-q') (a,a! + a_a' )x

{cosg(e/E)/sine(e/E)}/E .
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¢) The Matrix Element for Scalar-Four Component Neutrino
Scattering
The energy-momentum tensor for the combined scalar

field ¢ and four component neutrino field ¢ is

(6.21) Tpv(x) =:—¢lu¢lv + bpv ¢lr¢{r/2 + (wlp Y, © -
¢ 24
v, (P“L)/

" When this is substituted into the integrand I, one obtains

i

, |
(6.22) I = (x%/8) () Bog(r) WD, () T ()

(n2/2) hpv<X) haB(y)x

{#1 T 1o 09 Ay - F Fla e ¥ A
~(0,, /287 T v, ¥ Flp + (82800 By vp 0 9]

In (6.22) 4 is a function of x and & is a function of y.

All the terms in (6.22) contribute to a process whose

Bl

The corresponding matrix element is, in the center-of-

graph is

nomentun frame,
2.2 N, N
(6.23) s = 1(w"/V)(2n) " 6(p+a-p'-q')(1/2)(1/k7)(D-B*' +
2= '
30, 0L (') v, u, (D)

where g and q' denote the initial and final momenta of the

scalar particle, p and p' denote the initial and final
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momenta of the neutrino, and u, and U, are the initial and

final helicity states of the neutrino.

Y
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-d) The Matrix Element for Scalar-Two Component Neutrino
Scattering

The energy-momentum tensor for the combined scalar

field ¢ and two component neutrino field ¥ is

(6.24) T,,(x) =:1-p

\“¢‘V * 6HV'¢\T?lT/2 + i(Wﬁ“ G W -

.‘. ) , . .
¥ oo, Y‘p),2 .
When this is substituted into the integrand I, one obtains

(6.25) I

i

CVORINER WHCORIL MR ANCS]

i

1(1°/2) b, () B ()
O, gt ' gt
M o Y % ¥ip = S O a9
A WOLIM vi= o Vg + (6,,/2 ) Fp Yo o o V'Y

In (6.25) ¢ is a function of x and ¥ is a function of'y.
A1l the terms in (6.25) contribute to a process whose

graph is

The corresponding matrix element is, in the center-of-momentum

frame,
(6.26) s = -i(uo/v2)(2n)? B(pra-p'=a')(1/2) (1K) (3. D" +
.5p02) u%(p) u(p')

vhere g and q' denote the initial and final momenta of the
scalar particle, and p and p' denote the initial and final

nomenta of the neutrino,
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e) The Matrix Element for Photon-Four Component Neutrino
Scattering

The energy-momentum tensor for the combined photon

field Ap and four component neutrino field ¢ is

(6.27) TMV(X) ==FuaFua + OuuTopfap * ($‘“ Y, $ =0, @IH)/22

When this is substituted into I, one obtains

(6.28) I

OB WNCR WICORILINCO R o]

(n2/2) hpv(x) haB(y)x

—+ -+ - -t - 4+ -
N{¢ Yo q)[v Arla AT[B - Yo ¢|v Arla ABIT

-t - + - -t - + -
—' 4 3
R R AR M b T

o/ v, 5T A$ln e (8,6/2)F" v, ¥y Ailn A e
_aip v, O A;la Arip 57“ Yy ¢ A¥|a g
Bl v 07 A K g - Bl vy 07 A K
#(8yp/2)T) vy 07 g Ay = (Bep/2T), vy, 07 Ag, 1]

In (6.28) ¢ is a function of x and AP is a function of y.
All the terms in (6.28) contribute to.a process .whose

graph is

The corresponding matrix element is, in the center-of-

momentum frame and in the Coulomb gauge,
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(6.29) s = ~(x®/v)(2m)*o(pra-p'=a" ) (1/8p, ) (1/6°) e ol x

T ()] (Gra) + (an[o, (33 - %, 2) 4

qiqé] + (v + vyaf Do, )311 (p)

where q and q' dehote the initial and final momenta of the
photon, 2 and @' denote the initiai and final polarization
vectors of the photon, p and p' denote the initial and
final momenta of the neutrino, and u, and U denote the

initial and final helicity states of the neutrino.
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i

f) The Matrix Element for Photon-Two Component Neutrino
Scattering

The energy-momentum tensor for the combined photon

field AH and two component neutrino field VY is

(6.30) THV(X) =;—FpaFva + équaBFaB + i(v

When this is substituted into I, one obtains

(6.31) I = (°/%) n () b () U ECD e ()]

L
- i(ng/z)_h“v(x) ho (7%

Ni yi= o wt pt oam Ly g wt
| % v frle tT)e %p

. T + + - - + + -
-~ OH \yl\) Aocl’l? AT{B + ¥ O'p’ ‘y‘\) AO(,IT AB[,L_
_ f ot + - Ay T + -
(6a8/2)W Gp ;lv AT\W AT\W + (6 B/L)? o W'V Arln AﬂlT
i + - + -
-—\Y\ o Y A’L‘\ T\B l O'v v AT‘OCABlT
;

T\B \}_’_O'\)? A. l ABlT

T
+(6QB/2)W‘p g, vt opt

T|n T|7

AT, = (6 /o) vyt AT

T~ a2 9y mrj

In (6.31) ¥ is a function of x and A“ is a function of y.
A1l the terms in (6.31) contribute to a process whose

graph 1is

The corresponding matrix element is, in the center-of-

momentum frame and in the Coulomb gauge,
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(6.32) 5 = -1(x"/1%)(20)* s(pra=p'-a')(1/8p) (LK) e el 'x
w (0] (Coa") + (o), (33" = 3p,7) +

o
] ] b ]
qiqj] + (o493 + 0505) (4p, )} u(p')
where q and q' denote the initial and final momenta of the
photon, © and €' denote the initial and final polarization

vectors of the photon and p. and p' denote the initial and

final momenta of the neutrino,
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-

g) The Matrix Flements for Four Component Neutrino-Four
Component Neutrino Scattering .

The energy-momentum tensor for two, four component
neutrino fields, é and &, is
| 2 2 i 3 i 3
(6.33) T,,(x) = (1/2) 2 jgl:(d)‘H Yy & =By, o))

When this is substituted into I, one obtains

(6.34) I

F /) 1, G B p() WL G ()

|

) |
(n=/2) hHV<X)_TGB(y)X
e /- £y 2

w5 G v, 47,60 5@ v B
50 v, 67,00 B v, e

SINCRIE A CORMCORNEFNCS

W00 1, 6 B 1, B
5 ) Yy IMED B v, é]B(y)'
ENCORMINCORANcoRME aco
*éTV(X)IYH e o &]B(y)
1,60 v, 76 Bl v, @)

'Upon inspection of (6.34) one sees that the first

four terms contribute to a process whose graph is

| <€f
' " a

and that the last four terms contribute to a process



whose graph is

(2

The corresponding matrix elements are, in the center-of-

momentum frame,
(6.352) 5y = 1G7/V2)(@m)* b(pra-p'-a) (/D] (B.3"

ug(a) +

3D, )0 (1) ¥, up(p) 8o (at) v,

(8p, )T, (p") v, u (p) T, i(a") v, u ()]
(6.350) s, = 10212 (2m)"* (pra-p'-a')(1/88%) (33" +

5p02)ﬁr.(p') v, ugla) ugi(a™) v, ulp) +

(82, (') vy u5(0) TyaCa®) v4u, (0]

- where p, p' and W,y Un denote the initial and final
momenta and helicity states of one neutrino and q, g' and

g denote the corresponding quantities for the second

neutrino.
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h) The Matrix Elements for Two Component Neutrino-Two
Component Neutrino Scattering
The energy-momentum tensor for two, two component
neutrino fields é and @, is
oy 2 2L
(6.36) THV(X) = (i/2) i:l jfg:(W‘H y v ¥

When this is substituted into I, one obtains

(6.37) I

P /8) b G0 ha () [T GO 2 ()

~0/2) B G ()

/< /
N{W'" ) o vt
(x) o, m

(x) @T"(y) g \a(v)

TG o, ¥,G0 $) OB ¥ ()

_éf*l;(m o ¥(x) () o

+éK;<X> 5y (0 ﬁﬁ;cy>'cg ()

+§¢_(X) . QTP(X) é?—(y) g @Ra(y)
_ZT—(X) o éxp(x) éi;(y) g %+(Y)

A (y)

_éi;(x) o, ¥H(x) ¥ (y) 9B ¥ \a

RANCOINS SICOR ANCORIS aCo)

Vv

Upon inspection of (6.37) one sees that the first

four terms contribute to a process whose graph is

| 2
a4

' 2

0}
and that the last four terms contribute to a process
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( 2
R
2 !

/
(2)

The corresponding matrix elements are, in the center-of-

whose graph is

momentum frame,

(6.382) sy = -1(x¥/17)(2m)* 6(pra-p'~a") (18K (33" +

3p, )’ (p) o, ulp') u'(a) o, ula') -

H

(80,07 (0) u(e") v'(a) u(ah)]

(6.38b) 3 (272 ()t s(p+q-p'—q'><1/832>{<4§-§! +

0]
no
1l

5p02)u7(q) o, w(p') u' (p) oula') -
(8p02)u7(q) u(p') u'(p) u(q')}

where p and p'. denote the initial and final momenta of one
neutrino and q and q' denote the corresponding quantities

for the other neutrino.



7 The Cross-sections for the Collisions
For each matrix element given in Chapter € a quantity

M is defined by
(7.1) s = i(2n)* s(p+q-p'=q') M .

The transition probability per unit of space-time is

then

= 4 1 ] »M 2
(7.2> w = (2711) 6(p+q—p -q >|“‘
and the cross-section is
(7.3) do = (w/J) 4N

where J is the incoming flux density and dN is the number
of final states(Muirhead 1965).

Following Muirhéad(l965) one obtains for the cross-
section for unpolarized particles in the center-of-

momentum frame
(7.8) - aofan = (/20 (02w T zjp)?
: i

where & indicates an average over initial spin states and
y .
Y indicates a sum over final spin states.
£
With the help of the results obtained in the previous

Chapters, the cross-sections for the collisions listed in

the Introduction can now be worked out.
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- a) The Cross-section for Scalar-Scalar Scattering
The matrix element is the sum of (6.10a), (6.10b) and
(6.10¢c). Therefore, from (7,1),

(7.5) M = (n2/2V2)[0052(6/2)/sin2(9/2) + 5in°(0,/2) /cos"(0/2)
+ (singe)/4]{

Since scalar particles have spin 0, there are no

polarization sums, . Hence, from (7.4),'
(7.6) ao/dn = (x*/(2m)%)(p,2/16) [cos(8/2) /31n”(0/2) +

2
sin2(6/2)/0032(9/2) + (singe)/ﬂ]'



ol
b) The Cross-section for Scalar-Photon Scattering
From (6.23) and (7.1) one obtains
* % N
(7.7) M = (ng/EVE) (a+ai + a_a') cosa(G/E)/sin2(9/2) .
For a photon there are two possible initial states
corresponding to

(7.8) Jo,|" = 1ama |a_|" =1

and two final states corresponding to
(7.9) lailg =1 andlall2 =1,

Therefore, from (7.4),

(7.10) do/an = (*/(2n)9) (p02/16) cos T (6/2) /sin”(8/2) .
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¢) The Cross-~section for Scalar-Four Component Neutrino
Scattering

From (6.23) and (7.1) one obtains
(7.11) ¥ = GEAP(1/ERD) BB + 3p,2) T (p') v, u(p) .
From (7.4) one has, therefore,

(7.12) do/dn = (F/(2n)?)(p 2 /16K7) (3.3 + 3p,2)Px
2

T T |u. () v, uw.lp)| .
T ptl T 4 “r l

For the four component neutrino there are two initial
and two final states, Hence,
| _ 2
3 L
(7.13) T2 |80 v, u_(p)|

=(1/2)2 £ W . (p") v, u,(p) u,(p) v, u..(p")
I'I" .

=(1/2) T, (p") vy [-1Gvp)/2p,] vy up (o)
r . )

il

(-1/8p,%) Trace [(vp') v, (vp) v,]

‘0032(6/2)

where the Hermitian property of Yu in the representation
(4.4a), the property (4.17c) of the solutions ur(p), and
the trace theorems for the y matrices(lMuirhead 1965) have
been used. The substitution of (7.13) back into (7.12)
and the usé of (6.7b) yields

(7.14) do/aq = (u“/(an)g)(p02/64)[cos4(e/2)/sin4(e/2ﬁ><

(1 + cosz(e/2))2
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d) The Cross-section for Scalar-Two Component Neubtrino
Scattering

,. From (6.26) and (7.1) one obtains
(7.15) M = =11/ (33" + 3p,2) u'(p) ulp') .

There is no polarization sum for a two component
neutrino since there is only one initial and one final

state. Therefore, from (7.4),

o RN TN o) + 2
(7.16) do/af = (*/(2m)*)(p,°/1667) (B.3" + 3p,7) [u' (P)ulp)]
Now,

. ' 2
(7.17) T o) ue")

i

w' () up") ui(p") ulp)

]

- v'(2) [(»'5 )/2p,] ul(p)

it

(1/4p02)Trace [(pB’T) (p'BT_)]

V_(1/4p02)Trace[(p3T) Oy (p'G") 04}

0052(9/2)

il

where the properties of Oy in the representation (5.2),
the trace theorem (5.5b) and the property (5.12a) of the
solution u(p) have been used. The substitution of (7.17)
into (7.16) and the use of (6.7b) yield

(7.18) do/an = Gt /(2m)°) (p ° f64) [cos”‘(e/e)/sin‘*(e/z)] X

- (1 + cos2(6/2))2 .
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e) The Cross-section for Photon-Four Component Neutrino
Scattering

With the help of
(7.19) T,.(p") |(va") + (va)] u(p) = v, By Go(p') u (p)

one obtains, from (6.29) and (7.1),

| . . i
(7.20) U = i(%2/V2)(l/8pok2> el e U, (p") X4 u,.(p)
where

(7.21) Xy = (bivpo) [6, (BB - 3p,7) + ajal] +

| 2
'
(vs a5 + vy af)p,™)

Therefore, from (7.4) one has

(7.22) ao/an= (x*/(21)2)(p 2/%) (1 /68p 7 &)
— * - ' 2
B el ey Tl up()
Now,
L 2 - 2. — . * *
(7.23) ? ? \ = (—l/8pO } g 2.(61 ey ex ei)x

' ~S
Trace[}Yp ) X33 (yp) Xkl]
where (4.17c¢c) has been used and where

X?

nt

i~ Ya

The trace is evaluated in Appendix B and the photon

polarizatioﬁ sum is worked out in Appendix C. One obtains

ZI -|2 = 64P06 @052(9/2) - cos4(6/2) + 4cos6(e/2ﬂ.
f
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The substitution of (7.25) into (7.22) and the use of
(6.7b) yield

(7.26) do/an= Git/(2m)2)(p 2 /64)(1/s1n"(8/2)) x

@052(9/2) - 0084(9/2) + 40086(9/2ﬂ
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f£) The Cross-section for Photon-Two Component Neutrino
Scattering

With the help of
(7.27) w0 [(oa") + (@) ulp*) = -4pu’ (p)u(p")
one obtains, from (6.%2) and (7.1),
| 2 2 S2ya1* i :
(7.28) M = -(n"/V")(1/8p k")el e u (p) X3 u(p')

where

(7-29) le = ""q’po [613(':5'?9\' >"‘ 5p02) + qiqs:l +

. 2
(o505 + 05050 (4p,7)

Therefore, from (7.4) one has

(7.30) do/an= (*/(2n)2) (o 2 /) (1 /640 2 KX

— *

% lei e. uT(p) Xij u(p')

et

J
Now,
(7.31) = % 2 - (1/4p 2)_5 X (e'*e'-e' o )X

Trace[(pET) Xij (prT) Xkl]

where the property (5.12a) of the solution u(p) and the
Hermitian property of Xij have been used., The trace can
be evaluated with the help of the trace theorems (5;5a,b).
One obtains for (7.3%1) the result given in Appendix B for
the photon-four component neutrino case. Thus, the phdfon
polarization sum is the same &s that given in Appendix C
for the photon-four component neutrino case., Hence, one

obtains
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(7.32) E 3| |2 = 6lp_“(cos™(8/2) - cos™(6/2) + 4eos®(8/2)).
i

The substitution of (7.%2) into (7.30) and the use of
(6.7p) yield

(7.33) do/an= (*/(2m)2)(p 2 /64) (1/5in™(8/2)) %

E052(9/2) - 0084(9/2) + 40036(9/2ﬂ .
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g) The Cross-section for Four Component Neutrino-Four
Component Neutrino Scattering

The matrix element is the sum of (6.3%35a) and (6.35Db).

Ffom (7.1) one then obtains
(7.38) M = G /8V%) [ 4,0 (0") v, u,(p) Ty (a") v, ()
+ BUL(p') vy un(p) Tgi(a") v, ugla)

= CuL (") v, ugla) Tgela") v, un(e)

B

- Du, (p') v, ug(a) Uga(a') vy ur(p)}

where

(7.35) A= (BB + 3 0)/ %
B = 8p_°/ %"
C = (-p-p' + 5p02)/'§2
D = gp_°/B°

It is necessary to compute—i EIM[g. This is done in
_ if
Appendix D, The substitution of the result obtained there
into (7.4) yields

(7.36) do/an = (x*/(20)%)(p ?/512)x
{@&60082(6/2>+180084(9/2)+6COS6(6/2)+0088(9/2)]/Sin4(9/2>
+ @+6sin2(e/2)+18sin4(e/2)+6sin6(e/2)+sin8(e/2j]/cos4(e/2)

+2[4+9sin2(e/2)c§s2(9/2)]/[sing(e/z)cosg(e/eﬂj
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h) The Cross-section for Two Component Neutrino-Two
Component Neutrino Scattering

The matrix element is the sum of (6.3%8a) and (6.38b).

From (7.1) one then obtains

(7.37) M = ~(x°/87°) {Au“‘“cm s u(p') u'(a) o, u(a")

M
- Buf(p) u(p'j u?(Q) u(q')

- cut(q) 5, u(p") u' (p) o, w(a")
+ DuT(q) ul(p") u?(p) u(Q'j}v

where A,B,C, and D are the same as in (7.35).
2

It is necessary to compute lM This is done in

Appendix E, The substitution of the result obtained there

into (7.4) yields

(7.38) do/an= (u*/(2m)?)(p P /512)x
{ﬁ&6cose(e/2)+180084(9/2)+6cos6(6/2)+0038(9/2)]/sin4(9/2)
+-@+6sin2(e/2)+1851n4(e/2)+6sin6(e/2)+sin8(e/2)]/cos“(exe)

+4[4+9sin2(6/2)0052(6/2)}/{Fin2(9/2)cos2(e/2j]j
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8. Conclusions and Discussion

In this Chapter the results of the previous Chapters
are reviewed, summarized, and compared, where possible, with
previously published results; a comparison with electro- |
dynamics is made; a simple self-energy calculation is given;
and finally, a recent(1970) approaéh, involving gravitation,
to the self-energy problem in electrodynamics is mentioned.

In Chapter 1, Part a, the gravitational field variables
are defined. The Lagrangian for a weak gravitational field
is written down and two solutions(for a static source and for
a free field) of the field eqﬁations are mentioned. In Part
b of Chapter 1, a quantum theory of the weak gravitational
field is developed. Ten types of gravitons arise in confrast
to the Gupta formalism in which there are eleven,

In Chapter 2 the interaction Lagrangian for a massless
and Hermitian scalar field i1s extracted from the Lagrangian:
which is postulated to describe the scalar field in the
presénce of gravitation.

In Chapter 3 the interaction Lagrangian for the photon
field is extracted from the Lagrangian which is postulated
to describe the photon field in the presence of gravitation.

In Chapter 4 the required proverties of the four
component neutrino are given. To pass to the realm of
- general relativity one imposes the fequirement that the
Lagrangian be invariant under a coordinate dependent
reorientation.of vierbein frames. Utiyama'é prescription
is used to obtain a Lagrangian which satisfies the require-

ment. The interaction Lagrangian is then extracted in the
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weak field approximation,

In Chapter 5 the required properties of the two
component neutrino are given. The method of Fock is used
to extend the flat space-time Lagrangian to a form which
satisfies the above requirement. The interaction Lagrangian
is then extracted in the weak field approximation.

In Chapter 6 the matrix elements for the collisions are
given. ©Some of these can be compared with previously
published results. Barker et al(l966) worked out the matrix
elements for the gravitationai intersction between photons,
scalar particles with non-zero rest mass, and spin 1/2
pérticles with non-zero rest mass. By setting the masses to
zero in their results, one may obtain some of the matrix el-
ements givenlhere. 1f one sets the masses to zero in the
scalar-photon, scalar-spin 1/2, and photon-spin 1/2 matrix
elements obtained by the above authors one obtainé the matrix
elemente given here for scalar-photon, scalar-four component
neutrino, and photon—four}component neutrino scattering.

When cohsidering pafticles.of the same spin, the above authors
assume that the masses are different. Therefore, if one sets
the masses to Zero in their results for particles of the same
spin, only part of the matrix element for the scattering of
identical massless particles is obtained. Additional terms
arise which are due to the identity of the particles. For
scalar-scalar scatfering, the zero mass value of their matrix
element is the matrix element (6.10a) given here and corres-
ponds to graph (1) on page 47. The other matrix elements

given here, (6,10b) and (6.10c), corresponding to graphs (2)
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and (3) on page 47, are due to the identity of the particles.,
The zero mass value of the matrix element for the scattering
of two massive spin 1/2 particles, givenlby the above authors,
is just the matrix element (6.35a) given here and corresponds
to graph (1) on page 58. The other matrix element given on
page 58, (6.%5b), is due to the identity of the neutrinos.

In Chapter 7 the cross-sections are worked out for the
various collisions., These are now discussed in the order
given there,

The cross-section (7.6) given here for the scattering
of two massless scalar particles does not agree with the
extreme relativistic limit of the cross-section for the
scattering of two massive scalar particles quoted by

DeWitt(1967). The reason is that the term
(8.1) (3 - v + v2)

in his equation (3.10) should read

(8.2) (3 + v =) .

The proof of this statement is given in Appendix F, As
mentioned on page 44, the calculation in Appendix F can
serve as the example for the calculations of the matriz
elements given in Chapter 6.

The cross-section (7.10) given here for scalar-photon
scattering does not agree with the extreme relativistic
limit of the result given by Boccaletti et al(1969a) for
the scattering of a photon by a massive scalar particle.

The reason is that the factor,
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(8.3) W*/(u-x)2
in their equation'(l2)? should reaLd:L
(8.4) W° .

The extreme relativistic limit of their result is then just
(7.10) given here.

Upon comparison of (7.14) and (7.18) one sees that the
cross-sectipns for scalar-four component neutrino scattering
and scalar-two component neutrino scattering are identical(to
this order of perturbation theory).

Upon comparison of (7.26) and (7.%3) one sees that the
cross-sections for photon-four component neutrino scattering
and photon-two component neutrino scattering are identical(to
this order of perturbation theory).

By comparing (7.36) and (7.%8) one sees that the cross-
Section for four component neutrino-four component neutrino
scattering is different from the two component neutrino-two
component neutrino cross—seétion. The guantum mechanical
exchange term(the term which comprises the last line of (7.3%6))
for the four component case is smaller, by a factor of one-
half, than the quantum mechanical exchange term(the term
| which comprises the last line of (7.38)) for the two
component neutrino case, The reason for this is the
following.

" The quantum mechanical exchange term for the fbur

component case contains terms like

1. In the meantime an Erratum has appeared(Boccaletti et
al 1969b) thus making it unnecessary to write down the
proof here,
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(8.5) X = (n/#)Trace[(yp") v, (vp) ¥, (va') v, (o) 7, ]
where

~ T
(8.6) ¥, = Y4 Y, Yy

(this follows from the expression for ¥ =1 2 given on page
- i f .
96 and, for example, the expression for = X Z5 given on
if

page 95). The gquantum mechanical exchange term for the two
component case contains terms like

s (@5 0, (@5 o, (@'F) o]

-T
(8.7) X' = nTrace[(pc,) o
o)
(this follows from the expression for [Ml“ given on page 99
and, for example, the expression for Z5 given on page 98).
n is a number which is the same in both cases and the 1/4
in (8.5) arises from the averaging over initial sbtabes, One

can show that the trace in (8.5) is twice the trace in (8.7).

Then, because of the 1/4 in (8.5), one has
(8.8) X = X'/2

which shows that the guantum mechanical exchange term for
the four component neutrino case is one-half the gquantum
mechanical exchange term for the two.component case,

.In the course of performing the original calculations
for the results given here, the photoh—ghoton scattering
cross-section was calculated. The result of Barker et

al(1967) and Boccaletti et al(1969a) was confirmed. It is
(8.9) do/an= Gt/(2m)?)(p °/2) [1 + cos®(e/2)

; sin16(9/2)]/sin46 :
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This cross-section can dominate the electrodynamic
cross—-section for photon-photon scattering. The electro-

dynamic cross-section is

(8.10) do/dn = 10727 °

for very low frequencies (Mm<<mec2), and
(8.11) do/dn ~ 10%2/4°

for very high frequencies (Mw>>mec2) (Akhiezer and
Berestetskii 1965). The gravitational cross-section for

photon-photon scattering is, from (8.9),
(8.12) doyan = 107191 2

Thus for very low frequencies (w<¢1O sec"l) and for very high

ot
1 sec_l) the gravitational interaction dom-

frequencies (w»10
inates in the cross-section for photon-photon scattering.
For very small scattering angles all the cross-—sections

have the form

(8.13) do/da = (nq/(En)2)<p02/e4) .

In c.g.s. units the relationship is

2

32 woset = .o x 10719 W2 0% om® .

(8.14) dosjan = (8GH/ct

The graphs for the various cross-sections are drawn
on pages 82 to 84. |

.In quantum electrodynamics there are processes contained
in Sg(the second order term in the S—matrix expansion)

which lead to divergent integrals. The graphs for these
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processes are

where a solid line represents an electron or positron and
a dashed line represents a photon.. The grarh on the left
is called the self-energy graph of the electron and the
one on the right is called the self-energy graph of the
photon. The same divergent integrals which appear in the
matrix elements for these siﬁple processes also appear in

higher order processes such as

Similarly, in the decomposition of 82 for the gravita—
tional interaction, self-energy processes appear. JThe
question arises as to whether diveréent integrals appear.
For'simplicity the interaction between the gravitational
field and the scaléf field described in Chapter 2 is

considered, The graph for the process under consideration is

where a solid line represents a scalar particle and a
dashed line represents a graviton.

The enefgy—momentum tensor is, from (2.4),

(8.15) T, = =8|, By * Oy Flc F|e/2 -
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One then obtains for I, the integrand of the scattering

matrix, defined by (6.6),

(8.16) I =2x° h (x) h Neol

(v o

+ -
1% |, 1) 87,00 )

(6552291, 1 () ¢7H(X) a3
R N _
—(6a6/2)¢lv(x) ¢ln(Y> ¢ln(Y) ¥ H(X>

+(6

ap G/ |00 g1 ¢IT<Y> ¢‘n<y>}

where

(8.17) ¢, ¢,,(3) = Lin(-1/(2m) z/; q, eX8E) gy

oV
qQ ~ie

If one denotes the initial momentum by p and the final
momentum by p', one obtains for the matrix element between

the initial and final free particle states

(8.18) s =<(p'l(-l/%27§dx dy |p>

_(H2/2Vpo) é(p-p')(pp'{//(l/kg) d'k

i

= 0

since‘p2=0. The self-energy matrix element for a scalar
particle is zero, in contradistinction to the matrix elements
for the photon and electrén self-energy granhs in electro-
dynamics.

In order to consider higher order processes one cannot
Just proceed as in electrodyramics and consider higher order
terms in the S-matrix expansion. It is first necessary to

carry the exp ansion of g“ and [g to higher orders in u, The
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complexity of the problem thus increases rapidly. Salam
and Strathdee(1970) have stated that one should treat
problems in gravitation non-perturbatively. They have
given an example to indicate how gravitation might be
treated non-perturbatively to suppress divergent integrals

in quantum electrodynamics.-
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Appendix A, The Reduction of the Four Component
Neutrino Lagrangian

. gy Ts
In this Appendix the term fap B (ﬂrs YP - P Mrs)

which appears in equation (4.35) is shown to vanish.

L5 B Y-y ) £ S (b =Y KK)S T Yhaorhoorr)
(1 S S A 2 N IV
x (Yt Y Yyt w0 ) s
_2,5 (- y*y” » x”x‘/")/m
=y (-z&’”’x’ 27200 2TV ) h
2
f [-2570+ 25720% -y 507 1100V ) hpara
o _-:_5-/— zJ"“y” / zJ“’r’)//»m

= O
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Appendix B. The Evaluation of a Trace for Photon~Four
Component Neutrino Scattering

In this Appendix the trace in equation (7.23) is
evaluated. One has, from (7.23),

2% /et e atp )ty wp) =
("73/25) QZGZ/’ (e 'j ¢ e e:)ﬁace[ﬁ/%\ij (¥p) /\;;e]

e/;(?’/@,: 6: 7;)&’6@[/&//7/\/5_] /f)//ﬂ)/?l,ze]=/4 +B+C D

where

/'y /

Accelicere [§05p-30) 257/ 5 (P73 077270 (162

Troce [0 0 (1) 54 T

B: i eewel [4(-pp 327 490 T (7))

Foce [ (D0 (00) 5 (K g + 4 70 )0 T

C - 6/: e, e 8; [ fre /’f'f’-J/é’yffkfe/]/’//’ﬂj)x

Tavee [ 1)) g + 4 9)) () 054 T

FJ

D =e’e e. el //K/f} X

Trace [ ()} 7 # dfz,/)/i}’)% (19 %Jfﬂ/)a;J

The trace in (7.23) has now been broken down into

four traces which can be evaluated directly.
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FLop) G, ()6 T = -8 cas’erz
A (@8 et 2t) 4 GG )T
[(é'» ") (-2p mez&/z ~24Y + /;‘-e’)/yfe’/] /"/Zf/g ‘wtor)

el es PN (3)5 (1% fnye’)n]

- -4(7e) (3" 8%)n - 2(3%e")n (52
£ (Mﬁv [(é”#-e)(—z/o,, ‘con ey -zﬁz) +(g- 'é"?/?fe)Jx
[G‘-é’/{fﬁ g% + (7" e)(p.8")]
e WLy +09)(0p) 6 ] -
¢@.§"‘)(;fe)ﬁ; 4 2071 8)(p-2")p
C = (e7n I, (~Zﬁl;oa29/z -2p2%) +(5.27)(7" %) ] «
L) ple) + 1378)05.8*)]

/
e

¥
i

gevee AN T +0Gg; )0)Y (Gege +2e9:)6 ]
= - (78" )(3.8) mltpe)ip) (re7)]

- (7 e"‘)/;’.e") 7;[0;07/{6)(&)/1@/)]
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- (GUENz) L) (1) (K (e ) ]

- (') e ) T L) (re )R (ve')]

= #(3.87)(7.8)( pre)(é-2¥)
—f{;ﬂé")(;’-é“‘)[(/s/.g)/;.é% (o) (&8 ]
~ 338580 - Gop) (& e?) 4 (5 e P 2T
+4(78) (. 8*2[ (pp)) (8" e ]

= D/r¢p”
The trace in (7.23) has now been evaluated. In:

conclusion, therefore, -

ba e g rei)X. L ) S #C +

Z{Z/e‘. e, A (PN thp)] = (/f/o /5 eZ/ﬁfB o)

where Z: denotes an average over the initial.photon states

and 2 denotes a sum over the final photon states.
el
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Appendix C. The Photon Polarization Sums for Photon-Four
Component Neutrino Scattering
In this Appéndix the average over initial poiarization

states and the sum over final polarization states of the
photon is performed for photon-four component neutrino
scattering. It is convenienf to transform to the basis
(6.16) which represents states of circular polarization.

One then has,

St ¥ ' .
@'e)=(m@/)w@%& * /maiu%/aq

%/a..ﬂ;ﬁ/{),,zg/z # (4_4_’%/54729/2

a2l s ‘ * / /o .
(e R = ): (ﬂ_} d.,c/(oolg/z + (4¢+ﬂ,/mzﬁ/z
A
F AT )tk 4 (atal ) o> /2

i po A & (2, - 2")
iz

g''7)

ifp sen8 (a, -a.)
7z

™~
'(N;
. TNy,
~I1

1

( ) )fﬂmﬁﬂ@-”dj)
! [z

(,5'/-'5’” )= A an & (a, —a”)
Vz

(7.27)- i fo sino () -a”)
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i

(3.8") = ipp smolal -2!)
N

(ﬁ'-é)= i fo ame (a, —a_)

/e

(5.8"): -ip sne (2) —4,’*)_
iz

The problem is to compute

g )2 Y (A+B+C+D)
e e’
where A,B,C and D are given in Appendix B,

Substitution of the results given immediately above

into A,B,C and D as defined in Appendix B yields
22 A - {4ﬁ,4 (14cnter) [ cotefy #0076/ ]
e e’

%u;%4/¢n29(4’%ca>zéyg)coac9

@) a0 | (1287 20

1

™M

o

B = ggc = E*Zﬂ’lmzé[b{/%z&/z # 2aen &2 ]

—glun"o {(67£7)

° |

D = (-25%wn"8)(e257)

e
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From these results one can show that

N (“Vz52) e?; (A+8+c+D) = 692 (m’ess - an’sps + #e2s/; )

(-2 /e g elel g pn, u/?) .
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Appendix D. Trace Calculations for Four Component Neutrino-
Four Component Neutrino Scattering

In this Appendixf?fﬂ#ﬂz is evaluated for four component
i f .

neutrino-four component neutrino scattering. M is given
by (7.34).

It is convenient to set
Wi = dlp by s (5 Ve ity

Was Gulp) Gy thf) G 05 1 ly)

S U ) Y U ) G (7)Yt ()

&~

Wo = 4, ()0 467) 20 ) thp)

Then, from (7.34), one has

| ;ZZZ//V/Z-' &Y2sev?) 72 (f z)

where

Z- A wwT | ZZ=A5WMT Ze= -AC Wiw,
Z--ADwiw, 7oz BAW W, Zoe BEwwlT
27:_45_c A Zy = —wwm[ CZe-cAwew |
Z/o--mwng* Z,: Clwy | 2o cows e
Lot DA W, 7y : 08w, ‘Z/J:DCM%T

2 t
Zi- 0w
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One can show that (where XP xib/fx}— )

| Z;Z_Z, = (A70607 ) WL @)Y /&)5’;] L) L) 5] = 69 fa§49/z)
72202 @B/ug)ELIND N T T (vy) . (13)8 T %28 (' # coer)
3 7y A/ )L () 6 (B ()Y )b ] = &AcC |

727, = CAr/ig )R (p) e 0) b (1) 8 1))y ] = #4000 " 2z

272 (48/p") T / (0% () . I Th [0 (5) 5, 1245 (e # coy)
277, = B/up) Tl (W)l ()i IR )% (15)5] = 48 wn"ese v
RARE <~Bc//o/ VL[5 ()& (G)ath) 5 T 28C cn’eye

‘ z€§ Co5/pe”) T [ ()0 (30) % (1) ()85 ] = 28D oin'er2 a0’ sy
215 CADgD L) vutty) B (g) v gty 1= #9¢
L2 2= COL1p)RL )L ()Y () Vu ()% ] = #5C a0’z
102, hg) L) ()5, IRL )% (it ] = (e ')

272, (coltif”) Tl (3p ) () 1T T [ (4700 ()0 T2 2C0 (0n 02 1 "72)

7725 ool )Tilor) b (5) 35 63)% (1)1 7= 240002
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27 2, = (=080p") I L5 (i) 5 077) 05 (4p) &y T2 <)

71 Ze= (colip”) RLOE) 5i5) 8, J 72 L)1 (3)5 ] =4 (50 1rners)

T22 = (OVrn") T Lp) b (53) 0 ITRL( 0% (1) T= 40"

One also has

A% 2 (ransr)’ | g8: L (1tan'en) | BE £
PPN o6/ ey,

C*= L (r1ra'02)" | cos 2 (1r0'en) | D: #

4578 ot e/ 278/7.
Ac= _/ (rrev’ep )1 ran’esz) | ap= L (1rooen)
Lon )2 (') gen DI (D82

BC = (/ SdenB/) 8D _#

e 62 c0 62 | aente/ e B2

Z‘Z//f/ (sev?) [[/(z 12t Zet% )+ (2,7 20 # B+ Ba )+ (75 42,
£ 7y + 7 7 Zp ¢2,9¢Z,,¢z4)j

= (I//Zf V?///fo/m 8/e # /BB + fum s 420 f/z)//km e/
#() +600n0)s /80 T8 4 £in oo poenPer2) T8

¢Z/4f?44%04#5ﬁ%4%%y2wﬁaﬁj?
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Appendix E., Trace Calculations for Two Component Neutrino-
Two Component Neutrino Scattering
In this Appendix /MVZ is evaluated for two component

neutrino-two component neutrino scattering. M is given

by (7.37).

It is convenient to set
W= &tp)oc ap) @i oz uty’)
We = olp) aip) u’ty) uly)
W= ') o up) () o uiy!)

W4 = %@ﬂﬂ¢7aZ&a@7

Then, from (7.37), one has

M = (o) 2 2,

where

Z= AfwiwT | 3z=—A5wwf | Zf—AcMWsT
Zy - AD\%W Ze =-BAWL W, Zo= BSwiwi!
B Bowiws” 2 - -BowiW,  Zai-CAWW,
z,,,:cmew 2 CWWT Z, - —cowiw,
Z/_;:D/’\A/q\/l/:f‘ | Z/¢='D,5\/1/4Vl/z_f 'Z,, =—0cu/.,hé’b

Z,= D'wiwg
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One can show that-

L= en") T [p7T) oz (/7 ) 1T L (77 0% (4'77) 037= 27" (1 7a0%e,2)
| ZLA’("AB//MVZTV[&}VO: (/’?C)M]Z[(77’7 % (777 )05 ] B e+
Z; - (”"’C////f/Z [(p#FT)az (/2:705 (77 7)o (7/0—,7%;]_, AAC
2= CYhep?) L peT)a (i )og (gE ) ap (5 FT) T 2ADs e
Z. = /g’ ) Ll T oz (0 )oz T Tl (3 7) o5 (' F Vi ] Ao s v 270
Z = (3%5/37 72[@”—’7)//’5'7]72[670"7(79: )] = 22@ oz
Z: CEYp®) e[ (p77) 5 (p'F oy (97 7) 0z (77 %f]: 28 w8/
Zy - C—f"/é/z") Tal (p7 7)oz (pFT) 0 (37 7) 55 (5'F )05 ] = O s s con e
Z, = (A7) 70 [677) oy (p'5 oz (/»o:’/é: (77 7)1 HAc
2o (fﬁ%!/z )l (957) (p'77) oz (p7) 5 (7 g ] = 268¢ con ez
2= (CHep™)Tal (977) o (p'5°7) o5 T Tal (i )oz (7 7)oz Je2¢ ) sailess)
- 2/ stz ’)Z[(yff/o; (p'F 70;]7; [ (p77)0z (9'F )G ] c b (w0 o )

s =CAYnp ) 72 Loy (/&7 ol (pr )% (3'FT) 7 ] 2400000k
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2= (“8HR7) Tl (357)05 (p/27) o5 (57 05 (57 7) o5 T80 s w'es)
Ze = (Pl )] G Tos (p D oy T T L (p7 ) o5 (y P T)ar ] coloeionnminton)

2y - (,0//,/» [(70' /0/(/’ s )0“77[(/"’) /7/0—,7'/@]__ Dianes

One also has

A L (tmten) AB: I (reanter)  BE 4

—

"0/ wntes aen? B

'Cz= / (/%Mzé/zjz cp: /  (1rles) DE 4

4 o) tntese e/
CAC= _/ (rrai'en ) 'ss)  Ap= _/ ( )+ es2)
Aan'of c2 02 n'Q b8/
Be= /. (7 +0nerz) 80 = _+
L A6y tenle . o 2 (02

/M/ Ck/éﬁll/‘f/}'(z -/—Zl-fzszZ)f—/Z// ? 2+ Fye %5/5/7" (2:+ 7%
: 7“27 7"2—} 7"27 7‘2/07"27/3'/27/7"/]

- 4
—(K/ZM*)} (1 +6 co’cry +16cd°c/e + s esr #0058/) oo
# (1 +60m ey 118200 20 Lo e 1 00m B ) er7e

# # (#7700 ‘e &éuzé}/z///w? ‘o con e j
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Appendix F, The Cross-section for the Scattering of Two
Identical Massive Scalar Particles.
In this Appendix the cross-section for the scattering
of two identical, massive, neutral scalar particles is worked
out in detail.
The initial momenta of the particles are denoted by p

and q and the final momenta by p' and g'. One must compute

(F1) 5= <p%'/S8 /pe>
where

QqﬁLS::€X73l[/?Q49<YMP0@/ﬁdL¢6¢VQ)/%[ZkrﬂdJQZOZ]

Here,
LS E[f - bt - e Fe]
One decomposes ;/into positive and negative frequency
parts ‘
) p-F ey
Then

J
7

€9 T 25t e Bi e Pt
”GQQ%U(?%; gz? *‘?éjééz;' *’é&% ;;}/
) (3 22 fF o F P

where use has been made of the facts that eventually the

normal ordering will be takcn and that T is multiplied

v
bY <OPlhuclz) hesly)) 10> which is symmetric in u and v, A
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similar expression holds for TaB(y>:

G, m)gf [fic B 12 3B+ P fiv
_@wﬂ%%7m%%@v¢@@
)t (377 12 dd e BF))

It is seen that in the expressions for Tpv and TaB the terms
are of the general form, neglecting differences in subscripts,

a

) FE P

In the normal product, N/ 7= &) 7zsly)] , terms of the

general form

a1y A{-C—fc/.{. a%£~/—¢+z_— Ay Hog. 4 _ a_’L_C_ti/__
(F8) FEFE, FEFE, P S
do not cdntribute to the process under consideration. <he
remaining terms in the normal product are of the following

forms or can be put in one of the following forms (neglecfing

subscripts)
o, p j . : s . o,
(£F9) $) 36 GG F0) , Ftx) F) F6) F76).
Th¢ terms in the normal product of the form

F10) F) R E) ),

given in (F9), contribute to a process whose graph is

Pé> _______ <f;
9 (3 {

That part of the integrand of the scatﬁering matrix
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which contributes to this process (that is, that part of

the integrand containing terms of the form (F10)) is

< (Fn) CF)<arlh, ,/x)@,//))/w/i// 2 [ %M %// f‘/o« }‘é//

AJkl

o Y 4 &_ 6_
"‘%f ?&é,¢2/f%777€7 - é%(/¢2§?%} f&fféé
£_ e

0. Z';-r i+ - -
+ ékz;éﬂgfdmf/éy //7 ﬁé - %éf/” féu*/@w % /5

= X 0IPfaln) has ()]0 /5 Z:

" where
) Z- B By Fr B e b G 8y
Zs = éé‘j%;v 2;}/%& ;&A 2;': ééfg; /;z ZZ} /Af ﬂ@

N
\1
rﬁ@q
\
\&
E&
NS
N
O
N
N

N
"R
+
R
4
\\ \
~
N

/
0( F Ay L Y
Xeaa s
In (F11) and (F12) the positive frequency parts are
functions of x and the negative frequency parts are

functions of y.



One lets

) Pl Fa VT B g e e

Since eventually one forms the scalar product <<p@//5}/fq;>

one can use for purposes of computation

(F14) $5e L L o g+, A7
= P e
%_z’é—'/— e ;f—:/ 4
IV fzay 7V Vg

Each derivative in Z-%; introduces the corresponding:
component of £, f”P'or 72 These components:can be summed

with \

Q*O A:_(éxéé’fé;ié“é;/ék).“

which appears in <o/ huvlx), hes V0. One has

(1) ZA = (570 gu)( Gii i 4o b~ dp) 37 97 37

LA elpy) 9 47
LA Gpplpy) #7874 F
A - *2(/)9{///7/?“?*;3'5'

LA = -m'Gy) ° '
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where »
- (F18) B= [y + /@7//)//»77—//’79407_) wm’ (pg) rt 7)) = 2. 7/

In the center-of-momentum frame
(F17) (pg)= (7' ~R)=-p 117
r7): —P‘-/él? (1Y
) Frame-pts - p s rtane)
(/7/: ~Plane —/pf'»: ~2% 1+ 0)
(ppl): plewe —p% -pr- v'ano)
(9¢7) - ;Zpg -5" = 7;/752//— Ve 2)

(m?)= p*fr-v*)
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- where
(FZO) V’« ///ZJ//ﬁ
(F18) becomes, with the help of (F19),

(FO) B Jp' 0 -dime) v o710 viamo)t - g7 (rr0%)*
'7£ﬁ0—ﬂd/§¢y9ty??G/y§%7¢ﬂ32«5g¢ﬂ%-y7if
7??/*2&2@09 t 0 em O £) P2V RO Fo T O
~f =20t gty ~Z+4z/‘—z.r/"‘f
=ﬂ4/*Zy4//—@l9) -3 fzaz;#y'?/
:ﬁ’/—zy%{@ —/312&2—&")3

= 3 “/—zy% O~ (o))
The matrix element is then

(F22) sy : CU)J[@X) Drlnr) 5 37F F 8 Aty

A1

1}

by . "‘-k(’"y)v -4'/017l -ig>  Aipy L9y
(-yl)@)c)é{;rf:))4v%//f% e e NN P W oyl

- A lN)6r) S(prgpta) £,
/ 0//‘3

The terms in the normal product of the form

(23) ;‘5’/)«) b 1x) 376) W,

given in (F9), contribute to processes whose: graphs are
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F" - A 'F! !

The matrix element, s;, for process (1) can be
obtained in the same manner as 85. Or, one can obtain

s, from the matrix element given by Corinaldesi(l956) or

1
Barker et al(1966) for the interaction of two scalar

particles with different masses. One obtains
. / 7/ -2 v :
(F24) s = i (X (o)’ {//%7—/477 7/ 7¢ v e z@)}r@éd///—y/)

# 211U st |

The matrix element,‘sg, for process (2) can be
obtained from that for process (1) by interchanging p and q.

One obtains

(FZ25) su= (XY z)(;n)" [//077—/7’749 (1/ 16 ylmla/z){gf3z/9(//y .

- 2u )t e sy f
The complete matrix element is

(F26) s+ 545 45

and M, defined by (7.1), is
(’-‘77) M = (8(5‘/1/1/2[‘(/73”)‘//_&1) # ¢UL(//+Vl/ao'Le/zJ//o/z/%?‘Q/y.

L0130 ) 1-p*) # 20t (14 0 sen enl/u vt e tesn
LG+ 200 4 20 Thnte 7/f
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The cross-section is

(F78) (drlta) = (Xem) (84) 117

Thus it is seen that the term

29) B-v)(rro*

given by DeWitt(1967) in his equation (3.10) should read
(F30) G+2)(1-v) .
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Appendix G, Notes on Neutrinos
This Appendix complements Chapters 4 and 5 in which

four and two component neutrinos are described. In
particular, all the dynamical variables and constants of
the motion due to interﬁal symmetries are worked out; the
reduction of the four component neutrino eguation to two,
two component equations is given explicitly; and, the
latter two equations are obtained from first principles.

| The Lagrangian which describes the four component
neutrino is by definition the electron—pbsitron Lagrangian °

with the mass set to zero. Thus,

G1) L= -7,

where

o) @ ¢lyt

G3) Xf=<0 | -10”) 2{"=(I o)
o ioct D o -1
@@ () ) T )R

This Lagrangian differs from (4.1) in that it is not real.
This does not make any difference to the following remarks.

The field equation is

(65) ¥"¢, =0

There are two solutions corresponding to =< pl.
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They are
(66) }4 . M{ﬁ)e».(;‘.z-/nz} /(é e (PR )
where
(67) 44=_1/7' - £ //z/
17 z -7

with 7, and 72 satisfying

(68) a‘-ﬁz =0 o*-ﬁle - -7,

-

nis given by (4.11). It is

(69) T = P/l

Explicit forms of [, and ), are given by (4.12). They

have the normalization and orthogonality properties
T
(10) M, s Sns
The solutions & and Y satisfy
)~ 7 g T Y ~
GV Ut = Gs , U le = s , U =0
(612) g (-p)- sz () |, vi(-p) = 4 (3)
(6/3) ha,= u,  Aun- -a, Ay = o At - -u

Gr) Yu--d Yu-to ¥Yu-u @ n--z

where h, the helicity operator, and y* s, the chirality
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operator, are

6s) - (o8 ) | 2/’=(<5 )

k O o

An arbitrary solution of the field equation can be

expanded as

= (PRI ] ((B R #/E)
(Gr6) =L 22 aqpape’ s h(pupe
'y £/ :
.2 |
= > ipx 7, . L, AP
-ﬁj: 22 apuple” +4tpuiple
where

(617) p=(p,i/El) .

If one now defines 4 (2 by

(68) 4(3)= 4(P) |, 4(3)=4(-B)

and uses (G12), one obbtains for the expansion (G16)
(619) ;ﬂf.v; ;ﬂz* a.Ga)e” K a@e™

One can write

(620) / = + y&

‘where

(62/) %=21//—f)/ N AR
so that

(622) ¥ =4 , P--

The letters R and L stand for right and left. This
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notation is used because

G23) 4= b, =¥

One then has

(624) % = / a/,o)zx,/p/e | +of’(5‘///,5,ﬁ)e“7’x

7\

% - ,F/‘/:Z () (7)™ + BB uqp)e ™

These forms are useful when the two compénent theory is
conéidered.

If one now makes the transition to quantum field theory
the &, é,, @[; andJéT are interpreted as operators such
that the & destroy neutrinos, the éb destroy antineutrinos,
the,Qf create neﬁtrinos, and the Af create antineutrinos.

The anticommutation relations are

(625? fa#ﬁ%fg - ?h)bzg :.&w all others are zero.

The dynamical variables and constants of the motion
due to internal symmetries are now worked out in order to
characterize the-various neutrinos, |

The energy density is

L Y w. __.»7“ .
(626) # )—7% = }V B

and the energy is

(627) /7=/;%/’z 22 w4l alzlaty + ()b (p]

The kth component of the momentum den31ty is

G5) G - -i: 2N
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th

and the k component of momentum is

(629) P =/sz;¢ = 27 pla’) ap) + 475) 4.1
The component'of the spin density in the direction A ois

(630 S - 2967y

where

/
(631) &= (oﬂ o/
o o

and the component of the spin'in the direction 7 is

# #
(632} S %Va/'? :—Z[d/ - 4 ﬂz ‘44 *44_7
The Lagrangian (Gl) is invariant under the transformation

633) ¢= ¢’ “‘x/

The invariance leads to a current

P .
73 = ”:éﬂ-f d .
(634) J gy (i ¥)¢
The quantity which is conserved in time is
(635) Qs ~/J’/ic : —:/W”(; ¥ )dd*
= 4 Z[a a, -aa, ~ 474 +474 ]

which is the same as (G32),
The Lagrangian (Gl) is also invariant under the

transformation

(636) ¢ S ey
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The invariance leads to a current
r a_o_f K e — oo xPr; .
(637) | = -igy, (0 = @Y

The conserved quantity is

(6738) /= -4 /(P 5‘*%}432 C = (- )%[30,72.*42741«5,751 —-A_fél_]

This states that the total number of neutrinos minus the
- total number of antineutrinos is a constant. This is Jjust
conservation of lepton number. A suitable assignment of
lepton numbers is L=+1 for neutrinos and L=-1 for anti-
neutrinos.

This completes the specification}of the wvarious

neutrinos. The properties are summarized in the following

table.
Parlicle 4 A a A
“orete | o | A" 5
e | a 5, ,
Energy /E/ [E] (€] [E)
omentam B P 7 7
SFP::/ec{Mn Ve Y ~1e Vo
© Helicily / -/ -/ /
Lepton Mo / / -/ -/
,4,74',24/1%/6 Z A V7 Z

The neutrinos 4, %, 4, and

Y

which appear in
the reactions
N> pre + ' 77 s 4

VAR A wulrelru 4
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may be identified with ¢, 4, 4, and 4 as follows:

2% =24 4 =

NN

2

s &:/4 /Z-‘/,

Upon taking linear combinations of (G35) and (G38),

one finds that

1
™\
BN
RN
\Q\
R
Lo~
N
N

(639a) L//
/7
: (65714) ZL = E /dzfaz #»Oéféz)

are conserved,

In conjunction with the above éssignment of lepton
number, the charged leptons e  and p+ have lepton number
+1, and the charged ieptons e’ and W~ have lepton number -1, -
The formalism described here for the 4 and 4 neutrinos
 is discussed by Bludman(1963%). Kerimov and Romanov({1965)
give other references. In this formalism there are two
gauge transformations, (G33) and (G36), of a single four
component field, which lead to two independent conservation
laws (G35) and (G38).

An alternative way of describing the 4 and 4 neutrinos
is to define two independent four componeht fields ;? and
fo. The field, %2 , which describes the % neutrino, and

the field, %é s which describes the 4, neutrino, are

(640) ¢ - £1+8) ¢

Y = H1+5)Y

The equations for the two types of neutrinos are then
identical. There is one conservation law for each field

yz and.%& . This allows one to define an electron number
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Lo which is conserved in all reactions, and a muon number
L“ which is also conserved in all reactions, This is the
formalism used by Lee and Wu(1965) and by Lederman(1967).

A discussion of the two formalisms is given by Maréhak,
Riazuddin, and Ryan(1968). In this connection, the p' in
their Table 3.6 should be a p .

It is now shown that fﬁ amd.%% defined by (G21) can
be reduced to a form in which'they have only two non-zero
comﬁonents.

If one sets

(641) ¥ = S¥7s
where

(692) S= 4T I/)
| . \1 -1

one obteins

43 ¥ = /o

io* :
ok o |
] N v )5
h = [ oo 0 ' y =/-I o | g
o o o °c I
AT q;(o\ mg(qz
m %) ©

/ / iy AP 7'_,. W ~Ap X —
(//Q :’J% :_Z_ Zﬂ,(;}l///{/f)e ! + g (//,0',)/(/' b.‘/)e 4 = %R
v 7 .

Then,

(G44)

/
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1/ (2 A AP _
=/ Z a, /Pt»)”z //7)€Af v ’éz /;7’)4/2/6;) e & =0
v p %,
and '
(645) // 5%/’( ) Slte +¢)
/

This shows that %Z{and }Z have only two non-zero
components,

The X'representation used above 1is called the Kramers
. representation of the Dirac matrices.
The Lagrangian (Gl) in the Kramers representation is

0 LTyt o o 4]

_.,(rka +Ib

> v, )
oxk T pxt O d

=K (k2 yx )% = R (-ietd L1 K
K Bx#—

ok et 2x
This Lagrangian is invariant under the transformation
/ [ /'q’
(647) %> ¥ =X s X T Y =€ R

This yields a current

(696) | = - @OF - i )E
RIP

where

| . A 0
gr =
((749/) o y
The gquantity conserved in time is
/ VL > 7 /'/'/) <—-[)
(650) L - [ % ¢ = Z(a'a-474), 64

which is just (G39a). The Lagrangian (G46) is also

inveriant under the btransformation
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(65) Yo W'=h , A A=K

which yields the conserved quantity

(650) 1, = Z(3 a - 474)
/)

which is just (G39b). The sum of L, and L, then yields

1
The field equations for ¥, and ¥ follow either from

]
(G38), and the difference of L, and L, yields (G35),
the Lagrangian (G46) or from the application of the

transformation (G42) to the field equations (G5). They are

<

.k /
653 e*> 412
(7 ) © ‘ 2k 4 Sx*t }R =0
‘joJ{é 'fIé. o ' 7€
LY 2 P2
or

io® I | k .
(6;.5-4{,) ("’OJ S%—t'g +—Lz%4)}££:0 & (W%:L-I—AIS%?)}{Z -0
k) > - . ké o e
(655) (WD—;‘*%’Z")% 20 & (r)‘ik ‘Jz%a»)w - 0

There are two solutions for each-equation. They are

(PRI A(B 5 #/E12)
€

(656) %, = u(p)e Yo = v

Alp % -/E/2) LCPE r1E/E)

Y, = vfe Wi = up)e

where
(657) d=p , T=7

Arbitrary solutions of (G54) and (G55) can be

expanded as
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(658) o= £ Zagupe ™™+ Flppug) e P Er
Yook Zagupe™ 2k upe P %)

If one sets

(659) 43/ 403 | L(5)= 4 (-3)

and uses the fact that

(660) w(p)= v(-5)

one obtains

(661) %= £ T agpupe?™ » 4 pugpa"
%= L Zag) mpe” + 4B e

VP
- which agree with (G44), as they mustb.

The equations for % and % can be obtained from first
principles., There are two, two dimensional representations
of the Lorentz group whicﬁ yield equations for massless
particles of spin 1/2(Schweber 1961). The two field
equations for the fiélds f and § which transform according

to these two representations are

ab A
.(662) 0 f; =0 R bébja =0 -(a,b:/,z)
where |

(663) 5"’: ">/g1-3 ‘fib/sx‘i’ 5], = %x_g‘/('b/gx"

3¢ = ‘%@z“i%&f di2 = ¥ox i Yoxt
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a?.! = - B/Z)L/ + ‘:b/b;t?' . BZI = é/%);/ - A %/y_l

bZi - é/blz - ,(:5/32,-4 éil - _,>/$LJ 'XA/BXL*

The field equations become, upon substitubtion of (G65)

into (G62),

s o o 2 )
I o/ { o0/dx* o ~1/3x° o 1px’

and

((765)(O 1o yfo 2 +(’ 0)2.-X(lo;&§ ](jzzo
| © oz \4 © oz’ o - 327 0 | P jé

which are, respectively, the same as the equations (G54)

and (G55) for 7{ and ¥ . Thus,

G&) H%-f . %-J

The invariants are

ab T T |
(667) o(fe = (0L = ¢ T hp 7 Ve T

where

y_ (o 2 o -4 s (I © s [A 0
(668) /ad —(‘ O) 0’:(/: 0) of:(o *l) o :(o /{.)

and

b LA T '
(669) L= F ol = F ofs, = # oy,

where
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<(770) O,ilz ot ) 0./4': -t

Vi

Lp and di are just the Lagrangian densities which appear
in (G46).
One final word is necessary. In Chapter 5 the two

component neutrino fleld.quu S roe f@'1> expanded as
"/ = (5) (3 BIutz)e "
(@17/) 11[ JR = Z alp) «fp 8 + ;"/‘/(_(/",/e i

Since neutrinos, i.e. left-handed particles, are under
consideration, 5 and ﬁr are used as annihilation and
creation operators., These annihilate and create left-
handed particles, This is the approach followed by
Roman(1960). An alternative procedure is to choose'@’as

¥ . Then”?’is expanded as

72) qf = \// Zd(/)?/(ﬁ)e (px 4 Af(F)V&—;)e-ft/?x

In this case, a and af are annihilation and creation
operators for neutrinos, i.e. left-handed particles, for
they'annihilate and create left-handed particles.

The matrix elements for the processes involving two
component neutrinos are independent of the formalism used.
This~can be seen as follows. If one takes §f=?i, the terms
in the matrix elements which contain the'?’field are of the

form

(673) <;>'[4/LT* o Yy

, .
where the ¢ are given by (G70). The matrix elements
involving two component neutrinos which apprear in the

previous Chepters contain terms of the form
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(67¢7) <pPIN]% = o« ¥ {lp> (V%)

where the ¢ are given by (G68). It is necessary to show
that (G73) and (G74) are equal.

3
One can show that ‘% satisfies the same equation

that %,vdoes so that one may take

(67) %= oK

which implies that

* : . - T T s
<C77é) %l - 0}% s yz: 0’#7{}( > 7/;1 - 711. o

!

Upon substitution of (G76) into (G74), one obtains

(677) <f'IN{?’/£T_ Ov,u }Z}a+§lP7 :<FI1N{’}{T— 0‘14‘0’/4 0_,;_*%# +31F7

But,

| T
(678) [47 oV om o ) [ ot e o ]
[

"

Further,
2 T 1 T z : Tt 3 gt
(679) oo a'z -a' | gttt -0", P00 it

Then'(G77) becomes

(G80) <F'IN{}/£T' o 7/;“?) = —<F’H’£T+ 0"”/’}‘{_—/}7>

. Therefore, up to an unimportant sign, the matrix elements

(G73) and (G74) are equal.



