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Abstract 

A two-dimensional constant heating rate thermoelastic model has 

been used to develop design and selection c r i t e r i a for refractory 

components of linings of high-temperature furnaces and process vessels. 

The c r i t e r i a are in the form of resistance to fracture i n i t i a t i o n and 

resistance to damage parameters which account for the influence of 

thermal and mechanical properties, geometry, and temperature range, 

while distinguishing between the heating and cooling cases. The 

resistance to fracture i n i t i a t i o n parameter <|> is the maximum rate at 

which a shape can be heated or cooled through a specified temperature 

range without causing fracture. The damage resistance parameter is 

expressed as the ratio of surface energy per unit area to the elastic 

strain energy available for crack propagation. Both parameters can be 

quickly estimated for arbitrary conditions with the aid of tabulated 

solutions for the maximum principal tensile stress and total strain 

energy 

Thermoelastic analyses were used to interpret published results 

of a variety of thermal shock experiments. Thermal conditions 

associated with water quenching, radiative furnace heating, gas burners, 

and controlled heating were simulated using appropriate analytical 
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solutions. Finite element analysis was used to compute maximum 

principal tensile stresses and elastic strain energy. A simple 

procedure was developed to invert the stress solution and thereby 

determine the instant of fracture. Good agreement between thermoelastic 

predictions and published experimental results with regard to strength 

retained versus thermal shock relationships, location of fracture, and 

safe heating rates provided justification for a thermoelastic approach 

to the thermal shock. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Thermal stress fracture of refractory structural components of 

high-temperature process vessels and industrial furnaces is a widespread 

industrial problem. While the principal origin of thermal stress may 

vary from process to process, a common feature of a l l processes is that 

the lining undergoes at least one thermal cycle in which the hot face of 

the lining is heated from ambient to operating temperature and cooled 

back again. During these stages thermal stresses develop due to 

nonlinear temperature distribution. 

If heating or cooling is too rapid the transient temperature 

fields w i l l produce a stress of sufficient magnitude to cause fracture 

which, in turn, w i l l enhance refractory wear. Unlike the relatively 

constant rates associated with the other major wear mechanism, 

corrosion-erosion, thermal shock failure can cause a sudden catastrophic 

loss of brickwork of sufficient magnitude to halt production. In 

addition to being a significant operating cost, excessive refractory 

consumption involves higher labour, inventory, and capital costs. 
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On the other hand, i f heating or cooling occurs over a prolonged 

period, the furnace or vessel is unavailable for production. Also, heat 

losses are higher and, consequently, energy costs increase. The 

industrial lining problem is thus concerned with heating or cooling a 

refractory component through a specified temperature range as rapidly as 

possible without causing fracture. 

As a f i n a l point, a limiting factor to the use of higher 

operating temperature, often desirable from the standpoint of product 

recovery and process throughput, is lining material performance. In 

general, higher operating temperatures enhance corrosion-erosion rates 

and increase the likelihood of thermal stress fracture. One solution to 

the corrosion-erosion problem is the use of fully-dense lining 

components which, unfortunately, have extremely poor thermal shock 

resistance. It is clear that much motivation exists for the study of 

the thermal shock fracture behaviour of b r i t t l e materials. 

1.2 Scope 

The principal origins of thermal stress in industrial linings 

are nonlinear temperature distributions, boundary restraint, and 

in-service alteration of the lining components. Rather than considering 

the refractory wear problem of a particular industrial process, a more 
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generalized approach is taken in the present work. To accomplish this a 

number of simplifying assumptions are made. The principal supposition 

is that the thermoelastic case of a homogeneous, traction-free, 

rectangular shape in which thermal stresses develop because of nonlinear 

temperature distributions yields results of relevance to the industrial 

lining problem. 

The two major types of linings are monolithic and bricked. In 

the case of the latter type, refractory mortar can be used to cement 

adjacent bricks together or, alternatively, bricks are simply set In 

place. This work is applicable to industrial processes which have 

bricked linings in which the components are set in place. 

The bricks in a newly-lined wall are in a traction-free state. 

The occurrence of boundary restraint is dependent on the method of 

installation which varies from plant to plant and process to process. 

If adequate thermal expansion allowance is not provided, stress relief 

in the form of localized chipping at the corners of the hot face w i l l 

occur, thus returning the component to a traction-free state. During 

the cooling cycle the components are in a traction-free state as the hot 

face of each brick is contracting. Thus the assumption of traction-free 

boundaries appears reasonable. 

Another source of thermal stress is the inhomogeneity which can 
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result from in-service alteration and densification of the hot face 

region caused by penetration and/or chemical attack. The net effect is 

essentially the formation of a composite material. It is usually 

postulated that fracture is caused by stresses which develop on thermal 

cycling due to the difference in thermal expansion of the altered and 

unaltered zones. This problem is not considered in the present work. 

It is assumed that material properties are uniform throughout the body. 

While recognizing that thermal shock failure in a particular 

process may be due to several Interacting causes, this work is concerned 

solely with the thermal stress fracture of traction-free bodies due to 

one-dimensional nonlinear temperature distributions. The traction-free 

assumption is reasonable as i t is likely that the expansion of the 

bricks can be accommodated by lateral movements, so stresses on the 

sides should be small. One-dimensional heat flow is a valid assumption 

as lining components are generally heated or cooled on one face only, 

usually referred to as the hot face. Thus, because of adjacent bricks, 

the temperature w i l l be uniform in planes parallel to the hot face. In 

this work refractory components are modelled as two-dimensional 

rectangular shapes. Unless otherwise stated, the hot face corresponds 

to the width of the shape and heat flow is along the length. 
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1.3 Thermal Shock Behaviour of Brittle Materials 

Refractory products are multi-phased materials containing an 

irregular, unpredictable flaw distribution consisting of both pores and 

microcracks. Flaws can influence thermal shock behaviour in two ways, 

through the s t a t i s t i c a l nature of strength and by influencing thermal 

and mechanical properties. Strength retained versus thermal shock 

relationships are generally interpreted in terms of the Hasselman 

unified theory of fracture i n i t i a t i o n and crack propagation which treats 

flaws e x p l i c i t l y . 

Typical thermal shock fracture behaviour is shown in Figure 1.1. 

On increasing the severity of thermal shock no change in strength occurs 

until a c r i t i c a l value of thermal shock is reached, at which point 

fracture i n i t i a t i o n occurs and one of the three following types of 

behaviour occurs : (I) strength decreases gradually with increasing 

thermal shock, (II) strength drops abruptly at the c r i t i c a l value to 

some lower value (point B) and then decreases gradually with increasing 

thermal shock, or (III) strength drops abruptly to zero (point C) as a 

result of component separation. 

A major portion of the present work is devoted to justifying a 

thermoelastic interpretation of thermal shock fracture behaviour. A 

thermoelastic model accounts for the influence of flaws implicitly 

through the magnitude of thermal and mechanical properties. Both the 
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Thermal shock 

F i g u r e 1.1 Typical strength retained versus thermal 

shock relationships. 
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Hasselman and thermoelastic interpretations of a wide variety of 

experimental results involving such diverse thermal conditions as water 

quenching and furnace heating are discussed. 

1.4 Summary 

This work considers the problem of thermal shock failure of 

refractory components on a general l e v e l . The overall goal is the 

development of theoretical design and selection c r i t e r i a . With this in 

mind, the scale of the problem is reduced in such a way as to retain the 

essential industrial features, while permitting a general mathematical 

treatment. A two-dimensional thermoelastic traction-free model is used 

to simulate the thermal shock behaviour of lining components during 

heating and cooling stages. 

This work is concerned primarily with two themes: 

(i) the justification of the use of thermoelastic analysis for the 

interpretation of observed strength loss - thermal shock 

behaviour, and 

( i i ) the development of theoretical design and selection c r i t e r i a in 

the form of resistance to fracture i n i t i a t i o n and resistance to 

damage parameters which are applicable to the industrial lining 

problem. 
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A review of the literature is presented in Chapter 2 and a 

statement of the problem is made in Chapter 3. Alternative theoretical 

interpretations of thermal shock strength loss relationships are 

presented and discussed in Chapter 4. A suitable two-dimensional 

thermoelastic model for the industrial lining problem is described in 

Chapter 5 and used as the basis for the development of resistance to 

fracture initiation and resistance to damage parameters. A summary of 

findings and recommendations for future work are given in Chapter 6. 

Appendix I contains a summary of the assumptions and pertinent 

thermoelastic equations, as well as some background information 

concerning the nature of the thermal stress fields that arise. 

Appendix II a description of the finite element numerical method used 

for the computation of stresses and strain energy. All details related 

to the thermoelastic formulation, numerical computations, and nature of 

the thermal stress field are to be found in these appendices. The 

remaining appendices contain numerical results and dimensional 

analyses. 
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Chapter 2 

LITERATURE REVIEW 

2 . 1 Introduction 

Many approaches have been taken in the study of thermal shock 

behaviour of refractory materials. The term thermal shock is commonly 

applied to both the fracture i n i t i a t i o n and damage aspects of the 

problem; the former being concerned with the determination of 

combinations of factors - material properties, geometry, thermal 

environment, etc. - which w i l l just cause fracture and the latter with 

the influence of the same parameters on the extent of crack propagation. 

The objective in both cases Is usually the development of c r i t e r i a for 

the selection of materials for high temperature processes. 

Thermoelastic analysis and the Hasselman treatment, two of the 

more popular approaches, are discussed in detail in sections 2.2 and 

2.3, respectively. Other theoretical approaches and some of the 

implications of the flaw-dependence of strength are discussed in 

Section 2.4. Section 2.5 describes several of the more common thermal 

shock tests and discusses the relative merits of each. A summary is 



presented in Section 2.6 

2.2 Thermoelastic Approach to Fracture Initiation 

The f i r s t step of the thermoelastic approach Is the computation 

of thermal stresses. Materials are usually assumed to be homogeneous 

and isotropic, linearly e l a s t i c , and to possess temperature-independent 

properties. Due to the relative complexity of multi-dimensional 

problems, one-dimensional geometries such as the inf i n i t e slab case have 

been considered most frequently. With the advances in computer 

technology and numerical methods in the past decade, more attention has 

been directed toward the multi-dimensional problem. 

Thermal shock is usually modelled using an analytical solution 

for the temperature profiles which typically Involves one of the three 

following thermal boundary conditions: ( i ) instantaneous change in 

surface temperature, ( i i ) constant convective heat transfer coefficient, 

and ( i i i ) constant heating or cooling rate. The fracture criterion most 

often selected is that based on the maximum principal tensile stress. 

Once the thermal conditions and fracture criterion have been decided, 

the objective is to obtain a general solution for the c r i t i c a l member of 

the stress f i e l d as a function of thermal boundary condition and other 

relevant parameters. 
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With such a relationship i t is possible to make inferences about 

thermal shock fracture behaviour which can be useful for design 

purposes. The underlying idea is that the variation of maximum 

principal tensile stress with an independent parameter, such as width, 

would reflect the influence of that parameter on fracture behaviour. 

For example, the implication of an increase In maximum principal tensile 

stress with width is that a reduction in width improves thermal shock 

resistance. 

Due to the complexity of the problem, most thermoelastic 

analyses stop at this point. However, a general solution of the thermal 

stress problem is only the beginning of the fracture problem. A 

comprehensive thermoelastic treatment requires that the stress solution 

be put in an inverted form which gives a l l of the combinations of 

independent parameters that satisfy the fracture criterion. 

Results from earlier work for the one-dimensional models are 

presented in Sections 2.2.1 and 2.2.2. The multi-dimensional problem is 

considered in Section 2.2.3. Finally, the validity of some of the 

assumptions with regard to refractory products is discussed in 

Section 2.2.4 
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2.2.1 Early Work 

r 1—31 

Norton (1925)
1 1

 considered failure on rapid heating to be due 

entirely to shear stresses. Based on an analysis that assumed that the 

stress in a material subjected to a sudden temperature change is 

proportional to the temperature gradient at any point, he suggested that 

spalling tendency S (where spalling is fracture due to thermal stress) 

should be given by 

a 
S (2.1) 

/a e 
s 

where a Is the coefficient of thermal expansion, a is the thermal 

d i f f u s i v i t y , and e
g
 is the c r i t i c a l shear strain at fracture. 

r 4—5 I 

Preston (1926) thought that spalling under both quenching 

(rapid cooling) and the rapid heating conditions postulated by Norton 

was due to tensile rather than shear stresses. He showed that Norton's 

analysis was clearly incorrect, but failed to provide an alternative 

theoretical analysis. He simply stated that the stress distribution at 

fracture was similar to that found along the center line of an in f i n i t e 

slab through which heat flows only in the thickness direction (see 

Appendix I ) . 

Neither Norton nor Preston clearly stated the geometry or 

thermal conditions associated with the ' t y p i c a l ' s p a l l s under 
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discussion. It was at times not clear whether the heating or cooling 

case was being considered. The effect of geometry, accounted for in the 

Norton derivation, albeit erroneously, was discounted by Preston who 

stated that the omission of a size dependence was one reason for his 

preference of the Winkelmann and Schott (1894)^ formula, 

a 
S (2.2) 

/a e
t 

where e
fc
 is the critical tensile strain at fracture. 

The confusion and misunderstanding that arose in early work 

reflects the complexity of the subject. The nature and magnitude of 

the thermal stress field, and hence thermal stress fracture behaviour, 

is dependent on thermal and stress boundary conditions, geometry, and 

heating and cooling, as well as material properties. It is to the 

credit of the early investigations that they established a pattern of 

research, with regard to the theoretical derivation of parameters and 

experimental correlations, that has been followed to the present. 

2.2.2 One-Dimensional Models 

Kingery (1955) '•̂ ^ presented the resistance to fracture 

initiation parameters that are most often referred to. He used the 
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dimensionless form of the analytical solution for the case of the 

in f i n i t e slab symmetrically heated or cooled with a constant heat 

transfer coefficient (h) to derive the parameters R and R', where 

o> (1-v) 
R = (2.3) 

Ea 

and 

o> (1-v) k 
R' = — (2.4) 

Ea 

and i s the fracture strength, v is Poisson's ratio, E is the elastic 

modulus, and k is the thermal conductivity. The parameter R is 

applicable for the case of instantaneous change in surface temperature 

(in f i n i t e h) and R' for that of relatively low Biot modulus (8<2). 

Using a similar method the resistance parameter R", given by 

a, (1-v) a 
R" = _ £ , (2.5) 

Ea 

was developed for the constant heating or cooling rate case. The 

parameters indicate that high resistance to fracture i n i t i a t i o n i s 

associated with combinations of high fracture strength, thermal 

conductivity, and thermal d i f f u s i v i t y , and low elastic modulus, 



Poisson's ratio, and coefficient of thermal expansion. 

The i n f i n i t e slab case is only valid for those geometries in 

which the width is at least twice the length. The geometry of basic 

oxygen furnace (BOF) bricks is such that the dimension in the direction 

of heat flow is far greater than the width. The observation of spall 

cracks p a r a l l e l to the hot face suggested to Kienow^ that the (<*y)
M 

(see Appendix I) component was responsible for the fracture behaviour. 

He used a simple one-dimensional spring model to obtain a quantitative 

estimate of o^. By considering a shape with constant temperature 

gradient over depth h from the hot face and constant temperature over 

the remainder of the length, he derived the following expression which 

relates fracture strength to the second derivative of the temperature 

f i e l d at the point of fracture, 

2 2 
d T w 

a = Ea ( i i ) . ( - «-) (2.6) 
f dy

 7

 16 + 3w 

h
3 

d
2

T 
where ( s-) , i s the c r i t i c a l value of the second derivative of 

, 2 y=h 
dy 

temperature with respect to y at the point of fracture at y=h. Kienow 

described a graphical procedure for the determination of the two 
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unknowns in (2.6), ( =-) , and h, which have been used by several 
, 2'y=h

 J 

dy 

i n v e s t i g a t o r s ^ to calculate safe heat up rates and to investigate 

the effect of gunning on crack formation in BOF refractories. 

2.2.3 Multi-dimensional Analysis 

r 121 
Clements (1959)

 1 1

 noted the li m i t a t i o n s of one-dimensional 

models and discussed the characteristic features of the two-dimensional 

stress f i e l d associated with a traction-free rectangular shape heated 

from one end. The limitation of the inf i n i t e slab analysis is that i t 

yie l d s the center l i n e d i s t r i b u t i o n only. Such geometries (width 

greater than twice the length) possess significant a
y
 and f i e l d s , 

that arise due to an end effect, which are located in regions remote 

from the center line near the outside edges. By St. Venant's principle 

the end e f f e c t i s assumed to not i n f l u e n c e the a center l i n e 

x 
distribution. 

For narrow geometries (width much less than length), the end 

effe c t i s fe l t throughout the body with the consequence that the a
y
 and 

T
x y
 f i e l d s dominate over the whole shape. For rectangular shapes in 

which the width Is comparable to the length, the thermal stress f i e l d is 

a complex two-dimensional one consisting of overlapping a^, a , and t
x y 

f i e l d s . While both analytical and numerical methods are available for 
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the solution of multi-dimensional problems, discussion is limited to 

numerical methods as they offer much greater f l e x i b i l i t y and analytical 

solutions (when available) usually require computer evaluation as the 

fin a l step. 

r 131 
G u i l l i a t and Chandler (1977)

 L

 , using a three-dimensional 

t e c h n i q u e based on minimum complementary e n e r g y , and 

f 141 

Chandler (1981)
 1

 i n a separate study concerned with rectangular 

shapes, reported on the influence of geometry on the thermal stress 

f i e l d of shapes heated from one end. They found that the effect of 

increasing a square hot face cross-section of the block relative to i t s 

length and of increasing the aspect ratio (w/Jt) of a rectangular shape 

is to cause a transition in dominant tensile stress from that acting 

perpendicular to the hot face (o^) to that acting parallel to the hot 

face (^
x
)' The points of t r a n s i t i o n , where (

0

x^M
=

^
a

y^M'
 o c c u r a t 

aspect ratios of 1.4 and 1.0 for the block and rectangle cases, 

respectively. 

Kumagai et al (1980)^"^ used a three-dimensional f i n i t e element 

technique and Sweeney and Cross (1982)^^ a two-dimensional f i n i t e 

difference technique which incorporated viscoelastic effects in a non­

linear single integral stress-strain law to examine the effect of 

geometry and restraint. With regard to geometry, their results are in 
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general agreement with those of Guilliat and Chandler. 

In one of the most comprehensive works to date, 

r 181 

Chang et al (1983)
 1 1

 employed finite element analysis to compute the 

thermal stresses in BOF-type components in which the length is much 

greater than the width. They considered a wide range of variables and, 

on the basis of the influence of these variables on the magnitude of the 

peak o
y
 component, made design recommendations. No results were 

presented for the peak component which, unfortunately, was the 

dominant maximum principal tensile stress in many of the cases 

considered. This work is considered in greater detail in Chapter 5. 

In summary, a variety of numerical methods have been used for 

the computation of multi-dimensional thermal stress fields of two- and 

three-dimensional bodies heated from one end. The major finding is that 

the component which is the maximum principal tensile stress is dependent 

on geometry. This is significant with regard to fracture behaviour as 

the o"
x
 component tends to propagate cracks in a direction perpendicular 

to the hot face while the a
y
 component tends to cause cracking in a 

direction parallel to the hot face. No general solution for the maximum 

principal tensile stress of any multi-dimensional problem applicable to 

the industrial lining problem could be found. 
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2.2.4 Thermoelastic Assumptions and Refractory Products 

The principal thermoelastic assumptions in the stress analysis 

of refractories are temperature-independent properties, linear elastic 

stress-strain behaviour to b r i t t l e f a i l u r e , and that the components 

behave as i f they were flaw-free. The f i r s t two aspects are considered 

in this section while discussion of the l a t t e r takes place 

in Section 2.4. 

The thermal and elastic properties of some refractory products 

are notably temperature-dependent while those of others are not. At the 

extremes, the thermal conductivity of alumina and magnesia refractories 

can decrease by factors of approximately two and three on going from 

room temperature to 1200°C, and that of insulating s i l i c a brick can 

increase by a factor of three over the same range. Most other products 

r19—211 
are much less temperature-dependent

1 J

. 

Elastic modulus can vary widely with temperature depending on 

T 22—231 

type and q u a l i t y . The e l a s t i c modulus of magnesia and 

r 241 

dolomite
1

 refractories generally decreases gradually with temperature 

to about 60-90% of the room temperature value at 1000°C - 1200°C, while 

the elastic modulus is essentially temperature-insensitive for many 

r 251 

alumina p r o d u c t s
1

 . On the other hand, the e l a s t i c modulus of 

magnesia-chrome ore r e f r a c t o r i e s Is r e l a t i v e l y independent of 

temperature to about 800°C, but on further increase of temperature 
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through the range of 800-1200°C the elastic modulus can increase by up 

to a factor of four times the room temperature value^^ 30]^ 

The stress-strain behaviour of most refractory materials i s 

approximately linear up to temperatures of approximately 1000°C, the 

f31-321 
upper l i m i t depending on the in d i v i d u a l product . At higher 

temperatures creep w i l l occur to varying degrees and significant stress 

r 3 3 3 A1 

relaxation can result . F i n a l l y , material properties can be 

significantly affected by thermal cycling which can cause extensive 

microcracking due to thermal expansion mismatch of constituent phases, 

r35_37] 
phase changes, and/or chemical changes

1

 . 

Spatially and temperature-dependent parameters distort the 

thermal stress f i e l d without altering the basic nature of the 

f38—441 

distribution
1

 . The exact effect on both magnitude and location of 

the peak stress components is dependent on the nature and extent of the 

variation in properties. While some properties may vary by a factor of 

three or four over a range of temperature of 1200°C, the extent of 

variation of a given property w i l l generally be much less as the maximum 

range of temperature across an in-service refractory component w i l l 

normally be much less in order to avoid fracture. The use of average 

values of material properties evaluated at an intermediate temperature 

Is expected to yield reasonable results. 
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2.3 Hasselman Approach 

For those industrial applications in which the likelihood of 

fracture is high, Hasselman suggested that resistance to damage, rather 

than to fracture i n i t i a t i o n , might be a better criterion for material 

selection. He went on to formulate several models and subsequently 

derived a number of resistance parameters. A common element in the 

Hasselman approach is that extent of crack propagation is related to 

elastic strain energy at the instant of fracture and surface energy per 

unit area. 

The different methods of determining surface energy per unit 

area are described in Section 2.3.1. Section 2.3.2 briefly discusses 

the f i r s t attempt at the derivation of a damage resistance parameter. 

The unified theory of the thermal shock fracture i n i t i a t i o n and crack 

propagation is presented in detail in Section 2.3.3 and the application 

to the theoretical analysis to the prediction of thermal shock-strength 

loss relationships i s discussed in Section 2.3.4. Experimental 

confirmation of the Hasselman treatment is summarized in Section 2.3.5. 

2.3.1 Surface Energy 

Surface energy y represents the energy required for the creation 

of unit area of crack surface. It is commonly determined by either the 

work of fracture (wof) or notched beam technique (nbt). The latter 
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method, developed by Nakayama^^^, is generally used for refractories. 

Nakayama distinguished between catastrophic and stable behaviour 

i n terms of r e l a t i v e U _ - and U , where U _ , is the total elastic 
t o t a l y total 

energy stored in the system - specimen plus testing apparatus - at the 

time of fracture and i s the energy required for separation of the 

specimen. Catastrophic fracture corresponds to the case of ^
t o t a

i > U » 

the excess energy being transformed, for example, to kinetic energy of 

the fragments. Stable fracture is said to occur when 11 , < U , in 

total y 

which case the external work is converted directly into surface energy 

with no excess energy. 

The external work W is calculated from the load-time curve as 

t 
c 

W = v / f dt (2.7) 
o 

where v i s the speed of d e f l e c t i o n , t i s the time required for 

completion of fracture, and f is the bending force. The effective 

surface energy is then given by 

W 

Y * = — (2-8) W o f

 2A 

where A is the projected surface area of the fracture zone. 
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Figure 2.1 shows typical load-time curves for catastrophic, 

semi-catastrophic, and stable fracture behaviour. It is not possible to 

determine v
 c

 of most b r i t t l e materials without modification of the 
'wof 

specimen as otherwise fracture occurs catastrophically, the strain 

energy at fracture being the driving force for crack propagation. The 

strain energy at fracture is markedly reduced by introducing an 

a r t i f i c i a l crack such as that shown in Figure 2.2. With a sufficient 

reduction of cross-section stable fracture is obtained. 

In the notched beam technique a rectangular beam (see 

Figure 2.2) is loaded to f a i l u r e i n a bend test and a K
I(
, value is 

calculated using a standard formula. Fracture energy Y
n
^

t
 ^

s

 then 

computed using 

Y

nbt 

K

IC > 

2 E 
(2.9) 

r 8 91 
Larson et a l

1 1

 determined v ,. and Y ,^ f o r a wide range of 
'wof 'nbt ° 

high-alumina refractories. From their results in Table I i t appears 

that, on the whole, Y
w o
f *

s

 approximately one order of magnitude greater 

than y
n b t

. 

During the fracture of heterogeneous b r i t t l e materials energy 

can be consumed in a number of different ways. For example, fracture in 



TABLE I 

Frac ture Energies and Thermomechanlcal P r o p e r t i e s  
of High-alumina R e f r a c t o r i e s ( a f t e r reference 89) 

Modulus of Young's CoefT. of Fracture energy 
Refractory A l f O , rupure modulus th. exp. (HP ergs cm'') * „ K~ K

m
 MOR retiined (» ) 

No. (*) <p*i> <IO»psi) (to-* *C- ' ) fwor T»»T (psi in." ') ( O B ) f C c ^ o " , ) A T - BOOT A T - loorrc 

I 99 3600* 300* 17.0 9.3 90*8* 8+ 1* 1240+100* 1.71 29.8 21.4 14.9 
2 99 2060* 300 8.5 9.4 58*11 6+1 730+ 50 1.70 33.5 19.4 13.0 
3 90 3230 * 500 12.2 7.5* 110*17 11 + 3 1230+ 150 1.86 48.4 34.7 30.4 
4 90 2830*240 11.5 8.1' 103+ 12 6+1 860+30 2.14 44.4 44.0 33.1 
5 90 2470* 590 9.0 8.2' 99*10 7+1 870+ 30 2.12 48.7 45.3 37.3 
6 90 2760*380 8.1 8.0 91*8 15+4 1160+100' 1.41 50.5 54.5 45.8 
7 90 2020*200 2.1 8.1 73*10 14+3 650+ 70 0.70 77.2 
8 85 1980*230 8.9 7.8* 94* 11 10+4 990+180 3.08 50.1 56.4 55.6 
9 85 2940* 300 9.4 7.6 90*10 13+4 1190+170 1.42 49.0 51.4 41.2 

10 85 4 4 0 0 ± 3 1 0 10.1 7.6 7 5 ± 8 24+12 1610±400 0.56 43.0 28.8 29.9 
11 85 1793 ± 2 0 0 5.0 7.6 7 0 ± 6 5+1 5 5 0 ± 7 0 1.59 59.4 49.1 48.3 
12 85 2170*180 7.5 7.4 70*5 8+2 810+110 1.61 49.8 
13 85 1540*90 9.0 7.3* 44*5 8+2 670+ 90 "2.43 36.5 
14 80 2010 * 360 4.5 7.3 77*9 11 + 3 750+ 90 1.24 68.2 58.5 59.5 
15 80 1630* 180 4.9 7.3 5 4 ± 4 7+2 6 3 0 ± 9 0 1.45 54.8 61.5 53.2 
16 75 1031* 180 4.6 7.1* 54*8 5+1 490+ 50 3.40 58.2 
17 70 4.5 7.0 80*9 11+1 7 4 0 ± 3 0 72.9 
18 70 2.4 6.9 79*8 11 + 3 5 5 0 ± 8 0 100.9 
19 70 1650* 150 3.4 7.4' 70*1 9+1 600+150 1.27 73.9 53.7 46.4 
20 70 1590*220 4.6 6.8 65*2 9+2 7 0 0 ± 7 0 1.73 66.8 
21 70 1020* 140 2.7 6.9 60*6 5+3 390 2.5 82.6 64.3 57.8 
22 70 15O0±8O 3.4 6.9 58*7 16+ 1 750± 140 1.26 71.8 66.4 54.2 
23 70 4060*390 11.0 6.9 57*8 14+2 1340± 110 0.56 39.9 29.4 27.9 
24 70 3240* 150 11.6 6.2' 57*8 13+2 1290+ 110 0.92 43.3 31.3 26.9 
25 70 4 I 2 ± 7 0 3.7 6.8 40+5 2+1 310+70 12.63 58.2 
26 60 1230* 60 4.1 6.5 64*10 8+1 620+ 30 2.48 73.1 65.0 49.9 
27 60 3320*200 8.1 5.7' 63+8 15+3 1160+140 0.67 58.9 38.7 32.7 
28 60 2400* 200 5.8 6.2! 62*8 10+1 800+ 50 0.90 63.5 42.8 43.7 
29 60 1070*150 3.9 6.5 61 + 5 9+2 6 4 0 ± 7 0 2.97 74.0 64.3 60.7 
30 60 720* 140 2.0 6.5 61*9 5+2 330+ 70 3.41 102.7 60.1 49.2 
31 60 590 * 200 2.4 6.6f 59+ 10 4+2 320+80 5.81 90.4 46.4 49.3 
32 60 1340* 180 3.4 6.5 57*9 7 ± 1 5 1 0 ± 4 0 1.58 76.6 53.5 50.0 
33 60 970* 100 2.4 6.5 56+9 6+1 4 2 0 ± 3 0 2.08 89.3 74.4 69.3 
34 60 1470*210 3.3 7.0* 46* 8 9+2 5 8 0 ± 5 0 1.03 64.6 41.7 34.3 
35 60 860* 170 2.1 6.5 34+9 6+1 360+20 1.43 75.6 56.9 49.7 
36 50 1530* 330 4.2 6.3 53*7 1 230±5O 1.39 68.2 43.3 35.4 
37 45 1380*206 4.2 6.2 64+ 14 6+1 530+40 2.05 76.2 54.2 46.5 
38 45 330* 90 1.8 6.2 35*4 2+1 210+40 8.23 85.3 70.2 56.3 
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Timt 

Figure 2.1 Typical load-time curves representing (A) 
catastrophic, (B) semi-stable, and (C) stable fracture 
(after reference 46) 

F 

(A) 
NOTCHED BEAM TECHNIQUE 

I 
m 

H 

-w-
CROSS-SECTION 

VIEW 

(B) 
WORK OF FRACTURE 

Pigure 2.2 Typical specimens for (A) notched beam and 

(B) work of fracture surface energy determinations (after 

reference 23) 
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multiphase materials such as refractories is often part transgranular 

[231 

and part intergranular
1 J

. In general, the surface energy per unit 

area varies along the length of the fracture path. In the theoretical 

derivations which follow the variable y refers to average surface energy 

per unit area. Unless otherwise stated, reported values were measured by 

the work of fracture method. 

2.3.2 Early Work 

In his f i r s t attempt at thermal shock damage analysis, 

[45] 

Hasselman (1963)
1  3

 considered the sphere subjected to thermal shock by 

heating and stated, without presentation of the elementary steps, that 

for such a case the total elastic strain energy at fracture U^ is given 

by 

3 2 
4ub a

f
 (1-v) 

U = - (2.10) 
1 7 E 

where b is the radius and is the tensile fracture strength. Based on 

the premise that extent of crack propagation is directly proportional to 

the elastic strain energy stored at fracture and inversely proportional 

to the e f f e c t i v e surface energy, he derived the thermal shock damage 

resistance parameters R''' and R"", where 
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R'" = - 5 — 2 (2.11) 

o-f (1-v) 

and 
E

 Yeff 
R" '» = (2.12) 

o-f(l-v) 
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Nakayama and Ishlzuka (1966)
1

 tested a number of commerical 

refractories and, in support of the Hasselman treatment, found a 

correlation between R'''
1

 and thermal shock damage as represented by the 

number of cycles to produce a given percentage weight loss. Clarke, 

T a t t e r s a l l , and Tappin (1966)^^^ derived a parameter which showed 

damage resistance to be proportional to y and inversely proportional to 

elastic strain energy density in the region of fracture. However, no 

expression was given for strain energy density. 

[491 

Davidge and Tappin (1967)
1 J

subjected a variety of ceramic 

materials to thermal shock via water quenching and found a direct 

correlation between the quenching temperature difference required to 

produce cracking and the Kingery R parameter. With regard to damage of 

alumina they reported that, scatter aside (see Figure 2.3), the fracture 

strength was constant up to a c r i t i c a l quenching temperature whereupon 

i t abruptly f e l l to a much reduced value from which i t decreased 

gradually with increasing quenching temperature d i f f e r e n c e . 
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Figure 2.3 Fracture stresses of AI2O3 quenched from 
various temperatures into water at 20 C (after reference 49) 
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Ainsworth and Moore (1969)
1 J

 also encountered significant scatter in 

the results of the i r study of the thermal shock behaviour of 

water-quenched A^O^. Figure 2.4 shows the magnitude of scatter and the 

their interpretation of the overall trend of strength loss with 

increasing thermal shock. 

2.3.3 Unified Theory 

Hasselman ( 1 9 6 9 ) f i r s t developed a unified theory of thermal 

shock fracture i n i t i a t i o n and crack propagation for the case of the 

fully-restrained, arbitrarily-shaped solid which is uniformly cooled 

t h r o u g h t e m p e r a t u r e d i f f e r e n c e ( A T ) . U s i n g the same 

T 52 1 

approach (1971)
 1

 , he then considered a u n i a x i a l l y - r e s t r a i n e d 

rectangular plate subjected to the same thermal conditions. The 

approach was adopted from the work of Berry (1960)^^ who was 

interested in the kinetic aspects of the G r i f f i t h criterion under both 

constant stress and constant deformation mechanical loading conditions. 

The fundamental assumptions of both treatments are: (i) the 

sole driving force for crack propagation i n thermally-shocked 

traction-free bodies is the elastic strain energy at fracture, 

( i i ) fracture behaviour in the thermal loading traction-free case is 

analogous to the mechanical loading constant deformation case considered 

r 541 
by Berry

1

 , ( i i i ) the influence of flaws on fracture behaviour can be 
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accounted for by using the concept of effective Young's modulus,
 E

e
f f 5 

(iv) the presence of a crack does not influence the stress f i e l d of 

neighbouring cracks, (v) the body possesses a uniform distribution of 

equal-sized cracks of crack density N where N is the number of cracks 

per unit volume, (vi) and crack propagation occurs by the simultaneous 

equal advancement of each crack. 

The derivation consists of developing an expression for the 

total energy per unit volume - elastic strain energy plus surface energy 

- and then applying the G r i f f i t h c r i t e r i a to arrive at an expression for 

the condition of crack i n s t a b i l i t y . In the f i r s t case, rigidly 

constraining and uniformly cooling the body produces the uniform state 

of t r i a x i a l tensile stress'•"'"^ (in a homogeneous body) given by 

aEAT ,„ ,,
N 

a  =

 a=m' (2,13) 

The body is assumed to contain a uniform distribution N of penny-shaped 

cracks^"^, with the effective elastic modulus being given by^"*^ 

16 (1-v
2

) Nc
3

 . 
E = E [ 1 + ] , (2.14) 

e r r

 9 (l-2v) 

where E is the elastic modulus of the crack-free material and c is the 

crack radius. 
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According to the concept of e f f e c t i v e e l a s t i c modulus, the 

presence of flaws reduces the elastic modulus of the flaw-free material. 

The strain energy density U
q
 for the Hasselman flaw model, given by 

U

o
 =

 <
2

'
15

> 

for the flaw-free case, is obtained by replacing E in (2.13) and (2.15) 

with E to yield 
ef f

 J 

3 (aAT)
2

 E 16 (1-v
2

) Nc
3 

U [1 + ]
_ i

 (2.16) 
° 2 (l-2v) 9 (l-2v) 

Total energy per unit volume is then given by 

3 (aAT) E 16 (1-v ) Nc
3 

W = [1 + ]
- i

 + 2nNc y (2.17) 
2 (l-2v) 9 (l-2v) 

and the G r i f f i t h criterion, 

dW 
— - = 0, (2.18) 
dc 

applied to (2.17) to yield the following expression for crack 
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i n s t a b i l i t y : 

it y (l"2v)
2

 \ 16 (1-v
2

) Nc
3 

AT = [ = r [ 1 + ] (2.19) 
2 E a (1-v ) c 9 (l-2v) 

where AT
£
 i s the c r i t i c a l temperature difference associated with crack 

i n s t a b i l i t y . 

The Hasselman treatment of the fl a t plate case and the Berry 

analysis are completely analogous. Berry considered crack propagation 

in an i n f i n i t e sheet of unit thickness which contains a central crack of 

i n i t i a l length 2c and is subjected to mechanical loading conditions of 

constant stress and constant strain. He demonstrated that in order to 

produce crack growth the applied stress must be increased to a higher 

value (o"
c
) than the t h e o r e t i c a l value given by the G r i f f i t h criterion 

(o ) , as at the lower c r i t i c a l value of a both the i n i t i a l velocity and 

I n i t i a l acceleration are zero; and that the resulting kinetic crack 

behaviour is dependent on the difference between a
c
 and o^. 

Following G r i f f i t h the stress-strain relationship of such a 

material is 

a
 A E £

 2
 , (2.20) 

(A + 2uc ) 

from which the effective elastic modulus is seen to be 
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E

e f f
 =

 — 2 »
 ( 2

*
2 1 ) 

e

" (1 + 2nc ) 

where A represents the inf i n i t e area of the shape. Combining (2.20) 

with the G r i f f i t h expression 

by eliminating c yields 

a
2

 = , (2.22) 
g TIC 

a 8Ey
2 

e = + , (2.23) 
^ E 3 

A-reo 
8 

where expression (2.23) defines the G r i f f i t h locus which is the 

combination of stresses and strains satisfying both the G r i f f i t h 

fracture c r i t e r i a and the l i n e a r s t r e s s - s t r a i n law given i n 

equation (2.20). 

The shape of the G r i f f i t h locus is indicated by the solid line 

i n Figure 2.5. While both a and E decrease continuously with 6

 g eff 

increasing crack size, the ultimate strain (e ) passes through a minimum 

which occurs at a value of i n i t i a l crack length given by 
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Figure 2.5 Griffith locus for fracture in tension 
(after reference 53). 

Figure 2.6 Distribution of energy in a tensile 
fracture process (after reference 5 3 ) . 
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c

min - 4> 2 <2-24> 

The Griffith locus delineates the region of crack stability below the 

curve from the region of instability above. 

Figure 2.6 is a qualitative representation of the energy balance 

for the tensile fracture process in which a sample is extended to 

fracture and the ultimate stress maintained constant as the crack 

increases in length. Line OA represents the stress-strain curve of the 

original sample. At a later arbitrary stage - point B - the work 

performed on the system is given by area OABC and the line OB represents 

the stress-strain curve for the sample with increased crack length. At 

this point the strain energy U of the system is given by area OBC; the 

part of the work expended as surface energy S by area OAD; and the 

kinetic energy K by the remaining area ABD. It is apparent that for 

this case catastrophic failure will always result as the kinetic energy 

of the system, at a minimum only at the instant of fracture initiation, 

increases with increasing crack length. 

For the constant strain case, on the other hand, the mode of 

fracture behaviour is dependent on the relative sizes of initi a l crack 

length and c . . For small i n i t i a l crack length (c < c . ) the 6

 min ° min 

effective modulus is relatively high (as indicated by the steep slope of 
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line OA in Figure 2.7 and the Griffith condition is satisfied (point A) 

on the part of the locus where the slope is positive. The various 

stages of crack growth under constant strain conditions can be traced 

along the line AG. 

As crack length increases on moving through the region of 

instability (AC), the effective modulus decreases while the kinetic 

energy of the system increases. At point A the stress and i n i t i a l crack 

length first satisfy the Griffith condition and K is zero. At point B 

the kinetic energy is given by area ABE, and the increase in surface 

energy associated with the increase in crack length by the area OAE. At 

point C, where the stress and crack length again satisfy the Griffith 

condition, the kinetic energy is at a maximum (AEC). Thus the crack 

continues to advance from C, with the surface energy increasing at the 

expense of both kinetic and strain energy, to point F where the crack 

stops and the kinetic energy is zero. At F the system possesses only 

strain energy (OFG) and surface energy (OAECD) and the crack is now 

subcritical. The crack reaches a point of instability when the stress 

reaches a value corresponding to that of point D. 

For large cracks (c > c . ) the stress-strain curve is less ° min 

steep and the Griffith criterion is satisfied on that part of the locus 

where the slope is negative (see Figure 2.8). Following the same 

reasoning, i f the strain is held constant at a value of ultimate strain 
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Figure 2.7 Behaviour of a small crack i n a tens i l e 
sample (after reference 54). 

Figure 2.8 Behaviour of a large crack i n a t e n s i l e 
specimen (after reference 54). 
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corresponding to that of point A, crack growth w i l l proceed until the 

kinetic energy, which reaches a maximum (ADB) at point B where the 

G r i f f i t h criterion is satisfied, goes to zero at point C. Thus, for the 

large crack case, extent of crack propagation is primarily dependent on 

the amount by which the G r i f f i t h stress is exceeded. 

The correspondence of the Berry constant deformation case with 

the Hasselman plate model - and some of the limitations of the latter -

are at once apparent i f the following manipulations of the Berry 

equations are made p r i o r to d i s c u s s i n g the p l a t e model. 

Equations (2.20) and (2.22) can be combined with the elimination of a to 

produce 

i 2 

£

g= < l f c - > 2 d + ^ p - ) . <
2

-
2

5) 

the G r i f f i t h locus in terms of c r i t i c a l strain and i n i t i a l crack 

2TCC^ 
length. For short cracks (—-^--«1), equation (2.25) reduces to 

e = (•
2

4—)
2

 (2.26) 
g TCEC 

and, for long cracks (2TCC » A), i t can be approximated with 
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8

 EA 

Berry determined the kinetic energy of the system at constant 

s t r a i n of arbitrary crack length c greater than i n i t i a l length C
q
 to be 

2 2 
A Ee 

K = —j- [ j- 2-] - 4
Y
(c - c

Q
) (2.28) 

A + 2TCC A + 2TCC 
o 

An approximation for the fi n a l crack length c^ of the small crack case 

2-1 2-1 
i s obtained by setting K = 0 and assuming that (A+2TCC

Q
) » (A+2TCC^) 

to give 

4
Y
 (c

f
 - c

o
) z (A + 2nc"Q) * (2.29) 

2 2 
E e

 2.-1 

2 
Substituting equation (2.25) for e and taking 2TCC

q
« A yields 

c
f
 = 4^- (2.30) 

[521 

The Hasselman f l a t p l a t e thermal shock
1

 model i s now 

considered in some d e t a i l . As indicated in Figure 2.9 the physical 

model consists of a fla t plate of crack density N cracks/unit area with 

a l l equal-sized cracks oriented perpendicular to the direction of 
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Figure 2.9 Mechanical model for analysis of thermal 
stress crack s t a b i l i t y (after reference 52). 
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constraint. The plate is uniformly cooled through temperature 

difference (AT) to produce a state of uniaxial tensile stress of EocAT 

and, for simplicity, the transverse strains are taken equal to zero. In 

addition to being more applicable to the industrial lining problem, this 

model is completely analogous to the Berry analysis. 

Hasselman followed the same procedure as for the arbitrary 

three-dimensional shape model. For this case, the effective modulus is 

E = E (1 + 27tNc
2

)
_1

, (2.31) 
eff 

the total energy per unit volume is 

=
 «

2

(AT)
2

E
 + 4 Y C N , (2.32) 

2 (l+2itNc ) 

and, following differentiation, the G r i f f i t h locus for crack instability 

for the thermal shock case is found to be 

AT = ( - ^ [ — )
1 / 2

 (1 + 2TINC
2

) (2.33) 

HOC Ec 

The form of the locus is indicated by the solid lines in 

Figure 2.10a, where l o c i for two crack densities (N^ > Ng) are shown. 
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Hasselman argued that the c r i t i c a l temperature difference required to 

produce crack instability AT
£
 was only dependent on N for large cracks, 

2 
since for small cracks the condition 2itNc « 1 holds and equation (2.33) 

reduces to 

AT
c
 = (—p-)1/Z (2.34) 

HOC Ec 

2 

For long cracks he assumed that the condition 2nNc » 1 is valid and 

that AT^ could be approximated by 

8H;YN c ,~ 
AT = (—= )

± / Z

 (2.35) 
C

 a E 

The transition between long and short cracks occurs at the minimum in 

the instability curve which is given by 

1

 1/2 
c . = ( r

/ Z

 (2.36) 

The f i n a l crack length c^ for the short crack length case (c < c
m
£

n
) Is 

approximated by 

C

f = 4^c- <
2

'
37

> 
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and indicated by the dotted lines in Figure 2.10a. 

The unified theory was so-named because both resistance to 

fracture i n i t i a t i o n and resistance to damage parameters could be derived 

using the same model. For a given crack density and i n i t i a l crack size, 

i t i s clear from equation (33) that the magnitude of AT
£
 required to 

produce crack instability - the resistance to fracture i n i t i a t i o n - is 

directly proportional to what Hasselman termed the "thermal stress crack 

sta b i l i t y parameter" R where 

Y 1/2 
R

st
 - M

1 U

 (2.38) 
a E 

The thermal shock damage resistance parameter R'''' (minus the Poisson's 

r a t i o term) i s obtained by substituting c as defined by the G r i f f i t h 

expression Into equation (2.37) to produce 

C

f 8Ey 
(2.39) 

where i s the G r i f f i t h fracture strength. It i s then argued that 

maximum thermal shock resistance corresponds to minimum c^ which occurs 

2 

when Ey/cr^ i s a maximum. Thus the f i n a l crack length i s d i r e c t l y 

proportional to the inverse of the damage resistance parameter, 
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c cc ( R " " ) "
1

 (2.40) 

The correspondence of the Hasselman plate model and the Berry 

constant deformation case is demonstrated as follows. The thermal shock 

condition produces a constant strain of magnitude 

e = aAT. (2.41) 

Hasselman's equations can be obtained directly by replacing the terms e 

and 1/A in Berry's expressions by the thermal strain aAT and crack 

density N, respectively. The correspondence of the two treatments, not 

highlighted in the Hasselman papers, is extremely useful when evaluating 

the model predictions with regard to thermal shock-strength loss 

relationships and the significance of a term such as crack density N 

which has as its counterpart in the constant deformation analysis the 

inverse of an infinite area. 

2.3.4 Thermal Shock-Strength Loss Predictions 

Hasselman applied the unified theory to the interpretation of 

thermal shock experimental results of the type shown in Figures 2.3 and 

2.4. Using the thermal shock form of the Griffith locus of crack 

instability as a starting point, he arrived at the theoretical 
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prediction of thermal shock-strength loss behaviour shown i n 

Figure 2.10c. The characteristic feature of the theoretically-predicted 

strength loss curve is the constant strength plateau. 

According to the Hasselman rationale, the constant strength 

plateau is only observed for certain cases of i n i t i a l crack size and 

crack density. With reference to Figure 2.10a consider a material of 

crack density and i n i t i a l size C
q
 that is subjected to progressively 

severe thermal shock. The heavy solid lines indicate the locus of crack 

inst a b i l i t y and the dotted lines show the approximation for the fi n a l 

crack length for the small-crack case. As AT is increased (moving up 

the v e r t i c a l l i n e at C
q
 i n Figure 2.10a there i s no change in crack 

length (Figure 2.10b) u n t i l the c r i t i c a l value A T
q
 at point 1 on the 

locus i s reached. The i n i t i a l crack length c i s s u b c r i t i c a l with 

° o 
respect to a l l temperature differences over the range AT < A T

q
 and thus 

crack length (Figure 2.10b) and strength remain constant (Figure 2.10c) 

until AT is reached, 
o 

At T small-crack fracture behaviour occurs and the crack 
o 

rapidly attains i t s f i n a l length c^ at point 2. The specimen is now 

s u b c r i t i c a l with respect to A T
q
 . In fact crack propagation w i l l not 

occur until the temperature difference reaches the value of AT^ at 

point 3. Thus, for a specimen with crack length c^, increasing the 

thermal shock from AT to AT,, (moving up the v e r t i c a l line at c
f
 in 
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Figure 2.10a from point 2 to 3) causes no change in crack length 

(Figure 2.10b) or strength (Figure 2.10c). For AT > AT
f
 long-crack 

behaviour or quasi-static propagation occurs with the crack length 

Increasing and strength decreasing gradually in the range AT > AT^. 

The sudden decrease in strength and the constant strength 

plateau are associated with small-crack (c <
 c

m
^

n
) specimens only. This 

behaviour is commonly referred to as kinetic or catastrophic thermal 

shock fracture behaviour. As indicated for the Berry constant strain 

case, the plateau arises because - due to kinetic energy considerations 

- crack growth exceeds that associated with satisfaction of the G r i f f i t h 

condition, with the result that the extended crack becomes subcritical 

with respect to the thermal shock that produced i t . Furthermore, i t is 

clear from the nature of the curves in Figure 2.10a that the smaller the 

i n i t i a l crack size - I.e. the stronger the material - the higher the 

thermal shock required for fracture i n i t i a t i o n , but the greater the 

resulting crack extension, or strength loss. 

On the other hand, for long-crack (c > c
m
^

n
) specimens, strength 

decreases smoothly with increasing AT. Crack propagation occurs in a 

quasi-static or subcritical manner with growth being dependent on the 

magnitude of AT. The key factor with regard to mode of fracture Is the 

s i z e of the i n i t i a l c r a c k r e l a t i v e to c . . According to 

min 
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equation (2.36) the minimum in the crack instability locus is dependent 

only on crack density N. For severe thermal environments Hasselman 

noted that materials with high densities of long cracks may be 

preferable to strong materials with short cracks. 

2.3.5 Experimental Confirmation 

The Hasselman t h e o r e t i c a l treatment has motivated much 

experimental work. In addition to the strength loss-thermal shock 

experiments, where similar specimens are exposed to progressively severe 

thermal environments and then subjected to a strength t e s t , 

investigations concerned with the assessment of relative thermal shock 

damage resistance of materials with different thermal and mechanical 

properties have been performed. In the latter case, numerous positive 

correlations between some indicator of damage (usually strength loss) 

and the Hasselman parameters, R'''' and R
g t
» have been accepted as 

additional corroboration of the Hasselman analysis. 

For his f i r s t model t"*^ Hasselman used the results of Davidge 

[49 ] 

and Tappin as experimental support for the theoretically-predicted 

strength loss relationships. The solid line in Figure 2.3 indicates the 

Davidge and Tappin interpretation and the dotted line the Hasselman 

interpretation of the strength loss trend. The degree of scatter, which 

is characteristic of this type of experiment, unfortunately permits some 
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licence in determining the trend. The majority of data points are 

concentrated about the point at which the i n i t i a l strength decreases 

abruptly - the only obvious discontinuity in the trend - in order to 

satisfactorily delineate the c r i t i c a l temperature difference and extent 

[491 

of strength l o s s . Neither Davidge and Tappin
1 1

 nor Ainsworth and 

Moore^"' indicated their suspicion as to the presence of another 

discontinuity In slope in the strength loss relationship. 

Hasselman (1970)^""^ offered the experimental results shown in 

Figure 2.11 in support of his hypothesis, and Gupta (1972)^^^ provided 

the f i r s t independent experimental evidence (Figure 2.12). While these 

results seem to corroborate predicted behaviour, other experimental 

results are not as supportive, particularly with regard to the existence 

of the constant strength plateau. For example, other types of trends 

are seen in Figure 2.13 which gives results for the quenching of alumino 

s i l i c a t e cylinders into silicone o i l ^
2

^ and Figures 2.14 and 2.15 show 

results for the water quenching of s i l i c o n carbide specimens^
3

 . 

The trend in Figure 2.13 is due at least in part to the development of 

residual stresses during the thermal shock. Figure 2.15 is il l u s t r a t i v e 

of the nature and magnitude of scatter generally associated with this 

type of experiment. 

On the industrial side, those interested in the thermal shock 

performance of refractories have subjected various-sized specimens of 
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different products to a variety of thermal environments and reported 

positive correlations of extent of damage - as indicated by weight loss, 

percentage strength or elastic modulus retained, and acoustic emission 

counts - with the parameters R'''' and R . 
st 

H a s s e l m a n d e r i v e d an expression for strength retained after 

thermal shock. Assuming that the temperature distribution at fracture 

is parabolic and that the elastic energy at fracture (W) of an infinite 

cylinder of radius b is 

2 2 
0.57 b 

W = - , (2.42) 

where S
t
 i s the strength before thermal shock, he went on to derive the 

following expression for strength after thermal shock (S
a
): 

_ 8 Y l y 2 E 3 N 
S = (—« ) (2.43) 

where y^ and Yg
 a r e t n e

 f r a c t u r e surface energies per unit area 

corresponding to the thermal shock and strength testing environments, 

respectively, and N is the crack density. Experimental results for two 

s 
rod sizes were in agreement with the predicted size dependence. Notable 
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by their absence from (2.42) and (2.43) are the thermal properties of 

thermal conductivity, thermal diffusivity, and thermal expansion 

coefficient, terms naturally associated with a thermal shock problem. 

Glenny and Royston ( 1 9 5 8 )
[ 7 2 ]

, Gupta ( 1 9 7 5 )
[ 7 3 ]

, and 

r 74 I 

Becher et al (1980)
 1  1

 have also reported on the size effect observed 

on water quenching alumina specimens. As specimen size increases, both 

the temperature difference required to initiate fracture and the 

strength retained after fracture were found to decrease. While the 

influence of size on thermal profiles, stress fields, total strain 

energy at fracture, and flaw distribution has been cited in various 

studies, no quantitative analysis has been presented which accounts for 

the influence of geometry on thermal shock behaviour. 

2.4 Flaws, Fracture Strength, and Failure Criterion 

Stress intensity factor and Weibull statistical analysis are two 

other approaches to the thermal shock problem which have been employed 

to account for the flaw-dependence of fracture strength of brittle 

engineering materials. The former is based on the fact that the stress 

field in the region near an ideal crack is characterized by a stress 

singularity at the crack tip which decreases in proportion to the 

inverse square root of the distance from the crack. The stress 

intensity factor K is a measure of the singularity which is dependent on 
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loading and specimen configuration. The onset of rapid fracture is 

taken to occur when K reaches a value of K
c>
 a material property termed 

c r i t i c a l stress intensity or fracture toughness. 

This approach is most suitable for the fracture mechanics 

analysis of standard laboratory specimens of known crack geometry which 

are subjected to controlled loading. E v a n s a n d C h a n d l e r h a v e 

discussed the application of this approach to simple thermal shock 

cases. The stress intensity factor analysis contains a l l of the 

assumptions of elastic analysis plus those associated with the size, 

shape, orientation, and location of the crack. It is unsuitable for the 

industrial lining problem as flaw distributions in refractory products 

are complex and unpredictable. 

Unlike the other approaches in which the fracture criterion is 

expl i c i t l y stated - in terms of stress alone or a stress-flaw 

i n t e r a c t i o n - the Weibull approach^
7 7

^ considers strength to be a 

st a t i s t i c a l parameter. The general form of the Weibull distribution 

f 781 
function is 

a-a 

V o 

u 

F 1 e a > a 
u 

(2.44) 

F 0 a < a 
u 

(2.45) 
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where F is the probability of failure of a component with stress f i e l d a 

throughout the body, cr is a threshold stress which is usually taken to 

be zero, m is the Weibull modulus, and O
q
 is a third material parameter. 

The derivation of this function is based on the weakest-link hypothesis 

which equates failure of a structure with that of the weakest member. 

The Weibull theory highlights two points of relevance to the 

fracture behaviour of refractory products. The f i r s t is concerned with 

size effect prediction which, for the simple uniaxial tensile stress 

case, can be expressed quantitatively as 

°1 V 
— - ( ^ )

U m

 (2.46) 
a2

 V

l 

where and
 a r e m e a n

 fracture strengths of populations of specimens 

with volumes and V^. The Weibull rationale for the size effect is 

that the probability is greater that a larger body contains a larger 

flaw than a smaller body given that the flaw distribution is the same in 

each. 

Another consequence of the s t a t i s t i c a l treatment is that 

fail u r e , while most likely to occur in regions of high stress, can occur 

at any point of non-zero stress. Failure w i l l occur at some unknown 
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point at which the stress-flaw interaction f i r s t reaches a c r i t i c a l 

value. It may be a point of high stress and innocuous flaw or of low 

stress and severe flaw or of some intermediate combination. Both of 

these points are significant in that the Weibull theory suggests that 

geometry, a fundamental design variable, plays a dual role in thermal 

shock fracture behaviour as i t influences both the probability of 

finding a severe flaw and the nature and magnitude of the thermal stress 

f i e l d . 

r 7 9 l 

Stanley et a l
1 J

 summarize the most important assumptions of 

the Weibull analysis as follows: 

(i) the material is isotropic and s t a t i s t i c a l l y homogeneous, i.e. 

the probability of finding a flaw of a given severity is the 

same throughout the volume the component, 

( i i ) once a crack has initiated i t w i l l propagate without further 

increase in load, resulting in fracture, 

( i i i ) the contribution a flaw makes to the failure probability of a 

loaded component is independent of the position of the flaw in 

the body, 

(iv) the three principal stresses at a general point contribute 

independently to the failure probability. 

The validity of these assumptions is dependent on the nature of the 
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particular problem being considered. 

With regard to the industrial lining problem, assumption (i) is 

reasonable. While valid for applications like tensile and bend tests 

where fracture i n i t i a t i o n is synonymous with failure, assumption ( i i ) is 

not as applicable in the case of thermal shock fracture of refractories; 

due to the crack arrest capability of such materials. The states of 

stress at surface and Interior locations on heating and cooling for the 

one-dimensional rectangular beam and two-dimensional plane stress cases 

described in Appendix I and the three-dimensional case for conditions of 

traction-free boundaries and one-dimensional heat flow are summarized in 

Table I I . While assumptions ( i i i ) and (iv) are necessary from a 

computational standpoint the potential for peculiar fracture behaviour 

in individual cases exists due to the interaction of a complex 

multiaxial stress f i e l d with the random flaw distribution that is 

characteristic of a refractory product. 

Two other aspects of importance to refractory materials are the 

relative values of tensile and compressive strength and the relative 

severity of surface flaws versus bulk or volume flaws. Kingery^
7

-' 

states that since the compressive strength of ceramics is four to eight 

times the tensile strength, failure from compressive stresses is usually 

unimportant. In the Weibull computation the principal compressive 

stresses are usually discounted according to the ratio of compressive to 
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TABLE II 

Stress States at Surface and Interior for Various Cases 

Case 

Heating Cooling 

Case 

Interior Surface Interior Surface 

3-dlmenslonal 

Plane Stress 

1-dimensional 
(beam) 

T-tenslon 

B-tension 

U-tension 

B-compression 

U-compresslon 

D-compre ss1on 

T-compression 

B-compre s sIon 

U-compresslon 

B-tension 

D-tension 

D-tension 

T - t r i a x i a l 

B - biaxial 

U - uniaxial 
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tensile strength. While surface and interior stresses should probably 

also be weighted, the influence of surface and volume flaws has not as 

yet been clearly established. 

A s t a t i s t i c a l fracture criterion is inappropriate for use in a 

design problem such as the industrial lining problem where the number of 

independent parameters is large to begin with. In addition to 

highlighting the role of flaws in fracture behaviour, the main value of 

the Weibull analysis is in the s t a t i s t i c a l analysis of fracture strength 

data. The designer can then use the Weibull results and the desired 

probability of failure to determine an appropriate design strength for 

use in the thermoelastic analysis. 

The maximum principal tensile stress fracture criterion - the 

most frequently encountered in thermal shock studies - is justified 

usually on the basis of mathematical convenience rather than 

appropriateness. The validity of multiaxial failure theories is 

generally demonstrated with experimental results obtained using 

thin-walled cylindrical tubes subjected simultaneously to internal 

pressure, uniaxial end load, and tension. 

Experimental results for the biaxial stress state for a variety 

of materials are presented in Figure 2.16^^ where the horizontal and 

v e r t i c a l axes represent the ratio of the biaxial principal stresses, a. 
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" 5 / O f . 

M a x i m u m , normal 
stress theory 

M a x i m u m , distort ion -
energy theory 

o,/o(l 

Exper imenta l results 

+ Cast- iron brittle failure 

o Steel 

• Copper 

a A l u m i n u m 
ductile failure 

Figure 2.16 Experimental results for biaxial loading 
fracture tests (after reference 80) 
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and eg, to the u n i a x i a l f a i l u r e stress °"f
ail
* Figure 2.17 shows the 

stress state conditions and Figure 2.18 the results for similar 

experiments for alumina tubes
1

 . The experimental evidence indicates 

that the maximum principal tensile stress fracture criterion appears to 

be reasonable for b r i t t l e materials subjected to general biaxial loading 

conditions. 

2.5 Thermal Shock Testing 

Thermal shock tests offer an alternative to the theoretical 

approach to the evaluation of thermal shock resistance. The standard 

thermal shock tests are the North American ASTM C38 Panel Spalling test, 

the British BS1902 Small Prism test, and the German DIN 51068 test. The 

Ribbon t e s t
1

 and the Modified Prism test
1 J

 have been proposed as 

replacements for the ASTM C38 test. The main features and relative 

merits of each method are discussed. 

The Panel Spalling test varies slightly depending on brick type 

but the essentials of the procedure are as follows. Test panels are 

constructed of f u l l - s i z e bricks, preheated to a specified temperature 

within 5-8 hours, maintained at that temperature for 24 hours, and then 

subjected to thermal cycling. For example, the procedure for super-duty 

fireclay brick calls for a preheat temperature of 1650°C and 12 spalling 

cycles of 20 minutes duration each. A thermal cycle consists of heating 



Figure 2.18 Results of multiaxial loading fracture tests 
for A1

2
0

3
 tubes (after reference 81) 
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the surface to 1400°C in 10 minutes and then cooling by air-water blast 

(8 min) and air blast (2 min). After cooling overnight the panel is 

dismantled. A trowel is use to dislodge broken pieces. Spalling 

behaviour is presented as percentage weight loss. 

In the BS 1904 Small Prism test three specimens (2 i n . square by 

3 in.) are heated to test temperature in 30 minutes and then subjected 

to a number of 20 minute spalling cycles, 10 minutes of air cooling and 

10 minutes of furnace heating. Towards the end of each cooling cycle 

the specimens are examined visually for cracks and loss of corners and 

then subjected to a mechanical loading via the rig shown in Figure 2.19. 

Test results consist of furnace temperature, number of cycles to 

fai l u r e , and the cycle at which cracks f i r s t appear. 

The German DIN 51068 guidelines describe three types of tests. 

In one, cylindrical specimens are maintained at 950°C for 15 minutes, 

quenched into water and held for 3 minutes, and then dried at 110°C for 

30 minutes. Spalling behaviour is determined as the number of cycles 

required to cause specimen separation or, alternatively, as gas 

permeability after a specified number of cycles. 

In another a brick is inserted into the opening of a furnace set 

at 950°C in such a way that 1/3 of the brick projects into the furnace 

chamber and 1/3 of the brick is exposed to a i r . The brick is heated for 
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Figure 2.19 Test rig for spalling test (after 
reference 84) 
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50 minutes, quenched for 5 minutes in water, and air-cooled for 

5 minutes. The test is complete when 50% of the hot end has spalled 

off , at which time the number of cycles corresponding to crack 

i n i t i a t i o n , 25% loss, and 50% loss are recorded. 

In the f i n a l test, samples (one-quarter of a brick) are 

preheated to 275°C prior to heating to 950°C in 45 minutes. After 

quenching by an air blast for 5 minutes, the specimen is subjected to a 

three-point bend test using a 3 kg load. The test is complete when the 

specimen fractures into two pieces or after 30 cycles. 

In the Ribbon test specimens are heated on one face only by a 

fully-automated gas-fired line burner. One thermal cycle consists of 

15 minutes of heating, during which time a hot face temperature of 

1000°C is reached within 5 minutes and maintained for the duration of 

the heating stage, and 15 minutes of forced-air cooling. Test 

configuration permits variable specimen size. Thermal damage Is 

assessed by noting the change in fracture strength or elastic modulus. 

The Modified Prism Spalling test subjects the specimen to five 

thermal cycles, one cycle consisting of a 10 minute heating period 

in a furnace at 1200°C followed by 10 minutes of air cooling. From an 

i n i t i a l specimen size of 6" x 1" x 1", a portion is used to measure the 
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fracture strength and the remainder (2 1/2" x 1" x 1") is used as the 

test specimen. Thermal shock damage is expressed in terms of percentage 

strength loss. 

The purpose of thermal shock testing is to provide a basis for 

material selection. In order that the basis be sound i t is f i r s t 

necessary that test conditions simulate those of the industrial 

application, particularly with regard to (i) stress boundary condition, 

( i i ) thermal environment (boundary condition, heating or cooling, 

temperature range), and ( i i i ) geometry. These points are considered in 

turn. 

The stress boundary conditions encountered during thermal shock 

testing - essentially traction-free - are industrially applicable for 

many processes. After experiencing thermal shock of sufficient magnitude 

to cause fracture, refractory specimens often w i l l not separate cleanl y 

into fragments because of excellent crack arrest capability. Noting 

r 8 51 

t h i s , Clements
1 J

 has suggested that much of the crack propagation in 

thermal shock tests attributed to thermal cycling may in fact be due to 

mechanical stresses as a result of scraping, bending, prying, dropping, 

steam generation during water quenching, or the lodging of dust or 

particles in existing cracks. 

While the boundary conditions and temperature range on heating 
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and cooling can vary widely from process to process or from processing 

stage to processing stage, a characteristic thermal feature is 

one-dimensional heat flow. Heat flow associated with the Prism and DIN 

tests is multi-dimensional and hence the nature of the thermal stress 

f i e l d causing fracture during these tests is expected to be different 

from that present in industrial linings. 

A major limitation of a l l the thermal shock tests is that they 

employ thermal cycling to cause fracture. As the nature of the thermal 

stess f i e l d is different on heating from that on cooling, different 

fracture behaviour is expected during each stage. Also, depending on 

the process, more severe thermal loading is usually encountered during 

one stage than the other. It is quite conceivable that the results of a 

thermal shock test in which fracture is induced during the cooling stage 

may be used to select refractories for applications in which failure 

occurs primarily during the heating cycle. 

As a fi n a l point the nature of the thermal stress f i e l d is also 

strongly dependent on geometry. Smaller specimens are generally used as 

a matter of convenience. The assumption is that the ranking of thermal 

shock resistance of a set of materials of one size w i l l parallel that of 

another size of the same materials. While that may or may not be the 

case, the results of the thermal shock tests currently being used are 

not useful for design purposes or for optimizing thermal schedules of 
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industrial process vessels. 

Reproducibility is another important consideration. It is 

generally poor for the tests which u t i l i z e multi-dimensional thermal 

conditions and parameters such as weight loss and number of cycles to 

failure to characterize thermal damage. Furnace heating and air and 

water quenching, while easily accomplished in the laboratory, are 

d i f f i c u l t to characterize analytically and standardize experimentally. 

Of the tests described, the Ribbon test has the greatest 

potential for simulating a variety of industrial conditions. Heat flow 

is one dimensional, thermal conditions are well-controlled, and specimen 

size is variable. Results in the form of percentage loss of strength or 

elastic modulus are relatively reproducible. 

In summary, the philosophy behind thermal shock testing is to 

cause fracture and then to rank materials in terms of damage sustained. 

The implication of this approach is that fracture is unavoidable in the 

industrial application. While this strategy may be fine for comparative 

studies, i t w i l l not lead to the most efficient use of materials. 

Material optimization requires knowledge of the limits of a material. 

For the thermal shock application this means determining the most severe 

thermal condition which can be endured prior to fracture i n i t i a t i o n . 
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2.6 Summary of the Literature 

(1) Both theoretical and experimental studies indicate that thermal 

shock fracture behaviour of b r i t t l e , traction-free bodies i s 

dependent on the combined effect of thermal and mechanical 

properties, geometry, and thermal boundary condition. 

(2) The Kingery resistance to fracture i n i t i a t i o n parameters, derived 

using dimensionless solutions for the maximum principal tensile 

stress of in f i n i t e slabs subjected to various thermal boundary 

conditions, account for the role of material properties only. 

(3) The Kingery derivations neglect the transient aspect of the thermal 

shock problem with the result that the parameters R' and R" do not 

properly reflect the .role of thermal conductivity and thermal 

d i f f u s i v i t y . 

(4) The Kingery analysis does not account for the influence of 

geometry. It is limited to one-dimensional cases in which the 

width is at least twice the length. 

(5) The Kienow analysis, in which a simple spring model is used to 

develop a procedure for determining safe heating rates, also does 

not account for the effect of geometry . The results of this 

derivation are limited to one-dimensional cases in which the width 

is much less than the length. 

(6) More recent multi-dimensional thermoelastic analyses have indicated 

that the magnitude, location, and component of maximum principal 

tensile stress is strongly dependent on geometry. A major drawback 

of this approach is that conclusions and design recommendations are 

based on the results of a few select cases which may or may not 
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reflect general trends. 

(7) In justification of such an approach in their study of the 

two-dimensional constant heating rate thermoelastic problem, Chang 

et al stated that the influence of the various parameters which 

affect the magnitude of thermal stress can not be readily expressed 

in dimensionless form as is common practice. As a consequence of 

not having a general solution at their disposal, Chang et al drew 

erroneous conclusions as to the effect of changes in thermal 

diffusivity and width on the maximum principal tensile stress. 

(8) No general solution for either the maximum principal tensile stress 

or total strain energy of any multi-dimensional thermoelastic model 

of relevance to the industrial lining problem has been presented. 

(9) Based on the premise that extent of crack propagation Is directly 

proportional to s t r a i n energy at fracture and inversely 

proportional to surface energy per unit area, Hasselman used a 

thermoelastic sphere model to derive damage resistance parameters 

which indicate the role of material properties only. The 

derivation is based on an expression for total strain energy at 

fracture which can not be verified as the thermal boundary 

condition was not stated. It is also noteworthy that the strain 

energy expression contains neither of thermal expansion coefficient 

or thermal d i f f u s i v i t y , variables which are fundamental parameters 

of the thermal shock problem. 

(10) The Hasselman unified theory of thermal shock behaviour i s 

fundamentally unsound. In addition to the physical model of a 

restrained shape with a uniform distribution of equal-sized, 

non-interacting cracks being unrealistic, the analogy between the 

constant s t r a i n mechanical loading case of Berry and the 

traction-free thermal loading case is not valid as the nature of 
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the stress f i e l d at fracture is significantly different in each 

case. Furthermore, the analysis neglects the transient aspect of 

thermal stress development and thus does not account for the role 

of thermal d i f f u s i v i t y . F i n a l l y , the model in no way accounts for 

the observed effect of geometry on thermal shock behaviour. 

(11) No theory of thermal shock fracture behaviour has been presented 

which satisfactorily explains experimental observations with regard 

to the influence of material properties, geometry, and thermal 

conditions on fracture i n i t i a t i o n and extent of damage. 

(12) Thermal shock resistance parameters useful for the design and 

selection of refractory structural components of linings of 

high-temperature industrial processes are not available in the 

literature. 
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Chapter 3 

Statement of the Problem 

In this work the thermal shock fracture behaviour of 

traction-free bodies is interpreted using thermoelastic analysis. The 

ultimate objective is the development of theoretical c r i t e r i a which w i l l 

assist in the design and selection of refractory components. The 

c r i t e r i a are developed on the basis that a desirable operating strategy 

is to heat or cool a refractory lining component through a specified 

temperature range as rapidly as possible without causing fracture. 

Two characteristic features of the thermoelastic models used for 

the analysis of previous experimental work and the development of 

theoretical c r i t e r i a are one-dimensional heat flow and traction-free 

boundaries. The fundamental assumptions are that the material is 

homogeneous, i s o t r o p i c , and possesses temperature-independent 

properties; displacements are small with respect to the geometry of the 

system; stress-strain behaviour is linear and elastic to fracture, and 

that the maximum principal tensile stress criterion is v a l i d . 

A l l of the cases considered are one-dimensional with respect to 

temperature and two-dimensional with respect to stress. The stress 

problem is a standard two-dimensional thermoelastic one in which the 



- 75 -

eight unknowns: the stresses (0 ,a ,T ) , the strains (e ,e ,v ) , and 
x' y' xy '

 v

 x' y''xy ' 

the displacements (u,v) satisfy two equilibrium equations (no body 

forces), three stress-strain relations, and three strain-displacement 

relations. The thermal stress f i e l d and total strain energy for 

particular cases are computed using a two-dimensional f i n i t e element 

model based on a displacement formulation with isoparametric 8-noded 

elements and Gauss quadrature numerical integration being used (see 

Appendix 1). 

The remainder of this work consists of two sections. In Chapter 

4 the thermoelastic approach to thermal shock fracture analysis i s 

justified by theoretical analysis of previous experimental work. 

Constant heat transfer coefficient analytical temperature solutions are 

used to simulate the thermal shock conditions of experiments u t i l i z i n g 

furnace radiative heating, water quenching, and flame heating. For this 

thermal boundary condition, the heat flux at the surface is directly 

proportional to a constant heat transfer coefficient (h) and the 

difference between ambient temperature and the surface temperature of 

the specimen (AT). 

In Chapter 5 a two-dimensional constant heating rate model is 

used to develop both resistance to fracture i n i t i a t i o n and resistance to 

damage parameters useful for the design and selection of refractory 
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structural components for linings of high-temperature processes. For 

the constant heating rate thermal boundary condition case the hot face 

of the component increases linearly with time. Rectangular shapes are 

used to model both industrial lining components and specimens of the 

thermal shock experiments. In a l l cases heat flow is in the direction 

of the length and the width corresponds to the hot face. 

A fi n a l important engineering consideration is the ease with 

which a parameter can be computed. Many of those involved in the design 

and selection of refractories and the establishment of thermal operating 

practice - from material scientists to refractory producers and material 

users - have neither the background in stress analysis nor the computer 

f a c i l i t i e s required for complex evaluations. Therefore, another goal is 

to develop c r i t e r i a which can be computed directly using tables. 

To summarize, the two principal objectives of this work are: 

1. To justify the use of thermoelastic analysis in thermal shock 

studies of b r i t t l e materials; and 

2. To develop easily-computable theoretical resistance to fracture 

i n i t i a t i o n and damage parameters. 



Chapter 4 

Strength Loss - Thermal Shock Relationships 

4.1 Introduction 

In this chapter the theoretical interpretation of strength loss-

thermal shock relationships is considered. Three experimental 

investigations have been selected from the literature for detailed 

study. The cases, which have been chosen on the basis of relevance to 

the industrial lining problem, represent a range of refractories and 

thermal conditions. The theoretical interpretation of the experimental 

results is discussed from the standpoint of both the Hasselman and 

thermoelastic analysis approaches. 

4.2 Previous Experimental Work 

4.2.1 Introduction 

The three studies which have been selected for detailed analysis 

are for convenience identified by principal author: ( i ) Nakayama, ( i i ) 

Larson, and ( i i i ) Semler. The studies have been classified according to 

the nature of the thermal shock conditions. Both the Nakayama and 
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Larson investigations u t i l i z e symmetric heating or cooling conditions in 

which the hot and cold faces are subjected to identical thermal boundary 

conditions. The Semler study utilized non-symmetric conditions in which 

only one face is subjected to heating and cooling. 

4.2.2 Symmetric Heating 

4.2.2.1 Nakayama
[86] 

Noting that most thermal shock tests subject specimens to 

thermal cycling and also that there exist applications in which the 

fracture behaviour on heating only is of interest, Nakayama devised a 

single thermal shock by radiation heating test. Figure 4.1 illustrates 

the essential features of the thermal shock test. The procedure 

consisted of inserting the unit shown in Figure 4.1a, which consisted of 

two test specimens ( 2 x 2 x 7 cm) sandwiched between thermal insulation 

blocks, into an electric furnace preset at a specified temperature. 

After holding for approximately two minutes, the unit is slowly cooled 

to room temperature and the specimens are withdrawn and cut parallel to 

the heating surface (Figure 4.1b). The strength of each half is then 

measured using a three-point bend test (Figure 4.1c). 

Six brands of commercial firebrick were tested. The brands were 

designated by letter and described as follows: (A) hard burned, dense 
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Figure 4.1 Schematic illustrations of (a) thermal 
shock specimen unit which i s heated on both sides by 
radiation, (b) cutting direction in a specimen after 
thermal shock, and (c) strength measurement after cutting 
(after reference 86) 
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type aluminosilicate, (B) high alumina, clay bonded, (C) dense type 

aluminosilicate, (D) high alumina, spalling resistant, (E) high 

magnesia, direct bonded basic, and (F) chamotte fired to SK-34. 

Chamotte is a fireclay which contains a high percentage of grog. The 

physical properties are given in Table III. Three-point bend strength, 

elastic modulus by sonic wave velocity, and effective surface energy by 

the work of fracture method were measured at room temperature. Thermal 

expansion coefficients were determined over the range 25-500°C and 

thermal conductivity over the range 200-300°C. 

The thermal shock test results for the six brands are given in 

Figure 4.2 in the form of curves of strength retained versus furnace 

radiation temperature. The c r i t i c a l radiation temperatures (T ) at 

which strength f i r s t decreases, the fraction of strength retained after 

thermal shock at the c r i t i c a l temperature (
r

s r
)»

 a n (

i various thermal 

shock resistance parameters are given in Table IV. The parameters 

and c r i t i c a l stress intensity factor were computed using 

K t
 - & )

i n

 (4.1, 
a E 

and 

J/2 K
IC
 = (2Ey) (4.2) 

In a l l cases but one, i n i t i a l strength decreased abruptly at T and 



TABLE III 

Properties of Refractories for Nakayama Study 

Brick 
°f 
(MPa) 

E 

(GPa) 

T 

(J/m
2

) 

a x 10
6 

CC"
1

) 

k 

(J/sm*C) 

* 3 
o

f
 x 10

J 

(v-0.25) 

A 25.8 74.2 40.1 15.5 2.9 0.261 

B 20.0 55.7 48.6 3.5 1.3 0.269 

C 14.2 31.9 44.7 15.5 1.3 0.334 

D 16.0 47.6 39.1 3.5 1.3 0.252 

E 22.0 91.3 49.6 12.6 9.2 0.181 

P 4.8 10.4 41.2 8.5 1.0 0.346 



TABLE IV 

Summary of Results of the Nakayama Study 

Brick 
cr 

(°C) 

sr 
R* 

(£«L.) 
cm»s 

R t t t t 

(cm) 

R' 
st 

/ cal ^  (

c m
1

^ » s
) 

"IC 

(Mpa«m
1 / 2

) 

A 

B 

C 

D 

E 

P 

950 

1050 

850 

1050 

1100 

950 

.13 

.54 

.55 

.65 

.85 

.118 

.230 

.065 

.219 

.315 

.102 

.59 

.90 

.94 

.96 

1.25 

2.48 

.105 

.253 

.072 

.245 

.407 

.185 

2.44 

2.33 

1.69 

1.93 

3.01 

.93 
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Figure A.2 Strength variation of specimens subjected 
to radiation heating as a function radiation temperature. 
The capital letters shown in parenthesis correspond to the 
brands of firebrick (after reference 86) 
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then declined continuously with increasing radiation temperature. The 

strength of brick F f e l l gradually and continuously from the i n i t i a l 

value with increasing furnace temperature above ^
C T

' In no case was a 

constant strength plateau observed as predicted by the Hasselman unified 

theory. 

According to Nakayama the observed strength loss behaviour could 

be explained by the following sequence of events: the higher the 

radiation temperature, the greater the strain energy at fracture, the 

larger the resulting crack, and, consequently, the weaker the shocked 

specimen. In support of this hypothesis, Nakayama presented Figure 4.3 

which shows the stress distributions (Figure 4.3a) and elastic energy 

stored in unit axial length (Figure 4.3b) as a function of radiation 

temperature for specimen A. 

While the stress distributions ( tension being negative in 

Figure 4.3) and the strain energy relationship are qualitatively 

correct, Nakayama did not supply sufficient data to reproduce the 

result. Furthermore, neither the type of numerical method used, nor the 

temperature f i e l d causing fracture, were stated. The sole comment with 

regard to the strain energy computation was that elastic energy at 

fracture was calculated by elementary elasticity theory. 

Rather than follow up the idea that strength loss is dependent 
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Figure 4.3 (a) Axial stress distributions In a 
specimen at fracture for various radiation temperatures, 
and (b) elastic energy stored in unit axial length as a 
function of radiation temperature (after reference 86) 

Figure 4.4 Comparison between test results and damage 
resistance parameter R'"

1

. (a) Reciprocal crack length 
versus R""*, and (b) strength retained versus R" *

1 

(after reference 86) 
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on strain energy stored at fracture by determining the time of fracture 

i n i t i a t i o n and strain energy for each case, Nakayama interpreted the 

experimental findings in terms of the Hasselman theory. He implicitly 

assumed strain energy to be inversely related to R'''' and went on to 

rationalize the experimental results in the following manner. It was 

assumed that radiation heating produces only one crack in the central 

region of the specimen and that an estimate of the size of crack could 

be obtained by assuming that the crack-specimen configuration was 

similar to that of a rectangular bar with a plane crack of depth c on 

one edge. 

r 871 

The stress intensity factor formula
1 1

 for this ideal case can 

be written as 

K i c = V c l / 2 , f <4'3> 

where S
fc
 i s the three-point bend strength after thermal shock, c is the 

crack length, and f is a correction factor dependent on geometry. The 

size of the crack produced in each specimen on thermal shock is then 

obtained by substituting values of K and S into (4.3). 

Figure 4.4 shows a plot of reciprocal crack length versus R'*'' 

for estimated crack length of the i n i t i a l specimens C
q
, after thermal 

shock at the. c r i t i c a l radiation temperatured c , and after thermal shock 
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 versus R' 
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Figure 4.6 Discontinuous curve obtained with large 
specimens of F-brick (after reference 86) 
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at the maximum radiation temperature c(1500). The positive correlations 

of c
c
 and c(1500) versus R''"' are i n agreement with the Hasselman 

prediction given by equation (2.36). Positive correlations between 

f r a c t i o n of strength retained f and R"'
1

 (Figure 4.4) and c r i t i c a l 

r a diation temperature and R' (Figure 4.5) were also found, but not 

between crack length and Rg
t
» 

Nakayama also produced results which indicated that the nature 

of the strength loss-thermal shock relationship is size dependent. 

Figure 4.6 shows that a discontinuity exists in the strength loss curve 

of a 4 x 4 x 10 cm specimen of brick F which is not present in the curve 

of the 2 x 2 x 7 cm specimen in Figure 4.2. Furthermore, the c r i t i c a l 

radiation temperature is seen to decrease with the increase in specimen 

size. No analysis was provided to explain the effect of geometry on the 

strength loss behaviour. 

4.2.2.2 Larson
[ 8 8 ] 

r 8 81 

Larson and Hasselman
1

 subjected a series of high-alumina 

refractories to the Nakayama radiant heating thermal shock test 

conditions. The relevant physical properties, thermal shock resistance 

parameters, and mode of fracture of each specimen are given in Table V. 

The after-shock strength ( i n psi) for the range of radiation 

temperatures considered is given in Table VI. 
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TABLE V 

Properties and Thermal Shock Resistance Parameters for  

Larson and Hasselman Experiments 

Code %A1
2
0

3 

af 

(MPa) 

E 

(GPa) 

o x 10
6 

C C " 1 ) 
^wof 

J 
2 

m 

R

s t 

C C c m 1 / 2 ) (cm) 

Fracture 

Behaviour 
on 

Heating 

2 99 14.2 58.6 9.4 58.2 33.5 1.70 Stable 

6 90 19.0 55.8 8.0 91.1 50.5 1.41 Stable 

8 85 13.7 61.4 7.8 93.8 50.1 3.08 Catastrophic 

15" 80 11.2 33.8 7.3 54.1 54.8 1.45 Stable 

14 70 11.4 23.4 '7.4 70.1 73.9 1.23 Stable 

21 70 7.03 18.6 6.9 59.6 82.6 2.25 Stable 

23 70 28.0 75.8 6.9 57.3 39.8 0.56 Catastrophic 

27 60 22.9 55.8 5.7 62.9 58.9 0.67 Catastrophic 

28 60 16.5 40.0 6.2 62.0 63.5 0.90 Catastrophic 

31 60 4.07 16.5 6.6 58.9 90.3 5.81 Catastrophic 

34 60 10.1 22.8 7.0 46.5 64.6 1.03 Catastrophic 
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TABLE VI 

Strength of High-alumina Refractories After Thermal  
Shock by Heating (after reference 88) 

Refractory 
Sample No. 

Code 

Temperature Difference CC) Refractory 
Sample No. 

Code 0 800 900 |000 1100 1150 1200 1300 ' 1400 

2 1,720 1,860 1.690 1,820 1,710 — 1,390 1,150 640 

6 2,890 — — 2,710 2,710 2,500 2,390 2,330 1.720 

8 1,850 1,790 1,950 2,075 1,800 — 1,150 1,150 830 

15 1,620 1,530 1,580 1,400 1,310 — 1,320 1,200 800 

19 1,650 1,510 1,630 1,560 1,680 1,500 1,220 1,110 870 

21 950 740 810 750 690 — 550 420 — 
23 4,020 — 4,060 4,520 — — 1,230 910 380 

27 1,840 •- 1,880 1,590 — 1,840 800 830 

28 2,350 2,240 2,040 2,030 2,150 1,360 1,230 1,220 1.310 

31 500 530 480 470 310 — 315 320 — 
34 1,580 1.190 1,270 1,040 540 — 540 480 — 
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Figure 4.7 Strength behaviour of high-alumina 
refractory on heating. (A) specimen 15, (B) specimen 
(C) specimen 28 (after reference 88) 
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Two modes of fracture behaviour were observed - stable and 

catastrophic. Typical stable crack propagation behaviour is illustrated 

in Figure 4.7A where the strength of specimen 15 is seen to decrease 

continuously from i t s i n i t i a l value with increasing temperature 

difference above the c r i t i c a l value. Specimens 23 and 28 both exhibit 

catastrophic behaviour (Figure 4.7B and 4.7C) which is characterized by 

a discontinuous drop in strength at T • For specimen 23 the strength 

decreases continuously with increasing radiation temperature above ^ C J . y 

while further increases in the radiation temperature cause no change in 

the strength of specimen 28. 

The thermal shock fracture behaviour was interpreted in terms of 

the Hasselman unified theory which states that mode of crack propagation 

is dependent only on the relative size of the i n i t i a l crack length c. 

For c < c . , where c . i s a function of crack density only (see 
min' min

 3 3 v 

equation 2.36), crack propagation occurs in a catastrophic manner with 

the f i n a l crack length (and therefore strength loss) being directly 

proportional to the inverse of R'*'' (see equation 2.40). For c >
 c

m
^

n
» 

crack propagation occurs in a stable manner and strength loss is 

expected to be proportional to the difference (AT^-AT^, where AT^ is 

the radiation temperature causing fracture and AT
£
 is the temperature 

difference associated with the stability locus. Thus stable crack 

propagation is interpreted in terms of R as this parameter is directly 
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Figure 4.8 Percent strength retained by high-alumina 
refractories undergoing catastrophic fracture during 
thermal shock on heating as a function of the reciprocal 
of the thermal-stress resistance parameter R''

1

 (after 
reference 88) 
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proportional to AT
c
 (see equations 2.33 and 2.38). 

The investigators attempted to demonstrate the validity of the 

'unified theory' interpretation of thermal shock fracture behaviour by 

f i r s t separating the results in Table VI according to fracture mode and 

then plotting a form of strength loss - either as a percent of i n i t i a l 

strength or as a difference over a specified temperature range - against 

the appropriate thermal shock resistance parameter. For those specimens 

exhibiting catastrophic behaviour, the plot of percent strength retained 

a f t e r thermal shock at T versus (R'''') yielded an inverse 

cr '
 J 

relationship (Figure 4.8) as did a plot of strength loss (psi) over the 

range 1200°C-1400°C versus R for the specimens which fractured in a 

stable manner (Figure 4.9). 

While such excellent correlations appear to substantiate the 

theoretical analysis associated with the flaw model of thermal shock 

behaviour, the interpretation of the data raises several questions. 

F i r s t , the possibility of large error in the computation of percent 

strength loss at T
c r
 exists as the c r i t i c a l radiation temperatures are 

not at a l l well-defined. For example, consider specimen 23 in Table VI 

which has a strength of 4520 psi for 1000°C and 1230 psi for 1200°C. As 

no other intermediate values are given, not only is the percent strength 

loss in doubt but i t is also unclear as to whether this specimen 
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Figure 4.9 Strength loss of high-alumina refractories 
undergoing stable fracture during thermal shock on 
heating as a function of the thermal shock resistance 
parameter R

 t
 (after reference 88) 
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exhibits catastrophic behaviour as is noted. Furthermore, the results 

for specimens 31 and 34, both of whose modes of failure are listed as 

catastrophic, do not rule out stable crack propagation. 

With regard to the R correlation in Figure 4.9, the choice of 

temperature range for determining strength loss may or may not have been 

an arbitrary one, but no reason for the selection was stated. I f , for 

example, the strength loss over the range 1000°C-1200°C is plotted 

against R . the co r r e l a t i o n i s not so obvious. And f i n a l l y , i t is 
st

 J 

stated that 'in view of i t s clearcut fracture behaviour, the data for 

the high-alumina sample No. 23 were included in both these two cr i t e r i a 

for strength loss'. The data point for specimen 23 is represented by 

the open triangle at the bottom of Figure 4.8 and at the top of 

Figure 4.9. 

As indicated above, with no data points i n the range 

1000°C-1200°C, the fracture behaviour of this specimen is hardly 

'clear-cut'. Furthermore, i f the fracture behaviour is clear-cut the 

data point should - without ambiguity - f i t in one correlation or the 

other, certainly not both. The fact that the point for specimen 23 f i t s 

smoothly into both correlations hardly strengthens the interpretation of 

the fracture behaviour in terms of catastrophic and stable modes of 

fracture. 
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4.2.3 Symmetric Cooling - Larson
1 J 

The spalling behaviour on cooling of the refractories listed in 

Table V was also investigated. The after-shock strengths are given in 

Table VII. The test consisted of quenching specimens of the same size 

as for the heating tests (0.75 x 0.75 x 4.5 in) which had been 

equilibrated at an elevated temperature into a water bath at room 

temperature. As with the heating test, after-shock strength was 

measured using a three-point bend test. 

Typical behaviour is illustrated in Figure 4.10 which shows the 

strength loss-temperature difference for specimens 23 and 28, two 

specimens which fractured i n the catastrophic mode on heating 

(Figure 4.7). A constant strength plateau, more pronounced in one case 

than the other, is apparent in both cases. For a l l refractories tested 

the mode of fracture on cooling was stable and strength loss correlated 

with R as indicated i n Figure 4.11 which includes results for other 

specimens than those l i s t e d in Table VII. With regard to the R v

 st 

correlations for stable fracture on heating and cooling, i t is not clear 

why the strength loss was represented as a difference for the heating 

case (Figure 4.9) and as a percentage for the cooling case 

(Figure 4.11). 

The observation that some specimens fractured in a catastrophic 
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Table VII 

Strength of High-alumina Refractories After Thermal  
Shock by Cooling (after reference 88) 

Refractory 
Sample No. 

Cod, 

Temperature Difference CC) Refractory 
Sample No. 

Cod, 0 200 300 400 600 800 1000 1180 

2 2,060 1,590 1,050 720 510 400 270 320 

6 2,760 2,620 2,550 2.250 1.880 1.500 1,260 1,200 

8 1,980 1,900 1,870 1,830 1,190 1,120 1,100 1,110 

15 1,630 1,650 1,630 1,450 1,210 1,020 870 760 

19 1,650 1,560 1,200 1,120 1,180 880 760 660 

21 1,020 1,140 1,010 940 740 660 590 440 

23 4,060 3,890 3,140 2,740 1,770 1,190 1,130 800 

27 3,320 2,450 2,020 1,820 1,420 1,280 1,080 900 

28 2,090 1,450 1,460 1,530 1,080 1.030 1,050 800 

31 590 440 570 440 370 280 290 J 250 

34 1,470 1,480 1,240 900 720 610 510 360 
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Figure 4.10 Strength behaviour of high-alumina 
refractories on cooling. (A) specimen 23, (B) 
specimen 28 (after reference 88) 
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manner on heating and in a stable mode on cooling was rationalized in 

terms of crack density N. Specimen 23 was considered and i t was noted 

that only 8 cracks were formed over the whole cross-section for the 

heating case which corresponded to N = 0.4/cm
2

 which was calculated by 

substituting the appropriate values into equation (2.33). A higher 

crack density on cooling of N = 16/cm
2

 was attributed to the 

introduction of flaws during surface preparation and also to subsequent 

flaw generation during the thermal shock. 

Thus the rationale to explain the different fracture behaviour 

on heating and cooling of the same specimen is that the nature of 

thermal shock on cooling was such that i t produced an increase in N of 

s u f f i c i e n t magnitude to reduce c . enough to s a t i s f y the stable e

 min
 & J 

fracture c r i t e r i a (see equation 2.36). In the case of those specimens 

which f a i l in the stable mode on both heating and cooling, the i n i t i a l 

crack density throughout the specimen must have been such that the 

c o n d i t i o n of c > c . existed prior to quenching as, according to 

min 

Larson et a l , the transient behaviour of crack density is a surface 

phenomenon and that the crack density in the interior of the specimen 

remains relatively unaffected. 

T 71 821 
4.2.4 Nonsymmetric Heating - Semler

1

 '
 J 

Semler et al used the Ribbon test (see Section 2.5) to 

investigate the effect of sample size and thermal cycling on the thermal 
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shock behaviour of a range of alumina refractories. The physical 

properties and damage resistance parameters are given in Table VIII. 

The dimensions of the three types of specimen - s p l i t , quarter, and bar 

- are shown in Figure 4.12. Figure 4.13 shows typical transient 

behaviour of the hot face temperature and of the cold face temperature 

for various hot face to cold face thicknesses. While Semler 

investigated the influence of both geometry and thermal cycling, only 

the effect of sample size is discussed as the influence of thermal 

cycling on fracture behaviour is considered beyond the scope of this 

work. 

In the Ribbon test evaluation of thermal shock damage is non­

destructive. Modulus of elasticity (MoE) measurements are made before 

and after the test cycle with thermal shock damage being expressed as 

% MoE retained. The applicability of the non-destructive technique was 

demonstrated by showing a direct correlation between after-shock MoE and 

modulus of rupture. 

No apparent sample degradation was generally visible after 

thermal shock on heating, except on rare occasions when cracks oriented 

perpendicular to the hot face were observed. In the most extreme cases, 

several samples cracked in half. Thus, i t is clear that methods based 

on separation of the specimen or the observation of external cracks, 



TABLE VIII 

Properties of the Alumina Refractories of the Semler Study 
(after reference 71) 

A1,0, (wt%) 

Bulk 
density, 
0 (g/cm1) 

Thermal Elastic 
expansion, modulus, 

o C C - x l O - * ) £ (MPaxl0* ) 

45 2.45 5.2 6.98 
42 2.30 5.3 6.70 
59 2.50 5.9 4.61 
70 2.55 6.2 1.35 
70 2.58 5.7 1.05 
70 2.60 5.7 3.25 
72 2.60 6.6 2.41 
70 2.55 5.5 3.03 
72 2.60 6.8 3.03 
72 2.65 5.2 7.54 
85 2.90 7.1 9.30 
91 2.95 7.2 4.00 

Poisson's 
ratio. 

Flexural 
strength, 
a, (MPa) 

Work-of-
fracture, 

<J/m') 
dami 

* TO) 

Calculated 
ge resistance parameters O 

0.22 
.16 
20 

31.8 ± 1 . 7 
34.1 ± 2 . 7 
22.9 ± 0 . 8 
9.8 ± 2 . 5 
9.7 ± 1 . 4 

1 7 . 3 ± 2 . 2 
11 .2±1 .3 
1 3 . 9 ± 2 . 9 
14.3 ± 1 . 2 
27.4 ± 2 . 8 
4 5 . 6 ± 1 . 5 
20.0 ± 1 . 2 

22.5 ± 5 . 7 
1 7 . 8 ± 1 . 5 
34.0 ± 3 . 0 
32.9 ± 1 2 . 8 
70.0 ± 7 . 3 
7 1 . 0 ± 1 8 . 1 
58.0 ± 1 0 . 3 
63.0 ± 2 5 . 5 
48.0 ± 1 0 . 8 
3 1 . 7 ± 4 . 3 
56.0 ± 4 . 5 
65.0 ± 8 . 0 

68 
81 
67 

100 
139 
80 
58 
72 
59 
57 
57 
58 

2.0 
1.2 
3.7 
5.4 
9.7 
9.0 

13.4 
11.5 
8.4 
3.9 
3.1 
7.7 

3.45 
3.08 
4.58 
7.96 

14.28 
8.18 
7.43 
8.28 
5 85 
3.94 
3.45 
5.59 
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"SPLIT" "QUARTER- "BAR" 

Figure 4.12 Dimensions of specimens of the Semler 
study (after reference 71) 

1!K-

lift. K1WTM 

Figure 4.13 Representative measurements of hot face 
and cold face thermal history for different sized 90% 
alumina refractory samples during f i r s t cycle of the 
ribbon test. The hot face to cold face thickness i s 
shown in parenthesis (after reference 82) 
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such as weight loss or cycles to failure which are used in the panel 

spalling and prism tests, would not be suitable for the evaluation of 

thermal damage in this type of heating study. 

The results of the Semler study are presented in Figure 4.14 in 

the form of plots of percent modulus of elasticity retained versus R 

(Figure 4.14A) and R'''
1

 (Figure 4.14B) for bars, quarters, and splits 

after one thermal shock cycle. Similar trends were observed for both 

parameters, with size having a pronounced effect on % MoR retained. 

4.2.5 Summary 

The thermal shock behaviour of refractory products has generally 

been interpreted in light of the Hasselman unified theory. The findings 

of the three cases selected for study can be summarized as follows: 

(1) In support of the Hasselman approach, Nakayama reported a 

positive correlation between reciprocal of fi n a l crack length 

and the damage resistance parameter R''
1

' and also between 

fractional strength retained after shock at T
c r
 and R'

1

''. 

(2) In support of the Kingery analysis, Nakayama reported a 

positive correlation between c r i t i c a l radiation temperature T
£ r 

and resistance to fracture i n i t i a t i o n parameter R'. 

(3) Nakayama observed both stable and catastrophic failure on 

heating but no constant strength plateau. 
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Nakayama found the mode of fracture to be dependent on size. 

Larson observed both stable and catastrophic failure on heating 

but only stable behaviour on cooling. 

With regard to the heating case, Larson reported excellent 

correlations between percent strength retained and (R'"'
1

) * for 

those specimens exhibiting catastrophic behaviour and also 

between strength loss over 1200-1400°C range versus R ̂  for 
°

 6

 st 
those specimens which fractured in the stable mode. 

The behaviour of the specimens which fractured in a catastrophic 

manner on heating and a stable mode on cooling was explained in 

terms of a 'thermal shock dependent' crack density. 

Larson reported constant strength plateaus for both the heating 

and cooling cases. 

Semler found no significant difference in the trends of % MoR 

retained versus R''*' and % MoR retained versus R 
st 

Semler also observed strength loss to be strongly dependent on 

geometry. 
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4.3 Thermoelastic Analysis  

4.3.1 Introduction 

In this section the thermal shock experimental results of the 

Nakayama, Larson, and Semler studies are interpreted from a 

thermoelastic standpoint. Analytical solutions for the temperature 

f i e l d and simple expressions for approximating the thermal boundary 

conditions are used in conjunction with a tabulated solution for the 

maximum principal tensile stress to estimate the time of fracture 

i n i t i a t i o n . The f i n i t e element numerical method (see Appendix II) is 

then applied to compute the thermal stress f i e l d and determine the 

location of fracture and total strain energy at fracture. 

The specimens of the three studies a l l possess in f i n i t e slab 

geometry i n which the dimension i n the direction of heat flow (q) is 

much less than the width w. The location of coordinate axes, direction 

of heat flow, and stress convention for the model of the symmetric 

heating and cooling cases are shown in Figure 4.15 and for the 

non-symmetric heating case in Figure 1-1 In Appendix I. For the 

inf i n i t e slab case the maximum principal tensile stress is a component 

of the center l i n e o"
x
 d i s t r i b u t i o n . On heating i t i s located in the 

interior and on cooling at the surface. 

The refractory specimens are modelled as ideal flaw-free, 
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Figure 4.15 Location of axes, direction of heat flow, 
and stress convention for the Infinite slab symmetric 
heating and cooling cases. 
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linearly e l a s t i c , b r i t t l e materials. Fracture is taken to occur when 

the maximum principal tensile stress reaches a specified value of 

fracture strength which, for this analaysis, i s the reported 

room-temperature modulus of rupture value. The validity of these 

assumptions w i l l be apparent in the comparison of thermoelastic 

predictions to be presented in a following section with the experimental 

observations of the studies discussed in the previous section. 

The thermal conditions of the Nakayama, Larson, and Semler 

studies - radiation heating in an electric furnace, water quenching, and 

heating via the flame of a gas burner - are a l l relatively complex 

thermal processes. Due to the magnitude of the scatter in the strength 

loss-thermal shock results, sophisticated numerical analysis for the 

computation of the thermal fields is unwarranted. In each case constant 

heat transfer coefficient (h) analytical solutions are used to simulate 

the transient temperature profiles. The characteristic features of each 

thermal shock situation are incorporated by judicious selection of 

analytical solution. 

The steps in the thermoelastic analysis of a thermal shock 

experiment can be summarized as follows: (i) simulate the thermal 

conditions, ( i i ) develop a general solution for the maximum principal 

tensile stress, ( i i i ) invert the general solution to determine the 

instant at which the maximum principal tensile stress reaches a 

specified value of fracture strength, and (iv) use a numerical method to 
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compute the thermal stress field and total strain energy at fracture. 

In Section 4.3.2 the analytical temperature solutions and 

expressions for estimating the heat transfer coefficient for each case 

are given. In Sections 4.3.3 and 4.3.4 the solutions for the maximum 

principal tensile stress are discussed and the Kingery approach to 

thermoelastic analysis is briefly reviewed. In Section 4.3.5 the 

procedure for the analysis of fracture behaviour is described with 

reference to an example. In Section 4.3.6 the results of the 

thermoelastic analysis of the works of Nakayama, Larson and Semler are 

presented. In Section 4.3.7 the highlights of the thermoelastic 

approach to the analysis of thermal shock failure are summarized. 

4.3.2 Modelling Thermal Conditions 

4.3.2.1 Symmetric Heating 

The transient temperature fields in the specimens subjected to 

the Nakayama radiant heating test are approximated by those of the ideal 

case''^ of the region -Z<y<JL with zero init i a l temperature which is 

heated by radiation from a medium at T . All thermophysical properties 

are temperature independent. The solution is 
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T = T
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n 

* * 
where the Biot modulus 8 and Fourier modulus 9 are defined by 

*
 h A 

P = — . (4.5) 
k 

and 

e = — (4.6) 

I2 

and a
n
, n = 1, ... are the positive roots of 

* 
a tan a - B = 0 (4.7) 

The constant r a d i a t i v e heat t r a n s f e r c o e f f i c i e n t h i s 
r 

calculated using 

h h 
T - T 

oo a 
h = a ( ) (4.8) 

T - T 
oo a 

where in this case a i s the Stefan-Boltzmann constant and T is the 
a 

i n i t i a l temperature of the specimen. Equation (4.8) assumes an 
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emittance and shape factor of one. Figure 4.16 gives a plot of h
r 

versus T for T = 20°C. 
co a 

4.3.2.2 Symmetric Cooling 

The temperature profiles for the water quenching studies are 

approximated by using 

n *
 a

n
y

 2 * 
28 cos (—j—) sec (a ) -a G 

T = T ( I 35 jji ° .
 e

 n

 ) ( 4 . 9 ) 

i=l 8 (B + 1) + r/ 

which gives the profiles for the case of the region -H<y<H with constant 

I by i 

[90] 

i n i t i a l temperature T^ which is cooled by radiative and convective heat 

loss into a medium at zero temperature. 

f 9 i l 

As indicated i n Figure 4.17
1 J

, which shows typical heat flux 

versus temperature difference behaviour for a wire, tube, or horizontal 

surface in a pool of water, thermal phenomena associated with water 

r 921 
quenching can be complex. Krieth

1 J

 gives the following expression for 
average convective heat transfer coefficient h, for heat transfer from 

b 

horizontal surfaces within the film boiling regime, 
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Figure 4.16 Estimate of heat transfer coefficient for 
the Nakayama radiative heating thermal shock test 
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Figure 4.17 Typical boiling curves for a wire, tube or 
horizontal surface in a pool of water at atmospheric 
pressure (after reference 91) 
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h, = 0.67 b

 1/4 
(4.10) 

where 

and 

F = 

[ k p (p - p ) g h. {1 + (0.34 C AT /h. )} ] 
v *v "v fg _ v x fg

 J 

u. AT 
V X 

8
r

a 

c
 L

g (P
A
 - P

V
)

J 

(4.11) 

(4.12) 

Superimposed on h^, which accounts only for heat transfer by 

conduction through the vapour film and by boiling convection from the 

surface of the film to the surrounding liquid, Is heat transfer due to 

radiation. According to Kreith, the coefficient h^ for conduction and 

0.0085 

0.0070 -
o 

0JD050 

0.0030 

356 

— 293 

209 

100 300 500 700 900 
126 

1100 

A T X ( ° C ) 

Figure 4.18 Estimate of heat transfer coefficient for 
the Larson water quenching thermal shock test 
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convection in the presence of appreciable radiation is less than in the 

absence of radiation. Thus the total surface heat transfer coefficient 

h
w
 for the water quench is estimated by 

h

b
 1 / 3 

h = h. G^-) + h (4.14) 
w b h r 

w 

where h^ is computed using equation (4.8). 

The h
w
 versus AT

x
 plot in Figure 4.18 was constructed using the 

values given by Kreith for the film boiling case. This case was chosen 

to represent the thermal conditions of the water quench experiments 

because the results of Larson (see Table VII) indicate that fracture 

i n i t i a t i o n did not occur until a AT of approximately 200-300°C. With 

respect to Figure 4.17 this temperature difference li e s in the 

transition region near the beginning of the film boiling regime. As the 

mode of heat transfer is dependent on the nature of the surface as well 

as temperature difference, the boiling curve of Figure 4.17 may not 

apply for the refractory experiments. However, no better estimate of 

the heat transfer coefficient for this system could be found. 

4.3.2.3 Non-symmetric Heating 

The transient temperature profiles associated with the Ribbon 

test are simulated by transforming the coordinate system such that the 



Figure 4.19 Combinations of Biot modulus which produce 
dimensionless surface temperature T

g
=0.70 for the constant 

heat transfer coefficient heating case. 
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hot face is at y=A and the insulated cold face at y=0 and using equation 

(4.4) over the range CKyOc. During the f i r s t five minutes of the test 

the temperature of the hot face is raised to 1000°C. This condition and 

the assumption of a flame temperature of T^ = 1430°C are used to 

estimate the constant heat transfer coefficient h
g
 for the heating phase 

of the Ribbon test. 

Surface temperature T can be expressed in dimensionless form as 

(4.15) 
GO 

The combinations of 8 and 9 which produce T
g
 = 0.70, which corresponds 

to T
g
=1000°C and T

oo
=1430°C, are presented in Figure 4.19. 

An estimate of h
g
 for a particular test can be obtained quickly 

by substituting thermal d i f f u s i v i t y , length, and t = 300 s into (4.6) to 
* * 

get 9 , using Figure 4.19 to obtain the corresponding 8 , and then 
s s 

substituting the appropriate values of thermal conductivity and length 

into 
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4.3.3 General Solution for Maximum Principal Tensile Stress 

In addition to analytical expressions for modelling the thermal 

conditions, the other preliminary requirement for the thermoelastic 

analysis is a corresponding general solution for the maximum principal 

t e n s i l e stress o\,. The ax, dependence for the constant heat transfer 
M M 

coefficient i n f i n i t e slab case can be expressed in functional form as 

o
M
 = f ( t , E, v, a, a, k, h, AT, A) (4.17) 

where AT is the temperature difference between specimen and heating or 

cooling medium. 

As indicated in Appendix III, the dimensionless form of equation 

(4.17) is 

(a*)
h
 = f (9*, 8*) (4.18) 

* * 

where 8 and 9 are given by equations (4.5) and (4.6) and the constant 

h case dimensionless maximum principal tensile stress is defined by 

a M ( l - v ) 

<«M>
h

 ( 4

'
1 9 ) 

E a AT 
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The constant h case dimensionless fracture strength is obtained by 

substituting for o"
M
 i n (4.19). In general, the subscripts f and h 

refer to values at fracture and those related to the constant heat 

transfer coefficient case. 

The location of varies from case to case. For the symmetric 

heating and cooling cases i t i s invariant, as the distribution is 

symmetric, with a
M
 being located at the midpoint of the center line on 

heating and at the outer surfaces on cooling. For the non-symmetric 

heating case the d i s t r i b u t i o n is skewed toward the hot face during 

the i n i t i a l stages of heating. With increasing time the location of a^, 

moves away from the hot face and tends toward a limiting position at the 

midpoint. 

Solutions for are usually presented in graphical form as 

* 

indicated i n Figure 4.20 which shows the transient behaviour of (<?
M
)

n 

for a range of Biot modulus for the case of the symmetrically cooled 

traction-free slab. Appendix IV contains a comprehensive set of 

* 

tabulated values of (
a

^ ) ^ f °
r

 this case, and for the symmetric and 

non-symmetric heating cases as well. The values were obtained by f i n i t e 

element analysis. Reproduction of the graphical results in Figure 4.20 

was one means of verifying the f i n i t e element results. 
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Figure 4.20 Thermal stresses at the surface of a free 
plate heated symetrically, through a boundary conductance 
h, on the faces z=±L. Initial temperature zero, ambient 
temperature T

a
, Biot modulus m=hL/k. Note that the 

surface stress is compressive for heating (T
a
> 0) and 

tensile for cooling (T
a
< 0) (after reference 93) 

Figure 4.21 Maximum stress and time of occurrence for 
the problem of Figure 4.20. The maximum stress occurs on 
the surface (after reference 93) 
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The t r a n s i e n t behaviour of (ov,), i s t y p i c a l for a l l three 
M h 

thermal cases. As indicated in Figure 4.20, for constant Biot modulus 
* * 

^°M^h
 r

*
s e s

 with time to a peak value - (
a

M
)p

e a
k ~ whereupon i t f a l l s to 

zero as the temperature distribution tends toward a uniform value. The 

time of occurrence decreases and the magnitude of the peak value 

* * 
increases with increasing Biot modulus - (a„) , •*• 1 and (9 ) , •> 0 

M peak peak 

* 

as 8 •*•<*> (see Figure 4.21). The l i m i t i n g case of i n f i n i t e heat 

transfer coefficient corresponds to the thermal boundary condition of 

instantaneous change in surface temperature. 

4»3.4 Kingery Analysis 

* 

Kingery made use of two simple relationships involving (°jppeak 

for the symmetric cooling case to derive the resistance to fracture 

i n i t i a t i o n parameters R and R'. For the case of instantaneous decrease 

in surface temperature of magnitude AT (infinite h), he manipulated the 

expression 

<Vpeak=
 1

 <
4

'
20

> 

to show that the temperature difference AT^ required to produce a stress 

equal to the fracture strength is given by 
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a
f
 (1-v) 

AT (4.21) 
Ect 

where AT^ i s equivalent to the resistance to fracture i n i t i a t i o n 

parameter R. 

For the f i n i t e constant heat transfer coefficient case, Kingery 
* * 

expanded the simple relationship (c^peak
 =

 (constant) 8 and again 

expressed the temperature difference required to produce the fracture 

strength in terms of the other parameters. This yielded 

o> (1-v) k 
A T

f « - T 5 Ih <
4

'
22

> 

which can be put in the general form of 

where 

AT « R'»S» h"
1

 (4.23) 

cr
f
 (1-v) k 

R ' = - L _ (4.24) 

and S is a shape factor. 
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The f i r s t point concerns the splitting of the terms of the 

thermal boundary condition and the use of only AT as a measure of 

resistance to thermal shock. The nature and magnitude of the thermal 

stress f i e l d is dependent on the nonlinear temperature distribution 

within the body which, in turn, is dependent on the rate of heat 

extraction or addition which is governed by two interrelated parameters, 

h and AT. It is clear from a preceding section that the h-AT 

relationship can be complex and highly nonlinear, particularly that 

associated with water quenching which has been the most popular type of 

experimental thermal shock environment. 

Another point concerns the choice of the direct proportionality 

if & 

of (
a

M
) p

e a
i

<

 a n <

* P upon which to base the R' analysis. Even a cursory 

examination of the curves in Figures 4.20 and 4.21 reveals that the 

solution for the maximum principal tensile stress is also relatively 

complex and highly nonlinear. A more thorough examination of the 

tabulated results in Appendix IV would indicate that the simple 

* 
p r o p o r t i o n a l i t y i s v a l i d only for small 8 . Thus the R and R' 

* * 
parameters apply to the cases of very large 8 and very small 8 , 

respectively. Many practical problems possess thermal conditions which 

are characterizable in terms of intermediate values of Blot modulus. 

The f i n a l point concerns the implication of the Kingery analysis 
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with regard to the transient aspect of the thermal shock problem. 

Consider the following example in which the material properties and 

thermal conditions are such that the transient behaviour of the maximum 

* 
p r i n c i p a l tensile stress is given by the curve 8 = 5.0 in Figure A.20. 

Whether fracture occurs is dependent on the relative value of 

* 

dimensionless fracture strength and the peak value on the 8 =5.0 curve. 

* * 
If (a,.), > (cr„) , i then a

w
 never reaches a. and fracture does not 

f h M peak M f 
* * 

occur. If (°*f)h
=

 ^
a

M^peak'
 t

*
i e n t

*
i e

 specimen is just on the verge of 

* * 
fr a c t u r e . If ( c O , < (a„) , , then fracture occurs - the smaller the 

f h M peak' 

magnitude of dimensionless fracture strength, the earlier the time of 

fracture. 

The Kingery analysis is based on an expression which relates the 

maximum attainable or peak value of maximum principal tensile stress to 

the Biot modulus. Thus, implicit in any subsequent derivation is the 

* 

under- standing that fracture i n i t i a t i o n occurs at (°jppeak" The peak 

value is only of interest in that i t indicates which materials are 

susceptible to fracture for a particular value of Biot modulus. If the 

dimensionless fracture strength is less than the peak value, then the 

peak value is of academic interest only as fracture w i l l have occurred 

prior to reaching the theoretically maximum attainable value. Thus the 

Kingery approach ignores the transient aspect of the thermal shock 

problem. 
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4.3.5 Procedure for the Analysis of Fracture Behaviour 

E s s e n t i a l l y , the thermoelastic analysis consists of the 

determination of the thermal stress and strain energy density fields at 

the instant of fracture i n i t i a t i o n . The parameters of interest are the 

temperature f i e l d causing fracture, the time of fracture, the location 

and orientation of the stress component satisfying the fracture 

criterion, and the total strain energy available for the creation of 

fracture surface. The thermoelastic analysis is valid only to the 

instant of fracture, after which time the boundary conditions of the 

problem change and other methods must be used for any subsequent 

mathematical treatment. 

The analysis consists of the following steps. Consider the 

case of a 2 x 2 x 7 cm specimen of refractory F subjected to radiant 

heating at AT = 950°C. The data and results for this example are 

summarized in Table IX. The heat transfer coefficient is estimated 

using equation (4.8). The f i r s t step is to compute the dimensionless 

parameters which characterize the thermal shock problem which for the 
* * 

example case are (Of)^ = 0.0429 and 8^ = 1.3. The next step is to find 

the corresponding Fourier modulus at fracture. 



- 128 -

TABLE IX 

Data and Results of Fracture Analysis  

of 2x2x7 cm Refractory F of Nakayama Study 

Data Dimensionless 

Parameters 

Results 

E ' s s 

4.85 MPa 

10.4 GPa (o*)
h
= 0.0429 fc

f 
= 7.8 s 

V SB 0.25 

a = 8.5 (10"
6

)
o

C
_ 1 

AT E S 950°C <-0f )FE - 4.72 MPa 

h S S 135 J/sm °C % Diff = -2.7% 

= 1.0 cm 6* = 1.3 

k SB 1.0 J/sm°C U

f - 0.237 J/cm 

a = 
2 

0.005 cm /s 0* = 0.039 
r 
A 
c 

2 2 
» 0.82 cm /cm 

Y. S B 41.2 J/m R

d 
= 1.22 
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The instant of fracture is determined by f i r s t finding a l l the 

combinations of variables which w i l l just produce the specified fracture 

strength and then selecting the particular combination that satisfies 

the problem under consideration. In terms of dimensionless parameters, 

what is desired is the set of variables satisfying the general 

dependence given by 

9* - f (B*, ( a * )
h
) , (4.25) 

as then i t would be a simple matter to determine the Fourier modulus at 

fracture for a particular case. 

The set of variables satisfying equation (4.25) i s found by 

using a graphical technique, which is illustrated in Figure 4.22, to 

invert the solution for the maximum principal tensile stress. The f i r s t 

step i s to p l o t the portion of the (o"^)^ solution (Table IV-1 i n 

Appendix IV) in the neighborhood of the characteristic dimensionless 

fracture strength and Biot modulus. The points of intersection of the 

* * * 
(o\,),

 -

 9 curves and the line (cO, = 0.0429 are then used to construct v

 M'h f h 

a locus of fracture i n i t i a t i o n curve for the example case. Such a curve 

gives a l l the combinations of 8^ and 0^ which w i l l produce a specified 

value of dimensionless fracture strength. The Fourier modulus at 

fracture i s then obtained by interpolation and the time of fracture t
f 
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Figure 4.22 Illustration of the graphical procedure for 
determining Fourier modulus at fracture by inverting the 
solution for the dimensionless maximum principal tensile stress 
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is found using 

* ? 

e J T 

t
f
 = — . (4.26) 

Once has been determined, the temperature profile at fracture 

can be calculated using the appropriate a n a l y t i c a l solution 

(equation 4.4 for the example case), and used with the f i n i t e element 

numerical method to compute the thermal stress and strain energy density 

U
q
 f i e l d s and t o t a l s t r a i n energy at the instant of fracture. Figure 

4.23 shows the temperature p r o f i l e , and c e n t e r l i n e a and U 

x o 

distributions at fracture for the example case. A check on the accuracy 

of the graphical procedure for determining time of fracture is the 

percent difference between the f i n i t e element computed value of fracture 

strength - (<*f)pg - and the specified value, which in a l l cases was less 

than 5%. 

The temperature profile in Figure 4.23 indicates that the 

thermal shock fracture, at least for the example case, is not a high 

temperature phenomenon. At the moment of fracture the thermal 

disturbance at the boundary had not ful l y penetrated the specimen. The 

hot face temperature (T
n
j) reached a value of only 220°C. In general, 

fracture i n i t i a t i o n is rapid in thermal shock experiments and there is 

l i t t l e time available for the development of the thermal f i e l d . Thus 
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y 1cm) 

Figure 4.23 Temperature profile and center line stress 
and strain energy density fields at fracture for the example 
case of Table IX. 
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the influence of temperature-dependent properties on fracture behaviour 

is not expected to be significant for rapid heating or cooling thermal 

shock tests. 

Three features of the a stress distribution are worth noting. 
x ° 

Fi r s t , on heating the compressive stresses near the surface i n i t i a l l y 

develop more rapidly than the tensile stresses in the central region. 

With time and penetration of the thermal f i e l d , the tensile stresses 

develop at a faster rate than the compressive stresses and hence the 

ratio of maximum compressive to maximum tensile stress declines with 

time. In general, for the thermal shock conditions considered in the 

following section, the magnitude of the surface stress is approximately 

three to five times greater than the maximum at the midpoint of the 

centerline at the instant of fracture. 

Second, the tensile distribution in the central region is broad 

and f l a t , rather than sharp and pointed. Therefore i t is quite likely 

that fracture i n i t i a t i o n occurs at a point other than the midpoint of 

the center line and that, after sectioning along the mid-plane, specimen 

halves contain different size cracks. The expectation in these types of 

thermal shock experiments is that the average fracture strength reflects 

the actual size of the crack formed. 

Third, crack propagation on heating is from the interior toward 
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the surface, from a tensile region toward a compressive region. This is 

a characteristic feature of the traction-free thermal shock problem 

which undoubtedly is linked to the crack arrest capability of specimens. 

The shape of the centerline U
q
 distribution associated with the infinite 

slab heating case is also typical with minimums at the points of 

transition from tension to compression, maximums at the surface with a 

corresponding steep gradient in the compressive zones, and a broad, 

relatively uniform region of much-reduced magnitude in the central 

tensile zone. 

The natural starting point for the derivation of a thermoelastic 

T451 

damage resistance parameter is the Hasselman
1 1

 premise that the area 

over which a crack w i l l propagate is directly proportional to the 

elastic energy stored at fracture and inversely proportional to surface 

energy per unit area. Total strain energy is computed by numerically 

integrating the two-dimensional strain energy density f i e l d over the 

area defined by the width and length of the specimen. This gives total 

strain energy in units of Joules/unit thickness. In a l l cases unit 

thickness was taken to be 1 cm. 

In this work the Hasselman premise is modified slightly such 

that the area of crack propagation is taken to be directly proportional 

to the el a s t i c energy available for the production of crack surface U , 

3. 

where U is that fraction of total strain energy U,. given by 
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V=— (4.27) 
3

 2w 

Although somewhat arbitrary, the rationale for expression (4.27) is that 

the extent of crack propagation is dependent on the amount of elastic 

energy in the neighbourhood of the crack rather than in the total strain 

energy associated with the whole specimen. For the i n f i n i t e slab case 

cracks are expected to propagate along the centerline. The factor 

(U^/w) represents the average s t r a i n energy content of a 1 cm x 1 cm 

column of material running the length of the centerline. 

From Figure 4.23 i t is clear that along the center line part of 

the elastic energy is associated with the zones of compression at the 

two hot faces and the remainder with the tensile zone in the central 

region. It is assumed that only the portion of strain energy associated 

with the tensile region is consumed in the production of new crack 

surface and that this value is one-half of the average amount contained 

i n the 1 cm x 1 cm column or ( Û /2w ). While the fraction of strain 

energy associated with the compressive zones at the two hot faces and 

the tensile zone in the central region is expected to vary from case to 

case, the factor of one-half is considered reasonable as the shape of 

the stress and strain energy density fields in Figure 4.23 is typical. 
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The area of crack propagation A
c
 - to be thought of as a useful 

parameter rather than the actual measure of fracture surface - is thus 

given by 

U 
A = — (4.28) 
c y 

The parameter has the u n i t s of (area/area) which should be 

interpreted as the area of crack propagation equivalent to the 

consumption of the amount of available elastic strain energy stored in 

the 1 x 1 cm column of material running the length of the center l i n e . 

And f i n a l l y , the thermoelastic damage resistance parameter is 

simply defined as the inverse of the area of crack propagation, i.e. 

R, = A
 - 1

. (4.29) 
d c 

Theoretically, this single parameter reflects the influence of 

mechanical and thermal properties, geometry, and thermal boundary 

condition, while at the same time distinguishing between the heating and 

cooling cases. 
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4.3.6 Thermoelastic Analysis of Previous Work 

4.3.6.1 Introduction 

In this section thermoelastic analysis is applied to the 

experimental work of Nakayama, Larson, and Semler. The thermal models 

of section 4.3.2, the solutions for the maximum principal tensile 

stress contained in Appendix IV, and the procedure outlined in the last 

section are used to determine the time of fracture and total strain 

energy at fracture for each thermal shock experiment. The observed 

thermal shock behaviour of each study is interpreted in terms of the 

r e s i s t a n c e to damage parameter and a resistance to fracture 

i n i t i a t i o n parameter R̂  which w i l l be derived in the following section. 

Together, the Nakayama, Larson, and Semler studies consider a l l 

the pertinent parameters that have a bearing on the thermal shock 

behaviour of tr a c t i o n - f r e e bodies: ( i ) thermal and mechanical 

properties, ( i i ) geometry, ( i i i ) thermal boundary condition, and 

(iv) heating/cooling. The Nakayama results are considered in greatest 

d e t a i l as the study covers the broadest range of commercial 

refractories, highlights the influence of geometry, and the results 

appear to be the most consistent with regard to the determination of 

AT . The Larson and Semler results are used to support a thermo-
cr

 v v 

elastic interpretation of the influence of heating and cooling and 

geometry on thermal shock fracture behaviour. 
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Thermal d i f f u s i v i t y and thermal conductivity are both 

fundamental properties required for the thermoelastic analysis. Without 

knowledge of each the temperature f i e l d causing fracture can not be 

determined. In no case were values of thermal diffusivity given, and in 

only one case - the Nakayama study - was thermal conductivity supplied. 

Estimates of the thermal conductivity were obtained from references 

2 

[19-21]. For a l l cases the thermal diffusivity in cm /s was taken to be 

twice the value of k in cal/s cm°C, a reasonable estimate for most 

refractories which follows from typical values of bulk density and 

specific heat. 

In a l l cases the plane strain two-dimensional formulation was 

used and total strain energy was calculated on the basis of an 

out-of-plane thickness of 1 cm. A value of v=0.25 was used when 

Poisson's ratio was not supplied. Results of the thermoelastic analysis 

of the Nakayama, Larson, and Semler thermal shock studies are contained 

in Appendices V, VI, and VII, respectively. 

4.3.6.2 Nakayama 

4.3.6.2.1 Resistance to Fracture Initiation 

The results of the thermoelastic analysis of Nakayama's 

experiments are f i r s t considered from a fracture i n i t i a t i o n standpoint. 

Due to the large number of variables, the i n i t i a l requirement for the 
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derivation of a resistance to fracture i n i t i a t i o n parameter is an 

expression which relates the dimensionless parameters at fracture. 

Kingery used a simple proportionality between peak dimensionless maximum 

principal tensile stress and Biot modulus. A slightly more complicated 

expression which includes Fourier modulus and dimensionless fracture 

strength can be obtained by considering Figure 4.22 and noting the 

* * * 
general trends of C^)^* Pf>

 a n

d Of when one variable i s held fixed. 

For fixed (Of)^' i t is apparent from the curve at the bottom of 
* * 

the figure that 8^ i s inversely proportional to 9^. The net effect of 

•k * * 
increasing ( ^ f ) ^ I

s t o

 push the Pf~6f curve up and to the right which, 
* * 

for constant 8^, leads to an increase in 9^. These general trends among 

the dimensionless parameters at fracture i n i t i a t i o n can be expressed 

mathematically as 

*
 ( a

f \ 
9 °= — ( 4 . 3 0 ) 

The plot of Fourier modulus versus the ratio of dimensionless 

fracture strength and Biot modulus for values at AT
cr
 (see Table X) in 

Figure 4.24 suggests that the direct porportionality of equation (4.29) 

holds with the restriction that - due to the nonlinearity of the stress 

solution - the range of the dimensionless parameters is not too great. 
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TABLE X 

Data and Dimensionless Parameters for Fracture Initiation Analysis  

of Results for Critical Temperature Difference of Nakayama Study 

a x 10
6 

AT 
cr 

h 
cr <«f>h 

*•.. 
Per 

* -
e

cr <°f >h 

Brick 
2 

CO <
J

2 ) 
sm °C 

* K

cr 

A 1.4 950 135 0.0177 0.46 0.0425 0.0385 

B 0.60 1050 170 0.0731 1.35 0.0730 0.0541 

C 0.60 850 108 0.0254 0.86 0.0327 0.0295 

D 0.60 1050 170 0.0686 1.35 0.0682 0.0508 

E . 4.4 1100 186 0.0131 0.20 . 0.0680 0.0655 

F 0.50 950 135 0.0428 1.28 0.0390 0.0334 

F« 0.50 650 65 0.0626 1.23 0.0650 0.0510 
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Figure 4.24 Plot of the ratio of dimensionless fracture 
strength to Biot modulus versus Fourier modulus at fracture 
for AT

c r
 of the Nakayama experiments. 
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The results for the two sizes of the F specimen, with the F* designation 

indicating the 10 x 4 cm size, f i t into the general trend. 

The dimensional from of equation (4.30) is 

at, ov (1-v) , 
— - o= — • — — (4.31) 

2
 E a AT h A K-*»^J 

which can be used to derive another resistance to fracture initiation 

parameter. Regardless of the way in which equation (4.31) is 

manipulated, i t is clear that when the transient aspect of the thermal 

shock problem is accounted for the variable t^ must be present. A 

natural form is to have t^ as the dependent variable which, on 

rearranging equation (4.31) gives 

t
f
 « R

±
 (4.32) 

where the resistance to fracture initiation parameter R̂  is defined as 

a
f
 (1-v) k A 

R

i = E « (hAT) a <
4

'
33

> 

In this derivation, resistance to fracture initiation is directly 

proportional to time of fracture - the only measurable parameter of a 

thermal shock experiment associated with fracture initiation and also to 
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the temperature of the hot face at fracture. 

The Kingery analysis and the previous derivation are similar in 

that they both begin with a dimensionless relationship. However, in 

disregarding the transient aspect of the problem, the Kingery approach 

over-emphasizes the role of material properties and, as w i l l be shown 

shortly, incorrectly accounts for the influence of the thermal 

properties. Furthermore, while equating resistance to fracture 

i n i t i a t i o n to temperature difference required to produce fracture might 

make sense from a laboratory experimental standpoint, i t is not a 

suitable approach for the industrial problem where one means of 

preventing thermal shock fracture is by controlling the thermal 

conditions through the adjustment of both AT and h. The preheating of 

linings of many industrial processes is a typical example of this. 

Two characteristic features of the thermal shock problem not 

accounted for by the Kingery analysis are the interdependence of 

material properties with other parameters and the time-dependence of 

fracture. In evaluating a group of refractories two parameters which 

might be of interest are time of fracture and temperature of hot face at 

fracture T ^ . Some thermoelastic results which pertain to the c r i t i c a l 

thermal condition of the Nakayama study are given in Table XI and 

plotted i n Figure 4.25 where the t^-R' points are indicated by c i r c l e s , 

the t -R. points by squares, and the T, -R. points by triangles. The 
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TABLE XI 

Time of Fracture and Resistance to Fracture Initiation Parameters 

Brick 

AT 
cr 

<°C) 

R' 

(
J

 ) m.s (8) 

R

i 

(8) 

T 

(°C) 

R

d 

A 950 49.4 3.00 2.72 93 0.56 

B 1050 96.3 12.2 9.32 324 1.33 

C 850 27.2 5.45 5.10 131 0.78 

D 1050 91.7 11.4 8.74 315 1.32 

E 1100 132 1.55 1.47 63 1.75 

F 950 42.7 7.80 6.34 221 2.43 

F' 650 42.7 52.0 38.5 179 1.88 
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R' (J/m-s) 

0 40 80 12(3 160 

0 10 20 30 40 
Ri (s) 

Figure 4.25 Time of fracture and temperature of hot face 
at fracture versus resistance to fracture i n i t i a t i o n 
parameter for AT _ of the Nakayama experiments. 
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correlation of with the computed values of t^ and (indicated by 

the solid and dashed lines in Figure 4.25) suggests that the single 

parameter R̂  reflects the interdependence of material properties, 

geometry, and thermal boundary conditions on thermal shock behaviour. 

It is apparent from Figure 4.25 that there is no overall 

correlation between t^ and R'. However, if only those specimens having 

similar thermal conductivity are considered (C-F-D-B), time of fracture 

appears to vary directly with the Kingery parameter. The points lying 

outside this trend are either associated with materials of high thermal 

conductivity (E-A) or different geometry (F'). As the Kingery parameter 

does not account for geometry, discussion is restricted to the 

underlying reason for the location of points A and E. 

That the points A and E do not follow the general trend of the 

t
f
-R' plot reflects the fact that the Kingery analysis incorrectly 

accounts for the role of thermal properties. According to the Kingery 

derivation (equation 4.24) resistance to fracture initiation is directly 

proportional to thermal conductivity k while the thermoelastic analysis 

suggests that it is directly proportional to the ratio of thermal 

conductivity to thermal diffusivity (k/a) - regardless of how thermal 

shock resistance is expressed (see equation 4.31). The discrepancy 

a r i s e s because the K i n g e r y d e r i v a t i o n i g n o r e s the 

transient aspect of the problem. 
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This is a significant point as the range of variation is large 

in one case and relatively small in the other. Table XII gives typical 

thermal properties for a wide spectrum of refractories. With the 

exception of the rebonded fused grain (RFG) MgO-chrome ore and dolomite 

refractories (the data of which was obtained from manufacturers 

brochures), the values of bulk density (p^) and thermal conductivity 

were obtained from [20] and specific heat from [21]. Typical 

compositions of many of the materials in Table XII are given in 

Table XIII. The fi n a l two columns in Table XII gives values of k and 

(k/a) which have been normalized with respect to the values of s i l i c a . 

It is apparent from these values that the range of variation of k is 

greater than an order of magnitude while that of (k/a) is only about a 

factor of two. 

The location of points E and A of the t
f
-R' plot in Figure 4.25 

is directly attributable to the fact that the Kingery parameter gives 

far too much weight to the variable k. In neglecting the transient 

nature of the problem, thermal diffusivity - the fundamental thermal 

property - is ignored. Thermal conductivity i s primarily associated 

with the special case of constant heat transfer coefficient boundary 

condition, while thermal diffusivity must be accounted for in a l l 

treatments of traction-free thermal shock problems in which the cause of 

stress is transient nonlinear temperature f i e l d s . 



TABLE XII 

Typical Thermal Properties of Various Refractories 

Refractory 
Mean 
Temp 

(°C) 

p b x 10"3 

m 

c 
P 

^kg*C ; 

k 

sm i, 

a x 10 6 

2 

<7-> 

k/a x l O 6 

<4-> 
m J o C 

\ k/a 

S i l i c a 148 1.81 795 1.10 0.762 1.44 1.0 1.0 

Fireclay 167 2.35 837 1.42 0.719 1.97 1.3 1.4 

60% Alumina 179 2.37 837 1.36 0.683 1.99 1.2 1.4 

90% Alumina 151 2.79 837 2.38 1.02 2.33 2.2 1.6 

99% Alumina 125 2.90 837 5.28 2.18 2.42 4.8 1.7 

Chrome 160 3.11 754 2.16 0.921 2.35 2.0 1.6 

Chrome-MgO 160 3.01 837 1.67 0.665 2.51 1.5 1.7 

Forsterite Type 160 2.63 837 1.80 0.820 2.20 1.6 1.5 

MgO-Chrome (DB) 131 2.79 879 1.79 0.729 2.46 1.6 1.7 

MgO-Chrome (RFG) 93 3.20 879 5.19 1.85 2.81 4.7 2.0 

Magnesia 161 2.79 921 10.1 3.93 2.57 9.2 1.8 

Dolomite 260 2.96 921 3.75 1.37 2.74 3.4 1.9 

Clay-bonded SIC 162 2.66 712 18.4 9.72 1.89 16.7 1.3 

Zircon 160 3.76 504 4.16 2.19 1.90 3.8 1.3 
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TABLE XIII 

Typical Compositions of Various Refractories 
(after reference 20) 

I'EH CENT 

Type of Brick Silica Alumina Titania O lher 
(SiOj) (A1?0 3) ( T i 0 2 ) Oxides 

FIRECLAY 
Superduty 4 9 - 5 6 4 0 - 4 4 1 .5 -2 .5 2 . 5 - 4 . 0 

High-Duty 5 3 - 6 ] 35-41 1 .7 -3 .0 3 -6 

Medium-Duty 5 7 - 7 0 2 5 - 3 8 1 .3-2 .1 4 -7 

Low-Duty 6 0 - 7 0 2 2 - 3 3 1 . 0 - 2 . 0 5 -8 

Semi-Si l ica 7 2 - 8 0 18-26 1 .0 -1 .5 1-3 

HlCH-AH 'MINA 

5 0 7 , A lumina Class 4 1 - 4 7 4 7 . 5 - 5 2 . 5 2 . 0 - 2 . 8 3-4 

6 0 7 c A lumina Class 3 1 - 3 7 5 7 . 5 - 6 2 . 5 2 . 0 - 3 . 3 3-4 

709c A lumina Class 2 0 - 2 6 6 7 . 5 - 7 2 . 5 3 . 0 - 4 . 0 3-4 

8 0 % A lumina Class 1 1 - 1 5 7 7 . 5 - 8 2 . 5 3 . 0 - 4 . 0 3-4 

907c A lumina Class 7 . 5 - 9 . 0 89-91 0 . 4 - 0 . 8 1-2 

Mull i te Class 1 8 - 3 4 6 0 - 7 8 0 .5 -3 .1 1-3 

C o r u n d u m Class 0 . 2 - 1 . 0 9 8 . 0 - 9 9 . 5 Trace 0 . 3 - 1 . 0 

PER CENT 

Type of Brick 
Iron Chromic 

Sil ica A lumina Lime Magnesia Oxide Oxide Other 
( S i 0 2 ) {AhOi) (CaO) (MgO) . ( F e 2 0 3 ) ( C r 2 0 3 ) Oxides 

SILICA 
Superduty 
Convent iona l . 

9 5 - 9 7 

9 4 - 9 7 

0 . 1 5 - 0 . 3 5 

0 . 4 5 - 1 . 2 0 

2 . 5 - 3 . 5 

1 . 8 - 3 . 5 

0 . 3 - 2 . 2 

0 . 3 - 0 . 9 

0 . 0 2 - 0 . 1 0 

0 . 1 0 - 0 . 3 0 

BASIC 
Chrome 3 - 6 15 -34 
Forsterite 3 0 - 3 9 1 1 1 

Magnesite 0 . 7 - 1 0 . 0 0 . 3 - 1 . 5 

Magnesite, High-Periclase 0 . 5 - 5 . 0 0 . 2 - 1 . 0 

Magnesite, Spinel-Bonded 1 .0 -2 .0 8 . 5 - 1 0 . 5 

Magnesi te-Chrome* 3 . 0 - 8 . 5 4 . 5 - 2 3 . 0 

Chrome-Magnesi te* 4 - 8 1 6 - 2 7 

1 .0 -3 .5 

0 . 5 - 1 . 5 

1 .0 -1 .5 

0 . 7 - 1 . 5 

0 . 7 - 1 . 5 

1 4 - 1 9 1 1 - 1 7 2 8 - 3 8 1-2 

4 7 - 5 5 7-11 1-3 

8 5 - 9 3 0 . 3 - 7 . 0 0 . 5 - 1 . 0 

9 2 - 9 8 + 0 . 2 - 1 . 0 0 . 0 - 0 . 6 

8 6 - 8 8 0 . 5 - 1 . 0 0 . 1 - 0 . 6 

5 3 - 8 2 2 . 5 - 7 . 5 4 . 5 - 1 6 . 0 

2 7 - 5 3 8 -14 1 8 - 2 8 

• Composit ion after heating and removal of all volatile*. 
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Figure 4.26, which shows a plot of time of fracture versus 

for the radiation temperature differences of AT
c r
, 1200°C, and 1500°C, 

indicates that the positive correlation holds for other thermal 

conditions than AT
c r
. The linear relationship between t^ and AT^ shows 

that the effect of exceeding AT
cr
 is simply to cause fracture to occur 

at an earlier time. That i s , as indicated by equation (4.31), the time 

of fracture is inversely related to the temperature difference causing 

fracture, an important dependence which is not apparent from the Kingery 

analysis. 

As a fi n a l point, material E is the most thermal shock resistant 

according to R' while R̂  suggests that the same material is the least 

thermal shock resistant. As noted above, this can be attributed to the 

fact that the time of fracture is inversely proportional to the 

temperature difference causing fracture. The important practical 

consideration is that the thermal shock resistance parameter used for 

the assessment of a group of refractories reflect the requirements of 

the industrial application. Depending on the particular problem, time 

to fracture, temperature of hot face at fracture, or the magnitude of 

the thermal boundary condition causing fracture may be the relevant 

parameter 
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Rj (s) 

Figure 4.26 Time of fracture versus R± for AT
c r
, 

AT
f
=1200°C, and AT

f
=1500°C of the Nakayama experiments. 
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4.3.6.2.2 Resistance to Damage 

A thermoelastic interpretation of thermal shock damage is now 

presented. Figure 4.27 shows a plot of percent strength loss at the 

c r i t i c a l radiation temperature versus the damage resistance parameter 

R^. The inverse relationship i s support for the basic premise that 

strength loss is proportional to the available strain energy at fracture 

U and inversely proportional to the surface energy y. The scatter 
£1 

apparent in the plot is quite reasonable in light of the sources of 

error inherent in the strength measurements. 

F i g u r e 4.28 shows ^ " ^ f curves and the strength retained 

relationships for the two materials which experience the greatest and 

least damage on fracture at ^ C J . y materials A and E. Figure 4.29 gives 

the R^-ATj curves for the two sizes of specimen F. As the surface 

energy term is constant for a given material the variation of R̂  with AT 

reflects the variation of available strain energy at fracture. 

The thermoelastically-predicted curves in Figure 4.28 reflect 

not only the general trend, but also the relative steepness of the 

strength retained curves for both materials. Thus the parallel trend of 

the R,-AT
£
 curves and the corresponding experimental strength loss 

d r 

curves provides strong support for the fundamental assumption of the 

thermoelastic model that extent of crack propagation is proportional to 

available strain energy at fracture. 
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Figure 4.27 Strength loss at AT
cr
 versus damage 

resistance parameter for the Nakayama study. 
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Temperature difference (°C) 

Figure 4.28 Strength retained and damage resistance 
parameter versus radiation temperature difference for 
materials A and E of the Nakayama study. 
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Figure 4.29 Thermal shock resistance parameter versus 
radiation temperature difference for the two sizes of 
specimen F of the Nakayama study. 
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A key point i s that distinguishs between the thermal shock 

damage resistance of different sizes of a specimen as indicated by the 

relative positions of points F and F' in Figure 4.27 and the nature of 

the curves in Figure 4.29. This is important with regard to the design 

and selection of refractories for industrial linings, as components are 

often available in a variety of sizes and shapes, and represents a 

significant advantage in comparison to the Hasselman damage resistance 

parameters. 

For materials in which elastic modulus plays a dominant role in 

determining fracture behaviour, the Kingery and Hasselman parameters 

indicate that resistance to fracture i n i t i a t i o n and resistance to damage 

are inversely related. Nakayama produced correlations in support of 

both the Kingery i n i t i a t i o n parameter R' and the Hasselman damage 

parameter R^'', but did not note any trend between the two. The 

thermoelastic model of thermal shock behaviour is ideal for the study of 

the interdependence of resistance to i n i t i a t i o n and resistance to 

damage. 

Fi g u r e 4.30 shows a p l o t of the R̂  and R^ values of each 

specimen for the radiation temperature of 1200 °C. The material 

properties of each brick are given in Table III along with dimensionless 
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Figure 4.30 Resistance to fracture i n i t i a t i o n R̂  versus 
resistance to damage Rj for ATf=1200°C of the Nakayama study 
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* 
fracture strength a^, where 

a
f
 (1-v) 

af = -̂ -= , (4.34) 

which is the relevant fracture initiation parameter associated with 

strength, rather than ô  alone. As there is no wide variation in y» the 

Nakayama results essentially reflect the effect of the thermoelastic 

variables. 

While the role of material properties with regard to fracture 

initiation is apparent from equation (4.33), a simple expression 

relating material properties to damage resistance is not obtained easily 

due to the complexity of the strain energy computation. Thus the role 

of material properties with regard to damage resistance is evaluated by 

comparing the results of individual cases. 

The influence of thermal expansion coefficient on combined 

resistance is evident from the location of the points of materials A, B, 

C, and D, which are connected by the solid line in Figure 4.30. The 

high values of R̂  and R̂  for the high-alumina specimens (B and D) can be 

attributed primarily to extremely low thermal expansion coefficient, as 

al l other properties are of intermediate value. Even though there is 

some variation in the other properties, the poor resistance to both 

fracture initiation and damage of the dense aluminosilicates (A and C) 
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Is due mainly to high thermal expansion coefficient. 

While the relative thermal shock resistance of A, B, C, and D 

can be explained in terms of a alone, that of materials E and F is 

due to a complex interaction of the mechanical and thermal properties. 

The l a r g e r value of F, three times that of E, follows in a 

* 
straightforward manner from the values of and a, but the underlying 

reason for the eqivalent damage resistance of the two materials is not 

* 

obvious as the materials possess extreme values of E, a^, k, and a. In 

the use of E and F difference in thermal expansion coefficient has only 

a marginal effect on the relative damage resistance as the smaller a of 

F is compensated for by the larger y of material E. 

Table XIV contains the pertinent data and results of selected 

cases based on refractories E and F. The temperature fields and stress 

distributions at fracture for cases E, E l , E2, and E3 are shown in 

Figure 4.31 and 4.32, respectively, and for case F in Figure 4.23. 

While no analytical expression exists which relates strain energy and 

temperature distribution at fracture, equation (4.35), which applies to 

the i n f i n i t e slab geometry (see Appendix I) 

1 
U

n
= - o c t ( T - T ) 

0 2 x a v e 
(4.35) 



TABLE XIV 

Data and Results for the Analysis of Fracture Behaviour  

of Materials E and F Subjected to a Thermal Shock of AT-1200°C 

Case k a xlO
6 

2 
af E 

* 3 
<j

f
xlO

J fc

f °f T 
hf 

R

l 
R

d 

(

s i * C ^ <-T-> 
(MPa) (GPa) ( 8 ) (J/m

2

) (°C) ( 8 ) 

F 1.0 0.50 4.8 10.4 0.346 3.8 0.041 317 3.14 1.44 

E 9.2 4.4 22.0 91.3 0.181 1.15 0.049 71 1.11 1.41 

El 1.0 0.50 22.0 91.3 0.181 1.24 0.203 200 1.11 0.34 

E2 9.2 4.4 42.1 91.3 0.346 2.50 0.109 103 2.12 0.64 

E3 9.2 4.4 22.0 47.7 0.346 2.50 0.057 103 2.12 1.23 

F l 1.0 0.50 4.8 10.4 0.346 10.8 0.019 462 7.62 3.02 
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F i g u r e 4.31 Temperature distributions at fracture for 
cases E, E l , E2, and E3 of Table XIV. 
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F i g u r e 4.32 Stress distribution at fracture for cases 
E, E l , E2, and E3 of Table XIV. 
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is helpful for damage analysis as i t relates the temperature and stress 

distribution to the strain energy density function which, when 

integrated over the the region of the slab, gives the total strain 

energy. 

In case E l , the effect of a change in thermal conductivity i s 

investigated by assigning the thermal properties of F to E. The results 

in Table XIV indicate that an order of magnitude decrease in k reduces 

R^ by a factor of four with negligible Impact on R^. From Figure 4.31 

i t is apparent that the reduction in k produces a much steeper 

temperature gradient and, from Figure 4.32, that correspondingly higher 

stresses and strains develop in the hot face region and, consequently, 

greater strain energy at fracture. This is due to the much-reduced rate 

of heat flow away from the boundary region due to the lower thermal 

properties of case E l . A potentially beneficial effect of the reduction 

in k apparent from cases E and El is a significant increase in hot face 

temperature at fracture. 

Thus resistance to damage appears to be strongly dependent on 

the magnitude of thermal conductivity while the time of fracture or 

i s not. High values of R̂  are associated with large values of thermal 

conductivity and thermal d i f f u s i v i t y . In neglecting the transient 

aspect of the problem the Hasselman derivation does not account for the 

influence of the thermal properties on damage. 



- 164 -

In cases E2 and E3, f i r s t the fracture strength and then the 

e l a s t i c modulus of material E are changed such that of material E is 

identical to that of material F. A comparison of the results for cases 

E and E2 indicates that the effect of doubling o^ is to essentially 

double R. and halve R,. The increase i n U,. noted for case E2 i s I d r 

attributed primarily to the larger a f i e l d at fracture rather than to 

steeper temperature gradients as in case E l . The thermoelastic analysis 

is in agreement with the Kingery and Hasselman treatments as to the 

effect of changes i n fracture strength on resistance to fracture 

i n i t i a t i o n and resistance to damage. 

The results for cases E and E3 indicate that reducing the 

elastic modulus by a factor of two causes resistance to fracture 

i n i t i a t i o n to double, in agreement with the Kingery parameter; but has 

l i t t l e effect on resistance to damage. Although the time to fracture of 

case E3 is double that of case E, i t is apparent from Figures 4.31 and 

4.32 that there is l i t t l e difference in the (T -T) or a distributions 

ave x 

of the E and E3 cases. Hence the total strain energy at fracture and 

the damage resistance of the two cases is similar. 

This result is in opposition to the Hasselman treatment which, 

according to the R
,,l?

 parameter, suggests that damage resistance is 
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directly proportional to elastic modulus. It again reflects the fact 

that the Hasselman model does not account for the transient nature of 

the thermal phenomena. To summarize, the results of cases E2 and E3 

indicate that, i f thermal shock resistance is to be influenced by an 

* 

increase i n o^, then a reduction in elastic modulus is preferable to an 

increase In fracture strength. With the former approach an increase in 

the time to fracture and a l l the benefits associated with a more-highly 

developed thermal f i e l d are obtained without the disadvantage of 

increased strain energy at fracture. 

The f i n a l case F l , in which material F is assigned the low 

thermal expansion coefficient of materials B and D, is i l l u s t r a t i v e of 

the type of material which would offer the best combined resistance to 

thermal shock. In addition to low thermal expansion coefficient, the 

characteristic features of such a material are low elastic modulus and 

moderate fracture strength, and high values of the thermal properties. 

4.3.6.3 Larson 

In this section a thermoelastic interpretation of some of the 

T881 

experimental work of Larson et a l
1 1

 is presented. Fracture i n i t i a t i o n 

analysis is not attempted as the c r i t i c a l temperature differences were 

not well delineated. A strength loss versus R, correlation for the 
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heating case is presented and strength loss behaviour of specimens which 

exhibit catastrophic failure on heating and stable fracture on cooling 

is explained in terms of strain energy at fracture. 

Table XV contains data and results from both the Nakayama and 

Larson studies for the case of thermal shock on heating of AT^=1200 °C. 

The specimens are ranked in order of decreasing strength loss which is 

plotted against the damage resistance parameter in Figure 4.33. 

Although considerable scatter is evident, particularly in comparison to 

the correlations in Figures 4.8 and 4.9, a general trend of decreasing 

percent strength loss with increasing R^ i s d i s c e r n i b l e . Further 

support for the thermoelastic approach is the fact that results of 

independent investigators using the same thermal shock test, but 

specimens of a different size and type, can be presented in the same 

correlation. 

While Larson found positive correlations between percent 

strength retained vs. (R'''') ̂  for catastrophic behaviour and strength 

loss over 200°C range (psi) vs. R for stable behaviour (Figures 4.8 

S t 

and 4.9), i t is clear that there are no trends within the general trend 

in Figure 4.33. Neither strength loss of specimens exhibiting 

catastrophic behaviour (squares) or stable fracture (circles) correlate 

with R,. This indicates that the mode of fracture behaviour is not a 
d 

characteristic feature of thermal shock behaviour in the thermoelastic 
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TABLE XV 

Summary of Larson and Nakayama Results for Heating and AT°1200°C 

Brick k 

sm 0 

1 a x 10
6 

2 

<-r-> 

o x 10
6 

Cc' 1 ) 

a

f 

(MPa) 

E 

(GPa) 

T 

(J/m
2

) 

R

d loss 

A 2,9 1.4 15.5 25.8 74.2 40.1 0.33 96-C 

C 1.3 0.60 15.5 14.2 31.9 44.7* 0.38 65-C 

23 1.7 0.80 6.9 28.0 75.8 57;3 0.52 69-C 

F' 1.0 0.50 8.5 4.8 10.4 41.2 0.52 71-C 

27 1.3 0.60 5.7 22.9 55.8 62.9 0.67 0-C 

28 1.3 0.60 6.2 16.5 40.0 62.0 0.85 48-C 

34 1.3 0.60 7.0 10.1 22.8 46.5 0.94 66-C 

B 1.3 0.60 3.5 20.0 55.7 48.6 0.99 7 0-C 

D 1.3 0.60 3.5 16.0 47.6 39.1 1.00 73-C 

15 2.1 1.0 7.3 11.2 33.8 54.1 1.39 18-S 

E 9.2 4.4 12.6 22.0 91.3 49.6 1.41 39-C 

F 1.0 0.50 8.5 4.8 10.4 41.2 1.44 38-S 

19 1.7 0.80 7.4 11.4 23.4 70.1 1.46 26-S 

6 2.9 1.4 8.0 19.0 55.8 91.1 1.57 17-S 

2 4.2 2.0 9.4 14.2 58.6 58.2 1.63 19-S 

21 1.7 0.80 6.9 7.03 18.6 59.6 2.21 42-S 

8 2.5 1.2 7.8 13.7 61.4 93.8 2.36 38-C 

31 1.3 0.60 6.6 4.07 16.5 58.9 3.53 37-C 

C - Catastrophic 

S - Stable 
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Figure 4.33 Strength loss versus thermal shock 
resistance parameter R̂ . Results from both Nakayama and 
Larson studies for a thermal shock on heating of 1200°C. 
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analysis as i t is in the Hasselman treatment. The most that can be said 

is that the relative location of the circles in Figure 4.33 indicates 

that percent strength loss of the stable specimens is generally smaller 

than for the catastrophic specimens. 

The specimens which fractured in a stable manner and those which 

failed catastrophically with small strength loss (located in the bottom 

half of Table XV) possess at least one of low elastic modulus, low 

fracture strength, high values of thermal properties, or large surface 

energy per unit area. While the influence of thermal expansion 

coefficient is highlighted in the Nakayama study - low a being desirable 

- the effect of y on strength loss i s much more apparent in the Larson 

study. In general, the Larson and Nakayama studies are in agreement as 

to the role of material properties in thermal shock damage resistance. 

Specimen 28 fractured in the catastrophic mode on heating and in 

a stable manner on cooling. This behaviour was attributed primarily to 

an increase in crack density during cooling which, in turn, reduced 

°min
 s u

^ i c i e n t l y to s a t i s f y the condition for stable propagation of 

c > c . . Figures 4.34 and 4.35 show the strength retained and R, 
min a 

versus AT^ curves for the heating and cooling cases. 

The R, versus AT,, curves for heating and cooling cases for 
a r 

specimen 28 do not correspond at a l l with the Larson experimental 
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Figure 4.34 Strength retained and thermal shock 
resistance parameter versus temperature difference for 
the heating case of specimen 28 of the Larson study. 

250 r~ i—i—i—i—i— i—i—i—i—|— IT
9

!— \—n 25 

200-
No 26 
cooling 

O 
/ 20 

/ "d 

100 — • D
N 

-Q 

o 
a. 
2 

10 s 

I I I I 1 I I I I I I 1 L 
500 1000 
Temperature difference CC) 

1500 

F i g u r e 4.35 Strength retained and thermal shock 
resistance parameter Rj versus temperature difference for 
the cooling case for specimen 28 of the Larson study. 
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Figure 4.36 Stress and temperature distributions at 
fracture for the cooling (AT=600°C) and heating (AT=800°C) 
cases of specimen 28 of the Larson study. 
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findings. The smooth thermoelastically-predicted curves suggest no 

constant strength plateau and, moreover, indicate that the mode of 

fracture on heating is distinct from that on cooling. On heating the 

resistance to damage parameter decreases with increasing temperature 

difference in support of the underlying assumption that strength loss is 

related to the strain energy at fracture. 

The opposing trend for cooling suggests that, at least for the 

case of severe thermal shock, fracture behaviour is unrelated to total 

strain energy at fracture since strain energy decreases - R, increases -

a 

with increasing temperature difference and strength loss. Not only is 

strain energy at fracture for cooling approximately two orders of 

magnitude less than that for heating, but the trend suggests that 

strength loss tends to a maximum as strain energy at fracture tends to a 

minimum which, in the l i m i t , is zero. 

The observed trend of AR^ - AT^ on cooling makes sense from a 

thermoelastic point of view as the limiting case is an elementary ideal 

case which has been described by Goodier^^ as follows. A part or the 

whole of the surface of a free s o l i d at temperature T2 i s suddenly 

cooled to T^. I n i t i a l l y , before the temperature change has penetrated 

below the surface, biaxial tensile stress of magnitude E a (^-T^)/(1-v) 

is developed in the surface layer only, wherever the cooling occurs. If 

the temperature difference is sufficient to induce a tensile stress 
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equal to the strength then fracture occurs at time t=0. 

While stress and strain energy density are defined at a point, 

strain energy - an integral quantity - is only defined with respect to a 

fi n i t e region. Thus the strain energy at fracture at t=0 is zero for 

the ideal cooling case described above since the thermal disturbance at 

the boundary has not had time to penetrate into the body. In general, 

for the traction-free case there exists a correspondence between the 

rate of development of strain energy and the rate at which the thermal 

disturbance at the boundary moves through the body. 

This is illustrated in Figure 4.36 which shows the stress and 

temperature distributions at the instant of fracture for the cooling 

(AT
f
=600°C) and heating (AT

f
=800°C) cases for specimen 28. In the 

heating case considerable time ellapses (t^=18.8 s) before the tensile 

stress in the interior of the specimen attains the fracture strength 

and, consequently, the thermal profile is reasonably well-developed with 

a hot face temperature of T^^=188°C. 

In contrast to the heating case, the fracture strength is 

attained almost instantaneously (t^=0.43 s) at the surface of the cooled 

specimen. The thermal disturbance at the boundary has hardly altered 

the temperature profile of the body. The hot face temperature changes 

by only approximately 50°C and the depth of penetration of the 
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temperature change is minimal. Consequently, for rapid cooling the 

strain energy at fracture is small and localized In the vicinity of the 

surface. 

4.3»6.4 Semler 

Semler subjected three sizes of high-alumina refractory 

specimens to the thermal shock conditions of the Ribbon test and 

presented the results as six separate correlations of R"'
1

 and R 

st 

versus percent elastic modulus retained (see Figure 4.14). Table XVI 

contains the estimates of the thermal properties and the %E retained and 

R^ values of each specimen f o r s p l i t (22.9 x 11.4 cm) quarter 

(22.9 x 5.7 cm), and bar (22.9 x 2.5 cm) geometries. The hot face in 

a l l three cases is 22.9 x 2.5 cm. The remainder of the material 

properties are listed in Table VIII. As no specimen designation is 

given there, the y values have been reproduced in Table XVI as a means 

of matching up the data in the two tables. The %E retained values were 

estimated from the correlations in Figure 4.14. 

As the thermoelastic model of thermal shock fracture accounts 

for the influence of geometry a l l of the results of the Semler study can 

be presented in a single plot of percent elastic modulus retained versus 

R^. This has been done in Figure 4.37. In general, with other factors 

held fixed, the specimens with the smaller dimension in the direction of 
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TABLE XVI 

Data and Results of Thermoelastic Analysis  

of Semler Experiments 

No. k a x 10
6 

Y' Splits Quarters Bars 

(

sm°C
) (J/m

2

) %E 

Retain, 

R

d 
; %E 

Retain 

R

d 
%E 

Retain 
Y 

SI 2.9 1.4 65.0 75 0.24 85 0.538 85 1.39 

S2 2.5 1.2 56.0 .8 0.090 79 0.204 92 0.528 

S3 1.7 0.8 31.7 13 0.108 32 0.244 94 0.631 

S4 1.7 0.8 48.0 82 0.242 96 0.534 93 1.40 

S5 1.7 0.8 58.0 85 0.377 85 0.679 100 2.20 

S6 1.7 0.8 63.0 83 0.38 92 0.813 95 2.05 

S7 1.7 0.8 71.0 68 0.313 91 0.666 93 1.73 

S8 1.7 0.8 70.0 90 0.445 90 0.866 100 * 
S9 1.7 0.8 32.9 70 0.214 90 0.441 92 * 
S10 1.3 0.6 34*0 37 0.106 46 0.237 82 0.592 

S l l .84 0.4 17.8 0 0.037 0 0.082 87 0.208 

S12 .84 0.4 22.5 7 0.052 11 0.113 95 0.306 

fracture strength not reached 



Figure 4.37 Percent elastic modulus retained versus 
resistance to damage parameter R

d
 for bar, quarter, and 

spli t geometry of the Semler study. 
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heat flow possess the greater resistance to thermal shock damage. The 

asymptotic relationship suggests that there exists a limiting dimension 

in the direction of heat flow at which a specimen becomes relatively 

insensitive to a particular thermal shock. The interdependence of 

geometry and material properties is reflected by the intermingling of 

ci r c l e s , squares, and triangles. 

The role of some of the material properties with regard to 

resistance to thermal shock damage is apparent from Table XVII which 

gives the ranking (from best to worst) i n terms of of the spli t 

specimens along with some pertinent data. It is apparent from the 

values of R''*' that the Hasselman parameter accounts for the relative 

damage resistance of a series of specimens of fixed size and similar 

thermal properties. The major limitation of the R'''' parameter is that 

i t does not account for the interdependence of transient and geometric 

effects and thereby neglects the influence of thermal conductivity, 

thermal d i f f u s i v i t y , coefficient of thermal expansion, and size, a l l of 

which are important with regard to the industrial problem. 
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TABLE XVII 

Material Properties, Damage Resistance Parameters,and %E Retained  

for Split Specimens of the Semler Study 

Brick k a x 10
6 

R • *'' 'a* E 
;
 R

d 
%E 

sm t-

2 
(mxl0~

3

) (MPa) (GPa) (J/m
2

) 

;
 R

d 
Retain 

S l l 0.8 0.4 34.1 67.0 17.8 0.037 
—i .... 

0
 1 

S12 0.8 0.4 2.0 31.8 69.8 22.5 ' 0.052 7 

S2 2.5 1.2 3.1 45.6 93.0 .. 56.0 0.090 8 

S10 1.3 0.6 3.7 22.9 46.1 34.0 0.106 37 

S3 1.7 0.8 3.9 27.4 75.4 31.7 0.108 13 

S9 1.7 0.8 5.4 9*8 13.5 32.9 0.214 70 

SI 2.9 1.4 7.7 20.0 40.0 65.0 0.240 75 

S4 1.7 0.8 8.4 14.3 30.3 48.0 0.242 82 

S7 1.7 0.8 9.0 17.3 32.5 71.0 0.313 68 

S5 1.7 0.8 13.4 11.2 24.1 58.0 0.377 85 

S6 1.7 0.8 11.5 13.9 30.3 63.0 0.380 83 

S8 1.7 0.8 9.7 9.7 10.5 70.0 0.445 90 
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4.3.7 Summary 

(1) A thermoelastic model of the constant heat transfer coefficient 

thermal shock case has been used to derive both resistance to 

f r a c t u r e i n i t i a t i o n (R^) and r e s i s t a n c e to damage (R^) 

parameters which account for the transient and geometric aspects 

of the problem as well as material properties. 

(2) The validity of the fracture i n i t i a t i o n parameter is suggested 

by correlations between the computed values of time of fracture 

and temperature of hot face at fracture of the Nakayama 

experiments and parameter R^. 

(3) As i n d i c a t e d by R^, resistance to fracture i n i t i a t i o n i s 

directly proportional to fracture strength, the factor (1-v), 

and the ratio of thermal conductivity to thermal diffusivity; 

and inversely related to elastic modulus, coefficient of thermal 

expansion, and the thermal boundary condition (h,AT). 

(4) With regard to the Nakayama and Larson radiation heating thermal 

shock experiments, inverse relationships of percent strength 

l o s s and damage parameter R^ provide j u s t i f i c a t i o n for the 

premise that extent of crack propagation is proportional to 

'available' strain energy at fracture and inversely proportional 

to surface energy. 

(5) Additional support for the thermoelastic approach is provided by 

the excellent agreement between the predicted shape of the 

strength retained-temperature difference curves, as reflected by 

the R.-AT,. curves, and the experimental curves for specimens A, 
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E, F, and F' of the Nakayama study. 

(6) Unlike the Hasselman model which predicts a constant strength 

plateau, the thermoelastic treatment suggests that strength 

decreases continuously over the range AT>AT
cr
 for the heating 

case 

(7) In contrast to the heating case, the thermoelastic analysis 

suggests that extent of crack propagation for the rapid cooling 

case is unrelated to the total strain energy at fracture which, 

for the limiting case of instantaneous change in surface 

temperature, is zero. 

(8) Additional support for the thermoelastic approch is a 

correlation of the results of the Semler thermal shock study 

which utilized three geometries in the form of a single plot of 

percent elastic modulus retained versus damage parameter R^. 

(9) With regard to geometry, both the Nakayama and Semler 

investigations indicate that damage resistance is greatest in 

those specimens with the smaller dimension in the direction of 

heat flow; and the Semler results suggest that there is a 

limiting value of this dimension for which the specimen becomes 

insensitive to a particular thermal shock. 

(10) The thermoelastic analysis indicates that resistance to thermal 

shock damage varies directly with thermal conductivity and 

inversely with coefficient of thermal expansion. The Semler 

results indicate that both the Hasselman R'''
1

 and thermoelastic 

R^ parameters are i n agreement with regard to the influence of 

elastic modulus, fracture strength, and surface energy on 

resistance to damage. 
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4.4 Discussion 

Experimental observation of the constant strength plateau in the 

strength retained versus temperature difference curves is strong 

evidence in support of the Hasselman unified theory of thermal shock. 

While consistent with most experimental findings, the thermoelastic 

model predicts a continuous variation in strength with increasing 

temperature difference subsequent to fracture i n i t i a t i o n at the c r i t i c a l 

condition. In this section some of the fundamental aspects of the two 

treatments are considered in an attempt to resolve this apparent 

discrepancy. 

Fracture occurs in bodies subjected to thermal shock as a result 

of the internal stress reaching a c r i t i c a l value. The nature of the 

stress f i e l d is dependent on the thermal loading which is determined by 

the stress boundary conditions and the temperature f i e l d . As the thermal 

loading of the Hasselman and thermoelastic models is radically 

different, so are the stress fields at fracture in both cases. 

In the Hasselman rectangular shape model thermal stress develops 

due to boundary restraint. The plate is uniformly and instantaneously 
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cooled through temperature difference AT to produce a state of uniaxial 

tensile stress. The model is only applicable to the cooling case as 

uniformly heating the restrained plate produces a state of uniaxial 

compression which would tend to close the existing flaws rather than 

promote fracture. Thus application of the unified theory to the 

interpretation of strength loss relationships for the heating case, as 

has been done in the Larsen study, is questionable on this basis alone. 

Furthermore, uniformly and instantaneously changing the 

temperature of a body would require in f i n i t e thermal conductivity and 

thus is thermodynamically impossible. The poor thermal shock resistance 

of many ceramic materials is in fact due to relatively low thermal 

conductivity. In a l l of the experimental studies considered in the 

previous section the specimens are essentially traction-free and thermal 

stresses develop due to temperature gradients which arise as a result of 

a f i n i t e rate of heat flow from the thermal disturbance at the 

boundary. 

The Hasselman theory has most often been applied to the 

interpretation of fracture behaviour of specimens subjected to severe 

thermal shock conditions such as water quenching. In such cases i t is 

assumed that fracture occurs instantaneously and thus the transient 

aspect of the problem can be neglected. A fundamental premise of the 

derivation for this rapid cooling case is that the sole driving force 
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for crack propagation is the elastic strain energy stored within the 

body at fracture. 

As noted in the previous section thermoelastic computations of 

the Larson water quenching studies suggest that strain energy at 

fracture decreases with increasing severity of thermal shock. As 

strength loss tends to increase with increasing quench temperature 

difference, this suggests another mechanism of fracture than the 

Hasselman suggestion of stored elastic strain energy. Paradoxically, in 

the one practical case to which the Hasselman theory seemingly applies 

there i s , in the l i m i t , no driving force for crack propagation. 

Thermal shock fracture behaviour during rapid cooling appears to 

be more analogous to the fracture behaviour observed i n the 

determination of surface energy by the work-of-fracture method than to 

the constant deformation mechanical model considered by Hasselman. In 

the work-of-fracture method the type of fracture - catastrophic, 

semistable or stable - is dependent on the size of the notch (see 

Figure 2.1). In developing an analogy, the counterpart to the notch for 

the thermal problem would be the cooling rate. 

With slow cooling rates or small notches the catastrophic mode 

of fracture is observed as substantial elastic strain energy develops 

within the body prior to f a i l u r e . At the other extreme of rapid 
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cooling rates or large notches the stable mode of fracture is observed 

as l i t t l e strain energy develops in the system prior to failure. For 

such a mode of fracture the work associated with the loading is 

converted directly to surface energy. In the case of catastrophic 

failure the rate of fracture is expected to be extremely rapid while the 

rate of crack propagation for the stable mode is expected to be 

dependent on the rate of loading. 

In the Hasselman flaw model, the body consists of a uniform 

distribution of equal-sized non-interacting cracks and crack propagation 

occurs by the simultaneous equal advancement of each crack. This 

implies that total failure occurs with a sudden disintegration of the 

body into fragments. While crack patterns can in practice be quite 

complicated - depending on the nature of the thermal shock - simple 

crack patterns are usually obseved in bodies which are subjected to 

one-dimensional heat flow. 

Figure 4.38 shows typical patterns of cracking in bricks of 

various sizes which have been heated in one direction. In general the 

orientation of the cracks can be related to the nature of the thermal 

stress f i e l d in the traction-free body at the instant of fracture. 

Thus, for the thermal conditions associated with the industrial lining 

problem, i t is apparent that crack propagation occurs along discrete 

paths at particular locations in the body rather than by the equal 



- 185 -

4 ^ i 3 i 3 i n . 4^>6>?in. 4 $ « ? i 9 w t . 4 i . o J » 3 l n . 

Figure 4.38 Typical patterns of cracking of various 
sizes (heated faces downwards) (after reference 12) 
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advancement of a l l flaws as proposed by the Hasselman model 

According to the unified theory the plateau originates when the 

catastrophic or kinetic mode of fracture prevails. This mode dominates 

when the i n i t i a l flaw size i s less that a characteristic value c . 
min 

which is dependent only on crack density. Under such conditions, due to 

kinetic energy considerations, the crack formed in the specimen becomes 

subcritical with the result that a f i n i t e increase in AT is required to 

produce subsequent crack propagation and a further decrease in 

strength. 

Another paradox of the Hasselman treatment is that experimental 

verification of the flaw model explanation of the constant strength 

plateau Is impossible. The sequence of events required to produce the 

results shown in Figures 2.11 and 2.12 is outlined with reference to 

Figure 2.10. The experimental procedure consists of subjecting a series 

of specimens of presumably the same i n i t i a l flaw distribution to water 

quenches of varying severity. For example, in a hypothetical experiment 

a single data point is obtained by subjecting a specimen of i n i t i a l flaw 

size Co and strength CSQ to a quench of temperature difference ATQ and 

then measuring the strength of the quenched specimen in a three-point 

bend test. 

It is apparent from Figure 2.10 that the after-quench strength 
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0^ r e f l e c t s the Increase in crack length from Co to c^. According to 

the Hasselman theory the quenched specimen with a crack length of c^ is 

s u b c r i t i c a l with respect to a l l quenches of magnitude AT < AT^. 

However, i t is impossible to verify this prediction since the strength 

test is destructive and thus this specimen can not be subjected to 

another quench. 

Experimental results of the type in Figure 2.11 and 2.12 simply 

reflect the effect of increasing magnitude of quenching temperature 

difference on strength retained of a series of specimens from the same 

population. Thus the smooth trends presented by Davidge and Tappin 

(Figure 2.3) and Ainsworth and Moore (Figure 2.4) which are 

characterized by significant scatter seem more reasonable than the 

strength retained curves presented in Figures 2.11 and 2.12 which are 

characterized by the well-defined discontinuity in slope associated with 

the constant strength plateau. 

The effect of flaws is expected to be reflected in the scatter 

of strength retained values of specimens subjected to the same quench 

temperature difference. It is not obvious how the general trend of 

'average' strength retained over the range of AT investigated can be 

influenced by flaws. Another possible explanation for the constant 

strength plateau, which is suggested by the shape of the h-AT curve in 

Figure 4.18, is that the rate of heat extraction remains constant over 



- 188 -

the range of AT covered by the plateau. However, the thermoelastic 

analysis of the Larson experiments suggests that this is unlikely. 

Despite the fact that flaws are not accounted for in a direct 

manner, the thermoelastic model provides a better interpretation of 

observed thermal shock behaviour than the Hasselman flaw models. The 

key features of the thermoelastic approch are summarized with reference 

to Figure 4.39 which shows a schematic of the thermoelastic prediction 

of the strength retained curve as well as the general variation of 

maximum principal tensile stress, time of fracture and strain energy at 

fracture with increasing thermal shock. The error bars and 

cross-hatched regions indicate that strength retained after thermal 

shock is a s t a t i s t i c a l parameter. The thermoelastic prediction applies 

only to the trend of average strength retained. 

In the thermoelastic model the body is considered traction-free 

and the development of stress is due solely to nonlinear temperature 

distributions. The influence of flaws is accounted for indirectly via 

the magnitude of material properties. Fracture is taken to occur at the 

instant and location at which the maximum principal tensile stress 

reaches a specified value of fracture strength. Extent of crack 

propagation is assumed to vary directly with the available strain energy 

and inversely with surface energy. 
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Figure 4.39 Thermoelastic Interpretation of strength 
retained versus thermal shock behaviour for the heating 
case. 
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The thermoelastic model accounts for the shape of the strength 

retained curve as follows. The important relationships are sketched at 

the top of Figure 4.39 where i t is seen that maximum principal tensile 

stress and total strain energy, increase and time of fracture decreases 

with increasing thermal shock. No change in strength is noted until a 

c r i t i c a l value of thermal shock is reached at which point a,, attains the 

M 

fracture strength. Further increases in the magnitude of thermal shock 

cause fracture to occur at an earlier time and with a greater content 

of strain energy. Thus, as strain energy increases continuously with 

increasing thermal shock for the heating cases considered, the 

thermoelastic model predicts a continuous decrease in strength. 

In summary, the thermoelastic interpretation of thermal shock 

behaviour for the heating case is generally in line with published 

experimental results. The thermoelastic model suggests that the 

strength retained versus temperature difference relationship in the 

range above the c r i t i c a l value is continuous. It is possible that the 

curve may be relatively f l a t in this region for cases in which 

conditions are such that the strain energy at fracture does not vary 

appreciably with increasing severity of thermal shock. However, the 
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thermoelastic treatment gives no indication of a discontinuity in slope 

in the strength retained versus temperature difference relationship at 

AT greater than the c r i t i c a l value for fracture i n i t i a t i o n as does the 

Hasselman flaw model. Finally, the thermoelastic analysis indicates 

that fracture behaviour for the rapid cooling case is unrelated to total 

strain energy at fracture, a fundamental premise of the unified theory. 
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Chapter 5 

THERMAL SHOCK RESISTANCE PARAMETERS FOR INDUSTRIAL APPLICATIONS 

5.1 Introduction 

A thermal problem of widespread industrial importance is the 

thermal stress fracture of refractory structural components of high 

temperature process vessels and industrial furnaces. While the 

principal origin of thermal stress may vary from process to process, a 

common feature of a l l processes is that the lining undergoes at least 

one thermal cycle in which the hot face of the lining is heated from 

ambient to operating temperature and cooled back again. During these 

stages thermal stresses develop due to nonlinear temperature 

distributions. 

If heating or cooling is too rapid the transient temperature 

fields w i l l produce stress of sufficient magnitude to cause fracture and 

thus enhance refractory wear. On the other hand, i f heating or cooling 

occurs over a prolonged period, then energy costs increase, vessel or 

furnace availability decreases, and, in general, production efficiency 

f a l l s . The industrial lining problem is thus concerned with safely 

heating or cooling through a specified temperature range as rapidly as 

possible. 
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This chapter is concerned with the development of theoretical 

fracture i n i t i a t i o n and damage resistance parameters useful for the 

design and selection of refractory structural components for industrial 

linings. In section 5.2 an appropriate mathematical model for the 

Indu s t r i a l l i n i n g - the two-dimensional constant heating rate 

thermoelastic problem - is presented. In sections 5.3 and 5.4 general 

solutions for the maximum principal tensile stress and total strain 

energy are developed. A procedure for inverting the stress solution is 

described in section 5.5. The derivation and application of resistance 

to fracture i n i t i a t i o n and resistance to damage parameters is discussed 

in sections 5.6 and 5.7 

5.2 Industrial Lining Model 

A two-dimensional thermoelastic mathematical model is used to 

simulate refractory components. The physical model is illustrated in 

Figure 5.1 where the half-shape of a rectangular component of arbitrary 

width (w) and length (A) i s shown. Heat flow (q) is one-dimensional, 

from the hot face (y=0) to the cold face (y=A)• The boundaries between 

adjacent components (x = ± w/2) are insulated and traction-free. The 

i d e a l m a t e r i a l i s homogeneous, i s o t r o p i c , and possesses 

temperature-independent properties. Displacements (u,v) are assumed 
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w 
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Figure 5.1 Geometry, orientation of axes, direction of 

heat flow, and stress convention of constant heating rate 

model. 
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small with respect to the component geometry. Stress-strain behaviour 

is linear and elastic to fracture. Fracture is taken to occur at the 

location and time at which the maximum principal tensile stress within 

the shape just reaches a specified value of fracture strength. 

I n d u s t r i a l l i n i n g s are often of composite construction, 

consisting of a working lining and safety or insulating l i n i n g . The 

modelling of heat flow in such structures can be d i f f i c u l t due to 

complex boundary conditions at the hot face and outer wall and 

indeterminate thermal resistances at the interfaces. Also, in most 

processes the nature of the refractory components change during 

operation as a result of refractory wear and in-service alteration of 

the hot face zone due to penetration or chemical attack. 

For simplicity and generality the constant heating rate (<))) hot 

face boundary condition case is considered. The temperature profiles 

are computed using the analytical solution for a semi-infinite slab over 

the range o<y<Jo. The solution is 

2
 y 

T = 4 <|>t i erfc ( ) (5.1) 
2/at 

2 

where t i s time, a i s thermal d i f f u s i v i t y , and i erfc is a repeated 

integral of the error function. The hot face boundary condition and 
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i n i t i a l condition are 

T(t) = <l>t, t>0 (5.2) 

T(y) = 0, 0<y<Jl, t=0 (5.3) 

The temperature solution is presented graphically in Figure 5.2 as 

* 
curves of dimensionless temperture T versus Fourier modulus for various 

* 
y where 

and 

* T 
T - i t ( 5 - 4 ) 

* v 
y = J - (5.5) 

Previous theoretical treatments of the constant heating rate 

problem have considered the case of the insulated cold face boundary for 

r 941 
which the following analytical solution

1 1

 applies 

2 2 
4><y -JT) 

T = <j)t + 
2a 

_ a(2n+l)
2

it
2

t 
16«|>r

 m
 ( - l )

n

 <2n+l)*y -( ^ ) 

5
n
 { * cos[ ] • e (5.6) 

3
 n

 ° ...3 IX an (2n+l) 
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Figure 5.2 Temperature solution for the constant 
heating rate problem in the form of domensionless 
temperature versus Fourier modulus. 
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A practical consideration in choosing the semi-infinite slab solution is 

that the error function solution does not require the evaluation of an 

inf i n i t e series. For a given set of conditions, the temperature profile 

associated with a composite structure consisting of a safety and working 

lining of different thermal properties is expected to l i e between those 

given by equations 5.1 and 5.6. 

A significant advantage of the constant heating rate case over 

the constant heat transfer coefficient case is that the thermal boundary 

condition is expressed as a single parameter (<))) rather than several 

(h,AT). This characteristic and the nature of the thermal stress 

solution enable the development of a general solution for the maximum 

principal tensile stress. A further point in favour of the constant 

heating rate case is that values of safe heating rates for various 

refractory shapes have been published. 

5.3 Solution for the Maximum Principal Tensile stress 

5.3.1 Introduction 

The stress dependence of the two-dimensional constant heating 

rate problem can be expressed as 
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a = f(x, y, t, (|), a, E, v, a, A, w) (5.7) 

The transient behaviour of thermal stress arises solely from that of 

temperature, each temperature distribution producing a unique stress 

f i e l d . The cooling problem is obtained by making negative and adding 

an i n i t i a l temperature term to equation (5.1). 

Since a basic premise is that fracture i n i t i a t i o n is governed by 

the maximum principal tensile stress criterion, the only stress 

component of interest is the maximum principal tensile stress o^. What 

is required is a general solution for the following dependence 

a
M
 = f ( t , <|», a, E, v, a, A, w) (5.8) 

The maximum p r i n c i p a l t e n s i l e stress i s always either a o"
x
 or 

component located along the center line or external boundary. 

The characteristic features of the center line and edge 

distributions of the thermal stress f i e l d of a rectangular shape heated 

from one end are illustrated in Figure 5.3. The maximum tensile and 

c 0 
compressive values of the cr distribution, designated (<*

X
)

M
 and (^

x
)» 

are located along the center line (Figure 5.3A). With regard to the o^ 

d i s t r i b u t i o n , the maximum t e n s i l e value (a )., i s located along the 
' y M 
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Figure 5.3 Typical stress distributions in rectangular 
shapes heated from one end. (A) center line a

x 

distribution, (B) center line a distribution, (C) outside 
edge a

v
 distribution. 
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center l i n e and the maximum compressive value, (°y)
M
> along the sides 

(Figure 5.3C). 

The effect of cooling at the same rate is simply to reverse the 

sign of the stresses. Since the stress components along the center line 

and external boundaries are also principal stresses, on heating the 

c c 
maximum principal tensile stress is the greater of (<?

x
)^

 a n

d (°y)jj and, 

0 E 
on cooling, i t i s the greater of a and (a ) „ . While the location of 

x y M 

the a
x
 component i s fixed at the midpoint of the hot face, that of the 

other peak components is variable and is dependent on conditions at the 

instant of fracture. 

5.3.2 General Solution 

The experimental results of multivariable f l u i d flow and heat 

and mass transfer problems which contain a large number of variables are 

often presented i n the form of empirical equations involving 

dimensionless parameters. A similar approach is used here. Dimensional 

analysis is used to reduce the number of variables sufficiently to 

enable a tabulated solution. The results for selected cases, obtained 

by f i n i t e element analysis, are used as discrete data points to 

construct interpolation curves from which results for arbitrary cases 

can be quickly estimated. 
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The dimensional analysis of the stress dependence of the 

constant heating rate thermal stress problem contained in Appendix VIII 

indicates that the dimensionless form of equation (5.8) is 

* * * * 
a

M
 = f( 9 , r ,

 Y
 ) (5.9) 

where dimensionless maximum principal tensile stress o^, Fourier modulus 

* * * 
9 , aspect ratio r , and dimensionless thermal load y are given by 

o* (5.10) 

* at 
9 = (5.11) 

A
2 

*
 w 

r =- (5.12) 
A 

and 

2 
* <t><xA 
Y (5.13) 

In addition to reducing the number of independent variables, the 

grouping of variables into significant combinations which reflect 

t r a n s i e n t , geometric, and thermal loading ef f e c t s f a c i l i t a t e s 
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subsequent analysis. 

While the number of variables has been reduced from nine to 

four, equation (5.9) s t i l l contains one too many independent parameters 

for a general tabulated or graphical representation. It is necessary to 

follow a two-step procedure to get the general solution. In the f i r s t 

step dimensionless thermal load is fixed and the reduced form of 

o*.01 = f(9*,r*) (5.14) 

i s considered where a„
 rt1

 refers to a, for v =0.01. Generalization for 
U.Ul M 

arbitrary dimensionless thermal load is accomplished in the second step 

* * 
with an appropriate o"ĵ

-

Y relationship. 

The solution of equation (5.14) for a wide range of Fourier 

modulus and aspect ratio for both the heating and cooling cases is given 

in Tables XVIII and XIX. Some of the tabulated results are plotted in 

Figure 5.4 which shows the transient behaviour of the dimensionless 

maximum principal tensile stress on heating for several aspect ratio and 

* 
y =0.01. In general, the maximum pri n c i p a l tensile stress increases 

* 
with increasing Fourier modulus to a limiting value at large 9 . 

A characteristic feature of the transient behaviour is a point 



Table XVIII 

Dloenalonlesa Peak or and <j„ Principal Tensile Stresses on Heating 

* * * 

e °H r 

.125 .25 .375 .50 .625 .75 .875 1.0 1.25 1.50 2.0 

.001 X .000862 .00128 .00144 .00136 .00127 .00117 .00108 .000993 .000878 .000812 .000758 
7 .000732 .000651 .000532 .000436 .000369 .000318 .000277 .000272 .000272 .000271 .000271 

.002 X .00112 .00226 .00274 .00285 .00276 .00267 .00255 .00241 .00221 .00208 .00196 
7 .00130 .00143 .00127 .00110 .000948 .000835 .000736 .000643 .000470 .000316 .000293 

.004 X .00128 .00330 .00467 .00553 .00564 .00570 .00561 .00550 .00525 .00507 .00490 
7 .00198 .00284 .00282 .00259 .00235 .00211 .00189 .00168 .00124 .000839 .000309 

.010 X .00137 .00462 .00785 .0103 .0120 .0132 .0139 .0142 .0148 .0150 .0152 
7 .00306 .00582 .00694 .00716 .00696 .00658 .00613 .00554 .00419 .00286 .00107 

.0*0 X .00144 .00545 .0116 .0184 .0250 .0314 .0372 .0427 .0518 .0581 .0639 
7 .00446 .0118 .0183 .0230 .0260 .0275 .0275 .0261 .0206 .0144 .00543 

.100 X .00145 .00569 .0124 .0213 .0317 .0433 .0559 .0693 .0936 .111 .128 
7 .00518 .0157 .0275 .0386 .0477 .0538 .0560 .0544 .0441 .0314 .0119 

.400 X .00146 .00581 .0130 .0229 .0365 .0557 .0810 .110 .163 .201 .237 
7 .00589 .0201 .0397 .0622 .0835 .0987 .106 .104 .0848 .0616 .0230 

1.0 X .00147 .00582 .0130 .0232 .0378 .0609 .0938 .131 .199 .247 .292 
7 .00620 .0221 .0456 .0743 .102 .122 .130 .128 .105 .0782 .0285 

4.0 X .00147 .00582 .0130 .0232 .0389 .0664 .107 .153 .234 .291 .345 
7 .00647 .0240 .0516 .0866 .120 .144 .154 .152 .125 .0880 .0338 

10.0 X .00147 .00582 .0130 .0232 .0393 .0686 .113 .161 .248 .308 .365 
7 .00659 .0248 .0541 .0914 .127 .152 .163 .161 .132 .0933 .0358 



Table XIX 

Dlnenalonleas Peak o_ and o_ Principal Tensile Stresses on Cooling 

e* * * 
r 

e* * 

.125 .25 .375 .50 .625 .75 .875 1.0 1.25 1.50 2.0 

.001 X .00338 .00575 .00695 .00765 .00810 .00842 .00865 .00882 .00903 .00914 .00922 
y .00240 .00296 .00296 .00297 .00298 .00294 .00288 .00262 .00254 .00241 .00207 

.002 X .00452 .00901 .0117 .0135 .0146 .0154 .0160 .0165 .0171 .0175 .0177 
y .00368 .00517 .00566 .00570 .00578 .00581 .00580 .00573 .00539 .00523 .00490 

.004 X .00561 .0131 .0187 .0226 .0253 .0274 .0290 .0301 .0317 .0327 .0332 
y .00489 .00850 .0102 .0108 .0112 .0112 .0112 .0112 .0112 .0111 .0108 

.010 X .00680 .0191 .0308 .0405 .0483 .0544 .0594 .0632 .0684 .0715 .0734 
y .00709 .0150 .0203 .0237 .0254 .0265 .0270 .0275 .0279 .0279 .0280 

.040 X .00796 .0267 .0506 .0757 .100 .122 .142 .159 .184 .197 .208 
y .00955 .0270 .0444 .0597 .0717 .0806 .0875 .0922 .0958 .0966 .0966 

.100 X .00841 .0300 .0609 .0971 .136 .175 .212 .246 .295 .324 .346 
y .0108 .0340 .0621 .0907 .117 .140 .158 .171 .183 .186 .187 

.400 X .00880 .0331 .0710 .119 .177 .240 .304 .363 .454 .509 .551 
y .0120 .0419 .0842 .135 .189 .239 .279 .307 .334 .340 .340 

1.0 X .00895 .0342 .0746 .129 .194 .268 .342 .416 .528 .596 .648 
y .0126 .0454 .0946 .157 .226 .290 .341 .377 .410 .418 .418 

4.0 X .00907 .0352 .0779 .136 .209 .294 .382 .465 .597 .676 .737 
y .0130 .0488 .105 .180 .264 .341 .402 .444 .484 .495 .495 

10.0 X .00912 .0356 .0792 .139 .215 .304 .396 .484 .622 .706 .771 
y .0132 .0502 .110 .190 .279 .361 .425 .470 .513 .524 .524 



Figure 5.4 Dimensionless maximum principal tensile 
stress versus Fourier modulus for several aspect ratio 
and heating case. 
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of discontinuity i n slope for cases of r <1.0 at which a transition in 

maximum principal tensile stress component occurs. For the heating case 

the (°
X
)

M
 component dominates during the early stages (the portion of 

the curve to the l e f t of the discontinuity) and the (cr ) ^ component 

during the l a t t e r stages. S i m i l a r l y , the (<?
x
) component dominates 

during the early portion of a cooling cycle before being exceeded at 

E 
some later time by the (tfy)^ component. 

A point of discontinuity in slope is also apparent in the solid 

line in Figure 5.5 which shows the variation of the peak values of the 

a and a center l i n e distributions as a function of aspect ratio for 
x y 

* * 
conditions of heating, 9 =0.10, and y =0.05. The peak cr̂  component is 

* * 
greater i n the range r <

r

cr
> while the cr

x
 component dominates in the 

range of aspect ratio greater than the c r i t i c a l value. 

The significance of the inf i n i t e slab geometry - width greater 

than twice the length - is apparent from Figure 5.5 where the maximum 

principal tensile stress is seen to be independent of aspect ratio in 

the range r >2.0. For such geometries one-dimensional treatments which 

consider the o
x
 component only are clearly j u s t i f i e d . The decline in 

magnitude of the peak component with Increasing aspect ratio reflects 

the fact that the a d i s t r i b u t i o n is associated with a localized edge 
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effect• 

The values of the peak o"
x
 and a components in Tables XVIII and 

* 

XIX for y =0.01 can be used to obtain the maximum principal tensile 

stress for arbitrary conditions by taking advantage of a unique property 

of the constant heating rate problem. It turns out that dimensionless 

stress is directly proportional to dimensionless thermal load for 

* 
conditions of fixed Fourier modulus and aspect r a t i o . Thus for 

* 

arbitrary Y
 c a

n be computed using 

* 
Y 

°M "
 a

0.01
 (

 — >
 (5

*
15

> 
\J • UJ. 

where OQ can be estimated from interpolation curves such as those in 

Figure 5.4. Equation 5.15 follows from the nature of the second 

derivative of temperature, the use of a linear constitutive law, and the 

stipulation of fixed aspect ratio. 

The dimensionless form of the solution can be used to obtain 

both the plane strain and plane stress result, the former type of 

two-dimensional analysis usually being applied to long prismatic bodies 

and the l a t t e r to thin bodies. When evaluating o"̂  substitution of a 

nonzero value of Poisson's ratio into equation 5.10 gives the plane 

strain value while setting v to zero yields the plane stress value. 
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5.3.3 Discussion 

No comprehensive treatment of the two-dimensional constant 

heating rate thermoelastic problem has been presented in the literature. 

Previous work has not accounted for the influence of transient and 

geometric effects on fracture i n i t i a t i o n behaviour in a completely 

s a t i s f a c t o r y manner. In this section the K i n g e r y ^ derivation of a 

constant heating rate resistance to i n i t i a t i o n parameter and the results 

r 181 

of Chang et a l
1 J

 for selected two-dimensional cases are examined in 

some detail in order to clar i f y the role of the individual variables, 

particularly those associated with the Fourier modulus and aspect 

rat i o . 

The Chang study was primarily concerned with the thermal shock 

behaviour of BOF bricks and, consequently, interest was focused on 

geometries of small aspect ratio in which the length (the dimension in 

the direction of heat flow) is much greater than the width. As fracture 

in components of this type usually occurs in a direction parallel to the 

hot face, conclusions and design recommendations were based on the 

va r i a t i o n of the peak cr component only, even though i t was noted that 

for shorter times and/or higher heating rates the component can 

exceed the a component. 
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The results of the Chang Investigation concerning the influence 

of heating rate, time, thermal d i f f u s i v i t y , width, and length on the 

magnitude of the peak component, which are given in Figures 5.6 -

5.9, are summarized as follows: 

(i) for moderate heating rates the maximum tensile component 

occurred along the center line parallel to the component length 

in accordance with the fracture mode observed in practice, i e . 

the 0^ component, 

( i i ) for high heating rates the maximum tensile component can occur 

parallel to the face being heated, i e . the a
x
 component, 

( i i i ) the magnitude of stress is proportional to heating rate and an 

inverse function of thermal diffusivity (see Figures 5.6 and 

5.8), 

(iv) the location of fracture is anticipated to be a function of 

heating rate because with increasing heating rate the position 

for any prescribed value of stress such as the tensile fracture 

strength moves toward the face being heated (see Figure 5.6), 

(v) the location of fracture is also expected to be a function of 

time as the peak stress increases and moves away from the hot 
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Figure 5.6 Longitudinal stress distribution along 
the center line for a range of heating rates using 
values of a=12.9xl0

-3

 cm
2

/s, w=10 cm, A=60 cm at 
t=1000 s. (after reference 18) 

e 
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Figure 5.7 Longitudinal stress distribution along 
the center line for a range of times using values of 
a=12.9xl0~

3

 cm
2

/s, 4>=300 °C/h, w=10 cm, and 1=60 cm. 
(after reference 18) 
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Figure 5.8 Peak longitudinal stress as a function of 
thermal d i f f u s i v i t y and values of <|>=300 °C/h, 
w=10 cm,and Jl=60 cm: (A) range of values of time and (B) 
expanded scale for t=500 s. (after reference 18) 

a 

WIDTH, cm 

Figure 5.9 Peak longitudinal stress as a function of 
segment width for three values of thermal d i f f u s i v i t y 
with X=6Q cm and <(>=300 °C/h at t=500 s.(after reference 18) 
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face with increasing time (see Figure 5.7), 

(vi) a maximum was observed at an intermediate value of thermal 

diffusivity for the case t=500 s (see Figure 5.8), 

(v i i ) maximum values of stress were encountered for intermediate 

values of width (see Figure 5.9) 

( v i i i ) the magnitude of the peak a component is independent of length 

for the range 40OK80 cm. 

The observation of maximum values of the peak component for 

intermediate values of width led Chang et al to suggest that the 

Incidence of thermal stress failure might be reduced by either 

reductions or increases in the values of width commonly used in 

practice. The solid line in Figure 5.10 represents the dimensionless 

form of the Chang results for case A in Figure 5.9, while the dashed 

line shows the variation of the peak a stress for the same case. 

x 

As the o
x
 component dominates at larger aspect ratio, such a 

design recommendation is clearly misleading. If the variations of the 

peak values of both components are considered, the general conclusion 

must be that for these conditions the maximum principal tensile stress 

increases with increasing width with a transition in component of 
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Figure 5.10 Dimensionless peak a x and a y principal 
tensile stresses on heating versus aspect ratio for the 
conditions of cas A of Figure 5.9 of the Chang study 
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maximum principal tensile stress occurring at an intermediate value of 

width. Furthermore, the values of heating rate and time used to produce 

the results in Figure 5.9 combine to give a hot face temperature of 

approximately 50°C which is unreasonable for an industrial lining 

application. 

It i s also necessary to determine the magnitude of both and 

a peak stresses when assessing the influence of thermal diffusivity on 

maximum principal tensile stress. The Chang results of Figure 5.8B have 

been reproduced in dimensionless form as the solid line in Figure 5.11. 

The dashed l i n e again indicates the v a r i a t i o n of the peak cr value. 

While a maximum exists in the peak a curve, the general trend is one of 

decreasing maximum principal tensile stress with increasing thermal 

diffusivity with a transition in component occurring at an intermediate 

value of thermal d i f f u s i v i t y . 

The curves in Figures 5.4, 5.5, 5.10, and 5.11 indicate that the 

orientation of the maximum pricipal tensile stress is dependent on 

Fourier modulus and aspect ratio. The consequences of this with regard 

to fracture are illustrated in Figure 5.12 which shows the relative 

location and orientation of the possibilities for maximum principal 

t e n s i l e s t r e s s . The component tends to propagate cracks i n a 

di r e c t i o n perpendicular to the hot face and the component tends to 

cause cracking in a direction parallel to the hot face. 
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Figure 5.11 Dimensionless peak a
x
 and a

y
 principal 

tensile stresses on heating versus Fourier modulus for the 
conditions of Figure 5.8B of the Chang study. 
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y 

Figure 5.12 Relative orientation and location of the 
peak principal tensile stresses on heating and cooling. 
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The component which is the maximum principal tensile for a 

particular set of conditions can be determined from Figure 5.13 which 

shows plots of the c r i t i c a l combinations of Fourier modulus and aspect 

ratio for which the peak o
x
 and a values are equal for the heating case 

( s o l i d l i n e ) and the cooling case (dashed l i n e ) . The component is 

dominant for a l l combinations of Fourier modulus and aspect ratio above 

the curve and the component for a l l combinations below the curve. 

Kingery based the derivation of a resistance to fracture 

i n i t i a t i o n parameter for the case of an in f i n i t e slab heated at a 

constant rate <t> on the following expressions for the maximum principal 

tensile stress: 

Ea <j)A
2 

a
M
 = • (surface) (5.16) 

1-v 3a 

Ea (j)*
2 

a
M
 = • (center) (5.17) 

1-v 6a 

Equations 5.16 and 5.17 are obtained by substituting the non-transient 

portion of the analytical solution given by equation 5.6 into 



Figure 5.13 Combinations of Fourier modulus and 
aspect ratio for which the peak o x and a y principal 
stresses on heating and cooling are equal. 
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Ea
 1

 +h „ +h 

a ( " T + k $
 T d y +

 Ih
3

 J"
 T y d y

 J
 ( 5

*
1 8 ) 

1-v -h -h 

which gives the through thickness stress distribution of an infinite 

slab of half-thickness h. 

The maximum rate of temperature change without fracture $ is 

thus 

a
f
 (1-v) a 

<b = • S = R" • S (5.19) 
fc. a 

where S is a size factor and R" is the resistance to fracture i n i t i a t i o n 

parameter for the constant heating rate problem. Alternatively, R" can 

* * 
be derived d i r e c t l y from the proportionality of a and y which in 

expanded form is 

°M ( l
-

v ) . .2 
M <t>aA 

oc . (5.20) 

In any case, as noted previously, a major advantage of the constant 

heating rate case over the constant convective heat transfer coefficient 

case apparent from equation 5.19 is that the resistance to thermal shock 

parameter is directly related to the boundary condition. 

The Kingery parameter correctly suggests that resistance to 
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fracture i n i t i a t i o n for the constant heating rate case is proportional 

to fracture strength, the factor (1-v), and thermal diffusivity; and 

inversely related to elastic modulus and coefficient of thermal 

expansion. However, in neglecting the transient aspect of the problem, 

the model over-simplifies the influence of thermal d i f f u s i v i t y . 

Furthermore, the R" parameter is not useful for assessing geometric 

effects. 

The maximum in the peak stress variation in Figure 5.8B is 

associated with the complex role of thermal diffusivity in relation to 

the nature and magnitude of the thermal loading. As constant and linear 

temperature fields produce no stress in traction-free rectangular 

shapes, thermal loading is related to the second derivative of 

temperature with respect to space T", which is 

<t> y 
T" = - erfc [ ] (5.21) 

a 2 /(at) 

where erfc is the complement of the error function. The complex 

influence of thermal diffusivity can be attributed to the fact that the 

variable appears in both the transient and non-transient parts of the 

expression for T"; hence the appearance of the combinations of (<}>/a) in 
* * 

y and (at) in 9 . 
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The effect of length on a
M
 Is particularly difficult to sort out 

as this variable is present in a l l three independent dimensionless 

parameters. An interesting finding of Chang et al from the design 

standpoint was that the magnitude of the peak tensile stress is 

independent of length for 40<JK80 cm for values of time, width, and 

heating rate considered. In support of this finding is Figure 5.14, a 

* * 

plot of cr^ versus 9 which highlights the influence of the variables 

contained in the Fourier modulus. 

In each case the curves labelled A, B, and C are obtained by 

varying the respective parameter while holding a l l other variables 

fixed. The starting case (Table XX) is indicated by the large dot at 

the intersection of the curves. Curves A and B reflect the fact that, 

for the example case, a., increases with time and decreases with thermal 
M 

2 
diffusivity over the ranges of 40<t<40000 s and 0.001<a<0.01 cm /s. 

Curve C is additional support for the finding of Chang et al 

that the maximum principal tensile stress is essentially independent of 

length over a wide range of conditions. This behaviour can be 

attributed to compensating thermal loading and geometric effects. An 

* 
increase in length tends to: (1) increase y which tends to increase 

& ft 
o"

M
, ( i i ) decrease 9 which tends to reduce o"

M
, and ( i i i ) decrease r 

which tends to reduce a „ . 
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Table XX 

Data for curves in Figures 5.14 and 5.17 

Heating Rate ( e>
f
 ) 1.5 °C/mln 

Time (t) 4000 s 

Thermal Expansion Coefficient (a) lOxlO
- 6

 °C
-1 

Thermal Diffusivity (a) 0.01 cm
2

8
_1 

Elastic Modulus ( E ) 60 GPa 

Poisson's Ratio ( v ) 0.20 

Width ( w ) 10 cm 

Length ( X ) 20 cm 

9 
Figure 5.14 Dimensionless maximum principal tensile 
stress versus Fourier modulus. Curves are constructed by 
varying time (A), thermal diffusivity (B), and length (C) 
in turn while holding all other variables fixed at the 
values in Table XX. 
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5*3.4 Summary 

The fi n i t e element method and dimensional analysis have been 

used to develop a convenient tabulated form of the general solution for 

the maximum principal tensile stress of a traction-free rectangular 

shape subjected to a constant heating or cooling rate. The solution is 

the basis for the development of a theoretical resistance to fracture 

i n i t i a t i o n parameter which accounts for the influence of geometry and 

temperature range, as well as thermal and mechanical properties. 

5.4 Solution for Total Strain Energy 

The Hasselman relationships involving total strain energy 

(equations 2.10, 2.16, and 2.32) are not applicable to the industrial 

lining problem and, in any case, lack transient and geometric terms. No 

general solutions, or indeed any results for individual cases, for the 

total strain energy of traction-free rectangular shapes subjected to any 

thermal boundary condition could be found in the literature. In this 

section a solution for the total strain energy of the two-dimensional 

constant heating rate thermoelastic problem is presented. 

The strain energy dependence for the two-dimensional constant 
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heating rate problem is 

U = f( t, <{>, a, E, a, v, I, w ) (5.22) 

where U is the total strain energy per unit thickness. Dimensional 

analysis, outlined in Appendix IX, can be used to reduce the number of 

variables from nine to four. The dimensionless form of equation (5.22) 

is 

U* = f( e*,
Y
*,r*), (5.23) 

which indicates that the dimensionless total strain energy U , 

* U(l-v) 
U = (5.24) 

EJl
2

(l+v) 

is dependent on Fourier modulus, dimensionless thermal load, and aspect 

r a t i o . 

As with the solution for maximum principal tensile stress, a 

* 
two-step procedure i s used to obtain U for arbitrary conditions. A 

property of the constant heating rate problem is that dimensionless 

total strain energy i s directly proportional to the square of 

dimensionless thermal load for conditions of fixed Fourier modulus and 

aspect r a t i o . This relationship follows from the fact that strain 
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energy Is dependent on the product of stress and strain, both of which 

are directly proportional to heating rate and thermal expansion 

coefficient. Thus the general solution of equation 5.23 for arbitrary 

Y is given by 

* 
* * ^ 2 

U = U
 M

( ) (5.25) 
0 , 0 1

 0.01 

where UQ Q^, the dimensionless total strain energy for the condition of 

Y =0.01, is obtained from interpolation curves which are constructed 

using the results in Table XXI. The total strain energy is then found 

using 

U = U E I 2
 . (5.26) 

(1 -v) 

The dimensional analysis and the numerical results are used to 

highlight the influence of the individual variables on total strain 

energy. Since the dimensionless strain energy Is independent of elastic 

properties (see equation 5.23), the role of these variables Is apparent 

from equation 5.26 which indicates the total strain energy is directly 

proportional to elastic modulus and the factor (l+v)/(l-v). While the 

U-E direct proportionality holds when all other variables are fixed, the 

Hasselman premise that strain energy at fracture is inversely 

proportional to elastic modulus is valid. This point is considered In 

greater detail in section 5.7. 



Table XXI 

Dimensionless Total Strain Energy for Various Aspect Ratio and Fourier Modulus (Y*-0.01) 

e* * 
r 

e* 

0.125 0.25 0.375 0.50 0.625 0.75 

0.001 0.500(10~
7

) 0.309(10" •6) 0.724(10-*) 0.123(10"
5

) 0.180(10
-5

) 0.240(10" 6 ) 

0.002 0.127(10-*) 0.105(10" -5) 0.280(10"
5

) 0.513(10
-5

) 0.786(10
-5

) 0.109(10" •*) 

0.004 0.283(10-*) 0.311(10" " 5) 0.973(10~
5

) 0.196(10-'*) 0.319(10-'») 0.460(10" 

0.010 0.682(10-*) 0.105(10-*%) 0.412(10-'») 0.962(10-
,

•) 0.174(10-
3

) 0.270(10" 

0.040 0.197(10
-5

) 0.434(10" 0.228(10
-3

) 0.674(10~
3

) 0.146(10-2) 0.262(10" •2) 

0.100 0.355(10-
5

) 0.899(10" 0.540(10-
3

) 0.179(10-2) 0.430(10-2) 0.835(10" 2 ) 

0.400 0.751(10
-5

) 0.210(10" -3) 0.138(10-
2

) 0.498(10-2) 0.127(10"
1

) 0.259(10" -1) 

1.0 0.106(10-
,

») 0.301(10" " 3) 0.202(10-
2

) 0.736(10-
2

) 0.190(10-
1

) 0.390(10--1) 

4.0 0.144(10-
H

) 0.412(10" •3) 0.277(10-2) 0.102(10-
1

) 0.264(10
_1

) 0.543(10" 
l

) 

10.0 0.160(10-
l

») 0.460(10" •3) 0.310(10-
2

) 0.114(10
_1

) 0.296(10
_1

) 0.608(10" -1) 



Table XXI (continued) 

Dimensionless Total Strain Energy for Various Aspect Ratio and Fourier Modulus (y*-0.01) 

8* 
* 

r 8* 

0.875 1.0 1.25 1.5 2.0 4.0 

0.001 0.303(10" 
5

) 0.369(10" *> 0.502(10" "
5

) 0.638(10" 0.909(10" 
5

) 0.207(10" -) 

0.002 0.141(10" *) 0.174(10" •*) 0.243(10" *> 0.314(10" 0.455(10" •*») 0.103(10" 
3

) 

0.004 0.615(10" 4 1 , 0.781(10" •*) 0.113(10" 
3

) 0.148(10" 
3

) 0.219(10" 
3

) 0.503(10" 
3

) 

0.010 0.270(10" 
3

) 0.383(10" 
3
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10.0 0.106 0.162 0.294 0.438 0.728 1.88 
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A theoretical interpretation of the influence of coefficient of 

thermal expansion on thermal shock damage is possible with the aid of 

equation 5.25 which indicates that total strain energy is proportional 

to the square of the thermal expansion coefficient. This r e l a t i o n s h i p 

alone explains the impact of a noted in the Nakayama study and accounts 

for the relative damage resistance of specimens A, B, C, and D (see 

Figure 4.30). 

The time-dependence of total strain energy i s revealed in 

* 
Figure 5.15 which shows the va r i a t i o n of U with Fourier modulus for 

various aspect r a t i o . The shape of the curves reflects the rate of 

development of the stress and strain fields with regard to both 

magnitude and extent of penetration into the body; the rate being 

governed by the velocity at which the thermal disturbance at the 

boundary propagates through the body. As with the magnitude of stress, 

the strain energy tends to a limiting value at large Fourier modulus. 

The influence of width on total strain energy is apparent from 

* 
Figure 5.16 which highlights the variation of U with aspect ratio for 

various Fourier modulus. With a l l other variables held fixed, the 

curves reflect the effect of increasing width. As strain energy i s 

computed as the integral of a density function over a space, the role of 
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I0_ s lO - 2 10"' 10° I01 

0 

F i g u r e 5.15 Dimensionless total strain energy versus 
Fourier modulus for various aspect r a t i o , (y =0.05). 
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F i g u r e 5.16 Dimensionless total strain energy versus 
aspect ratio for various Fourier modulus, (y =0.05) 
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width is two-fold. The rapid increase in U with increasing w over the 

* 
range r <1.0 i s due primarily to the influence of width on the nature 

and magnitude of the stress and strain f i e l d s , while the less rapid 

* 

increase i n U over the range r >2.0 i s due mainly to an Increase in 

size. 

The effect of changes in thermal diffusivity and length on total 

strain energy is not as easily ascertained as these variables are 

* * 

contained i n several dimensionless parameters. The U -9 curves of 

Figure 5.17 reflect the influence of time (curve A), thermal diffusivity 

(curve B), and length (curve C) on dimensionless strain energy. The 

curves were constructed using the example case of Table XX as the 

starting point and and varying each parameter in turn while holding a l l 

others fixed. Thus the range of Fourier modulus corresponds to the 

following ranges of time, thermal d i f f u s i v i t y , and length: 

400<t<40000 s, 0.001<a<0.10 cm
2

/s, and 6.32<K63.2 cm. 

From equation 5.26 i t is apparent that the v a r i a t i o n of U 

reflects the influence of time and thermal diffusivity on U. Thus 

curves A and B indicate that the total strain energy varies directly 

with time and inversely with thermal dif f u s i v i t y over the applicable 

* 
ranges. While curve C gives the variation of U with length, i t is also 

noted from equation 5.26 that the total strain energy is related to the 

product of dimensionless strain energy and length squared. The plot of 
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F i g u r e 5 . 1 7 Dimensionless total strain energy versus 
Fourier modulus. Curves constructed by varying time (A), 
thermal d i f f u s i v i t y (B), and length (C) in turn while 
holding a l l other variables fixed at the values of Table 
XX. Curve (D) is the product of total dimensionless 
strain energy and length squared versus Fourier modulus. 
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(U A
2

) versus Fourier modulus (curve D) suggests that t o t a l strain 

energy is independent of length over the range 20<£<63.2 cm, but that 

further decreases in length over the range 6.32<JK20 cm cause a 

corresponding decrease in strain energy. 

To summarize, the f i n i t e element method and dimensional analysis 

have been used to develop a convenient tabulated form of solution for 

the total strain energy of the two-dimensional constant heating rate 

problem. Total strain energy was found to be proportional to elastic 

modulus, the factor (l+v)/(l-v), and the square of the heating rate and 

the coefficient of thermal expansion; and to increase in a highly 

nonlinear way with increasing time and width; and, for a selected range, 

to vary inversely with thermal diffusivity and directly with length. 

The influence of length is particularly complex as total strain energy 

appears to be independent of length for certain conditions. 

5»5 The Thermal Shock Fracture Problem 

5.5.1 Locus of Fracture Initiation 

It is important to distinguish between the thermal stress 

problem and the thermal shock fracture problem. While the latter i s 

usually concerned with assessing the influence of the individual 

variables on the magnitude of the maximum principal tensile stress a
M
, 
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the former involves the determination of the sets of variables which 

w i l l just produce a maximum principal tensile stress equal to a 

specified value of fracture strength. In the thermoelastic approach, 

the thermal shock fracture problem can be regarded as an inverse thermal 

stress problem. 

where the subscript f denotes values at fracture. In this inverted 

form time of fracture is the dependent variable, whereas stress - in the 

form of fracture strength - is an independent parameter. 

The dimensionless form of the inverse problem can be expressed 

mathematically as 

A convenient mathematical form of the inverse problem is 

t
f
 = f( <t>,, a, a, a

f
, E, v, JL, w ) (5.27) 

* * 
f( Y f ' a 

r ) (5.28) 

where 

a t 

(5.29) 
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2 

y* (5.30) 
a 

and 

o-
f
(l-v) 

a
 = . (5.31) 

Solution curves satisfying equation (5.28), in the form of Y j
-

^ plots 

* * 

for specified crf and r , can be constructed from discrete data points 

* 

which are computed by using the tabulated values of O Q in conjunction 

with the following relationship, 

* 

Yf = 0.01 ( ) . (5.32) 1

 * 

°0.01 

Expression (5.32) is another consequence of the direct proportionality 

of dimensionless stress and dimensionless thermal load for conditions of 

fixed Fourier modulus and aspect ratio. 

* * 

A Yf
-

^^ curve i s e s s e n t i a l l y a locus of fracture i n i t i a t i o n 

conditions for shapes with specified combinations of mechanical 

properties and geometry. The curve in Figure 5.18, which gives a l l the 

combinations of heating rates and fracture times for the example case in 



Figure 5.18 Dimensionless thermal load^at fracture 
versus Fourier modulus at fracture. (a

f
=0.16, r =0.50, 

heating) 
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Table XX, Illustrates a l l the typical features of fracture i n i t i a t i o n 

l o c i . The inverse relationship possesses two characteristic values of 

* 

dimensionless thermal load; Y
m
£

n
» the minimum value required to produce 

* 
f r a c t u r e , and Y

c r
» the value located at the point of abrupt change in 

curvature at which a transition in component at fracture takes place. 

* * * 

For the range Y
m
£

n
< Y < Y

c r
 the °"

v
 component causes fracture and, for 

* * 

the range y >Y
cr
 the o"

x
 component reaches the specified fracture 

strength f i r s t . 

In addition to f a c i l i t a t i n g computation, the dimensionless 

graphical approach provides a means for a geometric interpretation of 

* * 

thermal shock f r a c t u r e i n i t i a t i o n . The Yf
-

9f curve defines the 

practical limits of a particular problem by identifying a l l the 

combinations of variables which satisfy the fracture criterion a =a... 

M f 

It separates the safe operating regime, the cross-hatched area below the 

curve where a^af* from the re g i o n above which i s p r a c t i c a l l y 

inaccessible and one of academic interest only as a.,>a.-. 

M f 
This approach is particularly suitable for the industrial lining 

* * 

problem as the dimensionless parameters and r can be viewed as 

constraints which, once set by the selection of a component, f i x the 

posit i o n of the fracture i n i t i a t i o n locus in the yf~Qf space. Before 
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fi n a l selection i t is possible to evaluate the effect of changes in 

mechanical properties and geometry in terms of a repositioning of the 

fracture i n i t i a t i o n curve, whereas the influence of thermal expansion 

coefficient and thermal diffusivity can be interpreted in terms of a 

* ft 
movement along the Yf~6f curve. 

5.5*2 Location of Fracture 

The location of fracture is an important parameter which can 

have a significant impact on the nature and extent of thermal shock 

r 181 

damage. Chang
1 J

 has suggested that the location of fracture is a 

function of heating rate because with an increase in heating rate the 

location of a particular value of stress moves closer to the hot face. 

This is an important point which requires c l a r i f i c a t i o n . 

F i g u r e 5.19 gives the center l i n e d i s t r i b u t i o n of a i n 
* * 

dimensionless form f o r three combination of y and 9 . Curve A 

ft 
corresponds to the case where the fracture stress of = 0.16 is just 

* 

attained at time 9^ = 0.38 and curve B for identical conditions except 

for a doubling of the heating rate. Curves A and B are in line with the 

observations of Chang who noted that the magnitude of stress is 

proportional to heating rate, while the location of the peak stress is 

independent of heating rate. 
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That the position of any prescribed stress (for example o^=0.16) 

moves closer to the hot face with increasing heating rate is apparent 

from the relative positions of curve A and B. However, the implication 

of using this observation as an explanation for the dependence of 

location of fracture on heating rate is to suggest that the stress 

distribution at fracture is that given by curve B which is equivalent to 

stating that the material is capable of sustaining a stress double that 

of the fracture strength. 

Curve C, the stress distribution at fracture for a heating rate 

double that of case A, illustrates that the location and time of 

* 
fracture are both dependent on y^ or heating rate. The effect of an 

increase i n y^ i s to cause the stress f i e l d to develop more quickly in 

regions near the hot face with the consequence that the peak tensile 

stress reaches the fracture stress at an earlier time at a location 

nearer the hot face. In the limit as y^ + », fracture tends to occur 

instantaneously at the hot face. 

Figures 5.20 and 5.21 can be used to determine the location of 

fracture. Figure 5.20 gives the location along the center line of the 

c * 
maximum p r i n c i p a l t e n s i l e stress on heating, (y

M
) ,as a function of 
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Figure 5.21 Dimensionless location of peak o"
v
 stress 

along the outside edge (x=±w/2) versus Fourier modulus 
for various aspect r a t i o . 
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Fourier modulus. The discontinuity in the curves of r < 1.0 coincides 

with the point at which the t r a n s i t i o n i n cr,. occurs, with the a 
M x 

component dominating to the l e f t of the discontinuity and the 

component to the right. Figure 5.21 gives the location along the 

E * * 
outside edge of the peak stress, (y

M
) » as a function of 9 for the 

cooling case. 

5.5.3 Analysis of Fracture 

A l l of the preliminary requirements for a thermoelastic analysis 

of the fracture behaviour of traction-free rectangular shapes subjected 

to a constant heating or cooling rate have now been presented. The 

dimensionless solutions for temperature, location and magnitude of 

maximum principal tensile stress, and total strain energy can be used to 

determine time of fracture, orientation and location of fracture stress, 

total strain energy at fracture, and a parameter of industrial 

importance, hot face temperature at fracture T ^ , which for the constant 

heating rate problem is given by 

* * 
(ef)(Y£) 

T
h f
 — . (5.33) 

a 

The procedure for fracture analysis is outlined with reference 
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to the example case of Table XXII. The values corresponding to the 

example case are given in brackets. The method is as follows: 

ic ic it & 

(1) compute Oj and r (0^=0.16 and r =0.50) 

* it 

( i l ) construct Y
f

- 9

f
 curve using equation 5.32 and Table XVIII (see 

Figure 5.22) 

ic if it 

( i i i ) construct U^-9^ curve using y^ values, equation 5.25, and 

Table XXI, (see Figure 5.22) 

* * 
(iv) compute y^ for given problem, (7^=0.04) 

it is ic it 

(v) locate 9^ on Y f
- 9

f curve, (9^=0.11) 

ic ic ic ic 

(vi) locate U
f
 on U

f
-9

f
 curve, (U

f
=0.031xl0~

7

) 

(vi i ) locate y* on (y^)*
-

6*
 i n

 Figure 5.22, (y*=0.32) 

( v i i i ) compute t^ using equation 5.29, (t^=73 min) 

(ix) compute using equation 5.26, (U^=0.11 Joules/cm) 
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Table XXII  

Reference Case for Figures 5»23-5.27 

Heating Rate ( $ ) 6 °C/min 

Fracture Strength ( ) 12 MPa 

Elastic Modulus ( E ) 60 GPa 

Thermal Diffusivity (a) 0.01 cm
2

s
_1 

Thermal Expansion Coefficient ( a ) lOxlO"
6

 °C
_1 

Poisson's Ratio ( v ) 0.20 

Width ( w ) 10 cm 

Length ( X ) 20 cm 



Figure 5.22 Dimensionless thermal load, total strain 
energy, and location versus Fourier modulus. (Of=0.16, 
r =0.50, heating) 
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(x) compute using equation 5.5, (y^=6.4 cm) 

(xi) compute T
h f
 using equation 5.33, (T

hf
=440 °C) 

If desired the temperature profile at fracture can be estimated 

* 

using the value of 0^ and Figure 5.2. The s t r a i n energy numerical 

computations are based on a unit thickness of 1 cm. The total strain 

energy at fracture for the example case is evaluated using equation 5.26 

as follows: 

U = (0.031xl0
- 7

)(60xl0
9

—)( 2 0 x 2 0 x 1 — ) ( — 
m
2

 cm 10
6

cm
3

 0.8 

= 0.11 Joules/cm thickness 

Thus, for the two-dimensional case, the JL
2

 term in equation 5.26 

essentially represents a volume per unit thickness. The example case is 

one of plane strain. The plane stress case is obtained using the same 

procedure but setting Poisson's ratio to zero. 

5.5.4 Influence of the Individual variables 

The procedure for fracture analysis described in the previous 

section has been used to construct the curves in Figures 5.23 to 5.25 
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Figure 5.23 Coefficient of thermal expansion and 
thermal diffusivity versus time of fracture. Based on 
the example case of Table XXII. 
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Figure 5.24 Fracture strength and elastic modulus 

versus time of fracture. Based on the example case of 

Table XXII. 
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Figure 5.25 Width and length versus time of 
fracture. Based on the example case of Table XXII. 
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which highlight the influence of thermal and mechanical properties and 

geometry on time of fracture. The approach taken in constructing each 

curve was to vary the parameter of interest while holding a l l other 

variables fixed at the values of the example case of Table XXII. The 

position of the example case on each curve is indicated by a large dot. 

The asymptotic nature of the variations is characteristic of the 

nature of the stress solution for the constant heating rate problem. 

With the exception of thermal d i f f u s i v i t y , the influence of the thermal 

and mechanical properties on time of fracture is qualitatively similar 

to that noted for the constant heat transfer coefficient case discussed 

in Chapter 4. In both cases the time of fracture varies directly with 

fracture strength and inversely with coefficient of thermal expansion 

and elastic modulus. 

For the constant h case, time of fracture i s d i r e c t l y 

proportional to the ratio of thermal conductivity to thermal diffusivity 

which suggests that t^ varies directly with the product of density and 

specific heat, but is independent of thermal conductivity. In the 

contrast to the constant h case, the variation in Figure 5.23 suggests 

that time of fracture varies directly with thermal diffusivity which, in 

turn, suggests that t^ varies d i r e c t l y with thermal conductivity and 

inversely with density and specific heat. 
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The effect of changes in the geometry of the example case on 

time of fracture is illustrated in Figure 5.25. The asymptotic inverse 

relationships indicate that: (i) for a fixed thermal shock (<j>£= 6°C/min 

for the example) there exists a c r i t i c a l minimum size which must be 

exeeded before fracture occurs; ( i i ) time to fracture rapidly decreases 

with increases in size above the c r i t i c a l value, and ( i i i ) there exists 

an upper limit of size at which the time of fracture is independent of 

geometry. The trends in Figure 5.25 are generally in line with the size 

effect observed in the Semler and Nakayama experiments. Finally, i t is 

apparent that the severe thermal shocks such as furnace heating and 

water quenching are not only convenient but necessary in laboratory 

thermal shock studies in order to cause fracture in the typically small 

specimens used in such invesitgations. 

The consideration of thermal and mechanical properties and 

geometry is primarily of interest in the design and selection of 

refractory components. Once selection has been made for a particular 

application, the major concern involves the Impact of thermal operating 

practice on the thermal shock fracture behavior of the refractory 

components. In the two-dimensional thermoelastic model operating 

practice is simulated by a constant heating or cooling rate. 

The nature of damage is a significant consideration with regard 

to the rate of refractory wear of industrial linings. Bricks with 
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cracks oriented perpendicular to the hot face are relatively stable in 

comparison to those with cracks running parallel to the hot face from 

the standpoint that, in the latter case, separation can result in the 

loss of a substantial portion of the l i n i n g . In such a case the amount 

of loss is dependent on the distance between the crack and the hot face. 

The interdependence of heating rate, location and time of fracture, 

strain energy at fracture, and hot face temperature at fracture i s 

illustrated in Figures 5.26 and 5.27. 

From Figure 5.26 the effect of increasing heating rate on the 

example case is to cause fracture to occur at an earlier time. The 

t o t a l s t r a i n energy at fracture i s r e l a t i v e l y constant in the range 

<|>£ < 15 °C/min where the a component dominates. However, in the range 

<)>£ > 15°C/min tends to zero with increasing c(>̂ . This trend indicates 

a correspondence between the i n f i n i t e heating rate case and the case of 

an instantaneous change in surface temperature which was discussed in 

the previous chapter. 

The influence of heating rate on location of fracture stress 

is shown by the dashed line in Figure 5.27. The inverse relationship 

suggests that unsuccessful attempts to avoid fracture by heating at a 

slower rate can theoretically result in a greater loss of brickwork as, 

in addition to delaying fracture and obtaining a higher hot face 

temperature, the effect of a lower heating rate is to cause the location 
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Figure 5.26 Heating rate and total strain energy at 
fracture versus time of fracture. Based on the example 
case of Table XXII. 
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Figure 5.27 Temperature of the hot face at fracture 
and location at fracture versus time of fracture. 
Based on the example case of Table X X I I . 
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of the fracture stress to move away from the hot face. An additional 

point regarding the location of the maximum principal tensile stress is 

that i t reflects the extent of penetration of the stress and strain 

energy fields (see Appendix I ) . Thus, while the total strain energy 

appears to be relatively independent of heating rate over a wide range, 

the concentration of strain energy throughout the shape can vary 

significantly with <]>. 

Ind u s t r i a l processes, thermal shock t e s t s , and labatory 

experiments a l l possess a characteristic range of temperature through 

which a component or specimen is heated or cooled. While the objective 

from the outset in much thermal shock experimental work is to cause 

fracture, the objective in industrial operations is generally to avoid 

fracture. It is clear from Figure 5.27 that i f the example shape is to 

be used i n an application for which T^«400°C, then the optimum heating 

rate is slightly less than 6°C/min. 

If heated at a greater rate fracture w i l l occur, and i f at a 

lesser rate then longer heating times are required with consequence of 

higher heat losses and reduced furnace or vessel a v a i l a b i l i t y . The 

remainder of this work is concerned with the development of resistance 

to fracture i n i t i a t i o n and damage parameters useful for the design and 

selection of refractory components which can be related to thermal 

operating practice. 
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5.6 Resistance to Fracture Initiation. 

5.6.1 Safe Heating and Cooling Rate. 

A theoretical parameter which reflects the industrial objective 

Is safe rate <J> which i s defined as the maximum rate at which the hot Y

s 

face of a rectangular shape can be heated or cooled through a specified 

temperature range T
g
 to produce a maximum principal tensile stress just 

below the fracture strength. The <))
g
 dependence can be expressed in 

function notation as 

6 = f( T , a, a, a,, E, v, w, A). (5.34) 

The dimensionless form of 5.34 is 

Y* = f( V a*, r*) (5.35) 

* 
where y i s the safe dimensionless thermal load corresponding to <)> and 

s s 

* 
the dimensionless temperature constraint e is defined by 

e* = a T . (5.36) 
s s 
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Each point on the locus of fracture i n i t i a t i o n corresponds to a 

unique hot face temperature. The problem is to determine the particular 

combination of dimensionless thermal load and Fourier modulus on the 

curve that produces the specified fracture strength at the instant the 

hot face reaches the required temperature. The temperature constraint 

equation, expressed in dimensionless form as 

ie ie ""1 * 

Y = O ) ( E Q ) , (5.37) 

* * * 
gives a l l the combinations of y and 9 yielding a specified e

g
 which, 

for known a, corresponds to a p a r t i c u l a r T . The safe dimensionless 

* 
thermal load Y is located at the intersection of the locus of fracture 

's 

i n i t i a t i o n curve and temperature constraint curve. 

Figure 5.28 illustrates the graphical technique for the 

* 
determination of Y for the example case of Table XXII and T = 1000 C. 

' s s 
* * 

The temperature constraint curve is easily plotted in the y -9 space by 
noting that, in log-log form, the curve of equation (5.37) is a straight 

* * 
l i n e of slope minus one which passes through the point (0 , Y ) given by 

* * 
(1.0,e ) . Once y i s known the safe heating rate i s found by 

s s 
* 

s u b s t i t u t i n g the a p p r o p r i a t e value i n t o the expression for y 

(equation 5.13). 



Figure 5.28 Locus of fracture i n i t i a t i o n and 
temperature constraint curve (a

f
=0.16, r =0.50, heating) 
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The dimensionless graphical approach permits a geometric 

interpretation of the industrial problem. The upper portion of the 

locus of fracture i n i t i a t i o n and the lower portion of the temperature 

* 
c o n s t r a i n t curve, which are joined at y , form a boundary which 

s 

delineates the safe operating operating zone (cross-hatched region under 

the curve). Along the boundary two outcomes are possible. For y >Y
g
» 

the fracture strength is attained before the desired hot face 

* * 
temperature is reached. For y <y , the component is safely heated to 

s 
* 

the, required hot face temperature, the smaller the y the longer the 

heating period. At a l l points within the safe operating zone the 

maximum principal tensile stress and the hot face temperature are less 

than the boundary values of and T
g
. 

5.6.2 Experimental Support* 

While the constant heating or cooling rate problem has been 

considered for theoretical analyses on numerous occasions, only two 

investigations could be found in the literature which presented 

quantitative experimental results pertaining to this particular thermal 

boundary condition. Both studies involved commercial s i l i c a bricks. 
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Howie conducted constant heating rate experiments on four 

types of s i l i c a brick. A series of specimens (4.5x3x3 in) of each brand 

were heated on the 3x3 in face up to a hot face temperature of 350°C at 

different rates using the apparatus in Figure 5.29. After cooling the 

location of fracture was noted (Figure 5.30) and subsequently correlated 

with heating rate. A comprehensive set of the Howie results are 

reproduced in Appendix 10. 

The results of the Howie study shown in Figure 5.31 (dry 

specimens) and Figure 5.32 (wet specimens) are in general agreement with 

the theoretically predicted relationship in Figure 5.27. In both cases 

the location of fracture is observed to vary inversely with heating 

rate. The maximum safe rate of heating for normal dry hard-fired bricks 

was found to be 5-6°C/min; that of a softer-fired dry specimen about 

8°C/min; and that of wet specimens about 3.5°C/min. 

T12 1 

Clements
 1

 discussed the influence of geometry on the safe 

heating rate of commercial s i l i c a brick. He stated that test pieces in 

the form of rectangular prisms measuring 4.5x3x3 i n . heated through a 

3x3 i n . end, can be heated without cracking at more than twice the rate 

that w i l l crack a 6x4.5x3 i n . piece of the same material heated through 

the 6x3 i n . face. The maximum safe rate of heating for a 9x4.5x3 i n . 

shape, heated through the 9x3 in face, is 1/4 to 1/5 that of the small 
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Figure 5.30 Diagram of spalled specimen showing 
distances measured (after reference 95) 
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reference 95) 

http://Dttl.nct


- 265 -

prism. He reported the safe heating rates of the pieces having the 6x3 

and 3x3-in. faces as 4°C/min and 10°C/min..respectively. 

Furthermore, he stated that the 4.5x3x3-in. pieces invariably 

crack parallel to the heated face, whereas both the larger sizes 

invariably crack normal to this face. Such fracture patterns are in 

line with thermoelastic predictions based on the use of a maximum 

principal tensile stress fracture criterion. However, it was also noted 

that peculiar fracture patterns were occasionally observed for shapes 

with aspect ratio of one (see Figure 4.38). The tabulated values of the 

maximum principal tensile stress (Table XVIII) suggest that the nature 

of the flaw distribution is likely to play a more dominant role ln the 

fracture behaviour of such shapes as the difference in the magnitude of 

the o"
x
 and cr^ components is not so pronounced as it is for the extreme 

geometries. 

In order to compute the safe heating rates for these cases it is 

necessary to estimate some of the material properties as Howie and 

Clements give l i t t l e information about the specimens tested. Howie does 

give thermal expansion curves for the commercial bricks, from which a 

value of a « 30x10 ^°C ̂  can be estimated and used in conjunction with 

an estimate of T of 300-350°C to obtain a dimensionless temperature 

constraint of e « 0.01. An estimate of thermal diffusivity of silica 
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2 

b r i c k of a » 0.007 cm /s i s obtained using values of thermal 

conductivity, bulk density, and specific heat given in reference [21]. 

Literature values are also used to approximate dimensionless 

* r 961 
fracture strength . In a separate paper, Clements gives values 

for c r i t i c a l s t r a i n £
c r
» defined as the modulus of rupture divided by 

the elastic modulus, for six brands of commercial bricks, the average 

being e
c r
 = 0.88±0.02 m i l l i s t r a i n s . In the same paper i t is noted that 

the c r i t i c a l strain data can be converted to a tensile form by using the 

r 971 

result of Astbury
1 J

 (see Figure 5.33) which shows the measured tensile 

strength to be approximately one-half that of the flexural strength. 
r 981 

Substitution of one-half of e and a value of Poisson's ratio
1 1

 of 
cr 

* 
0.14 into equation (5.3) gives af « 0.38. 

Table XXIII contains the safe heating rates of various sizes of 

commercial s i l i c a brick reported by Howie and Clements and the values 

computed using the procedure outlined in the previous sections. More 

important than the good agreement between the theoretically-predicted 

and experimentally-observed values Is the fact that the thermoelastic 

model accounts for the general effect of size. While selection of other 

material properties would alter the magnitude of the safe heating rates, 

the r e l a t i v e values for the various geometries would not be 

significantly affected. 
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Table-XXI.il 

Safe Heating Rates For Various Sizes of S i l i c a Brick 

Size 
(in) 

* 
r 

* 
Ts Howie

95 

(°C/min) 

Clements
12 

(°C/min) 

Computed 

(°C/min) 

3x4.5x3 0.67 0.058 5 - 8 10 9.4 

6x4.5x3 1.33 0.020 - 4 3.2 

9x4.5x3 2.0 0.014 - 2 - 2.5 2.3 

http://Table-XXI.il
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Figure 5.33 Tensile strength versus modulus of 
rupture of ceramics (after reference 97) 
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To summarize, a solution for the maximum principal tensile 

stress of the two-dimensional constant heating rate problem has been 

used to develop a resistance to fracture i n i t i a t i o n parameter which 

accounts for the influence of material properties, geometry, and 

temperature range, and distinguishes between the heating and cooling 

cases. The parameter is determined using a graphical technique to solve 

a system of two simultaneous dimensionless equations consisting of the 

locus of fracture i n i t i a t i o n and the temperature constraint curve. 

Theoretical predictions are in good agreement with safe heating rates 

reported for various sizes of commercial s i l i c a brick. 

5.6.3 Design and Selection* 

In this section the influence of the individual variables on the 

design and selection of refractory components is considered. The 

approach taken is to focus on the example heating case of Table XXII for 

a safe temperature range of 1000°C, and using i t as a reference point 

(indicated by the large dot in Figures 5.34 - 5.36) consider each 

variable in turn. The data in Table XXII was chosen to represent an 

average material and does not correspond to any particular type of 

refractory. The following analysis is essentially an expansion of the 

solution to the multi-dimensional problem about a single point. 

Geometry exerts a strong influence on resistance to fracture 
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Figure 5.34 Safe heating rate versus width for 
various lengths. Based on the data of Table XXII and 
T =1000 °C. 



- 2 7 1 -

cr (MPa) 

Figure 5.35 Safe heating rate versus fracture 
strength and elastic modulus. Based on the data of 
Table XXII and T =1000 °. 

\ 
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Figure 5.36 Safe heating rate versus temperature 
range, thermal d i f f u s i v i t y , and coefficient of thermal 
expansion. Based on data of Table XXII and T

S
=1000°C. 
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i n i t i a t i o n . Figure 5.34 shows the v a r i a t i o n of <b with width for 
s 

several values of length. The discontinuity in curvature in the A=10, 

20, and 30 cm curves indicates a transition in component at fracture. 

The o"
x
 component dominates along the portion of the curve to the right 

of the discontinuity and the to the l e f t . The horizontal portions of 

the 1=5 and A=10 cm curves correspond to the in f i n i t e slab case (width 

greater than twice length) for which the magnitude of the peak stress i s 

independent of width. 

With regard to optimum geometry, the curves indicate that 

maximum resistance to fracture i n i t i a t i o n is associated with BOF-type 

geometries in which the width is much less than the length. In 

comparison, a semi-universal ladle brick shape (~ 18 x 18 cm) with the 

same material properties would possess poor thermal shock resistance. A 

brick of standard dimensions (~ 10 x 20 cm) has an intermediate value of 

safe heating rate. 

It is also noteworthy that the geometry of a component 

continuously changes throughout the l i f e of the lining due to corrosion-

erosion and thermal stress fracture. Thus resistance to fracture 

i n i t i a t i o n is a time-dependent property of lining components. The 

curves in Figure 5.34 suggest that the decrease in length that naturally 

occurs with service tends to increase thermal shock resistance. For 

example, with regard to the reference case, a decrease in Jl from 20 to 
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5 cm is accompanied by a three-fold increase in safe heating rate. 

The mechanical properties of refractory products are primarily 

determined at the production level by such factors as composition, 

particle size distribution, and nature of the raw material and thermal 

schedule during f i r i n g . Due to the nature of the product, significant 

scatter in fracture strengths i s generally observed even when testing 

bricks from the same k i l n batch. However, with regard to fracture 

i n i t i a t i o n , i t is important to note that i t is not the absolute 

magnitude of the fracture strength or elastic modulus that i s 

significant, but the ratio of these two properties (neglecting the 

effect of Poisson's r a t i o ) . 

Figure 5.35 shows the effect of changes in a
f
 and E on <(> while 

L S 

holding a l l other variables fixed. The curves indicate that optimum 

resistance to fracture i n i t i a t i o n is obtained with combinations of high 

and low E. In practice i t i s extremely d i f f i c u l t to alter these 

properties independently as both are sensitive to changes in texture. 

High fracture strength is invariably associated with high elastic 

modulus. 

While geometry and mechanical properties can be influenced 

significantly at the production l e v e l , the thermal diffusivity and 

coefficient of thermal expansion are essentially fixed by composition. 
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Porosity has some effect on thermal properties but the range of porosity 

to be found in commercial products i s not that substantial. The <t>
g 

variations in Figure 5.36 indicate that desirable combinations of these 

two variables are low a and high a. These variables are more of a 

factor in the selection of commercial products. The <)) - T relationship 

s s 

is in line with the observation of Ainsworth'-^-' who noted that the safe 

heating rate varies inversely with temperature. 

In the selection of refractory structural components many 

factors must be weighed before choosing from a variety of commercial 

products of different material properties and geometry. In the follow­

ing hypothetical case the objective is to select the most suitable 

structural component given the operating constraint of T
g
 = 1000°C. The 

criterion for selection is resistance to fracture i n i t i a t i o n . 

The properties of the four materials under consideration are 

given in Table XXIV. Materials A and D represent extreme cases of 

* 

strength to elastic modulus ratio, with the beneficial aspect of high 

of A being offset by a high thermal expansion coefficient and relatively 

low thermal diff u s i v i t y and the negative features of D being compensated 

for by a high thermal d i f f u s i v i t y . Materials B and C are of 

* 
intermediate o_, with B being characterized by the positive and negative 
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Table XXIV 

Resistance to Fracture Initiation of Materials A, B, C, and D 

Size: 10 x 20 cm 

Material a£ x 10
3 o x 10

6 

rc-1) 
a 

(cm
2

s~*) 

R" 

(cm
2

s-
lo

C) 
•s 

(°C/min) 

A 0.48 20 0.0067 0.16 4.7 

B 0.24 5 0.0033 0.16 7.8 

C 0.16 10 0.01 0.16 3.9 

D 0.08 15 0.03 0.16 3.1 
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attributes of extremely low coefficient of thermal expansion and thermal 

d i f f u s i v i t y , respectively. Material C, the sample case of Table XXII, 

is representative of a material possessing average properties. 

Table XXII also contains values of the Kingery parameter R" and 

<j>
s
, the l a t t e r for the 10x20 cm geometry and heating conditions of the 

example case. According to the Kingery parameter a l l of the materials 

possess equivalent resistance to fracture i n i t i a t i o n , whereas the safe 

rate parameter indicates a substantial range i n thermal shock 

resistance, with "d>" of material B more than double that of material D. 
'
 Y

s 

That the safe rate parameter distinguishes between materials of 

* 

identical R" indicates that the positive attributes of high and low a 

are more beneficial than that of high thermal d i f f u s i v i t y , a variable 

which varies directly with 4>
g
. 

The results in the rows of Table XXV indicate the strong 

influence of geometry. For example, doubling the width of a 5 x 20 cm 

piece of material B, the most thermal shock resistant material, 

decreases the safe heating rate by a factor of four to a value 

significantly less than that of a 5 x 20 cm piece of material D, the 

least thermal shock resistant material. In general, larger sizes 

require lower heating rates. However, i t is noteworthy that increasing 

the length in going from the 10 x 20 to 10 x 40 size to give a BOF-type 
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Table-XXV 

Safe Heating Rates (°C/mln) for Various Sizes of A, B, C, and D 

Material 

Dimensions (wxA cm) 

Material 

5x20 10x20 20x20 10x40 20x40 

A 18 4.7 2.1 4.6 1.2 

B 31 7.8 2.7 7.8 2.0 

C 16 3.9 1.9 3.9 0.98 

D 12 3.1 1.6 3.2 0.77 
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geometry has no effect on the safe heating rate. 

The remaining consideration is heating versus cooling. The safe 

cooling rates in Table XXVI indicate that the ranking of the materials 

in terms of resistance to fracture i n i t i a t i o n is similar (B-A-C-D), but 

that the magnitude of safe cooling rate is only one-quarter to one-half 

that of the safe heating rate. Thus the potential for fracture is much 

greater on cooling. 

On the basis of resistance to fracture Initiation, material B is 

clearly the best choice and the 5 x 20 cm shape is the best geometry. 

However, other constraints enter into the refractory selection problem. 

Joints between adjacent bricks are particularly susceptible to slag 

penetration and, consequently, enhanced wear due to corrosion-erosion. 

Also, i f thermal expansion is not accounted for during heat-up, thermal 

stress fracture can occur at the hot face corners where neighbouring 

bricks impinge on each other. Another factor that can limit the size of 

ladle bricks is overhead crane capacity. 

To summarize, the safe heating or c o o l i n g rate <(> i s a 
s 

theoretical resistance to fracture i n i t i a t i o n parameter which is 

applicable to the industrial lining problem. This parameter can be used 

to quantitatively assess the influence of thermal and mechanical 
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Table XXVI 

Safe Cooling Rates (°C/min) for Various Sizes of A, B, C, and D 

Dimensions (wxA cm) 

Material Material 

5x20 10x20 20x20 10x40 20x40 

A 6.5 1.7 0.55 1.6 0.41 

B 8.1 2.0 0.57 2.0 0.50 

C 6.2 1.5 0.53 1.5 0.39 

D 5.3 1.4 0.50 1.3 0.34 



- 281 -

properties, geometry, heating, cooling, and temperature and thereby 

f a c i l i t a t e the design and selection of refractory s t r u c t u r a l 

components. 

5.7 Resistance to Thermal Shock Damage 

5.7.1 Resistance to Damage Parameter 

The resistance to damage parameter R̂  for the constant heat 

transfer coefficient case of Chapter 4 can be made applicable to the 

constant heating rate problem with a slight modification of the 

definition of available strain energy at fracture U
a
« In the constant h 

problem only i n f i n i t e slab geometries were considered. For such a 

problem the fracture stress i s always a a component which tends to 

propagate cracks along the center line (see Figure 5.12) 

In the case of the two-dimensional problem the fracture stress 

can also be a a component which tends to propagate cracks parallel to 

the hot face (see Figure 5.12). Furthermore, i t is apparent from the 

contour maps in Appendix I that the development of the stress and strain 

energy density fields is time-dependent. Both the magnitude and extent 

of penetration of the fields Into the shape are related to the transient 

behaviour of the thermal f i e l d . The portion of the shape under stress 
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tends to increase with time and the extent of penetration in the 

d i r e c t i o n of heat flow can be approximated as twice y^, where y^ is the 

distance between the hot face and the peak value of principal tensile 

stress. 

Thus, for the two-dimensional problem the available strain 

energy at fracture is defined as 

(5.38) 
a

 2C 

where the parameter £ is the appropriate dimension in the direction 

perpendicular to the expected line of crack propagation. If the 

fracture stress i s a component, then C
 =

 w. If the fracture stress 

i s the 0 ^ component, then £ = 2 • y^, where y^ can be estimated using 

Figures 5.20 and 5.21. As with the in f i n i t e slab constant h case, the 

parameter U is meant to reflect the total strain energy associated with 

the tensile region of a 1 x 1 cm column spanning a specimen along the 

line of expected crack propagation. 

5.7.2 Experimental Support 

The most comprehensive study of thermal shock damage of 

refractory components subjected to the constant heating rate boundary 
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condition was done by Kiehl and Valentin who tested some sixty types 

of refractories using the test furnace and arrangement shown in 

Figure 5.37. The provision for detection of the moment of fracture is 

an important feature not provided in most experimental studies. 

The test procedure consisted of heating standard bricks (230 x 

115 x 65 mm) on the 115 x 65 mm face at a constant rate to a maximum of 

1000°C. The extent of damage was determined as the ratio of after-shock 

modulus of rupture to before-shock modulus of rupture. General 

observations can be summarized as follows. 

(i) In a l l cases a c r i t i c a l rate of heating was observed for which 

"total fracture" (total separation or separation > 90%) occurred. 

The c r i t i c a l rate ranged from 2-3°C/min to 100°C/min. 

( i i ) Fracture always occurred In a zone 6 to 8 cm behind the hot face 

with the crack essentially parallel to the hot face. As the 

heated face was always less than 1000 °C at the instant of 

fracture, i t was concluded that this type of thermal shock is a 

low-temperature phenomenon. 

( i i i ) A rapid decrease in modulus of rupture was often observed for 

specimens heated at rates well below the c r i t i c a l value. 

Sometimes internal cracks extending over bigger or smaller parts 
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of the cross-section were found, though the bricks appeared a l l 

right from the outside. 

As indicated in Figure 5.38, three types of behaviour were observed when 

the ratio P/P
0
 was plotted against heating rate. Groups A and B covered 

materials with known poor thermal shock resistance such as dense 

magnesia types and acid resisting refractories. Group C contained the 

vast majority of the aluminosilicate refractories and mullite and 

corundum types. 

Figure 5.39 shows the results of the thermoelastic analysis of 

the thermal shock behaviour of standard-sized bricks of materials A, E, 

and F of the Nakayama study subjected to the Kiehl and Valentin constant 

heating rate test. The curves in Figure 5.39 begin at the safe heating 

rate of each material for T = 1000°C. As no data was given for the 

s ° 

materials corresponding to the curves in Figure 5.38, i t can only be 

stated that the trends of damage resistance parameter versus heating 

rate for the three Nakayama materials - high alumina, magnesia, and 

chamotte - indicate characteristic behaviour and appear to correlate 

reasonably well with the type of strength loss versus heating rate 

curves in Figure 5.38. The general observations of Kiehl and Valentin 

are a l l in line with the thermoelastic eleastic interpretation of 

fracture behaviour. 
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Figure 5.38 Rate of rise in temperature plotted against 
P/P

0
. (after reference 99) 
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F i g u r e 5.39 Thermoelastic damage resistance parameter 
versus heating rate for materials A, E, and F of Nakayama 
study. 
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5.7.3 Design and Selection 

As the ultimate goal is to avoid fracture in lining components, 

design and selection should be based on the safe heating rate parameter 

(j>
s
. However, the potential for damage as reflected by the parameter 

is of interest in many applications in which i t is d i f f i c u l t to control 

the thermal conditions. Furthermore, the parameter R̂  i s a logical 

secondary c r i t e r i a for design and selection in those cases in which the 

safe heating and cooling rates are similar. 

In t h i s section R^ i s computed for several of the safe heating 

rate cases of section 5.6.3. The R^ curves in Figures 5.40 and 5.41 

correspond to the <j>
g
 v a r i a t i o n s i n Figures 5.35 and 5.36. The 

variations reflect the impact of the individual variables on strain 

energy as the curves were constructed using a fixed surface energy of 

y=50 J/m
2

. 

The curve in Figure 5.40 suggests that resistance to damage is 

essentially independent of coefficient of thermal expansion, thermal 

d i f f u s i v i t y , and temperature range. This is somewhat surprising as 

these variables have a strong influence on <t>
s
. Figure 5.36 indicates 

that safe heating rate varies directly with thermal diffusivity and 

inversely with coefficient of thermal expansion and temperature range. 

From equation 5.26 i t is apparent that the a, a, and T can 
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Figure 5.40 Thermoelastic damage resistance parameter 
versus coefficient of thermal expansion and safe 
temperature range. 
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F i g u r e 5.41 Thermoelastic damage resistance parameter 
versus e l a s t i c modulus and fracture strength. 
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* 
influence total strain energy only by influencing U which, according to 

* * * 
equation 5.23, i s dependent on y , 9 , and r . From Figure 5.28 i t is 

* * 
apparent that the magnitude of y and corresponding 9 for the example 

s 

case are affected only by changes which shift the locus of fracture 

i n i t i a t i o n curve or the temperature constraint curve. 

A change in thermal diffusivity does not alter the location of 

either case. Changes i n a and T
g
 s h i f t the temperature constraint 

* 
curve, but hardly affect the magnitude of y as the example case is 

s 

* * 

located on a relatively f l a t portion of the Y f
- 9

f curve. Thus, for the 

safe heating rate analysis, total strain energy at fracture is 

relatively independent of thermal expansion coefficient, temperature 

range, and thermal d i f f u s i v i t y . 

Unlike the thermal properties, the mechanical properties exert a 

s i g n i f i c a n t i n f l u e n c e on resistance to damage. Changes i n these 

* * * 
variables a l t e r which causes the Y f

_ 9

£ curve to shift vertically 

* * 
which, i n turn, s i g n i f i c a n t l y a l t e r s Y and, consequently, U . With 

s 

regard to the mechanical properties the curves in Figures 5.35 and 5.41 

suggest that resistance to fracture i n i t i a t i o n and resistance to damage 

are inversely related. 

Table XXVII gives corresponding values of R, for the various 
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Table XXVII 

Damage Resistance of Various Sizes of A, B, C. and D 

Dimensions (wxJt cm) 

Ma foi»4 a 1 
rlalc JL'XclX 

5x20 10x20 20x20 10x40 20x40 

A 0.17 0.083 0.026 0.083 0.042 

B 0.53 0.28 0.12 0.27 0.14 

C 1.3 0.78 0.22 0.65 0.39 

D 4.9 3.3 0.87 2.2 1.7 
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sizes of materials A, B, C, and D in Table XXV. The damage parameters 

2 

were computed using fixed y = 50 J/m and E = 100 GPa. A comparison 

of the values in the two tables suggests that, in general, both 

resistance to fracture i n i t i a t i o n and resistance to damage are inversely 

related to width. As has been noted in previous sections the influence 

of length is more complex. In the case of fixed w=20 cm, increasing the 

length tends to decrease both resistance to i n i t i a t i o n and to damage 

while, in the case of w=10 cm, increasing the length has negligible 

effect on either. 

The relatively few cases considered in this work have been 

presented primarily for ill u s t r a t i n g the scope of the fracture analysis 

procedure. While general trends are evident with regard to the 

influence of the individual variables on the thermal shock resistance 

parameters, i t should be emphasized that both the stress and strain 

energy solutions for the two-dimensional model are highly nonlinear. 

Consequently, the trends noted for the example case may or may not 

reflect those of a l l other cases. However, the tabulated values and 

fracture analysis procedure can be used to obtain results for any case 

quickly without the requirement of computer evaluation. 
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Chapter 6 

Summary 

6 .1 Conclusions 

) This work is novel in that a two-dimensional constant heating rate 

thermoelastic model has been used to develop both resistance to 

fracture i n i t i a t i o n and resistance to damage parameters which 

account for the influence of thermal and mechanical properties, 

geometry, and temperature range, while distinguishing between the 

heating and cooling cases. 

) A fundamental requirement for the derivation of the thermal shock 

resistance parameters was the development of an invertible general 

solution for the maximum principal tensile stress (o"
M
) as well as a 

general solution for total strain energy (U) in terms of time ( t ) , 

heating rate (<()), thermal expansion coefficient (a), thermal 

diffu s i v i t y (a), elastic modulus (E), Poisson's ratio (v), width 

(w), and length (A). 

) Contrary to the statement of Chang et a l , the problem is amenable 

to dimensional analysis which has been applied to reduce the number 

of variables from nine to four. It has been demonstrated that for 

the constant heating rate problem dimensionless maximum principal 

* * 
t e n s i l e stress (CL.) and dimensionless total strain energy (U ) are 

M * * 
f u n c t i o n s of F o u r i e r modulus (9 ) , aspect r a t i o (r ) , and 

* 
dimensionless thermal load (y ) • 

) Characteristic properties of the constant heating rate problem, not 

previously reported, are that cr is directly proportional to y
 a n

d 

* M 

t o t a l s t r a i n energy U i s di r e c t l y proportional to the square of 
* * * 

y for conditions of fixed 9 and r . 
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(5) Tables of a
M
 and U for a wide range of Fourier modulus and 

aspect r a t i o and fixed y =0.01 have been generated using a fi n i t e 

element numerical method. These tables, in conjunction with the 

relationships noted above, can be used to determine dimensionless 

maximum principal tensile stress and total strain energy for 

arbitrary conditions. 

A simple procedure has been described for inverting the stress 
ic ic 

solution to obtain loci of fracture i n i t i a t i o n (y
f
-9

f
) curves which 

give a l l the combinations of y and 9 that produce a specified 

dimensionless fracture strength for a shape of given aspect ratio. 

An important factor in the industrial problem not accounted for in 

previous theoretical derivations of thermal shock resistance 

parameters is the temperature range of heating or cooling. This 

aspect of the problem is handled by introducing a dimensionless 

temperature constraint equation which gives a l l the combinations of 
* * 

y and 9 producing a specified value of dimensionless temperature 
* 

range e
g
. This parameter i s defined as the product of thermal 

expansion coefficient and temperature range T
g
. 

With the dimensionless approach the influence of the individual 

variables on fracture i n i t i a t i o n behaviour of the two-dimensional 

model can be interpreted geometrically in terms of shifts in the 
ic ic 

Y
f
- 9

f
 and temperature constraint curves. The safe dimensionless 

thermal load Y > located at the intersection of the two curves, 
s * * 

together with the specified and r define a set of combinations 

of variables which satisfy both the fracture criterion and the 

temperature range constraint. 

A new resistance to fracture i n i t i a t i o n parameter <b has been 

developed which is defined as the maximum rate at which a given 

rectangular shape can be heated or cooled through a specified 

temperature range T without attaining the fracture strength a
f
. 
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The parameter is computed using the appropriate y
g
 value. 

(10) A new resistance to damage parameter has been developed which is 

defined as the ratio of surface energy per unit area y to available 

strain energy at fracture U
a
« 

(11) It has been conclusively shown that the thermoelastic approach can 

be f r u i t f u l l y applied to the analysis of thermal stress fracture 

behaviour of refractory materials without explicit consideration of 

the flaw distribution. 

(12) Good agreement between thermoelastic predictions and published 

experimental results with regard to strength retained versus 

thermal shock relationships, location of fracture, and safe heating 

rates indicates that the maximum principal tensile stress fracture 

criterion is valid and that the premise that extent of crack 

propagation is related to available strain energy at fracture is 

reasonable for the cases considered. 

6.2 Recommendations for Future Work 

No previous experimental investigation has provided a l l of the 

information required for the computation of the thermal stress f i e l d at 

the instant of fracture in a given experiment. The minimum requirements 

for a thermoelastic analysis are knowledge of thermal and mechanical 

properties, size, temperature profile at fracture, and location of 

crack. 

Thus a natural starting point for future work is the development 

of an experimental arrangement to provide the above information. 

Acoustic emission analysis is recommended for the determination of time 

of fracture. With a complete set of results for a given experiment, the 

study of other aspects of the thermal shock problem such as the 

prediction of crack patterns is possible. 
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Appendix 1 

Background 

1. Thermoelastic Analysis 

The pertinent equations for the various one- and two-dimensional 

cases considered are summarized in this s e c t i o n ^ . The two-dimensional 

thermoelastic problem consists of the determination of displacements 

(u.v), strains (e , e , v ) , and stresses (a , a , x ) in solid bodies 

under prescribed temperature distributions. Unless otherwise stated, 

one-dimensional temperature profiles of the form 

T = T(y) (1-1) 

are considered with geometry, direction of heat flow, and the stress 

convention Indicated in Figure 1-1. 

For the case of no body forces, the eight unknowns satisfy the 

following eight equations: 
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O T do 

Bx 9y 
= 0 (1-3) 

e = — (a - v a ) + a T 
x E x y 

(1-4) 

e = 7 r ( a - v a ) + aT 
y E y x 

d-5) 

Y = G x 
•xy xy 

= 

e

x dx 

e 

y oy 
,ou , dv

N 

'xy oy ox 

where (1-2) - (1-9) consist of two equilibrium equations, three 

stress-strain relations, and three strain-displacement relations. 

Linear stress-strain behaviour is assumed and elastic modulus E, shear 

modulus G and Poissons ratio v are related by 

(1-10) 
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There are two types of two-dimensional thermoelastic problems: 

plane strain and plane stress. A state of plane strain is defined by 

the set of equations 

u = u(x,y) (1-11) 

v = v(x,y) (1-12) 

w = 0 (1-13) 

where w is the displacement in the z-direction. Plane stress is defined 

by the equations 

o — x = T =0 (1-14) 
z xz yz 

The concept of plane strain is usually applied to long prismatic bodies 

and that of plane stress to thin bodies. 

Both the plane strain and plane stress cases satisfy equations 

(1-2) - (1-9) provided that for the plane strain formulation the 

constants E, v and a are replaced by E^, v^, and respectively, where 
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1 - v 

a
x
 = a (1 + v) (1-17) 

The plane strain case has the additional out-of-plane component where 

and 

a
z
 = v (a

x
 + a

y
) + aET (1-18) 

and, for plane stress, the additional strain component given by 

e = £ (a + a ) + aT (1-19) 
z E x y ' 

Two one-dimensional problems commonly considered are the 

rectangular beam and inf i n i t e slab cases. With respect to Figure 1-1, 

the rectangular beam geometry is such that the thickness in the 

z-direction Is negligible (plane stress condition) and the width w is 

much greater than length SL. For this problem the only non-zero stress 

component i s the centerline component which, after the coordinate 

transformation 

y' = y - h (1-20) 



- 310 -

where h is the half-length S./2, is given by 

+h „ , +h 
a = aE { - T + / Tdy' + i2L / Ty'dy' } (1-21) 

X Z n

 -h 2ti -h 

The geometry of the i n f i n i t e slab case is such that the 

dimensions in the x and out-of-plane z directions extend indefinitely. 

The only non-zero stress components for this case are located along the 

center line and, with respect to the same coordinate transformation, are 

given by 

1
 +h - , +h 

°x
 =

 °z
 =

 t " T + IF / T d y ' + ^ J" T y ' d y ' > ( I _ 2 2 ) 

1 - v -h 2h -h 

For i n f i n i t e slab geometries the strain energy density along the 

center line is given by 

U

0 = " <
 e

x "
 a T

 > °x (1-23) 

and the strain along the center line by 

e

x
 a T

ave (1-24) 

where the average temperature is given by 
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T 
ave 

1 +h 
= — J T dy' (1-25) 

2h -h 

Substituting (1-24) into (1-23) gives 

1 
U, 
0 

= - a a ( T 
2 x ave 

T ) (1-26) 

Total strain energy U for the two-dimensional cases considered 

is determined as the integral of the strain energy density UQ over the 

area of the shape where 

2. Nature of the Thermal Stress Field 

The characteristic features of the two-dimensional thermal 

stress field in rectangular shapes for the heating case are illustrated 

in Figure 1-2. On heating, the component is tensile in the central 

region, compressive in the hot (y=0) and cold (y=A) face regions, and 

zero along the outer edges (x=±w/2). The maximum tensile and 

c 0 

compressive values - designated (<*
x
)

M

 a n

d (
a

x
)» respectively - are 

located along the center line x=0 (Figure I-2A). The shape of a 

U 

x 
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distribution along other lines of x = constant is similar to that of the 

center line distribution. Along lines of y = constant the absolute 

value of the a
x
 component decreases from a maximum value at the center 

line to zero at the outer edge in a similar manner to that of the 

variation in Figure I-2B. 

On heating, the component is tensile in the central regions, 

compresive along the outside edges, and zero along the hot and cold 

faces. The maximum tensile value (a )., is located along the center line 

y M 

(Figure I-2B) and the maximum compressive value (o"y)
M
 along the outside 

edge (Figure I-2C). 

The shear stress x i s zero along the center line (symmetry) 
xy 

and along the external edges (boundary condition). Figure I-2D gives 

the x d i s t r i b u t i o n along a l l other lines of x=constant. On heating 
xy 

the maximum value (^xy^M occurs in the general region of the hot face 

corners. 

If a l l parameter are held fixed the effect of cooling is simply 

to reverse the sign of the stresses. On heating the maximum principal 

c c 
tensile stress is the greater of (a )., and (o )., and on cooling i t i s 

x M y M 
0 E 

the greater of a and (a )
M
-
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The stress and strain energy density fields are strongly 

dependent on time and geometry. The transient behaviour of both is 

related to that of temperature. Figure 1-3 shows the dimensionless 

temperature distribution for values of Fourier modulus of 0.01, 0.10, 

and 1.0. 

The transient behaviour of thermal stress is illustrated in 

Figures 1-4, 1-5, and 1-6 which show the stress contour maps of the a 

* 
Oy, and components for the values of 9 =0.01, 0.10, and 1.0 and 

ie ie 

fixed r =0.50 and y =0.05. Both the magnitude of the f i e l d and the 

extent of penetration into the shape increase with increasing Fourier 

modulus. 

The influence of geometry on the a^, a^, and x^ fields i s 

illustrated in Figures 1-7, 1-8, and 1-9, respectively. These plots 

give the stress contours for each component for aspect ratio of 0.25, 

ie ie 

1.0, 2.0, and 4.0 for conditions of fixed 9 =0.10 and y =0.05. As in 

the case of transient behaviour, the magnitude of the f i e l d and extent 

of penetration into the shape increase with increasing aspect ratio. 

Figures 1-10 and 1-11 illustrate the influence of time and 

geometry on the strain energy density f i e l d . Figure 1-10 gives the 

contours for the Fourier moduli of Figure 1-3 of 0.01, 0.10, and 1.0 and 
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fixed r =0.50 and y =0.05. Figure 1-11 gives the UQ contours for aspect 

* * 

ratio of 0.25, 1.0, and 2.0 and fixed conditions of 9 =0.10 and y =0.05. 

The transient and geometric effects are similar to those noted in the 

case of the stress f i e l d . 
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Figure 1-1. Geometry, direction of heat flow, and stress convention 

for two-dimensional thermoelastic model. 
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Figure 1 - 2 . Characteristic features of the two-dimensional thermal 

stress f i e l d . 
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Figure 1-3. Dimensionless temperature profiles for Fourier modulus 

of 0.01, 0.10, and 1.0. 



Figure 1-4. Stress f i e l d f j r Fourier modulus of 0.01: (A) a
x
, (B) a

y
, 

and (C) x_„ (r =0.50 and y =0.05). 
xy 







Figure 1-7. <J
x
 field for various aspect r a t i o . (A) 0.25, (B) 1.0, 

(C) 2.0, and (D) 4.0. (9 =0.10 and y =0.05) 



Figure 1-8. a field for various aspect r a t i o . (£) 0.25, (B) 1.0, 
(C) 2.0, and (D) 4.0. (9 =0.10 and y =0.05) 



Figure 1-9. T. field for various aspect r a t i o . £A) 0.25, (B) 1.0, 
(C) 2.0, and (D) 4.0. (9 =0.10 and y =0.05) 



Figure 1-10. Strain energy density fields for various Fouriej modulus 
(A) 0.01, (B) 0.10, and (C) 1.0. (r =0.50 and y =0.05) 



Figure 1-11. Strain energy density fields for vajious aspect^ratio. 
(A) 0.25, (B) 1.0, and (C) 2.0. (© =0.10 and y =0.05) 
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Appendix II 

Numerical Method 
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Appendix I I 

Numerical Method 

The thermal stress fields and total strain energy of the various 

cases considered have been computed using a two-dimensional f i n i t e 

element model. Isoparametric 8-noded quadrilaterial elements and Gauss 

quadrature numerical integration were used. The computer program was 

constructed in such a way as to handle both the plane strain and plane 

stress cases. The local and global coordinate systems, node numbering, 

and interpolation functions for the isoparametric formulation can be 

found in [1] along with the sampling points and weights used for the 

third order Gauss quadrature. 

c c E 
Three of the stresses of interest - (a )„, (a )„, (a ) „ , were 

x M' y M y M 

determined by f i r s t evaluating the stress at the Gauss points nearest 

the centerline and outside edge and then selecting the appropriate 

maximum value. The component (o"
x
)^

 w a s

 determined as the value at the 

node at the midpoint of the hot face. Strain energy was computed 

element by element using numerical integration and the total was arrived 

at by summing over a l l elements. 
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The results of a convergence test on a typical size of 

rectangular shape considered for the constant heating rate problem are 

given in Tabler I I - l . The dimensional variables are defined and the 

thermal conditions stated in Appendix VIII. The variables NX, NY, and 

NE refer to the number of elements along the width, the length, and the 

total number, respectively. The values in brackets indicate the 

percentage change with respect to the next coarser mesh. 

It is apparent from a comparison of results for the coarse and 

fine meshes that even relatiely coarse grids produce reasonable results. 

As l i t t l e change is observed when the mesh is increased from 200 to 400 

elements, most computations were performed using 200 element grids. 

Verification of results consisted of a number of indirect checks 

r 21 

i n a d d i t i o n to reproducing the results of Chang
1

 et a l for the 

two-dimensional constant heating rate case. Hollow cylinder and 

inf i n i t e slab one-dimensional solutions were approximated by suitable 

modification of the boundary conditions and geometry. An additional 

check was the comparison of theoretical and computed values of the rato 

of plane stress and plane strain of various parameters. For the 

traction-free thermal stress problem, the theoretical ratios for 

dispalcements, strains, stresses, and strain energy are: 
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(displacements and strains) 
plane strain 

(displacements and strains) 
= 1+v (II-l 

plane stress 

(stress) 
plane strain 1 

1-v (stress) 
(II-2) 

plane stress 

(strain energy) 
plane strain 

plane stress 

1+v 

1-v (strain energy) 
(II-3) 

As solutions for the total strain energy of two-dimensiopnal 

thermoelastic problems could not be found, several elementary cases were 

considered for verification of the numerical results. The numerical 

method yielded the zero strain energy state of the traction-free 

rectangular shape with constant or linear temperature p r o f i l e . The 

numerical technique also reproduced the plane stress and plane strain 

values of s t r a i n energy density u"
o
 for the case of the plate subjected 

to a uniform temperature rise while displacements are fixed on the 

bounding surface. 

1. R. D. Cook, "Concepts and Applications of Finite Element Analysis", 

John Wiley and Sons, New York (1981) 

References 
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" Analysis of Thermal Stress Failure of Segmented Thick-walled 
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Table II-l 

CONVERGENCE TEST RESULTS FOR 20x20 cm SHAPE 

(dimensionless stress given in millistrains) 

(6*=.10, r*=1.0, y*=0.05) 

MESH 

1 2 3 4 

NX 5 10 10 20 
NY 10 10 , 20 20 
NE 50 100 200 400 

<<4>M .3498 .3474 (-.69) .3463 (• -.32) .3460 (-.09) 

<°y>M .2775 .2770 (- .18) .2719 ( -1.8) .2716 (-.11) 

<** 1.247 1.239 (-.64) 1.228 ( -.89) 1.225 (-.24) 

.8812 .8756 (- .64) .8528 ( -2.6) .8522 (- .07) 

.51995 .51979(-.03) .51904( -.14) .51899(-.01) 
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Appendix III 

Dimensional Analysis of the Convective 

Heat Transfer Thermoelastic Problem 
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Appendix III 

Dimensional Analysis of the Convective Heat Transfer 

Thermoelastic Problem 

Dimensional analysis i s used to obtain the dimensionless 

functional forms of thermal stress a and total strain energy u for the 

two-dimensional constant convective heat transfer thermoelastic problem. 

The dimensional forms are 

a = f (x, y, t, E, v, a, a, k, h, T
m >
 w, JQ (III-l) 

and 

U = f ( t , E, v, a, a, k, h, T,, w, A) (HI-2) 

The Buckingham IT theorem states that the number of dimension­

less parameters needed to correlate the variables ln a given process is 

equal to n-m, where n is the number of variables involved and m is the 

number of fundamental dimensions. Thus the thermal stress dependence 

can be expressed in terms of nine dimensionless parameters and the total 

strain energy in terms of seven. Rayleigh's method of indices is used 

to obtain the dimensionless groupings. 

The thermal stress relationship is considered f i r s t . Equation 

(III-l) can be rewritten as 
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a =(x)
a

 ( y )
b

 ( t )
c

 (E)
d

 ( v )
e

 (a)
f

 (a)
8

 (k)
h

 (h)
1

 (T )
j

 ( w )
k
 (JQ* (III-3) 

and the fundamental units of each substituted to give 

t - ^ ]
1

 =[L]
a

[L]
b

[T ] C [ L]d[ ] e [ | ] f [ ^ ] 8 [ ^ [ - J l . ] i [ e ] J [ L ]
k

[ L ]
A

( I I I - 4 ) 

LT LT T 9 T e 

Balancing each fundamental dimension gives 

M: l = d + h + i (III-5) 

L : - l = a + b - d + 2g + h + k + A (III-6) 

T : -2 = c - 2d - g - 3h - 31 (III-7) 

9 : 0 = - f - h - i + j (III-8) 

and expressing four of the exponents in terms of the remainder yields 

d = 1 - h - i (III-9) 

g = c - h - i (111-10) 

j = f + h + i ( I I I - l l ) 

Jt = - a - b - 2 c + i - k (111-12) 

Substituting the above into (III-4) and separating exponents lead to 
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(
£ ) - (*)

a

 ( i )
b

 ( 4 ) c (v)
e

 (
a T
J

f

 ( ^ ) h C ^ ) 1 (f)
k

(III-13) 

The right-hand side of (111-13) can be manipulated to give the following 

nine dimensionless combinations: 

kT 
a , ,x y at _ hA °° w

 N / T T T 1 / N 

E~~
 =

 w~~' A ' —
 V

'
 a T

» ' —> ZT> ~ ) (III-l*) 

For the simple linear thermoelastic problems being considered 

the factor (o/E) i s directly proportional to (oT ) and inversely propor­

t i o n a l to (1-v). Also the combination (kT^/Ea) can be ignored as the 

elastic modulus i s assumed to be independent of temperature. Thus 

equation (111-14) reduced to 

o (1-v) _
 f

 /2L_ Z_ £ L M >v r - T T T - I S ^ 

EaT w ' A ' 9 ' k 'A
 U i i i ; 5 ; 

A similar analysis would show that the seven dimensionless 

parameters of the total strain energy dependence can be expressed in the 

following form 

U ,at hA w
 k T

» 
( T ' ~» V a

 T

» ' Ea~
 (III

"
16

> 
EA A 
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As with the stress analyais v can be combined with the dependent 

parameter and the factor (kT /Ea) may be ignored. 

OO 

Thus the dimensionles forms of (III-l) and (IH-2) are 

it ic it ic ic "k 

o \ = f ( x , y , 0 , B , r ) (111-17) 

and 

where 

* * * * U
h
 = f (9 , 6 , T^, r ) (111-18) 

°t = (HI-19) h E a T 

T J * = ILiiZv)- (111-20) 
h
 2 

EJl (1+v) 

* x x = — (111-21) 
w 

* 
y 

f - (111-22) 

e* = — (in-23) 
X 2  

* h i 

8 = (111-24) 
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* 
T = aT 

C O C O 

r = 
w 

(111-25) 

(111-26) 

For applications in which particular members of the thermal 

stress f i e l d are of interest - for example the maximum principal tensile 

* * 

stress - the dimensionless location (x , y ) is a dependent parameter 

and equation (111-17) reduces to 

'ft A Trfc <r!f 
o

h
 - f (9 , B , r ) (111-27) 

For the one-dimensional in f i n i t e slab problem, stress is independent of 

* 
aspect ratio r and (111-18) reduces to 

a* = f (G*, B*) (111-28) 

* 
where dimensionless stress is only dependent on Fourier modulus 0 and 

* 
Biot modulus B • 
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APPENDIX IV 

Tabulated Values of the 

Dimensionless Maximum Principal Tensile Stress for 

Symmetric Heating and Cooling and Nonsymmetric 

Heating Infinite Slab Thermoelastic Problems 
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TABLE IV-1 

Dimensionless Maximum Principal Tensile Stress for Various 

Fourier and Biot Modulus for the Symetric Cooling Infinite Slab Case 

* 
0 

* 
P 

.10 .15 .20 .30 .50 .70 1.0 

.0001 - - - - .00614 .00858 .0122 

.0002 - - - - .00849 .0119 .0169 

.0004 - - - - .0116 .0162 .0231 

.0007 - - - - .0150 .0209 .0296 

.001 .00356 .00534 .00711 .0106 .0176 .0245 .0347 

.002 .00491 .00735 .00978 .0146 .0242 .0335 .0474 

.004 .00676 .0101 .0134 .0201 .0331 .0458 .0643 

.01 .0103 .0154 .0203 .0302 .0495 .0681 .0947 

.02 .0138 .0206 .0273 .0404 .0657 .0898 .124 

.04 .0183 .0272 .0359 .0529 .0851 .115 .156 

.1 .0250 .0370 .0486 .0708 .112 .148 .196 

.2 .0293 .0431 .0562 .0809 .125 .162 .209 

.4 .0310 .0450 .0582 .0821 .122 .154 .190 

1.0 .0295 .0418 .0525 .0704 .0954 .111 .122 
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TABLE IV-1 (cont'd) 

Dimensionless Maximum Principal Tensile Stress for Various  

Fourier and Biot Modulus for the Symmetric Cooling Infinite Slab Case 

* 
0 

* 
P 

1.5 2.0 3.0 5.0 7.0 10.0 

.0001 .0183 .0242 .0360 - -

.0002 .0251 .0333 .0494 - -

.0004 .0343 .0453 .0668 - -

.0007 .0439 .0579 .0848 - -

.001 .0514 .0676 .0987 .156 .208 .276 

.002 .0697 .0911 .132 .204 .267 .346 

.004 .0939 .112 .174 .262 .335 .423 

.010 .136 .175 .242 .350 .431 .520 

.020 .175 .221 .299 .414 .493 .572 

.040 .217 .269 .351 .462 .531 .594 

.100 .262 .313 .388 .474 .519 .557 

.200 .267 .309 .364 .418 .443 .462 

.400 .230 .254 .281 .300 .306 .308 

1.00 .128 .127 .120 .107 .0981 .0905 
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TABLE IV-2 

Dimensionless Maximum Principal Tensile Stress for Various  

Fourier Modulus and Biot Modulus for the Symmetric Heating 

Infinite Slab Case 

* 
0 

* 
8 

0.10 0.15 0.20 0.30 0.50 0.70 1.0 

.001 .000100 .000150 .000200 .000300 .0005 .000692 .000982 

.002 .000200 .000300 .000400 .000597 .00099 .00138 .00195 

.004 .000400 .000599 .000800 .00119 .00196 .00272 .00384 

.010 .00101 .00153 .00200 .00298 .00490 .00675 .00942 

.020 .00199 .00299 .00393 .00582 .00953 .0131 .0181 

.040 .00395 .00590 .00778 .0115 .0186 .0253 .0347 

.10 .00902 .0134 .0176 .0258 .0411 .0550 .0737 

.20 .0134 .0197 .0258 .0373 .0581 .0762 .0992 

.40 .0154 .0224 .0290 .0411 .0618 .0784 .0976 

1.0 .0148 .0210 .0265 .0357 .0487 .0569 .0636 
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TABLE IV-2 (cont'd) 

Dimensionless Maximum Principal Tensile Stress for Various  

Fourier Modulus and Biot Modulus for the Symmetric Heating 

Infinite Slab Case 

* 
0 

* 
P 

1.5 2.0 3.0 5.0 7.0 10.0 

.001 .00146 .00192 .00281 .00449 .00602 .00808 

.002 .00287 .00377 .00547 .00859 .0113 .0149 

.004 .00563 .00734 .0105 .0162 .0209 .0269 

.010 .0137 .0177 .0248 .0368 .0461 .0568 

.020 .0259 .0330 .0453 .0645 .0786 .0936 

.040 .0489 .0612 .0817 .111 .131 .151 

.10 .100 .122 .155 .196 .221 .243 

.20 .129 .152 .183 .216 .233 .247 

.40 .120 .134 .151 .164 .169 .171 

1.0 .0675 .0676 .0646 .0584 .0542 .0505 
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TABLE IV-3 

Dimensionless Maximum Principal Tensile Stress for Various  

Fourier Modulus and Biot Modulus for the Nonsymmetric Heating 

Infinite Slab Case 

* 
e 

* 
8 

1.0 1.5 2.0 3.0 5.0 7.0 10.0 15.0 20.0 

.001 .00307 .00455 .00599 .00878 .0140 .0188 .0252 .0343 .0418 

.002 .00546 .00806 .0106 .0153 .0240 .0317 .0417 .0550 .0653 

.004 .00937 .0137 .0178 .0256 .0392 .0507 .0648 .0825 .0952 

.01 .0172 .0249 .0320 .0449 .0660 .0818 .100 .121 .134 

.02 .0246 .0350 .0443 .0603 .0845 .101 .119 .137 .147 

.04 .0303 .0422 .0523 .0686 .0907 .105 .118 .129 .135 

.10 .0306 .0405 .0482 .0591 .0710 .0770 .081 - -
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APPENDIX V 

Results of the Thermoelastic Analysis 

of the Nakayama Experiments 
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TABLE IV-1 

REFRACTORY A 

T h 
cal 

scm C 

* 

h 
* 

(s) 

U

f 
(J/cm) 

(a

f>FE 
(MPa) 

% Diff 

950 0.00322 0.0177 0.46 0.0425 3.00 0.100 26.3 + 2.0 
1000 0.00362 0.0168 0.52 0.0350 2.50 0.111 26.0 + 0.8 
1100 0.00445 0.0153 0.64 0.0260 1.86 0.139 26.0 + 0.8 
1200 0.00540 0.1140 0.77 0.0200 1.43 0.170 26.2 + 1.6 
1300 0.00643 0.0130 0.92 0.0155 1.11 0.202 26.3 + 1.9 
1400 0.00765 0.0120 1.10 0.0120 0.86 0.234 26.0 + 0.8 
1500 0.00900 0.0112 1.28 0.00960 0.69 0.272 26.2 + 1.6 

TABLE IV-2 

REFRACTORY B 

T h 

cal 

scm
2o

C 

* * 

°f 
(s) 

U

f 
(J/cm) 

( V F E 
(MPa) 

% Diff 

1050 .00405 0.0731 1.35 0.0730 12.2 0.0513 20.4 + 2.0 
1100 .00445 0.0699 1.48 0.0620 10.3 0.0562 20.1 + 0.5 
1200 .00540 0.0641 1.80 0.0465 7.75 0.0690 20.1 + 0.5 
1300 .00643 0.0592 2.14 0.0355 5.92 0.0810 19.7 - 1.5 

1400 .00765 0.055 2.55 0.0280 4.67 0.0959 19.6 - 2.0 

1500 .00900 0.0513 3.00 0.0227 3.78 0.112 19.7 — 1.5 
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TABLE IV-3 

REFRACTORY C 

T h 
cal 

scm
2

°C 

* * 

(s) 

U

f 
(J/cm) 

( VFE 
(MPa) 

% Diff 

850 0.00258 0.0254 0.86 0.0327 5.45 0.0803 14.1 - 0.7 

1000 0.00362 0.0215 1.20 0.0198 3.30 0.112 14.0 0.0 

1100 0.00445 0.0196 1.48 0.0147 2.45 0.136 14.0 0.0 

1200 0.00540 0.0180 1.80 0.0113 1.88 0.165 14.0 0.0 

1300 0.00643 0.0166 2.14 0.00876 1.46 0.191 14.0 + 0.7 
1400 0.00765 0.0154 2.55 0.00690 1.15 0.223 14.1 + 0.7 
1500 0.00900 0.0144 3.08 0.00558 0.93 0.259 14.2 + 1.4 

TABLE IV-4 

REFRACTORY D 

T h 

cal 

scm^°C 

* * 
9

f 
(s) 

U

f 
(J/cm) 

(ff

f>FE 
(MPa) 

% Diff 

1050 .00405 0.0686 1.35 0.0682 11.4 0.0414 16.5 + 3.1 
1100 .00445 0.0655 1.48 0.0570 9.50 0.0447 16.1 + 0.6 
1200 .00540 0.0600 1.80 0.043 7.17 0.0548 16.0 0.0 

1300 .00643 0.0554 2.14 0.0337 5.62 0.0658 16.1 + 0.6 
1400 .00765 0.0514 2.55 0.0263 4.38 0.0769 15.9 - 0.6 

1500 .00900 0.0480 3.00 0.0210 3.50 0.0888 15.7 — 1.9 
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TABLE IV-5 

REFRACTORY E 

T h 

cal 

scm
2o

C 

<°£>h 

* * 
0

f 

(s) 

U

f 
(J/cm) 

(VFE 
(MPa) 

% Diff 

1100 0.00445 0.0131 0.202 0.068 1.55 0.0397 21.9 - 0.5 

1200 0.00540 0.0120 0.245 0.0508 1.15 0.0491 21.9 - 0.5 

1300 0.00643 0.011 0.292 0.0390 0.89 0.0596 21.9 - 0.5 

1400 0.00765 0.0103 0.348 0.0305 0.69 0.0707 21.7 - 1.4 

1500 0.00900 0.00958 0.409 0.0243 0.55 0.0840 21.8 - 0.9 

TABLE IV-6 

REFRACTORY F (2x7 cm) 

T h 

cal 

scm
2o

C 

* * 
9

f 
fc

f 
(s) 

U

f 
(J/cm) 

(o

f>FE 
(MPa) 

% Diff 

950 0.00322 0.0428 1.28 0.0390 7.80 0.0237 4.72 - 2.7 

1000 0.00362 0.0407 1.45 0.0330 6.60 0.0266 4.69 - 3.3 

1100 0.00445 0.0370 1.78 0.0246 4.92 0.0328 4.69 - 3.3 

1200 0.00540 0.0339 2.16 0.0190 3.80 0.0401 4.74 - 2.3 

1300 0.00643 0.0313 2.57 0.0148 2.96 0.0469 4.71 - 2.9 

1400 0.00765 0.0291 3.06 0.0117 2.34 0.0549 4.70 - 3.1 

1500 0.00900 0.0271 3.60 0.00955 1.91 0.0642 4.80 — 1.0 
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TABLE IV-7 

REFRACTORY F (4x10 cm) 

T h 

cal 

scm
2o

C 

* * 

(s) 

U

f 
(J/cm) (MPa) 

% Diff 

650 0.00154 0.0626 1.23 0.0650 52.00 .0438 4.85 0.0 

700 0.00176 0.0582 1.41 0.0540 43.2 .0529 4.97 2.5 

900 0.00289 0.0452 2.31 0.0246 19.6 .0862 4.71 - 2.9 

1100 0.00445 0.0370 3.56 0.0135 10.8 .132 4.76 - 1.9 

1300 0.00643 0.0313 5.14 0.00795 6.36 .178 4.66 - 3.9 

1500 0.00900 0.0271 7.20 0.00510 4.08 .237 4.67 - 3.7 
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APPENDIX VI 

Results of the Thermoelastic Analysis 

of the Larson Heating and Cooling Experiments 
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TABLE VI-1A 

Refractory 2 - Heating 

T 

(°C) 

h 

(
 C a l

 ) 

scm
2o

C 

* 

h 

* 
(3 G

f 
fc

f 

(s) 

U 

(J/cm) 

°f 

(MPa) 

800 .00230 .0242 .230 0.130 6.50 .0333 14.0 

900 .00282 .216 .282 0.0850 4.25 .0437 14.4 

1000 .00362 .0194 .362 0.058 2.90 .0556 14.3 

1100 .00445 .0176 .445 0.0418 2.09 .0684 14.0 

1200 .00540 .0161 .540 0.0322 1.61 .0856 14.3 

1300 .00643 .0149 .643 0.0248 1.24 .101 14.1 

1400 .00765 .0138 .765 0.0195 .98 .120 14.2 

TABLE VI-1B 

Refractory 2 - Cooling 

* * * 
AT h (c

f
 ) 6

f 
0

f 
U 

°f 

(°C) 
h 

(s) (J/cm) (MPa) 

scm C 

200 .00525 .0968 .525 .049 2.45 .00367 14.0 

300 .00475 .0645 .475 .021 1.05 .00248 14.1 

400 .00460 .0484 .460 .0115 .58 .00191 14.3 

600 .00485 .0323 .485 .00400 .20 .00111 14.2 

800 .00550 .0242 .550 .0016 .080 .000695 14.2 

1000 .00670 .0194 .670 .000657 .0329 .000459 14.6 

1180 .00800 .0164 .800 .000300 .015 .000326 14.6 
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TABLE VI -2A 

Refractory 6 - Heating 

* * * 
T h <o

f
 ) P 

Q

f 
C

f 
U 

°f 

(°C) (
 C a l

 ) 
h 

(s) (J/cm) (MPa) 

scm
2o

C 

1000 .00362 .0319 .517 .0695 4.96 .0893 18.2 

1100 .00445 .0290 .636 .0500 3.57 .111 18.7 

1150 .00492 .2077 .703 .0440 3.14 .125 18.9 

1200 .00540 .0266 .771 .0385 2.75 .139 19.0 

1300 .00643 .0245 .919 .0297 2.12 .165 18.8 

1400 .00765 .0228 1.09 .0230 1.64 .192 18.6 

TABLE VI-2B 

Refractory 6 - Cooling 

AT h 
* 

<o
f
 ) 

* * 
Q

f 
C

f 
U 

°f 

(°C) ( C&\ ) 
scm °C 

h 
(s) (J/cm) (MPa) ( C&\ ) 

scm °C 

200 .00525 .159 .75 .125 8.93 .00111 19.4 

300 .00475 .106 .679 .0448 3.20 .00819 20.7 

400 .00460 .0797 .657 .0172 1.23 .00434 19.0 

600 .00485 .0531 .693 .00580 .414 .00255 19.1 

800 .00550 .0398 .786 .00222 .159 .00153 18.9 

1000 .00670 .0319 .957 .00089 .0636 .000970 19.1 

1180 .00800 .0270 1.14 .00041 .0293 .000670 19.2 
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TABLE VI-3A 

Refractory 8 - Heating 

T 

CO 

h 

(
 C a l

 ) 

scm
2o

C 

* 

( c
f
 ) 

h 

* 
P 

* 
9

f 
fc

f 

(s) 

U 

(J/cm) 

°f 

(MPa) 

800 .00230 .0268 .383 .0778 6.48 0.0388 13.5 

900 .00282 .0238 .470 .0553 4.61 .0518 13.9 

1000 .00362 .0214 .603 .0385 3.21 .0649 13.5 

1100 .00445 .0195 .742 .0285 2.38 .0802 13.6 

1200 .00540 .0178 .900 .0213 1.78 ' .0954 13.4 

1300 .00643 .0165 1.07 .0170 1.42 .116 13.7 

1400 .00765 .0153 1.28 .0130 1.08 .130 13.3 

TABLE VI-3B 

Refractory 8 - Cooling 

AT h (o"
f
 ) 

* 
h 

* 
9

f 
fc

f 
U °£ 

(°C) (
 C&\ ) 
scm °C 

T ~ 
(s) (J/cm) (MPa) (

 C&\ ) 
scm °C 

200 .00525 .107 .875 .0185 1.54 .00211 13.6 

300 .00475 .0714 .792 .00840 0.700 .00142 13.6 

400 .00460 .0535 .767 .00460 .383 .00105 13.6 

600 .00485 .0357 .808 .00165 .138 .000629 13.7 

800 .00550 .0268 .917 .00066 .0550 .000402 13.9 

1000 .00670 .0214 1.12 .000265 .0220 .000280 14.1 

1180 .00800 .0181 1.33 .000125 .0104 .000249 14.2 
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TABLE VI-4A 

Refractory 15 - Heating 

T 

(°C) 

h 

(
 C a l

 ) 

scm
2

°C 

* 

(a
f
 ) 

h 

* 
8 

* 
9

f 
fc

f 

(s) 

U 

(J/cm) 

°f 

(MPa) 

800 .00230 .0426 .460 .117 11.7 0.0375 11.1 

900 .00282 .0379 .574 .0763 7.6 .0480 11.1 

1000 .00362 .0341 .724 .051 5.1 .0592 10.7 

1100 .00445 .0310 .890 .0385 3.85 .0757 10.9 

1200 .00540 .0284 1.08 .0295 2.95 .0932 11.0 

1300 .00643 .0262 1.29 .0228 2.28 .109 10.9 

1400 .00765 .0244 1.53 .0188 1.88 .136 11.4 

TABLE VI-4B 

Refractory 15 - Cooling 

AT h 
* 

<o
f
 ) B

f 

* 
Q

f 
U 0

f 

(°C) ( C i ) 
scm °C 

h 

(s) (J/cm) (MPa) 

200 .00525 .171 1.05 .051 5.10 .00447 11.5 

300 .00475 .114 .95 .0185 1.85 .00266 11.3 

400 .00460 .0853 .92 .0092 .92 .00182 11.1 

600 .00485 .0568 .97 .0032 .320 .00108 11.2 

800 .00550 .0426 1.10 .00125 .125 .000660 11.2 

1000 .00670 .0341 1.34 .00048 .048 .000406 11.2 

1180 .00800 .0289 1.60 .00021 .021 .000295 11.0 
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TABLE VI -5A 

Refractory 19 - Heating 

T 

(°C) 

h 

(
 C a l

 ) 

scm
2o

C 

* 
<o

f
 ) 

h 

* 
8 

* 
Q

f 
fc

f 

(s) 

U 

(J/cm) (MPa) 

800 .00230 .0617 .575 .17 21.3 .0491 11.4 

900 .00282 .0548 .705 .10 12.5 .0618 11.5 

1000 .00362 .0493 .905 .0654 8.18 .0796 11.4 

1100 .00445 .0448 1.11 .0475 5.94 .0985 11.3 

1150 .00492 .0429 1.23 .0400 5.00 .106 11.0 

1200 .00540 .0411 1.35 .0345 4.31 .115 10.8 

1300 .00643 .0379 1.61 .0274 3.43 .140 11.0 

1400 .00765 .0352 1.91 .0220 2.75 .168 11.2 

TABLE VI-5B 

Refractory 19 - Cooling 

AT h 
* 

(o
f
 ) 

* * 
Q

f 
fc

f 
U 

°f 

(°C) (
 C

i ) 
scm °C 

h 

(s) (J/cm) (MPa) (
 C

i ) 
scm °C 

200 .00525 .247 1.31 .0835 10.4 .00705 10.7 

300 .00475 .164 1.19 .0295 3.69 .00487 11.4 

400 .00460 .123 1.15 .0140 1.75 .00335 11.3 

600 .00485 .0822 1.21 .00460 .575 .00193 11.4 

800 .00550 .0617 1.38 .00180 .225 .00120 11.4 

1000 .00670 .0493 1.68 .00070 .0875 .000740 11.5 

1180 .00800 .0418 2.0 .00033 .0413 .000547 11.7 
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TABLE VI-6A 

Refractory 21 - Heating 

* * * 
T h B 9

f 
fc

f 
U 

(°C) (
 C a l

 ) 

h 

(s) (J/cm) (MPa) 

scm
2o

C 

800 .00230 .0513 .575 .118 14.75 .0273 7.07 

900 .00282 .0456 .705 .0760 9.50 .0337 6.92 

1000 .00362 .0410 .905 .0517 6.46 .0434 6.87 

1100 .00445 .0373 1.11 .0390 4.88 .0553 6.99 

1200 .00540 .0342 1.35 .0286 3.58 .0646 6.75 

1300 .00643 .0315 1.61 .0230 2.88 .0793 6.94 

TABLE VI-6B 

Refractory 21 - Cooling 

* * * 
AT h (o

f
 ) Q

f 
U ff

f 

(°C) 

h 

(s) (J/cm) (MPa) 

scm °C 

200 .00525 .205 1.31 .0485 6.06 .00303 7.05 

300 .00475 .137 1.19 .0170 2.125 .00176 6.97 

400 .00460 .103 1.15 .00800 1.10 .00128 7.00 

600 .00485 .0684 1.21 .00303 .379 .000757 7.05 

800 .00550 .0513 1.38 .00120 .150 .000472 7.10 

1000 .00670 .0410 1.68 .00047 .0588 .000300 7.19 

1180 .00800 .0348 2.0 .00022 .0275 .000236 7.29 
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TABLE VI - 7 A 

Refractory 23 - Heating 

T 

(°C) 

h 

( C a l

 ) 

scm
2o

C 

* 
<o

f
 ) 

h 

* 

e 
* 

9

f 

(s) 

U 

(J/cm) 

°f 

(MPa) 

900 .00282 .0446 .718 .0720 9.0 0.1343 27.4 

1000 .00362 .0401 .905 .0508 6.35 0.174 27.6 

1100 .00445 .0365 1.11 .0372 4.65 0.2146 27.2 

1200 .00540 .0335 1.35 .0285 3.56 0.262 27.4 

1300 .00643 .0309 1.61 .0225 2.81 0.314 27.7 

1400 .00765 .0287 1.91 .0175 2.19 0.364 27.4 

1400 .00765 .0138 .765 0.0195 .98 .120 14.2 

TABLE VI-7B 

Refractory 23 - Cooling 

* * * 
AT h (a

f
 ) 9

f 
fc

f 
U 

°f 

(°C) 
h 

(s) (J/cm) (MPa) 
scm °C 

200 .00525 .201 1.31 .043 5.38 .0108 27.8 

300 .00475 .134 1.19 .0155 1.94 .00639 27.4 

400 .00460 .100 1.15 .00820 1.03 .00477 27.8 

600 .00485 .0669 1.21 .00290 3.63 .00291 28.2 

800 .00550 .0502 1.38 .00115 1.44 .00182 28.4 

1000 .00670 .0401 1.68 .00044 .0550 .00112 28.5 

1180 .00800 .0340 2.0 .00021 .0263 .000915 29.1 
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TABLE VI-8A 

Refractory 27 - Heating 

T 

(°C) 

h 

( C a l ) 
scm

2o

C 

* 

( c f ) 
h 

* 

P 
* 

9f 
(s) 

U 

(J/cm) 

af 
(MPa) 

1000 .00362 .0540 1.21 .0553 9.22 .153 23.0 

1100 .00445 .0491 1.48 .0400 6.67 .186 22.5 

1200 .00540 .0450 1.80 .0305 5.08 .226 22.5 

1300 .00643 .0416 2.14 .0237 3.95 .266 22.3 

1400 .00765 .0386 2.55 .0187 3.12 .311 22.3 

TABLE VI-8B 

Refractory 27 - Cooling 

AT h 
* 

(o
f
 ) 

* * 
Q

f 
fc

f 
U 

°f 

(°C) (
 Ca\ ) 
scm °C 

h 
(s) (J/cm) (MPa) (

 Ca\ ) 
scm °C 

200 .00525 .270 1.75 .0605 10.1 .0117 22.7 

300 .00475 .180 1.58 .0190 3.17 .00675 22.9 

400 .00460 .135 1.53 .0098 1.63 .00503 23.4 

600 .00485 .0900 1.62 .00305 .508 .00268 22.9 

800 .00550 .0675 1.83 .00118 .197 .00164 23.0 

1000 .00670 .0540 2.23 .00045 .0750 .00101 23.1 

1180 .00800 .0458 2.67 .000218 .0360 .000827 23.7 
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TABLE VI-9A 

Refractory 28 - Heating 

T 

<°C) 

h 

(
 C a l

 ) 

scm
2o

C 

* 
(a

f
 ) 

h 

* 
B 

* 
Q

f 
fc

f 

(s) 

U 

(J/cm) 

°f 

(MPa) 

800 .00230 .0617 .767 .113 18.8 .0737 16.9 

900 .00282 .0557 .957 .071 11.8 .0912 16.4 

1000 .00362 .0502 1.21 .0505 8.42 .119 16.6 

1100 .00445 .0456 1.48 .0365 6.08 .143 16.2 

1150 .00492 .0436 1.64 .0315 5.25 .157 16.1 

1200 .00540 .0418 1.80 .028 4.67 .175 16.2 

1300 .00643 .0386 2.14 .022 3.67 .208 16.3 

1400 .00765 .0358 2.55 .0174 2.90 .244 16.3 

TABLE VI-9B 

Refractory 28 - Cooling 

AT h 
* 

( a f ) 
* * 

G

f 
U 

°f 

<°C) (
 C&\ ) 
scm °C 

h 

(s) (J/cm) (MPa) (
 C&\ ) 
scm °C 

200 .00525 .249 1.75 .0430 7.17 .00724 16.4 

300 .00475 .166 1.58 .0150 2.50 .00432 16.5 

400 .00460 .125 1.53 .008 1.33 .00329 16.8 

600 .00485 .0831 1.62 .00260 .43 .00181 16.7 

800 .00550 .0623 1.83 .001 .167 .00111 16.7 

1000 .00670 .0498 2.23 .00039 .065 .000716 16.9 

1180 .00800 .0422 2.67 .000184 .0307 .000592 17.2 
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TABLE VI-10A 

Refractory 31 - Heating 

* * * 
T h (o"

f
 ) 8 

°f 
fc

f 
U °f 

(°C) (
 C a l

 ) 

h 

(s) (J/cm) (MPa) 

scm
2

°C 

800 .00230 .0350 .767 .0480 9.0 .0177 4.19 

900 .00282 .0311 .940 .0368 6.13 .0211 3.97 

1000 .00362 .0280 1.21 .0263 4.38 .0273 4.00 

1100 .00445 .0255 1.48 .0197 3.28 .0336 4.02 

1200 .00540 .0234 1.80 .0150 2.50 .0401 4.03 

1300 .00643 .0216 2.14 .0117 1.95 .0469 4.05 

TABLE VI-10B 

Refractory 31 - Cooling 

* * 
AT h (CT

f
 ) 0

f U a

f 

(°C) 
~h~ 

(s) (J/cm) (MPa) 

scm C 

200 .00525 .140 1.75 .0074 1.23 .000440 4.03 

300 .00475 .0934 1.58 .0036 .60 .000320 4.13 

400 .00460 .0701 1.53 .002 .333 .000240 4.16 

600 .00485 .0467 1.62 .00068 .113 .000134 4.13 

800 .00550 .0350 1.83 .00026 .0433 .0000895 4.14 

1000 .00670 .0280 2.23 .00011 .0183 .0000835 4.29 

1180 .00800 .0238 2.67 .000056 .00093 .000852 4.07 
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TABLE VI-11A 

Refractory 34 - Heating 

* * * 
T h (cr

f
 ) P 0

f 
fc

f 
U a

f 

(°C) (
 C a l

 ) 

h 
(s) (J/cm) (MPa) 

scm
2o

C 

800 .00230 .0593 .767 0.103 17.2 .0501 10.3 

900 .00282 .0527 .940 0.068 11.3 .0619 10.0 

1000 .00362 .0474 1.21 0.0475 7.92 .0810 10.1 

1100 .00445 .0431 1.48 0.0338 5.63 .0959 9.69 

1200 .00540 .0395 1.80 0.0263 4.38 .119 9.86 

1300 .00643 .0365 2.14 0.0210 3.50 .143 10.1 

TABLE VI-11B 

Refractory 34 - Cooling 

* * * 
AT h (a

f
 ) 0

f 
U 

°f 

(°C) 
h 

(s) (J/cm) (MPa) 
scm C 

200 .00525 .237 1.75 .036 6.00 .00440 10.1 

300 .00475 .158 1.58 .0135 2.25 .00276 10.2 

400 .00460 .1191 1.53 .007 1.17 .00202 10.3 

600 .00485 .0790 1.62 .00225 .375 .00109 10.1 

800 .00550 .0593 1.83 .00084 .140 .000601 10.0 

1000 .00670 .0474 2.23 .000338 .0563 .000435 10.3 

1180 .00800 .0402 2.67 .000160 .0267 .000372 10.4 
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APPENDIX VII 

Results of the Thermoelastic Analysis 

of the Semler Experiments 



TABLE VII-1 

Results for Splits ( A = 11.43cm) 

No. G

1000 

* 
6

f 
h 

( Ca] ) 
scm °C 

* 

°f 

fc

f 

(s) 

U

f 
(J/cm) 

°f 
(MPa) 

y

f 
(cm) 

SI .0408 .0321 9.1 .00557 .00212 19.8 1.216 19.9 2.0 

S2 .0396 .0276 9.81 .00515 .00188 20.5 2.840 45.3 1.8 

S3 .0401 .0184 12 .00420 .00153 25.0 1.341 27.2 1.6 

S4 .0412 .0184 12 .00420 .00161 26.3 .910 14.2 1.6 

S5 .0409 .0184 12 .00420 .00160 26.1 .705 11.2 1.6 

S6 .0502 .0184 12 .00420 .00213 34.8 .761 13.7 2.0 

S7 .0562 .0184 12 .00420 .00257 42.0 1.038 17.3 2.1 

S8 .0974 .0184 12 .00420 .00735 120. .720 9.71 2.9 

S9 .0696 .0184 12 .00420 .00370 60.4 .704 9.78 2.3 

S10 .0471 .0138 13.8 .00362 .00170 37.0 1.47 22.7 1.7 

S l l .0565 .00919 17 .00297 .00185 60.4 2.216 34.1 1.8 

S12 .0477 .00919 17 .00297 .00140 45.7 1.964 31.6 1.5 



TABLE VII-2 

Results for (Quarters (A = 5.72cm) 

No. 
* 

9

1000 

* 
h 

( Ca) ) 
scm °C 

9

f 
(s) 

U

f 
(J/cm) 

ff

ff 
(MPa) 

y

f 
(cm) 

SI .0408 .128 4.6 .00563 .00472 11.0 .553 19.8 1.3 

S2 .0396 .110 4.92 .00516 .00410 11.2 1.26 44.9 1.2 

S3 .0401 .0734 6.1 .00427 .00320 13.1 .596 26.8 1.1 

S4 .0412 .0734 6.1 .00427 .00343 14.0 .412 14.2 1.1 

S5 .0409 .0734 6.1 .00427 .00340 13.9 .391 11.2 1.1 

S6 .0502 .0734 6.1 .00427 .00465 19.0 .355 13.8 1.3 

S7 .0562 .0734 6.1 .00427 .00565 23.1 .488 17.3 1.3 

S8 .0974 .0734 6.1 .00427 .023 94.1 .370 9.83 2.1 

S9 .0696 .0734 6.1 .00427 .00850 34.8 .342 9.84 1.6 

S10 .0471 .0550 7.0 .00367 .00352 19.2 .658 22.5 1.1 

Sll .0565 .0367 8.5 .00297 .00375 30.7 .991 33.4 1.2 

S12 .0477 .0367 8.5 .00297 .00300 24.5 .911 32.1 1.1 



TABLE VII-3 

Results for Bars (A = 2.54cm) 

No. 
* 

9

1000 

* 
B

f 
h 

(
 C B l

2
 ) 

scm °C 

* 
9

f 
(s) 

U

f 
(J/cm) 

a

f 
(MPa) 

y

f 
(cm) 

SI .0408 .651 1.78 .00491 .021 9.68 .214 20.4 .86 

S2 .0396 .558 2.0 .00472 .0154 8.28 .486 46.1 .81 

S3 .0401 .372 2.58 .00406 .0103 8.31 .230 27.6 .71 

S4 .0412 .372 2.58 .00406 .0110 8.87 .157 14.5 .72 

S5 .0409 .372 2.58 .00406 .0108 8.71 .121 11.3 .72 

S6 .0502 .372 2.58 .00406 .0170 13.7 .141 14.2 .82 

S7 .0562 .372 2.58 .00406 .0216 17.4 .188 17.3 .87 

S8 .0974 .372 2.58 .00406 No fract 300 .022 3.35 

S9 .0696 .372 2.58 .00406 No fract 300 .034 4.74 

S10 .0471 .279 3.05 .00360 .0112 12.0 .263 23.4 .72 

S l l .0565 .186 3.76 .00296 .0113 18.2 .392 34.3 .72 

S12 .0477 .186 3.76 .00296 .0081 13.1 .337 31.9 .67 
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Appendix VIII 

Dimensional Analysis of the Stress Dependence 

of the 

Constant Heating Rate Thermoelastic Problem 
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APPENDIX VIII 

DIMENSIONAL ANALYSIS OF CONSTANT HEATING RATE THERMOELASTIC PROBLEM 

The number of variables in the thermal stress dependence of 

equation (1) can be reduced using dimensional analysis. 

The fundamental dimensions of mass [M], length [L], time [T], and 

temperature [0] of each variable are listed in Table 1. The Buckingham 

n theorem states that the number of dimensionless parameters needed to 

correlate the variables in a given process is equal to n-m, where n is 

the number of variables involved and m is the number of fundamental 

dimensions included in the variables. Raylelgh's method of indices is 

used to determine the dimensionless groupings. 

a = f( x, y, t, o>, a, E, a, v, X, w ) (1) 

The number of dimensionless parameters is 7 as n=ll and m=4. 

Equation (1) can be rewritten as 

(a)
1

 = (x)
a

(y)
b

(t)
c

(<
r
)

d

(a)
e

(E)
f

(a)
8

(l)
h

(w)
i

(v)
j 

(2) 
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and the fundamental units of each variable substituted to give 

LT LT 

Balancing each fundamental dimension, expressing four of the exponents 

in terms of the remainder, substituting into (2) , and separating 

exponents leads to (4 ) . 

( £ ) = (f)
a
(f)

b
(

£
j) e(<t>at) 8

(|)
1
(v)

: ] (4) 

It is desirable to have x associated with w and to have only one time 

dependent dimensionless parameter. This is accomplished by multiplying 

a g 
and dividing the right hand side of (4) by and (—) to yield 

a b e+g . „2 g i+a i 
,0. ,x

N
 .y. ,at

x
 °,tyax * ,w,. ,

 N / c
. 

(E> = (

w> (I>
 (

 a > (X> ( V ) ( 5 ) 

The number of dimensionless parameters is reduced by one by combining v 

with a and E. 

Thus the dimensionless form of equation ( 1 ) is 
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* * * * * * 
0 = f (x , y , 9 , r , y ) (6) 

where 

* _ q ( l-v) 
0 - — 

* 

* 
r 

x" = - (8) 
w 

w 

(7) 

y* - 2. (9) 

e* = ( i o ) 
x

2  

( i i ) 

Y
* = $2* (12) 
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Appendix IX 

Dimensional Analysis of the Strain Energy Dependence 

of the 

Constant Heating Rate Thermoelastic Problem 
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Appendix IX 

Dimensional Analysis of the Strain energy Dependence 

The fundamental dimensions of mass [M], length [L], time [T], 

and temperature [0] of each variable in total strain energy dependence 

of equation (1) are listed in Table 1. 

The Buckingham TC theorem states that the number of dimensionless 

parameters needed to correlate the variables in a given process is equal 

to n-m, where n is the number of variables involved and m is the number 

of fundamental dimensions included in the variables. The number of 

dimensionless parameters is 5 as n=9 and m=4. Equation (1) can be 

rewritten as 

U = f( t,<|>,a,E,a,w,A,v) (1) 

(U)
1

 = (t)
a

(<)))
b

(a)
C

(E)
d

(a)
e

(Jl)
f

(w)
g

(v)
h 

(2) 

and the fundamental units of each variable substituted to give 

(3) 
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Balancing each fundamental dimension, expressing four of the exponents 

in terms of the remainder, substituting into (2), separating exponents, 

and manipulating to give only one time-dependent parameter leads to 

c+e o e E h 

- (-) C**l> (") (v) (4) 
EX

2

 X
2

 a X 

A further simplification is possible by using the plane strain 

relationship to combine v with U and E to give 

U(l-v) at QxxX
2

 w 

( ) = f ( — , - ) (5) 
EJL

2

(l+v) X
2

 a X 

Thus the dimensionless form of equation (1) is 

* * * * 
U - f ( e , y , r ) (6) 

where 

U(l-v) 
U (7) 

EA
2

(l+v) 

* a t 

e (8) 

X
2  
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w 

(9) 

(10) 
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Table IX-1 

VARIABLES FOR DIMENSIONAL ANALYSIS 

Variable Symbol Fundamental Units 

strain energy/unit thickness U ML/T
2 

time t T 

heating or cooling rate 4> 0/T 

thermal dif f u s i v i t y a L
2

/T 

elastic modulus E M/(LT
2

) 

thermal expansion coefficient a i/e 
Poisson's ratio V 

length 1 L 

width w L 
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APPENDIX X 

Results of Howie Experiments 
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TABLE 1—SPALL TESTS ON SILICA BRICKS " A " — D R Y . 

Test 
No. 

Heating Rate 
on Hot Face 

(220-270' C.) 
° C. per min. 

Distance of 
Crack from 
Hot Face, 

inches 

Porosity 
(per cent). 

Bulk 
Density 
(g.lc.c). 

Specific 
Gravity 

(By Porosity). 

1 0-7 Uncracked 
2-33 2 2-9 do. 30 1 1-63 2-33 

3 4-0 do. 2 8 3 1-67 2 33 
4 4 8 do. 3 0 4 1-62 2 32 
5 SO 1 1 0 30-1 1-63 2-33 

(Slight crack— 
not typical.) 

2 3 3 6 6 7 Uncracked 2 9 3 1-64 2 3 3 
7 6-95 do. 3 0 4 1-62 2-33 
8 7 0 0-90 2 9 8 1-63 2 3 3 
9 7 1 1 25 30-6 1-62 2 33 

10 9 1 1 1 0 28-8 1-66 2 33 
11 9-6 1 27 

2-32 12 1 0 0 1-20 2 8 9 1-65 2-32 
13 14 7 0 9 2 

2-33 14 1 5 4 1-07 30-4 1-62 2-33 
15 17-85 0-825 
16 17-85 0-80 

2-32 17 23-8 0-85 29 1 1-65 2-32 
18 25 0 O-60 29 1 1-65 2-33 

TABLE I I — S P A U . TESTS ON SILICA BRICKS " B " — D R Y . 

• Ttst 
So. 

heating Rate 
on Hot Face 
(220-270° C.) 
° C. per min. 

Distance of 
Crock from 
Hot Face, 

inches. 

Porosity 
{per cent). 

Bulk 
Density 
\g.lc.c). 

Specific 
Gravity 

(By Porosity). 

19 3-3 Uncracked 27-9 1-69 2 34 
20 6 7 1-50 2 9 3 1-65 2 34 
21 8 2 0-95 25 6 1-73 2-33 
22 10 1 1 1 0 27 7 1-69 2-34 
23 12 5 0-90 26-9 1-69 2 32 
24 16 7 105 27-6 1-69 2-33 

. 25 2 0 8 0 9 5 28-8 1-67 2-34 

file:///g.lc.c
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TABLE I I I .—SPALL TESTS ON SILICA BRICKS " C "— D R Y . 
Test 
No. 

Heating Kate 
on Hot Face 
(220-270' C.) 
° C. per min. 

Distance of 
Crack from 
Hot Face, 

inches. 

Porosilv 
{per cent). 

bulk 
Density 
(g-lcc). 

Specific 
(iravity 

(Hy Porosity). 

26 
27 
28 
29 
30 
31 
32 

38 
7- 5 
8- 6 
122 
132 
15 6 
227 

Uncracked 
1-55 
0- 95 
115 
1- 30 
0-75 
0-75 

28 1 
26- 1 
27- 5 
289 
271 
27-4 
26 0 

1-67 
1-74 
1-68 
1-67 
1-71 
1-69 
1 74 

2-33 
2-35 
2-32 
2-35 
2 35 
2-33 
2 35 

TABLE IV.— SPALL TESTS ON SILICA BRICKS " D " — D R Y . 

Test 
No. 

Heating Rate 
on Hot Face 
(220-270" C.) 
°C. per min. 

Distance of 
Crack from 
Hot Face, 

inches. 

Porosity 
{per cent). 

Bulk 
Density 
{g-lcc). 

Specific 
Gravity 

{fly Porosity). 

33 
34 
35 
36 

37 
38 
39 
40 

4- 6 
5- 0 
7- 9 
8- 7 

12 5 
13-9 
196 
19 6 

Uncracked 
do. 
do. 
1-20 

(Very slight 
cracks.) 
100 
0-80 
0-55 
0-45 

290 
29-8 
303 
302 

299 
29 1 
29-9 
297 

1-69 
1-67 
1-65 
1-65 

1 -67 
1-69 
1-65 
1-68 

2-39 
2-38 
2-37 
2 37 

2-38 
2 39 
2-37 
2-39 

TABLE VI .—SPALLING TESTS ON BRICKS " A " SOAKED IN WATER 

Test 
No. 

Heating Pate 
on Hot Face 
(220-270° C.) 
°C. per min. 

Distance of 
Crack from 
Hot Face, 

inches. 

Porosity 
{per cent.). 

Bulk 
Density 
(g ice). 

Specific 
(iravity 

{Hy Porosity). 

47 1-2 Uncracked 297 1-6.1 2 33 
48 3-5 1-20 30 4 1-62 2-33 
49 5-5 0-91 
50 625 0-70 
51 7-0 105 29-8 1-63 2 32 
52 7-7 0-75 2K-8 1-66 2 33 
53 8-8 0-60 
54 100 0-80 28-1 168 2-33 
55 111 0 70 30 1 1-63 2 33 
56 119 0 53 310 1 -61 2 33 
57 132 045 30-2 1-62 2-32 
58 196 030 290 1-65 2 33 


