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Abstract

Finite amplitude planetary waves aré studied on a homogeneous
fluid on both the rotating sphere and on a mid-latitude B—pléne.. The
integrated equations of motion are rederived both on the rotating
sphere, in a spherical polar co-ordinate system whose axis is.tilted
relative to the rotation axis, and on a mid-latitude B—plane.‘ The
linear solutions are re-examined and the errors associated with the
non-divergent and the B-plane approximations are each shown to be

about 10 to 15% for:waves of a few thousand kilometers wavelength.

Using the integrated equations of motion both on the sphere

i

and on the B-plane, the linear non-divergent Rossby wave solutions
are shown to be exact finite amplitude solutions. An exact topographic
wave solution is also éiVen for the case of an exponential depth
profile. Such‘behéviouf is not found for the divergent waves. Using:
a Stokes-type expansion in terms of an;amplitude parameter,the second
order solution.for divergent Rossby waves is obtained, and it is
found that, as in surface gravity wave_theory, the first order
correction to the phase vélocity is zero.

It is also shown that the linear non—divefgent Rossby wave
solution on a uniformiy sheared zonal current is not a finite
amplitude solution, and the second order solution is then calculated.

Once again, the phase speed is correct to the first order.

A class of long waves of permanent form analogous to the solitary



iii

and cnoidal waves of surface wave theory is obtained for a B-plane
channel of either constant or exponentially varying depth. Sﬁch
waves are found to exist in the divergent case in the absence of any
zonal current; however, if the divergence is weak, or if the non-
divergent approximation is made , then it is found, as it was by
Larsen (1965), that these waves will exist only in the presence of

a weakly sheared zonal current. On the exponential depth profile,
such Wavgs exist in the absénce of a sheared zonal current, even if
the non—divergént approximation ié made. It is suggested that such

waves may also exist trapped along long ocean ridges or scarps.
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I. .Introduction

1.1 Aims of this study

In recent years, a body of literature (see §1.3) has grown up
concerning linear planetary waves both in the oceans and the atmosphere
and their importance in an undefstanding of the dynamics of both.

The purpose of this present investigation is to study the properties
of finite amplitude planetary waves, particularly with reference to
oceanic scaies. To introduce these investigations, the physical
mechanismsigoverning planetary waves will be discussed briefly in
§1.2, the existing li;erature outlined in 81.3, and the reported
observations of planetary waves in the oceans listed in 81.4.

The finite amplitude effects are investigated by first rederiving
in Chapter II the integrated equations of motion for a homogeneous,
inviscid fluid on tﬁe rotating sphere. These equations are furthér
simplified by assuming that the pressure field is hydrostatic and that the
flow is barotropic, tﬁat is that the horizontal velocity components are
independent of depth. | |

The effects of the traditional non-divergent and B-plane
approximations are then determined from the existing linear theory
in Chapter III in order to determinebtheir importance in the
evaluation of the finite amplitude solutions in Chapter IV and the -
long wave (solitary and cnoidal wave) solutions in Chapter V. Some
remarks concerning the impoftance of these solutions are made in the

concluding chapter.



The ferminology used to describe planetary waves is far from
standard. In these investigations é planetary wave is any wave
motion in a rotating fluid which, if the rotation is allowed to go
to zero, reduces to a steady current. A Rossby wave is a planetary
wave on a:fluid of constant depth_with non-uniform rotation; a
topographic wave is a planetary wave on a fluid of variable depth and

either uniform or non-uniform rotation.

1.2 Physical mechanisms

A planetary wave is, therefore, defined by the physical mechanisms
which drive it. In a shallow, rotating, inviscid, homogeneous fluid,
the equations of motion can be integrated over the‘depth of the fluid,
then cross—differeppiated to obtain_ﬁhe result that the potential

T +.20

nF >°ﬁ s, 1s conserved where é is the

vorticity of a fluid column, (
relative vorticity, 20 twice the rotation vector, H the depth of the
fluid, n the surface elevation, and k a unit vector along the local
vertieal [Greenspan, (1968), p.236].

In the case of non-uniform rotation and constant depth, a water
column movihg WiFh some steady velocity along a line of constant
rotation may be displaced initially by an external force into a region
of higher rotation. In order to conserve potential vorticity, either
the water coluﬁn's relative vorticity must decrease or the depth of the
water must increase through a rise in surface elevation. It is found

that the first effect predominates for short wavelength waves, the

second for long waves. Both effects cause the path line to turn back



towards regions of lower rotation and, hence, a restoring force is
provided and a wave motion is set up about the undisturbed position
of the path line. These waves are the Rossby waves.

If, on the other hand, the rotation is uniform, but the depth is
variabie, a water column moving steadily along an isobath may be
displaced into a region of decreased depth. This can be seen to have
exactly the same effect as had moving the colummn into a region of
increased rotation. The fluid responds by decreasing its relative
vorticity or increasing its. surface elevation so as to kéep its
potential vorticity constant. These effects again accelérate the fluid
column fowards its undisturbed isobath and so provide a restoring force
for the topographic wave.

In both these cases, the planetary waves can exist only in a
rotating fluid. In the absence of rotation, the water columns have
no potential vorticity in a unifdrm unﬁisturbed flow; hence, if they
are deflected, the vorticity remains zero and conservation of potential
vorticity provides no restoring'force to return them to their original
positions. In the limit of small rotation, fherefore, planetary waves
5reduée to steady Furr;nts.

Veronis (1967a,b) has discussed the analogous behaviour of slow
steady flows in rotating and stratified fluids. This analogy is
extended in Appendix II, to show that planetary and internal waves
exhibit analogous behaviour. This analogy will be particularly useful
in predicting the!beha;iour of topographic waves on bathymetries
similar to deﬁsity profiles for which internal wave solutions have

already been found.



1.3 Historical background

The study of planetary waves in geophysical fluids was initiated
by ¢(C.G. Rossby (1939) in his study of time-dependent motions in the
atmosphere. Usiné linearized equations of motion on the B-plane, he
was able to sﬁow that a homogeneous fluid could support long barotropic
waves whose wavelengtﬁs and phasé speeds were of the same magnitude
asvdisturbances observed in upper atmosphere meteorological charts.

This theory was-éiven a firm mathematical basis by Haurwitz

,

(1940a,b), who sdlved the linearized equations both on. the sphere and
on the B-plane and showed that the various approximations introduced
by Rossby had only small effects on the magnitude éf the resulting
solutions. In these.sfudies, Haurwitz also pointed out that his
solution on the sphere ﬁad, in féct, been obtained pfeviously by
Margules (1892).

Planetary wave thebry was applied to oceanic problems by Arons
and Stommel (1956) in an investigation of the free'périods of meridional
and zonal oceans on the B—plane. For Rossby waves they showed that
although the phase velocity is always to the west, the group velocity
may be in any diregtion, and‘therefore, stétionary wave solutions may
be constructed befweén meridional boundaries. The amplitudes of these
solutions, however, increase without.limit northward and southward.

Veronis and Stqmﬂel (1956) invegtigated the response of an
unbounded two-layer B-plane ocean to moving wind systems. 6 They
found sglutions for‘boéh barotropic and baroclinic intérnal free
Rossby waves and showed that the frequency of baroclinic Rossby waves went

through a minimum value for wavelengths of the order of several hundred

kilometers. This investigation suggested that for mid-latitudes most of



'the energy from fluctuating winds of periods of one to seven weeks
enters the ocean in the form of barotropic Rossby waves. For longer
periods, increasiﬁg energy appears in baroclinic motions until for
very long periods (at least 100 years), the response is purely
baroclinic, ILighthill (1969), investigating the response of the Indian
Ocean, to the onset bf‘thé monsoon, found that close to the equator the
barocliﬁic response was much quickér (of the order of one month).

Other studies of time—dependent motion in a two-layered,
mid—latitude, B-plane ocean were reported by Fofonoff (1962) and
Rattray (1964). Their studies clearly show that the frequencies for
the internal modes are very much less than those of the barotropic
modes. Fofohoff?(l962, p.387) finds‘that for a difference in density
bétween t@é layefs‘of 2 x 10_3g/cm3 , the miﬁimum periods for internal
and barotropic wavés are about 7 months and 3.6 days respectively.

The periods of the baroclinic modes are so 1ong;that it seems likely
that frictional effects must be.iﬁportant. |

Longuet-Higgins in a serigs of papers.(l964é,b; 1965a; 1966) has
: extensively treate& the linear problem of bafotrppic ko?sby waves in a

‘ v j
homogeneous fluid both on the surface of the sphgre andion the R-plane.

In these papers he obtains solutions for bqthfnon—divergent and

¥ [N
I

divergent free waves in an unbounded oéean; and for tﬁeit reflection
along solid boundaries; using the'reflecfion properties, he found it
possible to sum finear solutions to find~tﬂe eigensolutibns for
variously éhaped‘ocean basins.

The effect of bathymetr; on planetary wave solutions was

investigated by Veronis (1966). He showed that over most of the ocean,



the topographié effects were more important than the R-effect, and
he also linked the theéry of topographic waves to that of Rossby waves.

Topographic wave solutions on different bathymetries appear in the
literature under severéi different names. Reid (1956) found edge wave
solutions, which he céiled edge waves of the second class; these are
topographic waves on a sloping shelf. His investigations were continued
by Robinson (1964), Hamon (1966), and Mysak (1967) under the name
continental shelf waves.

Topographic waves along discontinuities in depth have been called
double Kelvin waves ér sea~scarp waves and have been investigated by
Longuet-Higgins (1968a,b), Rhines (1969a), and Mysak (1969). Rhines
(1969a) aléo studied the reflection of Roésby waves by submarine
» ridges and found by calculation that the Mid—AtlanticvRidge is
sufficiently broad to reflect all but the lowest mode Rossby wave
in the North Atlantic.

In addition to Veronis and.Stommel (1956), other investigators
have studied the reéponseuof the ocean to fluctuating or moving pressure
‘or wind systems, notably Longuet-Higgins (1965b), Pedlosky (1967), and
Lighthill (1969).‘ Their studies, all for constant depth oceans, confirm
the important role Rossby waves must play in the time-dependent response
of the ocean. Hamon (1966) and Mysak (1969) have discussed the
generation of continental shelf waves and double Kelvin waves
respectively by moving or time-dependent weather systems.

Planetary lee waves, generated by steady eastward flowing currents
passing over bottom topographf have also been investigated. Wa:ren

(1963) demonstrated the role topography plays in the generation of the



Gulf Stream meanders. By integrating the vorticity equation numerically
over a bottom topography similar to that north of Cape Hatteras, he o ® .
obtained for a variety of initial flows, a variety of meander patterns
with similar shapes, amplitudes and wavelengths to those actually
observed. These investigations have been continued by Niiler and
Robinson (1967), and Robinson and Niiler (1967).

Porter and Rattray (1964) obtained solutions for finite amplitude
Rossby lee wave patterns on steady uniform eastward flows passing over
bottom discontinuities aligned north to south. A generalization of
their model by Clarke and Fofonoff (1969) allowed the conside;ation of
bottom topography aligned in any direction. This model gave a
finite-amplitude lee Rossby wave solution which increased in amplitude
downstream if an eastward flow crossed a southeast to northwest step.
Such growth of amplitude is a consequence of the unboundedness of the
mddel B—plane ocean.

McIntyre (1968), using a Laplace transform technique, investigated
the iinear probigm.of either eastward or westward uniform flow over
a single small step. For an unbounded ocean he showed that the
assumption of no upstream influence was correct for eastward flows
but incorreet for flows té the west. If:the ocean is bounded, as for
example, the case of a zonal channel, McIntyfe shows that the assumption
of no upstream influence can nevér be made. This result is analagous to
thaﬁ obtained by Benjamin (1970) i; his investigation of upstream
influence:for a Body ﬁoving along the rotation axig of a fluid

contained in a tube. In this study, Benjamin also found that upstream



influences were always present, although this cannot be predicted

on the basis of energy consideration alone.

1.4 Oceénic observations of planetary waves
The planetary waves of §1.2 take the form of disturbances
(in time or space) of cﬁgrent speed of directionf. In the upper
troposphere, such waves are easily oBserved as wave-like disturbances
on cﬁafts of isobaric surfaées.[ In fact, it was. to explain these
. features that Rossby (1939) first studied Ehese w;ves-that bear his
name. |
Iﬁ the ocean, planetary waves should appear as periodic
fluctuations in long\time series measu?éments of~velocity at single points
or as long wavelength meanders of well-defined currents if observations
aré completed in.g timé much shorter than the period; of these waves.
Few long time series records of velocity are available and typical
techniques in syﬁoptic-oceanographic sampling of large areas obscure
the natﬁré of the phenomenaj; hence; oceanic observations which may
be interpreted as‘plénetary waves are rare.
Lénguet—Higgins (1965a,p.62) suggests that certain deep
velécity measurements north of Bermuda by Swallow (1961) could be
evidence of the presence of intérnal Rossby waves. He further argues
- from the magnitude of the velocities obsérved ( 38 cm/s) that if these
were Rossby waves, their amplitudes would be such that the waves would
be subject to considerable non—linearitieé.

Wunsch (1967) found some evidence of Rossby waves in his

analysis of tidal records at island stations and suggested that these



were generated by the fornightly and moﬁfhly tidalvpoéentials; Hamon
(1966) observed topographic waveslin the form of continental shelf waves
in his analysis of tidal records. Finally Thompson (1969) has found
evidence of topographic Rossby waves from the long térm current records
taken at Woods Hole Oceanographic Institution's Site D.

In charts of transport streamlines for regions such as the
Antarctic Ocean [Svérdrup et al., (1963), p1606] and the western
boundary regions [Warren, (1963)] wave-like patterns appear which may
be planetary lee wave patterns. The amplitude of the excursions of the’
streaﬁlines in these stationary waves appears to bé of sufficient
magnitude to expect non-linear effects to be importaﬁt.

Even though Rossby waves have not been unequivocally observed
in the deep ocean, theoretical evidence mentioned in the previous
section suggests that they should Be generated in the oceans by
ﬁoving or fluctuating atmospheric systems. The lack of definite
observations of oceanic planetary waves may be ascribed to the great
effort and expense reqﬁired to make the necessary measurements, rather
than to the fact the planetary waves do not exist in oceaﬂs. An
‘acgount of some of these observational difficulties is given by.

Thompson (1969).

1.5 Non-linear effects

It appears from a few of these observations that the magnitudes
of the planetary waves in the ocean may be such that the linearized
theory may not be applicable and that non-linearity must be considered.

Finite amplitude'solutions already exist in the form of the lee wave
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solutions of Porter and Rattray (1964), and Clarke and Fofonoff (1969).
These solutions have been shown to give reasonable agreement with
meander pétterns observed in the Antarctic Circumpoiar Current. This
present investigation will look at finite amplifude free waves of the
" same form.

It has glso been recognized for some time that the interaction
of planetary waves with ocean currents is important. Keller and
Veronis (1969) investigated the effect of random currents on planetary
waves; however, their study includes only the advection of the wave
.by the-curients. In this investigation, the interaction of planetary
waves with sheared zonal currépts will be studied.

Finally, studies of solitary and cnoidal waves by Lax (1968)
have shown that any solution of the time-dependent Korteweg-deVries -

equation,
u +t uuy F Uy = 0 (1.1)

tends asymptotically'to a sum of solitary waves; hence, solitary
waves, where they exist, ‘are an important limiting case to finite
amplitude wave motions. In the final chapter, solitary and cnoidal
blanetary wave solutions will be deéciibed. In analogy to the surface
gravity waves, solitary planetary waves, if they exist, could be an

important wave form in the ocean.



If. The Equations of Motionv

In the foilowing investigations, wave solutiens are sought for
a homogeneous, inviscid fluid on the surface of a rotating sphere
and on a é—nlane.'Furthermofe, the waves will be long with respect
to the depth of'the_flnid; thereﬁore the motion‘will be considered
to be two-dimensional (independent of z). These waves are the
planetary waves and are of two classes; the first, the Rossby waves,
.and the second, the topographic waves.

In this chapter the equations of motion will be developed in
a general form boﬁH Qn the sphere and on'the f-plane and these will
form a baeis for the investigations to follow.
" On the sphere, the equations are derived in a co-ordinate
system (see Figure 1) which rotates about the axis of rotation of
the sphere with. an angular velocity, o, relative to the surface of
ehe sppere. For a wave of permanent form and phase speed o, this
‘frame of reference is one in which the motion is steady.

Th; use of epherical co-ordinates presents some difficulties
because?special assumptions not required by the physics of the
flow, must be made at the poles of the co-ordinates in order that
the mathematical solutions remain well-behaved. It is then difficult
in the final solutions to, separate the singularities near the poles

that are due to the mathematics from those due to the physics. This

problem is discussed in greater detail in Appendix I.
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Figure 1. Co-ordinate system on the sphere tilted relative to the

rotation axis.
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In the development of these equations, the axis of the co-
ordinate system is tilted relative to the axis of rotation by an
angle Y in order that any unique behavior at the poles of rotation
may be separated from the behavior at the axis of the co—ordiﬁates.
This angle Yy may take any value.

Assuming that vg, and vy are not functions of r, the equations

of motion are

By vy . ¥gdvy , vy dv,  vi+ 3
st Y Ve gy Y56 T T sind 56 = (2.1)

+ 2(a + Q)-{sinY sin¢ vg + (siny cos¢ cos® - sinb cosy )v¢}

- 12
f & = g or ’
2
vy , Vg Vg, vy  Bvy  vyvg V4 cot © (2.2)
ot r 96 r sinfB 9¢ r T

- 2(a + Q)-{siny sind v, +.(siny éine cos¢ + cosy cos® )v¢}

[a]

LI
Qo
@D

v Vg 9V Vg OV, v.V4 , Vavicot ©
5’ Y50 treto e TRt R

(2.3)

+ 2(o + Q)-{(siny sin® cos¢ + cosy cosf )vy

- (siny cosf cos¢ - sinf cosy )Vr}

_ 1 9
rpsinb 9¢



The equation of continuity is

14

10 (2 1 [3_ vyl
r? Br(r vr) r sinb BG(Slne vg) + 5$¢] =0 (2'4)

and the boundary conditions at the lower and upper boundaries

respectively, are

(2.5)
_ O Vg 91y vy Ot = =R -
Vr = 3¢t r, 90 + r, sinb 3¢ st r =1 =R-HEGL
- or, Vg 91, v dr,
vr T 3¢ 7 r, 96 + r, sinf 3¢ (2.6)
atv r = r, = R + ﬂ(9,¢,t). s
P = p, = constant

where the various symbols are defined in the Glossary of Symbols
contained in Appendix ITI.

In equation (2.5) the fluid depth H is written as a function
of time since the frame of reference rotates relative to the sphere
and, therefore, any depth variation along the direction of rotation
appears in this frame as a time-dependent depth.

These equations must be further simplified before they are in

a form in which they may be solved. If Q = o = 107 "s™?, Vg =

V(bz

1m/s, R = lOsm, and r; —.rz = 103m, then in (2.1) the acceleration

terms are about lOfgm/sz, the centrifugal terms lO'Gm/sz, and the
Coriolis terms lO"'*m/s2 compared to g = 9.8 m/sz. Therefore to a

high degree of approximation the pressure field is hydrostatic and

equation (2.1) may be integrated over r from the free surface r;
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downwards to give at r
p(r’e9¢’t) = po *+ gp(R +n-rx . (2.7)

If all the terms of the continuity equation (2.4) are to be of
the same magnitﬁde, then vr/ve ~ H/R =~ 10783, Using this value of
vf, it is seen thatvin (2.2) and (2.3) the centrifugal and the
Coriolis terms in which v, appears may be neglécted.relative to the
other cenfyifugal and Coriolis terms.

The continuity equation (2.4) may be inﬁegrated over the depth
of the fluid and the boundary conditions (2.5) and (2.6) applied.
Making the approximation that r; = r = R >> H >>n, the integrated
continuity equation is

(2.8)
R sin6 ;g?(” + H) + —23[(71 + H)sin® vg] + g—(b[(n +H) vyl = 0

A fullér description of these approximations is given by Phillips
(1966). Substituting for the pressure from (2.7) and making the

approximation that r = R, equations (2.2) .and (2.3)Amay be rewritten

as
dvy + Yp V5 — Vg Vg V% cotf 2.9)
ot R 936 R sinf 5¢ R )
- 2(a + Q) (siny sinf cos¢ + cosy cose‘)ve = _.%.%%



16

§X¢ Vg oV v¢ v vivecote
ot + R .5§¢ t R sinb 56¢ + R (2.10)
+ 2(a + Q)(siny sinb cos¢ + cosy cose)v¢ = - i—fzgg-g%

Equations (2.8) to (2.10), known as the integrated equations of
motion, - form the basis for the following invéstigations of planetary
wave motions on a rotating sphere.

Planetary waves of importance in theoretical studies of the
generation of time-dependent motions in the oceans have wavelengths
v considerably shorter‘than the width of the ocean basins. Since most
ocean basins have dimensions less than the earth's radius, such
waves have wavelengths considerably shorter than the earth's radius.
For such waves, it was shown by Rossby (1939) that the surface of the
sphere could be mapped onto a tangent plane, the effect of rotation
being retained in a Coriolis parameter linear in y, the north-south
co-qrdihate. Such a transformation allows the use of Cartesian
co-ordinates and, therefore, greatly simplifies the anglysis. The
‘effects of making the B-plane transformation have been examined in
some detail by Veronis (1963).

Equations (2.8), (2.9) and (2.10) may be transformed to their

corresponding B-plane equations by first setting o and vy to zero,

19 d 1 d 0

then allowing R + < in such a way that—li'g—e-'*—'g s m%’*—a‘}z s

vg > - v, Yo + u, and 2Qcos6 -+ f. The equations on the B-plane are then,
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3 3 ] _

ﬁ(n + H) + g};[u(n + H)] + 5—};[V(n +H)] = 0. (2.11)
bu , du L du _ .M -
5t + u N + v 3y fv = g 5y (2.12)
v o, v L v _ _.o;m

= Uy + v 5y + fu = g 53y (2.13)

where
f = 2Q[sin(yo/R) + (y/R) cos(yo/R)] _ (2.14)
= fo + By

and yo/R is the latitude at which the B-plane is tangent to the sphere.
Equations (2.8) to:(2.10) and .(2.11) to (2.13) describe the depth

averaged flow of a shallow, inviscid and homogeneous fluid over a

rough bottom both on the rotating sphere and on the f-plane respectively.

Using fhese as a basis, in the following thesis, finite amplitude

planetary waves will be investigated in a variety of cases.



I1II. Results from Linear Theory

3.1 Rossby waves on the sphere
3.1.1 Introduction

The linear theory bf planetary waves has been well developed by

Haurwitzv(l940), Longuet-Higgins (1964b, 1965a, 1966, 1968a,b),

Veronis (1966), and Rhines (1969a,b), as well as others. In this

chapter the resultsiof all these authors are summarized and the

effects of the various approximations commonly used is diséussed.

In particular, fhe linear theory will show the magnitude and importance
of the errors introduced by the B-plane and non-divergent approximations.
‘A knowledge of the effects of such approximations is necessary if the
non~linear solutions to be obtained later are to'be interpreted.

In the’following section the solutions for Rossby waves in an ocean
of constant'depth cémpletely covering the surface of a ¥otating sphere
will be given, following Longuet-Higgins (1964b, 1965a). The solutions
are thained first making the non-divergent approximation, then dropping
this}approximation forjthe divergent case.

?The basic equations of motion are given by (2.8), (2.9), and (2.10).
For constant depfh, o and Y zero, gnd the velocities and surface

elevations small, these equations may be linearized to give

an D S PN v _
5t T Rsine| polvesin® + a¢¢] = 0 (3.1)
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oV an

Svg  _ = - 829

5t 2Q cosb A TR (3f2)
v . . __.&_ 9on

‘§E¢. + 20 cos® vy R sind 30 ' (3.3)

For wave solutions rotating about the axis of rotation of the
sphere the depeﬁdent variables may have their ¢ and t dependence
expressed by exp i(s¢ - ot). Substituting this intd equations (3.1)
fo (3.3),. the partial differential equations are reduced to a set
of ordinary differential equations. By definihg the following

variables
(3.4)
402 R?
gh

1

D = (- uz)gﬁ_, W o= cos®, A = o/20, &

Longuet-Higgins (1965a) reduced these ordinary differential equations

to the single equation

[v2 - &' - S,§5E(g(1 fuﬁ) + S(A% - u?H)] (vg sin®) = 0 (3.5)
where
' 2 _ 9 249 s?
s' o= s/, Vo= oo {(1 -y )au}' - T (3.6)

3.1.2 The non-divergent approximation

Equation (3.5) still includes in it the effects of divergence,
and, therefore, it may be simplified by.making the non~divergent
approximation. This approximation assumes that the first term éf

(3.1) is much smaller than the other two and, hence, may be neglected.
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In terms of the non-dimensional parameters defined by (3.4), this

assumption implies that § << s'. If this is true, then (3.5) reduces to

vz - s'1(vy sind) = 0, (3.7)
which for

s' 20s/c = - n(n+ 1) o (3.8)

hasﬂas solutions the sperical harmonics of degree n and order s,
-where s < n.

These non-divergent solutions were first obtained by Haurwitz
.(1940). 'Longuet¥Hi§giﬁ; (1964b) géneralized these results.by showing
that the axis of the spherical harmonics could be rotated through an
arbitrary:anglé away from thé axis of rotation of the sphere.

Pro&iding these sphérical harmonics rotated about the axis of

‘rotation with an angular velocity of —;ZQ/h(n+l),‘£he non-divergent
lineér equations are still satisfied. lThat is to séy, in the co-ordinate
system described by Fiéure 1 (p. 12), tﬁe linear non-divergent solution
consists of spherical*harmonic; of degree ﬁ aﬁd order s where

o = = 20/n(xtl), and y is arbitgary. .Thefefore, while the angular
phase speed of thése waves':must be about the axis of'rotation of the
sphere, the tilting of the co-ordinate axis shows that the_foles of the
co-ordinates (at which the fluid velocity due to the waves is zero) do: .
not necessarily coincide with the poles of rotation.

For values of H, R, and () corresponding to those of real oceans on
the earth, Longuet-Higgins (1965a) gives‘values of § ranging from 15 to
156. For ‘an ocean of 4 km depth, § = 22 therefo:e, it appears that,

in order that the non-divergent approximation be valid on the sphere,

¢



21

s' must be very large. From (3.8) s' = 0(n?); therefore, the
non-divergent approximation is valid only for large n.

Ocean basins have horizontal dimensions much less than the earth's
circumference. In many physical oceanic problems such as air-sea
energy exchanges with atmospheric disturbances, the wavelengths of
interest must be much smaller than the width 6f the ocean; hence, s,
the number of wavelengths around'the'equator, must be large! Since
n Z_é,vthen n is inaeed 1érge; therefore, the non-divergent Rossby
wave solutions may be useful in the examination of oceanic phenomena.

- On the other hand, for;the investigations of stationary Rossby
waves in large enclosed basins such as the Pacific Ocean, waves Whpse
wavelengthg are the same magnitude as the ﬁidth of the basin will be
important. In.this-case the non-divergent approximation is not likely
to be applicable, énd a more reasonable assumption would be that

§/s' < 0(1).

3.1.3 The divergent solution
If§ = 0(s') and all terms of 0(1) or less are neglected, then

equation (3.5) is approximated by the spheroidal wave equation

d d s? 2 . . _
[HTJ_ ((l - uz)_éﬁ> - 4. (-m + (S]J + s ) :I(Ve 31n6) = 0. (3.9)

This equation was first obtained for Rossby waves by Longuet-Higgins
(1965); 1its solutions are given by the spheroidal wave functions

'si (/§,u) where
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1

s' - Asn(/S). (3.10)

The function A.Sn is given by the solution of a transcendental

equation involving continued fractions. Values of ASH(C) are tabulated
in Stratton, Morse, Chu, Little and Corbato (1956) for values of s,
n, and ¢, all ranging fofm 0 to 8. .These ranges cover most of the
expected variation of §; however, the tables do not extend to large
enough values of n and s.

In the nonédivergent limit as § > O, Asn(/g) may be expressed in

terms of a power series in § [Stratton et al., (1956)] given by

(2s - 1)(2s + 1)
(2n - 1)(2n + 3)

: Asn(/g) = n(n + i) + §[ 1-

5 + 0(8%) (3.11)

"Therefore, in the limit of small 5, (3.10) reduces to (3.8) given by
the non-divergent anal?sis.

The shape of the waves will be changed from.that given by the
non—ﬁivergent‘solﬁtions if the divergence terms are included; however,
since these waves are unlikeiy to be observed in detail, such differenées
are not of much interest. Of more interest are the differences in the
dispersion relations between the two cases.

From the definition of s' given by (3.4) it‘is seen that the
angular phase épeed'of the wave about the axis of fotation is given
by 2Q/s'. Hence, for the non—divergent-case,»the phase speed is
-independent of s, the longitudinal wave ﬁumbef, while for the divergent
case the phase speed is a function of both n and's. This difference

in dispersion relations has an important effect on the combination of

the wave solutions. In the non-divergent case, waves of the same
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degree nvbut different orders s may be summed to form new linear wave
solutions. Since the phase speeds are all the same, these solutions
will not»disperse as the wave travels around the globe. Of course,
non-linear interactions between the solutions can be expected to
disperse the wave eventually.

On-tﬁe other hand; for the divergent case, the ﬁhase speed is
different for each different value of n or s; hence, no such super-
position of solutions is possible. Any two solutions of the same
dggree but different order will slowly disperse as the wave moves
around the sphere, independently of non—linéar effects.

The.magnitude of this-dispersion can be eétimated using the
tabulaté& valueé of Ash [Stratton et al., (1956)]. Using these
tables, Tab_lé I was draw:n up to give th’e. difference between the
non-divergent and divergent phase speed as a percentage of Fhe
divergent phase speed for § = 64. This value of § is the highest for
which Asn(ﬁg) is tabulated and represents a value that is larger than
those calculated for most of the world's oceans. Hence, the differences
shown in the table ére larger than what might be expected for an ocean
§f average.depth 4 km, x

| In Table I it is seen that the pe;centége differences in phase speed
between thé éwo cases decrease with inéreaéing s, and after an initial
increase alsé decrease with increasing n, except for s = 0, which shows
no initial increase. The minimum~percentage differences for each n
occur along the diagonal given b& n = s, and these minimum values also

decrease with increasing n. The maximum value of s for which a

tabulated value of A.Sn was given is s = 8, This represents a wave
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THE. PERCENTAGE DIFFERENCE BETWEEN DIVERGENT AND NON-DIVERGENT

PHASE SPEEDS OF ROSSBY WAVES ON THE SPHERE

n(nt+l) 100[Agp, = n(n + D]/ [n(n + 1)]
s =0 1 2 3 4 5 6 7 8
2 870. 275.
6? 495, 290. 91.7
12 298. 212, 127. 40,
20 190. 152. 111. 67. 22.0
30 125. 109. 89.0 65. 40.0 13.0
42 85.2 80.0 69.8 56. 41.9 25.7 8.3
'56 61.8 59.8 54.6 47. 38.6 28.6 17.5 5.7
72 47.2 44,4 43.5  39. 33.8 27.4 20.3  12.5 4.2

whose wavelength at the equator is approximately 5 X 10° km. or about

~a third the width of the Pacific Ocean. Even for this large value of

8§, the error in phase speed caused by the non-divergent approximation is

only of the order of 20% if (n - s) <2,n

8.

From Table I an estimate can also be made of the magnitude of the

. difference in phase speed between two divergent Rossby waves of the

same degree n but different orders. The percentage difference in

angular phase speed, (&Sn - aén) 100/dsn, is approximately equal to

(- A) 100/[at + D,

Table I.

o

the difference between any two columns of

For n = 8, and for a difference in s of 1, this percentage
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difference ranges from 3% to 8% as s increases from 0 to 8. This
percentage difference also appears to degrease as n increases, and
so for the range of large n and s, which is of the most interest, the
effect is expected to be negligibly small. However, the fact that
such a difference in dispersive behaviour does exist between divergent
and non-divergent solutioné indicates that their non-linear behaviour,

which will be studied in later chapters, may also be different.

3.1.4 Properties of the soldtions -

Following Longuet-Higgins (1965a), the spheroidal wave equatién
(3.9) can be put into the standard Liouville form

2 —
%EX - [(s? --% ) csc?0 + 8 cos?6 + (s’ --% Y1V = 0 (3.12)

through the transformation
vg = (sing )72 v(0). (3.13)
Setting
2 _ 1 2 T 2 v _ 4 2
(s - ) csc® + § cos*® + (s' - Z-) = -V (3.14)

in equation (3.12), it can be seen that the character of the solution
of (3.12) changes from sinusoidal to exponential as v* goes from
positive to negative values. For large s, the first two terms of the
left-hand side of (3.14) are both positive and monotonically increasing
I
2

large and negati?e, and then only if 6 lies between m - 6, and 6, where

as |0 -

increases. Therefore, v> is positive only if s' is both
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_ 1

(s? A

) csc26§ + 8§ cos?0; + (s' - ) = 0 (3.15)

|

The effect of the non-divergent approximation is to change the
range of § over which the solution is sinusoidal as well as to change the
shape of the solution. It was also shown by Longuet-Higgins (1964b) that
for the non-divergent case, fhe poles of the spherical harmonics which
make up the solution do not have to.coincide with the sphere's poles 9§
rotation. Hence, the equatorial belt in whtéh the waves are sinusoidal
is a belt surrounding the equator of a co—ordiﬁate system, whose axis,

- as in Chapter II, may be tilted at an arbitrary angle y from the axis of
rotation providing it rotatés about thét axis with angular velocity
- 20/n(n + 1).

Since the equations are linear, the sum of sol#tions is also a
solution. Therefore, it is possible to sum many solutions of the same
n but different s and diffgrent orientations to give a resultant
solution that is.}eriodic in 9 everywhere. This suﬁ is not possible in
the divergent caée as the waves of different orders each move with-a
different phase %peed.

In conclusion the linear solutiéns show that on the sphere, the
. errors introduced by ;he non~divergent approximation decrease with
increasing'waveuﬁumber.FOIraneunumbers around‘8, ﬁhe‘error introduced
in_the phase épeed is about 10 to 20%. The non—divergent'approximation
eliminates: the variation of phase speed with the léngitudinal wave
number foﬁnd for the divergent solﬁtions; however, this dispersion is
. found to be small for n = 8 and appears also to decrease with both
increasing n and gecreasinglg. For the.wavelengths of interest in the

world oceans s and n are both greater than 8 and the error introduced by
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the non-divergent approximation in the dispersion relation is,
therefore, less than 20%. There is some indication that the non-
divergent approximation may have a large effect when it comes time

to investigate the non-linearities of the solutions in later chapters.

3.2 The B—plane>solutions

It has already been stéted that the solutions of most interest
in the study éf oceanic problems are thése which have wavelengths
smaller than the dimensions of the world oceans. In these cases it
has been shown that the errors introduced by the non-divergent
épproximatiop argbﬁot ;eriogs. For the same range of wavelengths, that
ié, those smaller than the earth's radius, it seems likely that the
" B-plane approximation may also be used to simplify the solutions
still further.

The B-plane equations are obtained in Chapter II by mapping a
restricted area oﬁ the surface of the sphere onto a tangent plane,
and are given by (2.ll), (2.12), and (2.13). 1If thése equations are

linearized and the depth held constant, they reduce to

an o4 oglov 4 oAl - o4 3.16
ot 9x y| - ' ( )
v _ 3 -

T fv + gé% 0 (3.17)
_8.! + fu + gaj. = 0 ., ' (3.18)
ot ay

Following Longyet-Higgins (1965a) these equatdons may be

further reduced to the single equation
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D e _a_) (8 zg_)- v
[gH (Btv + B <8t3 i) e T 0 (3.19)

If it is assumed, as it was on the the sphere, that O‘<< 2Q2, where
g is the radian frequencey, and also that £2 in (3.19) may be
treated.as a constant, then (3.19) has a simple sinusoidal solution
given by

v = v, exp i (kx + 2y - 8t) . ' (3.20)

where the dispersion relation is

a B ' .
kT T KP4+ AT+ f5/gH (32D
If the non-divergent approximation is made by neglecting the
first term of (3.16), then (3.16) to (3.18) reduce to
d oo 9 _ , '
[Btv + B "=l v = 0 | (3.22)
whose solutions is also (3.20). However, for the non-divergent
case, the dispersion relation is given by
.0
k —kzilz’ (3.23)

Since the B~plane approximation is valid only over distances
which are short relative £o the earth's raduis, the B-plane solutions
should show reasonable agreement with the solutions on the sphere
oqu for the short wavelength cases. On the sphere it was for these
short wavelengph cases that the non-divergent approximatidn was valid.
Comparing (3.21) to (3.23), it is seen that this is also the case on
the B-plane. For lafée k and g (short wavélength), the per cent error

in the zonal phase speed, g/k, introduced by the noﬁ—divergent
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approximation is approximately 100f2%/gH(k? + 22). For a wavelength of
about 1000 km, this error is about 107 and will decrease with
‘decreasing wavelength.

Near the equator, the phase speed of theARossby wave solution on
the sphere is‘given by - ZQR/A;n and the longitudinal wavelength by
21R/s. If n'=s, the wave crests are aligned along the meridians of
: longitude and the corresponding wave on the S-plane is given by (3.20)
where ¢ = é and k =.s/R. S%nce the a§sumption that f? is constant is.
not valid near the -equator, and since.fdr large n and s and for n =>s,
the non—divergent>approximation is Vélid, the non—diyergent solutions
onlthé sphére and on the B—plane are compared. Comparing their phase
‘épeeds, it is found that, for n = s, the’percentage difference is
approximately 100/s. Fo} 5‘2 10, tha;,is, for wavelengths less than
1000 km, the error iﬁ phase speed introduced by the B-plane approximation
is aBout lOZ,‘and this is the same order-as the errors introduced Ey the
non-divergent aﬁbroxiﬁations. For longef wa&elepgths, Longuet-Higgins
(1966) shows very good agreement between B-plane solﬁtions and spherical
solutions for a he@ispherical-ocean basin centered aréund the equator.

In discussing the f;rm of the solutions on the sphere it was
pointed out thaE these éolu#ipns are sinusoidal in O only for a range
of co-latitudes on each side of the équator of the co-ordinate system.
At first sight this behaviour does not seem to be reproduced by the
B-plane solutions, which seem to remain periodic in both x and y
‘ regardless of tﬁe latitﬁde. This is not entirely true for thé divergent
solutions, since the assumption that f? may be treated as a constant is

valid over different ranges of y for different 1a£itudes.
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For a B-plane taken around the equator, f = By, and a solution
of (3.19) for o << f, is given in terms of Parabolic Cylinder

functions by

v = v, exp i(kx - ot) [A U(Ay/gg y) + B V(A&/%% v)] (3.24)

where’
» = /g—li(k,z . By (3.25)

Since the parameter X is related to the Waveiength of the wave in the
north—south direction, (3.25) is the dispersion relation for the wave.
Even though in (3.24) the solution varies in a non—éinusoidal fashion
with latitude, 'in contrast to the solutions on the sphere, it still
remains periodic in y over any range of y. ‘This difference in
behaviour is due to the fact that the B-plane, while rgstricted in
the range over which it is wvalid, is éctually treated mathematically
as being unbounded.

In discussing the non-divergent soluﬁions on the sphere, it
was noted that the belt of co-}atitudes for which the solutions were '
periodic in two dimensions could be tilted at any angle to the axis
of rotation of the sphere. Therefore, anywhere on the surface of the
sphere, it is possible for non-divergent waves that are doubly-
lperiodic to exist. What these solutions do reqﬁire is that these doubly-
periodic‘waves are of finite lateral extent.. It is this finite lateral
extent that is missing from the B-plane solutions. However, if the

width of the equatorial belt on the sphere is large, then it may exceed

the range over which the B-plane approximations is valid; hence, within
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;heir range of applicability the B-plane solutions are a good

approximation to the solutions on the sphere.
Summarizing.briefly, the linéar solutions indicate that for

short wavelengths tless than 1000 km.) both the R-plane and non-

divergent approximations may be made, the errors from each not

exceeding 107%.

3.3 Topographic waves

In each of the preceding sections the fluid depth has been
held constant and the resulting solutions have been referred to as
Rossby waves. In.§1.2, it was shown that variations in depth will
support a class of planetary$wavés known as topographic waves in
the same way a non~uniform fotation field supports Rossby waves.
Veronis (1966) showed that for typical oceanic values, this topographic
effect is much more important than the B-effect.

The. basic equationé are obtained by linearizing (2.11), (2.12),

and (2.13) to give

oM, 3 3_ -

Py + ax(uH) + By(VH) 0 (3.26)
du L an '
L . Zl = .2
ST Iv + g o 0 (3.27)
v o

st Tt fu + ¢ s 0. (3.28)

As with Rossby waves, the non-divergent approximation is made by

neglecting the first term in (3.26). Following Veronis (1966),
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the non-divergent approximation is made, H = h(y), and v « exp i(kx-0t);
then under these conditions, equations (3.26), (3.27), and (3.28) may be

reduced to

1 f kh
=(hv) - <—> = 4+ k2 = 0 . (3.29)
o], - [@), e

In equation (3.29) the depth h plays a dual role. In the second
term, the variation of h plays the same role for topographié waves
as does the variation of f for f-plane Rossby waves. However, unlike
f in the Rossby wave éase, h also appears in the first term. This
~ occurs becausg, independent of the vorticity effects, the velocity
must increase or decrease with increasing or decreasing depth in
~order that mass conservation be satisfied.
For Rossby waves on a mid-latitude B-plane, f is always a
linear function of iatitude; however, for topographic waves a whole
range of different depthAprofiles may be chosen, all of which model
actual oceanic bathymetries, A simple profilé, studied by Veronis
(1966), is the exponential profile, h = hovexp(—ﬂy); For this profile

Veronis gives as a solution to (3.29)

v = v, exp(3My) exp i(kx + 2y - Ot) (3.30)
where
_ o _ _ fA
C Tk T TR T AT (3.31)

and where f has been held constant. The first factor in this solution
for v is a growth factor required by the presence of h in the first

term of (3.29)



33

It was éointed out by Rhines (1969a) that for real oceanic slopes,
A << k, and, hence, the variation of h may be neglected in the first
térm of (3.29){ Such an approximation has its analogue in the theory
of internal gravity waves. There it is traditional to make the
Boussinesq approximation in whiéh one neglects the variation of p
where it appears as an inertial mass but retains its variation where
it appears multiplied by g and, hence, as part of the body forces on
the fluid.

Veronis (1966) also treats the case, in which both f and h are
allowed to vary, and outlines the difficulties which one may encounter,
if the assumption that f may be treated as a constant except under
differentiation is made without due care. He shows that if any terms
are neglected, care must be taken to neglect all other terms of the
same magnitude lest terms are retained that may indicate that the
solutions is growing in time._

Considering the case of h = h, exp(- Ax), equations (3.26) to
(3.28) may be solved by making the non-divergent approximation, then .

defining a transport stream function, Y, by

uh = - %3 y vh = -%% . (3.32)

In terms of this stream function Veronis (1966) obtained as a solution

to these equations
(3.33)
B

y ‘ .
Vo= Ve exp- 2D exp ilGty + Siray) + (k- 5o)x - o)

where
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of = 4(k2f§A;2++812\2/4) : (3.34)
Locally equation (3.33) may be approximated by

vo= Y, exp(—-%'x) exp i(Qy + kx - ot) (3.35)
where

L = 2 + foA/20 , k = k - B/ (3.36)
and therefore the dispersion felation may be written

s _ f, AL - Bk _ : (3.37)

k% + 27 + A%/4

which is similar in form to equation (3.31).

The form of equation (3.37) allows the effects of bottom topography
to be compared with those of non-uniform rotation since both appear.
The most level areas of the ‘ocean floor, an abyssal plain, have slopes
of about 107"%; for continental slopes, rises and shelves and for the
mid-ocean ridges the slopes are tyéicallyhan order or two greater in
magnitude. Even for alslope ofv10'“ and h = 10 m, A = 1077 m} and,
hence, for ﬁid—latitudes Af; ~ 107! m'l's'i, the same magnitude as
B = 107t m'! g1, Therefore, it is seen that over much of the ocean
basins, the topographic effect will be equél to orgdominate over the
g-effect. Furthermore% (3.37) shows that for given ¢ and if Af, > B,
the wavelength of the topographip waves is shorter than that of the
Rossby waves, and also that this wavelength decreases with increasing

bottom élope. Therefore, it appears.that for the same range of

frequencies the non-divergent and R-plane approximations may be made
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with greater confidence for the topographic waves than for the Rossby

waves.

If equation (3.29) is written in terms of the tramnsport V = vh,

it takes the form
1
h[h vy}

In this equation an analogy, discussed in greater detail in Appendix II,

[C_IkE(_E) + szV - o . (3.38)
y y
may be clearly seen between the behaviour of planetary waves and internal
gravity waves. For internal gravity waves on a density distribution that

varies only with depth, the vertical velocity is governed by the equation

[Krauss, kl965)]“

w _ 2lge (1 _ ,
p[pz]z k [‘g’z <p>z + 1] W 0 (3.39)

" where
w(x,v,2) = W(z) exp i(kx - Ot) . (3.40)

If, in the internal wave case, the depth is constant and also if
the upper surface is assumed rigid then the boundary condition requires
that w be zero at both boundaries. In a fluid of infinite depth this
condition is replaced by the condition that the vertical velocities tend
to zero as z > * =,

It is easily seen that if f is held constant in (3.38), then the
two equations are identical in form. Hence, all the solutions for
internal waves on various density profiles will have analogous solutions

for topographic waves on depth profiles of the same form.
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In particular, Rhines (1969a) and Longuet-Higgins (1968a,b)
have found planetary wave solutions which consist of waves trapped
along depth profiles such as ocean ridgeé and éea scarps. These
solutions are analogous to the internal wave solutions given by
Groen (1948) and Krauss (1965) for waves trapped on a pycnocline
in a fluid of infinite depth.

.Solutions to (3.38) have béen given for a variety of profiles
by various authors. Rhines (1969b) has given solutions for waves
trapped around islands and sea mounts; and Mysak (1967) has obtained
shelf wave solutions, planetary waves trapped on a sloping continental
shelf. For other bathymetries, still more types of topographic waves

can undoubtedly be found.



IV. Finite amplitude planetary waves

4.1 Introduction

Finite amplitude effects for planetafy waves, as for any other
wé%e governed by non-linear equations of motion, can be investigated
by two fundamentally_different techniques. In the first, the entire
non-linear set of equations is manipulated, making only those
appraximationsbnecessary to find an "exact" solution. Having obtained
-such soiutions; it is then possiﬁie,_g posteriori to determine

. » _ , O
whether‘such solutions have 'any physical signifiéance. Such a method
has been used with great success by Yih (1960) in his studies of
stratified flows over obstacles.

With the secon& technique, the investigator must begin with a
physical concept of the phenomena of interest so that the terms of
the non-linear equations may be properly scaled and solved using a
perturbation expansion in some small parameter., Both of these
techniques will be used in this chapter to determine the finite
aﬁplitude'effects on the linear'solutions outlined in Chapter III.

‘The first technique is ﬁsed'in sections. 4.2 to 4.4 and exact
non—divérgent solutions are obtained for a constant depth ocean on
the rotating sphere and for a B-plane channel both for uniform depth
and for an exponential depth profile. These Rossby wave solutions on
the éphere and the B-plane are shown to be identical to the linear

non~divergent Rossby wave solutions obtained by Longuet-Higgins

(1964b, 1965a).
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If the non;divergent approximation is not made, the equations
cannot be reduced to a férm that can_bé solved exactly. 1In 84.5, the
finite amplitude divergent Rossby wave solutions on the PB-plane are
found to the second order in wave amplitude using a perturbation
expansion.

In §4.6, the important problem of the interaction of Rossby
waves with shear currents is investigated. 1In particular, it is
shown that the linear non-divergent solution is no longer a solution
to the non-linear equation of motion in the preéence of a weakly

sheared zonal current.

4.2 Rossby waves on the sphere
4.2,1 The equatibns

The relevapt equations of motion for inviscid flow on the sphere
héve been developed in Chapter II and are given by (2.8) to (2.10).
For free waves of permanent form rotating about the axis of rotation
.of the sphere with angular phase speed o, the motion is steady in. the
frame of reference described in Chapter II, that is, a frame rotating
with .angular velocity, (o + @), around the rotation axis of the
sphere. 1In order that the motionlbe steady it is also necessary
that the depth be a function of 6'only, where §' is the co-latitude
relative to the axis:of rotation.

Under these conditions (2.8) is written

%@ (n + H) sinb ve] + %6{(n + H) v¢] = 0. (4.1)

'Equation (4.1) allows the definition of a stream function, Y(8,¢),
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such that

T o= -t (4.2)

Y& T  (n ¥ H) sinb 06 ° Ve N+ H 36 °

In terms of this stream function (2.9) and (2.10) are given by

1 oy | - 1 8y . _ 1 PV 1 3y
(M + H)sin® 3¢ 98| (n + H)sinb 3¢ (M + B)sinZ6 986 94| n + H 8¢
2 .
- (;.oi 161)2(%) + 3%{%)13 (siny sin® cos¢ + cosy cosb) g%—
5 A
- - e | (4.3)
and

1 oo 1 3y 1 e[ 1 3y
(M + H)sin® 0¢ 36[ n + H 90 (n + H)sin® 30 3¢/ n + H 36

cot 8 WY 2+ DR, . . | 3y
+ (ma Y- N (—————n ¥ H)Sine(SlnY sin® cos¢ + cosYy cosf) -876

_g o '
inb 30 ° ' (4.4)

2:2.2 ‘Non-divergent solutions
Since it seems impossible to manipulate (4.3) and (4.4) in
order to get a single equation in either ¥ or 1n, we shall make the
non-divergent approximation. This approximation, discussed préviously
in Chapter III, is made here by neglecting n except where it is
multiplied by,g.‘ Thén n may be eliminated by cross—differentiafion

i

betwéen (4.3) and (4.4) to give
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J[ H sine %E (H sine %%> + ﬁ sine %§-<Si§e %%> (4.3)
- 2&5&%%1215 (siny sin® cos¢p + cosy cosh) , w] =  0
where J(a,b) is thé Jacobian %%%f%% . This can be integrated
once to give '
SR e h(m )
- 2(2 + )R sin®6 (siny sinB cosd + cosy gose) = F(P)H sin?6

where F(y) appears as an arbitrary integration function.

Physically,.equation (4.6) is an expression of the conservation
of potential vorticity of a fluid column. Since, in steady flow, the
streamlines coincide with pathlines, the potential vorticity field
is a function oféthe stream function oniy. The integration function
F(Y) is, therefo;e, the distribution of potential vorticity.

in order tolsolve (4.6), the function F(y) must first be
determined. Sinpe F(y) is both the vorticity distribution due to
the wave plus th%t due to a basic flow, its form for any particular
.case is not immediately apparent. For want of any information of
the. shape of F({), it may be assumed that it is at ‘most a linear
funqtion of Y and all possible solutions resulting from such an
assumptién, determined. From these solutions thé basic flows for
which this liﬁear fdncfion is the vorticity distribution can then be

found.
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Since one can always add an arbitrary constant to a stream
function there are only two possible cases for which F(y) is linear

“in P, these being

de (4.7)

Case I F(W)

Case IT - FQY) = - diy . (4.8)

The solutions of interest are free waves in an ocean of constant
depth which completely covers the surface of the sphere. For H
constant and F(y) given by (4.7), equation (4.6) then becomes

| 2
l—ié-(sine %g) + —125%55[[) (4.9)

sin® 3 sin
= d.H? + 2(Q + 0)RH(siny sinb cos¢ + cosy cosB) .

This equation has no solutions periodic in ¢ which are also
finite over the entire sphere; therefore, Case I gives no wave
solutions. An equation of the same form as (4.9) but with o =0
may have some importance in the study of steady flows in channels on
the sphere.

Turning to Case Ii, forlH constant and F(y) given by (4.8),

equation (4.6) becomes

1 5 (. .3y 1 9%y . |
sinb 56(31n6 86) + sin%6 93¢ + A (4.10)

2(2 + w)RH (siny sinb cos¢ + cosy cosB) .

The solution of (4.10) , finite over the entire sphere, is given by
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n
n%§9++l?)fﬂz (siny sin® cos¢ + cosy cosB)
where
G = o+ 1) . - (4.12)

4.2.3 Properties of the solutions

Recalling from Figure 1 (p.12) ‘that
cosf' = cosy cosO + siny sin6 cos¢ , (4.13)

where 6' is the co-latitude relative to the rotation axis, it can
be seen that the stream function as given by (4.11) consists of the
sum of surface harmonics of degree n (and of any orientation) plus
a sfeady flow which is zonal relative to the rotation axis. TIf all
‘the wave émplitudes A: are set to zero, equation (4.11) is reduced
to the stream function for the undisturbed flow. This steady zonal

flow is given in the rotating frame by

. _ 2(0 + R .o
o' = Tt D -2 sin@' . (4.14)

v

Relative to the surface of the solid sphere, rather than to the

rotating frame, the zonal velocity is

; _ 28 + n(n'+ Do . At
v¢. = nn + 1) = 2 R sin® . (4.15)

If this basic zonal current felative to the sphere is set to zero,

then from (4.15)
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292
o = ORI (4.16)
The phase speed of a linear non-divergent wave on the sphere
is given by equation (3.8) of the previous chapter as
g 2Q
s a(n+1 ° _ (4.17)

therefore, for the case of zero basic flow, the linear and non-linear
dispersion relations are identical. Furthermore, the form of the
non-linear solution, being the sum of surface harmonics, is identical
to that of the linear solution. Hence the linear non-divergent on the
sphere is, in fact, an exact solution. This result was previously
obtained by ﬁeamtan (1946) and‘by Barrett (1958); however, it does
not appear to be well-known in the li?gfature of oceanic planetary
waves. For this reason the analysis has>been repeated here and later
for Rossby waves on the B-plane. An exfensioﬁ of Neaﬁtan's analysis
in 84.4 allows the examination of non-linear topographic wave solutions.
vHaurwitz (1940b) showed thét a zonal wind of the form V,R sin®'
could be added to the linear equations without changing the form of
the solutions. If the zonal current given by (4.15) is set equal

to Vo,R sinB', then

2 _ _ 280
Vo[l - m] :— o = ——n(n T (4.18)

Since n >> 1, then (4.18) may bexapproximated by
)
20

Vo - o = m . ' (4.19)

For the case of an undisturbed zonal current of the form V,R sinf',

the linear solution is then the full solution. In order to get any
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higher order interactions it will be neéessary to change the undisfurbed
vorticity field by the addition of‘é sheared basic zonal current. This
would be'eauivalent to changing the form of F(Y) in equation (4.6).

On fhe other hand, if the non—divergent approximation is not madé
it appears impossible to reduce (4.3) and (4.4) to a simple equation
in only one of y and n. Hence, it is very unlikeiy'that:the linear
divergent éolﬁtions would be exact solutioﬁs_of the non—iinear
equation. This can be tested by direct substitution, but for ease of

calculation this test will be made only on the B-plane.

4.3 Rossby waves in a B-plane channel, I. Exact solutions
4.3.1 The non-divergent éolution

As discussed earlier,'the B-plane approximation involves
mapping the sﬁrface of the'sphere onto a ;angeht plane, and therefore,
is a valid approximapion only for horizontal scales much less than
the radigs of the eérth. In order to establish a horizontal scale,
the problem is treated in a zonal;chanpél of width L.

If there exist planetary waves ofipermaneﬁt:form which have a
phase velocity, c, in‘the x- direction, then in a.frame moving at this
phase velocity relative to the earth, the motion is steady.. For
such waves to exist, H = ﬁ(y) only, since if the‘depth varies with x,
time-dependent terms must enter into the equations as 'the frame moves

from one depth to another. Transforming to such a frame through the

transformation

s = x - ct (4.20)
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equations (2.11) to (2.13) become

5 (u - C)“"(n + H)]A + -33? [V(n + H)] = 0 (4.21)
_(u-c)g—:-+v%}‘;1-- fv+gg—2- - 0 (4.22)
(u - c)% + v%}‘;’ + fu + gg—’; - 0 (4.23)
with boundary conditions given by

v = 0 | aty = . 0, L. (4.24)

A transport stream function satisfying (4.12) may be defined by

- 1 9y 1w (4,25
(u-¢) = T ¥ H 3y ° v Y H s (4.25)

Substituting (4.25) into (4.22) and (4.23) and crosstifferentiating

between the resulting two equations gives

(4.26)
3 < 1 9 1 9y + 1 9 1 3yl _ f ) = o0
n+H3Is |n+H 3s n+HJy [n+H oy n+H’ )
which can be immediately integrated once to give v
: ' _ ‘ (4.27)
1 93 1 3y + 1 9 1 8y £ - T
n+H393 |n+HIs n+HOoy|l n+H Dy n+H

where again F(w) is an arbitréry integration function specifying

* the distribution of potential vorticity in the fluid., In the same

way as on the sphere, F(¥) is chosen to beva 1inear function of V.

Since m is defined only up to an arbitrary cdnstant, there are only
two cases for whi?h F(y) is linear,‘these corresponding to (4.7)

and (4.8) given previously for the solutions on the sphere.
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1f the non-divergent approximation is made by neglecting n
relative to H, and if H is held constant, then equation (4.27) is

for Case 1

2 2
g—¥ + g—}} - fH = d,H® , (4.28)

]

and for Case I1

2 2

with the.boundary condition that

ﬂ = 0 . at y = 0’ L . (4'30)

As on the sphere, there are no solutions for case I satisfying
the boundary conditions which are also periodic in s.  On the other

hand, case II has a wave solution given by

Y o= 2§;An sin E%X cos kms + Efﬁ~'+' B cos(Vﬁ}Hy + b,) , (4.31)
where |

kp + £ZL'T'}Z = 45 = «* (4.32)
and

M2 < il%?:z < M+ 1. (4.33)

4.3.2 Properties of the solution
As on the sphere, this solqtion of the non-linear equations is
identical to to linear solution as given in chapter III. These results
were previously obtained by Neamtan.(l§46) and applied to atmospheric
processes. The solutions are here rederived in order that they may
be compared to divergent Rossby wave sélutions and topographic

wave solutions which shall be obtained in later sections.
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Replacing diH? by k?, the total wave number, and allowing the wave

amplitudes to go to zero, the zonal velocity is given by

u -;c = -B-—
' K

: - PSsin (ky +b1) . (4.34)

From equation (4.31) it appears that a non-divergent Rossby
wave can exist in the presence of a sheared basic zonal current
providing that current is of the form (4.34). However, in order
2 m2TT2

> gz for some m < M ; therefore,

that the wave be periodic in s, K
this basic zénal current, if it is to be sheared, must have at least

as many zeros acfoss thg channel as does the wave solution itself. In
the real ocean or atmosphere such a complex basicizonal flow ‘is unlikely
to exist; hence, here B #will be set to zero.

If B were noﬁ—zefo, the total wave number,.K, in this solution
would:-be -determined by the wavé number of the basic flow; however, for
a uniform basic flow, (B = 0), Kk is unspecified and waves of any total
wave number may exist. Equation (4.31) shows that waves of the same K,
though of different m and k, can be summed together with no interactions;
however, non-linear interactions may occur between two waves of
different K.

A case of interest in Chapter V is the case of a weakly sheared
zonal‘basic current. This may be modelled here by looking at the

" solution for small K. For KL << 1, (4.34) gives a weakly linearly

sheared basic current,

%2 - %ﬁ [Ky.cos by + sinb; ] (4.35)
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however, (4.32) shows that for m > 1,

2 mZ'TT2 m21T2

k_[%l = K - —.Ez‘ ——Iz- < o . (4.36)

4

Therefore, it appears that a weakly sheared current will not
support a wave of the form, sin <%H§> cés kms » as a wave of permanent
form. The question of whether any finite amplitude wave of permanent
form can exist in this case will be discussed‘in §4.6 and Chapter V.

Such simple solutions of the non-linear equations of motion are
possible only in the case of non-divergent motions. The ﬁresence of
divergence brings into play a whole ﬁew set of non-linear interaction
terms, and it is no longer possible to find simple solutions to the
full.equatiqns of motion.

While it is poséible to write an equation such as (4.27) which
formally appears to be linear in Y, it is not?pdssiblg to separate
out ' n without intréducing new n&n—linearitiesfinto the equations. In
tﬁe linear solutions, it was shown th;t for suitably shért wavelengths
there were negligible diffefences bétween the divergent and non-

, ; :
diveréent solutions. However, in considering the full equations, we
see thaéltheir non-linear behaviour is much different. While the
non-divergent linear solutions Weré shown to be exact solutions, no
such behaviour is indicatgd for the divergent solutions.

This difference in behaviour was also sugge;ted by the linear
solutions on the sphere. There, all non-divergent solutions of the
same degree moved with the same phase speed, suggesting that super-

position o6f solutions to form a wave of permanent form was possible.

On the other hahd, the phase speed of the divergent solutions varied
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with both degree and order; therefore, any superposition of‘solutions
would disperse in time unless non-linear interactions worked to
exactly cancel this dispersion. If such a wave of permanent form

does exist, it will be a solitary or a énoidal wave; such waves will _

be investigated in Chapter V.

4.4 Finite amplitude topographic waves
4.4,1 The exponential profile

In Chapter III, on the linéar plangtary waves, it was shown
that gradients of depth may act in the same way as gradients of £
to suppoft planetary wave motions. In thg noﬁ—liﬁear case, equation
(4.27), for H = H(y), will also give wave solutions,.even in the case
of uniform f.

As in the theory of internai waves where one finds thét the mean
density profile determines many of the properties of the wave solutions,
in the study of topographic waves the choice‘of dépth profile has-
similar consequences. Many different depth profiles may be chosen, but

here the problem will be solved only for the exponential profile,

H = Hooew(-ly) . | | (4.37)

Once again, making the non-divergent approximation and setting

2 : .
F(y) = - ﬁgw, equation (4.27) becomes
-y Ay o - 2Ny _ - '
wss + e [e wy]y + K“e Y o= fH.e (4.38)

which has as a solution
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p.o= b {B1 3,000 + B, Y, } sin ks (4.39)
£.H, (CsinA(Z - t)
+ K ° j dt + Dy sin AT + Dy cos Ag
K 1 t
- BH, jglnzt cosA(t - ) dt
213 1
where
T = exp(- Ay) , (4.40)
K
A= T (4.41)
2 .
v 51, (4.42)

and D; and D, are arbitrary constants.

4.4.2 Propérties of the solution

The integrals Whicﬁ make up the solution*(4.39) cannot be
evaluated analyticallyg' however, since for.all finite y, ¢ > 0,
then the integrands are finite, and tﬁerefore,‘the.integrals themselves
are finite. |

Once égain, it is necessary to apply some bounds to the ocean
within which the R-plane approximation remains valid. For a zonal
ghannel, eqpation (4.39) must satisfy the boundary conditioné given

by-(4.30). These are satisfied if

AL AL

]
o

Jy(D) Yy(e™ ) - Yy JyQe ) (4.43)

If v is real, and a and b are positive, Gray and Matthews
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(1922, p.82) show that Jv(ax) Yv(bx) - Jv(bx) Yv(ax) is a single-
valued,-even function of x whose zeros are.all real‘and simple.- In
(4.42), v may be chosen to be the positive root, and since k is an
arbitrary constant, it may be chosen of the same sign as A so that
A, as given by (4.41), is always positive. Hence, (4.43) has a.
sequence of real roots, {Ki}.

Abramowitz and Stegun (1965, p.374) give an asymptotic formula
for determining the rth zero of the cross-products if r is large. In

terms of the variables used here, this is

- _ 2 _ 3
e Mor 4 4 B o4 aczp , d-dpg+ P (4. 44)
V a ai aj
where
. 4 Vi -1
ar. = —/— P = ;
| S gL

|

(402 - 1) (&2 - 25) (M - 1

q = , ' (4.45) -
64 Y3 M - 1)
(402 - 1) (16v" - 456v2 + 1073) (> - 1)
d = .
54eM )5 M C 1y

Since (4.40) gives a relation between V and k, therefore from
(4.44) a dispersion relation giving k in terms of ¥, A, L, and r
may be obfained. However, because (4.44) is a transcendental relation
valid only for large r, the actual dispersion relation cannot be
obtained analyti éally .

The roots represented by (4.44) have been shown by Kline (1948) to

. o -AL th .~ | .

reduce in the limit as e >~ 0 to the r Zeronof Jv(x). However, in

this limit the ndn—divergent approximatioh, which requires that
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n << H, would not be valid. In'any practical problem the first few
roots of (4.43) would have to be calculated numerically for the
actual Valﬁes of ¥k, A, L.

The'&ase of uniform rotation may be investigated by setting
B =0 in (4.39). This eliminates the last integral, and therefore,
éimplifies the solution somewhat. Also if f is constant, the solution
will hold for a channel of any orientation.

The solution éiveﬁ by (4.39) expressed in terms of the zonal

velocity is

%o[(\) +—%—> C—%{ By Jy(AZ) + B, Y\)(KC)} (4.46)

=
1
O
1]
I

AZH B, Jyp (AT +. B le(xc)}] ~sin ks

c -
_iofseg_&c_-_z)dt _ p K

K .
0 r H, cos AL + D, i, sin AZ

4 .
—2—;‘—\2 jlnzt sin Mt - ) dt .
1

B
272

lnzc +
Equation (4.46) may be averaged over a wavelength in s; however
the resulting zonal flow still remains a very complicated function of
y, much more complicated,. in fact, than one would expect to exist as a
real ocean flow. While (4.39) is>an'exact solution to the non-divergent
equatiéns, it is too complicated to interpret or be useful as an
approximation to real oceanic flow.
In éummary, it has been found that a wave éf permanent form will
exist aé an.exéct solﬁtion of the non—divergént equations of motion for

i

the case of a channel with bottom profile H = Hc,e_Ay

on the B-plane,

. and furthermore, that such a solution will exist even if the rotation is
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uniform.‘ However, the basic zonal flow required in order that this
wavé exist is so complicated that it is unlikely that the solution
_represents -a wave likely to be ébserved in either the ocean or the
atmosphére. |

Since, in topographic waves, the wave properties depend to a
large extent on the properties of the topography;Ait is possible that
for a different topography, a simple-wave of permanent form may exist
without reqpi;ing such a complex basic zonal current; however, such
an inverse problem would be very difficﬁlt to solve.

The solution described above was obtained by requiring F(y) in
equation (4.27) to be a linear function of Y. Since F(y) is the
distribution of potential vorticity, and since.for the exponential
profile tﬁe p;tential vorticity due to the rotation of the fluid, f£,
is distributed exponentially with y, in order that the basic zonal
flow be simple (that is, at most, linear in y) it would seem likely
that F(y) should be some exponential function of Y. In this case
though, (4.27) is a non-linear equation and direct‘solution would be
very difficult, particularly since, for non-linear F(y), (4.27) is

no longer separable.

4.5 Rossby waves in a B-plane channel, II. Perturbafion expansions
4.5.1 The pertﬁrbatipn equatidns
In this section, the finite amplitude effects on divergent
Rossby waves in a B-plane channel will be investigated using a
Stokes-type perturbation expansion. The basic quationswgoVerning

waves of permanent form in a B-plane channel are given by (4.21), -
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(4.22), (4.23), and the boundary conditions by (4.24) For divergent
Rossby waves in a channel of constant depth, the variables will be

non-dimensionalized through the transformation,

(u, v, ¢) = BL*(u', v', c") , (4.47)
(s, y9 = L(s',y") , £ = BLE' .= BL(fS + y" ,
(n, H) = HEN', D

where § = PB?L?/gH, a non-dimensional divergence parameter.

Substituting these non-dimensional variables into (4.21) to
(4.24), the non-dimensional equations of motion become (on dropping

the primes)

(u —.c) ug + vy - fv + ng = 0 (4.48)
(u-c)vg + v vy fp + ny = 0 (4.49)
[(w- @ +8m)g + [v@A+m], = 0 (4.50)
v = 0 at y = 0,1 . . ' (4.51)

The various variables may be expanded in powers of €, an amplitude

parameter, as follows

+

u = u,(y) + eui(s,y) €2u2(s,y) + ...

v = evi(s,y) + €2va(s,y) + ...
(4.52)

4

No(y) + eni(s,y) + €%na(s,y)

o
I

c = Co + €c¢ + €°¢c, + ... .
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On substitution of these expansions into the non-dimensional

equations and on separation of terms in powers of £, the equations of

' . . th
motion are to zero

to

fu, + noy

first order

(uo = coluig

C(ue - co)vig

to

setting the basic current, u,, to zero.

(l + é;no)llls

v, = 0 at

second order

(uo - C°)u28
(uo - C°)st

(l + ano)UZS

4.5.2 The first order solutions

order,
o,
V1 u°y - fw
+
fu, Niy

[(1+ 5n°)V1]y + §(u, -

= O, 1 )
Valoy = fv,
fu, + nzy

T Nys

+ nlS = 0
0
ColNyg
- (u,
- (v - Cl)vls

[(1 + 6no)vyly + 8(ue - codnyg

- 6[(u1 - Cl)nl]s

ViViy

(4.53)

(4.54)

(4.55)

0 (4.56)

(4.57)

(4.58)

- cpug - Vilyy

(4.59)
(4.60)
5[V1ﬂ1]

y

(4.61)

In this case of § = 0(1), the equations will be simplified by

Under these circumstances, the

first order equations can be reduced to a single equation in v; by
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first eliminating n; between (4.54) and (4.55), and between (4.54)

“and (4.56) to give

fu, g + Colligy = CoVigg + (fvl)y = 0 (4.62)

and
(1-8cduyg + vy - Scofvy = 0. (4.63)

respectively; then eliminating u; between these two equations

to leave

(1-8Dvigy + Vigy = = (L+8cf) v, = 0 . (4.64)

Equation (4.64) is a non-dimensional form of the iinear equation
for divergent Rossby waves (3.19) as obtained by Longuet-Higgins (1965a).
A solution to (3.19), .given by (3.20) and (3.21), is‘obtained by making
an approximation equivalent in (4.64) to neglecting Sc? W%;h respect
to 1, and by treating f? as a constant. Making these approximations

the solution to (4.64) is given by

v, sin mmy cos ks , (4.65)

and

[m?m% + k% + &f21-' . (4.66)

Co

For a mid-latitude channel such that L = lOsm, H = lOam,
B =10 m s, and f, = 10 *s~!, then (4.47) gives § = 102, and
(4.66) gives c, ~ 10 7%, Hence, a posteriori, it is seen that the

error that these approximations introduce into (4.64) is approximately
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1% for treating f> as constant, 10 2% for neglecting 8c? in the first

term.

i

Equation (4.64) can be solved exactly, its solution being given

by
v, = Y(y) cos ks (4.67)
where
Ty, - {% s 4 (L-8DK|Y = o0 . (4.68)
; The transformgtion ‘
t = V& £(y) o (4.69)

transforms (4.68) into

1 (1 - 8§c2)k? z? B
Yoo - [_Tzc.,a + TS v 7Y = 0 : (4.70)

which has as solutions [Abramowitz and Stegun, (1965)] the Parabolic

Cylinder functions U(X,7), V(X?c) where

N om gy + LSk = Sealk” (4.71)
The boundary condition (4.57) is satisfied if

UOLE) VOLE,) - U0LE) VOLE) =0 | (4.72)
where

g, = VB £ ,ad 7, = VB.(fo+1) , (4.73)

in which case the.solution is given by
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Y = V(}\’Cl) u(x,z) - U(X’Cl) V(A,2) . (4.74)

A search of the litérature was carried- out, buf no tables of
zeros of these cross—-products nor any information on their properties
were found. Table; of values of U(A,r) and V(A,Z) are given in
Abramowitz aﬁd‘Stegun (1965) for -5 <A <5, 0 << 5. From these
tables it is seen that V(A,z) is monotonic increasing for A > -1.5,
and U(\,z) is monotonic decreasing for A > -0.5; therefore, for any
Ty,Cp such that To >:g1 , the crosé—prpduct will be positive for
A > -~-0.5. Thﬁé, a necessary cdnditioﬁ for (4.72) td be satisfied is
that A < -0.5 , If; as seems likely, §cZ << 1, then the second term
of (4.71) is positive and so, in order that A < -0.5 , co <0 .
Therefore; in common with the appfoximate linear soiutions.for
divergent Rossby waves, the phase velocity of these solutions is
alwayg téward the west.

Both U(x,;).and V(A,;) are oscillatory in A if A < 0 and
|g] < ZVTXT ; therefore, there will exist an infinite sequence,'{xm},
.of eigenvalues for which (4.72) is satisfied. For IAI > r?
Abramowitz aﬁd Steéun (1965, p.690) give the expansionms,

) i
" -3 - 1)

: ‘/; 10} )

B TONA Y

os[@-«—%W + VAT ¢ - W%[‘]

(4.75)

-3 (- )

' 2! 23
V(X,5) v 81n[ S+ =r + VXl ¢ - }
P% _ x)‘/1?25(>\+£) <2 4) 24/TA]
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Substituting these expansions into (4.72), it is found that the

eigenValues,'{Am} , are given by

_ szfz l/g 2
A - i Sl —2—f° + ... | (4.76)

m

where |Xm| >> Cg > Qﬁ for m >>‘1. Substituting from (4.76) for A,

equation (4.71) becomes
co = - [m®n® + (1-6c2)k® + §£2 171 : (4.77)

which, if 8¢2 << 1, is the phaée speed given by (4.66). Since

IAmI >> ¢? implies tﬁat m is large and, further, that m®m? >> §f3,
it is seen that for 1afge m and k (short wavelengths), (4.65) and
(4.66) are goodfapproximations to the first order éolutions. For

this case the non-divergent solutions may also be valid.

4.5.3 The secohd order solutions
In the same manner as were the first order equations, the
second order equations (4.58) to (4.61) are reduced to a single

equation in v First n, is eliminated between (4.58) and (4.59),

9

and between (4.58) and (4.60) to give

fuzs + COUZSY - COVZSS + (sz)y (4. 78)

—i[(ul - Cl)vls + vlvly]s + [(ul - cl)“ls + V]_uly]y

and
(1 - 8cdu,, + Vay T Scofv, (4.79)

= - 8{[(y, - cpmly + Lvinpl, + C;O[(u1 - ey * vluly]}

y
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respectively, then ujp is eliminated between these two to give
Co(i - 5CE?VZSS + ccvzyy_ - 1+ Gcofz)vz_ " (4.80)
2
= (1 - 5Co){[U1V%s + Vlvly]s - [ululs + vluly]y }

- fS{(ulnl)S + (vlnl)y + coluju, + vluly)}

- Coa{(ulnl)sy + (vlnl)yy + —Co(ululs + yluly)y }
. 2 ! .
+ cl{(l - (Sco)(u1sy - Vlss) + Gf(nls_ + couls)
+ Gco(nlsy + coulsy)}_

This eqﬁation‘may be simplified by making the approximation
that 8c2 << 1, and then substituting for.vl, u;, and n;from (4.67),

(4.63), and (4.54). After some manipulation (4.80) may be written as

CO(VZSS + szy) - (l + (SCQ fz)Vz ; ‘ (4. 81)

sin ks cos ks
k

S + e k?)Y? - _ 0'2
£I(3 + cok)Y fY Yy c Yy ]

c
« —=1Y cos ks
Co

The form of equation (4.81) suggests the solution for v is
vé(s,y) = Z,(y) cos ks + Z,(y) sin 2ks (4.82)

where Z,(y) and Z,(y) satisfy the equations

1 2 2 - <
.<c° + 882+ K%z, = -3y (4.83)

A
lyy
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: : (4.84)
z (—1 8f2 + w7, 8F 134 ck®)¥? £17, - c,¥2
2yy Co a 2 2ke, e y. %y
as well as the boundary conditions
Z;(0) = Zy(0) .= Z1(1) = Z,(1) = 0 . (4.85)

If (4.83) is muitiplied through by Y, then integrated over y
from 0 to 1, it is found that the left-hand side is identically zero

and the right—hénd side reduces to

1 .
¢y ,['Yz dy = 0 . . (4.86)
0 .
The integrand‘of (4.86) is always positive; therefore, in order
that the equation be%satisfied, c; = 0. There is, therefore, no first

order correction to the phase speed of the waves and Z;(y) is zero.

The solution to (4.84) is formally written as

| , z
z, = - %-U(K,Z) ‘/‘V(K,t) s(t) dt
a
z (4.87)
+ - g-v<K,;) J/ U(k,t) S(t) dt
b
where ¢ is defined by (4.69),
" 1+ 4eok? (4.88)
2¢, *
- /S ¢ 2\w2. 2
S(z) = R/ :[(3 + c.k“)Y" - QYYg - 2c°¢§'Y§ (4.89)

and a and b are chosen to satisfy the boundary conditions. Since

Parabolic Cylinder functions are not easy to manipulate, equation (4.87),
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while formally representing the second order correction to the
solution, will have to.be simplified in order that the solution be
|
interpreted.
If § is small or.if m and k are large, it has been shown that
(4.65) is a good approximation to the first order solution. Therefore,
(4.84) may be solved by making the same approximation, that is,

that §f2 may be treated-as a constant in the left-hand side of (4.84).

On substituting from (4.65) for Y,and from (4.66)'for Co, (4.84)

becomes
Zogy = (3k* - m’n?) Z, (4.90)
of 2 N
ZEZE'(GCofo - 2) cos 2mmy - mrf sin 2mmy

- (2m2m%c, + Scof2 - 2)]

The solution to this is

= _Of __mmd » ,
Zz(}’) = - hook AICOS 2mmy  + 12c°k(k2+m21r2)[f + ‘ Az:ls1n 2mTy

S£(2m?®m2c, + Scof2 - 2)

+ beok(3k —m“m?) (4.91)
Sf, [2m°T%c, + Sc f2 —:2
- 4cok{ 3k* - m°m* - Al}{cos Ay
+ It _ cos Aj LESURALD A A
fo sin A,
where
A2 = wfr? - 3k? 4 n?n? | (4.92)
1 2 8m2ﬂ2
= 3@ ¥ K9 [sc°f° T2 3T ED (4.93)
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\ = 2 2 6k® - 10m27?
A2 3(m2,n.2 + kZ) I:Z(SCofo 5 + 3(m2,n.2 + k&) . (4'94)
If Ai < 0, then the solution is given by
_ . _ _¢f 4 v Smr 2 .
Zy (y) = hook Aj;cos 2mmy + 17k (m2n2 kD) [% + Az] sin 2mmy

Sf(2m?m2c, + Scof? - 2) \
lek (3KZ-mZn?) (4.95)

: . 2.2 2 _
6f°‘{2m T co + Scofs 2 _ A{}{:cosh A2y

B

beok 3k - m°m?
l+f°'_ . sinh Kzi
+ [ fo CQSh A;] sinh A» _}
where
A2 = 3k® - min? . ‘ ' (4.96)

4.5.4 Properties of the solutions
The first important property of these solutions to the second
order is that there is no first order correction to the phase velocity.

Hence, for large m and k,. the phase velocity is given by
c = - @7 +k%+SEH7T + 0(e?) . (4.97)

This result ;s similar to that found in the Stokgs—expansion(of
surfaée gravity waves on a fluid of infinite depth [Laﬁb, (1945), p.417],
and in the second order e#pansions of internal gravity waves on a
linear density profile [Thorpe (1968), p.589]; in each of these cases
first order correction for the ﬁhase speed is zero.

This result shows‘that for divergent Rossby waves, the dispersion
relation obtained from the linear equations of motion is much more

accurate than previously suspected, having errors of 0(e?) rather than
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of 0(e).
Although the phase velocity is not changed by the second order
solution, the wave profile is. In terms of the cross channel velocity,

the wave solution, given by

v = € sin my cos ks (4.98)
L, ofmmS[£f2 + A2] S fA
K + € (12c°k(kz gy sin 2mmy - ZE:t cos Zmﬂy

Sf(2m*m2c, + Scofl - 2)
+ y AR
N beok (Bk“-m“Te)

8§fo (2m2m2cy + Scof2 - 2
- 4C°k{ 3k? - mem? T AI} cos Ay

+ [li£° - cos A ] sin My > sin 2ks ,
fo sin >\l

differs from the linear solution, which is 0(ge), with terms of 0(g?).
Any programme attempting to measure Rossby waves in the ocean
would probably involve measurements of velocity at fixed points over a

period of time. On such a record, a wave profile such as (4.98) would

appear as
v(t), = €D; cos (~kcot) + €2D, sin (-2kcot) + 0(e?) (4.99)

where D) and Dy at any fixed point are constants of order unlty;
provided y n/m. Therefore, the current record will appear as a
sinusoidal wave of angularvfrequency ke, which is steepened at either
the leading or trailingAedge. On the nodal surface, y = n/m,

D; = 0 and the current record appears as a sinusoidal wave of

amplitude 0(e?) and angular frequency 2kc,.
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' lEquations (4.91) and (4.95) are:solutions of (4.90) only if
w22 - 3k2 # nzﬂzf In the special case for which A\; = am, .
the question arises as to whether (4.90) will have solutions which
satisfy both boundary conditionég SuppoSing.that such solutions exist,
equétion (4.90) méy~be multiplied through by cos nfy, then iﬁtegrated
over y from 0 to 1, with the resulf that the left-hand side is
identically zero. If, on the.right—hand side f is held constant,

then the integrated equation gives

2 2 ey _ _
| gi:E [ng Z n%} = 0 . . (4.100)

If n is odd, then to this order of aﬁproximation, no second order
éolution can exist which satisfies both'bouﬁdary conditions. If n is
even, then (4.100) is satisfied and the solution to (4.90), if f is

hefﬁ constant, is

Loy - _Sum(£2 + Ap) o 8f, |
Z,(y) = ook (k2 T mZp?) Sin 2mmy - Tek A; cos 2mTy (4.1Ql)
" Sf(2m?mc, + Scof2 - 2)
beok(3k? - m?7?)
S§fs [2m%T2co + Scof2 — 2 1
Gcok [ 32 - men? = A1) cos 2pmy
where
%4p2ﬂ2 = m?7® - 3K? (p 1is an integer) . (4.102)

Originally, this problem was solved for a B-plane channel only
in order that the width of the channel provide a horizontal scale, L,

within which the B-plane approximation remains valid. A solution like
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(4.98) is periodic in vy, and.thereforé, the boundary condition at

y = 0,1 can be reinterpréted as a periodicity condition and the
solution considered tb be a two dimensional wave periodic in both x
and y in an unbounded oéean. Such an interpretation is valid only if
A? > 0, as the solution (4.95) for A2 < 0 is no longer periodic in vy,
and,vin fact, increases exponentially with y outside of the dimensioné
of the channel.

Retuming once more to (4.81), in the non-divergent limit as
§ - 0, the right-hand éide goes to zero; henge; there is no second
order correction. This is consistent with the results of §4.3 which
show that, for the constant zonal current case, the linear non-
divergent Rossby wave. solution is an exacffsolution.

The fact thét thére exists a second order correction to the linear
divergent Rossby wave solution demonstrates that, unlike the non-
divergent gaée, the 1iﬁear divergent solutions are not exact solutions
of thevequétions of motion. - In this Way the non-divergent Rossby waves

are fundamentally different from the divergent solutions.

4.6 Rossby waves in a g-plane chahnel; ITITI. ‘Uniformly sheared current
4.6.1 The perturbation expansionsv ..
It has'been:showh previously for mid-latitude channels of width
103 km, and depth'lékm,,that § = 1072, In view of the cémplexity of the
perturbafion-equatigns for a sheared basic current and § = 0(1), perhaps
a new expansion in which § = 0(¢) would be appropriate.

Setting

§ = e |, (4.103)
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where 4 = 0(1), and using the expansions for u, v, n, and c¢. in terms
of € , given by (4.52), equations (4.48) to (4.51) may be separated in
powers of €, to give to the zeroth order (4.53), to the first order (4.54),

(4.55), (4.57) plus

u,

et Viy = 0 (4.104)

and to the second order (4.58), (4.59), (4.61); plus

u, F Vo T T ul(uo - cony . + (vlno)y] . (4.105)

4.6.2 The first order solutions
The reduction of the first order equations to a single equation
in v; is easily accomplished. First n; is eliminated between (4.54)

and (4,55) to give

(4.106)

[(uo - co)uls]y - fug o+ [, - vyl - (e - ey, o= 0
then u, is eliminated between this and (4.104) to leave

(o = codlvy o+ vy o] + (L = wo Jvy = 0 . (4.107)

i
If the basic current is uniformly sheared, that is if

W = We + ay g | (4.108)
where a and W, are both constants, then the solution for v, is

v, = ®(y) sin ks (4.109)

where



ny + [GZ'%‘EO - kz} ¢ = 0 . (4.110)
Setting
c = Z'EJ(WO - co + ay) o - | (4.111)
and
2 - zexp(-2/2) ¥(t) | o (4.112)

equation (4.110) may be transformed into
- — 1 -
Lo + (2-0)% - (1- FTkal oo = 0 , : (4.113)

the confluent hypergeometric equation, the solutions of which, in

the notation of Slater (1960), are given by the confluent hypergeometric
. " 1 1

functions, 1F,(1 - ETEET ,2,C) and U(1 _,ETE;T ,2,C) . The boundary

condition (4.57), in terms of ®, is given by
3(e) = (g) = 0, |  (4.118)

and is satisfied if

1F1(A3,2,80) U(A3,2,2;) - 1F1(A3,2,0;) U(A,2,5.) = 0 (4.115)
where
(4.116)
r - 2k , - olk R
co = z’al(wo - Co) s .'Cl - 2 a (wo = Co + a) Y A3 = 1 —Z—IT(_&I—[_ .

For -n < A; < -nt+l, F;(A3,2,7) and U(A;3,2;5)7 each have n
positive real zeros [Slater, (1960), pp.102—106]; hence, k and c,
may be chosen such that (4.115) is satisfied. The zeros of these

functions are not tabulated, and the calculation of the actual
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dispersion relatioﬂ is not of sufficient importance to warrent their
calculation here.

I1f the shear is weak, thatlis, if a << 1, then (4.110) may be
solved using perturbatioﬁ expansions of ® and ¢, in termé of powers

of a. These are given by

(4.117)

) : 2 .
Coo + ace, + a Coy + ... .

Co

On substitution of these expansions and separation in powers of

a, equation (4.110) is to the zeroth order in a

1 : 2
. + ——————. - = .
©°yy [ - k } o o , (4.118)

= Coo,
to the first order

1
q) PR e —
lyy + [wo —=-Coo

L= Cel o, , (4.119)

(wo - Coo) °

It

2
- k ] o,

etc. These equations may be easily solved subject to the boundary

conditions
2,00) = %) = 0O = @) = o0 (4.120)
to give.
¢ = [1 + EXLE%E;;XEQFJ‘Sin y + aly - YZZEki + 22)2cos Ly
+ 0(a?®) ' (4.121)

and
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- 1 a 2 '
Co = Wo - mz’ + 5. + 0(a%) (4.122)
whére
L = mmo . - C(4.123)

4.6.3 The second order solution

In the same way, n, may be eliminated from (4.58) and (4.59) to

leave
(Uo = Co)Vpgg + fupg = [(Wo — codupgly = [(uey = Dv, 1
: ) T [ulvls + Ylvly]s S+ [ulu1S + vluly]y' - (4.124)
+oey(vy g - ulsy)

Eliminating u, from (4.124) using (4.105) and also substituting
for u,, v,, and n, in terms of &, gives

!

0 (o |
(4o = Co)(vy o + Véyy) v, (4.125)

e d ]
= - —=21-— gin ks
U, = Co

+ u{[(uo - co)(2a% - af + co).+ cof(a - £)] @
+ [No(f - a) - 2a(ue - o) + 2fu,(u, - 2¢5)1 @y
- (u, f'fc°>[no + (uo - €210, ) sin ks

Y

1
—=( -0 & i
2k(®®yyy' vOyy )sin 2ks
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The solution for v, is therefore of the form
ve = Z,(y) sinks + Z,(y) sin 2ks =+ (4.126)
where Z; and Z, are functions which satisfy

(e = eZyo + (1= K (uo = eo)12 (4.127)

c1d

Uo = Co

+ u{[(us - co)(22° - af + co) + cof(a - £)]0
+ [No(f - a) - 2a(u; - co)® + 2fue(ue = 2¢0) 19y
o (e - ed[ne + (uo - co)?ley )

and

i (4.128)

(e - N -
(o = Ca)Zpy + [1= 4K (uo = )12, = 2k<@®yyy @y@yy)

A necéssary and sufficient condition that'(4.127) have solutions

that satisfy the boundary éonditions,

Z,00) = z;(1) = o0, : (4.129)

is obtained by multiplying (4.127) through by ¢/(u, - c,), then
integrating over y from O to 1. From the boundary conditions in o,
the left-hand side is identically zero, and the right-hand side is

zero if



1 : 1
2
Cl/ (uo E) Co)}zdy = Uf{— [no + (uo - Co)Z](Dq)yy (4.130)

0 0

£ Io(f = @) = 2a(uy = co)? + 2fu,(u, — 2¢)] —op—

b
B ] 2
¥ [(ue - e) (282 = af + &) + cof(a - H] ———

_— } dy

The proof that this condition is a sufficient condition for
which (4.127) will have solutions satisfying (4.129) is given by
Courant and Hilbert (1953, p.359). Equation (4.130) may be integrated to

give

k? 1 1 -

= H - 2 = - =
C]_ - (kz + gl)Z[(kZ + £2)2+ fo + fo + 3 29/2 . (4.131)

- | 2 1 ___‘_:_l'_ (_____k2+2'2
| w°{(2f°+f°+3+8w°, 222> A

+ %2(3f_o + 1), + %} + O(a)]

Obtéining an actual solution to (4.127) by substituting for ci
would be a tedious task, giving in return, only the term which is of
the same zonal wave number as the basic wave.

On the other hand,‘(4.128) may be easfly solved, to give

a2+ d)? 2 2 2 ;
Z, = ——1—2_16\-12_ {3(1{ + 2°) + )\1 cos 29,}7 (4.132)

1 ~ cos A1

. 2
sin A, sin A\;y1} + 0(a%)

- 48%[cos Ay o+

where again Xf = 22 - 3k® 4 n?1? [see (4.92)]
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¢ v
If A2 = (2p + 1)?n?, there is no solution to (4.128) which

will also satisfy the boundary conditions. On the other hand, if

' K% = 4p2w?, then
e 2 2y2 '
Z; = §£%§§§7&—17 [3(k* + 2%) + A% cos 28y - 4% cos 2pmy |
. 1
+ 0(a?) . - (4.133)

4.6.4 Propertiesiof the solutions

Equation (4.132) shswé that Z; (y) is non-zero only if the basic
current is uniformly sheared; this is Erue despite the fact tﬁat §,
the divergence para@eter, is non—zer&. Since Z,(y) is the coefficient
of the "éin 2ks" term, on;y if it is non-zero will there be any
deviation of the wave profile along the axis of-the channel from the
linear solution, at least at 0(e?).

In thé previous section, a second order term éf wave number 2k
was obtained when thefe was no sheared current present; however, if
§ = 0(e) in (4.91) it is seen that these terms are then 0(e®).
Therefore, if § = 0(¢) and if the basic current is zero or uniform,
one must look at third ofder terms in order to find non-linearities
in the wave profiles.

. For the case of W, = 0, a = 0, and short wavelengths,
£2 > &fo,l,z'z,k'z); hence,‘the phase velocity given by (4.131)

and (4.122) may be approximated by

1

1 8 £3
c = T [l - Ttz . (4.134)

Equation (4.134) is eXactly the first two terms of the binomial
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expansion for (4.97) where § = €y << 1. Hence, for § = 0(€), the
solufions obtained in §4.5 reduce to the solutions obtained here.
If y = 0, the solutions reduce to the non-divergent solution
for a uﬁiformly sheared zonal current. TFor yu = 0, (4.130) gives
c{ = 0; hence, £hére is no contribution to ﬁhe solutions from
eduatidn (4.127). The non;divergent solution to the second order

is then given by

2 2y 27 : . | :
v o= {[1 + EZSEZE;"&‘l esin Ly ‘ (4.135)

_ay(y = D(k® + 2%)?
48

€ cos Ly +;OCE?)} sin ks

efa(k® + %2
12kA

+ {3(k% + %) + Af cos 2%y - 422 [cos le

1 - cos A

sin A, sin A,y]} sin 2ks

and the ﬁhase speed is given by (4.122) to the second order in .

Since, for a constant zonal current, the linear or first order
non-divergent solution has been already shown to be.an exact
solution ﬁo the non-divergent equations of motion, it is not surprising
that for a = 0, (4;135) ;educes fo the linear solution.

For non-zero a, the second 6rder term introduces a non-linearity
to the Waveiprofile aléng the axis. Dependingvon the signs of the
coefficients of fhe first and second order terms, this non-linearity
appears as a steepeniﬁg of thevleading (or trailing) edge of the wave.

Thé fact that even a weak uniform shear should have such a marked

effect. on the non-divergent wave is due in part to the change that

such a shear makes in the vorticity field in which the wave finds



itself, and also in part to the physical distortion such a shear
current causes by moving some parts of the wave relative to other
parts. Thinking of a typical ocean -situation with random currents
and random shears, it seems likely that any observed Rossby wave
field will be very much altered from that theoretically predicted
in such a simple model as a channel with a uniformly sheared current.
This model is wvaluable, ho&ever, in suggesting the importance df
the interactions with currents.

The phase speed, as given by the linear theory, is correct
to 0(82) for non—divergent‘waves in a uniformly sheared current.
Therefore, although the presence of real ocean currents Wiil
greatly distort the wave fields,‘the theoretical dispersion relatioms
given by the linear theory will give accurate results. This effect
_has an analogﬁe in surface gravity waves where it is found that
dispéfsion relations for linear surface wave theory give accurate

results when applied to actually observed wave fields.

4.7 Summary

It hqs been shown that, in the presence of a uniform or zero
zonal current, the linear non-divergent Rossby wave solutions are
exaﬁt solutions of the nonldivergent equations of motion both on
‘the sphere and on the B-plane. Furthermore, linear non-divergent
solutions of the same total wave number, and hence, of the same
phase speed, may be summed together to form new 1iﬁear solutions;
‘these new solutions are also exact solutions of the non-divergent

equations of motion.
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This behaviour is markedly changed in thé preseﬁce of a sheared
zonal current. Even in the simplest case of a weak uniform shear,
the non-divergent solutions exhibit non-~linearities in the wave
profile at 0(e?), although the linear dispersion relation is unaffected
at'O(é). Kelier and Veronis (1969) have previously shown that random
currents may_scatter‘Rossby waves_br cause them to gfow; Here,
however, ig ig shown that the presence of current shear can cause
energy of a single non-divergent Rossby wave to be fed into higher
wave number52  Since the real ocean situation consists of many
currents in different directions, this interaction between Rossby
waves and currents should be very important in undersfanding oceanic-
dynamics. |

| The linear divergent solutions are shown not to be exact solutions

of the f-plane -equations. In the absence of a basic zonal current,
the divergent solutions exhibit non~linearities at 0(e?). Once
agaiq the;linear dispersion relation is correct to Q(e).

kn é¥act solution for non-divergent topographic waves on the
B-plane wés found; however, this solution requires a very complex

basic current pattern in order to exist. It is felt that such a

complex solution is not of much applicability to real ocean situations.



V. Long Planetary Waves in a Zonal Channel

.5.1 The scaled equations

A class of long non-linear waves, the .solitary and cnoidal waves,
ﬂas long been known and investigated for the éasevof surface gravity
waves [Korteweg and deVries, (1895); Keulegan and Patterson, (1940);
Benjamin and Lighthill, (1957)] and more recently for.the case of
internal gravity waves [Keulegan (1953); Benjamin (1966); Benney (1966)].
These are waves of permanent form whose wavélengths along the channel
are long relative to the width of the channel. Since,.as shown
in Appendix IT, there is a restricted analogy in thé behaviour of
flanetary and internal waves, the question arises whether an analogous
class of waves exists for planetary motions.-

ﬁsing'the non~divergent approximation Larsen (1965) showed that
solitary and cnoidal waves could exist_in a zonal channel, providing
there was also present a basi; zonal current With a weak uniform
shear. The fact that Larsen found that non-divergent solitary and
cnoidal waves could not exist if the basic current was uniform is not
surprising in the light of the results ébtained in the previous chapter.
Since the linear solution on a uniform current is an exact solution to
the non-divergent equations of motion in this'case; they already
form a élass of solutions of_perménent form.

In the previous chapter it was aiso shoﬁn’that the non-linear

behaviour of divergent waves is much more complex than that of -the
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!

non-divergent waves. In particular, the linear solutions for
divergent waves are not exact solutions nor were any exact solutions
found. Furthermore, it was shown in Chapter IV that the non-divergent
approximation was vaiid only for short wavelengths. For .these
reasons Larsen's théory will be extended and solitary and cnoidal
wave solutions soughtbin the divergent case.

Again the fluid is, assumed to be inviscid and homogeneous,
the motion barotropic and hydrostatic, and the solution a wave of
pérmanent form moving in the x-direction along the axis of the zonal
channel. The wévelenéth of the disturbance will be assumed to be
short enough that the B—plahe approximétion remains valid while, at
the same time, being long with respect to the width, L, of -the
channel. The full unscaled equations for this case have been discussed,
and are given in Chapter IV by (4.21) to (4.24). Non-dimensional

variables are defined by

(s, ¥) L(s', y") , (u. v, ) = BL*(u',v',c") (5.1)

£ = pLE =BL(f; + y"), (n, z) = H(n',z")

LHBZ
g °

where L, H are the width and the depth of the channel, and § =
the divergence parameter. On substitution from (5.1, (4.21) to.

v(4.24) become (on dropping the primes)

(u - c)us + vu, - fv. = -ng | (5.2)
(u - c)vS + vvy + fu = - ny (5.3)
(L +6n)(ug +vy) + S[(u-ceing+wmy] = 0 (5.4)
v = 0 at vy = 1 ., (5.4)
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Since the wave solutions are long with respect to the width of the
channel, therefore, following Larsen (1965), the s co-ordinate is

stretched relative to the y co-ordinate through the transformation
£ = g3 : (5.6)

where € is the amplitude-ordering parameter of the wave and € << 1.
The dependent variables and parameters are expressed in terms of the

following perturbation expansions:

U= w(y) + oeu(E,y) + €fu,(E,y) + ...
3 é. .
v = E-2-\71 (E :Y) + € Vs, (g sY) + ...
‘ (5.7)
c = co + €c, + €2c2 + .
no= No(y) + en(E,y) + €'n,(Ey) + ...,

where tﬂe form of the expansion for v .is chosen in order that, if the
flow is non-divergent, that is, if § = 0, the two remaining terms of
the continuity equation (5.4) are Qf the same order of magnitude.
After substitution for s, u, V, c, and n from (5.6) and (5.7),
equatiops (5.2) to (5.5) are ordered in powers of € to give to

th
zero  order:

fu, = - Moy s ) (5.8)

to the first order:

(go - col)ulg + vluoy - fle + nlg = 0 (5.9)
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ful + nly = 0 (5010)
@ ndu + (A )]y + 8w - ey, = 0 (5.11)
v, = 0 at y = =1 , (5.12)

and to second order:

(5.13)
(uo - co)uzg + (uoy - Hv, + Neg = - (u; - cl)ulg - Viugy
fu, + My = - (W - cvy : (5.14)
L+ onoduz, + [+ 0n)vly + 6us - cedNzy (5.15)
= - §{[(u; - cl)nl]g + [vml]y }
v, = 0 at y = 1 . | A (5.16)

These eqﬁations are in their most general form, and their
solution without further aﬁproximations would be quite complicated.
Larsen (1965), setting § = 0 obtainedlsolitary and cnoidal wave
solutions for the non-divergent case in which the basic current is
weakly sheared. As might be predicted from the results of Chapter IV,
if the basic current is not sheared, Larsen's analysis gives the
linear Rossby wave solution.

i ’ .
Chapter IV indicates that retaining a non-zero § in these equations

t
should give significantly different results from Larsen's non-divergent
analysis. In particular;-it should be possible to obtain solitary

and cnoidal wave solutions even for the case of the zonal current zero.

If BL = 10°% s}, L ~ 10%°m, g ~ 10" m/s, then & =~ 10°%; however, its
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magnitude is very sensitive to variations in the magnitude of L.
Here, as in the previous chapter, two cases are considered: § = 0(1)
and § = 0(g). 1In the first case, in order to make the calculations
more manageable, the zonal current is set to zero. This case will
show that, if the divergent terms are retained, then solitary and
cnoidal waves can exist independently of a zonal sheared current.

In the second case, a basic current wifh a uniform but weak shear
will be retained. The solutions that are 6btained will be compared
to the non-divergent solutions of Larsen (1965). Furthermore, for

the second case, the effects of bottom topography will be included

in the equations.

5.2 The case § = 0(1)
5.2.1I" Derivation of the long wave equation

Setting u, and n, equal to zero, n,; is eliminated between first

(5.9) and (5.10), and then between (5.9) and (5.11) to give

(co—g};'+ f)uIE + (fvl)y = 0 (5.17)

(l—6c§)u1€ * vy, - Seefvy = 0, (5.18)
and thén'ul is eliminated to give
CaVig, - (1 + Scof?)v, = 0 . (5.19)

Equation (5.19) together with the boundary condition (5.12)
determines the variation of v% across the channel but leaves its
variation along the channel completely unspecified. Therefore,

it is/ possible to define a function g(&) such that
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vy = gg(i) ®(y) (5.

where (5.19) and (5.12) require that
Oy " (1/co + 8£5)0 = 0 : : (5.
(1) | = o(-1) = 0 . . (5.
In terms of g(&) and &(y), u; and n; are then
u) | §§£§ggi39y g(&) (5.

In order to determine g(£), the second order equations must be
investigated. In the same manner as were the first order equations,
these equations are reduced to a single equation in vy. First N

is eliminated from.(5.13) to (5.15) to give

9 ' |
(coay + f)uzg + (sz)y = - clul‘gy + (ululg + vlgly)y
+ .cov (5.
eg ,
and
(1 - écg)uzg +‘ szi - Scsfv, = Scl(ﬂlg + coulg) (5.
- Gco(ulu;g + vluly)
- 80Cuny)  + (vny)y]
then u, 1is eliminatéd between these to leave

2

20) -

21)

22)

23)

.24)

25)

26)



Voo " (1/eo + S£2)v,

1 - 8c2
Co

= - (1-8chHyv -
g3

: c ' 9 _

+ -gi[(l - 6c§)u1£y + (f + c°5§)6(n1£ + couy

$ 3
- 'Eo(f + Cog )[(u1n1) + (_le)y + Ccouy

3 Yig

which, in terms of ® and g, may be rewritten as

v, (1/co + 8£2)v,

yy

(uluIE + vl'uly)y

= - (1 - (ch)q)gggg - —Cg gg
+ 6{f[3 + (SCO Gcofl(i- gcac‘))]@ + cof(3 -

JEP 2 £2(1 + 38c2) gz,
- [Co(4 + 6‘C°f ) -+ —-—l—_—‘gzz—]q)q) }Co(l _gg-gg)—

o

l - Gco

(5.27)

(5.28)

If equation (5.28) is multiplied through by ¢, then integrated

over y fromy = -1 toy = 1, its left-hand side is identically zero,

and its right-hand side then gives an equation in g(g),

elgEEE + ezclgg % eaggg = Q s
where
e, o= co(l - 8c2) /@2 dy.
e, =A (1/co) J/f®2 dy
e, = -~ 6 T35 J/,éf[3 + 56C° - (2 + Sc )lf%;———

(5.29)

(5.30)

(5.31)

]@ dy.(5.32)
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Equation‘ﬁ5.29) is the Kortewég—deVries equation, well-known
in the treatment of solitary and cnoidal surface wave.[Benjamin and
Lighthill, (1954)]. 1If it is possible to solve tﬂe eigenvélue equation
(5.21), the,coéfficients may be'determined from (5.30) to (5.32),-"

and hence, solutions for (5.29) may be obtained.

5.2.2 The transverse eigenfunctions

Through the transformation,

g V2 V8E(y) (5.33)

equation (5.21) becomes Weber's equation,

1 2

@CC - [m + 19 = o , - (5.34)

£y

whose solutions are the Parobolic Cylinder functions U(k,Z), and

V(k,z) [Abramowitz and Stegun, (1965)] where

' 1
K = m . (5.35)

The boundary cecondition (5.22) is satisfied if

LUK, L) V(K,T,) - V(k,Zy) U(k,Z,) = O (5.36)
where
T, , = V28 (f, 1) . : (5.37)

This is the same condition as was found to be required in
Chapter IV for the divergent plane Rossby wave solution in a B-plane

channel. (See p.58.) Although the zeros of the cross-products of



Parabolic Cylinder functions are not tabulated, it was earlier
shown that for any values of 1 and T, (5.36) is satisfied only if

4 < 0.

A < =0.5. 1In terms of c,, this condition requires that c, < -5
Therefore, the wave's'phase moves in the negative x-direction.
Traditionally, more manageable solutions to (5.21) are obtained

by hdlding f2 constant except where it is differentiated. Applying

this approximation, the solution to the eigenvalue equation may be

written

® = A sin E“-Tz—r-(y+1) o | (5.38)
where

e = - (BT 4 ss) . (5.39)

Using this simple solution, the coefficients for equation (5.29)
may be evaluated . from tﬁe integrals given by (5.30) to (5.32).
Since f? was held constant when the eigenValﬁe equ;tion was solved,
to be consistent, f? must be held constant during these integratiéns.

Under these conditions the coefficients are given by

e, = co(l - 8c2) A2

e, = A%/c,
R (5.40)
powmy m even

T A*f.E
il m odd s

where
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2 2 2
8s [3 +A56c° _ (5 + 38cof5) (1 - 36c°)] . (5.41)

E = 303°8D 3 6(1 - 6c2)

5.2.3 Solutions to the Korteweg-deVries equation
The Korteweg-deVries equation (5.29) has been the subject of
considerable recent research, notably studies by‘Miura et al. (1968),
Miura (1968), and Lax (1968). In this study, the solutions of (5.29)
will be given following the work of Keulegaﬁ and Patterson, (1940).

Equation (5.29) may first be integrated twice to give

_glgg '+ .2_3g3 + E.LElgz + qu + é-S = 0 ' (5.42)

where €, and €5 are arbitrary integration constants.

For the non-divergent case, Larseﬁ (1965) was able to show
that €, depended on the energy of ﬁhe basic flow and the momentum flux.
He obtained these results using a quasi-Lagrangian co-ordinate system,
also described in Clarke and Fofonoff, (1969). This co-ordinate
system uses the stream function and time as independent variables
in place of the usual space co—ordinafes. In the'divergent caée,
however, the two-dimensional stream function can not be defined, and
therefore, such an approéch is no longer feasible. ‘Hence, €, and &s
will be treated here as unknown constants with the results of
Larsen's non-divergent analysis being used to suggest the physical
\.processes from which they arise.

Equation (5.42),multiplied through by 2/e;, becomes

2 _€3_3 C1 2 -
gg + 3e1g t s 8 + e,g + eg 0 .(5.43)
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where ey = 284/e,, es = 28s/e;. If gg is to be real when g is zero,
then es must be negativé. The solﬁtions of (5.43) are to be periodic
in ;; hence, g must be zero for at least two different and real
values of g. When gglis zero, (5.43) is a cubic in g. Recéliing
that e < 0, then the three roots of this cubic fall in one of the
following three cases:

(a) all positive and real roots

(b) one positive and two negative real rooté

(c) oné:positive reél and two complex conjugate roots.

Case (c) is not applicable here since for a periodic solution,

g must be zero for at least two different real values of g. Both

case (a) and case (b) should lead to long planetary wave solutions.

5.2.4 The solitary Wave

The simplest solut&on to (5.43) corresponds to the solitary wave.
Lax (1968) showed_that) in the liﬁit of long time, any solution of
the timé—dependeﬁt'Korteweg—deVries eduation [see p.10, (1.1)] tends
asymptotically to é sum of solitary waves. .In general, for non-
linear equations, new solutions cannot be created By summing together
other solutions; hence, this special féature of the Korteweg-deVries
equation was both unexpected and surprising. The solitary wave

solution arises when e, = es = 0 and is given by

I

g(8) = .sechz,ﬁlg | (5.44)

and



88

_ _ 2 _ 2 €3
c, = co(l - 8ed) 3o, (5.45)

where the amplitude of g is arbitrarily set to unity. In order that
the solution be real, ej/e; must be positive. For the same scales
that were used to estimate §, (that is, BL = 10 ° é'l, fo =107 s 1,
~ 6 ~ 4 2, 2 ~ -1 . .
L=~10"m, gh = 10" m“/s®), ¢, * =10 * m/s; therefore, the sign of
es3/e; is the same as that of A(—)m/co. Since ¢, is negative, the
wave amplitude, A, is negative if m is even, positive if m is odd.

On setting

l Amm 1 | (5.46)

7C1 < §0)

the wave profile in terms of the zonal velocity is

» (5.47)
_ _\m mT 28cof . mm 2/ €3
u = (-)™ g[cos 2(y + 1) Qo sin 2(y«+ 1)] sech TZe, £
and theAphase speed is
2.2 -1 '
= _(hT 2 _ - 802Ye2 _&3
c < o+ 5f°) e(1 - 8ed)el 527 (5.48)

At the southern'baundary, for m eveﬁ, the zonal velocity is in
the opposite direction to the phase velocity; for m odd the zonal
velocity is in.the same direction as the phase velocity. At the northern
boundary the velocity is westward in boﬁh cases. The phase velocity is
increased in its wésterly direction by an amount proportional to the wave

amplitude.
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5.2.5 The cnoidal waves
Again, following Keulegan and Patterson (1940), a more general
solution to (5.43) may be obtained by solving for the roots of the

cubic,

Il
o

_&3 .3 _Z__CH__zh
3e, g3 + - 50 8 ‘+ eyg + ej (5.49)

Co

If these roots aré g1, 82, 83, where g;-> g > g3, then, since at

least one of tﬂe roots must be 5ositive, g1:> 0. The remaining two

roots may be either -both positive or both negative. This is unlike

the case of surface gravity waves; there, if the roots are all
"positive, then the surface elevation is always positive. However,

the surface elevation is usually defined as the deviation from the
average surface level; hence, such solutions are physically unrealistic.
Ip the case of planetary waves, the roots ali positive requires only
that at a given latitude the zonal velocity is always in the same
direction. Therefore; for planetary waves no distinction need be

made between cases (a) and (b) of §5.2.3 .

A general solution to (5.43) is given by
= : 2
g(¢&) = g + B cn’(P.E/n) (5.50)
where i may be any one of 1, 2, or 3, and

P, = eaBi/(lZeln) (5.51)

;g = - ca(l- §ci) (g, + 4(2m - 1]pD) (5.52)

ey = Hgl + PUA-wB + gGa-DI . (5.5
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In order that the solution be real, Pi must be real. This will

also mean that the wavelength of the disturbance,
A= 2/ K@), ' : (5.54)

must also be real,’ where the wavelength is defined by the requirement
that g(§ + A) = g(&). 1In 85.2.4 it was shown that the sign of
e3/e; is that of (—)mA/co; hence, for Pi to be real, ABi must be

negative for m even, positive for m odd. Setting

TAB ; l
__EL_TJ_jr_ .
‘2(1 15D 1, | (5.55)
| .
then the'zonal velocity due to the waves is
‘ (5.56)
_ : o+l mT . _ 20c.f . mm 81 2
u = (=) E[cos 2(y+l) o sin 2(y+1)] [Bi + en“(P1&€/n)
and
12c°m2ﬂzn m even
P = (5.57)
- b, moodd
12com“Tn °

An interestiqg propert& of this solution arises from the facé
that both A aﬁd'Bi.are unspecified parameters. Equation (5.55)
specifiés one of them\as a.function of the other, and (5.53) connects
them with a third ﬁaraméter ey, also unspecified. Hence, in (5.56),
Bi’ where it appears, may be any non-zero number. At first sight this
appeérs to ha&é the effect of permitting a steady zonal_cgfrent of

28c.f .
—== g
m

the form cos %E(y+l) - in %ﬂ(y+l) and of any amplitude to be

added to the solution without altering the form of the wave. This is
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not true since the root g; is determined ip part by the constant ey
which in turn is specified when Bi is specified.

Larsen (1965) gives a series of solutioms, similar_in form to
(5.50),4bup with Bi specified as particular combinations of the roots
of the cubic. Such a procg@grg has the formal advantage of permitting

Pi’ c1, and ey to be determined in terms of the roots 8 and n only.

i

However, since the roots of the cubic will, in general, be quite

/////

complicated expfessions,‘having fhe solution parameferized in terms
of them seems 6f little advantage.

In order to study these solutions in greater detail it is
necessarf to find a special case in which the rdots.of the éubic,
~or at least one of them, is of a simple analytical form. One such
case ﬁccurs- if és is zero, in which case one of the roots is zerob
and the two remaining roots are given by the roots‘oﬁ a quadratic.
Not only doés this case give simple expressions for the solution,

but it also contains the solitary wave solutions as a special case.

5.2.6 A special case: one root zero

If one of the roots of (5.49) is zero, then one solution of

(5.43) is
8(8) = B, c?(P1&/n) (5.58)

which is simply (5.50)'with gy = 0. Nofmalizing the amplitude
through the condition (5.55) where Bi = B;; the zonal velocity is

given by
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u = (_)m+l £ [cos %E(y+l) —vggﬁii sin %E(y+l) ] cnz(PIE/n) (5.59)
where
— —-——l;r—z— even
12¢c,m“T n mev
- (5.60)
S 1 S dd
12¢c,m“Tn . mo i
c,. = =~ 4ci(1 - 8c3)(2n - PZ ' (5.61)

'and the wavelength of the disturbance is given by (5.54) in which Pi
is replaced by P;.
Tables of elliptic functiens such as cn(x/n), are given only for

0 f_n f'l; therefore, for n > i, the wave profile is given by

: (5.62)
a = (™l elcos D(y+1) - 20%f o4y —-—(y+l)]{-—l+— cn? (VP g/l }
and the wayelength by
A= A= k@) . | (5.63)
1 ‘ :
For n = l,‘solution (5.58) becoﬁes
g(&) = B, sechZ(PIE) ' (5.64)

which is the solitary wave solution given previously"in §5.2.4 .

In Figure 2, 2)\'1'[P1(1)]”1 and cy(n)/c1(1) are plotted against n.
The wavelength; A, increases steadily without limit from zero as n
goes from zero to one, then decreases again to an asymptotic limit as
n increases beyond one. The solitary wave, at n = 1, is, therefore,

the limit of long wavelengths. Since c¢;(1) < d, the phase speed



‘7 2an3Tg

‘seaem TepTOUD 10J poads oseuyd pue yiSuoloaep

2
AR, (1)
| oF Asymptote
Asymptote
0.5
Solitary Wave
0.0 4 l
0. 3.

. €6



94

correction, c;(n), is negative for n > %, positive for n < %. Since
the basic phase speed c, is negative, c¢; < 0 represents an increase

in the magnitude of the phase speed.

5.2.7 The non;divergent limit
Solutions similar to (5.59) and (5.47) were given by Larsen (1965)
for the non-divergent case. These non-divergent solﬁtions may be.
obtained by setting & to zero in equations (5.59) to (5.61). As
§ >0, E~» 0 and hence, e3 -~ 0. Since P; must be non-zero in order that
the wavelength remain finite, therefore, from (5.51), n - O. Thué,

in this limit of § = 0, n = 0, (5.59) Becomes
u = (-)m+l €[cos %ﬂ(y+l)] cosz(Plg) (5.65)

or on rewriting in terms of s

u o= (™ e cos Ty+1) [1+ cos (28,/E 8)] . (5.652)
If

k- 2p Ve , - (5.66)
then

ec, = cik’ (5.67)
and

¢ - b, Lok | | (5.68)

m-m m T
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These results are identical to those obtained by Larsen (1965)
when he allowed the basic zonal current in his non-divergent analysis.

to go to zero. In Chapfer IV it was-shown that
u = cos %E(y+l) cos ks ' (5.69)

t
is an exact solution of the non-divergent equations where

!
i
i

2.2 -1 ' |
c = - [1“4—“ o+ k?-} ) (5.70)

If k << %E, equation (5.68) is the first two terms of the binomial’

expansion of (5.70). Therefore, applying the non-divergent approximation,
the cnoidal wave solutions with no basic zonal current reduce to an

expansion of the exact solutions given in Chapter IV.

5.3 The case of /= 0(e)
v-5.3.l Introduction :

The results so far have shown that if divergence ig retained,
cﬁoidal and solitary waves may exist in a long channel without thel
breseﬁée;of a sheared basic zonal current. This is in contrast to
the non-divergent results of Larsen (1965), who showed that for solitary
and‘cnoidal waves to exist, there must also be present a zonal current
v with at least a weak shear.

The equations for the divergent case are too complicated to
include a zonal current and étill get simple enough expressions to
interpret; however, récall}ng the scaling done previously, a reasonable
simplifying assumption is that § = 0(e). Under this assumption, the

equations are sufficiently simple that the effects of a sheared basic
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current may be studied. Furthermore, in the previous chapters, it
was shown that planetary waves can exist in a fluid of uniform rotation
with bathymetry; here, the equations are generalized to include

variable bottom toﬁography.

5.3.2 The equations
The basic non-dimensionalized equations are (5.2), (5.3), and (5.5),

plus a new continuity equation

[(u=-ob+dmMly + v+l = 0 (5.71)

where h = h(y) is the non-dimensionalized depth, and H in (5.1) is

redefined to be the average depth of the channel. Defining
u = &/e = 0(1) (5.72)

the transformation (5.6) and the perturbation expansions (5.7)
are once more applied to equations (5.2), (5.3), (5.5) and (5.71)

. th ;
to give to zero  order in €:

fus + Moy = 0, _ (5.73)

to the first order:

(uo - co)ulg + Vi Usy - fv, + nlg = 0 (5.74)
fu, + my, = O (5.75)
hu + (w)y = O | (5.76)

<
I}
(]
o)
t
<
I
I+
=

(5.77)
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and to the second order:

(uo - CO)uzg + (uoy - Bv, +n, = - (v, - cl)ulg - Vv (5.78)
fu, + Ny = = (uo - co)vl‘E (5.79)
huzg + (hvz)y = = ul(u, - Co)nlE +_Tlou,1£ + (novl)y] (5.80)
v, = 0 at y = 1 . (5.81)
The analysis fdllows that of §5.2. If the transports are
defined by V; = wv,h and U; = wu;h, then the first order equations
are reducible to
(5.82)
(4o = Ca)Vyou = (o = o) Vi 4 [(1 = woge) +(uoy - D[V, = 0
Bo 7 Coltayy T e T Colp? Tay Hoyy Hey Y AT
If the solution is of the form
v, o= g® e | (5.83)
then
(uo = co) (ﬁi) + <;f_}-1__u_3> ¢ = 0 (5.84)
) y y ' ‘
where
d(1) = &(-1) = 0 (5.85)
and
U = - g8 o) (5.86)
f-ue)® + (uo = o) / '
n, = BT )0 (- el g (5.87)
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Similarly, u, and.n, may be eliminated from the second order

equations, and ul; vy, and n; substituted for, in terms of ¢ and g,to give
_ (Vzh) h
( U, o)[ y + (l uoyy) + (uoy f) hy v, (5.88)

Ue

- “'t:_ct’q’gaga * (h)

- 2
- u[(uoy—f) + (uo_co) %;] [(uohCo) q)y

h
nohy + u0y(uo Co) + fc,

- hZ ¢ gE
9, N @
+[ ) ()Y] 88
If (5.88) is multiplied through by &/(us-co), then integrated

over y from -1 to 1, the left-hand side is identically zero and the
righf—hand side gives

b 4+ b + b,gg, = O | 5.8

.1g€€g 285 3885 (5.89)
where

1
2
b, = /E dy (5.90)
' -1
1 _
b, = —cl/d)[% ° >l dy (5.91)
Co
-1 vy
! (u _c‘)Z 2 U..—f no_:'y + u0y(uo_co) + fco
- o o _o;(_
u_/r h? 7 ‘+ {uo—c° h*
h
Ny + 2Uoy(Uo—Co) + 2fc, - fue
h y 2
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Equation (5.89) is again’ the Kortewég—deVries equafion. The
major difference between these equations and the corresponding ones
obtained in §5.2 is that by, the coefficient of gg, conﬁains, in
addition to the term in c¢;, a second term which arises from the
diﬁergence terms. Solutions to (5.89) are first obﬁained by setting
h = 1; these are thén compared with those obtained by Larsen with no

divergence. The case of topographic waves will be treated in §5.4 .

5.3.3 The case of uniform shear

For a uniformly sheared zonal velocity given by
u = W, + ay : : ©(5.93):

where a << 1, equation (5.84) can be solved exactly in terms of

" confluent hypergeometric fﬁnétions [see equation (4.110)]; however,

an approximate solutionvgives more workable fesults, Using perturbation
expansions for both c, and ¢ in the terms of a, equation (5.84) gi&es

as a solution

(5.94)
. . ,Q,S 2 . 212 . 2
¢ = Ak{51n L(y+1) + alz (y-y )cqs L(y+1) + 7 Y sin 2 (y+1) + 0(a%)
where
9 = -%E , (5.95)

and the phase speed is
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1 a a®9?

- 1 a _ adtf 3 3
Co = Wo - 32 + 5 - —7¢ <l 22) + 0(a”) . (5.96)

From (5.90) to (5.92), the coefficients b,, b,, and b, are

2 .
b, = Az(l—é%> + 0(a?) (5.97)
b, = A0%, - oo+ i, -2 2)<%+ f§> + 0@]  (5.98)
5,3 2 .
by = Z2A 1 - cos 22 + 2 (6 + cos 20) 1 + 0(a®) . (5.99)

Both b; and b3 and the éxpansions for ? and ¢, are identical to
the coefficients that were obtained by Larsen (1965) for the non-
divergent equations of motion. The effect of the weak divergence is
felt.entirely in the b, coefficient which, as pointed out eérlier,

i :
contains terms which do not contain c; as a'factqr: In the strongly
divergent‘case, these terms appear in ﬁnﬁexpression for c, since
they are of zeroth order. TFor U = 0, the non-divergent case is
recovered.v

In the case 6f a = 0, that is, for uniform éonal current, the

N .

b3 coefficient is zero and equation (5.89) is linear with general

solution

g(€) = A + B cos P, | | ' (5.100)
where

P2 l=, Lhe, - u% + (1 —12w0)<§-f3) . (5.101)

Transforming £ back to s , (5.100) becomes
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g(s) = A 4+ B cos /Est = A 4+ B cos ks (5.102)
where k = /EPZ and
) 1K 8 [W. 2 2y ]
c = Wo - 2 # g + 242 + (1 - 22Wo)(H + £2)| . (5.103)

For the non-divergent case (§ = 0), this re&uces to the solution
obtained by Larsen, and the phase speed is the first few terms of the
binomial‘expansion of the phase speed for fhe linear Rossby wave
solution, wﬁere béth:kZaniéfg are small with respect to 2% and
§/3, respectively.

| The éoefficient of the non-linear term of (5.89) is non-zero
only if a is non—zeréj hence, the solitary and .cnoidal wave solution
éaq exist only if a sheared zonal current is present. This result is
fdentical to that obtained:in the non-divergent case by Lérsen.

Solutions of (5.89) take the same form as in'§5.2 . Again, a
genéral form of ébiution may be written but thié is not of much
interest analytically because it involves‘the roots of a cubic
equation as well as the introduction of. two arbitrary integration
constaats. Therefore, the discussion will be restrictedvto two
solutions, the soli;ary wave solution and the simple cnoidal wave

solution for which one root of the cubic is zero.

5.3.4 The solitary wave

The solitary wave solution in terms of the zonal velocity is

u = W, - ¢[sgn(a)l™ cos &(y+l) sech?(PZE)_ + 0(a) . (5.104)
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where .
. .
lé%& m odd
P2 = : - ©(5.105)
2 . .
296
7362 m even
and the phase speed is
(5.106)
) 2
c = Wo - 3%2 - i%ﬁ—z + %,[%°+ (1 - L2W)(£2 + $)| + O0(a) .

The only difference between this solitary Wavé solution and that
 for flienon-divergent case is that the phase speed is increased or
decreased by the term containing § as a factor. If W, is éet to
zéro and if 1/3 is neglected relative to f2, then (5.106) reduces to
an expansion of (5.47) for § small, where (5;47) gives the phase speed

for solitary waves in the strongly divergent case.

5.3.5 A cnoidal wave
The second solution of interest is chosen so that it contains the

solitary wave as a special case. This solution is given by

a = W, - E[sgn(a)]m cos L(y+1) en?(PoE/n) + 0(a) (5.107)

where

N
lafs* m odd

9n
P:“ = (5.108)

LS m even
36n .

and
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(5.109)
§ [Wo

1 g%(Zn-i)Pg + = [— + '(1.- LW (F2 + B | + oca) .

-

¢ = W - 42

Again, except for the additional terms in the expression for
the phase velocity, the solution is the same as that obtained from
the non-divergent equations. The variation of_wayelength and phase
speed-with n is that giveﬁ in Figure 2, except that a term independent
of n4must be added to each value of c;.

Because of the close resemblance oflfhese solutions to Larsen's
non-divergent solutions, a modification of quasi—Lagrangian analysis
might offer some explanation of the possible phyéical brocesses
which detqrmine these waves. Such a modification, however, lies
beybnd the scope of this work. 1In his analysis, Larsen obtains an
- equation of the form of (4.42) in which all the coefficienté afe
defined in terms of the energy and momentum oé the basic flow. His
\analysis showed that the generation of the solitéry wave requires no
additional energy over that of the basic flow. Waves of moduli n > 1_
are'assoéiated with a loss of energy from the Basic flow; those of moduli
n < 1, with’a gain of energy. This argument may also hold for the weakly

divergent waves. T

5.4 Topographic waves
As in the previous chapters; topographic waves will be investigated

only for the exponential profile given by
h = exp (-y) o | (5.110)

where A << 1. If it is assumed that the topographic effect is much
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more important than the B-effect,.f can be treated as a constant.
Once again the basic current is given by (5.93), that is a steady
zonal current with a weak uniform shear;,and (5.84) is éolved using a
pertuféation ekpansion for @ and c, in powers of a. The solution

sétisfying both boundary conditions, (5.85), is given by

' 2 2 2
o - A[l + 2Q7 MDY o (-3ly) sin 2(y+1) (5.111)

IARINS

aA(L% + A%/4)?

LYY (1 - y%) exp(-zAy) cos: L(y+I) + 0(a®)
and
_ Af all 2 ' .
Co = W, /Q/z + Az/l} + le + A2/4 + O(a ) (5.112)
where again
4 = .%ﬂ' . (5.113)

Using this solution, the coefficients of the Korteweg-deVries
equation (5.89) may be calculated from the integrals given by (5.90)

to (5.92). The coefficients are then given by

by = A% + 0(a) (5.114)
_ 249,2 + AZ'
b, = A (5.115)

22 ‘
g pAz{-16(zzg+fAz/4) [270% + 4082A% - 162"]

-+

22 EWo (162" = 5A%) 1 .
BI(LZ + AZ/4yZ [ Simh A

2 R2fW, (402 - 30%)

- ua 47 + A2

cosh A + 0(a)
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sinh A m even

_o2403(402 + A2)A°
3 £(362% + A7)

+ o0(a) . (5.116)

— cosh A m odd

Having these coefficients, the solutions to (5.89) follow in
the same way as they did in the previous two cases. For a = 0, all
. of the coefficients remain non-zero; hence, solitary and cnoidal
wave::solutions wili exist even for a uniform basic zonal flow. In
fact, solitaiy and cnoidal waves will exist for the exponential depth
profile even for the nbn—diﬁergent case, U = O,Iand no basic flow,
Wo = a = 0. It should again be emphasized that with topographic waves,
the froperties of the wéves are sfrongly dgpendeht on the character
of the:topography. Hence, any property of the waves discussed here
is likely.to be a property only of waves over an exponential depth
profile.
For Wo = O'ahd a =.0, the simple cnoidal wave solution corresponding

to (5.108) is given by

W o= ()™ ecn?(P,E/n) [cos L(y+1) - %E-sin L(y+1) lexp(Bhy)  (5.117)

where

) ) , sinh A m even -
2 _ 20 (48° + A°)
P2 T FGEZ ¥ 1Dn . (5.118)
cosh A m odd

_ 4AfP3(1-2n) . R2AFI[27A% + 40A%22 - 168"]
1 T QT+ AT 16(R% + NZ]4) 5 '

(5.119)
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The solitary wave is contained és the special case of n = 1,
in'the above equations. Solutions of the same form in £ have been
previously discussed in §5.2;5, §5.2.6, §5.3.4,.and §5.3.5 . It
" should be noted that the effect of the weak divergence is felt only
in thé phase speed,and that:if y is zero, a cnoidal wave solution
still exists. |

Equations (5.835 to (5:87), and (5.89) to (5.92) hbid for an
arbitrary depth profile. F;r any depth profile for which solutions
of the transvefse eigenfﬁnction equation (5.84) éxist, solitary and
cﬁoidal wave solutions should also exist.

Benjamin (1967) found that internal solitary aﬁd;cnoidal waves
of a new form;could exist.on density profiles in fluiéé éf infinite
depth, provided that the density varies only in a layer whose thickness
is much sméller than |the depgh of the fluid. Topographic waves,
~ analogous to these solutions, include shelf wéves and double Kelvin
waves. A possible extension to thistpresent study would be to
‘investigate the existence of such’ solitary and cnoidal topographic
waves on an isolated topographic feature ih an unbounded ocean.

545 Summary

In summary, it has Been shown that a class of iong waves analogous
to the.solitary and cecnoidal waves of surface wave tﬂeory exist in a
channel on the B—plaﬁe o£ in a channel with cross-channel bathymetry
for a uniformly rotating fluid. In the Rossby wave case, it was
shown that if the non-divergent approximatidn'is made,.or that if

the magnitude of the divergence terms is of the same order as that of

the inertial terms, then solitary and cnoidal waves will exist only
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in the presence of a steady sheargd current along the channel.
Such a current is not necessafy for cnoidal and solitary waves to
exist in the divergent case or for topographic waves on an exponéntial
profile.

In all cases, the wave profiles along the axis of the channel
are given by the solutions to the Korteweg-deVries equation. 1In
free surface flows, it is found that solitary and cnoidal waves
are a preferred form of disturbance in that they show a remarkable
persistence of form. Although solitary wave disturbanceé as discussed
here have not been described in observation of either the ocean or
the atmosphere, by analogy to surface Wavés, it is felt that these

solutions may also represent a preferred form of disturbance.



VI. Concluding Remarks

In this work some of the finite amplitude behaviour of planetary
waves has been explored in order to have some understanding of

possible non-linear time-dependent motions in the ocean. With this

in mind, the linear planetary wave solutions were closely examined both

on the sphere and the B-plane iﬁ order to determine the magnitude of
errors aséociated‘%ith the non-divergent and f-plane approximations.
For wavelengths of the order of a few thousand kilometers and
less, the error in the phase speed associated with the non—divergént
approximation both on the éphere and on the B-plane is-about 15%,
decreasing with decreasing wavelenggh. For the same range of
‘aneleﬁgthé, the‘error associated with the B-plane is also aboﬁt 107%.
The linear_noﬁ—divergent solutions on the sphere exhibit the
interesting property that their phase speed depénds only on the
'deéree of fhe spherical harmonic and is independént of the order.
This means that any linear superposition of waves of tﬁe same degree
will stay fogether because they all move with the saﬁe’angular phase
speed. Since each of fhé spherical harmonics making up this sum of
solutions ﬁay have a different axis, this solution may beéome very
compléx, yet still be non-dispersive, at least to the limits of
linear theory.
This property is not exhibited by the divergent waves on the

sphere. Here, the phase speed depends on both the degree and order of
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spheroidal harmonics, and therefore, such a linear superposition of
solutions will'disperse in time.

On the B-plane, the non-divergent solutions are doubly-periodic
sinusoidal waves whose phase speed depends only.on the total wave
number. In contrast to this, the divergen; solutions of the f~-plane,
are sinusoidal‘in'the directien of the waves but their variation in y,
normal to this direction, is in the form of Parabolic Cylinder
fenctions. For sHorf wavelengths in y,Athese solutiqns may be approx-—
imated by a doubly—periodic sinusoidal’wave, whose phase epeed is a
function of the total wave number only. ‘

The errors essociated with both the B—plaﬁe and-non—divergent
approxiﬁations are smaller,fof the shorter Qavelength cases than for
the longer. It -is shown that for bottom slopes commonly found in the
oceans, topographic:waves will predominete over Rossby waves, and
further, for the same range of frequencies the wavelengths associatea
with topographie waves will be much shorter than those for Rossby
waves. For this reason the B-plane eﬁd noh;divergent approximation
may be used with greater accuracy with topographic waves fhan with
Rossby waves. An exception to this is ehe centinental shelf waves,
where, because the depth of the fluid goes to zero, Ehe non-divergent
approximation may not be used. !

H

¥ ‘ >
The full non-divergent'equations of motion on the sphere and

on the B-plane give the linear non-divergent Rossby wave solutions as
exact solutions. Furfhermore, since these exdct solutions consist of
an arbitrary sum of the linear solutions of the same phase speed

there is no non-linear interaction between linear non-divergent
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solutions of the same phase speed.

Such behaviour is not found for the divérgent wave solutioné
nor for the linear topographic wave solutions nor for non—diﬁergent
Rossby wave solutioné in the presence of a uniformly sheared current.
In all of these cases, the wave profiles exhibit noﬁ—linearities to
0(e?) where € is an amplitude parameter; however, similar to
surface gravity waves, there is no first order correction to the
phase speed. Such fundamental differences ‘in non-linear behaviour
of divergént and non-divergent waves was mnot expected. These results
suggest that if one is studying non-linear effects or interactions
between Rossby waves, the non-divergent approximation should be made
‘only with a‘great:deal of caution.

These résults élso suggest that;in the mid—oceén, where barotropic
currents are perhaps very weak, the depth nearly.coﬁstant and deep,
the Rossby wgves once générated will interacf wi&h each other only
very weakly as the mqtion will be nearly non;divergent. As these
waves move toward the western boundary region they will experience
sheared currents, bathymetry and increased divergence due to the
decreagingideptﬁ. All'éheée effects work to make the non-linear
interaztion terms more-impoptant. Therefofe, these results suggest
that the wesfern boﬁndary region 18 a region of intensified non-linear
éffects for Rossby waves. Such an effect at the western boundary of
the Indian Ocean is also suggested by Lighthill (1969).

Finally, it is shown thét a class of long di&ergent Rossby waves
exists, analogous to thg solitary and cnoidal waves of surface wave

1

theory. Larsen's (1965) conclusion, that such waves could exist in the
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non-divergent case only in the presence of a sheared basic current, is
confirmed and explained in light of the exact non-divergent solutions
found here. Since these wave; are to be long, relative to their
lateral dimension, it seems reasonable to expect that the divergence
terms should be retained.
It is also shown that solitary and cnoidal waves can exist on an

.exponential depth profile, even in the non-divergent case. A useful
extension of this work would be to investigate solitary and cnoidal
waves on discontinuous depth profiles in an unbounded ocean. If

such waves can exist, they may be found trapped along oceanic features

-such as ridges and sea scarps, and play an imporfant role in the

dynamics of such regions.
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Appendix I

The problem of transformations in certain co-ordinate systems

In the mathematical solution of physical problems certain systems
of co-ordinates introduce in the solution features which may be
difficult to separate from the physical properties of the solution
itself. 1In particular, special conditions are imposed on the
solution at the poles or axis of spherical polar, cylindrical, or
circular polar co-ordinate systems.

To illustrate this problem, consider a fluid confined between
two concentric and rotating spheres. A natural choice of co-ordinates
are the spherical polar co-ordinates whose axis is- the axis of
rotatioﬁ; however, the choice of the axis of the co-ordinates is,
in fact, éompletely arbitrary. Having chosen the axis of the co-ordinates,
both the zonal,v¢, and the meridional, Vg velocity components must be
zero at the poles in order that botﬁ be siﬁg}evvalued and continuously
differentiable in a neighbourhood of the poles.

The point made here-is that the velocity does not have to go to
zero by any physical grounds-but rather is required mathematically in
order that the co—ofdinate system work. Physically one can certainly
allow a velocity at the pole although mathemétiéally this could only be,‘
described if one allows v¢ and Vg to be both multivalued and discontinuous

at the pole.
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The problems involved become very real and very clear if éne tries
tovtransform from one co-ordinate system to a second, both on the sphére.
Suppose in the first system the solution is a steady zonal flow described
by v¢ = oR sin@ , vy = 0. We transform to a new co-ordinate system
9',¢" whose g%is lies in the ¢ = 0 plane of the first system and is
i%clined at an angle vy to the original axis. (See Figure 1, p.12). 1In

this co-ordinate system, the velocity components at the poles are

given by
v'e, = - OR siny sing¢' : (A.1)
v'¢, =  oR[ cosy sin®' - siny cosB'cos¢' ] . (A.2)

Although physically the velocity field is continuous and continuously
differentiable, the mathematical description of if is not.l Bofhlv'¢,
and V'e, take on all values between * oR siny at each pole (8' = 0,m);
therefore, one cannot‘really speak of a value of either velocity
component at the poles.. The velocity field is known to be continuous
and single-valued everywhere. Therefore, the singular behaviour at

the poles must arise from the behaviour of the co-ordinate system alone.

In this way the choice of the co-ordinate systems may have an effect on

the solution which must not be interpreted -as a physical effect.
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Analogous behaviour of internal and planetary waves

In his treatise on non-homogeneous fluids, Yih (1965, ch.VI)
gives a general discussion of the similarity between the flow of
stratified fluids and fluid flow in an accelerating or rotating
frame. This analogy has been discussed in gfeater detail with
references to slow steady flows by Veronis (1967a,b). Here the
‘analogy will be extended tolwave motion and hence a parallel will be
developed between interhal waves and nonfdivergent planetary waves.
This parallel has been found to be a useful tool in suggesting the
existence or the form of planetary wave solutions for bathymetrieé
of the same shape as deﬁsity profiles for which internal wave solutions
are known.

For an incompressible stratified fluid of constant depth, the
“equation governingvinfinitesmal amplitude internal gravity waves in

two dimensions is given by Lamb (1945, p.378), by

vzwtt - T {wztt - g‘Pxx} = 0 : : (B.1)

where z is increasing upwards

u = ‘Pz s w = - IPX s (B.2)
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roo= -%03—20 : (8.3)
For waves prépagating horizontally,
Y = W(z) exp i(kx - wt) , | | (B.4)
hence (B.l) becomes
Wy, - mz + kz(ﬁg— - DWW = 0 (B.5)
subject to the boundary condition that
W = 0 at a boundary.ér at z = % o, (B.6)

Solutions are also possible for discontinuous density profiles.
At a discontinuity of either p or I, both the vertical velocity and

the pressure are continuous across the interface; hence,

B.7)
. ok? (
PMyy = 0¥y, = (o, -0 W,

where the subscripts refer to values on either side of the discontinuity.
‘In Chapter III, the linear equafions for planetary waves are

developed. In particular, equation (3338) governs the y dependence

of the zoﬁal transport of a planetary wave propagating east-west

parallel to the depth contours. This equation is given by
h LIE I B} -
Vyy : hy V& [o h . + k J v = 0 (B.8)

with the boundary conditions that

V = 0 at a boundary or aty = = o, (3.9)
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At a discontinuity of h or f or their derivatives, tramsport and

pressure must be continuous; hence,-

Vl = VZ

| B.10
Ny - Y2 - fk (hy - hy) V, ( )
hly hzy w  hih i

where again the subscripts refer to values on either side of the
discontinuity. |

The similarity befween (B.8) and (B.5) plus tﬁeir boundary
condifions is at once apparent. If the Boussinesq épproximation is
made 'in each of (B;S) and (B.8) (neglect of the first derivative
term) it is appatgnt that ' and —h<§> play gxactly equivalent roles
in internal and in planetary waves, rZspéctively. It then follows that
solutions of (B.8) Wiil have the same y dependence, W(y), as solutions
of (B.5) if —h<§> has the same functionai dependence as T.

The simplestycase for which this énalogy holds is between internal
waves in.gfluid with a weakly exponential density profile contained
between rigid horizﬁntal planes and Rossby waves in a B-plane channel.
Iﬁ both cases (the Boussinesq's approximation being made for the
internal wave case) the wave form is given by sin T, (sin %Ey for

L

Rossby waves) where

,n2’1T2 | — 2f gl

7o @& -

s s (B.11)
n m _ 2 {_ ___B_ _

Tz =k < ok D

respectively.
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A fuffher example of this paréllel is the analogy between
internal waves on the bogndary betwéen two ﬁnbounded fluids
[Lamb, (1945), p.370] and the noﬁ—divergenu limit of the déuble
Kelvin wave along a depth diécontinuity [ﬁhihes, (1969a)]. In both
cases the wave amplitudes decay>exponentia11y away from the
discontinuity. |

The extension of this analogy to include the finite amplitude
cases is far more tenuous. fFor internal waves, the motion itself
changes, the density profile while for noﬁ—divergent planetary waves
the (f/h) profiles are independent of the waves. There are, however,
étill similarities between the non-linear equ;tions. For example, the

equation for planetary waves of permanent form (4.26) given by

J< 13 [1 3w, a1 ¥ (1 dw]|_ _¢ \P)
n+Ha3Js N+ H s n+HOJy (n+ H Iy n+H"’

= 0 (B.12)

is éimilar in form to an equation obtained by Magaard (1965) for

~ progressive internal waves of permanent form

VY - g2, = 0 (B.13)
where
- _ 1 _ - Ly - -
W= /bWs , u c /o z, s X ct . (B.14)

Solutions to (B.13) have been given by Magaard (1965) and Yih
(1965, ch. III) and these solutions suggested the procedure leading

to the possible solutions to (B.12) which were obtained in §4.2
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Further extensions of the analogy to include interaction of
waves with currents or long wave solutions are tenuous in the extreme.
The analogy serves to suggest, from research already conducted for

internal waves, directions in which investigations of planetary waves

might proééed.



Appendix III

Glossary of symbols

o | angular phase‘speed on the sphere
R = %§ on the B-plane
Y _ ' angle between the axis of rotation: and the
axis of the co-ordinate system on the sphere
s in §3.1 = 4Q%R?/gH, the divergence parameter
8 = B2L%/gH, the divergence‘parameter
> , amplitude parameter
z in §4.4 = exp(-Ay)
in §4.5, §5.2 = Y&§ (£, + y)
in 84.6 = 21%- (w°,_ c, + ay)
n surface elevation
8,9 , | co-latitude and longitude in the tilted
co-ordinate system
8',4' ’ ‘ co-latitude and longitude relative to the

axis of rotation

~
H
=}
wn
~
9,1
[}

(1 + 4cok?)/(2¢oV8 )

in §5.2 = 1/(2¢cov8 )
" total wave number on the B-plane
A in §3.1 =’d/29, the hon—diménsionalized frequency
. = _&Ii k2 +£<_B_
in 83.2 28 ( - )
in 84.4 = /A
. . _ 1 - (l - (SCo)kz
in 84.5 | = Teids + 575

in §5.2, §5.3, §5.4 wavelength

-
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84.6

.6, §5.3, §5.4

§5.3

Py

+ (m®7? - 3k?)

= - cos 0
= § /e

K2
Bt g

relative vorticity vector

= Ve s

density

radian frequency of planetary waves
stream function

radian frequency of internal waves

_1do.
Podz
‘1°dh

= -3 E;

vy ®(y) sin ks

]

Vi

o(y) gE(E)
zexp(- £/2) ()

the rotation vector of the earth

du,
dy

integration and phase constants
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coefficients of the Korteweg-deVries . °

equation
phase speed on B-plane

cons tants

coefficients of the Korteweg-deVries

equation
= f, + By, the Coriolis parameter

gravitational acceleration



s in §3.1
i in ch.IV, ch.V

s in §3.1

R
Vo, Wo

W{(z) .
Y(y) in 84.5

Zi(y) in 84.5, §84.6
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vi = ¥(y) gg(g)

depth of fluid.

wave numbefs in x and y directions
integers

pressure

radius

zonal wave number

]

x — ct, transformed x.co-ordinate

20s /o

time

velocity components on R-plane
velocity components on the sphere

velocity components relative to the
rotation axis on the sphere

co-ordinates on the f-plane

amplitude constants

distribution of potential vorticity
depth

Qidth of fhe B—piane channel

radius of the earth

basic uniform zonal flow

H

z-dependence of the vertical velocity
of internal waves

first order y-dependence of north-south
velocity

second order y—dependence of north-south
velocity



