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A B S T R A C T 

An interactive computer program has been developed to automate the construction of 

knowledge bases in expert system development. The program incorporates many user 

friendly features which allow users who may not understand the concepts of fuzzy logic 

or the complexity of the knowledge acquisition process to develop useful and complete 

Expert Systems. 

Expert systems formalism are being successfully used in the industry. A major 

bottleneck in development of these systems lies in the knowledge acquisition phase. This 

study presents an induction system, based on fuzzy logic, which successfully automates 

the knowledge acquisitions process when the domain knowledge is embodied within 

discrete numerical data. 

A tabloid database representing some desired input/output relationship is input to the 

system. Fuzzy expressions such as "high", "low" or "large" are either created 

automatically by the system or described explicitly by the user. These fuzzy expressions 

are automatically associated into an accurate and minimum rule set which models the 

desired input/output relationship. 

The system was tested on the development of a knowledge base for a secondary crusher 

controller and a second more complex non-monotonic input/output relationship. In the 

controller example the knowledge bases developed were simpler, more accurate and built 

much faster than using a traditional interview approach. The non-monotonic relationship 

was also accurately described by a simple knowledge base. 
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NOTATION 

Fuzzy Notation 

MF(u) - Membership value or degree of belief of fuzzy set 

e - An element of 

U - Union of distinct subsets 

D - Intersection 

c - Subset 

' - Complement 

A - Minimum 

v - Maximum 

+ - Union of membership and discrete value MF (u) I u pairs 

General Notation 

C - Confidence Limit 

i - i th location from a total of n rows 

j - j th location from a total of m columns 

k - k th fuzzy subset in the Z domain 

Mk - Grade of membership of the kxh subset. 

M- - Selected kxh subset with maximum grade of membership. 

k 

Mk (u)l u - Point on fuzzy membership function. 

[n x m] - Table with n rows and m columns 
p - Total number of subsets in the X or Y domain 

Supk - Supremum value of the kxh fuzzy subset. 
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Supremum value of the maximum kth fuzzy subset. 

Saddle Point 

Total number of fuzzy subsets in the Z domain 

Link weight of i th connection in a neural network 

A discrete member of X at i th location 

Discrete member of X 

Abcissa variable 

Discrete member of Y 

Ordinate variable 

Z variable in Cartesian coordinate system 

Discrete member of Z 

(ij) element of reference data 

(i,j) element of rule generated data 

(i,j) element of error report or (z{j -z ; j) 
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1.0 I N T R O D U C T I O N 

In a plant, many unit processes or systems can be adequately described using inexact 

relationships, heuristics or rules-of-thumb. Very often, information representing the 

behavior of the process exists in a numerical format. Experienced personnel can interpret 

this data, to explain both the process behavior and how specific control actions affect the 

process. These explanations are often stated using linguistic expressions that are easy to 

understand by colleagues or new personnel. 

Expert System formalism is especially attractive because of the ability to process 

symbolic or heuristic information. However since the formative years of development, it 

has been stated frequently that knowledge acquisition is "the critical bottleneck" 

(Feigenbaum & McCorduck, 1984; Hart, 1989). 

Generally the knowledge acquisition phase involves close interaction between a 

knowledge engineer and expert personnel. The expert understands the data (numbers) 

and its heuristic interpretation while the knowledge engineer knows how to efficiently 

elicit and organize the heuristics for processing by the expert system. These tasks are 

both tedious and complex in their methodologies, although some knowledge domains are 

exceptions to this general rule. If the methodologies can be deciphered, then computer 

tools could be implemented that would automate the acquisition and representation 

processes. 

The objective of this research is focused on methodologies which can simplify and 

automate knowledge acquisition and representation from historical discrete data. An 

induction system is presented where the principals of fuzzy logic are applied to interpret 

data describing a particular relationship in numerical format into heuristic or symbolic 

descriptions. The outcome of this process is a rule-based model, that accurately 

represents the desired relationship. 
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The system has been applied to model a control system used for a secondary crusher. 

Numerical data, representing the major dependent and manipulated variables in the 

circuit are input. A rule-based model is then induced to represent the existing control 

strategy. The effectiveness of the procedure to acquire and represent knowledge is 

compared with conventional procedures. 
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2.0 EXPERT SYSTEM AND FUZZY LOGIC FORMALISMS 

The precise method of storage and manipulation of concepts and information in the mind 

is a subject of considerable research in the Artificial Intelligence community. Several 

popular techniques have emerged which include probability theory, personal construct 

theory, neural networks and fuzzy logic, each with its own merits and successes (Hart, 

1989; Michie & Johnston, 1985). 

2.1 Why Fuzzy Logic Formalisms? 

We communicate our conscious processes to other people with words rather than 

numbers. This may be why humans find fuzzy logic highly-intuitive and very easy to 

understand. Language is used to convey the many shades of meaning e.g. "very", 

"slightly", "definitely". We are then able to make logical deductions without the precise 

rigor of mathematical theory, logic or even computer languages (Hart, 1989). 

2.2 The Concept of Fuzziness 

It is widely recognized that much human reasoning is not conducted using classical 

Aristotelian logic. According to Zadeh, the strength of human reasoning is the ability to 

grasp inexact concepts directly, rather than approximating some precisely defined 

process by using a mathematical simulation based on true/false or on/off logic (Zadeh, 

1984). 

For example a shift operator might explain his control actions as: 

'Whenever the screen-bin level is high, I make a large decrease in the feed rate'. 

The perception of a "high" bin level and the inference of a "large" decrease to the feed 

are characteristically human. Reproduction of this "fuzzy thinking" through the use of 

logical processes based on precise knowledge is limited by the requirement of a precise 
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definition of the terms "high" and "large". Fuzzy Set Theory and Approximate 

Reasoning deal with the simulation of the human thought process, by introducing the 

concepts of vagueness and imprecise measure into the interpretation of the information 

(Harris & Meech, 1987). 

A fuzzy set consists of particular objects, or ranges of numbers and their respective 

grades of membership in the set. The grade of membership or degree of belief (dob) of 

an object is given by a subjectively defined membership function. The value of the grade 

of membership ranges from 0 to 1. A value of 1 denotes full membership while the 

closer the value is to 0, the weaker the membership in the fuzzy set. 

2.2.1. Notation and Terminology 

Consider material in bins, at the two levels, 50% and 80% respectively. We can express 

these levels using the fuzzy concept "High" for bin levels. Grades of membership then 

provide a natural way of expressing difference in levels. By subjectively assigning 

grades of membership for each level we can express the fact that 80% is higher than 50% 

by 1^(50%) = 0.5 and M h i g h(80%) = 0.9 respectively. Figure 2.1 illustrates this 

definition together with some frequently used terms. 

The support of the subset "high" is the set of elements of U for which M F(u) is 
positive so that we have any degree of belief in high. 

The supremum of "high" is the set of elements of U for which M F(u) is maximum. 

Fuzzy sets are said to be normal if their height is unity, or sup M F(u) = 1. 
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Fig.2.1.2 Non-Fuzzy "Bin Level High" 

1.0 I 1 

Grades 

of 0.5 

Membership 

not high high 

_j i i 

50 
Bin Level % 

100 

In set theory a universe of discourse (domain) F is defined as all elements or concepts 

which can be grouped as identifiable labelled units known as sets or subsets: 

F = F 1 + F 2 + F 
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Which for our example of a bin level could be: 

Bin Levels = empty + low + medium + + high + full 

So F is the set of n objects F,,F 2 . . .F n which are considered. A fuzzy set is described by its 

members and grades of membership (membership function) to that set. For example let 

U be the universe of discourse with the generic element of U denoted by u. Then fuzzy set 

F of U is characterized by the membership function M F > which associates with each 

element u of U , a number M F(u) representing the grade of membership of u in F. Then: 

F = {(u,Mp(u)) I u e U } 

or 

F = Mj/u, + rvyu2 + MJ\xn 

UpUj.-.u,, are members with respective grades of membership M , , M 2 . . . M n . In other 

words, this equation is a way to list the various members together with their degrees of 

membership. Using this description, the high subset in Figure 2.1 could be defined as: 

high = 0/0 + 0.5/50 + 0.8/90 + 1.0/100 

The number of elements used to define any particular subset is arbitrary. There are many 

ways to draw the set through the points selected. One common method is to use a 

straight line between adjacent points. 

2.2.2. Operations of Fuzzy Sets 

F is a subset of G or is contained in G if MF(u) < MG(u) for all elements u of U . The 

notation is listed below and illustrated in Figure 2.2. 
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Fig. 2.2 Operations of Fuzzy Sets 

Union Intersection 

Subset Complementation 

F c G = M F ( u ) < M G ( U ) , u e U . 

The union of fuzzy subsets F and G is a fuzzy subset, F U G (F OR G), which defines a 

grade of membership of an element u by its maximum membership in each of the two 

sets. So: 

F U G = £ M F ( U ) V M G ( U ) / U 

The intersection of fuzzy subsets F and G is a fuzzy subset, F f l G (F A N D G), which 

defines a grade of membership, of an element u by its minimum membership in each of 

the two sets. So: 

F f l G = £ M F ( U ) A M G ( U ) / U 



-8 -

The compliment of a set F is F (NOT F) which is a reflection of F across the 0.5 

membership line and is defined by: 

F = 1 - £ M F ( U ) / U 

2.2.3. Function Representation of Fuzzy Sets 

Let the universe of discourse U for a bin level be the interval [0, 100] with u interpreted 

as level in percentage (%). To define a fuzzy subset H of U labeled "High", it is 

convenient to express the high membership function M H as a standard function that maps 

a fuzzy subset of a real line onto the interval [0, 1]. One very useful definition is the S-

function, a piecewise quadratic expression defined as follows: 

W( u ; a> c) = 0 f o r u < a 

2(<Pf) f o r a < u < b 

for b < u < c 

for u > c 

where the parameters a and c are the lower and upper fuzzy subset interval bounds 

(critical points), respectively, and the parameter b = (a+c)/2 is the crossover point, i.e. the 

value of u at which S 2 p t u p(u; a,c) = 0.5 (Zemankova-Leech, 1984). 

Using the S-function definition, the subset "High" could be characterized subjectively, by 

two different operators as the following membership functions: 

M H l (u) = S 2 p t u p(u; 50,90) 

1 - 2 u-c 
c-a 
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or 

M H , ( u ) = S ^ / u ; 70,90) 

where M H ] (u) is given by one operator who expressed a wider range of belief in the 

concept "High" than the second operator who preferred a narrower definition M H 2 (u). 

Figure 2.3 shows a mapping of these membership functions. 

Fig. 2.3 Operators Subjective Definition 

of Bin Level "High" 

1.0 

Grades 
of 0.5 

Membership 

/ Hi 

i i / / i 
0 25 50 75 100 

Bin Level % 

Notice that M H ( (80) = 0.88 where as M H j (80) = 0.5. This has the interpretation that 

the first operator has 0.88 belief in the statement "80% bin level is high" versus 0.5 belief 

for the second. The first operator had a lower crossover point of 70 and wider support 

[50, 100] than the second with a crossover of 80 and support of [70, 100]. In general 

since, M H j (u) < M H ) (u) for all u in U , then definition H^ is a subset of H,'. Operator 1 

might be viewed as a more experienced person than operator 2. On the other hand, 

operator 1 might be considered as less safe than operator 2. 
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Other shapes with their respective function representations are listed in Table 2.1. The 

critical points (a to f) in each function description are parameters which specify the lower 

and upper fuzzy subset interval boundaries. Details for these representations are shown 

in Appendix 1. 

Table 2.1 Function Representations of Fuzzy Subsets 

Shape Description Function Description Critical Points 
Four Point Flat Bell S4 P t a.. tell(u;a,c,d,f) a, c, d, f 
Two Point Bell Up K u! „p(u;a,c) a, c 
Two Point Bell Down S2pt beiLdown(U'd'f) d , f 
Trapezium T(m,(u;a,c,d,f) a, c, d, f 
Three Point Bell S3« bcu(u;a,c,f) a, c, f 
Half Bell Down ĥalf bell dowi/U'^) d 
Half Bell Up Shalf bell up(U'C) c 
Bell S teU(u;c) c 
Flat Bell S tel l(u;c,d) c, d 

2.2.4. If...Then Rules 

Fuzzy conditional statements or rules are constructs of the form: 

If A then B. 

Where A and B are fuzzy subsets. This states that i f A is true then B is necessarily true 

also. It does not say anything about A , and B does NOT imply A , since B might be true 

without A by using some other rule in the system. 

Using the previous control statement as an example: 

'Whenever the bin level is "high" then make a "large" decrease in the feed rate'. 

If we determined that the operator was making a large decrease in the feed rate, we 

cannot then deduce that the bin level was high. Other factors such as an over-loaded 
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conveyor may influence the decision to make a large decrease in the feed, even when the 

bin level is low. 

2.2.5 Inferencing Ambiguities 

Statements based on logic can be made even more complex by the use of the 

conjunctions A N D and OR. A N D is easier to understand, since OR is ambiguous, as it 

can have an inclusive or exclusive interpretation. From the statement: 

'You can work the day or night shift' 

OR has an exclusive interpretation when both choices are not allowed. If working a 

double shift is permitted then the OR becomes inclusive. 

Further ambiguities arise when both A N D and OR are used in the same statement. For 

example: 

' if you are an experienced operator and a trainee was on the incoming shift or 
production was low then you must work overtime.' 

There are at least two inferences possible from this statement, the first being: 

'if you are an experienced operator and a trainee was on the incoming shift or if 
you are an experienced operator and production was low then you must work 
overtime.' 

or alternatively: 

'if you are an experienced operator and a trainee was on the incoming shift or i f 
production was low then you must work overtime.' 

Only the person who formulated the policy can identify the correct interpretation. It has 

an ambiguous interpretation for an inexperience operator working on a low production 

shift. 
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Fuzzy Logic allows us to overcome the constraints of crisp logic. From the rule 

If (W A N D X ) OR Y then Z 

we may not be able to make exact statements about the truth of W, X or Y . If we have 

subjective degrees of belief w,x and y for W , X and Y respectively, then we should be 

able to access z, the degree of belief of Z. 

Using the respective degree of belief for each set we would have: 

z = (w A x) v y 

The strength of belief in z depends on the weakest link in the logic and is independent of 

any possible inter-relationships between W, X and Y . 

2.2.6 Creation of Parent Fuzzy Sets 

Fuzzy set membership can represent linguistic values for a very simple grammar. For 

example let the domain of possible membership values for the screen bin be as illustrated 

in Figure 2.4.1: 

Fig. 2.4.1 Fuzzy Subset Descriptions of Bin Levels 

Grades 

Membership 

of 

1.0 

0.5 

0 50 
Bin Level % 

100 
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So: 

bin levels low + medium + high 

and we can subjectively define the subsets low, medium and high as: 

low 1.0/0 + 0.5/20 + 0/40 

medium 0/20 + 0.5/45 + 1.0/50 + 0.5/65 + 0/80 

high 0/40 + 0.5/60 + 1.0/80 + 1.0/100 

These definitions allows any membership within the universe of discourse to have a 

degree of belief in each subset. Hence a bin level of 60% implies zero belief in low, 0.95 

dob in medium and 0.5 in high. These primary fuzzy set definitions can be extended to 

infer terms like "not high", "high or medium", etc. from discrete values. 

The grammar can be extended by defining parent fuzzy sets to characterize a special case 

of set union. Qualifiers, defined in Table 2.2 are combined with subset arguments to 

create a parent set, between (low & medium), shown in Figure 2.4.2. The parent has a 

maximum grade of membership, of 1.0, from the supremum position of low to medium. 

This modification resolves the problem of membership grades, of say 30%, having 

unrealistic values of 0.6, had a normal union been defined. It therefore ensures that 

belief in the parent is maintained at a maximum between the supremum position of the 

child sets low and medium. 
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Fig.2.4.2 Creation of Parent Set between (low &medium) 

0 50 100 
Bin Level % 

Table 2.2 Qualifiers and Description 

Qualifier Description 
any parent set from all subsets in domain 
not compliment of qualifying subset 
between parent set including subsets with supremum values greater than the first 

qualifying subset but less than the second subset inclusive. 
only only the specified subset is valid 

The any qualifier requires no arguments since it pertains to all subsets of the domain. 

Following in Table 2.3 is a list of parent subsets with their expanded analogies in the bin 

level domain. 

Table 2.3 Parent Sets in Bin level Domain 

Parent Subset Child Sets Included 
any low, medium and high. 
not low low'. 
between (low & medium) low and medium 
between (medium & high) medium and high 
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2.3. Traditional Construction Of Expert Systems 

Greenwell (1988) refers to expert systems as "the limousines of the computer industry". 

This analogy is very appropriate since they are scarce, expensive, require excessive time 

for custom development, and on completion are often only suited to a "special taste". 

Several factors make the construction of these systems very different from conventional 

data processing or systems analysis. 

Figure 2.5 shows the similarity and differences between traditional information systems 

and expert system development. The knowledge engineer has a similar role to the system 

analyst, and reconciles the needs of the users with the knowledge of the expert. 

Addressing who the users are and when and how they are involved in the development is 

critical. They must participate in both a proactive and reactive role. 

Fig. 2.5 Information System Compared to Expert System 

Information System 

Users 
Systems 
Analyst 

Expert System 

Users Knowledge 
Engineer 

1 
Experts 
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The common methods used in systems analysis of observing, sampling from existing 

records, interviewing, conducting group discussion, using questionnaires or forms are 

also common to knowledge acquisition. In systems analysis, it is fairly clear what 

information is required, but in knowledge acquisition, this is often not the case. Experts 

are not merely people who know lots of facts and procedures. They have built-up a body 

of knowledge through years of experience which they use to make informed and wise 

decisions. They often make judgements based on intuition without the need to explicitly 

state how they arrive at conclusions. Hayes-Roth et al (1983) formulated the stages in 

Table 2.4, for the development of expert systems. There is a strong similarity between 

these tasks and those used in systems analysis. 

Table 2.4 Stages and Tasks for Development of Expert Systems after 

(Hayes-Roth, 1983) 

Stages Tasks 
Identification Objectives of the expert system 

Who are the experts 
Who are the users 
Domain of knowledge 

Knowledge Acquisition Conceptualization of problem 
Knowledge extracted and represented in 
conceptual model 

Design Implementation of model 
Choice of structures representing Knowledge base 

Development and testing Design details implemented 
Cyclic implementing, evaluation and 
modification 

Use Initial cautious use. 
Continuous review and evaluation. 
Modification 

Most authors agree that the major bottle-neck in the development cycle is knowledge 

acquisition. Hart (1989) lists some critical questions, shown in Table 2.5, that must be 

answered by the development team. Resolution of these issues cannot be classified by 

the common methods of fact-finding as in systems analysis. They are more related to the 
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domain of psychology, where information is often subjective, experiential, intuitive and 

perhaps social. 

Table 2.5 Issues for Resolution in Expert System 
Building after (Hart, 1989) 

Conceptualization Issues Detailed Breakdown of Issues 

What are the inputs or problems? 
What are the outputs or solutions? 
Which types of inputs cause difficulties? 
How are the problems characterized? 
How are the solutions characterized? 
What sort of knowledge is used? 
How are problems or methods broken down into 
smaller units? 

What data are input; and in what order? 
What are the relationships between data items? 
How important and accurate are the data items? 
What data might be missing? 
What assumptions can be made? 
What constraints exist? 
What sort of inferences can be made? 
How are the concepts and hypothesis formed? 
How do these relate to each other? 
How does the expert move from one state of 
belief to another? 
What evidence suggest particular goals or 
concepts? 
What are the causal relationships? 
Which problems are easy, common, hard, 
interesting, etc.? 

2.4. Verification of Knowledge Base 

Nazareth (1988) claims that there are inherent difficulties in demonstrating correct 

performance of expert systems and outlines some of the drawbacks. These include i l l -

defined or missing specifications, inapplicability of conventional verification and 

validation techniques. There is lack of agreement on evaluation methodologies, and low 

priority is often associated with the evaluation of system performance. Errors normally 

encountered in the development of rule-based systems take the form of redundancy, 

conflict, circularity and incompleteness of coverage. These are summarized as follows: 

Redundancy occurs when combinations of premises and conclusions are adequately 

represented in other rules. It is likely to occur when such sets of rules are deleted, 
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modified or enhanced. It can also arise in chained inferencing where intermediate 

deduction can not be ascertained outside this chain of inference. 

Conflict occurs when contradictory facts are deduced from a given set of information, or 

when facts deducted are in disagreement with the original information set. This can be 

introduced through the expansion of system knowledge to cover specific cases which 

may be in disagreement with more general rules. 

Circular logic occurs when rules create some form of self reference, either directly or 

through chained inference. This can arise through an inability to distinguish between 

premise and conclusion statements among facts. 

Incompleteness or gaps in the rule set, may be intentional. They represent restrictions in 

problem scope, and can also arise through oversight. In any case, the gaps translate into 

a system with pertinent facts about the domain omitted from the analysis, or an 

inadequate set of rules to manipulate relevant facts. They then show up as dead-ends in 

the chain of inferencing, unreachable goals or separable or unconnected segments of a 

rule set. 
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3.0 AUTOMATED ACQUISITION AND REPRESENTATION 

Green well (1988) gives a definition of knowledge acquisition as the collection and 

analysis of information from one or more domain experts and any other sources leading 

to the production of a number of documents which form the basis of a functioning 

knowledge-base. He further states that a substantial subset of knowledge acquisition is 

knowledge elicitation. Knowledge elicitation, he defines, as that area of knowledge 

acquisition which deals with obtaining information direcdy from domain experts. 

Most authorities acknowledge that knowledge elicitation is the major bottleneck, but 

there is debate on the usefulness or effectiveness of automated acquisition and 

representation techniques (Hart, 1989; Greenwell, 1988; Hall et al, 1990). 

Interactive knowledge acquisition aids have been designed to automate the knowledge 

acquisition process. Hall et al (1990) suggest that these aids are only used by knowledge 

engineers to produce useful results in cases where the relationships (rules) are 

straightforward. They further suggest that knowledge acquisition aids present a restricted 

environment in which to work and this creates considerable duress for the user who has 

to express or use knowledge in a confined atmosphere. They conclude that since 

knowledge acquisition (engineering) is in its infancy, this poses a fundamental problem 

with attempts that are been made to automate the acquisition process for which very little 

is understood. 

There are three main thrusts predominating automatic acquisition: induction, repertory 

grids and documentation systems. Greenwell (1988) claims that all three approaches 

have produced little in the way of useful tools for two main reasons. Firstly, the various 

knowledge representation languages and environments are usually incompatible with one 

another, so that a knowledge acquisition tool is usually dependent on a particular 

environment which restricts the market for such a product. Secondly the inferential 
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power of most acquisition systems is particular suspect and lacks the "Taken-for-granted" 

common sense which is inherent in intelligent humans as they come to understand the 

expert's tasks and domain. 

3.1 Rule Induction 

Ford et al (1991) defines induction, as the production of universal rules by 

generalizations based on a finite number of pieces of evidence. If the premises are true, 

it is merely probable that the conclusion is also true. 

3.1.1 Deduction 

In deduction, i f we are given a set of rules or facts, we can deduce others. For example 

we might be told that: 

Only experienced operators can achieve the daily target of 5,000 tpd. 

So i f we know that: 

Joe's average production was 7,000 tpd for the last week 

we can deduce that: 

Joe is an experienced operator. 

This reasoning from general to specific is a top-down approach where once the rule is 

true and we have made no false assumptions then the deduction will be true. 

3.1.2 Induction 

Induction works in the reverse, bottom-up mode where if we had several examples 

(instances) and did not know the rules, then we can make sensible guesses to induce rules 

which describe the examples. If the rules are good, they will apply not only to the 
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specific examples but also in general. Suppose we were given the following information 

in Table 3.1 on operators' tones per day (tpd) production: 

Table 3.1. Operators Average Daily Production 

Operator Production tpd Experienced? 
Joe 7000 yes 
Bob 6000 yes 
Simon 2000 no 
Chris 3000 no 

Using the VP-Expert (1987) approach which induces rules which conclude on the left

most field. We would induce the following rule; 

If an operator can achieve 6,000 tpd then he is experienced. 

The critical production target could be 4,000 or 5,000 tpd. The uncertainty in the 

induced rule is caused by the incompleteness of the example set. Since we had no 

examples at the 5,000 tpd production level then the correct cut off point which 

differentiated inexperienced from experienced operators could not be determined. The 

utility of computers are demonstrated, when large examples sets are given. They can 

easily deal with logic, arithmetic and pattern matching routines to induce rules. 

3.1.3 Requirements for Induction 

Hart (1989) lists the prerequisites for induction as the following: 

Examples - the examples or training set form the basis of the induction process. 
An incomplete or inadequate set of examples is likely to result in poor rules. In 
the problem discussed above, the training set is the set of data for each operator. 

Premise - The examples have sets of characteristics which describe them, and 
enable comparisons to be made between different examples. Some of these 
characteristics form the factors which influence the rules. Examples of these 
characteristics are tabulated as follows: 
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Table 3.2 Types of Premise with Examples 

Characteristics Examples 
descriptive categories happy, sad, merry 
descriptive fuzzy sets low, medium, high 
real measurements height in meters 
integer values age in years 
logical descriptions yes, no, true", false 
special numbers dates, serial numbers 

In the operator production case above, the only premise is the integer values of 
daily production (tph). 

Conclusions - The conclusions represent the decision or classification by the 
expert, e.g. the operator is experienced. 

Inductive Algorithm - The algorithm is the method which the computer program 
uses to induce rules from the training set. It will depend on the form of the 
examples and the required output. 

The quality of the induced rules depends on all of these components and the training set, 

which must be rich enough to contain enough examples with sufficient descriptors to 

enable quality rules to be induced. 

Hart surmises that inductive algorithms designed to cope with specific types of domain 

knowledge, have been more successful than general ones which tend to be less efficient 

and produce results which are less spectacular. She argues that computers are objective, 

without preconceived ideas. Experts on the other hand cannot always see a simple 

pattern or principle and suggest overly complex rules, when they describe what they 

ought to do, rather than what they actually do. She contends that research in rule 

devising has shown that a computer program can induce neater and simpler rules than 

people can. 
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3.2 Personal Construct Theory 

Personal construct theory, as formulated by the psychologist Kelly (1955) assumes that 

people typically use cognitive dimensions termed "constructs" to evaluate their 

experience. Each construct: "hot-cold", "happy-sad" by definition represents a single 

bipolar distinction. This method implies that no construct could be understood without 

considering the meaning of both its poles. Hence the construct then has a specific range 

of convenience which constitutes all the things to which the user would find the 

application useful. The model matches our view of experts at work since any particular 

construct may have a somewhat different context for each person who uses it. 

Kelly then postulates that a necessary condition for organized thought is some degree of 

overlap between constructs in terms of their respective ranges of convenience. This 

overlap between the ranges of convenience then enables an event to be anticipated. 

3.2.1. Repertory Grid Analysis 

The repertory grid is derived from personal construct theory and provides a tabular 

representation of a person's view of a particular problem. The grid is composed of 

constructs and elements which are similar to the premises and examples described in 

induction. Construct, as explained above, are bipolar characteristic which can be 

represented on a linear scale. Hence while "up-down", "light-heavy" are good examples 

of constructs, "shape" is not, since there are many, perhaps too many, ways to define it, 

which makes the construction of bipolar characteristics difficult for curves, lines, 

inflections, etc. The expert must understand what makes a valid construct and how it is 

used. Rating could be described by names rather than numbers, although subsequent 

analysis normally uses numerical values. For example on a scale of 1-5 with a construct 

low-high suitable descriptions could be: 
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1 very low 
2 low 
3 average 
4 high 
5 very high 

Each construct must have the same scale throughout, although terms may be used to 

describe particular ratings which could vary from construct to construct. 

Elements are key examples, produced by the expert, and described by the values of the 

constructs. Each element is rated according to each construct, using a subjective rating, 

similar to the fuzzy logic, supplied by the expert. For example, suppose the construct is 

production level "very high - very low" on a scale of 1-5. If the day shift is rated 5 and 

the night shift is 4 and the weekend shift is 2, this implies that the production level for 

the day shift is higher than the night shift which is in turn higher than the weekend shift. 

However it does not imply that the night shift production is twice the day shift. 

The development cycle for a grid is illustrated in Figure 3.1. It provides a cross 

referencing system between the elements and constructs similar to the training set used in 

induction. It is therefore useful to the knowledge engineer for two reasons: 

1) The elicitation of a grid makes the expert think in a more structured way 
about a problem, and helps to clarify issues in the mind. 

2) Standard analytical techniques are available to analyses the grid to find 
patterns or associations for further investigation. This is especially useful 
at the earlier overview or conceptual level in elicitation. Larger grids 
describing greater detail quickly become unmanageable. 
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Fig. 3.1 Construction of Repertory Grid 
after (Hart. 1989) 

expert1 —«s knowledge engineer 

examined 
by expert 

repertory 
gr id r + X: 

patterns 
concepts 
focused grid 

y 

3.2.3. Grid Elicitation 

Before drawing up a grid it is important to define the problem under investigation. Here 

the expert or elicitor must state clearly what is the objective of the analysis. 

Having defined the objective the expert sets about the task of drawing up the grid. In the 

simplest cases the elements and constructs are obvious hence the grid can be analyzed 

immediately. However in the majority of cases this elicitation is non-trivial and involves 

repeated comparison, changing rating scales, or introduction or removal of elements and 

constructs until the expert is satisfied that the grid describes his view of the problem 

under investigation. 

An example grid is elicted in Table 3.3 to classify operators by their skills. Possible 

constructs are shown for "experienced - inexperienced", "high - low" ratings for average 

tonnage and "long service - recent" for years of service, "slow - fast", "conservative -

liberal" etc. 
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Table 3.3 Repertory Grid Comparing Operators in A Plant 
rating scale (1-3) 

Constructs 
Elements 

Constructs Andy Bob Chris Edgar Joe Lester Paul Simon Constructs 
experienced 2 1 1 2 1 1 1 3 inexperienced 

high 3 1 2 2 1 2 2 3 low 

long service 2 2 2 2 1 3 3 3 recent 

slow 2 3 3 2 3 2 1 1 fast 

conservative 2 3 2 3 3 3 2 1 liberal 

3.2.4. Grid Analysis 

Once the grid has been elicited, as shown in the example of Table 3.3, it can be analyzed. 

The analysis is intended to exhibit structure and pattern in the grid and therefore provide 

feedback to the expert. The analysis is a tool to help the expert identify structures which 

are recognized as useful. Grid analysis is based on methods used in statistical theory, 

which include factor analysis, principal component analysis or cluster analysis. The 

results of the analysis enable attributes and elements to be reordered so that similar 

objects appear near to each other in a focused grid. 

A n example of a focused grid which group the operators is shown in Figure 3.2. Each 

operator is an element. Clustering will show the grouping of operators depending on the 

level of similarity. Therefore Bob and Chris, are most similar while Simon who may 

have recently joined the crew and achieved low production totals will show on the grid as 

being very unlike any of the others. At a level of 85% similarity there would be five 

groups; at a level of 50% there would be two groups. 
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4.0 ACQUISITION AND REPRESENTATION METHODS 

The acquisition methodologies investigated, in this study, borrows from the induction 

and repertory grid approaches. The knowledge domain is comprised of: 

1) a reference database and 

2) fuzzy expressions commonly used in that domain. 

The reference database represents some desired relationship or historical trend similar to 

examples sets in induction. Fuzzy expressions give meaning to concepts when used in 

rules. This allows discrete information to be interpreted as a quantifiable degrees of 

belief in concepts. 

4.1 Knowledge Acquisition Technique 

To demonstrate acquisition and representation techniques, a reference database in Table 

4.1, along with fuzzy subset descriptions in Table 4.2 were chosen. Rules are induced 

from this discrete information from the subset descriptions. Examples which follow in 

the remainder of this chapter illustrate the technique. 

Table 4.1 Reference Database of Z Values 

0 10 20 30 
X Variable 

40 50 60 70 80 90 100 
0 -100 -66.7 -40 -20 -6.7 0 6.7 20 40 66.7 100 10 -90 -60 -36 -18 -6 0 6 18 36 60 90 20 -60 -40 -24 -12 -4 0 4 12 24 40 60 30 60 40 24 12 4 0 -4 -12 -24 -40 -60 Y 40 90 60 36 18 6 0 -6 -18 -36 -60 -90 

Variable 50 100 66.7 40 20 6.7 0 -6.7 -20 -40 -66.7 -100 
60 90 . 60 36 18 6 0 -6 -18 -36 -60 -90 
70 60 40 24 12 4 0 "4 -12 -24 -40 -60 80 -60 -40 -24 -12 -4 0 4 12 24 40 60 90 -90 -60 -36 -18 -6 0 6 18 36 60 90 100 -100 -66.7 -40 -20 6̂.7 0 6.7 20 40 66.7 100 
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Table 4.2 Membership Functions for X,Y and Z Subsets 

Variable Subset Name Shape Critical Point 

X 
low X half bell down 0 

X mid x bell 50 X 
high_x half_bell_up 100 

Y 
low_y half bell down 0 

Y mid_y bell 50 Y 
high_y half_bell_up 100 

Z 
low z half bell down -100 

Z mid z bell 0 Z 
high_z half_bell_up 100 

4.1.1. Reference Data 

The reference database is symmetrical, therefore the X and Y variables have an identical 

domain of [ 0, 100]. The body of the table is comprised of the Z variable in an [11 x 11] 

array, within the domain [-100, 100]. 

4.1.2. Definition of Fuzzy Subsets 

Three fuzzy expressions; high, medium, and low describe each variable. Each expression 

has a membership function description, characterized by a shape and by critical points. 

Membership functions are computed from standard definitions, previously described in 

Section 2.2.3. The functions listed in Table 4.2 are illustrated graphically in Figure 4.1. 

where the subsets align themselves in a sequence which guarantees; 

1) completeness in the domain 

2) a smooth transition of belief in one concept or subset to another as discrete 
values change incrementally. 

3) non-conflict since it is not possible, for any discrete x to have greater 
membership in either of the end sets, low_x and high_x, than the 
intermediate mid_x. This is achieved by assigning the supremum position 
of an adjacent set to the end point of the set being defined. 
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Fig. 4.1 Membership Functions Generated for X, Y and Z Subsets 
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4.2. Locating Fuzzy Subsets on Reference Data 

The X , Y and Z subsets are mapped, at their critical points, onto the referenced data. 

This is analogous to a transformation of discrete values, in a Cartesian system, to a fuzzy 

plane or description shown in Table 4.3. 

Table 4.3 Mapping of X and Y Subsets in Fuzzy Plane 
with Cells Showing Discrete z Values 

X Domain 
Set Name lowx mid x highx 

Discrete Value 0 50 100 
Discrete Member xo X 5 X 10 

low_y ' 
0 Z0.0 Z5.0 Z10,0 

y. . * 

-100 0 100 
Y mid_y 

Domain 50 > Z0.5 

y5 . 100 0 -100 
high_y") 

100 ( '"O.IO Z5,10 Z10,10 

-100 0 100 

4.2.1 Location of X and Y Subsets 

The defined X and Y subsets are located by positioning the critical points where they 

coincide with the respective x and y values of the reference data. For example, the 

low_x subset with critical point at 0, is located at position 0 (x0=0) in the ordinate field of 

the reference data. In a similar way, the mid_y bell is located at position 5 (y5=50), 

within the abscissa field. 
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4.2.2. Location of Z Subsets 

The location of X and Y subsets at their respective (i,j) positions are used to extract 

discrete z~ values, shown in Table 4.3, from the reference data. These values could be 

interpreted by the example; 

When we are most certain that x is low (low_x at x0=0) and y is medium (mid_y 
at y5=50) then z04=100. 

z values are transformed to the fuzzy plane, for the universe of Z subsets. These are 

displayed in Table 4.4 where for the example above at (x0=0, y5=50), high_z had full 

membership while mid_z and Iow_z had zero membership. 

Table 4.4 Mapping of Subset in Fuzzy Plane, Cells Show Grades 
of Membership for Z Subsets 

X Domain 
Set Name low x mid x highx 

Discrete Value 0 50 100 
Discrete Member xo xs 

low_y •> 1 0 0 low z 
0 p 0 1 0 mid z 
y„ J 0 0 1 highz 

Y mid_y i 0 0 1 low z 
Domain 50 1 0 1 0 mid z 

y, J 1 0 0 highz 
highj -j 1 0 0 low z 

100 0 1 0 mid z 
yM J 0 0 1 highz 

4.3 Selecting Dominant Subsets 

Each cell of Table 4.4, comprising of a universe of Z subsets, is considered separately. 

The subset with the maximum membership is selected. The result is a full symbolic 

representation in Table 4.5 of the initial reference data. As can be seen, the reference 

data, consisting of 121 elements, is reduced to a fuzzy mapping of 9 rules. 
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Table 4.5 Dominant Fuzzy Subsets 

X 
low X mid x highx 

low y low_z mid_z high_z 
Y mid_y high_z mid_z low_z 

high_y low_z mid_z high_z 

Examples of rules deduced by this process are; 

IF Iow_x AND low_y 
THEN low z 

IF high_x AND low_y 
THEN highz 

4.4. Minimizing The Number Of Rule Descriptions 

4.4.1 Defining parent fuzzy sets 

Additional reduction of the symbolic representations in Table 4.5 is achieved by defining 

parent subsets. For example three rules conclude on a mid_z subset. The any qualifier 

replaces the three premise statements; 

IF low_y AND mid_x 
OR 
IF mid^y AND mid_x 
OR 
IF high_y AND midx 
THEN mid z 

with the single statement; 

IF anyY AND midx 
THEN mid z 
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A parent subset (any Y) is created from the universe of Y subsets. This is analogous to 

specifying independence of Y , since any discrete y value has full membership. Stated 

explicitly by; 

M^y(y)=l f o r ( y e Y ) 

4.4.2 Reduction by not Qualifier 

A second pattern in Table 4.5 can be described by the not qualifier, which creates a 

complementary set. The not qualifier, by specifying exclusion, reduces the description 

from two premise statements: 

IF low_y AND low_x 
OR 
IF high_y AND lowx 
THEN lowz 

to a single premise: 

IF not mid_y AND lowx 
THEN low z 

4.4.3. Final Rule Description 

The induction system imposes a consistent format, in Table 4.6, of the final rules. A rule 

is therefore composed of a qualifier and a subset combined to form a condition. The X 

and Y conditions are 'ANDed' for a unique premise statement. Premise statements are 

'ORed' to conclude on a specified Z subset. 
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Table 4.6 Final Rules 

Y X z 
not mid_y low X 

low z mid y high_x low z 

any mid x mid z 

not mid_y high_x 
high_z mid y low X high_z 

The 3 final rules (5 premise statements) of Table 4.6 then represent the 9 rules of Table 

4.5 which in turn represent the 121 data points of Table 4.1. The accuracy of this 

representation can be determined, first by generation of discrete data from the rules, 

followed by a comparison with the reference data. 

4.5. Defuzzification 

The process of generating data from rules composed of fuzzy sets is referred to as 

defuzzification. First the respective grades of membership are determined for concluding 

Z subsets, This is illustrated using rules from Table 4.6 and given the conditions: 

x 2 = 20 and y, = 10 

The respective grade of membership for the X and Y subsets can be determined from the 

membership functions in Figure 4.1 where; 

Mlow_x(20)=0.68 M m i d x(20)=0.32 M h i g h x(20)=0.0 

M l o w y(10)=0.92 M m i d y(10)=0.08 M h l g h y(10)=0.0 

We can deduce the grades of membership for each Z subset from each rule where; 

(mid_y' A low_x) V (mid_y A high_x) 
(0.92 A 0.68) V (0.08 A 0.0) 
0.68 V 0.0 
0.68 

From rule 1: 

M l o w z ( z 2 > 1 ) = 
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Similarly from rule 2: 

M„ i d _ z (z 2 > 1 ) (any Y) A (mid_x) 
1.0 A 0.32 
0.32 

(mid_y' A high_x) V (mid_y A low_x) 
(0.92 A 0.0) V (0.08 A 0.68) 
0.0 V 0.08 
0.08 

Several methods were examined for the final computation of discrete z output namely: 

1) Weighted Average 
2) Use of Confidence Level 
3) Use of Saddle Point 
3) Maximum Value 

4.5.1 Weighted Average 

The weighted average method requires only the grades of membership and the supremum 

position of each concluding Z subset. Discrete z 2 I values are computed from the 

weighted average relation; 

Substituting membership and supremum values from the example above gives: 

^MkSupk 

z 
5>* 

z 
0.68X-100 + 0.32x0 + 0.08x100 

0.68 + 0.32 + 0.08 
=-55.6 
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4.5.2 Confidence Level 

This method introduces an additional scaling factor or confidence level below which we 

ignore any evidence. The confidence level is therefore some limiting grade of 

membership above which we are prepared to consider some proposition and below which 

it is ignored. 

Discrete z 2 , values are computed from the weighted average relation; 

k=t 
^MkSupk 

4=1 for all Mt > C 
k=t l w l a " l"k 

k=l 

If we assume a 0.1 Confidence Level and substitute membership and supremum values 

from the example above, the output value will be: 

0.68 x-100 + 0.32 x 0 
= -68.0 0.68 + 0.32 

4.5.3 Saddle Point 

This method improves on the Confidence Level method by including the influence of 

disbelief in a concept into the computation of discrete z. The saddle point is therefore a 

limiting grade of membership about which we measure both belief and disbelief to 

compute the z values from the relation; 

k=t 
^(Mk-S)Supk  

z = JsL 

k=l 
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By definition the Saddle Point is 0.5, so by substituting membership and supremum 

values from the example above, the discrete output value will be: 

(0.68-0.5)x-100 + (0.32-0.5)x0 + (0.08-0.5)xlOO n 

= -7o.y (0.68-0.5)+ (0.5-0.32) + (0.5-0.08) 

4.5.4 Maximum Value 

The method of maximum membership selects the output subsets with the highest grade 

of membership. The supremum value of the selected membership function gives discrete 

z values as in the example; 

z = Sup-

Substituting supremum value for the example above gives: 

z = -100.0 

4.5.5 Selection of Defuzzification Method 

The Maximum Membership method is the least complex in its computation. It produced 

"spiky" output for incremental changes in X and Y variables. This is especially evident 

as variables change between the boundaries of membership function definitions. Special 

consideration is required when two or more fuzzy subsets have equal and maximum 

grades of membership. 

The Weighted Average method was selected because of its simplicity and effectiveness. 

It resolved some of the problems found in the Maximum Membership method. Smoother 

output is generated because the averaging technique considers relative weights of all the 

subsets of the Z domain. No special consideration is necessary for membership functions 
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with equal grades of membership. This method is a special case of the Confidence Level 

method where a" zero confidence level is implied. It is used to generate the final 

defuzzification data in Table 4.7 from the final rules in Table 4.6. 

The Confidence Level approach is also very effective. It produced similar results to the 

Weighted Average method. The confidence level parameter provides the flexibility to 

bias the defuzzification output towards more conservative values at lower confidence 

level settings. The method requires special consideration only when grades of 

membership for all subsets lie below the confidence level selected. When these grades 

fall below the specified confidence level, this creates an incomplete condition or 

"vacuum", where no conclusions can be reached. Meech and Jordon (1990) used this 

method effectively with the maximum method when the confidence level was too high to 

prevent "vacuums" in the knowledge. 

Table 4.7 Generated Data by Weighted Average Method 

0 10 20 
X 

30 
Variable 
40 50 60 70 80 90 100 

0 -100 -92 -68 -32 -8 0 8 32 68 92 100 

10 -84 -77.8 -55.6 -22.2 0 0 0 22.2 55.6 77.8 84 

20 -36 -33.3 -27.3 0 0 0 0 0 27.3 33.3 36 

30 36 33.3 27.3 0 0 0 0 0 -27.3 -33.3 -36 

Y 40 84 77.8 55.6 22.2 0 0 0 -22.2 -55.6 -77.8 -84 

Variable 50 100 92 68 32 8 0 -8 -32 -68 -92 -100 

60 84 77.8 55.6 22.2 0 0 0 -22.2 -55.6 -77.8 -84 

70 36 33.3 27.3 0 0 0 0 0 -27.3 -33.3 -36 

80 -36 -33.3 -27.3 0 0 0 0 0 27.3 33.3 36 

90 -84 -77.8 -55.6 -22.2 0 0 0 22.2 55.6 77.8 84 

100 -100 -92 -68 -32 -8 0 8 32 68 92 100 

4.6. Error Determination 

The rule generated output in Table 4.7, is compared to the reference data in Table 4.1 by 

indicators which are listed in an error report of Table 4.8. Four statistical indicators are 

computed in Appendix 2 and listed below namely; 
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1) Difference between elements 
2) Sum of the squares difference 
3) Distribution of sum of squares error 
4) The correlation coefficient 

Table 4.8 Error Report with Difference Values 

X Variable Sum of Error 

0 10 20 30 40 50 60 70 80 90 100 Squares Dist 

0 0 25.3 28 12 1.3 0 -1.3 -12 -28 -25.3 0 3140 14 

10 -6 17 8 196 4.2 -6 0 6 -4.2 -19.6 -17.8 6 1577 7 

20 -24 -6.7 3.3 -12 -4 0 4 12 -3.3 6.7 24 1582 7 

30 24 6.7 -3.3 12 4 0 -4 -12 3.3 -6.7 -24 1582 7 

Y 40 6 -17.8 -19.6 -4.2 6 0 -6 4.2 19.6 17.8 -6 1577 7 

Variable 50 0 -25.3 -28 -12 -1.3 0 1.3 12 28 25.3 0 3140 14 

60 6 -17.8 -19.6 -4.2 6 0 -6 4.2 19.6 17.8 -6 1577 7 

70 24 6.7 -3.3 12 4 0 -4 -12 3.3 -6.7 -24 1582 7 

80 -24 -6.7 3.3 -12 -4 0 4 12 -3.3 67 24 1582 7 

90 -6 17.8 19.6 42 -6 0 6 -4.2 -19.6 -17.8 6 1577 7 

100 0 253 28 12 1.3 0 -1.3 -12 -28 -25.3 0 3140 14 

Sum of Squares 2449 3362 3925 1079 213 0 213 1079 3925 3362 2448 22054 

Error Dist. 11 15 18 5 1 0 1 5 18 15 11 100 

Correlation Coefficient = 0 964 

4.7. Error Reduction Strategies 

Several strategies were studied to improve the closeness of fit between the rule generated 

data and the reference data. Increasing the number of subsets describing each domain 

generally had the effect of achieving higher correlation coefficients. This result was 

expected, since a larger number of subsets constitute greater precision in defining 

variables, hence more exact rules should be created. Two strategies were examined 

with: 

1) single subset additions to each variable 

2) relocation of subsets 

3) subset additions to areas of greatest error 
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4.7.1. Adding a Single Set to Each Variable 

This strategy begins with two subsets defining each variable. If these produce 

unacceptable correlations on rule generation, each domain is discretized more finely by 

increasing the number of subsets. Membership functions, for the X variable subset as 

defined in Table 4.9 at each stage, are shown in Figure 4.2. (a), (b) and (c). 

Table 4.9 Stages for Adding Single Subsets to the X Variable 
Stage Subset Name Shape Critical Points Function Definitions 
1 low_x half_bell_down 0 ĥalf bell down(X'̂ ) 

high_x half_bell_up 100 s t a , f b e „ > ; i o o ) 
lowx half_bell_down 0 ĥalf bell down(X'̂ ) 

2 mid_x bell 50 Sw l(x;50) 
high_x half_bell_up 100 s t a, fbe„ r o(*;ioo) 
low_x half_bell_down 0 ĥalf bell dom/X'0) 

3 mid_low_x bell 33.3 
mid_high_x bell 66.7 S to l l(x;66.7) 
high_x half_bell_up 100 S ^ n J ^ l O O ) 

The process begins with two initial subsets for each of the X , Y and Z variables. The 

lowest set member is a half_bell_down shape with a critical point at the minimum value 

of the domain. The highest subset, is a half_bell_up with critical point at the maximum 

of the domain. Subsequent additions are bell-shaped subsets between the lowest and 

highest half_bell shapes with the critical points defined by the relation; 

Width of Domain 
Critical points = 

where; 

for p=2 to n 
p-1 

number of subsets in domain 

Rules are deduced along with an error report. If the error is unacceptable, then the 

number of sets for each variable is incremented by one. No change is made to the input 

definition of the lowest half_bell_down or highest half_bell_up subset definitions, 

although membership functions are altered to those shown in Figure 4.2 (b) and (c) for 

the X variable. Similar changes are implemented for the Y and Z variable at each stage. 
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Fig 4.2 Three Stages of Single Set Additions to X Variable 
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4.7.2 Relocating Subsets 

This method of relocating existing subsets was especially useful in conjunction with the 

strategy of adding a single subset to each variable. The third stage automatic additions 

for the X variable shown in Table 4.10 could be applied to all three X , Y and Z variables 

as shown in Table 4.11. Error reduction may be improved by redefining the X and Y 

subsets so that their supremums (critical points) are precisely located at existing xi and 

yj values in the reference data. The Z subset can also be redefined so that the critical 

point of the new subsets lie on the corresponding zi} values. However, the exact 

redefinition of the new z subsets may not be as simple as just described and each user 

may select different locations based on an examination of the neighboring discrete 

values. 

This strategy could be implemented for example, to improve the correlation coefficient 

for subsets definitions, at the third stage shown in Table 4.10. Here the new subset 

definitions shown in Table 4.11, could be established by selecting exact values from the 

reference data in Table 4.1 that are close to the current automatically generated critical 

points. The corresponding Z subsets could be positioned at -12 and 12 as can be seen 

from Table 4.1. Alternatively a user might prefer to try critical points for X and Y of 20 

and 80 respectively which would give Z subset critical points of -24 and 24. Even 

further examination of the data might lead to the relocation of the critical points to be 

somewhere between -30 to -40 and 30 to 40, since there are a number of neighboring 

points close to these ranges in the same X , Y vicinity. 

A detailed study was not conducted on this technique. Further work is necessary to gain 

a better understanding of its application. 



-44-

Table 4.10 Third Stage Subset Definitions for X , Y and Z Variables 

Variable Subset Name Shape Critical Points 
low_x half_bell_down 0 
mid_low_x bell 33.3 

X mid_high_x bell 66.7 
high_x half_bell_up 100 
low_y half_bell_down 0 
mid_low_y bell 33.3 

Y mid_high_y bell 66.7 
high_y half_bell_up 100 
low_z half_bell_down -100 
mid_low_z bell -33.3 

Z mid_high_z bell 33.3 
high_z half_bell_up 100 

Table 4.11 Relocating X , Y and Z Subsets 

Variable Subset Name | Shape Critical Point 
X mid_low_x 1 bell 30 

mid_high_x j bell 70 
Y mid low y j bell 30 

mid_high_y | bell 70 
Z mid_low_z 1 bell -12 

mid_high_z | bell 12 

4.7.3 Adding Sets to Area of Greatest Error 

The strategy of adding subsets to areas of greatest error is more complex than the former 

method where a single subset is added to each variable. This method involves a more 

conservative and selective subset addition. Additions are strategically placed to eliminate 

error at the point of insertion. This invariably results in an increased correlation 

coefficient. The strength of this technique is based on the principal that any z y value of 

the error report can be reduced to zero by explicitly defining three subsets (for X , Y and 

Z) with critical points defined from the reference data, at (xt, y} and z-). The rule 



-45-

induced wil l always result in perfect correlation at the z- location. Addition of subsets 

therefore involves a careful analysis of the error report. 

If the correlation coefficient is unacceptable (too low) then the distribution of the sum of 

squares error is examined for the (i,j) location of greatest error contribution. This error 

could be eliminated (reduced to zero) by three subset definitions (one for each variable) 

at this point. For example, from the error report shown in Table 4.8 the distribution of 

the maximum error for the Y variable is 14% at the y 0, y 5 and y 1 0 location. Similarly for 

the X variable the maximum error of 18% occurs at x 2 and x 8. This example is 

complicated by the fact that there are multiple areas, for each variable, with equal and 

maximum error. The process, of determining the optimal sequence of subset additions 

which achieves the maximum error reduction is complex and needs further work. If we 

choose to eliminate the error at the z^ location, this requires the addition of the following 

subsets shown in Table 4.12 to the original subsets definitions in Table 4.2. A third 

subset for the Y variable is not necessary since the mid_y subset at the y 5 location 

already exists. 

Table 4.12 Additional Subsets for Error Reduction 

Variable Subset Name Shape Critical Point 
X mid low x bell 20 
Z mid low z bell 40 
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5.0 DESCRIPTION OF FLIX 

The program developed for this study is called F L I X (Fuzzy Logic Interpreted eXpert 

system). F L I X is an interactive tool that automates the construction of knowledge bases. 

It interprets linguistic fuzzy expressions such as "high", "large" or "hot" into an accurate 

and minimum rule set which models an input/output discrete data relationship. 

5.1 Program Specifications 

F L I X was coded in C on a U N I X workstation (Sun Sparc 1+). Approximately 5000 lines 

of source code were written, and compiled to a 150 Kbytes executable file. The program 

was designed to be interactive and portable. A text interface controls program flow and 

prompts for input/output. Graphical utilities plot discrete data from files external to the 

main program. 

Keyboard input selects menu options. ASCII Data files, are used to input and output 

data, samples are shown in Appendix 4. By typing flix at the command line, the user is 

presented with the main menu options. Detailed descriptions of the menu options are in 

Appendix 3. 

5.2. Main Routines 

The principal operating modes are Knowledge from Data in Figure 5.1.1 and Data from 

Knowledge in Figure 5.1.2. They share common Defuzzification and Plotting routines. 

In the Data from Knowledge mode, the user inputs a knowledge base and subset 

descriptions. Alternatively, in the Knowledge from Data mode, the user inputs a 

reference database and subset descriptions. The Position Subsets, Select Dominant Rule 

Sets and Minimize Rules routines then induce a knowledge base. The knowledge base 
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generates data on defuzzification. In the Knowledge from Data mode generated data is 

compared to the reference data by the Compute Error routine. 

5.2.1 Input/Output Files 

By default, FLIX reserves specific names for input/output files. The default file names 

are indicated in bold italicized type in Figures 5.1. Default names can be over-written, 

by stating alternative file names during program execution. A Main Menu option allows 

the user to display selected system default files during program execution. 

5.3 Knowledge from Data 

The Knowledge from Data mode, shown in Figure 5.1.1, generates rules from discrete 

data and fuzzy subset descriptions. The accuracy of the generated knowledge base is 

verified by examination of the error report. These correlates the rule generated data with 

the original reference data. Set additions are made using strategies which minimize the 

number of rules required to describe the reference data. The Knowledge from Data mode 

has two sub-options where automatic and manual strategies are implemented to generate 

rules. 
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Fig. 5.1.1 Knowledge from Data Mode 
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Fig. 5.1.2 Data From Knowledge Mode 
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5.3.1 Manual Rule Generation 

This option allows a user to define input subsets, redirect input/output to console or 

specified files and selectively execute sub-menus which are tabulated and described as 

follows: 

Table 5.1 Manual Knowledge From Data Sub-Menus 

Menu Options Procedure Default Files 
Read Reference Database Input zdata 
Read Input Sets 

Input 
zsets 

Write Mapped Sets 

Output 

ztnap 
Write Dominant Sets 

Output 
zdom 

Write Final Rules Output miles 
zin 

Write Output Data zout 
zerr 

Plot Sets console 
Plot Data console 

5.3.1.1 Prerequisite Inputs 

The two input options of Read Reference Database and Read Input Sets are prerequisites 

for subsequent processing and generation of rules. The Read Reference Database option 

reads the reference data from the zdata file. The Read Input Sets option, allows 

flexibility in the definition of input subsets, which are read either interactively from the 

keyboard or directly from the zsets file. 

5.3.1.2 Generated Reports 

Write Mapped Set option executes the Position Subset routine which maps the input 

fuzzy subsets at their critical points unto the reference data to generate the zmap file. 
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Write Dominant Sets option executes the Select Dominant Rule Sets routine which 

selects dominant subsets, from the zmap file to generated dominant subset descriptions in 

the zdom file. 

Write Final Rules executes the Minimize Rules routine which assigns qualifiers when 

describing dominant subsets in file zdom. Final rules are output to the zrule file 

Write Output Data executes the Defuzzify routine on the rules file zrule. to generate 

discrete data in file zout. The Compute Error routine compares rule generated data to 

reference data to produce error indicators in file zerr. 

5.3.1.3 Graphical Output 

Plot Sets graphically displays the current fuzzy subset membership functions while Plot 

Data graphically displays the reference data, generated data and error data. 

5.3.2 Automatic Rule Generation 

Automatic rule generation implements the strategy of adding a new fuzzy subset to each 

variable as was discussed in Section 4.7.1. Default system files are used for input and 

output. A l l routines listed in Figure 5.1.1 are executed. The plotting routines graphically 

presents the current subset membership functions as well as the reference data, generated 

data, and error data. 

5.3.2.1 Increasing Subset Definitions 

In the automatic mode, the Increase set definition to next level adds a subset to each 

variable. The output graphs along with the reported correlation coefficient, allows the 

user to decide when to stop subset additions. 
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5.4 Data from Knowledge 

The Data from Knowledge mode shown in Figure 5.1 shares the common Read Input 

Sets, Defuzzification and Plot routines with the Knowledge from Data module. The main 

difference is that Knowledge from Data requires additional routines to deduce a 

knowledge base, while in the Data from Knowledge mode, the user defined knowledge 

base is read and defuzzified. 

Table 5.2 Data from Knowledge Sub-Menus 

Menu Options Procedure Default Files 
Read Reference Knowledge Base Input zknow 
Read Input Sets 

Input 
zsets 

Write Output Data 
Output 

zout 
Plot Sets Output console 
Plot Data 

Output 
console 

5.4.1 Prerequisite Inputs 

The two input routines of Read Reference Knowledge Base and Read Input Sets, shown 

in Table 5.2, are prerequisites for defuzzification. The Read Reference Knowledge Base 

routine reads the Knowledge base from a zknow file. The Read Input Sets option, is the 

same as described previously for the manual Knowledge from Data option in Section 

5.3.1.1 

5.5. Combining Modes for Knowledge Base Development 

The two principal operating modes; Data from Knowledge and Knowledge from Data can 

be combined effectively in knowledge engineering. Figure 5.3 shows this integration, to 

produce final rules which accurately describe an input/output relationship. 

If the user believed that a particular knowledge base represented some desired 

input/output relationship, this knowledge base along with the relevant subset 
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descriptions, could be read by F L I X operating in the Data from Knowledge mode. On 

defuzzification the user can see the generated profile. If the profile is acceptable, then 

the knowledge base with the subset descriptions are taken as conceptual representations. 

If the profiles are unacceptable, then undesirable regions are modified by changing 

discrete values within the database. The modified database then serves as the reference 

data for the Knowledge from Data mode. Here either automatic or manual rule 

generation modes or combinations of both could be implemented to generate an 

alternative knowledge base which accurately represents the desired data. 

Fig. 5.3 Integration of FLIX Modes for Knowledge Base Development 
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6.0 MODELLING A SECONDARY CRUSHER CONTROLLER 

6.1 The Process 

The F L I X acquisition system was tested to build a controller for a simulated secondary 

crusher. The original simulator was designed at Queens University by Tucker and 

Meech (1984). It utilized conventional PID control techniques. This simulator was later 

modified by Harris and Meech (1986) where manual and expert operating modes were 

incorporated. In this study, F L I X has been used to automate the acquisition process 

thereby producing rules for the expert control system. 

Fig. 6.1 Secondary Crusher Control System 
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The process investigated, as shown in Figure 6.1, consists of a 2.1m standard cone 

crusher operating with a 350 h.p. motor. The plant supplies production to a milling 

operation of approximately 10,000 to 15,000 tonnes per day. The coarse ore bin delivers 

material via a feeder to the crusher chamber. Chamber Probes and an Ammeter monitor 

chamber levels and current consumption respectively for the crusher. The screen surge 

bin is used to store and feed ore to other down-stream crushing and screening operations. 

Level Sensors monitor bin levels. 

The Computer Control System had a knowledge base within its expert module. The 

control system received three discrete controller inputs ie;. 

1) Chamber Level from the Crusher Chamber Probes 

2) Current draw from the Ammeter 

3) Level from Screen Surge Bin 

The discrete signals of Current draw and Screen Surge Bin levels after processing by the 

rules in the expert system. Subsequent defuzzification generate a controller output of 

desired feed rate change setpoint for the local control loop of the course ore feeder. 

6.2.1 Original Knowledge Acquisition Methods. 

Harris (1986) followed the approach listed below to acquire the knowledge for the expert 

system. The steps used are as follows: 

Observing and interviewing the operator 

Listing the rules of thumb 

Identifying and standardizing the linguistic measures of each process state 

Defining membership functions for subsets representing the linguistic measures 

Assembling fuzzy rules of strategy. 
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6.2.1.1 Observing and Interviewing the Operator 

The initial stage involved questioning and observing the operators to determine their 

strategy. Scenarios representing proposed and possible reactions were noted. Crude 

rules of thumb were derived for this process such as: 

"Whenever the power is low, I increase the feedrate a lot, providing that the 
screen bin is not too high." 

6.2.1.2 Standardizing Linguistics 

Rules of thumb had to be organized and listed with standardized terminology for the 

various process states. Identification of input to and output from the controller was 

structured so that inputs formed the premise of rules and output formed the conclusion. 

6.2.1.3 Definition of Membership functions 

Two key issues considered here were: 

1) The universe of variable definition 

2) The resolution of fuzzy sets 

For completeness, the domain of sets had to be carefully defined so that any discrete x 

from the universe of a specific variable X had non-zero membership in at least one set. 

Incompleteness would cause control inaction, because of nonexistent definitions of 

controller action. 

6.3.1 Original Control Rules 

Harris (1986) evolved a lengthy process over several days with trial and error methods of 

tuning. Later Meech and Jordon (1990) employed similar techniques which made further 

improvements to the desired output profile. The tuning techniques included: 

1) modification of control rules 
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2) changing ranges over which fuzzy sets were defined 

3) redefinition of membership functions dynamically based on ore 
conditions. 

The original rules are listed in Table 6.1 with their fuzzy subset definitions shown in 

Figure 6.2.1 

Table 6.1 Original Controller Rules 

C U R R E N T DRAW SCREEN BIN L E V E L F E E D R A T E C H A N G E 

Any High 
Negative Big High Any Negative Big 

Medium High Any 
Okay Fine 
Medium Low Fine . Negative Small 

Okay not Fine 
Low Fine No Change 

Medium Low not Fine Positive Small 

Low not Fine Positive Big 
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. 6.2.1 Original Set Definitions for Controller after Meech and Jordon (1990) 
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Fig. 6.2.2 Automatic FLIX Generated Set Definitions for Controller 
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Fig. 6.2.3 Manual FLIX Generated Set Definitions for Controller 
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6.4. Knowledge Acquisition With FLIX 

F L I X was used in the Knowledge to Data mode, on the 1990 rule sets, to generate data 

for the performance of the controller. The original rule-generated profile of Figure 6.3.1. 

was found to be undesirable, in the 60-100% screen bin levels and 35-40 amp current 

draw region. The undesirable rule-generated profile was caused by an inadvertent 

contradiction in the knowledge base shown in Table 6.1. At high screen bin levels 

(100%) and low current draws (35 amps) the first and seventh premise statements in the 

knowledge base are true and contributes belief in the Negative Big and No Change 

conclusions. Belief in both Negative Big and No Change without belief in Negative 

Small is contradictory. Belief in the No Change is clearly undesirable since only large 

reductions (Negative Big) to the feed rate are appropriate to avoid an overflow. 

6.4.1 Reference Controller Profile 

The profile was corrected by changing unacceptable discrete values to those in Figure 

6.3.2. This corrected profile was used as reference data in FLLX to regenerate an 

accurate rule set which describes the corrected profile. 

6.4.2 Generation of Knowledge Base 

Both automatic and manual rule generation modes were investigated using F L I X with the 

modified reference data of Figure 6.3.2. These methods are described below and data for 

this work is shown in Appendix 5. 

6.4.2.1 Automatic Acquisition 

Automatic rule generation implemented the strategy of adding a single subset to each 

variable outlined in Section 4.7.1. The correlation coefficients from successive subsets 

additions are listed in Table 6.2. The coefficient generally decreased with increasing 

subset definitions. The highest coefficient of 0-998 was obtained at 11 subset additions 

for each variable. 
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Fig. 6-3 J Automatic FLTX Controller Profile 
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Table 6.2 Correlation Coefficients for Automatic Subset Additions 

Number of Correlation 

Subsets Coefficient 

2 0.961 

3 0.974 

4 0.972 
5 0.965 
6 0.989 
7 0.987 

8 0.986 
9 0.985 
10 0.987 

11 0.998 

Although the final 0.998 coefficient was acceptable, the output profiles in Figure 6.3.3 

are clearly unacceptable because of the irregular and sharp transients in the automatic 

generated output. The final output rules, because of fine discretization of the subsets, 

shown in Figure 6.2.2, resulted in a very complex rule description as shown in Table 6.3 

6 
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Table 6.3 Automatic Generated Rules 

C U R R E N T DRAW SCREEN BIN L E V E L F E E D R A T E C H A N G E 

Any S9 

FO 

Any S10 

FO 
CIO Any 

FO between C6 C10 S8 FO 

between C6 C9 S7 

F l 

between C3 C5 S8 

F l C9 be/ween SO S7 F l 

between C3 C5 S7 

F2 
between CO C2 S8 

F2 C8 S6 F2 

between C3 C7 S6 

F3 
between CO C2 S7 

F3 C8 between SO S5 F3 

between C6 C7 S3 ' 

F4 

between C4 C7 S4 

F4 

between CI CI S5 

F4 
between CO C2 S6 

F4 C7 between SO S5 F4 

between C5 C6 SO 

F5 

be/ween C5 C6 SI 

F5 

between C5 C6 S2 

F5 

between C4 C5 S3 

F5 
between CO C3 S4 

F5 between CO CI S5 F5 

between CO C3 S3 
F6 C4 between SO S2 F6 

C3 between SO S2 F7 

C2 S2 F8 

between CO CI S2 

F9 C2 between SO SI F9 

be/tveen CO CI SO 
F10 between CO CI SI F10 

6.4.2.2 Manual Acquisition 

Manual acquisition methods achieved better results which are shown in Table 6.4 and 

Table 6.5. The strategy of set additions to the areas of greatest error, outlined in Section 

4.7.3, was implemented to increased the correlation coefficient for the first four stages. 
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For the final fifth and sixth stages a second strategy of relocating subsets, discussed in 

Section 4.7.2, produced smoother profiles. 

Table 6.4 Correlation Coefficients for Manual Subset Additions 

Number of Subsets 

Stages Current Bin Feed Rate Correlation 
Draw Level Change Coefficient 

1 2 2 2 0.953 

2 3 3 3 0.965 

3 4 3 4 0.974 

4 4 3 5 0.988 

5 4 4 5 0.985 

6 4 4 6 0.985 

Final correlation coefficients of 0.985 were achieved from the set definitions in Figure 

6.2.3. The rules generated manually in Table 6.5, were less complex than those 

automatically generated in Table 6.3. The manual profiles in Figure 6.3.4 were also 

smoother. 

Table 6.5 Manual Generated Controller Rules 

CURRENT DRAW SCREEN BIN L E V E L FEED R A T E C H A N G E 

Any S3 

F0 
C3 Any 

F0 C2 S2 F0 

between CO CI S2 
Fl C2 between SO SI Fl 

between CO CI Si 
F2 CI so F2 

CO SO F5 
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6.5 Test on Alternative Non-monotonic Surface 

A second test was conducted with a more complex non-monotonic surface, previously 

referred to as reference data in Section 4. This surface, shown graphically in Figure 

6.4.1 had greater variability than the control example. After three levels of subsets 

additions in the automatic mode, F L I X induced the knowledge base shown in Table 6.6. 

The rule generated data shown in Figure 6.4.2, produced a correlation coefficient of 

0.963. Data for this approach are shown in Appendix 4. 

Table 6.6 Final Automatic Rules for Non-Monotonic Surface 

Y X z 
not mid_y low_x 

low z mid y high_x low z 
any mid x mid z 
not mid_y high_x 

high_z mid y low X high_z 
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7.0 F U T U R E D E V E L O P M E N T S 

7.1 Limitation of Baysian Logic 

The generation of rules to describe smooth gentle data surfaces from large numbers of 

fuzzy descriptions proved unsatisfactory. This problem was seen in the example using 

the Automated mode for the controller surface in Section 6. The result was 

unsatisfactory for two reasons: 

Complex rules - The complexity of the rules results from the large 
number of subsets (11 levels) which were necessary for precision. The 
rules are difficult to interpret since large numbers of subsets are required 
in very complex associations. There is considerable redundancy included 
in the rule descriptions. 

Irregular surfaces - The larger number of subset descriptions resulted in 
steeper gradients for each membership function. This created significant -
transients across rule boundaries because of the If-then association. Belief 
in premise conditions and rules then varied sharply for small incremental 
changes in variables. 

Recently there has been an explosion of interest and research into neural networks. 

These systems mimic some of the structure and function of the brain. There is potential 

for a marriage of fuzzy logic and expert systems formalisms with neural networks to 

resolve some of the limitations of pure fuzzy logic systems or rule based systems 

(Flament et al, 1990; Hart, 1989). 

A neural network representation of the knowledge or generated rules may resolve both 

issues of surface irregularity .and rule complexity. Knowledge stored explicitly in the 

form of rules could instead be stored implicitly in the strength of connecting nodes of a 

network as shown in Figure 7.1. A network to resolve the controller example in Section 

6 would operate as follows: Discrete data for the screen bin and current draw as well as a 

7.2 Neural Networks 
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third logical value for a chamber level variable are fed in at the bottom input layer. The 

input to each node in the network is normally the sum of each signal times the link 

weight (W;). The link weights are calculated using a back-propagation pattern matching 

analysis. The iterations on this link weight matrix continue until the error between 

output and desired output is acceptable. The output from each node is determined by a 

specific nodal function relationship with each input signal to the node. 

The power of this technique is demonstrated in the fact that large rule sets and complex 

relationships could be described by a simpler neural net. The problem of sharp transients 

resulting from If-Then associations within rules may be resolved when replaced with 

weighting functions within the net. For neural networks which suffer from an inability to 

provide satisfactory explanations, the labelling of nodes as fuzzy set descriptions could 

allow the system to provide justification for decisions made which would be 

understandable to operating personnel. 

Fig. 7.1 Neuial Network Representation of Knowledge 
Using 2 Fuzzy Descriptions for Each Variable 

Feed Rate 
Change 

Screen ^ Current Chamber 
Bin Level £V Draw (amps! Level Alarm (ow'off) 
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7.3 Extension to Multiple Dimensions 

F L I X is capable of resolving data which comprise two premises and a single conclusion. 

Further research is required for extension of the system to resolve multi-dimensional 

data. Extension to resolve, multiple premises and conclusions are separate issues. 

Multiple Conclusions - extensions for multiple conclusions is the simpler 

of the two. Conclusion statements in the rules are independent of inter

relationships between premise statements. Therefore multiple conclusions 

could be stated independently in in the formation of rules. 

Multiple Premises - Multiple premise statements in rules require multi

dimensional databases with inputs for all possible coordinate positions. 

Up to three premise variables could be visually represented in a Cartesian 

system after which premise conditions can be displayed in a spreadsheet 

format. Fuzzy subsets associations could then be described by more 

elaborate inductive algorithms within the rule reduction routines. 

7.4 Rule Reduction Methods 

Further rule reductions or more succinct descriptions could be achieved by a comparison 

and selection algorithms within the rule reduction routine. This routine would compare 

rule reduction patterns and thereby select the most efficient description. A n example of 

this is shown with the following premise statements: 

between C5 C6 so 
between C5 C6 SI 
between C5 C6 S2 

which could be more succinctly described as follows; 

\ between C5 C6 1 between SO S2 
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7.5 Error Reduction Strategies - Automated 

Several issues related to the error reduction strategies could be studied in greater depth. 

These include: 

Adding Sets to Areas of Greatest Error - This strategy needs further 
study before it can be automated. Issues to be resolved include: the order 
of set additions, adding single versus multiple sets at a time and mapping 
of subsets when multiple positions have equal error. 

Adjusting Existing Subsets - The methods of relocating and redefining 
existing fuzzy subset has not been examined thoroughly, although better 
correlation coefficients were observed from trial and error redefinitions 
for bell shapes and critical points for the Z subsets to reflect average z 
values from the reference data. 

Using Alternative Subsets Shapes - The influence of alternative shapes 
such as flat_bell and trapezium should be studied. In some instances, the 
flat_bell shape achieved significantly better correlation coefficients than 
the bell. The optimal shape and position of subsets will depend on the 
shape and features of the original data. Points of inflection and changes in 
slope must be used to select shape positions and numbers of subsets 
required. 
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8.0 C O N C L U S I O N S 

A n interactive system has been developed in the Mining and Mineral Processing 

Department at the University of British Columbia, to automated knowledge acquisition, 

the critical bottleneck area in expert system development. Accuracy of the knowledge 

base selected by the user becomes a trade off between efficiency (small number of 

subsets in rules) and effectiveness (large number of subsets definitions for increased 

precision). 

The system incorporates many user friendly menu driven features which make it useful 

to users who may not understand the concepts of fuzzy logic. Rules are generated 

automatically from desired data. Therefore data could be viewed as a knowledge base 

generated from desired rules or visa versa. Rules can be automatically modified to better 

represent data. This allows knowledge bases to be built much faster than using a 

traditional interview approach. 

The system was successfully tested to generate a minimum rule set to describe an expert 

system controller for a secondary crusher. The error of the output map compared to the 

desired output was-minimized. The success of this system therefore makes knowledge 

acquisition for expert systems easier to implement in the industry. 

The power of fuzzy logic to represent complex relationships with simple and elegant rule 

structures has been demonstrated by this work. Future efforts should be expended to 

automate further the error reduction process. Expansion to handle multi-variable 

input/output also needs to be examined. 
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APPENDIX 1 Fuzzy Membership Functions 

Functions are described by the format: 

M^taa.b.c,:...,) 

where; 

M - function type ie. S for quadratic and T for triangular 

name - description of function type 

u - u e U over specified interval or domain of U 

a,b,c... - user defined critical points which specify turning points of 

function 

An example of the Four Point Flat Bell is shown in Figure A1.1: 

Fig. A1.1 General Definiton of Flat Bell 
Membership Function 

1.1 Four Point Flat Bell n a l bell(u;a,c,d,f) 

0 for u < a 

u-a 
c-a 

for a < u < b and b= a + c 
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1-2 

1-2 

Kc-aJ 

yf-dj 

u-f 

.f-d. 

for 

for 

for 

for 

for 

b < U < C 

C < U < d 

d < u < e and e= 

e < u < f 

u > f 

IT 

1.2 Two Point Bell Up 

\c-a 

1-2 
fu-c 
\.c-a 

for 

for 

for 

for 

u <a 

a < u < b and b= 

b < u < c 

c < u 

a + c 
2 ; 

1.3 Two Point Bell Down _W1 ^(ujd.f) 

1-2 
f-d 

fu-l 
Kf-dj 

V 

0 

for 

for 

for 

for 

U < d 

d < u < e and e= 

e < u < f 

u > f 

f d + f 
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1.4 Trapezium T^uja^jdjf) 

0 

u-a 
c-a 

for 

for 

for 

u <a 

a < u < c 

c < u < d 

1- for 

for 

e < u < f 

U > f 

1.5 Three Point Bell Sv_tall(u;a,c,f) 

Special case of Four Point Flat Bell S ^ , ^ M,(u;a,c,d,f) where c=d. 

1.6 Half Bell Down S w f b e l l down(u;d) 

Special case of Two Point Bell Down Sipt ^ imm(u;d,f) where d is the user defined critical 

point and f is the zero membership point which coincides with the supremum position of 

the adjacent subset to the right. 
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1.7 Half Bell Up Shalf M l u p(u;c) 

Special case of Two Point Bell Up S2pt M l up(u;a,c) where c is the user defined critical 

point and a is the zero membership point which coincides with the supremum position of 

the adjacent subset to the left. 

1.8 Bell S^Cujc) 

Special case of Three Point Bell SM Ml(u;a,c,f) where c is the user defined critical point, 

f is the first zero membership point which coincides with the supremum position of the 

adjacent subset to the right and a is the second zero membership point which coincides 

with the supremum position of the adjacent subset to the left. 

1.9 Flat Bell SM1(u;c,d) 

Special case of Four Point Flat Bell S4pt ̂  ^ ( u ^ c A O where c and d are user defined 

critical points between which the Flat Bell has full membership, f is the first zero 

membership point which coincides with the supremum position of the adjacent subset to 

the right and a is the second zero membership point which coincides with the supremum 

position of the adjacent subset to the left. 
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APPENDIX 2 Error Functions 

2.1. Difference Between Elements 

The body of the error table lists the difference z ; j for each element of the reference data 

z ; j to its corresponding rule generated output z ; j . Where: 

The difference indicates the magnitude of the error at point locations between the 

reference and rule generated surfaces. 

2.2. Sum of Squares Difference 

The sum of the squares difference ^ Z 2 is calculated for each row, column and the 

•combined table. It is computed by the following equations; 

The sum of squares for the jth row is given by: 

Similarly for the ith column where; 

m 

A total sum of squares for the table where; 

run 

<=U=i 
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Each sum of squares, indicates the magnitude of error by row, by colum or for the 

overall table. 

2.3. Distribution of Sum of Squares Error 

The distribution of the sum of squares error is computed respectively for each column 

and row by the following relations; 

J=I— OR J± 
run nm 

i=l,y=l i=l./'=l 

It indicates the relative error contribution for each row or column in the error table. 

2.4. The Correlation Coefficient 

The correlation coefficient r is given by the equation; 

]Tzz 

where; 

Z - element of the reference data 

Z - element of the output data 

The r coefficient is a standard statistical measure for the closeness of fit between data 

points Kennedy, (1976). It provides a convenient normalised correlation between rule 

generated profiles to a common reference data surface. This r coefficient lies in the 

range 0 <|/"|<1: when the value is zero there is no correltion; when it is unity, the 

correlation is perfect. 



-81 -

APPENDIX 3 MENU OPTIONS 

3.1 Program Description 

F L I X , by default, reserves specific names for input/output files. Default file names are 

shown in bold small type in Figure 5.1. Default names can be over-written, by stating 

alternative file names during program execution. By typing flix at the command line the 

user is presented with the main menu options. Italicized word within the system menus 

are imbedded text which change as different options are executed. Keyboard input 

selects menu options. ASCII Data files, with blank spaces and Tab separators, is used for 

input/output. 

3.2 Main Menu Options 

The main menu options are: 

1) Knowledge from Database 
2) Data from Knowledgeable 
3) Display Default System Files 
4) Interactive Switch Present Mode:CW 
5) Exit Program 
Select a Main Menu Option: 

Options from the list are selected by entering the appropriate number at the Select a Main 

Menu Option prompt. 

3.3 Knowledge from Database 

Program flow is directed to generate rules from an existing database and fuzzy subset 

descriptions. Selection of this mode generates two sub-modes as follows 
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0) Manual Rule Generation 
1) Automatic Rule Generation 
Select a Rule Generation Option: 

3.4 Manual Rule Generation 

This option allows a user to define; fuzzy subsets descriptions, redirection of input/output 

to console or files and execute a number of the Manual Rule Generation sub-menus. The 

sub-menus are as follows; 

0) Read Reference Database 
1) Read Input Sets 
2) Write Mapped Sets 
3) Write Dominant Sets 
4) Write Final Rules 
5) Write Output Data 
6) Plot Sets 
7) Plot Data 
8) Do A l l 
9) Main Menu 
Select a Manual Rule Generation Option: 

3.5 Read Reference Database 

This routine along with the Read Input Sets option are prerequisites for subsequent 

processing and generation of output routines. The reference database file is limited to a 

maximum size of [31 x 31] discrete values. The first row and column contains the 

discrete elements for the X and Y variable respectively. The body of the table contains 

the Z variable elements. 

A sub-menu is available for accepting files with non-default names: 
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1) Read Reference Data from Default File; 
2) Read New Reference Data File 
Select a Reference Data File Option:  

zdata 

3.6 Read Reference Data from Default File 

The reference database is read from a file with default name zdata. 

3.7 Read New Reference Data File 

The user is prompted with: 

Enter New Data Filename:  

The file name for the reference data is typed in from the keyboard (maximum length 50 

characters). 

This routine along with the Read Reference Database option are prerequisites for any 

subsequent processing and output routines in the Manual Rule Generation module. The 

fuzzy subset descriptions can be read from the console or a file. A maximum of 15 

subsets can be defined for each variable. The following sub-options are available for 

subset input; 

1) Read Subsets from Default File: zsets 
2) Read New Subsets File 
3) Read Subsets from Console 
4) Save Subsets to File 
Select a Subset File Option:  

3.8 Read Input Sets 
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3.9 Read Subsets from Default File 

The format of the subset file zsets is shown in figure 2. Information on the three 

variables is entered in blocks which are separated by a line of * symbols. Each block 

defines a separate variable so there are a total of three blocks. Each subsequent row in a 

block defines a fuzzy set description for the variable. The first and subsequent elements 

of each of these rows contain fuzzy subset descriptions; The description is comprised of 

the subset Name (max 15 characters), Shape (10 possible shapes) and Critical Points 

(number depends on shape). A line of * symbols mark the end of the block. 

3.10 Read Subsets from Console 

This option allows the user to input subsets directly from the console in an interactive 

mode. The user is prompted to; 

Enter the Y variable name; Temperature  

A description of the Y variable is entered (maximum of 15 characters). 

The system requests the number of subsets describing the Y variable. 

How many fuzzy sets characterize the Temperature:  

This number is limited to a maximum of 15. 

A list of possible subset shapes is presented: 
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Which shape best describes the first fuzzy 
set for the Temperature 
0) trapezium 
1) bell 
2) flat_bell 
3) . half_bell 
4) half_bell_down 
5) half_bell_up 
6) 2pt_half_bell_down 
7) 2pt_half_bell_up 
8) 3pt_bell 
9) 4pt_bell 
Select a Shape Option: 

The critical points are requested for the previously selected shape by; 

Enter the critical point(s) for the halfjbelldown Temperature: 

The required number of critical points are entered separated by blank spaces. 

The system continues to request subset information (shapes and critical points) for the 

specified number of subset for each variable. 

3.12 Save Subsets to File 

Fuzzy subset descriptions are entered interactively from the Read Subset From Console 

module are saved as a file of similar format to Figure 2 . The sub-menus of this option 

include: 

1) Write output subsets to file; zsets 
2) Write output subsets to new file 
Select an Output Subset Option:  
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3.13 Write Mapped Sets 

This option generates a table, where the X , Y and Z fuzzy subsets are mapped at their 

critical points onto the reference data. The sub options available are: 

1) Write map sets to default file; zmap 
2) Write map sets to a new file 
3) Write map sets to the console 
Select a map sets option;  

Output for the mapped fuzzy subsets is directed to the selected option. 

3.14 Write Dominant Sets 

Next a table is generated where the dominant X , Y and Z fuzzy subsets are shown as 

symbolic representations for rules. The sub options listed are: 

1) Write dominant sets to default file; zdom 
2) Write dominant sets to a new file 
3) Write dominant sets to the console 
Select a dominant set option; • 

3.15 Write Final Rules 

A final table is generated in which the final rules are directed to specified devices/files 

with the following sub-options: 

1) Write final rules to default file; zrules 
2) Write final rules to a new file 
3) Write final rules to the console 
Select a final rules option;  
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3.16 Write Output Data 

Discrete tabloid data for the reference, generated and error databases are generated. 

Options include; 

1) Write Reference Data 
2) Write Generated Data 
3) Write Error Data 
4) Do A l l 
Select an Output Data Option:  

3.17 Write Reference Data 

This option directs output from the Write Output Data menu to the following file; 

1) Write data to file zin 
2) Write data to new file 
3) Write data to console 
Select a reference data option:  

3.18 Do All 

Executes all of the numbered options sequentially. 

3.19 Plot Sets 

Presents graphs of the current fuzzy subset membership functions. 

3.20 Plot Data 

Presents graphs of the reference data, generated data and error data. 

03.21 Main Menu 

Return to main menu display 



3.22 Automatic Rule Generation 

This option automatically defines new fuzzy subsets by using the strategy of adding a 

single subset to each variable,as was discussed in Section 4 . The module uses default 

system files for input/output. A l l output routines in are activated and graphs of the 

current subset membership functions, reference, generated and error data are displayed. 

The current correlation coefficient is reported in the list of menu options as follows; 

Current correlation coefficient = 0.101 
0) Write Output Data 
1) Reset subset definitions to two levels 
2) Increase set definitions to a third level 
3) Main Menu 
Select an Automatic Rule Generation Option  

3.23 Reset Subset Definitions to Two levels 

The Automatic Rule Generation mode is reset to two subsets defining each variable. 

3.24 Increase Set Definitions to Next Level 

Selection causes the current fuzzy subset descriptions for each variable to increase by one 

and the Automatic Rule Generation mode executed. 

3.25 Display Default System Files 

This option allows the user to display any of the current system default files on the 

console. These files are selected from the following lists; 
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0) Original Reference Data 
1) Original Set Descriptions 
3) Output Fuzzy Set Mapping 
4) Defuzzified data 
5) Formatted Reference Data 
6) Formatted Generated Data 
7) Formatted Error Data 
9) Generated Rules 
10) Dominant Rules 
11) Input Knowledge Base 
12) Current Set Definitions 
13) Main Menu 
Select a system file option: 

3.26 Interactive Switch Mode: ON 

This is an on/off switch which displays its current mode. 

0) Interactive switch O N 
1) Interactive switch OFF 
Select a Switch option; . 

It directs data generated, in the Manual Data to Knowledge mode, to and from default 

system files. When the switch is off, the user is not prompted for input/output for the 

Manual Data to Knowledge menu options. 

3.27 Data from Knowledge Base 

This module shares many of the features of the Knowledge from Data module. The main 

difference is that the Knowledge from Data module induces its knowledge base while the 

Data from Knowledge module reads a user-defined Knowledge Base. The menu list 

modules, shared with the manual Knowledge from Data module as follows: 
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0) Read Input Knowledge Base 
1) Read Input Sets 
2) Write Output Data 
3) Plot Sets 
4) Plot Data 
5) Do A l l 
6) Main Menu 
Select a Manual Rule Generation Option: 

3.28 Read Input Knowledge Base 

The input Knowledge Base is read from a file similar to Figure . The file has a similar 

format to the generated rules shown in table , the difference being that the only qualifier 

must be explicitly stated in the Input Knowledge Base. Similar output options are 

available as in the Manual Rule Generation mode as follows: 

1) Read knowledge base from file zknow 
2) Read knowledge base from a new file 
Select a knowledge base option:  
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APPENDIX 4 Sample Default Files of Non-monotonic Data Surface 

Table A4.1 zdata File (same as tin) 

0 10 20 30 
X Variable 

40 50 60 70 80 90 100 
0 -100 -66.7 -40 -20 -6.7 0 6.7 20 40 66.7 100 

10 -90 -60 -36 -18 -6 0 6 18 36 60 90 

20 -60 -40 -24 -12 -4 0 4 12 24 40 60 

30 60 40 24 12 4 0 -4 -12 -24 -40 -60 

Y 40 90 60 36 18 6 0 -6 -18 -36 -60 -90 

Variable 50 100 66.7 40 20 6.7 0 -6.7 -20 -40 -66.7 -100 

60 90 60 36 18 6 0 -6 -18 -36 -60 -90 

70 60 40 24 12 4 0 -4 -12 -24 -40 -60 

80 -60 -40 -24 -12 -4 0 4 12 24 40 60 

90 -90 -60 -36 -18 -6 0 6 18 36 60 90 

100 -100 -66.7 -40 -20 -6.7 o 6.7 20 40 66.7 100 

Table A4.2 zsets File 

Variable Subset Name Shape Critical Point 

X 
low X half bell down 0 

X mid x bell 50 X 
high_x half_bell_up 100 

Y 
low_y half bell down 0 

Y mid_y bell 50 Y 
high_y half_bell_up 100 

Z 
low 7. half bell down -100 

Z mid z bell 0 Z 
high z half_bell_up 100 
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Table A4.3 zmap File 

X Domain 
Set Name lowx mid x highx 

Discrete Value 0 50 100 
Discrete Member xo xs X10 

low_y 1 0 0 low z 
0 0 1 0 mid z 
y0 

0 0 1 highz 
Y mid_y 0 0 1 low z 

Domain 50 0 1 0 mid z 
y5 

1 0 0 highz 
high_y 1 0 0 low z 

100 0 1 0 mid z 
V10 0 0 1 highz 

Table A.4.4 zdom File 

X 
lowx midx highx 

lowy low_z mid_z high_z 
Y mid_y high_z mid_z low_z 

h'gh_y low_z mid_z high_z 

Table A4.5 zrules File (same as zknow) 

Y X z 
not mid_y low_x 

low z mid_y high_x low z 
any mid x mid z 
not mid_y high_x 

high_z mid y low X high_z 
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Table A4.6 zout File 

0 10 20 
X Variable 

30 40 50 60 70 80 90 100 
0 -100 -92 -68 -32 -8 0 8 32 68 92 100 

10 -84 -77.8 -55.6 -22.2 0 0 0 22.2 55.6 77.8 84 

20 -36 -33.3 -27.3 0 0 0 0 0 27.3 33.3 36 

30 36 33.3 - 27.3 0 0 0 0 0 -27.3 -33.3 -36 

Y 40 84 77.8 55.6 22.2 0 0 0 -22.2 -55.6 -77.8 -84 

Variable 50 100 92 68 32 8 0 -8 -32 -68 -92 -100 

60 84 77.8 55.6 22.2 0 0 0 -22.2 -55.6 -77.8 -84 

70 36 33.3 27.3 0 0 0 0 0 -27.3 -33.3 -36 

80 -36 -33.3 -27.3 0 0 0 0 0 27.3 33.3 36 

90 -84 -77.8 -55.6 -22.2 0 0 0 22.2 55.6 77.8 84 

100 -100 -92 -68 -32 -8 0 8 32 68 92 100 

Table A4.7 zerr File 

X Variable Sum of Error 

0 10 20 30 40 50 60 70 80 90 100 Squares Dist 

0 0 25.3 28 12 1.3 0 -1.3 -12 -28 -25.3 0 3140 14 

10 -6 17.8 19.6 4.2 -6 0 6 -4.2 -19.6 -17.8 6 1577 7 

20 -24 -6.7 3.3 -12 -4 0 4 12 -3.3 6.7 24 1582 7 

30 24 6.7 -3.3 12 4 0 -4 -12 3.3 -6.7 -24 1582 7 

Y 40 6 -17.8 -19.6 -4.2 6 0 -6 4.2 19.6 17.8 -6 1577 7 

Variable 50 0 -25.3 -28 -12 -1.3 0 1.3 12 28 25.3 0 3140 14 

60 6 -17.8 -19.6 -4.2 6 0 -6 4.2 19.6 17.8 -6 1577 7 

70 24 6.7 -3.3 12 4 0 -4 -12 3.3 -6.7 -24 1582 7 

80 -24 -6.7 3.3 -12 -4 0 4 12 -3.3 6.7 24 1582 7 

90 -6 17.8 19.6 4.2 -6 0 6 -4.2 -19.6 -17.8 6 1577 7 

100 0 25.3 28 12 1.3 0 -1.3 -12 -28 -25.3 0 3140 14 
Sum of Squares 2448 3362 3925 1079 213 0 213 1079 3925 3362 2448 22054 

Error Dist. 11 15 18 5 1 0 1 5 18 15 11 100 

Correlation Coefficient = 0.964 
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A P P E N D I X 5 Data for Controller Tests 

Table A5.1 Reference Database of Feed Rate Changes at Screen Bin Level and 
Current Draw Values 

0 10 20 30 

Screen Bin Level (%) 

40 50 60 70 80 90 100 

35.0 50.0 50.0 38.9 11.1 0.0 -3.7 -12.4 -21.7 -30.0 -50.0 -50.0 

35.5 50.0 50.0 38.9 11.1 0.0 -3.7 -12.4 -21.7 -30.0 -50.0 -50.0 

36.0 50.0 50.0 38.9 11.1 0.0 -3.8 -12.4 -21.9 -30.0 -50.0 -50.0 

36.5 50.0 50.0 38.9 11.1 0.0 -3.9 -12.4 -22.0 -30.0 -50.0 -50.0 

37.0 50.0 50.0 38.9 11.1 0.0 -4.1 -12.4 -22.3 -31.0 -50.0 -50.0 

37.5 47.1 47.1 36.9 10.7 -0.2 -4.4 -12.6 -22.7 -32.0 -50.0 -50.0 

38.0 39.7 39.7 32.0 9.6 -0.9 -5.1 -13.1 -23.1 -33.0 -50.0 -50.0 

38.5 31.0 31.0 25.0 8.7 -2.0 -6.1 -13.8 -23.8 -34.0 -50.0 -50.0 

39.0 23.5 23.5 19.3 7.4 -3.5 -7.2 -14.7 -24.5 -35.0 -50.0 -50.0 

39.5 18.2 18.2 15.3 5.8 -5.0 -8.3 -15.9 -25.5 -36.0 -50.0 -50.0 

40.0 14.4 14.4 12.2 4.3 -6.3 -9.4 -16:3 -26.7 -37.6 -50.0 -50.0 

40.5 11.8 11.8 9.9 3.6 -7.3 -10.1 -16.8 -28.2 -39.7 -50.0 -50.0 

41.0 9.9 9.9 8.3 2.0 -8.1 -10.8 -17.5 -30.0 -41.7 -50.0 -50.0 

Current 41.5 8.2 8.2 6.9 1.6 -8.6 -11.4 -18.3 -31.7 -42.0 -50.0 -50.0 

Draw 42.0 6.5 6.5 5.2 -0.5 -9.1 -11.9 -19.1 -33.3 -43.0 -50.0 -50.0 

(amps) 42.5 4.2 4.2 3.0 -2.2 -9.5 -12.3 -19.8 -34.6 -45.0 -50.0 -50.0 

43.0 1.2 1.2 0.5 -4.1 -9.8 -12.7 -20.3 -35.6 -46.2 -50.0 -50.0 

43.5 -1.6 -1.6 -1.9 -6.7 -9.9 -12.9 -20.6 -36.3 -46.5 -50.0 -50.0 

44.0 -3.5 -3.5 -3.9 -7.8 -10.0 -13.2 -20.7 -36.5 -46.8 -50.0 -50.0 

44.5 -5.1 -5.1 -5.2 -8.4 -10.7 -13.6 -21.2 -36.5 -46.8 -50.0 -50.0 

45.0 -7.2 -7.2 -7.2 -10.0 -12.4 -13.4 -22.8 -36.5 -46.8 -50.0 -50.0 

45.5 -10.0 -10.0 -10.0 -12.1 -14.6 -14.8 -22.8 -36.5 -46.8 -50.0 -50.0 

46.0 -13.7 -13.7 -13.7 -14.6 -17.3 -17.8 -22.8 -37.2 -46.8 -50.0 -50.0 

46.5 -18.1 -18.1 -18.1 -18.1 -20.5 -21.0 -23.5 -37.2 -46.8 -50.0 -50.0 

47.0 -23.2 -23.2 -23.2 -23.2 -24.5 -24.5 -27.0 -37.2 -46.8 -50.0 -50.0 

47.5 -28.6 -28.6 -28.6 -28.6 -29.0 -29.0 -29.6 -37.2 -46.8 -50.0 -50.0 

48.0 -34.3 -34.3 -34.3 -34.3 -34.3 -34.3 -34.3 -38.3 -46.8 -50.0 -50.0 

48.5 -40.3 -40.3 -40.3 -40.3 -40.3 -40.3 -40.3 -40.3 -46.8 -50.0 -50.0 

49.0 -45.3 -45.3 -45.3 -45.3 -45.3 -45.3 -45.3 -45.3 -46.9 -50.0 -50.0 

49.5 -48.8 -48.8 -48.8 -48.8 -48.8 -48.8 -48.8 -48.8 -48.8 -50.0 -50.0 

50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 
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Table A5.2 Automatic Membership Functions for Controller 

Variable Subset Name Shape Critical Point 
SO half bell down 0 
SI bell 10 
S2 bell 20 
S3 bell 30 
S4 bell 40 

Screen S5 bell 50 
Bin S6 bell 60 

Level S7 bell 70 
S8 bell 80 
S9 bell 90 
S10 half_bell_up 100 
CO half bell down 35.0 
CI bell 36.5 
C2 bell 38.0 
C3 bell 39.5 

Current C4 bell 41.0 
Draw C5 bell 42.5 

C6 bell 44.0 
C7 bell 45.5 
C8 bell 47.0 
C9 bell 48.5 
CIO half_bell_up 50.0 
FO half_bell_down -50 
F l bell -40 
F2 bell -30 
F3 bell -20 

Feed Rate F4 bell -10 
Change F5 bell 0 Change 

F6 bell 10 
F7 bell 20 
F8 bell 30 
F9 bell 40 
F10 half bell_up 50 
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Table A5.3 Automatic Dominant Subsets for Feed Rate Changes at Screen Bin 
Levels and Current Draw Values 

SO SI S2 S3 

Screen Bin Level 

S4 S5 S6 S7 S8 S9 S10 

CO F10 F10 F9 F6 F5 F5 F4 F3 F2 FO FO 

Cl F10 FIO F9 F6 F5 F5 F4 F3 F2 FO FO 

C2 F9 F9 P8 F6 F5 F4 F4 F3 F2 FO FO 

C3 F7 F7 F7 F6 F5 F4 F3 F2 F l FO FO 

Current C4 P6 F6 F6 F5 F4 F4 F3 F2 F l FO FO 

Draw C5 F5 F5 F5 F5 F4 F4 F3 F2 F l FO FO 

C6 F5 F5 F5 F4 F4 F4 F3 F l FO FO FO 

C7 F4 F4 F4 F4 F4 F4 P3 F l FO FO FO 

C8 F3 F3 F3 F3 F3 F3 F2 F l FO FO FO 

C9 F l F l F l F l F l F l F l F l FO FO FO 

CIO FO FO FO FO FO FO FO FO FO FO FO 
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Table A5.4 Automatic Final Rules for Controller 

CURRENT DRAW SCREEN BIN LEVEL FEED RATE CHANGE 
Any S9 
Any S10 
CIO Any 
between C6 CIO S8 FO 

between C6 C9 S7 
between C3 C5 S8 
C9 between SO S7 Fl 
between C3 C5 S7 
between CO C2 S8 

C8 S6 F2 
between C3 C7 S6 
del ween CO C2 S7 

C8 between SO S5 F3 

fee/ween C6 C7 S3 • 

between C4 C7 S4 

between C2 C7 S5 

between CO C2 S6 
C7 between SO S5 F4 

belween C5 C6 SO 
between C5 C6 SI 

between C5 C6 S2 
between C4 C5 S3 
between CO C3 S4 
between C0C1 S5 F5 

between CO C3 . S3 
C4 between SO S2 F6 

C3 between SO S2 F7 

C2 S2 F8 
between CO CI S2 
C2 between SO SI F9 
between CO CI SO 
between CO CI SI F10 
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Table A5.5 Automaic Generated Database of Feed Rate Changes at 
Screen Bin Levels and Current Draw Values 

0 10 20 30 

Screen Bin Level (%) 

40 50 60 70 80 90 100 

35.0 50.0 50.0 40.0 10.0 0.0 0.0 -10.0 -20.0 -30.0 -50.0 -50.0 

35.5 50.0 50.0 40.0 10.0 0.0 0.0 -10.0 -20.0 -30.0 -50.0 -50.0 

36.0 50.0 50.0 40.0 10.0 0.0 0.0 -10.0 -20.0 -30.0 -50.0 -50.0 

36.5 50.0 50.0 40.0 10.0 0.0 0.0 -10.0 -20.0 -30.0 -50.0 -50.0 

37.0 47.8 47.8 37.8 10.0 0.0 -2.2 -10.0 -20.0 -30.0 -50.0 -50.0 

37.5 42.2 42.2 32.2 10.0 0.0 -7.8 -10.0 -20.0 -30.0 -50.0 -50.0 

38.0 40.0 40.0 30.0 10.0 0.0 -10.0 -10.0 -20.0 -30.0 -50.0 -50.0 

38.5 35.6 35.6 27.8 10.0 0.0 -10.0 -12.2 -22.2 -32.2 -50.0 -50.0 

39.0 24.4 24.4 22.2 10.0 0.0 -10.0 -17.8 -27.8 -37.8 -50.0 -50.0 

39.5 20.0 20.0 20.0 10.0 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

40.0 17.8 17.8 17.8 7.8 -2.2 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

40.5 12.2 12.2 12.2 2.2 -7.8 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

41.0 10.0 10.0 10.0 0.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

Current 41.5 7.8 7.8 7.8 0.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

Draw 42.0 2.2 2.2 2.2 0.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

(amps) 42.5 0.0 0.0 0.0 0.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 

43.0 0.0 0.0 0.0 -2.2 -10.0 -10.0 -20.0 -32.2 -42.2 -50.0 -50.0 

43.5 0.0 0.0 0.0 -7.8 -10.0 -10.0 -20.0 -37.8 -47.8 -50.0 -50.0 

44.0 0.0 0.0 0.0 -10.0 -10.0 -10.0 -20.0 -40.0 -50.0 -50.0 -50.0 

44.5 -2.2 -2.2 -2.2 -10.0 -10.0 -10.0 -20.0 -40.0 -50.0 ' -50.0 -50.0 

45.0 -7.8 -7.8 -7.8 -10.0 -10.0 -10.0 -20.0 -40.0 -50.0 -50.0 -50.0 

45.5 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -20.0 -40.0 -50.0 -50.0 -50.0 

46.0 -12.2 -12.2 -12.2 -12.2 -12.2 -12.2 -22.2 -40.0 -50.0 -50.0 -50.0 

46.5 -17.8 -17.8 -17.8 -17.8 -17.8 -17.8 -27.8 -40.0 -50.0 -50.0 -50.0 

47.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 

47.5 -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 -32.2 -40.0 -50.0 -50.0 -50.0 

48.0 -35.6 -35.6 -35.6 -35.6 -35.6 -35.6 -37.8 -40.0 -50.0 -50.0 -50.0 

48.5 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -40.0 -50.0 -50.0 -50.0 

49.0 -42.2 -42.2 -42.2 -42.2 -42.2 -42.2 -42.2 -42.2 -50.0 -50.0 -50.0 

49.5 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -47.8 -50.0 -50.0 -50.0 

50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 
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Table A5.6 Automatic Error Report with Difference Values for Controller 

Screen Bin Level Sum of Error 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 Squares Dist 

35.0 0.0 0.0 -1.1 1.1 0.0 -3.7 -2.4 -1.7 0.0 0.0 0.0 25 l 

35.5 0.0 0.0 -1.1 1.1 0.0 -3.7 -2.4 -1.7 0.0 0.0 0.0 25 l 

36.0 0.0 0.0 -1.1 1.1 0.0 -3.8 -2.4 -1.9 0.0 0.0 0.0 26 l 

36.5 0.0 0.0 -1.1 1.1 0.0 -3.9 -2.4 -2.0 0.0 0.0 0.0 28 2 

37.0 2.2 2.2 1.1 1.1 0.0 -1.9 -2.4 -2.3 -1.0 0.0 0.0 28 2 

37.5 4.9 4.9 4.6 0.7 -0.2 33 -2.6 -2.7 -2.0 0.0 0.0 99 6 

38.0 -0.3 -0.3 2.0 -0.4 -0.9 4.9 -3.1 -3.1 -3.0 0.0 0.0 58 3 

38.5 -4.6 -4.6 -2.7 -1.3 -2.0 3.9 -1.6 -15 -1.8 0.0 0.0 79 4 

39.0 -1.0 -1.0 -2.9 -2.6 -3.5 2.8 3.0 3.2 2.8 0.0 0.0 65 4 

39.5 -1.8 -1.8 -4.7 -4.2 -5.0 1.7 4.1 " 4.5 4.0 0.0 0.0 127 7 

40.0 -3.3 -3.3 -5.6 -3.5 -4.1 0.6 3.7 3.3 24 0.0 0.0 113 6 

40.5 -0.4 -0.4 -2.3 1.4 OS -0.1 3.2 1.8 03 0.0 0.0 22 1 

41.0 -0.1 -0.1 -1.7 2.0 1.9 -0.8 25 0.0 -1.7 0.0 0.0 21 1 

41.5 0.4 0.4 -0.9 1.6 1.4 -1.4 1.7 -1.7 -2.0 0.0 0.0 17 1 

42.0 4.3 4.3 3.0 -0.5 0.9 -1.9 0.9 -3.3 -3.0 0.0 0.0 71 4 

42.5 4.2 4.2 3.0 -2.2 0.5 -2.3 0.2 -4.6 -5.0 0.0 0.0 101 6 

43.0 1.2 1.2 0.5 -1.9 0.2 -2.7 -0.3 -3.4 -3.9 0.0 0.0 41 2 

43.5 -1.6 -1.6 -1.9 1.0 0.1 -2.9 -0.6 15 1.3 0.0 0.0 23 1 

Current 44.0 -3.5 -3.5 -3.9 2.2 O.O -3.2 -0.7 35 3.2 0.0 0.0 78 4 

Draw 44.5 -2.9 -2.9 -3.0 1.6 -0.7 -3.6 -1.2 35 3.2 0.0 0.0 65 4 • 

(amps) 45.0 0.6 0.6 0.6 0.0 -2.4 -3.4 -2.8 3.5 3.2 0.0 0.0 49 3 

45.5 0.0 0.0 0.0 -2.1 -4.6 -4.8 -2.8 3.5 3.2 0.0 0.0 79 4 

46.0 -1.5 -1.5 -1.5 -2.4 -5.0 -5.6 -0.6 2.8 3.2 0.0 0.0 87 5 

46.5 -0.3 -0.3 -0.3 -0.3 -2.8 -3.2 4.3 2.8 3.2 0.0 0.0 54 3 

47.0 -3.2 -3.2 -3.2 -3.2 • -4.5 -45 3.0 2.8 3.2 0.0 0.0 n o 6 

47.5 -4.2 -4.2 -4.2 A.2 -4.6 -4.6 2.6 2.8 3.2 0.0 0.0 137 8 

48.0 1.2 1.2 1.2 1.2 1.2 1.2 3.4 1.7 3.2 0.0 0.0 33 2 

48.5 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -03 3.2 0.0 0.0 11 1 

49.0 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 3.1 0.0 0.0 87 5 

49.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.2 0.0 0.0 9 1 

50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 

Sum of Squares 169 169 198 121 180 301 183 226 218 0 0 1766 

Error Dist. 10 10 11 7 10 17 10 13 12 0 0 100 
Correlation Coefficient = 0.998 
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A5.7 Stage 1 - Manual Membership Functions for Controller 

Variable Subset Name Shape Critical Point 
Bin SO half bell down 10 

Level SI half_bell_up 90 
Current CO half bell down 37.0 

Draw CI half_bell_up 50.0 
Feed Rate FO half bell down -50 
Change Fl half_bell_up 50 
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Table A5.8 Stage 1- Manual Error Report for Controller 

0.0 10.0 20.0 30.0 

Screen Bin Level 
40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Sum of 

Squares 

Error 

Dist. 

35.0 0.0 0.0 -8.0 -26.4 -21.9 -3.7 9.5 15.8 16.9 0.0 0.0 1877 4 

35.5 0.0 0.0 -8.0 -26.4 -21.9 -3.7 9.5 15.8 16.9 0.0 0.0 1876 4 

36.0 0.0 0.0 -8.0 -26.4 -21.9 -3.8 9.5 15.6 16.9 0.0 0.0 1873 4 

36.5 0.0 0.0 -8.0 -26.4 -21.9 -3.9 9.5 15.5 16.9 0.0 0.0 1868 4 

37.0 0.0 0.0 -8.0 -26.4 -21.9 -4.1 95 15.2 15.9 0.0 0.0 1828 3 

37.5 -2.6 -2.6 -10.0 -26.8 -22.1 -4.4 9.3 14.8 14.9 0.0 0.0 1869 4 

38.0 •9.1 -9.1 -14.9 -27.9 -22.8 -5.1 8.7 14.4 13.9 0.0 0.0 2188 4 

38.5 -16.4 -16.4 -21.8 -28.8 -23.9 -6.1 8.0 13.7 12.9 0.0 0.0 2869 5 

39.0 -21.8 -21.8 -26.0 -30.1 -25 J -7.2 7.1 13.0 11.9 0.0 0.0 3583 7 

39.5 -24.4 -24.4 -27.3 -31.7 -26.9 -8.3 6.0 12.0 10.9 0.0 0.0 4036 8 

40.0 -24.9 -24.9 -27.1 -33.2 -28.2 -9.4 55 10.8 93 0.0 0.0 4198 8 

40.5 -23.7 -23.7 -25.6 -31.9 -29.2 -10.1 5.1 9.3 7.2 0.0 0.0 3908 7 

41.0 -21.2 -21.2 -22.7 -29.1 -29.9 -10.8 4.4 7.5 5.2 0.0 0.0 3377 6 

41.5 -17.9 -17.9 -19.2 -24.5 -30.5 -11.4 35 5.8 4.9 0.0 0.0 2735 5 

42.0 -13.9 -13.9 -15.2 -20.9 -295 -11.9 2.7 4.2 3.9 0.0 0.0 2106 4 

42.5 -10.0 -10.0 -11.2 -16.4 -23.7 -12.3 2.1 2.9 1.9 0.0 0.0 1322 3 

43.0 -6.2 -6.2 -6.9 -11.5 -17.2 -12.7 1.6 1.9 0.7 0.0 0.0 717 1 

43.5 -1.6 -1.6 -1.9 -6.7 -9.9 -12.9 13 1.2 0.4 0.0 0.0 324 1 

Current 44.0 3.9 3.9 3.5 -0.4 -2.6 -5.8 1.2 1.0 0.1 0.0 0.0 85 0 

Draw 44.5 9.1 9.1 ' 9.0 5.8 35 0.6 0.6 1.0 0.1 0.0 0.0 296 1 

(amps) 45.0 13.3 13.3 13.3 10.4 8.0 7.1 -0.9 1.0 0.1 0.0 0.0 752 1 

455 16.0 16.0 16.0 13.9 11.5 113 3.2 1.0 0.1 0.0 0.0 1235 2 

46.0 17.4 17.4 17.4 16.4 13.8 13.3 8.3 0.3 0.1 0.0 0.0 1611 3 

465 17.4 17.4 17.4 17.4 15.0 145 12.0 03 0.1 0.0 0.0 1793 3 

47.0 16.1 16.1 16.1 16.1 14.8 14.8 12.4 21 0.1 0.0 0.0 1640 3 

47.5 14.0 14.0 14.0 14.0 13.6 13.6 13.0 5.4 0.1 0.0 0.0 1349 3 

48.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9 6.9 0.1 0.0 0.0 882 2 

48.5 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 05 0.0 0.0 400 1 

49.0 3.5 35 3.5 3.5 35 3.5 3.5 33 1.9 0.0 0.0 102 0 

49.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.0 0.0 8 0 

50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 

Sum of S qua res 5489 5489 6991 13713 11851 2518 1598 2613 2443 0 0 52704 

Error Dist. 10 10 13 26 22 5 3 5 5 0 0 100 

Correlation Coefficient = 0.953 
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Table A5.9 Stage 2 Manual Membership Functions 

Variable Subset Name Shape Critical Point 
Bin SO half bell down 10 

Level SI bell 30 
S2 half_bell_up 90 

Current CO half bell down 37.0 
Draw CI bell 39.5 

C2 half_bell_up 50.0 
Feed Rate FO half bell down -50 
Change Fl bell 0 

F2 half_bell_up 50 
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Table A5.10 Stage 2 Manual Error Report for Controller 

0.0 10.0 20.0 30.0 

Screen Bin Level 
40.0 50.0 60.0 70.0 80.0 ' 90.0 100.0 

Sum of 

Squares 

Error 

Dist 

35.0 0.0 0.0 13.9 11.1 2.8 7.4 12.6 17.2 17.2 0.0 0.0 1130 3 

35.5 0.0 0.0 13.9 11.1 2.8 7.4 12.6 17.1 17.2 0.0 0.0 1128 3 

36.0 0.0 0.0 13.9 11.1 2.8 7.3 12.6 17.0 17.2 0.0 0.0 1124 3 

36.5 0.0 0.0 13.9 11.1 2.8 7.2 12.6 16.9 17.2 0.0 0.0 1116 3 

37.0 0.0 0.0 13.9 11.1 2.8 7.0 12.6 16.6 16.2 0.0 0.0 1071 3 

37.5 1.1 1.1 11.9 10.7 2.5 6.7 12.4 16.2 15.2 0.0 0.0 956 3 

38.0 5.7 5.7 7.0 9.6 1.8 6.0 11.9 15.7 14.2 0.0 0.0 835 2 

38.5 15.0 15.0 5.5 8.7 0.7 5.1 11.2 15.1 13.2 0.0 0.0 1109 3 

39.0 19.5 19.5 12.4 7.4 -0.7 4.0 10.3 143 12.2 0.0 0.0 1444 4 

39.5 18.2 18.2 15.3 5.8 -2.2 2.8 9.1 13.3 11.2 0.0 0.0 1327 4 

40.0 14.7 14.7 12.6 4.5 -3.6 1.8 8.7 12.2 9.6 0.0 0.0 943 3 

40.5 12.7 12.7 11.7 4.5 -4.5 1.0 8.2 10.7 7.6 0.0 o.o 743 2 

41.0 11.9 11.9 12.1 4.0 -5.3 0.3 7.5 8.9 5.5 0.0 0.0 640 2 

41.5 11.8 11.8 13.2 5.2 -5.0 -0.2 6.7 7.2 5.2 0.0 0.0 628 2 

42.0 12.2 12.2 14.5 5.2 -3.4 -0.8 5.9 5.6 4.2 0.0 0.0 629 2 

42.5 12.4 12.4 15.3 6.0 -1.3 -1.2 5.2 4.3 2.2 0.0 0.0 630 2 

43.0 12.3 12.3 15.9 7.0 1.4 -1.6 4.7 33 1.1 0.0 0.0 645 2 

43.5 12.9 12.9 16.5 7.8 4.6 1.6 4.4 2.6 0.7 0.0 0.0 715 2 

Current 44.0 14.8 14.8 17.3 10.6 8.4 5.2 4.3 2.4 0.4 0.0 0.0 972 3 

Draw 44.5 17.6 17.6 18.6 143 12.0 9.1 3.8 2.4 OA 0.0 0.0 1416 4 

(amps) 45.0 20.2 20.2 20.2 173 14.9 14.0 4.5 2.4 0.4 0.0 0.0 1965 6 

45.5 21.6 21.6 21.6 19 J 17.1 16.9 8.8 2.4 0.4 0.0 0.0 2444 7 

46.0 21.8 21.8 21.8 20.9 18.2 17.7 12.7 1.7 0.4 0.0 0.0 2670 8 

46.5 20.8 20.8 20.8 20.8 18.3 17.9 15.4 1.7 0.4 0.0 0.0 2629 8 

47.0 18.6 18.6 18.6 18.6 17.3 17.3 14.9 4.6 0.4 0.0 0.0 2230 6 

47.5 15.7 15.7 15.7 15.7 153 15.3 14.7 7.1 OA 0.0 0.0 1723 5 

48.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 8.0 OA 0.0 0.0 1076 3 

48.5 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 1.2 0.0 0.0 474 1 

49.0 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 2.2 0.0 0.0 119 0 

49.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 9 0 

50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 

Sum of S quares 5371 5371 6395 3924 2325 2381 2935 3265 2575 0 0 34542 

Error Dist. 16 16 19 11 7 7 8 9 7 0 0 100 

Correlation Coefficient = 0.965 



- 104-

Table A5.ll Stage 6 Manual Membership Functions 

Variable Subset Name Shape Critical Point 
Bin 

Level 
SO half bell down 10 Bin 

Level SI bell 30 
Bin 

Level 
S2 bell 70 

Bin 
Level 

S3 half_bell_up 90 
Current 
Draw 

CO half bell down 37.0 Current 
Draw CI bell 39.5 

Current 
Draw 

C2 bell 46.5 

Current 
Draw 

C3 half_bell_up 50.0 

Feed Rate 
Change 

FO half bell down ,. -50 
Feed Rate 
Change 

Fl bell -20 Feed Rate 
Change F2 bell 0 

Feed Rate 
Change 

F3 bell 10 

Feed Rate 
Change 

F4 bell 40 

Feed Rate 
Change 

F5 half_belLup 50 

http://A5.ll
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Table A5.12 Stage 6 Dominant Subsets for Manual Tests 
Screen Bfn Level 

so s i S2 S3 

CO F5 F3 F l FO 

Current C l F3 F3 F l FO 

Draw C2 F l F l FO FO 

C3 FO FO FO FO 

0 

Table A5.13 Stage 6 Manual Error Report for Controller 

0.0 10.0 20.0 30.0 

Screen Bin Level 
40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Sum of 

Squares 

Error 

Dist. 

35.0 0.0 0.0 8.9 1.1 -6.2 1.3 3.9 -1.7 5.0 0.0 0.0 164 i 

35.5 0.0 0.0 8.9 1.1 -6.2 1.3 3.9 -1.7 5.0 0.0 0.0 164 l 

36.0 0.0 0.0 8.9 1.1 -6.2 1.2 3.9 -1.9 5.0 0.0 0.0 164 i 

36.5 0.0 0.0 8.9 1.1 -6.2 1.1 3.9 -2.0 5.0 0.0 0.0 165 l 

37.0 0.0 0.0 8.9 1.1 -6.2 0.9 3.9 -2.3 4.0 0.0 0.0 156 i 

37.5 0.3 0.3 6.9 0.7 -6.5 0.6 3.6 -2.7 3.0 0.0 0.0 119 i 

38.0 2.5 2.5 2.0 -0.4 -7.2 -0.1 3.1 -3.1 2.0 0.0 0.0 92 l 

38.5 8.2 8.2 -0.6 -1.3 -8.3 -1.1 2.4 -3.8 1.0 0.0 0.0 226 2 

39.0 10.3 103 3.8 -2.6 -9.7 -2.2 13 •43 0.0 0.0 0.0 354 3 

395 8.2 8.2 5.3 -4.2 -11.2 -3.3 03 -55 -1.0 0.0 0.0 349 3 

40.0 4.7 4.7 2.8 -5.4 -12.0 -3.9 03 -6.4 -2.6 0.0 0.0 289 2 

405 3.1 3.1 2.2 -5.1 -11.4' -3.4 0.8 -7.0 -4.7 0.0 0.0 261 2 

41.0 2.6 2.6 3.0 -5.2 -9.6 -2.0 1.6 -7.2 -6.7 0.0 0.0 246 2 

41.5 3.1 3.1 4.3 -3.5 -7.6 -0.0 2.7 -6.8 -7.0 0.0 0.0 210 2 

42.0 4.2 4.2 5.4 -2.8 -5.6 23 4.3 -5.6 -8.0 0.0 0.0 223 2 

42.5 5.2 5.2 5.7 -1.1 -3.0 4.8 6.7 -3.6 -10.0 0.0 0.0 278 2 

43.0 6.2 6.2 5.5 0.9 0.2 .73 9.7 -0.6 -11.2 0.0 0.0 382 3 

43.5 7.4 7.4 7.1 2.2 3.6 10.0 12.9 2.7 -9.2 0.0 0.0 536 4 

Current 44.0 8.8 8.8 8.4 4.6 65 12.7 15.8 5.9 -6.9 0.0 0.0 783 6 

Draw 44 j 10.0 10.0 9.9 6.7 83 15.1 17.7 8.6 -4.2 0.0 0.0 1049 8 

(amps) 45.0 10.1 10.1 10.1 7.2 S3 17.9 18.7 10.8 -15 0.0 0.0 1218 10 

455 8.8 8.8 8.8 6.7 7.9 185 21.2 12.3 0.9 0.0 0.0 1281 10 

46.0 6.0 6.0 6.0 5.1 6.1 16.8 22.9 12.5 2.6 0.0 0.0 1139 9 

46.5 1.9 1.9 1.9 1.9 3.2 14.0 22.7 12.8 3.2 0.0 0.0 913 7 

47.0 -2.0 -2.0 -2.0 -2.0 -0.8 105 193 12.8 3.2 0.0 0.0 672 5 

47.5 -3.7 -3.7 -3.7 -3.7 -4.1 6.6 16.5 12.8 3.2 0.0 0.0 555 4 

48.0 -3.3 -3.3 -3.3 -3.3 -3.3 0.7 10.7 11.7 3.2 0.0 0.0 317 3 

485 -1.3 -1.3 -1.3 -1.3 -1.3 -13 4.8 9.7 3.2 0.0 0.0 138 1 

49.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.8 4.7 3.1 0.0 0.0 33 0 

49.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 0.0 0.0 3 0 

50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 

Sum of S quares 859 859 1088 367 1380 1909 3632 1619 765 0 0 12476 

Error Dist. 7 7 9 3 11 15 29 13 6 0 0 

Correlation Coefficient = 0.985 
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A P P E N D I X 6 Table of C Source Code F L I X Files 

File Name Size (bytes) File Description 

config.h 2463 Definitions for Constants and Strings 

defs.h 3405 Definitions for structures and enum types 

extern.h 734 Definitions for global variables 

addfuz.c 2626 Automatic fuzzy set additions 

calcout.c 1170 Determine weighted average output 

compact.c 2267 Minimize rules 

console.c 5385 Write output to console 

decision.c 6706 Determines appropriate qualifier 

display.c 2839 Reads an ASCII file displayed on screen 

dominant.c 1301 Select dominant rules 

error, c 4191 Determines error indicators 

function.c 8052 Defines fuzzy membership functions 

globals.c 4150 Defines global variables and strings 

inference 5936 Defuzzify conclusion rule set 

input.c 7959 Read reference database 

inputrul.c 6209 Read input knowledge base 

memory.c 1721 Manage memory allocation 

moredeci.e 4254 Determines appropriate qualifier 

option.c 12130 Controls program flow and menu options 

output.c 9776 Writes output database 

plotdata.c 4092 Plot routines 

proi.e 3363 Main program subroutines 

prompt.c 7275 Prompts for menu options 

read.c 6047 Read input fuzzy sets 

select.c 10263 Returns degree of belief in a fuzzy set 


