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_ ABSTRACT

The propagation of a shock wave into a general inhomo-
geneous flow field is studied., The equations for the shock
velocity through such a region are developed in a general
manner, A consequence of these eqﬁations is the development
of the shock wave as a probe into unknown flow fields. The
shock velocity is measured and the initial parameters ahead
of the shock are calehlated. The unique advantage of the
shock'probe is that it does not perturb the gas ahead of the

front.

An experimental application is described in which the
shock probe is used to analyze the unknown flow field created
by a constricted arc light source, The flow field is subse-

quently identified as a radiation front at the Chapman~Jouguet.
lpoint. A | |
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Chapter 1

INTRODUCTION

The propagation of shock waves into uniform gases 1is
‘well understood, but no general study has attempted to
understand the propagatlon of shocks into inhomogeneous

and moving media,

As a background} one needs to know the essentials of
standard shock wave theory which are briefly outlined in.
the first chapter. Quite generally, the properties of the
inhomdgeneous media can change either abruptly or slowly.
Shock propagation into abrupt changes has been thoroughly
studied and is outlined in the second chapter, The propa-
gation of a shock into slowly varying initial conditions
is presented in the third chépter and 1s one of the main

contributions of this thesis.

From the theoretical study of the penetration of shocks
;nto inhomogeneous media, we draw one general conclusion
which is discussed in chapter four. We conclude that it is
possible to probe an unknown flow field with a shock wave
of known.strength. By measuring the local variation of the
shock front velocity one can obtain the local variations of
the initial parameters. Three shocks of different strengths
are needed to encounter the reproducible but unknown flow
field in order that the initial pressure, density, and

particle velocity can be derived. An experimental appli-



6at10n which probes an unknown flow field is described

in chapter four,

All standard calculations and detailed descriptions
are relegated to the appendix, of wﬂich, appendix D may
be of special interest to éomeone Wbrking with the same
type of shock tube, and appendix E which discusses other

interesting aspects will be fascinating for everyone.’
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BASIC SHOCK THEORY

When the veloclty of a fluld becomes comparabie Witﬁ
of exéeeds that of sound, effects due'to the compressibility
of the fluid become important. .Onelof the most distinctive
features of supersonic flo# is that shock waves (strong compres-
sion waves) can occur in it. Thermodynamically, a shock
wave is a discontinuous jump in pressure, density, temperature,
and entropy which, in the frame of the shock front, separates
uniform equilibrium conditions of subsonic flow from uniform
equilibrium conditions of supersonic flow. Consider one
dimensional plane flow in a frame at which the shock front
is at rest and label the quantities before the shock front as

1 and those behind the shock front as 2 (fig. 1).

SHOCK DIRECTION -

: 5 S is the density
o N
"ﬁz - | &2 ‘F' -2 is the pressure
h&
\ . .
AN 1s the particle
, velocity in the
shock frame
DOWNSTREAM .
GAS H 1is the enthalpy of
SHOCK a unit mass of gas
RONT
SHOCK
HEATED
GAS

Fig, 1 Shock Wave in the Shock Frame




o

The three conservation equations can be written as
followst

l, Conservation of Mass

?{N-. = ?ZNZ (l)

2. Conservation of Momentunm

p, ot S0 e ?z/"'a-‘ (2)

3. Conservation of Energy

These conservation equations together with the equation
of state are sufficient to determine the solution in terms

of the shock parameters 133 , ?i . T and since the

2 5 T
initial conditions ahead of the shock front are known;
£ . » end 7. are determined once the shock front

velocity 1s measured.

For an ideal gas the equation of state is

xp
H = 1 S (4)

where ¥ 1is the ratio of specific heats and 1s a constant

( 5/3 for argon), The corresponding solutions are



-, ¥ M - (1)

» Y+l (5)
_g}_ _ (v+1) M2 )
5 (-1\ M +a

-1\ [ -
o (emie F)OE M) (7)
E 2
{ ({%’_I) M
,

where ‘,.7._. ‘! is the Mach Number and @& is the speed of sound.
, .

For monatomic gases ionization and electronic excitation
are the only processes which cause a departure from ideality.
In order to take ionization into account, the energy equation

is usually changed so that

Hy- H = éMz’%sz-AE: (8)

where AEJ_ is the change in energy due to ionlzation
(Gaydon and Hurle, 1963). The other common way to take
ionization into account is to introduce an effective

adiabatic exponent j which is defined by

_ 4 r | o (9)
H = g-1 §

so that 9= 3 (10\1) becomes a function of pressure and
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Y=5/3 227
1.6
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TEMPERATURE (°K)

Flg., 2 Effective Adiabatic
Constant For Argon

temperature which may be calculated for any gas (fig. 2)

and is, for instance, tabulated by Ahlborn and Salvat (1967).

We use the effective adiabatic exponent which has the
advantage of separating the thermodynémic calculations
from the hydrodynamic calculations. The hydrodynamics is
contained in the Rankine - Hugoniot equations (1), (2),
and (3), while the thermodynamics is confined to defermining
g (12\70 with the inclusion of all essential ionization

and excitation processes,

The exact solution of the Rankine - Hugoniot equatlons

(Ahlborn and Salvat, 1967) now becomes



12
1}
|0
"

N
=

Py
('\—(.—-j

s
?’_’.
H

\_—y\J

(10)
t G +1
- ‘
R R S
. 9. +1
where
c . a(g,f-z)(g,-g,\m"g,

(91"\ (32. -g,M? )2
The temperature is found numerically from»the equation of

state, T = 7'c3\1° 93, for the particular gas under study,
]

assuming local thermal equilibrium,
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Chapter 2
SHOCK PROPAGATION INTO A DISCONTINUOUS
INHOMOGENEOUS MEDIUM

: Historically, a great deal of work has been_done on
the interaction of‘shock'anes'with contact surfaces in -
| various obliQue configurations (Taub, 194?). And too; the
interaction of'shock'waves with shock waves has been.weli |
understood. This chapter is a retalloring of known theory

to suit our particular interests.

.Supbose a shock'runs through a reglion in which some or
1{ali_of'the initial conditions tary discontinuously. There are
only two possibilities -- ’ | -
1. either the pressure is identical on both sides
- "of the discontinuity,'or |

2. the pressure jumps across the'discontinuityé

‘ If-the pressure is continuous, tnen the discontinuity
,15 avcontact surface separating two different gases or one
gas at two different temperatures, Since diffusion effects
"must always occur at contact surfaces they may not be truly
discontinuous. Thus, contact surfaces are treated in
.ﬂ.chaéter 3.under continuous 1nhomogeneous media and the
'treatmentlis‘such that thehsolution holds even if a contact

- surface were ideally discontinuous,

If the pressure changes discontinuously, the same

1m}genera1 conservation equations must -hold as held for a IR
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shock wave (chapter 1), Since the discontinuity surface

is more general than an adiabatic shock wave, source terms

must be included in the Rankine - Hugoniot equations, But

to uncomplicate matters, mass source terms and force terms

‘will be ignored, Only an energy source term is
In actual flow fields, mass sources at the edge
" discontinuity seem very unlikely ﬁhile external
appearing only at the edge of the discontinuity
but very uncommon, Energy source terms, on the
occur in radiation fronts, detonation waves, and

losses at shock fronts,

The conservation equations for the general

discontihuity become

?[ﬂ)., = ?INL

£ St = e+ ?zfolz

.g-i ‘e_‘ + ‘2! /u- : -+ ﬁ - _3_3-. 'pl
- g' ! 9',\}' 8‘-’ ?z

where W is a constant and is the energy input
mass, These equations have been solved exactly

1963) and the solutions are

considered.
of a pressure
force terms
are possible
other hand,

in radiation

pressure

(15)

(16)

! K4
-— + -E /01, . (17)

per unit

(Ahlborn,

-

3: | —
N Sy — 2" / 2 (g,°- Y W
P )+ N {H- _ /+€ -

3 +1 .

3! ‘Ft”t (.'23 -IY'l (18)
| Mt
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2. N
- 2 (g,2-YwW
f—l = - 9,/»12 b {H\/w- d 2\ (19)
12 o+ | 3,,0,”1(9%%1‘-1\

Equatioﬁs (18) and (19) quite generally descfibe the
variation of pressure and density across a thermal discontin-
uity. We want to consider what happens when a shock front
collides with a discontinuity across which equations (18)
and (19) hold. As a starting point, we consider what happens
when two one-dimensional plane shocks collide (Shapiro, 1954),
See figure 3. We label the various equilibrium regions by
numbers and denote the 1nterface between two such regions,

4 and J s as (.A.\J.B .

TIME

DISTANCE

Fig. 3 Shock - Shock Collision
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In thée above notation --

<l\3> 1s the shock wave propagating towards the
left into region ( . |

<,\1\) is the shock wave propagating towards the
right into région { .

<3\S> is the shock travelling towards the right
‘into the already shock-heated gas in region 3 .

£a,¥> 1is the shock travelling towards the left
into the already shock-heated gas in region o\ .

(4/\5} is a contact surface which separates the
two ddubly shock-heated regions. The pressure and particle
velocity are continuous across contact surfaces, and in
th.is case, the contact surface velocity equals the particle

velocity in regions y\ and £,

o

PRESSURE

|
- ~ PARTICLE VELOCITY

Fig. 4 Shock Polar
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The problem is completely specified once the initial
velocities of €132 and <I\37 are known and is
conveniently represented on a Shock lPolar (fig. 4). The
lines connecting the various states are unidue and are
obtained by using the Rankine - Hugoniot equations with the
shock velocity as a parameter, The states & and § are
determined as the intersection of the polars from states &

and3.

Now we return to the more general case where the shock,
<|\a7 s runs into a general pressure discontinuity, <l\3> ’

and the situation appears as in figure 5,

TIME

DISTANCE

Fig., 5 Thermal Discontinuity - Shock Collision
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(l\‘a.ﬁ , (‘5\33 , and CY.ED are as previously
defined, But <\\33 is a pressure discontinuity with._
energy input \r~/3 and <=\4> is a press‘ure discontinuity
with energy 'input ‘W., . | If these energy inputs are known,
then there are fourteen unknowns: S , Ay oy o2 Sa

iy 0 Py S My v Pa s Yeawdy S Mg v ABs s
Veae> ¢ with fourteen equations: four sets of the three
Rankine -~ Hugoniot equations plus qu Pg and My =ue o
Therefore, it is possible to find \/0“\,) and probably the
best method is to again draw the shock polars (fig. 6).
Instead of applying’ the shock pola; from state | to state 3
use the shock polar with energy input W3 y and similarly, in
going from state < to state Y wuse the shock polar with

energy input W,,‘ .

PRESSURE

SHOCK POLARS
WITH ENERGY INPUT

PARTICLE VELOCITY

Fig. 6 Shock Polars



14—

Chapter 3
SHOCK PROPAGATION INTO A CONTINUOUS

INHOMOGENEOUS MEDIUM

The solution for continuously farying initial pressure
and density distributions has been attacked with the view
of understanding certain astrophysical phenomena such as
colliding stars (De Young and Axford, 1967) and the emission
of mass from the surface of stars (Nadezhin and Frank-
Kamenetskii, 1965),. The-usual methods have been the Chisnell
method (Chisnell, 1955; Ono, Sakashita, and Yamazaki, 1960)
and the Whitham Rule (Whitham, 1958) which requires the
writing of the characteristic equation. The method developed

here is a generalization of the Chisnell method.

We consider the propagafion of a shock wave through a
general one-dimensional, continuous, and inhomogeneous mediun,
where the initial density, pressure, and particle velocity
each vary as a functlion of position in a certain region. The

propagation of a certain inltial shocg through the reglon 1s
| physically well defined and a unique physical process occursw-
that is, the velocity remains single valued throughout the

inhomogeneous region.

The shock wave velocity is, in general, a function of the

initial density, initial pressure, initial particle velocity,
and the driving mechanism. The shock velocity is completely

specifled if these variables are precisely given., Usually,
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of course, the exact nature of the driving mechanism is not
clearly known,and thus the shock velocity 1is usually taken
as a parameter, Still, the shock velocity can be written in

functional form;

\/-=V<?|\4Qa\~“|\§.\ (20)
where g correéponds, in some sense, to the driving mechanism,

If we assume that the driving mechanism l1s constant,
the rate of change of the shock velocity throughout the

inhomogeneous region is given by differentilating equation (20):

dv ’Q_V d?l + ‘3_\-/ ol + ‘B_V O’_J-h
dx = 9% dx A, ox B, olx  (21)
where S, , «@, , and 44, are treated as completely independent

parameters, in line with the initial assumption of a completely

general flow field. Integrating equation (21) yields

VG = V(oY + ( (3% 95, +}F dp, + W o) (22)

X=o

The problem of finding the shock veloclty as a function
of position in the inhomogeneous region has been reduced to

the problem of finding three functions:
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2V
1, 3%, aj: constant 3, and 4,
2. Y at constant € and wu
2R, ) !
3 A at constant and ©
. DA “p'l []

t
Consider the physical situations which correspond to
the above partial derivatives, The mathematical problem of

finding
2 M} EA
o) aﬁ.\e.\u. ror L 344 )ﬁne,

'agi 1\ A4,

is equivalent to the physical problém of finding the motion

of a normal shock wave through a non-uniform, one-dimensional
medium of continuously changing density, pressure, or particle
velocity., If we follow the method of Chisnell, the non-uniform
region 1s regarded as a succession of small density, pressure,
or particle velocity discontinuities separated by uniform

regions,

Assume that the initlal parameter increases monotonically
with distance in a certain region and is uniform outside this
région. A plane shock moves in the X -direction through the
region X<0O with constant strength and uniform flow behind
it. When the shock passes through the region of the changing
parameter, its strength changes and a wave is reflected back-
wards from 1t. In additlion, the motion of the reflected wave

through the non-uniform region generates another " doubly

reflected " wave moving in the same direction as the 1ncident.

shock, The mathematical complications encountered by consider-
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ing the doubly reflected wave are enormous, so we will limit
the usefulness of our results by making the approximation

that this doubly reflected wave cah be ignored (appendix A),

First of all, the physlcal situation to consider in

deriving 123 y is that of an infinitessimal density

28,
discontinuity (fig, 7). The contact discontinuity, <I\S> ’
has no discontinuity in pressure or fluid velocity, aithough

there is an infinitessimal jump in the density, such that

Ss = §, +dF¢ (23)

while
3= Ry S - (24
/ug = Juq .) Ju,' = .AJS- (25)

TIME

DISTANCE

Fig. 7 Shock Crossing an Infiﬁitessimal Discontinuity
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The strength of the disturbance ls taken as 35M4,~
where T is the ratio of the pressure in region m to that

in region m ., Therefore, the pressure ratio of the incident

shock is %), = 1;; . By expressing the Rankine - Hugoniot
!

equations in terms of the parameter % and then solving,

we obtain

‘ AC 4+ B
St S TR, (26)
My = oy + (2, %) (27)
_ £ A+ Rp
V = A+ \/ g‘ '—‘_21 (28)
where 7%2 - Qz:l
Fat!

and.

. l-?‘j
= (3,1 f— —
'¢ " \ 3 ;H{+'?‘z

-Similar equations hold for the elements of the reflected
wave, and differ with those for a shock only in third and
higher powers of -/ y where ¢ 1s the strength of
the disturbance, Provided this restriction is remembered,
the shock equations may be used for the small disturbances

to save formulating a second set of equations.
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Returning to the conditions on the velocity and pressure

(equations 24 and 25), obtain

¢(%"-1 y 5?'\ - 36 (?ag \"ﬁl, ?a\

(29)
= ¢(%83\ “F’S\?s\

R ¥y = gy (30)

Note that the increase in strength of the penetrated shock

must be infinitessimal so that
By = T t o2 (51)

By inserting equations (30), (31), (26), and (23) into
equation (29) and taking it to the first order in smallness
in terms of ¢ and g3 , obtain

2 )
_ch_?=__?___;_'_-+3_\/'+?‘?&. (32)
S oarT 3 ey T 3y 3o
but, from equation (28)

V +\/4°, (A + %)
= _).A‘ ‘?'

2
) I=-"A

and differentiating with respect to ?, at constant —q, and

A, s obtain
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-, ar —P.. ’A‘+?)‘] (33)
S (t-A 23) d? ?l ( 1+t ‘
Therefore, _
?__\! - V‘J—h
ggi ) a?|
(34)
+ = /
2 Al
| ag,’(c-?‘)(v-«“.\[if; - ?+;\‘ a‘zwa")—l
where
S A
= ;i Co-AN(v-aa)) - A (35)

so that finally

%)

3%, 408, a2 VY 06

R \A4

which is Chisnell's result.

°V
The physical situation to consider in deriving - ’

e,

is that of an infinitessimal pressure discontinulty across

which the particle velocity and density are continuous.

Although a rather unnatural type of discontinuity, imagine some
force field maintaining it until the shock wave crosses it, after

which time the force field is removed,
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Again, as in figure 7, an incident shock wave generates
at the jump position <1, §? , a reflected wave (3@5 ,
a penétrated shock dg\ 4 , and a contact surface <34 .
The physical quantities before and béhind the shock are connect-
ed by the Rankine - Hugonio-t equations (18 to 28). The

following boundary equations also apply:

oy = s (37)
“Ayoz My | (38)
e s e (39)
P31 = Py | (40)

s = £ * odp ()

And, as previously

¢ (yy R, \91\ - ¢ (2‘23 \vﬂz\?zB
(42)

= ¢C%S‘Isﬁ.§\?:f\

and -

' (43)
2n. ?'z's = s Tys

where Rye = g td2 ()
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Therefore,

2ty T Ci+ "__::3( 2, t d%\ | (45)

or

Ry = ( \(l"' = (46)

£-ITY

and by taking to the first order of smallness,

ode, , d2 (47)

R = [+
bt R, 2

By inserting equations (37 to 41, and 47) into equation (42),

j l+7‘7 ' -l

dﬁ. [Tratx _ (48)
i ( 2C BCiet) z(a‘n&\ |

Differentiating equation (28),

— 42
= (v- au\ {3.{:' 2(42) d.p‘.} (49)

and inverting (28),

$
2= g, Ci-2)(v-w )\ - A (50)
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then by entering equations (48) and (50) into equation (49),
obtain

)

(51)

A4

= ..Q(,P|\?|'\M| \\/\ |

Equation (51) has been derived in a manner very smilar to

2V
the previous derivation of ii? by the Chishell method,
0

‘Finally, the physical situation corresponding to the
2V

partial derivative 5:4' y 1s a discontinuity surface
[

across which only the initial particle velocity changes. An
analagous experimental situétion would be for an observer to
watch the propagation of a shock wave from some inertial

frame at which _44‘=,¢M/ . The observer sees the shock
propagation with some velocity \J"and with strength parameters
2/ ana ?‘t . Then, at time T=0©0 1let the observer change
to a different frame-- one in which the particle velocity is

A4, = JU" + o, (52)

where CJAﬂ is non-relativistic,

To that observer just described, the flow of the shock
wave appears as in figure 8, Since the only process to occur
in figure 8 has been that of tﬁe observer changing frames, the
shock will have the same strength parameters ¢ and i;. ’
even though the shock veloclilty has changed. The change in

shock velocity 1is CLJJ‘ » and therefore
fa_v) | | C (53)
w = |

' ‘Fl\g| ~
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OBSERVER IN A FRAME
IN WHICH‘U ,+ ol
1;0 _________________ ) {
OBSERVER IN A FRAME
IN WHICH
= | ,
— wAd, = A,
£
DISTANCE - >

Fig, 8 SHOCK AS VIEWED BY OBSERVER CHANGING FRAMES

All the partial derivatives have finally been calculated
and the integral ‘expression for the velocity as a function

of position is

VG = V(o) + wa,(x) = ., (o)

X (5%)
+ $:=° ,é(?. AR M \\/\ dS,

+ g,x __Q(?. P \.“u‘ ‘V\ d.P‘_

X=o '

This equation gives the attenuation of the original shock
front velocity V(o) after travelling a distance X into a

general inhomogeneous region,
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_Chapter 4
PROBING A FLOW FIELD WITH A
'SHOCK WAVE,

The ‘study of shock propagation into inhomogeneous media
has an interesting application. Sinoe one knows the relation
irbetween the initial conditions and the final velocity, a

'measurement of the shock front velocity can be used to diagnose
- an unknown plasma flow field, Most methods of measuring the
parametersbin an unknown flow field depend,upon, either
measurements,of the radiation given off, or probes which are .
aSsumed to'perturbvthe flow field‘hy a negligible amount. We
chose the other extreme and let a shéck wave 1nteract with the
known flow field. The shock is a large amplitude perturbation.
but its interaction with any'variations in a flow field‘is'
understood from chapters two and three. The unique advantage
of this probing technique lies in the”fact that.the unknown
flow field does not‘experience the probing tool (the shock
wave) until the measurement is completed. This phenomenon 1s
a result.of the shock wave travelling'faster.than,the signal
‘veiocity (speed of sound) in the unknown medium. Thus, a

technique which reliesiupon‘measurement of the shock front

B - velocity will always be measuring the properties of the unper-

. turbed gas, since the shock always flows into unperturbed gas.

"Suppose the parametersVin a supersonic flow field are
unknown. A supersonic flow field will be bounded by a discontin-

: ?ffuity of the type discussed in ohapter two. aThe”parameters
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immediately behihd the boundary can be obtained by inverting
the discussion in chapter two and measuring the velocities of
the four fronts, <I\?7 , &1\3Y , <3y, and <35) . By
observing the variation of the shock velocity throughout the
unknown flow field and inverting the results of chapter thrée,
the dependenqe of the.plasma parameters on position can be

obtained throughout the flow field.

In our experiment, we use the shock wave to investigate
the properties of the flow fleld produced by a Bogen light
source, Ahlborn and Zuzak (1968, 1969) utilized the Bogen
. 1light source to create a radiation front behind a window. In
our case we removed the window to observe the flow field creat-
ed by the light source. One important question is raised,

"i1s the flow field a radiation front created by the intense
ultraviolet radiation from the light source, or is it a blast
wave, perhaps radiation supported, driven by the escaping arc
heated gas from the light source?" Details of the experimental
set-up are presented in appendix F., The shock waves are formed
by a hybrid electro-thermal-magnetic shock tube designed by

P.R. Sny (appendix D), and the measuring device is a smear camera.,
The shock wave and flow field from the light source collide
head-on and the smear camera is at right angles to the direction

of flow (fig. 9).

The experiment requires intersections of the. flow field
created by the light source, with shock waves, This is quite

a simple procedure., Different shock strengths are acquired by
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| ' changing the spark gap separation, S‘, y In the dri\ter section
_b and thus changing the capacitor bank firing voltage. The
intersection position of the f‘low field and the shock wave are,
altered by adustlng the relative delay setting on the delay
,'units for tne shock driver and Bogen light souroe, whlch are .

.triggered by the rotating mirror of the smear camera.r

With Such,an easy experiment, there was nothing to do hut a
.,to proceed. First, by using colour fiim, some'initial results
were obtained (fig. 9 and'll). In figure 9, the.shock wave

(in blue from the left) intersects an invisibie preceding shock
from the light source (in green from the right). On many of

the pictures, the separation of the shock ﬁave from‘the main
.luminous mass is visible (due to impurity radiation) and the

- separation occurs where the-flow»field changes colour from white

‘o blue in figure 9. (T2)

In figure ll' the inte’rsection is seen in greater detail
.since the s1it on the smear camera has been greatly reduced.
‘The photograph ‘is very interesting becanse alJ: the regioms
that were discussed qualitatively in figure 3 (chapter 2) can
be identified. The regions .v/ , &, 3 r o, S‘ in figure 10
'are precisely those indicated in‘ figure 3, |

1<I;a7 and <137 are shock waves. |

RECK P, and {3.§Y are the refracted shock waves.

&4, 5> 1s the contact surface separating the two

dob.bly heated shock regions, This surface is \vis:Lble because

. of the temperature difference across 4‘/ §) . ... e e
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Fig, 11 Shock-- Flow Field Intersection Enlarged
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L9672 ang 3,7 are contact surfaces separating
the driver gas from the shock heated gas,

((9,97 and <77.9 are the refracted shocks which
are refracted on passing through the contact surfaces <3.6%

end < 3\‘77- .
. 87and <597 are the refracted contact surfaces.

An experimental check of our results is possible in this
case, since we can predict theoretically and measure independent-

ly the particle velocity in the doubly shock heated region.

FRONT ~ VELOCITY
Kren/ mac
{1,327 4,248%
<132 | 2.4+10%
LN -0.604+10%
<3.,87 3.13+10%
Ky, 2,2410%

Firstly, consider the parameters limmediately at the edge
of the flow field by observing the change in velocity of the
shock front at the boundary. The situation is the same as
that in figure 5. The velocities of the four fronts, <(\?) ,

<i1\37 , {34, and {3.§) are known; the initial parameters,
AR ST are also known. The energy inputs W3
and Wq are unknown, and the desired information is "Pz ’ ?3 '

Ady and T.

3 ° As the problem is stated, there are enough
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equations with the four sets of Rankine - Hugoniot equations

plus Ry = and u, =L .

In general, there will be an extra energy

Unfortunately, there is a
slight complication,
input term for state § ( \~§), and either an extra equation
or an extra measurement must be used., The analytic solution

to the above set of equations seems very difficult; therefore,

numerical methods were employed (appendix B).

In applying the theory, we need one more equation since
there are three unknown ehergy terms, \AG ,\AQ , and \N& .
In our_specific experiment, the energy absorbed in each state
should depend upon the equilibrium properties of that state,

and states "/ and §

should be very similar; thus, we make

the assumption that
\l\/q =W'\-

Although this assumption is arbit:ary, it does not seem too

unreasonable,

With this assumption, the equilibrium parameters for the
smear picture in figure 11 are calculated by the program in

appendix B,

v T W
STATE /6‘?,2_::‘, — T":R . J (o't 29—
l 3,224 0,0 1.5+4% 298 1.666 | 0.0
R [19.8+10% | 3.518+10% | 399+10% |10908+10% [1.381 | 0.0
3 |7.47+30% | 1.3644308 | 81430% | 6927430% |1.648 | 0.009
4 137.7430% | 2.1410% |950+40% |13300410% [1.234 | 0.350
S |32.74302 | 2.1x10% |950440% |14000410% |1.197 | 0.350
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The measured contact surface 'velocity <‘l\$> should etlual

the calculated particle velocities My and Mg . In this case,

’_l\_/_(q’\ﬁ = 9?3 I_‘_\I_yco °/o "’f“_/mc

gz = B F 0% K™/

iThe agreement is well within the error'bounds and tnus provides
a validity check on the methods followed in appendix B',
-According to the calculations, \J is very much smaller than
Vd@ andeqf . This fact is quite plausible since the ioniza-.
tion in state ) is very 1ow while that in states . 4/ and S
is quite'high.' The bound electrons in state 3 absorb only '
in specific wavelengths while'the free electrons in states Vl
.and S absorb in any wavelength because of inverse bremstraul-
ing, Also, notice that the velocity 44 . B> in figure 11 is
not‘constant but rather it increases.f-This observation corres;
'.ponds to an expected rarefraction Wave,caused by the high
:atsorption in state 4f . A1l in all, figure 11 has provided
a good check on the first part of the probing technique. and

more generally. the theory in chapter two,

With this lmowleoge establisheci, we then increased the
energy into the light source and probed the resulting flow field
at several positions down the tube (fig, 12). | The four
velocities were measured for each‘collision and the parameters

were obtalned as outlined above., The results for many inter-

‘sections were calculated and areplotte'd as a function of
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distance in figures 13 to 16.

The most interesting feature 1s that the absorbed energy,
ti sy In each measurement is very close to the Chapman-

Jouguet energy,

S~
Wos o

2 (g2-1)

and thus, implies that the flow field is at the Chapman-~

Jouguet point,

The only efficient way of transmitting energy of this
amount right into the front is by radiative absorption. We
therefore identify this unknown wave as a Chapman-Jouguet-type'
radiation front, As a further check on the valldity of this
fact, the initial density §} was varied and the front velocity
was measured at fixed distances (fig. 17). The points fall
reasonably well on the expected proportionality (Ahlborn and
Zuzak, 1969) )
: -3

V & 2

Since the particles leave a Chapman-Jouguet front with
sonic velocity, a rarefraction wave 1s expected to follow this
front. This means that the pressure, density, and particle
veloclty are expected to decay behind the front, It is checked
by applying the second part of our shock probe analysis. We
will show that the results are self-éonsistent and agree with

independent plezo probe measurements,
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To apply the second part of the probing technique, we
measured the shock velocity as a function of time through the
continuously varying region behind the radiation front., We
chose intersections which are approximately 35 cm from the

light source.

From chapter three, we have equation (54),

| o
VO = V(o) + A, (x) 4 g ({d?, +-Aolp«,)

Xeo

in which the integrals are extremely difficult to perform,
Therefore, the solution must again come numerically, using-

a simple predictor numerical integration formula, such as

(' gerax = 46
and obtaining ’

&N = pu + .{Af. + B ap, (55)

- There are three unknowns--. D, AQ. d and Af,
therefore three equations are required, Consequently, we nmust
probe the flow field with three different shock velocities and

obtain the set of equations,

Oy = ba + BG4 L, o4,

LYy = O, ¢ '{ﬁ &%, ¢+ ‘a# o4,
| (56)
ANy = b, + A 88 + R ap,
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These equations are then inverted, to complete the solution

(appendix C),. -

The exact solution of the eguations developed in chapter
three is highly unstable; but it 1s.re1atively easy to obtain
limits on the variation of‘the plasma parameters throughout
the flow. The density, particle velocity, and pressure profile
are plotted against time in figures 18 to 21, The pressure
proflle 1s compared with some absolute pilezoelectric pressure
probe measurements, These quantitative pressure measurements *
provide a completely independent check on the results. The
profiles agree both in shape and in“magnitude.'and are of the
type expected behind radiation fronts at the Chapman-Jouguet
point (Zuzak, 1968)., The pressure results are conclusive
evidence that the flow field is a radiation front and not a
blast wave, If the flow fleld were a blast wave, tThe pressure
at the edge would be governed by the Rankine-Hugoniot equations,
in which case the pressure would be the same as the equlilibrium
ﬁressure behind a shock wave traveliing at the same velocity.
However, the pressure found by both thé shock and pressure
probes is one-half that of the shock pressure (ie. precisely
the pressure expected behind a radiation front travelling at

the Chapman-Jouguet point),

* Measurements were carried out by R. Ardila.
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Chapter 5
CONCLUSIONS

The inevitable result of this thesis is that we have
ralsed more questions than we have answered. One of the answer-
_ed questions is that concerning the propagation of a shock wave
- into an inhomogeneous and moving media, An extension of the
equations involved has been the development of the shock wave
~as a tool for the probing of unknown flow fields, In our
experimental application we have probed a flow field produced
by a Bogen light source, We have found our shock probes to be
useful and accurate., We have discovered the flow field to be

a radiation front at the Chapman-Jouguet point,

The questions raised include those in understanding the
behaviour of the radiation ffont. More explicitly, astro-
physicists feel that weak R-type radiation fronts do exist,

Weak R-type fronts have energy inputs greater than the Chapman-
Jouguet energy. But, so far we have not observed any energy -
inputslgreater than the Chapman-Jouguet energy. We also believe
that the radiation front at lower initial pressures may be
quite interesting (fig., 22), but before any investigation, the
operation of the shock tube must be improved so that we can be
certain of its properties at these low pressures. We would

also prefer a more reproduclble light source.

We are curious as to why the energy input is maiﬁtained

even after the light source has stopped radiating. We suppose
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that the energy diffuses from the 1light source through the
gas. Indeed, a spectroscoplc study (perhaps time resolved)

should be enlightening.

Another feature is the similarity between the radiation
front which we observe and the flow fleld produced by a stand-
ard electromagnetic T-tube., Perhaps the T-tube flow fileld is
not a blast wave but rather a radiation front. Perhaps, too,
radlation fronts are quite common but _unrecognized laboratory

occurrences,

Finally, we have become quite excited about applying
our probe technique to other unknown flow fields, such as

laser sparks,
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Appendix A
THE DOUBLY REFLECTED WAVE

?V
In deriving the partial derivatives, é;?
R R e
2V
and é;h') » the analysis was considered only to
l .

T

the first order. Chisnell (1960) also considered the effect
of the wave reflected by the variable medium when the singly
reflected wave passes back through it. The doubly reflected
wave moves in the same direction as the incident shock and is

an expansion wave,

The physical situation corresponding to the partial
derivatives now becomes that in figure A, The following
phenomena need to be considered:

l. reflection by the medium of an element of the
singly reflected wave forming an element of the
doubly reflected wave |

2. the interaction of the elements of the singly
and doubly reflected waves,

3. the variation of the strength of an element of the
doubly reflected wave as it travels through the
variable region | ‘

L, +the catching up of the incident shock By the

expanslon wave,
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Chisnell checked his derivation of - by
ggl “P’l \‘u|

comparing the theory for shock wave-contact surface interactlons
with his results (applying both single reflection and correct-
lons due to double reflection). Hé found good agreement for
the single reflection theory whenever the reflected disturbance
was small, With application of the double refleqtion theory,
the agreement was always excellent even when the_strength of
the reflected wave was large. In other words, the single
reflectlion analysis used in chapter three will likely break
down if the gradients of initial pressure or density are very

large,
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Ohyama (1961) extended the method of eno, Sakashita,
and Yamazaki (1960) (which in turn is just the Chisnell
method with single reflection) to the case of doubly reflected
waves, by taking the effects of the the second-order waves into
consideratioﬁ. He did not investigate the behaviour of weak
shocks, but did find that the rate of ééowth of shock strength
-obtained by the first approximatioh is little influenced, as

far as the strong shock 1limit is concerned,

We can conclude that the analysis in chapter three will
hold if either of the following conditions is met:
1., the incident shock is strong, or
2, the density and pressure gradients are not

too strong,
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Appendix B
PARAMETERS AT THE BOUNDARY

The numerical methods used are quite straightforward. y
The equilibrium properties of the four states, & , 3 , + ’
and S (chapter 2) are calculated iteratively. Each state
is calculated from three subroutines., Subroutine PEA2 calcu;
lates ? r 4 , and N using the solutions of the Rankine-
Hugoniot equations (18) and (19). Subroutine TEA2 calculates

T using the equilibrium equation of state,
- = (i1+2,) SRT (B-1)

where o(, 1s the degree of first ionizationy

and )
n H = -9— f
-1 S
I
- s 1+ =

Wwhere I, 1s the lonlzation potential and m, 1s the atonmic
mass, Subroutine GEE2 calculates g essentially by reproduc-

ing figure 2,

The energy input terms, Wi , Wy , and Wr are used as
parameters and the resulting sets of solutions are shown in
figure B-1, When W becomes very large, the iterative
procedure often breaks down because the square root in equations
(18) and (19) will sometimes become negative., Therefore, instead

of using W as the parameter, it is more convenient to use the
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entire root as the parameter,

The desired value of W3 1s obtained graphically by

inserting the conditions,

Wy = W
Sy 2 Mg  (B-3)
Py = P

Figure B-1 indicates the solution for the smear picture in

figure 10,

One important feature of the solution is that the condition
pq s p: is actually found by varyi'hg only W3 . Small values
of W3 have a large effect on ¢ , while large values of
W, and W have very little effect on 4y and -R¢
respectively., Therefore, slince we are interested in finding
only W; y We can remove the arbitrary assumption that

Wq ;\,JS , and vary only W3 in order to fulfill the condition,

42y = s

We used this condition to obtain the remaining results in

chapter five,

Pigure B-2 indicates the type of errors resulting in P4
and A4y due to errors in measuring \/<,_\.,5 and V<,\z> .
Again, an error in \/0\.0 will cause quite a noticeable

change in Ry .
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FORMAT(3F15.8)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

{5X92HUL 99X 42HP1 410X 92HT1910Xy2HG15y9X92HD1y11X,2HW1)
(5Xy2HU2 99X 92HP2 910X 32HT2410X32HG299X 3 2HD2411X,y2HW2)
(5X92HU3 49X 9 2HP3 910Xy 2HT3 910X 92HG399X9y2HD3 911X y2HW3)
(5X92HU4 39X 92HP4 310X 32HT4 9 10X 9 2HG4 99X 9 2HD4y 11Xy 2HWS)
(5X92HUS 39X 9 2HP5 310X 92HT5410X32HG5 99X y2HD5911Xy2HWS)
(5X44F12.3)

(11X 94HVS12¢8X94HVS1348Xy4HVS24,8X94HVS35)

(4F643)

FORMAT(5X ¢5HALF =,5X,F8.1)

FORMAT
FORMAT

(SX9F6e395X9F 941 95X 9F9e195XsF6e395X9F8.695X9F1046)
(5X96HALF2 =45XyF842)

FORMAT(5Xs6HALF3 =45X4F842)

READ (5
READ (5
READ (5
READ (5

y1)W3U,W&UWSU

2 1YWL o WAL 4 WEL

2 LIW3MoWGMyWSM
99)VS12,VS13,VS24,VS35

WRITE (6,8)
WRITE (6497)VS12,VS13,VS24,VS35

W3 = W3U

D1 = 0.00322428

Gl = 1.666

W1l = 0.0 ~
Ul = 0.0

Tl = 298.0

P1 = 1.500

WRITE (642) ,
WRITE (64511)U14P143T14G1,D1,W1

Pl = 133.3%Pl
G2 = G1

V1l = VS12 - Ul
SHM = V1/0.321
W= 0.0

CALL PEA2(P1,4D14G19G24WsV14SHM,DR4D2,P2,V2)
CALL TEA2(P2+D24G2+T243ALF,ALF243ALF34,ALF4,ALFS)
CALL GEE2(T2,4P2,6GZ)

G2 = (GZ + 3.,0%G2)/4.0

IF (ABS

(G2-GZ).GT.0.,0001) GO TO 100

P2 = P2/133.3
WRITE (643)
U2 = VS12-v2
W2 = 0.0

WRITE (6511)U24P2,729G24D2,yW2

WRITE (6,10)ALF
WRITE (6412)ALF2

DX = D2
GX G2
UX U2

non
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99

400

700
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PX = P2*133 3
TX = T2

DB = D1

GBl = Gl

W3 = W3-W3M
Pl = 1.500

Pl = 133.3%P1
We = WaU

W5 = W5SU

W = W3

V1l = VS13-Ul
D1 = D8

Gl = GBl

G2 = 6Bl

SHM = V1/0.321

CALL PEA3(P14D14G14G24WsV14SHM,DRyD2,P2,V2)
CALL TEA2(P2,D2+G24,T2yALF4ALF24ALF3,ALF49ALF5)
CALL GEE2(T24P2+4GZ)

G2 = (GZ + 3,0%G2)/4,.,0

IF (ABS(G2-GZ). GT.0. 0001) GO TO 200
WRITE (644)

U3 = VS13-v2
G3 = G2

D3 = D2

T3 = T2

P3 = P2/133.3

WRITE (64911)U34P34T3,6G3, D3,H3
WRITE (6,10)ALF

WRITE (64912)ALF2

D1 = 03

WRITE (646)

W5 = W5-W5M

W = W5

Gl = G3

Pl = P3%133.3

T1 = T3 :

V1 = VS35+U3

Al = G1*P1/D1

SHM = 1000.,0%V1/(SQRT(AT1))
JL =0

CALL PEAZ(PlyDlyGl,GZyW1V1,SHM,DR,DZ,PZ,VZ)

JL = JL + 1

CALL TEA2(P24D2+G249T24ALF3ALF24ALF34ALF44ALFS)
CALL GEE2(T24P2,G2Z)

G2 = (GZ + 3.,0%G2)/4.0

IF (JL.GT.50)G0 TO 500

IF (ABS(G2-GZ)«.GT.0.0001) GO TO 400

D5 = D2




999

300

900

500
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us

= VS35 - V2
G5 = G2
P5 = P2/133.3
T5 = T2

WRITE (6311)U54P5,T54G5405,4W5
WRITE (6,10)ALF

WRITE (64912)ALF2

WRITE (64913)ALF3
WRITE{(64+13)ALF4

WRITE (6413)ALF5

IF (W5.LT.W5L) GO TO 99

WRITE (645)

W4 = W4G—-W4aM

W= Wa
JL=0

D1 = DX

Gl = GX

Pl = PX

Tl = TX

V1l = VS24+UX
AT = G1%P1/D1

SHM = 1000.,0%V1/(SQRT(ATI))

CALL PEA3(P14D19GlyG24WyV1ySHM,DR,D24P2,V2)

JL JL + 1

CALL TEA2(P2,D24G2yT24ALF,ALF2,ALF3,ALF44ALF5)
CALL GEE2(T24P2,G2)

G2 (GZ + 3.0%G2)/4.0

IF (JL.GT.50) GO TO 500

IF (ABS{G2-GZ).GT.0.0001) GO TO 300

D4 = D2
G4 = G2
U4 = V2-VS24
T4 = T2
P4 = P2/133.3

WRITE (6911 U44P43T449G44D49WG -
WRITE (6410)ALF

WRITE (6412)ALF2

WRITE (6413)ALF3
WRITE(64+13)ALF4

WRITE (6413)ALFS . .

IF (Wa.LT.W4L) GO TO 999

IF (W3.LT.W3L) GO TO 9999

IF (VS12.GT.0.0000) GO TO 38
STOP

END
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SUBROUTINE TEA2(P24D24GE,T2)

G2 = GE _
H = G2*%P2/((G2-1.0)%D2) -
REAL MA

MA = 6.63E~26

ALF = (2.3327E-6)*%(H-2,5%P2/D2)

IF (ALF.GT.100.0) ALF = 100.0

ALF2 = (1.3176E-6)%(H=-2.5%P2/D2) ~0.5648%*ALF

IF (ALF2.GT.100.0) ALF2 = 100.0 .

ALF3 = (8.9758E-7)*(H=2.5%P2/D2)-e3725%ALF~.6812%ALF2

IF (ALF3.GT.100.0) ALF3 = 100.0 .
ALF4 =(5.9961E-7)*(H-2,5%P2/D2)~.2488%ALF—¢4551*ALF2-,6680%ALF3
IF (ALF4.GT.100.0) ALF4 = 100.0 :
B = (446891E=7)3*(H=2,5%P2/D2)

ALFS5 = B~41946%ALF—-¢3559%ALF2~45224%ALF3-,.7821%ALF4

ALFA = (ALF+ALF2+ALF3+ALF4+ALF5)/100.0

T2 = P2/(D2%208.1%(1,0+ALFA))

RETURN

END




207

307

407

-60-~

SUBROUTINE PEA3(P1,D1,G1yG2yWsV1ySHM,DR4D2,P2,V2)
A = G2/ (SHM®SHM*Gl) - 1.0

C =W : ‘

P2 = P1*(1.0-G1*SHM*SHM*A*(1.0+C)/(G2+1.0))

V2 = V1%{1.0+A*{1.04+C)/(G2+1.0))

DR = V1/V2 '

D2 = DRx*Dl

RETURN

END
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SUBROUTINE PEA2(P14D14G14G24W4V1ySHM,DR,4D2,P2,V2)
A = G2/ (SHM*SHM*Gl) - 1.0
B = 2.0%(G2*G2-1.0)*W/(D1x(V1**3))

Bl = (Gl=1.0)%((G2-GL*SHM%SHM )%%2)

Al = 2.0%(G2+1,0)%(G1l=G2)*SHM*SHM*G1

EP = A1/B1

D = 1.0+EP=B/(A*A)

C = SQRT(D)

P2 = P1%(1.0-Gl1*SHM*SHM*A%(1,0+C)/(G2+1,0))
V2 = V1%(1.0+A%(1.04C)/(G2+1.0))

DR = V1/V2

D2 = DR*D1

RETURN

END
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SUBROUT INE GEE2(T24P24+GZ)

P2
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
GA
GB
GC
GD
GE
GO
IF
IF
IF
IF
GA
GB
GC
GD
GE
GO
IF
IF
IF
IF
IF
IF
GA

6B =

GC
GD
GE
GO
IF
IF
IF
IF
IF
IF

= P2/133.3

(T2.,LT.15000.0) GO TO 15
(T2.LT.20000.0) GO TO 25
(T2.LT.21000.0) GO TQ 35
(T2,LT.22000.,0) GO TO 45
(T2.LT.23000.0) GO TO 55
(T2.LT.24000.,0) GO TO 65
(T2.LT.25000.,0) GO TO 75
(T2.LT.26000.0) GO TO 85
(T2.LT.27000.0) GO TO 95
(T2.LT7.28000.0) GO TO 105
(T2.LT.29000 0) GO TO 115
(T2.LT.30000.0) GO TO 125

1.125

1.130

1.140

1.160

1.193

TO 1000

(T2.LT.16000.0) GO TO 135
(T2.LT.17000.0) GO TO 145
(T2.LT7.18000.0) GD TO 155
(T2.LT.19000.0) GO TO 165

= 14118 - 0.175%AL0G(T2/20000.0)
=1.148 - 0.,039%AL0G(T2/20000.0)
1.162 + 0.,078%ALOG(T2/20000.0)
1.170 - 0.039*AL0G(T2/20000.0)
1.207 = 0.234%AL0G(T2/20000.0)
TO 1000

(T2.LT.9000.,0) GO TO 175
(T2.LT.10000.0) GO TO 185
(T2.LT.11000.0) GO TO 195
(T2.LT.12000.0) GO TO 205
(T2.LT7.13000.0) GO TO 215
(T2.LT.14000.0) GO TO 225

= l.131 + 0.072%ALOG(T2/15000.0)

nuu

=]14135

= 1157 =~ 0.420%ALOG(T2/15000.0)
= 14257 = 04826*%AL0OG(T2/15000.0)
= 14367 - 1.000%ALOG(T2/15000,0)
T0 1000 :
(T2.LT.3000.0) GO TO 235

(T2.LT.4000.0) GO TO 245
{T2.LT.,5000.0) GO TO 255
(T2.LT.6000.0) GO TO 265
{T2.LT.7000,0) GO TO 275
(T2.LT.8000.0) GO TO 285
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GO
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= 14363~ 1.452%AL0G(T2/9000.0)

= 14546 — 0,637*AL0OG(T2/9000.0)
= 14609 = 0.,375%AL0G(T2/9000.0)
= 1,660 - 0.051%AL0G(T2/9000,0)
= 14665 = 0.008%AL0OG(T2/9000.0)
T0 1000

= 14125

= 1l.130

= 1,140

= 14160 - 0,118%AL0G(T2/30000,.0)
= 14193 - 0.,059%AL0DG(T2/30000,0)
TO 1000

= 14125

= 1.,130

= 1,140

= 16164 — 0.,142%AL0G(T2/29000,0)
= 14195 = 0,057*%AL0G(T2/29000.0)
T0 1000

= 1.125

= 1.130 + 0.,055%AL0G{(T2/28000,.,0)
= 1.140 .
= 14169 ~ 0.165%ALDG(T2/28000.0)
= 14197 - 0.,055%AL0G{T2/28000,0)
T0 1000

= l.125

=1.,128 + 0, 053*ALOG(T2/27000 0)
= 14140 - 0.106%AL0OG(T2/27000.0)
= 16175 = 0.159%AL0OG(T2/27000.0)
= 14199 = 0.026%AL0OG(T2/27000.0)
T0 1000

= l.125

=14126 + 0.,051*%AL0OG(T2/26000.0)
= lel4d4d = 0.127*ALOG(T2/26000.0)
= le181 - 0.,051%AL0OG(T2/26000,0)
= 1,200

TQO 1000

= 14125 + 0.049%AL0OG(T2/25000.0)
=1e.124 + 0,024%AL0OG(T2/25000,0)
= 14149 = 0.171*AL0OG(T2/25000.0)
= 1.183

= 1.,2000 + 0.,122*%AL0OG(T2/25000,0)
TO 1000

= 14123 + 0.094%AL0OG(T2/24000. 0)
=1el23 ~ 0,094%AL0DG(T2/24000,.0)
= 14156 = 0.164*%AL0G(T2/24000.0)
= 1l.183

= 14195+0.047*AL0OG(T2/24000.0)
T0 1000
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165

155

145
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225
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1119 + 0.045%AL0G(T2/23000.0)

1127 = 0,157*AL0OG(T2/23000.0)
16163 = 0.067*AL0OG(T2/23000.,0)
1.183 + 0.067%AL0OG(T2/723000.0)
1.193 - 0.022%AL0G(T2/23000.0)
TO 1000

= 14117 + 0.021*AL0DG(T2/22000.0)
=1e134 - 04193%AL0G(T2/22000,.0)
= 14166 + 0,043*%AL0OG(T2/22000,0)
= 1.180 + 0.086*%ALDG(T2/22000.0)
= 1e194 = 0.107%ALOG(T2/22000.0)
T0 1000 :

= 14116 - 0,041%AL0OG(T2/21000,0)
=]le143 - 0.102%AL0G(T2/21000,0)
= 14164 + 0.041%AL0OG(T2/21000,0)
= 1.176 — 0.123%AL0G(T2/21000.0)
= 14199 = 04164%AL0OG(T2/21000.0)
TO 1000

= 14127 - 0.148%AL0OG(T2/19000.0)
=1.150

= 1,158 + 0,037*AL0OG(T2/19000,0)
= 1,172 - 0.111%AL0G(T2/19000,0)
= 14219 = 0.444%AL0OG(T2/19000.0)
TO 1000

= 14,135 = 0.,070*%AL0OG(T2/18000.0)
=1.150 + 0.052*%AL0OG(T2/18000,0)
= 1.156 + 0.,122*AL0G(T2/18000.0)
= 1,178 - 0.280%AL0OG(T2/18000,.,0)
= 14243 - 0.630%ALDG(T2/18000,0)

TO 1000

= 1139 + 0.049*AL0G(T2/17000.0)
=1.147 + 0.,115*%AL0OG(T2/17000.0)

= 14149 + 0.033*AL0OG(T2/17000.0)
= 14194 = 0.363%AL0OG(T2/17000,.,0)
= 1,279 = 0.660%AL0G(T2/17000.0)
TO 1000

= 14136 + 0.077*ALOG(T2/16000.0)
=1e140 + 0.,077%AL0OG(T2/16000.0)

= 1e147 = 0.155%ALDG{T2/16000.0)
= 1.216 = 0.635%AL0G(T2/16000.0)
= 1319 = 0.743%AL0OG(T2/16000.0)
TO 1000 '

1.126 + 0.054%AL0OG(T2/14000,0)
=1.135 - 0.189%AL0OG(T2/14000.,0)
1.186 — 0.661%ALOG(T2/14000.0)
1.314 ~ 1.093%AL0OG(T2/14000,0)
14436 = 0.877*ALOG(T2/14000.0)
TO 1000

]
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1.122 = 0.012%AL0OG(T2/13000.0)
1e149 = 0.412%ALOG(T2/13000,0)
1.235 =~ 1.012%AL0G(T2/13000.0)
1395 = 1.124*AL0G(T2/13000.0)
1.501 - 0.837%AL0OG(T2/13000.0)
0 1000
1,123 - 0.310%AL0OG(T2/12000.0)
1.183 - 0.839*%AL0G(T2/12000.0)
1.316 = 1.253%AL0G(T2/12000.0)
1485 = 0.942%AL0OG(T2/12000.0)
1.568 = 0.517%AL0G(T2/12000.0)
T0 1000
= 1.150 -~ 0.703*%AL0G(T2/11000.0)
1255 = 1.416%AL0G(T2/11000.0)
1.425 - 1.228*%AL0G(T2/11000.0)
1.567 - 0,283%AL0G(T2/11000.0)
14613 = 0.346%AL0OG(T2/11000.0)
0 1000 :
14217 = 1.386%AL0DG(T2/10000.0)
1.390 = 1.481*AL0OG(T2/10000.0)
1542 = 0.636*%AL0G(T2/10000.0)
1.640 = 0.190%AL0G(T2/10000.0)
1.646 - 0.085%AL0OG(T2/10000.0)
TO 1000
1.537 = 0.524%AL0G(T2/8000,0)
1.621-0.195*%AL0OG(T2/8000.0)
1.651 = 0,075%ALOG(T2/8000.0)
1.666 '
1.666
0 1000 '
1.607 = 0.,175%ALOG(T2/7000.0)
1.647 = 0.078*ALOG(T2/7000.,0)
1.661 — 0.,032*%AL0OG(T2/7000,0)
1.666
1.666
TO 1000
1.634 -~ 0.093%ALOG(T2/6000,0)
1.659 - 0.038%AL0OG(T2/6000.0)
1.666
1.666 .
1.666 ‘
0 1000
1.651 = 0,036*ALDG(T2/5000,0)
1.666
1.666
1.666
1.666
G 1000
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245

235

1000

36
26

16
2000

GA
GB
GC
GD
GO
GA
GB
GC
GD
GE
IF
IF
IF
G2
GO
G2
GO
G2
GO
G2
GZ
p2
RET
END
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1659 =~ 0.028%AL0OG(T2/4000.0)
1.666

1.666

1.666
0 1000

1.666

1.666

1.666

1.666

1.666

(P2.LT.76.0) GO TO 16
(P2.LT.760.0) GO TO 26
(P2.LT.7600.0) GO TO 36
= GD + 0.621*(GE~- GD)*ALOG(P2/7600 0)
TO0 2000
= GC + 0.434%(GD-GC)*ALOG(P2/760.,0)
TO 2000
= GB + 0.434%(GC-GB)*ALOG(P2/76.0)
T0O 2000
GA + 0.434%(GB-GA)*ALOG(P2/7. 6)
G2

133.3%P2
URN

o un - unnu
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Appendix C
CONTINUOUSLY VARYING PARAMETERS

The numerical method to describe continuously varying

parameters is extremely simple. Essentially, the set of

|
h

eqations,
AV, = bw, + Jo 08 + L ap,

AVA = AaU' + ‘{ﬁ A?l + -4'3 AW -3
’ (c-1)

AVy = bw, + fr 85, + Ay op,

are inverted to obtain

x4
| av-ay, - 5 (ave-av,)
£,0x\ = o, (0) + . 4n - 4«

'2_\"1.( AL (Ap- 4.
An- 4« (c-2)

$ i\ = SCN + OVp - AV - (L pa-4y)an,

464

JJ.(K\ = #;cb\ "‘ A\I* - {,( A?, - -£¢ Aﬁ“

Uslng a simple predictor integration formula for 1( and £
proved to be too unstable a method., It is unsuccessful because
equations (C-2) involve the differences of differences, and
because the flow field produced by the light source is not as
reproducible as we would like. Instead of finding an exact

solution, simple limits were found on the variation of the
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parameters. The lower limit was found by assuming that one
parameter alone was responsible for the variation in shock

velocity. For example,

|

apy, = OVy /by (c-3)

while the upper limit for ,pl would then be \

.AN' ° AV.L

AS, = CA\/,, - b)) /.6,3 (C-ks)

D XV /.0..,;( A, +-g.,a?,\/./l,

since the other two parameters would account for the complete

shock variation on the other two measurements,

In our particular case, the discontinuity £3 &) 1is
not a shock wave because there is energy input into state S .

In fact, \ds whould be very close to the Chapman - Jouguet

énérgy. Therefore, we re-derive the partial derivatives ?%52
[
end =Y , assuming that the front ¢3.§ is at the

5%,

Chapman - Jouguet point,

- N ni
V= ~, + —§' [(%-a\(g,ﬂ\ -31 (c-5)



Y VmAa,
S O Sy
?{!

29 = - (v-uaf\
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(g9.+1) g2, ol
V-w)  odpy

At the Chapman - Jouguet point,

Reg °

Therefore,

d %C‘:
ol

and

where d_% SHotk

de,

— SHock

]
2 SHocK
1 d :Z'SHocg
2 cﬁ{ﬂ,
A d % SHoOCK
T as,
and d
de,

as derived in chapter three.

(g+) ) o2
(v-a,) 8, 99

(c-6)

(c-7)

(c-8)

(c-9)

(C—le

Figure C-1 indicates the variation of four shock velocities

throughout the flow field.

These velocities have been normal-

1zed for the distance which they travel into the flow field,
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1

"2 '3 'L 's 6 Y7 T8 '9 10 11 12 13 14
TIME (microsec) ' .

Filg, C Shock Velocity Behind Radiatioﬂ Front
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100

2 P s

FORMAT(5X 912 95X9F6e3 95X 9F6e195X9F84695X9FB8e145X9F643)

FORMAT(SX,IHI,6X,2HU319Xy2HP3y9X92HD3911X72HT3,9X,2HG3)

FORMAT(1I244F6.3)

FORMAT(5X 312 95X9F64395X9F6e395X9F643)

FORMAT(I2)

FORMAT(F6.3)

READ(5,7)GE

IM =17

DIMENSION V1(17),V2(17)7V3(17),VX(17)9V4(17)
DIMENSION U1(17)4P1(17)4D2{17)sTL(17)4+G2(1T)

READ (5,41)1,U1(1)4P1(1),4D1(1),T1(1),G1

G2(1) = Gl

WRITE (6,2)

WRITE (6,1)1,U1(1),4P1{I)4D2(1),T1(1),G1

PI(I) = 133.,3%P1(1)
READ{(543)T4V1(I)eV2(1),V3{I)4Vall)
READ(543)T4V1(I)4V2(1)4V3(I),Vall)

G2(1) = Gl

VX{I) = Vv1(I)

CALL FEE(G2(I-1)4VX(I)sUl(I=-1)yD1(I-1),4P1(I-1)yFX)
CALL GEE{(G2{I-1),4VX(I)yUL(I=1)4D1(I=-1)4P1{(I~-1),GX)
FG1 = GX

F1 = FX

VX(1) = v2(1)

CALL FEE(G2(I-1),VXI(I ) 1(I-1)sD2{(I-1)4P1{I-1),4FX)
CALL GEE(G2(I-1)4VX(I)yUL{I-=1)},4D1I(I-1)4P1(I-1),4GX)
F2 = FX

FG2 = GX

VX(I) = Vv3(1)

CALL FEE(G2(I-1)sVX{I)sUL{I=~1)yDL{I-1)4P1(I-1),FX) "
CALL GEE(G2(I-1)4VX(I)yUL(I=1)9D2(I=1)9P1(I-1),GX)
F3 = FX

FG3 = GX

VX{I) = V4(l)

CALL FEE(G2({I-1),VX(I),yUL(I-1)4D1{I-1)4PL(I-1),FX)
CALL GEE(G2(I-1)yVX(I)UL(I=1)4DL(I=1),4P1(I~=1),GX)
FG4 = GX

F4 = FX

UL(T) = UL{TI=-1)+VI{(I)=V1(I-1)

DI(I) = DI{I-1)+(V4(TI)-V&4({I-1))/F4~(UL({TI)=-UL(I=-1))/F4
XX ={Ul(1)-U1(I~-1))/FG2+(DL(1)~-D1(I-1))/FG2

PLII) = PL(I-1)=(V2{(I)}=-V2(I-1))/FG2+XX

P2 = P1(1)

D2 = D1(I)

CALL TEA2(P24D2+GE,T2)

TI(I) = T2

P1(I} = P1{1)/133.3

WRITE (671)11U1(I)QPI(I,7DI(I)7T1(I),GI

- P1(I) = 133.3%P1({I)

IF (I.LT.IM) GO TO 100
STOP
END
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SUBROUTINE GEE(G2,VXsUl4D14P1,4GX)
LAM = (G2-1.0)/(G2+1.0)
I = (1e0-LAM)*((VX-U1)*%2)%D1/P1~-LAM

CA = SQRT(Z*(1.0+LAM*Z)/(1.0+LAM))
CD = (Z-1.0)/(2.0%{LAM+Z))

CC ==-CA/1 -1.0

CB = (Z-1.0)/2.0

DZ = (CA+CB)/(P1*{CC+CD))

DZ = 0.5%DZ

GX = (VX-U1)*(0.5/P14+0.5%D2/(7-1.0))
RETURN -

END
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SUBROUTINE FEE(G24VXyeUl4D1,4P1l,yFX)
LAM = (G2-1.0)/{(G2+1,.0)
Z = (1e0~-LAM)X{(VX-ULl)*%2)*D1/P1—-LAM

CA = =SQRT((1.0+LAM*Z)/(Z%(1.0+LAM)))
DZ = (Z-1.0)/(2.0%D1%{(CA+CB))

DZ = 0.5%DZ

FX = (VX=Ul)*(=e5/D1+0,5%DZ2/(Z~1.0))
RETURN

END
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Appéndix D
THE SHOCK TUBE

In this work, the original "low.attenuation" shock
tube of P, R. Smy (1962, 1965) was used, The driver gaslis
electrically heated and accelerated by a standard back-strap
configuration, and a mylar membrane is employed to separate
test and driver gases. This shock tube has been used in
several experiments (ref. 4, 11, 12, 13, 25, 30). Details
of design and performance are given in Smy's article (1965)
and also in M, Phillips' thesis (1969). In order to use this
shock tube for the testing of some Bther gas flow, one needs
to ascertain that a shock is actually formed, Smy's explana-
tion was not entirely satisfactory and when coupled with the
criticisms of the conventional electromagnetic shock tubes by
Muntenbruch (1969), and the discussion of flow instabilities
in electric arc-driven tubes by Barach and Vermillion (1965),
serious doubt arose about the description of the shock tube
and the predictability of any shock waves., The recent work
of Phillips has helped to understand the performance of such
an arc-driven membrane shock tube, However, since Phillips
introduced several modifications in the design of the tube,
which were not incorporated in our tube, we have establised.
Iindependently, that in our tube, a reproducible and well

behaved shock is formed.

In order to intensify our understanding of the performance

of the arc-driven shock tube, we first derive.the shock velocity
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as a function of the energy stored in the driving capacitor
bank, The total kinetlc energy, ‘aLMM JAoa » introduced
through the membrane into the test section of the shock tube

! 2
must be a fraction f$ of the capacitor bank energy, 5 C V¢
A 2 !
aMeu,” = B 32CV (D-1)

f1~ is the mass origlnally expelled by the discharge.,
A, 1s the average particle velocity at the membrane,
but since more and more mass is accelerated and the total momen-

tum 1s constant, the particle velocity will gradually decrease;

oy C M +F§x?,§ s iy M (D-2)

where A is the cross-sectional area, and X 1is the distance
from the membrane, Thus, one obtains the contact-surface

velocity as a function of position

_ / ! !
C
.AACK\ = ﬁ VC MM l+ Ax?‘ (D-B)

M

Smy derived an identical expression, treating the driver gas
as a bullet and considering only integrated magnetic driving

effects,

With this background and the motivation of understanding
the properties of the shock tube, we have two objectives:
firstly, to establish that a shock front is formed and that

its properties correspond to those given by solution of the
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Rankine ~ Hugoniot equations, and secondly, to test the

functional dependence suggested in equation (D-3).

In order to test the quality of the shock waves formed,
we measure the contact surface and shock velocities (Phillips,
1969). Ideally, the contact surface velocity should equal the

-particle velocity in the shock heated gas. In practice, bound-
ary layers at the wall of the shock tube result in a mass flow
out of the region between the contact surface and shock front.,
Thus, the particles have a net velocity towards the contact
surface so that the particle velocity is somewhat smaller than
the contact surface velocity. 1In typical smear pictures, the
contact surface and shock front can be easily identified (fig. 9),
Therefore, both velocities are measureable, In figures D-1 and
D-2 the contact surface velocity is plotted against the shock
velocity, The contact surface velocity has been obtained in
three ways:

l. by measuring the contact surface velocity,

2., by measuring the shock veloclty; calculating the
particle velocity frém thé Rankine - Hugoniot
equations and identifying this with the contact
surface velocity, as for the ideal case, and

3. by measuring the shock velocity and applying the
well-known boundary layer theory of Roshko (1960)

to calculate the contact surfacé velocity.

The agreement is quite good, so that on the basis of these

measurements, the flow pattern looks like a shock wave with



W
1

~77-

_eta
MEASURED

®
CALCULATED WITH
.'A _~~ BOUNDARY LAYERS

f
J
d
~
4
u
A
o A
o
] o’
%] 4
=3 ’ ..
: e
; ool
2 ] J AA . h 7 .
@ - PFig., D-1 Contact Surface
§ éA Velocity
& .
S 2%
_ ®
AP
Tg, '3 ' i
SHOCK VELOCITY Ckm7Zarc) ° a
. ® A
o® a
@ [ AA ‘
/
J
Q3 “ -
< MEASURED ~_ 4
é o e BN '
o . CALCULATED IDEALLY
~ A
> a
2 <08
g . e
4 © a8
N ¢ 4
m . é .
= ° [y Fig. D-2 Contact Surface
52 - g : ‘ Velocity
2 e A
B o ¢
b
3)
°
E| e
o
(3} . AA.
12 '3 i

SHOCK VELOCITY ( k- /auc)



-7g-

boundary layers 1in the 1nvestigated.initial pressure range of
1l to 10 Torr. A further indication of the formation of &
shock front is provided by a vertical smear picture (fig. D-3)
which clearly shows a planar shock front followed by a diffuse

contact surface.

We now proceed to test the attenuation equation (D-3).
There are two convenlent ways to test this relation, since
the contact surface velocity depends upon the two external
parameters,'Vc and ?. . Figure D-4 demonstrates the variation
of the contact surface velocity with the bank voltage \é_ and
indicates primarily that there is éllarge variation in the
shock velocity formed under identical conditions. The expected

proportion is also roughly indlcated.

Figures D-5, D-6, and D-7'show the variation of the contact
surface veloclity with the downstream pressure, The striking
result is that Pt“ cannot be the total mass of drliver gas as
Smy has predicted. In trying to acquire a better fit, it was
hoticed that no single value of M,.. yould cause equation D-3
to correspond to the experimental curves, However, at lower
downstream pressures, a good fit could be obtained by taking
/"1M=N’ ~ the mass of driver gas origina‘lly between the two
electrodes. At higher pressures, a better fit was obtainéd by
taking ft“_to be larger; rt~=lﬂ1 ~» one-half of the original
total driver gas. A seemingly reasonable explanation for this
behaviour would be that capacitor ringing causes a perturbation

in the driving mechanism. These ringing effects are é common
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prbblem in electromagnetic shock tubes (Muntenbruch, 1969).

In order to fest this hypothesis, we applied a crowbar to the
discharge (fig. D-8). Although the crowbar was not completely
successful, one of the smear pictures ylelded just the desired
information, As can be clearly seen, the partial crowbar
reduces the secondary‘ringing effects enough so that the take-
over of the driving mechanism is distinct. The partial crowbar
results compare quite well with the modified theory (fig. D-9),
and establish not only that the flow field is perturbed by

capacitor ringing, but also that equation D-3 holds.

In conclusion, the shock tube ﬁrovides a low attenuation,
high velocity shock wave with properties predictable by the
Rankine - Hugoniot equations. There are‘certain limitations
due to the following conditions:

l. capacitor ringing in the driver section

2. 1lmpurity content from burnt mylar which coats the
walls of the shock tube

3. Jjittering in the shock speeds from about 10 to 15
per cent, even when the bank voltage and downstream

pressure are constant.

As a side note, we have often speculated whether the
capacitor ringing effects may signify two different driving
mechanlisms; electromagnetic acceleration at low downstream
pressures and electrothermal acceleration at high test gas

pressures,
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Appendix E
OTHER INTERESTING ASPECTS

Our experimental situation in itself is very interesting.
We have noticed several phenomena which suggest another

experiment.

One of our first observations was that under certain
conditions (4, ?§ TORR, M~ 13), fhings would happen in the
shock heated reglon of the known shock when the light source
was turned on. Flgure E-1 1s a smear picture which illustrates
this phenomencen The luminous wedge starts whén the light
source is turned on, The effect seen in fligure E-1 is not
reproducible in the sense that it 1s seen at every shot but
it 1s predictable in the sense that whenever observed, it
behaves in much the same way., There was always the same correl-
ation between the start of the light source and the start of

the luminous wedge,

Other similar luminous phenomena ﬁere also observed,
a}though with even less reproducibiliéy. When the shock front
separated from the radiation front, a luminous wedge would
appear in the known shock heated region (recall that the colour
of the radiation front changed when thevshock separated from
it, fig. 9). Often times, instead of seeing a luminous wedge;
a thin luminous line would appear some distance behind the |
- known shock front., The luminous line appears very close to,

and travels slightly slower than the contact surface, -
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It appears obvious that these phenomena have something
to do with the absorptibn of radiation in the shock heated
gas, As a first guess, they could be radiation fronts,
or excitation fronts, or luminoscity'caused by some dynamical

perturbation which is a result of the absorbed radiation,

This type of problem has been treated theoretically by
R. G. Rehm (1968) and B, T. Chu (1955). Rehm followed the
method of strained coordinates to calculate the flow field
when laser radiation of small ampliﬁude is absorbed over a
finlite region behind an established shock wave, He predicts
the flow field as drawn in figure E;Z. The main shock is
expected to speed up, and a second shock is formed some time T
after the light is turned on and some distance behind the shock

front,

SECONDARY J7
SHOCK

@\ LASER LIGHT
>
DISTANCE

NPERTURBED SHOCK

Laser turned on
at T=0

Fig. E-2 BRadiative Energy Addition at a Shock Front
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Unfortunately, the accuracy of the velocity measurements
from the smear pictures is not sufficient to measure the
. expected veloclty increase, The expected secondary shock wave
can be seen only on very few photographs, and then only by an
observer whobhas faith in the theory. But something is
happening and, to understand just what, could develop into an

interesting experiment.
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Appendix F
THE EXPERIMENTAL SET-UP

The Bogan light source consists of an arc constricted
through a narrow channel in a polyethylene rod. It radiates
as a black body with an effective temperature of the order of
60 000 Kfor a period.of about ten microseconds (Zuzak, 1968).
The measuring device is a smear camera (J,P. Huni), The smear
camera makes use of a rotating parabolic mirror driven by a
high speed electric motor. When the motor is turned on, a
pulsevis generated every revolution and when the time between
these pulses becomes as small as a prescribed time interval
(sweep speed setting), a triggering pulse is sent out. The
remaining triggering apparatus can have a jitter as high as
tens of microseconds because of the large amount of time avail-

able on the film (of the order of 300 microseconds),

The triggering pulse is fed into a 162 Tektronix Wavéform
Generator which yields a negative sawtooth of several milli-
seconds duration. The negative sawtooth is fed into two
163 Tektronix Pulse Generators, each yielding pulses after
variable and independent fractions of the sawtooth duration.
These two pulse generators yleld pulses which are delayed with
‘respect to each other. BEach pulse is fed into a separate
thyratron and theophan‘s doubling agent which initlates the
breakdown in the driver section of the shock tube and in an
external series spark gap for the light source, The apparatus

is 1llustrated in figures F-1 and F-2,
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Appendix G

%00 -

DETAILS OF PROBES -

width = 1 mm

rise time = 1 Msec” .
reading time = 25/usec
sensitive crystal’=

PaT -4

300~

The pressure probe
was calibrated by measur-
ing the pressure jump

. across known shock waves

(R. Ardila).
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Fig. G Plezoelectric Probe Calibration



