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o ,_'ABSTRACT

The wofk reporfed in this thésis‘is based on
the vierbein fie1d~fprmulafion of éravitational theory,
used in conjunction with the ﬁethod‘of the compensating
field. It is shovm that the most general 1inéar equations
of second order for a tensor field, which are.invariant
Vunder-orientétions of the local inertial frame and under
- gauge transformations of the vierbein field componehts'v
are identical with Einstein's field equation written
‘down in the weak field approximation., An attempf is made
to take into account any possibly existing gravitating
effect of gravitation by applying the method of the com-
pensating field to the weak field Lagrangian, resulting
in a set of nonlinear field equations. The invariance
properties of the modified field equations are examined,

and some special solutions are exhibited.
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1
1. The Vierbein description of the gravitational field.

‘In describing the gravitational field, one usually
characterizes it by a metric field,,?ﬁi> , such that the
trajectories of test particies are geodesics in that field.
As 1is well knpwn (see, for example, Landau and Lifshitz,
1959) Einstein proposed in 1916 &s field equations for the

free gravitational field
R}“;: o (1.1)

This approach has the obvious disadvantage that
there ié no simple criterion for telling whether a given
metric tensor describes a true gravitational field, a
pseudo-gravitational field, or a mixture of both, where,
by definition, pseudo-gravitational fields can be trans-
formed away globally, and true gravitational fields can
only be transformed away locally. A familiar example of
pseudo-gravitational fields are the centrifugal and Co-
riolis fields encountered in coordinate systems rotating
with respect to a Newtonian frame of reference. In the
présent Work, a new approach based on an idea by Einstein
(1928) will be attempted in ordef to avoid the above draw-

back and obtain, if possible, simpler field equations.

Pirstly, one notes that in the theory of gravi-

tation, one can always find at least one local inertial



frame by going into free fall. This means that one can
always locally transform away all but the diagonal terms
of the metric tensor. | |
3 Denoting x* by coordinates of the curvilinear
continuum and Vé by coordinates of the local inertial
frame (74=it)one can introduce now the transformation

functions connecting the displacements

C{’?& = ’ﬁ.i(X) c{,)(;d (102)

The main purpose of this first chapter is to deve-
‘lop a formalism enabling one to describe all the metric
. properties in terms of these functions fli , Which were
given the name "vierbein" field by Einstein in his ori-
ginal paper on this subject.

By assuming that the determinant ,ﬁﬁl, does not
vanish, one ensures the existence of the inverse functions

fi(t}) defined by
L _ p* o 4, R
dx® = {kc?) cty , (1.3)
which are connected, because of (1,2), with the fii by
. “ L& e
CfR s 55_ | (1.4)
Hence
f“ _ [ﬁi] :
. ﬁ = .i—_'?i‘-:,f—l_‘ (105)

By +
where fﬁ*]is the cofactor of ﬁwx .
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Once the vierbein field is given, one can easily

determine whether it describes true gravitational fields

.or not, since if the 'ﬁ§~ are integrable, that is if 4if|€
'ﬁéd where a vertical bar denoteé partial differentiation,
one can find a global inertial frame17&=3g(f7and_ac—
cordingly look upon the metric field described by the

in this case as representing a pseudo-gravitational field.
Any true gravitational field is then characterized by the
nonintegrability éf the %1{; .

This suggests defining the functions

G’flfg = 'fl ﬁ'? - ’ﬁ?;x (1.6)
as the "true gravitational field strengths", and the non-
integrable functions ﬂﬁ as "gravitational potentials".
This is done to keep a close analog to the well knowﬁ case

of electromagnetic theory, where the "field strengths"
er = Aeal(s - AFM - (1.7)

are derivable from the potentials A, by differentiation.
The ﬁf are a set of sixteen independent fﬁnctions

consisting of four four-vecfors R ,ﬁ;’ 3 A% whose

components transform under reorientation of the local in-

ertial frame according to
_ > £ < : . :
4R — AL =R A (1.8)

‘where R? is an orthogonal matrix, that is



RERE =4 (1.9)

, Because of the experimentally well established
isotropy of inertia (Hughes et. al., 1960, Drever 1961)
one.must in fact require invariance of the field equations
under the transformation (1.8).

In order to eliminate pseudo-gravitational effects,
one must further require invariance under the fransforma-

tion
£ P R '
£5% — A + A% (1.10)

with arbitrary four-vectors /\45. This is the exact ana-
log to the "gauge invariance" of electrodynamics that is,

under transformations

Aw— Au + N |« 4 (1.11)

of the potentials which leave F"% invariant.

Once the ﬂﬁ are known, one can compute the me-
tric tensor. In the following, local inertial frames will
be taken to be cartesian coordinate systems, and thus one
may take as metric of the local inertial frame jiﬁ:siﬁ'

The invariant line element

ds* =iyt dy”  aa
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-can then be éxpressed in terms of d,x“,dzb by (1.2) as

ds? "',‘ﬁﬁ ’ﬁ? dx”dxf (1.13)
Since also

ds’ = 30((3 dx*dx® (1.24)
one has, by comparison |

?'C’(Q - ﬁﬁ 70143\? (1.15)
Similerly, one obtains |

9t = £% £ | (1.16)

Thus one sees that the components of 7«? are fac-
torised by the functions 4iﬁ‘ . Moreover, if the vierbein
field is given, one can unambiguously compute the metric
tensor., The converse, however, is obviously not true. The
eiicourges one to take the view that the vierbein field is
more fundamental than the metric tensor when one wishes to

describe gravitatioﬁal effects.,

With all these tools in hand, one can now rework
the theory of general relativity in terms of the vierbein

field. Por instence, the affinities

r;‘;( — ,9‘: ?7’0’[?.0?‘0(-{- ?“U'F f?x(;!O'J ' (1.17)



M= s lfe Ao f)* Tefi(hop i (L5 1)) oo
and hence the equation of the geodesics, for example,
= 4+ F‘;ri?if:o | | (1.19)

can be represented in terms of the vierbein field by (1.18)
Purthermore, looking at equation (1.18) it is interesting
to note that one can in fact separate oﬁt true gravitation-
al fields from pseudo-gravitational fields in tbe equétion
-of the geodesié (1.19). This discourages the view, taken
by some authors, to look upon the [—;; as "field strengths"
s1nce the [_ may actually contain both true gravitation¥
al and pseudo-gravitational fields.

As an illustration, consider the local transforma-
tions between an inertial Qizf) and a rotating coordinate Qi?ﬁ)

_ system given by

[coa(ioz®) ainliox®) © Lw[x'sh(iwdirrico(ion]
&) ~Sn(fwx ) cd(iwx?) O -i w[zcw(wz )-4-7 sm(mf"j_] .
o i o (1.20)

O O ¢ I -
with & denoting the rows and e« theccolumns, By direct

differentiation, one finds that

’ﬁ,& = fi % ' - | (1.21)
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which mean that the 4ﬁ£ are integrable and hence a global‘
transformation between the inertial and rotating coordinate
systém should be possible. This is indeed the case, and

the connection between the two systems is established by

the well-known transformtaion eguation

“4,= x'ea (Lx?) 4 2t 4ln (Cwx®)

= -z'dn(Lwx*)+ X2 v ({wx?)

aX
»
{

(1.22)

o=
"
®
@

From equation (1.15), one can obtain the metric

tensor:

1 o o L X’
4 0 1 (o} - iwx!
a)s(ﬁ,uﬁ/cﬂ)= 0 o 1 o (2.25)

S 2
iwx? -iwx! 0 1w+ (2]

and notes that it does not indicate explicitly whether
the field is true gravitational or pseudo-gravitational,
whereas the mere fdct that ﬁdm'ﬂw* implies immediately

that the fleld must be pseudo—grav1tatlonal.

For most practical applications, one is interested

| only in weak gravitational fields, that is, in small de-
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viations from the Euclidean metric. This can be done by
writing: o
£ _ (% ‘n R ,
ﬁ,(‘é“+'g—7lo< - ’ )
o« = A - oA . . (1.24)
% $ 4 “24’& ‘

with an expan81on parameter ?, 1ntrodu01ng thus new varie-

By comparing this with
Gup = Sucy * T (1.25)

where 7;? is the deviation from the pseudoeuclidean me~

~ tric, one has, by (1.15), the relation

2 bk mR
T“f = %("I«?*%«) *'(‘Z') 7104"[? (1.26)
Using (1.4), one can also express the <?2 in terms of the
(i |
” &
= o @105 ) 7k7ﬁ o ()

Is is important to realise that the ‘7,5 do not
'.from a symmetric coefficient scheme. However, as (1.26)
shows, in linear approximation, only the-symmetric part
of «FlcontributeS'to the metric. Effects from the skew
part of the vierbein field can show up only when terms

quadratié in’qu are taken into account.



2. The method of the'compensating field.

From the discussion of the preceeding chapter,it

is obvious that any action principle
Juﬁ:’i,mwd o= ETREMoM o (2.2)

from which the field equations follow as Euler-Lagrange

equations |
2L -(aﬁ )..O - |
272 \3k% . (2.2)

o(lu.

‘cannot be demanded to be invariant undef global Lorentz

- transformations of the coordinates xt because local
1nert1a1 frames in the presence of gravitatlon are, in
general, accelerated with respect to each other. One
should, however be able to insist on invariaﬁce under lo-
cal Lorentz transformations charaéferized by six coordinate
dependent parameters ZMTLF“X?QvThis invariapce requirement
acts as a constraint on the poésible_coupling between the
gravitational field and a gi&en source field, as was first
shown by Utiyama (1956).

Just as the so-called ™minimal coupling" between
the electromagnetic potentials‘ .A“ , and a source field
jV can be derived (London, 1927) by demanding that the
effect of any phase transfornation with coordinate dependent
phase A%) on the field }k be compensated by a gauge—tranSu

formation A,~A, +€A00 among ‘the potentials, requlrlng all

derlvatlves of 4’ to occour in the conguctlon &,Y 'YxfteA P
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with é coupling parameterv é, " to be determined by experi-.
ment so the "minimal coupling" between the gravitational
potentials /ii and a source field Y can be derived

from demanding that the relevant action principle be
invariant under local Lorentz transformation, requiring

all derivatives of Y/ to occur in the conjunction
- - mn |
ao(‘\}/" \Pm' ZBM /\mn\P (2.3)

where A is the appropriate operator reprewentation of

mn
‘ )C”" (Freemen, 1967) acting on the components of 4/ ,
“and where the components of the "compensating field"

B (x) = -B" (%) transform according to
mn n m o fn n pmk mn
Bo( ’-’BZ +}\&B°< +)\,&Bm + X P (2.4)

one can show (Kaempffer, 1965) that the derivatives (2.3)
are identical with the components of the covariant deri-
vatives of y/ in the local inertial frame, and obtain the

relations
.1\,‘ m Y T pMD :

T[mﬂﬁloe’ (.%c’?fmﬁnfseoc (2.5)
connecting the fields B"" with the quantities describing
‘the metric field. |

Using the relations (1.4), one can solve (2.5) for

the fields B:in , and upon substitution of the expression

(1.18) for the affinities one obtains (Appendix A.a)

”'”:-;’_(fpm F"ﬁ&(} +f€m(r +f 76 {3) (2.6)
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showing nicely that only true gravitational fields (1.6)
contribute to the interaction term in (2.3),
In particular, one obtains upon subsiitution of

the tensor representation (Freeman, 1967)

Anm d;t—g ( 3 60’) (é’me(‘gne'éno((gmé)érg _ ‘b (é07)

"l€ n
into (2.3) for the case of a tensor field .T;pH‘ the ex-

pression (Appendix A.b)

3T = Tt + £ L G hs ) (F Ty £ Toy)

+ 17 (Gpas Tan+ Gru,ps Tap)].
(2.8)

| By similar procedure, for the case of a vector field

with the vector representation

Av‘rn'n;‘l‘,e: ‘S’ﬂ)“‘seh’érnf&"‘f" (2;78.)
one obtain the relation |
JdVr 1°< 2(‘F 1&( fik G'& ‘ fo’{;'_N'*'Fg Gr,f)ow—) Ve | (2.8a)

The expression (2.8) should enable one to incorporate the
gravitating effect of gravitation into the theory in the
~ following manner.,

Suppose one has a2 Lagrangian
yielding the correct linear field equation for weak gra-

vitational fields. If now this field 7 ’T isvitself

g~ ‘g
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treated as a source of gravitation, one must apply (2.8)

o 7%? and construct according to Utiyama's prescription,

the Lagrangian containing the interaction term by writing

L =1L (2.10)

where [’ is obtained from L by replacing everywhere

?«pn~‘by 3p7ae . By means of the expressions (Y.24) and ,
(1.27), one should then be able, in principle, to construct
the lLagrangian to any order in the couplihg parameter 7, .

To this end, one needs the expansion (Appendix A.c):
£ =t+4 Voot &) I s -3(59)" - ]vﬂgv] (2.11)
| and. (Appendix A.d)
¢)r7o<le = Y«FIF * 2[746(%{0'* 1 ,‘r'V#fo:FV) + "[c(g(’{r,ow* Tt | gur)
+ "32 [’]«s7w?(7cr,m’%o~w7 "'va‘w“(e,wr”)f;'@ |
+70?]w(/o- rotJuew) * op T 47m+7w)
P s g + ’}W(e"]u <)), (2.12)

1d¢rffﬁﬂmf“lxﬂg
which are obtained by subsititution of (1.24) and (1.27)

where

into the expression for A and 3y1¢F , and ccllection of

the appropriate terms,
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3. Construction of field equations.

As is well-known, Maxwell's vacuum field equations
are the only relativistically invariant linear equations of
".second order for a vector field Aa satisfying the condition
‘of gauge invariance. Restriction to»linearity and second
order of the field equations implies that the lagrangian
must be bilinear in the portentials Ay and their first
derivatives. Now with a vector field one can form four

linearly independent invariants of this type, namely
I|= AKAo( ; I@"‘Aqﬁ](xA«'F 5 I'B:A«RAHF; 1.4=A°(IFA?I°< | (3.1)
Since I, differs from I; only by a divergence :
'1-4 =Is ';[Ao(AP]-x ’Ae(]a(AF][P (3.2)

its contribution to an action principle will be the same
as that of I, , and one has thus as most general La-

grangian
L=cl+eI,+GI, (3.3)

with arbitrary coefficients ¢; , yielding linear field

equations of second order:
<, - € Aq( -C A =0 .
Aqr\ F) ‘Ff 3 ?l‘ﬂo( (3 4)

Imposition of invariance under gauge transformations A¢'>A¢+Ah<
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with arbitrary scalar field A yields the conditions ¢, =0
and ¢,=-¢; . This reduces the field equations (3.4) to

Maxwell's equations:
A«IPF’AFQ‘ME qul%'—‘o | (3.5)
Reduction fo Wave’equajions |
Axigp = © R (3.6)

~in the potentials is accompanied by imposition of the

traﬁyersality conditipn
Aplg= O | (3.7)

which eliminates the unphysical longitudinal and timelike
polarization modes of the electromagnetic field in the

usual fashion (K&11én, 1958)

‘ An entirely analagous treatment of a general ten-
sor field 7¢§ of rank tﬁo will now be carried out, with
the intention to interpret the resulting linear field e-
quations of second order as the gravitational field equations
for weak fields, which are of lowest order in the expanéion
parameter ? introduced in chapter 1.

One can form fourteen iinearly independent in-
variants bilineqr in the fiel?s 7*6 and their first de-

rivatives, namely:



_15._.

I._:—:*)d(s"]o(f; ; 1,7 7«?"{(”( R '7«9("]?(;

Te=Tag h‘?«f!ﬂ s Lo= Tapir pwl 15 1™ [t Topr

Iy = upir Jutlp If'{«ﬂr"]w:(; 3 1q= Yuphe | rpix (3.8)
,I'°= 1]««{r%rlf; Lo = ToptpJoer1 ™ 5 1f2=’]df‘?’]f’dlf

Lis = TapleTope 5 Lis="acit ] 1plp .

Since I, , I,, I,y I,,, differ from 1,1, Iq , I, respective-

ly only by divergences: |
' I'u= I7 * (",e(f”fo(f;({;" ')"(?’)"‘ﬂf)l‘l"

I.=1 +(vl°(1"7 «1g ™ Tocp " 1l ) 4o
- T e (3.9)
I; = 1 "(’lr‘ev]«(ﬂ&"'df’] r{sloc),,,«

I,=1,+ ( 70(0(7] f{)]? - w]ow'rl FT’IfK) 14
they need not be taken into the action principle separately,

and the most generai I'agréngian leading to linear equation

of second order is therefore:
L=2ZcI; | (3.10)

with arbitrary coefficients C; .
Inb_ order to incorporate the isotropy of inertia
into the theory, one requires invariance of ‘ﬂ&& under

the transformation (1.8), that is :

gt =R A . (3.11)
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In 1ineaf approximation,

RN S L (3.2)

the coefficients of Rﬁi must, so as not to violate the
linear approximation, also be expanded as

_ -, | |

RY.= 8% + €%, (3.13)
where, as is well-known, €®; is skew.
Substituting (3.12) and (3.13) into (3.11), eand dropping

ali terms quedratic in small quantities, one obtains

g = Tamt € g (5.16)

as the transformation law for the quantities of '7d§ under
reorientation of the local inertia frame. As is permissible,

if one uses instead of I,, ,

)

I~ ’9'; (Im"'-rw) = %7o<o<H~' (")‘sﬂfsfﬁ}fﬂf) (3.17)

then the transformation>(3.l6) on the Lagrangian obviously

leaves I, ,L,, I, ,invariant. The remainder gives
=Ly 3 G =05 5 20, = Cg =g (3.18)

These have the effect of letting 7“? appear in L only in

the symmetr:c combination

’l}e /ETR FES | (3.19)



17
-and thus allow one to restrict consideratién to

L= Al ﬁ?T«(; + As R“TPP + A4 ﬁf,ff;(;w

A Taapr Topir * By Tapir T

+ Ao {Vocoalf',r@ﬂ? - | '(3;20).
where Ai,.are arbitrary constants. This Lagrangian is
identical with the one considered by Wyss (1965),

Upon variation of (3.20) with respect'to Tie , the field

equations follow as
AT + AT, - AR Tigper
= 2 Ag Taulrp - 2A7T:<M[31‘

“A (Teatre + Tapler) = O - (3.21)

- Imposition of invariance under gauge transformations
TJ«@ —— Txe + /\oqp + AF!‘X o (3‘22,)

- for the purpose of eliminating pseudo«graVitational fields
: \

requires that upon substitution of (3.22) into (3.21), the
coefficients of Aa,ﬁ , A“’?”J’ Aflo(FT' vanish separately, and

this gives the conditions

A=A,=0 27, + A,=0

(3.23)

aA¢tA,=0 5 AL+A =0
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Letting A4:[ , one has

Aoz-2 ; A=-1 5 A =2 (3.24)

Thus, the Lagrangian reduces to
VL‘-: ’]«gif ( ”"AP]’T’ - 2‘7«7“!?) - q(e(«h*("]ﬁglf‘ 2'7(;1“!(%) (3.25)

where 7*? 7&*

The corresponding reduced field equatlons now do not con-
tain any arbitrary parameters and are expressible entirely

in terms of the true gravitational field strengths:

Trgler T eripr plet = Gopapy * Egrap =0 (9:26)

where one defines"qdv as gravitational potentials for

weak fields due to the fact that

1{&(, = J "‘P | (3.27)

The analogy to the corresponding Maxwell's eéuations (3.5)

is thus brought into evidence and further justifies the

usage of the terms'"Gravitational poventials" for 7«@ and
"gravitational field strengths" for (%“;Pf . |

| One also notes that contraction of the field strengths

with respect to the indices = and f immediately leads to

Gp il =0 (3.28)
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4. Special solutions to the field equations.
The field equations (3.26) agree in linear ap-
proximation with those of Einstein. For example, if one

‘takes as gravitational potentials

Tep= {‘sjfgb -t

where 4) and fb are scalar potentials, then substitution

2 .
(4.1)
4.

"Ub

of (4.1) into the lagrangian (3.25) and the field equations

(3.26) respectively give

L= =201 Pp AP P | (4.2)
4):1«1« * ey =0 (4'3)
.q)pﬂ“ =0 | (4.4)

Specifying to spherical symmetry, the fact that the field
equations obtained by the "vierbein" fieldbapproach agree,'
at least in linear approximation, with Einstein's field
‘equations enables one to apply Birkhoff's theorem, which .
states that all spherically symmetric gravitational fields
are static (see, for example, Tolman 1958), to this case,

that is

Py =0 @)

2 o d 241(]5 :
4_’1%w’v - ZEEUL(“ a‘;) (4.6)
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] b : - . .
CPMJ-»V(}S— an ' (4.7)
The field equations (4.3) and (4.4) reduce to a pair of

non-linear ordinary differential equations that can be

solved readily, giving solutions:

¢ =A+x B (4.8)
#:3+% » o (4.9)

where A, B, C are constants.
Clearly, far away from the body producing the field,the

gravitational field must be Newtonian, that is
b =1, )L»—vl ag N7 oo | (4.10)
Thus, (4.8) and (4.9) become

$ =1+ (4.11)
#:1——%' . | - (4.12)_

These solutions are clearly identical in Newtonian appro-
ximation with the soluticns obtained by Schwarschild
(1916) using Finstein's field equations under the same
conditions.

Now, in accordance with the prescription dévelo@ed
in chapter 2, the gravitating effect of gravitation can bve
taken into account by replacing in the Lagrangian (3.25)

the partial derivatives vd?,f by 31J7%? , and forming
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L= fL’ f (4.13)
with the result, up to order ? ,

& =( “‘%"}W) L+ g{( 7&?{1““ZV%HP)PJMO’(%;FU+7ﬁ)1~/0'+7°3§1")
+Jop(Trc™ Tt ot )] st Lo (e
+ Ny po * Tosrg) * 2‘7m~%ﬁ63} )

where the 7x9,f in L are symmetric.

Phe corresponding field equations are then

Teptlt Treratp=Bee [t Teol Toue oo ) =2 oo
- Z’}wcy/w /\xoclo‘] '*'27&0"1.0 Nuse* 2 owe” 7w<]c’) +276Q|w(’?w,65—+7€,6w
+30e) 2 el (Jurg Howe* Jeow) 2 oule(lrwet e
+ 76,&0) + ']UGIE(L?L‘J)WG - ')wé{w "7ewlw> T 75510) ( ’]‘r‘;wﬁ"' 7% €
+ e we ™ Teelo - Jeefu = 2Jecte) - Tesle (7Ew)w*7welw)} +
=(va<-,@flf‘ ~Gy, 1'%1@)7;‘

(4.15)

The lagrangian (4.14) is not reorientation invariant,

Indeed, if one performs the transformation (3.16), then

(4.14) becomes
L (gt g, Tuppret Seplr)
= (143 o)+ F{ (Jeple~ 2 Jurip) [k (Trpo + P10
+opr) ] Jos( Jt%o +Txto “}cm'f‘ﬂ + ’]xoqf[’]ﬁg(_ 7,8;f0“
+7rpo © ’]o,f”(ﬂ)] * 2 ot FUV‘”“"}
+ ¢ L ‘“T’fg)_(é“U ol * o Coulr)] (4.16)



Obviously, the Lagrangian (4.14) cannot be méde re-
'orientation invariant since no afbitrary constant ap-
pear in the expression (4.16). However one can always
find a gauge so as to ensure the reorientation inva-
riance of thé field equatiéns (4.15). In other words,
one has to sacrifice the gauge invariance so that re-
orientation invariance of the field equations (4.15)
may be preser#ed. In this respect, one notes that Ein-
stein's field equations are also gauge invariant only
in linear approximation.

As is dlscussed in chapter 2, applying the idez
of the compensating field to the weak field potentials
nié should in principle enable one to construct the
Lagrangian to any order of accuracy in the parameter
7/ s thus providing a method of obtaining the field e-
quations by successive approximations.

Consider és an example the case Wheﬁ VLﬁé is

diagonal, that is

= _ ' e 17
g xgq’ (4.17)
where #> is a scalar potential.

Substitution of (4.16) into (4.14) and (4.15). respectively

give

L= (ragh) G
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P §he 70 (4.19)

By similar procedure as that for (4.1), one obtains, as

solufion for the scalar potential

{ -2A
q) =1 —"? ﬁn~£;zz;"

where A is a constant,

_(4.20)

Considering next the case when
5 o B=1,23
where ¢ and/k are scalar potentials,

One finds that the field equations (4.15) become

4‘4)’P]~+4~/"’”.;1~: ? (’34)If Ifizsl)lfljllf’ A/llﬁ)/b]f’) (4.22)
4- (PIM =9 (-29, ‘#H'— 2<PWLLHV 19 ) (4.23)
which clearly give (4.19) when P=j¢ ,

Substitution of the solutions (4.11) and (4.12) into the
quadratic terms of (4.22) and (4.23) then yield

_ A > B’

=1+ L+ 12 (4.24)
- A _2398 25

/,L | = ';}1}- | (4 5)

where A, B, are constants.,

These solutions, however, differ in order 7» with Schwars-
child's solutions:

(4.26)
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L A A T
._/LS-‘,——‘}—L'*q.h}'* . (4.27)

- This suggests that the Lagrangian (4.14) be further mo-
dified by repeating the method of the compensating field.
The mathematical complications are; however, beyond the

scope of this thesis.
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Appendix— Derivation of some formulae in chapter 2.

a, By (2.5), one has
v mn
fom ﬁﬁlrx F"" 7( Fn Bo(. . (4.1)
. A o2 b o (% i ot |
Since 'f&ﬂ,@—ép 5 Refa=63%
hence, multiplying (A.1) by-ﬁid, one obtains

ﬁ\‘,

_ L. ™~ _ ?
pla " 2T u ’ﬁ'"ﬁgrf | (4.2)

Multiplying (4.2) by {f%, one has

‘m‘n_ F-n m - P77 m g

B =4 A - T AL (4.3)
Also,

PRE S P LFS MRS HEACHER J RS S WS

Substltutlng (A.4) into (A.3)
- ) m p - PN AP k 4

B = P AR [F AL Gout oo Gop + Rt A l(;l
After slight simplification, one obtains

n e, b e R mp LK)

- f(z f ﬁxG' +{‘€ G’ o<+f9 Groa J
, pr e p

which is (2.6) | ‘ |
b, Letting Y be T;P , one has, by (2.3)

ITap ™ Tapir 73 B A T (a5)



where | | | : -,‘vrl | .- |
" zl(f"”"f #t CTW F“”GW A7) e
A""i:“?é(:é (émpé: "@ M ‘s (‘ma(én ‘g é ) | A. .(A'7)

Multiplying the first term of (A.6) by (A.7),‘and Tee one

has
Nm]cvnﬁqu’ xt-{»f"’ﬁ}[@ﬁ O’N o(Q
= f T AL G L Tue + £ SR 650 T
PR G AT S RAGR T
(PG T A G T )
+({Sn’ﬁ”;,G7;g'FZTnp+{Snﬁn;CTT’S-F:TnP> |
=2(f R TGN )(FF Tent T Tug) (4.8)

From the second and third terms of (A.6), one similarly -

obtains

w/‘n n €¢ we
‘F Twr/\;y1n;o<(3 EQ - 7£ G’x /%u 6@

f Gwr *e FWQGP,fw °‘Q+7£ <G w'VTG‘(S (4.9) |

and

fungr;u/\mn'o(@éeTeﬁ 'F Gw?‘ cg

‘*‘{ GPT‘w 0@ F G"uuré? f LT"(""T/@ © (4:10)

Since (A..9) and (A.10) are equal, thus one has, from (A.5):
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O Tug = L &@!r 2[(16”7{ ) Tent FETg)

W (:Je we
'*'10 1» x( WC G’p rw °<(>+7C G’wrép 7[ G’.,”ué@]
By renaming the running scripts and after slight re-

arrangements, one obtains:
. sh
ar-[;?:'ro((g”-*% [(‘F Sn’ﬁr:ﬁns I") (ﬂs ntTw ng) TC < & 1; o<)1 % rsr;f;)]

which is (2.8)

¢, Since

Consider M=3, one has
R=fI(RAZ-RIRZ) - RLRIRI-R2R2) +hs (RTR2-AIRT)
me 48esbedgt

hence expanding 4 up to order ??', one obtains

= (51 LT D7) - FE ) -

*l-+%(n-+q +7 y+ & (7 J7;+1275*737J
AR KIRRE

One can generalise this expansion to the case for any

integer n , giving

ﬁ—H—f?G (FY(A- 8) | (4.11)
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where

= 4’)'4—...4.’"”
! n

{ A=
R A LT PN EREE A

Now, since

1= 2a+05)"  (A.12a)

»7§7§:A+28 | (4.12b)
thus solving for A and B in (4A.12a), (A.12b) and sub-

‘stituting the values for A, B into (A.11), one obtains

f=1+372 +(§)2[37§ §a3(7g)%zngg}
One notices that the running scripts of the “]% can all

be made subscripts by multiplication with the appropriate

$’s o+ Thus

SIEEA R (4)[3%@7@@ (o) =2 lop Y ps])

This completes the derivation for the expression (2.11).
d, To obtain an expression for Srqd@ up to order ¢}2
one first expands B??in terms of the vfs . From (1.24)

and (1.27),

1h=S4+(FHNE ~ (4.13)



| | 0 . | |
P @B ] wan
one notes that G o= (F)u,pr
Since o
B?Lf;-’n:_.‘%_(_'twm_,ccnj kGt +{;me_n D )
andb | |
FOFRRLGR . = %(%msehééﬂﬁ,w ¢)
) (SamdeTeTon* Samben T o™ Toncbenden)
fwm(ﬂvu:% wm'}:vw) i (7“” w)

6= 0 h) B (1] )

- hence

quv': -"g[i%(?f}m +.7m,‘r’h+7n,inr) +(§)2(7 rvem7en
7(1%7)7»6/» 71,'10) w +7)h1w7wh, nm»r)}wn)]

Now (A.15)

31‘70&{3: 7%(3}? - :';‘8 ’;j‘/\ fainjy < Gevac (A.16)

where

/\Mn;gpcezég(ém(‘éi”é ée) éf(‘gmdg ‘gnocé) (A.17)

Thus
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' (7ﬁmn+)yl”'\)‘mf""'_7m)1'7‘>/\mn;°<@6é710”Q ,

= Y}“"Uﬁ@h + Veghmq)jjpm+ 7’ "‘P?ﬁ““ + 72”17}7"(91' + Ajocm*)pﬂvm
| 4"7mf9717«m+7n(37n,u7“+%(g 7o<,147n+ 70(,7]7 17,(;7““ 74 n 7?”’
o +,'7}h(37710(1~’+7n-€rl097’“. 4 . o

=:2[7un Iﬁh 7 (r @rn) fﬁf(7t€n+7nﬂq¢+7%rﬂl (4.18)
Similarly : v :

Clrenen* T T TsowTon® Tyl st T ons g™ T
= O ol P Do
o TS T P T i S
# 7 N oo + g Toon e o) |
= 20 Jen (T Toson) +Jon T ot ) + g Jan o )
g oe G o) * sl )] 429

Expressions (A.16), (A.18), and (A.19) immediately give the

 expansion (2.12)



