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ABSTRACT 

This thes i s concerns i t s e l f with the a p p l i c a b i l i t y 

of quantum f i e l d methods, i n the f ixed f i e l d approximation, 

to problems invo lv ing a weak g r a v i t a t i o n a l f i e l d . Af ter 

in troducing general scat ter ing r e l a t i o n s , various c l a s s i c 

problems are reviewed to i l l u s t r a t e various approaches to 

so lv ing sca t ter ing problems. Newtonian and quantum mech­

a n i c a l f i e l d methods are i l l u s t r a t e d using Coulomb scat ­

t e r i n g . C l a s s i c a l r e l a t i v i t y i s used to solve the bending 

of l i g h t rays by the sun. F i n a l l y , quantum f i e l d methods 

are used to solve the sca t ter ing of po lar ized photons by 

the sun. The a d d i t i o n a l problems of scat ter ing of l i g h t 

by a mass d i s t r i b u t i o n and by a r o t a t i n g mass are c a l c u l ­

able using t h i s method. 
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INTRODUCTION 

In a l l observations of the def lec t ion of l i g h t by the 

g r a v i t a t i o n a l f i e l d of the sun one measures the angle of 

de f l ec t ion suffered by the l i g h t ray emitted from a distant 

s tar as i t passes near the sun's surface . Accordingly , the 

c l a s s i c a l theory of t h i s effect i s based on Fermat's P r i n ­

c i p l e which prescribes the geodesic as the ac tua l path . 

taken by l i g h t between source and observer. 

In most laboratory scat ter ing experiments, on the other 

hand, one measures an i n t e n s i t y as a funct ion of scat ter ing 

angle. Accordingly , both the c l a s s i c a l and the quantum 

mechanical theory of scat ter ing i n p a r t i c l e physics are 

aimed at y i e l d i n g the d i f f e r e n t i a l s ca t ter ing cross - sec t ion , 

i . e . the r a t i o between the scattered i n t e n s i t y i n t o a given 

s o l i d angle and the inc ident i n t e n s i t y per uni t area. 

One can, of course, describe p a r t i c l e scat ter ing also 

i n terms of the sca t ter ing angle i n the path of an incident 

p a r t i c l e . Even though i t has no immediate experimental 

relevance, because i t would requ ire , for example, the exper-

imentor to f i r e an c £ - p a r t i c l e v/ith a given impact parameter 

past a nucleus; th i s a l t ernat ive treatment of p a r t i c l e scat­

t e r i n g i s well-known and i t i s often-used as a bas is for the 

der ivat ion of s ca t ter ing cross - sec t ions . 

A l t e r n a t i v e l y , the g r a v i t a t i o n a l def lec t ion of l i g h t 

can be treated as a quantum mechanical scat ter ing problem, 

i n which the sun, for example, i s treated as the sca t ter ing 
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center which presents a sca t ter ing cross - sec t ion to an i n ­

cident beam of photons. This a l t ernat ive does not seem to 

be well-known, and i t i s the purpose of t h i s thes i s to rem­

edy that def ic iency i n the l i t e r a t u r e on t h i s subject . 

To br ing out the equivalence of the two a l t e r n a t i v e 

treatments of scat ter ing i n general , the general re la t ions 

ex i s t ing between the concept of the sca t ter ing angle and 

the concept of the s ca t t er ing cross - sect ion are exhibited 

i n Sect ion I . The c l a s s i c a l example of a p a r t i c l e s ca t t er ­

ing i s the Rutherford sca t ter ing experiment, whose theory 

i s summarized i n Sect ion I I . The c l a s s i c a l theory i s not 

su i tab le when the scattered p a r t i c l e possesses i n t r i n s i c 

a t t r i b u t e s , such as sp in , and a f u l l quantum mechanical 

treatment of the scattered p a r t i c l e i s advisable even though 

the sca t t er ing center may be treated i n the so -ca l l ed f ixed 

f i e l d approximation, as i s explained i n Sect ion I I I , with 

the sca t ter ing of a Dirac e lectron i n a given Coulomb f i e l d 

serving as example. The c l a s s i c a l E i n s t e i n theory of grav­

i t a t i o n a l l i g h t sca t ter ing i s reviewed i n Section IV, with 

emphasis on the analogy to c l a s s i c a l Rutherford s c a t t e r i n g . 

F i n a l l y , the quantum mechanical treatment of g r a v i t a t i o n a l 

photon scat ter ing i n the f i xed f i e l d approximation i s dev­

eloped i n Section V, and as i n the case of the e lectron the 

i n t r i n s i c p o l a r i z a t i o n property of the photon can be hand­

l e d most appropriate ly i n t h i s way. 

The present work should pave the way for the theore t i ca l 

treatment of more elaborate problems, such as the effect of 

the so lar mass d i s t r i b u t i o n and of the so lar ro ta t ion on the 
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e x t r i n s i c and i n t r i n s i c a t tr ibutes of inc ident photons, 

and the s ign i f i cance of such future work i s b r i e f l y d is 

cussed i n Sect ion V I . 



V 

FIGURE 1 . 1 

IMPACT PARAMETERS AND SCATTERING ANGLES 
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i i . BASIC RELATIONS BETWEEN SCATTERING CROSS-SECTIONS 

AND DEFLECTION ANGLES 

Consider f i r s t the case i n which the concept of a 

'path' of a p a r t i c l e can be def ined, and suppose one has 

a f i xed sca t ter ing center (taken to be the o r i g i n of the 

coordinate system). I f one i s in teres ted i n the s c a t t e r ­

ing of a uniform, i n i t i a l l y p a r a l l e l beam of i d e n t i c a l , 

noninteract ing p a r t i c l e s inc ident upon the sca t ter ing reg ­

ion with i n i t i a l v e l o c i t y V Q Q , then d i f f erent p a r t i c l e s i n 

the beam w i l l have d i f f erent impact parameters p (see F i g ­

ure 1.1) and hence w i l l be scattered a d i f f eren t amount ^CJ 

from t h e i r i n i t i a l d i r e c t i o n . The impact parameter i s 

defined to be the perpendicular distance from the o r i g i n 

to the asymptotic i n i t i a l path of the p a r t i c l e . I f dN 

p a r t i c l e s scat ter per uni t time through an angle between X> 

and %+d%, l e t 

(1.1) d ( r s i , 
n 

where n i s the number of p a r t i c l e s passing i n unit time 

through a un i t area of the beam cross sect ion (assumed 

uniform). 'dies'' i s c a l l e d the e f fec t ive sca t ter ing cross -

s ec t ion . Assume that p a r t i c l e s with impact parameters bet­

ween p^iZs) and p^( j6)+dPi( %) scat ter through an angle 

between % and %+dX> • The subscript on p allows f o r the 

p o s s i b i l i t y of the r e l a t i o n s h i p between p and % not being 
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one to one. Then 

dN = ^27( Pi dpi n; 

(1.2) < r T 

d(T =^2tt Pi dpi . 
1 

I f , as usual, p and J6are one to one (which i s true f o r the 

usual case of JC a monotonic, decreasing function of p), 

(1.3) d<r = - 2 f f p ( ; t ) A £ d £ , 
3X-

where the negative sign r e s u l t s from the decreasing nature 

of )G{p). Or, since the s o l i d angle. dI2 between PC and 

X+dX i s 2 ?rsin£ d £ , 

( 1 . 4 ) ri^_ - P ( ^ ) ^ P ( X ) rfr?. 
s i n X } ^ 

The case i n which the angle of scattering i s small i s 

of i n t e r e s t . Suppose that the deflection angle i s related 

to the impact parameter by 

where A i s some constant. (This i s a v a l i d r e l a t i o n f o r 

large p i n the case of Rutherford scattering as well as 

f o r E i n s t e i n scattering.) The p a r t i c l e s deflected between 

X and Pi+dX> are the ones that have impact parameters bet-



FIGURE 1 . 2 

THE DIFFERENTIAL SCATTERING 

CROSS r SECTION 
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ween p and pfdp (see Figure 1.2), where 

(1.6) p = £ ; | d P | = A 2 d ^ 

This area, the r i n g between p and p+dp, i s then, by defin­

i t i o n , the d i f f e r e n t i a l cross -sect ion for s ca t t er ing into 

the angle between %j a n c * > that i s , into the s o l i d 

angle d-0.= 2?i: s in %> d% & 2 tt % d%. Thus 

2 
(1.7) d < r = | 2 ? r p d p | = , 

and 

(1.8) djr _ l27(p dp| _ A £ 
dj2 ~ 2n¥,&%-jK 

Next consider the case of a scattered p a r t i c l e des­

cr ibed quantum mechanically as an inc ident plane wave, 

u U i ^ ) e _ i k i x , 

(1.9) kjx BCO^x0 - k^'X , 

x = (x 0 = t , x)> 

representing a state | k i , s ^ , where kj_ i s the four-momentum 

(4i = c = l ) and Sj[ includes other quantum numbers such as 

s p i n . This wave, when entering the sca t ter ing region has 

a p r o b a b i l i t y of being scattered in to another ( f ina l ) state 



^ k f , 3 ^ 1 which again can be writ ten as a plane wave. Under 

these conditions the amplitude for s ca t t er ing from | ^ i » s j ^ 

to a d i f f erent state ^ f j S ^ J , i n the f i r s t Born approxi ­

mation has the form 

( 1 . 1 0 ) < k f , S f | i JXintd4x|ki'?i^ = ̂ f ' s f | M ) ^ i ' s i > SWf*>i 
in a f i x e d , time-independent external f i e l d , where oC^n^ 

i s the Lagrangian density governing the i n t e r a c t i o n , and 

U)±, COf are the energies of the scattered p a r t i c l e i n the 

i n i t i a l and f i n a l states (see Appendix A ) . The de l ta - func­

t i o n re su l t s from the in tegrat ion over the time coordinate 

of the sca lar product of the i n i t i a l and f i n a l plane waves 

and ensures conservation of energy. However, i f one neg­

l ec t s the r e c o i l of the source, one does not have conserva­

t i o n of momentum. Using the r e l a t i o n , v a l i d f o r .any d e l t a -

funct ion (see Appendix B) , 

(i.n, L§:<v^>]2=%^ j«. 
one has the t r a n s i t i o n p r o b a b i l i t y per uni t time for f ixed 

i n i t i a l and f i n a l s tates , 

(1.12) W f l - l ^ f ^ f l f c n t ^ l " ! - ^ ! 2 

2 W 1 1 



8 

The incident intensity I i s defined as the number of 
incident particles per unit time per unit area of cross 
section of the. beam. Thus, I equals the particle density 
times the incident speed. If one normalizes the incident 
plane wave to yield one particle per volume V, 

( 1 . 1 3 ) I = f , 

where v is the incident speed. The cross-section for 
scattering into a definite f i n a l state is 

(1.14) ^ = W F L | . 

The differential cross-section for scattering into the set 
of f i n a l states between kf and kg+dkg numbering 

(1.15) dNk f = — d k f 

i s 

(1116) do- = wfi | dN , 

U , 1 7 ) S { ^ V ) ^ 1 ) ^Kk^MMlki'si>|2
 d k f -

If one can assume that the interaction i s spherically sym­
metric then the cross-section for scattering into the solid 
angle dH i s given by 
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(2 ?r )**- v 

where dk^ has been replaced by the expression integrated 

over d I 2 , i . e . , k^.2 d | k f J dQ and the rest of equation ( 1 . 1 7 ) 

has been l e f t unchanged due to the s p h e r i c a l symmetry. 

Since 

2 _ „ 2 , v 2 
( 1 . 1 9 ) ^ f = m + k f 

and 

( 1 . 2 0 ) cjfdu)f = ( k f | d | .k f | , 

equation ( 1 . 1 6 ) becomes, 

( 1 . 2 1 ) ^ = ^ - ^ \ ^ f . ' f \ ^ , < ^ \ 2 Uf| « t W , 

I f the detector.responds only to p a r t i c l e s scattered 

i n t o the s o l i d angle dQ.{&,0), one must integrate over a l l 

dcJf keeping 8, 0 constant. Since the inc ident v e l o c i t y 

may be expressed r e l a t i v i s t i c a l l y as 

( 1 . 2 2 ) v = £ , 

the in tegra t ion over dVg can be c a r r i e d out at once with 

the r e s u l t 
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The above quantum mechanical analys i s has been based 

on the stated assumption that the plai e waves are normal-

i z e d to y i e l d one p a r t i c l e per volume V. This normaliza­

t i o n i s not Lorentz invar iant since the volume V i s con­

t r a c t e d along the d i r e c t i o n of motion r e l a t i v e to a frame 

of reference . I f one wishes to have an invar iant prob­

a b i l i t y , i t i s convenient to normalize the wave functions 

to one e lectron per invar iant volume V.m/cJ . With t h i s 

normalizat ion the fo l lowing c r u c i a l equations must be r e ­

wri t ten as i n d i c a t e d . 

( 1 . 2 4 ) was ( 1 . 1 3 ) I . 
m V 

( 1 . 2 5 ) was ( 1 . 1 5 ) dN, = Iffi dkf 
- f *>(2?F)3 

Hence, equation ( 1 . 2 3 ) becomes 

(1.26) f l = l V U f ( E f | M | k i ( S i f 

The i n i t i a l and f i n a l states may contain information 

about the p o l a r i z a t i o n propert ies of the scattered p a r t i c l e . 

I f they are not observed, the expression ( 1 . 2 3 ) has got to 

be subjected to appropriate sums and averages over the 

respect ive p o l a r i z a t i o n s ta tes . 
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§11. CLASSICAL RUTHERFORD SCATTERING 

The laws of motion f o r a mechanical system can be 

derived by app l i ca t ion of Hamilton's p r i n c i p l e (or the 

p r i n c i p l e of l east a c t i o n ) . This approach necessitates 

that every mechanical system be characterized by a func­

t i o n , c a l l e d the Lagrangian, which, for a system with s 

degrees of freedom, one writes L ( q ] _ , q 2 , • . . ;q^ , $ 2 1 • • • >qs>t) , 

or equivalent ly L(q ;q ; t ) for a r b i t r a r y degrees of freedom, 

where the q's are the coordinates , the q's are the conjug­

ate v e l o c i t i e s , and t i s the parameter representing t ime. 

The condi t ion that the a c t i o n , 

i s an extremum for the ac tua l motion, q ( t ) , of the system 

i . e . f i x i n g the endpoints of the t r a j e c t o r y . For one deg 

ree of freedom one gets , 

( 2 . 1 ) 

dt = 0, 

S q dt = 0, 
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where the f i r s t term i s zero because the endpoints of the 

t r a j e c t o r y are f i x e d . Since the r e s u l t i s true for a r b i ­

t r a r y S q, 

For a system with s degrees of freedom, the s d i f f erent 

functions q^(t) must be var ied independently to y i e l d 

(2.4) A ( ^ k . ) . 1̂ - =0, i = l , 2 , . . . , s . 
dt 2> o q^ 

These are the E u l e r , or Lagrange's equations of motion for 

the system. 

Some important ' in t egra l s of motion' can be derived 

from the homogeneity and i sotropy of space and time. The 

energy of the system, E , 

(2.5) E = g q i I L L - L , 
i o Qi 

the momentum of the system, P, 

(where r a i s the pos i t ion of p a r t i c l e ' a ' ) , and the ang­

u l a r momentum, M, 

(2.7) M = 2 ^ a x £ a > 

a 
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are a l l conserved (see Appendix C ) . 

For a system of two p a r t i c l e s i n t e r a c t i n g through a 

centra l po ten t ia l U t j r ^ - r ^ j ) , 

(2.8) L = h^iLi2 + hm2r2

2 - V(\rx-r2\). 

Let r zr^-r^ and define the o r i g i n of the coordinate system 

such that ni]_r-j_ + m2.r2 = 0. Then 

(2.9) r , _ m 2X ; r_ - ~mlL 
-1- mj_+m2 ^ m l + r a 2 

and 

(2.10) L =-|-mf2 - U(r) , m s

 m l m 2 . 
m l - m 2 

Thus the problem of the motion of two p a r t i c l e s i n t e r a c t i n g 

through a centra l force i s mathematically equivalent (by 

transforming to center of mass coordinates) to the motion 

of one p a r t i c l e i n a given centra l f i e l d U ( r ) . 

In c y l i n d r i c a l coordinates r , 0, z , equation (2.10) 

becomes 

(2.11) L = Jm ( f 2 + r 2 0 2 + z 2 ) - U ( r ) . 

Since M ( = r x p) i s conserved and perpendicular to r , the 

motion i s p lanar . Choose the z-axis such that z = 0. Thus, 

(2.12) L r hair2 + r 20 2) - U ( r ) . 



Since M i s the momentum conjugate to 0, see equation (2.6), 

(2.13) M = -|4 = mr20. 
D 0 

Since 

dt ^ '0 d 0 

(2.15) M = mr 2$ 

i s constant. From the d e f i n i t i o n of E , see equation (2.5), 

E = f + 0 "TT - lm( f 2 + r202) - U(r) , 
or d0 

(2.16) E= | m r 2 + & I?- + U(r) , 
mr 

^ = ( 2 [ E - U ( r ) l 4"? )* • dt v m L 'J m 2 r 2 ' 

A l s o , from equation (2.13), 

(2.17) d0 = M i . 
2 ' 

mr 

and using the t h i r d of equations (2.16), one gets 

(2.18) d0 = ^ ? ( f [E-U(r)l - ~ ) " 4 d r ' . 
mr^ m L J nrr 

Thus, 



FIGURE 2.1 

COULOMB SCATTERING 
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(2.19) 0 = \ M d r / r 2 j - + constant. 

J (2m [E-U(r)J-M2 / r 2)2 

In a centra l f i e l d the path of a p a r t i c l e i s symmetric 

about r m ^ n . For an inverse square law force f i e l d the 

path i s a conic sect ion with the center of force as a focus, 

i n which case the symmetry i s c l e a r . From Figure 2.1, 

( 2 . 2 0 ) % = | ? T - 2 0 O | . 

From equation (2.19), 

,2 
( 2 . 2 D 0O = C M d r / r

 n _ i • 
J ( 2 m [ E - U ( r ) J - M 2 ^ 2 ) 2 

Since E and M remain constant, one uses t h e i r i n i t i a l v a l ­

ues , 

E = imv 2 , , 

( 2 . 2 2 ) 

M =7 m p V o o } 

where p i s the impact parameter. 

For Rutherford scat ter ing the force f i e l d i s Coulombic, 

( 2 . 2 3 ) U ( r ) = * / r , oC = Z e 2 . 

Combining equations ( 2 . 2 1 ) to ( 2 . 2 3 ) one gets, 
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o o 

••) dr (2.24) 0O = \ . 
° ^ . l-(p 2/r2)_-r . . - v P 2 / r 2 M 2 < V m r v 2 ) 2 ' 

l m i r \ 

(2.25) A - cos" 1 (*/ m vooP) 
[ l + l ^ / m v o o 2 ? ) ] * 

Or, solving equation (2.25) for p, 

(2.26) p 2 _ < 2
 t a n

2 0 

A * 4 

which becomes, using equation (2.20), 

(2.27) -P'zr-* c o t . 
m V 0 D 

Hence, applying the result of equation (1.4), 

{2*26) dfr ( * -)2 ^ . 

2IHV002 Bin^(ilX'l) 

Equation (2.28) gives the cross-section in the frame of 
reference i n which the center of mass i s at rest. The 
transformation to the laboratory frame i s accomplished by 
the formula, 

(2.29) tan ex - m 2 s i n * , 9 2 = i ( ? T - ^ ) , 
m1+m2cos % 

where 0j_ and 0 2 are the angles between the directions of 
motion after the collision and the direction of impact. 
The subscript '2' denotes the particle which was originally 
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at rest in the laboratory. Using the fixed f i e l d approx­
imation, i.e., m-]_«m2, then masm-̂ , and %V-Q^. Thus 
equation (2.28) becomes 

(2.30) 4-2: =r(|f^) 2 

where E-̂  i s the incident kinetic energy. For small angle 
scattering one can replace sin(X) by X and hence the dif ­
ferential scattering cross-section in the fixed f i e l d ap­
proximation, in the limit of small angle scattering i s 

(2.31) (^)Rutherford ~ ( E J ~ ^ * 

That i s , the factor A of equation (1.8) is 

(2.32) A=it | s 2 • 
1 

For Einstein scattering (see Section IV), 

(2.33) A = 4QM , 

where M is the solar mass. The following 'rule of thumb' 
is apparent. To go from electrodynamics to gravidynamics 
one must replace e . by GUco (in units such that " f i s c a l ) , 
or in the cgs-system of units e 2/fic by GM«^/c^, where c*> 

i s some characteristic frequency of the system. 
Finally, i t should be noted that the scattering of 

particles with intrinsic properties such as spin i s not 
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handled by the methods of t h i s sec t ion . The next sect ion 

i l l u s t r a t e s a f u l l quantum mechanical treatment of a scat­

t e r i n g problem invo lv ing spin quant i t i e s . 
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§ 1 1 1 . QUANTUM MECHANICAL RUTHERFORD SCATTERING 

The c l a s s i c a l theory of s ca t t er ing , as developed i n 

Sect ion I I , i s not capable of handling the sca t ter ing of 

p a r t i c l e s v/ith i n t r i n s i c propert ies such as sp in . In t h i s 

sec t ion , the scat ter ing of a Dirac e lectron by a given 

Coulomb f i e l d i s t reated , using the f ixed f i e l d (or ext­

ernal f i e l d ) approximation and the general scat ter ing r e l a ­

t ions developed i n Section I , to i l l u s t r a t e how these 

i n t r i n s i c a t t r ibutes of p a r t i c l e s are handled. 

When t r e a t i n g a scat ter ing problem, one general ly i s 

concerned v/ith the i n t e r a c t i o n of two f i e l d s . The coupling 

of the systems i s achieved by postulat ing the existance of 

a coupling term i n the f i e l d equations which depends on the 

f i e l d variables of both f i e l d s . In some problems i t i s 

adequate to represent one f i e l d by a quantized f i e l d , i n ­

vo lv ing creat ion and destruct ion (absorption) operators, 

while the other f i e l d i s treated as a given c l a s s i c a l func­

t i o n of the space-time coordinates. For the c l a s s i c a l l y 

given f i e l d we need no equation of motion, since i t i s 

assumed to be the given space-time funct ion; t h i s i s a 

great s i m p l i f i c a t i o n . 

Under cer ta in circumstances the sca t ter ing of an e lec­

tron by the f i e l d of a nucleus can be treated as the motion 

of a Dirac e lectron i n a g iven, f ixed Coulomb f i e l d . The 

condit ions necessary to allow the concept of a f ixed f i e l d 

to be v a l i d can most e a s i l y be seen when one r e c a l l s the 

results-of- c la s s i ca l - two-body e l a s t i c s c a t t e r i n g . As i n 
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Section II, (see equations (2.9), (2;29), and the para­
graph following (2.29)), the i n i t i a l l y stationary mass .mg 
remains essentially stationary (i.e., there i s a negligible 
momentum transfer to m2) i f m 2 » m 2 . Equally, the condition 
that the reduced mass, m = m̂ m2/(m-̂ -m2), (center of mass 
fixed) is approximately ra-^ i s that m2>>m-̂ . Hence, the 
condition for the validity of the fixed f i e l d approximation 
i s m 2 » m 2 , when the fixed center of mass i s nearly coin­
cident with the; position of m2. In the r e l a t i v i s t i c case 
the condition of a relatively large target mass can often 
not be met at the same time as the r e l a t i v i s t i c limit cond-
it i o n k^>^ m for the incident particle. In that case one 
must apply the condition of negligible momentum transfer 
to the target. This condition is met i f the angle of 
scattering i s small; and hence a small change of momentum 
occurs. In a l l the cases that shall be discussed, this 
limitation w i l l not be serious since in a l l cases the 
scattering is very strong in the forward direction , that 
i s , d c r/d_a^ A/ 

The approximation in which the f i e l d of the nucleus 
i s treated as a classically given Coulomb f i e l d function 
rather than a quantized one (involving creation and dest­
ruction operators) can be obtained from a completely quan­
tized theory by identifying the expectation values of the 
f i e l d and current operators with the classical quantities 
(see Jauch-and Rohrlich, chapter lft, 1955). The approxima­
tion i s accurate when the fluctuations about the expectation 
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values are small compared to the expectation value i t s e l f . 

The term 'Coulomb sca t t er ing ' general ly refers to the scat­

t e r i n g of an electron by a given, f ixed Coulomb f i e l d , to 

a l l orders of th i s f i e l d ( in t h i s Section only the f i r s t 

order i s ca l cu la ted) . The effect of the presence of photons 

( r e a l or v i r t u a l ) i s general ly re ferred to as ' r a d i a t i v e 

correc t ion ' (corresponding to the effect of the s o - c a l l e d 

r a d i a t i o n f i e l d i n c l a s s i c a l electrodynamics) and i s here 

completely neglected. 

The e lectron i s described by a plane wave so lut ion to 

the Dirac equation (3.1) for a free e l ec t ron . 

(3.1) ( 7>/h^ - m) Y ( x ) =0, 

where ^ i s i m p l i e d . Th 

onent Lorentz spinor 

e wave funct ion 'Y'(x) i s a 4-comp 

the (£*.= 0,1,2,3) are J+x4 matrices , operating on the 

, obeying spinor 

(3-3) 
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t h e r e s t mass o f t h e p a r t i c l e i s d e n o t e d b y m, a n d t h e 

s p i n i s r e p r e s e n t e d b y t h e o p e r a t o r s ( s e e A . S . D a v i d o v , 

1 9 6 6 ) 

( 3 . 4 ) ^ ' z = - i ^ x Y ' y ( c y c l i c ) . 

D e s c r i b i n g t h e e l e c t r o n a s a q u a n t i z e d f i e l d , o n e c a n 

w r i t e x ) a n d / ( x ) , a s t h e F o u r i e r s e r i e s ( s e e F . M a n d l , 

1 9 5 9 ) , 

' V U ) ^ ^ ( u ( k , r ) a ( k , r ) e + i k x 4 u * ( k , r ) b t ( k , r ) e " i k x ) , 

( 3 . 5 ) 

V ( x ) = ±2 ( u 1 k , r ) a f ( k , r ) e - i k x
+ u ( k , r ) b ( k , r ) e + i k x ) , 

•jfv k , r 

v / i t h x ) n o r m a l i z e d t o o n e p a r t i c l e p e r v o l u m e V . T h e 

o p e r a t o r s a ( k , r ) a n d b ( k , r ) , a s s o c i a t e d w i t h t h e p o s i t i v e 

f r e q u e n c y p a r t , a l l o w i n t e r p r e t a t i o n a s a b s o r p t i o n ( d e s t -

f t 

r u c t i o n ) o p e r a t o r s , w h i l e t h e o p e r a t o r s a ( k , r ) a n d b ( k , r ) , 

a s s o c i a t e d w i t h t h e n e g a t i v e f r e q u e n c y p a r t , become c r e a ­

t i o n o p e r a t o r s . 

The f o l l o w i n g l emmas c o n c e r n i n g t h e a l g e b r a o f t h e *f-

m a t r i c e s a r e u s e f u l . 

Lemma 1 : T r a c e 

Proof: T r tf« f t f ^ r f p f f f , 1^^777' 

u s i n g t h e p r o p e r t y + ^ = 0 * 
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Lemma 2: Trace K*"^* Y ^ = 4 • 
Proof: Tr =Tr i f ° 0 ^ , 

Lemma 3: Trace n W r 4 ( 6 ^ ^ - g ^ g ° r ) . 
Proof: Using f° + 2 g<^, 

Trace ^ 1 ^ * * * * = 2 g ^ r T r - T r t r K t* 

= fig^Vf -«'g^grf + T r X^T^tf , 
= 8 g ^ g ^ f -3gC^g<Tf 4 g g f P g ^ -<£rWV X^-
For purposes of t h i s problem, t h i s completes the 

quantum mechanical d e s c r i p t i o n of the f r e e e l e c t r o n . 
The f i e l d of the nucleus i s described as a c l a s s i c a l 

f i e l d , A ^ ( x ) . Use i s made of the F o u r i e r s e r i e s 

( 3 . 6 ) A^(k.-k f) = ^ d 3 x A ^ ( x ) e l l ^ i - ^ f ) ^ . 

I n a f u l l quantum mechanical treatment, t h i s plane wave 
decomposition (or i t s inverse) would be w r i t t e n as the;, sum 
of p o s i t i v e and negative frequency parts ( i n c l o s e analogue 
to equations (3*5)) and the c o e f f e c i e n t s A^(k) and A^ (k) 
would become c r e a t i o n and d e s t r u c t i o n operators. I n the 
e x t e r n a l f i e l d approximation, however, the A^(k)'s are so-
c a l l e d c-numbers, not operators. 

The Dirac equation f o r a f r e e p a r t i c l e (3.1) and i t s 
a d j o i n t equation can be derived from the Lagrangian d e n s i t y 

(3-7> ^ D l r a c = [t° <^ 7 ^ ^ " «] Tu>, 
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by application of the Euler (Lagrange) equations 

which are derived in analogue to equations (2.4), treating 
%{x) and ^ ( x ) , («=0,1,2,3) as independent variables. 

In classical electrodynamics one can derive the Lag-
rangian for a point charge interacting with ,a fixed elec­
tromagnetic f i e l d from the Lagrangian of the free point 
charge by substituting p^-eA^ for p^ in the free Lagrangian. 
The Lagrangian describing the Dirac electron in a fixed 
electromagnetic f i e l d A^ i s similarily obtained by sub­
stituting i D/'i xf* - eA^ for i 2/9 x*4 in equation (3.7). 
The electromagnetic interaction term in the Lagrangian 
density i s then 

(3.9) Xint = l. ?(x) [t°ff *J t(x) . 

If one expands the Lagrangian density (3.9) according to 
equations (3*5) one gets two types of terms. Type one 
w i l l contain one each of a creation and an absorption op­
erator, these terms shall temporarily be retained since 
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they describe events in which there is no change of part­
i c l e number; type two w i l l contain two operators of the 
same kind (i.e., both creation or both destruction). 
Terms of type two describe processes in which pair crea­
tion or pair annihilation take place; since these are 
processes not being considered in the present elastic elec­
tron scattering problem, such terms shall be neglected. 
Of the two terms of type one, only the one term involving 
electron creation and electron absorption (a^ and a) i s 
retained; the term involving positron operators i s of no 
interest. Thus the interaction Lagrangian density for 
elastic electron scattering can be written 

(3.10) £ i n t = i e 1 S ^ V . - i k ^ j f o y ^ , ^ e * i k » x , # 

k » J r " 

Thus, using result (1.10), (see also Appendix A), the 
amplitude A ^ for scattering from jk.̂  ,s.^=| to ^ k f > sf|=^ff| 
i s given by 

( 3.11) A f l = < } f J j ^ i n t d 4 * | J i > 

in the f i r s t Born approximation. 

(3.12) A f i = - i p ( d x ^ f u 1 k « , r ' ) e - i k ' x A / A(x )u (k» , r » ) 
J j r „ ; r „

 r 

e ^ i k " ^ 0 , a

t ( k f , r f ) a l ( k S ^ M a ( k ^ , r M a ( k i , r i ) $ 0 > , 
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(3.13) A f i = ^ u U i , r i ) ) l 0 ) f c / 4 A ^ ( k i - k f ) u ( k f , r f ) 2 ? r £(0±-cJf) , 

A^(iSi-k f) r ^ d 3 x A^(x) e
i ( ^ i ^ f } ^ . 

Using r e l a t i o n s (1.11) and (1.12), 

2 
(3.14) w f i= 2 * e ( U f Y ^ U i V ^ U f ) A ^ ^ - k f ) 

using the f a c t that the A^ are r e a l . 

Using equation (1 . 2 3 ) , the d i f f e r e n t i a l scattering 

cross-section for electrons scattered e l a s t i c a l l y by a 

f i x e d electromagnetic f i e l d i s 

(3.15) 4-~r - - ^ [B A ^ k i - k , ) A ^ - k , ) ] ^ 
d s l " Un)2 L T 1 f * 1 ~ f J ^ i - ' 

where B = ( X X ^ ^ ^ M ^ ^ ^ u f ) . 

I f the incident beam of electrons i s unpolarized, one 

must average over the two possible spin states s^=l,2. 

I f the detector does not distinquifih. between spin states, 

one must as well sum over the f i n a l spin states s^=l,2. 

Thus, B of equation (3«15) becomes B, B. averaged and sum­

med, 

I 
(3.16) s^"f-i u ( k f , s f ) ^ u ( l c i , s i ) u ( k i , a i ) ^ u ( k f , s f ) 
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But using 

(3.17) ^ u^(k,r) y(k,r) = ^ ( Y ^ t , 

where - i - O ^ k ^ m)= A i s the so-called energy projec­
tion operator, 

( 3.18) B = 1 21 T f f t k i ( t. • m l V * ML • m l , 

(3-19) B = _ 1 _ Tr 

Specializing to the case of a fixed, static, Coulomb 
f i e l d given by 

(3.20) AQ.(x) = -2a. , A , = 0 , (k = l,2,3), 
(xl 

i n the laboratory frame, or 

(3.21) A ^ - k f ) = . f r * g e . 2 ? T Z e " 

o i l . j k j - k ^ k 2 ( 1 _ c o s e ) 

2 2 2 2 (using k*k = k cosB, C*J = k +m ), equation (3.15) becomes, 

- .2/) 2 _ 
(3. 2 2). U L s £ * l L * (2 7 T ) 2 Z 2 e 2 

d l l ( 2 7 r ) 2 k 2(l-cos6) 2 

^ i ~ 

Using lemmas 1-3 above, equation (3.19) becomes 

(3.23) B =• ( 2 ^ i 2 - kikf + m2) , 



28 

(3 .24) B = r - i - Q (m 2 + 4" (1+cose)), 

( 3 . 2 5 ) B = - ^ 2 ( 1 + ^ = o s 2 | ) , 

using k^k^ = - k cos0. Thus, 

(3 . 2 6 ) A £ Z A J ( l + ^ c o s 2 | ) . 
d/2- V 2 k 2 s i n 2 | / m 2 ? 

I f equations (3*5) had been normalized to u>jm par t ­

i c l e s per volume V, i . e . , mul t ip ly (3*5) by an a d d i t i o n a l 

f a c t o r -fa/m', one would have had to use equation (1 . 2 6 ) 

ins tead of ( 1 . 2 3 ) , to y i e l d i n place of (3.15) the fol lowing 

( 3 - 2 7 ) R ( 2 ^ r T 2 L B V A-3 " • 
Instead of equation (3*17) one would have 

2 

(3 .28) ^ u - ( k . r ) u , ( k , r ) = L m). 
r=l r 2m 

Equations (3.18), (3.19) , and ( 3 . 2 3 ) would contain the 

fac tor l / 2 m 2 rather than the factor l / 2 * J 2 . Beyond equation 

(3.25) the two normalizat ions lead to i d e n t i c a l expressions. 
2 2 

For the n o n - r e l a t i v i s t i c l i m i t , k « m , one can write 
2 

m for cd and mv for k and hence, using E ^ E k / 2 m , 
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the usual c l a s s i c a l scat ter ing cross-sect ion i n the f ixed 

f i e l d approximation; see also equation ( 2 . 2 6 ) . For small 

s ca t ter ing angle, the r e s u l t in* the n o n - r e l a t i v i s t i c l i m i t 

i s i d e n t i c a l to the r e s u l t ( 2 . 3 1 ) . 

The r e l a t i v i s t i c l i m i t may also be of i n t e r e s t since 

i n the case of photons being scattered t h i s i s the only 
2 2 2 2 case. I f k >^ m , tO i s near ly equal to k and 

Due to the f i xed f i e l d approximation one must l i m i t the 

a p p l i c a b i l i t y of ( 3 * 3 0 ) . C l e a r l y , the condit ion that the 

mass (not rest-mass) of the inc ident p a r t i c l e be much 

smaller than the rest-mass of the target nucleus i s not 

l i k e l y to be compatible with the r e l a t i v i s t i c l i m i t condi-
2 2 

t i o n , k » m , for the inc ident p a r t i c l e . The condit ion 

that n e g l i g i b l e momentum be transferred to the target 

nucleus must then be appl i ed , to y i e l d the r e s u l t 6^<1, 

i . e . , small angle s ca t t er ing implies small change i n mom­

entum. Equation ( 3 . 3 0 ) becomes i n th i s approximation 

( 3 . 3 D d_£_ _ / 2 Z e i \ 2 1_ , e^<l. 
djTL ~ [ oO J Q4 
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§IY. THE CLASSICAL EINSTEIN EFFECT - THE GRAVITATIONAL 

DEFLECTION OF LIGHT 

According to the general theory of r e l a t i v i t y , the 

t r a j e c t o r y of a p a r t i c l e i s governed by the equations for 

a geodesic (see Appendix C ) , 

= 

The metric i s determined by the f i e l d equations 

(4 .2) = -%KT g ^ , 

where the cosmological constant has been taken to be zero. 

A so lu t ion of equation (4 .2) for the metric (or equivalent-

l y , the i n t e r v a l ) i n empty space ( i . e . , = 0) surround­

ing a g r a v i t a t i n g point p a r t i c l e , the Schwarzschild metric , 

s h a l l be used to describe the g r a v i t a t i o n a l effect of the 

sun. This i n t e r v a l i s s t a t i c , s p h e r i c a l l y symmetric i n 

space, and invar iant under time r e v e r s a l , and i n spher i ca l 

polar coordinates and time, i t i s wri t ten 

(4-3) d s 2 = ( l - 2 m / r ) d t 2 - ( ^ m / r ) " r 2 d e 2 ~ r ^ 1 * 2 ® d02. 

To solve equations (4 .1) with the condit ion (4.3)> one 

needs the values of the 3-index symbols. A l l are zero 

except the fo l lowing: 
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f l 3 , 3 f = l / r , f M = l E 8 $ ! > 
( 4 . 4 ) [ 2 2 , l | = - r ( l - 2 m / r ) , [23,3} = cote, 

[ 4 4 , l f = r - ( l - 2 m / r ) ( m / r 2 ) , [ 3 3 , i | = - r s i n 2 e (l - 2 m/r), 
^ 3 3 , 2 } - - s i n e cose, - l">?>°( \ • 

It i s convenient to introduce new variables, 

( 4 . 5 ) Rsr/2m, and T=st/2m, 

where 

( 4 - 6 ) r s = 2 m 

i s the Schwarzschild radius. For the case of the sun 
r g (sun)^ 3 x 10^ meters (equivalent to about 4 x lCpO 
kgms.). The surface of the sun i s approximately at a 
distance p = 2 . 3 x 1C>5 units from the origin. The charact­
e r i s t i c time (the time taken by light to go r s meters) i s 
approximately 10"^ seconds. The time taken by a photon to 
travel the distance equal to the diameter of the sun i s 
several seconds (cf. TftJlO"^ seconds). These two charact­
er i s t i c parameters determine the magnitude of the scatter­
ing effect of a photon passing the sun near the surface of 
the sun. 

With the new variables ( 4 . 5 ) , equation ( 4 . 3 ) becomes, 

(4 . 7 ) d r 2 = (l-l/R)dT 2 - _ R 2 (d6 2 + sin 26 d0 2). 
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The trajectory of a photon in any plane through the 
origin which, because of spherical symmetry may be taken 
i n i t i a l l y at 0 = w / 2 , i s the null geodesic. Equation ( 4 . 7 ) 

gives 

where d9 = 0 due to the 0-component of equations (4.1), i.e., 

giving de/dssO i f 9 = T/ 2 and d0/ds=iO i n i t i a l l y . 
The angular momentum integral results from the 0-

component of equations (4.1), yielding (see Appendix D, 
equation (D.10)), 

(4.10) R 2 0 = J, 

where the "dot" represents derivation with respect to X . 

The energy integral i s a result of the t-component of 
equations (4.1), yielding (see Appendix D, equation (D.15)), 

(4.8) (1-l/R) dT 2 - dR2 

- R 2 d02 = 0, 1-l/R 

( 4 . 9 ) 

(4.11) T (1-l/R) = K. 

It should be noted that for a photon J and K are 
i n f i n i t e , however, their ratio i s f i n i t e and that i s a l l 
that i s required in this problem. 



FIGURE 4.1 

ORBIT OF A PHOTON IN A PLANE THROUGH THE ORIGIN OF THE 

SCHWARZSCHILD OBJECT 
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S u b s t i t u t i o n of equations (4.10) and (4-H) i n t o 
equation (4.8) g i v e s , 

(4.12) R2 = K 2 - J 2 Ifizii . 
R3 

Using a new v a r i a b l e , ^ = l/R, and d i v i d i n g by J 2 = (0/̂ >2)2 

equation (4.12) becomes 

where p=J/K. The cubic term i s c h a r a c t e r i s t i c of E i n ­
s t e i n ' s theory as compared t o the Newtonian theory.. I f 
t h i s term i s e n t i r e l y neglected, one obtains f o r the t r a j ­
e c t o r y which begins f o r J = 0 ( i . e . , R = co) at 0=0, 

(4.14) 0=^ ( l - P 2 ^ 2 ) " 4 P - a r c s i n ( p j ) , 

or 

(4.15) R s i n 0 = p. 

This i s the equation of a s t r a i g h t l i n e w i t h impact para­
meter p (see Figure 4.1). The exact s o l u t i o n of equation 
(4.13) i s 

(4.16) 0 = J ( 1 - P 2 £ 2 (1- y ) ) ~ 2 p d j . 
'0 

L e t t i n g 
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( 4 . 1 7 ) u = P y d - y ) * , 

and since p » l for the surface of the sun, expanding in 
powers of p-1 gives 

(4.18) y p = u (1 + u/2p +...)., 

(4.19) p d j = (1 + u/p + ...) du , 

and hence equation (4.16) becomes 

S-u 
(1 + u/p •» ...) (1 - u 2)"* du , 

o 

(4.21) 0, = arcsin u - (l/p) ((1-u 2)^ - 1) + ... . 

For u = l , one has du/d0 = O and thus also dy/d0=O, and 
this corresponds to the point of closest approach (see 
Figure 4.1). 

(4.22) 0(u = l) = + l/p, 

corresponding to a deflection of the trajectory in the 
amount l/p up to this point. By symmetry, the same amount 
of deflection w i l l be engendered. al ong the second half of 
the trajectory as i t proceeds from 0 (u = l) to 0 — ft + 2/'p. 
Hence the total deflection i s \ 

(4.23) % = 2/p. 

In more usual units 

( 4 . 2 4 ) X - 4MG/p , 
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where M i s the mass of the sun, G i s the g r a v i t a t i o n a l 

constant, and p i s the impact parameter. 

Numerical ly , for a photon t r a v e l l i n g just past the 

surface of the sun 1 .74 seconds of an a r c . The a t ­

tempts at experimental v e r i f i c a t i o n of the E i n s t e i n effect 

and the d i f f i c u l t i e s that the detection poses are reviewed 

by A. A. Mikhai lov , 1959-

Comparison of equation (4.24,) with equations ( 1 . 5 ) 

and (1.6) y i e lds 

( 4 . 2 5 ) ^ = i L G M i 2 # 

d_n 

See also equations ( 2 . 3 1 ) , ( 2 . 3 2 ) , and ( 2 . 3 3 ) for a comp­

ar ison of the small angle scat ter ing i n the cases of C o u l -

ombic and g r a v i t a t i o n a l s ca t t erers . 

The geometric method employing the notion of geodesic 

does not consider i n i t s formulation the concept of po lar ­

i z a t i o n of photons. The pred ic t ion made i s thus independ­

ent of any p o l a r i z a t i o n of the photons. The quantum f i e l d 

method used i n the next sect ion again arr ives at the re su l t 

( 4 . 2 5 ) f or the unpolarized case, however, the p o l a r i z a t i o n 

effects are calcuable as w e l l . 
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§ V . THE QUANTUM MECHANICAL EINSTEIN EFFECT 

The c l a s s i c a l E i n s t e i n e f f e c t , as discussed i n Sect­
i o n I V , does not concern i t s e l f w i t h the quantum mechanical 
n o t i o n of the s p i n of a photon. P o l a r i z a t i o n e f f e c t s are. 
thus not e a s i l y handled by t h i s method. In analogue to 
S e c t i o n I I I , t h i s s e c t i o n concerns i t s e l f w i t h the s c a t ­
t e r i n g of a photon by a given, weak g r a v i t a t i o n a l f i e l d . 
A s o l u t i o n i s obtained u s i n g the f i x e d f i e l d approximation, 
the bounds on the v a l i d i t y of which are as s p e c i f i e d i n 
Se c t i o n I I I . 

The photon i s described by a plane wave s o l u t i o n to 
Maxwell's vacuum f i e l d equations, which are assumed to 
hold i n every i n e r t i a l frame, 

(5.1) - ^ = 0, 
^ k 

where 

(5.2) F i k = i l i - 2 ^ , 
^ k 2 y ± 

and where A ^ ( x ) , (1=0,1,2,3) i s the vector p o t e n t i a l . 
The plane wave s o l u t i o n s A^(x) can be F o u r i e r analyzed 
(see Mandl, F., 1959, Chapter 9) i n the usual way to des­
c r i b e the quantized electromagnetic f i e l d i n terms of 
photons. 
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5.3) A ±(x) = 4 , 2 5 ? - ^ - L ( k , s ) b ( k | 8 ) e - l k x + 

e £ ( k , s ) b f ( k , s ) e + i k x ] , 

with the normalizat ion being one p a r t i c l e per volume V . 

The operators b(k,s) and b^"(k,s) are interpreted as ab­

sorpt ion and creat ion operators of photons of momentum k 

and i n spin state s; and the p o l a r i z a t i o n vec tors - for 

the photons are denoted by e^(k,s) , or more simply by . 

By introducing the uni t propogation vectors n^, 

(5.4) n i e \l*> , 

and by combining equations (5.2) axid (5.3), 

5.5) F..U) r r ^ g S l / f 7  

1 J <flpk « ' 2 

(e*n.-e*n ) b f ( k , s ) e + i k x 

J J Jj 

The inc ident and scattered photons s h a l l be i d e n t i f i e d 

as fol lows (see Figure 5.1): 

n i s the d i r e c t i o n of the inc ident photon, 

n' i s the d i r e c t i o n of the scattered photon, 
(5.6) 

0 i s the sca t ter ing angle, ( n « n ' ) — c o s © , 

0 i s the so lar longitude. 

Then, with the convention of Figure 5.1, 
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/ i \ / cose 
(5.7) n = 0 ) ; n' = I sine cosjZu . 

\0f \sine 

Since the photons are transverse one can choose (see 
Jauch, J'.M., and Rohrlich, F., 1955) 

( 5 . 8 ) e Q = 0 . 

Denote by 

/ei(n,s) 
(5-9) e(n,s) =: I e 2(n,s) 

\ e3(ii,s) 

the polarization vector of a photon of propogation direc­
tion n and polarization state s. If s = 1 means 'right 
hand, circular polarized' and s =• 2 means 'left hand, cir­
cular polarized', then one has the standard result (see, 
for example, Freeman, M..J., 1967) 

(5.10) e(n,l)= e (n ,2) r_, 1 f-ngxio-ini 
^ 2 ( l - n 3

2 ) ' ^ \ln/ 

Alternatively, i f s = l , 2 means the following linear polar­
izations, the notation w i l l be 

(5.11) €(n,l) = J?r<g(l) t e(2)| = .. 1 », | -non 
L J f l ^ I 

(5.12) 6( 

file:///sine
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According.: po equations (5.7), 

(5.13) 

§ ( n , 2 ) 

that i s , with n p a r a l l e l to the x^-axis , £(1) means po lar ­

i z a t i o n p a r a l l e l to the x^-axis and €.(2) means p o l a r i z a t i o n 

p a r a l l e l to the X2-ax i s . This completes the descr ipt ion 

of the photon i n so f a r as th i s problem i s concerned. 

The g r a v i t a t i o n a l f i e l d i s described c l a s s i c a l l y by 

means of the metric tensor g*/* . In the weak f i e l d approx­

imat ion, which w i l l be used throughout, 

(5.14) rtsW? , ^- , 

with 

(5.15) Y * < * = ) V * \f«(> | <«f I . 

I f one spec ia l i zes to the case of a s t a t i c g r a v i t a t i o n a l 

f i e l d and performs a Four ier decornpostion, one gets 

(5.16) f (x) : f l i l r ^ f l , ] e - ^ £ « , 

where G 1 ^ i s the p o l a r i z a t i o n tensor and f(q) i s a func­

t i o n ( i . e . , a c-number) not an operator, s ince the external 

f i e l d approximation-is being used. 
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In order to be able to use the formalism developed 
in Section I, an interaction Lagrangian for the coupling 
of the photon f i e l d to the gravitational f i e l d i s needed. 
A possible derivation of the total Lagrangian results 
from the so-called compensating f i e l d method (see Kaempf-
fer, F.A., 1965)• 

Maxwell's vacuum f i e l d equations (5.1) can be derived 
from the action principle, 

Using the method of the compensating f i e l d , the Lagrangian 
density in general space-time coordinates (not necessarily 
Minkowski) can be written 

with 

(5.IB) L r= - £ F F ik 

(5.19) 

(5 .20) £ s = - * h F*/*F, 

where 

(5.21) h s det ( h 1 ^ ), 

where 
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(5.22) " dy^ = h k ^ dx*" , 

where the y k are the l o c a l i n e r t i a l coordinates and the 

x * are the coordinates i n the underlying continuum. (For 

a more complete descr ipt ion of the ' v i e r b e i n ' formalism 

of general r e l a t i v i t y see Kaempffer, F . A . , 1968.) 

In the weak f i e l d approximation, see equations (5*14) 

and (5.15), 

(5.23) h = 1 - & ) f V . 

Thus equation (5.19) becomes. 

(5.24) Zs = -h F % l k + J / l k ( S r S P i r F k s - i S i k F r S F r s ) . 

Subtract ing the term (equation (5.18)) leading to the 

vacuum f i e l d equations i n a Minkowski space, the term due 

to the g r a v i t a t i n g source i s 

(5.25) / l n t = hf* ( $ » F l r F k s - 4 Sik F r S F r s ) , 

(5.26) ^ l n t = i S r S ( Y 1 J - t V - ; „ S t J ) F i r F j s . 

For ease of nota t ion , k s h a l l represent both var iab le s , 

the momentum k and the p o l a r i z a t i o n state s. I f one i s 

in teres ted i n the scat ter ing of a photon from an i n i t i a l 

state | k ^ into a d i f f erent ( f ina l ) state ^k T ( through 

the effect of V * * ^ ' then i n the i n t e r a c t i o n Lagrangian 
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density only terms which contain one each of creat ion 

and destruct ion operators need be reta ined; the terms 

deal ing v/ith the creat ion and destruct ion of photon pairs 

can be ignored. As i n equation ( 1 . 1 0 ) , the amplitude for 

t h i s sca t ter ing i s given by 

and hence, using the normalizat ion of one p a r t i c l e per 

volume V, equation ( 1 . 2 3 ) appl ies and 

f o r a f i x e d , time-independent f i e l d . 

Using equation ( 5 . 2 6 ) with the Four ier decompositions 

( 5 . 1 6 ) and ( 5 . 5 ) , equation ( 5 . 2 ? ) becomes, 

fM f , as i n equation ( 1 . 1 0 ) , i s defined by 

( 5 . 2 9 ) 

e i ( A ) ' - ^ ) t d q d 4 x f 

where the fac tor A contains a l l the relevant p o l a r i z a t i o n 

tensors , 
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(5.3D A =riS r s ( e 1 J - i e m ^ r m 5 1 J ) ( e i n r - e r n i ) ( e [ n ' - e f n ^ 

Integrating equation (5.30) over dSc yields the delta-
functions, UTT )^ S"(k' -q-k) S(<j'-*p), and allows the im­
mediate integration over dq, so that, 

(5.32) <k ' )M|k> = ^Z-fiJtT1 f(k'-ki) • 

Thus, equation (5.28) becomes 

The Schwarzschild metric, which (as in the last sec­
tion) shall be used to represent the effect of the sun, (see 
equation (4 . 3 ) ) , can be written in isotropic coordinates, 

r = (l-nn/2?)2 r = (x 2+y 2+z 2)^, 
x = r sinG cos0, 

(5.34) 
y r r sine sin0, 
z = r cose, 

in the form 

(5.35) ds 2
 = (l-m/2r) 2

 d t 2 _ ( i + m / 2 r ) 4 (dx 2+dy 2+dz 2), 
(l+m/2r)2 

or, in the weak f i e l d approximation, as 

(5.36) ds 2 = (l-2m/r) d t 2 - (l+2m/r) (dx 2+dy 2+dz 2), 



44-

with m S M G. 

In the weak f i e l d approximation 

M .-2m/r 0 0 0 
i n i 0 -l -2m/r 0 0 

(5.37) g^ = \ 0 0 -l -2m/r 0 
0 0 0 -l -2m/r 

Hence, wr i t ing Y 1 ^ ( x ) as f ( r ) £ 1 J for a s ta t ic , , c e n t r a l , 

weak, Schwarzschild f i e l d 

(5.38) 

f (r) =: 2GM/r. 

Or, 

(5 .39) f (q) 8 7TGM 

if 
At resonance, 

4 7 T G M (5.40) f ( k ' - k ) ) -
*tO=cof • < d 2 ( l - n . n ' ) 

Combining equations ( 5 . 4 ) , ( 5 . 8 ) , and (5.13) 

(5.41) | A | 2

= | ( e . e ' * ) ( l + n . n « ) - (e .n')(e»*.n)j 2 

Using equation ( 5 . 6 ) , 
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(5.42) | A | 2 = |(e.e'*)(l+cos6) - (e.n')(e'*.n)| 2 

Thus, equation (5.33) becomes 

(5.43) G 2 M 2 

(i-cose) 2 
(e.e'*) 2(l+cose)-(e.n') ( e f * .n)| 2, 

This i s the d i f f e r e n t i a l c r o s s - s e c t i o n f o r s c a t t e r i n g of 
photons i n t o the s o l i d angle d£l at the s c a t t e r i n g angle 
9 w i t h f i x e d i n i t i a l and f i n a l p o l a r i z a t i o n s e and e'. 

I f the i n c i d e n t beam of. photons i s u n p o l a r i z e d , one 
must average over the two p o s s i b l e p o l a r i z a t i o n s t a t e s 
s r l , 2 . I f the detector does not d i s t i n q u i s h between 
p o l a r i z a t i o n s t a t e s , one must as w e l l sum over the f i n a l 
s p i n s t a t e s s' = l , 2 . Thus, |A } 2 of equation (5.42) becomes 
JAJ 2, | A| 2 averaged and summed, 

(5.44) | A | 2 - ^ 0 ± | A | 2 , 

(5.45) | A | 2 = s€{ (e.e'*)(e*.e')(H-cos9) 2 - 2(e.e'*) 

(e.n») ( e'*.n) (l+cos6)+( e-n') (e'*.n) (e*'n') ( e T .n). 

Because of the s p h e r i c a l symmetry, of this>;interaction one 
can take 0=0 f o r t h i s c a l c u l a t i o n aaad one e a s i l y obtains, 
using equations (5*7) and (5.10), 

(5.46) -2? ^ > ( e . e 1 * ) ( e - e 1 ) r 1 + cos 20, s =1 s -1 — — — ~ 



( 5 . 4 7 ) 
s=l s ' - l 

2 2 
( 5 . 4 8 ) 

s-1 s '=l 
: £ ^ ( e -n t ) ( e '^ .n ) (e* -n t ) ( e ' -n ) - ( l - cos 2 e ) 2 . 

F i n a l l y , 

( 5 . 4 9 ) | A | 2 = ( 1 + C O S 0 ) 2 , 

independent of 0, as must be because of spher i ca l symmetry. 

Thus, equation ( 5 * 4 3 ) becomes 

which i s the same as equation ( 4 . 2 5 ) ca lculated by the 

c l a s s i c a l method i n Section IV. 

Rather than considering an unpolarized beam and a 

detector which i s unable to d i s t i n q u i s h between the po lar ­

i z a t i o n s tates , suppose the i n i t i a l beam of photons i s 

l i n e a r l y po lar ized i n the equatoria l plane of the sun. 

Suppose also that only scattered photons po lar ized i n the 

same d i r e c t i o n are detected. Then 

G 2 M 2 cot A ( 9 / 2 ) . 

Thus, for small s ca t ter ing angles 0 ^ < 1 , 
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(5.53) e - €(n,2) = ( 1 j , 

and 

(5.54) e' =r €(n',2) =r L 
V l - n 3 » 2 

I t follows that 

'-V 
0 

(5-55) e - e ' = 

(5.56) e - n ' - n 2 » - , 

(5.57) e ' - n = -
n 2 « 

V l - n . ' 2 ' 3 
Equation (5.42) then becomes 

(5.58) A = . 1 . Tn-,'(1+cose) + n » 2 , V w 2 ^ l l 2 J 

(5-59) A - _ i — - (cose(l+cos9)+sin 2e cos20) , 
( l - s i n 2 e s i n ^ 0 ) 2 

(5.60) A = 1 — (cose + cos 20 + cos 26 sin 2 0 ) , 

( l - s i n 2 e s i n 2 0 ) * 

using simple trigonometric i d e n t i t i e s , and hence 

(5.61) I A ) 2 - ( l t c o s e ) 2
 ( l . s l n 2 0 + c o s e - s l n 2 0 ) 2 . 

1 (l-sin 2esin ' I 0 ) 

This re s u l t d i f f e r s from,the usual E i n s t e i n result by the 



FIGURE 5 . 2 

DEVIATION FROM EINSTEIN'S RESULT -

INCIDENT AND DETECTED POLARIZATIONS PARALLEL 
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f a c t o r 

(5.62) D r [ l ~ s i n 2 0 (1-cosQ)] 2 

( l - s i n 2 8 s i n 2 0 ) 

which, f o r small s c a t t e r i n g angle, 6j becomes approximately 

l - ( l - | i | i ) s i n 2 0 2 

(5.63) D £ 2 24  
l - ( e _ ^ ) 2

 s i n
2 0 

Thus, 

4 
(5.64) D £ 1 - -|- s i n 2 0 cos 20, 

where a l l terms of order 0̂ " are r e t a i n e d . This d e v i a t i o n 
i s p l o t t e d as Figure 5.2. 

I f the i n i t i a l beam i s p o l a r i z e d ( l i n e a r l y p a r a l l e l 
to the po l a r a x i s of the sun, and the detector i s e f f e c t i v e 
only f o r photons p o l a r i z e d i n the e q u a t o r i a l plane of the 
sun, then 

'0 
(5.65) e r £(n,l ) z [ 0 ) , 

and 

(5.66) e' - j(n«.2) = , 1 „, f n f ' 

I t f o l l o w s that 

(5.67) (e-e') r 0 , 



FIGURE 5.3 
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DEVIATION FROM EINSTEIN'S RESULT -

INCIDENT AND DETECTED POLARIZATIONS PERPENDICULAR 
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( 5 . 6 8 ) (e-n1) rr ny , 

(5.69) (e»-n) - -

Equation (5*42) thus becomes 

I n . ' 

(5.70). A 
l3 

and 

(5.71) |A|2 r (1+cose) 2 (1-cosQ) 2 s i n 2 0 cos 20 
l - s i n 2 0 s i n 2 0 

which, for small scattering angle, 0, becomes approximately 

(5.72) |A|2 = ( 1 4 - C O S & ) 
0 4 . Irl 2 , 
£- s i n 0 cos 0 4 

The deviation from the Einstein r e s u l t i s plotted as Fig­

ure 5«3« 

I f one takes 

(5.73) e r £(n,l)rf 0 

and 

(5.74) e' r G(n« ,1) = — i 
s\ l - n 3

1 "7 

n l ' V 
r 

3' 

•n2» n;' 
l - n ~ ! 

then for small angle scattering 
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(5.75) |A|2 ~ ( l 4cos9 ) 2 (1- i £ s i n 20 c o s 20). 

The deviat ion from E i n s t e i n ' s re su l t has the same graphic 

behavior as i n Figure 5.2. That i s , i f the i n i t i a l beam 

of photons i s l i n e a r l y po lar ized and only photons which 

are l i n e a r l y po lar ized i n the same d i r e c t i o n are detected, 

then the cross -sect ion i s independent of t h i s d i r e c t i o n . 

I f one has 

(5.76) e - e(n,2) 

and 

(5.78) |A| 2 ^ ( l f c o s e ) 2 ( S i n 2 0 c o s 20). 

This dev iat ion from E i n s t e i n ' s r e s u l t i s as p lot ted i n F i g ­

ure 5.3. That i s , i f the i n i t i a l p o l a r i z a t i o n and the 

detected p o l a r i z a t i o n are perpendicular , then the r e s u l t 

i s independent of the i n i t i a l d i r e c t i o n of p o l a r i z a t i o n . 

The p o l a r i z a t i o n ef fects ca lcu la ted above, simply 

express the geometric fac t that as the o r b i t of the po lar ­

i z e d photon i s bent through the influence of the sun, the 

d i r e c t i o n of p o l a r i z a t i o n ( in general) changes, s ince the 

(5.77) e' = € ( n ' , l ) - 1 , 
A l l -n'3 2 

then for small angle sca t ter ing 
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photon must at a l l times remain transverse . 

The maximum deviat ion from the c l a s i c E i n s t e i n effect 

occurs for 0 - K/k, i n which case, Dcz l-eVl6. For 

8 & 1.74 seconds of arc (as i n the case of a photon t r a v e l -
i > -1$ 

l i n g just past the surface of the sun), Or/16 2 x 10~ 

I t i s c lear that these p o l a r i z a t i o n effects are very small 

when compared to the scat ter ing of uhpolarized photons, 

which i s i t s e l f present ly just wi th in the range of 

detec t ion . 
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VI- CONCLUSION 

That the p o l a r i z a t i o n effect ca lculated i n Section V 

i s not i n observable range i s not to say that i t i s use­

f u l to invoke the method i l l u s t r a t e d only to obtain resu l t s 

of u l t r a - f i n e d e t a i l of the already small r e l a t i v i s t i c 

e f f e c t s . Without leaving the problem of photons scattered 

by the sun, i t i s poss ible to suggest several other per t ­

inent problems. 

The effect of the non-spherica l nature of the sun 

should be ca lcu lable using the out l ined method. In the 

weak f i e l d approximation (see Eddington, A . S . , 1924)> 

neglect ing a l l cross-coupl ing terms the metric due to a 

mass d i s t r i b u t i o n fol lows d i r e c t l y from the usual Newtonian 

p o t e n t i a l of the mass d i s t r i b u t i o n . In the l i g h t of 

Dicke's concern with the so lar oblateness (see Dicke, R.H. '^ , | 

1 9 6 7 ) , th i s c a l c u l a t i o n should be carr i ed out with the 

very small p o l a r i z a t i o n effect again being ca l cu lab l e . 

The deviat ion from E i n s t e i n ' s re su l t w i l l be small since 

the suggested oblateness, A r / r , i s of the order 10 ^. 

The p o l a r i z a t i o n effects and the effect of the non-

s p h e r i c a l d i s t r i b u t i o n are both small refinements of the 

c l a s s i c a l r e s u l t . I t i s poss ible that the effect of the 

r o t a t i o n of the sun on the photons sca t ter ing s h a l l be of 

an order such that i t w i l l be more nearly measurable. 

Solut ions of E i n s t e i n ' s f i e l d equations f o r a ro ta t ing 

mass d i s t r i b u t i o n have been found (see T h i r r i n g , V . H . , 



53 

1 9 1 8 ; Kerr, P., I 9 6 3; B r i l l , D.R., and Cohen, J.M., 

1 9 6 6 ; Cohen, J . M . , 1 9 6 7 ) . Using t h i s solution f o r the 

metric, the i n t e r a c t i o n Lagrangian can be obtained and a 

solution f o r the scattering of polarized photons can be 

obtained following the methods of Section V. 

I t i s suggested that by increasing the accuracy of 

the deflection measurement one might be able to detect an 

asymmetry i n the scattering of photons due to the presence 

of a preferred d i r e c t i o n caused by the rotation axis of 

the sun. 
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APPENDIX A: THE SCATTERING MATRIX (THE S-MATRIX) 

The amplitude f o r sca t ter ing from a state | i ^ to a 

state ^ f | , as used i n equation (1.10), can most e a s i l y 

be derived as fo l lows . In the in t erac t ion p i c t u r e , one 

can write (see, for example, Mandl, F . , 1959) 

(A.I) i l i = H I ( t ) {(t) 
Z>t 

where 

(A.2) H I ( t ) = J f t j t t j x ) dx 

jtyij(x) i s the i n t e r a c t i o n Hamiltonian densi ty . I f one 

examines the case i n which the i n t e r a c t i o n i s a d i a b a t i c a l -

l y switched off i n the remote past and i n the remote f u t ­

ure , one can write the f i n a l state ^ f( £ (]>(t—*oo) i n 

terms of the i n i t i a l state | i ^ H < £ ( t - > -co) as fo l lows: 

(A.3) <jj(oo ) = S {(-co ), 

i n which the operator S i s the so -ca l l ed sca t ter ing matrix. 

In order to solve for S and a r r i v e at a form su i table for 

c a l c u l a t i o n purposes i t i s usua l ly necessary to assume 

that the i n t e r a c t i o n i s smal l , al lowing one to use (non-

r igorous ly) a power ser ies i n the i n t e r a c t i o n . Successive 

approximations to the so lut ion of (A.I) y i e lds upon making 

the i d e n t i f i c a t i o n ( A . 3 ) , 



(A-.4) S = 1 - i C^j(x) dSc * ( - i ) 2 j^-UJdSc Hz(t»)dt» 

For the case i n which the Lagrangian density, o£(x), 

i s not a function of the derivatives of the f i e l d variable 

one has 

(A.5) # ( x ) =r -<£(x) . 

To f i r s t order of approximation (Born approximation) equa­

tio n (A.4) then becomes 
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•h oo 

(A.6) S = 1 • i ̂ aC (x) d 4x . 
- oo 

Hence, f o r scattering from a state | i ^ to a d i f f e r e n t 

state ^ f j , the amplitude i s 

A.7) A f i = < ^ f | i ^ ( x ) d 4x|i/> . 

The p r o b a b i l i t y f o r scattering i s , i n t h i s approximation, 

(A.8) |A f i| 2 |</f | J ^ ( x ) d 4x | i > | 2 . 

The form of the S-matrix involving the Lagrangian 

density rather than the Hamiltonian density holds even 

when the r e s t r i c t i o n that *£(x) not be a function of the 

derivatives of the f i e l d i s removed (see Bogoliubov, N . N . , 

and Shirkov, D.V.,1959, Section 18). The form (A.6) can 
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be a r r i v e d at by using only the condit ions of covariance, 

u n i t a r i t y , and causa l i ty of S, together with the corres ­

pondence p r i n c i p l e . I t fol lows that the i n t e r a c t i o n 

Lagrangian must be l o c a l , Hermitean, and covariant . The 

usual sca lar combination of f i e l d var iables automatical ly 

ensures covariance and the condit ions of the Hermi t i c i ty 

and of the l o c a l nature of £ represent subs id iary condi­

t ions l i m i t i n g the choice of a sca lar 

An a l ternate approach (see Bjorken, J . D . , and D r e l l , 

S . D . , 1964) for the case of r e l a t i v i s t i c quantum e l e c t r o ­

dynamics, using a Green's funct ion or Feynman propogator 

approach leads to s i m i l a r r e s u l t s . . 
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APPENDIX B . THE SQUARE OF A DELTA-FUNCTION 

The de l ta - func t ion has the well-known i n t e g r a l rep­

resentat ion 

( B . l ) § (Of-o)L) I T j~ exp[i(V f- * \ ) t j d t . 

Thus, (U)f- ̂ ) J j S t ^ - o ^ ) ] can be evaluated by se t t ing 

Of-cJ-t i n one of the f a c t o r s , wri t ten i n the i n t e g r a l 

representat ion ( B . l ) , to obtain 

B.2) [ $ " ( ^ - 0 ^ ) ]
 2 - L S ^ - ^ ) ^ d t . 

With the i d e n t i f i c a t i o n 

(B.3) 

the t o t a l t ime, one has 

Jdt = T , 

( B.4) ^ (^ f - .^ i ) ] 2 = f ^ ^ f - ^ i 

A l t e r n a t e l y , i n any p h y s i c a l l y r e a l i z a b l e s i t u a t i o n 

the l i m i t s on t are never -co to +co . More r e a l i s t i c a l l y , 

assume the t r a n s i t i o n takes place i n the time i n t e r v a l 

(-T/2, +T/2). Rather than a d e l t a - f u n c t i o n , one then gets 

C M , T l x p = s i n fe r " i i j • 
- T / t 
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Thus, the de l ta - funct ion squared becomes 

(B.6) 4 s i n 2 [(T/2) # 

The area under t h i s curve i s T/2TC. Thus f o r large but 

f i n i t e T, one gets 

( B . 7 ) 
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APPENDIX C. CONSERVED QUANTITIES 

The Lagrangian of a closed (isolated) system, because 
of the assumed homogeneity of time, cannot depend explicit 
l y on time. Thus, 

dt <a\ 2qi 2> V 

from which, using Euler's equations (2.4), 

dL _ _d, . JjTL . 
dt - d t ^ i a A . ) > 

( C 2 ) 

Therefore, the energy of a closed system, 

( C 3 ) E = £ q L - L, 

remains constant during the motion. 
The Lagrangian of a closed system, because of the 

homogeneity of space, must be invariant under arbitrary 
parallel displacement of the entire system in space. Let­
ting r a be the position of particle 'a 1, translate the 
system by an arbitrary, infinitesimal amount S r to get 
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Since Sr i s a r b i t r a r y , 

(C.5) 2— = °> 
from which, using Lagrange's equations ( 2 . 4 ) , 

( C 6 ) = 0 . 

Therefore, the momentum of the system, 

( C 7 ) P = » 

a 
i s a constant of the motion. 

The Lagrangian of a closed system, because of s p a c i a l 

i so t ropy , must be invar iant under a r b i t r a r y rotat ions of 

the whole system i n space. Consider an a r b i t r a r y , i n f i n ­

i t e s i m a l ro ta t ion %0 of magnitude 0 about an axis 

ind ica ted by the d i r e c t i o n of and note 

_ | _ r a - S jTx r a , 

( C d ) £ i a = $0 x r a , 

from which, using Lagrange's equations ( 2 . 4 ) and the f i r s t 

two of equations ( C . 6 ) , 
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I C 9 ) 11 * £ a x p a = 0 . 

d 

Since i s a r b i t r a r y , the angular momentum, 

( C.10) M = 2 ? r x p a > 

a 
i s conserved. 
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APPENDIX D. THE GEODESIC EQUATIONS AN D INTEGRALS OF MOTION 

The equations of a geodesic are determined by the 

condi t ion , ds i s s ta t ionary . F i x i n g the endpoints of the 

t r a j e c t o r y i n general space-time, the path can be deformed 

by an / . in f in i tes imal amount dx**". Applying the s ta t ionary 

condi t ion , 

( D . l ) \ M d s ) = 0, 

with 

(D.2) d s 2 = g ^ dx^ d x 0 , 

( g ^ i s not the s p e c i a l r e l a t i v i s t i c metric of § 1 1 1 ) , 

r e s u l t s i n 

ds =0, 

Integrat ing by par t s , and se t t ing the integrated part equal 

to zero (since the endpoints are fixed) gives 

, n , l i \ J d x ^ d x ^ ^ f A V C r dx^ dx"^ C cL ' 
( D * 4 ) 1 WdT d T fZFhx ~ di (Vd5" + g ^ d s ~ ^ x { d s = ° -

Since equation (D.4) must be true for a r b i t r a r y S x*"" , the 

coe f f i c i en t s must be i d e n t i c a l l y zero. That i s , 

t D - 5 J 2 d s ds ' ix?' *>7*) " — c * d s* 
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Or, mul t ip ly ing by ĝ "** to get r i d of g 6 5 - , 

that i s , 

(D 7) i J dx^ dx̂  - o 
d s 2 " + ( M * J dT" dT " °» 

which are the equations determining a geodesic. 

The angular momentum i n t e g r a l r e s u l t s from the 0-comp­

onent of equations (4.1) as fo l lows: 

(D.S) ^ | - o, 
r ds ds ' 

which has the immediate s o l u t i o n , 

(D.9) r2di=zhi 
ds * 

where h i s a constant. Using the coordinates of equation 

(4.5) one gets , 

(D.10) R 2 M = J . 
ds ( 2 m ) 2 

The energy i n t e g r a l r e s u l t s from the t-component of 

equations (4.1) as fo l lows: 


