. DEVELOPMENT OF A SCADA SYSTEM TO MONITOR AND CONTROL

CONTINUOUS CASTING OF STEEL BILLETS

by

VLADIMIR RAKOCEVIC
B.Sc. in Electrical Engineering, University of Belgrade, Yugoslavia, 1991.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
| FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

Department of Mining and Mineral Process Engineering

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 1995

© Vladimir Rakocevic, 1995.

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
_ publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of MIVLWI@ g Miw@m/ /))(0rk§5 '6\%7M66V|V77

The University of 'Britistholumbia '
Vancouver, Canada

Date 'AUCE'. 90, 1995,
d | /

DE-6 (2/88)

- ABSTRACT

Continuous casting of steel billets, blooms and slabs is one of the dominant
processes in the steel making industry. Production of high quality steel, with no defects,
has become a very important issue in the current highly-competitive market coﬁditions. To
satisfy quality éontrol standards, steel mills must now incorpbrate “state of the art”
technoiogies in continuous casting. New techniques from different fields are being applied
to the process to assist in casting “perfect” steel.

Coﬁlputers are now esséntial elements in applying advanced technologies for
process and quality improvements. In this wqu, an attempt has been made to create an
intelligent Super\zisofy Control and Data Acquisition System (SCADA) for the billet
casting process. The “brain” of this system consists of an Artificial Intelligence entity that
combines low-level numerical processing of sensor inputs with high-level symbol
processing, ie.an Expert System. The mastered proce‘ss knowledge and experieﬂce, along
with intelligent numerical computation, have been captured into a system called “Smart” .
Mould. |

This thesis focuses on the evolution of the hardware framework and software
suppért for the SCADA system. The concept of intelligent computation as a prerequisite
to intelligent process control with respect to the} continuous caéﬁng of steel billets is also

introduced.

ii

TABLE OF CONTENTS

2.2 Process Control and SCADA SyStEmSveeerereerersereesssees
2.3 Introduction to Artificial Intelligence
2.3.1 Expert 'Systems S S S eeeeeeresenssesassesrresenne vveeeranes
2.3.2 FUZZY LOGIC vovvvevvrreereeereeeesssiesssn
2.3.3. Artificial Neural Networksccccceeeennee e
2.3.4 Genetic Algorithms e

2.4 Integration of AI with Process Control

...

...

...

2.5 The Concept of Computational Intelligenceccccorvurirrircennnn.

' CHAPTER 3: OBJECTIVES OF THIS WORKooooomrrrverreeeeeeesssssssssssssssnies

CHAPTER 4: METHODOLOGYcccovvirnisisivnnnen.

4.1. Description of the Billet Casting Process

iii

...

10

12

13

15

18

19

24

42 Selectioﬁ of Hardware Platform and Software "Development Tool | 33

4.3 Selecting a Data Acquisition Board 38

4.4 Tsolation ATHEETS ... ST e 40

4.5 Software Development R 41

.51 SCADA AIIVETooosccccrveeeeessscerseenseessssssssseeesssssssssoseoroos s

4.5.2 Design and testing of CI module - filtering functions ‘ 46
4.5.2.1 Compare function - 48 |

©4.5.2.2 Valley functioncooeeererrrvresreennns ST 49

4.5.2.3 Extreme ﬁmction 56

4.5.3. Expert ‘System development 58

4.5.4 Design of the Man Machine Interfacecccooooocouirnrrvrnnnens 62

CHAPTER 5: RESULTS and DISCUSSIONcccoosorseerrenn S S 70

5.1 Experimental Procedure - 70

5.2 Data acquisition software — | cereeeerseessesasenasens 73

5.3 Results from Negative Strip Time c#lqulatioh 74

‘5.4 Resﬂts from shape recognition functions eeeeeeeseessessreeen - 84

5.5 Results ﬁ'omti;e EXpert SYStemcc.coovverreneerenreneesesssesienceneneess 96

5.6 On-line billet quality Predictioncccccensvcssiivimunssnnirnnnnns S 98

CHAPTER 6: CONCLUSIONS............ccooummerernnsnssssssssssssssessssrassnssessssssssssssssss .9
CHAPTER 7: FUTURE WORKcccoiiiiiiiiniiinniiiinininnesnsesssnnsesnsesssnesssnes 101
REFERENCES ...ttt oo 103
APPENDIX A oo ST 1

iv

APPENDLIX B ..ooooooeeeoeeieeeeeiieeeeeeeeeeeeeeeeeeeeseeseneeeene e et e e et e e e e aaanans 114

APPENDIX Cooooecoeoseseeeesssees s sssness e sss s ssssssessesnens e 126

Table 1
Table 2

Table 3

Table 4
Table 5

Table 6 -

Table 7

Table 8

Table 9

List of Tables

Examined Operating Systems eeeeeseseneseseees e
Examined SCADA Systems development toolscccecveneene

Considered Data Acquisition Boardsc.ccoceeeveceencreennenneen.

Stored SENSOTS MPULcoccveeirerirereienriersrenieeeseeieeesseneeseessaesennes |

The output from Qalley RUNCHON ..ot
Recognized drops by the valley functionccoooviiiinnicnnncen.
Output from the extreme functidn from thermobouple data
obtained from the mould modelcccoovvuiniinininncnncnnne.

Output from the extreme, 10s-window, and 15s-window valley

functions over thermocouple data obtained from Heat #333,

Output from the extreme function and associated Expert

System Degree of Behiefcccocueuemmrrneeensiivereressensessennnes

34
36

39

56

86

- 92

95

97

List of Figures

Figure 1 Structure of the “Smart Mould™ et 3

Figure 2 Closed Loop Control System teerreeereeaaeeaeeaeaane e baeeres - 7
Figure 3 Structure of Fuzzy Logic Controllerccccoceeviiiiininncnncnnn. 14
Figure 4 Connectionist model with a single hidden layerccc.coveenreene. 16 | :
Figure 5 Control SystemHierarchy......;...........................'...‘. 21
Figure 6 Error Detection in AI Correcting CI methodsccceenveeenneen. 26
Figure 7 Comparison of Biological and Machine Intelligence 27
Figure 8 Normal and “Savant” Fuzzy Sets e e e 28
Figure 9‘ Schematip diagram of Continuous Casting processc...ccc.c.... 31
Figure 10 Typical Configuration of ProcessVision e 37
Figure 11 The creation of a ground loop 40
Figure 12 Avoiding ground loop problemsc.ccecevvviniiiniinnnnnnns e - 40
Figure 13 | Data Acquisition and Data Filtering taéks run in parallel 45

_»Figure 14 Mould Displacement obtained from LVDT signal employing

5-point moving average, Company A, Heat #E33767 51
Figure 15 The calculated mould i/elocity using the 5-point derivative from

LVDT signal, Company A, Heat #E33767 erreeesveeeeseeees 51
Figure 16 Grhph iihstrating the ‘approach applied for célculating negative

strip time using the 5-point derivative method, Company A," .

HEAt HE33767 oo ieeeeoeoeeeeeev oo e es e s nn e I 52

vii

Figure 17

- - Figure 18

Figure 19

Figure 20
Figure 21
Figure 22
Figure 23

Figure 24
Figure 25
Figure 26
Figure. 27

Figure 28

- Figure 29

Figure 30

Figure 31

THC E18, raw data, Heat #333, Company Dc.o...covevveereveees
Applied “window” methodcoovvrvirrnerncecnnen,
Applied “derivative” methodcccoocveennenne. RS '
Multitasking concept of the “Smart” Mould SRR
Fuzzy set used fof presenting is'igniﬁcance of a tempefature drop ...
The rule applied for tracing the THC drops e eeeeenens
“Smart” Mould Introductory screen
The four process trends£ THC above meniscus, Metal Level,

Casting Speed and Negative Strip Timecccceeveericencernnnnns

“Smart” Mould application with opened ExpertView,

ProcessView and Hypertext modules creeeesrrerenenaeaananaee
Negative Strip Time trendcccccviviiiiriiieeniiinnieinere e
Hardware configuration for simultaneous data acquisition oot .

Maximum Data Acquisition Frequency per Number of

' Input Channels, per single task eeeererene e e e e nares

Variations in the minimum and maximum stroke position

(the LVDT sigﬁal) over a 5 minute duration in Heat |

#E33767, Company A ettt

" Influence of mould displacement on negative strip time during -

displacement instability, Cdmpany A, Heat #E33767
Influence of casting spéed on negative strip time during

displacement instability, Company A, Heat #E33767

-viii

54

55

57

58
60
61

66
67
68
69

71

75

78

79

80

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Influence of casting speed on negative strip time for 600 seconds
of casting, Company A, Heat #E33767c.cccooevuenuennunes N

Graph comparing casting speed and metal level signal for 600

seconds of casting, Company A, Heat #E33767ccoccurveneene. -

’fHC 191 mm from the top of the mould, the fisrt acquisition
cycle, Heat #D6131, Company C TSV
THC 191 mm from the top of the mould, tile se;:onii acquisition
cycle, Heat #D6131, Cbmpany C.res e,
Sensor and model data for the THC E22, 535 mm from the top of
ihe mould, Heat #333, Company D e eeeeeeeeaaaaaeaaaaaaaas
Model data for the THC E22, 535 mm from the top of the mould,

Heat #333, CoinpanyD e reeieeeeenne

45 detected depressions and their spans, Heat #333, Company D..

45 detected depresssibns and the corresponding temperature

“drops, Heat #333, Company Dc.ccooeiiiviiiiniiiiiiiiien,

X

81

82

87

88

90

91

93

94

tN

V.

List of Symbols

Negative Strip Time (s)
‘3.14
Oscillation frequency (Hz)

. Casting Speed (m/s)

Oscillation stroke lenght (m)

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisors Dr John Meech,
" Dr. Indira Samarasekera, and Dr. Keith Bn‘macémbe, for providing consistent

encouragement, outstanding guidance, and invaluable critique throughoﬁt this work.
Without their help, support and assistance this thesis would nevér have been completed.

I am greatly indebted to Branko Zatezalo and Comdale Technologies Inc. for their
support in designing the data acquisition software. Manitoba Rolling Mills, Alta Steel, |
Hatch Assocites and the Natural Sciences and Engineering Research Council of Canada
are greatly acknowledged for support of this study.

I am grateful to Sunil Kumar and Neil Walker for providing many useful comments
and discussions during this work.

Finally, the tremendous gratitudé I dedicate to my wife Ana who provided me with

every assistance throughout my studies at UBC. Without her enormous help in designing

the software, this work would be unfeasible.

Chapter 1

Introduction

To remain competitive intematiéﬁally and face the challenges of quality,
productivity, cost and the eﬁvironment, Canadian mm1 steel mllls will have to apply
intelligent process control systems, particulérly for continuous casting. Suchv “smart”
processes must have a brain which receives sensor inputs and, based on knowledge,
experience and intelligent numerical processing, makes decisipns to adjust operating
parameters. or informs the operator about existing process conditions. The systems must |
first be “aware” of what is happening i the pfocess, then must provide control or alarm
action.

The “heart” of a billet casting process is the water-cooled oscillating mould. To
build a “smart” caster, we must connect this unit to the “brain”, a computer program in
* which the human thought-process and sensory input system have been captured. The
“eyes” of the system consist of instrumentation that senses mould temperature, friction,
metal level, mould oscillation, casting speed and cooling water velocity. The “brain” of the
system is software that combines an Artificial Intelligence (AI) entity with a module
~ capable of low-level numerical p?ocessing of sensor inpufs to generate high-level syinbol
processing; i.e. an Expert System (see Figure 1). |

" The use of an expert system to control the casting process was first proposed by

JK Brimacombe [1,2]. The “Intelligent Mould” research program was initiated at the

University of British Columbia and is funded by industry and NSERC. The objectives of
this research program are as follows: |
| [1] To develop an intelligent continuous casting process vm a smart mould system
capable of maximizing billet quality and productivity; |
[2] To complete the knowledge base for oil lubricants by developing relationships
among design and operating parameters, and billet quality and productivity for
different steel grades; | -
[3] To establish tenhniquen to interpret monld thermocouple and load cell signals
with respect to billet quality and casting problems, with both oil or mould flux
lubricant;
[4] To establish a knnwledge base for mould behavior and quality/operating
problems; |
| [5] To develop relationships among mould heat extraction, monld powder
composition, casting speed, steel composition and superheat, oscillatinn
characteristics, wall thickness and cooﬁng water velocity for cnsting operations
utilizing monld flux lubrication; | |
[6] To nomplete the fundamental understanding of the linkages between mould
design/operation and billet quality. | |
Based on the nature of these goals, a multi-disciplinary research team was formed
at U.B.C. The execution of the project was divided between two main tasks:
1. -Acquire new knowledge about the continuous casting prncess; and

2. Create hardware and software support for the mastered prdcess knowledge.

Beside the necessity for experts in continuous ‘casting,' there was a clear need for
an individual to take charge of thc_: computer systém development and software evolution.
The main focus of this thesis is the development of the overall soﬁware and hardware
required to be the repository for the “smart” mould knowledge. The developed system is
referred as a Supervisory Control and Data Acquisition (SCADA) System.

The task of designing the “Smart” mould consisted of two separate issues:

- definition of hardware feqliirements and devélopment of the necessary software. Figure 1

is a schematic representation of the components of the “Smart” mould system.

PROCESS VISION USER INTERFACE
COMDALE/C EXPERT SYSTEM
s Monitori
*Smart Alarming
*Smart Control

CI MODULE
and
DATA ACQUISITION
SYSTEM

1 1

MOULD SENSOR SIGNALS
A 4

*Thermocouples
*Strain Gauges
*LVDT’s
*Casting Speed

*Metal Lgfel
CONTINUOUS CASTING
MOULD

Figure 1: Structure of the “Smart Mould”

Hardware requirements iﬁchxded decisions about:

- the computer platform to use as the environment for the system “brain”;

- the sensors to acquire process data;

- the data acquisition system/card to use for data collection;

- the best operating system to provide real-timeb multitasking features.

Software development involved building a multi-tasking high frequency data
‘acquisition driver with a Compntaﬁonal Intelligence (CI) module for data processing. The
CI module supports the beginnings Qf Symbolic Processing at the higher intel]igence level
A new approach to developing a real-time Expert System has been applied, in which -
hierarchical connections have been established between the fast numerical data-processor
and ﬁe décision-making system. As a ﬁrst step in creating the knowledge base, a real-tlme
Expert System within a SCADA énvironment was developed to trace transverse
depression defects as they occur at the meniscus and then ﬁlove down the mould.

This thesis consists of seven chapters. Chapter 2 gives an overview of Supervisory
Controi and Data Acquisition (SCADA) Systems and the evolution of Al techniques in
process control. Chapter 3 pfesent§ the objectives of this thesis. Chapter 4 details the steps
involved in creating the hardware framework and software support for the “Smart” mould.
The. structure of the intelligent driver is described and the concept of a unique shape
recognition function is discussed. Chapter 5 reviews the results from several plant trials. '

Chapter 6 outlines the conclusions that arise from this work. Chapter 7 makes |

recommendations for future work.

Chapter 2

Literature Review

2.1 Outline. |

This chapter presents a short overview of the historical imvolvement of Artificial
Intelligence in process control It consists of four sections:
Process Control and SCADA Systexﬁs. This section gives a retrospective on the basic
ideas in control theory and explains some common terms. The Supervisory' Control and
Data Acquisition (SCADA) System is introduced as an integratéd computer» system for
process monitoring and control.
7Introduction to Artificial Intelligence. This section describes the genesis of the Artificial
Intelligence field with an intr'oduction.tcv)_ Expert Systems, Fuzzy Logic, Amﬁcml Neural
Networks and Genetic Algorithms as these compdnents relate to this work.
Integration of Al Wim Process Control. This part deals with AI techni(iues applied in
process control to accomplish different tasks. Additional requirements to apply Al
‘methods in a real-time environment are pointed out. An msnght into the architecture for
reak-time expert systems is presented.
Proposed Approach - Compuﬁﬁonal Intelligence (CI). The concepf of Computational
- Intelligence is defined. The hierarchical coﬁnection between fast, intelligent numerical

processing and real-time expert systems is proposed. The different levels of intelligence in

biochemical and electronic processing are contrasted.

2.2 Process Control and SCADA Systems

A system is a collective entity defined and characterized by a finite number of
attn'butes and elements. A control system is a biochemical or man-made system that
applies a strategy (eontrol logic) to echieve the best results, related to a set of defined
objectives. The applied control strategy may be based on numerical theory and analysis, or
on heuristics and complex decision-making procedures. In the biochemical case, the
human feedback loop may'appeer to be instinctive or intuitive without any obvious
“thinking” taking place. The more complex the control requirements, the more complex
the strategy.

In general, the term control system, tefers to certain specific man-machine
interactions. The objective of the system is to control outputs m some prescribed manner
by manipulating inputs through the elements of the overall system.' Accordingly, a process
control system is “made up of a process involved in a controlled .system and its control
- equipment or hardware and operators™[3].

To obtain desired system behavior, the applied control strategy has to provide
accurate and stable control. The control system is considered to be stable if the output
remams bounded for a restricted input, ie. it does not grow or oscillate with ever
increasing magnitude. Figure 2 presents a feedback system with two inputs: desired
temperature (set pomt value) and outside temperature (process load) Here the simple
system described can be operated in two main ways to respond to “supervxsed” changes

m the setpoint (servo control) or to adjust the control signal in a way to compensate for

changes in outside tempetature (regulatory control).

Control Temperature
: Signal :
. ; -
®; Thermostat |—p| Valve Furnace House - O,
- Desired Room
Temp. ’ Temp.

Figure 2: Closed .loop control system

In automatic control, only machines are involved, as m Fighre 2, where the furnace
is tumed off and on depending on a thermostat ‘reading’. Within the human body, blood
pressure, blood sugar, eye-pupil diameter are a few of the many variaﬁles controlled by
biological mechanisms that are equivalent to automatic control and can be studied by
methods of feedback control.

When the control s1gnal is made to be linearly proportional to the error in the
measured output (@; mim_z& G)o), the system is calléd proportional feedback. When the
feedback controller performs an integral operation oﬂ the error over time, the system is
using integral feedback, and when the slope of the error-time curve is used, derivative
feedback is the cd_ntrbl mode. Feedback that uses all th;eé methods - proportional plus
integral plus derivative - is referred to as Pm.control. |

| The purposé of regulatory control is to keep process variables close to speclﬁed
values in spite of external process disturbances or variations in internal process dynamics.
Regulator design involves discovering a “good” control solution for the mathematical

expression ®,/ L (see Figure 2).

In the servo problem, the task is to make process variables respond to changes in a

command signal (set point) in a given way. The servo design provides a correct control

strategy for mathematical correlation between system output ®, and .set point ®;.
Considering the servo problem, another hierarchical control level can be
introduced, £he supervisory cOntroi vloop, to manage the overall performance of the
designed system. Supervisory contrql may take into account the performances of separate
interacting systems and may in?olve adjusting controller paraméters (proportional, iﬁtegral
of derivative actions) to maintain the best overall performance of the total system. This

particular technique is often referred to as Adaptive Control. This might involve using a

Reference Model in parallel with the process to provide Predictive Control of future
outpﬁt values from the process.

A major dlﬂiculty in control-system design is to reconcile large-scale, fuzzy, real
problems with the simple, well-defined problems that control theory can handle [4]. The
namral presence of heuristics in real life control asks for implementing Artificial
Intelligence tools, particﬂarly Experf Systexﬁs and Fuzzy Logic, to handle il_l-deﬁned
p;ocess parameters, and large variatibns in control signals. Heuristics derive from
unknown and unexpected input/output relationship changes from external factors not 'yet
understood or defined. 'I'hesé include other variables and/or complex relationships. In
partiqular, Fuzzy Expert Systems are suited to heuristic analysis in the supervisory control
loop. |

Digital computers have been integrated into procéss control systems to support

fast and accurate execution of various control algorithms or strategies. Recent hardware

and, partimlarfy, software development have expanded the commitment of computers to
process control. The term process control nowadays, includes more than straight

implement#tion of algorithms fqr direct control. It also compriSes:
1. a process to collect sensor inputs
2. the graphic preséntation of the overall process that helps an operator to
* visualize, b»etter understand and handle (control) the process. This is referred to as

the Man Machihe Interfac;e (MMI),

3. automatic monitoring and ﬂmming; and

4. supervisory control to apply different inferences inchlding human-like tilought

procésses.

A computer connected to the process. instrumentation, togeiher with software that
supports data collection, process graphics, alarming, and supervisory control is considered
a SCADA System. The role of SCADA is to provide overall‘vmonitofhg and control of
complex, large scale processes. It is c_oimected to the direct control units and may perform
tuning of such devices. The control algorithm in SCADA can be realized by applyit;g an
algorithm for system optimization or ‘by utilizing olierator e)_cperience in running the
process. | |

Considering the continuous casting process, there are several integrate;d computer
systems that have been implemented in slab énd bloom casting: mould level control 51,

breakout detection [6,7], and on-line monitoring and diagnostics [8,9]. However, in billet

casting there are few quality and process control systems, and the area lags behind slab

" and bloom casting in achieving defect-free surface qua]fty [1]. This work was undertaken
to_build quality control SCADA systém for continuous casting of steel billéts.

To build a. SCADA _Systém, in addition to the inevitable hardware decisions, a
software development tool is necessary. Such a tool must have facilities for implementing
control logic. The appropriate tool should include Fuzzy Logic, Expert System and/or |
Artificial Neural Network modules. The ProcessVision SCADA development tool was
selected in building the intelligent system described in this work. An Expert System was.
built for on-line prediction of billet defects. The obtained process hlowledge about
mechanisms of surface defects formation has been captured in thé reasoning system. The
ultimate goal of this work is to create eventually a control module that will supervise the
peﬂomce of PID controllers applied to régulate th¢ position of the molten sfeel

interface and/or other control variables in the process.

2.3 Introduction to Artificial Intelligence
| “Artificial intelligence is the science of making machines do things that require
inielligence if done by men.” | '_ Marvin Mmsky
* Artificial Intelligence (AI) can be conmsidered as a collection of programming
algorithms and techniques which provide the impression that a computer is thinking,
feasoning, making decisions, solving problems and learning [10]. It attempts to capture
and present human reasoning on a machine.
The components of the human thought-processes with regard to. decision making

are: Symbolic Processing, Heuristics and Pattern Recognition.

10

In the Al sense, a symbel is ;; string of characters that stands for some real-Word
concept. Humans use symbols, apply IF-THEN-ELSE decision structures, utilize
heuristics, and handle uncertainty to define and master a problem. |

Heuristics are kinds of empirical lrnowledge which help a man or machine to
describe, understand vand solve a problem. These include rules-of-thumb based on triai-
and-error, tricks, procedures and other relevant inputs that enhance the search process
(). | |

Pattem-metching or recognrtion involves automatic identification of patterns
(figures, characters, shapes, forms, etc.) according to some predetermined 'condition or

- standard. Usually, an input pattern is compared to a stored template and the closeness of
fit is determined. |

Expert Systems (ES), Fuzzy Logic (FL), Artificial Neural»Networks (ANN) and
Genetic Algorithms (GA) are the most widely-used Al techniques for performing process |
control tasks. All of these techniques are appropriate for specific types of control
problems. Expert Systems are alrle to simulate the reasoning precess usirrg IF-THEN-
ELSE rule structures in problem-eelving. Fuzzy Logic aséists Expert Systems to reach
solution in an uncertain environment, where some of the analytical parameters are unclear.

" Neural Networks are able to learm or vmap any muiti-dimensional non-linear relationship
between input and output patterns. Genetic Algorithms provide very rapid solution for
cemplex optimization problems, based on Darwin’s Survival-of-the-Fittest theory. These
techniques can be applied alone or can be combined together for better managing an

obscure environment.

11

2.3.1 Expert Systems

An Expert System (ES) is a computer program which captures human knowledge
and cognition in a way that emulates a human expert solving spedﬁc types of problems
[12]). The technology of ES is a subﬁeld of AI which advances the capabilities of the
_computer beyond conventional utilization; a reasoning strﬁcture and decision-making logic
are #ppﬁed in addition to nterpreting incomplete i;:formation in an uncertain .environment.
It consists of equations, models, rulés of thumb, do’s and don’fs., etc. [13].

The main components of an ES are: |

'« Knowledge base

+ Inference Engine

o User Interface

A lcnowledge base is a collection of data, rules, inferences and procedures
| arranged into frames, s@n&c networks, scripts, instructions, and other formats. It
contains everything needed to formulate, comprehend and solve a specific problem. It
includes facts, theory, experience, and rules to guide the application of knowledge to
handle a problem. The necessary wisdom which comprises the knowledge base is based on
pieces of evidence identified by an expe;'t(s). The wisdom can be supported by theory or
could come from experiential knowledge and informal judgment.

The Inference_l Engine is the “thinking” part of an ES. It is a computer program
. which processeé knowledge éontained in the. knowledge base. It contains methodology to
reason with the information.in the knowledge base and to achieve conclusions. The

Inference Engine is capable of 1. analyzing a statement and decomposing it into its

12

components, 2. assigning degrees of belief to facté, 3. examining rules, 4. applying a
search strategy, 5. explaining and justifying solutions, and 6. commumicating with a user or
external programs and processes.

| The User Interface is a facility which allows communication between the user and
the computer (ES). The user can ask for explanation and more detail about the subject,
select items from a menu or a form, and provide an answer or presumption to a specific
question.

In summary, the Expert System technique is an appropriate method to represent
the way a human thinks while performing problem-solving. An operatof observes and
controls a process bvy‘utilizing logic. The way he/she reasons about the process phenomena
is captured directly into an ES prbgram. The modular approach used in these systems is an
appropriate and effective element which is beneﬁcial_ to designing a real-time control
system. For Expert Systems to be ablé to deal with imprecise, unclear and/or nois& mputs,
and to reach a solution in highly uncertain m&onments or in situations where crisp

representation of knowledge is limiting, another Al technique is needed - Fuzzy Logic.

2.3.2 Fuzzy Logic

| According to Wébster’s dictionary, logié is the science of the normative formal
principles of reasoning. i-Ience, “ﬁlzzy logic is concerned with the formal principles of
approximate reasoning,Awith precise reasoning viewed as a limiting case” [14]. Unlike the
conventional approaéh, fuzzy logic tries to inodel obscure techniques of reasoning that

play an essential role in the human ability to make decisions in an uncertain environment.

13

Fuzzy logic provides a mechanism to represent the meaning of propositions expressed in a
natural language when such meaning is unclear.

Considering process contrbl applications, Fuzzy Logic is utilized in a supervisory
control loop, as a fuzzy controller [15,16] (see Figure 3) or as a Fuzzy Expert System that

reasons and generates a solution based on process inputs or comprehended operational

logic. ,
Fuzzy Logic
Inference Engme
PR R R R R -
System - ! System
Input__‘_’ Fuzzfication Rule Defuzzification _,_._;l ut
Evaluation
Tnput Output
Membership Rules Membership
Function Function
Knowledge Base

Figure 3: Structur'e’of Fuzzy Logic Controller

| The inputs in a fuzzy system are translated inté fuzzy terms. The inference engine,
using rules from the knowledge base, calculates fuzzy output, that in supervisory control is
defuzziﬁed nto crisp numbers to‘ provide a control action. Fuzzy Expert Systems can be
utilized to assist an operafor in handling the process, or to provide extended information
about present conditions. Also, real-time prediction of process irregularities or i)roduct
quality can be made, as it is ddne in a continuous billet casting apf]iéation.

Fuzzy ES»have the capability of adaptingvfco changing circumstances in real-time By
either adjusting mémbership function definitions [17], changing the method of
defuzzification [18], or bsl adjusting weights associated with the Fuzzy Rules [10].

Adaptation generally takes place using séts of heuristics or meta-rules that are added to

14

the system one at a time until all uncertain situations are eventually covered. These

~ heuristics act to create very complex multi-variable relationships that can be buikt up one

fact at a time. Fuzzy Associative Memory (FAM), is a processing model that integrates

fuzzy theory with neural networks and can be used to store the entire set of the weight

- matrixes for all covered situations.

True machine learning however, that occurs by applying a rigorous mathematical

| approach is the domain of a technique called Artificial Neural Networks. It is the learning

ability that makes ANN very atractive for various process control applications.

233 Artiﬁcial Neural Networks |

Artificial neural networks (ANN) are a modeling approach based on the exact way
that information is processed within the brain. A neural network consists of processing
elements (PE), called neurons or nodes, érouped into layers, with weighted connections
between the elements in eéqh layer. Each PE in an ANN receives signals from all its mput

connections, performs a mathematical operation, and produces a single output value. The

described processing paradigm is also referred as a Connéctionist model, highlighting the

structure of highly interconnected processing units (see Figure 4). -

15

Inputs Outputs

1

Figure 4: Connectionist model with a singie hidden layer

In a broad sense, an ANN consists of three principle elements[19]:l |
1. Topology - a structure and connections of ANN layers
2. Learning or Training - a way to store information in an ANN
3. Recall or Testing - a way to retﬁev‘e'informa'tion from an ANN

The first step in applying an ANN is to select a network architecture that
encompasses the requirements of an application. The topology of an ANN refers to the
architecture into which neurons are arranged and connected. The layers of neurons and
| the connections made between them are two of the mosf importhnt characteristics that
define a network’s architecture. Both the number of layefs ;nd the »size of each layer canl
be varied. The number of PEs in each layer is arbitrary and difficult to specify when
designing networks. It is a function of the form of input and output data, and the type and

complexity of the processing task.

16

Leaming or training‘an ANN is the process of obtaining a desired response by
changing the connecting weights." The backpropagation learning algorithm is one of the
most utilized methods in supervised leamipg. This approach is based on computing the
necessary changes in connection weights to gain desired behavior. The iﬁput data along
with the desired output vector are presented to the network, the obtained response is
compared to the targeted one and then the weights are changed in ‘the direction of
decreasing error. Two arbitrarily selected ANN parameters, a Leamning coefficient an&
Momentum, guide the searching algorithm through numerous iteraﬁons. The leaming
coefficient and momentum are used to allow the present network error and the previous
weight change to Mumce the weight change in the current iteration. The learning phas_e
is over when the output error' becomes less than a predefined value, usually 5% [20,21]. -
Once leaming is completed, the ANN eimply acts as a “black-box” to provide immediate
and quick input/Output mappings.

Artificial Negral Net§verks are very beneficial tools for real-time process control
problems. They can be implemented at different levels and provide numerous tasks for '
direct process control, such as pettem matching and noise remdvaL |

In this work, an ANN fechnique has not yet been considered. The learning
capability, that is a big advantage of ANN in an off-line mode, becomes a drawback when
performing in a real-tinie environmeni, since it is inherently slow and mathematically
intensive. However, the sﬁﬁcture of our CI module has been designed to allow for future

incorporation of ANN methods should the speed issue be resolved.

17

Holographic Neural Networks [22] may be the key to real-time learhing issues in
the future. The network structure is not based on the connectionist model and the leaminé
algorithm is n-c;t executed in an iterative fashion. The holographic n?twork consigts of a
single neuron which contains complete information about the Input/Output mappings. The
search for an appropriate mapping is berformed using complex nﬁmbers. The ‘entire mput
data sets and targeted outputs are presented to the network at one tlme ‘The learning
process is reduced to a single iteration, i.e. calculation of the complex elements of the

Input/Output matrix is accomplished in seconds. The network precision is at least equal to

 that obtained by the connectionist model.

2.3.4 Genetic Algorithms
A third methodology evolving out of the Al field is called Genetic Algorithms
(GA). These techniques are used to look for an optimal solution to large industrial multi-

variable problems. In the case of this work, GA could be used as a method to adapt fuzzy

‘set definitions in an FAM or link-weight values in an ANN in an optimal fashion.

GA transfomi a set of individual objects, called a population, into a new set (new
population or next generation) using operations based on the Darwinian 'principle of
survival of the fittest and natural genetic recombination. An object’s characteristics are
mapped into a fixed-length charactér string (chromdsome) associated with the fitness
value, i.e. objective function. The optimization is achieved by evolving, via mating two
“good” input strings (parents) at a time and generating a new string with better

characteristics than either parent [23]. The following steps are utilized in GA:

18

1.. map object characteristics into binary strings and define an objective function to

depict each object of the population,

2. mate two “good” objects of the population using a number of cross-over

transformations and mutations, |

3. evaluate the outcoming oﬁ"spring and replace one of the parents,

4. continue the process until the objective function is maximized or mmlmlzed

Genetic Algorithms have become very popular methods in designing control
systems where the inputs and set up values can change significantly during the operation.
GA provide the optimum output space for such changes. However, in developmg the
intelligent SCADA system for billet casting it was not found necessary to apply Genetic
Algorithms at this stage. 'The'method can be added to the CI module, if there is a

requirement in future work.

2.4 Integration of AI with Process Control

In the last decade there has been an expanding interest in utilizing Artificial
Intelligence techniques in every engineering domain. In Process Coﬁtrol, AI methods can
be encounteredAin almost every step of the analysis of processes and the design and»
implementation of control algorithms: straight advisory systems for designers and
operators (off-line applications), diagnosis and supervisory systems (on-line applications),
and direct control (r§al-time applications). However, the real-time environment adds extra

requirements to the problems arising when using Al in process control.

19

The necessity for analytical representation of a process that must be controlled has

driven research into fields such as process modeling, system identification, parameter

.estimation, etc. In cases where a process cannot be depicted by a linear model and the

control requirements are not translated to straight criteria, analytical solutions are
extremel& difficult to find (if not impossible), and design becomes é numerical optimization
problem. People have approached this type of problem by applying model-based predictive
methods in which the design procedure i§ embedded into the‘ prédiction of the procéss
output over a certain prediction horizon, based on a model of the proceés or on time-series
analysis of input and output signals.

In cases where a mgthematical model of the process is not available, the control
logic must be based on qualitative expressions and experience ‘of people.working with the
process. Acﬁoné caﬁ be performed either as “the result of evaluating rules or as
unconscibus actions based on presented pfocess behavior after a .leaming phase” [24]. It
provides the opportunity to " use experience collected from operators and process
engineers. Uncertainty about the knowledge can be handled as well as ignorance about the
structure of the system. In tlns approach, the attributes of conventional cpnti'ol theory.
(such as frequency response, complex domain, stability, system identification, .
cpntrollability, étc.) are not iSSués. People who confront difficulties in describing a process
mathematically, are eager to apply Al methods, because the experience obtained from
running a real process can be implemented regardless of whether the system is linear, non-

linear, time-variant, etc.

20

In analyzing computer control of an industrial process, several levels can be
delineated: Level 0 - Process Instrumentation, Level 1 - Dlrect controL Level 2 -
Supervisory control, Level 3 - Plant-Wide control, and Level 4 - Enterprise as depicted in

Figure 5.

ENTERPRISE

(PLANT WIDE '
(SUPERVISORY comox.'
(DIRECT CONTROL '
(PROCESS INSTRUMENTATION '
l PROCESS - ‘ .

Figure 5: Control System Hierarchy

At the lowest level, instruments sense, mqnitor, and manipulate process variables.
Such deﬁces are connected to control units capable of implementing control strategy.
These units consist of single-loop controllers, Programmable Logic Controllers (PLC's),
or Distributed Control Systems (DDS), each of which hay apply some combinatiop of
sequential or continpous-time cohtrol logic. The process of collecting, presenting, and
managing sensor data is based on numerical methods. At this level, a control system
responds to éxtema_l events extremely fast, carrying out several activities simultaneously.
Such a systeﬁ: must operate on a computer under a real-time mmititasking opaaﬁng
system to provide such speed. |

A real-time system can be considered:

An integrated cémputer .sjstem that responds fast emgh to the interrupting

- external events to provide accurate and fast control (or aIarrh) action.

21

Usually, systems w1th responses of 10 ms to perhaps, a few seconds are considered
feal-ﬁme depending on the process and/or circumstances.

At the next level is the supervisory cent;rol computer. This computer is connected
to the primary eontrol devices by network communication. The supervisory host maintains
applications and databases that sit above the dxrect control function. Like a eupervisor, the
system gathers relevant information from the lower levels at relatively slow rates. The
operating mode can be called "pseudo” real-time defined as:

An integrated computer system that responds 'fairly’ fast to external mterrupts
and carries out a control action at the speed of several seconds up to perhaps one
minute. |

Similar to a real-time system, "pseudo” real-time provides fast and accurate control
signals, but in a different ﬁme domain. Obviously, both definitions are contexbdependent.

In many plant environments, the supervisory computer is connected by another
communication path to a plant-w1de computer system that maintains the business and
overall manufacturing aspects of the plant. Finally, this plant-wide system can be
connected to a corporate computing system that runs the corporate-wide apphcatlens.
Neither of these two levels need be real-time or "pseudo” real-txme envu'onments

Al techmques have been extens:vely applied in process monitoring and control
systems. In the paper “Artificial Intelhgence and Feedback Control” Verbruggen and
Astrom discussed the different domains and levels in applying Al techniques in process :
control [25,26]. They proposed separatlon of a control system into algorithms and logic,

possibly in a hierarchical structure. For direct Real-Time Expert Control they suggest

22 -

Mm of the knowledge base iqto structural and numerical knowledge. Some other
authors also support multi-layered structure in an intelligent control concept, integrating
various methods of information processing like symbolic AI methods and neural networks
for basic mathematical computatioﬁs [27,28].

The progrgssive reasém'ng theory was proposed by Lattimer- [29], where
reasoning. is dﬁdded vinto several levels. Each new part of a rule goes into more detail
about the subject. This methodology is considered as progressive deepenmg When a rule
base has been evaluated and there is still time left, anbther deeper rule is estimated in order
to try to produce a better conclusion.

Work done by Wickramarachchi et al., 1995 [30] utilized a hierarchical ‘structure
for fuzzy control in a fish processing application. Lukas et al, 1989 in the paper
“Evolution of Expert Systems for Real-Time Process Management” [31], introduced the
concept of an embedded expert system for interfacing with a real-time distributed data
acquisition and control system. The embedded Al c»oncept‘ also has been described by
Musliner et al, 1995 [32]. They offer the following three principle ways to combine Al
techniques and real-time into a single system: |

[1] embedding Al into a real-time system.

[2] embedding real-time reactions into an Al system, and

[3] coupling AT and real-time subsystems as parallel, cooperating components.

‘The mnjor'issue in applying Al techniques in red-ﬁme, or direct process control, is
that symbolic reasoning is relatively slow on machines designed for fast and efficient

numerical prdceséing (von-Nemhann machines). On one side, computers are capable of

23

very fast processing of complex numerical algorithms, while on the other, AI techniques‘. |

process symbols instead of numbers. As the number of symbols and their intexfelationsh_ips :

grow, the resulting complexity lends to poor tum-around time. -

The solution is to divide overall system tasks between those requiring numerical
algorithms and those based on heuristics and logic. But numerical préces#ing must support
the beginnings of symbol processing to provide intercommunication vbetween these

modules. In this way the numerical processor must acquire some “intelligence”.

2.5 The Concept of Computational Intelligence

Symbolic processing on conventional "von-Néumahn" type computers is
inherently nefficient because of the architectural design of the hardware. The Amhmetlc
Logic Unit, the héart of information processing in a microprocessor, is designed for binary
rﬁanipulation. A new design which dezﬂs with symbols instead of cnsp on/off -inputs, would
speed up Al techniques. However, the ha_rdware solution is not yet widely available and
people are turning to soﬁ:ware to overcome the speed issue. So how can Al be moved

effectively into an environment (real-time, dnect control, etc.) that demands intensive and

rapid numerical computing? The answer is found in a new paradigm e\}olving from the .

field of Al - Computational Intelligence.
Computational Intelligence (CI) is a term first coined by Bezdek in 1993 to

describe “low level” knowledge in the style of the mind [33]. CI consists of very

"primitive” concepts, in the Al sense, that support the beginnings of symbolic knowledge

24

which he called "tid-bits", These "elements" can become the inputs to an artificial
intelligence structure that pfocesses the @bols heuristically or in other ways. |

Primitives are the ﬁmdamentaﬂ processes conducted on numbers: addition,
subtraction, multiplication, division, and comparison. '

These make up the basic steps in any complicated numerical structure that produce
"elements” as output. Current hardware can deal with these complex numerical structures
in a efficient manner and so, CI can become the underlying support m@e for AI
methodolbgies. |

The components of CI may include Fuzzy Logic maps, Artificial Neural Network
’qonnections, or Genetic Algorithm optimizations, all of which use numerical methods to
support symbolic knowledge. .

Fast Fourier Transform (FFT) [34] and} Wavelets theory [35,36] are two types of
straight mathematical methods that are widely used in signal processing and can be
implemented in CI to support real-time Al applications. FFT is a fast algorithm for
' calculating Fourier coefficients in the discrete domain. The technique providevs a frequency
spectrum of a process signal and is primarily used‘to detect signal noise or process |
disturbances. The developed CI mo‘dule w111 include a FFT algorithm to analyze the
‘operating cqliditions ofa moﬁld oscillator.

However, a definition of CI that is limited to numerical techniques seems lacking in
that Computational Intelligence should not rely only on pure mathematics. Rules of thumb

"based on trial-and-error and other relevant inputs can emhance the search process to

25

provide symbolic output for the hlgher intelligence 1evel§. This could help to increase
" performance speed, even though gross error may be contained in the output. - |

To bring Al into the lower levels of the control hierarchy of a real-tirﬁe

environment, CI modules for creating "primitive" symbols must be very fast. By

implementing Al andll.1euristi<': approaches into CI modules, we introduce certain error, but

gain on speed. The key trade-off in real-time computing is always: accuracy versus
processing speed.

| Considering that error can derive from applying heuristics in CL it is proposed that

direct connection between CI and AI levels can assist with error detection and

interpretation at the Al level. The Al module can test symbolic output from cooperating

Sensors and"recognize, tune out or reduce such error (Figure 6).

Artificial Intelligence -
| Symbolic Intelligence '

Computational Intelligence

Figure 6: Error Detection in Al Correcting CI methods
Following an analogy from Bezdek, an individual given an apple can immediately
recognize it by shape and colour. With eyes closed however, other sensory inputs must be

used: touch, smell, taste. Smell and taste inputs will produce real-time decisions about an

apple, but touch and feel may require addiﬁonal processing to visualize in the mind the

shape and texture of an apple. The symbols of shape and texture must be recalled and

'compared wuh measurements that are less accurate than sight.

To assist Al in making rapid decisions intelligently, the CI xhodule needs the
following: »

o IF/THEN rules (inferences and relationships)

+ prior knowledge (to direct the CI process)

. symbolic "primitives” (output from CI module)

The approach resembles the hierarchy of human intelligence depicted in Figure 7.

Biochemical processing Electronic processing

lBiological Intelligence ' ‘ Artificial Intelligence'
| Symbolic Intelligence . Symbolic Intelligence

Fuzzy Logic
Genetic Algorithm
Neural Networks
FFTransforms
Wavelets Theory

y
| Computational Intelligence '

Figure 7: Comparison of Biological and Machine Intelligence

Biological Intelligence consists of manipulating symbols mlpponed by low-level
numerical processing to generate belief in a particular symbol This hierarchy .is mirrored in
the arrangement of AI with CI to form the basis for rapid problem-analysis. |

Within Biological lntelligence, the ability of autistic savants to carry out rapid and
accurate data calculation, muswal recall, etc., are examples of how the human brain can

perform unusually accurate real-time computatlon Whether output is mtelhgent or not is

27

determined byl those who interact wrth such exceptional people. Perhaps they use fuzzy
sets with very broad support characteiistics (see Figure 8) [37]. Such set definitions can
provide complex Input/Output mappings not ‘achiévable with “properly” deﬁned sets.
Unfortunately, the applicatibn of each individual set will produce rather useless output
(100% medium, 60% low, 20% high), etc. So, while savants may be able to tell the day of
ghe week for a parﬁcdar date, they rarely understand the signiﬁcance of the date in

question.

Normal Fuzzy Sets " Autistic" Fuzzy Sets
100 100 Medium
Lo Medium\ /High
of Belief of Belief Low\/ High
- - 0
Universe of Discourse Universe of Discourse

Figure 8: Normal and “Savant” Fuzzy Sets

This hierarchical intelligence concept has been selected in building the Al entity for
intelligent billet casting. The character of the application required separation of fast
numerical algorithms for data processing from the logic for real-time quality prediction.
The CI module performs fast and intelligent computation of sensory inputs and supports
the beginnings of Symbolic Processing at the higher level The filtering functions within
the CI module accomplish rapid feature extraction and apply heuristics to guide the search
process. |

The development of the CI module was one of the main tasks in this work together

with éonstruction of the Intelligent SCADA system for billet casting.

Chapter 3

Objectives of this work

An integrated computer system tﬁat utilizes Al techniques (Fuzzy Expert Systém
and Computational Intelligence) has been built for monitoring and on-line defect detection
in the continuous casting procéss. To create this sySteni, research worklvwas undertaken to
meet the following 6bjectives:

[1] define a computer platform, operating system, and development tool for

Supervisory Control And Data Acquisition that can be integrated into a control

Asystem for Continuous Casting of Steel Billets.

~ [2] define hardwarg requirements for data acquisition.

[3] create software for high speed data acquisition.

processing.

[5] build a real-time Expert System for oﬁ-line detection of transverse depression.
formation in steel bﬁlet& | |
[6] test thé data acquisition software, CI module and real-time bExpert ‘System at

several Canadian mini-mills to verify its performance and reliability.

' [4] create a Computational Intelligence (CI) module to sui;port symbolic
»

Chapter 4

Methodology

| 4.1 Descﬁpﬁon of tile Billet Cagﬁng ﬁocess

In the continuous casting of steel billets, molten steél is brought from the
steelmaking shop in refractory-lined ladles and di§charged into a vessel, called a tundish.
The tundish is used as a container for the liquid steel and helps to control the delivery of
liquid metal to the mould. Steel is poured from the tundish. through a noizle into a water-
cooled copper mould. The semi-solid md is continuaily pulled from the mould with the
help of a set of rotating pinch-rolls. Rotational or casting speed, is linked to the level of
molten ﬁaetal in the mould through a stfmdard PID control lqop. Changes in this 1eve1 ﬁ'om
its set position are reﬂectgd by changes in tﬁe casting speed. Metal level varies appreciably
when turbulent conditions exist from a “ropey” stream.

The mould osci]]n_tes up and down to help strip the newly formed solid shell from
the mould wall. Displacement is usually sinusoidal but when bsticking or binding occﬁrs,
these signals can become distorted. Mineral oil or powdered mould flux lubricates the
strand during casting. Lubricant behavior, whether oil or powder, is primarily linked to
heat transfer conditions prevalent at the time of casting. | |

Beneath the mould is a water spray system that cools the semi-solid strand. A |

torch is used to cut the cooled strand into desired lengths to make billets (see Figure 9).

SHEARZTORCH

Figure 9: Schematic diagram of Continuous Casting process

The stream of liquid metal must be straight and smooth. The stream condition
influences the behaviour of the metal level, also referred to as the meniscus. Many billet
defects originate at the meniscus and are caused by a “ropey” stream. The tendency is to
keep metal level position constant, and hence casting speed as well [38]; however changes
in flow rate can lead to fluctuating levels. The mould oscillation frequency, together with
displacement stroke and casting speed, are process parameters that must be monitored and
controlled during casting in order to prevent surface defects. Negative strip time is a
process variable that combines these three inputs to produce information about the relative
ratio between casting speed and mould velocity. It is defined as the duration when the
mould moves downward faster than the strand, i.e. casting speed. Uniform distribution of
mould strand lubricant and appropriate cooling water flow rate are additional requirements

in performing ideal casting .

31

The fdllowing variables are cﬁrrently‘ used by the research team at UBC in the
monitoring of continuous billet casting: |
- Metal level position - provides information about the current meniscus position. It can be
used for calculation of metal level standard‘deviation. Consecutive rise and drop in metal
level can produce defects in a billet. Metal ievel variation can be applied as an early
indicator of some quality problems [38].
- Casting speed - provides the current withdrawal speed. It can be applied on-line
calculation of negative strip time. Also, it is used for monitoriﬁg process upsets.
- Cooling water flow - gives the rate of current water flow. A reduction in water flow
during casting can cause a rise in mould temperature' and aﬁ’ect the heat transfef.
- Water temperature - provides the current temperatures in the copling water system. The
inlet and outlet water temperatures are measured during casting to allow direct calculation.
of heat transfer in the mould.
. - Mould temperature - gives essential information about moiﬂd-stfand interaction. These
measurements directly reflect the | behaviour of the billet shell. Usually, several
thermocouples are- placed on all foﬁr faces down the mould to provide key information
about billet defects. | |
- Mould displacement - this measurement supports understanding of the mechanical
aspects of mould behaviour during casting. It c#n be used fqr on-line calculation of
>0scillation frequency, displacement distortion and negative strip time.
- Stream quality - poor liquid metal stream quality has an important effect upon metal level

turbulence. More air is entrained by the ropier streams producing a turbulent metal level in

32

the mould. The research teaﬁl at UBC uses video, 35 mm photography, mould
- thermocouple measurements and metal level signal to monitor the effect of the stream

turbulence on mould te@ames |

The vtybical sensors and devices used in the process are:
- tachometer for casting speéd measuremént
- radioactive source coupled with a radioactive detector (metal level sensor) .
- mould thermocouples
- Linear Variable Displacement Transducers (LVDT), and
- single lbop PID coﬁtroller

To build an intelligent computer system for continuous casting, all of these sensors
and instruments mmst be connected to the system and observed during the operation.
There has to be appfopxiate hardware to support data collection. Correct declslons about
hardware platform, data acquisition board and SCADA system developmént tool, mnst be

made to achieve the proposed objectives.

4.2 Selection of Hardv;rare Platform and Software Devglopment Tool

'Procesﬁ control app]ications usually consist Of, several independent activities that
run simultaneously. Response tlme is very important and hexice the computer sysiem
involved in these applications nmst provide real-time multitasking _capabiliﬁes as defined in
Chapter 2. The character of the continuous casting application proﬁded fl_ie selectidn
criteria for a computer platform, an operatiqg system (OS) and the software dévelopment

toolL

33

The hardware design decisions were made based on the following criteria : -

o distributed réal-time multitasking capabilities |

. networkihg capabilities

o Intelligent SCADA system development tool

o price

- ease of use

In the case of real-time mmlti-tasking and networking, we need to examine these
proﬁerties as they relate to sélecting an overall operating system. Table 1 presents several
widely used OS. |

Table 1: Examined Opérating Systems

oS -~ Multi- Real-Time | Distributed | Networking

tasking ,
MS-DOS No No No No
Windows Yes No No No
Windows NT ‘Yes Yes Yes Yes
Windows 95 Yes Yes Yes Yes
0S/2 Yes Yes No No
0S/2 Warp Yes Yes Yes Yes
UNIX Yes No Yes Yes
QNX Yes Yes Yes Yes

The main respénsibility of an operating system is to manage a computer’s .
resources. All activities in the System - scheduling applicatim programs, wntmg files to
disk, sending data across a network, etc. - should function togeﬂm as seamlessly and
transparently as pbssible. Real-time appﬁcaﬁons depend on the OS to handle mmitiple
events within fixed time constraints. Hence, 'n_iultitask-ing, priority-driven pfeemptive

scheduling, and fast context-switching are essential elements of a real-time system. The

34

structure of such a system is based on a kemel, the heart of any OS, and a group of
coopefating processes. In a real-time OS the kernel should be very small and dedicated to
only two essential functions: meséage passing and scheduling. |

MS-DOS, the most'widély used @mt PC-based OS is definitely not appropﬁate
for these problems. RAM is limited and the architecture is purely serial in nature.

Windows is in fact, a Graphic User Interface overlaying MS-DOS with some
multi-tasking capabilities. Resource manageinent is not as rigorous as in a real-time OS.
Task scheduling is not priority-driven and preemptive. The elements of an ﬁppﬁcaﬁon can

" not be run on several personal computers simultaneously. Obviously, Windows is not
suitable for this type of appﬁcaﬁom ‘Howev.er, Microsoft has produced Windows NT and
Windows 95 for distributed, real-time, networking applications. They could be the right
decision for the “Smart” mould, when they bgcome widely available and used.

0S/2 Warp is also an operating system of choice. It has real-time networking
éapabilities. It can be distributed over several machines and can share their hardware
resources. It supports priority-driven preemptive scheduling. OS/2 Warp could be also the
right choice for the billet casting application, when it becomes widely accepted.

The most commercialized multitasking operating system for industrial applications
is UNIX. Even though the UNIX kernel was not designed for real-time applications, the
OS can be used'in real-time. The networking capabilities makes UNIX very attractive for -

 various applications. (| | |

QNX, ptoduced by Quantum Software Systems, is a truly distﬁbuted real-time

multitasking system designed for the PC platform. It supports all essential features of

35

.

modem real-time computing. Its modular structure allows an application to be gxecuted
dn several QNX nodes simultaneously. Considering the speed issue, QNX outperforms
aﬁy of the listed OS.

Several SCADA System bﬁilding tools were examined for use with the “Smart”
Mould application. The major criterion in selecting the development tool was availability
of Al techniques in supervisory control. Table 2 lists the tools widely accepted in industry.

Table 2: Exaﬁlh;ed SCADA Systems Development Tools

SCADA Development Tool OS and Hardware Platform Include Al
G2 from Gensym Windows;Unix; Work Stations; Yes
ProcessVision from Comdale QNX; PC Yes
Real Flex - Quantum Software QNX; PC No
InTouch from Wonderware Windows & Windows NT; PC No
Factory Link from US Date Windows(NT) and OS/2; PC No
FIX-DMACS from Intellution Windows; PC No

Although there are many SCADA system development soﬁwgrg on the market,
there are only a few that include AI teﬁhnology in sﬁpervisory control. G2 is one of the
most popular building tools with Al capabﬂiﬁes for UNIX platforms. G2 was originally
designed for process modeling and is.‘the best overall Graphic-modeling tool; for unique
MMI and Al methodsvit is hot as flexible, but prototype development using object blocks
is rapid. |

For personal computers, theré are many SCADA systems that run in Windows or
OS/Z; but they do not invoive inteil.igence‘ (seg Table 2). The Pro_cusVision »SCADA
development tool, pi'oduced by Comdale Technologies, surpasses this ﬁu@@tage; it

runs on a PC, under the QNX OS and contains a real-time fuzzy expert system

development shell. It is also widely used in industry [39,40,41,42,43].

| ' The cost of software and hardware are important considerations in this Qork as it

is desired to produce a system for distribution to indusfry. The price of the “Smaﬁ’? Mbuld
can be an mhibmng factor .in its implementation so the issue is one of low price versus loss
in flexibility.

PC-based systems are more widely accepted by industry not only because of price
but also due to the availability of trained personnel who accept the hardware without .
reservatioh.v

According to the above criteria the PC platform, along with the QNX OS and
ProcessVision building tool were selected in creating the “Smart Mould” system. |

| | Figure 10 describes the main parts of ProcessVision, indicating the mmlti-tasking

1 features of a real-time system.
\
\ Historical | | Database | | Event | | Trend || Process
Database Administrator Scheduler Administrator View
. Point Inference Alarm | | Message Expert
Database | :| Engine |: |Administrator Administrator View
Process Knowledge | | Explainer
Instrumentation Base Engine |:
Expert System
... Muhnes

Figure 10: Typical Configuration of ProcessVision
The high-level 'supervisory decision-making modules consist of the inference

engine, the knowledge base and the explainer module.

37

4.3 Selecting a Data Acquisition Board

QNX OS and ProcessVision provide dafa acquisition facilities over a computer’s
serial communication port. The sensor inputs can be éollected by some external data_
acquisition device or computer and passed directly to ProcessVision’s point database
through networking connections (see Figure 10). |

Aﬁemaﬁvely, a dedicated data acquisition board can be plugged into a computer
and used directly for fast and accurate data collection. A software driver is a necessity tb
run data acquisition tasks. A PfocessVision Utility called the Third Party Interface Library |
is used to support connection between the output from the datq acquisition program and
ProcessVision. | | |

The current éteel-plant instrumehtation does not provide enough sensory inputs for
creating a “Smart” Mould system. The IjBC research team uses ﬁmocowles located
around a mould to sense strand surface temperature.' To produce a stand-alone intelligent
system, a dedicated data acquisition board was necessary to record the mould |
thermocouple data. The networking connection to the external acquisition devices or a
computer is still available and can be used if necessary.

Several data ch1ﬁsiiion boards were considered: from straight high precision data
acquisition boafds (DAS 20 designed by Keithley Metrabyte) to Digital Signﬂ Prdcessing
boards wnh Iigtell 80486 microprocessor (DAP 3200e designed by Microstar

Laboratories) (see Table 3).

38

Table 3: Considered Data Acquisition Boards

The Board Characteristics DAS 20 DAP - 800/1 DAP - 3200e/101
Analog Inputs 16 8 16 '
Analog Inputs expandable to 128 32 512
Samples per second (x1000) 100 75 330
Selectable ranges 7 4 3
Digital Inputs 16 8 16
Analog Outputs (AO) 2 2 2
AOQ updates per second (x1000) 130 75 330
Digital Outputs 16 8 .16
Processor No 80C188 10 MHz | 80486SX 24 MHz
On-board OS ‘No DAPL DAPL
RAM (Kbytes) 2 256 4096
QNX low-level driver Yes No . No
Price $2259 $2206 $3945

The basic criteria for selecting DAS 20 was the availability of QNX software for

the board interface. Because of the availability of an existing QNX driver, this was the
fastest way to write the data acquisition and processing software to support a real-time
Expert System. Microstar Laboratories did not provide software support for a QNX OS

and their boards were relatively expensive. The big benefit for employiﬁg “intelligent”

boards would be the use of a dedicated processor.for data filtering, leaving the main CPU

for decision-making tasks. This maybe the best approach in the future if the necessary
software becomes available. However, using the multi-tasking capabilities and priorities

under QNX and/or its distributed networking: capabilities, the CPU time can be controlled

and used more efficiently even with the DAS 20 board.

39

4.4 Isolation Amplifiers '

In practice, sensbrs are located on and grounded through the process equipment.
On the contrary, the plug-in data acquiéition board is grounded through the computer.
These two ground points are not at exactly the same vdltage and the difference between

the ground voltages is included as an input signal (see Figure 11).

DAS20

, .

5 Tl Diferential

Vinput =Esi+ Vgl :

@ E:s Amplifier

S M— EVgl= Vsg-Veg---rmm-emer T oy

i Veg
__VSS_L % . @"—‘L Computer
= Sensor : = Ground

Ground ;

* Figure 11: The creation of a ground loop
The ground loop problem can be avoided using ﬂoaﬁng signai sources (not locally
connected to the ground). However, this solution was not applicable in this work,
because the drilled-in thermocouples are always grounded through the ﬁOuld, thus two

common grounds are formed.

Isolation

' i Veg .
= Sensor . v = Ground

Ground

Figure 12: Avoiding ground loop problems

40

To build a SCADA system that 'depends on correct axtd reliable process data,
signal speciﬁc isolatioﬁ amplifiers and isolated thermocouple converters were purchased
| and implemented in the “Smart” mould system. Th1s isolation system separates the plant
current circuit from SCADA, and hence completely prevents the ground looping
problem, as illustrated in Figure 12. In addition, this technique results in amplification of
the thermocouple signals so measurements are recorded in volts rather than milivolts,

providing better input resolution and more accurate data values.

4.5 Software development
Software development consisted of three phases:
1. Design and testiné of data acquisition driver
2. Design and testing of CI module - filtering functions |
| 3. Design and testing of the Expert System‘

4. Development of Man Machine Interface

4.5.1 SCADA driver

The data acquisition driver is a program developed in “C”, using the Watcom C
compiler for QNX environment. The driver collects.data from up to 16 analog inputs
from process sensors at a user-configurable sampling frequency. The design of the data
acquisition software was based on the Data Acquisition (DAS) Library for the DAS 20

board obtained from the QNX Bulletin Board on the Internet.

41

~ The .ﬁrs‘t step in creating the driver Was to build the DAS library and DAS
manager. This was an undocumented pfocedure and took several weeks to obtain a
correctly compiled version of the library. The ‘second step inchuded design of an algorithm
~ for data acquisition. The idea wés to read data from each active input channel‘ at the
desired sampling frequency over a specified time interval, sfofe tﬁe data in a 2-
dimensional table, perform calculatidns- over the collected data, and begin to read again,
- hence creating an infinite loop forA continﬁous data acquisition. The vﬁrst index in the data
table specifies the channel number, and the second one references the sampled variable.

‘'The DAS ZQ board has a 16-bit input buffer where the converted analog signal is
captured. The first four bits are reserved to define the inpﬁt gain r@ge (-50 +50 mV, O
+100 mV, -0.5 +0.5V, 0 +1V, -5 +5V, -10 +10V, 0 +10V) and the operating mode (16
single-ended or 8 differential inputs). The remaining 12 bits are reserQed for the
converted analog input [44].

To acquire sensor data, the DAS 20 board must be mmahzed and the channel
input range must be delineated properly. Initialization is completed by applying the
das_open function from the DAS library. This reads a default DAS conﬁguxaﬁon file,
sets the port address, the interrupt request, direct memory access channel, range control
(local = 0, remote = 1), operating mode (single ended or differential), pacer-clock
frequency, and A/D and D/A Vconverterv resolution (2 bytes). This function must bé
~ included in the driver code to control the operation of all other library functions. The

function das_ad_set_range sets the analog input voltage range, which must be applied

42

* before reading. Finally the function das_ad_sync performs a single synchronous Analog

to Digital conversion on a channel and is used for input readings [45].

At thé beginning of execution, the data acquisition program reads a configuration
file (a different one from the default DAS configuration file). This file contains
information about the settings for the input channels (input tang§, sensor type, activity,
number and types of applied filtering functions) and is stored ﬁnder the /usr/ 'd_irector'y

(see Appendix A). The configuration file also cbnfains common information about

sampling frequency (how often data is collected expressed in Hz), scanning interval,

trigger values, etc. If the configuration file is incorrect, suitable error messageé. are
displayed and the data acduisition program can not work properly.

After board initialization (das_open), the program uses das_ad_set_range ‘
function to establish proper cﬁmnel settings. Data collection is performed in a loop:
active input channels are polled consecutively using | das_ad_sync. The sampling
frequency is achieved by applying the delay QNX system function right after the final
sampled channel. This provides “sleeping” of the current QNX running task for a
calculated time interval expressed in ms, i.e. user specified frequency. Next, polling is
applied after the sampling delay. The data collection cycle is completed when the
configured scanning time is over. A 2-diniensional table is used for storing channel inputs

(see Table 4).

43 -

Table 4: Stored sensors input

Channel Sampled Points
0 1 6000
0 1014 1012 980
1 560 562 578
16 971 975 1100

After accomplishing data acquisition, the program creates a parallel process by

applying the fork system function. This new process performs the data filtering (CI) task.

In this case, multi-threading programming features were utilized. The main thread

continues onto a new acquisition cycle, while the processing task filters the previously

recorded inputs. When the data processing task finishes the filtering routine, it “kills”

itself The main program recreates the processing task each time it completes another

acquisition cycle. It is clear 'that the CI must complete data processing before the main

task finishes ﬁe current'acquisition cycle. Figure 13 depicts the applied multi-threading

technique.

Parent Process

Read Channel
Configuration

Child Process

(das_ad_set_range ' (CI module)
—-———"(from j=0to scan_time)
apply ﬁlteﬁng.ﬁmctionsj

if prev_flag==1 .
record in AI_table[i]{j]

else AI table_1[i][j]

(kill (child process))

1

if prev_flag=—10
| prev_flag=1
else prev_flag=—10

I
[create parallel child process

fork ()

if (child process)
call CI module
else next acquisition cycle

Figuré 13: Data Acquisition and Data Filtering tasks run in parallel

45

4.5.2. Design and testing of CI module - filtering functions |

The CI processing task receives pdinters to the data fable and sequentmlly filters
inputs from the different channels. The configuration file provides the essential information
about the functions that are to be performed on each designated input channel This
information is captured in an array of channel structures that constitute a global vaﬁable.
The program runs in a loop, completing each function one by one for the first, then the
second, etc., sampled channel, as illustrated in Figure 13. The number of filtering functions

is limited to 5 per channel, but> can be increased for future work. The CI module allows

‘new processing routines to be appended as they are created. Genetic Algorithms, Atificial

Neural Networks and FFT methods can be added to ﬁlter sensors data. The method to
append a new filtering function is described in Appendix B.

Each of the applied functions use the calibration routine to transfer the digital
presentation of analog inputs into actual values. At the end of data manipulation, the
results are passed to the ProcessVision point database using'the Third Party Interface
Library, mentioned previously in section 43. |

The currently available functions are:
average - calculates average(s) 6ver a speciﬁed number of points in the recorded data
table and feeds ProcessVision with this/these average(s) as key-word-triplet(s).
minmax - lpoks for mmnmxm and maximum values over ;ecorded data and passes two
values to the ProcessVision point datgbase as two key-word-triplets defined by a

developer.

storedata - stores collected dz;ta; expressed in volts, in a file. Filename is defined by a
user. |
calibration - this function converts input data expressedin volts to actual values.
comparé - this function coxhbines data from two input channels to calculate negative strip
time on-line. The function provideé two outputs: negative stnp time based on a
mathematical expression and negative strip time based on a comparison method.
.valley - this function is an éxample of shape recognition and feature extraction. The
function looks for "valley” shapes in thermocouple data. Up to 5 valleys in the data tabie
can be recognized and passed as 20 key-word-triplets to ProcessVision. The triplets -
passed for each “valley” are: temperature drop, base temperature, time of occurrénce, and -
vvall_ey span. The total number of detected drops is .also reported to the Expert System.
extreme - this routine calculates the first derivative over digital thermocouple data and
records all signal extremes and their types (minimum or maximum). The function searches
for “maximum-minimum-maxinmm™ patterns in the array of the extreme structures and
reports a “valley” shape to ProcessVision. Similar to the valley function, the triplet_s
passed for ea§h ‘valley” are: temperature drop,}base texhp'erature, time of occuii_ence, and
valley span. |

The CI routines average, minmﬁx, storedata, and calibration are quite straight
forward. However, the algorithms applied in compare, valley, and extreme finctions are

more complex and need to be explained in more detail.

47

4.5.2.1 Compare function

The comparé function requires inputs from two process sensors: Casting Speed
sensor (provided by the plant) and Lineai Variable Displacement Transducer (LVDT). The
received process data are first smoothed using a forward moving point average. The
| mould velocity profile is obtained from the mould displacement signal as a five-point-
derivative (difference between fifth and first point divided by tﬁe time interval between
these two points). Figures 14 - 16 presents the output from the compare function. Figure
14 displays the mould displacement obtained as 5-poh1t moving average from the LVDT
signal. Figure 15 illustrates the velocity proﬁle' procured from the mould displacement
table, as a 5-point derivative. Figure 16 shows the applied techmique for calcqlaﬁng :
| negative strip time. The sampled points for casting speed signal and mould velocity are
outlined.

The first zero-crossing from a positive to a negaﬁve value in the velocity profile
table is considered as the start point in the calculation (see Figure 16). The second
consecutive zéro-crqsging (from negative to positive) is referred to as the end of the
.calculation' (NST end point in Figure 16). The applied function compares mould velocity
and casting »speed, point by point, between these two limits. Whenever mould velocity is
less than négative- éasting spged a counter is incremented. When the calculation is
completed, the content of the counter decremented by 1 is muitiplied by the time interval
between two cWe points to provide the dynamic negative strip time. The negative :
strip time obtained by straight Qomparison between mould velocity and casting speed,

‘point by poinf, will be from point A2 to point A3 (Figure 16). This is a result of sampling

48

analog inputs and presenting them in point form. An extrapolation 't'echniqué is necessary
to get an accurate negative strip time, i.e. from point B1 to point B2. |

As well, the theoretical negative strip tlme (Eq. 4.1) is calculated within the same
ﬁmcﬁon for each data acquisitibn cycle. From‘the mould displacement table, the difference
between the up stroke and down stroke,- expressed in mm, is used in a mathematical
expression of negative strip time. The number of points between the same two consecutive
zero-crossings (from positive to négative value, or vice-verse; Start point minus B1 in
Figure 16), mmltiplied by the time interval between two consecutive points, produces the

mould oscillation frequency. The casting speed is applied in the formula as the avérage

speed over one second of data.
1 .1, Voo :
IN= = €08 (=") oo Eq. 4.1
N= 20 (nfS) , q

where V. is casting speed expressed in mnvs, f is oscillation frequency expressed

in Hz, and S is oscillation stroke expressed in mm.

'4.5.2.2 Valley function

This finction was the first attempt to recognize temperature drops in
thermocouple responses. Process data is filtered initially usi_ng a central moving pqint
average over one second. The raw thermocouple data sampled at 60 Hz is illustrated in
Figure 17, and the filtered trend in Figure 18. It can be noticed that the averaging method
éhiﬁs data and reduces the size of drops and peaks. Other algorithms can be applied fqr
more accurate ﬁlteﬁng, such as Savitzky-Golay method [46], but they are more

mathematically intensive. Our goal has been directed at minimizing computational delays.

49

v Auedwo)) ‘L9LccT#

19| ‘o8e10A8 Smaow ymod-¢ SmAojdumo reuBE JQAT oD 82.— poursiqo g-_g PO :p1 3mBig

(s) oumy,
€LT L LT 0LZ 69¢C 89T L9T wom S9¢C ' 4 £9C
...... a * . , a
wz.ﬁ ; zﬁ? :ﬁ .
|
............ k

50

: v Auedmo) : :
..sammfsmﬁ&uEﬁoaaéo%a%%E&.noaméiﬁo_?%oaee%%ooﬁﬁa..u.z

(s) owy,
€LT LT LT oLt 69C 897 L9t ooN. A 697 9 €9¢
Ly [: T
.M @
0t- £
_ o,
<
e
10 8
g
7~
-
&
(1) 4

4 v Awedmo) ‘Lo e 18I |
mo%a\ﬁo—.ﬁoa.nnn_u:ua_u&bmo%&og»ﬁq-:oﬁo..@—.o:&a.ﬁ.oa%oﬂ&.ﬁaﬁﬂm.—g"wﬁo.-..uw..-,

| | (s) suny,
€92 6Y9T 8P9T - LVYIT 99T YT YT €9 THIT Y97 9T

 (symm) poads Sunse)

(s/um) poadg Bunse) - (s/ww) ANOOPA PNON—0—

The shape recognition algorithm I.consists 6f prior-knowledge (window size and
threshold temperature drop) to direct the shape search, and a “window” technique to
locate a mmnmm and left and right maximums. Two‘ parameters guide the shape search
and are provided by the user: the threshold temperature drop, expressed in degree C, and
the probable “valley” span, expressed in seconds. As well, the span parameter can be
- updated in real-time by the Expert System, if the higher intelligencé level concludes that
the span is currently inappropriate. The delineated span is translated into the number of
points used to define the \vmdow” size The routine detects the minimum and maximmm
temperature within the window, and if their difference is greater than the threshold drop,
the minimum point is positioned into the centre of the window. Then the fimction
identifies the_ maximum values in the right and left half, and compares to the mmmmm
~ value. If both differences are'greater than the threshold, the function reports the “valley”
shape (see Figure 18). A span is calculated as the diﬁ‘erence in time between the right and
left maximums, the base temperature és the greater of the two maximum values,. and the
drop as the difference between base and minimum temperatures. The drop occurrence is
reported to guide the Expert System in its search for defects. When a drop is detected, the
window is moved to an adjacent position in the data table and the procedure is repeated
until the whole ﬁble has been ratiﬁed (see Figure 18). The function output for a speciﬁc

channel, passed to the ES is depicted in Table 5.

53

14

'q Awedmo) ‘cecy 189H ‘®1Bp MBI 8T OHL ‘LT 2m3ry

(5) aumy,
GL

ol

Sti

0zl

sel

0El
- St

ori

Ridd
¥4 ost

SSt

(Do) amyerdmay

54

popsw Mmopum,, ponddy :gy amBiy
(s) ouny,

oe 82 9z ve (44 (174 8 ol | 424t o 8 o 14 4 0

I g - 1 ozt
MopuA Ry | " | |

||:_E|m.m.o|8||4|._ -

MOPUI 1514

0D

3
ue
‘c€€ #389H ‘(Do) 819 DHL

55

dw

K

g 3
d

Table 5: The output from valley function

Keyword Triplet Value Degree of belief

TC1.t_drop.@f 40 1100
TC1.t_base.@f 138 100
TCl.t_span.@f 10 , 100
TCL.t_time.@f 9 100

4.5.2.5]S.Z»x'tren.re‘functvion

This function receives a pointer to the delineated channel and performs a forward
moving-point-average. If the data acquisition ﬁequency is 60 Hz, a 60-point moving
average will be calculated, for 20 Hz frequency - 20-points, and sob on. The first derivative
is obtained from the filtered data, based on a time interval of one second. Therefore, rhe
calculated first derivative mirrors every change in the trend in filtered data that takes place
over one second intervals. The raw thermocouple data sampled at 60 Hz is illustrated in
Figure 16, and the filtered and first derivative data are shown m Figure 19. |

The first derivative is obtained in point form and stored in a new data vector.
Searches for all zerr)s and zero-crossings in the derivative vector 1s accomplished to derive
information abour the filtered data local extremes. An array of structures is utilized to
keep records of all extreme locations, values and types (in this case minimum and
maximum). The program continue to search through the extreme array looking for the
consecutive extremes that create the “maximum-minimum-maximum™ pattern. Once the
match is found, the progi'anr reports a “valley” shape, if the valley drop is greater than the
threshold value provided by the user. Considering thermocouple precision and DAS 20

resolution, 5 °C is accepted as the overall system resolution. The keyword triplets

56

(S / Do) FATRALID ISIT]

o~ o 3 N ‘u". ‘}'8
<<§ &
\\\} Q % |
— |- /, :§
? |,
£ ’ -2 I
| >,
| P)

'8 8 ¢ $ 8 8 8 8 ¥

-

‘@ Awedwo) ‘cee# 189H (Do) 8194 OHL

descﬁbing each detected “valley” are passed to the ProcessVision point database in the

same manner as described in section 4.5.2.2.

4.5.3 Expert System development

The. feii-time quality contrtﬂ "Expert System for continuous billet casting was
developed at the Centre for Metallurgical Process Engineering, using the Comdale/C
development tool Cbmdale/C is an exp»ert Systems development shell for creaﬁng
supervisory coptrol modules within ProcessVision applications. It is an integral part of the
overall system. Communications between the billet castiﬁg Expert System and CI mMe |
is accomplished through the point database as depicted in Figure 20. The RAM-resident
point database acts as a mediqm where different real-time mpdnles exchange their '

information.

58

The research team at UBC has been working on in'tér'preﬁng patterns from sensor
responses taken from numerous field trials. conducted over the past 20 years. Specific
curve shapes from thermocouple (THC)' time responses (tetﬁperauue peaks, drops, etd.)
were found to be related to specific billet defects. At this point, these correlations make up
a part (;f the knowledge base for on-line detection of the following surface defects:
| bleeds/laps and depressions.

It was discovered that when ‘shccessive‘temperature drops and rises propagate
.‘down the mould during casting,. this indicates that some parficular defect has occﬁrred.
The ratio between temperature drop and the base temperature measured before the drop

. defines the significance of the dfop. The time interval between a drop and rise is also very
v1ta1 information. The relative drop and time span are two features extracted from thé
thermocouple responses that define the extent of the defeét created.

To predict bleeds/laps and >depressions, the knowledge base examines these
features. A data acquisition rate of 5-20 Hz is adequate to capture all important changes
related to these defects. The “pseudo” real-time Expert System is not designed to process

| input data intelligently at this rate. So, applying a CI module was a necessity.

The knowledge base is currently designed to trace 4 thermoéouple signals per face
to pre‘dict bleeds/laps and depressions. initiaﬂy, fhe Expert System looks for the “start”
flag, set up by the CI task at the end of the filtering process. When the “sfart” flag

' bgcomes 1, the ES counter is set to the number of reported drops in the ﬁrét THC
(THC1), and the ES checks thé first detected drop from THC1. Fuzzy logic is applied to

present the signiﬁcanée of the detected drop. The source in the fuzzy presentation is the

59

ratio between the temperature drop and base temperature, expressed in percentage. Figure

21 illustrates the shape of fuzzy membership function for temperature drop.

it

NAME | TEMP_DROP_SIGNIFICANT

SOURCE |Valleyl.temp_drop.@f { Valleyl.temp_base.@f
Value Rank

Comment

K-triplet. TC1.temperature_drop.significant
Ownby: 5 K-triplet(s)

Figure 21: Fuzzy set used for peeeenting significance of a temperature drop

When the first drop is depicted by .its significance value, the ES checks the output
from the second THC (THCZ). The same drop has to be seen at the THC2 to increase the
degree of belief that a certain bi]letv defect will occur. Equation 4.2 presents the applied

formula to express the degree of belief for the predicted defect.

CONCLUSION=

(CERTAINTY (TCl.temperature_drop.significant) * 0.60 +
CERTAINTY (TC2.temperature_drop.significant) * 0.15 +
CERTAINTY (TC3.temperature_drop.significant) * 0.15 +

CERTAINTY (TC4.temperature_drop.significant) * 0.10)cccuveenne. Eq. 4.2

60

The applied weights in equation Eg. 4.2 (0.60, 0.15, 0.15, and 0.10) are derived
from the billet casting experts.' An ANN or Genetic Algorithm can be employed to define
these coefficients, based on recorded process data that reflects the real defects, in future
revisions of the “Smart” Mould.

If the position of the drop. reported at THC2, is w1thm certain time boundaries, -
aeﬁned as (position_of THCI - position_of THC2) [ﬁm] / casting speed [mmy/s] + 0.5 *
THC1_spanl, the drop is considered as the same one seen at THC1. The search continues
on gntﬂ the outputs from all four THC are rectified. The counter is decreased every time a
search routine is completed forb a delineated vdrop. When the ES counter becomes equal to
0, the ES provides a list of detected defects along with degrees of belief, through the
ExpertView module.‘Ifthe system concludes that some of the drop searches can not be
completed, because the drop detected at the first THC, did nbf have time to 5ppear at the |
next thermocduple, the ES saves the neceSsary information in a data file, records the
search status »as incomplete, and after the next acquisition cycle, starts the search
procedure from thermocouple number 2. Figure 22 presents a typical rule ﬁsed in the ES

to describe a valley that propagates down the mould.

Rule
@name=TC1
IF TRUE

THEN Valleyl temp_drop.@float = Thermocouplel_drop1.drop_size.@float
THEN Valleyl.temp_span.@float = Thermocouplel _drop1.span_size.@float
THEN Valleyl temp_base.@float = Thermooouplel_drop1.base_temp.@float
THEN Valleyl.position. @float = Thermocouplel_drop1.position. @float
THEN valley_span.avg_value.@float = Valleyl.temp_span.@float
THEN FIND ("TC1 .temperature_drop.significant”)
THEN time_range.avg_val @float = Thermocouplel _drop 1 position. @float + (Thermocouple2.location. @float -
Thermocouplel. lowt.lm@ﬂoat)/ casting speed. @float
THEN time_range.min_val @float =time _range.avg_val.@float - 0.5 * Thermocouplel_ drqal span_size.@float
THEN time_range.max_val @float =time_range.avg_val.@float + 0.5 * Thermocouplel_drop1.span_size.@float
THEN TCl.rule_examined variable is TRUE
THEN FREERULE ($Rule, "time_range *")
THEN MACRO ("time_range *")
" THEN MACRO ("check_time range”)

endRule . . .
Figure 22: The rule applied for tracing the THC drops

61

mailto:_span.@fl.oat

4.5.4. Design of the Man Machine Interface
The continuous casting application was initially desigﬁed by creating the
| configuration files needed by the ‘individual ProcessVision (PV) modules (see Figure 10).
Each module within PV which uses dgta, upon request for data values or upon writing of
data values to the point database, causes these items to be éreated and to be an integral
part of the overall system. This data, assigned to a unique key-word-triplet, is then
accessible to any other module that needs it. A éet of process graphics was designed to
describe the process and reflect real-time data as it changes in the physical process. A viéw
of the current state of a process is provided by the modules contained within the Process
- Interface. PV holds information in sho.rt-term meniory that repreSents the current state of
the process and/or histprical data to allow real-time trend analysis. |
| The configuration files typically include detaﬂs of the fdllowiﬂg process
paraméters:
-Alarm Monitoring of process conditions.
-Graphic display of process conditions.
-Scheduling of tiﬁe dependent events such as data logging and scheduled process
checks. | | |
-Application Message Class definition for warning message filtering.
-Definition of Control strategy. |
-Explanation of Control stra;egy.
Each module is instructed in its role in the execution of the application thrdugh the

development of the system configuration files.

62

The minimum number of module.§ for any application is four (4): cc_admin(to start
an épplicati(m and to monitor the health of all active modules), db_admin (for locating
data), pd_dbase (holds a snapshot of the current state of process variables at anytime),
mg_admin (manages messages generated by the system fo; the human operator). The
conﬁgufation files must be defined for each module used in an application except
cc_admin, db_admin, and pd_dbase modules [47]. |

| The Proces; View module is a windows-based graphical Man Machine Interface. It
allows the operators to interact with the process by displaying graphical representations of
process data. Thg Process View Editor is used to cqnﬁgure Process View groups (graphic
display windows). All Process View groups (files) have the extension .grp. Groups are
interconnected by specifying which group to Vdisplay when symbols and buttons are clicked
on by the user during execution of Process View.

The icon bar is used to access the different dynamic objects that are available to
the developer. Dynanﬁc objects can be designed to display active process data, change |
process data values vand access other functions and graphic screens. The dynamic objects
used for portraying active data are trends, meters, sliders, dmls, bars, and gauges. Buttons,
text objects, and symbol& designed by the develdper, are used for hnkmg different graphic
screens within the application. Moreover, the buttons are used to run the procedures.
within the ES, to set up search boundaries (Tuning Instructions from Figure 19) and

signals (start and stop flags for recording process data) for the CI processing functions.

63

Trends are applied to present dynamrcs of several process variables concurrently
| provrdmg better understanding of the complex relationship among casting speed, metal
level, negative strip time, mould dlsplacement and thermocouple signals.
| PrecessVision also includes a Hypertext development toolL The continuous casting
hypertext is a vrtal part of the application artd contains necessary information about the
*billet casting process. It is an electronic book with delineated “hot” text and image objects
that open a new page or provide a short-description of the speciﬁed topics. |
Data recorded during one of the last plant trials, were used for creating a demo
version or sinmlatien ‘of the continuous casting process. The data acquiSition program
reads channel inputs from files whrch stored the originel data, inetead of from the DAS 20
board. It creates the data proceesing task (CI module), and the CI rnodule pesses filtered
~ data to thek PV application. The MMI output from the demo version is presented in
Figures 23 - 26. |
The application starts with the screen | illustrated 'in Figure 23. It presents all
lcompon'ents of the billet casting process. The process is drvrded into 5 segments: tundish,
| mould, spray zone, pinch-rolls and shear/torch zone. The specific part of the process can
be accessed by positioning and clicking on the button assigned to this component. To
initiate the ES search for billet defects, the button “Check bleeds/laps & depressions” has
to be applied. The Hypertext document .can be accessed by clicking on “Deecripﬁon”
button. The process trends can be opened by pressing the “Trend” button.

Figure 24 depicts four simultaneous process trends. Trend 1 is the thermocouple

above the meniscus. It portrays the metal level position at the delineated face. Trend 2

gives the metal level signal obtained from the plant sensor, blottéd from the bottom of the
mould. Trend 3 represents the casting speed and mirrors the metalllevél signal. Trend 4
illustrates the calculated negativé strip time. , |
Figure 25 consists of several opened windows, each éf which outline a different
aspect of the prodess. The HyperDisplay screen is an integrated part of the application-and
provides concise information about the billet casting process. A novice operator can click
on the hot text or objects on the hypertext window to obtain necessary information related |
“to running the process or particular maintenance issues. |

Figure 26 presents the calculated ty based on equation Eq. 4.1, and the actual

casting speed and mould velocity proﬁle. :

5%

>
7

i

i
S5
G

R

e

Introductory screen

“Smart Mould”

ure 23:

Fig

66

14:05:38

Figure 24: The four process trends: THC above meniscus, Metal Level, Casting Speed

and Negative Strip Time

67

3

Continuous Cast:

Continuous Casting

{Mold

Tundish
Negative Strip Time

Mold maintenance

—cc_1] cc_ExecuteBatch: ading [controller
cC

\
|
[cc.1] co_ExecuteBatch: NOTIFICATION - Loading [controller]... |
[Ttd 1] meniscus.position i.9F 803584499 803564613 5 td_GetLogData: Ho
[td 1] meniscus.position i.@f 903584579 803584609 5 td_GetLogData: Ho 1)
NUNBER OF VALLEYS DETECTED = 1 _ 3 |
TINE is 14753308.00 ~ |
BELIEF is 86 O ‘
SPAN 15 10.37
|
|
|
|
|
\
|

Figure 25: “Smart Mould” application with opened ExpertView, ProcessView and

Hypertext modules

68

Figure 26: Negative Strip Time trend

69

| Chapter 5

Results and Discussion

5.1 Experimental Procedure

The developed Supervisory Control and Data Acquisiﬁoﬁ System for continuous
cdsl:ing of steel billets has been implemented and tested at two Canadian steel nnm mills.
The trials were conducted to test the SCADA system hardware components, their |
performance in an industrial environment, and software robustness and correctness under
plant operating conditions. The software evaluation was divided into three steps: |

. Testiﬁg the précision of data acquisition.

« Testing the correctness of applied filtering algorithms.

« Testing the truth of the applied logic and predictions made within the péeudo

real-time Expért System. |

To test the SCADA ‘sy'stem, sensor data was collected using two parallel Data
Acquisition Systems. The original UBC acquisition system, consisting of DAS-8 board
and 8 expandable boards (EXP-16), recorded data in parallel with the SCADA system,
using a commercial software package called “Labtech Notebook for Windows”. Data was
stored in a file so that at a later time, data manipulation was avaﬂable fo check the output
from the CI module. The hardware configuration of the two systems working in parallel is

depicted in Figure 27.

70

SCADA ORIGINAL

SYSTEM UBC
(DAS 20) DA SYSTEM
- (DAS)
y Y
— ovreur i
Volts
ISOLATION DATA ACQUISITION
AMPLIFIERS SYSTEM
(M-SYSTEM) :
CSp. ¥ ' t
ML |
LVDT
THERMOCOUPLE
INPUTS inmV

Figure 27: Hardware configuration for simultaneous data acquisition

During the_ﬁrst plant trial, the UBC acquisition system acquired data at 60 Hz for
nine sensors that included casting speed, metal level, LVDT and six mould thermocouples.
The SCADA system sampled data at 200 Hz for casting speed, metal level, LVDT and at
60 Hz for the six selected thermocouples. Thermocouples were located on the south side
of the mould at the following positions: 210, 235, 260, 290, 320 and 420 mm from the top
of the mould. The casting speed and metal level signals were used for on-line calculation
.of oegative strip tnne The thennocouple inputs were applied to on-line detection of billet

defects, such as bleeds, laps and transverse depressions.

71

‘The continuous casting process was monitored for four heats that used powder for
mould lubxicatidli. The data was recorded along with the output from the SCADA System
and CI module. Also, billets were inspected to correlate SCADA results with actual
defects.

The second plant trial was conducted to map the prediction from the ES to real
surface defects and to tune the fuzzy sets defined to describe belief in a significant surface
depression. Again, the UBC écquisition system collected data in parallel in order to justify
the SCADA readings. Afterwards data analysis from the first plant trial led to the
conclusion that a 60 Hz sampling frequency for the LVDT, casting speed, and metal level
signal, and 20 Hz for thermocoﬁple sensors were adequate. The SCADA outputs were
presented on the screen as trends, in order to establish correlation with visual observations
of metal level and casting speed changes, as well as surface defects. ”fhe system Was_ used
for monitoring several powder and oil heats. Predictions derived from the ES were
recorded for 3 oil heats and the corresponding billets were inspected and measured to
confirm the ES predictions.

The hardware components of the SCADA system (plug-in DAS 20 board and
isolation amplifiers) worked sétisfactoﬁly in the plant environment. The o&erall system,
(data acquisition driver, the CI module, pseudo real-time ES and PV appﬁcation), ran for
several heats continuously, without any failure. Data 'ac.quisition software was accurate
and robust. The collected data set mirrored the parallel oné gathered by the Labtech
Notebook for Windowsbsoﬁware system. Output from the CI module, presented as trend§

within ProcessVision, was accurate and corresponded very well to the visual observations.

72

The thermocouple data collected by the SCADA along with the isolation
amplifiers, did not contain any irregularities. In absence of the isolation amplifiers
thermocouple éignals exhibited sudden and unpredicted maximum negative values (due to
probable floating ground effects). Thus, isolation amplifiers must be used for the all

sensors in the “Smart” Mould.

‘5.2 Data aéquisition software

The applied polling method in the data acquisition program along with the delay
QNX system function defines the upper limit for sampling frequency per number of
channels being read.

- In the multi-tasking environmeﬁt, whenever a particular task is in a “sleep” mode - '
(discussed in section 4.5.1), it does not consume CPU time; the other tasks share the
microprocessor time. When the specified time de_lay is over, the “sléeping” task is rea&y to
use the CPU time; The task acquﬁe§ CPU resources within one tick. Ticks are system
timer interrupts used only for software timers. If the QNX tick size is set to 0.5 mS (the
minimum value), the total delay time m mS will be: specified delay + 0.5 [mS]

At the beginning of each acquisition cycle the prégram reads the first active
channel one thousand times, to establish the necessary time for a single reaciing. This time
- depend§ bon hardware configuration and on how busy the system resources are. Usnally,
this single reading takes around 0. 132 mS. This ﬁgﬁre is multiplied by the total number of
active channeis and is then added to specified delay + 0.5 [mS], to get the real sampling

time. The data acquisition program accepts a user defined sﬁmpling frequency from the

73

eonﬁguration file, and calculates specified_delay in a way to obtained the eorrect
acquisition rate.

The data acquisition program necords the beginning- of each acquisition cycle. At
the end of each polling procedure, the beginning time is cornpared to the current time. If
the time difference is greater than the user specified scanning interval, the acquisition cycle
is abandoned. The program calculates the real sampling interval (i.e. frequency) based on
the recorded time difference divided by the number of sampled points. The actual scanning
interval may differ from the desired one by several mS up to 40 mS.

Figure 28 presents the maximum available sampling frequency based on number of
input channels, for a 486-DX2, 66 MHz microprocessor. As shown, the designed
handware/soﬁware cembination is able te provide extremely rapid sampling rates (between

270 and 600 Hz) depending on the number of inpnt channels being used.

5.3 Results from Negative Strip Time calculation

The CI output for trend presentation- is calculated and updated every éecond, by
applying suitable filtering ﬁlnctions. .The trend update interval is limited to 1 second by the
ProcessVision development tool. The data acqinéition task reads the input channels for 1
second at 60 Hz (or 100 Hz), creates the processing task, and then ﬁe processing'tasl.c
sequentially filters data and passes on the corresponding keyword-triplet values to the
associated trends within ProcessVision._ Trends are nvailable for. metal level signal, casting
speed, LVDT maximum and minimum position, negative strip time (ty) and thermocouple

temperatures, located above and below the meniscus. The output from the negative strip

74

. : u_mao—w_.auoa.u_ogos&_—.« Bnazzaaaoﬂseomaogggng :gz amdy
o_o..:.z.ua nduj jo joqunN -

R
~

8

oLe

75

/
/
I

/
g
sandwiod ZHW 99 ZXQ

o
&

8

-98y 103 (zH) Aouenbey Sujdwes wnuyxew

time calcﬁlation is also saved to a data file, along with average casting speed and LVDTl
maximum and minimum values. This file was used later to analyze the ty calculation.

Figures 29 - 33 present the output from the negative stnp time calculation for data
collected at 60 Hz, during the first plant trial conducted in November 1994. The observed
heat was cast with powder lubricants and the set-up values for casting speed, oscillation
frequency and stroke length were 40 inches/min (around 17 Ws), 160 cpm (2.67 Hz),
and 8 mm, respectively. | |

Figufe 29 portrays the changes in minimum and maximum values in the LVDT
signal, over 10 minutes of casting conditions. As can be seen over the interval from 250 to
350 seconds, the displacement signal becomes erratic at two distinct time periods. These
are rather instantaneous changes, and perhaps, result from mould-strand interaction
(sticking or i)hldjng problems) or due to some external 6sci]1afor upseté. These unexbected
changes are reflected in fhe negative’strip time calculation shown in Figure 30. The |
variation of ty is very impdrtant for the billet quality and is examined in parallel studies.

Figure 30 displays the influence of mould displacement changes on negative strip
- time and also portrays the difference in the two methods applied to calculate t discussed
in section 4.5.2.1. It can be seen that thé 5-point-derivative method is more sensitive to
stroke length changes than that dgrived from the standard mathematical equation (Eq.
4.1). The 5-point-derivative method is more accurate because it dpes not assume a
consistent sinusoidal displacement signal; it tends fo st.ress‘the influence of abrupt changes
in mould displacement. Either calculation can provide instantaneous ty values and can be

used to monitor oscillator behaviour, stroke and billet quality, however the 5-point

76

deriyative method clearly provides a more sensitive and accurate representation of the
" “true‘”. tn value.. | |

Figure 31 presents the czvtstingvspeed Signai together with output from the two ty
calculations. It is clear, that over thlS fime interval, the castiﬁg spéed &oes not vary much |
and so does nbt influence changes in tv. The changes in the negative strip time mirrors
variations in the mould vdisplacer‘nent signal. 7

Figure 32 ﬂluétrateé thé influence of casting speed on the negative strip time ovef
600 seconds (10 minutes) of casting conditions. It can be seen that casting sp_eed
continually décreased over 400 seconds and caused a graﬁual rise in fN. The steady decline
m casting speed was perhaps, é result of the decreaée in metal level (ferro-static press'ur‘e)v
in the tundish due to the startup of another strand.

Figure 33 presents the behavibur of the meniscﬁs and casting speed during this
time. It is obvious that the meniscus position did not change signiﬁcantly over this period.
The PID controller, used to regulate the césting speed to keep the méniscus position
steady, maintains constant metal level. | . |

An attempt ‘was made to derive vthe optimum sampling frequency and first
derivative for th‘ebL,VDT signal td obtain reliable negative strip time. | It is common sense to
have as high a sampling f;requency as possible to map most accurately an aﬁalog‘signal inté
a d1g1tal one. The first derivativé from such a signal would also be the most precise.
~ However, in.the plant environment, the higher the frequency, the more noisy will be the
~ signal received. According to Shannon’s sampling theorerﬁ [48], the sampling ﬁequency

“should be at least 2 times greater than the ﬁequéncy of variations in the sampled analog

'SPU0d3s OGE I8 PUB (GT 18 JOIARYR] ONLLId o) 2J0N 'V Auedwo) ‘L9/£€T# 189H
W UOTJEINp 3INURK § B 19A0 ([euSs LA T) uomsod 901s WNWIIXEW pue UINUIIN 9Y) W SUONBLIBA (67 331y

| ~ (s)ouny
009 00s oor 00€ 002 ol - .0

Y
[s2]
l

(urum) oxons umo(qpdn ur saduey)

78

-~
[}

(ww) m.v_o.aw umoq
- (ww) axon

1))
Q
2
-

€
q b
K e MY '
’ NP A A8, S e, x e o S Y, Voo T] U W 0 -
KOl D R e i e PR I M T i a RN
. ~ ' . v . N ’)

‘LoLEET# .
18oY ‘v Awedwmo)) ‘Ayqqeisur Jusmoseldstp Suump sum dugs sAnedsu wo yuswsoe[dstp pnow Jo sousnyuy Q€ N3y

| LSN 'WEN aaneauap-juiod-g ISN: - - - - - (UI) 30N} UMO o (UHUD) OIS Ao |
(s) s,
08¢ 0LE : 09¢ - 0S¢ 0pe 0ce 0t
[0
®
| = o
clo & .
3
5
e y10 ,m“
v @o
5 =
wn
~ 910 m
’ v
. g g
' ' A @]
. ;! Wm..
81°0 - i € —~
T & 4 Fa % ‘
] T e ,\3,‘ﬁgff\x%ﬁf«&%?&;sixs,u&g%%e?s\ng.?&é&iz;(»ol%% sé,mw M@»Z%x& ! .fvfye%%. »f/\\\&) O/g\: %%ff.&x.\n §3f£x} 313?3%.@&».1&&33.,, \ 1 fm\

o

(s/mm) poads Bumse)

LILEETH

189H ‘V »E.&Eoo ‘“Aymqeisur yuswoowdstp Suump swr dms saneSou uo paods Sunses jo soudnguy (jg amByy

| (3/urur) poods FUNTE D LSN [EOBEWSIEN——— ISN ggue.ai.m _

81

(s) aumy,
08¢ 0LE 09¢ 0S¢ e Og - oze
01 ‘ zro
o y1°0
910
810

o

(s) sun], ding sagedsN

—

80

LoLeea#
j8aY ‘Y Auedwio)) “Burises Jo spuosas (g9 10§ smn dus sanedou wo paads Junses Jo sowdnguy :7¢ 3mBg

- [[(o7um) poods Fumseo——— LSN FONEWEN—— LSN SAmEAep-muod-s. - - -]
(s) ump,
009 00S 00b o0f 00T 001 0
cl . _ cro
1 ’
|] v =
s . B
A vi m....m & : gl | m
. "s.-o. .-_ , m
. v ¥ sﬁ. ' M
[72] c.\ _, a. / (7]
§ o e kada e oro §
& Rk KN WETe A o
g N :
£ g ; | o =y
0c (A

(s/wom) paadg Bunse) |)

a o 0 V) < ~
o N — — — —
SIS
e S 53
LN
\'_.
(3
-4-“'.""
-10""$?°
*S%% %l
-""'\
PSS edindid ";.‘::.
= A%h oo
o0 O (e} o0
o O . O AN
p— — p— p— w—
(wrax) [9AT [RISN
82

300 400 500
Time (s)

200

100

|- - - - - Metal Level (mm) ===——Casting Speed (mm/s) |

Figure 33: Graph comparing casting speed and metal level signal for 600 seconds of casting; Company A, Heat
' #E33767 " '

signal. Since the mould oscillates in the range of 2 - 4 Hz, depending on operating
conditioﬁs, a sampling frequency of 9 Hz should be sufficient to reconstruct the mould
displacement signal. If some other signal at a higher frequency is superimposed on the
mould displacement, then. a higher sampling frequency is necessary to pick up such
oscillations and avoid aliasing [49]. Two analog signals with different frequencies may
have the same values at all sampling instants. Hence, the highér freqﬁency signal will be
retrieved as a signal with lower frequency, if the sampﬁng rate is not adequate. This
processing eﬁor is known as aliasing. |

During the second plant trial, negative strip time was calculated from 200 Hz
sampled LVDT and casting speed signals. Although, the 5-point-moving-average together
with 3-point and 5-point-derivative were applied, the negative strip time value jumped
between 0 and 0.2 s, eVery other acquisition cycle. When the sampling rate was reduced to
60 Hz, the calculated ty became reasonable and did not change in such an erratic fashion.
Using the higher acquisition ﬁéquency caused very irregular velocity proﬁles,v as derived
from the first derivatiQe from the LVDT signal, with numerous zero-crossings. ‘It is
certainly difficult to distinguished the right time interval for comparing casting speed and
mould yelocity, as discussed in section 4.5.2.1.

However, if a sampling frequency below 60 Hz is used this does not provide
enough information for the ty calculation Basgd on the mathematical equation. The '
oscillation stroke calculated as the difference between LVDT maximum and minimum
position, from 30 Hz sampled signal varied appreciably, élthough th.e‘actual analog signal

did not change. If the mould oscillates at 3 Hz and the LVDT signal is sampled at 30 Hz,

83

one full oscillation cycle is depicted by only 10 points. This is insufficient for accurate

calculation of oscillation stroke, frequency and hence ty.

. 5.4 Results from shape recognition functions

The first attempt to extract depression drops and spans from thermocouple time
responses was made by applying the valley filtering function, described in section 4.5.2.2.
The early stages of the “Smart” mould project has focused on on-line detection of surface
defects such as bleeds, laps and transverse depressions. The idea was to recognize up to 5
femperature drops over evefy 30 second sampling period, and to trace their positions in
time as they moved down the mould. The meaning of some patterns in thermocouple data
was uﬁclear. For example, the same drop can be considered as two sepafate depressions,
or as 6ne that superimposes two coupled depressions. This complicates the mathematical
methods used to describe the thermocouple responses. An ANN was considered as a tool
for feaﬁue extraction tﬁat can produce correct ouiput for similar and noisy data. However,
this would involve the tedious work of teaching an ANN nunierous inéut patterns, that
might be considered as depressions. As our manual approach to this pattern-recognition
problém was filled with consid_erable heuristics, an ANN approach was rejected at this
time.

To be successful, the outputs from the associated thermoc;)uples must be checked

in order to reach a conclusion about the probable defects. The ES must be applied to

analyze the output from several shape recognition modules.

84

The valley function was tested on.the tﬁérmocouple data, recorded at previous
plant triéls, at company C; for heats w1th real surface defects. The output from the
function was satisfactory; all major depressions were detected and processing time was
acceptable. Depending on the ratio between data acquisition time and sampling ﬁequehéy
(i.e. number of points that have to be processed), as well as‘-avaﬂabie computer resources,
the processing time variéd from 0.(_501-0.03 ‘of the acquisition time. The limiting factor in
the .valley function is the size of l;he window that slides over the data table. It was left up
to the user to define this parameter, based on the size of depressions being experienced. If
the window size is too big the function will add two depressions together and generate
incorrect output. If the size is too small, the function can not recognize the entire drop. A
tuning rule within the ES examines if the window size is inadequate, based on the
magnitude of the reported spans. If the spans are consistently close to the window size,
the ES will increase the window, and the next processing cycle will be accomplished.with
anew window parameter.

Figures 34 and 35 present the thermocouple data sampled at 1 Hz over 120
minutes. ‘Table-6 shows the function output for the data illustrated in Figures 34 and 35.
The first, second aﬁd th1rd columns give the positions of the left maximum, minimum and

. right maximum value, respectively, while the fourth and fifth present the span size of a
detected drop in seconds and the temperature drop in °C. It is apparent that each “big”

drop is detected, but small ones are disregarded. However, for the last twenty minutes of

data in Figure 35, the valley function generated incorrect output: obviously, there is no

85

straight drop of 9.7 °C and span of 12 seconds at this time. The function considered two
joined‘ drops as one. -

Table 6: Recognized drops by the valley function

The First Acquisition Cycle
left (s) min_position (s) right (s) Span (s) Temp_drop (°C)

0 0 7 7 20.12
51 56 63 12 24.18
63 68 72 9 12.82
72 19 85 13 ‘ 13.74
99 103 108 9 9.71

The Second Acquisition Cycle ‘

8 . 12 19 11 18.86

19 25 29 10 10.07
29 ‘ 36 42 13 ‘ 17.03
79 83 89 10 29.49
102 109 114 12 9.71

The extreme shape recognition function which was developed after the second
plant trial clarified that two joined depressions can cause two MMble defects on a -
billet. The research team examined a number of billets for which d&aﬂed temperature

' trends were recorded. Billet surface defects at midface (i.e. at the location position of the
thermo‘couple) were measured according to their distribution, position, and surface depth.
These measurements served as input to a 2-dimensional mouid heat-transfer model. The

vdepth and distﬁbution of biilet defect§ were translated into upsets in mouldheat ‘ﬂux,
assuming that the deepest depression represented about a 85% upset in. heat extraction.
Output from the model was obtained for several thermocouples located around and down
the._mould. Model output was plotted concurrently with real sensor data obtained during

casting, as depicted in Figure 36.

86

O. Auwedwo)) ‘1 c19q# 189H ‘o[04> uomsmboe 151y o ‘pmmom o Jo doj oy woy wrm {61 JHL PE ,o..._uw.—

(s) oumy,
ozl ol 00 06 08 OL 09 0 O O 0 O 0

0Ll
SL1

Q
(- -]
—
87

\
Vg
o0
oy

W
AN
—

‘\
)
(Do) omyeradway,

gf
>
\P
£
C\
C
<_—-
s
2
~
-
g8

<
&
C
=)
a

g4
144

') Auedwo) ‘1€19(# 189H ‘31942 wonrsmboe puooas oy ‘pmou a1 Jo doyop :5@.88 161 DHL i€ 9mS1g

_4 (s)sumy |
0z oIl 001 06 O8 OL 09 0S5 Or O 0T Ol 0

OLI
SLI
081

\4 _ - sl

\ B R B
[AW E— > - 00z
) | 50

0Z¢

88

(Do) 2amyeradwa],

Figure 36 shows.a ciear correlation between these trends - one for the model
temperature profile based on depression measurements and the second for the direct
measurements taken from the thefmocbuplé. The model output has the same géneral curve
shape as the real thermocouple-time response. The model assumes a constant casting
speed, although speed varies during casting. The analysis establishes a clear ;:orrelation

with existing defects on the billets, sensor data, and the mould heat-flux model.

Figure 37 presents the thermocouple 6utput_ from the mould model for the éntire
billet, with 45 measured depressidns. The curve shape is obviously very smooth. The
model output was run ﬁough the CI extreme function and the result is presented in
Table 7. The extreme function recognized every single valley m the thermocouple trend,
with e'xtremely‘precise spaxi size and temperatﬁre_ drop. The span size and temperature
drop calculated for each detected depression are illustrated in Figures 38 and 39.

The corresponding thermocouple data were manually examined by the ;esea:;ch
team, and drop locations, size and spans, were recorded in a spreadsheet. Then, sensor
data were run through the CI valley and extreme functions: the window parameter for
the valley function was tested at 10 and 15 seconds. Téble 8 provides the comparison‘
between these three cases. The extréme function detected all 45 depressions with correct
span sizes and droi)s, while the valley technique récognized only 24 and 20 depressions,
for 10 and 15 second window sizes, respectively. It is evident that the biggest depressions

are detected, but many small ones are disregarded.

89

06

'@ Awedmo) ‘cee 1e9H ‘pmowt oy Jo doy o wog wm ¢e¢ ‘ZZH DHL S 10 818D [OPOW PUE JOSTOS '9€ 2._“6

() oun

- 08 oL 09 (119 ov (113
7
A ..
.\ b P
I” I' I- .’
\ “. / P AN
[.-o \- -o :) .- -- .-
P R \/ \._/...

- 001

L a)
(=
—

SL
08

8

S
(=)}

vy
(=)

(Do) 9immodma L

o
—
—

ST1
0zl

14|

90

'@ Auedmo) ‘ce ey 189 “pmom o Jo doy o woy uny e ‘7ZH OHLL 9 107 I8 [PPOIN :LE dmB1g

91

(s) sumy,
obE O0T¢ 00t 08T 09T OF¥T 0T YSN 081 091 o1 0TI o001 08 09 or (174 0
_ SL
: <8

D
vy
[~}

(D) amerodma],

A; : so1

AW -

st

Table 7: Output from the extreme function from thermocouple data obtained from the mould model

Extreme : ‘
Depression | left (8) |L_max(°C) min_pos (s) | Min Temp(°C) | right (8) [R_max(°C)| Span(s) | Drop(°C)
1 18.00 123.90 23.60 103.01 26.80 | 11398 8.80 20.89
2 26.80 113.98 29.60 103.33 34.80 118.96 8.00 15.63
3 34.80 118.96 39.80 86.49 42.80 99.12 8.00 3247
4 42.80 99.12 45.20 87.19 49.60 109.91 6.80 22.72
5 49.60 109.91 52.00 102.77 57.00 117.65 7.40 14.838
6 57.00 117.6S 60.60 90.58 64.80 | 112.65 7.80 27.07
7 64.80 112.65 68.40 92.08 72.00 109.72 7.20 20.60
8 72.00 109.72 76.60 78.96 83.00 114.12 | 11.00 35.16
9 83.00 | 11412 85.40 101.41 .92.00 120.11 9.00 | 1870
10 92.00 120.11 94.40 © . 114.83 95.80 116.74 | 3.30 5.28
11 95.80 116.74 98.20 107.77 100.00 1 112.57 420 8.97
12 100.00 | 112.57 103.00 90.81 111.20} 120.85 11.20 | 30.04
13 111.20 | 120.85 115.80 84.32 119.60 | 107.02 8.40 36.53
14 119.60 { 107.02 121.80 96.80 12440 | 107.15 4.80 10.35
15 12440 | 107.15 126.00 103.27 133.60 | 121.29 9.20 13.02
16 133.60 | 121.29 136.20 - 11130 14340] 122.39 9.80 11.09
17 143.40 { 12239 147.40 94.96 14920 | 100.61 | 5.80 27.43
18 149.20 | 100.61 150.80 97.82 15380} 10984 | 460 | 12.02
-19 153.80 | 109.84 155.00 105.70 15740 11342 | 360 | 7.72
20 15740 | 113.42 159.80 93.79 166001 11842 | 860 | 2463
21 166.00 | 11842 -167.80 116.09 170.80 1 119.73 4.80 "3.64
22 170.80 | 119.73 173.20 112.33 176.00 | 117.70 5.20 7.40
23 176.00 { 117.70 177.80 114.89 18040 | 113.88 440 | 399
24 18040 | 11888 183.20 105.35 18860 | 119.71 8.20 14.36
25 183.60 | 119.71 191.40 97.67 199.40 1 12136 10.80 | 23.69
26 199.40 | 121.36 202.40 110.81 20420 11431 4.80 10.55
27 20420 | 11431 206.60 T 106.64 209.80) 11535-} 5.60 8.71
28 209.80 | 115.35 212.00 106.68 215.00| 11530 520 8.67
29 215001 115.30 217.20 "105.41 225.00 | 121.83 10.00 | 16.42
30 225.00 ; 121.83 227.40 115.90 230.20 | 119.87 520 | 593
31 230.20 | 119.87 233.20 103.12 | 236.80| 114.53 6.60 16.75
32 236.80 | 114.53 237.40 114.31 24460 | 12241 | 780 | 8.10
33 24460 § 12241 247.20 116.78 249.80 | 119.87 520 5.63
34 24980 | 119.37 252.00 114.43 258.60 1 12237 8.80 7.94
- 35 258.60 | 122.37 261.00 117.717 27020} 123.4 11.60 5.67
36 27020 | 123.44 273.20 109.22 28020 | 121.95 10.00 | 14.22
37 28020 | 121.95 283.80 99.90 286.80 1 110.93 6.60 22.05
38 286.80 | 11093 287.80 110.35 29100 11746 4.20 7.11
39 291.00 | 117.46 293.40 110.64 297.00| 11818 6.00 7.54
40 297.00 | 118.18 299.00 112.20 30620 | 12236 9.20 10.16
41 306.20 | 122.36 309.40 108.00 31320 | 117.95 7.00 14.36
42 31320 117.95 315.00 11452 | 31780 119.04 | 4.60 4.52
43 317.80| 11904 | 32020 109.38 323.00 | 116.27 520 9.66
44 323.00 | 11627 32540 105.82 329.00 | 116.04 6.00 10.45
45 329.00 | 116.04 331.00 111.58 334.00] 117.89 5.00 6.31

'q Awedmo) ‘cee# 189} ‘Sueds oy pue suorssaxdap Paroalap sp ‘g M3y

Joqumu uoissaiday
¥ T Ob 86 9 b€ Tc O 8 9T T TT OC 81 O #1 T O 8 9 ¥ T O
—_— - 0

93

\ M .3 \]
AR

<

(s) uedg

VAR A RV

43

»

‘q Auedmo) ‘cge# 180y ‘sdoxp amyeradm) Surpuodsai10o o) pue suorssazdap poooldp ¢ 6 2mdig

1oqumu uorssardog
Vb Ty ov 8 9t ¥ € O0c 8 9T ¥ T 0T S8 9 #¥I U O 8 9 ¢+ T 0O

MAMAAMA A
AT

RV, . .
S RN VATIYA

T ———
—
—°
2 S
94

L
-—"“—_‘
\

o<
/
—

7] [=}
o~ o

(O,) dorp amyesadmay,

(=4
(2]

[a)
[ag]

=
-

Table 8: Output from the extreme, 10s-window, and 18s-window valley function
over thermocouple data obtained from Heat #333, Company D.

Depression | Extreme Win_10s Win_158
number [Span(s) | Drop(°C) | Span(s) Drop(°C) | Span(s) | Drop(°C)
1 3.30 20.89 82 20.63 8.20 20.63
2 8.00 15.63 - - - -
3 8.00 32.47 8 3206 | 1260 | 32.06
4 6.80 22.72 6.8 22.17 - -
5 7.40 14.88 - - - |l -
6 7.80 27.07 738 26.45 780 | 2645
7 7.20 20.60 - - - -
8 11.00 | -35.16 9.6 31.28 1080 | 34.61
9 9.00 18.70 78 16.77 9.20 18.27
10 3.80 5.28 - - - -
11 420 8.97 - - - | -
i o 12 11.20 | 30.04 8 2469 | 1480 | 29.15
| 13 3.40 36.53 8.4 36.07 8.40 36.07 .
14 4.80 10.35 43 9.74 - -
15 9.20 18.02 - - - -
16 9.80 11.09 . 8 9.64 - - . ' -
17 5.80 27.43 9 27.01 1040 | 2701
18 4.60 12.02 - - - -
19 3.60 1.72 - - - -
20 860 | 2463 ‘14 22.36 3.60 23.87
21 4.80 3.64 - - - -
22 5.20 7.40 54 1.07 - -
23 4.40 3.99 - - - -
24 8.20 1436 | 78 13.79 8.00 13.8
25 10.80 | . 23.69 3 21.37 1060 | 22.99
26 4.80 10.55 - - - -
27 5.60 8.71 5.6 822 | 1040 14.39
28 5.20 8.67 - - ' - -
29 1000 | 16.42 74 13.72 15.00 16.00
30 5.20 593 - - - -
31 6.60 16.75 8 1624 15.20 17.70
32 | 780 8.10 - - - -
33 520 | s.63 - - - -
34 8.80 7.94 72 - 1.08 14.00 1.72
35 11.60 | 567 - - - .
36 1000 | 1422 3.2 13.79 - | 10.00 13.79
37 6.60 22.05 38 21.64 11.00 | 21.64
38 420 | 7.11 - .- - -
39 6.00 7.54 58 7.15 5.80 7.15
40 9.20 10.16 - e - -
41 700-| 1436 72 1403 . | 11.00 14.03
42 4.60 4.52 - - - -1
43 5.20 9.66 - . - -
44 6.00 10.45 6 - 9.61 1520 | 12.72
4s 5.00 6.31 - - - -

95

| 5.5 The results froﬁn the Expert System

Along with the SCADA System and data acquisition software, the output from the
pseudo real-time Expert System was also tested. The ES was not the focus of the first
plant trial; hence only a prehmmary attempt was made to establish a rough conelatlon
between the ES prediction and real defects. Unfortunately, production constraints (billets
produced were almost immediately shifted into the rolling phase of the process) did not
allow precise inspection. However, the rough check-over justiﬁed the ES prediction:
occasional bleeds and laps were usually oBserved on the billets. -

The objective of the sécénd plant trial was to test the correctness of the ES.
Several oil cast heats were monitored, and the output from the ES was recorded in a
spreadsheet. Monitored thermocouples were 1'0catéd on the east face at 335, 435, 535, and
630 mm from the top of the mould, respectively. The corresponding billets were
inspected, and the position, span and depth of the surface defects were measured.

The output from the ES containéd time of occurrence, span size and temperature
drop for each depression. A high degree of mapping between predicted and actugl defects
was obtained. Correlation with surface :measurements was virtually p'erfect. Table 9
presents 45 detected depressions at thermocouples located on the east side, 335, 435, 535, |
and 630 mm from the top of the mould and the correspondiné ES predictions. Only ﬁee
measured depressions on the billet were predicted with a degree of bélief (DoB) less than
50 %. The lowest DoB is 29 % fof dépression number 21. For this particular case, the
actual depth of the depression on the billet is 0.024 inch (0.6096 mm). This is a rather

small depression, and is not considered a “severe” billet defect. Future work will focus on

96

\
\
\
- Table 9: Output from the extreme function and associated Expert System Degree of Belief

Drop THC 335mm THC 435mm THC 535mm THC 630mm The ES
pos(s) Span(s) Drop("C)§ pos(s) Span(s) Drop(°C) | pos(s) Span(s) Drop(°C)J pos(s) Span(s) Drop(°C)] DoB
1] 1360 860 2808] 1860 820 2517]| 2360 880 2089 | 2860 880 16.44 100
2 | 1960 78 2127 | 2460 800 1888 | 2960 800 1563 | 3460 800 1222 99
3 | 3000 800 4323 | 3500 800 3881 | 3980 800 3247 | 4480 800 25.39 100
4] 3540 680 3041 | 4040 680 2724 § 4520 680 2272 | 5020 680 17.83 100
s | 4220 740 2009 | 4720 740 1786 | 5200 740 1488 | 5700 7.40 11.88 98
6 | 5060 800 3652] 5560 800 3261 J 6060 780 2707 | 6560 @ 7.80 2132 100
7 f 5840 720 2761 | 6340 720 2453 | 6840 720 2060 | 7340 720 1623 | 100 -
8] 6660 1080 4711 | 7160 1080 4196 | 7660 1100 3516 | 81.60 1080 27.66 100
9] 7560 920 2521 | 8060 9.20 2252 | 8540 900 1870 | 9040 920 14.85 100
10§ 8460 380 711 J 8940 380 6.31 9440 3.80 528 | 9940 330 411 55
11 | 8840 420 1218 | 9320 4.00 1081 § 9820 4.20 897 | 10320 420 711 90
12 § 9320 1120 4059]| 9800 1140 36.10 | 10300 1120 3004 | 10800 1120 2347 97
13 § 10580 820 4880 | 11080 820 4366 | 11580 840 3653] 12060 840 28.57 100
14 § 111.80 480 1393 11680 4.80 1231 | 12180 48 1035 | 12680 460 8.09 95
15 § 11600 920 2405 [121.00 920 2146 | 12600 920 1802 | 13100 940 1431 | 98
16 } 12640 1000 1494] 13140 9.80 1330 | 13620 980 . 11.09 | 14120 980 8.62 93
17 | 13740 580 3672 | 14240 580 3272 {14740 580 2743 | 15240 580 21.59 100
18 § 14080 440 1637 | 14580 4.60 1438] 15080 460 12.02- | 15560 4.40 9.37 96
19 | 14520 38 1062]15020 3.80 927 {15500 360 772] 16000 3.80 6.10 <]
20 | 14980 840 3294 J15480 840 2930 | 15980 860 2463] 1648 860 19.40 94
21 | 15800 4.80 492 [163.00 430 440] 16780 480 364 J 17280 4.60 291 29
22 | 16340 540 1010 | 16840 520 883] 17320 520 740 [17820 540 s78 | 78
23 | 16800 440 541 [17280 440 480 | 17780 440 399 | 18280 440 3.13 37
24 | 17320 800 1951 17820 820 1717 | 18320 820 1436 | 18300 800 11.25 97
25 | 18140 1080 3191]18640 1080 2837 | 191.40 1080 2369 | 19620 11.00 18.60 100
26 | 19240 480 1415 | 19740 4.80 1262 120240 480 1055 20740 480 828 | 92
27 | 19680 560 1177 J201.80 S60 1032 | 20660 5.60 871 |211.60 560 6.79 88
28 § 20200 520 11.68.]207.00 520 1035 | 21200 520 867 | 21700 500 6.77 88
29 § 20720 1020 2210 |21220 1000 1968 | 21720 1000 1642 | 22220 1020 1294 99
30 [21740 500 790]22240 520 703 | 22740 520 . 593 {23240 520 462 57
31 | 22320 660 2251 §22820 6.60 2003 23320 660 1675 | 23820 640 13.14 99
32 | 22760 780 1097 }23240 7.80 983 | 23740 780 810] 24240 800 6.41 81
33 1 23740 540 755 [24240 520 674 | 24720 520 563]125220 520 438 57
34 § 24200 860 1061 |247.00 830 946 | 25200 880 794 | 25680 860 6.17 80
35] 25120 1160 761 §25600 11.60 671 | 261.00 1160 567] 26600 1160 4.44 60
36 § 26340 1000 19.16]26820 1000 1689 {27320 10.00 1422] 27820 10.00 11.17 97
37 {21380 660 2965 |27880 660 2641 | 28380 660 2205 | 28860 6.80 17.34 100
38 § 27780 440 959 [282.80 4.40 848 | 28780 420 711 29260 420 5.58 7
39 | 28360 580 1018 | 28840 5.80 9.03] 29340 6.00 754 §29840 5.80 598 7
40 | 289.00 920 1368 [29400 920 1209 | 29900 920 10.16 §303.80 9.40 799 91.
41 § 29960 720 1934 30440 720 1713 } 30940 700 1436] 31440 7.00 11.29 97
42 | 30520 440 613 [31000 440 536 | 31500 460 452 | 32000 460 3.52 48
43 | 31040 520 1296]|31540 520 1146 [32020 520 966 J32520 520 159 91
44 | 31560 600 1406 [32060 6.00 1241 | 32540 600 1045]33040 5.80 820 93
45 | 32100 500 849 [|32600 500 753 | 33100 5.00 631 [33580 520 497 68

97

L]

translating the temperature drops and spans recorded in the mould into the real depths and
spans on the billets. Regarding the actual span and depth of billet defects, a type of
“dépression severity index” has to be defined: each defect with an index value lower than

the threshold will not be reported.

5.6 On-line billet quality prediction

The nature of the billet casting process ﬁas been guiding development of the CI
module and the ES. After two plant trials 'and discussion with plant personﬁel, it appears
to be more useful for the pseudo reai-time ES to generaté some type of report for each
cast billet with an associated quality index that can be used to reject “bad” billets. Such a
report would contain: 1. the number and\ kind of detected surface defects, such as
depressibns, bleeds, laps, off-corner cracks, craze cracks, and off-squereness, with the
corresponding “severity” index; 2. metal level standard deviation; 3. negative strip time
on-line caléulation; 4, moulci displacement vaxiatioﬁ, 5. changes in inlet and outlet water
temperature. The overall quality index perhaps, could be obtéined by applying an ANN:
each type of defect found, associated with the highest detected severity index, can be input
to an ANN structure. The connéctions weights could be strict, or could vary according to
the operating conditions, steel chemistry, and production objectives. A Genetic Algorithms
and/or Fuzzy Associative Memory module could be applied to deﬁné the optimum
connections Weight matrix. The derived quality index would summarize the overall qpality
of a cast billet aﬁd provide on-line inspection: billets with a quality index bf;low 50%

would be diverted for inspection.

98

Chapter 6

Conclusions

The following conclﬁsions arise from this work:
| ‘1. A new paradigm known as Computational Intelligence is evolving in which
intelligent numerical manipulatioﬂ will form the undérpinning of successful Al
applications. CI has been shown to be essential for moving Al igtd a real-time control
environment. CI can be used to acquire data rapidly to allow control and/or monitoring of
a continuous casting process.

2. Phnt trials have proven that thé selected real-time multitasking operating
system, SCADA system development tool, the isolation transformers, and DAS-20 board
are an adequate environment and hardware support for the “Smart” Mould application.

3. The data acquisition software provides necessary sampling frequencies, and
correctly records sensor data.

4. Negative strip time obtaiﬁed from the S-point-deri\}ative method is proven to
be more sensitive and accurate than ty obtained from the mathematical equation.

5. The developed shape recognition functions extract the temperature drops in
thermodouple data successfully. The use of the extreme ﬁmctiqn which uses first |
derivative information is more successful than the “window” technique at detecting

overlapping and small depressions.

99

6. The pseudo real-time expert system is able to trace.and predict surface defects

successfully.

100

Chapter 7

Recommendations for future work

The recommendations for future development of the “Smart” Mould can be
divided into two parts: hardware components and further software development.

1. Hardware recommendations:

a. The compiete vérs_ion of the “Smart” Mould system should include 20
thermogouples (5 per each mould face), Linear Variable Displz;cement Transducer,

| Casting Speed and Metal Level signals; Ahogether 23 input channels. The current ﬁAS-20
board supports just 16 analog inphts. Keithley MetraByté offers a 16-cﬁanne1 multiplexer
to expand the number of input channels monitored by 'the DAS-ZO. The EXP-20 provides
16 inputs that can be mn_ltiplexed into a singlé DAS-20 input channel. Test work will be
necessary to detefmine the influence of high ﬁumbers of input signals on system tum-
around time. |

b. Additional isolation anipliﬁers for all thermocouple signals have to be pmchwd
and integrated into the SCADA system. |

2. Software recothendations :

a. The use of an EXP-20 board will require changes in the data a'cquisit'ion
software. The das_digital_out DAS library function has‘ to be employed to address

different input channels on the EXP-20.

101

b. The Fast Fourier Transform can be 'applied to analyze the operating conditions
of the mould oscillator. This finction will be an integral part of fhe CI module; This
facility can be uséd to establish the need for maintenance of the oscillation‘ system.

c. A knowledge base must be developed to map detected temperature drops in the
mould into actual defect depth (for bleeds, laps, and transverse depressions).

d A knowledge base for billet oﬁ'—squgreness has to be created and incorporated
into “Smart” Mould. Use of off-comer THC signals can vbe used to establish the degr_ee of
rthomboidity.

e. A knowledge base for off-comner cracks has td be incorporated into “Smart”
Mould. This rule set would also rely on THC signals used for depressions detection, but
processed in a different manner. |

f. Some parts of the existing off-line expert system to diagnose quality problems m
the continuous casting of steel billets (CRAC/X) [13] have to be translated into “Smart”
Mould. The rules describing defects caused. by steel chemistry can be easily transferred
into the real-time ES.

| g. Work hés to be conducted to produce the report as the result of the “Smart”
Mould analysis of the steel chemistry and casting conditions.
h. Work has to be conducted to establish and create a quality index for each billet

produced from the “Smart” Mould.

102

References

[1] J.K. Brimacombe: "Empowerment with Knowledge-Toward The Intelligent Mould for
The Continuous Casting of Steel Billets”, Iron and Steelmaker, 1993, Vol'. 20 (I), pp.35-
47. |

[2] JK Brimacombe, LV. Samarasekera: “Fuﬁue Trends in the Development of
Continuous Casting Moulds”, In Mould Operaiion Jfor Quality and Productivity, 1SS-
AIME, Warrendale, PA., 1991, pp 153-160. |

[3] F. Jovic: Process Control Systems: Priﬁciples of Design Operation and Interfacing,
Chapman & Hall, London, UK, 1992.

[4] KJ. Astrém and Bjérn Wittemﬁark: Co@uter—ControHed Systems, Theory and
Design, Prentice Hall Ihformation andb System Sciences Series, 1990. | |

[S] R V.Williams: Control and Analysis in Iron and Steelmaking; Butterworths
Monographs in Materials, Boston, USA, pp.166-176.

[6] WH Emling and S. Dawson: “Mould Instrumentation for Breakout Detection and
Control”, Proc. Steelmaking Conf,, ISS, Warrendale, PA., 1991, Vol. 74, pp. 197-217.

[7] F. Haers and S.G. Thomton: “Application of mould thermal monitoring on the two
strand slab caster at Sidmar”, Iron and Steelmaking 1994, Vol.21 No.5.

[8] KD. Scimelle and R.S.H. Mah: “Product Quality Mdnagement Using a Real-time
Expert System”, ISIJ International, Vol. 34, 1994, No. 10, pp. 815-821. |

[9] M.J. Hague: “Diagnostic aids for quality improvement and maintenance in continuous

caster”, Iron and Steel Engineer, May 1988, pp. 36-42.

103

[10] J.A. Meech, S. Kumar: A Hypermanual on. Expert Systems v.2.0, electronic book,
CANMET, 1993.

[11] MM. Veiga: A Heuristic System for Environmental Risk Assessrnent of Mercury
from Gold Mmmg Opefations, Ph.D. Thesis, Univérsity of British Columbia, Dept.of
Mining and Mineral Processing, 1994, pp. 64-67. |

[12] D. Waterman: A Guide to Expert Systems, Addison-Wesley, Reading, MA. USA,
1986. | |
[13] S. Kumar: An Expert System to Diagnose Quaﬁty Problems in Continuous Casting of
Steel Billets, M.A.Sc. Thesis, University of British Columbia, Dept. of Metals _and.
Matériais Eng., pp. 5-8. |

- [4]LA. Zadeh: Fuzzy Logic, IEEE Computer Mag., Apr. 1988, pp. 83-93

[15] C. A. HamsFuzzy Logic: A Potential Control Technique for Mineral Prosesses,
MSc. Thesis, Queen’s University at Kingston, Department of Mining Engineering, 1986,
pp- 25-27 |

[16] JM. Sibigtroth, D. Mazuelos: Basic Traming: Fuzzy Logic for 8-bit MCUs,
Conference Proceedings, Fuzzy Logic, July 1993, San Francisco, CA., USA, Sesion #T11.
[17] J.A. Meech, LA Jordan: Developﬁlent of a Self-Tuning Fuzzy Logic Controller,
Minerals Engineering, Vol. 6, No. 2, printed in Great Britain, 1993, pp. 119-131.

[18] M.H. Smith, H. Takagi: Optimization of Fuzzy S);stems by Switching Reasoning
Methods Dynamically, presented at the Intemmational Conference on Fuzzy Systems,

Seoul, Korea, June 993.

104

[19] PK. Simpson: Foundations of Neural ﬁeMorks, Artificial Neural Networks:
Paradigms, Applications and .Hardware Implementations, IEEE Press, Piscataway, NJ,
1992, pp. 3-20. | o

[20] G. Wells: An Introduction to Neural Networks, Application of Artificial Intelligence
in Process Control, edited by L. Boullart, A. Krijgsman and R.A. Vingerhoeds, Pergamon
Hess, Oxford, UK, 1992, pp. 176-183.

[21] V. Rakocevic, J.A. Meech: Application of Artificial Neural Network to interpret
Froth Imagé_s from a Cépper Flotation Process, in press. |

[22] AND Corporation: HNet Discovery, Version 1.4- User’s Manual, 1994.

[23] JR. Koza: Genetic Programming, A Bradford Book, The MIT Press, Cambridge,

Massachusetts; USA, 1993.

[24] HB. Verbruggen, AJ. Krijgsman, P.M. Bruijn: Towards Intelligent control:

Integration of AI in Control, Application of Artificial Intelligence in Process Control,
edited by L. Boullart, A. Krijgsman and R.A. Vingerhoeds, Pergamon Preés, Oxford, UK,
1992, pp. 223-247.

[25] HB. Verbruggen, K.J. Astrom: Artificial Intelligence and Feedback Control, IFAC
Workshop, Shenyang, People’s Republic of China, September 1989, pp. 1-11.

[26] K.J. Astrém: Autonomous Process Control, Proceedings of The Second IEEE

" Conference on Control Applications, Vancouver, British Colmhbia, Canada, September

1993, pp. 573-580.

105

271 A Krijgsman, R. Jager, HB Verbmggen and P.M. Bruijn: DICE: A Framework for
I'ntelligetlt Real-Time Control, IFAC Workshop, California, USA7 September 1991, pp.. _
13-i9.

[28] R. Jager: Direct Real-time Control using Knowledge-Based Techniques, Proceedings
_. of the European Simulation Sympesium, Ghent, Belgium, 1990.

[29] W.M. Lattimer and co-wt)rkers: An expert system for real-time control, IEEE
Software, March 1986, pp. 16-24,. |

[30] N.K. Wickramarachchi: Development of a Knowledge-Based Hieararchical Control
Structure for Procees Automation, Ph.D. Thesis, University of British Columbia, Dept. of
Mechanical Eng., March 1995. |

[31] M.P. Lukas, R.A. Oye, M.A. Keyes, and A. Kaya: Evolution of Expert Systems for
Real-Time Process Management: A Case Study on Motor éontrol,’ IFAC Workshop,
Shenyang, People i{epubﬁc of China, September 1989, pp. 79-.84. |
[32] D.J. Musliner, J.A. Hendler, and A.K Agra'vvalaf The Challenges of Real-Time Al
- Computer, January 1995.

[33] J.C. Bezdek: “What is Computational Intellié_ence?”_, Complttational Ittte]ligetlce -
Imitating Life, 1994 IEEE World Congress otl Computational Intelligence (WCCI),
pp. 1-12. | o

[34] C.S. Williams: Designing Digital Fiters, Prentice-Falll, INC., Englewood CIiffs,
New Jersey, 1986., pp. 257-320. |

[35] G. Kaiser: A Friendly Guide to Wavelets, Birkhiuser Boston, Cambﬁdge, MA,

USA,, 1995.

106

[36] Yves Meyer: Wavelets Algorithms&Applications, The Society for Industrial and
Applied Mathematics, Philadelphia, USA, 1994.

[37] J.A. Meech: Al Applications in the Mining Industry into 21st Century, Proceedings '
of AI;COM XXV, Brisbane, Australia, July 1995. \

[38] S. Kumar, B.N. Waiker, LV. Samarasekera,” J.K. Brimacombe: Chaos at the
Meniscus - The Genesis‘ of Defects in Continuously Cast Steel Billets, in préss

[39] Brenda Flotation Supervisor, Brenda Minés, Kelowna, BC., Canada.

[40] Wabush Mines SAG Mill, Wabush Mines, SW Labrador, Newfoundland, Canada.
[41] St. Lawrence Cement Kiln, Joliette, Que., Canada. | |

[42] Mount Isa Mines Copper Concentrator, Mount Isa Mines, Ausfralia.

[43] HVC Froth Recognition, Highland .Vallcfy' Copper, Logan Lake, BC., Canada '

[44] Keithley Data Acquisition: DAS-20 User’s Guide, April 1993

[45] QNX Software Systems Ltd.: QNX Data Acquisition Toolkit - Programmer’s Guide,
1993.

[46] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: “Numerical Recipes in

FORTRAN - The Art of Scientific Computing”, Cambridge University Press, Cambridge,

USA, 1992.

[47] Comdale Technologies Inc: ProcessVision Version 5.2, User’s Manual and Reference
Guide, 1993.
[48] R. Iserman: Digital Control Systems, Springer-Verlag Berlin Heidelberg, Germany,

1989.

107

[49] P.P. Vaidyanathan: Multirate Systems and Filter Banks, Prentice Hall, Englewood

Cliffs, New Jersey, USA, 1993.

108

APENDIX A

Sample Configuration file

0 /ftrigger channel

1 /Itrigger value (in Volts)

30 //scan interval (in seconds)

10 //delay_low (in milliseconds)

50 //sampling frequency (Hz)

8 //num_of_channels

20 //room temperature in degree C - for calibration
//Setup for channel 0 ,

0 //range_low (in Volts) for channel 0

10 //range_high (in Volts) for channel 0

5 //channel type - 5 for new amplifier for T type THC
1 - _ //active state of channel (0 - non-active)

2 //number of functions applied to this channel

/I Function name and passed key-word-triplets

minmax

2 //number of passed kwt

TC_above_ML.min.@f
TC_aboveML.max.@f

" Function name and passed key-word-triplets
average ‘
6 , //number of passed kwt

TC_above_ML.avl.@f
- TC_above_ML.av2.@f
TC_above_ML.av3.@f
TC _above ML.av4.@f
TC_above_ML.av5.@f
TC_above_ML.av6.@f

//Setup for channel 1 , ‘ ‘
0 //range_low (in Volts) for channel 1

10 //range_high (in Volts) for channel 1

6 //channel type for LVDT signal

1 ' /active state of channel (O - non-active)
2 //number of functions applied to this channei
/" Function name and passed key-word-triplets

minmax

2 ' //number of passed kwt

LVDT.min @f :

LVDT.max.@f

1 Function name and passed key-word-tnplets

compare

4 //number of passed kwt

3 _ //set up frequency

10 //set up stroke

negative_strip_time.average.@f
negative_strip_time.actual @f

//Setup for channel 2
0

//range low (in Volts) for channel 2
100

APENDIX A

10 /lrange_high (in Volts) for channel 2
//channel type for casting speed
1 : //active state of channel (0 - non-active)

//number of functions applied to this channel
" Function name and passed key-word-triplets
average '
1) //number of passed kwt
casting. speed. @f

//Setup for channel 3

0 //range_low (in Volts) for channel 3

10 /Irange_high (in Volts) for channel 3

0 ~ //channel type '

0 v //active state of channel (0 - non-active)

0 ‘ //number of functions applied to this channel

//Setup for channel 4

0 /lrange_low (in Volts) for channel 4

10 //range_high (in Volts) for channel 4

5 //channel type - 5 for new amplifier for T type THC
1 //active state of channel (0 - non-active)

3 //number of functions applied to this channel

I Function name and passed key-word-triplets ‘ '

extreme o : A

1 ' //number of files (only one allowed)

extr_ch4.dat ‘ '

I Function name and passed key-word-triplets

valley

23 //number of function variables

5 . /fTemperature drop to search for (degree C)

15 //size of depression to search for (span in sec)
TCll.t_span@f
TCl11.t_drop.@f
TC11.t_base.@f
TCll.m_time.@f
TC12.t_span. @f
TC12.t_drop.@f
TC12.t_base.@f
TC12.m_time.@f
TC13.t_span.@f

TC13.t_drop.@f
TC13.t_base.@f

TC13.m_time.@f
TC14.t_span.@f
TC14.t_drop.@f
TCl14.t_base.@f
TC14.m_time.@f
TC15.t_span.@f

TC15.t_drop.@f
TC15.t_base.@f

TC15.m_time.@f

number_of valley.in TC1.@i

/" Function name and passed key-word-triplets
storedata

110

APENDIX A

15

extreme
1 .
extr_ché.dat

//number of files (only one alloWed)

1
channel4.dat
//Setup for channel 5
0 - //range_low (in Volts) for channel 5
10 //range_high (in Volts) for channel 5
5 //channel type - 5 for new amplifier for T type THC
1 //active state of channel (0 - non-active)
3 //mumber of functions applied to this channel
/" Function name and passed key-word-triplets
extreme ’
1 //mumber of files (only one allowed)
. extr_ch5.dat
" Function name and passed key-word-triplets
valley
23 //number of function variables
5 // temperature drop to search for (degree C)
//size of depression to search for (span in sec)
TC21.t_span.@f
TC21.t_drop.@f
TC21.t base.@f
TC21.m_time.@f
TC22.t_span.@f
TC22.t_drop.@f
TC22.t_base.@f
TC22.m_time.@f
TC23.t_span.@f
TC23.t_drop.@f
TC23.t_base.@f
TC23.m_time.@f
TC24.t_span.@f
TC24.t_drop.@f
TC24.t_base.@f
TC24.m_time.@f
TC25.t_span.@f
TC25.t_drop.@f
TC25.t_base.@f
TC25.m_time.@f
number_of valley.in TC2.@i ,
" Function name and passed key-word-triplets
storedata :
1 //number of files (only one allowed)
channel5.dat
//Setup for channel 6 :
0 //range low (in Volts) for channel 6
10 //range high (in Volts) for channel 6
5 //channel type - 5 for new amplifier for T type THC
1 //active state of channel (0 - non-active)
3 //mumber of functions applied to channel 6
" Function name and passed key-word-triplets

//number of files (only one allowed)

111

APENDIX A

) Function name and passed key-word-triplets
valley

23 R //number of function variables
5 //temperature drop to search for (degree C)
15 //size of depression to search for (span in sec)
TC31.t_span. @f '
TC31.t_drop.@f

TC31.t_base.@f

TC31.m_time. @f

TC32.t_span.@f

TC32.t_drop.@f

TC32.t_base.@f

TC32.m_time.@f

TC33.t_span.@f

TC33.t_drop.@f

TC33.t_base.@f

TC33.m_time.@f

TC34.t_span.@f

TC34.t_drop.@f

TC34.t_base.@f

TC34.m_time.@f

TC35.t_span.@f

TC35.t_drop.@f
TC35.t_base.@f -

TC35.m_time.@f
number_of valley.in_TC3.@i

/" Function name and passed key-word-triplets

storedata ' :

1 //number of files (only one allowed)
channel6.prn ,

//Setup for channel 7

0 //range_low (in Volts) for channel 7

10 * //Irange_high (in Volts) for channel 7

5 //channel type - 5 for new amplifier for T type THC
1 //active state of channel (O - non-active)
3 ' //number of functions applied to this channel
/" Function name and passed key-word-triplets

extreme -

1 //number of files (only one allowed)

extr_ch7.dat

// - Function name and passed key-word-triplets

valley . '

23 //number of function variables

5 //temperature drop to search for (degree C)

15 //size of depression to search for (span in sec)
TC41.t_span.@f :

TC41.t_drop.@f

TC41.t_base. @f

TC41.m_time.@f

TC42.t_span.@f

TC42.t_drop.@f

TC42.t_base. @f

TC42.m_time.@f

112

APENDIX A

TC43.t_span.@f
TC43.t_drop.@f
TC43.t_base.@f
TC43.m_time.@f
TC44.t_span.@f

TC44.t_drop.@f
TC44.t_base.@f

TC44.m_time.@f
TC45.t_span.@f
TC45.t_drop.@f
TC45.t_base.@f
TC45.m_time.@f

number_of valley.in_TC4.@i

/" Function name and passed key-word-triplets

storedata '

1 //number of files (only one allowed)
channei7.dat '

113

APPENDIX B

UBC Data Acquisition Module
for

- DAS-20 acquisition board

© University of British Columbia, 1995

114

APPENDIX B

Introduction

The UBC Data Acquisition Module collects and processes sensor data from the DAS-20 board. It
runs concurrently with other ProcessVision modules, and can be configured for collecting data
from up to all sixteen single-ended analog inputs at frequency of several hundreds Hz

(configurable).

Installing the ProcessVision - Data Acquisition Software

Before installing the ProcessVision - Data Acquisitioﬁ software, make sure that your tick size
under QNX 4 is set to 0.5 ms The_ticksize utility quenes or changes the rate at wﬁich timer
interrupts (called ticks) are applied to the system. Setting the tick size will not affect the system
date; ticks are used for software timers only. For more information refer to the QNX - Utilities
Reference. | |
At the prompt type:

ticksize 6.5 <RETURN>
Itis rwommgnded that this is added to your sysuut file for setting the ticksize every time you
boot QNX.
To mstall the Data Acquisition software under QNX 4, insert the Prowsstsxon - Data
Acquisition driver distribution diskette in a floppy drive. Make sure the dnve from whlch you are

: mstalhng the software is "mounted”. For example, to mount the ﬂoppy dnve /dev/fd0 as /fd0 you

would type the oommand.

mount /dev/fd0 /fd0 <RETURN>

Substitute as necessary for your drive number.

115

APPENDIX B

After the drive is mounted you can copy the driver to your system. First, create a new directory
das as a subdirectory of lusr/lib/. At the prompt' type:

cd /usr/lib <RETURN>

mkdir daq <RETURN>

cd das <RETURN>
Copy from the ProcessVision - Data Acquisition distribution diskette files to your system by‘
issuing the following commands:

cp -R /<mounted_drive_name>/das/ /<hard_drive_name>/usr/lib/das
at the QNX prompt then press the <RETURN> key.
Where:

<mounted_drive_name> is ihe name of your mounted floppy drive

- <hard_drive_name> is the name of your mounted hard drive

Since the drive is usually "/fd0" or "/fd1" and the hard drive name is usually "/" then the issued
command takes on one of these two forms:

cp -R /fd0/das/ /usr/lib/das

cp -R /fd1/das/ /usr/lib/das
Now, copy the driver files from the root on distribution diskette to your ProcessVision directory
typing the following commands: - |

cp -v /<mounted_drive_name>/* /<hard_drive_name>/ProcessVision
at the QNX prompt then press the <RETURN> key.
Where, again:

<mounted_drive_name> is the name of your mounted floppy drive

<hard_drive_name> is the name of your mounted hard drive
The usual two forms are:

cp -v /fd0/* /ProcessVision

cp -v /fdL/* /ProcessVision

116

APPENDIX B

Installing the Data Acquisition Module

Before running das_task, you need to install the Keithley Metrabyte DAS-20 plug-in board in |

your host computer (see Keithley docuxhent_ation).

UBC Data Acquisition Module Mode of Operation

The module you are shipped is called: das_task. This program is an executable program which is
designed to run in the background in the QNX operatmg system. Although it can be run in the
foreground, and you may wish to'do so for debugging purpose, it is designed for long term use as
a background process. This means that the driver should be started with the ampersand (&')
operator to specify background use. |

Upon wmendng execution,‘ the das_task module will read a configuration file called
config.ﬁnet. This file is expected to contain information about the settings for analog input
channels (input range, sensor type, activity, number and types of applied functions) and is stored
under the /usr/ directory. The configuration file also contains information about data acquisition
frequency (how often data is collected expressed in Hz), scanning interval, trigéer value, etc... If
the configuration file is incorrect, an error message will be displayed and the cast_m will not
work properly. .

If the configuration file is read successfully, the cast_task module will start to collect and process
data continuously. |
The UBC Data Acquisition Module acquires sensor data from every active input channel over a
desired time, applies specified functions to the stored data and updates the ProcessVision point
database with the current filtered values of variables defined in the configuration file. It repeats

this process continuously.

117

APPENDIX B
Several ProcessVision Data Acquisition Modules can be run simultaneousty. Each module can

collect data at a different frequency.

. | Data Acquisition Configuration File

The Data Acquisition configuration file contains information that is used by the module to
perform data reading and filtering continuously. Trigger channel, trigger value, time interval
over which filtering functions are applied, polling frequency for trigger event, data acquisitién
frequency and room temperature are specified in a common section of a configuration file. The
following is the general format of a common section: |
| <setup_value> <tab> <tab> <//Comment> ’

Anemptylineseparatestheoommonsecﬁonfromchannelboon;nﬁguaﬁon.Thispanof
configuration file begins with the comment:

// Setup for channel 0
-The next lines define the minimum and maximum values for input range, expressed in volts,
channel type (required for calibration), active state of a channel and a number of applied
functions to the channel. The following is the general format:

<setup_value> <tab> <tab> <//Comment>
Where “setup_value” is numerical value (integer or float).
If the number .of applied functions is greater than 0, the next line is:

i Mction name and passed key-word-triplets .
The following lines define the name of an appued function, the total number of passed variables
(key-word-triplets) to the applied function, and a list of key-word-triplets. The following is the

general format:

118

APPENDIX B

<function_name>
<number_of passed key word_triplets> <tab> <tab> <//Comment>

<key_word_triplet>

- <key_word_triplet>
If there is more than one applied function (but no more than five per channel - upper limit) the
next lines will deﬁne the next function in much the same manner. The keyword-triplet can not be
longer than 30 characters and there can not be more than 30 key-word-triplets per function.
An empty line separates the configuration section of each channel. An example configuration file

is given at the end of this document.

Creating and Applying filter functions

Source code and executable files of seven data processing functions are shipped along with the
Data Acquisition Mo'dule.’ The seven function are:
minmax-100ksfmminimumandmaadmumvaluewermcord§ddataandpassesﬂmvaluesto
the ProcessVision pointvdambase as two key-word-triplets defined by a developer.

average - calculates average(s) over specified number of points in the recorded data tablg and
feeds ProcessVision with this/these average(s) as kéy-word-tﬁplet(s). ‘Example: You record data
for a specific channel over 30 seconds (sampling interval is defined as 30) at an aoquisition. '
frequency of 100 Hz (= 10 ms). You will end up with 3000 points (= 30 s X 100 Hz). If you apply
function average and pass 10 key-word-triplets, you will get 10 key-word-triplets in the point
data base and eveﬁ ohe will represent average »ovver 3 monds (first key-wd-triplet is average
over first 3 seconds, etc ...) _ .

storedata - stores collected data, expressed in volts, in a file. Filename is defined by a user.

APPENDIX B

compare - this is an example of how to combine data from two input channels. The example
presented is designed for calculating negative strip time in mnﬂnmm casting of steel billets. For
this calculation we need inputs from an LVDT and Metal Level sensor.

valley - this function is an example of shape recognition and feature extraction. It looks for
"valley" shape in row data. It can recognize up to 5 valleys in any data table and passes 20 key-
word-triplets to ProcessVision. These triplets for every detected valley are: temperature ‘drop,
temperature before drop happened, time when &rop happened expressed in absolute seconds since
the beginning of the year, and valley span. User a]s_o defines the time domain over which
depression is observed (in 30 seconds collected data you can look for valleys that have spans- less
than 5 seconds, 10 seconds or 20 seconds) and temperature drop that is recognized as significant
(in some mses 3 degree C maybe significant drop, but in another it is just measurement noise).
extreme - this function calculates the first derivative over smoothed sensor data and searches for_
-“nxaximum-mhimum—maﬁmu” patterns. It records span, drop, and position of each detected
“valley” shape in sensor data. | |

calibration - this function converts input data expressed in volts tovactuAal values. For every
applied sensor, you should provide a mapping function and M@ the cMel vtype within the
source code.

Based on these provided examples you should be able to write your own data processing function .
and inoofporate it in the Data Acquisition Module. The main loop within the Data Acquisition
Module (das_task.c source code) reads and records input data. After recordjn& it calls the data
processing function processing_of_data (the same source code). Inside the body of this function
are several "if" statements that compare names and call applied functions. Your xiéw processing

~ function has to be done in much the same way as minmax, average, It has to include the same

header files and has to be compiled with the same options (make files are also provided).

. 120

APPENDIX B

Starting theUBC Data Acquisition Module

Assuming you are already inside QNX Windows and the necessary ProcessVision database
modules are running, load up a new Shell. Type in:
- cast_task & <RETURN>

The Data Acquisition Module will be started.

| Stopping the Data Acquisition Module

You can stop the Data Acquisition Module by killing its ID or its name.
Open a new shell in QNX Windows and type sin command to display system information.
Remember ID number of das_task process. Issue the following command:
kill <cast_task_ID> <RETURN>
The following is a much simpler way:

slay das_task <RETURN>

Developing new filter function

The Data Acquisition Module is open for building and adding new filtering functions. If a user needs a
specific function for preprocessing sensor data, the new routine can be added very easily.
First, a developer has to edit "das_task.c" source code, typing at the prompt:

vedit /lfrocessVision/das_task.é <RETURN>
When the souroe code is open, go to line 429. This is the beginning of the processing_of_data function.
Add in the following lines: |

lif ((s = strncmp (channel(i]. ﬁmction[j].fuhction_type,

"user_function", strlen ("user_function"))) =0)

t

list = channel[i].functibn[j].parametei's;

121

APPENDIX B

user_function (AI_table{i}, &channel(i], i,
channel{i].function[j].oum_of_kwt, list);
continue;
}

Where:

channel(i].function(j].function_type is a string that contains name of "j-th" applied function, on
the "i-th" input channel. This function name was read from configuration ﬁlé and stored in the structure
channelfi]. |

user_fumction is the name of added user function.

list is a pointer variable to the structure par that contains the list of function variables (including
passed key-word-triplets).

Al tablefi} isa pbinter to the table that contains data for "i-th" input channel.

i is the channel number. It is an integer type variable.

channel[i].function[j].num_of_kwt is an integer variable that contains the number of passed
variables from oonﬁgurat:on file to a function.
After adding these new lines of code, save the das_task.c file.
Now, you have to define the prototype of user function. Open the file fun_type.h typing at the prompt:

vedit /ProcessVision/fun_type.h <RETURN>
Go to the end of the file and type in:
exterm void user_function (short __huge*, struct channel *, int, int, struct par *);
Save the fun_type.h file and close it. -
You are ready to write your own data processing function. At the prompt type:

vedit user finction.c <RETURN>
Include the following header files in your user_finction.c file editing the following lines:

#include "fun_type.h"”

#include "globals.h"

#include "ch_structure.h"

#include "struct.h”

#include "proto.h"

#include "cc_lib.h"

#include <errno.h>
#include <stdio.h>

122

http://fun_type.li

APPENDIX B

Start to write the body of your function. Type in:
void user_function (short __huge *Al_tab_ptr, struct channel *chan, int chan_num, int num_of_kwt,
- struct par * kwt)

(

body of your brogram

Where: .

user_function is the name of added user function. ‘

Al tab_ptr is a pointer to the table that contains data for the input cha;mel.

chan is a pointer to the structure channel. Structure channel contains all relevant information
for specific input channel.

chan_num is the channel number which data user will process.

num_of kwt is an integer variable. that oontams a number of passed varial;lu from
configuration file to a function. '

kwt is a pointer variable to the structure par that contains the list of function variables (including
passed key-word-triplets). |
Data stored in a table (you refer to this data by psing pointer AI tab_ptr) is presented in format from 0 -
4096, where 0 is lower limit and 4096 is upper limit. To convert data to voltage representation, you have
to use within your program the following lines:

' if((chan->range_low<0)&&(value$2047))
value = (float) value - 4096,
if ((chan->range_low < 0)
volt (float) ((float) (value / 4096) * 2 * (chan->range_high / 1000000)),
: el voit = (float) ((float) (value / 4096) * (chan->range high / 1000000));

’ Where: .
value is a short type variable, obtained by AI_tab_ptr pointer (value = *Al_tab_ptr,)
2047 is the upper limit wheh the mm input variable is in the range of -1+1 V, -5+5 V and

-10 +10 V (2047 presents 1V, 5V, 10V respectively). Negative voltage is expressed from 2047 up to 4096.

123

APPENDIXB

volt s float type variable that presents input variable in volts.
To obtain an actual value, a developer has to call calibration function within hig/her program, before
passing this value to point database. Here is'the prototype of the calibration function:

float calibration (float , struct channel *) ,-
To call this fﬁnction type in:

real_value = calibration (volt, chan);
Where:

real_value is return float type variable from calibration function

voﬁ is passed variable from your program eipressed in volts.

chan is pointer to structure channel.
When you are finished with coding your processing function, open file calibration.c. Go to line 92 and
type in:

case 9:

/*Comment*/

real_value =some_function (volt);
break; '

" Where::

case 9 is a new case within the body of calibration function . 9 will be your new channel type
defined in your configuration file |

real_value is a returned v_ariable that presents actual value.

some ﬁcﬁon (volt) is the calibration equation to convert voltage inté an actual value. volt is
the passing variable from the calling program. For example:

real_value =75 * volt - 75;
Save and exit file calibratipn.c. .
You have to recompile the Data Acquisition Module for all thess changes to take effect. Open file _das
issuing the following command: |

vedit _das <RETURN>

At the end of third line (- o option during compilation) type in:

124

calibration.c user_function.c
Save and exit _das file.
Now, ai the prompt type in:

concas <RETURN>

You have started compilation of your new function.

125

APPENDIX B

APPENDIX C

|EXPERT SYSTEM

Object

@name = casting
@attribute = speed. @float
endObject

Object
@name = counter

@attribute = number.@integer

endObject

Object
@name = depression

@attribute = warning.@float

endObject

Object

@name = driver
@attribute = flag @float
endObject :

Object

@name = number_of_valley
@attribute = in_TC1.@float
endObject

Object

@name = repl i
@attribute = a_span.@float,
endObject

Object

@name =rep2
@attribute = a_span.@float,
endObject

Object

@name = rep3

@attribute = a_span.@float,
endObject

Object

@name = rep4

@attribute = a_span.@float,
endObject

Object

@name = rep5

@attribute = a_span.@float,
endObject

m_time. @float, t_drop.@float

m_time.@float, t_drop.@float

m_time.@float, t drop.@float

m_time.@float, t_drop.@float

m_time.@float, t_drop.@float

126

APPENDIX C

Object

@name = rep6

@attribute = a_span.@float, m_time.@float, t_drop.@float
" endObject

Object

@name = REPORT

@attribute = addition_value.@integer, extension. @string, number.@integer,
rule_name.@string

endObject

Object

@name = scan_window

@attribute = max_time.@float, min_time.@float
endObject

Object

@name = show

@attribute = beliefl. @string, belief2. @string, belief3.@string,
belief4. @string, belief5.@string, belief6.@string

endObject

Object

@name = start

@attribute = check.@float
endObject

Object
(@name = start looking_for
@attribute = depression.@float

-endObject

Object

@name =TC

@attribute = ignore_rule_name.(@string, next | number. @mteger
endObject

Object

@name =TCO

(@attribute = rule_examined.variable, temperature drop.significant
endObject

Object

@name =TCl1

@attribute = extension.@string, location. @float, rule examined.variable, :
start_number @integer, temperature_drop.significant, valley_number. @integer
endObject ' .

Object

@name =TC11

@attribute = m_time. @float, t_base. @ﬂoat t_drop.@float,
t_span.@float

endObject

127

APPENDIX C

Object

@name =TC12

@attribute = m_time.@float, t_| base @float, t drop @ﬂoat,
t_span.@float

endObject

Object

@name =TC13

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC14

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC15

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float '

endObject

Object

@name =TC2 :

@attribute = extension. @string, location. @float, rule_examined.variable,
temperature’ drop.significant, valley.zero, valley_number. @integer

endObject '

Object

@name =TC21

@attribute = m_time.@float, t_base. @float, t drop @float,
t_span.@float

endObject

Object

@name =TC22

@attribute = m_time. @float, t | base @float, t_drop. @float,
: t_span.@float
- endObject

Object

@name =TC23 .

"@attribute = m_time.@float, t_base.@float, t_drop. @ﬂoat
t_span.@float

endObject

Object

@name =TC24

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

128

APPENDIX C

Object

@name = TC25

@attribute = m_time.@float, t_base.@float, t drop @float,
t_span.@float

endObject

Object

@name =TC2a

@attribute = rule_examined.variable, temperature_drop.significant
endObject

Object

@name =TC3

@attribute = extension.@string, locatnon @float, rule_examined.variable,

_ temperature_drop.significant, valley.zero, valley number.@integer
endObject

Object

@name = TC31

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC32 '

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC33

@attribute = m_time.@float, t | base @ﬂoat t_drop.@float,
t_span.@float

endObject

Object

@name =TC34

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = TC35

@attribute = m_time.@float, t_base. @ﬂoat t drop @float,
t_span.@float

endObject

Object

@name =TC3a

@attribute = rule_| exammed variable, temperature_drop. s1gmﬁcant
endObject

129

APPENDIX C

Object

@name =TC4

@attribute = extension. @string, location.@float, rule_examined.variable,
temperature_drop.significant, valley.zero, valley number.@integer

endObject

Object

@name = TC41

@attribute = m_time @float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC42

@attribute = m_time.@float, t | base. @float, t_drop.@float,
t_span.@float

endObject

Object

@name = TC43

@attribute = m_time . @float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name =TC44

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject '

Object

@name = TC45

@attribute = m_time.@float, t_base.@float, t_drop. @ﬂoat,
t_span.@float

endObject

Object

@name =TC4a

@attribute = rule_examined.variable, temperature drop significant
endObject

Object

@name = TCVL

@attribute = extension.@string
endObject

Object

@name = time_range

@attribute = avg, val.@float, max_val. @ﬂoat min_val. @float
endObject

130

APPENDIX C

Object

@name = valley o

@attribute = avg,_value. @float, default_span.@float, extension. @string,
status.incomplete '

endObject

Object

@name = valley span
@attribute = avg_value. @float
endObject

.Object

@name = VL

@attribute = number. @integer
endObject

Object

@name = VLO

@attribute = dummy. @string, size. sxgmﬁcant status__ number @integer
endObject

Object

@name = VLO1

@attribute = m_time.@float, t_base.@float, t. drop.@float,
t_span.@float

endObject

Object

@name = VL02

@attribute = m_time. @float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL03

@attribute = m_time.@float, t_base.@float, t_drop. @ﬂoat
t_span.@float

endObject’

Object

@name = VL04

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL1

@attribute = dummy. @stnng, size. s1gmﬁcant status_number. @mteger
endObject .

131

Object
@name = VL11

@attribute = m_time. @float, t_base.@float, t_drop.@float,

t_span.@float
endObject

Object
@name = VL12

@attribute = m_time. @float, t_base.@float, t_drop.@float,

t_span.@float
endObject

Object
@name = VL13

@attribute = m_time.@float, t_ base @float, t _drop.@float,

t_span.@float
endObject

Object

@name = VL14

@attribute = m_time.@float, t_base. @ﬂoat t_drop.@float,
t_span.@float

endObject

Object
@name = VL2

@attribute = dummy. @string, size.significant, status_number.@integer

endObject

Object
@name = VL21

@attribute = m_time.@float, t_base.@float, t_drop.@float,

t_span.@float
endObject

Object

@name = VL22

@attribute = m_time.@float, t_base. @float, t drop @ﬂoat
t_span.@float

endObject

Object

@name = VL23

@attribute = m_time . @float, t_base.@float, t drop @float,
t_span.@float

| endObject

Object
@name = VL24
@attribute = m_time.@float, t_base. @ﬂoat t_drop.@float,

t_span.@float
endObject

132

APPENDIX C

APPENDIX C

Object

@name = VL3

@attribute = dummy. @string, size.significant, status_number. @mteger
endObject

Object

@name = VL31
" @attribute = m_time @float, t_base. @float, t_drop.@float,
' t_span.@float

endObject

Object

@name = VL32

@attribute = m_time.@float, t | base. @float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL33

@attribute = m_time.@float, t_base.@float, t drop @float,
t_span.@float

endObject

Object

@name = VL34

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float '

endObject

Object

@name = VL4

@attribute = dummy. @string, size.significant, status_number.@integer
endObject

Object
@name = VL41

@attribute = m_time.@float, t_base. @ﬂoat t_drop. @ﬂoat
t_span.@float

endObject :

Object

@name = VL42

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float '

endObject

Object

@name = VL43

@attribute = m_time.@float, t_base.@float, t_drop.@float,
' t_span.@float
_ endObJect

133

APPENDIX C

Object

@name = VL4

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL5

@attribute = dummy. @string, size.significant, status_ number @integer -
endObject

Object

@name = VL51

@attribute = m_time.@float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL52

@attribute = m_time . @float, t_base.@float, t_drop.@float,
t_span.@float

endObject

Object

@name = VL53

-@attribute = m_time.@float, t_base.@float, t_drop. @ﬂoat
t_span.@float

endObject

Object

@name = VL54

@attribute = m_time.@float, t | ‘base. @float, t_drop.@float,
t_span.@float

endObject

Object

@name = wind

@attribute = size.true, size.@float
endObject

Inference .

@name = BELIEF 1

@and = $min

@or = $max

@mathexpr = $min

@conclusion = (CERTAINTY (TC1.temperature_drop.significant) * 0. 600000)
endInference

134

APPENDIX C

Inference

@name = BELIEF 2

@and = $min

@or = $max

@mathexpr = $min

@conclusion = (CERTAINTY (TC1.temperature_ drop significant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000) * 0.800000 / 0.750000

endInference

Inference

@name = BELIEF_3

@and = $min

@or = $max

@mathexpr = $min :

@conclusion = (CERTAINTY (TCl1.temperature_drop.significant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000 + CERTAINTY (TC3.temperature_ drop s1gn1ﬁcant)*
0.150000) * 0.950000 / 0.900000

endInference

Inference

@name = BELIEF_4

@and = $min

@or = $max

@mathexpr = $min

@conclusion = (CERTAINTY (TCO.temperature_drop.significant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000 + CERTAINTY (TC3.temperature_drop.significant) *
0.150000 + CERTAINTY (TC4.temperature_drop.significant) * 0.100000)

endInference

Inference

@name = BELIEF 4a

@and = $min

@or = $max-

@mathexpr = $min

@conclusion = (CERTAINTY (TCL temperature drop. 51gn1ﬁcant) * 0.600000 + CERTAINTY (
TC2.temperature_drop.significant) * 0.150000 + CERTAINTY (TC3.temperature_drop.significant *.
0.150000 + CERTAINTY (TC4.temperature_drop.significant) * 0.100000)

endInference

Fuzzy

@name = TEMP_DROP_SIGNIFICANT

@source = (\VL\<valley.extension.@string>.t_drop.@float)/ (
\VL\<valley.extension.@string>.t_base.@float-)

-@range = 10

@value = 0.000000, 0.010000, 0 020000, 0.030000, 0.040000, 0. 050000 0. 060000 0.080000, 0.100000,
0.150000

@rank = 0.000000, 1.000000, 5.000000, 25.000000, 50. 000000 60.000000, 75.000000, 90.000000,
95.000000, 100.000000 '

endFuzzy

Rule

@name = a

IF TRUE

THEN ASKCC (driver.flag. @ﬂoat)

135

" APPENDIX C

THEN ASKCC (start_looking,_for.depression.@float ')
THEN FREERULE ($Rule, "al") . '
THEN GOTO ("al")

endRule

Rule

@name = al

IF driver.flag.@float >0

AND start_looking, for.depression.@float >0
THEN FORGET ("*.*.*")

THEN driver.flag @float =1

THEN TCl1.location.@float =220
THEN TC2.location.@float =335
THEN TC3.location.@float =435
THEN TC4.location.@float = 535
THEN ASKCC (casting,.speed. @float)
THEN ASKCC (TC11l.m_time @float ")
THEN ASKCC (TC11.t base.@float)
THEN ASKCC (TC11.t_drop.@float)
THEN ASKCC (TC11.t_span.@float)
THEN ASKCC (TC12.m_time. @float)
THEN ASKCC (TC12.t_base.@float)
THEN ASKCC (TC12.t_drop.@float)
THEN ASKCC (TC12.t_span.@float)
THEN ASKCC (TC13.m_time @float)
THEN ASKCC (TC13.t_base.@float)
THEN ASKCC (TC13.t_drop.@float)
THEN ASKCC (TC13.t_span.@float)
THEN ASKCC (TC14.m_time.@float)
THEN ASKCC (TC14.t_base.@float)
THEN ASKCC (TC14.t_drop.@float)
THEN ASKCC (TC14.t_span.@float)
THEN ASKCC (TC15.m_time.@float)
THEN ASKCC (TC15.t_base.@float)
THEN ASKCC (TC15.t_drop.@float)
THEN ASKCC (TC15.t_span.@float)
THEN ASKCC (TC21.m_time.@float)
THEN ASKCC (TC21.t_base.@float)
THEN ASKCC (TC21.t_drop.@float)
THEN ASKCC (TC21.t_span.@float)
" THEN ASKCC (TC22.m_time. @float)
THEN ASKCC (TC22.t_base.@float)
THEN ASKCC (TC22.t_drop.@float)
THEN ASKCC (TC22.t_span.@float)
THEN ASKCC (TC23.m_time.@float)
THEN ASKCC (TC23.t_base.@float)

- THEN ASKCC (TC23.t_drop.@float)
THEN ASKCC (TC23.t_span.@float)
THEN ASKCC (TC24.m_time.@float)
THEN ASKCC (TC24.t_base.@float)
THEN ASKCC (TC24.t_drop.@float)
THEN ASKCC (TC24.t_span.@float)
THEN ASKCC (TC25.m_time.@float)
THEN ASKCC (TC25.t_base.@float)

136

APPENDIX C

THEN ASKCC (TC25.t_drop.@float)
THEN ASKCC (TC25.t_span.@float)
THEN ASKCC (TC31.m_time.@float)
THEN ASKCC (TC31.t_base.@float)
THEN ASKCC (TC31.t_drop.@float)
THEN ASKCC (TC31.t_span.@float)
THEN ASKCC (TC32.m_time. @float)
THEN ASKCC (TC32.t_base.@float)
THEN ASKCC (TC32.t_drop.@float)
THEN ASKCC (TC32.t_span.@float)
THEN ASKCC (TC33.m_time.@float)
THEN ASKCC (TC33.t_base.@float)
THEN ASKCC (TC33.t_drop.@float)
THEN ASKCC (TC33.t_span.@float)
THEN ASKCC (TC34.m_time.@float)
THEN ASKCC (TC34.t_base.@float)
THEN ASKCC (TC34.t_drop.@float)
THEN ASKCC (TC34.t_span.@float)
THEN ASKCC (TC35.m_time @float)
THEN ASKCC (TC35.t_base.@float)
- THEN ASKCC (TC35.t_drop.@float)
THEN ASKCC (TC35.t_span.@float)
THEN ASKCC (TC41.m_time. @float)
THEN ASKCC (TC41.t_base.@float)
THEN ASKCC (TC41.t_drop.@float)
THEN ASKCC (TC41.t_span.@float)
THEN ASKCC (TC42.m_time.@float)
THEN ASKCC (TC42.t_base.@float)
THEN ASKCC (TC42.t_drop.@float)
THEN ASKCC (TC42.t_span.@float)
THEN ASKCC (TC43.m_time.@float)
THEN ASKCC (TC43.t_base.@float)
THEN ASKCC (TC43.t_drop.@float)
THEN ASKCC (TC43.t_span.@float)
THEN ASKCC (TC44.m_time.@float)
THEN ASKCC (TC44.t_base.@float)
THEN ASKCC (TC44.t_drop.@float)
THEN ASKCC (TC44.t_span.@float)
THEN ASKCC (TC45.m_time.@float)
THEN ASKCC (TC45.t_base.@float)
THEN ASKCC (TC45.t_drop.@float)
THEN ASKCC (TC45.t_span.@float)

THEN ASKCC (number_of valley.in TC1.@float)

THEN FREERULE ($Rule, "a2")
THEN FREERULE ($Rule, "a3")
THEN FREERULE ($Rule, "no_valley")
THEN FREERULE ($Rule, "report0")
THEN report.number. @integer = 0

THEN valley.status.incomplete is TRUE CF=0.00 -

THEN counter.number.@integer = 1
THEN TCl.start_number.@integer = 1
THEN IMPORT ("file.xxx", 0, 100)
THEN FREERULE ($Rule, "no_valley")
THEN MACRO ("no_valley")

-APPENDIX C

THEN FREERULE ($Rule, "ala")
THEN GOTO ("ala")

ELSE WAIT ($Rule, "*",5)
ELSE FREERULE ($Rule, "a")
ELSE GOTO ("a")

endRule

Rule

@name = ala

IF valley.status.incomplete is TRUE
THEN FREERULE ($Rule, "a2")
THEN GOTO ("a2")

ELSE FREERULE ($Rule, "a3")
ELSE GOTO ("a3")

endRule

Rule

@name = a2

IF wvalley.status.incomplete is TRUE

AND counter.number.@integer <= number_of_valley.in_TC1.@float
THEN FORGET ("VL*.dummy.@s")

THEN FREERULE ($Rule, "Valley *")

THEN FIND ("VLO.dummy.@s")

THEN FIND ("VL1.dummy.@s")
"THEN FIND ("VL2.dummy.@s")

THEN FIND ("VL3.dummy.@s")

THEN FIND ("VL4.dummy.@s")

THEN FIND ("VL5.dummy.@s")

THEN report.rule_name.@string is STRCONCAT ("report", FORMAT (report.number. @integer, "%ld"
) | ,
THEN FREERULE ($Rule, report.rule_name.@string)

THEN MACRO (report.rule_name.@string,)

THEN IGNORE ($Rule, "a3")

THEN driver.flag. @float =0 _

THEN start_looking, for.depression.@float =0
THEN start.check. @float =70
THEN FREERULE ($Rule, "al")
THEN GOTO ("al")
ELSE driver.flag.@float =0
ELSE start_looking, for.depression.@float =0

ELSE start.check.@float = 60 '
ELSE FREERULE ($Rule, "a")
ELSE GOTO ("a")

endRule

Rule

@name = a3

IF valley.status.incomplete is FALSE _
AND counter.number.@integer <= number_of_valley.in_TC1.@float
THEN FORGET ("VL*.dummy.@s")

THEN FREERULE ($Rule, "Valley *")

THEN FIND ("VL1.dummy.@s")

THEN FIND ("VL2.dummy.@s")

THEN FIND ("VL3.dummy.@s")

138

APPENDIX C

THEN FIND ("VL4.dummy.@s")

THEN FIND ("VL5.dummy.@s")

THEN report.rule_name. @string is STRCONCAT ("report”, FORMAT (report.number. @mteger "%Ild"
)) :

THEN FREERULE ($Rule, report.rule_name.@string,)
THEN MACRO (report.rule_name.@string)

THEN driver.flag. @float =0

_ THEN start_looking, for.depression.@float =0

THEN start.check. @float =70

THEN FREERULE ($Rule, "al")

THEN GOTO ("al")

ELSE driver.flag. @float =0

ELSE start_looking, for.depression.@float =0 -

ELSE start.check.@float =60

ELSE FREERULE ($Rule, "a")

ELSE GOTO ("a")

endRule

Rule

@name = belief_calc_1

@inference = BELIEF_1

IF \VL\<VL.number. @integer>.status number.@integer — 1

THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number. @mteger "%Id"), "1")
THEN VLO1.t_drop.@float =\VL\<valley.extension.@string>.t_drop.@float
THEN VLO1.t_span.@float =\VL\<valley.extension.@string>.t span.@float
~ THEN VLO1.t_base.@float =\VL\<valley.extension. @string>.t_base.@float
THEN VLO01.m_time.@float =\VL\<valley.extension.@string>m_time.@float
THEN valley status.incomplete is TRUE

THEN counter.number.@integer = 0

THEN ASNCERTAINTY (valley.status.incomplete, 100)

THEN ASNCERTAINTY (counter.number. @integer, 100)

THEN ASNCERTAINTY (VLOL.t_drop.@float , 100)

THEN ASNCERTAINTY (VLO1.t_span.@float , 100)

THEN ASNCERTAINTY (VLO1.t_base.@float , 100)

THEN ASNCERTAINTY (VLOl.m_time @float , 100)

THEN EXPORT ("file.xxx", "valley.status.incomplete”, 0, 100)

THEN EXPORT ("file.xxx+", "counter.number.@i", 0, 100)

THEN EXPORT ("file.xxx+", "VL01.0.@f file.xxx", 0, 100)

THEN EXPORT ("file.xxx+", "VL01.1.@f file.xxx", 0, 100)

THEN EXPORT ("file.xxx+", "VL01.2.@f file.xxx", 0, 100)

THEN EXPORT ("file.xxx+", "VLO01.3.@f file.xxx", 0, 100)

THEN EXPORT ("file.xxx+", "VL01.4.@f file.xxx", 0, 100)

THEN EXPORT ("file.xxx+", "VL01.5.@f file.xxx", 0, 100)

THEN IGNORE ($Rule, "belief_*")

THEN report.addition_value. @integer = 0

THEN ASNCERTAINTY (report.addition_value.@integer, 100)

ELSE report.addition_value.@integer = 1

ELSE ASNCERTAINTY (repon addition_value. @integer, 100)

endRule

Rule

@name = belief calc_2

@inference = BELIEF 2

IF \VL\<VL.number.@integer>.status_number.@integer =— 2

139

APPENDIX C

THEN \VL\<VL.number.@integer>.size.significant is TRUE
THEN valley.status.incomplete is TRUE CF=0.00 '

THEN ASNCERTAINTY (valley.status.incomplete, 0)

THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN IGNORE ($Rule, "belief *")

endRule

Rule

@name = belief calc 3

@inference = BELIEF 3
IF \VL\<VL.number.@integer>.status_number.@integer = 3

* THEN \VLA<VL.number.@integer>.size.significant is TRUE

THEN valley.status.incomplete is TRUE CF=0.00

THEN ASNCERTAINTY (valley.status.incomplete, 0)

THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN IGNORE ($Rule, "belief *")

endRule

Rule :

@name = belief calc_4

@inference = BELIEF 4

IF VL.number.@integer — 0

AND \VLA\<VL.number.@integer>.status_number.@integer — 4
THEN \VL\<VL.number. @integer>.size.significant is TRUE
THEN valley.status.incomplete is TRUE CF=0.00

THEN ASNCERTAINTY (valley.status.incomplete, 0)

THEN EXPORT ("file.xxx", "valley.status.incomplete", 0, 100)
THEN IGNORE ($Rule, "belief *")

endRule

Rule

@name = belief_calc_4a

@inference = BELIEF 4a

IF VL.number.@integer > 0

AND \VL\<VL.number.@integer>.status number.@integer = 4

THEN \VL\<VL.number. @integer>.size.significant is TRUE

THEN valley.status.incomplete is TRUE CF=0.00

THEN ASNCERTAINTY (valley.status.incomplete, 0)

THEN EXPORT ("file.xxx", "valley.status.incomplete”, 0, 100) _
endRule '

Rule

@name = check_time_range

IF KNOWN (\TC\<TC.next_number.@integer>.valley_number. @mteger)

THEN \TC\<TC.next_number.@integer>.extension.@string is FORMAT (
\TC\<TC.next_number.@integer>.valley number.@integer, "%ld")

THEN \VL\<VL.number.@integer>.status_number. @integer = TC.next_number. @mteger 1

THEN TC.ignore_rule_name.@string is STRCONCAT ("XX", FORMAT (TC.next_number.@integer,
ll% ldll)) .
THEN IGNORE ($Rule, TC.ignore_rule_name.@string)

ELSE TC.ignore_rule_name @string is STRCONCAT ("TC", FORMAT (TC.next_number. @integer,
"(y ld"))

- ELSE IGNORE ($Rule, TC.ignore_rule_name. @stnng)

endRule

140

APPENDIX C

Rule

@name = no_valley

IF number_of valley.in TCl.@float =0
AND valley.status.incomplete is FALSE
THEN driver.flag.@float =0

THEN FREERULE ($Rule, "a")

endRule

Rule

@name = pre_report

IF \VLA<VL.number.@integer>.status_number.@integer >1

THEN report.extension. @string is STRCONCAT (FORMAT (VL. number @mteger "%Id"), "1")
THEN \rep\<report.number. @integer>.m_time.@float =
\VL\<report.extension.@string>m_time.@float

THEN \rep\<report.number.@integer>.t _drop.@float CERTAINTY (
\VL\<VL.number.@integer> size.significant)

THEN \rep\<report.number.@integer>.a_span.@float = valley_span.avg,_ value. @float

endRule

Rule

@name = report0

IF report.number.@integer =0
THEN IGNORE ($Rule, "report*")
THEN driver.flag. @float =0
THEN FREERULE ($Rule, "al")
THEN GOTO ("al")

endRule

Rule

@name = reportl

IF report.number.@integer — 1

THEN TEXT ("NUMBER OF VALLEYS DETECTED =1", "alarm")
THEN TEXT ("TIME is |$SFORMAT(repl.m_time. @f,"%6.21f")$!", "alarm")
THEN TEXT ("BELIEF is {$SFORMAT(repl.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("SPAN is !SFORMAT(repl.a_span.@f,"%6.21£")$!", "alarm")
THEN IGNORE ($Rule, "report*")

THEN depression.warning. @float =1

THEN start.check.@float =70

THEN show.beliefl. @string = FORMAT (repl.t_drop.@float , "%ld")

THEN FIND ("wind size.true")

endRule . -

Rule

@name = report2

IF report.number.@integer == 2

THEN TEXT ("NUMBER OF VALLEYS DETECTED 2", "alarm")

THEN TEXT ("First TIME is |SFORMAT(repl.m_time.@f,"%6.2if")$!", "alarm")
THEN TEXT ("First BELIEF is |SFORMAT (repl.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("First SPAN is |$SFORMAT (repl.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second TIME is {$SFORMAT(rep2.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second BELIEF is |$SFORMAT(rep2.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Second SPAN is {SFORMAT(rep2.a_span.@f,"%6.21f")$!", "alarm")
THEN IGNORE ($Rule, "report*")

141

http://wind.size.true

APPENDIX C

THEN depression.warning.@float =1-

THEN start.check.@float =70

THEN show.beliefl @string = FORMAT (repl.t_drop. @ﬂoat "%l1d")
THEN show.belief2. @string = FORMAT (rep2.t_drop.@float , "%Id")
THEN FIND ("wind.size.true")

endRule

Rule

@name = report3 ‘

IF report.number.@integer =3

THEN TEXT ("NUMBER OF VALLEYS DETECTED = 3", "alarm")

THEN TEXT ("First TIME is !$FORMAT (repl.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("First BELIEF is | SFORMAT(repl.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ('"First SPAN is |SFORMAT(repl.a_span.@f,"%6.21f")§!", "alarm")
THEN TEXT ("Second TIME is |$FORMAT(rep2.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second BELIEF is |{$FORMAT (rep2.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Second SPAN is |$FORMAT(rep2.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third TIME is {$SFORMAT (rep3.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third BELIEF is |$SFORMAT(rep3.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Third SPAN is !$FORMAT (rep3.a_span. @f "%6.21")$!1", "alarm")
THEN IGNORE ($Rule, "report*")

THEN depression.warning.@float =1

THEN start.check.@float =70

THEN show.beliefl.@string = FORMAT (repl.t_drop.@float , "%lId")

THEN show.belief2. @string = FORMAT (rep2.t_drop.@float , "%ld")

THEN show.belief3.@string = FORMAT (rep3.t_drop.@float , "%lId")

THEN FIND ("wind.size.true")

endRule

Rule

{@name = report4

IF report.number.@integer — 4)

THEN TEXT ("NUMBER OF VALLEYS DETECTED = 4", "alarm")

THEN TEXT ("First TIME is {$SFORMAT (repl.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("First BELIEF is |SFORMAT(repl.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("First SPAN is ISFORMAT(repl.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second TIME is !$FORMAT (rep2.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second BELIEF is !$FORMAT(rep2.t_drop.@f,"%4.01f")$!1", "alarm")
THEN TEXT ("Second SPAN is |SFORMAT (rep2.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third TIME is !$SFORMAT(rep3.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third BELIEF is {SFORMAT(rep3.t_drop.@f,"%4.0f")$!", "alarm")
THEN TEXT ("Third SPAN is |$FORMAT (rep3.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth TIME is |SFORMAT(rep4.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth BELIEF is |$SFORMAT(rep4.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Fourth SPAN is |$SFORMAT (rep4.a_span.@f,"%6.21f")$!", "alarm")
THEN IGNORE ($Rule, "report*")

THEN depression.warning, @float = 1

THEN start.check. @float =70

THEN show.beliefl. @string = FORMAT (repl t_drop.@float , "%ld")

THEN show.belief2. @string = FORMAT (rep2.t_drop.@float , "%lId")

THEN show.belief3.@string = FORMAT (rep3.t_drop.@float , "%Ild")

THEN show.belief4. @string = FORMAT (rep4.t_drop.@float , "%Id")

THEN FIND ("wind.size.true")

endRule

142

http://wind.size.true
http://wind.size.true
http://wind.size.true

APPENDIX C

Rule

@name = report5

IF report.number.@integer =35

THEN TEXT ("NUMBER OF VALLEYS DETECTED = 5", "alarm")

THEN TEXT ("First TIME is ! SFORMAT (repl.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("First BELIEF is |$FORMAT (repl.t_drop.@f,"%4.01£")$!", "alarm")
THEN TEXT ("First SPAN is |$SFORMAT(repl.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second TIME is |$SFORMAT (rep2.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second BELIEF is |1SFORMAT(rep2.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Second SPAN is |$SFORMAT(rep2.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third TIME is |$FORMAT (rep3.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third BELIEF is |$SFORMAT(rep3.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Third SPAN is |$SFORMAT(rep3.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth TIME is |SFORMAT(rep4.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth BELIEF is |SFORMAT(rep4.t_drop.@f,"%4.01f")$!", "alarm")
. THEN TEXT ("Fourth SPAN is |$SFORMAT(rep4.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fifth TIME is |$FORMAT(rep5.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fifth BELIEF is |$FORMAT (rep5.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Fifth SPAN is |SFORMAT(rep5.a_span.@f,"%6.2lf")$!", "alarm")
THEN IGNORE ($Rule, "report*")

THEN depression.warning @float = 1

THEN start.check. @float =70

THEN show.beliefl. @string = FORMAT (repl.t_drop. @ﬂoat "%lId")

~ THEN show.belief2. @string = FORMAT (rep2.t_drop.@float , "%Id")

THEN show.belief3.@string = FORMAT (rep3.t_drop.@float , "%lId")

THEN show.belief4. @string = FORMAT (rep4.t_drop.@float , "%I1d")

THEN show.belief5. @string = FORMAT (rep5.t_drop.@float , "%lId")

THEN FIND ("wind.size.true") ‘

endRule

"Rule
{@name = report6
IF report.number. @integer = 6
THEN TEXT ("NUMBER OF VALLEYS DETECTED = 6", "alarm")
THEN TEXT ("First TIME is |$SFORMAT (repl.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("First BELIEF is {$FORMAT(repl.t_drop.@f,"%4.0l£")$!", "alarm") -
THEN TEXT ("First SPAN is |$FORMAT(repl.a_span.@f,"%®6.21f")$!", "alarm")
THEN TEXT ("Second TIME is |$SFORMAT(rep2.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Second BELIEF is |$SFORMAT (rep2.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Second SPAN is |$FORMAT(rep2.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third TIME is |SFORMAT(rep3.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Third BELIEF is !$FORMAT (rep3.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Third SPAN is |$SFORMAT(rep3.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth TIME is |SFORMAT(rep4.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fourth BELIEF is |$SFORMAT(rep4.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Fourth SPAN is |SFORMAT(rep4.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fifth TIME is !$FORMAT (rep5.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Fifth BELIEF is |SFORMAT (rep5.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Fifth SPAN is {$FORMAT(rep5.a_span.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Sixth TIME is |SFORMAT (rep6.m_time.@f,"%6.21f")$!", "alarm")
THEN TEXT ("Sixth BELIEF is !$SFORMAT(rep6.t_drop.@f,"%4.01f")$!", "alarm")
THEN TEXT ("Sixth SPAN is |SFORMAT(rep6.a_span.@f,"%6.21f")$!", "alarm")
THEN depression.warning.@float =1 '

143

http://wind.size.true

APPENDIX C

THEN start.check. @float =70

THEN show.beliefl. @string = FORMAT (repl.t_drop.@float , "%ld")
THEN show.belief2. @string = FORMAT (rep2.t_drop.@float , "%Id")
THEN show.belief3. @string = FORMAT (rep3.t_drop.@float , "%ld")
'THEN show.belief4. @string = FORMAT (rep4.t_drop.@float , "%ld")
THEN show.belief5.@string = FORMAT (rep5.t_drop.@float ', "%I1d")
THEN show.belief6.@string = FORMAT (rep6.t_drop.@float , "%ld")
THEN FIND ("wind.size.true")

endRule

Rule

@name =TCOa

IF counter.number.@integer == 0

AND TCll.m_time @float <=(VLO1l.m_time @float + VLOL.t . span.@float /2)

THEN valley.extension. @string is STRCONCAT (FORMAT (VL.number. @integer, "%Id"), "1")
THEN TC1 extension @string is FORMAT (counter.number.@integer, "%ld")

THEN VLO1.t_drop.@float =MAX (TC11.t_drop.@float , VLO1.t drop.@float)

THEN VLO1.t_span.@float =MAX (TCI11.t_span.@float , VLO1.t_span.@float)

THEN VLO1.t_base.@float =MAX (TC11.t_base.@float , VLO1.t base.@float)

THEN VLOl.m_time. @float =(TC11l.m_time.@float)

THEN valley_span.avg, value.@float = VLO1.t_span.@float

THEN FIND ("TCO.temperature_drop.significant")
THEN valley.default_span.@float = VLO01.t_span.@float

THEN time_range.avg,_val. @float = VLOl.m_time @float + (TC2.location.@float -
TCl.location.@float)/ casting.speed.@float

THEN time range.min_val @float =time_range.avg_val. @float - 0.500000 * VLO1.t_span. @ﬂoat
THEN time_range.max_val.@float = tlme _range. avg_val @float + 0.500000 * VLO1.t_span.@float
THEN TC.next_number.@integer =

THEN VLO.status_number. @mteger =1

THEN valley.extension. @string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), FORMAT
(TC.next_number.@integer, "%Id"))

THEN TCO0.rule_examined.variable is TRUE

THEN IGNORE ($Rule, "TC1")

THEN IGNORE ($Rule, "TCOb")

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range *")

THEN MACRO ("check_time_range")

THEN counter.number. @integer = 1

endRule

Rule

@name = TCOb

IF counter.number.@integer — 0

AND TCil.m_time.@float >(VLOl.m_time.@float + VLO1.t_span.@float /2) :
" THEN valley.extension. @string is STRCONCAT (FORMAT (VL.number. @integer, "%Id"), "1")
THEN TCl.extension. @string is FORMAT (counter.number. @integer, "%Id")

THEN VLO1.t_drop.@float = VLOL1.t_drop.@float

THEN VLO1.t_span.@float = VLO1.t_span.@float

THEN VLO1.t_base.@float = VLO1.t_base.@float

THEN VLO1.m_time.@float = VLOl.m_time.@float

THEN valley span.avg_value.@float = VLOL.t _span.@float

THEN FIND ("TCO.temperature_drop.significant") '

THEN valley.default_span.@float ‘= VLO1.t_span. @float

144

http://wind.size.true

APPENDIX C

THEN time_range.avg_val.@float = VLO1.m_time. @ﬂoat +(TC2. locatlon @float -
TCl1.location.@float)/ casting.speed.@float

THEN time_range.min_val.@float = time_range.avg,_val. @float - 0.500000 * TC11.t_span @float
THEN time_range max_val. @float = tlme _range.avg, val. @ﬂoat + 0.500000 * TC11.t_span. @ﬂoat
THEN TC.next_number.@integer =

THEN \VL\<VL.number. @integer>. status number.@integer = 1

THEN valley.extension. @string is STRCONCAT (FORMAT (VL.number.@integer, "%Id"), FORMAT
(TC.next_number. @integer, "%ld")) '

THEN TCO.rule_examined.variable is TRUE

THEN IGNORE ($Rule, "TC1")

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time _range *")

THEN MACRO ("check_time_range")

endRule

Rule

@name =TC1

IF TRUE

THEN valley.extension.@string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "1")
THEN \VL\<valley.extension.@string>.t_drop.@float =
\TC1\<counter.number.@integer>.t_drop.@float :

THEN \VL\<valley.extension.@string>.t_span.@float =
\TC1\<counter.number.@integer>.t_span.@float _
THEN \VL\<valley.extension.@string>.t_base.@float = \TC1\<counter number.@integer>.t_base.@float
THEN \VL\<valley.extension.@string>.m_time.@float =
\TC1\<counter.number.@integer>.m_time.@float

THEN valley span.avg_value.@float = \VL\<valley.extension @string>.t_span.@float

THEN FIND ("TC1.temperature_drop.significant") _

THEN valley.default_span.@float =\TCl\<counter.number.@integer>.t_span.(@float

THEN time_range.avg, val.@float =\TCl\<counter.number.@integer>.m_time. @float +(
TC2.location.@float - TC1.location.@float)/ casting.speed.@float

THEN time_range.min_val. @float =time_range.avg_val.@float - 0.500000 *
\TC1\<counter.number.@integer>.t_span.@float

THEN time_range.max_val.@float = time_range.avg_val.@float + 0.500000 *
\TC1\<counter.number.@integer>.t_span.@float

THEN TC.next_number.@integer =2

THEN \VL\<VL.number.@integer>.status_number.@integer = 1

THEN valley extension. @string is STRCONCAT (FORMAT (VL. number @integer, "%l1d"), FORMAT
(TC.next_number.@integer, "%ld"))

THEN TCl.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range *")

THEN MACRO ("check time_range")

endRule

Rule

@name =TC2

IF TC2.valley.zero is FALSE

THEN \VL\<valley.extension. @string>.t_drop.@float =\TC2\<TC2.extension.@string>.t_drop.@float
THEN \VL\<valley.extension. @string>.t_span.@float =\T'C2\<TC2.extension.@string>.t_span.@float
THEN \VL\<valley.extension. @string>.t_base.@float =\TC2\<TC2.extension.@string>.t base.@float
THEN \VL\<valley.extension.@string>m_time.@float =

\TC2\<T'C2.extension. @string>.m_time.@float

145

http://TC2.valley.zero

APPENDIX C

THEN valley_span.avg_value.@float = (valley_span.avg,_value. @float +
\VL\<valley.extension.@string>.t_span.@float) /2

THEN FIND ("TC2.temperature_drop.significant")

THEN time range.avg, val.@float =\TC2\<TC2.extension. @strmg> m_time.@float + (
TC3.location.@float - TC2.location.@float)/ casting speed.@float

THEN time_range.min_val.@float =time range.avg_val.@float - 0.500000 *
\TC2\<TC2.extension.@string>.t_span.@float

THEN time_range.max_val.@float =time_range.avg_val. @float + 0.500000 *
\TC2\<TC2.extension.@string>.t span @float

THEN TC.next_number.@integer =

THEN \VLA<VL.number.@integer>. status number. @mteger =

THEN valley.extension @string is STRCONCAT (FORMAT (VL number, @integer, "%l1d") FORMAT
(TC.next_number.@integer, "%ld"))

THEN TC2.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range *")

THEN MACRO ("check time_range")

endRule

Rule

@name =TC3

IF TC3.valley.zero is FALSE

THEN \VL\<valley.extension. @string>.t drop.@float =\TC3\<TC3. extensnon @string>.t drop @float
THEN \VL\<valley.extension.@string>.t_span @float =\T'C3\<TC3.extension.@string>.t_span.@float
THEN \VL\<valley.extension. @string>.t_base.@float =\TC3\<TC3.extension.@string>.t_base.@float
THEN \VL\<valley.extension.@string>m_time.@float = :

\TC3\<TC3.extension. @string>.m_time.@float .

THEN valley_span.avg_value.@float = (2.000000 * valley span. avg_value @ﬂoat +
\VL\<valley.extension.@string>.t_span.@float)/3

THEN FIND ("TC3.temperature_drop.significant")

THEN time_range.avg,_val. @float =\TC3\<TC3.extension. @string>.m_time. @float + (
TC4.location.@float - TC3.location.@float)/ casting.speed.@float

THEN time_range.min_val. @float = time_range.avg, val.@float - 0.500000 *
\TC3\<TC3.extension.@string>.t_span.@float

THEN time_range.max_val.@float = time_range.avg val.@float + 0.500000 *
\TC3\<TC3.extension.@string>.t span @float

THEN TC.next_number.@integer =

- THEN \VLA<VL.number.@integer>. status number. @integer =

THEN valley.extension.@string is STRCONCAT (FORMAT (VL number. @mteger "%I1d"), FORMAT
(TC.next_number. @integer, "%Id"))

THEN TC3.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range *")

THEN MACRO ("check time range")

endRule

Rule -

@name =TC4

IF TC4.valley.zero is FALSE

THEN \VL\<valley.extension. @string>.t_drop.@float =\TC4\<TC4.extension.@string>.t_drop.@float
THEN \VL\<valley.extension. @string>.t_span.@float =\TC4\<TC4.extension.@string>.t_span.@float
THEN \VL\<valley.extension. @string>.t_base.@float =\TC4\<TC4.extension. @string>.t base.@float
THEN \VL\<valley.extension. @string>.m_time.@float =
\TC4\<TC4.extension.@string>.m_time.@float

146

http://TC4.valley.zero

APPENDIX C

THEN valley_span.avg, value.@float =(3.000000 * valley span.avg, value. @ﬂoat +
\VL\<valley.extension.@string>.t_span.@float)/4

THEN FIND ("TC4.temperature_drop.significant")

THEN \VL\<VL.number.@integer> status_number.@integer = 4

THEN TC4.rule_examined.variable is TRUE '

ELSE \VL\<valley.extension.@string>m_time. @float = tlme _range.avg,_val.@float
ELSE FREERULE ($Rule, "TC_default_rule")

ELSE MACRO ("TC_default_rule")

ELSE FIND ("TC4.temperature_drop.significant")

ELSE \VL\<VL.number.@integer>.status_number.@integer = 4

ELSE TC4.rule_examined.variable is TRUE

endRule

Rule

@name = TC_default_rule

IF TRUE .

THEN \VL\<valley.extension. @string>.t_drop.@float = 0.000000

THEN \VL\<valley.extension. @string>.t_span.@float = 0.000000

THEN \VL\<valley.extension. @string>.t_base.@float = 1.000000 .

THEN \VL\<valley.extension. @string>m_time.@float = time_range.avg_val.@float
THEN time_range.min_val. @float =time_range.avg_val.@float - 0.500000 *
valley.default span.@float

THEN time_range.max_val. @float =time range.avg val. @float + 0.500000 *
valley.default_span.@float

endRule

Rule

@name = time_range 0

IF time range.min val.@float > scan_window.max_time.@float
THEN IGNORE ($Rule, "XX*")

THEN IGNORE ($Rule, "TC*")

THEN IGNORE ($Rule, "time_range *")

THEN IGNORE ($Rule, "check time range")

ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.@integer, "%ld"), "1")

ELSE FREERULE ($Rule, "TC*")

ELSE FREERULE ($Rule, "XX*")

ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE

ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
ELSE FREERULE ($Rule, "check_time_range")

endRule

Rule ‘

@name = time_range 1

IF \TC\<TCVL.extension.@string>m_time.@float >=time_range.min val @float
AND \TC\<TCVL.extension.@string>m_time.@float <time_range max_val. @float
THEN \TC\<TC.next_number.@integer>.valley number.@integer = 1

THEN IGNORE ($Rule, "time_range *")

THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE

THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)

ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.@integer, "%Id"), "2")

ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE
ELSE ASNCERTAINTY (\TC\<TC.next_number. @1nteger> valley.zero, 100)
endRule

147

APPENDIX C

Rule

@name = time_range 2

[F \TC\<TCVL.extension @string>m_time.@float >= time_range.min_val @float
AND \TC\<TCVL.extension.@string>.m_time @float < time_range.max_val @float
THEN \TC\<TC.next_number.@integer>.valley_number.@integer = 2

THEN IGNORE ($Rule, "time_range *")

THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE

THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)

ELSE TCVL.extension. @string is STRCONCAT (FORMAT (TC.next_number.@integer, "%ld"), "3")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE

ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule

Rule

@name = time_range 3

IF \TC\<TCVL.extension.@string>.m_time.@float >= time_range.min_val. @float
AND \TC\<TCVL.extension.@string>.m_time.@float < time range max_val. @float
THEN \TC\<TC.next_number.@integer>.valley _number. @mteger =

THEN IGNORE ($Rule, "time_range *") .

'THEN \TC\<TC.next_number.@integer>. valley.zero is FALSE

THEN ASNCERTAINTY (\TC\<TC.next_number. @integer>.valley.zero, 0)

ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number.@integer, "%ld"), "4")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE

ELSE ASNCERTAINTY (\TC\<TC.next_number.@jinteger>.valley.zero, 100)
endRule

Rule

@name = time_range 4

IF \TC\<TCVL . extension.@string>.m_time.@float >=time_ range.min val @float
AND \TC\<TCVL.extension.@string>m_time.@float < time range max_val. @float
THEN \TC\<TC.next_number.@integer>.valley number. @mteger =

THEN IGNORE ($Rule, "time_range *")

THEN \TC\<TC.next_number.@integer>.valley.zero is FALSE

THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)

ELSE TCVL.extension.@string is STRCONCAT (FORMAT (TC.next_number. @mteger "%ld"), "5")
ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE

ELSE ASNCERTAINTY (\TC\<TC.next_number. @integer>.valley.zero, 100)
endRule

Rule

@name = time_range_5

IF \TC\<TCVL.extension.@string>m_time.@float >=time range.min_val @float
AND \TC\<TCVL.extension.@string>m_time.@float < time range max_val. @ﬂoat
THEN \TC\<TC.next_number.@integer>.valley number.@integer =

THEN \TC\<TC.next_number.@integer>.valley.zero'is FALSE

THEN ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 0)

THEN IGNORE ($Rule, "time_range *")

ELSE \TC\<TC.next_number.@integer>.valley.zero is TRUE

ELSE ASNCERTAINTY (\TC\<TC.next_number.@integer>.valley.zero, 100)
endRule :

Rule ‘
_ @name = Valley 0
IF valley.status.incomplete is TRUE

APPENDIX C

AND counter.number.@integer = 0
~ THEN VL.number.@integer = 0
THEN FREERULE ($Rule, "TC*")
THEN FREERULE ($Rule, "xx*")
THEN FORGET ("TC*.rule_examined.variable")
THEN FORGET ("TC*.temperature_drop.significant”)
THEN FIND ("TCO0.rule_examined.variable")
THEN FIND ("TC2.rule_examined variable")
THEN FIND ("TC3.rule_examined.variable")
THEN FIND ("TC4.rule_examined.variable")
THEN FREERULE ($Rule, "belief_*")
THEN MACRO ("belief *")
THEN VLO.dummy.@string is "test"
THEN counter.number. @integer = counter.number. @mteger +1
THEN report.number.@integer = report.number. @integer + report.addition_value. @integer
THEN FREERULE ($Rule, "pre_report")
THEN MACRO ("pre_report")
ELSE VLO.dummy.@string is "test"
ELSE report.number.@integer = 0
endRule

Rule

@name = Valley 1

IF counter.number.@integer = 1

AND counter.number.@integer <= number_of valley.in_TC1.@float
THEN VL.number.@integer =1

THEN FREERULE ($Rule, "TC*")

THEN FREERULE ($Rule, "xx*")

THEN FORGET ("TC*.rule_examined.variable")

THEN FORGET ("TC*.temperature_drop.significant")

THEN FIND ("TC1.rule_examined.variable") '

THEN FIND ("TC2.rule_examined.variable")

THEN FIND ("TC3.rule_examined.variable")

THEN FIND ("TC4.rule_examined.variable")

THEN FREERULE ($Rule, "belief_*")

THEN MACRO ("belief_*")

THEN VL1.dummy.@string is "test"

THEN counter.number.@integer = counter.number.@integer + 1
THEN report.number.@integer = report.number.@integer + report.addition_value.@integer
THEN FREERULE ($Rule, "pre_report")

THEN MACRO ("pre_report")

ELSE VL1.dummy. @strmg is "test"

endRule

Rule '

@name = Valley 2

IF counter.number.@integer =2

AND counter.number.@integer <= number_of_valley.in_TCI. @ﬂoat
THEN VL.number.@integer = 2

THEN FREERULE ($Rule, "TC*")

THEN FREERULE ($Rule, "xx*")

THEN FORGET ("TC*.rule_examined.variable")

THEN FORGET ("TC*.temperature_drop.significant")

THEN FIND ("TCl1.rule_examined.variable")

149

.-APPENDIX C

THEN FIND ("TC2.rule_examined.variable")

THEN FIND ("TC3.rule_examined.variable")

THEN FIND ("TC4.rule_examined.variable")

THEN FREERULE ($Rule, "belief_*")

THEN MACRO ("belief_*")

THEN VL2.dummy.@string is "test"

THEN counter.number.@integer = counter.number.@integer + 1
THEN report.number.@integer = report.number.@integer + report.addition_ value @integer
THEN FREERULE ($Rule, "pre_report")

THEN MACRO ("pre_report")

ELSE VL2.dummy.@string is "test"

endRule

Rule

@name = Valley 3

IF counter.number. @mteger =3

AND counter.number.@integer <= number_of_valley.in_TC1.@float
THEN VL.number.@integer = 3

THEN FREERULE ($Rule, "TC*")

THEN FREERULE ($Rule, "xx*")

THEN FORGET ("TC*.rule_examined.variable")

THEN FORGET ("TC*.temperature_drop.significant")

THEN FIND ("TCl.rule_examined.variable")

* THEN FIND ("TC2.rule_examined.variable")

THEN FIND ("TC3.rule_examined.variable")

THEN FIND ("TC4.rule_examined.variable")

THEN FREERULE ($Rule, "belief_*")

THEN MACRO ("belief *")

THEN VL3.dummy.@string is "test"

THEN counter.number. @integer = counter.number.@integer + 1
THEN report.number. @integer = report.number.@integer + report.addition_value. @integer
THEN FREERULE ($Rule, "pre_report") :

THEN MACRO ("pre_report")

ELSE VL3.dummy.@string is "test"

endRule

Rule

@name = Valley 4 ,

IF counter.number.@integer — 4 ,
AND counter.number. @mteger <= number_of_valley.in TCl @float
THEN VL.number.@integer =

THEN FREERULE ($Rule, "TC*")

THEN FREERULE ($Rule, "xx*")

THEN FORGET ("TC*.rule_t exammedvanable")

THEN FORGET ("TC*.temperature_drop.significant")

THEN FIND ("TCl.rule_examined.variable") '

THEN FIND ("TC2.rule_examined.variable”)

THEN FIND ("TC3.rule_examined.variable")

THEN FIND ("TC4.rule_examined. variable")

THEN FREERULE ($Rule, "belief_*")

THEN MACRO ("belief *")

THEN VL4.dummy.@string is "test"

THEN counter.number.@integer = counter.number.@integer + 1

THEN report.number.@integer = report.number. @integer + report. addmon value.@integer

150

APPENDIX C

THEN FREERULE ($Rule, "pre_report")
THEN MACRO ("pre_report")

ELSE VL4.dummy. @stnng is "test"
endRule

Rule

@name = Valley 5

IF counter.number.@integer =5

AND counter.number. @mteger <= number_of valley.in TC1. @ﬂoat
THEN VL.number.@integer =

THEN FREERULE ($Rule, "TC*")

THEN FREERULE ($Rule, "xx*")

THEN FORGET ("TC*.rule_examined.variable")

THEN FORGET ("TC*.temperature_drop.significant")

THEN FIND ("TCl.rule_examined.variable")

THEN FIND ("TC2.rule_examined.variable")

THEN FIND ("TC3.rule_examined.variable")

THEN FIND ("TC4.rule_examined.variable")

THEN FREERULE ($Rule, "belief *")

THEN MACRO ("belief_*")

THEN VLS.dummy.@string is "test"

THEN counter.number. @integer = counter. number. @integer + 1
THEN report.number.@integer = report.number.@integer + report.addition_value. @integer
THEN FREERULE ($Rule, "pre_report")

THEN MACRO ("pre_report")

endRule

Rule
@name = windows
IF wind.size.@float > (1.+ repl.t_drop.@float)
THEN wind.size.@float = wind.size.@float + 1.000000
THEN wind size.true is TRUE

“endRule

Rule

@name = XX2

IF TC2.valley.zero is TRUE ‘ .

THEN \VL\<valley.extension. @string>.t_drop.@float = 0.000000

THEN \VL\<valley.extension.@string>.t_span. @float = 0.000000

THEN \VL\<valley.extension. @string>.t_base.@float = 1.000000

THEN \VL\<valley.extension. @string>m_time. @float =time_range.avg, val. @float

THEN time_range.min_val.@float =time range.avg_val.@float - 0.500000 *
valley.default_span.@float

THEN time range.max_val.@float = time _range. avg, val.@float + 0.500000 *
valley.default_span.@float

THEN TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.@integer,
l'(y ldll))

THEN IGNORE ($Rule, TC.ignore_ rule name. @strmg)

THEN TC.next_number.@integer =

THEN \VL\<VL.number.@integer>. status number.@integer =

THEN valley.extension. @string is STRCONCAT (FORMAT (VL number.@integer, "%lId"), "3")
THEN ASNCERTAINTY (TC2.temperature_drop.significant, 0) :

- THEN TC2.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

151

http://wind.size.true
http://TC2.valley.zero

APPENDIX C

THEN MACRO.("time_range *')
THEN MACRO ("check time range")
endRule

Rule

@name = XX3

IF TC3.valley.zero is TRUE .

THEN \VL\<valley.extension.@string>t_drop.@float = 0.000000

THEN \VL\<valley.extension.@string>.t_span.@float = 0.000000

THEN \VL\<valley.extension.@string>.t_base.@float = 1.000000

THEN \VL\<valley.extension.@string>m_time.@float = time_range.avg val.@float
THEN time_range.min_val.@float =time_range.avg_val.@float - 0.500000 *
valley.default_span.@float

THEN time_range. max_val. @float =time_range.avg_val @float + 0.500000 *
valley.default _span.@float

THEN TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_number.@integer,
"%lI1d"))

THEN IGNORE ($Rule, TC.1gnore_rule_name. @string)

" THEN TC.next_number.@integer = 4

THEN \VL\<VL.number.@integer>.status_number.@integer = 3

THEN valley.extension. @string is STRCONCAT (FORMAT (VL.number.@integer, "%ld"), "4")
THEN ASNCERTAINTY (TC3.temperature_drop. mgmﬁcant 0)

THEN TC3.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range_*")

THEN MACRO ("check time range")

endRule

Rule

@name = XX4

IF TC4.valley.zero is TRUE

THEN \VL\<valley.extension.@string>.t_drop.@float = 0.000000

THEN \VL\<valley.extension. @string>.t_span.@float = 0.000000

THEN \VL\<valley.extension.@string>.t_base. @float = 1.000000

THEN \VL\<valley.extension. @string>m_time.@float = time_range.avg_val @float
THEN time _range.min_val.@float =time_range.avg_val.@float - 0.500000 *-
valley.default_span.@float '
THEN time_range.max_val.@float = time_range.avg_val.@float + 0.500000 *
valley.default_span.@float

THEN TC.ignore_rule_name.@string is STRCONCAT ("TC", FORMAT (TC.next_| number. @integer,
ll% ldll))

THEN IGNORE ($Rule, TC.ignore_rule_name.@string)

THEN \VLA<VL.number.@integer>.status_number.@integer = 4

THEN ASNCERTAINTY (TC4.temperature_drop.significant, 0)

THEN TC4.rule_examined.variable is TRUE

THEN FREERULE ($Rule, "time_range *")

THEN MACRO ("time_range *")

endRule

Facets

@triplet = TCO.temperature_drop.significant
@fuzzy = TEMP_DROP_SIGNIFICANT
endFacets

152

APPENDIX C

Facets '

@triplet = TC1.temperature_drop.significant
@fuzzy = TEMP_DROP_SIGNIFICANT
endFacets '

Facets :
@triplet = TC2.temperature_drop.significant
@fuzzy = TEMP_DROP_SIGNIFICANT
endFacets

Facets : .

@triplet = TC3.temperature_drop.significant
| @fuzzy = TEMP_DROP_SIGNIFICANT
‘ endFacets

Facets

@triplet = TC4.temperature_drop.significant
@fuzzy = TEMP_DROP_SIGNIFICANT
endFacets :

1¥** | oadStrategy must go at the end of the Knowledge Base ***!
LoadStrategy

@name = "fback.stg"

EndLoadStrategy

