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ABSTRACT

Direct measurements have been made of the velocity
of second sound in liquid helium over the temperature

“2 ¥ to 5 x 100 K. Using

range T,-T from 1.3 x 10
prefiously determined relationships for the specific heat,
superfluid density, and thermal conductivity near the
lambda point, consistency has been demonstrated between -
the measurements, velocities predicted by superfluid

hydrodynamics, and certaln scaling law predictions.
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CHAPTER I. INTRODUCTION AND THEORY

(1) INTRODUCTION
In the two decades preceding this one, a slowly
increasing collection of experimental data began to
.1ndicate'remarkab1e similaritiés in physioal behaviour
near the critical points of some Otherwiseive:y dissimilar
systems. It was realized that transitions such as: |
- the superconducting-normal metal transition,
- the liquid-vapour critical transition of a pure fluid;
- the order-disorder transition of some metallic b1n§ry
alloyé, ,
- the misoible-inmiscible critical point of'some binéry
1iquid mixtures, | ‘ |
- the ferromagnetic Curie point and the antiferromagnetic
Néel point, and |
- the ligquid helium lambda point, v
all behaved in a qualitatively similar way. This realization,
coupled with a rapidly improving experimental technology,
led to a recent stimulation of interest in the theoretical
and experimental investigation of critical phenomena..
Classical critical point theories such as the lLandau
theory of the second-order phase transition, the van der
Waals' equation for a liquid, and the Wélss molecular
field theory for a ferromagnet, were found both theor-

etically and experimentally, to be unsatisfactory very
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close to the critical temperatnrev.

It has been known fér many years that the temperature
dependence of a physical quantity near a critical point
may often be described by (T-!c)zzwhefe T i1s the absolute -
temperature, T, is the critical temperature, and e is
a constant "critical exponent". Part of the recent
theoretical work has b§¢n the development of %"scaling .
laws" which attempt to relate to each other the eritical
exponents or temperature dependences of dlfferent physical
quantities, One such theory; applied to liquid helium,
predicts a relationship between the velocity of second
sound below the lambda point and the thermal diffusivity
of the liquid above the lambda point.
| Classical hydrodynamic argunents; based on the
two-fluid model for liquid helinm, lead to an expression
for the velocity of second sound in terms of the specific
heat of the liquid, and the density of its superfluid
component, Experimental measurements of this specific
heat and superfluid density had been obtalned over a
temperature range much closer to the lambda point than
the range coveréd by the existing direct measurements
of fhe second sound velocity.

The above considerations all indicated 1t would
be interesting to measure the magnitude and temperature
dependence of the velocity of second sound as close

to the lambda point as possible.



(2) EXPERIMENT

The experiment we performed basically consisted
of the measurement of second sénnd resonancés, or thermal
standing waves, in a pgrallel plate resonator (called |
the cavity) imnersed in and containing helium IT.

The use of resonant amplification to detect and

measure second sound is well known.l'u

In general,
the conditions for resonance in a cavity depend on
the cavity geometry, the frequency of the waves gener-
ated in the cavity, and their velocity in the medium
contained within the ocavity. The usual technique for
‘second sound measurements has been to fix the temperag
turé,(and therefore the second sound velocity) and vafy
the frequency ﬁo search for the.differgnt resonance
mo&es. In this experiment, a basically different ap-
proach was used in that the frequency was fixed and
the temperature was not.

The temperature in this experiment was allowed
to drift’slowly in time. As a consequence, the second
sound veloeclty in the iiquid within the cavity was a
slow function of time. BResonances were therefore ob-
served with the frequency and resonator geometry fixed,

separated in time due to the time dependence of the

second sound velocity in the liquid helium., The exper-
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imental difficulties associated with the precise control

of the.liquid temperatufe were thus eliminated, or more
accurately, were reduced to the problems of preeise
measurement of temperature. It was felt that with this
technique observations of the second sound velocity .
could be made much cldser to the 1ambda point than

had been done in previous experiments, ™

(3) THE TWO FLUID MODEL

Many of the properties of liquid helium.below the
lambda point may be described in terms of a model which
assumes two interpenetrating fluids -- the normal fluid
( mass My, donsity/pn ) and the superfluid ( mass M.,
density,ps). which may move independently of each other,
and which together constitute helium II, ( mass M = M +M_,
density L =/on+/%).5 |
(a) The Hydrod ic Equations. A system of hydro-
dynamic equations for helium II may be deduced from the

6

above model,” and three assumptionss;
(1) that the superfluld fraction has zero entropy;
(11) that below some critical velocity the motion
of the superfluid is irrotational; and
(111) that all the conservation laws are valid.
Assumption (1i) is written

curl vg =0 4 eee(l)

where"?s is the superfluid velocity. We deflne'E; the
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momentum/unit vo¥ume of the fluid., For small superfluld
and nérmal fluid velocities'$; and‘$h;'3'can be expanded
in powéfs of the velocities and to a flrét approximation
(neglecting terms in ¥2 ) |
? =_/08¢s +/on'#n ¢
The conservation of mass equation 1s
0/t +dav T =0, ces(2)
The first equation of motion, using the conservation
of momentum law, is
23,/2¢ +2ll, Px, =0, cee(3)
1,k =1,2,3,
where the summation is carried out over the twice repeated
subscripts, and where Xy are the Cartesian codrdinates.
7&3:13 the momentum flux tensor which for small velocitles

(neglectlng viscous effects) is 7Zk = pf(i;k) +/0nvn1vnk
+/F§Vsivski where p is the pressure, and §(1,k) 1s the
Kronecker delta function,
Again assuming no dissipative processes we may
write the conservation of entfopy equation
Aps)At + v F =0 ,

where F is the entropy flux vector and S is the entropy/
unit mass of fluid. As entropy is carried only by the
normal fluid, F = 0S¥, and

3(p3)/3t + div (pSTy) = 0. oo ()

The internal energy of an incremental mass of liquid

helium 1s given by
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dU = TdS - paV + Gan eee(5)
where V 18 the specific volume and G 18 the Gibbs free
energy per unit mass, Let the mass of this bit of helium
now be increased at constant volume (hence AV =0 ) by
the addition of particles which carry no entropy (hence
dS = 0), that is by the addition of superfluid. Then
Eq.(5) becomes dU = GdM and we see that the potential
energy per unit mass of the superfluid must be G, and
that the acceleration of the superfluid must be
d¥,/dt =37, At + (¥ °grad)¥, = -grade.  ...(6)
The total Gibbs energy MG of the fluid is the sum
of the Gibbs energy MGo(p.T) of the stationary fluid,
and the kinetic energy of the relative motion of the
normal and superfluid parts.
| MG = MG, + (BZ2M,) , eesl(?)
where P, = M, (¥,-F;) 1s the momentum of the normal fluid
with respect to the superfluid. Recalling that the masses
and densities of the fluid fractions are related by
Mp=(Mp/M)M = (Fn/ Pt/ )M, we now differentiate Eq.(7)
with respect to M, obtaining
IMG/M = G, - (PP F24M°) =G
Substltuting'F;zg/i(¢54¢;)fo we have
6 =Gy - (P20, T2,
and substituting this into Eq.(6) gives
dvgAt + (Vgograd)¥, = -grad{c -(0,/20) (¥ F,)%]. ...(8)
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The term (?B-grad)'v’"s may be rewritten
| (Vgegrad )‘v‘é = igrad?r‘sz -['ir‘sx(curl?s )]. eeel(9)

Substitution of Eq.(9) and Eq.(1) into Eq.(8) gives

7Rt + graafG, + (v@2) - (8/20) (Vy=g)2} = 0. .(10)
Equations (2), (3), (4), and (10) constitute the system
of hydrodynamic equations for helium II.
(b) Linearization of the Hydrodynamic Equations. In
deriving the velocities of low amplitude sound, we may
assume that 7, and ¥, are small and that A S; p and T
exhibit only small fluctuations from their equilibrium values
/%, SO; Po and To. The above equations may then be
simplified. Neglecting terms in ¥2 in Eqs.(3) and (10),
and taking /OS out of the divergence in Eq.(4) we obtain
the following system of linearized hydrodynamic equations
for helium II:

(200t) +div J = 0; .ee(2)
(d3/3t) + grad p = 0; ...‘(11)
(3(ps)/2t) + 0341V T, = 0; eee(12)
Qvg/dt) + grad G, = 0. ' eee(13)

(e) Calculation of Sound Velocities. We now make use
of Egs.(2) to (13) to calculate the velocities of wave
propagation. Differentiating Eq.(2) with ré'spect to
time and substituting Eq.(11) we obtain
350/31:2 = div grad p. eeo(llt)



The identity ,
a8/at = (140)(3(/&")/31:) - (840)(8_,0/315)
on substitutlon of Eqs.(2) and (12) gives
38/0t = (S4/0)A1v(V,-Ty). ee.(15)
The Gibbs free energy is Go = U + pV - TS whence
dG, = =S4T + Vdp = -S8d4T + (lﬁo)dp.
Rearranging this and taking the gradient we obtain
grad p = /oSgrad'l‘ + /ogradGo.
Substituting grad p from Eq.(11) and gradG_ from Eq.(13)
gives .
PulO (T -F,)/0t) +,5gradl = 0. eee(16)
Differentiating Eq.(15) with respect to time and substituting
Eq.(16) we find
323dt% = 52(4/p) aiv grad T. ees(17)
Equations (14) and (17) govern the propagation of waves
in hellmn 11,
Our previous assumption of small variations in the
thermodynamic observables may be wr;l.tten explicitly
P=/fo tPrlt) 8 =8, +8p(t), p =p, +pg(t) and
T =T, + ’I'v(t) where/oo,“ Sye po,‘ and '.l‘o are independent
of time. Under these conditions we may further write
p, = Op/AP)gA + ©p/dS)S,, and
Ty = QT/p)gA, + QT/08)S .
Equations (14) and (17) are then rewritten
024,/0t% = OpR o) 20, + (Ip/3S)v2s,, and .o (18)
3%5,/3t2 = (py/p, )82 {17390 720, + RTN8)9S),  (19)
where Vz is the laplacian operator.
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We now wish to kmow if it 1s possible for disturbances
in the thermodynamic variables, of frequency w to pro-
pégaté’é.é ;vavea'in the'_ 1iquid with velocity u. To -
determine this we now seek simultane.ous solutions of
Eqs. (18) and (19) of ?f:he form p= A +/0'exp[1co(t-x/u)l
and 8 =8 + S'exp[io(t-x/u)] . Substitution of these
into the above equations leads to

(21/30) SR TP = {(u/uy)?-1}st = o, .. (20)

-{taru)2-dpr + QpARS), Bap)gSt =0,  ...(21)
where

u? = Qp/Adp)g, and
W = (pg/p )S2QRTARS).

The condition for the simultaneous solubility of
Eqs. (20) and (21), that the determinant of the coefficlents
be zero, gives
{07021y {(w/0,)%-1) = (37/30) 5(35/3T )0 (30/25), (3p/3p)

| = (Cp--Cv)/Cp ’
where Cp and Cv are the constant pressure and constant
volume specific heats of the liquid. Using the fact that
Cp ﬁcv, we now set (cp-cv)/cp = 0, With this approximation
we then obtain the two solutions
u=u = [(&p/A/O);]* . eea(22)
u=u, = [1s 8//oncp‘_,lé‘. eee(23)

If ua = uy Eq.(21) shows that S'=0, and that to the
first order in which we are working the entropyvfluctuations
vanish. This mode 1is a 'travelllng wave of density

fluctuations under adiabatic conditions, i.e. ordinary
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or f;rst'sougd. If u é'ﬁz. Eq.(20) shows that the density
fluotuatlons vanigh, This 18 a travelling wave of

entrop& fluctuations, and therefore temperature fluctdatibns,
at constant density. This 1s the mode called second

sound.

(4) CRITICAL POINT ARGUMENTS

(a) General Discussion. Recent investigations’ of
critical point phenomena have led to the re#lization
that not only do certain physical properties exhibit
rather simple behaviours in the viocinity of a critical
point, but that thelir behaviours are very simllar near
the critical points of apparently very different phase
transit;ons. Arising from such discoveries 1s the idea
that each phase transition 18 describable in terms of
an order parameter 5. ( Particular examples are the
magnetization of a ferromagnetic material, the condensate
wave function of a superfluld, and the concentration
in a binary liquid system). This parameter is a measure
of the ordering present in the system, and near the
critical point it may undergo large fluctuations with small .
change in the free energy of the system. The special
behaviours of the other physical quantities in the
eritical regioh are thought to be related to this large
susceptibility to fluctuations.

To deseribe these fluctuations, a correlation

function of the general form
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Bty ([ - BEMBE) - GEHN)D .
TeT -F -
18 used, relating the deviations of the order parameter

at point ?i from its expectation value there to the
. o

Tye ‘
function is a monotonically decreasing function of iﬁ

deviations at point In general, this correlation
As such, criteria may be set up to define a particular
value of |T| called the correlation length, or range } of
the cor:elation function. This correlation length F is
generally a function of temperature, and divergent near
the critical point.

| As noted above, many quantities depend on € as e-e-
where e 18 some exponent (called the critical exponent)
which 18 fixed if the 8sign of € 18 fixed, and € = (T'Tc)/Tc'
Table I 113ts some of the physieal quantities pertinent
to ﬁhis experiment, thelr expected behaviours, and the
‘conventiongl notation for their critical exponents.

Becently 1t has been suggested8-12 that the critical

indices are not independent of each other. Through
the use of plausibility arguments and assumptions about
the functlonél forms of thermodynamic observables in the
oritical reglon, certain relationships called scaling
laws have been_préposed between various of the critical
exponents. Some of these relationships are subject to
experimental verification. It should be noted that
none of the scaling laws predict the magnitude of any
critical exponent. What they do predict is the relationship
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 TABLE I

Physical Quantities near Tc'

Physical
Quantity

Critical
Exponent

Expected
Behaviour

Order parameter
%

P

Correlation function
B (F)
- i -~
r = 1'1-1‘2

Correlation length,

or range of C,

f

Superfluid density

e

A

(%) =0,€>0
(p) ~ #lel? ,ec0

C ~ ‘ ?1_‘1“.2‘ -d+2-7

for a 4 dimensional

- system

F ~e’iero
E~lel™, e<o

Py~ lel % eco
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of one critical'eiponent:to another, usually in the form
of a sum 1nvolv1ng two or more critical exponents, |

Correlation funetions Ca may be defined also for
operators or physical quantities a other than the order |
parameter. Halperin and Hohenber511 point out that scaling
arguments may then be subdivided into static or dynamic
scaling depending on whether one assumes time independence
or dependence of the correlation function, (C‘(r) or
Ca(r.t)). and dynamic scaling into restricted or extended
dynamic scaling depending on whether or not only the
order parameter correlation function i8 expected to

obey the dynamlie scaling laws,

(b) A _Specifioc Prediction concerning Second Sound. In

a recent paper11

» Halperin and Hohenberg propose a
dynemic scaling hypothesis which leads to a speclfic
prediction that may be tested in this experiment, They
note that a dynamic correlation function Ca(?.t) for
some operator ;. may be Fourier transformed to C%(E.w)
and may in general be written in the form

Ak = om @ rpl@) fl@E)-1,

/f(x)dx =1,

*
and where the characteristic frequency w2(k) 18 determined

where

by the constraint
+1
/1 f(x)dx = % .

A mental picture of the scaling hypothesis may
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be obtained as follows. In Fig. 1 we represent the
(k.f"1 ) ‘jplane'. (where k is the wave number and }-"1 18
the 1n§erse oofrelation length). Three regions may be
defined in this plane:

- Begion I. Xkf«1, T<T,. The macroscopic critical

region, or hydrodynamic critical region, below the

critical temperature. In this region phenomena occur
over distances r large compared with f. -Hydrodynamic

arguments are expected to be valid in this and region III,

- Region II. k#))l. The microscopic critical region

in which phenomena ocecur overAdistancea r small

compared with ;.

- Region III, k}((l. T)Tc. The macroscopic cr1t10a1

- region above the critical temperature.

- The eritical point 1s the line -1 = 0,

" The dynamie scaling hypothesis has as 1ts basic
assumption that C§ (restriéted scaling), or C% (extended
scaling) vary smoothly in the (k;f'i) plane except at
the origin, and that either of these correlation functions
18 essentially specified by its limiting behaviour in
regions I, II, and III. That 1s to say, 1f the asymptotic
forms of the function 1in regions I}(or III) and II are
separately extrapolated to the line L, (or L2) in Fig. 1,
defined by k§‘=.1..T<Tc (or T)Tc) the two resulting expressions
must agree to within a factor of order unity.

The asymptotic forms c®I, c2Il- c8lll 51 gefined as
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FIGURE 1. The ( k,§'1 ) Plane
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the limiting forms of C%(f) under the conditions:
c*l ¥ fized, k—» 0, MT, 3
call :'§ -1 _o :
I ¥ fixed, kw0, DT,
The scaling hypothesis then takes the form of the matching
conditions ‘
cal(x) =«caII(x), for k =§ "1
k) =xe®(x), for x =1
 whence | |
c’HI(k) = ac®I(x), for k =§ -1 cee(2h)
where 0(. X!, A are constants of order unity. Halperin
and Hohenberg also propose that similar expressions
may be assumed for the characteristic frequencies w?I(k),
a'H(k) waIH(k) in the three regilons.
‘ We now consider a particular eritical transition,
the lambda transition of liquid helium. The critical
temperature T, for this transition 1s the lambda temperature
Ty = 2.172K, and € = (T-T))/T.
The specific prediétion we will test concerning
liquid helium evolves from using as operator ; the heat
operator
a(Tot) = E(T,t) + (<Bp) 0(Fit))/Kp0d
where E(T,t) is the energy density of the liquid.
Halperin and Hohenberg11 assume that the heat operator
correlation function C%(?.w) shall be dominated in region 1
(€ <0) by second sound, and in region III (€ >0) by

themal diffusion, and that the asymptotic forms of the
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characteristic frequencles in these two hydrodynamic
regions may then be derived and are given by |

wil(® = wk , (€<0)7 eee(25)

walll(k) = Dk2 , (€>0), cee(26)
where Di: =k//acp is the thermal diffusivity of the liquid,
and 4 1s the thermal conductivity. The extended dynamic
scaling prediction is then, using Eqs. (24), (25), and
(26), the matching condition for k =§' -1 (see 1lines
k§ =1 in Pig. 1) that

Df~2(€>0) = An§™ (e <0), eee(27)

The two temperature dependent correlation lengths
[ may be written (see Table I) f(€) =§ €™ and f(-€) =
Ec',l-el"’" where fo' s‘; are constants. Equation (27) is
then rewritten
‘u,(-€) = (k(€)/pCyle)) - [aF2(5s)-1] 12| ¢|=>". ... (28)
Now making use of a static scaling lawl?
- y=y'

and the static scaling assertionl3 that A 1s proportional
tof -1 we see that

for |-l tn g
and therefore

‘F=v'=v.

14-16 have shown

Experimental measurements
5 = 0,666 & ,006 = 2/3. Thus we obtain for the exponent
of € in Eq.(28)

2y - y' =2/3
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and Eq.(28) beconés ' .
u,(-€) = (K(e)jpc (€))-[af2(E)-1]-%23. 9
fl‘his result was first derived by Anlers.l? o
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CEBAPTER II. APPABATUS
E————— —— — —

(1) CRYOGENIC APPARATUS
~The oryogenic apparatus, shown in Fig. 2, consisted
of a large outer bath for environmental stability, and
a small inner bath containing the second souhd cavity.
The 3 1liter outer bath could be temperature regulated

bK using a whlker

to a short term accuracy of about 10~
diaphragm regulator.l® The 0.33 liter inner bath was
separated from the outer bath on the sides and bottom
by a vacuum jacket, and on the top by a 3/8" stainless
steel plate. This moderate thermal link gave the 1nnet
- bath a thermal response'tine with respect to the outer
bath of about one hour. The inner bath was filled from
| the outer bath through a porous stainless steel filter
(to prevent solid nitrogen particles from entering) and
a small stainless steel needle valve., The inner bath
could be pumped via a pumping line (containing also

the electrical leads) te:mlnating in a stainless steel
plug bored with a 1 mm diameter hole. . Electrical leads
were brdught through the steel plug by sealing varnish
insulated copper wires (AWG #37) into shorthlengths of
stainless steel capillary (1/16" outer diameter, 0.007"
inner diameter) using Aralditel? epoxy. The wires were
thus electrically insulated from the steel but the

holes in the capillaries were sealed. These cased
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FIGURE 2. Cryogenic Apparatus. A = second éound gen-
erator, B = resistance thermometer, C = bolometer,

D = Perspex spacers.
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wires were sealed with époxy into 1/16" holes through
_the plug. Pilm flow heat transfer between the two baths
occurred only through the 1 mim hole; and was therefore
small., The second sound cavity, near the bottom of the
inner bath; consisted of a 2.5 cm square bolometer
separated by 2 mm Perspex spacers from a 2.5 cm square
seconﬂ,sound generator (heater). The cavity was oriented
horlzdntélly (1.e. second sound propagated vertically)
to reduce the gravitationally induced temperature range
of the lambda transition? to 2.5 x 10~7K. The cavity
was open on two sides., The thermometer, in the center

of the cavity, was a carbon resistor,

(2) ELECTRONICS |
A bléek diagraﬁ of the electronics 1is shown in
Fié. 3. An osclllator supplied a signal of frequency
£/2 to the generator, at which the Joule heating pro-
duced a second sound piane wave of frequency £ (typically
200Hz to 5KHZ) in the liquid. The same f/2 signal,
supplied to a frequency doubler, emerged as a signal
necessarily coherent with the second sound, and was
used as the reference signal for coherent amplifier21
A (Fig. 3). Thermally induced resistance changes in
the bolometerf bilased with a constant DC current (rang-
ing from 10 to 30/uA)iappéared as voltage changes a-

cro8s the bolometer load resistor which were amplified22
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’_‘_{ SIGNAL PHASE AND TEMPERATURE
OSCILLATOR CHART RECORDERS
| 4 4
. FREQUENCY COHERENT "COHERENT -~
7 DOUBLER AMPLIFIER A AMPLIFIER B
FREQUENCY '
} }
BOLOMETER RESISTANCE
BIAS, LOAD BRIDGE
g aE e G N e an e we e H— E-i ———————————————————————————
F N
> ’ >—
GENERATOR | | BOLOMETER

THERMOMETER

FIGURE 3. Block Diagram of Electronics.
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and fed to coherent amplifier A. The output from co-
herent amplifier A was fed to one channel of a two
channel chart recorder.23 This "second sound trace"
wﬁs proportional to the product of the second sound
anmplitude in the cavity and the cosine of the phase of
the received second soﬁnd with respect to the reference
signal,

Coherent amplifierz4 B generated i1ts own reference
signal which was also fed to a Wheatstone bridge, one
arm of which was the resistance thermometer. The bridge
unbalance signal was ampllfied25 and fed to coherent |
amplifier B, the output of which went to the other
channel‘of the chart recorder. This "temperature traée"
was proportional to the resistance difference between
the thermometer and the preset value of a precision

resistance decade.

(3) SECOND SQUND CAVITY
(a) Bolometer. Some desirable properties of a bolo-
meter for second sound detection are:

(1) high thermal sensitivity (1/R)(dR/4T);

(11) 1low electrical resistance R to minimize the
problems of impedance matching to transmlssion cables
leading out of the cryostat;

(111) small heat capacity to enable it to respond
to very rapid temperature fluctuations; and

(1v) 1large active area.
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The carbon film bolometers constructed by Cannon
and Chester2® exhibit properties (1) and (111). Sig-
‘nificant improvement over their design was achieved
using photofabrication techniques rather than thin film
evaﬁoration techniques to prepare the bolometer elect-
rodes.

The electrode pattern Fig. & was photographiecally
reduoed onto Kodak Ortho Type III film. The scale in
Fig. 4 represents the final size of the bolometer. A
two inch square of 1/16" thick fiberglass was bonded
with Araldltel9 epoxy to a 0.001%" thick layer of brass.
After cleaning with organic solvents in an ultrasonic
cleaner, the brass was spray coated with a thin (less
than 10™% inch) layer of Kodak KPR photoresist.2’ The
phptogrgﬁhic negative was contact printed onto the coated
brhéa nsing ultraviolet light, and the resniting latent
inage developed. After development; thé photoresist
has}the property that all parts which were exposed to
the light beobmé insoluble in most acids{ while the
unexposed portions dissolve in the developer. ‘The
plate was then etched to remove all the brass which
was unprotected by developed photoresist. The remain-
ing photoresist was then removed, leaving the pattern
of Fig. 4 in 0.001" brass bonded to the fiberglass

substrate.
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-
-he

2.5 cm (final size)
FIGURE 4., Bolometer Electrode Pattern.
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The bolometer was completed by spraying the pre-
pared electrodes with a suspension of nominally 16
, m1111-micron carbon particle328 in xylene. The xylene
evﬁporated leaving an e;tremely thin layer of semicon-
ducting carbon covering the electrodes. BReference to
Fig. & will show that the bolometer therefore consisted
of 64 thin film carbon resistors wired in parallél;
each approximately 2.5 om wide and 0.02 em long. Con-
'sider;ng the film to be a homogeneous slab of bulk
- graphite; and using Ohm's law and the measured room
temperature résistanee? a thickness of 0.1l milli-microns
18 indicated for the film. As the carbon granules had
‘diameters of the order of 16 milli-micronsy one can
~conoclude that the film was microscopiedlly inhomogeneous
and roughly the thickness of one carbon granule. This

bolometer design achieved the desired properties of
| low thermal capacity without excessive electrical re-
sistance.

The bolometer réeistanee and sensitivity while
operating at the lambda point were ~70KQ amd ~3.4 K~3
respectively§ giving the second sound detection system
a maximum sensitivity of 3 x 10-8k rms/chaft inch.
| The'maximum temperature wave amplitude observed in the

experiment was 107K rms. Second sound noise (real and
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~ apparent) was 1863_than'3.x 109K rms. The detection
‘system bandwidth was typleally 0.25 Hz. |
(b) Thbrnonetér};.An ﬁllen-Bradleyz9 1/16 watt carbon
resiétqr? nominhlij 33 ohms at room temperature was
used as thé ﬁho:noﬁeter. Its resistance and sensitivity
at the lambda point were R, ~ 120000 and (1/R)(dR/d'1‘)A
‘'~ 1.2 K1 giving the thermometry system a maximum sens-
1tivity of '~10'6 K/chart inch. Low freqnenc& thermal-
noise (real and appareht) was about 10'6K peak to peak,
~ The thermal response time of the thermometer was meas-
ured in liquid‘heliﬁn and found to be 22 msec at h.2K
and 5 mseo at ZaQK.‘ - ; » n

(¢) Second ggnndfsenerator; The second sound gener-
ator was a plece of comnere1a1'earbon'resistance boara3®
noginallj,25 ohms/square at room temperature. Its
‘ reéistanée ét liﬁnid helinm témperﬁtufes was about

50 ohmé/square;u_ .
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(1)  SECOND SOUND TRIALS

Data were'acgnired in the following manner. V(Be-
ference wi;l be made tp Pig. 5, a.typioal section of
the output from the two channel chart recorder).

(1) With the inner-outer bath valve closed and
the outer bath stabilized at a tenperatnre}a few milli-
degrees below T,, the inner bath temperature was held
steady at AT ~ 102 to 5 x 105K, where |

| AT = T, -T.
The frequeney and ocoherent anpiitier pass-band were
set to optimize second sound detection, and the sens-
1tivity (ohms/chart division) of the thermometry system
| was measured b} making diserete changes in the gero
sefting of the Wheatstone bridge and recording its out-
put. | _

(11) With both recording systems and the second
sound generator and bolometer operating; pumping of the
inner 5ath was terninated‘or reduced allowing the tem-

‘perature to olimb élowly up to and through the lambda
point, (see Fig. 5 lines #2 and #3), the inner bath
dT/dt being typically of the order of 10~/ K/sec. The
second sound velocity and the temperature were thus

functions of time. When velocities occurred such that;
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for the particunlar frequency in use, the cavity was
resonant, peaks were.recorded on the second sound trace,
(trace #2 in Fig. 5).

(111) The inner bath temperature was immediately
brought slightly beloi the lambda point, the second
sound generator and bolometer were turned off, and the
temperature was agaln allowed to rise through the lambda
temperature (see traces #1 and #4 in Pig. 5) to establish
By, the thermometer resistance at the lambda point.

Step (111) was necessary because the accurate
identification of the lambda point is dependent on know-
ing the total power dissipation (P) in the cafity.lé
The combined power input to'the eavity from the a&cond
.sound generator;, the bolometer, and the thermometer
va;ied between 25 and 300 mjcrowatts., The thermometer
poier was 0.1 to 1.0 microwatts. The generator power
‘was always twice the bolometer power so that the DC
powerlinputs (as opposed to the power input at the second
sound frequency) of the two were equal, and so that the
maxiﬁum second sound output signal for a given total
power input was obtailned. With only the thermometer
on, the warming curve (the “température trace") showed
a zero slope region, or R, plateau (traces #1 and #4
in Pig. 5). With the thermometer, generator, and bol-

ometer on, the warming curve broke (point A Fig. 5)
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‘at a temperature AT'(P) slightly below the true lambda
tempergtnre and took up a much higher slope dR/dt.
AT*(P) was measured and found to be approximately
proportional to the total power input P to the cavity.
It was assumed that the plateau temperature was the true,
or Zero power, iambda temperature. If, however, the
power dependent shift in the apparent lambda tenperature
was still in effect during measurements made with the
thermometer only, it was :EAI'(lo‘s watt) = 3 x 10‘8K.

| In previoﬁe workté:zg time dependent shift of the
lambda point resistance B, has been observed. The ef-

- fect 18 apparent in the non-zero slope of the R, plat-
eaux and of the dashed line in Pig. 5.

The thermometer was calibrated by opening fully
thg valve between the two baths and measuring thermometer
reélstancevand outer bath vapour pressure for a number
- of temperatures slightly below T,. The data were fitted
to the expression log R = A+ B/T which was taken to be
exact over the eritical region.

Data were extracted from the recorder traces by
noting the thermometer resistance R(t) at the time of
occurrence of a peak in the second sound trace corres-
ponding to resonance mode n. The experimental second

sound veloclity was then

upe = 2fd/n, eee(30)
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~(where the subscript e denotes the experimental valﬁe
for the velocity, and d is the cavity spacing, 1.e..
the thickness of the Perspex spacers), and the corres-
ponding temperature difference AT was a function of

R, (t)-B(t). |

(2) PHASE SHIFT AND DISPERSION TRIAL

One run was performed at a firxed AT ~ § x 10~JK
to determine (a) whether the generator and bolometer
were introducing any detectable phase shifts in the
second sound signal, (b) whether the cavity had any
observable resonance modes other than the axial modes,
and (o) whether any dispersion was observable. A search
was made from 20 Hz to 5 KHz (covering the range of
frequencies used in the experiment) for the second sound
resonances. ., Besonances corresponding to the fifteen
axial modea up to this frequency were observed) -- and
no others. The extrapolated zero frequency phase shift
was 0° hs 15°, and‘no departﬁre from linearity in the
frequency-phase shift curve was observed. We concluded
~ that (a) at frequencies up to 5 KHz neither the generator
nor the bolometer were near their upper frequency res-

ponse limits, and (b) no dispersion was detectable.
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CHAPTER IV. DATA REDUCTION
SRR

(1) EXTRACTION OF DATA FROM THE CHARTS.

Line #2 in Fig. 5, the second sound trace, shows
the peaks which ocourred as the cavity resonated, and
contains the velocity information. Lines #1, #3, and
#4 contain the temperature information. Data were
extracted from the chart as follows,

(1) The zero-power lambda line R, (t), the dashed
line in Fig. 5, was drawn between the R, plateaux of
two Suoccessive traces of the zero power warming curve
(#1 and #4% in Pig, 5).

(11) The relative peak numbers n', n'+ 1, ...,
were assigned. The integer n is the mode number of the
resonance., It 18 the number of half wavelengths of
seéond sound in the cavity.

(111) The distances Ay, Bpig 1r oo (see Fig, 5)
representing R,(t) - B(t) at the times of occurrence of
the peaks n', n'+ 1, ..., wWere neaéured. and converted
to ATps, ATpt4+ 31, using the previously measured sens-
itivity (ohms/chart division) of the thermometry system
and the previously established thermometervcalibration |
R(T).

(1v) The distance of point A (Fig. 5) below the
zero-power lambda line was measured and converted to

AT*(P), P being the total power used during the recording
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of the trace being.exanined.Bl _

(v) ‘The absolute peak nﬁnber'n of the first peak
‘was established. To do this; the seeond sound velocity
- had to be known r&ngglz. Equation (30) is rewritten
| n = 2fd/uy(AT), eee(31)
Taking the measuréd AT,, for the first peak on the chart,
a‘rough value of u(AT,:) was inserted into Eq. (31)
glving n = real number. This real number, say 3.047,
would be within aArew percent of some integer. The
absolute peak number n was then taken to be thatinteger.

- It should be pointed out that the rough value of
uz(AT,1) used to establish n must be erroneous by
at least 25% before an error could be incurred in es-
tablishing n by this method. Not only must n be an
integery but 1ts parity is known from the direction of
de#iatlon of the peak (see Fig. 5) from the center line
of the chart. Thus, if the correct n were to be in-
correotly identifled as Y, the error in the value of

up(AT,1) used to establish M would have had to be at least

# 2/( ne2 ). In this experiment the highest value of
n for the first peak on a chart was n = 6 giving 25%

as the minimum error in up(AT,,) necessary to produce
an incorrect identification of n. As the experimental
results will show a maximum deviation of the measured
feloclty from theory of about 10%, we conclude that no

erroneous identifications of n were made.
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(vi) The absolute mode numbers of all peaks on
' the chart having been established via (i1) and (v) the
correspbndlng experimental velocitles ﬁZe were ocalculated
using Eq. .(30). PFor each peak recorded on the charts
theroforé$,a data point.(uZG. AT) has been established
and the raw data have been extracted from the charts,

In the course of the experiment 63 charts were

measured, producing a total of 276 data points.

(2) ANALYSIS OF PROBABLE ERRORS

(1) Errors in u,,. Error in the absolute velocity

can arise from the measurements of f and d (Eq. (30) ).

As hoted above; the error in establishing n is presumed
td be zero. The éavity spacing 4 waé determined by
measuring the thickness of the Perspex spacers several
times with a micrometer and looking at the mean and

- 'standard error of the measurements. To obtain the value
of d at helium temperatures, the total thermal contraction
from room temperature to helium temperature of 1.13%32
was-subtracted}giving the low temperature value of
d = 1.913 x 10~ + 0.68%.

' The frequency f was measured to # 1Hz using a
digital counter. The uncertainty in f was therefore
100%/f which was less than 0.5%.

The total probable uncertainty in the abéolute

value of the measured velocity was therefore taken to
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be of the order of 1%.
(11) Errors in AT. The experimental value of AT

for any point 1 may be written.

| ATy = (By)(Ay) [1(a4)] »

where B; is the thermometry system sensitivity (ohms/
chart division) for the trace containing point i.‘Ai

is the measurement of the temperature trace (chart div-
isions), and f(Ay) is the resistance thermometer calib-
ration figure in ( K/ohm ).

The reproducibility of the measurements of B,
depended‘on the (variable) seneitivitj of the system,
The probable error in By, based on repeated measurements
at a fixed temperature, ranged from negligible to about
1%. We therefore take the probable error in By to be
* 1%, |

| The resistance thermometer calibration figure
f(4,) was very nearly a constant equal to (dT/dR),,
the inverse slope of the thermometer resistance vs;
temperature calibration curve at the lambda point.
As such, its accurﬁey was determined by the accuracy
of the calibration curve, and its probable error is
estimated as #= 1%.

Aﬁ was obtained by identifying two points on the
chart and measuring the distance between them. The

probable error involved for each point was arbitrarily
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taken to be *0.03.ohart divislons (one inch divisions)
and the total uncertainty in A, was therefore #0.06 chart
divisions giving a total fractional error in Ai. of
# ( 6/A, chart divisions) #. The values of A, measured
in the experiment ranged from 0.3 to 9.0 chart divisions
giving fractional errors of from 20% to 0.7% with an
average of about 2%.

The average probable error in the absolute values
of the experimental data is therefore taken to be 1%
in the velocity u

AT,

ve and 3% in the temperature difference
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CHAPTER V..  RESULTS AND ANALYSIS.

(1) RESULTS

The experimental results are shown in Fig. 6. The
points (uz'e. AT), (The subscript e denoting the experimental
value of the velocity), cover the range AT = 4,75 x 10'6 K
to 1.25 x 10~2K, The temperature differences AT and

the measured velooities u, are listed in the first two

2e
columns of Appendix I in order of increasing AT.

The data overlap the previous measurements of Peshkovl
(AT>10-3K ) of Pearce, Lipa, and Bucltinghmn2 (PLB)
(AT>2 x 10"&'K ), and of Tyson and Douslass3 ( AT >
9 x 10'5 K). In the ranges of overlap, our data are in
exceilent agreement with those of Peshkov and of PLB, in
both cases well within the experimental uncertainties.

In f:he range AT = IO'bKto 10~2 K the Tyson and Douglass
measurements give a u, which 1s 5% to 7% low compared

to other experimental data, and to the predictions of
hydrodynamics.

(2) COMPARISON WITH THE HYDRODYNAMIC THEORY.

The expression for the velocity of second sound,

u,, = ( 12Q9/0 ¢, )2, .. (32)
was derived above using hydrodynamic arguments. We have
here used the subseript h to denote this hydrodynamic
veloclty. Two pleces of experimental work enable one
to put Eq. (32) in an analytic form useable in the
14-16

macroscopic critical region below T),. Measurements

of the superfluid density/os lead to the emp;rical relation
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/%403 = 0.699aT"% - 1 , .ee(33)
where 5= 0.666 # 1%, based on experimental data with
AT 2 6 x 10~ K. Buckingham, Fairbank, and Kellers®
(BFK) measurement833 of the specific heat are described
by the empirical relation
Gy = 4a55 = 300 log o|AT| - 5.20% (I/g=K), ..u(38)
where X = 0 for AT > 0, 1. =1 for AT < 0, based on
experimental data with |AT| = 10"6 K. |
The entropy S of the liquid may be written
8(T) = s(Ty) +}(Cp/‘1‘)d‘r. |
Making a change of variable to "AT, and writing Eq. (34)
as Cp(A'I‘) = A + BlnAT ( AT >0) we obtain

A
S(AT) = S(T,) + A/ _d(AT) + B/ 1nal d(aT) ees(35)
! &4 (T, -aT [T (T, -AT) |

where ATy = T, - T;. Expanding the denominators of

Eq." (35) in powers of AT/T, and neglecting terms of
orcler»(AJI‘/'I‘,)2 we obtain |

( T-aT )l (/2001 + (A/T) ), cie(36)

with a maximum fractional error of 0.1% if T, = 2,10K.
'Substituting Eq. (36) into Eq. (35), performing the
:_lntesrations. and collecting terms we obtain finally

S(AT) = S(1,) - " e (37)

Aln(Ty-AT,) + B{(AT, /T,)(1naT, 1) + é(A'r1/'r;\)2(1nA'r1-é)} +

Aln(Ty-AT ) - B{(AT /T,)(1nAT -1) + #(aT /T5)%(1nar -3)}.
We set T

1
Hill and Lounasmaa

= 2,10 K, and obtain S(Tl) from the data of

3k using their wvalue
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S( 2.10K) =1.24 (J/g-K). s+ (38)

Equation (38) and Eg. (37) with AT = 0 give the
entropy at the lambda point

| S(Ty) =1.55 (J/g-K). |
Substitution of Egqs. (33), (3&), (37), and (38) into
Eq. (32) gives an analytic form for the hydrodynamic
veloc'lty of second sound dependent for its accuracy on
the validity of the hydrodynamlc theory énd the extrapolation
of Eq. (33) from AT =6 x 10'5K to 10,"'6K.

To compare the experimental data with the hydrodynamie
theory, a computer was used to evaluate the above mentioned
é.nalytic form of Uop using the AT from each of the
experimental points ( LYY AT), and to calculate the
ratio '

B (AT) & u,,(AT)/u,, (AT) ,
for each AT, A deviation plot of log(Hi) against AT
.is shown in Fig. 7, and the corresponding values of
o, (AT) are tabulated in the third column of Appendix I.
The mean value of B, and 1ts 95% confidence limits are
‘31 = <“ze/“2h>av =1,000 * .004 , eee(39)

In obtaining the above result we have extrapolated
Eq. (33); As a check on the self-consistency of this
extrapolation, a weighted least squares £143° of the
data to the form of Eg. (32) was performed to predict
the values of Q and 5§ in the expression

u,e = ( 787/ )2 ( Qarf 1 )R, oo r(40)
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We obtained Q = 0.67 & ,02 and 5 = 4,671 * 004 ( 95%
confidence 1imits) in agreement with the more precise

values given above in Eq. (33).

(3) COMPARISON WITH THE SCALING PREDICTION.
Recent experimental measurements by Ahlersl?+36 of
the thermal conductlvity of helium I near the lambda
point, combined with our second sound velocity measurements
in helium II, make possible a check of the extended
dynamic scaling prediction derived above.

Equation (29) may be rewritten

K (AT-) = u,(aT)pc, (aT-){aF2(F ! )-1) lat-|=2/3, . ..(w1)
where AT- indicates T,-T 18 negative. Substituting for
uz(AT) in Eq. (41) the hydrodynamic velocity uZh(AT).
Ahlers performedl7 a least squares fit of the resulting
equation to his thermal conductivity measurements,
obtaining for the constant

AF2(E)t = (0.87 #.06 ) x107% om.  ...(42)

In performing this fit Ahlers used forlcp(AT-) and
Cp(AT). ( contained in u2h). his own measurements of Cp.37
As the AT dpendences of Ahlers specific heat and of the
BFK specific heat are slightly different, his data are
not directly comparable with the hydrodynamic velocities
we have calculated. We have therefore repeated the
calculations using the BFK specific heat and Ahlers!

original thermal conductivity data (K (AT-), AT-).38



obtaining for the oonataht
A}g(ié)-l = ( 0.86 # .06 ) x 10-8 cm, eee(43)
in agreement with Eq. (42).
Rewriting Eq. (41) we find ‘

g (AT) = (K (AT-)/pC (aT-) )-[AF2(§2)-1]~F|ar-]2/3, .. (44)
where the subscript s indicates the velocity 1s a scaling
prediction. For each of the thermal conductivity points
(f((AT-). AT-), Eq. (44) was evaluated (with substitution
of Eqs. (34) and (43) ) and the ratio

By (AT) E u,g(AT)/u,, (AT)
was calculated. The results are shown in Fig. 7. For

the 66 points the mean value of R, and its 95% confidence

limits are

Ez = <u28/“zh> gy = 14005 # 004 . eeo(li5)



k5
CHAPTER VI, CONCL&SIONS AND DISCUSSION.

(i) CONCLUSIONS

The hydrodynﬁnic and the scaling law predictions
of the velocity of second sound were tested by comparison.
with the experinentally determined values. The average
value of the ratlo of uy, to Uon over the tenperatufe
range of the‘experiment 18 given by B in Eq. (39).
The equality of ﬁi and unity therefore demonstrates
the agreement between the measured velocitles and those
predicted by two fluid hydrodynamios. Further calcu-
lations showed, and Pig. 7 indicates, that within the
measured temperature range theré were no significant
departures of By from unity. In other words, Ry was
observed to be.lndependent of temperature, The hydro-
‘dyﬁamio theory therefore appears to properly predict
both the magnitude and the temperature dependence of
the second sound velocity in the critical region.

A comparison of By With Ry implies a comparison
of uze and uzge. With uy), and hence of u,, with uzg.
The equality of By and Ep demonstrates the agreement
between the measured velocities and those calculated
from dynamic scaling arguements. Ry ias also shown

to be independent of temperature. As usg contains a
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constant term (evaluated in Eq. (43) ) determined by
fitting to the thermsal conductivity data, it is this
temperature independence of -] which constitutes the
affirmative test of the scaling law prediction.

On the basis of these results (Eq. (39) and (45) )
we conclude that in the critieal region for AT=25 x 10“6K
the hydrodynamic prediction Eq. (23) and the scaling
law prediction Eq. (29) of the velocity of low amplitude,
low frequency second sound have been verified.

The verification of the hydrodynamic prediction,
and the prediction of the values of Q and 5 in Eq. (40)
both imply that the extrapolation of the superfluid
density relation Eq. (33) to 5 x 10'6K was valid.

The experiment also proved that when properly ap-

plied, the method of drifting temperatures is well suited
"for maklng‘neasuruments,of physical phenomena near the

critieal point.

(2) DISCUSSION
, In the derivation of Eq. (23) it was assumed ex-
plicitly that the velocities v_ and ¥, are small, and
implicitly that 1nhomogen§1ties (in the absence of éecond
sound) in the thermodynamic properties of the fluid
occur only éver distances small compared with the second

sound wave length (i.e. that k§<<1). In other words,
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the derivation was for low amplitude (?; and ;; are
proportional to the second sound amplitude), low fre-
quency second sound.

In deriving the scaling law prediction, the critical
frequencytuq(i) was related (Eq. (25) ) to second sound
by using the assumption that second sound 1s the dominant
mode of heat transport in BRegion I (Fig. 1), defined
by k; «K1l.

Both the above conditions (low velocities, and
k§<<1.) were met in the experiment, the highest observed
second sound amplitude being ~ 10'7K BMS, and the largest
value of kf being ~ 0.02.

A departure from either the low amplitude, or the
low frequency condition would presumably be}aceompanied
by a departure of the observed velocity from the hydro-
dynamic value., Velocities of large amplitude second
sound (anaiogous to shock waves in ordinary sound)
different from the hydrodynamic velocity have been
observed.’?" %0

'In the critical reglon very near T, the correlation
function range f 18 diverging rapidly with decreasing
AT, It would therefore seem interesting, aﬁd not inm-
practical, to make use of higher frequency second sound

to enter Region II (Fig. 1) near the critical point
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in which k§ is of the ofder of, or greater than unity,
and in which two fluid hydrodynamics could no longer

be presumed valid,
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GLOSSARY OF SYMBOLS

Constant of order unity.

An opgrator or physical quantity other
than p.

Thermometry system sensitivity (ohms per
chart division.

Constant pressure specific heat.
Constant volume specific heat.
Correlation function for a.
Fourier transform of Ca.

Asymptotic forms of C§ in regions I,II,
and III (Pig. 1).

Correlation function foriﬁ.
Resonant cavity spacing.
Thermal diffusivity.

Energy density of the liquid.
A critical exponent.

Entropy flux vector.

Second sound frequency.

Gibbs free energy per unit mass,
Momentum per unit volume. |
Wave number.

Mass of liquid helium sample.
Mass of normal fluid component.

Mass of superfluid component.
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Resonance mode number. (Equal to the
number of half wavelengths of second sound
in the cavity).

Relative mode number., Only differences
between the n' are correct.

Total power dissipation in the cavity.,
Normal fluid - superfluid relative momentum.
Pressure.

Order parameter.

Coefficient of AT 1n//h§p§ expression.
Heat operator.

Thermometer resistance at time t.
Elecotrical resistancé of device at Ty
Entropy per unit mass.

Absolute temperature.

A critical temperature,

The lambda temperature 2.172K.

Time.

Internal energy per unit mass.

Velocity of first sound in liquid heliunm,
Veloeity of secqnd sound in liquid heliun,
u, determined experimentally.

u, calculated from hydrodynamics.

u, calculated from thefmal conductivity
a%d scaling theory.

Specific volume ( equal to léx)).
Normal fluid velocity.
Superfluid veloéity.
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AT (P)

§ (1,k)
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Statistical weight of a data point.
Cartesian coordinates ( k =1,2,3 ).

Constants of the order of unity.

Critical exponent of 5.

A measured distance on a recorder chart,
is subsequently converted to a temp-

efature difference.

TA - T,

Ty - (the temperature of the sharp dis-
continuity in the slope of the warming curve),

The Kronecker delta functlion.
(T-7Ty )T,

Critiecal exponent of Og.

Critical exponent of Cﬁ.

Thermal conductivity.

Critical exponents of ?.
Correlation length, or range of Cﬁ.
Momentum flux tensor.

Density of liquid helium sample.
Density of normal fluid component,
Density of superfluld componeﬁt.
2=01f KTy, L=11if DT,,
Angular frequency.

Characteristic frequency for C%.
Div grad .
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APPENDIX I

EXPERIMENTAL AND THEORETICAL SECOND SOUND VELOCITIES

TEMPERATURE « EXPERIMENTAL .

« HYDRODYNAMIC
DIFFERENCE . VELOCITY . VELOCITY
(XD e (M/SEC) . (M/SEC)
4.75E'06 . 00335 ° 00321
5.27E'06 . 00353 . 0.334
5.35&‘06‘ . 00380 . 00335
5.668'06 . -00389 . 0.342
5.,66E-06 . 0.353 . 0.342
5.75E=-06 o 0.389 . 0.344
5098E'06 . 00342 . 0.349
GQIOE-OG . '0.383 . 00352
6.!85-06 . 00389 ] 0.554
6.59E-06 . 0.383 . 0,362
GOGSE-OG . 0.392 * ‘0.363
GOSOE-OG . '00383 . 0.368
7.51E°06 . 00392 . 0.376
7061E°06 . 00389 . 0.382
7.75E=-06 . 0,383 . 0.384
7.90E‘06 .o 00444 . 0.587
7.94E°06 . 0.383' . 00388
80085'06 . 00389 ] 00390
8.36E-06 . 0.425 . 0,395
8+ 44E-06 . 0.415 . 0.396
8.44E-06 . 0.418 . 0.396
8.74E'06 . 00418 ] 0.401
8.74E'06 ] 00418 . 0.401
8.875'06 . 0.383 . 0.404
8.93E-06 . 0.410 . 0,405
SQOSE'OG . 0.399 . 0.406
9.425'06 . 00399 . 00413
9.43E-06 . 0.410 . 0.4A13
ScGBE'OG ° 0.583 ° 0.417
9.885°06 e 004‘6 . 0.420
1.,03E-05 . 0. 44l . 0.426
loOSE'OS . 0.4‘4 ® 00429
1.07E'05 . 0.453 . 00432
10095’05 . 0.446 . 00455
lolOE'O5 . 00425 . 0.437
1.125'05 . 0.465 'y 0.440
lQISE'OS ° 0.446 . 0.441
l.lSE-OS ° 0.441 . 0.444
lol7E°05 . 00425 ° 0.‘47
IOZSE-OS . 0.465 . . 0.455
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TEMPERATURE EXPERIMENTAL . HYDRODYNAMIC

DIFFERENCE . VELOCITY . VELOCITY
(X) . (M/SEC) . (M/SEC)
102‘5'05 o 0.478 . 0.456
l1.26E-05 . 0. 465 . 0.459
10298'05 . 00511 . 00‘63
1.51E~05 . 00478 . 0.466
lo‘ZE'OS . 0.‘78 . 0.480
10452'05 . 00478 . 0.‘83
lo‘SE'OS . 00478 ) 00485
1046E‘05 . 00478 ° 0.485
1.47E-05 ° 00479 . 00‘86
10485'05 . 00504 . 0.487
1049E-05 . 0.‘80 . 0.488
loSOE'OS . 0.486 . 00489
1.51E-05 . 0.480 . 0.491
1.52E-05 . 00‘18 . 0.492
10525-05 . 0.479 . 00492
1.52E~-05 . 0.486 . 0.492
IQSZE-OS ° 0.519 . 0.492
1.545'05 [} 00‘80 . 00494
1.57E-05 o 0.478 . 0.498
1.58E-05 . 0.523 . - 0,499
loGlE-OS ° 0.517 . 0.502
l.GlE‘05 . 0.478 ° 0.502
1.62E-05 . 0.478 . 0.503
1 .63E-05 . 0.498 . 0.505
1 .66E~05 . 0.486 . 0.508
1.68E-05 . 0.504 . 0.510
1.73E-05 . 00523 . 0.516
1076E’05 [ 0.523 . 0.519
lo78£°05 . 0.540 . 0.521
1.78E~-05 . 0.519 . 0.521
loSOE-OS e 0.536 . 0-523
1080E-05 . 0.536 . 0.523
1.81E-05 . 0.511 ° 0.524
1.83E'05 . 0.536 . 0.527
10895'05 . 0.511 . 1 0.533
1.935'05 . 0.510 . "0.537
10958-05 . 0.547 . 0.539
2.,00E-05 . 0.547 . 0.544
2,02E-05 . 0.574 . 0.546
2.04E-05 . 0.553 . 0.548
2.05E-05 . 00540 . 0.549
2.095'05 . 00547 . 00555
2012E'05 . 0.547 . 0.556
201‘5-05 . 0.540 ° 0.558
2.26E-05 . 0.540 . 0.569
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TEMPERATURE « EXPERIMENTAL . HYDRODYNAMIC
DIFFERENCE . VELOCITY . VELOCITY
(x> . (M/SEC) . (M/SEC)
2,29E-05 . 0.574 . 0.572
20505‘05 D) 0.574 . 0.573
2.34E-05 . 0.597 . 0.577
2.51E-05 . 0.574 . 0.592
2,53E-05 . 0.597 . 0,593
2.55E-05 . '00574 . 0.595
2055E‘05 . 00589 . 00595
2057E‘05 . 0.574 . 0.597
2.582-05 [ 0.574 ° 0.598
2.,63E-05 . 0.618 . 0.602
2063E‘05 . 00589 . 0.602
2.68E-05 . 0.623 . 0.606
2072E'05 . 0.597 . 0.609
_2075E’05 . 0.574 . 0.612
2076&'05 . 00622 . 0.613
2.79&'05 . 0.618 . 00615
2.86E-05 . 0.598 . 0.621
2.87E-05 . 0.622 . 0.622
2090E’05 . 00618 . 0.624
2.97E-05 . 0.638 . 0.630
2.,98E-05 . 0.638 . 0.630
2.99E~-05 . 0.639 . 0.631
3.01E-05 . 00638 . 0,633
3.01E-05 . 0.598 . 0.633
3.02E-05 . 0.599 . 0,633
3003E'05 . 0.638 . 0.634
30032'05 . 0.598 ° 0.634
3.055-05 . 0.599 . 0.636
3009E-05 ° 0.638 . 0.639
3009E-05 . 0.639 . 0.639
3.!05‘05 . 0.648 . 0.6‘0
3.'1E‘05 o 0.638 . 0.640
. 501‘E°05 ° 0.618 . 006‘3
SOISE-OS ] 00639 . 0.643
3.16E'05 . 00638 . 0.644
3.,18E-05 . 0.638 . 0.646
3.20E'05 . 00648 . 0.647
3.30E-05 . 0.639 . 0.655
3.53E-05 . 00648 . 00657
3.42E-05 . 0.670 . 0.663
3.44E°05 .. 0.639 . 00665
3.54E-05 . 0.656 . 0.672
3.55E'05 ° 0.646 . 00673
30575'05 ° 0.702 ° 0,674
3.59E°05 ° 00670 . 0.675
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HYDRODYNAMIC

TEMPERATURE « EXPERIMENTAL .
DIFFERENCE . VELOCITY . VELOCITY
§.9) . (M/SEC) . (M/SEC)
3.81E-05 ° 0.670 . 0.690
3.84E-05 . 0.638 . 0.692
50862’05 . 00718 [ 0069‘
3086E'05 . 00697 . 00694
3.892’05 . 0.7‘8 . 0.696
SOSSE-OS . 00697 . 0.698
3.97E-05 . o.72t ] 0.701
4.075'05 L 0.717 . 0.707
40135'05 Y 00697 Py 0.7ll
4,16E-05 . 0.721 . 0.713
4.17E'05 o 007l8- [ 0.714
40202‘05 ) 0.712 . 00716
4,24E-05 . 0.706 . 0.718
4.31E'05 . 0.706 . 00725
40335-05 . 0.656 . 0.72‘
4.368'05 ] 0.765 . 0.726
‘oSGE’O’ O 0.765 . 0.726
‘0362’05 ] 60718 . 00726
4.37E-05 . 0.721 . 0.726
4.485'05 . 0.7‘7 . 00733
40638'05 . 00767 . 00742
4.67E'05 . 00721 . 0.744
‘.682'05 ] 00765 * 0.745
4.78E-05 . 0.765 . 00751
40935’05 . 0.738 3 0.760
4,96E-05 . 0.765 . 0.761
4,96E-05 . 0.765 . 0.761
4.96E'05 . 0.765 . 00761
50005-05 . 0.765 . 00764
5.03E~05 . 0.765 . 0.765
5.21E-05 . 0.765 . 0.775
5.23E-05 . 0.767 . 0.776
SOSOE-OS . 00778 . 00780
5.52E-05 . 00765 . 0,792
5.57E‘05 . 0.765 . 00795
5.67E'05 . 00778 ] 0.800
6.08E'05 ° 00820 . 00821
SQISE-OS . 0.765 ; . 00824
6.'32’05 . 0.797 . 00824
6.24E-05 . 0.797 . 0.829
6027E'05 . 00820 . 0.850
6.43E-05 . 0.797 N 0.838
6045E-05 . 0.850 . 0.839
G.GIE'05 . 00865 . 00847
6.87E=05 . 0.836 . 0.850
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TEMPERATURE EXPERIMENTAL

. « HYDRODYNAMIC
DIFFERENCE . VELOCITY . VELOCITY
(X) . (M/SEC) . (M/SEC)
6.,78E-05 . 0.836 . 0.855
6.87E-05 . 0.850 . 0.859
6.895"05 . 00852 [ 0.860
6.95E-05 . 0.842 . 0.863
6.97E‘05 [ 00862 [ 00864
6097E'05 ] 00836 (] 00864
7006E-05 . 0.865 ] 00868
7.10E-05 . 0.865 . 0.870
7.25E’05 ° 00850 . 0.877
7.54E’05 ° 00862 . 00881
7.35E=-05 . 0.852 . 0.881
7.38E-05 . 0.861 . 0.882
7.54E‘05 . 00865 ) 00889
7.62E-05 . 0.893 . 0.893
7.63E~05 3 0.852 . 0.893
B+.04E~-05 . 00893 . 0.911
8.53E-05 ., 0.957 . 0.931
8.54E-05 o 0.957 . 0.932
8.59E~-05 . 0.957 . 0.934
9.,09E~05 3 0.918 . 0.954
9.102'05 . 0.957 . 0.95‘
90102‘05 . 00957 . 0.95‘
9.15E-05 . 0,957 . 0.956
9016E'05 . 00957 . 0.956
9.17E-05 . 0.918 . 0.957
9021E’05 . 00957 . 0.958
9.39E-05 . 0.959 . 0.965
9.39E-05 . 0.957 . 0.965
9044E'05 . 00959 . 00967
9056E'05 . 00957 . 00972
90755-05 . 00957 . 0.979
9.84E-05 o 0.957 . 0.982
9088E‘05 . 0.957 . 0.984
loOZE‘04 . 0.985 . 0‘995
loOSE’O‘ o 0.957 Y 0.999
1007E-04 ° 00985 ° 10013
1.22E-04 . 1.030 . 1,064
1.27E-04 . 1.081 . 1.080
1.28E-04 . 1.081 . 1.084
1.28E'04 . 10052 ] 10084
loS‘E'O‘ . ‘0081 . 10093
loSSE'O‘ . 10090 . 1.099
1033E’0‘ . 10090 . 10099
10568-04 . 10081 ° 10108
" 1.41E-04 . 1.150 . 1.124
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TEMPERATURE . EXPERIMENTAL

N « HYDRODYNAMIC
DIFFERENCE . VELOCITY e = VELOCITY
(K) . (M/SEC) . (M/SEC)
1.45E-04 . 1.150 ° 1.135
loilE'O‘ . 1.149 . 1.153
10585'04 3 1.148 . 1.173
10595’04 . 1.149 3 1.175
1.79E-04 . 1,200 . 1.229
1.83E-04 . 1.200 . 1.239
IQSSE’04 . 1.290 . 1.279
1.99E~04 . 10280 . l0279
1099E'04 ) 10280 . 10279
2.06E'04 ° 10279 ) 10295
2.11E-04 . 1.279 ° 1.307
2.,22E-04 . 1.379 . 1.332
2.62E-04 . 1.379 ° 1.418
2.82E-04 . 1.480 N 1.458
3.,06E-04 . 1,530 . 1.503
30!15'04 . 10530 . 10512
3098E-04 . 1.720 . 1.660
4,35E-04 . 1.724 . 1.717
40435’04 . 10724 o 10729
50272'0‘ . 1.910 . 1.846
5.57E-04 . 1.910 . 10885
5.88E~-04 . 1.913 . 1.924
6001E’04 . [.913 . 1.941
6.05E’04 . 10913 . 10945
60![E’04 . 10960 ] 1.953
6.,62E-04 . 2.060 . 2,014
6064E-04 . 2.070 . 2.017
7.255'04 . 20150 . 2.085
8.70E-04 . 2.240 . 2,235
9.'5E'04 . 2,300 . 20278
9022E'04 . 2.300 . 20285
9.74E~-04 . 2.350 . 2.333
IOOSE-OS ° 2.540 . 2.382
1.085'05 O 2.460 . 2.426
1.20E-03 . 2,620 . 2.525
IQZSE-OS . 20580‘ . 2.549
10392’06 ° 2.740 . 20671
1067E-03 . 2.870 . 20866
1075E'03 . 2.960 . 2.918
2,0lE-03 . 2.960 . 3.077
2.05E-03 . 3.140 . 5.089
2.17E-03 . 3.290 o 3.174
2.65E‘05 . 3.440 . 3.426
2.65E-03 . 30440 . 3.426
Z;SSE'OS . 5.550 ° 5.570
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TEMPERATURE « EXPERIMENTAL . HYDRODYNAMIC
DIFFERENCE e VELOCITY . VELOCITY
(K) . (M/SEC) . (M/SEC)
5.185-03 . 30550 . 3.614
3.74E-03 . 3.920 . 3.914
SOSSE-OS . 4.110 . 3.989
4.62E-03 . 4,310 . 4,244
5.32E-03 . 4,440 . 4,482
5.53E"03 e 4,440 . 4.549
7.55E-03 . 5.480 . 50079
7.90E-03 . 5.230 o 5.222
9099E'05 . 5.740 ] 507'5
1.155'02 . 50920 . 6.042
1.25E-02 . 5.920 o 6.233



