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ABSTRACT

This thesis concerns itself with the applicability
of quantum field methods, in the fixed field approximation,
to problems involving a weak gravitatiénal field. After
introducing general scattering relations, various classic
problems are reviewed to illustrate various approaches to
solving scattering mwoblems. Newtonian and quantum mech-
anical field methods are illustrated using Coulomb scat-
tering. Classical relativity 1s used to solve the bending
of light rays by the sun. Finally, quantum field methods
_are used to solve the scattering of polarized photons by
.the sun. The additional problems of scattering of light
by a mass distribution and by a rotating mass are calcul-

able using this method.
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INTRODUCTION

In all observations of the deflection of light by the
gravitatiqnal field of the suﬁ one measures the angle of
deflection suffered by the light ray emitted from a distant
star as it passes near the sun's surface. Accordingly, the
classical theory of this effect is basea on Fermat's Prin-
ciple which prescribes the geodesic as the actual path.
taken by light between source and observer.

In most laboratory scattering experiments, on the other
hand, one measures an intensity as a function of scattering
angle. Accordingly, both the classical and the quantum
mechanical theory of scattering in particle physics are
~aimed at yielding the differential scattering cross-section,
i.e. the ratio between the scattered intensity into a given
solid angle and the incident intensity per unit area.

One can, of course, describe particle scattering also
in terms of the scattering angle in the path of an incident
particle. Even though it has no immediate experimental
relevance, because it would require, for example, the exper-
imentor to fire an o« ~particle with a given impact parameter
past a nucleus; this alternative treatment of particle scat-~
tering is well-known and it is often-used as a basis for the
derivation of scattering cross-sections.

Alternatively, the gravitational deflection of light
can be treated és a quantum mechanical scattering problem,

in which the sun, for example, is treated as the scattering



center which presents a scattering cross-section to an in-
cident beam of photons. This alternative does not seem to
be well-known, and it is the purpose of this thesis to rem-
edy that deficiency in the literature on this subject.

To bring out the equivalence of the two alternative
treatments of scattering in general, the general relations
existing between the concept of the scattering angle and
the concept of the scattering cross-section are éxhibited
in Section I. The classical example of a particle scatter-
ing is the Rutherford scatterihg experiment, whose theory
is summarized in Section II. The classical theory is not
sultable when the scattered particle possesses intrinsic
attributes, such as spin, and a full quantum mechanical
treatment of the Scattered particle is advisable even though
the scattering center may be treated in the so-called fixed
field approximation, as is explained in Section III, with
the scattering of a Dirac electron in a given Coulomb field
serving as example. The_classical Einstein theory of grav-
itational light scattering is reviewed in Section IV, with
emphasis on the analogy to classical Rutherford scattering.
Finally, the quantum mechanical treatment of gravitationai
photon scattering in the fixed field approximation is dev-
eloped in Section V, and as in the case of the electron the
intrinsic polarization_property of the phcton can be hand-
led most appropriately in this way.

The present werk should pave the way for the theoretical
treatment of more elaborate problems, such as the effect of

the solar mass distribution and of the solar rotation on the



extrinsic and intrinsic attributes of incident photons,
and the significance of such future work is briefly dis-

cussed in Section VI.
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8I. BASIC RELATIONS BETWEEN SCATTERING CROSS-SECTIONS
AND DEFLECTION ANGLES

Consider first the case in which the concept of a
'path! of a particle can be defined, and suppose one has
a fixed scattering center (taken to be the origin of the
coordinate system). If one is interested in the scatter-
ing of a uniform, initially parallel beam of identical,
noninteracting particles incident upon the scattering reg-
ion with initial velocity Vg , then different particles in
the beam will have different impact parameters p (see Fig-
ure 1.1) and hence will be scattered a different amount ;{,
from their initial direction. The impact parameter is
defined to be the perpendicular distance from the origin
to the asymptotic initial path of the particle. If dN
particles scatter per unit time through an angle between ﬂﬂ

and X+dk, let
(1.1) do ;;gﬁ ,

where n is the number of particles passing in unit time
through a unit area of the beam cross section (assumed
uniform). 'd6 ' is called the effective scattering cross-
section. Assume that particles with impact parameters bet-
ween pj (X)) and pi(}6)+dpi(]$) scatter through an angle
between X and X+dX,. The subscript on p allows for the

possibility of the relationship between p and X not being



one to one. Then

aN = ;’znpi dpj n;

(1.2)
do =12'2?(p1 dpy -

If, as usual, p and Yo are one to one (which is true for the

usual case of X a monotonic, decreasing function of p),
(1.3) do- = -27rp( X)) ._aé.)gdx,

where the negative sign results from the decreasing nature

of }S(p). Or, since the solid angle d£2 between X and

X+dX is 2usinX a X,

(1.4) do = ~p(X) 2p(X) 4.
sin x: ) 2:

The case in which the angle of scattering is small is
of interest. Suppose that the deflection angle is related

to the impact parameter by

(1-5) X,:-%:)

where A is some constant. (This is a valid relation for
large p in the case of Rutherford scattering as well as
for Einstein scattering.) The particles deflected between

Xo and X-ﬁ-dx are the ones that have impact parameters bet-
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ween p and p+dp (see Figure 1.2), where

(1.6) p= \dp| = —" d X -

A .
X; H
This area, the ring between p and p+dp, is then, by defin-
ition, the differential cross-section for scattering into

the angle between ) and Xs+d)Xs; that is, into the solid

angle df2 =2 sinX¥o dX =22 X d%. Thus

. 2
(1.7) de = |27 p dp| -_-_—2—775-%_,
and

| de- _ 12%p
(1.8) 5=

Next consider the case of a scattered particle des-
cribed quantum mechanlcally as an incident plane wave,
-ikix

u(ki,sq) e

’

(1.9) kix Ewixo - £~'£ ’

representing a state ‘ki:sf>: where k4 is the four-momentum
(hz=c=1) and sj includes other quantum numbers such as
spin. This wave, when entering the scattering region has

a probability of being scattered into another (final) state
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<?f,sf| which again can be written as a plane wave. Under
these conditions the amplitudé'for scattering from ‘ki,s£>
to a different sfate f<%f,sfl, in the first Born approxi-

mation has the form

(1.10) écf,s'fl i Sxintdhx

in a fixed, time-independent external field, where ;(;nt

ooy =i se| iy 5ty Si@p-0y)

1s the Lagrangian density governing the interaction, and
Wi, Wyr are the energles of the scattered particle in the
initial and final states (see Appendix A). The delta-func-
tion results from the integration over the time coordinate
of the scalar product of the initial and final plane waves
and ensures conservation of energy. However, if one neg-
lects the recoil of the source, one does not have conserva-
“tion of momentum. Using the relation, valid for-any delta-

function (see Appendix B),

P o W;
(1.11) [_gj(‘)f-‘t«)i)]'?: 0 -cy) Sdt,

27

one has the transition probability per unit time for fixed

initial and final states,

’(kf’ sl jiintdhx’ ki, Si>’2 .

dt

(1.12) Wri =

ke, sz M[ki,s9)]
:'<£f sgﬂ ! SD, S'(wf" w;) .



The incident intensity I is defined as the number of
incident particles per unit time per unit area of cross
section of the beam. Thus, I equals the mrticle density
times the incident speed. If one normalizes the incident

plane wave to yield one particle pér volume V,

(1.13) 1 =23,

<l

where v 1s the incident speed. The cross-section for

scattering into a definite final state is

Wi V

The differential cross-section for scattering into the set

of final states between k¢ and ket+dke numbering

(1.15) def:(ETY—P dky

is

‘ _ V

S (Wp- Wy
(221)%

2
- ) ¥Z . 2 ‘
(1.17) ds& = v |Ceessg| M]ky, o)) 2 akyp -
If one can assume that the interaction is spherically sym-

metric then the cross-section for scattering into the solid

anglé dii is given by



: de O (Wp-wy) V2 : 2., 2 411 |
(1.18) $& = (thlv ICksrspltil kg )] ® ke? d|kg|

where dky has been replaced by the expression integrated
over d£2, i.e., ng d‘5f|dS2 and the rest of equation (1.17)
has been left unchanged due to the spherical symmetry.

Since

(1.19) @e? = n® 4 kp?

and
(1.20) wedwe=|ke| alke| ,

equation (1.18) becomes,

Wp- ;) V2
(1.21) §5 -2l ) [zl Mlki’si>|2 |ke| Wp awy .
(271)b :

If the detector responds only to particles scattered
into the solid angle dIl(G,ﬁ), one must integrate over all
dwy keeping 6, # constant. Since the incident velocity

may be expressed relativistically as

(L.22) v

)

CI=

the integration over dwyg can be carried out at once with

the result
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i

(1.23) §£ = (2NL,|<5£’ |M|k1’sl>lwf -y

The above quantum mechanical_ahalysis has been based
on ﬁhe stated assumption that the plane waves are normal-
ized to yleld one particle per volume V. This normaliza-
tion is not Lorentz invariant since the volume V is con-
tracted along the direction of motion relative to a frame
of reference. If one wishes to have an invariant prob-
ability, it is convenient to normalize the wave functions
to one electron per invariant volume Vm/w . With this |
normalization the following crucial equations must be re-

written as indicated.

(1.24) was (1.13) I =%’l—‘9 .

(1.25) was (1.15) dN, = ¥m dkfr
ke™ @ (77)3

Hence, equation (1.23) becomes

(1.26) S - ' ke,so| M|k, ,s )l
l, *
a0 - (271)4< f 1
The initial and final states may contain information
about the polarization properties of the scattered particle.
If they are not observed, the expression (1.23) has got to
be subjected to appropriate sums and averages over the

respective polarization states.
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8II. CLASSICAL RUTHERFORD SCATTERING

The laws of motion for a mechanical system can be
derived by applicétion of Hamilton's principle (or the
principle of least action). This approach necessitates
that every mechanical system be characterized by a func-
tion, called the Lagrangian, which, for a system with s
degrees of freedom, one writes L(qy,Q5,:-+381,4p,+++,dg3%),
or equivalently L(q;q;t) for arbitrary degrees of freedom,
where the q's are the coordinates, the J's are the ¢onjug-
ate velocities, and t is the parameter‘representing time.

The condition that the action,

%
is an extremum for the actual motion, q(t), of the system
in the time interval (tl,tz) is applied to yiéld.the re-
quired equations of motion. One wants 83/7:: O for the |
actual path when q is varied by a small amount Sc;(and
correspoﬁdingly § by 8§) while keeping Sq(tl) =Sq(t2) =0,
i.e. fixing ﬁhe endpoints of the trajectory. For one deg-

ree of freedom one gets,

tZ
gj=gSL(q,q,t) dt =0 ,

X, o
(2.2) S(—?—L $q + 2L84) at = o,
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where the first term is zero because the endpoints of the

trajectory are fixed. Since the result is true for arbi-

trary gq,
4 (oL, 2L _
(203) ‘aTt' ( Dq ) - aq.:".oo

For a system with s degrees of freedom, the s different

functions qi(t) must be varied independently to yield

(201&) __d__(_a%_ -_'——O i=12~.o Se

dt ?qi ) 3 P R | L
These are the Euler, or Lagrange's equations of motion for
the system.

Some important 'integrals of motion' can be derived.
from the homogeneity and isotropy of space and time. The
energy of the system, E,

L’

(2.5) E EZqi BL -
i 2 gy

the momentum of the system, P,

(2.6) P=35"2L

(where r, is the position of particle 'a'), and the ang-

ular momentum, M,

(2.7) M Efﬁffza X Py s
a
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"are all conserved (see Appendix C).
For a system of two pafticles interacting through a

central potential U('glfgzl),
(2.8) L =3m#? + dngp? - Ul|rp-r|)
. 141 =Tex2 £i=xat /-

Let L=Er)-r, and define the origin of the coordinate system

such that myry + myr,=0. Then

(2.9) leng ) .1:'.2 "_‘—-—L-——,--n'lI )

and

(2.10) L =3mf® - U(r) , mz MM
m]-m,
Thus the problem of the motion of two particles interacting
through a central force is mathematically equivalent (by
transforming to center of masé coofdinates) to the motion
of one particle in a given central field U(r). |
In cylindrical coordinates r, @, z, equation (2.10)

becomes
(2.11) L = 3m (2 4 rZéz + 2%) - U(r).

Since M (= r x p) is conserved and perpendicular to r, the

motion is planar. Choose the z-axis such that z=0. Thus,

(2.12) L = 3n(#2 + r%?) - U(r),



Since M is the momentum conjugate to @, see equation (2.6),

— 2L 20
. IVI:-—--_:
(2.13) 57 mr<y
Since

¢ 2L _ 2L _
(2.14) £ 5573y =0,

(2.15) M= mrzéﬁ

is constant. From the definition of E, see equation (2.5),

_ 2 L, 4 2L o2, 282,
E=r af+¢3;3 sm(r +r¢‘) u(r) ,

. 2
mr2 + % lyl—'—z-'i- U(I‘) ’
mr

(2.16)

=
1
N~

dr _ (2[g- VG
at ~ (m[E U(r)] wird )

Also, from equation (2.13),

and using the third of equations (2.16), one gets

W+

M 2T M- '
(2.18) dg = (£ [E-U(r)] - 372 ) dr .

Thus,



FIGURE 2.1
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' ;2
(2.19) ¢ = S Mdr/r - — + constant.
(2m[B-U(r)] -1i%/r2)2

In a central field the path of a particle is symmetric

about r, For an inverse square law force field the

in*
path 1s a conic section with the center of force as a focus,

in which case the symmetry is clear. From Figure 2.1,
(2.20) Xo=|or -26,]| -

From equation (2.19),

oo

. y 2
(2.21) ¢o= M dr/r

(2m[B-U(r)] -1%k2) 2

min
Since E and M remain constant, one uses their initial wval-

ues,

=
n
ok
g
<

(2.22)

M = mpv,

where p 1s the impact parameter.

For Rutherford scattering the force field is Coulombic,
(2.23) U(r) = %/r , o =ze?,

'Combining equations (2.21) to (2.23) one gets,
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. o
(2.20) fo= (5/5%) dr
o IS ) l‘(PZ/rz)-(‘ZQ/mrvooZ) 5
min |

(2.25) '@ = cos™t (%/mvg p) :
| [1+(°‘/mv002 p)]%

Or, solving equation (2.25) for p,

(2.26) 92::' = 2 " tan® Bo »

which becomes, using equation (2.20),

(2.27) .p=_X cot (é‘y‘,) .
m

2
Vo

Hence, applying the result of equation (1l.4),

(2528) d ¢ = (—X )2 dSL2
2mve?  sink(3]%1)

Equation (2.28) gives the cross-sectlon in the frame of
reference in which the center of mass is at rest. The
transformation to the laboratory frame is accomplished by

the formula,

(2.29) tan 6y =280 X o _y(w-,
mj +mycos %,

where 8; and ©, are the angles between the directions of
motion after the collision and the direction of impact.

The subscript '2' denotes the particle which was originally
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at rest in the laboratory. ' Using the fixed field approx-
imation, i.e., m)<<m,, then m=xmj, and Xx6;. Thus
equation (2.28) becomes

.2
(2.30) 46 — (Ze5)2 1

d = HELT gink(3e;)

’

where El is the incident kinetic energy. For small angle
scattering one can replace sin(X) by X and hence the dif-
ferential scattering cross-section in the fixed field ap-
proximation, in the limit of small angle scattering is

2
d 6 ~ (L2
(2.31) (35 )Rutherford ~ (5:13—‘13—) 5%1;

That is, the factor A of equation (1.8) is

(2.32) & :5?3 .
1

For Einstein scattering (see Section IV),

(2.33) A = 4LGM ,
where M is the solar mass. The following 'rule of thumb!
is apparent. To go from electrodynamics to gravidynamics
one must replace e2‘ by GMe (in units such that i=c=1) )
or in the cgs-system of units e?/fic by GMw/c3, where
is some characteristic frequency of the system.

Finally, it should be noted that the scattering of

particles with intrinsic properties such as spin is not
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handled by the methods of this section. The next section
illustrates a full quantum mechani:¢al treatment of a scat-

tering problem involving spin quantities.
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§III. QUANTUM MECHANICAL RUTHERFORD SCATTERING

The classical theory of scattering, as developed in
Section II, is not capable of handling the scattering of
particles with intrinsic properties such as spin. In this
section, the scattering of a Dirac electron by a given
Coulomb field is treated, using the fixed field {or ext-
ernal field) apbroximation and the general scattering rela-
tions develobed in Section I, to illustrate how these
intrinsic attributes of particles are handled.

When treating a scattering problem, one generally is
concerned with the interaction of two fields. The coupling
of the systems is achieved by postulating the existance of
a coupling term in the field equations which depends on the
field variables of both fields. In some problems it is
adequate to represent one field by a qﬁantized field, in-
volving creation and destruction (absorption) operators,
while the other field is treated as a given claséical func-
tion of the space-time coordinates. For the classically
given field we need no equation of motion, since it is
assumed to be the given space-time function; this is a
great simplification.

Under certain circumstances the scattering of an elec-
tron by the field of a nucleus can be treated as the motion
of a Dirac electron in a given, fixed Coulomb field. The
conditions necessary to allow the concept of a fixed field
to be valid can most easily be seen when one recalls the

results_of  classical two-body elastic scattering. As in
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Section‘II, (see equations (2.9), (2.29), and the para-
graph following (2.29)), the initially stationary mass mp
'remains‘eSSentially stationary (i;e., there is a negligible
momentum transfer to my) if m,>» m;. Equally, the condition
ﬁhat the reduced mass,annqp&/(ml-mz),_(center of mass
fixed) is approximately my is that m2>>»ml. Hence, the
condition for the validity of the fixed field approximation
is m25$>ml, when the fixed center of mass is nearly coin-
cident with the position of m,. In the relativistic case
the condition of a relatively large target mass can often
not be met at the same time as the relativistic limit cond-
ition k2>;>m2 for the incident particle. In that case one
must épply the condition of negligible momentum transfer
to the target. This condition is met if the angle of
scattering is small; and hence a small change of momentum
occurs. In all the cases that shall be discussed, this
limitation will not be serious since in all cases the
scattering is very strong in the forward direction , that
is, de-/d.qx A/ek.

The approximation in which the field of the nucleus
is treated as a classically given Coulomb field function
rather than a quantized one (involving creation and dest-
ruction operators) can be obtained from a completely quan-
tized theory by identifying the expectation values of the
field and current operators with the classical quantities
(see Jauch -and Rohrlich, chapter 14, 1955). The approxima-

tion is accurate when the fluctuations about the expectation
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values are small compared to the expectation value itself,.
The term 'Coulomb scattering' generally refers to the scat-
tering of an electron by a given, fixed Coulomb field, to
all orders of this field (in this Section only the first
order is calculated). The effect of the presence of photons
(real or virtual) is generally referred to as 'radiative
correction' (corresponding to the éffect of the so-called
radiation field in claésical electrodynamics) and is here
completely neglected.

The electron is described by a plane wave solution to

the Dirac equation (3.1) for a free electron.

(3.2) (¥ 2/3x¢ - m) Y(x) =0,

3
where égL is implied. The wave function qf%x) is a L-comp-

onent Lorentz spinor

(3.2) VY= ¥ >

the 'TfA, (ed=0,1,2,3) are Lxi matrices, operating on the

spinor }P, obeying

o3) PEYVL YO Wt |, gV

OO O
OO!LO
O OO
O OO
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the rest mass of the particle is denoted by m, and the

spin 1s represented by the operators (see A.S. Davidov,

1966)

(3.4) O"Z = -1 \K'XY'Y (cyclic).
- Describing the electron as a quantized field, one can
r
write HV(X) and ‘y/(x).as the Fourier series (see F. Mandl,
1959),

Vixi= 2 Z (ulk,r)all,r) et i, rnt (k,r) etk

(3.5)

Pix) ={%TkZ'r(u‘?g_,r)a’“(;g,r)e-ikX+u<g,r)b(1_<,r)e*ik"),

£,

with ﬂf(x) normalized to one particle per volume V. The
operators a(k,r) and b(k,r), associated with the positive
frequency part, allow interpretation as absorption (dest-
ruction) operators, while the operators afkg,r) and br(g,r),
associated with the negative frequency part, become crea-
tion operators.

The following lemmas concerning the algebra of the .f-

matrices are useful.

Lemma 1: Trace Y« )(FX;:O.
Proof: Tr Y’“YFYS_T )L b“‘fyfff y "x X X f
=Tr )‘:)(d)‘l‘a"S
=Tr (-1 )ﬁ6a15)ﬁ53‘3
using the property Y(‘YS + X‘S X’(“ =0.
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Lemma 2: Trace \6‘# YO =4 g(“) .
Proofé Tr X(A YO "Tr 3“) B(C*
Tr X(“YU -+ X X‘(“)
_hgyﬂ
Lemma 3: Trace X‘(“Y"U\VU‘P: L(gHT gVf -gé“} &P +g€‘f %),
Proof: Using K(‘K'\) :-BM) X(“ + 2 g(m),
Trace X(*XN’W\)\G? :2gl““~TrXH)X\ga -Tr TVX:(AF{X?;
=8 g7V -8 gtVeSF LT YOYVYEYT,
=8 g gVf -8 gtV P 48 glf vV -TrX“'h“’X‘fX‘".
For purposes of this problem, this completes the
quantum mechanical description of the free electron.
The field of the nucleus is described as a classical

field, A@(x). Use 1s made of the Fourier series
k) = \a3 i(ky-kp)ox

In a full quantum mechanical treatment, this plane wave
decomposition (or its inverse) would be written as the.sum
of positive and negative frequency parts (in close analogue
to equations (3.5)) and the coeffecients AP(E) and Aéf(g)
would become creation and destruction operatcrs. In the
external field approximation, however, the Aﬂ(k)'s are so-
called c-numbers, not operators.

The Dirac equation for a free particle (3.1) and its

adjoint equation can be derived from the Lagrangian density

Dirac —

(3.7) X . = -'Y/T(x) )if'o (Y‘“ 2/ x¢ -mE) ’Y/(x),
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1

by application of the Euler (Lagrange) equations

2 2L _ 2L _,
> % 3(;7%;;()) 2 %x) ’
D xV

(3.8)

> (2L \_ vk _
bx b(b%?xl) | 3'),0(7’(.)(
. 0 xV

which.are derived in analogue to equations (2.4), treating
'V&(x) and ’YZQx), (#=0,1,2,3) as independent variables.

In classical electrodynamlcs one can derive the Lag-
ranwlan for a point charge interacting with a fixed elec-
tromagnetic field from the Lagrangian of the free point
charge by substituting p?-eAF for pr in the free Lagrangian.
The Lagrangian describing the Dirac electron in a fixed
electromagnetic field Ar is similarily obtained by sub-
stituting 1 9/2 xt - eAP for 1 2/ x* in equation (3.7).

The electromagnetic interaction term in the Lagrangian

density is then

(3.9) Ly, = 1e Fix) [x i ]Y(x :

If one expands the Lagrangian density (3.9) according to
equations (3.5) one gets two types of terms. Type one
will contain one each of a creation and an absorption op-

erator, these terms shall temporarily be retained since
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they descriBe events in which there is no chénge of part-
icle number; type two will contain two operators of the-
same kind (i.e., both creation or both destruction).
Terms of type two describe processes in which pair crea-
tion or pair annihilation take place; since these are.
processes not being considered in the present elastic eiec¥b
tron scattefing problem, such terms shall be neglected.
Of the two terms of type one, only the one term involving
electron creation and electron absorption (af and a) 1is
retained; the term involving positron operators is of no
interest. Thus the interaction Lagrangian density for

elastic electron scattering can be written

(3.10) Zint = Z , (u? fail g-1k'x ¥ye )‘(‘A Juran tik"X)

k" r"

Thus, using result (1.10), (see also Appendix A), the
amplitude Ap; for scattering from |ki,si>5|§)j> to <kf,sf4‘£<§f\

is given by

(3.11) Agyq = <éf ,iSIintdL’x i1>

in the first Born approximation.

(3.12) Agy = if de é, Wk, r)e-ik'x Foye At‘(x)u(g",r")
k" r"

+lk"x<§0: kf’rf) 1Zk &' )a(k" 1"") 1’ri §O>
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(3.13)  Apy =Leu] (ki,ri))‘ P Rulley kg ulke,rp)2m S @y-wyp)

Af‘(.lsi"Ef) = SdBX A(u(x) ol lky-kp)x
Using relations (1.11) and (1.12),

(3.14) wp; = 2%

UfY\ uy Y “f {«(Ei".}.if)

D (e - We),

Ay(k i

i~ f)
using the fact that the AP are real.

Using equation (1.23), the differential scattering
cross-section for electrons scattered elastically by a

fixed electromagnetic'field is

N 2 ’ "
(3.15) 4& _ & [B Ay (ks -ke) Ay (ks-k, ]

where B = (Efx(“ui Ei-xouf) .

If the incident beam of electrons is unpolarized, one
must average over the two possible spin states si=l,2.
If the detector does not distinquish. between spin states,
one must.as'well sum over the final spin states sp=1,2,
Thus, B of equation (3.15) becomes B, B, averaged and sum-

med,

o v
(3.16) B=#% ;zfj u(kf,sf. Xru(gi,si)u(gi,gi)ﬁf u(gf,sf).

i,8p=1

4
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But using

(3.17) % ﬁ_x(g,'r) uﬁ(g,r)zz—}s (Xckc.i» m

o

. .
where E%;(r' kg + m):_/\ is the so-called energy projec-

tion operator, -

(3.18) ?:'gi-? é Xt‘[fﬁ{id- + m]a?s XH) [Yiff + m]/’x ,
e Pl ]

(3.19) B=

Specializing to the case of a fixed, static, Coulomb

field given by

(3.20) Ao(;c)=lzf-, A= 0, (k=1,2,3),

——

in the laboratory frame, or

(3.21) A, (k;-ke) = —k2Ze 27 Ze
O T Tk ke|l k2(1-cos8)

2

{using _lg-g_:kz cosB, W =,k2+m2), equation (3.15) becomes,

(3.22). & _ 291° 3 (290)%7%"

aa - 2 2 2|#=v=g "
(27 k<(l-cosB) W) = Wy

Using lemmas 1-3 above, equation (3.19) becomes

(3.23) -B-':-" m]—';z (2‘012 - kikf + m2) ’
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— 2 |
(3.24) B =-2_ (n® + K2 (14cos8)),

- l()iz 2
- m- x_ L)
(3.25) B = -2 (1 + " cos 2) ,

using kjk, = 0%~k cos@. Thus,

— 2\ 2

v deE Ze“m k™ 28

(3.26) Yol (2kzsin2-§> (1 + 5 cos ?) .
> .

If equations (3.5) had been normalized to &)/m part-
icles per volume V, i.e., multiply (3.5) by an additional
factor Y«/m , one would have had to use equation (1.26)
instead of (1.23), to yield in place of (3.15) the following:

2.2

oy 45 =[5 oy

Instead of equation (3.17) one would have
< ‘ g
— . ] . l
(3.28) Zr:l uylk,r) uﬂ(g,r) == (¥ kg + m).

Equations (3.18), (3.19), and (3.23) would contain the
factor 1/2m? rather than the factor 1/2«?. Beyond equation

(3.25) the two normalizations lead to identical expressions.

2

For the non-relativistic limit, k2<<xn , one can write

m for & and mv for k and hence, using EkE:-k?”/.’Zm,

2
. _ 5
: Ze
(3.29) 48 - |_
da " |, . 2 8 ’
hhk-sin —2'
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the usual classical scattering cross-section in the fixed
field approximation; see also equatién (2.28). For small
scattering angle, the result in the non-relativistic limit
is identical to the result (2.31).

The relativistic limit may also be of interest since
in the case of photons being scattered this is the only

case. If k2>>n3, &)2 is nearly equal to k2 and

- 2\2 cos
d¢ _[Ze
(3.30) & _(2w)
, sin

2

[

Nlo IV

Due to the fixed field approximation one must limit the
applicability of (3.30). Clearly, the condition that the
mass (not rest-mass) of the incident particle be much
smaller than the rest-mass of the target nucleus is not
likely to be compatible with the relativistic limit condi-
tion, k2§>'m2, for the incident particle. The condition
that negligible momentum be transferred to the target
nucleus must then be applied, to yield the result 8641,
i.e., small angle scattering implies small change in mom-

entum. Equation (3.30) becomes in this approximation

(3.31) d?—(»?Zez)z';_ ,  B<«L1.
da ~ |\ w ol
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8IV. THE CLASSICAL EINSTEIN EFFECT - THE GRAVITATIONAL
DEFLECTION OF LIGHT

According to the general theory of relativity, the
trajectory of a particle is governed by the equations for

a geodesic (see Appendix C),

dRx % dxt ax? _
(1) Sy fuw,af &g =0

The metric is determined by the field equations
(4L.2) R = KT,y -3KT
rﬂ @v 8Pv»
where the cosmological constant has been taken to be zero.

A solution of equation (4.2) for the metric (or equivalent-

ly, the interval) in empty space (i.e., TF””‘” surround-

ing a gravitating point particle, the Schwarzschild metric, -

shall be used to describe the gravitational effect of the
sun. This interval is static, spherically symmetric in
space, and invariant under time reversal, and in spherical'

polar coordinates and time, it is written

) .
(4.3) ds® = (1l-2m/r)dt? - 1§§ =7 - r?de? - r°sin®e ag®.
To solve equations (4.1) with the condition (4.3), one
needs the values of the 3-index symbols. All are zero

except the following:
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, fl; 1}:1_"1%? , | §12 2§= 1/r,
{13 3f =1/r, {Ls hf:l_-%%‘? :

(4.4)  §22,1f = -r(1-20/r), §23,3] = cote, ‘
{Ah lf (1-2m/r) (m/r? {33 lg_.-r sin?e (1-2m/r),
233 2}:-—51119 cos6, {@\/,df = Z‘)(“,dg -

;It is convenient to introduce new variables,
(4.5) R=r/2m, and sz%m
where
(4.6) rg=2m

is the Schwarzschild radius. For the case of the sun

rg (sun)=z3 x 103 meters (equivalent to about 4 k% 1030
kgms.). The surface of the'sun is apbrdximately at a
distance p = 2.3 x 105 units from the origin. The charact-
eristic time (the time taken by light to go rg meters) is
approximately'10'5 secoﬁds. The time taken by a photon to
travel the distance equal to the diameter of the sun is
several seconds (cf. TA10"° seconds). These two charact-
eristic parameters determine the magnitude of the Scatter-
ing effect of a photon.paSSing the sun near the surface of
the sun.

With the new variables (4.5), equation (4.3) becomes,

2
(4.7) dv? = (1-1/R)aT? - B _ 52 (a6® 4 sine ap?).
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The trajectory of a photon in any plane through the
origin which, because of spherical symmetry may be taken
initially at © =%/2, is the null geodesic. Equation (4.7)
gives '

2
(4.8) (1-1/R) dT2 - 'ﬁd%ﬁ - R? g¢* = 0,

where d9=0 due to the 8-component of equations (4.1l), i.e.,

| d®e , 2 (dr, de - af\2 _
(L.9) 2 + £ (ds)(ds) - sin® cosev(ds) = 0

b

‘glving d6/ds=0 if 6 =T/2 and d6/ds=0 initially.

The angular momentum integral results from the g~
component of equations (4.1), yielding (see Appendix D,
equaﬁion(D.lO)),

(4.10) R* § =4,

where the "' dot" represents derivation with respect to T.
The energy integral is a result of the t-component of

equations (4.1), yielding (see Appendix D, equation (D.15)),
(4.11) T (1-1/R) = K.

It should be.noted that for a photon J and K are
infinite, however, their ratio is finite and that is all

that is required in this problem.



FIGURE 4.1
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ORBIT OF A PHOTON IN A PLANE THROUGH THE ORIGIN OF THE
SCHWARZSCHILD OBJECT
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Substitution of equations (4.10) and (4.11) into

equation (4.8) gives,
(L.12) R2 = KR - g% -(R_g%-l )

Using a new variable, = 1/R, and dividing by J?= (b/ 2)2,
b

equation (4.12) becomes

2
(4.23) (&8 = S2-9fve’,

where p=J/K. The cubic term is charaéteristic of Ein-
. stein's theor? as compared to the Newtonian theory. If
this term is entirely neglected, one obtains for the traj-

ectory which begins for ?:O (i.e., R=o00) at g=0,
¥ 2,~3%

(L. 14) @ = S (l-pzs; ) P d? — arcsin (pg),
"0

or
(4.15) R sin P = p.

This is the equation of a straight lire with impact para-
meter p (see Figure 4.1). The exact solution of equation

(4.13) is

D~

pdS).

\
(4.16) @ = S (1-p2p ? (1-0))~
“ueitg? e

Letting



3L,

N

(4.17) u?_pg(l-?) ,

and since p»>1 for the surface of the sun, expanding in

powers of p"l gives
(L.18) gp =u (1 +u/2p ¢+ ...),

(L.19) p deg = (L +wu/p+...) du,

" and hence equation (4.16) becomes

u .
(L.20) ¢:S(l+1dp+.“)(l-u) “ du ,
o

vl

(4.21) ‘P = arcsin u - (1/p) ((1-u®)? - i) e o

For u=1, one has du/df =0 and thus also d §/df =0, and
this corresponds to the point of closest approach (see

Figure 4.1).
(L.22) @lu=1) = %2 +1/p,

corresponding to a deflection of the trajectory in the
amount 1/p up to this point. By symmetry, the same amount
of deflection will be engendered al ong the second half of
the trajectory as it. proceeds from @ (u=1l) to § =T + 2/p.

Hence the total defleétion is;

(4.23) X =2/p.

In more usual units

(4.24) X =4L¥G/p ,
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where M is the mass of the sun, G is the gravitational
constant, and p is the impact parameter.

Numerically, for a photon travelling just past the
surface of the sun }(::1.74 seconds of an arc. The at-
tempts at experimental verification of the Einstein effect
and the difficulties that the deﬁection poses are reviewed
by A. A. Mikhailov, 1959.

Comparison of equation (4.24) with equations (1.5)

and (1.8) yields

(4.25) 4& = (‘*;qul‘f)z :

See also equations (2.31), (2.32), and (2.33) for a comp-
arison of the small angle scattering in the cases of Coul-
ombic and gravitational scatterers.

The geometric method employing the notion of geodesic
does not cpnsider in its formulation the concept of polar-
ization of photons. The prediction made is thus independ-
ent of any polarizatién of the photons. The quantum field
method used in the next section again arrives at the result
(4.25) for the unpolarized case, however, the polarization

effects are caicuable as well.
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8V. THE QUANTUM MECHANICAL EINSTEIN EFFECT

The cléssical Einstein effect, as discussed in Sect-
ion IV, does not concern itself with the quantum mechanical
noﬁion of the spin of a photon. Polarigzation effects are.
thus not easily handled by this method. In analogue to
Section III, this section concerns itself with the scat-
tering of a photon by a given, weak gravitational field.

A solution is bbtained using the fixed field approximation,
the bounds on the validity of which are as specified in
Section IIL. |

The photon is described by a plane wave solution to

Maxwell's vacuum field equations, which are assumed to |

hold in every inertial frame,

ik
(5.1) OF = 0,
Dyk

where

(5.2) pik - 2al _ 9K

- ’

2y  2y3

and where Ai(x), (i=0,1,2,3) is the vector potential,
The plane wave solutions A;(x) can be Fourier analyzed
(see Mandl, F., 1959, Chapter 9) in the usual way to des-
cribe the quantized electromagnetic field in terms of

photons.
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with the normalization being one partic;e per volume V.
The operators blk,s) and br(g,s) are interpreted aé ab-"
sorption and creation operators of pﬁotons of momentum k
and in spin state s; and the polarization vectors for
the photons are denoted by'ei(g,s), or more simply by ey .

By introducing the unit propogation vectors n;,
(5.4) ni r.:lki/“) ’

and by combining equations (5.2) and (5.3),

(5.5) Fij - =i Z'Zl]—_' [ein -e 0y Jo(k,s)e”

(é*n -e

*
1JJ

l)bf(g,s)e+lkx] ’.

The incident and scattered photons shall be identified
as follows (see Figure 5.1):
n 1s the direction of the incident photon,
n' is the direction of the scattered.photon,‘

(5.6)
6 is the scattering angle, (n-n') = cose,

# is the solar longitude.

Then, with the convention of Figuré 5.1,



38

1\ cosb
(5.7) n = (O) ; n'= (sine cosf| .

0 sinB sing
Since the photons are transverse one can choose (see

Jauch, J.M., and Rohrlich, F., 1955)

(5.8) e, =0,

Denote by
e1(n,s)
(5.9) eln,s) = {ez(n,s)
. ' eB(B.JS)

the polarization vector of a photon of propogation direc-
tion n and polarization state s. If s =1 means 'right
hand, circular polarized' and s=2 means 'left hand, cir-
cular polarized', then one has the standard result (see,
for example, Freeman, M.J., 1967)

-nln3-in2

52— (Capoan?)

(5.10) g(g,l)::g
2(1-n32) 12ny?

Alternatively, if s=1,2 means the following linear polar-

izations, the notation will be

; ~1n3
(5.11) _e_(g,l)eﬁ[g(lug(z)] -.-.V__l._z, -ngny |
1-n 3
3

l--n3

-n
(5.12) _E_(g,z)z--«gi [_e_(l) -g(z):’ = 1 nf .
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According.to equations (5.7),

(5.13)
0
€n,2) =1/,
0

that is, with n parallel to the x;-axis, €(1) means polar-

ization parallel to the x3-axis and €(2) means polarization
pa;allel to the xp-axis. This completes the description
of the photon in so far as this problem is concerned.

‘The gravitational field is described classically by
means of the metric tensor g“P . In the weak field approx-

tmation, which will be used throughout,
(5.1) g%f= S‘?P—de » Bag = Scxp + ” ,
‘with

(5.15) }{‘-«(5::)"/3.“‘. , - \Y“P' << | .

If one specializes to the case of a static gravitational

field and performs a Fourier decompostion, one gets
LI} ih _i . i'
(5.16) Y’lJ(X) = X‘ Hx) = —l—%tqf(_g) e dE gt

where €'Y is the polarization tensor and f(q) is a func-
tion (i.e., a c-number) not an operator, since the external

field approximation-is being used.
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In order to be able to use the formalism developed
in Section I, an interaction Lagrangian for the coupling
- of the photon field to the gravitational field is needed.
A possible derivation of the total Lagrangian results
from the so-called compensating field method (see Kaempf-
fer, F.A., 1965).
N Maxwell's vacuum field equations (5.1) can be derived

from the action principie,
(5.17) S\L dhy =0,
with

(5.18) L = - & Fik F,

k .

Using the method of the compensating field, the Lagrangian
density in general space-time coordinates (not necessarily

Minkowski) can be written
' —_ L p P
(5.19) zsource-— hgtg FxP P;gr )

(5.20) L_=-1%n FP(IBF,({B ,

s —

where
(5.21) h= det (nK, ),

where
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(5.22) dy¥ = nK, ax™ ,

where the yK are the local inertial coordinates and the
x% are the coordinates in the underlying continuum. (For
a more complete description of the 'vierbein' formalism
of general relativity see Kaempffer; F.A., 1968.)

In the weak field approximation, see équations (5.14)

and (5.15),
(5.23) h=1 - %Xro- .

.Thus equation (5.19) becomes.
(5.24) &gz -3 Fop,, 4 YK (§7Sr, /- 35, FTF).

Subtracting the term (equation (5.18)) leading to the
vacuum field equations in a Minkowski space, the term due

to the gravitating source is

(5.25) Z = ’z'fx'ik (SI‘S Fir ks - % gik Fr'® F ) ’

int

(5-26) Xint

i g 1 ij i
3§TS (Y1J . i\fmngmng ) F_‘"F‘J.S .

For ease of notation, k shall represent both variables,
the momentum k and the polarization state s. If one 1s
interested in the scattering of a photon from an initial
state |k;> into a different (final) state <fk1 through

the effect of }rij, then in the interaction Lagrangian
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density only terms which contain one each of creation
and destruction operators need be retained; the terms
dealing with the creation and destruction of photon pairs
can be ignored. As in equation (1.10), the amplitude for

this scattering is given by

(5.27) Qc' |i SZm d‘*xl k> ,

and hence, using the normalization of one particle per

volume V, equation (1.23) applies and

|l mli> | 2

'M', as in equation (1.10), is defined by

(5.29) <k'l S - d‘*x|k> E<k’lM|k> S (@'-

for a fixed, time-independent field.
Using equation (5.26) with the Fourier decompositions
(5.16) and (5.5), equation (5.27) becomes,

5.30) <k'l g i ned X l> hiyJwe SSf(q ) ellk'-g-k)-x

V(zm)3

ei(w"'w)t d

where the factor A contains all the relevant polarization

tensors,
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* x>
tnt_ .
jnS e'n')

. i'
(5.31) A =3§7s (eli-g mngmng J)(egn ~en;) (e &M

Integrating equation (5.30) over dh

X yields the delta-
functions, (27)¥ S(_lg'-q-l{_) S(w'—a)), and allows the im-

mediate integration over dgq, so that,

(5.32)  k'|u|k> = AL 4h)" £lk'-k)

Thus, equation (5.28) becomes

2
dg _ [ ? My
(5.33) dn_(u() 3 g),ww,

The Schwarzschild metric, which (as in the last sec-
tion) shall be used to represent the effect of the sun, (see

equation (4.3)), can be written in isotropic coordinates,

(Lem/2F)% F = (x24l-y2+22)%,

e
i\

(5.34)

S
"

T sin® cosf,
y =T sin@ sing,

T cos8,

N
1l

in the form

: 2
(5.35) ds? = £1=m/2r)% §t2 _ (14m/2r)" (dxRrdy%dz?)
(1+m/2r)%

or, in the weak field approximation, as

(5.36) dsz = (1-2m/r) dt? - (l4+2m/r) (dx%+dy%+dz2),
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with m =M G,

In the weak field.approximation

+1-2m/r 0 0 0
( ij 0 ~1-2m/r 0 0
5.37) gv =1 o0 0 -1-2m/r 0O
0 0 o -1-2m/r
= Sij _xij .

Hence, writing Y‘ij(x) as f(r)e"? for a static, central, |

weak, Schwarzschild field

m
e
.
!

_ Sio Sjo ;

H
2
I

2GM/r.
Or,

(5.39) f(q) B7GH
= 9P

- At resonance,

(5.40) f(._lg'-g)) —  _L7GH
Wiw! . WE(l-pn')

Combining equations (5.4), (5.8), and (5.13)

(5.41) ,Alz =:|(§-g'*)(lfg-£') - (e.n")(e'*m)|% .

Using equation (5.6),
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(5.42) |a]® = I(g-g'*)(l+cos@) - (e-n')(e'*.n)|? .

Thus, equation (5.33) becomes

2,8
-4 (1-c0s8)2

(g-e'*)2(1+cose)-(gjg')(e'*-n)l 2,

This is the differential cross—séction for scattering of

photons into the solid angle dfL at the scattering angle

. © with fixed initial and final polarizaﬁions e and g'.
If the incident beam of photons is unpolarized, one

must éveragé over the two possible polarization states

s 1,2, If the detector does not distinquish between

polarization states, one mﬁst as well sum over the final

spin states s'=1,2. Thus, ,Alz of equation (5.42) becomes

'AIZ , l averaged and summed,
— 2 2 ’
san) [a]2 232 Z |al?
TRk &
(5.45) |al? =32 = (e.e'™)(*-e")(14c0s0)? - 2(g-e'™)

(e.n')(e'*.n)(1l+cos6)+(e.n')(e'*.n)(e*-n')(e'.n).
Because of the spherical symmetry of this:interaction one
can take $=0 for this calculation amd one easily obtains,

using equations (5.7) and (5.10),

n N(\)
H
()
““MN
H
—
Io
*
o
h
o
*
]
I
L -
t
l._l
-+~
o
o
(2]
N
@

(5.46)



(5.47) =z = (g-g‘*)(g-g')(g'*'g) = cosé (cosze-l),

2 2 ‘
(5.,8) 2 &2 (e-n')(e'™n)(e*n')(e'-n) = (1-cos?6)?.

s=l s'=1 -
Finally,
( ' '2 _ 2
5.49) |Al = (1+cos®)<,

independent of @, as must be because of spherical symmetry.

Thus, equation (5.43) becomes

ae _ 2R [lecos8 e
(5.50) a0 = G<M (--—-l_cose)
(5.51) %—%:GZMZ cot™(e/2).

‘Thus, for small scattering angles 6<< 1,

— 2
v dé ~ GM)
(552 45 el

which is the same as equation (4.25) calculated by the
classical method in Section IV,

Rather than considering an unpolarized beam and a
‘detector which is unable to distinquish between the polar-
ization states, suppose the initial beam of photons is |
linearly polarized in the equatorial plane of the sun.

Suppose also that only scattered photons'polarized in the

same direction are detected. Then
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(5.53) g=§(2,2)=(1),
and
e'=€(n',2) = —Lt nat

- - ‘\/ l--n3'2 é

It follows that

(5.54)

n
(5.55) e-g' = L s
l-n3'
(5.56) E' = 1'12' ’
n2'

(5.57) e'n = - —

'Vl-nB'2

Equation (5.42) then becomes

(5.58) A = 1 '"(l+cos8) + n, %] ,

bl

(5059) A - ] l (COSQ(]_"‘CO N 2 2 7
= _ : s8) +sin<6 cos*y)
. (1-sin?@sin’y)? ’

2

(5.60)» A= 1 —  (cosB + cos“@ + cos<® sin2¢),

(l—sin2931n2¢)%

using simple trigonometric identities, and hence

)2

(5.61) |A|2=. (l+cose

(l-sinzﬂ + cosaxsin2¢)2 .
(1-sin®@sin

2g)

This result differs from the usual Einstein result by the
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factor

(5.62) D= 1-sin®g (1- cose)]2
(1-sin®® sin?g)

which, for small scattering angle, 6 becomes approximately

82 gk . 2, 2
(5.63) D~ 1-(1- é--o--éz:)smﬁ
1-(e- %?)2 sin2¢
Thus,
L
(5.64) D=~1-28

l- T sin2¢ coszﬁ,

where all terms of order 6% are retained. This deviation
is plotted as Figure 5.2.

If the initial beam is polarized (linearly parallel
to the polar axis of the sun, and the detector is effective

only for photons polarized in the equatorial plane of the

sun, then

0
(5.65) ez €(n,1)=z[0},

1
and

-n2'
(5.66) e' = €(nt 2) = o — (’nl'
, ’ 2
'dl-nB' 0

It follows that

(5.67) (e-e') = O,



FIGURE 5.3
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(5068) (Q'Q') = n3. ’

(5.69) (g'+n) = - —mfee

Equation (5.42) thus becomes

(5.70) & = 4203

1/l-n3 12

and

' ' 2 . 2 2
(5.71) |A|2 - (1+cose)2 (1-cos®)” sin“g cos“g
1-sin®e sin?g

which, for small scattering angle, 6, becomes approximately

. .
(5.72) |4)* = (1+cose)® [%t sinp coszé} .

The deviation from the Einstein result is plotted as Fig-
ure 5.3.

If one takes

and

"nl' n3'
(5.74) e'=z €(n',1) = —1— -ny' n%' 3

-4/ l-n3"§ l_nBl

then for small angle scattering
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Lb 4
(5.75) ‘Alz ~ (1+co0s6)? (1- %f sin?g c052¢).
The deviation from Einstein's result has the same graphic
behavior as in Figure 5.2. That is, if the initial beam
of photons is linearly polarized and only photons which
are linearly polarized in the same direction are detected,

then the cross-section is independent of this direction.

if one has‘

: 0
(5.76) e = é(_u,Z):(é)

and
(5.77) e'= €(n',1) = —2—x | -n," ny"

then for small angle scattering

(5.78) |4[?  (140050)% ( & a12% cos?p).

This deviation from Einstein's result is as plotted in Fig-

ure 5.3. That is, if the initial polarization and the

detected polarization are perpendicular, then the result

is independent of the initial direction of polarization.
The polarization effects calculated above, simply

express the geometri¢ fact that as the orbit of the polar-

ized photon is bent through the influence of the sun, the

direction of polarization (in general) changes, since the
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photon must at all times remain transverse.

The maximum deviation from the clasic Einstein effect
occurs for @ =M/4, in which case, DX 1-9‘*/16. For
6 & 1.7, seconds of arc (as in the case of a photon travel-
ling just past the surface of the sun), Qh/léix 2 x 10-18.
It is clear that these polarization effects are very small
when compafed to the scattering of unpolarized photons,

which is itself presently just within the range of

detection.



VI. CONCLUSION

That the polarization effect calculated in Section.V
'is not in observable range is not to say that it is use-
ful to invoke the method illustrated only to obtain results
.of ultra—finé detall of the already small relativistic
effects. Without leaving the problem of photons scattered
by-thé sun, it is possible to suggest several other pert-
~inent problems.

The effect of the non-spherical nature of the sun
should be calculable using the outlined method. In the
weak field approximation (see Eddington, A.S., 192i),
neglecting all cross-coupling terms the metric due to a
mass distribution follows directly from the usual Newtonian
potential of thé maés distribution. In the light of
Diéke's concern with the solar oblateness (see Dicke, R.H.G ¢
1967), this calculation should be carried out with the
very small polarization effect again being calculable.
The deviation from Einstein's result will be small since
the suggested oblaﬁeness, Ar/r, is of the order.lO-s.

The polarization effects and the effect of the non-
spherical distribution are both small réfinements of the
classical result. It is possible that the effect of thé
rotatioh of the sun on the photons scattering shall be of
an order such that it will be more nearly measurable.
Solutions of Einstein;s field equations for a rotating

mass distribution have been found (See Thirring, V.H.,
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1918; Kerr, P., 1963; Brill, D.R., and Cohen, J.M.,
1966; Cohen, J.M., 1967). Using this solution for the
metric, the interaction Lagrangian can be obtained and a
solution for the scattering of polarized photons can be
obtained following the methods of Section V.

It is suggested that by increasing the accuracy of
the deflection measurement one might be able to detect an
asymmetry in the scattering of photons due to the presence
of a preferred direction caused by the rotation axis of

the sun.
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APPENDIX A: THE SCATTERING MATRIX (THE S~MATRIX)

The amplitude for scattering from a state ‘i>' to a
state '<fl, as used in equation (1.10), can most easily
be derived as follows. In the interaction picture, one
can write (see; for example, Mandl, F., 1959)

P

a1 1S () ;ﬁ(t),

=2

)

where

(4.2) HI(t)_

S7¥]}t,5)'d§ .

B1(x) is the interaction Hamiltonian density. If one
examines the case in which the interaction is adiabatical-
ly switched off in the remote past and in the remote fut-
ure, one can write the final state { f| = @(t-)oo) in

oo ) as follows:

terms of the initial state ‘i>_=_ i(t—f

(4.3) Plew) =5 l-0),

in which the operator S is the so-called scattering matrix.
In order to solve for S and arrive at a form suitable for
calculation purposes it is usually necessary to assume
that the interaction is small, allowing one to use (ﬂbn-
rigorously) a power series in the interaction. Successive -
approximations to the solution of (A.l) yields upon making

the identification (A.3),
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+ 00
+ oo :
(Ah) S=1-1 g#l(x) dbx + (-1)2 ~&}’él(x)d‘*x Hp(t')de!' +...
. oY 2

For the case in which the Lagrangian density, ;f(x),
is not a function of the derivatives of the field variables,

\

one has

(a.5) Bhx) = -Llx) .

To first order of approximation (Born approximation) equa-

tion (A.4) then becomes

+ o0

(A.6) S=1+1i SZ(X) a*x .
-0

Hence, for scattering from a state |i>> to a different

state {f|, the amplitude is
(A.7) Agy = (flige((x) dhx[1) .

The‘probability for scattering is, in this approximation,

(A.8) ,Afilz I(f |'Sf(x) atx Ii>|2 :

The form of the S-matrix involving the Lagrangian
density rather than the Hamiltonian density holds even
when the restriction that x:(x) not be a function of the
derivatives of the field is removed_(éée Bogoliubov, N.N.,

and Shirkov, D.V.,1959, Section 18). The form (A.6) can
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be arrived at by uSing'only the conditibns of covariance,
uniterity, and causalify of S, together with the corres-
pondence principle. It follows that the interaction
Lagrangian must be.local, Hermitean, and covariant. The
usual scalar combination of field variables automatically
ensures covariance and the conditions of the Hermiticity
and of the local nature of Afvrepresent subsidiary condi-
tions limiting the choice of a scalar 2:.

An alternate approach (see'Bjorken, J.D., and Drell,
S.D., 1964) for the case of relativistic quantum electro-
dynamics, using a Green's function or Feynman propogator

approach leads to similar results. .
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APPENDIX B, THE SQUARE OF A DELTA-FUNCTION

The delta-function has the well-known integral rep-

resentation

-1
(B.1) 3 We-wp) = 1 expfi(@p- @p)ef as.
Thus, [S (Wp- Wy )] [S(Q)f- “’iﬂ can be evaluated by setting
Wp=&); in one of the factors, written in the integral

representation (B.1), to obtain

(B.2) [g(wf-‘;‘)j_}] 2:%—7-t§(wf-“)i) gdt.

‘With the identification

(B.3) Sdt =T,

the total time, one has

2 _ T
Alternately, in any physically realizable situation
the limits on t are never - to +m . DMore realistically,
assume the transition takes place in the time interval
(-T/2, +T/2). Rather than a delta-function, one then gets

+7T/2

(B.5) Sdt(exi) i("_)f'wi)t) - _;_22__;( Sin[((ggf)ﬁi‘;.)i)‘-a)iﬂ .
..WQ
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Thus, the delta-function squared becomes

(8.6) b sin? [(1/2) (- )]
| (2m)2 (Wp-w;)2

The area under this curve is T/2%r. Thus for large but

finite T, one gets

(B.7) [S(wf-wif]?:g—-‘w & (Wp- )
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APPENDIX C. CONSERVED QUANTITIES

The Lagrangian of a closed (isolated) system, because
of the assumed homogeneity of time, cannot depend explicit-

ly on time. Thus,

(C.2)

Therefore, the energy of a closed systen,

((' 3) E—ZQlB "’L»

remains constant during the motion.

The Lagrangian of a closed system, because of the
homogeneity éf space, must be invariant under arbitrary
parallel displacement of the entire system in space. Let-
ting r, be the position of barticle 'a', translate the

system by an arbitrary, infinitesimal amount Sg to get

(C.4) 9OL = ;E; §> S.g:z 0.
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Since S_g is arbitrary,

(c.5) >'2L _ o,
a °%fa

from which, using Lagrange's equations (2.4),

&le.

£33

IHJt*

a

Therefore, the momentum of the system,

(c.7) P .-—:Z?—-
. a p)

lﬁ

is a consﬁant of the motion.

The Lagrangian of a closed system, because of spacial
isotropy, must be invariant under'arbitrary rotations of
the whole system in space. Consider an arbitrary, infin-
itesimal rotation S¢ of magnitude §¢ about an axis

indicated by the direction of Of, and note

(C.8) or g_ X I

SL "-ZZ(-D—L' r+"2‘L'51:
a

o
1

from which, using Lagrange's equations (2.4) and the first

two of equations (C.8),



d
(C.9) __?, E—Z xga:O.
a
Since O is arbitrary, the angular momentum,

(C‘lo) E = Z’-I.:a X pa)
a -

is conserved.
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APPENDIX D. THE GEODESIC EQUATIONS AND INTEGRALS OF MOTION

The equations of a geodesic are determined by the
condition, ds is stationary. Fixing the endpoints of the
trajectory in general space;time, the path can be deformed
by an. infinitesimal amount dx¥. Applying the stationary

condition,

(D.1) gg(ds) =0,

with
(D.2) ds?= 8y axf* axV |
(6 yy is not the special relativistic metric of f111),

results in

?
(D.3) 3 g{g’s‘& gf);i“\’ gwﬂgrrng gng -Q(ch')g s=0.

Integrating by parts, and setting the integrated part equal

to zero (since the endpoints are fixed) gives

dx @ 4x® 0Buv d ¢
(D.4) 2 Zd)sc Elbs{ M §x7 - s(gtt\'g)s{ gcdds SO’{

Since equation (D.,4) must be true for arbitrary 9 x% , the

coefficients must be identically zero. That is,

(p.5) 3 dxt'qx (9gw 28uy 3gor)- o,

ds ds \3x® oxV - pxM gev'&sz
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Or, multiplying by g¥% to get rid of e
, Y 3
(b.6) 4 Sxf dx¥ gou(2Eur, 2Eae 2By T

that is,

d2x % dxl dx ¥ _
(0.7) &7 fua] § & =0,

which are the equations determining a geodesic.

The angular momentum integral results from the @-comp-

onent of equations (4.1l) as follows:

g 4%  24drdf _
(D,S) 4?2 Frdsds < 0,

which has the immediate solution,

(D-9) I‘2 dg — h’

— e

ds

where h 1s a constant. Using the coordinates of equation

(4.5) one gets,

(D.10) Rzﬁ_ﬂi-_-
ds = (2m)?

The energy integral results from the t-component of

equations (4.1) as follows:



