
DEVELOPMENT OF A SCADA SYSTEM TO MONITOR AND CONTROL

CONTINUOUS CASTING OF STEEL BILLETS

by

VLADIMIR RAKOCEVIC
B.Sc. in Electrical Engineering, University of Belgrade, Yugoslavia, 1991.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Mining and Mineral Process Engineering

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August 1995

© Vladimir Rakocevic, 1995.

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of P IHll̂ j £ Ml^fiTc?/ ^ C O n * & . f£vyine<5^l

The University of British Columbia V V
Vancouver, Canada
Date

DE-6 (2/88)

ABSTRACT

Continuous casting of steel billets, blooms and slabs is one of the dominant

processes in the steel making industry. Production of high quality steel with no defects,

has become a very important issue in the current MgMy- comp etitive market conditions. To

satisfy quality control standards, steel mills must now incorporate "state of the art"

technologies in continuous casting. New techniques from different fields are being applied

to the process to assist in casting "perfect" steeL

Computers are now essential elements in applying advanced technologies for

process and quality improvements. In this work, an attempt has been made to create an

intelligent Supervisory Control and Data Acquisition System (SCADA) for the billet

casting process. The "brain" of this system consists of an Artificial Intelligence entity that

combines low-level numerical processing of sensor inputs with high-level symbol

processing, ie. an Expert System The mastered process knowledge and experience, along

with intelligent numerical computation, have been captured into a system called "Smart"

Mould.

This thesis focuses on the evolution of the hardware framework and software

support for the SCADA system The concept of intelligent computation as a prerequisite

to intelligent process control with respect to the continuous casting of steel billets is also

introduced.

T A B L E O F C O N T E N T S

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS x

ACKNOWLEDGMENTS xi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LITERATURE REVIEW 5

2.1 Outline 5

2.2 Process Control and SCADA Systems 6

2.3 Introduction to Artificial Intelligence 10

2.3.1 Expert Systems .. 12

2.3.2 Fuzzy Logic 13

2.3.3. Artificial Neural Networks 15

2.3.4 Genetic Algorithms 18

2.4 Integration of AI with Process Control 19

2.5 The Concept of Computational Intelligence 24

CHAPTER 3: OBJECTIVES OF THIS WORK .. 29

CHAPTER 4: METHODOLOGY 30

4.1. Description of the Billet Casting Process 30

iii

4.2 Selection of Hardware Platform and Software Development Tool 33

4.3 Selecting a Data Acquisition Board 38

4.4 Isolation Amplifiers 40

4.5 Software Development 41

4.5.1 SCADA driver 41

4.5.2 Design and testing ofCI module -filtering functions... 46

4.5.2.1 Compare function 48

4.5.2.2 Valley function 49

4.5.2.3 Extreme function 56

4.5.3. Expert System development 58

4.5.4 Design of the Man Machine Interface 62

CHAPTER 5: RESULTS and DISCUSSION 70

5.1 Experimental Procedure 70

5.2 Data acquisition software 73

5.3 Results from Negative Strip Time calculation 74

5.4 Results from shape recognition functions 84

5.5 Results from the Expert System 96

5.6 On-line billet quality prediction 98

CHAPTER 6: CONCLUSIONS... 99

CHAPTER 7: FUTURE WORK 101

REFERENCES • 103

APPENDIX A 109

iv

APPENDIX B

APPENDIX C

L i s t o f T a b l e s

Table 1 Examined Operating Systems 34

Table 2 Examined SCADA Systems development tools 36

Table 3 Considered Data Acquisition Boards 39

Table 4 Stored sensors input 44

Table 5 The output from valley function 56

Table 6 Recognized drops by the valley function 86

Table 7 Output from the extreme function from thermocouple data

obtained from the mould model 92

Table 8 Output from the extreme, 10s-window, and 15s-window valley

functions over thermocouple data obtained from Heat #333,

Company D 95

Table 9 Output from the extreme function and associated Expert

System Degree of Belief 97

vi

L i s t o f F i g u r e s

Figure 1 Structure of the "Smart Mould" 3

Figure 2 Closed Loop Control System 7

Figure 3 Structure of Fuzzy Logic Controller 14

Figure 4 Connectionist model with a single hidden layer 16

Figure 5 Control System Hierarchy 21

Figure 6 Error Detection in AI Correcting CI methods 26

Figure 7 Comparison of Biological and Machine Intelligence 27

Figure 8 Normal and "Savant" Fuzzy Sets 28

Figure 9 Schematic diagram of Continuous Casting process 31

Figure 10 Typical Configuration of ProcessVision 37

Figure 11 The creation of a ground loop 40

Figure 12 Avoiding ground loop problems 40

Figure 13 Data Acquisition and Data Filtering tasks run in parallel 45

Figure 14 Mould Displacement obtained from LVDT signal employing

5-point moving average, Company A, Heat #E33767 51

Figure 15 The calculated mould velocity using the 5-point derivative from

LVDT signal, Company A, Heat #E33767 51

Figure 16 Graph illustrating the approach applied for calculating negative

strip time using the 5-point derivative method, Company A,

Heat #E33767 52

vii

Figure 17 THC E18, raw data, Heat #333, Company D 54

Figure 18 Applied "window" method 55

Figure 19 Applied "derivative" method 57

Figure 20 Multitasking concept of the "Smart" Mould 58

Figure 21 Fuzzy set used for presenting significance of a temperature drop ... 60

Figure 22 The rule applied for tracing the THC drops 61

Figure 23 "Smart" Mould Introductory screen 66

Figure 24 The four process trends: THC above meniscus, Metal Level,

Casting Speed and Negative Strip Time 67

Figure 25 "Smart" Mould application with opened Expert View,

Process View and Hypertext modules 68

Figure 26 Negative Strip Time trend 69

Figure 27 Hardware configuration for simultaneous data acquisition 71

Figure 28 Maximum Data Acquisition Frequency per Number of

Input Channels, per single task 75

Figure 29 Variations in the minimum and maximum stroke position

(the L V D T signal) over a 5 minute duration in Heat

#E33 767, Company A 78

Figure 30 Influence of mould displacement on negative strip time during

displacement instability, Company A, Heat #E33767 79

Figure 31 Influence of casting speed on negative strip time during

displacement ̂ stability, Company A, Heat #E33767 80

viii

Figure 32 Influence of casting speed on negative strip time for 600 seconds

of casting, Company A, Heat #E33767 81

Figure 33 Graph comparing casting speed and metal level signal for 600

seconds of casting, Company A, Heat #E33767 82

Figure 34 THC 191 mm from the top of the mould, the fisrt acquisition

cycle, Heat #D6131, Company C 87

Figure 35 THC 191 mm from the top of the mould, the second acquisition

cycle, Heat #D6131, Company C 88

Figure 36 Sensor and model data for the THC E22, 535 mm from the top of

the mould, Heat #333, Company D 90

Figure 37 Model data for the THC E22, 535 mm from the top of the mould,

Heat #333, Company D 91

Figure 38 45 detected depressions and their spans, Heat #333, Company D .. 93

Figure 39 45 detected depresssions and the corresponding temperature

drops, Heat #333, Company D 94

ix

L i s t o f S y m b o l s

tN Negative Strip Time (s)

n 3.14

/ Oscillation frequency (Hz)

V c Casting Speed (m/s)

S Oscillation stroke lenght (m)

x

A C K N O W L E D G M E N T S

I would like to express my sincere gratitude to my supervisors Dr. John Meech,

Dr. Indira Samarasekera, and Dr. Keith Brimacombe, for providing consistent

encouragement, outstanding guidance, and invaluable critique throughout this work.

Without their help, support and assistance this thesis would never have been completed.

I am greatly indebted to Branko Zatezalo and Comdale Technologies Inc. for their

support in designing the data acquisition software. Manitoba Rolling Mills, Aha Steel,

Hatch Associates and the Natural Sciences and Engineering Research Council of Canada

are greatly acknowledged for support of this study.

I am grateful to Sunil Kumar and Neil Walker for providing many useful comments

and discussions during this work.

Finally, the tremendous gratitude I dedicate to my wife Ana who provided me with

every assistance throughout my studies at UBC. Without her enormous help in designing

the software, this work would be unfeasible.

xi

Chapter 1

Introduction

To remain competitive internationally and face the challenges of quality,

productivity, cost and the environment, Canadian mini steel mills will have to apply

intelligent process control systems, particularly for continuous casting. Such "smart"

processes must have a brain which receives sensor inputs and, based on knowledge,

experience and intelligent numerical processing, makes decisions to adjust operating

parameters or informs the operator about existing process conditions. The systems must

first be "aware" of what is happening in the process, then must provide control or alarm

action.

The "heart" of a billet casting process is the water-cooled oscillating mould. To

build a "smart" caster, we must connect this unit to the "brain", a computer program in

which the human thought-process and sensory input system have been captured. The

"eyes" of the system consist of instrumentation that senses mould temperature, friction,

metal level, mould oscillation, casting speed and cooling water velocity. The "brain" of the

system is software that combines an Artificial Intelligence (Al) entity with a module

capable of low-level numerical processing of sensor inputs to generate high-level symbol

processing, i.e. an Expert System (see Figure 1).

The use of an expert system to control the casting process was first proposed by

J.K Brimacombe [1,2]. The "Intelligent Mould" research program was initiated at the

1

University of British Columbia and is funded by industry and NSERC. The objectives of

this research program are as follows:

[1] To develop an intelligent continuous casting process via a smart mould system

capable of maximizing billet quality and productivity;

[2] To complete the knowledge base for oil lubricants by developing rektionships

among design and operating parameters, and billet quality and productivity for

different steel grades;

[3] To establish techniques to interpret mould thermocouple and load cell signals

with respect to billet quality and casting problems, with both oil or mould flux

lubricant;

[4] To establish a knowledge base for mould behavior and quality/operating

problems;

[5] To develop relationships among mould heat extraction, mould powder

composition, casting speed, steel composition and superheat, oscillation

characteristics, wall thickness and cooling water velocity for casting operations

utilizing mould mix lubrication;

[6] To complete the fundamental understanding of the linkages between mould

design/operation and billet quality.

Based on the nature of these goals, a muM-disciphnary research team was formed

at U.B.C. The execution of the project was divided between two main tasks:

1. Acquire new knowledge about the continuous casting process; and

2. Create hardware and software support for the mastered process knowledge.

2

Beside the necessity for experts in continuous casting, there was a clear need for

an individual to take charge of the computer system development and software evolution.

The main focus of this thesis is the development of the overall software and hardware

required to be the repository for the "smart" mould knowledge. The developed system is

referred as a Supervisory Control and Data Acquisition (SCADA) System

The task of designing the "Smart" mould consisted of two separate issues:

definition of hardware requirements and development of the necessary software. Figure 1

is a schematic representation of the components of the "Smart" mould system

Controllers

PROCESS VISION USER INTERFACE
COMDALE/C EXPERT SYSTEM

*Smart Monitoring
*SlMirt A l m i i n n g
•Smart Control

CI MODULE
and

DATA ACQUISITION
SYSTEM

~ f 1 F
MOULD SENSOR SIGNALS

•Thermocouples
•Strain Gauges
•LVDT's
•Casting Speed
•Metal Level

_L
CONTINUOUS CASTING

MOULD

Figure 1: Structure of the "Smart Mould"

3

Hardware reqwernents included decisions about:

- the computer platform to use as the environment for the system "brain";

- the sensors to acquire process data;

- the data acquisition system/card to use for data collection;

- the best operating system to provide real-time multitasking features.

Software development involved building a muM-tasking high frequency data

acquisition driver with a Computational Intelligence (CI) module for data processing. The

CI module supports the beginnings of Symbolic Processing at the higher intelligence level

A new approach to developing a real-time Expert System has been applied, in which

hierarchical connections have been established between the fast numerical data-processor

and the decision-making system As a first step in creating the knowledge base, a real-time

Expert System within a SCADA environment was developed to trace transverse

depression defects as they occur at the meniscus and then move down the mould.

This thesis consists of seven chapters. Chapter 2 gives an overview of Supervisory

Control and Data Acquisition (SCADA) Systems and the evolution of AI techniques in

process control Chapter 3 presents the objectives of this thesis. Chapter 4 details the steps

involved in creating the hardware framework and software support for the "Smart" mould.

The structure of the intelligent driver is described and the concept of a unique shape

recognition function is discussed. Chapter S reviews the results from several plant trials.

Chapter 6 outlines the conclusions that arise from this work. Chapter 7 makes

recommendations for future work

4

C h a p t e r 2

L i t e r a t u r e R e v i e w

2.1 Outline.

This chapter presents a short overview of the historical involvement of Artificial

Intelligence in process control. It consists of four sections:

Process Control and SCADA Systems. This section gives a retrospective on the basic

ideas in control theory and explains some common terms. The Supervisory Control and

Data Acquisition (SCADA) System is introduced as an integrated computer system for

process monitoring and control

Introduction to Artificial Intelligence. This section describes the genesis of the Artificial

Intelligence field with an introduction to Expert Systems, Fuzzy Logic, Artificial Neural

Networks and Genetic Algorithms as these components relate to this work

Integration of AI with Process Control. This part deals with AI techniques applied in

process control to accomplish different tasks. Additional requirements to apply AI

methods in a real-time environment are pointed out. An insight into the architecture for

real-time expert systems is presented

Proposed Approach - Computational Intelligence (CI). The concept of Computational

Intelligence is defined. The hierarchical connection between fast, intelligent numerical

processing and real-time expert systems is proposed. The different levels of intelligence in

biochemical and electronic processing are contrasted.

5

2.2 Process Control and SCAD A Systems

A system is a collective entity defined and characterized by a finite number of

attributes and elements. A control system is a biochemical or man-made system that

applies a strategy (control logic) to achieve the best results, related to a set of denned

objectives. The applied control strategy may be based on numerical theory and analysis, or

on heuristics and complex decision-making procedures. In the biochemical case, the

human feedback loop may appear to be instinctive or intuitive without any obvious

''thinking" taking place. The more complex the control requirements, the more complex

the strategy.

In general, the term control system, refers to certain specific man-machine

interactions. The objective of the system is to control outputs in some prescribed manner

by manipulating inputs through the elements of the overall system Accordingly, a process

control system is "made up of a process involved in a controlled system and its control

equipment or hardware and operators"[3].

To obtain desired system behavior, the applied control strategy has to provide

accurate and stable control The control system is considered to be stable if the output

remains bounded for a restricted input, Le. it does not grow or oscillate with ever

increasing magnitude. Figure 2 presents a feedback system with two inputs: desired

temperature (set point value) and outside temperature (process load). Here, the simple

system described can be operated in two main ways: to respond to "supervised" changes

in the setpoint (servo control) or to adjust the control signal in a way to compensate for

changes in outside temperature (regulatory control).

6

Control
Signal

Outside
Temperature

L

Desired
Temp.

Thermostat — » Valve — » Furnace House JS>.
Room
Temp.

Figure 2: Closed loop control system

In automatic control, only machines are involved, as in Figure 2, where the furnace

is turned off and on depending on a thermostat reading. Within the human body, blood

pressure, blood sugar, eye-pupil diameter are a few of the many variables controlled by

biological mechanisms that are equivalent to automatic control and can be studied by

methods of feedback control.

When the control signal is made to be linearly proportional to the error in the

measured output (0; minus 0O), the system is called proportional feedback. When the

feedback controller performs an integral operation on the error over time, the system is

using integral feedback, and when the slope of the error-time curve is used, derivative

feedback is the control mode. Feedback that uses all three methods - proportional phis

integral phis derivative - is referred to as PID control.

The purpose of regulatory control is to keep process variables close to specified

values in spite of external process disturbances or variations in internal process dynamics.

Regulator design involves discovering a "good" control solution for the mathematical

expression 0 O / L (see Figure 2).

7

In the servo problem, the task is to make process variables respond to changes in a

command signal (set point) in a given way. The servo design provides a correct control

strategy for mathematical correlation between system output 0O and set point 0;.

Considering the servo problem, another hierarchical control level can be

introduced, the supervisory control loop, to manage the overall performance of the

designed system Supervisory control may take into account the performances of separate

interacting systems and may involve adjusting controller parameters (proportional, integral

or derivative actions) to maintain the best overall performance of the total system This

particular technique is often referred to as Adaptive Control This might involve using a

Reference Model in parallel with the process to provide Predictive Control of future

output values from the process.

A major difficulty in control-system design is to reconcile large-scale, fuzzy, real

problems with the simple, well-defined problems that control theory can handle [4]. The

natural presence of heuristics in real life control asks for implementing Artificial

Intelligence tools, particularly Expert Systems and Fuzzy Logic, to handle ill-defined

process parameters, and large variations in control signals. Heuristics derive from

unknown and unexpected input/output relationship changes from external factors not yet

understood or defined. These include other variables and/or complex relationships. In

particular, Fuzzy Expert Systems are suited to heuristic analysis in the supervisory control

loop.

Digital computers have been integrated into process control systems to support

fast and accurate execution of various control algorithms or strategies. Recent hardware

8

and, particularly, software development have expanded the connnitment of computers to

process control. The term process control nowadays, includes more than straight

implementation of algorithms for direct control. It also comprises:

1. a process to collect sensor inputs

2. the graphic presentation of the overall process that helps an operator to

visualize, better understand and handle (control) the process. This is referred to as

the Man Machine Interface (MMI);

3. automatic monitoring and alarming; and

4. supervisory control to apply different inferences including human-like thought

processes.

A computer connected to the process instrumentation, together with software that

supports data collection, process graphics, alarming, and supervisory control is considered

a SCADA System The role of SCADA is to provide overall monitoring and control of

complex, large scale processes. It is connected to the direct control units and may perform

tuning of such devices. The control algorithm in SCADA can be realized by applying an

algorithm for system optimization or by utilizing operator experience in running the

process.

Considering the continuous casting process, there are several integrated computer

systems that have been implemented in slab and bloom casting: mould level control [S],

breakout detection [6,7], and on-line monitoring and diagnostics [8,9]. However, in billet

casting there are few quality and process control systems, and the area lags behind slab

9

and bloom casting in achieving defect-free surface quality [1]. This work was undertaken

to build quality control SCADA system for continuous casting of steel billets.

To build a, SCADA System, in addition to the inevitable hardware decisions, a

software development tool is necessary. Such a tool must have facilities for implementing

control logic. The appropriate tool should include Fuzzy Logic, Expert System and/or

Artificial Neural Network modules. The ProcessVision SCADA development tool was

selected in building the intelligent system described in this work. An Expert System was

built for on-line prediction of billet defects. The obtained process knowledge about

mechanisms of surface defects formation has been captured in the reasoning system The

ultimate goal of this work is to create eventually a control module that will supervise the

performance of PID controllers applied to regulate the position of the molten steel

interface and/or other control variables in the process.

2.3 Introduction to Artificial Intelligence

"Artificial intelligence is the science of making machines do things that require

intelligence if done by men." Marvin Minsky

Artificial Intelligence (AI) can be considered as a collection of programming

algorithms and techniques which provide the impression that a computer is thinking,

reasoning, making decisions, solving problems and learning [10]. It attempts to capture

and present human reasoning on a machine.

The components of the human thought-processes with regard to decision making

are: Symbolic Processing, Heuristics and Partem Recognition.

10

In the Al sense, a symbol is a string of characters that stands for some real-word

concept. Humans use symbols, apply IF-THEN-ELSE decision structures, utilize

heuristics, and handle uncertainty to define and master a problem

Heuristics are kinds of empirical knowledge which help a man or machine to

describe, understand and solve a problem These include rules-of-thumb based on trial-

and-error, tricks, procedures and other relevant inputs that enhance the search process

[11].

Pattern-matching or recognition involves automatic identification of patterns

(figures, characters, shapes, forms, etc.) according to some predetermined condition or

standard. Usually, an input pattern is compared to a stored template and the closeness of

ft is determined

Expert Systems (ES), Fuzzy Logic (FL), Artificial Neural Networks (ANN) and

Genetic Algorithms (GA) are the most widely-used Al techniques for performing process

control tasks. All of these techniques are appropriate for specific types of control

problems. Expert Systems are able to simulate the reasoning process using IF-THEN-

ELSE rule structures in problen>soh/ing. Fuzzy Logic assists Expert Systems to reach

solution in an uncertain environment, where some of the analytical parameters are unclear.

Neural Networks are able to learn, or map any muhi- dimensional non-linear relationship

between input and output patterns. Genetic Algorithms provide very rapid solution for

complex optimization problems, based on Darwin's Survival-of-the-Fittest theory. These

techniques can be applied alone or can be combined together for better managing an

obscure environment.

11

2.3.1 Expert Systems

An Expert System (ES) is a computer program which captures human knowledge

and cognition in a way that emulates a human expert solving specific types of problems

[12]. The technology of ES is a subfield of AI which advances the capabilities of the

computer beyond conventional utilization; a reasoning structure and decision-making logic

are applied in addition to interpreting incomplete information in an uncertain environment.

It consists of equations, models, rules of thumb, do's and don'ts., etc. [13].

The main components of an ES are:

• Knowledge base

• Inference Engine

• User Interlace

A knowledge base is a collection of data, rules, inferences and procedures

arranged into frames, semantic networks, scripts, instructions, and other formats. It

contains eveiything needed to fonnulate, comprehend and solve a specific problem It

includes facts, theory, experience, and rules to guide the application of knowledge to

handle a problem The necessary wisdom which comprises the knowledge base is based on

pieces of evidence identified by an expert(s). The wisdom can be supported by theory or

could come from experiential knowledge and mformal judgment.

The Inference Engine is the ''thinking" part of an ES. It is a computer program

which processes knowledge contained in the knowledge base. It contains methodology to

reason with the information in the knowledge base and to achieve conclusions. The

Inference Engine is capable of 1. analyzing a statement and decomposing it into its

12

components, 2. assigning degrees of belief to facts, 3. examining rules, 4. applying a

search strategy, S. explaining and justifying solutions, and 6. cormnunicating with a user or

external programs and processes.

The User Interface is a facility which allows comrnunication between the user and

the computer (ES). The user can ask for explanation and more detail about the subject,

select items from a menu or a form, and provide an answer or presumption to a specific

question.

In summary, the Expert System technique is an appropriate method to represent

the way a human thinks while performing problemrsofving. An operator observes and

controls a process by utilizing logic. The way he/she reasons about the process phenomena

is captured directly into an ES program The modular approach used in these systems is an

appropriate and effective element which is beneficial to designing a real-time control

system For Expert Systems to be able to deal with imprecise, unclear and/or noisy inputs,

and to reach a solution in highly uncertain environments or in situations where crisp

representation of knowledge is limiting, another AI technique is needed - Fuzzy Logic.

2.3.2 Fuzzy Logic

According to Webster's dictionary, logic is the science of the normative formal

principles of reasoning. Hence, "fuzzy logic is concerned with the formal principles of

approximate reasoning, with precise reasoning viewed as a limiting case" [14]. Unlike the

conventional approach, fuzzy logic tries to model obscure techniques of reasoning that

play an essential role in the human ability to make decisions in an uncertain environment.

13

Fuzzy logic provides a mechanism to represent the meaning of propositions expressed in a

natural language when such meaning is unclear.

Considering process control applications, Fuzzy Logic is utilized in a supervisory

control loop, as a fuzzy controller [15,16] (see Figure 3) or as a Fuzzy Expert System that

reasons and generates a solution based on process inputs or comprehended operational

logic.
Fuzzy Logic
Inference Engine

System
Input Fuzzification Rule

Evaluation

Input
t̂embership
Function

M Defuzzification

Rules

System
Oulput

Output
^̂ embership

Function

Knowledge Base

Figure 3: Structure of Fuzzy Logic Controller

The inputs in a fuzzy system are translated into fuzzy terms. The inference engine,

using rules from the knowledge base, calculates fuzzy output, that in supervisory control is

defuzzuied into crisp numbers to provide a control action. Fuzzy Expert Systems can be

utilized to assist an operator in handling the process, or to provide extended information

about present conditions. Also, real-time prediction of process iiregularities or product

quality can be made, as it is done in a continuous billet casting application.

Fuzzy ES have the capability of adapting to changing circumstances in real-time by

either adjusting membership function definitions [17], changing the method of

defiizzification [18], or by adjusting weights associated with the Fuzzy Rules [10].

Adaptation generally takes place using sets of heuristics or meta-rules that are added to

14

t h e s y s t e m o n e a t a t i m e u n t i l a l l u n c e r t a i n s i t u a t i o n s a r e e v e n t u a l l y c o v e r e d . T h e s e

h e u r i s t i c s a c t t o c r e a t e v e r y c o m p l e x m u l t i - v a r i a b l e r e l a t i o n s h i p s t h a t c a n b e b u i l t u p o n e

f a c t a t a t i m e . F u z z y A s s o c i a t i v e M e m o r y (F A M) , i s a p r o c e s s i n g m o d e l t h a t i n t e g r a t e s

f u z z y t h e o r y w i t h n e u r a l n e t w o r k s a n d c a n b e u s e d t o s t o r e t h e e n t i r e se t o f t h e w e i g h t

m a t r i x e s f o r a l l c o v e r e d s i t u a t i o n s .

T r u e m a c h i n e l e a r n i n g h o w e v e r , t h a t o c c u r s b y a p p l y i n g a r i g o r o u s m a t h e m a t i c a l

a p p r o a c h i s t h e d o m a i n o f a t e c h n i q u e c a l l e d A r t i f i c i a l N e u r a l N e t w o r k s . It i s t h e l e a r n i n g

a b i l i t y t h a t m a k e s A N N v e r y a t r a c t i v e f o r v a r i o u s p r o c e s s c o n t r o l a p p l i c a t i o n s .

2.3.3 Artificial Neural Networks

A r t i f i c i a l n e u r a l n e t w o r k s (A N N) a r e a m o d e l i n g a p p r o a c h b a s e d o n t h e e x a c t w a y

t h a t i n f o r m a t i o n i s p r o c e s s e d w i t h i n t h e b r a i n . A n e u r a l n e t w o r k c o n s i s t s o f p r o c e s s i n g

e l e m e n t s (P E) , c a l l e d n e u r o n s o r n o d e s , g r o u p e d i n t o l a y e r s , w i t h w e i g h t e d c o n n e c t i o n s

b e t w e e n t h e e l e m e n t s i n e a c h l a y e r . E a c h P E i n a n A N N r e c e i v e s s i g n a l s f r o m a l l i t s i n p u t

c o n n e c t i o n s , p e r f o r m s a m a t h e m a t i c a l o p e r a t i o n , a n d p r o d u c e s a s i n g l e o u t p u t v a l u e . T h e

d e s c r i b e d p r o c e s s i n g p a r a d i g m i s a l s o r e f e r r e d a s a Connectionist model, h i g h l i g h t i n g t h e

s t r u c t u r e o f h i g h l y i n t e r c o n n e c t e d p r o c e s s i n g u n i t s (s e e F i g u r e 4).

15

Inputs

Figure 4: Connectionist model with a single hidden layer

In a broad sense, an ANN consists of three principle elements! 19]:

1. Topology - a structure and connections of ANN layers

2. Learning or Training - a way to store information in an ANN

3. Recall or Testing - a way to retrieve information from an ANN

The first step in applying an ANN is to select a network architecture that

encompasses the requirements of an application. The topology of an ANN refers to the

architecture into which neurons are arranged and connected. The layers of neurons and

the connections made between them are two of the most important characteristics that

define a network's architecture. Both the number of layers and the size of each layer can

be varied. The number of PEs in each layer is arbitrary and difficult to specify when

designing networks. It is a function of the form of input and output data, and the type and

complexity of the processing task.

16

Learning or trairiing an ANN is the process of obtaining a desired response by

changing the connecting weights. The backpropagation learning algorithm is one of the

most utilized methods in supervised learning. This approach is based on computing the

necessary changes in connection weights to gain desired behavior. The input data along

with the desired output vector are presented to the network, the obtained response is

compared to the targeted one and then the weights are changed in the direction of

decreasing error. Two arbitrarily selected ANN parameters, a Learning coefficient and

Momentum, guide the searching algorithm through numerous iterations. The learning

coefficient and momentum are used to allow the present network error and the previous

weight change to influence the weight change in the current iteration. The learning phase

is over when the output error becomes less than a predefined value, usually 5% [20,21].

Once learning is completed, the ANN simply acts as a "black-box" to provide immediate

and quick Input/Output mappings.

Artificial Neural Networks are very beneficial tools for real-time process control

problems. They can be implemented at different levels and provide numerous tasks for

direct process control, such as pattern matching and noise removal.

In this work, an ANN technique has not yet been considered. The learning

capability, that is a big advantage of ANN in an off-line mode, becomes a drawback when

performing in a real-time environment, since it is inherently slow and mathematically

intensive. However, the structure of our CI module has been designed to allow for future

incorporation of ANN methods should the speed issue be resolved.

17

Holographic Neural Networks [22] may be the key to real-time learning issues in

the future. The network structure is not based on the connectionist model and the learning

algorithm is not executed in an iterative fashion. The holographic network consists of a

single neuron which contains complete information about the Input/Output mappings. The

search for an appropriate mapping is performed using complex numbers. The entire input

data sets and targeted outputs are presented to the network at one time. The learning

process is reduced to a single iteration, Le. calculation of the complex elements of the

Input/Output matrix is accomplished in seconds. The network precision is at least equal to

that obtained by the connectionist model.

2.3.4 Genetic Algorithms

A third methodology evolving out of the Al field is called Genetic Algorithms

(GA). These techniques are used to look for an optimal solution to large industrial multi-

variable problems. In the case of this work, GA could be used as a method to adapt fuzzy

set definitions in an FAM or link-weight values in an ANN in an optimal fashion.

GA transform a set of individual objects, called a population, into a new set (new

population or next generation) using operations based on the Darwinian principle of

survival of the fittest and natural genetic recombination. An object's characteristics are

mapped into a fixed-length character string (chromosome) associated with the fitness

value, i.e. objective function. The optimization is achieved by evolving, via mating two

"good" input strings (parents) at a time and generating a new string with better

characteristics than either parent [23]. The following steps are utilized in GA:

18

1. m a p o b j e c t c h a r a c t e r i s t i c s i n t o b i n a r y s t r i n g s a n d d e f i n e a n o b j e c t i v e f u n c t i o n t o

d e p i c t e a c h o b j e c t o f t h e p o p u l a t i o n ,

2. m a t e t w o " g o o d " o b j e c t s o f t h e p o p u l a t i o n u s i n g a n u m b e r o f c r o s s - o v e r

t r a n s f o r m a t i o n s a n d m u t a t i o n s ,

3. e v a l u a t e t h e o u t c o m i n g o f f s p r i n g a n d r e p l a c e o n e o f t h e p a r e n t s ,

4. c o n t i n u e t h e p r o c e s s u n t i l t h e o b j e c t i v e f u n c t i o n i s m a x i m i z e d o r m i n i m i z e d .

G e n e t i c A l g o r i t h m s h a v e b e c o m e v e r y p o p u l a r m e t h o d s i n d e s i g n i n g c o n t r o l

s y s t e m s w h e r e t h e i n p u t s a n d set u p v a l u e s c a n c h a n g e s i g n i f i c a n t l y d u r i n g t h e o p e r a t i o n .

G A p r o v i d e t h e o p t i m u m o u t p u t s p a c e f o r s u c h c h a n g e s . H o w e v e r , i n d e v e l o p i n g t h e

i n t e l l i g e n t S C A D A s y s t e m f o r b i l l e t c a s t i n g i t w a s n o t f o u n d n e c e s s a r y t o a p p l y G e n e t i c

A l g o r i t h m s a t t h i s s t a g e . T h e m e t h o d c a n b e a d d e d t o t h e C I m o d u l e , i f t h e r e i s a

r e q u i r e m e n t i n f u t u r e w o r k .

2.4 Integration of AI with Process Control

I n t h e l a s t d e c a d e t h e r e h a s b e e n a n e x p a n d i n g i n t e r e s t i n u t i l i z i n g A r t i f i c i a l

I n t e l l i g e n c e t e c h n i q u e s i n e v e r y e n g i n e e r i n g d o m a i n . I n P r o c e s s C o n t r o l , A I m e t h o d s c a n

b e e n c o u n t e r e d i n a l m o s t e v e r y s t e p o f t h e a n a l y s i s o f p r o c e s s e s a n d t h e d e s i g n a n d

i m p l e m e n t a t i o n o f c o n t r o l a l g o r i t h m s : s t r a i g h t a d v i s o r y s y s t e m s f o r d e s i g n e r s a n d

o p e r a t o r s (o f f - l i n e a p p l i c a t i o n s) , d i a g n o s i s a n d s u p e r v i s o r y s y s t e m s (o n - l i n e a p p l i c a t i o n s) ,

a n d d i r e c t c o n t r o l (r e a l - t i m e a p p l i c a t i o n s) . H o w e v e r , t h e r e a l - t i m e e n v i r o n m e n t a d d s e x t r a

r e q u i r e m e n t s t o t h e p r o b l e m s a r i s i n g w h e n u s i n g A I i n p r o c e s s c o n t r o l .

19

The necessity for analytical representation of a process that must be controlled has

driven research into fields such as process modeling, system identification, parameter

estimation, etc. hi cases where a process cannot be depicted by a linear model and the

control requirements are not translated to straight criteria, analytical solutions are

extremely difficult to find (if not impossible), and design becomes a numerical optimization

problem People have approached this type of problem by applying model-based predictive

methods in which the design procedure is embedded into the prediction of the process

output over a certain prediction horizon, based on a model of the process or on time-series

analysis of input and output signals.

In cases where a mathematical model of the process is not available, the control

logic must be based on qualitative expressions and experience of people working with the

process. Actions can be performed either as "the result of evaluating rules or as

unconscious actions based on presented process behavior after a learning phase" [24]. It

provides the opportunity to use experience collected from operators and process

engineers. Uncertainty about the knowledge can be handled as well as ignorance about the

structure of the system In this approach, the attributes of conventional control theory

(such as frequency response, complex domain, stability, system identification,

controllability, etc.) are not issues. People who confront difficulties in describing a process

mathematicalry, are eager to apply Al methods, because the experience obtained from

running a real process can be implemented regardless of whether the system is linear, non­

linear, time-variant, etc.

20

In analyzing computer control of an industrial process, several levels can be

delineated: Level 0 - Process Instrumentation, Level 1 - Direct control, Level 2 -

Supervisory control, Level 3 - Plant-Wide control, and Level 4 - Enterprise as depicted in

Figure 5.

(ENTERPRISE 1

(PLANT WIDE _

(SUPERVISORY CONTROL,

[DIRECT CONTROL |

(PROCESS INSTRUMENTATION _

(PROCESS

Figure 5: Control System Hierarchy

At the lowest level, instruments sense, monitor, and manipulate process variables.

Such devices are connected to control units capable of implementing control strategy.

These units consist of single-loop controllers, Programmable Logic Controllers (PLC's),

or Distributed Control Systems (DDS), each of which may apply some combination of

sequential or continuous-time control logic. The process of collecting, presenting, and

managing sensor data is based on numerical methods. At this level, a control system

responds to external events extremely fast, carrying out several activities simultaneously.

Such a system must operate on a computer under a real-time multitasking operating

system to provide such speed.

A real-time system can be considered:

An integrated computer system that responds fast enough to the interrupting

external events to provide accurate and fast control (or alarm) action.

21

Usually, systems with responses of 10 ms to perhaps, a few seconds are considered

real-time depending on the process and/or ckcumstances.

At the next level is the supervisory control computer. This computer is connected

to the primary control devices by network communication. The supervisory host maintains

applications and databases that sit above the direct control function. Like a supervisor, the

system gathers relevant information from the lower levels at relatively slow rates. The

operating mode can be called "pseudo" real-time defined as:

An integrated computer system that responds 'fairly' fast to external interrupts

and carries out a control action at the speed of several seconds up to perhaps one

minute.

Similar to a real-time system, "pseudo" real-time provides fast and accurate control

signals, but in a different time domain. Obviously, both definitions are context-dependent.

In many plant environments, the supervisory computer is connected by another

communication path to a plant-wide computer system that maintains the business and

overall manufacturing aspects of the plant. Finally, this plant-wide system can be

connected to a corporate computing system that runs the corporate-wide applications.

Neither of these two levels need be real-time or "pseudo" real-time environments.

Al techniques have been extensively applied in process monitoring and control

systems. In the paper "Artificial Intelligence and Feedback Control" Verbruggen and

Astrom discussed the different domains and levels in applying Al techniques in process

control [25,26]. They proposed separation of a control system into algorithms and logic,

possibly in a hierarchical structure. For direct Real-Time Expert Control they suggest

22

division of the knowledge base into structural and numerical knowledge. Some other

authors also support multi-layered structure in an intelligent control concept, integrating

various methods of information processing like symbolic AI methods and neural networks

for basic mathematical computations [27,28].

The progressive reasoning theory was proposed by Î ttimer [29], where

reasoning is divided into several levels. Each new part of a rule goes into more detail

about the subject. This methodology is considered as progressive deepening. When a rule

base has been evaluated and there is still time left, another deeper rule is estimated in order

to try to produce a better conclusion.

Work done by Wickramarachchi et al, 1995 [30] utilized a hierarchical structure

for fuzzy control in a fish processing application. Lukas et aL, 1989 in the paper

''Evolution of Expert Systems for Real-Time Process Management" [31], introduced the

concept of an embedded expert system for interfacing with a real-time distributed data

acquisition and control system The embedded AI concept also has been described by

Mushner et aL, 1995 [32]. They offer the following three principle ways to combine AI

techniques and real-time into a single system:

[1] embedding AI into a real-time system

[2] embedding real-time reactions into an AI system, and

[3] coupling AI and real-time subsystems as parallel cooperating components.

The major issue in applying AI techniques in real-time, or direct process control is

that symbolic reasoning is relatively slow on machines designed for fast and efficient

numerical processing (von-Neumann machines). On one side, computers are capable of

23

very fast processing of complex numerical dgorkhms, while on the other, Al techniques

process symbols instead of numbers. As the number of symbols and their interrelationships

grow, the resulting complexity lends to poor turn-around time.

The solution is to divide overall system tasks between those requiring numerical

algorithms and those based on heuristics and logic. But numerical processing must support

the beginnings of symbol processing to provide intercommunication between these

modules. In this way the numerical processor must acquire some "intelligence".

2.5 The Concept of Computational Intelligence

Symbolic processing on conventional "von-Neumann" type computers is

inherently inefficient because of the architectural design of the hardware. The Arithmetic

Logic Unit, the heart of information processing in a microprocessor, is designed for binary

manipulation. A new design which deals with symbols instead of crisp on/off inputs, would

speed up Al techniques. However, the hardware solution is not yet widely available and

people are turning to software to overcome the speed issue. So how can Al be moved

effectively into an environment (real-time, direct control, etc.) that demands intensive and

rapid numerical computing? The answer is found in a new paradigm evolving from the

field of Al - Computational Intelligence.

Computational Intelligence (CI) is a term first coined by Bezdek in 1993 to

describe "low level" knowledge in the style of the mind [33]. CI consists of very

"primitive" concepts, in the Al sense, that support the beginnings of symbolic knowledge

24

which he called "tid-bits", These "elements" can become the inputs to an artificial

intelligence structure that processes the symbols heuristically or in other ways.

Primitives are the fundamental processes conducted on numbers: addition,

subtraction, multiplication, division, and comparison.

These make up the basic steps in any complicated numerical structure that produce

"elements" as output. Current hardware can deal with these complex numerical structures

in a efficient manner and so, CI can become the underlying support structure for AI

methodologies.

The components of CI may include Fuzzy Logic maps, Artificial Neural Network

connections, or Genetic Algorithm optimizations, all of which use numerical methods to

support symbolic knowledge. ,

Fast Fourier Transform (FFT) [34] and Wavelets theory [35,36] are two types of

straight mathematical methods that are widely used in signal processing and can be

implemented in CI to support real-time AI applications. FFT is a fast algorithm for

calculating Fourier coefficients in the discrete domain. The technique provides a frequency

spectrum of a process signal and is primarily used to detect signal noise or process

disturbances. The developed CI module will include a FFT algorithm to analyze the

op erating conditions of a mould oscillator.

However, a definition of CI that is limited to numerical techniques seems lacking in

that Computational Intelligence should not rely only on pure mathematics. Rules of thumb

based on trial-and-error and other relevant inputs can enhance the search process to

25

provide symbolic output for the higher intelligence levels. This could help to increase

performance speed, even though gross error may be contained in the output.

To bring AI into the lower levels of the control hierarchy of a real-time

environment, CI modules for creating "primitive" symbols must be very fast. By

implementing AI and heuristic approaches into CI modules, we introduce certain error, but

gain on speed. The key trade-off in real-time computing is always: accuracy versus

processing speed.

Considering that error can derive from applying heuristics in CL it is proposed that

direct connection between CI and AI levels can assist with error detection and

interpretation at the AI level The AI module can test symbolic output from cooperating

sensors and recognize, tune out or reduce such error (Figure 6).

] ^ - —

T ' t
[Symbolic Intelligence^ [Error Adaptation 1

T ~ \
I C o m p u n i i o n a l l n B l l i g M C . 1 • - "

. T
(Process Instrumentation 1 t '
(Process 1

Figure 6: Error Detection in AI Correcting CI methods

Following an analogy from Bezdek, an individual given an apple can immediately

recognize it by shape and colour. With eyes closed however, other sensory inputs must be

used: touch, smelL taste. Smell and taste inputs will produce real-time decisions about an

apple, but touch and feel may require additional processing to visualize in the mind the

26

shape and texture of an apple. The symbols of shape and texture must be recalled and

compared with measurements that are less accurate than sight.

To assist AI in making rapid decisions intelligently, the CI module needs the

following:

• IF/THEN rules (inferences and rektionships)

• prior knowledge (to direct the CI process)

• symbolic "primitives" (output from CI module)

The approach resembles the hierarchy of human intelligence depicted in Figure 7.

Biochemical processing Electronic processing
(BiologicallnteUigen^J (Ar^ciallntelligence_|

[Symbolic Intelligence_| ^ymbdiclntelligencej

Fuzzy Logic r FL 1
Genetic Algorithm

GA 1 Neural Networks
NN 1 FFTransforms
FFT 1 Wavelets Theory WT J

[__̂ _̂ _̂Comp*rtation̂

Figure 7: Comparison of Biological and Machine Intelligence

Biological Intelligence consists of manipukting symbols supported by low-level

numerical processing to generate belief in a particular symbol This hierarchy is mirrored in

the arrangement of AI with CI to form the basis for rapid problem-analysis.

Within Biological Intelligence, the ability of autistic savants to carry out rapid and

accurate data calcuktion, musical recall, etc., are examples of how the human brain can

perform unusually accurate real-time computation. Whether output is intelligent or not is

27

determined by those who interact with such exceptional people. Perhaps they use fuzzy

sets with very broad support characteristics (see Figure 8) [37]. Such set definitions can

provide complex Input/Output mappings not achievable with "properly" defined sets.

Unfortunately, the application of each individual set will produce rather useless output

(100% medium, 60% low, 20% high), etc. So, while savants may be able to tell the day of

the week for a particular date, they rarely understand the significance of the date in

question.

Normal Fuzzy Sets "Autistic" Fuzzy Sets

Universe of Discourse Universe of Discourse

Figure 8: Normal and "Savant" Fuzzy Sets

This hierarchical intelligence concept has been selected in building the Al entity for

intelligent billet casting. The character of the application required separation of fast

numerical algorithms for data processing from the logic for real-time quality prediction.

The CI module performs fast and intelligent computation of sensory inputs and supports

the beginnings of Symbolic Processing at the higher leveL The filtering functions within

the CI module accomplish rapid feature extraction and apply heuristics to guide the search

process.

The development of the CI module was one of the main tasks in this work together

with construction of the Intelligent SCADA system for billet casting.

28

C h a p t e r 3

O b j e c t i v e s o f t h i s w o r k

An integrated computer system that utilizes Al techniques (Fuzzy Expert System

and Computational Intelligence) has been built for monitoring and on-line defect detection

in the continuous casting process. To create this system, research work was undertaken to

meet the following objectives:

[1] define a computer platform, operating system, and development tool for

Supervisory Control And Data Acquisition that can be integrated into a control

system for Continuous Casting of Steel Billets.

[2] define hardware requirements for data acquisition.

[3] create software for high speed data acquisition.

[4] create a Computational Intelligence (CI) module to support symbolic

processing.

[S] build a real-time Expert System for on-line detection of transverse depression

formation in steel billets.

[6] test the data acquisition software, CI module and real-time Expert System at

several Canadian mini-mills to verify its performance and reliability.

29

C h a p t e r 4

M e t h o d o l o g y

4.1 Description of the Billet Casting Process

In the continuous casting of steel billets, molten steel is brought from the

steelmakmg shop in refractory-lined ladles and discharged into a vessel, called a tundish.

The tundish is used as a container for the liquid steel and helps to control the delivery of

liquid metal to the mould Steel is poured from the tundish through a nozzle into a water-

cooled copper mould. The semi-solid strand is continually pulled from the mould with the

help of a set of rotating pinch-rolls. Rotational or casting speed, is linked to the level of

molten metal in the mould through a standard PID control loop. Changes in this level from

its set position are reflected by changes in the casting speed. Metal level varies appreciably

when turbulent conditions exist from a "ropey" stream

The mould oscillates up and down to help strip the newly formed solid shell from

the mould wall Displacement is usually sinusoidal but when sticking or bmding occurs,

these signals can become distorted Mineral oil or powdered mould flux lubricates the

strand during casting. Lubricant behavior, whether oil or powder, is primarily linked to

heat transfer conditions prevalent at the time of casting.

Beneath the mould is a water spray system that cools the semi-solid strand. A

torch is used to cut the cooled strand into desired lengths to make billets (see Figure 9).

30

Figure 9: Schematic diagram of Continuous Casting process

The stream of liquid metal must be straight and smooth. The stream condition

influences the behaviour of the metal level, also referred to as the meniscus. Many billet

defects originate at the meniscus and are caused by a "ropey" stream The tendency is to

keep metal level position constant, and hence casting speed as well [38]; however changes

in flow rate can lead to fluctuating levels. The mould oscillation frequency, together with

displacement stroke and casting speed, are process parameters that must be monitored and

controlled during casting in order to prevent surface defects. Negative strip time is a

process variable that combines these three inputs to produce information about the relative

ratio between casting speed and mould velocity. It is defined as the duration when the

mould moves downward faster than the strand, Le. casting speed. Uniform distribution of

mould strand lubricant and appropriate cooling water flow rate are additional requirements

in performing ideal casting .

31

The following variables are currently used by the research team at UBC in the

monitoring of continuous billet casting:

- Metal level position - provides information about the current meniscus position. It can be

used for calculation of metal level standard deviation. Consecutive rise and drop in metal

level can produce defects in a billet. Metal level variation can be applied as an early

indicator of some quality problems [38].

- Casting speed - provides the current withdrawal speed. It can be applied in on-line

calculation of negative strip time. Also, it is used for monitoring process upsets.

- Cooling water flow - gives the rate of current water flow. A reduction in water flow

during casting can cause a rise in mould temperature and affect the heat transfer.

- Water temperature - provides the current temperatures in the cooling water system The

inlet and outlet water temperatures are measured during casting to allow direct calculation

of heat transfer in the mould

- Mould temperature - gives essential information about mould-strand interaction. These

measurements directly reflect the behaviour of the billet shell Usually, several

thermocouples are placed on all four faces down the mould to provide key information

about billet defects.

- Mould displacement - this measurement supports understanding of the mechanical

aspects of mould behaviour during casting. It can be used for on-line calculation of

oscillation frequency, displacement distortion and negative strip time.

- Stream quality - poor liquid metal stream quality has an important effect upon metal level

turbulence. More air is entrained by the ropier streams producing a turbulent metal level in

32

t h e m o u l d . T h e r e s e a r c h t e a m a t U B C u s e s v i d e o , 35 m m p h o t o g r a p h y , m o u l d

t h e r m o c o u p l e m e a s u r e m e n t s a n d m e t a l l e v e l s i g n a l t o m o n i t o r t h e e f f e c t o f t h e s t r e a m

t u r b u l e n c e o n m o u l d t e m p e r a t u r e s .

T h e t y p i c a l s e n s o r s a n d d e v i c e s u s e d i n t h e p r o c e s s a r e :

- t a c h o m e t e r f o r c a s t i n g s p e e d m e a s u r e m e n t

- r a d i o a c t i v e s o u r c e c o u p l e d w i t h a r a d i o a c t i v e d e t e c t o r (m e t a l l e v e l s e n s o r)

- m o u l d t h e r m o c o u p l e s

- L i n e a r V a r i a b l e D i s p l a c e m e n t T r a n s d u c e r s (L V D T) , a n d

- s i n g l e l o o p P D D c o n t r o l l e r

T o b u i l d a n i n t e l l i g e n t c o m p u t e r s y s t e m f o r c o n t i n u o u s c a s t i n g , a l l o f t h e s e s e n s o r s

a n d i n s t r u m e n t s m u s t b e c o n n e c t e d t o t h e s y s t e m a n d o b s e r v e d d u r i n g t h e o p e r a t i o n .

T h e r e h a s t o b e a p p r o p r i a t e h a r d w a r e t o s u p p o r t d a t a c o l l e c t i o n . C o r r e c t d e c i s i o n s a b o u t

h a r d w a r e p l a t f o r m , d a t a a c q u i s i t i o n b o a r d a n d S C A D A s y s t e m d e v e l o p m e n t t o o l , m u s t b e

m a d e t o a c h i e v e t h e p r o p o s e d o b j e c t i v e s .

4.2 Selection of Hardware Platform and Software Development Tool

P r o c e s s c o n t r o l a p p l i c a t i o n s u s u a l l y c o n s i s t o f s e v e r a l i n d e p e n d e n t a c t i v i t i e s t h a t

r u n s i m u h a n e o u s r y . R e s p o n s e time i s v e r y i m p o r t a n t a n d h e n c e t h e c o m p u t e r s y s t e m

i n v o l v e d i n t h e s e a p p l i c a t i o n s m u s t p r o v i d e r e a l - t i m e m u r t h a s k i n g c a p a b i l i t i e s a s d e f i n e d i n

C h a p t e r 2. T h e c h a r a c t e r o f t h e c o n t i n u o u s c a s t i n g a p p l i c a t i o n p r o v i d e d t h e s e l e c t i o n

c r i t e r i a f o r a c o m p u t e r p l a t f o r m , a n o p e r a t i n g s y s t e m (O S) a n d t h e s o f t w a r e d e v e l o p m e n t

t o o L

33

The hardware design decisions were made based on the Mowing criteria:

• distributed real-time mukkasking capabilities

• networking capabilities

• Intelligent SCADA system development tool

• price

• ease of use

hi the case of real-time multi-tasking and networking, we need to examine these

properties as they relate to selecting an overall operating system Table 1 presents several

widely used OS.

Table 1: Examined Operating Systems

OS Multi­
tasking

Real-Time Distributed Networking

MS-DOS No No No No
Windows Yes No No No

Windows NT Yes Yes Yes Yes
Windows 95 Yes Yes Yes Yes

OS/2 Yes Yes No No
OS/2 Warp Yes Yes Yes Yes

UNIX Yes No Yes Yes
QNX Yes Yes Yes Yes

The main responsibility of an operating system is to manage a computer's

resources. All activities in the system - scheduling application programs, writing files to

disk, sending data across a network, etc. - should function together as seamlessly and

transparently as possible. Real-time applications depend on the OS to handle multiple

events within fixed time constraints. Hence, multitasking, priority-driven preemptive

scheduling, and fast context-swftching are essential elements of a real-time system The

34

structure of such a system is based on a kernel, the heart of any OS, and a group of

cooperating processes. In a red-time OS the kernel should be very small and dedicated to

only two essential functions: message passing and scheduling.

MS-DOS, the most widely used current PC-based OS is definitely not appropriate

for these problems. RAM is limited and the architecture is purely serial in nature.

Windows is in fact, a Graphic User Interface overlaying MS-DOS with some

mum-tasking capabilities. Resource management is not as rigorous as in a real-time OS.

Task scheduling is not priority-driven and preemptive. The elements of an application can

not be run on several personal computers simultaneously. Obviously, Windows is not

suitable for this type of application. However, Microsoft has produced Windows NT and

Windows 95 for distributed, real-time, networking applications. They could be the right

decision for the "Smart" mould, when they become widely available and used.

OS/2 Warp is also an operating system of choice. It has real-time networking

capabilities. It can be distributed over several machines and can share their hardware

resources. It supports priority-driven preemptive scheduling. OS/2 Warp could be also the

right choice for the billet casting application, when it becomes widely accepted.

The most conmierciaHzed rnultitaskmg operating system for industrial applications

is UNIX. Even though the UNIX kernel was not designed for real-time applications, the

OS can be used in real-time. The networking capabilities makes UNIX very attractive for

various applications.

QNX, produced by Quantum Software Systems, is a truly distributed real-time

multitasking system designed for the PC platform It supports all essential features of

35

modem real-time computing. Its modular structure allows an application to be executed

on several QNX nodes sunultaneousry. Considering the speed issue, QNX outperforms

any of the listed OS.

Several SCADA System building tools were examined for use with the "Smart"

Mould application. The major criterion in selecting the development tool was availability

of Al techniques in supervisory control Table 2 lists the tools widely accepted in industry.

Table 2: Examined SCADA Systems Development Tools

SCADA Development Tool OS and Hardware Platform Include Al
G2 from Gensym Windows;Unix; Work Stations; Yes

ProcessVision from Comdale QNX; PC Yes
Real Flex - Quantum Software QNX; PC No

InTouch from Wonderware Windows & Windows NT; PC No
Factory Link from US Date WindowsfNT) and OS/2; PC No

FLX-DMACS from Intellution Windows; PC No

Although there are many SCADA system development software on the market,

there are only a few that include Al technology in supervisory controL G2 is one of the

most popular building tools with Al capabilities for UNIX platforms. G2 was originally

designed for process modeling and is the best overall GrapMc-modeling tool for unique

MMI and Al methods it is not as flexible, but prototype development using object blocks

is rapid

For personal computers, there are many SCADA systems that run in Windows or

OS/2, but they do not involve intelligence (see Table 2). The ProcessVision SCADA

development tool produced by Comdale Technologies, surpasses this disadvantage; it

runs on a PC, under the QNX OS and contains a real-time fuzzy expert system

development shell It is also widely used in industry [39,40,41,42,43].

36

The cost of software and hardware are important considerations in this work as it

is desired to produce a system for distribution to industry. The price of the "Smart" Mould

can be an inhibiting factor in its implementation so the issue is one of low price versus loss

in flexibility.

PC-based systems are more widely accepted by industry not only because of price

but also due to the availability of trained personnel who accept the hardware without

reservation.

According to the above criteria the PC platform, along with the QNX OS and

Process Vision building tool were selected in creating the "Smart Mould" system

Figure 10 describes the main parts of ProcessVision, indicating the muM-tasking

features of a real-time system

Historical
Database

Database
Administrator

Point
Database

Event
Scheduler

Inference
Engine

Trend
Administrator

Process
View

Alarm
Administrator

Process
Instrumentation

Message
Administrator

X
Knowledge

Base

Expert
View

Explainer
Engine

Expert System
Modules

Figure 10: Typical Configuration of ProcessVision

The high-level supervisory decision-making modules consist of the inference

engine, the knowledge base and the explainer module.

37

43 Selecting a Data Acquisition Board

QNX OS and ProcessVision provide data acquisition facilities over a computer's

serial communication port. The sensor inputs can be collected by some external data

acquisition device or computer and passed directly to ProcessVision's point database

through networking connections (see Figure 10).

Alternatively, a dedicated data acquisition board can be plugged into a computer

and used directly for fast and accurate data collection. A software driver is a necessity to

run data acquisition tasks. A ProcessVision Utility called the Third Party Interface library

is used to support connection between the output from the data acquisition program and

ProcessVision.

The current steel-plant instrumentation does not provide enough sensory inputs for

creating a "Smart" Mould system The UBC research team uses thermocouples located

around a mould to sense strand surface temperature. To produce a stand-alone intelligent

system, a dedicated data acquisition board was necessary to record the mould

thermocouple data. The networking connection to the external acquisition devices or a

computer is still available and can be used if necessary.

Several data acquisition boards were considered: from straight high precision data

acquisition boards (DAS 20 designed by Keithley Metrabyte) to Digital Signal Processing

boards with Intel" 80486 microprocessor (DAP 3200e designed by Microstar

Laboratories) (see Table 3).

38

Table 3: Considered Data Acquisition Boards

The Board Characteristics DAS 20 DAP-800/1 DAP - 3200e/101
Analog Inputs 16 8 16

Analog Inputs expandable to 128 32 512
Samples per second (xlOOO) 100 75 330

Selectable ranges 7 4 3
Digital Inputs 16 8 16

Analog Outputs (AO) 2 2 2
AO updates per second (xlOOO) 130 75 330

Digital Outputs 16 8 16
Processor No 80C188 10 MHz 80486SX 24 MHz

On-boardOS No DAPL DAPL
RAM (Kbytes) 2 256 4096

QNX low-level driver Yes No No
Price $2259 $2206 $3945

The basic criteria for selecting DAS 20 was the avaikbility of QNX software for

the board interface. Because of the avaikbility of an existing QNX driver, this was the

fastest way to write the data acquisition and processing software to support a real-time

Expert System Microstar Laboratories did not provide software support for a QNX OS

and their boards were rektively expensive. The big benefit for employing 'Intelligent"

boards would be the use of a dedicated processor for data filtering, leaving the main CPU

for decision-making tasks. This maybe the best approach in the future if the necessary

software becomes avaikble. However, using the multi-tasking capabilities and priorities

under QNX and/or its distributed networking capabilities, the CPU time can be controlled

and used more efficiently even with the DAS 20 board.

39

4.4 Isolation Amplifiers

m practice, sensors are located on and grounded through the process equipment.

On the contrary, the plug-in data acquisition board is grounded through the computer.

These two ground points are not at exactly the same voltage and the difference between

the ground voltages is included as an input signal (see Figure 11).

DAS 20

~ Sensor y'̂ ~ Ground
Ground

Figure 1 1 : The creation of a ground loop

The ground loop problem can be avoided using floating signal sources (not locally

connected to the ground). However, this solution was not applicable in this work,

because the drilled-in thermocouples are always grounded through the mould, thus two

common grounds are formed.

Ground

Figure 1 2 : Avoiding ground loop problems

40

To build a SCADA system that depends on correct and reliable process data,

signal specific isolation amplifiers and isolated thermocouple converters were purchased

and implemented in the "Smart" mould system This isolation system separates the plant

current circuit from SCADA and hence completely prevents the ground looping

problem, as illustrated in Figure 12. In addition, this technique results in amplification of

the thermocouple signals so measurements are recorded in volts rather than milfvolts,

providing better input resolution and more accurate data values.

4.5 Software development

Software development consisted of three phases:

1. Design and testing of data acquisition driver

2. Design and testing of CI module - filtering functions

3. Design and testing of the Expert System

4. Development of Man Machine Interface

4.5.1 SCADA driver

The data acquisition driver is a program developed in "C", using the Watcom C

compiler for QNX environment. The driver collects data from up to 16 analog inputs

from process sensors at a user-configurable sampling frequency. The design of the data

acquisition software was based on the Data Acquisition (DAS) Library for the DAS 20

board obtained from the QNX Bulletin Board on the Internet.

41

The first step in creating the driver was to build the DAS library and DAS

manager. This was an undocumented procedure and took several weeks to obtain a

correctly compiled version of the library. The second step included design of an dgorithm

for data acquisition. The idea was to read data from each active input channel at the

desired sampling frequency over a specified time interval store the data in a 2-

dimensional table, perform calculations over the collected data, and begin to read again,

hence creating an infinite loop for continuous data acquisition. The first index in the data

table specifies the channel number, and the second one references the sampled variable.

The DAS 20 board has a 16-bit input buffer where the converted analog signal is

captured. The first four bits are reserved to define the input gain range (-50 +50 mV, 0

+100 mV, -0.5 +0.5V, 0 +1V, -5 +5V, -10 +10V, 0 +10V) and the operating mode (16

single-ended or 8 differential inputs). The remaining 12 bits are reserved for the

converted analog input [44].

To acquire sensor data, the DAS 20 board must be initialized and the channel

input range must be delineated properly. Initialization is completed by applying the

das_open function from the DAS library. This reads a default DAS configuration file,

sets the port address, the interrupt request, direct memory access channel range control

(local = 0, remote = 1), operating mode (single ended or differential), pacer-clock

frequency, and A/D and D/A converter resolution (2 bytes). This function must be

included in the chiver code to control the operation of all other library functions. The

function das_ad_set_range sets the analog input voltage range, which must be applied

42

before reading. Finally the function das_ad_sync performs a single synchronous Analog

to Digital conversion on a channel and is used for input readings [45].

At the beginning of execution, the data acquisition program reads a configuration

file (a different one from the default DAS configuration file). This file contains

information about the settings for the input channels (input range, sensor type, activity,

number and types of applied filtering functions) and is stored under the /usr/ directory

(see Appendix A). The configuration file also contains common information about

sampling frequency (how often data is collected expressed in Hz), scanning interval,

trigger values, etc. If the configuration file is incorrect, suitable error messages are

displayed and the data acquisition program can not work properly.

After board initialization (das_open), the program uses das_ad_set_range

function to establish proper channel settings. Data collection is performed in a loop:

active input channels are polled consecutively using das_ad_sync. The sampling

frequency is achieved by applying the delay QNX system function right after the final

sampled channel This provides "sleeping" of the current QNX running task for a

calculated time interval expressed in ms, Ie. user specified frequency. Next, polling is

applied after the sampling delay. The data collection cycle is completed when the

configured scanning time is over. A 2-dimensional table is used for storing channel inputs

(see Table 4).

43

Table 4: Stored sensors input
Channel Sampled Points Channel

0 1 6000
0 1014 1012 980
1 560 562 578

.... ...
16 971 975 1100

After accomplishing data acquisition, the program creates a parallel process by

applying the fork system function. This new process performs the data filtering (CI) task.

In this case, mum-threading programming features were utilized. The main thread

continues onto a new acquisition cycle, while the processing task filters the previously

recorded inputs. When the data processing task finishes the filtering routine, it 'lolls"

itself The main program recreates the processing task each time it completes another

acquisition cycle. It is clear that the CI must complete data processing before the main

task finishes the current acquisition cycle. Figure 13 depicts the applied rnuM-threading

technique.

44

Parent Process

Read Channel
Configuration

X
Beginning of
infinitive loop

(das open

(dasad setrange)

-*(from j = 0 to scan t̂ime

-»(fronii = 0tois)

(dasadsync
I

if prev_flag = 1
record in AI_table[i]fjl

else AI_table_l[i][jJ

(delay ())

' if prevflag = 0 i
prevflag = 1

else prevflag = 0

C
Child Process

CI module

-*(fronii»0tois)

r-j fromj=0to4)

apply filtering functions

(kiU(childprocess))

create parallel child process
fork()

if (child process)
call CI module

else next acquisition cycle

ure 13: Data Acquisition and Data Filtering tasks run in parallel

45

4.5.2. Design and testing of CI module - filtering functions

The CI processing task receives pointers to the data table and sequentially filters

inputs from the different channels. The configuration file provides the essential information

about the functions that are to be performed on each designated input channel This

information is captured in an array of channel structures that constitute a global variable.

The program runs in a loop, completing each function one by one for the first, then the

second, etc., sampled channel, as illustrated in Figure 13. The number of filtering functions

is limited to 5 per channel, but can be increased for future work. The CI module allows

new processing routines to be appended as they are created. Genetic Algorithms, Artificial

Neural Networks and FFT methods can be added to fiber sensors data. The method to

append a new fihering function is described in Appendix B.

Each of the applied functions use the calibration routine to transfer the digital

presentation of analog inputs into actual values. At the end of data manipulation, the

results are passed to the ProcessVision point database using the Third Party Interface

Library, mentioned previously in section 4.3.

The currently available functions are:

average - calculates average(s) over a specified number of points in the recorded data

table and feeds ProcessVision with this/these averages) as key-word-triplet(s).

minmax - looks for m i n i m u m and maximum values over recorded data and passes two

values to the ProcessVision point database as two key-word-triplets defined by a

developer.

46

storedata - stores collected data, expressed in volts, in a file. Filename is defined by a

user.

calibration - this function converts input data expressed in volts to actual values,

compare - this function combines data from two input channels to calculate negative strip

time on-line. The function provides two outputs: negative strip time based on a

mathematical expression and negative strip time based on a comparison method,

valley - this function is an example of shape recognition and feature extraction. The

function looks for "valley" shapes in thermocouple data. Up to 5 valleys in the data table

can be recognized and passed as 20 key-word-triplets to ProcessVision. The triplets

passed for each "valley" are: temperature drop, base temperature, time of occurrence, and

valley span. The total number of detected drops is also reported to the Expert System

extreme - this routine calculates the first derivative over digital thermocouple data and

records all signal extremes and their types (minimum or maximum). The function searches

for '"maviTmim-minirmirrt-maymTiiTn" patterns in the array of the extreme structures and

reports a "valley" shape to ProcessVision. Similar to the valley function, the triplets

passed for each "valley" are: temperature drop, base temperature, time of occurrence, and

valley span.

The CI routines average, minmax, storedata, and calibration are quite straight

forward. However, the algorithms applied in compare, valley, and extreme functions are

more complex and need to be explained in more detail.

47

4.5.2.1 Compare function

The compare function requires inputs from two process sensors: Casting Speed

sensor (provided by the plant) and Linear Variable Displacement Transducer (LVDT). The

received process data are first smoothed using a forward moving point average. The

mould velocity profile is obtained from the mould displacement signal as a five-point-

derivative (difference between fifth and first point divided by the time interval between

these two points). Figures 14 - 16 presents the output from the compare function. Figure

14 displays the mould displacement obtained as 5-point moving average from the LVDT

signal Figure IS illustrates the velocity profile procured from the mould displacement

table, as a 5-point derivative. Figure 16 shows the appUed technique for calculating

negative strip time. The sampled points for casting speed signal and mould velocity are

outlined.

The first zero-crossing from a positive to a negative value in the velocity profile

table is considered as the start point in the calculation (see Figure 16). The second

consecutive zero-crossing (from negative to positive) is referred to as the end of the

calculation (NST end point in Figure 16). The applied function compares mould velocity

and casting speed, point by point, between these two limits. Whenever mould velocity is

less than negative casting speed a counter is incremented When the calculation is

completed, the content of the counter decremented by 1 is rnultipUed by the time interval

between two consecutive points to provide the dynamic negative strip time. The negative

strip time obtained by straight comparison between mould velocity and casting speed,

point by point, will be from point A2 to point A3 (Figure 16). This is a result of sampling

4 8

analog inputs and presenting them in point form. An extrapolation technique is necessary

to get an accurate negative strip time, le. from point B1 to point B2.

As well, the theoretical negative strip time (Eq. 4.1) is calculated wrduh the same

function for each data acquisition cycle. From the mould displacement table, the difference

between the up stroke and down stroke, expressed in mm, is used in a mathematical

expression of negative strip time. The number of points between the same two consecutive

zero-crossings (from positive to negative value, or vice-verse; Start point minus Bl in

Figure 16), multiplied by the time interval between two consecutive points, produces the

mould oscillation frequency. The casting speed is applied in the formula as the average

speed over one second of data.

tN= - c o s \ - ') Eq.4.1

where V c is casting speed expressed in mm/s, / is oscillation frequency expressed

in Hz, and S is oscillation stroke expressed in mm

4.5.2.2 Valley function

This function was the first attempt to recognize temperature drops in

thermocouple responses. Process data is filtered initially using a central moving point

average over one second. The raw thermocouple data sampled at 60 Hz is illustrated in

Figure 17, and the filtered trend in Figure 18. It can be noticed that the averaging method

shifts data and reduces the size of drops and peaks. Other dgorithrns can be applied for

more accurate filtering, such as Savitzky-Golay method [46], but they are more

mathematically intensive. Our goal has been directed at minimising computational delays.

49

(a n n) X O A l

so

o © © © o o o
VO ^ CN CS VO

i i i
(s/ann) AjpopA P l 0 0 ! ^

51

(s/unn) poods 8 u?s* 3

52

The shape recognition algorithm consists of prior-knowledge (window size and

threshold temperature drop) to direct the shape search, and a 'window'' technique to

locate a m i n i m u m and left and right maximums. Two parameters guide the shape search

and are provided by the user: the threshold temperature drop, expressed in degree C, and

the probable "valley" span, expressed in seconds. As welt, the span parameter can be

updated in real-time by the Expert System, if the higher intelligence level concludes that

the span is currently inappropriate. The delineated span is translated into the number of

points used to define the ''window'' size. The routine detects the m i n i r m i m and m a x i m u m

temperature vvithin the window, and if their difference is greater than the threshold drop,

the mmirrmm point is positioned into the centre of the window. Then the function

identifies the maximum values in the right and left half, and compares to the m i n i m u m

value. If both differences are greater than the threshold, the function reports the 'Valley"

shape (see Figure 18). A span is calculated as the difference in time between the right and

left maxmiums, the base temperature as the greater of the two maximum values, and the

drop as the difference between base and rrnnhrnim temperatures. The drop occurrence is

reported to guide the Expert System in its search for defects. When a drop is detected, the

window is moved to an adjacent position in the data table and the procedure is repeated

until the whole table has been ratified (see Figure 18). The function output for a specific

channel, passed to the ES is depicted in Table 5.

53

54

•Q XuedraoQ
4 £ £ £ # ^ H ' (D o) 8 l H D r L L

55

Table 5: The output from valley function

Keyword Triplet
TCl.t_drop.@f
TCl.t_base.@f
TCl.t_span.@f
TCl.t_time.@f

Value
40

138
10
9

Degree of belief
100
100
100
100

4.5.2.3 Extreme function

This function receives a pointer to the delineated channel and performs a forward

moving-point-average. If the data acquisition frequency is 60 Hz, a 60-point moving

average will be calculated, for 20 Hz frequency - 20-points, and so on. The first derivative

is obtained from the filtered data, based on a time interval of one second. Therefore, the

calculated first derivative mirrors every change in the trend in filtered data that takes place

over one second intervals. The raw thermocouple data sampled at 60 Hz is illustrated in

Figure 16, and the filtered and first derivative data are shown in Figure 19.

The first derivative is obtained in point form and stored in a new data vector.

Searches for all zeros and zero-crossings in the derivative vector is accomplished to derive

information about the filtered data local extremes. An array of structures is utilized to

keep records of all extreme locations, values and types (in this case minimum and

maximum). The program continue to search through the extreme array looking for the

consecutive extremes that create the cmaximum-mimmum-maximum" pattern. Once the

match is found, the program reports a "valley" shape, if the valley drop is greater than the

threshold value provided by the user. Considering thermocouple precision and DAS 20

resolution, 5 °C is accepted as the overall system resolution. The keyword triplets

56

(S /0 0)3Ar4BAIJ3pjSJI_

Q Xiredraoo '£££# K»H '(Do) 813 DHL

57

describing each detected 'Valley" are passed to the ProcessVision point database in the

same manner as described in section 4.5.2.2.

4.5.3 Expert System development

The real-time quality control Expert System for continuous billet casting was

developed at the Centre for Metallurgical Process Engineering, using the Comdale/C

development tooL Comdale/C is an expert systems development shell for creating

supervisory control modules within ProcessVision applications. It is an integral part of the

overall system Conmnmications between the billet casting Expert System and CI software

is accomplished through the point database as depicted in Figure 20. The RAM-resident

point database acts as a medium where different real-time modules exchange their

information.

Table
Sensor Inputs

(Recorded in Volts) Process Brain

Symbols
ProcessVision
Expert System
(Point dbase)

Figure 20: Multitasking concept of the "Smart" Mould

58

The research team at UBC has been working on interpreting patterns from sensor

responses taken from numerous field trials conducted over the past 20 years. Specific

curve shapes from thermocouple (THC) time responses (temperature peaks, drops, etc.)

were found to be related to specific billet defects. At this point, these correlations make up

a part of the knowledge base for on-line detection of the following surface defects:

bleeds/laps and depressions.

It was discovered that when successive temperature drops and rises propagate

down the mould during casting, this indicates that some particular defect has occurred.

The ratio between temperature drop and the base temperature measured before the drop

defines the significance of the drop. The time interval between a drop and rise is also very

vital information. The relative drop and time span are two features extracted from the

thermocouple responses that define the extent of the defect created.

To predict bleeds/laps and depressions, the knowledge base examines these

features. A data acquisition rate of 5-20 Hz is adequate to capture all important changes

related to these defects. The "pseudo" real-time Expert System is not designed to process

input data intelHgentry at this rate. So, applying a CI module was a necessity.

The knowledge base is currently designed to trace 4 thermocouple signals per face

to predict bleeds/laps and depressions. Initially, the Expert System looks for the "start"

flag, set up by the CI task at the end of the filtering process. When the "start" flag

becomes 1, the ES counter is set to the number of reported drops in the first THC

(THC1), and the ES checks the first detected drop from THC1. Fuzzy logic is applied to

present the significance of the detected drop. The source in the fuzzy presentation is the

59

ratio between the temperature drop and base temperature, expressed in percentage. Figure

21 illustrates the shape of fuzzy membership function for temperature drop.

Edit Dei | Untto Ifignersl O K I Cance l 1 Exit | Help

N A M E T E M P D R O P SIGNIFICANT

S O U R C E

Value

V a l l e y l . temp_drop.@f / V a l l e y 1 . t emp_base .@f

Rank
0.00 0.00
0.01 1.00
0.02 5.00
0.03 25.00

•

0.04 50.00

•

0.05 60.00

•

0.06 75.00
•

0.08 90.00
• 0.15 100.00 •

Comment

Figure 21: Fuzzy set used for presenting significance of a temperature drop

When the first drop is depicted by its significance value, the ES checks the output

from the second THC (THC2). The same drop has to be seen at the THC2 to increase the

degree of belief that a certain billet defect will occur. Equation 4.2 presents the applied

formula to express the degree of belief for the predicted defect.

CONCLUSION
(CERTAINTY (TCl.temperature_drop.significant) * 0.60 +
CERTAINTY (TC2.temperature_drop.significant) * 0.15 +
CERTAINTY (TC3.temperarure_drop.signirJcant) * 0.15 +
CERTAINTY (TC4.temperature_drop.significant) * 0.10) Eq. 4.2

60

The applied weights in equation Eq. 4.2 (0.60, 0.15, 0.15, and 0.10) are derived

from the billet casting experts. An ANN or Genetic Algorithm can be employed to define

these coefficients, based on recorded process data that reflects the real defects, in future

revisions of the "Smart" Mould.

If the position of the drop reported at THC2, is within certain time boundaries,

defined as (positionofTHCl - position_of_THC2) [mm] / castingspeed [mm/s] + 0.5 *

THClspanJ, the drop is considered as the same one seen at THC1. The search continues

on until the outputs from all four THC are rectified. The counter is decreased every time a

search routine is completed for a delineated drop. When the ES counter becomes equal to

0, the ES provides a list of detected defects along with degrees of belief, through the

Expert View module. If the system concludes that some of the drop searches can not be

completed, because the drop detected at the first THC, did not have time to appear at the

next thermocouple, the ES saves the necessary information in a data file, records the

search status as incomplete, and after the next acquisition cycle, starts the search

procedure from thermocouple number 2. Figure 22 presents a typical rule used in the ES

to describe a valley that propagates down the mould.

Rule
@name = TCl
IF TRUE
THEN Valleyl .temp_drop.@Qoat = Thermocouple 1 _drop 1 .drop_size.@float
THEN Valleyl.temp_span.@fl.oat = Thermocouplel_dropl.span_size.@float
THEN Valley 1 .tempJbase. @float = Thermocouplel_drop 1 .basetemp. @float
THEN Valleyl.position.@float = Thermocouple 1 drop 1 .position.@Qoat
THEN valley_span.avg_vahie.@float = Valleyl. ten—_span.@float
THEN FIND ("TCI t* êrature_drcp.significant")
THENtimejrange.avg_vaL@float = Thermocouplel_drop 1 .position.(afloat + (Thermocouple2.location.@float -
Thermocouplel.location.@float) / casting.speed.@£loat
ITffiNtime_rangejnm_val.(̂ oat=time_range.avg_val.@float - 0.5 *Thermocouplel_dropl.span_size.@float
THEN timerangejnax_vaL @float = time_range. avg_vaL (afloat + 0.5 * Thennoc»uplel_dropl.span_size.@float
THEN TC1 ruleexamined variable is TRUE
THEN FREERULE (SRule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Figure 22: The rule applied for tracing the THC drops

61

mailto:_span.@fl.oat

4.5.4. Design of the Man Machine Interface

The continuous casting application was initially designed by creating the

configuration files needed by the individual ProcessVision (PV) modules (see Figure 10).

Each module within PV which uses data, upon request for data values or upon writing of

data values to the point database, causes these items to be created and to be an integral

part of the overall system This data, assigned to a unique key-word-triplet, is then

accessible to any other module that needs it. A set of process graphics was designed to

describe the process and reflect real-time data as it changes in the physical process. A view

of the current state of a process is provided by the modules contained within the Process

Interface. PV holds information in short-term memory that represents the current state of

the process and/or historical data to allow real-time trend analysis.

The configuration files typically include details of the following process

parameters:

-Alarm Monitoring of process conditions.

-Graphic display of process conditions.

-Scheduling of time dependent events such as data logging and scheduled process

checks.

-Application Message Class definition for warning message filtering.

-Definition of Control strategy.

-Explanation of Control strategy.

Each module is instructed in its role in the execution of the application through the

development of the system configuration files.

62

The mrnfirnim number of modules for any application is four (4): cc_admin(to start

an application and to monitor the health of all active modules), db admin (for locating

data), pddbase (holds a snapshot of the current state of process variables at anytime),

mg admin (manages messages generated by the system for the human operator). The

configuration files must be defined for each module used in an application except

cc admin, db admin, and pddbase modules [47].

The Process View module is a windows-based graphical Man Machine Interface. It

allows the operators to interact with the process by displaying graphical representations of

process data. The Process View Editor is used to configure Process View groups (graphic

display windows). All Process View groups (files) have the extension .grp. Groups are

interconnected by specifying which group to display when symbols and buttons are clicked

on by the user during execution of Process View.

The icon bar is used to access the different dynamic objects that are available to

the developer. Dynamic objects can be designed to display active process data, change

process data values and access other functions and graphic screens. The dynamic objects

used for portraying active data are trends, meters, sliders, dials, bars, and gauges. Buttons,

text objects, and symbols, designed by the developer, are used for linking different graphic

screens within the application. Moreover, the buttons are used to run the procedures

within the ES, to set up search boundaries (Tuning Instructions from Figure 19) and

signals (start and stop flags for recording process data) for the CI processing functions.

63

Trends are applied to present dynamics of several process variables concurrently,

providing better understanding of the complex rektionship among casting speed, metal

level, negative strip time, mould displacement and thermocouple signals.

ProcessVision also includes a Hypertext development tooL The continuous casting

hypertext is a vital part of the application and contains necessary information about the

billet casting process. It is an electronic book with delineated "hot" text and image objects

that open a new page or provide a short description of the specified topics.

Data recorded during one of the last plant trials, were used for creating a demo

version or simulation of the continuous casting process. The data acquisition program

reads channel inputs from files which stored the original data, instead of from the DAS 20

board It creates the data processing task (CI module), and the CI module passes filtered

data to the PV application. The MMI output from the demo version is presented in

Figures 23 - 26.

The application starts with the screen illustrated in Figure 23. It presents all

components of the billet casting process. The process is divided into 5 segments: tundish,

mould, spray zone, pinch-rolls and shear/torch zone. The specific part of the process can

be accessed by positioning and clicking on the button assigned to this component. To

initiate the ES search for billet defects, the button "Check bleeds/laps & depressions" has

to be applied. The Hypertext document can be accessed by clicking on "Description"

button. The process trends can be opened by pressing the 'Trend" button.

Figure 24 depicts four simultaneous process trends. Trend 1 is the thermocouple

above the meniscus. It portrays the metal level position at the delineated face. Trend 2

64

gives the metal level signal obtained from the plant sensor, plotted from the bottom of the

mould Trend 3 represents the casting speed and mirrors the metal level signal Trend 4

illustrates the calculated negative strip time.

Figure 25 consists of several opened windows, each of which outline a different

aspect of the process. The HyperDisplay screen is an integrated part of the application and

provides concise information about the billet casting process. A novice operator can click

on the hot text or objects on the hypertext window to obtain necessary information related

to running the process or particular maintenance issues.

Figure 26 presents the calculated tN based on equation Eq. 4.1, and the actual

casting speed and mould velocity profile.

65

Figure 23: "Smart Mould" Introductory screen

66

67

Figure 25: "Smart Mould" application with opened ExpertView, ProcessView and

Hypertext modules

68

Figure 26: Negative Strip Time trend

69

Chapter 5

Results and Discussion

5.1 Experimental Procedure

The developed Supervisory Control and Data Acquisition System for continuous

casting of steel billets has been implemented and tested at two Canadian steel mini mills.

The trials were conducted to test the SCADA system hardware components, their

performance in an industrial environment, and software robustness and correctness under

plant operating conditions. The software evaluation was divided into three steps:

• Testing the precision of data acquisition.

. Testing the correctness of appUed fihering algorithms.

• Testing the truth of the applied logic and predictions made within the pseudo

real-time Expert System

To test the SCADA system, sensor data was collected using two parallel Data

Acquisition Systems. The original UBC acquisition system, consisting of DAS-8 board

and 8 expandable boards (EXP-16), recorded data in parallel with the SCADA system,

using a commercial software package called "Labtech Notebook for Windows". Data was

stored in a file so that at a later time, data manipulation was available to check the output

from the CI module. The hardware configuration of the two systems working in parallel is

depicted in Figure 27.

70

SCADA
SYSTEM
(DAS 20)

OUTPUT in
Volts

C.Sp.

ORIGINAL
UBC

DA SYSTEM
(DAS 8)

ISOLATION
AMPLIFIERS
(M-SYSTEM)
T *

ML
LVDT

OUTPUT in
Volts

DATA ACQUISITION
SYSTEM

THERMOCOUPLE
INPUTS in mV

Figure 27: Hardware configuration for simultaneous data acquisition

During the first plant trial, the UBC acquisition system acquired data at 60 Hz for

nine sensors that included casting speed, metal level, LVDT and six mould thermocouples.

The SCADA system sampled data at 200 Hz for casting speed, metal level, LVDT and at

60 Hz for the six selected thermocouples. Thermocouples were located on the south side

of the mould at the following positions: 210,235,260,290,320 and 420 mm from the top

of the mould. The casting speed and metal level signals were used for on-line calculation

of negative strip time. The thermocouple inputs were applied to on-hne detection of billet

defects, such as bleeds, laps and transverse depressions.

71

The continuous casting process was monitored for four heats that used powder for

mould lubrication. The data was recorded along with the output from the SCADA System

and CI module. Also, billets were inspected to correlate SCADA results with actual

defects.

The second plant trial was conducted to map the prediction from the ES to real

surface defects and to tune the fuzzy sets defined to describe belief in a significant surface

depression. Again, the UBC acquisition system collected data in parallel in order to justify

the SCADA readings. Afterwards data analysis from the first plant trial led to the

conclusion that a 60 Hz sampling frequency for the LVDT, casting speed, and metal level

signal, and 20 Hz for thermocouple sensors were adequate. The SCADA outputs were

presented on the screen as trends, in order to establish correlation with visual observations

of metal level and casting speed changes, as well as surface defects. The system was used

for monitoring several powder and oil heats. Predictions derived from the ES were

recorded for 3 oil heats and the corresponding billets were inspected and measured to

confirm the ES predictions.

The hardware components of the SCADA system (plug-in DAS 20 board and

isolation amplifiers) worked satisfactorily in the plant environment. The overall system,

(data acquisition driver, the CI module, pseudo real-time ES and PV application), ran for

several heats continuously, without any failure. Data acquisition software was accurate

and robust. The collected data set mirrored the parallel one gathered by the Labtech

Notebook for Windows software system Output from the CI module, presented as trends

witMn ProcessVision, was accurate and corresponded very well to the visual observations.

72

The thermocouple data collected by the SCADA along with the isolation

amplifiers, did not contain any irregularities. In absence of the isolation amplifiers

thermocouple signals exhibited sudden and unpredicted maximum negative values (due to

probable floating ground effects). Thus, isolation amplifiers must be used for the all

sensors in the "Smart" Mould.

5.2 Data acquisition software

The applied polling method in the data acquisition program along with the delay

QNX system function defines the upper Urnit for sampling frequency per number of

channels being read.

In the multi-tasking environment, whenever a particular task is in a "sleep" mode

(discussed in section 4.5.1), it does not consume CPU time; the other tasks share the

microprocessor time. When the specified time delay is over, the "sleeping" task is ready to

use the CPU time. The task acquires CPU resources within one tick. Ticks are system

timer interrupts used only for software timers. If the QNX tick size is set to 0.5 mS (the

minimum value), the total delay time in mS will be: specifieddelay + 0.5 fmSJ.

At the beginning of each acquisition cycle the program reads the first active

channel one thousand times, to establish the necessary time for a single reading. This time

- depends on hardware configuration and on how busy the system resources are. Usually,

this single reading takes around 0.132 mS. This figure is multiplied by the total number of

active channels and is then added to specifieddelay +0.5 fmSJ, to get the real sampling

time. The data acquisition program accepts a user defined sampling frequency from the

73

configuration file, and calculates specified delay in a way to obtained the correct

acquisition rate.

The data acquisition program records the beginning of each acquisition cycle. At

the end of each polling procedure, the beginning time is compared to the current time. If

the time difference is greater than the user specified scanning interval, the acquisition cycle

is abandoned. The program calculates the real sampling interval (i.e. frequency) based on

the recorded time difference divided by the number of sampled points. The actual scanning

interval may differ from the desired one by several mS up to 40 mS.

Figure 28 presents the maximum available sampling frequency based on number of

input channels, for a 486-DX2, 66 MHz microprocessor. As shown, the designed

hardware/software combination is able to provide extremely rapid sampling rates (between

270 and 600 Hz) depending on the number of input channels being used.

5.3 Results from Negative Strip Time calculation

The CI output for trend presentation is calculated and updated every second, by

applying suitable filtering functions. The trend update interval is limited to 1 second by the

ProcessVision development tooL The data acquisition task reads the input channels for 1

second at 60 Hz (or 100 Hz), creates the processing task, and then the processing task

sequentially filters data and passes on the corresponding keyword-triplet values to the

associated trends within ProcessVision. Trends are available for metal level signal, casting

speed, LVDT maximum and minimum position, negative strip time (tN) and thermocouple

temperatures, located above and below the meniscus. The output from the negative strip

74

jawdwoQ ZHW 99 ZXQ
-98* J ° J (ZH) Aouenbwu Su||duiM uinuiprvw

75

time calculation is also saved to a data file, along with average casting speed and LVDT

maximum and minimum values. This file was used later to analyze the tN calculation.

Figures 29- 33 present the output from the negative strip time calculation for data

collected at 60 Hz, during the first plant trial conducted in November 1994. The observed

heat was cast with powder lubricants and the set-up values for casting speed, oscillation

frequency and stroke length were 40 inches/min (around 17 nun/s), 160 cpm (2.67 Hz),

and 8 mm, respectively.

Figure 29 portrays the changes in minimum and maximum values in the LVDT

signal, over 10 minutes of casting conditions. As can be seen over the interval from 250 to

350 seconds, the displacement signal becomes erratic at two distinct time periods. These

are rather instantaneous changes, and perhaps, result from mould-strand interaction

(sticking or binding problems) or due to some external oscillator upsets. These unexpected

changes are reflected in the negative strip time calculation shown in Figure 30. The

variation of tw is very important for the billet quality and is examined in parallel studies.

Figure 30 displays the influence of mould displacement changes on negative strip

time and also portrays the difference in the two methods applied to calculate tN discussed

in section 4.5.2.1. It can be seen that the 5-point-derivative method is more sensitive to

stroke length changes than that derived from the standard mathematical equation (Eq.

4.1). The 5-point-derivative method is more accurate because it does not assume a

consistent sinusoidal displacement signal; it tends to stress the influence of abrupt changes

in mould displacement. Either calculation can provide instantaneous tN values and can be

used to monitor oscillator behaviour, stroke and billet quality, however the 5-point

76

derivative method clearly provides a more sensitive and accurate representation of the

"true" tN value.

Figure 31 presents the casting speed signal together with output from the two tN

calculations. It is clear, that over this time interval, the casting speed does not vary much

and so does not influence changes in tN. The changes in the negative strip time mirrors

variations in the mould displacement signal.

Figure 32 illustrates the influence of casting speed on the negative strip time over

600 seconds (10 minutes) of casting conditions. It can be seen that casting speed

continually decreased over 400 seconds and caused a gradual rise in tN. The steady decline

in casting speed was perhaps, a result of the decrease in metal level (ferro-static pressure)

in the tundish due to the startup of another strand.

Figure 33 presents the behaviour of the meniscus and casting speed during this

time. It is obvious that the meniscus position did not change significantly over this period.

The PID controller, used to regulate the casting speed to keep the meniscus position

steady, maintains constant metal level.

An attempt was made to derive the optimum sampling frequency and first

derivative for the LVDT signal to obtain reliable negative strip time. It is common sense to

have as high a sampling frequency as possible to map most accurately an analog signal into

a digital one. The first derivative from such a signal would also be the most precise.

However, in the plant environment, the higher the frequency, the more noisy will be the

signal received. According to Shannon's sampling theorem [48], the sampling frequency

should be at least 2 times greater than the frequency of variations in the sampled analog

77

78

(s) ISM

(s/nnn) paads S U T J S B Q

signal Since the mould oscillates in the range of 2 - 4 Hz, depending on operating

conditions, a sampling frequency of 9 Hz should be sufficient to reconstruct the mould

displacement signal if some other signal at a higher frequency is superimposed on the

mould displacement, then a higher sampling frequency is necessary to pick up such

oscillations and avoid aliasing [49]. Two analog signals with different frequencies may

have the same values at all sampling instants. Hence, the higher frequency signal will be

retrieved as a signal with lower frequency, if the sampling rate is not adequate. This

processing error is known as aliasing.

During the second plant trial, negative strip time was calculated from 200 Hz

sampled LVDT and casting speed signals. Although, the 5-point-moving-average together

with 3-point and 5-point-derivative were applied, the negative strip time value jumped

between 0 and 0.2 s, every other acquisition cycle. When the sampling rate was reduced to

60 Hz, the calculated tN became reasonable and did not change in such an erratic fashion.

Using the higher acquisition frequency caused very irregular velocity profiles, as derived

from the first derivative from the LVDT signal, with numerous zero-crossings. It is

certainly difficult to distinguished the right time interval for comparing casting speed and

mould velocity, as discussed in section 4.5.2.1.

However, if a sampling frequency below 60 Hz is used this does not provide

enough information for the tN calculation based on the mathematical equation. The

oscillation stroke calculated as the difference between LVDT maximum and minimum

position, from 30 Hz sampled signal varied appreciably, although the actual analog signal

did not change. If the mould oscillates at 3 Hz and the LVDT signal is sampled at 30 Hz,

83

one full oscillation cycle is depicted by only 10 points. This is insufficient for accurate

calculation of oscillation stroke, frequency and hence tN.

5.4 Results from shape recognition functions

The first attempt to extract depression drops and spans from thermocouple time

responses was made by applying the valley filtering function, described in section 4.5.2.2.

The early stages of the "Smart" mould project has focused on on-line detection of surface

defects such as bleeds, laps and transverse depressions. The idea was to recognize up to 5

temperature drops over every 30 second sampling period, and to trace their positions in

time as they moved down the mould. The meaning of some patterns in thermocouple data

was unclear. For example, the same drop can be considered as two separate depressions,

or as one that superimposes two coupled depressions. This complicates the mathematical

methods used to describe the thermocouple responses. An ANN was considered as a tool

for feature extraction that can produce correct output for similar and noisy data. However,

this would involve the tedious work of teaching an ANN numerous input patterns, that

might be considered as depressions. As our manual approach to this pattern-recognition

problem was filled with considerable heuristics, an ANN approach was rejected at this

time.

To be successful, the outputs from the associated thermocouples must be checked

in order to reach a conclusion about the probable defects. The ES must be applied to

analyze the output from several shape recognition modules.

84

The valley function was tested on the thermocouple data, recorded at previous

plant trials, at company C, for heats with real surface defects. The output from the

function was satisfactory; all major depressions were detected and processing time was

acceptable. Depending on the ratio between data acquisition time and sampling frequency

(i.e. number of points that have to be processed), as well as available computer resources,

the processing time varied from 0.001-0.03 of the acquisition time. The limiting factor in

the valley function is the size of the window that slides over the data table. It was left up

to the user to define this parameter, based on the size of depressions being experienced. If

the window size is too big the function will add two depressions together and generate

incorrect output. If the size is too small, the function can not recognize the entire drop. A

tuning rule within the ES examines if the window size is inadequate, based on the

magnitude of the reported spans. If the spans are consistently close to the window size,

the ES will increase the window, and the next processing cycle will be accomplished with

a new window parameter.

Figures 34 and 35 present the thermocouple data sampled at 1 Hz over 120

minutes. Table 6 shows the function output for the data illustrated in Figures 34 and 35.

The first, second and third columns gfve the positions of the left maximum, minimum and

right maximum value, respectively, while the fourth and fifth present the span size of a

detected drop in seconds and the temperature drop in °C. It is apparent that each "big"

drop is detected, but small ones are disregarded. However, for the last twenty minutes of

data in Figure 35, the valley function generated incorrect output: obviously, there is no

85

straight drop of 9.7 °C and span of 12 seconds at this time. The function considered two

joined drops as one.

Table 6: Recognized drops by the valley function

The First Acquisition Cycle
left (s) min_position (s) right (s) Span (s) Temp drop(°C)

0 0 7 7 29.12
51 56 63 12 24.18
63 68 72 9 12.82
72 79 85 13 13.74
99 103 108 9 9.71

The Second Acquisition Cycle
8 12 19 11 18.86
19 25 29 10 10.07
29 36 42 13 17.03
79 83 89 10 29.49
102 109 114 12 9.71

The extreme shape recognition function which was developed after the second

plant trial clarified that two joined depressions can cause two distinguishable defects on a

billet. The research team examined a number of billets for which detailed temperature

trends were recorded Billet surface defects at nridface (Le. at the location position of the

thermocouple) were measured according to their distribution, position, and surface depth.

These measurements served as input to a 2-dimensional mould heat-transfer model. The

depth and distribution of billet defects were translated into upsets in mould heat flux,

assuming that the deepest depression represented about a 85% upset in heat extraction.

Output from the model was obtained for several thermocouples located around and down

the mould. Model output was plotted concurrently with real sensor data obtained during

casting, as depicted in Figure 36.

86

(3C) ajraejadraai

87

CN CN CN CN CN

88

Figure 36 shows a clear correlation between these trends - one for the model

temperature profile based on depression measurements and the second for the direct

measurements taken from the thermocouple. The model output has the same general curve

shape as the real thermocouple-time response. The model assumes a constant casting

speed, although speed varies during casting. The analysis establishes a clear correlation

with existing defects on the billets, sensor data, and the mould heat-flux model

Figure 37 presents the thermocouple output from the mould model for the entire

billet, with 45 measured depressions. The curve shape is obviously very smooth. The

model output was run through the CI extreme function and the result is presented in

Table 7. The extreme function recognized every single valley in the thermocouple trend,

with extremely precise span size and temperature drop. The span size and temperature

drop calculated for each detected depression are illustrated in Figures 38 and 39.

The corresponding thermocouple data were manually examined by the research

team, and drop locations, size and spans, were recorded in a spreadsheet. Then, sensor

data were run through the CI valley and extreme functions: the window parameter for

the valley function was tested at 10 and 15 seconds. Table 8 provides the comparison

between these three cases. The extreme function detected all 45 depressions with correct

span sizes and drops, while the valley technique recognized only 24 and 20 depressions,

for 10 and 15 second window sizes, respectively. It is evident that the biggest depressions

are detected, but many small ones are disregarded.

89

(3Q) ajnjBJadurai

90

Table 7: Output from the extreme function from thermocouple data obtained from the mould model
I Extreme I

1 18.00 123.90 23.60 103.01 26.80 113.98 8.80 20.89
2 26.80 113.98 29.60 103.33 34.80 118.96 8.00 15.63
3 34.80 118.96 39.80 86.49 42.80 99.12 8.00 32.47
4 42.80 99.12 45.20 87.19 49.60 109.91 6.80 22.72
5 49.60 109.91 52.00 102.77 57.00 117.65 7.40 14.88
6 57.00 117.65 60.60 90.58 64.80 112.65 7.80 27.07
7 64.80 112.65 68.40 92.05 72.00 109.72 7.20 20.60
8 72.00 109.72 76.60 78.96 83.00 114.12 11.00 35.16
9 83.00 114.12 85.40 101.41 92.00 120.11 9.00 18.70
10 92.00 120.11 94.40 114.83 95.80 116.74 3.80 5.28
11 95.80 116.74 98.20 107.77 100.00 112.57 4.20 8.97
12 100.00 112.57 103.00 90.81 111.20 120.85 11.20 30.04
13 111.20 120.85 115.80 84.32 119.60 107.02 8.40 36.53
14 119.60 107.02 121.80 96.80 124.40 107.15 4.80 10.35
15 124.40 107.15 126.00 103.27 133.60 121.29 9.20 18.02
16 133.60 121.29 136.20 111.30 143.40 122.39 9.80 11.09
17 143.40 122.39 147.40 94.96 149.20 100.61 5.80 27.43
18 149.20 100.61 150.80 97.82 153.80 109.84 4.60 12.02
19 153.80 109.84 155.00 105.70 157.40 113.42 3.60 7.72
20 157.40 113.42 159.80 93.79 166.00 118.42 8.60 24.63
21 166.00 118.42 167.80 116.09 170.80 119.73 4.80 3.64
22 170.80 119.73 i73.20 112.33 176.00 117.70 5.20 7.40
23 176.00 117.70 177.80 114.89 180.40 118.88 4.40 3.99
24 180.40 118.88 183.20 105.35 188.60 119.71 8.20 14.36
25 188.60 119.71 191.40 97.67 199.40 121.36 10.80 23.69
26 199.40 121.36 202.40 110.81 204.20 114.31 4.80 10.55
27 204.20 114.31 206.60 106.64 209.80 115.35 5.60 8.71
28 209.80 115.35 212.00 106.68 215.00 115.30 5.20 8.67
29 215.00 115.30 217.20 105.41 225.00 121.83 10.00 16.42
30 225.00 121.83 227.40 115.90 230.20 119.87 5.20 5.93
31 230.20 119.87 233.20 103.12 236.80 114.53 6.60 16.75
32 236.80 114.53 237.40 114.31 244.60 122.41 7.80 8.10
33 244.60 122.41 247.20 116.78 249.80 119.87 5.20 5.63
34 249.80 119.87 252.00 114.43 258.60 122.37 8.80 7.94
35 258.60 122.37 261.00 117.77 270.20 123.44 11.60 5.67
36 270.20 123.44 273.20 109.22 280.20 121.95 10.00 14.22
37 280.20 121.93 283.80 99.90 286.80 110.93 6.60 22.05
38 286.80 110.93 287.80 110.35 291.00 117.46 4.20 7.11
39 291.00 117.46 293.40 110.64 297.00 118.18 6.00 7.54
40 297.00 118.18 299.00 112.20 306.20 122.36 9.20 10.16
41 306.20 122.36 309.40 108.00 313.20 117.95 7.00 14.36
42 313.20 117.95 315.00 114.52 317.80 119.04 4.60 4.52
43 317.80 119.04 320.20 109.38 323.00 116.27 5.20 9.66
44 323.00 116.27 325.40 105.82 329.00 116.04 6.00 10.45
45 329.00 116.04 331.00 111.58 334.00 117.89 5.00 6.31

92

CM O AO <D CM O

(s) u e d s

9 3

© « / " » O •<> O «r» © "A O rr ro m <N rs —«
(Do) ^ 0 JP aJTUBjaduiax

94

Table 8: Output from the extreme, 10«-window, and ISs-wfndow valley function
over thermocouple data obtained from Heat #333, Company D.

Depression Extreme Win 10s Win 15s
number Spares) DropCQ Span(s) DropfC) Span(s) DropfQ

1 8.80 20.89 8.2 20.63 8.20 20.63
2 8.00 15.63 - - - -
3 8.00 32.47 8 32.06 12.60 32.06
4 6.80 22.72 6.8 22.17 - -
5 7.40 14.88 - - - -
6 7.80 27.07 7.8 26.45 7.80 26.45
7 7.20 20.60 - - - -
8 11.00 35.16 9.6 31.28 10.80 34.61
9 9.00 18.70 7.8 16.77 9.20 18.27
10 3.80 5.28 - - - -
11 4.20 8.97 - - - -
12 11.20 30.04 8 2469 14.80 29.15
13 8.40 36.53 8.4 36.07 8.40 36.07
14 4.80 10.35 4.8 9.74 - -
15 9.20 18.02 - - - -
16 9.80 11.09 8 9.64 - -
17 5.80 27.43 9 27.01 10.40 27.01
18 4.60 12.02 - - - -
19 3.60 7.72 - - - -
20 8.60 24.63 • 7.4 22.36 8.60 23.87
21 4.80 3.64 - - - -
22 5.20 7.40 5.4 7.07 - -
23 4.40 3.99 - -
24 8.20 14.36 7.8 13.79 8.00 13.89
25 10.80 23.69 8 21.37 10.60 22.99
26 4.80 10.55 - - - -.
27 5.60 8.71 5.6 8.22 10.40 14.39
28 5.20 8.67 - - - -
29 10.00 16.42 7.4 13.72 15.00 16.00
30 5.20 5.93 - - - -
31 6.60 16.75 8 16.24 15.20 17.70
32 7.80 8.10 - - - -
33 5.20 5.63 - - - -
34 8.80 7.94 7.2 7.05 14.00 7.72
35 11.60 5.67 - - - -
36 10.00 14.22 8.2 13.79 10.00 13.79
37 6.60 22.05 8.8 21.64 11.00 21.64
38 4.20 7.11 - '. - - -
39 6.00 7.54 5.8 7.15 5.80 7.15
40 9.20 10.16 . - - • • - -
41 7.00 14.36 7.2 14.03 11.00 14.03
42 4.60 4.52 - - - - •'
43 5.20 9.66 - - - -
44 6.00 10.45 6 9.61 15.20 12.72
45 5.00 6.31 - - -

95

5.5 The results from the Expert System

Along with the SCADA System and data acquisition software, the output from the

pseudo real-time Expert System was also tested. The ES was not the focus of the first

plant trial; hence only a preliminary attempt was made to establish a rough correlation

between the ES prediction and real defects. Unfortunately, production constraints (billets

produced were almost immediately shifted into the rolling phase of the process) did not

allow precise inspection. However, the rough check-over justified the ES prediction:

occasional bleeds and laps were usually observed on the billets.

The objective of the second plant trial was to test the correctness of the ES.

Several oil cast heats were monitored, and the output from the ES was recorded in a

spreadsheet. Monitored thermocouples were located on the east face at 335, 435, 535, and

630 mm from the top of the mould, respectively. The corresponding billets were

inspected, and the position, span and depth of the surface defects were measured.

The output from the ES contained time of occurrence, span size and temperature

drop for each depression. A high degree of mapping between predicted and actual defects

was obtained. Correlation with surface measurements was virtually perfect. Table 9

presents 45 detected depressions at thermocouples located on the east side, 335, 435, 535,

and 630 mm from the top of the mould and the corresponding ES predictions. Only three

measured depressions on the billet were predicted with a degree of belief (DoB) less than

50 %. The lowest DoB is 29 % for depression number 21. For this particular case, the

actual depth of the depression on the billet is 0.024 inch (0.6096 mm). This is a rather

small depression, and is not considered a "severe" billet defect. Future work will focus on

96

Table 9: Output from the extreme function and associated Expert System Degree of Belief
Drop THC 335mm THC 435mm THC 535mm THC 630mm TheES

pos(a) S?ao(8) DropCC) pos(s) Span(s) DropfC) pos(s) Span(s) DrcpfC) pos(s) Span (s) DropCC) DoB
1 13.60 8.60 28.08 18.60 8.20 25.17 23.60 8.80 20.89 28.60 8.80 16.44 100
2 19.60 7.80 21.27 24.60 8.00 18.88 29.60 8.00 15.63 34.60 8.00 12.22 99
3 30.00 8.00 43.23 35.00 8.00 38.81 39.80 8.00 32.47 44.80 8.00 25.39 100
4 35.40 6.80 30.41 40.40 6.80 27.24 45.20 6.80 22.72 50.20 6.80 17.83 100
5 42.20 7.40 20.09 47.20 7.40 17.86 52.00 7.40 14.88 57.00 7.40 11.88 98
6 50.60 8.00 36.52 55.60 8.00 32.61 60.60 7.80 27.07 65.60 7.80 21.32 100
7 58.40 7.20 27.61 63.40 7.20 24.53 68.40 7.20 20.60 73.40 7.20 16.23 100
8 66.60 10.80 47.11 71.60 10.80 41.96 76.60 11.00 35.16 81.60 10.80 27.66 100
9 75.60 9.20 25.21 80.60 9.20 22.52 85.40 9.00 18.70 90.40 9.20 14.85 100
10 84.60 3.80 7.11 89.40 3.80 6.31 94.40 3.80 5.28 99.40 3.80 4.11 55
11 88.40 4.20 12.18 93.20 4.00 10.81 98.20 4.20 8.97 103.20 4.20 7.11 90
12 93.20 11.20 40.59 98.00 11.40 36.10 103.00 11.20 30.04 108.00 11.20 23.47 97
13 105.80 8.20 48.80 110.80 8.20 43.66 115.80 8.40 36.53 120.60 8.40 28.57 100
14 111.80 4.80 13.93 116.80 4.80 12.31 121.80 4.80 10.35 126.80 4.60 8.09 95
15 116.00 9.20 24.05 121.00 9.20 21.46 126.00 9.20 18.02 131.00 9.40 14.31 98
16 126.40 10.00 14.94 131.40 9.80 13.30 136.20 9.80 11.09 141.20 9.80 8.62 93
17 137.40 5.80 36.72 142.40 5.80 32.72 147.40 5.80 27.43 152.40 5.80 21.59 100
18 140.80 4.40 16.37 145.80 4.60 14.38 150.80 4.60 12.02 155.60 4.40 9.37 96
19 145.20 3.80 10.62 150.20 3.80 9.27 155.00 3.60 7.72 160.00 3.80 6.10 83
20 149.80 8.40 32.94 154.80 8.40 29.30 159.80 8.60 24.63 164.80 8.60 19.40 94
21 158.00 4.80 4.92 163.00 4.80 4.40 167.80 4.80 3.64 172.80 4.60 2.91 29
22 163.40 5.40 10.10 168.40: 5.20 8.83 173.20 5.20 7.40 178.20 5.40 5.78 78
23 168.00 4.40 5.41 172.80 4.40 4.80 177.80 4,40 3.99 182.80 4.40 3.13 37
24 173.20 8.00 19.51 178.20 8.20 17.17 183.20 8.20 14.36 188.00 8.00 11.25 97
25 181.40 10.80 31.91 186.40 10.80 28.37 191.40 10.80 23.69 196.20 11.00 18.60 100
26 192.40 4.80 14.15 197.40 4.80 12.62 202.40 4.80 10.55 207.40 4.80 8.28 92
27 196.80 5.60 11.77 201.80 5.60 10.32 206.60 5.60 8.71 211.60 5.60 6.79 88
28 202.00 5.20 11.68 207.00 5.20 10.35 212.00 5.20 8.67 217.00 5.00 6.77 88
29 207.20 10.20 22.10 212.20 10.00 19.68 217.20 10.00 16.42 222.20 10.20 12.94 99
30 217.40 5.00 7.90 222.40 5.20 7.03 227.40 5.20 5.93 232.40 5.20 4.62 57
31 223.20 6.60 22.51 228.20 6.60 20.03 233.20 6.60 16.75 238.20 6.40 13.14 99
32 227.60 7.80 10.97 232.40 7.80 9.83 237.40 7.80 8.10 242.40 8.00 6.41 81
33 237.40 5.40 7.55 242.40 5.20 6.74 247.20 5.20 5.63 252.20 5.20 4.38 57
34 242.00 8.60 10.61 247.00 8.80 9.46 252.00 8.80 7.94 256.80 8.60 6.17 80
35 251.20 11.60 7.61 256.00 11.60 6.71 261.00 11.60 5.67 266.00 11.60 4.44 60
36 263.40 10.00 19.16 268.20 10.00 16.89 273.20 10.00 14.22 278.20 10.00 11.17 97
37 273.80 6.60 29.65 278.80 6.60 26.41 283.80 6.60 22.05 288.60 6.80 17.34 100
38 277.80 4.40 9.59 282.80 4.40 8.48 287.80 4.20 7.11 292.60 4.20 5.58 77
39 283.60 5.80 10.18 288.40 5.80 9.03 293.40 6.00 7.54 298.40 5.80 5.98 79
40 289.00 9.20 13.68 294.00 9.20 12.09 299.00 9.20 10.16 303.80 9.40 7.99 91
41 299.60 7.20 19.34 304.40 7.20 17.13 309.40 7.00 14.36 314.40 7.00 11.29 97
42 305.20 4.40 6.13 310.00 4.40 5.36 315.00 4.60 4.52 320.00 4.60 3.52 48
43 310.40 5.20 12.96 315.40 5.20 11.46 320.20 5.20 9.66 325.20 5.20 7.59 91
44 315.60 6.00 14.06 320.60 6.00 12.41 325.40 6.00 10.45 330.40 5.80 8.20 93
45 321.00 5.00 8.49 326.00 5.00 7.53 331.00 5.00 6.31 335.80 5.20 4.97 68

97

translating the temperature drops and spans recorded in the mould into the real depths and

spans on the billets. Regarding the actual span and depth of billet defects, a type of

"depression severity index" has to be defined: each defect with an index value lower than

the threshold will not be reported.

5.6 O n - l i n e b i l l e t q u a l i t y p r e d i c t i o n

The nature of the billet casting process has been guiding development of the CI

module and the ES. After two plant trials and discussion with plant personnel, it appears

to be more useful for the pseudo real-time ES to generate some type of report for each

cast billet with an associated quality index that can be used to reject "bad" billets. Such a

report would contain: 1. the number and kind of detected surface defects, such as

depressions, bleeds, laps, off-comer cracks, craze cracks, and off-squereness, with the

corresponding "severity" index; 2. metal level standard deviation; 3. negative strip time

on-line calculation; 4. mould displacement variation, 5. changes in inlet and outlet water

temperature. The overall quality index perhaps, could be obtained by applying an ANN:

each type of defect found, associated with the highest detected severity index, can be input

to an ANN structure. The connections weights could be strict, or could vary according to

the operating conditions, steel chemistry, and production objectives. A Genetic Algorithms

and/or Fuzzy Associative Memory module could be applied to define the optimum

connections Weight matrix. The derived quality index would summarize the overall quality

of a cast billet and provide on-line inspection: billets with a quality index below 50%

would be diverted for inspection.

98

Chapter 6

Conclusions

The following conclusions arise from this work:

1. A new paradigm known as Computational Intelligence is evolving in which

intelligent numerical manipulation will form the underpinning of successful AI

applications. CI has been shown to be essential for moving AI into a real-time control

environment. CI can be used to acquire data rapidly to allow control and/or monitoring of

a continuous casting process.

2. Plant trials have proven that the selected real-time multitasking operating

system, SCADA system development took the isolation transformers, and DAS-20 board

are an adequate environment and hardware support for the "Smart" Mould application.

3. The data acquisition software provides necessary sampling frequencies, and

correctly records sensor data.

4 . Negative strip time obtained from the 5 - p o i n t - d e r i v a t i v e method is proven to

be more sensitive and accurate than tN obtained from the mathematical equation.

5. The developed shape recognition functions extract the temperature drops in

thermocouple data successfully. The use of the e x t r e m e function which uses first

derivative information is more successful than the "window" technique at detecting

overlapping and small depressions.

99

6. The pseudo real-time expert system is able to trace.and predict surface defects

successfully.

100

Chapter 7

Recornmendations for future work

The recorjmienclations for future development of the "Smart" Mould can be

divided into two parts: hardware components and further software development.

1. Hardware recommendations:

a. The complete version of the "Smart" Mould system should include 20

thermocouples (5 per each mould face), Linear Variable Displacement Transducer,

Casting Speed and Metal Level signals; altogether 23 input channels. The current DAS-20

board supports just 16 analog inputs. Keithley MetraByte offers a 16-channel multiplexer

to expand the number of input channels monitored by the DAS-20. The EXP-20 provides

16 inputs that can be multiplexed into a single DAS-20 input channel. Test work will be

necessary to determine the influence of high numbers of input signals on system turn­

around time.

b. Additional isolation amplifiers for all thermocouple signals have to be purchased

and integrated into the SCADA system

2. Software recommendations:

a. The use of an EXP-20 board will require changes in the data acquisition

software. The das_digital_out DAS library function has to be employed to address

different input channels on the EXP-20.

101

b. The Fast Fourier Transform can be applied to analyze the operating conditions

of the mould oscillator. This function will be an integral part of the CI module. This

facility can be used to establish the need for maintenance of the oscillation system.

c. A knowledge base must be developed to map detected temperature drops in the

mould into actual defect depth (for bleeds, laps, and transverse depressions).

d. A knowledge base for billet off-squareness has to be created and incorporated

into "Smart" Mould. Use of off-comer THC signals can be used to establish the degree of

rhomboidity.

e. A knowledge base for off-comer cracks has to be incorporated into "Smart"

Mould. This rule set would also rely on THC signals used for depressions detection, but

processed in a different manner.

f Some parts of the existing off-line expert system to diagnose quality problems in

the continuous casting of steel billets (CRAC/X) [13] have to be translated into "Smart"

Mould. The rules describing defects caused by steel chemistry can be easily transferred

into the real-time ES.

g. Work has to be conducted to produce the report as the result of the "Smart"

Mould analysis of the steel chemistry and casting conditions.

h. Work has to be conducted to establish and create a quality index for each billet

produced from the "Smart" Mould.

102

References

[1] J . K Brimacombe: ''Empowerment with Knowledge-Toward The Intelligent Mould for

The Continuous Casting of Steel Billets", Iron and Steelmaker, 1993, Vol. 20 (II), pp.35-

47.

[2] J . K Brimacombe, I.V. Samarasekera: 'Future Trends in the Development of

Continuous Casting Moulds", In Mould Operation for Quality and Productivity, ISS-

AIME, Warrendale, P A , 1991, pp 153-160.

[3] F. Jovic: Process Control Systems: Principles of Design Operation and Interfacing,

Chapman & Hall, London, UK, 1992.

[4] K J . Astrdm and Bjdm Wittenmark: Computer-Controlled Systems, Theory and

Design, Prentice Hall Information and System Sciences Series, 1990.

[5] R V . Williams: Control and Analysis in Iron and Steelmaking, Butterworths

Monographs in Materials, Boston, USA, pp. 166-176.

[6] W.H. Ending and S. Dawson: "Mould Instrumentation for Breakout Detection and

Control", Proc. Steelmaking Conf, ISS, Warrendale, P A , 1991, Vol. 74, pp. 197-217.

[7] F. Haers and S.G. Thornton: "Application of mould thermal monitoring on the two

strand slab caster at Sidmar", Iron and Steelmaking 1994, Vol.21 No.5.

[8] K D . Schnelle and R.S.H. Man: 'Product Quality Management Using a Real-time

Expert System", ISU International, Vol. 34, 1994, No. 10, pp. 815-821.

[9] M.J. Hague: "Diagnostic aids for quality improvement and maintenance in continuous

caster", Iron and Steel Engineer, May 1988, pp. 36-42.

103

[10] J.A. Meech, S. Kumar: A Hypermanual on Expert Systems v.2.0, electronic book,

C A N M E T , 1993.

[11] M . M . Veiga: A Heiuistic System for Environmental Risk Assessment of Mercury

from Gold Mining Operations, Ph.D. Thesis, University of British Columbia, Deptof

Mining and Mineral Processing, 1994, pp. 64-67.

[12] D. Waterman: A Guide to Expert Systems, Addison-Wesley, Reading, M A U S A

1986.

[13] S. Kumar: A n Expert System to Diagnose Quality Problems in Continuous Casting of

Steel Billets, M.A.Sc. Thesis, University of British Columbia, Dept. of Metals and

Materials Eng., pp. 5-8.

[14] L . A Zadeh: Fuzzy Logic, IEEE Computer Mag:, Apr. 1988, pp. 83-93

[15] C. A Harris:Fuzzy Logic: A Potential Control Technique for Mineral Processes,

MSc. Thesis, Queen's University at Kingston, Department of Mining Engineering, 1986,

pp. 25-27

[16] J .M. Sibigtroth, D. Mazuelos: Basic Training: Fuzzy Logic for 8-bit MCUs,

Conference Proceedings, Fuzzy Logic, July 1993, San Francisco, C A , U S A Sesion #T11.

[17] J.A. Meech, L . A . Jordan: Development of a Self-Tuning Fuzzy Logic Controller,

Minerals Engineering, Vol . 6, No. 2, printed in Great Britain, 1993, pp. 119-131.

[18] M . H . Smith, H . Takagi: Optimization of Fuzzy Systems by Svvitching Reasoning

Methods Dynamically, presented at the International Conference on Fuzzy Systems,

Seoul Korea, June 993.

104

[19] P . K Simpson: Foundations of Neural Networks, Artificial Neural Networks:

Paradigms, Applications and Hardware Implementations, IEEE Press, Piscataway, NJ,

1992, pp. 3-20.

[20] G. Wells: An Introduction to Neural Networks, Application of Artificial Intelligence

in Process Control, edited by L. Boullart, A. Krijgsman and R.A. Vingerhoeds, Pergamon

Press, Oxford, UK, 1992, pp. 176-183.

[21] V. Rakocevic, J.A. Meech: Application of Artificial Neural Network to interpret

Froth Images from a Copper Flotation Process, in press.

[22] A N D Corporation: HNet Discovery, Version 1.4- User's Manual, 1994.

[23] J.R Koza: Genetic Programming, A Bradford Book, The MIT Press, Cambridge,

Massachusetts, USA, 1993.

[24] H.B. Verbruggen, A.J. Krijgsman, P.M. Bruijn: Towards Intelligent control:

Integration of AI in Control, Application of Artificial Intelligence in Process Control,

edited by L. Boullart, A. Krijgsman and R. A. Vingerhoeds, Pergamon Press, Oxford, UK,

1992, pp. 223-247.

[25] H B . Verbruggen, K.J. Astrdm: Artificial Intelligence and Feedback Control, JFAC

Workshop, Shenyang, People's Republic of China, September 1989, pp. 1-11.

[26] K.J. Astrdm: Autonomous Process Control Proceedings of The Second IEEE

Conference on Control Applications, Vancouver, British Columbia, Canada, September

1993, pp. 573-580.

105

[27] A . J. Krijgsman, K Jager, H.B Verbruggen and P .M. Bruijn: DICE: A Framework for

Intelligent Real-Time Control IFAC Workshop, California, USA, September 1991, pp.

13-19.

[28] R Jager: Direct Real-time Control using Knowledge-Based Techniques, Proceedings

of the European Simulation Symposium, Ghent, Belgium, 1990.

[29] W . M . Lattimer and co-workers: An expert system for real-time control IEEE

Software, March 1986, pp. 16-24,.

[30] N . K Wickramarachchi: Development of a Knowledge-Based Bfieararchical Control

Structure for Process Automation, Ph.D. Thesis, University of British Columbia, Dept. of

Mechanical Eng., March 1995.

[31] M.P. Lukas, R A Oye, M . A . Keyes, and A. Kaya: Evolution of Expert Systems for

Real-Time Process Management: A Case Study on Motor Control IFAC Workshop,

Shenyang, People Republic of China, September 1989, pp. 79-84.

[32] D.J. Musliner, J.A. Hendler, and A . K . Agrawala: The Challenges of Real-Time A l

Computer, January 1995.

[33] J.C. Bezdek: "What is Computational Intelligence?", Computational Intelligence -

Imitating Life, 1994 IEEE World Congress on Computational Intelligence (WCCI),

pp. 1-12.

[34] C S . Williams: Designing Digital Filters, Prentice-HalU, INC., Englewood Clliffs,

New Jersey, 1986., pp. 257-320.

[35] G. Kaiser: A Friendly Guide to Wavelets, Birkhauser Boston, Cambridge, M A ,

U S A , 1995.

106

[36] Yves Meyer: Wavelets Algorithms&Applications, The Society for Industrial and

Applied Mathematics, Philadelphia, USA, 1994.

[37] J.A. Meech: AI Applications in the Mining Industry into 21st Century, Proceedings

of A P C O M X X V , Brisbane, Australia, July 1995.

[38] S. Kumar, B.N. Walker, I.V. Samarasekera, J .K Brimacombe: Chaos at the

Meniscus - The Genesis of Defects in Continuously Cast Steel Billets, in press

[39] Brenda Flotation Supervisor, Brenda Mines, Kelowna, B C , Canada.

[40] Wabush Mines S A G MilL Wabush Mines, SW Labrador, Newfoundland, Canada.

[41] St. Lawrence Cement Kiln, Joliette, Que., Canada.

[42] Mount Isa Mines Copper Concentrator, Mount Isa Mines, Australia.

[43] H V C Froth Recognition, Highland Valley Copper, Logan Lake, B C , Canada

[44] Keithley Data Acquisition: DAS-20 User's Guide, April 1993

[45] QNX Software Systems Ltd.: QNX Data Acquisition Toolkit - Programmer's Guide,

1993.

[46] W.H. Press, S .A Teukolsky, W.T. Vetterling, B.P. Flannery: "Numerical Recipes in

FORTRAN - The Art of Scientific Computing", Cambridge University Press, Cambridge,

U S A 1992.

[47] Comdale Technologies Inc: ProcessVision Version 5.2, User's Manual and Reference

Guide, 1993.

[48] R Iserman: Digital Control Systems, Springer-Verlag Berlin Heidelberg, Germany,

1989.

107

[49] P.P. Vaidyanathan: Multirate Systems and Filter Banks, Prentice Hall, Englewood

Cliffs, New Jersey, USA, 1993.

108

APENDEX A

S a m p l e C o n f i g u r a t i o n f i l e

0
1
30
10
50
S
20

//Setup for channel 0
0
10
5
1
2
// Function name and
minmax
2
TC_above_ML.min.@f
TC_above_ML.max.@f
// Function name and
average
6
TC_above_ML.avl.@f
TC_above_ML.av2. @ f
TC_above_ML.av3. @ f
TC_above_ML.av4.@f
TC_above_ML.av5.@f
TC_above_ML.av6.@f

//Setup for channel 1
0
10
6
1
2
// Function name and
minmax
2
LVDT.min .@f
LVDT.max.@f
// Function name and
compare
4
3
10
negauve_strip_time.average.@f
negative_strip_time.actual.@f

//Setup for channel 2
0

//trigger channel
//trigger value (in Volts)
//scan interval (in seconds)
//delayjow (in milliseconds)
//sampling frequency (Hz)
//num_of_channels
//room temperature in degree C - for calibration

//range_low (in Volts) for channel 0
//range_high (in Volts) for channel 0
//channel type - 5 for new amplifier for T type T H C
//active state of channel (0 - non-active)
//number of functions applied to this channel

'-word-triplets

//number of passed kwt

'-word-triplets

//number of passed kwt

//range_low (in Volts) for channel 1
//rangejugh (in Volts) for channel 1
//channel type for L V D T signal
//active state of channel (0 - non-active)
//number of functions applied to this channel
key-word-triplets

//number of passed kwt

passed key-word-triplets

//number of passed kwt
//set up frequency
//set up stroke

//range_low (in Volts) for channel 2

109

APENDIX A
10 //rangejugh (in Volts) for channel 2
7 //channel type for casting speed
1 //active state of channel (0 - non-active)
1 //number of functions applied to this channel
// Function name and passed key-word-triplets
average
1 //number of passed kwt
casting, speed @f

//Setup for channel 3
0 //rangelow (in Volts) for channel 3
10 //range_high (in Volts) for channel 3
0 //channel type
0 //active state of channel (0 - non-active)
0 //number of functions applied to this channel

//Setup for channel 4
0 //range_low (in Volts) for channel 4
10 //rangehigh (in Volts) for channel 4
5 //channel type - 5 for new amplifier for T type THC
1 //active state of channel (0 - non-active)
3 //number of functions applied to this channel
// Function name and passed key-word-triplets
extreme
1 //number of files (only one allowed)
extr_ch4.dat
// Function name and passed key-word-triplets
valley
23 //number of function variables
S //Temperature drop to search for (degree C)
IS //size of depression to search for (span in sec)
TCll.t_span.@f
TCll.t_drop.@f
TCll.t_base.@f
TCll.m_time.@f
TC12.t_span.@f
TC12.t_drop.@f
TC12.t_base.@f
TC12.m_time.@f
TC13.t_span.@f
TC13.t_drop.@f
TC13.t_base.@f
TC13.m_time.@f
TC14.t_span.@f
TC14.t_drop.@f
TC14.t_base.@f
TC14.m_time.@f
TC15.t_span.@f
TC15.t_dxop.@f
TC15.t_base.@f
TC15.m_time.@f
number_of_yalley.in_TCl.@i
// Function name and passed key-word-triplets
storedata

110

AFENDIX A

1 //number of files (only one allowed)
channel4.dat

//Setup for channel 5
0 //rangeJow (in Volts) for channel 5
10 //rangejugh (in Volts) for channel 5
5 //channel type - 5 for new amplifier for T type T H C
1 //active state of channel (0 - non-active)
3 //number cf functions applied to this channel
// Function name and passed key-word-triplets
extreme
1 //number of files (only one allowed)
extr_ch5.dat
// Function name and passed key-word-triplets
valley
23 //number of function variables
5 // temperature drop to search for (degree C)
15 //size of depression to search for (span in sec)
TC21.t_span.@f
TC21.t_drop.@f
TC21.t_base.@f
TC21.m_time.@f
TC22.t_span.@f
TC22.t_drop.@f
TC22.t_base.@f
TC22.m_time.@f
TC23.t_span.@f
TC23.t_drop.@f
TC23.t_base.@f
TC23.m_time.@f
TC24.t_span.@f
TC24.t_drop.@f
TC24.t_base.@f
TC24.m_time.@f
TC25.t_span.@f
TC25.t_drop.@f
TC25.t_base.@f
TC25.m_time.@f
numberofvalley. in_TC2. @i
// Function name and passed key-word-triplets
storedata
1 //number of files (only one allowed)
channel5.dat

//Setup for channel 6
0 //rangeJow (in Volts) for channel 6
10 //rangejugh (in Volts) for channel 6
5 //channel type - 5 for new amplifier for T type T H C
1 //active state of channel (0 - non-active)
3 //number of functions applied to channel 6
// Function name and passed key-word-triplets
extreme
1 //number of files (only one allowed)
extr_ch6.dat

111

APENDIX A

// Function name and passed key-word-triplets
valley
23 //number of function variables
S //temperature drop to search for (degree C)
15 //size of depression to search for (span in sec)
TC31.t_span.@f
TC31.t_drop.@f
TC31.t_base.@f
TC31.m_time.@f
TC32.t_span.@f
TC32.t_drop.@f
TC32.t_base.@f
TC32.m_time.@f
TC33.t_span.@f
TC33.t_drop.@f
TC33.t_base.@f
TC33.m_time.@f
TC34.t_span.@f
TC34.t_drop.@f
TC34.t_base.@f
TC34.m_time.@f
TC35.t_span.@f
TC35.t_drop.@f
TC35.t_base.@f
TC35.m_time.@f
number_of_valley.in_TC3.@i
// Function name and passed key-word-triplets
storedata
1 //number affiles (only one allowed)
channel6.pra

//Setup for channel 7
0 //range_low (in Volts) for channel 7
10 //rangejugh (in Volts) for channel 7
5 //channel type - 5 for new amplifier for T type T H C
1 //active state of channel (0 - non-active)
3 //number of functions applied to this channel
// Function name and passed key-word-triplets
extreme
1 //number of files (only one allowed)
extr_ch7.dat
// Function name and passed key-word-triplets
valley
23 //number c f function variables
5 //temperature drop to search for (degree C)
15 //size of depression to search for (span in sec)
TC41.t_span.@f
TC41.t_drop.@f
TC41.t_base.@f
TC41.m_time.@f
TC42.t_span.@f
TC42.t_drop.@f
TC42.t_base.@f
TC42.m_time.@f

112

APENDIX A

TC43.t_span.@f
TC43.t_drop.@f
TC43.t_base.@f
TC43.m_time.@f
TC44.t_span.@f
TC44.t_drop.@f
TC44.t_base.@f
TC44.m_time.@f
TC45.t_span.@f
TC45.t_drop.@f
TC45.t_base.@f
TC45.ra_time.@f
numberofvalley. in_TC4. @i
// Function name and passed key-word-triplets
storedata
1 //number of files (only one allowed)
channel7.dat

113

APPENDIX B

UBC Data Acquisition Module

for

DAS-20 acquisition board

© University of British Columbia, 1995

114

• APPENDIX B

Introduction

The UBC Data Acquisition Module collects and processes sensor data from the DAS-20 board It

runs concurrently with other ProcessVision modules, and can be configured for collecting data

from up to all sixteen single-ended analog inputs at frequency of several hundreds Hz

(configurable).

Installing the ProcessVision - Data Acquisition Software

Before installing the ProcessVision - Data Acquisition software, make sure that your tick size

under QNX 4 is set to 0.5 ms The ticksize utility queries or changes the rate at which timer

interrupts (called ticks) are applied to the system. Setting the tick size will not affect the system

date; ticks are used for software timers only. For more information refer to the QNX - Utilities

Reference.

At the prompt type:

ticksize 0.5 <RETURN>

It is recommended that this is added to your sysinit file for setting the ticksize every time you

boot QNX.

To install the Data Acquisition software under QNX 4, insert the ProcessVision - Data

Acquisition driver distribution diskette in a floppy drive. Make sure the drive from which you are

installing the software is "mounted". For example, to mount the floppy drive /dev/fdO as /fdO you

would type the command;

mount /dev/fdO /fdO <RETURN>

Substitute as necessary for your drive number.

115

. A P P E N D I X B

After the drive is mounted you can copy the driver to your system. First, create a new directory

das as a subdirectory of /usr/lib/. At the prompt type:

cd/usr/lib<RETURN>

mkdir das <RETURN>

cd das <RETURN>

Copy from the ProcessVision - Data Acquisition distribution diskette files to your system by

issuing the following commands:

cp -R /<mounted_drive_name>/das/ /<hard_drive_name>/usr/lib/das

at the Q N X prompt then press the <RETURN> key.

Where:

<mounted_drive_name> is the name of your mounted floppy drive

<hard_drive_name> is the name of your mounted hard drive

Since the drive is usually 7fd0" or T f d l " and the hard drive name is usually 7" then the issued

command takes on one of these two forms:

cp -R ItdO/das/ /usr/lib/das

cp -R /fdl/das/ /usr/lib/das

Now, copy the driver files from the root on distribution diskette to your ProcessVision directory

typing the following commands:

cp -v /<mounted_drive_name>/* /<hard_drive_name>/ProcessVision

at the Q N X prompt then press the <RETURN> key.

Where, again:

<mounted_drive_name> is the name of your mounted floppy drive

<hard_drive_name> is the name of your mounted hard drive

The usual two forms are:

cp -v /fd07* /ProcessVision

cp -v /fdl/* /ProcessVision

116

A P P E N D I X B

Installing the Data Acquisition Module

Before running das_task, you need to install the Keithley Metrabyte DAS-20 plug-in board in

your host computer (see Keithley documentation).

UBC Data Acquisition Module Mode of Operation

The module you are shipped is called dastask. This program is an executable program which is

designed to run in the background in the Q N X operating system. Although it can be run in the

foreground, and you may wish to do so for debugging purpose, it is designed for long term use as

a background process. This means that the driver should be started with the ampersand (*&')

operator to specify background use.

Upon commencing execution, the das_task module wi l l read a configuration file called

config.met. This file is expected to contain information about the settings for analog input

channels (input range, sensor type, activity, number and types of applied functions) and is stored

under the /usr/ directory. The configuration file also contains information about data acquisition

frequency (how often data is collected expressed in Hz), scanning interval, trigger value, etc... If

the configuration file is incorrect, an error message wil l be displayed and the cast_task wil l not

work properly.

If the configuration file is read successfully, the cast_task module wi l l start to collect and process

data continuously.

The U B C Data Acquisition Module acquires sensor data from every active input channel over a

desired time, applies specified functions to the stored data and updates the ProcessVision point

database with the current filtered values of variables defined in the configuration file. It repeats

this process continuously.

117

APPENDIX B
Several ProcessVision Data Acquisition Modules can be run simultaneously. Each module can

collect data at a different frequency.

Data Acquisition Configuration File

The Data Acquisition configuration file contains information that is used by the module to

perform data reading and filtering continuously. Trigger channel, trigger value, time interval

over which filtering functions are applied, polling frequency for trigger event, data acquisition

frequency and room temperature are specified in a common section of a configuration file. The

following is the general format of a common section:

<setup_value> <tab> <tab> <//Comment>

An empty line separates the common section from channel 0 configuration. This part of

configuration file begins with the comment

// Setup for channel 0

The next lines define the minimum and maximum values for input range, expressed in volts,

channel type (required for calibration), active state of a channel and a number of applied

functions to the channel. The Mowing is the general format

<setup_value> <tab> <tab> <//Comment>

Where "setupvalue" is numerical value (integer or float).

If the number of applied functions is greater than 0, the next line is:

// Function name and passed key-word-triplets

The following lines define the name of an applied function, the total number of passed variables

(key-word-triplets) to the applied function, and a list of key-word-triplets. The following is the

general format

118

APPENDIX B

<function_naine>

<number_ctfj>assed_key_word_triplets> <tab> <tab> <//Comment>

<key_word_triplet>

<key_word_triplet>

If there is more than one applied function (but no more than five per channel - upper limit) the

next lines will define the next function in much the same manner. The keyword-triplet can not be

longer than 30 characters and there can not be more than 30 key-word-triplets per function.

An empty line separates the configuration section of each channel. An example configuration file

is given at the end of this document.

Creating and Applying filter functions

Source code and executable files of seven data processing functions are shipped along with the

Data Acquisition Module. The seven function are:

minmax - looks for minimum and maximum value over recorded data and passes two values to

the ProcessVision point database as two key-word-triplets defined by a developer,

average - calculates averages) over specified number of points in the recorded data table and

feeds ProcessVision with this/these averages) as key-word-triplet(s). Example: You record data

for a specific channel over 30 seconds (sampling interval is defined as 30) at an acquisition

frequency of 100 Hz (= 10 ms). You will end up with 3000 points (= 30 aX 100 Hz). If you apply

function average and pass 10 key-word-triplets, you will get 10 key-word-triplets in the point

data base and every one will represent average over 3 seconds (first key-word-triplet is average

over first 3 seconds, etc...)

storedata - stores collected data, expressed in volts, in a file. Filename is defined by a user.

119

A P P E N D I X B

compare - this is an example of how to combine data from two input channels. The example

presented is designed for calculating negative strip time in continuous casting of steel billets. For

this calculation we need inputs from an L V D T and Metal Level sensor,

valley - this function is an example of shape recognition and feature extraction. It looks for

"valley" shape in row data. It can recognize up to 5 valleys in any data table and passes 20 key­

word-triplets to ProcessVision. These triplets for every detected valley are: temperature drop,

temperature before drop happened, time when drop happened expressed in absolute seconds since

the beginning of the year, and valley span. User also defines the time domain over which

depression is observed (in 30 seconds collected data you can look for valleys that have spans less

than 5 seconds, 10 seconds or 20 seconds) and temperature drop that is recognized as significant

(in some cases 3 degree C maybe significant drop, but in another it is just measurement noise),

extreme - this function calculates the first derivative over smoothed sensor data and searches for

"maximum-nummum-maximu" patterns. It records span, drop, and position of each detected

"valley" shape in sensor data

calibration - this function converts input data expressed in volts to actual values. For every

applied sensor, you should provide a mapping function and assign the channel type within the

source code.

Based on these provided examples you should be able to write your own data processing function

and incorporate it in the Data Acquisition Module. The main loop within the Data Acquisition

Module (das_task.c source code) reads and records input data After recording, it calls the data

processing function p rocessing_of_data (the same source code). Inside the body of this function

are several "if" statements that compare names and call applied functions. Your new processing

function has to be done in much the same way as minmax, average,.... It has to include the same

header files and has to be compiled with the same options (make files are also provided).

120

A P P E N D I X B

Starting theUBC Data Acquisition Module

Assuming you are already inside Q N X Windows and the necessary ProcessVision database

modules are running, load up a new Shell. Type in:

cast_task & <RETURN>

The Data Acquisition Module wi l l be started

Stopping the Data Acquisition Module

You can stop the Data Acquisition Module by kil l ing its ID or its name.

Open a new shell in Q N X Windows and type sin command to display system information.

Remember ID number of dastask process. Issue the following command

kill <cast_task_ID> <RETURN>

The following is a much simpler way:

slay das_task <RETURN>

Developing new filter function

The Data Acquisition Module is open for building and adding new filtering functions. If a user needs a

specific function for preprocessing sensor data, the new routine can be added very easily.

First, a developer has to edit "das_task.c" source code, typing at the prompt:

vedh /ProcessVision/das_task.c <RETURN>

When the source code is open, go to line 429. This is the beginning of the processing_of_data function.

A d d in the following lines:

i f ((s - strncmp (channel(i]. function[j].function_type,

"userJunction", strlen ("userJunction"))) = 0)
{

list - channel[i].function[j].parameters;

121

A P P E N D I X B

user Junc t ion (AI_table[i], &channel[i], i ,
channel[i].funrtionlj].num_of_kwt, list);

continue;
}

Where:

channel[i].function_].functionJype is a string that contains name of "j-th" applied function, on

the "i-th" input channel. This function name was read from configuration file and stored in the structure

channel[i].

userJunction is the name of added user function.

list is a pointer variable to the structure par that contains the list of function variables (including

passed key-word-triplets).

AI_table[i] is a pointer to the table that contains data for "i-th" input channel,

i is the channel number. It is an integer type variable.

channel[i].function[j].num_of_kwt is an integer variable that contains the number of passed

variables from configuration file to a function.

After adding these new lines of code, save the das_task.c file.

Now, you have to define the prototype of user Junction. Open the file fun_type.li typing at the prompt:

vedit /ProcessVision/funJype.h <RETURN>

Go to the end of the file and type in:

extern void user Junc t ion (short huge*, struct channel *, int, int, struct par *);

Save the fun type.h file and close i t

You are ready to write your own data processing function. At the prompt type:

vedh userJunctions <RETTJRN>

Include the following header files in your user Junctionx file editing the following lines:

i n c l u d e "fun_type.h"
i n c l u d e "globals.h"
i n c l u d e "chjtructure .h"
i n c l u d e "s t ructh"
i n c l u d e "proto.h"
^include "cc j ib .h"
i n c l u d e <errno.h>
#include <stdio.h>

122

http://fun_type.li

' A P P E N D I X B

Start to write the body of your function. Type in:

void userJunction (short huge *AI_tab_ptr, struct channel *chan, int chan_num, int numofkwt,
struct par * kwt)
{

body of your program

}

Where:

user Junction is the name of added user function.

AI_tab_ptr is a pointer to the table that contains data for the input channel,

chan is a pointer to the structure channel. Structure channel contains all relevant information

for specific input channel.

chan_num is the channel number which data user wi l l process.

n u m o f k w t is an integer variable that contains a number of passed variables from

configuration file to a function.

kwt is a pointer variable to the structure par that contains the list of function variables (including

passed key-word-triplets).

Data stored in a table (you refer to this data by using pointer AI_tab_ptr) is presented in format from 0 -

4096, where 0 is lower limit and 4096 is upper limit. To convert data to voltage representation, you have

to use within your program the following lines:

i f ((chan->range_low < 0) & & (value > 2047))
value = (float) value - 4096;

if ((chan->range_low < 0)
volt = (float) ((float) (value / 4096) * 2 * (chan->range_high /1000000)) ;

else
volt = (float) ((float) (value / 4096) * (chan->range_high / 1000000));

Where:

value is a short type variable, obtained by AI_tab_ptr pointer (value = *Al_tab_ptr;)

2047 is the upper limit when the measured input variable is in the range of -1 +1 V , -5 +5 V and

-10 +10 V (2047 presents I V , 5V, 10V respectively). Negative voltage is expressed from 2047 up to 4096.

123

, A P P E N D I X B

volt is float type variable that presents input variable in volts.

To obtain an actual value, a developer has to call calibration function within his/her program, before

passing this value to point database. Here is the prototype of the calibration function:

float calibration (float, struct channel *)

To call this function type in:

real_value = calibration (volt, chan);

Where:

real_value is return float type variable from calibration function

volt is passed variable from your program expressed in volts.

chan is pointer to structure channel.

When you are finished with coding your processing function, open file caiibration.c. Go to line 92 and

type in:

case 9:
/"Comment*/

real_value = someJunction (volt);
break;

Where:

case 9 is a new case within the body of calibration function . 9 wi l l be your new channel type

defined in your configuration file

real_value is a returned variable that presents actual value.

some Junction (volt) is the calibration equation to convert voltage into an actual value, volt is

the passing variable from the calling program. For example:

real_value =» 75 * volt - 75;

Save and exit file calibrations.

You have to recompile the Data Acquisition Module for all these changes to take effect. Open file _das

issuing the following command:

vedit _das <RETURN>

At the end of third line (- o option during compilation) type in:

124

APPENDIX B

calibration.c user function.c

Save and exit _das file.

Now, at the prompt type in:

concas <RETURN>

You have started compilation of your new function.

125

APPENDIX C

EXPERT SYSTEM

Object
@name = casting
©attribute = speed. @float
endObject

Object
@name = counter
©attribute = number, ©integer
endObject

Object
@name = depression
©attribute = warning, ©float
endObject

Object
©name = driver
©attribute = flag, ©float
endObject

Object
©name = numberofvalley
©attribute = in_TC 1. ©float
endObject

Object
©name = rep 1
©attribute = a_span.@fioat, mtime. ©float, t_drop.@float
endObject

Object
©name = rep2
©attribute = a_span. ©float, m_time. ©float, tdrop. ©float
endObject

Object
©name = rep3
©attribute = aspan. ©float, m_time. ©float, t_drop. ©float
endObject

Object
©name = rep4
©attribute = a_span. ©float, m_time. ©float, tdrop. ©float
endObject

Object
©name = rep5
©attribute = a_span. ©float, mtime. ©float, t_drop. ©float
endObject

126

APPENDIX C

Object
@name = rep6
©attribute = a_span. ©float, m_time.@float, t_drop.@float
endObject

Object
@name = REPORT
©attribute = additionvalue. ©integer, extension, ©string, number, ©integer,

rulename. ©string
endObject

Object
©name = scanwindow
©attribute = maxtime. ©float, mintime. ©float
endObject

Object
©name = show
©attribute = belief!, ©string, belief2. ©string, belieG.©string,

belief*, ©string, beliefs, ©string, beliefs, ©string
endObject

Object
©name = start
©attribute = check, ©float
endObject

Object
©name = start_looking_for
©attribute = depression, ©float
endObject

Object
©name = TC
©attribute = ignorerulename. ©string, nextnumber. ©integer
endObject

Object
©name = TCO
©attribute = raleexarnined. variable, temperaturedrop. significant
endObject

Object
©name = TCI
©attribute = extension, ©string, location, ©float, rule_examined.variable,

startnumber. ©integer, temperaturedrop. significant, valley_number.@integer
endObject

Object
©name = TCI 1
©attribute = m_time. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

127

APPENDIX C

Object
@name = TC12
©attribute = mtime. @float, t_base.@float, t_drop. ©float,

tspan. ©float
endObject

Object
@name = TC13
©attribute = m_time.@fioat, t_base.@float, tjirop. ©float,

tspan. ©float
endObject

Object
@name = TC14
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC15
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC2
©attribute = extension, ©string, location, ©float, rule_examined.variable,

temperature_drop. significant, valley.zero, valley_number. ©integer
endObject

Object
@name = TC21
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC22
©attribute = m_time. ©float, t_base.@float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = TC23
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC24
©attribute = m_time. ©float, t_base. ©float, tjirop. ©float,

tspan. ©float
endObject

128

APPENDIX C

Object
@name = TC25
©attribute = m_time. ©float, t_base. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = TC2a
©attribute = rule_examined. variable, temperature_drop. significant
endObject

Object
©name = TC3
©attribute = extension, ©string, location, ©float, ruleexamined. variable,

temperaturedrop. significant, valley.zero, valleynumber. ©integer
endObject

Object
©name = TC31
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC32
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC33
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC34
©attribute = m_time. ©float, t_base. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = TC35
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
@name = TC3a
©attribute = ruleexamined. variable, temperaturedrop. significant
endObject

129

APPENDIX C

Object
@name = TC4
©attribute = extension, ©string, location, ©float, rule_examined. variable,

temperature_drop. significant, valley, zero, valleynumber. ©integer
endObject

Object
©name = TC41
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = TC42
©attribute = mtime. ©float, tbase. ©float, tjirop. ©float,

tspan. ©float
endObject

Object
©name = TC43
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC44
©attribute = mtime. ©float, tbase. ©float, tjirop. ©float,

tspan. ©float
endObject

Object
©name = TC45
©attribute = mjime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = TC4a
©attribute = ruleexamined. variable, temperature drop, significant
endObject

Object
©name = TCVL
©attribute = extension, ©string
endObject

Object
©name = timerange
©attribute = avg_val.©float, max_val.©float, min_val.@float
endObject

130

APPENDIX C

Object
@name = valley
©attribute = avg_value. ©float, default_span. ©float, extension, ©string,

status.incomplete
endObject

Object
©name = valleyspan
©attribute = avg_value. ©float
endObject

Object
©name = VL
©attribute = number, ©integer
endObject

Object
©name = VLO
©attribute = dummy, ©string, size, significant, status_number. ©integer
endObject

Object
©name = VL01
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL02
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL03
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = VL04
©attribute = mtime. ©float, t_base. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL 1
©attribute = dummy, ©string, size, significant, status_number. ©integer
endObject

131

APPENDIX C

Object
@name = VL11
©attribute = m_time. ©float, t_base. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
@name = VL12
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL13
©attribute = mtime. ©float, t_base.@float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL14
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL2
©attribute = dummy, ©string, size, significant, statusnumber. ©integer
endObject

Object
©name = VL21
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

t_span.@float
endObject

Object
©name = VL22
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL23
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = VL24
©attribute = m_time. ©float, tbase. ©float, t_drop. ©float,

t_span. ©float
endObject

132

APPENDIX C

Object
@name = VL3
©attribute = dummy, ©string, size, significant, status_number. ©integer
endObject

Object
©name = VL31
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL32
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL33
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = VL34
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL4
©attribute = dummy, ©string, size, significant, statusnumber. ©integer
endObject

Object
©name = VL41
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL42
©attribute = m_time. ©float, t_base. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL43
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

133

APPENDIX C

Object
@name = VL44
©attribute = mtime. ©float, t_base. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL5
©attribute = dummy, ©string, size, significant, statusnumber. ©integer
endObject

Object
©name = VL51
©attribute = m_time.@float, tbase. ©float, tdrop. ©float,

tspan. ©float
endObject

Object
©name = VL52
©attribute = mtime. ©float, tbase. ©float, tdrop. ©float,

t_span. ©float
endObject

Object
©name = VL53
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = VL54
©attribute = mtime. ©float, tbase. ©float, t_drop. ©float,

tspan. ©float
endObject

Object
©name = wind
©attribute = size.true, size.©float
endObject

Inference
©name = BELIEF_1
©and = $min
©or = $max
©mathexpr = $min
©conclusion = (CERTAINTY (TCl.temperature_drop.significant) * 0.600000)
endlnference

134

APPENDIX C

Inference
@name = BELIEF_2
@and = $min
@or = $max
@mathexpr = $min
©conclusion = (CERTAINTY (TCl.temperature_ckc)p.significant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000) * 0.800000 / 0.750000
endlnference

Inference
©name = BELIEF_3
©and = $min
©or = $max
©mathexpr = $min
©conclusion = (CERTAINTY (TCl.temperature_drop.significant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000 + CERTAINTY (TC3.temperature_drop.significant) *
0.150000) * 0.950000 / 0.900000
endlnference

Inference
©name = BELIEF_4
©and = $min
©or = $max
©mathexpr = $min
©conclusion = (CERTAINTY (TC0.temperature_drop. significant) * 0.600000 + CERTAINTY (
TC2.temperaMre_drop.significant) * 0.150000 + CERTAINTY (TC3.temperature_drop.significant) *
0.150000 + CERTAINTY (TC4.temperature_drop.significant) * 0.100000)
endlnference

Inference
©name = BELIEF_4a
©and = $min
@or = $max
©mathexpr = $min
©conclusion = (CERTAINTY (TCl.temperature_drop.significant) * 0.600000 + CERTAINTY (
TC2.temperamre_clrop.significant) * 0.150000 + CERTAINTY (TC3.temperature_drop.significant) *
0.150000 + CERTAINTY (TC4.temperature_drop.significant) * 0.100000)
endlnference

Fuzzy
©name = TEMPDROPSIGNTFICANT
©source = (\VL\<valley.extension.@string>.t_drop.@float) / (
\VL\<valley.extemion.@string>t_base.@float)
©range =10
©value = 0.000000, 0.010000, 0.020000, 0.030000, 0.040000, 0.050000, 0.060000, 0.080000, 0.100000,
0.150000
©rank = 0.000000, 1.000000, 5.000000, 25.000000, 50.000000, 60.000000, 75.000000, 90.000000,
95.000000, 100.000000
endFuzzy

Rule
©name = a
IF TRUE
THEN ASKCC (driver.flag. ©float)

135

APPENDIX C

THEN ASKCC (start_lookmg_for.depression.@float)
THEN FREERULE (SRule, "al")
THEN GOTO ("al")
endRule

Rule
@name = al
IF driver.flag. ©float > 0
AND start_looking_for.depression.@float >0
THEN FORGET ("*.*.*")
THEN driver.flag. ©float =1
THEN TCI.location.©float =220
THEN TC2. location, ©float =335
THENTC3.1ocation.@float =435
THEN TC4!ocation. ©float =535
THEN ASKCC (casting, speed, ©float)
THEN ASKCC (TC11. mtime. ©float)
THEN ASKCC (TCIl.t_base.@float)
THEN ASKCC (TCI l.t_drop.©float)
THEN ASKCC (TCll.t_span.@float)
THEN ASKCC (TC12.m_time.@float)
THEN ASKCC (TC12.t_base.@float)
THEN ASKCC (TC12.t_drop.@float)
THEN ASKCC (TC12.t_span.@float)
THEN ASKCC (TC13.m_time.@float)
THEN ASKCC (TC13.t_base.@float)
THEN ASKCC (TC13.t_drop.@float)
THEN ASKCC (TC13.t_span.@float)
THEN ASKCC (TC14.m_time.@float)
THEN ASKCC (TC14.t_base.@float)
THEN ASKCC (TC14.t_drop.@float)
THEN ASKCC (TC14.t_span.@float)
THEN ASKCC (TC15.m_time.@float)
THEN ASKCC (TC15.t_base.@float)
THEN ASKCC (TC15.t_drop.@float)
THEN ASKCC (TC15.t_span.@float)
THEN ASKCC (TC21 m_time. ©float)
THEN ASKCC (TC21.t_base.@float)
THEN ASKCC (TC21.t_drop. ©float)
THEN ASKCC (TC21.t_span.@float)
THEN ASKCC (TC22.m_time.@float)
THEN ASKCC (TC22.t_base. ©float)
THEN ASKCC (TC22.t_drop.@float)
THEN ASKCC (TC22.t_span.@float)
THEN ASKCC (TC23.m_time.©float)
THEN ASKCC (TC23.t_base.@float)
THEN ASKCC (TC23.t_drop.@float)
THEN ASKCC (TC23.t_span. ©float)
THEN ASKCC (TC24.m_time. ©float)
THEN ASKCC (TC24.t_base.@float)
THEN ASKCC (TC24.t_drop.@float)
THEN ASKCC (TC24.t_span.@float)
THEN ASKCC (TC25.m_time.@float)
THEN ASKCC (TC25.t_base.@float)

136

APPENDIX C

THEN ASKCC (TC25.t_drop.@float)
THEN ASKCC (TC25.t_span. ©float)
THEN ASKCC (TC31.m_time.©float)
THEN ASKCC (TC31.t_base. ©float)
THEN ASKCC (TC31.t_drop. ©float)
THEN ASKCC (TC31.t_span.@float)
THEN ASKCC (TC32.m_time.@float)
THEN ASKCC (TC32.t_base. ©float)
THEN ASKCC (TC32.t_drop. ©float)
THEN ASKCC (TC32.t_span.@float)
THEN ASKCC (TC33.m_time. ©float)
THEN ASKCC (TC33.t_base.@float)
THEN ASKCC (TC33.t_drop.@float)
THEN ASKCC (TC33.t_span.@float)
THEN ASKCC (TC34.m_time.@float)
THEN ASKCC (TC34.t_base.@float)
THEN ASKCC (TC34.t_drop.@float)
THEN ASKCC (TC34.t_span. ©float)
THEN ASKCC (TC35.m_time.@float)
THEN ASKCC (TC35.t_base.@float)
THEN ASKCC (TC35.t_drop.@float)
THEN ASKCC (TC35.t_span.@float)
THEN ASKCC (TC41.m_time.@float)
THEN ASKCC (TC41.t_base.@float)
THEN ASKCC (TC41.t_drop.@float)
THEN ASKCC (TC41.t_span.@float)
THEN ASKCC (TC42.m_time.@float)
THEN ASKCC (TC42.t_base.@float)
THEN ASKCC (TC42.t_drop.@float)
THEN ASKCC (TC42.t_span. ©float)
THEN ASKCC (TC43.m_time.@float)
THEN ASKCC (TC43.t_base.@float)
THEN ASKCC (TC43.t_drop.@float)
THEN ASKCC (TC43.t_span.@float)
THEN ASKCC (TC44.m_time. ©float)
THEN ASKCC (TC44.t_base.@float)
THEN ASKCC (TC44.t_drop.@float)
THEN ASKCC (TC44.t_span.@float)
THEN ASKCC (TC45.m_time.©float)
THEN ASKCC (TC45.t_base.@float)
THEN ASKCC (TC45 .t_drop.@float)
THEN ASKCC (TC45.t_span.@float)
THEN ASKCC (number_of_valley.in_TCl.©float)
THEN FREERULE (SRule, "a2")
THEN FREERULE ($Rule, "a3")
THEN FREERULE (SRule, "no_valley")
THEN FREERULE (SRule, "reportO")
THEN report, number, ©integer = 0
THEN valley, status, incomplete is TRUE CF=0.00
THEN counter: number, ©integer = 1
THENTCl.start_number.@integer= 1
THEN IMPORT ("file.xxx", 0, 100)
THEN FREERULE (SRule, "no_valley")
THEN MACRO ("no_valley")

137

APPENDIX C

THEN FREERULE ($Rule, "ala")
THEN GOTO ("ala")
ELSE WATT ($Rule, 5)
ELSE FREERULE ($Rule, "a")
ELSE GOTO ("a")
endRule

Rule
@name = ala
IF valley, status, incomplete is TRUE
THEN FREERULE (SRule, "a2")
THEN GOTO ("a2")
ELSE FREERULE ($Rule, "a3")
ELSE GOTO ("a3")
endRule

Rule
@name = a2
IF valley.status.incomplete is TRUE
AND counter.number.©integer <= number_of_valley.in_TCl.@float
THEN FORGET ("VL*.dummy.@s")
THEN FREERULE (SRule, "Valley_*")
THEN FIND ("VLO.dummy.@s")
THEN FIND ("VLl.dummy.@s")
THEN FIND ("VL2.dummy.@s")
THEN FIND ("VL3.dummy.@s")
THEN FIND ("VIAdummy.@s")
THEN FIND ("VL5.dummy.@s")
THEN report.rule_name.@string is STRCONCAT ("report", FORMAT (report.number.©integer, "%ld"
•))
THEN FREERULE (SRule, report. rule_name. ©string)
THEN MACRO (report. rule_name. ©string)
THEN IGNORE (SRule, "a3")
THEN driver.flag. ©float =0
THEN start_looking_for.depression.@float = 0
THEN start.check.@float =70
THEN FREERULE (SRule, "al")
THEN GOTO ("al")
ELSE driver.flag. ©float =0
ELSE start_looking_for.depression.@float =0
ELSE start.check.@float =60
ELSE FREERULE (SRule, "a")
ELSE GOTO ("a")
endRule

Rule
©name = a3
IF valley.status.incomplete is FALSE
AND counter.number.@integer <=number_of_valley.in_TCl.©float
THEN FORGET (" VL*.dummy.@s")
THEN FREERULE (SRule," Valley_*")
THEN FIND ("VLl.dummy.@s")
THEN FIND ("VL2.dummy.@s")
THEN FIND ("VL3.dummy.@s")

138

APPENDIX C

THEN FIND (" VTA dummy. @s")
THEN FIND ("VL5.dummy. @s")
THEN report.nile_name.@string is STRCONCAT ("report", FORMAT (report.number.©integer, "%ld"
))
THEN FREERULE (SRule, report. rule_name. ©string)
THEN MACRO (report.rule_name.@string)
THEN driver.flag. ©float =0
THEN start_looking_for.depression.@float = 0
THEN start.check.@float =70
THEN FREERULE (SRule, "al")
THEN GOTO ("al")
ELSE driver.flag. ©float =0
ELSE start_looking_for.depression.@float =0
ELSE start, check, ©float =60
ELSE FREERULE (SRule, "a")
ELSE GOTO ("a")
endRule

Rule
©name = belief_calc_l
©inference = BELEEF1
IF \VL\<VL.number.@integer>.status_number.@integer = 1
THEN vaUey.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "1")
THEN VLOl.tdrop. ©float = \VL\<valley. extension. @string>.t_drop. ©float
THEN VL01.t_span.@float = \VL\<valley.extension.@string>.t_span.@float
THEN VLOl.tbase. ©float = \VL\<valley.extension.@string>.t_base.@float
THEN VLOl.mtime. ©float =\VL\<valley.extension.@string>.m_time.@float
THEN valley.status.incomplete is TRUE
THEN counter, number, ©integer = 0
THEN ASNCERTAINTY (valley.status.incomplete, 100)
THEN ASNCERTAINTY (counter! number, ©integer, 100)
THEN ASNCERTAINTY (VL01.t_drop. ©float , 100)
THEN ASNCERTAINTY (VL01.t_span.@float , 100)
THEN ASNCERTAINTY (VL01.t_base.@float , 100)
THEN ASNCERTAINTY (VLOl.mJime.©float , 100)
THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN EXPORT ("file.xxx+", "counter.number.@i", 0, 100)
THEN EXPORT ("file.xxx+", "VL01.0.@f file.xxx", 0, 100)
THEN EXPORT ("file.xxx+", "VL01. l.@f file.xxx", 0, 100)
THEN EXPORT ("file.xxx+", "VL01.2.@f file.xxx", 0, 100)
THEN EXPORT ("file.xxx+", "VL01.3.@f file.xxx", 0, 100)
THEN EXPORT ("file.xxx+", "VL01 A @ f file.xxx", 0, 100)
THEN EXPORT ("file.xxx+", "VL01.5.@f file.xxx", 0, 100)
THEN IGNORE (SRule, "belief.*")
THEN report.addition_value.@integer = 0
THEN ASNCERTAINTY (report.addition_value.@integer, 100)
ELSE report.addition_value.@integer =1
ELSE ASNCERTAINTY (report.addition_value.@integer, 100)
endRule

Rule
©name = belief_calc_2
©inference = BELIEF_2
IF \VL\<VL. number. @integer>.status_number. ©integer = 2

139

APPENDIX C

THEN \VTv\<VL.number.@integer>.size.significant is TRUE
THEN valley.status.incomplete is TRUE CF=0.00
THEN ASNCERTAINTY (valley.status.incomplete, 0)
THEN EXPORT ("file.xxx", "vaUey.status.incomplete", 0, 100)
THEN IGNORE (SRule, "belief.*")
endRule

Rule
@name = belief_calc_3
©inference = BELD3F3
IF \VL\<VL. number. @integer>.status_number. ©integer = 3
THEN \VL\<VL. number. @integer>. size, significant is TRUE
THEN valley, status, incomplete is TRUE CF=0.00
THEN ASNCERTAINTY (valley.status.incomplete, 0)
THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN IGNORE (SRule, "belief,*")
endRule

Rule
©name = belief_calc_4
©inference = B E L I E F 4
IF VL.number.@integer = 0
AND \VL\<VL.number.@integer>.status_number.@integer = 4
THEN \\^\<VL.number.@integer>.size.sigriificant is TRUE
THEN valley.status.incomplete is TRUE CF=0.00
THEN ASNCERTAINTY (valley.status.incomplete, 0)
THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN IGNORE (SRule, "belief.*")
endRule

Rule
©name = belief_calc_4a
©inference = BELIEF_4a
DF VL.number.@integer > 0
AND \VL\<VL.number.@integer>.status_number.@integer = 4
THEN \\a.\<\a..number.@integer>.size.significant is TRUE
THEN valley.status.incomplete is TRUE CF=0.00
THEN ASNCERTAINTY (valley.status.incomplete, 0)
THEN EXPORT ("file.xxx", "vaUey.status.incomplete", 0, 100)
endRule '

Rule
©name = check_time_range
IF KNOWN (\TC\<TC.next_number.@integer>.valley_number. ©integer)
THEN \TC\<TC.next_number.@integer>.extension.@string is FORMAT (
\TC\<TC.next_number.@integer>.valley_number.@integer, "%ld")
THEN \VL\< VL.number.@integer>.status_number.@integer = TC.next_number.@integer -1
THEN TC.ignore_rule_name.@string is STRCONCAT ("XX", FORMAT (TC.next_number.@integer,
"%ld"))
THEN IGNORE (SRule, TC.ignore_rule_name.@string)
ELSE TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.©integer,
"%ld"))
ELSE IGNORE (SRule, TC.ignore_rule_name.@string)
endRule

140

APPENDIX C

Rule
@name = novalley
IF number_of_valley.in_TCl.@float = 0
AND valley.status.incomplete is FALSE
THEN driver.flag.@float =0
THEN FREERULE ($Rule, "a")
endRule

Rule
@name = prereport
IF \VL\<VL.number.@integer>.starus_number.@integer > 1
THEN report.extension.@string is STRCONCAT (FORMAT (VL.number.©integer, "%ld"), "1")
THEN \rep\<report. number. @integer>.m_time. ©float =
\VL\<report.extension. @string>. m_time. @float
THEN\rep\<report.number.@integer>.t_drop.@float = CERTAINTY (
\VL\<VL.number.@integer>.size.significant)
THEN \rep\<report.number.@integer>.a_span.@float = valley_span.avg_value.@float
endRule

Rule
@name = reportO
IF report, number, ©integer = 0
THEN IGNORE ($Rule, "report*")
THEN driver.flag. ©float =0
THEN FREERULE ($Rule, "al")
THEN GOTO ("al")
endRule

Rule
©name = report 1
IF report.number.@integer = 1
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 1", "alarm")
THEN TEXT ("TIME is !$FORMAT(repl.m_time.@C%6.21f')$!", "alarm")
THEN TEXT ("BELIEF is !$FORMAT(repl.t_drop.@f,l,%4.01f,)$!", "alarm")
THEN TEXT ("SPAN is !$FORMAT(repl.a_span.@f,"%6.21f ')$!", "alarm")
THEN IGNORE (SRule, "report*")
THEN depression, warning, ©float = 1
THEN start.check.@float =70
THEN show.beliefl.©string = FORMAT (repl.t_drop.@float , "%ld")
THEN FIND ("wind.size.true")
endRule

Rule
©name = report2
IF report, number, ©integer = 2
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 2", "alarm")
THEN TEXT ("First TIME is !$FORMAT(repl.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("First BELIEF is !$FORMAT(repl.t_drop.@f,"%4.01f,)$!", "alarm")
THEN TEXT ("First SPAN is !$FORMAT(repl.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second TIME is !$FORMAT(rep2.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Second SPAN is !$FORMAT(rep2.a_span.@f,"%6.21f')$!", "alarm")
THEN IGNORE ($Rule, "report*")

141

http://wind.size.true

APPENDIX C

THEN depression. warrung.@float = 1
THEN start.check.@float =70
THEN show.beliefl.@string = FORMAT (repl.t_drop.@float , "%ld")
THEN show.behef2.@string = FORMAT (rep2.t_drop.@float , "%ld")
THEN FIND ("wind.size.true")
endRule

Rule
@name = report3
IF report, number, ©integer = 3
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 3", "alarm")
THEN TEXT ("First TIME is !$FORMAT(repl.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("First BELIEF is !$FORMAT(repl.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("First SPAN is !$FORMAT(repl.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second TIME is !$FORMAT(rep2.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f)$!", "alarm")
THEN TEXT ("Second SPAN is !$FORMAT(rep2.a_span.@f,"%6.21f ')$!", "alarm")
THEN TEXT ("Third TIME is !$FORMAT(rep3.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third BELIEF is !$FORMAT(rep3.t_drop.@f,"%4.01f,)$!", "alarm")
THEN TEXT ("Third SPAN is !$FORMAT(rep3.a_span.@f,"%6.21f')$!", "alarm")
THEN IGNORE (SRule, "report*")
THEN depression.warning. @float = 1
THEN start.check.@float =70
THEN show.behefl.©string = FORMAT (repl.t_drop.©float , "%ld")
THEN show.belief2.@string = FORMAT (rep2.t_drop.@float , "%ld")
THEN show.belief3.@string = FORMAT (rep3.t_drop.©float , "%ld")
THEN FIND ("wind.size.true")
endRule

Rule
@name = report4
IF report.number.@integer = 4
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 4", "alarm")
THEN TEXT ("First TIME is !$FORMAT(repl.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("First BELIEF is !$FORMAT(repl.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("First SPAN is !$FORMAT(repl.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second TIME is !$FORMAT(rep2.m_time.@f,"%6.21f,)$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Second SPAN is !$FORMAT(rep2.a_span.@f,"%6.21f ')$!", "alarm")
THEN TEXT ("Third TIME is !$FORMAT(rep3.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third BELIEF is !$FORMAT(rep3.t_drop.@f,"%4.01f)$!", "alarm")
THEN TEXT ("Third SPAN is !$FORMAT(rep3.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fourth TIME is !$FORMAT(rep4.m_time.@f,"%6.21f,)$!", "alarm")
THEN TEXT ("Fourth BELIEF is !$FORMAT(rep4.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Fourth SPAN is !$FORMAT(rep4.a_span.@f,"%6.21f')$!", "alarm")
THEN IGNORE (SRule, "report*")
THEN depression.warning. @float = 1
THEN start, check.@float =70
THEN show.beliefl.@string = FORMAT (repl.t_drop.@float , "%ld")
THEN show.belief2.@string = FORMAT (rep2.t_drop.@float , "%ld")
THEN show.belief3.@string = FORMAT (rep3.t_drop.@float , "%ld")
THEN show.belief4.@string = FORMAT (rep4.t_drop.©float , "%ld")
THEN FIND ("wind.size.true")
endRule

142

http://wind.size.true
http://wind.size.true
http://wind.size.true

APPENDIX C

Rule
@name = reporti
IF rerjort. number, ©integer = 5
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 5", "alarm")
THEN TEXT ("First TIME is !$FORMAT(repl.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("First BELIEF is !$FORMAT(repl.t_drop.@f?"%4.01f')$!", "alarm")
THEN TEXT ("First SPAN is !$FORMAT(repl.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("SecondTIME is !$FORMAT(rep2.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Second SPAN is !$FORMAT(rep2.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third TIME is !$FORMAT(rep3.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third BELIEF is !$FORMAT(rep3.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Third SPAN is !$FORMAT(rep3.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fourth TIME is !$FORMAT(rep4.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fourth BELIEF is !$FORMAT(rep4.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Fourth SPAN is !$FORMAT(rep4.a_span.@f,"%6.21f,)$!", "alarm")
THEN TEXT ("Fifth TIME is !$FORMAT(rep5.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fifth BELIEF is !$FORMAT(rep5.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Fifth SPAN is !$FORMAT(rep5.a_span.@f,"%6.21f,)$!", "alarm")
THEN IGNORE ($Rule, "report*")
THEN depression.warning, ©float = 1
THEN start.check.@float =70
THEN show.beliefl.©string = FORMAT (repl.t_drop.©float , "%ld")
THEN show.belief2.@string = FORMAT (rep2.t_drop.©float , "%ld")
THEN show.belief3.@string = FORMAT (rep3.t_drop.@float , "%ld")
THEN show.belief4.@string = FORMAT (rep4.t_drop.©float , "%ld")
THEN show.belief5.@string = FORMAT (rep5.t_drop.@float , "%ld")
THEN FIND ("wind.size.true")
endRule

Rule
©name = report6
IF report, number, ©integer = 6
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 6", "alarm")
THEN TEXT ("First TIME is !$FORMAT(repl.m_time.@f "%6.21f ')$!", "alarm")
THEN TEXT ("First BELIEF is !$FORMAT(repl.t_drop.@f,"%4.01f,)$!M, "alarm")
THEN TEXT ("First SPAN is !$FORMAT(repl.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second TIME is !$FORMAT(rep2.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Second SPAN is !$FORMAT(rep2.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third TIME is !$FORMAT(rep3.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Third BELIEF is !$FORMAT(rep3.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Third SPAN is !$FORMAT(rep3.a_span.@f,"%6.21f')$!") "alarm")
THEN TEXT ("Fourth TIME is !$FORMAT(rep4.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fourth BELIEF is !$FORMAT(rep4.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Fourth SPAN is !$FORMAT(rep4.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fifth TIME is !$FORMAT(rep5.m_time.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Fifth BELIEF is !$FORMAT(rep5.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Fifth SPAN is !$FORMAT(rep5.a_span.@f,"%6.21f')$!", "alarm")
THEN TEXT ("Sixth TIME is !$FORMAT(rep6.m_time.@f,"%6.21f ')$!", "alarm")
THEN TEXT ("Sixth BELIEF is !$FORMAT(rep6.t_drop.@f,"%4.01f')$!", "alarm")
THEN TEXT ("Sixth SPAN is !$FORMAT(rep6.a_span.@f,"%6.21f')$!", "alarm")
THEN depression.warning.@float = 1

143

http://wind.size.true

APPENDIX C

THEN start, check. @float =70
THEN show.beUefl.@string = FORMAT (repl.t_drop.©float , "%ld")
THEN show.belief2.@string = FORMAT (rep2.t_drop.@float , "%ld")
THEN show.beueO.@string = FORMAT (rep3.t_drop.@float , "%ld")
THEN show.belief4.@string = FORMAT (rep4.t_drop.@float , "%ld")
THEN show.belief5.@string = FORMAT (rep5.t_drop.@float ", "%ld")
THEN show.belief6.@string = FORMAT (rep6.t_drop.@float , "%ld")
THEN FIND ("wind.size.true")
endRule

Rule
@name = TCOa
IF counter, number. @integer = 0
AND TCI l.mtime.©float <= (VL01.m_time.@float + VL01.t_span.@float 12)
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "1")
THENTCl.extension.@string is FORMAT (counter.number.@integer, "%ld")
THEN VL01.t_drop.@float = M A X (TC11 .tdrop. @float , VL01.t_drop.@float)
THEN VL01.t_span.@float = MAX(TCll.t_span.@float , VL01.t_span.@float)
THEN VLO1. tbase. @float = MAX(TCll.t_base.@float , VL01.t_base.@float)
THEN VLOl.mjime.©float =(TCll.m_time.@float)
THEN valley_span.avg_value.@float = VL01.t_span.@float
THEN FIND ("TC0.temperature_drop. significant")
THEN valley.default_span.©float = VLO l.t_span. ©float
THEN time_range.avg_val.@float = VL01.m_time.@float + (TC2!ocation. ©float -
TCI.location.©float) / casting.speed.@float
THEN timerange. minval. @float = time_range.avg_val.@float - 0.500000 * VLO l.t_span. ©float
THEN time_range.max_val.@float = time_range.avg_val.@float + 0.500000 * VL01.t_span.@float
THEN TC. next_number. ©integer = 2
THEN VLO. status_number. ©integer = 1
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"'), FORMAT
(TC.next_number.@integer, "%ld"))
THEN TC0.rule_examined.variable is TRUE
THEN IGNORE (SRule, "TCI")
THEN IGNORE (SRule, "TCOb")
THEN FREERULE (SRule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
THEN counter, number, ©integer = 1
endRule

Rule
©name = TCOb
IF counter.number.@integer = 0
AND TCll.m_time.@float >(VL01.m_time.@float + VL01.t_span.@float 12)
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "1")
THEN TCl.extension.@string is FORMAT (counter.number.©integer, "%ld")
THEN VL01.t_drop.@float = VLO l.t_drop. ©float
THEN VLO l.tspan. ©float = VLO l.t_span. ©float
THEN VLOl.t_base.©float = VL01.t_base.@float
THEN VL01.m_time.@float = VLO l.mtime. ©float
THENvalley_span.avg_value.@float = VLO l.tspan. ©float
THEN FIND ("TC0.temperawre_drop. significant")
THEN valley.default_span.@float = VL01.t_span.@float

144

http://wind.size.true

APPENDIX C

THEN time_range.avg_val.@float = VL01.m_time.@float + (TC2.1ccation.@float -
TCl.location.@float)/casting.speed.©float
THEN time_range. minval. ©float = time_range. avg_val. ©float - 0.500000 * TCI l.tspan. ©float
THEN timerange. max_val. ©float = time_range.avg_val.@float + 0.500000 * TCll.t_span.@float
THEN TC.next_number.@integer = 2
THEN \VL\<VL.number.@integer>.status_number.@integer = 1
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.©integer, "%ld"), FORMAT
(TC.next_number.@integer, "%ld"))
THEN TC0.rule_examined.variable is TRUE
THEN IGNORE (SRule, "TCI")
THEN FREERULE (SRule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
©name = TCI
IF TRUE
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "1")
THEN\VL\<valley.extension.@string>.t_drop.@float =
\TCl\<counter.number.@integer>.t_drop.@float
THEN \VL\<valley.extension.@string>.t_span.@float =
\TC l\<counter. number. @integer>. t_span. ©float
THEN \VL\<valley.extension.@string>.t_base.@float = \TCl\<counter.number.@integer>.t_base.@float
THEN \VL\<valley. extension. @string>.m_time. ©float =
\TCl\<counter.number.@integer>.m_time.@float
THEN valley_span.avg_value. ©float = \VL\<valley.extension.@string>.t_span.@float
THEN FIND ("TCl.temperature_drop.significant")
THEN valley.default_span.©float =\TCl\<counter.number.@integer>.t_span.@float
THEN time_range.avg_val.@float =\TCl\<counter.number.@integer>.m_time.@float + (
TC2.1ocation.@float - TCl.location.@float)/casting.speed.©float
THEN time_range.min_val.@float = time_range.avg_val.©float -0.500000*
\TC l\<counter. number. @integer>.t_span. ©float
THEN timerange. max_val. ©float = time_range.avg_val.@float + 0.500000 *
\TC l\<counter. number. @integer>. tspan. ©float
THEN TC. next_number. ©integer = 2
THEN \VL\<VL. number. @integer>.status_number. ©integer =1
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), FORMAT
(TC.next_number.@integer, "%ld"))
THEN TCl.rule_examined.variable is TRUE
THEN FREERULE (SRule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
@name = TC2
IF TC2.valley.zero is FALSE
THEN\VL\<valley.extension.@string>.t_drop.@float
THEN \VL\<valley. extension. @string>. t_span. ©float
THEN \VL\<valley. extension. @string>. t_base. ©float
THEN\VL\<valley.extension.@string>.m_time.@float
\TC2\<TC2. extension. @string>. m_time. ©float

= \TC2\<TC2. extension. @string>. t_drop. ©float
= \TC2\<TC2.extension.@string>.t_span. ©float
= \TC2\<TC2.extension.@string>.t_base.@float

145

http://TC2.valley.zero

APPENDIX C

THEN valley_span.avg_value.@float = (valley_span.avg_value.@float +
\VL\<valley.extension.@string>.t_span.@float)/2
THEN FIND ("TC2.tempê am ê_drop.sigrlificarlt,,)
THEN timerange. avg_val. @float = \TC2\<TC2.extension.@string>.m_time.@fioat + (
TC3.location.@float - TC2.1ocation.@float)/casting.speed@float
THEN time_range.min_val.@float = time_range.avg_val.@float -0.500000*
\TC2\<TC2. extension. @string>. t_span. ©float
THEN time_range.max_val.@float = time_range.avg_val.@flbat +0.500000*
\TC2\<TC2.extension. @string>.t_span. @float
THEN TC.next_number.@integer = 3
THEN \VL\< VL. number. @integer>. statusnumber. ©integer = 2
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.©integer, "%ld"), FORMAT
(TC.next_number.@integer, "%ld"))
THEN TC2.rule_examined.variable is TRUE
THEN FREERULE ($Rule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
©name = TC3
IF TC3.valley.zero is FALSE
THEN \VL\<valley.extension.@string>.t_drop.@float = \TC3\<rC3.extension.@string>.t_drop.@float
THEN \VL\<valley.extension.@string>.t_span.@float = \TC3\<TC3.extension.@string>.t_span.@float
THEN \VL\<valley.extension.@string>.t_base.@float = \TC3\<rC3.extension.@string>.t_base.@float
THEN \VL\<valley.extension.@string>.m_time.@float =
\TC3\<TC3.extension.@string>.m_time.@float
THEN valley_span.avg_value.@float = (2.000000 * valley_span.avg_value.@float +
\VL\<valley.extension.@string>.t_span.@float) / 3
THEN FIND ("TC3.temrjerature_drop.significant")
THEN time_range.avg_val.@float = \TC3\<TC3.extension.@string>.m_time.@float + (
TC4.1ocation.@float - TC3.location.@float) / casting.speed.@float
THEN timerange. minval. @float = time_range.avg_val.@float - 0.500000 *
\TC3\<TC3. extension. @string>.t_span. @float
THEN timerange. max_val. @float = timerange. avg_val. @float + 0.500000 *
\TC3\<TC3. extension. @string>. t_span. @float
THEN TC.next_number. ©integer = 4
THEN \VL\<VL. number. @integer>.status_number.@integer = 3
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.©integer, "%ld"), FORMAT
(TC.next_number.@integer, "%ld"))
THEN TC3 .rule_examined.variable is TRUE
THEN FREERULE (SRule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
@name = TC4
IF TC4.valley.zero is FALSE
THEN\VL\<valley.extension.@string>.t_drop.@float
THEN\VL\<valley.extension.@string>.t_span.@float
THEN \VL\<valley. extension. @string>. t_base. @float
THEN\VL\<valley.extension.@string>.m_time.@float
\TC4\<TC4. extension. @string>. mjime. @float

= \TC4\<TC4. extension: @string>. t_drop. @float
= \TC4\<TC4.extension.@string>.t_span.@float
= \TC4\<TC4.extension.@string>.t_base.@float

146

http://TC4.valley.zero

APPENDIX C

THEN valley_span.avg_value.@float = (3.000000 * valley_span.avg_value.@float +
\\^\<valley.extension.@string>.t_span.@float) / 4
THEN FIND ("TC4.temperamre_drc^.significant")
THEN NVT^XT^.number.fgmteger^st^^ = 4
THEN TC4.rule_exarnined.variable is TRUE
ELSE \VT.\<valley.extension.@string>.m_time.@float = time_range.avg_val.@float
ELSE FREERULE (SRule, "TC_default_rule")
ELSE MACRO ("TC_default_rule")
ELSE FIND ("TC4.temr«ramre_d^q5.significant")
ELSE \VL\<VL. number. @integer>.status_number. ©integer = 4
ELSE TC4.rule_examined.variable is TRUE
endRule

Rule
@name = TCdefaultrule
IF TRUE
THEN\VL\<valley.extension.@string>.t_drop.@float =0.000000
THEN \VL\<valley.extension.@string>.t_span.@float = 0.000000
THEN\VL\<valley.extension.@string>.t_base.@float = 1.000000
THEN \VL\<valley.extension.@string>.m_time.@float = timerange. avg_val. @float
THEN time_range.rnin_val.@float = timerange. avg_val. @float - 0.500000 *
valley.default_span.@float
THENtime_range.max_val.@float = time_range.avg_val.@float +0.500000*
valley.default_span.@float
endRule

Rule
@name = timerangeO
IF timerange.minval.@float >scanwindow.maxtime.@float
THEN IGNORE (SRule, " X X * ")
THEN IGNORE (SRule, "TC*")
THEN IGNORE (SRule, "time_range_*")
THEN IGNORE (SRule, "check_time_range")
ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.@integer, "%ld"), "1")
ELSE FREERULE (SRule, "TC*")
ELSE FREERULE (SRule, " X X * ")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
ELSE FREERULE (SRule, "check_time_range")
endRule

Rule
@name = time_range_l
IF \TC\<TCVL.extension.@string>.m_time.@float >= time_range.min_val.@float
AND \TC\<TCVL.extension.@string>.m_time.@float < time_range.max_val.@float
THEN \TC\<TC.next_number.@integer>.valley_number. ©integer = 1
THEN IGNORE (SRule, "time_range_*")
THEN \TC\<rC.next_number.@integer>.valley.zero is FALSE
THEN ASNCERTAINTY (\TC\<rC.next_number.@integer>.valley.zero, 0)
ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.©integer, "%ld"), "2")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule

147

APPENDIX C

Rule
@name = time_range_2
IF \TC\<TCVL.extension.@string>.m_time.@float >= timerange. minval. @float
AND \TC\<rCVL.extension.@string>.m_time.@fioat < time_range.max_val.@float
THEN \TC\<TC.next_number.@integer>.valley_number.@integer = 2
THEN IGNORE (SRule, "time_range_*")
THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE
THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)
ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.©integer, "%ld"), "3")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.yalley.zero, 100)
endRule

Rule
@name = time_range_3
IF \TC\<TCVL.extension.@string>.m_time.@float >= timerange.minval.@float
AND \TC\<TCVL. extension. @string>.m_time.@float < time_range.max_val.@float
THEN \TC\<TC.next_number.@integer>.valley_number.@integer = 3
THEN IGNORE (SRule, "time_range_*")
THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE
THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)
ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.©integer, "%ld"), "4")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule

Rule
@name = time_range_4
IF \TC\<TCVL.extension.@string>.m_time.@float >= timerange.minval.@float
AND \TC\<TCVL.extension.@string>.m_time.@float < timerange. maxval. @float
THEN \TC\<TC.next_number.@integer>.valley_number. ©integer = 4
THEN IGNORE (SRule, "time_range_*")
THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE
THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)
ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.©integer, "%ld"), "5")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule

Rule
@name = time_range_5
IF \TC\<TCVL. extension. @string>.m_time.@float >= time_range.min_val.@float
AND \TC\<TCVL.extension.@string>.m_time.@float < time_range.max_val.@float
THEN \TC\<TC.next_number.@integer>.valley_number.@integer = 5
THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE
THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)
THEN IGNORE (SRule, "time_range_*")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule

Rule
@name = ValleyO
IF valley.status.incomplete is TRUE

148

APPENDIX C

AND counter, number. @integer = 0
THEN VL.number.@integer = 0
THEN FREERULE (SRule, "TC*")
THEN FREERULE (SRule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temperarure_drop.sigriificant")
THEN FIND ("TCO.rule_examined.variable")
THEN FIND ("TC2.rule_examined.variable")
THEN FIND ("TC3.rule_examined.variable")
THEN FIND ("TC4.rule_examined. variable")
THEN FREERULE (SRule, "belief.*")
THEN MACRO ("belief.*")
THEN VLO.dummy.@string is "test"
THEN counter, number, ©integer = counter, number, ©integer + 1
THEN report.number. ©integer = report.number.@integer + report.addition_value.@integer
THEN FREERULE (SRule, "pre_report")
THEN MACRO ("pre_report")
ELSE VLO. dummy, ©string is "test"
ELSE report, number, ©integer = 0
endRule

Rule
©name = Valley_l
IF counter, number, ©integer = 1
AND counter.number.©integer<= numberofvalley.inTCl.©float
THEN VL.number.@integer = 1
THEN FREERULE (SRule, "TC*")
THEN FREERULE (SRule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temrjeramre_drop.significant")
THEN FEND ("TCl.rule_examined.variable")
THEN FIND ("TC2.rule_examinedvariable")
THEN FIND ("TC3.rule_examined.variable")
THEN FIND ("TC4.rule_examined.variable")
THEN FREERULE (SRule, "belief.*")
THEN MACRO ("belief,*")
THEN VLl.dummy.@string is "test"
THEN counter, number, ©integer = counter, number, ©integer + 1
THEN report.number.©integer = report.number.@integer + report.addition_value.@integer
THEN FREERULE (SRule, "pre_report")
THEN MACRO ("pre_report")
ELSE VLl.dummy.@string is "test"
endRule

Rule
©name = Valley_2
IF counter, number, ©integer = 2
AND counter.number.©integer <= number_of_valley.in_TCl.@float
THEN VL.number.@integer = 2
THEN FREERULE (SRule, "TC*")
THEN FREERULE (SRule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temperature_drop. significant")
THEN FIND ("TCl.rule_examined.variable")

149

-APPENDIX C

THEN FIND ("TC2.rule_examined.variable")
THEN FIND ("TC3.rule_examined.variable")
THEN FIND ("TC4.rule_examined.variable")
THEN FREERULE ($Rule, "belief_*")
THEN MACRO ("belief.*")
THEN VT.2.dummy.@string is "test"
THEN counter, number, ©integer = counter, number, ©integer + 1
THEN report.number.©integer = report.number.@integer + report.addition_value.@integer
THEN FREERULE (SRule, "pre_report")
THEN MACRO ("pre_report")
ELSE VL2.dummy.@string is "test"
endRule

Rule
©name = Valley_3
IF counter, number, ©integer = 3
AND counter.number.@integer <= numberofvalley.inTCl. ©float
THEN VL.number.@integer = 3
THEN FREERULE (SRule, "TC*")
THEN FREERULE (SRule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temperamre_drop.significant")
THEN FIND ("TCl.rule_examinedvariable")
THEN FIND ("TC2.rule_examinedvariable")
THEN FIND ("TC3.rule_examinedvariable")
THEN FIND ("TC4.rule_examinedvariable")
THEN FREERULE (SRule, "belief_*")
THEN MACRO ("belief,*")
THEN VL3 .dummy, ©string is "test"
THEN counter, number, ©integer = counter, number, ©integer + 1
THEN report.number.©integer = report.number.©integer + report.addition_value.@integer
THEN FREERULE (SRule, "pre_report")
THEN MACRO ("pre_report")
ELSE VL3.dummy.@string is "test"
endRule

Rule
©name = Valley_4
IF counter, number, ©integer = 4
AND counter.number.@integer <= number_of_valley.in_TCl.©float
THEN VL. number, ©integer = 4
THEN FREERULE (SRule, "TC*")
THEN FREERULE (SRule, "xx*")
THEN FORGET ("TC*.rule_examinedvariable")
THEN FORGET ("TC*.temperamre_drop.sigmficant")
THEN FIND ("TCI.rule_examined.variable")
THEN FIND ("TC2.rule_examined.variable")
THEN FIND ("TC3.rule_examinedvariable")
THEN FIND ("TC4.rule_examined.variable")
THEN FREERULE (SRule, "belief,*")
THEN MACRO ("belief_*")
THEN VL4.dummy.@string is "test"
THEN counter.number.@integer = counter, number, ©integer + 1
THEN report.number.@integer = report, number, ©integer + report.addition_value.@integer

150

APPENDIX C

THEN FREERULE ($Rule, "pre_report")
THEN MACRO ("pre_report")
ELSE VLAdunimy. ©string is "test"
endRule

Rule
@name = Valley_5
IF counter, number. @integer = 5
AND counter.number.©integer<= numberofvalley.in_TC 1.@fioat
THEN VL. number. @integer = 5
THEN FREERULE ($Rule, "TC*")
THEN FREERULE ($Rule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temperatarejirc>p.signfficant")
THEN FIND ("TCI.rule_examined.variable")
THEN FIND ("TC2.rule_examined.variable")
THEN FIND ("TC3.rule_examined.variable")
THEN FIND ("TC4.rule_examined.variable")
THEN FREERULE (SRule, "belief,*")
THEN MACRO ("belief.*")
THEN VL5.dummy.@string is "test"
THEN counter.number.©integer = counter.number.@integer + 1
THEN report.number.©integer = report.number.©integer + report.addition_value.@integer
THEN FREERULE (SRule, "pre_report")
THEN MACRO ("pre_report")
endRule

Rule
©name = windows
IF wind.size.©float >(1 +repl.tdrop.©float)
THEN wind.size.©float = wind.size.@float + 1.000000
THEN wind.size.true is TRUE
endRule

Rule
©name = XX2
IF TC2.valley.zero is TRUE
THEN \VL\<valley.extension.@string>.t_drop.@float = 0.000000
THEN \VL\<valley. extension. @string>.t_span. ©float = 0.000000
THEN\VL\<valley.extension.@string>.t_base.@float = 1.000000
THEN \VL\<valley.extension.@string>.m_time.@float = time_range.avg_val.@float
THEN timerange. minval. ©float = time_range.avg_val.@float - 0.500000 *
valley.default_span.@float
THEN time_range.max_val.@float = time_range.avg_val.©float +0.500000*
valley.default_span.@float
THEN TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.@integer,
"%ld"))
THEN IGNORE (SRule, TC.ignore_rule_name.@string)
THEN TC.next_number.@integer = 3
THEN \VL\<VL.number.@integer>.status_number.@integer = 2
THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "3")
THEN ASNCERTAINTY (TC2.temperamre_drop.significant, 0)
THEN TC2. rule_examined.variable is TRUE
THEN FREERULE (SRule, "time_range_*")

151

http://wind.size.true
http://TC2.valley.zero

APPENDIX C

THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
@name = XX3
IF TC3 valley, zero is TRUE
THEN \VL\<valley.extension.@string>.t_drop.@float = 0.000000
THEN \VL\<valley.extension.@string>.t_span.@float = 0.000000
THEN\VL\<valley.extemion.@string>.t_base.@float = 1.000000
THEN \VL\<valley.extension.@string>.m_time.@float = timerange. avg_val. @float
THEN timerange.minval.©float = time_range.avg_val.@float -0.500000*
valley. default_span. @float
THEN timerange. max_val. @float = time_range.avg_val.@float + 0.500000 *
valley. default_span. @float
THEN TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.©integer,
"%ld"))
THEN IGNORE (SRule, TC.ignore_rule_name.@string)
THEN TC.next_number.@integer = 4
THEN \VL\<VL. number. @integer>.status_number.@integer = 3
THEN valley.extension. ©string is STRCONCAT (FORMAT (VL.number.©integer, "%ld"), "4")
THEN ASNCERTAINTY (TC3.temperature_drop.significant, 0)
THEN TC3. rule_examined.variable is TRUE
THEN FREERULE ($Rule, "time_range_*")
THEN MACRO ("time_range_*")
THEN MACRO ("check_time_range")
endRule

Rule
@name = XX4
IF TC4.valley, zero is TRUE
THEN \VL\<valley. extension. @string>.t_drop. ©float = 0.000000
THEN \VL\<valley.extension.@string>.t_span.@float = 0.000000
THEN\VL\<valley.extension.@string>.t_base.@float =1.000000
THEN \VL\<valley.extension.@string>.m_time.@float = timerange. avg_val. ©float
THEN timerange. minval. ©float = time_range. avg_val. ©float - 0.500000 *
valley.default_span.@float
THEN timerange. maxval. ©float = time_range.avg_val.@float + 0.500000 *
valley.default_span.@float
THEN TC.ignore_mle_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.©integer,
"%ld"))
THEN IGNORE ($Rule, TC.ignore_rule_name. ©string)
THEN \VL\<VL. number. @integer>. status_number. ©integer = 4
THEN ASNCERTAINTY (TC4.temperature_drop.significant, 0)
THEN TC4. rule_examined.variable is TRUE
THEN FREERULE ($Rule, "time_range_*")
THEN MACRO ("time_range_*")
endRule

Facets
©triplet = TCO.temperaturedrop. significant
©fuzzy = TEMP_DROP_SIGNIFICANT
endFacets

152

APPENDIX C

Facets
©triplet = TCl.temrjeramre_drop.significant
©fuzzy = TEMP_DROP_SIGNTFICANT
endFacets

Facets
©triplet = TC2.temperamre_drop.sigriificant
©fuzzy = TEMPDROPSIGNIFICANT
endFacets

Facets
©triplet = TC3 .temperaturedrop. significant
©fuzzy = TEMPDROPSIGNIFICANT
endFacets

Facets
©triplet = TC4.temperature_drop.significant
©fuzzy = TEMP_DROP_SIGNIFICANT
endFacets

! *** LoadStrategy must go at the end of the Knowledge Base ***!
LoadStrategy
©name = "fback.stg"
EndLoadStrategy

153

