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Abstract 

This thesis details a research project into the viability of increasing the level of automation em

ployed in the canning of salmon. Specifically the post-filling quality control patching table has 

been studied. Data on this system was compiled from survey, interviews, and video tape of quality 

control personnel, and from a series of experiments done in an industry plant during a canning 

operation. The patching table workcell has been modelled and simulated using a computer simula

tion package. Several automation implementations are explored for their effectiveness and physical 

realizability. The most promising of these options have been simulated and evaluated for their 

economic profitability. Recommendations to the industrial producers are then presented. 
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Chapter 1 

Introduction 

In comparison with other manufacturing industries, the food processing industry has traditionally 

lagged in technological innovation and implementation. Economic pressures to trim labour costs, 

increase product recovery and boost quality has pushed concepts such as expert systems, flexible 

manufacturing and computer simulation into most manufacturing industries. This trend is par

alleled in the food industry but again with an appreciable time lag. Many food processors still 

employ a high ratio of human labour to automation. In these mixed automation processes there 

is a need to balance the advantages offered by automation; namely, standardization, repeatability 

continuous operation and, decreased errors with the benefits of human labour; namely, flexibility, 

dexterity and the ability to deal with incomplete information. 

This thesis concerns the analysis of a mixed automation system in a fish processing plant. The 

general objectives of the work are to analyze one of the existing quality control stations, and to 

consider a number of automation options for improving the performance of this system. 
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1.1 Motivation 

The pacific salmon stocks on the coast of British Columbia and Washington State appear to be 

in decline. Even prior to the beginning of 1996, when the Federal government banned harvesting 

of Sockeye salmon on the Eraser River, and then implemented the Miflin Plan to reduce the west 

coast fishing fleet, there was a great deal of concern about the future of the B.C. salmon industry. 

An example of this tension is the Prince Rupert blockade that the Canadian fishermen set up in 

the early portion of the 1997 salmon season. Whether temporary or permanent, this decline in 

salmon stocks has increased pressure on the industry to reduce costs and increase product recovery 

efficiencies in order to remain competitive. 

Whole pacific salmon and canned salmon products have traditionally been a high value B.C. 

export. Worldwide, B.C. salmon exports average 412 million dollars yearly, or 2.2% of B.C. exports. 

Processed salmon (canned, smoked, etc.) represents 28% of the salmon exports and whole salmon 

the remainder [1]. The mean wholesale value of the resource stands at $578 million per annum [2]. 

Much work has been done in order to improve and expand the worldwide markets for these products. 

However, the process for preparing the salmon and packing it in cans has not changed significantly 

over the past 60-70 years. Thus, the current salmon canning industry, as was the case in the 

twenties and thirties, requires a great deal of manual labour for preparing, sorting, packing and 

inspecting the canned salmon products. 

In order to reduce costs and increase product recovery efficiencies, the UBC Industrial Auto

mation Laboratory, in collaboration with B.C. Packers Ltd., a major B.C. based fish processor, 

has undertaken to evaluate, improve, and in some cases re-design the canning process. Product 

inspection prior to sealing, for quality control and assurance, the focus of this thesis, has been 

identified as one high potential starting point for the implementation of automation. 
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In all parts of the salmon canning process, a great deal of repetitive, and relatively low-skill 

manual labour is employed. A large percentage of this labour is concentrated around the patching 

tables located at the exit of each filling machine. At these patching tables the filling defects are 

repaired before the cans are lidded and sealed. 

At the patching table, the fill quality of (ideally) every can is assessed, and if necessary improved, 

based on weight and fill characteristics, including product appearance. The patchers are required 

to perform both visual product assessment and patching tasks on items that are moving past them 

at rates of about 4 per second. This work is seasonal, monotonous, and low skill. The workers 

stand at the patching table throughout their shift in a confined, noisy, and hazardous environment. 

These adverse working conditions coupled with fatigue may cause product quality to drop during 

the shift. By replacing the current manned patching tables with minimally-manned automated 

workcells, both economic and product quality benefits could be realized. 

1.2 Canning Process Details 

In the present day salmon canning process the 'cannery dressed' (gutted, tailed, headed and finned) 

salmon are sliced width-wise into steaks which are routed to the filling machine. The salmon 

steaks are volumetrically metered and pressed into the cans within the filling machine. The filled 

cans exiting the machine are inspected, and fill defects, including weight deviation and product 

appearance, are repaired. The inspection and 'patching' or repair duties are performed manually 

at a patching station located at the exit of the filler and prior to vacuum sealing of the cans. 

Figure 1.1 shows a schematic representation of the salmon canning process currently employed at 

B.C. Packers Ltd. Three different sizes of cans are processed; 1/4 lb., 1/2 lb. and 1 lb or 'tails'. In 

addition to this variation six different grades or qualities of salmon are processed. Factors affecting 
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the grade of the f i l l include; species, whether the fish is fresh or frozen, filler characteristics and the 

postmortem age of the fish. 

Direction of Product Flow 

PATCHING STATION 
SALMON EMPTY CANS _ „ 
STEAKS—i PRE-F1LL FILLED < > O O 

INSPECTION \ A A <Q>!. CANS 
O 

CLEANED /<^y> 
SALMON CUTTING 

STATION 

TO SEAMER 

LOAD CELL 

Figure 1.1: The salmon canning process. 

1.3 The Patching Table 

The patching station is composed of a rectangular table bisected by a number of conveyors. T h e 

table is fed by a single line of cans exi t ing the filler at up to 250 cans per minute as shown 

schematically i n Figure 1.2. 

Sp-Spotter 
Wn-Worker 

W 4 W 2 

From f i l ler , 
Scale 

o o o ooooooooooooooooo • 

" x y To seamer 
"Underweight 
Ejector cO> 

W 3 
C O 
Wl 

Figure 1.2: Schematic of the patching station. 

Figure 1.3 shows a patching table dur ing normal operation at the B . C . Packers plant i n Pr ince 

Ruper t , B . C . , i n September 1996. There are from 4 to 7 workers per patching table, depending 
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mainly on the quali ty of the fish being processed, but also on other factors such as can size, the 

condit ion of the f i l l , and the intended product market. O n most half-pound and one-pound lines an 

automated high-speed weighing system (a checkweigher) ejects the underweight cans to a paral lel 

conveyor for patching. O n most quarter-pound lines only those cans which visual ly appear to have 

low weight are pul led from the line, manually weighed and, i f necessary, corrected. 

The last worker on each patching line is specifically responsible for quali ty control inspection. 

T h i s worker is called the 'spotter' and generally performs no patching operations. The remainder of 

the workers ' p u l l ' and 'patch' (repair) offending cans from the line i n addi t ion to patching those cans 

the spotter has pul led for repair. These patching tasks include safety, appearance and regulatory 

defects as detailed in Section 3.1. 

Figure 1.3: Patching table dur ing operation. 
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1.4 Research Objectives 

As described above, the patching table is a manually operated quality assurance workcell for the 

can filling operation. The operations which take place at this workcell fall into two fundamental 

categories, defect identification and defect correction. 

Defect identification is done primarily through visual inspection. The exception is the under

weight detection, which is automated on certain lines, through the use of a checkweigher. Defect 

correction is done almost exclusively by the patching table workers (i.e., manually) although some 

automated equipment (e.g., sprayers which automatically wash bits of meat off the rim of each 

can and trimmers which attempt remove skin and bone over the flange) may be employed on some 

patching lines. 

The objectives of this research then, are to: 

1. examine the patching table process 

2. identify high potential candidate operations for automation as well as those manual processes 

which could be streamlined 

3. develop and analyze a model of the workcell, introduce automation into this model, and finally 

optimize this model, through simulation and experimental prototype development 

4. select the optimal system configuration based on this analysis. 

The result of this work will be the analysis, design and cost effectiveness evaluation of automating 

the patching table. As in the manual workcell, the automated workcell will need to perform two 

fundamental tasks, namely, defect identification and defect patching or repair. The underlying 

problems that need to be addressed in this work include defect classification, can sorting, queueing 

and processes diagnostics. 
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In order to accomplish these objectives given the current state of the workcell, the following 

steps will be required: 

1. In order to properly judge the benefits and detriments of modifying the existing patching 

system, a clear and thorough understanding of the current workcell is required in order to 

facilitate the modelling and simulation of the present process. Each task undertaken in the 

workcell must be identified and modelled. The information used by patching workers in 

identifying problems and the flow of information concerning those problems is essential to 

both model and then modify the process. As well, processing times required by the human 

workers in the areas of inspection and repair of defects, and success rates for the workcell 

must be compiled. 

2. For each identified task in the workcell, the current level of automation, and the amenability of 

the task to further automation must be considered. Task frequency, importance and difficulty 

are factors which must be considered in a preliminary assessment of each task. -

3. As outlined above tasks in the patching workcell can be broadly classified into a) inspec

tion/sorting tasks and b) repair tasks. 

a) In considering the inspection/sorting tasks, the visual cues and techniques used by the 

human inspectors should be determined in order to assist in identifying candidate ma

chine vision techniques, the proposed automated inspection technique. 

b) In considering the repair tasks, identifying the repair techniques employed by the workers 

will help to direct the selection of automated repair techniques. Other factors, such as 

the costs and availability of current or proposed equipment to perform each task, are 

also important. 
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Finally, the techniques and strategies used by the workers as a group to deal with the large 

numbers of cans, and the inherently large amounts of associated information, require identi

fication. 

4. Past experience with industry indicates that the current feasibility of fully automating the 

entire patching table is low. Hence, those tasks for which automation is least suitable will 

remain as manual tasks. However, improvements through the use of modified information 

flow, information tagging and pre-sorting must be identified. 

5. Implement the modifications to the workcell in a simulated workcell in order to gauge their 

effectiveness and consequences on the system. 

6. Perform economic evaluations of the plausible system configurations. 

The result of this work will be a number of workcell design concepts or scenarios incorporating 

various levels of automation. Coupled with these will be economic, production and quality invest

igations. It is the intent of this investigation that sufficient information be portrayed such that 

management personnel may select a scenario which meets there needs and constraints. 



Chapter 2 

Literature Review 

This chapter examines some of the more common methods for modelling manufacturing systems, 

including simulations used for modelling of food production systems. As well, the factors affecting 

manual inspection accuracy are considered. A review of semi-autonomous production systems is 

presented and, finally, methods for evaluating automation options are discussed as presented in the 

literature. 

2.1 Modelling Manufacturing Systems 

The patching table is a manufacturing quality assurance (inspection and repair) workcell employing 

a mix of automation and manual labour. The incoming components to the workcell are filled cans 

of unknown nature. The workcell product is an inspected filled can of salmon which is ideally defect 

free. The physical can size is constant over a shift. The contents of the can (the 'nil') can change 

in grade and, therefore, quality during a shift. However, such a change would be identified by the 

production manager, and would be treated as a separate batch. Due to the stochastic nature of 

the incoming components the workcell operations are also flexible and stochastic in nature. 
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The patching table operations do not fit well in the typical classes for flexible manufacturing, 

namely, volume flexibility, routing flexibility or product flexibility. While there are some similarities 

to product flexibility, this generally pertains to the production of a varied component mix, rather 

than the ability to cope with a variety of incoming component states. However, there are certainly 

manufacturing modelling methods in the literature which can be applied to this problem. 

Methods for modelling manufacturing systems are distinguished by model characteristics [3]: 

1. static, where changes over time are not significant; 

2. dynamic, where changes over time are considered; 

3. deterministic, where the random behaviour of the system is not significant; 

4. stochastic, where randomness is considered; 

Modelling techniques include Petri nets [4, 5, 6], Markovian modelling [7, 8], queueing network 

theory [9], analytic discrete event systems (DES) [10, 11], and discreet event simulations [12, 13, 

14, 15, 16]. Each of these techniques is reviewed briefly here. 

Recently, Petri nets have been advanced as a high level modelling technique ideal for manu

facturing systems; however, Petri nets still require substantial development because of the huge 

processing times required to model all but the simplest systems [17]. More recent advances, includ

ing modularity and stochastic nets [4, 6], indicate that Petri nets may be a viable modelling tool 

since the various 'breeds' of net may be dynamic or static, stochastic or deterministic. However, 

even with these improvements to Petri net modelling, Petri models are considered to be useful only 

in the first, high-level stage of the design and modelling process [6]. 

Markovian modelling addresses the processes that each part undergoes. These models are 

static and deterministic and they can easily be implemented in matrix form, for example, on a 
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spreadsheet. Each element in a Markov transition matrix represents the relative frequency of a 

specific transition of the product or machine from one state to another. Generally, Markov models 

come in two forms; first order and multi-order. First order models require a single step transition 

between states whereas multi-order models facilitate the description of several steps in the state to 

state transition. 

Queueing network theory is used to describe the processing and waiting times for manufactured 

products. This model is static and stochastic. It can be implemented using software such as 

M A N U P L A N II [3] and MUTIQ [9]. In this modelling method, parts are transported between 

machines by a material transport system, for example, AGVs or conveyors. When a part reaches 

an occupied machine it is placed in a queue or buffer to await processing. 

DES are dynamic systems, similar in nature to Petri nets, which evolve with the discrete 

occurrence of events. DES are generally asynchronous and non-deterministic. As a result they 

ideally model the behaviour of systems such as production and manufacturing workcells. 

Discrete event simulators such as STARCELL [3] and AWESIM [18] are used to describe pro

cesses undergoing discrete and continuous changes in state and system variables. These simulations 

are regarded as the best method by which to evaluate FMS systems, [9]. These simulators enable 

the dynamic alteration of parameters during a simulation. These might include changing task 

times, breakdowns and maintenance. 

The major drawback in using petri-nets, DES and queuing network models is that they all 

become extremely complex when modelling a system of realistic size. For this reason these methods 

work quite well with modest problems but encounter difficulties when attempting to model complex 

systems. Furthermore, queuing networks are static and, therefore, do not allow the alteration of 

parameters with time. Markov methods, on the other hand, present difficulties when attempting 

to implement changing transition probabilities due to their deterministic nature. 
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In general, mixed manual/automata workcells have successfully been dealt with through the 

use of discrete event simulations [15, 14]. Hence in considering the modelling and simulation of 

the patching workcell it appears, upon examination of the methods available and of the processes 

modelled using them, that a discrete event simulation approach is most suitable and reputable. 

2.2 Food Processing Simulations 

The literature on modelling and simulation of food processing is mainly concerned with the material 

handling requirements, e.g., [19, 20] and mathematical modelling of specific processes [21], for 

example, extrusion, cooking, cooling and dehydration. These treatments draw on theory from 

fields such as fluid mechanics and heat transfer, e.g., [22]. However, there are a few worker based 

simulations considered in the literature and these generally employ a discrete event simulation as 

stated previously. 

In one more relevant example, Pizza Hut Restaurant Inc. simulated the operation of their res

taurant using the SIMAN simulation package to predict bottlenecks, peak performance equipment 

capacity, and customer service times as well as their sensitivity to input parameters (e.g., staffing 

levels) [15]. In order to properly model the situation, time and motion studies were employed to 

determine task times, such as cooking, seating customers, order taking, delivery times, etc. Internal 

data from the restaurant chain was used for modelling events such as arrival distributions and order 

breakdown. 

In another example, Wells [14] discusses a SLAM II simulation of the complete processing of 

Craw-fish including automated washing, grading and cooking with manual picking and packing 

operations. In this simulation, time and motion studies again determined task completion times 

where manual labour was involved. In this example a discrete event simulation was appropriate 
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since continuous factors such as temperatures etc. were not integral to the investigation. 

2.3 Human Factors 

In the examination of mixed automation systems it is important to consider and model, where 

possible, the behavior of the personnel involved in the system. This is an extremely difficult task, 

as indicated in the following review; however, it is possible to identify the major factors which 

affect the human interaction with the system. These factors must be carefully considered when 

adjustments to the system are made for automation purposes. 

2.3.1 Inspection Accuracy 

In the review that follows, terminology, which is used to discuss the performance of workers, can 

be confusing. Thus, a brief description of the types of inspection errors which are used to measure 

worker performance is given here. 

Two types of errors are defined for the inspection of an item, Type 1 and Type 2. When a 

signal (namely a defect) is present the item is a positive, (P). When no signal (defect) is present 

the item is negative, (N). Type 1 error, which is also referred to as a 'false positive' , (FP), refers 

to the identification of a signal when no signal is present, (N). In the specific case of the patching 

table this would mean the classification of a can as defective when it is non-defective, (N). The FP 

rate is defined as the number of false positives divided by the total number of positives present in 

the batch, i.e., (FP/P). Type 2 error, or false negatives, (FN), are the identification of a non-signal 

when in fact one is present, (P). This would be the identification of a can as non-defective, when 

in fact it is defective. The FN rate is defined as the number of false negatives divided by the total 

number of negatives in the batch, i.e., (FN/N). 
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Two types of correct decisions are also denned. True positives, (TP), are the identification of a 

signal, when one is present, (P). This is the identification of a defect when one is present. The TP 

rate is the number of true positives divided by the total number of positives in the batch, (TP/P). 

True negatives, (TN), are the identification of a non-signal when no signal is present, (N). In our 

case this is the identification of a defect-free can as non-defective. True negative rate is the number 

of true negatives divided by the number of negatives in the batch, (TN/N). 

By these definitions, the following identities hold: 

1. TP + FN = P 

2. T N + FP = N 

2.3.2 Factors Affecting Inspection Accuracy 

The use of manual labour in manufacturing has both advantages and disadvantages. Advantages 

include the human ability to quickly and accurately identify and classify defects, to deal with 

variation and unforeseen factors, and to reason and solve problems with incomplete data using 

heuristics, a priori knowledge and intuition. Disadvantages include relatively slow working speeds, 

forgetfulness, high cost of compensation, required training, absenteeism, and inconsistencies in work 

quality Megaw [23] lists four groups of factors which affect these inconsistencies, specifically with 

regard to industrial inspection accuracy: 

1. Variables that the inspector brings to the task: e.g., visual ability, performance, age, experi

ence, personality, intelligence, etc. 

2. Physical and environmental factors: lighting, the workplace layout, background noise and 

visual aids. 



2.3 Human Factors 15 

3. Organizational factors and characteristics of the job situation: e.g., the number of inspectors, 

the type of training and feedback received, the number and duration of rest breaks, the work 

schedule (shift-work vs. 9-5), social aspects, etc. 

4. Factors pertaining specifically to the task: e.g., paced or unpaced inspection, the probability 

of defects, the complexity of the inspected product, the density of the products, etc. 

Many of the factors considered by Megaw [24], e.g., noise, visual acuity, training, etc. do not 

change over the period of a shift, and are unlikely to be affected by the introduction of automation 

modifications to the workcell. The effect of workcell automation on sociological factors which 

contribute to inspector effectiveness is not predictable, and may, or may not be negligible. However, 

those factors which can be expected to be influenced by modifying the workcell are treated in the 

following sections. 

Vigilance 

The process of industrial inspection has been strongly linked to the branch of industrial organiz

ational psychology known as vigilance. This link is especially strong for paced inspection tasks, 

such as the patching table inspection task considered herein. One of the pioneers in this area of 

research, N.H. Mackworth, defined vigilance as: "A state of readiness to detect and respond to 

certain specified small changes occurring at random time intervals in the environment" [25]. Czaja 

and Drury [26] generated a taxonomy of inspection tasks from which they formulated the following 

categories: 

• Monitoring: observing a continuous process and reporting any deviations. 

• Examining: searching items, or arrays of items, for defects. Judgements are made without 

numerical measurement. 
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• Measuring: using instruments and measuring tools to provide numerical measures on which 

decisions are based. 

• Patrolling: checking and organizing the work of other inspectors. 

Quality inspection, such as that done at a patching table falls into the second category, namely 

examining. Oborne [27] and Murrell [28] state that, based on reports from inspectors, the complex 

task of inspection can be accurately and easily modelled. The proposed model is essentially mental 

template matching. The inspector has a mental picture of an good item or product which they then 

compare with the products requiring inspection. Deviations from this mental image are grounds 

for rejection. This is similar to the method of template matching used in machine vision inspection 

systems. In many cases the initial segregation of fault/no-fault is followed by other operations such 

as classification, logging and/or repair. 

Vigilance Decrement 

'Vigilance decrement' was first reported by Mackworth in the 1940's. Vigilance decrement refers 

to the human phenomenon of declining efficiency with time while engaging in vigilance activities. 

At the time of Mackworth's research the Royal Air Force (RAF) was concerned with the efficiency 

of their radar operators on anti-submarine patrols. Mackworth conducted a number of tests and 

found that after 30 minutes a significant deterioration of efficiency occurred followed by a steady 

but small decline afterwards (see Table 2.1). In all tests a vigilance decrement was detected. 

Vigilance is concerned with three main factors: detection rate, detection latency (time), and 

false positives. Mackworth's test did not explore changes in the last of these, namely, false positives. 

This is an important factor that has been addressed by Broadbent and Gregory [29] using a signal 

detection theory (SDT) of vigilance. This work "...suggests that the decline in detection rate can 
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Task Subjects Percentage of cor
rect detections in 
half-hour periods 
of task 
1 2 3 4 

Clock test I 25 RAF cadets 84.3 74.2 73.2 72.0 
25 Naval ratings 82.3 72.7 72.7 72.7 

Synthetic radar task 
Bright echo* 17 Naval ratings, 5 RAF ca

dets, 3 wireless operators 
94.0 91.8 84.3 88.5 

Dim echo 23 RAF cadets 72.0 62.2 61.2 60.1 
Main listening task 22 RAF aircrews, 3 Naval rat

ings 
80.4 71.6 70.6 64.0 

* Average of 2 runs about 1 week apart. 

Table 2.1: Mackworth's results. 

be viewed in terms of either an increase in the criterion or as a reduction in sensitivity" [25]. 

Essentially, the inspector suffers 'drift' with regards to their mental picture of a signal (a positive, 

i.e., a defect), almost always increasing the criteria for the signal. This leads to a decrease in 

the number of correct detections and also decreases the number of false positives. As a result the 

inspectors sensitivity remains constant but their decision criterion is shifted to a more conservative 

value. 

From another perspective, in vigilance experiments on multi-featured inspection tasks Craig and 

Colquhoun [30] found that, although performance decrements were observed (i.e., the percent of 

correct detections declined), the decrements could be attributable to the ratio of signal detections, 

positives (P), dropping to unity. This means that the subjects probably reduced their responses 

in order to match the occurrences (i.e., probability matching) and not due to the monotony of the 

task. This vigilance decrement, however, was not corroborated by their second experiment. In 

this test the same decrement was not observed to any significance for either true positives or false 

positives. Deese [31] points out that "detection rate does not always simply decline but may show 

some improvement or fluctuate". Many tasks show no decrement, especially complex tasks [32]. 
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A number of authors are of the opinion that vigilance decrements are not found in real world 

monitoring, [33, 34, 35, 36, 37]. However, the vigilance decrement has not been conclusively ruled 

out for real industrial inspection tasks. Many 'real world' experiments reveal vigilance decrements, 

[38]. When a vigilance decrement is observed it is usually completed by 20-30 minutes and half of 

the decrement occurs in the first 15 minutes [39]. This conflicting data is indicative of the need for 

more real world experimental studies. 

From this review it is apparent that the formulation of a vigilance decrement in the present 

work would be problematic without extensive on-site experimental data regarding worker behaviour. 

However, such a study is outside of the scope of this thesis. Furthermore, specific studies of worker 

behaviors beyond those related to the physical manipulation of the cans is undesirable from the 

point of view of union/management relations, and were specifically excluded by management in 

this study. To compensate, in this work, all experimental data was collected after half an hour of 

working and thus should represent the 'degraded' or steady state inspection efficiencies. 

Speed Decrement 

Many experimenters have confirmed that there is an exponential vigilance degradation associated 

with increasing event rate, namely, the rate at which a human must examine individual items. This 

degradation is noted in two general situations: (i) event rate is increased but fault signals per period 

are held constant (i.e., defects/time = const); [40, 41, 42, 43, 44, 45, 46] and (ii) the event rate is 

increased and the fault probability is held constant (i.e., defects/lot = const): [47, 43, 48, 49, 46]. 

In addition, the false positive rate has been shown to decrease linearly with event rate [24, 50, 51]. 

The generalized trends representing these findings are shown in Figure 2.1 and are adapted from 

Megaw [24]. Megaw states that in order to estimate these two curves, performance data is required 

for two average inspection times (or inspection rates), one of which should be near the point where 
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the true positive curve starts to break away. The work of Williams and Borrow [52], shows that 

detection rate remains constant regardless of event rate until the event rate is about 8° per second 

(at the eye) at which point the exponential decay is observed. They conducted a moving visual 

search experiment in which individuals were shown a moving visual search scenario which was 

continuously scrolling on a screen to keep it in constant view. The speed of this display was altered 

and the time taken to complete the search recorded. 

-true 
positives 

- false 
positives 

Event Rate (items/time) 

Figure 2.1: Generalized relationship between inspection time and accuracy of performance. 

The decay of the true positive rate curve is given by Drury [51] and many others as the standard 

equation for inspection and search tasks as a function of inspection time, namely: 

t 

to, 

where: 

p(correct detection) = 1 — exp (2.1) 

t = time to the local the target, 

to — scale factor dependent upon the size of the field, difficulty of recognizing the target, etc. 

Defect Density Factors 

It has been shown by many authors that as the defect rate or defect density is increased, from 

near zero the true positive rate increases rapidly and then levels off. On the other hand, the false 
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positive rate decreases rapidly and then also levels off. These trends are shown in Figure 2.2 taken 

from Harris' paper [53]. These findings are task specific, however they can be generalized. 

—•— false 
positives 

-•—true 
positives 

0 10 20 

Defect rate (%) 

Figure 2.2: Effect of defect rate on inspection accuracy. 

In summary, the major factors affecting inspection accuracy are line speed, defect density 

and time. Any modifications to the workcell which significantly affect these factors, may lead 

to alterations in inspection accuracy. 

2.4 Semi-Automated Manufacturing Systems 

The patching workcell considered in this work can be classified as part of a manufacturing workcell. 

Automation of this labour intensive workcell may lead to cost savings and quality enhancements. A 

definition for a Flexible Manufacturing System (FMS), adapted by Mansfield from the International 

Institution for Production Engineering Research, is: "...a production unit capable of producing a 

range of discrete products with a minimum of manual intervention; it consists of production-

equipment workstations (machine tools or other equipment for fabrication, assembly, or treatment) 

linked by a materials-handling system to move parts from one workstation to another, and it 

operates as an integrated system under full programmable control." [54]. 
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In the patching workcell considered in this work, the materials handling system is relatively 

simple. There are a small number of components and the product flow is unidirectional. However, 

in the present system the product attributes (namely, safety, appearance, and regulatory attributes) 

are not deterministic. Thus, the tasks undertaken in the workcell reflect a much more complex set of 

processing requirements than for example, executing typical machine-tool operations in a standard 

FMC. 

Robotic systems capable of performing complex, dextrous tasks such as repair or disassembly 

are generally very costly [55]. The cost involved in such tasks rises exponentially with the task 

difficulty due to the costs incurred through hardware and software acquisition and development. 

For these, and other labour related issues, it is not considered reasonable or feasible to consider the 

full automation of the workcell. Instead, a mixed automation approach is considered to have the 

best potential for success. 

An example of a semi-automated workcell is the U.S. military's printed circuit board repair 

workcell [56]. In this work, it was determined that automating 63% of the repair tasks and leaving 

the remainder to human workers was economically superior to full automation. System 'learning' 

or updating was facilitated with the aid of the workers who continually updated an expert system 

data base. 

In another example, Hattersley Newman Hender utilized a mixed human-machine manufactur

ing system in order to fabricate valve bodies. The cell employs automated machining and material 

handling equipment and is linked to a manual work station which handles tasks requiring a high 

level of dexterity. Video display units are employed at the manually operated o-ring fitting sta

tion and other human/machine interfaces to facilitate the integration of the human workers and 

automated equipment. 

In summary, mixed automation is well suited to situations involving a mix of both complex and 
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simple, repetitive tasks. The use of a video interface with human workers can provide an effective 

bridge between the human worker and the automated system. 

2.5 Economics 

In order for automation options to be evaluated it is required that the economic benefits of the 

various options be considered. Monetary savings or profit increases are the main factors by which 

a company will accept or decline a proposed investment in automation. Factors such as quality 

improvement and work place safety as well as employee moral also need to be considered although 

they generally play a lesser role in the decision making and are usually evaluated by non analytic 

means, hence, their contribution to the decision is based on the judgment of management. 

A typical cost breakdown for the analysis of an advanced manufacturing system is shown in 

Figure 2.3, [57]. Numerous authors stress the need for 'relatively ill-structured' costs (RISC), such 

as quality and flexibility costs to be addressed in the economic analysis of advanced manufacturing 

systems; [57, 58, 59]. Relatively well-structured costs (RWSC) include items such as labour and 

capital costs. Son [57] stresses the need to consider the shift in labour from 'direct labour' to 

'indirect labour' when implementing automation. For example, the shift from manual labourers to 

computer programmers or technicians. Furthermore, many economic evaluations do not deal with 

the savings obtained through improved quality and flexibility. Some exceptions are the Taguchi 

Method [59], the Analytic Hierarchy Process (AHP) [60, 61] and Son's methodology [57]. 

Generally there are three investment appraisal methods employed in the literature for the eval

uation of investment options based on RWSC factors. 

1. Degree of necessity 

2. Payout time 
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Total 
Cost 

RWSC Productivity 
Cost 

— Labour 
— Material 
— Depreciation 
— Machine 
— Tool 
— Floor space 

1— Computer software 
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Quality Cost —Q 
- Prevention 

-Failure 
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• Waiting 
•Idle 
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Figure 2.3: Cost system supporting analysis of advanced manufacturing systems. 

3. Rate of return 

The degree of necessity indicates an investor requires the improvement. This is usually the overrid

ing argument in decisions concerning replacement of broken equipment, recovering after disaster, 

government regulated improvements, or equipment upgrades that are relatively unprofitable but 

required in order to meet competition. This type of decision making is generally qualitative and 

hence comparisons based on this methodology are ill-defined. 

Payout time analysis is by far the most widely used method for investment comparison. In this 

method the number of years required for cash earnings or savings generated by the investment to 

payoff the capital expenditure is calculated, [62, 63, 64]. Drawbacks of this methodology include 

an overemphasization of the importance of early cash returns, it ignores projects economic life and 

fails to consider project earnings after the initial investment has been recovered. 

Rate of return analysis of investments relates the project's anticipated earnings to the amount 

of capital tied up during the projects estimated life. Various methods exist for the calculation of 

the return including; the accounting approach, the operating return approach, the present worth 

approach and the discounted cash flow (DCF) approach. The DCF approach eliminates some of the 
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disadvantages associated with the other approaches and has thus been adopted in this study. What 

the DCF does is that it sets all the present worths of cash flows (in and out) to zero. Whatever 

discount rate applied to the cash flows to make their discounted values zero is the DCF rate of 

return, [62, 63, 64]. This method assumes continuous compounding and in addition it assumes that 

the earnings generated are reinvested in the project or in some other investment in which it will 

earn at the same rate as the project in question. 

In summary, several mixed automation systems were examined including two in the food produc

tion industry. From the modelling of these systems and the subsequent simulation it was determined 

that time motion studies are an ideal way to gather information about manual processes. From 

this literature review it has been determined that the most reputable simulation method for mixed 

automata systems is a discreet event simulation. Factors affecting inspection accuracy have been 

examined and the methodology by which to economically evaluate the automation options has been 

determined. A discounted cash flow approach will be implemented along with the payout period 

method. 



25 

Chapter 3 

D a t a Acquis i t ion and Mode l l ing 

3.1 Quality Control Questionnaire and Interviews 

Many quality evaluations made in the food industry are subjective, because they depend on the 

judgment of individuals, e.g., plant quality control (Q.C.) inspectors, government inspectors, con

sumer panels, and of course, consumers. To automate quality evaluations on the can-filling line, 

the features which affect the quality of the filled can must be well understood. That is, fill features 

and fill defects must be identified in order to form a basis on which filled cans may be classified as 

either defective or acceptable. 

In order to gain an understanding of those defects which require patching, a questionnaire was 

prepared for B.C. Packers Q.C. personnel. The survey was composed of a series of short answer 

questions and a series of 36 colour photographs of various filled salmon cans. The cans were hand 

packed in the Industrial Automation Laboratory. The appearance of the filled cans was designed 

to represent possible fill defects as well as acceptable fills based on initial information gained from 
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interviews with B.C. Packers Q.C. experts. 

The participants were asked to identify on the photographs any Q.C. problems and to indicate 

their severity. A copy of the questionnaire is included in Appendix B. Through the results of this 

survey and further consultation with industry experts, the filling problems listed in Table 3.1 were 

identified. 

Filling Problem Description 
Cross-pack Steaks inserted sideways with skin showing. 
Flange obstructions Meat, skin or bones over the flange. 
Underweight Can does not satisfy government weight regulations. 
Overweight Can is overfilled and may not seal properly. 
Poor colouration Meat is not a uniform colour (bruises, blood-spots, mixed colours). 
Flange damage Can is scratched or dented during the filling process 
Poor-fill Too many pieces, ragged cuts, fins, or other misc. defects. 

Table 3.1: Can filling defect descriptions. 

The most severe defects identified in the survey were flange obstructions and flange damage. 

Flange obstructions include skin, flesh and bones on the flange of the can, Figure 3.1(a). These 

problems can result in a seam defect when the lid is attached to the can. This could lead to an 

improper (failed) seal, and in the worst possible case, spoilage of the can contents. Cross-packs, 

Figure 3.1(b) and flange obstructions were identified as the most frequent defect types. More 

detailed results are listed in Table 3.2. The poor-fill category was not included in these results 

since it is a catch-all category for a number of less common, ill-defined miscellaneous defects. 

Using the expert comments the following descriptions of a well filled and poorly filled can were 

developed. A well filled can, Figure 3.1(c) consists of one to three clean cut transverse salmon 

steaks with a uniform bright colour. A poorly filled can may consist of any number of the following 

problems: ragged cuts, too many small pieces, Figure 3.1(d), bones on the surface, bruises, blood 

1 O n e major concern in creating this survey was that the pictures of hand-packed cans would not resemble typical 
cans found on the canning line. However, one of the Q .C . experts surveyed used the survey pictures to create a 
training document for new patching table workers. This was taken as an indication that the pictures were reasonably 
realistic. 
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spots or mixed colours. These defects are i n addi t ion to flange defects, cross-pack and incorrect 

weight. 

Problem Severity * Frequency* 

Cross-pack 4.0 3.75 
Flange obstructions :».() 3.25 
Underweight 4.0 2.25 
Overweight 3.75 2.00 
Poor colouration 3.75 2.00 
Flange damage 4.50 2.00 

*5-high, 1-low 

Table 3.2: Survey results. 

(a) Flange defect (b) Cross-pack. (c) Well filled can. (d) Too many pieces. 
(Bones over the 
flange). 

Figure 3.1: Various filled salmon cans. 

The identification of can-filling problems on the pictures i n the th i rd section of the survey were 

somewhat inconsistent. The experts disagreed on the fi l l ing problems in 8 of the 36 images used in 

the survey. T h i s indicates that the characteristics of a well filled can are not crisply defined. The 

inconsistent answers could also be due to the open ended nature of this question. 

For the purposes of this project, specific data on fil l ing defects were generated by Q . C . personnel 

under the direction of M r . Roger G i b b , of B . C . Packers, dur ing a previous canning season (August 

1995). Analys is of this raw data produced the statistical information listed i n Table 3.3 concerning 

fi l l ing defects encountered at the patching table. One can note that, the observed frequency of the 
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filling defects is consistent with the perceptions of the Q.C. experts. That is, cross-pack and flange 

defects occur more frequently than other defects. 

Defect Mean (defects/min.*) Std. Dev. % Total number 

Cross-Pack 12.08 4.88 30.9 
Flange obstructions 15.45 7.25 39.5 
Underweight 6.27 5.9 16.0 
Overweight 1.38 1.17 3.5 
Other 3.96 4.29 10.1 
Total 39.15 12.11 100.0 

* Average line speed was 249 cans/minute. 

Table 3.3: Statistical data on can filling defects. 

The overall rate of defects arriving at the patching table was about 15.7%, or about 39 defective 

cans per minute. One can note that, these are only the number of defects observed while the line 

was running and therefore, may not represent the actual number of defects which could occur (i.e., 

some defects may have been missed). 

A classification system has been developed for the grouping of defects based on defect severity 

and criticality. Three categories have been generated: safety, regulatory and appearance in order 

of descending criticality. 

3.1.1 Safety Defects: 

This is the most important category since it represents those defects that may compromise the can 

seal, possibly resulting in spoilage. Flange obstructions constitute most of this category. Bones 

or the tough salmon skin are the most common causes of flange obstructions. In addition to 

spoilage problems, missed flange obstructions which are later detected through "dud detection"2 

after a specified storage time, represent a loss of finished product for the producer. For the same 

reasons, bent or damaged can flanges constitute a safety hazard. In this case, when detected the 

2 T h e process of measuring the deflection of the can l id as a representation of the can's seal. This process is done 
on all salmon cans prior to labelling. Three percent of the most deviant cans are ejected and hand inspected. 
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can must be discarded and the meat repacked in a new can to ensure a proper seal. Foreign object 

contamination also represents a safety hazard; however, this is a relatively rare occurrence. At 

present, the patching table workers do not specifically look for foreign material, but when found, it 

is of course, removed. Inadequate vacuum is a safety failure that cannot be directly verified at the 

patching table but is influenced by the way the can is filled. The amount of head space, (vertical 

height from steak surface to the can flange) and the void fraction, (ratio of volume displaced to 

available volume), influences the level of vacuum achievable when the can is lidded and sealed. 

Since inadequate vacuum may lead to spoilage; B.C. Packers requires a vacuum of not less than 2 

inches of H2O; however, they have not determined an optimal head-space or void fraction required 

to meet this requirement. 

3.1.2 Regulatory Defects: 

This category has a single member, namely, weight violation. B.C. Packers has indicated the need 

to control the net fill weight such that the standard deviation is not greater than 1.5g for 1/4 lb., 

2g for 1/2 lb. and 3g for a 1 lb. can. On 1/2 lb. lines B.C. Packers attempts to patch all cans 

9 grams or more below the label weight of 213g. Statistical quality control is done by means of 

sampling throughout the shift. The filler is deemed in control if not more than 2.5% of cans fall 

below one tolerance (-9g) and not more than 0.5% fall below two tolerances. 

3.1.3 Appearance Defects: 

These are aesthetic defects and hence they are less critical since they do not pose a health or safety 

concern. Instead, they reduce the appeal of the product for the consumer. Large voids in the can 

are undesirable since they give the impression that the can is underfilled, regardless of the weight 

content of the can. Cross-packed steaks are steaks which, during filling have been flipped onto their 
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side exposing the skin to the top surface. The appearance defects are listed below: 

• skin flaps. 

• cross-pack. 

• blood spots. 

• fins. 

• too many pieces. 

• ragged cuts. 

• tail pieces. 

• colour non-uniformity. 

• large voids. 

3.2 On-site Experimentation 

A number of on-site experiments were performed to acquire data on each defect category as well as 

to obtain overall process data for modelling purposes. The B.C. Packers cannery in Prince Rupert 

B.C. was selected as the site for these experiments. The experiments were conducted during the 

1996 summer canning season. The objectives for the experiments at the cannery were: 

• To measure the defect production rate and distribution exiting the filling machine. 

• To measure the failure rate of the patching table. 

• To obtain images to test can feature extraction algorithms. 

• To observe the operation of the patching table. 

• To collect data from the high speed weighing system. 

The defect production rate of the filling machine and the failure rate of the patching table were 

estimated by taking a series of digital pictures of cans exiting both the filling machine and the 

patching table (i.e., cans entering and leaving the patching table). In order to obtain an equal 

sample from the six-pocket filler, over an extended sampling time an image of every seventh can 

entering or exiting the patching table was acquired. (The images of entering and exiting cans were 

obtained over two different time periods due to equipment limitations.) The pictures were then 
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reviewed to provide statist ical data on the can fil l ing defects entering the patching table, as well 

as defects leaving the table (i.e., defects missed by the patching table staff). The digi ta l pictures 

were acquired directly into a computer using a electro-optical trigger, a digi ta l camera and a frame 

grabber, Figure 3.2. 

Figure 3.2: Exper imenta l setup. 

The operation of the patching table was videotaped and observed to obtain data on worker 

interaction and task identification. The video of the patching table was also used to identify the 

manual patching motions used to repair different fill defects. The end of day totals of underweight 

cans were collected from the high speed weighing machine located just upstream of the entrance to 

the patching table. 

3.2.1 Layout 

Exper iments were performed on canning line 4, running 1/2 lb . tapered cans. The line was 

equipped w i t h a Met t ler Toledo H I - S P E E D CM9400 can and bottle checkweigher which would 

divert underweight cans to an auxi l iary conveyor on the patching table. The table employed four 

patching workers. The locations of the workers at the table are indicated i n Figure 3.3. 
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Figure 3.3: Patching station. 

3.2.2 System Setup and Product Input 

The line was run with previously frozen Pink salmon for most of the experimental work, followed 

by a small run of Chum salmon, also previously frozen. Al l data is with regard to Pink salmon 

unless otherwise indicated. The checkweigher was set to eject those cans weighing less than 204 

grams, (i.e., 1 tolerance). The filler was set to a fill weight of 214g, lg over the desired weight of 

213g and the line was operated at a rate of 232 cans/min. The product being produced was grade 

four salmon. The grade of the product affects operations carried out at the patching table. The 

lower grades, (e.g., 4-6), have a lower priority for patching cross-packed cans. This lower priority 

means that the severity of the cross-pack which is acceptable increases as the grade drops. This is 

a function of the current state of the table, if the table is idle, during a low grade run the patchers 

will patch minor cross-packs. 

3.3 Experimental Results and Data Modelling 

3.3.1 Worker Tasks and Table Operation 

One of the fundamental requirements in the modelling of the patching table is to clearly understand 

the responsibilities of each worker and their interaction with the cans and the other workers. From 
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the video footage the primary tasks of the workers have been identified and, in addition, any 

worker interactions have been identified. A schematic representation of the work flow and worker 

responsibilities is presented in Figure 3.4. 

Can Flow 

-Preparation 
-Scanning 
-Patching 

-Preparation 
-Scanning 
-Patching 

Cross-packs 
f lange O b s . ^ ^ 

Poor-fills 
Suspicious Weight 

-Scanning 
-Patching 

-Scanning 
(Spotter) 

Figure 3.4: Worker interaction and responsibilities. 

Worker #1 

Worker #1, 'the spotter' has the responsibility of continuously scanning the cans which are leaving 

the patching table heading for the lidding and seaming machines. This worker is the last point 

in the quality control chain at which a recovery can be made of the product. The spotter pulls 

any defective cans which have traveled across the table and passes them to other workers for 

repair. Those cans with flange obstructions or those that are cross-packed are passed to worker 

#3 for repair. The spotter also pulls off the line those cans deemed to be 'poor-fill' (discussed in 

section 3.3.5) and directs them to worker #2 for repair. In addition the spotter repairs certain cans 

without taking them off line if the operation is quick and easy like tucking in some meat with a 

finger. The spotter also presses many of the steaks flat with their hands, and thus facilitates easier 
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lidding. 

Worker #2 

Worker #2 patches those poorly filled cans directed to her by the spotter and repairs some of those 

underweight cans ejected by the checkweigher (i.e., those which are not pulled by worker #4 from 

the auxiliary conveyor). When not occupied worker #2 will pull and patch defectives from the line. 

Worker #3 

Worker #3 patches those cans directed to her by the spotter. When not occupied by patching tasks, 

this worker scans the line for flange and cross-pack defects and patches those defects as found. 

Worker #4 

Worker #4 patches underweight cans ejected by the checkweigher. When not occupied by patching 

tasks, this worker scans the line for flange and cross-pack defects and patches those defects as found. 

Additional Workers 

Additional workers may be added as required depending on product quality (grade) and fish quality. 

Poor quality salmon may require additional workers to maintain acceptable quality (grade). These 

workers alleviate extra load on the other workers. 

3.3.2 Flange Defects 

Patching Method 

It was found that the patching of flange defects occurs in two modes; 'on-the-fly' and 'off-line'. 

On-the-fly patches are very quick patches of flange obstructions which do not involve the removal 
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of the can from the line. Usually the worker obstructs the flow of the can with one hand while 

simultaneously tucking in the obstruction. These patches are, of course, only carried out when the 

flange obstruction is the only defect. Off-line patching involves the removal of the can from the 

line and is usually a longer patch operation. Generally a stuffing or tucking method of patching is 

employed using fingers or scissors. 

Distribution and Patch Times 

The percentage of flange obstructions observed in a 599 can sample was 14.69%. As mentioned 

above, the patching of flange defects occurs in two modes, on-the-fly and off-line. The two modes 

were separated by analysis of patch times required for on-the-fly and off-line flange patching. In 

order to determine the split between those flange defects which can be patched by the two methods, 

worker #4 (the first worker to look at the cans) was analysed to determine the number of off-line vs. 

on-the-fly patches that she performed. This analysis showed that about 50% of the defects were 

patched by each method (Table 3.4). The on-the-fly type patch requires no dedicated patching 

time in the simulation of the current workcell, since this patch does not interfere with the workers 

scanning the line (i.e., they perform both tasks simultaneously). On the other hand, a patch time 

distribution is necessary for the off-line type patching mode. 

Mode i1 O" Distribution Type 
On-the-Fly N / A N / A 51.1% None 

Off-Line 0.6767 0.6137 48.9% lognormal 

Table 3.4: Flange patch time distribution fit. 

A log transform of the sample data generated a normal distribution indicating a lognormal 

distribution was probably the underlying general distribution for off-line patching. "The lognormal 

distribution is the distribution of a random variable whose natural logarithm follows the normal 

distribution" [18]. Hence, a lognormal distribution: 
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was fit to the off-line patching time data by minimizing the square of the error, see Figure 3.5. 

Table 3.4 gives the optimized lognormal distribution fit. It should be mentioned that other distri

butions including gamma and Weibull were fit to the data but with less satisfactory results and 

hence the lognormal distribution was selected. This and all distributions were tested according to 

the Chi-Squared goodness of fit test with a significance level of 0.05 except in a few special cases 

where the amount of available data rendered such testing impossible. In all cases considered it was 

not possible to reject the hypothesis of a distribution fit at this level of significance. These tests 

are compiled in Appendix A. Since the distributions are lognormal (in most cases) the patch times 

require taking the exponential of the indicated patch time in order to generate the real patching 

time. 
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Figure 3.5: Off-line flange patch times. 
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3.3.3 Cross-packs 

Patching Method 

The patching of cross-packs is generally longer than flange patching. It almost always involves the 

use of scissors and, in some cases, removal of the steak and subsequent re-packing. This is a high 

dexterity task since significant handling of the steak is usually required. Thus, this defect would 

be costly to automate, requiring some high level intelligence and dextrous manipulation. 

Cross-pack Qualification 

Due to the large variation in the patching of cross-packs, even within a specific grade and the 

variability in what 'experts' consider to be a cross-pack defect requiring patching, the up-stream 

and down-stream data sets were used to determine the allowable level of cross-pack. The data 

sets were examined for cross-pack and offending cans were placed into groups based on the surface 

area of exposed skin. Table 3.5 shows the distribution of the cross-packs entering and exiting the 

system. Examining the tabulated data shows a significant differential between entering and exiting 

cross-packed cans only for cross-packs of one eighth the surface area or greater.3 Utilizing this as a 

hard threshold for cross-pack qualification the percentage of cans entering the table 'cross-packed' 

is 7.8%. 

cross-pack area < 1/12 < 1/8 < 1/6 < 1/4 < 1/3 > 1/3 
Entering (%) 14.86 5.68 4.34 2.67 0.835 0.0 
Exiting (%) 13.40 5.36 1.84 1.17 0.168 0.0 

Table 3.5: Cross-pack patching data. 

Another factor which affects appearance of the cross-pack is distribution of the problem (i.e., if 

just over a sixth of the can surface has skin visible but it is due to two or three pieces it might not 

3 T h i s cross-pack area would increase, or decrease, depending on the class of salmon being processed. The data 
herein is for grade 4 salmon. 
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be considered average but only minor). It would be valuable upon implementation of automated 

inspection to incorporate this feature into the problem. An additional factor is the importance of 

colour. It has been indicated by B.C. Packers that dorsal skin (black) is considered a more sever 

defect and hence an attempt is made to patch all black skin cross-packs. This however, is not 

backed up by the data sets shown in Tables 3.6 and 3.7. These factors are considered in [65]. 

cross-pack area < 1/12 < 1/8 < 1/6 < 1/4 < 1/3 > 1/3 
black skin (#) 36 18 15 6 3 0 
white skin (#) 53 16 11 10 2 0 

Table 3.6: Incoming cross-pack population, 599 can sample. 

cross-pack area < 1/12 < 1/8 < 1/6 < 1/4 < 1/3 > 1/3 
black skin (#) 35 16 7 5 0 0 
white skin (#) 45 16 4 2 1 0 

Table 3.7: Outgoing cross-pack population, 597 can sample. 

Patching Time 

Upon examining the distribution of patching times required for fixing cross-packed cans, Figure 3.6, 

it was hypothesized that again the process was multi-modal due to the obscure occurrence of several 

very long patch times shown in the "more" bin. Re-examination of video footage confirmed two 

distinctly different modes of patching. These modes were: a) those requiring cutting and b) those 

requiring only poking and tucking of the cross-packed skin. The most common patch is type b), 

whose patching time is distributed about the 2-3 second patch bins. Type (a) patches, appearing in 

the "more" bin of Figure 3.6 are much longer in duration and less common. In order to model these 

aspects the two cases have been separately addressed in a similar fashion to the flange defects. 

Figure 3.7 shows the lognormal distribution fit to the type (b) cross-pack patch utilizing a mean 

of 1.56 and a standard deviation of 0.34. It is not possible to accurately model the type (a) cross-

pack patch time distribution as only a small sample of this type of patching was available. Hence 



3.3 Experimental Results and Data Modelling 39 

O i n O w i O i n O i n o ^ i O i n o i n O v i O i n O 
o o —H (N (N m' rn ri- »n i n v o ^ ' r - ^ r ^ od od C \ 

Patching times (sec.) 

Figure 3.6: Cross-pack patch times. 
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Figure 3.7: Type (b) cross-pack patch time dis
tribution fit. 

a normal distribution has been assumed and placed at the mean value of this type of patch, 24.0 

seconds with a standard deviation of 7.17. This type of patching represents 10.2% of the cross-pack 

repairs. The data is tabulated in Table 3.8. 

Mode M o Distribution Type 

cutting 24.0 7.17 10.2% normal 
no cutting 1.56 0.344 89.8% lognormal 

Table 3.8: Cross-pack patch time distribution fit. 

3.3.4 Weight 

Patching Method 

In general, it was observed that underweight fills were corrected, while overweights were not, rep

resenting a loss to the producer. The patching of the underweight cans is usually done by the 
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worker inserting their finger down the side of the can between the can and the steak and pulling 

radially towards the center thereby creating a pocket for meat addition. While the pocket is being 

formed the worker picks up a prepared meat chunk and inserts it into the can and then presses the 

steak flat once more. 

Pre-Patching Weight Distribution 

The end of the day weight totals registered by the checkweigher are recorded in Table 3.9. Over 

fifteen tones of product were processed with a mean weight of 218.6 grams and a standard deviation 

of 4.95 grams. Figure 3.8 illustrates the distribution graphically. Unfortunately the histogram dis

tribution chosen by B.C. Packers does not represent the upper distribution effectively. Furthermore, 

the checkweigher distributions are not consistent with the weight distributions computed by QC 

personnel, hand weighing samples of cans leaving the table, Figure 3.9. 

Range Count Weight(g) 
0-204 963 146623.0 

204-210 2851 592440.8 
210-214 7479 1587688.0 
214-218 17551 3793823.1 
218-co 40500 8994371.5 

15114946.4 

Table 3.9: Pre-patching weight distribution. 
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Figure 3.8: Checkweigher totals. 
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An independent 565 can sample was compiled and the results are shown in Figure 3.10. The 

mean weight was found to be 216.9 grams with a standard deviation of 5.07 grams. Geary's test for 

normality indicates a high degree of confidence in the assumption of normality for this distribution 

(see AppendixA). To check this result, a second sample was generated by observing the number 

of ejected cans on the live video feed. Six samples were taken over the course of the experiments, 

14523 cans. For each sample the mean of the distribution was fit such that the tail area below 204 

grams would generate the observed number of ejections for the sample time. The mean weight was 

216.9 grams (the same as from the 565 can sample recorded from the checkweigher) and a sample 

standard deviation of the mean between the six samples was 0.733. Hence, a normal distribution 

utilizing the sample mean and standard deviation have been adopted for use in the simulations. 

The data used in the both the 565 can sample and the video sample were collected during controlled 

times in the shift while Pink salmon was being processed with normal operating conditions (i.e., no 

filler anomalies). Recalling that B.C. Packers desires the weight of 1/2 lb. cans to be controlled to 

within a 2 gram standard deviation, the present filling machine produces a product with 2.5 times 

the desired standard deviation. 
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Figure 3.9: Post-patching weight control. 
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Figure 3.10: Checkweights, 565 can sample. 
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Patching Time 

The distribution of the weight patching times was also found to be multi-modal. In this case the 

two modes stem from the fact that the task of weight addition requires preparation of the salmon 

for adding to the cans. This preparation allows some weight patches to be rapidly completed when 

there is prepared salmon ready, while other patches take much longer when no prepared salmon is 

ready. Two possible ways of addressing this situation were considered. 

I. the use of a Monte Carlo type simulation of the distribution. 

II. a distribution fit to the 'prepared' weight patch data plus an additional action or function 

required by weight patchers of 'preparation'. 

The second approach was selected since the patchers do some preparation even when not in 

the act of patching. Therefore the weight patching task requires modelling of this function in both 

cases. The preparation task is a function of the number of weight patches that the worker has 

processed. Figure 3.11 shows the lognormal distribution fit to the weight patch times not involving 

preparation of meat. The mean and standard deviation used in the fit are 1.97 and 0.732 seconds 

respectively. 

3.3.5 Poor-fills 

Patching Method 

It was observed that worker 2 repaired defects which were not easily classifiable. This category of 

defect includes very poor colour pieces, pieces requiring spine or rib cage removal and other difficult 

patches. The patching of the poor-fill cans is complex in nature and varies from case to case. The 

repair will usually involve the removal of 'poor' pieces and subsequent addition of better pieces 
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Figure 3.11: Weight patch time distribution fit. 

on hand. Hence both worker 2 and 4 require significant meat preparation activities; worker 2 for 

poor-fill and weight patches and worker 4 for weight patches. 

Distribution 

The 'poor-fill' category is a highly subjective classification in that expert knowledge would be 

required to classify fills into this category. Since expert graders were not available for this task, the 

599 can sample was graded based on criteria described in the quality control survey. It was found 

that 7.85% of the incoming cans were poor-fills. 

Patching Times 

The distribution of the patching times for poor-fill repairs along with the lognormal distribution fit 

is shown in figure 3.12. The best fit resulted in a mean of 3.49 and a standard deviation of 0.300. 
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Figure 3.12: Poor-fill patch time distribution fit. 

3.3.6 Meat Preparation 

In the modelling of the meat preparation task it would be ideal to model the actual level of meat 

that the patch worker has on hand and its status; 'prepared' or 'unprepared'. This level of modelling 

however is not feasible since there are many processes which occur to this meat stock including can 

dumping and throw away. Hence to model the preparation task, video data was used to compile the 

total time spent on preparation activities for workers 2 and 4. Worker #2 was observed to spend 

5.6% of the time engaged in preparation work and worker #4 was observed to spend 13% of the time 

engaged in preparation work. The task times for the meat preparation activity did not follow any 

standard distribution and hence the task times have been simulated using Monte Carlo simulations. 

The number of occurrences of meat preparation was assumed to be a function of the number of 

underweight and poor-fill patches. Hence the triggering of a preparation activity was tuned such 

that the simulation provided a similar percentage of preparation time as the experimental data. 

n 
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The results of this tuning are discussed in Section 4.1.2. 

3.3.7 General Observations 

A previously unknown type of patch was recognized to take place at the table. Tail pieces are often 

flipped if their tapered end is facing up. This patch can be thought of as cross-pack in that skin 

showing is the primary concern. In addition many tail pieces are cut open axially. This operation 

was done by worker 2 and is included in the poor-fill defect category. 

One extra function the workers (mainly the spotter) provide is the general tamping down of the 

steak using their fingers. This tamping presses the surface of the steak below the flange to allow 

proper lidding. This process is done on-line: therefore, no task time is necessary. However, any 

automation introduced for defect patching such as flange defects should include some mechanism 

for tamping of the steak surface. This simple addition would remove an additional worker activity 

and thus reduce work load and improve quality. 
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Chapter 4 

Basecase Simulation 

This chapter details the simulation of the patching table workcell based on the experimental data 

collected and described in Chapter 3. This simulation is referred to as the 'basecase'. The simulated 

workcell utilizes a high speed checkweigher and four patching workers including the spotter. The 

basecase simulation is used in the chapters which follow to analyze the effects of the introduction 

of various automation aspects into the workcell. 

4.1 Basecase 

The Awesim simulation package [18] was chosen as the simulation platform for the basecase and the 

subsequent comparative cases. This package offers a network based modelling environment with 

discrete and continuous modelling capabilities. It allows the incorporation of user written Visual 

C++ or Visual Basic functions when appropriate modelling nodes are not available. Figure 4.1 

shows the major nodes used in the simulation networks, and Table 4.1 details their functionality. 

The basecase simulation mimics the operation of the patching table observed during the data 

collection experiments in Prince Rupert. Assumptions include 100% accuracy of the checkweigher 
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Figure 4.1: Selected Awesim network nodes. 

and 100% patching accuracy by the patching workers (i.e., when a worker does recognize a defect, 

it is correctly patched). For grade 4 salmon fill (the grade of fill running during the data collection 

at Prince Rupert) the input defect distribution is shown in Table 4.2, based on the analysis of a 

599 can sample spread over two 10 minute intervals. Two separate samples being used in order to 

account for, through averaging, the defect density variation with time. 

4.1.1 Logic and Layout 

Figure 4.2 shows a simplified version of the basecase network modelled in Awesim, reduced for 

clarity. The full network employed in the Awesim simulation is shown in Appendix C. 

The underlying flow logic for the simulation network in Figure 4.2 is described below. Each 

node described below is numbered, e.g., (T) in Figure 4.2 and paths are lettered, e.g., (x). The 

specially developed C routines called by the network are referenced in the form (codename.c,call 

#) and are listed in Appendix D. 

Entities (filled salmon cans), enter the network via the CREATE node, (7), at a rate dictated 
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Node Function 
CREATE -used to introduce entities (cans) into the system at specified 

intervals. 
TERMINATE -used to remove entities from the system. 
RESOURCE* -specifies the number of resource units initially available and 

from which files (AWAIT and PREEMPT nodes) it is to del
egate units of resource. 

AWAIT -node is tied to a specific resource and stores entities until 
resource units are freed such that the entity may be processed 
by the resource. 

P R E E M P T -node is tied to a specific resource. When a entity arrives at 
this node it immediately seizes a specified number of units of 
a resource when they become available regardless of whether 
or not other entities elsewhere have been waiting for that 
resource. 

FREE -used to release a specified number of units of a resource so 
that they can again be utilized. 

SELECT -determines which of multiple possible queue nodes to select 
entities from and which of multiple activities or paths to send 
them on to. 

GOON -the goon node or the go on node simply passes entities 
through according to any outgoing conditions emanating 
from it. 

QUEUE -stores entities until the outgoing activity (generally) has 
been completed. 

BALKING QUEUE -node is identical to the standard QUEUE node except that 
when the queue reaches capacity subsequent arriving entities 
are routed to the node specified by the balk command. 

EVENT -used to call a user written function when an entity arrives. 
*The resource block is not a 'true' node since it is not directly attached to the network. 

Table 4.1: Function of the major network nodes employed in simulations. 

by the desired line speed. Unless otherwise stated the line speed for all scenarios was set to the 

filling speed observed at Prince Rupert, 232 cans/min. 

The EVENT node 0, (BEVENT.c,l) assigns defects to the cans based on the defect distribu

tions formulated in Chapter 3. 

Those entities which are below one weight tolerance, (i.e., 9 grams under label weight), are 

routed down the path labeled "Underweight", (x). This represents the action of the checkweighing 

machine employed on the patching table during the experiments. It was observed that 90% of 



4.1 Basecase 49 

Defect (%) 

Underweight 0.55* 
Flange Obstruction 14.69 
Cross-Pack 7.845 
Poor-Fill 7.85 

*determined from checkweigher data 

Table 4.2: Simulation input. 

the time worker #4 will patch these defects (and any other defect present in the fill) leaving the 

remaining 10% to be patched by worker #2. This split is represented by the GOON node, (3) , 

following the underweight path which routes 90% to worker 4 and the remainder to worker 2. Cans 

that are routed to worker 4 are sent via GOON node, (4) , to worker 4's patching queue, AWAIT 

node, (5) . At the same time 'dummy entities' are created at GOON node, (4) , to initiate the 

worker meat preparation tasks. These entities are created at a rate of 0.628 times the arrival rate 

of underweight cans, to allow for a sufficient amount of meat preparation to occur. 

The split indicated for generation of a meat preparation task was determined using the simu

lation and is discussed in section 4.1.2. When one of these dummy entities enters the P R E E M P T 

node, (?), the worker immediately performs a meat preparation task. This activity is preemptive 

since patching activities cannot continue until prepared meat is available. The dummy cans are 

subsequently destroyed after initiating the task. The meat preparation times are generated from 

Monte Carlo simulations of the observed preparation times for workers 2 and 4. These are called 

by (BUSERF.c,2) for worker 2 and (BUSERF.c,3) for worker 4. 

Cans which are not underweight enter GOON node, (j). If worker 4 is not occupied with either 

meat preparation or patching the can enters the scanning EVENT node, (&). If however, worker 4 

is occupied the can goes by un-inspected to the next available worker. 

The scanning EVENT node, (s), calls (BEVENT.c,2) which emulates the scanning of the line 

by the worker for defective cans. The code gives probabilities for that worker correctly identifying 
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a defective can. 

When a defective can is identified it is routed to the patching queue, AWAIT node, © . The 

duration of the patching time is assigned by (BUSERF.c,l) and is governed by the statistical 

distributions outlined in Chapter 3. 

The worker has been modelled as a single unit resource which is utilized by various activities. 

Hence, when the worker is engaged in patching or meat preparation the unit resource is occupied 

for the duration of the task. After the activity is completed the resource (worker) is 'freed' by 

FREE node, (?), (for worker 4) and automatically takes on the default activity of scanning for 

defects. Thus, when a resource (worker) is occupied by non-scanning tasks the entities (cans) are 

not inspected by the worker. Instead, they travel to the next worker, as is the case in the actual 

workcell. 

The other workers are modelled in much the same manner as worker 4 with the exception of 

worker 1, the spotter. The spotter is charged with the task of observing every can exiting the 

system and thus is never required to perform 'complicated' repair tasks. However, the spotter 

can perform simple 'tamping' operations on the cans as they pass by to correct any minor flange 

defects. (The nodes which represent this operation are not shown in Figure 4.2, but are shown in 

the full system diagram given in Appendix C). The spotter routes any detected poor-fills to worker 

2 and all other detected defects to worker 3 for patching. This is shown in the network by paths 

( Y ) and (z) leading from the spotter directly into the AWAIT nodes, (w) and (u), of worker 3 and 

2, respectively. 
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4.1.2 Tuning and Evaluation 

In order to tune the system so that its behaviour reproduced the observed operation of the patching 

table, parameters were selected to indicate how closely the simulation represented the observed data. 

The parameters selected were: 

• the time utilization (time working/total working time) of each worker 

• the patching rate (patches/unit time) of each worker 

• the outgoing defect distribution (relative levels of the various defects) 

• the table failure rate 

In addition the rate at which the spotter passed cans to workers 2 and 3 was matched with the 

observed experimental data. Successful matching of these parameters would indicate that the 

models of the worker behaviors, specifically the worker task breakdowns, task efficiencies and task 

times were appropriate. 

The variables which were adjusted to tune the system were: the efficiencies of workers in 

spotting each of the three defect categories; flange, poor-fill and cross-pack. The values of the 

tuned parameters appear in Table 4.3. In addition, the experimental data indicated how much 

time workers 2 and 4 spent engaged in meat preparation. Therefore, tuning was done in order 

to determine the ratio of meat preparation task-time to underweight task-time and to poor-fill 

task-time. For example, it was determined from the experimental data that worker 4 spends about 

13.0% of their time engaged in meat preparation. Based on the task times for worker 4, for every 

1.59 underweight patches that worker 4 completes, one meat preparation task should be initiated. 

The spotter was assigned an effectiveness level for patching 'on-the-fly' type flange defects. This 

was tuned to 54%, i.e., the spotter fixes 54% of the 'on-the-fly' flange defects. 
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Worker 
4 3 2 s 

Vxp 0.405 0.02 0.105 0.107 
Vfd 0.275 0.13 0.0 0.46 
Vpf N / A N / A 0.0 0.068 
-77=inspection efficiency for task 

-:cp=cross-pack 
-/d=flange defect 

-p/=poor-fill 
-S=spotter 

Table 4.3: Tuned efficiency parameters. 

Tuning produced the results shown in Tables 4.4 and 4.5. Satisfactory results were achieved 

through tuning with the exception of the patching rate of the table. Table 4.5 shows the outgoing 

defect rate of the simulation and the data differing by about 4 percent. This appears to indicate 

a problem in the simulation. However, closer examination of the data indicated the discrepancy is 

related to the experimental data. The measured overall patching rate of the table is the sum of the 

patching rates of the individual workers. From Table 4.4 this is (6.26 + 8.94 + 2.0) = 17.2 cans/min 

or 7.41% for 232 cans per minute. However, the change in the number of defects in the upstream 

and downstream sample data indicates a patch level of (30.94% in - 13.23% out) = 17.71%. The 

'true' patching rate is likely somewhere between the two numbers. The outgoing and incoming 

defect data were each from two samples representing only 597 cans. In both cases, these sample 

sets differed by more than a percent. Furthermore, due to hardware limitations the upstream and 

downstream data sets were collected at different times in the shift. On the other hand, the data 

concerning the individual worker patching rates and spotter activities were compiled from a much 

richer data set and hence a higher level of confidence. However, computing the overall patching 

rate from this data is problematic since 'on-the-fly' patching done by the spotter are not included. 

For these reasons the patching rate was not used in tuning. Instead, individual patching rates and 

the other parameters were used. 
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In addition other variables were examined for their deviation from the experimental data such 

as queue sizes and worker task breakdowns. In all cases the match was very close to the data. 

Data Simulation 
Patching Utilization, W4 53.3% 53.2% 
Patching Utilization, W3 86.2% 86.1% 
Patching Utilization, W2 77.4% 77.1% 

Preparation Utilization, W4 13.0% 13.2% 
Preparation Utilization, W2 5.8% 5.9% 

Patching Rate (cans/min.), W4 6.26 6.20 
Patching Rate (cans/min.), W3 8.94 8.89 
Patching Rate (cans/min.), W2 2.0 1.62 

Spotter passes to W3* 3.6% 3.6% 
Spotter passes to W2* 0.53% 0.53% 

* percentage of al cans 

Table 4.4: Simulation output. 

Data Simulation 
Defectives 13.23% 17.63% 

Single Defects 
Flange 4.36% 5.50 % 

Cross-pack 3.18% 4.81% 
Poor-fill 5.19% 5.97% 

Multiple Defects 
pf + xp 0.0% 0.452% 
xp + fd 0.17% 0.365% 
fd+pf 0.17% 0.495% 

fd + pf + xp 0.0% 0.0351% 
pf = poor-fill 

xp = cross-pack 
fd = flange defect 

Table 4.5: Output comparison. 

4.1.3 Results 

The simulation time was increased until the deviation of the tuning parameters in successive runs 

was less than 0.05%. It was found that a simulated time of 277.8 hours or one million seconds 

provided the desired level of consistency. Tables 4.4 and 4.5 show the parameters matched and the 
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outgoing defect distributions. This basecase output will be used in evaluating various automation 

options based on a comparison of their results to this output. Although the basecase is based on a 

rather small data set (one shift on one patching table in one plant) the automation option analysis 

which is carried forward from this basecase is relative in nature. In other words, if improvements 

can be shown over this basecase, it can be expected that similar improvements could be made for 

more general patching table scenarios. 
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Chapter 5 

Comparat ive Methodology 

In this chapter, the ways in which automation of the patching table could result in economic and 

or quality benefits are discussed. The methods by which these benefits are quantized and evaluated 

are detailed. The quantization of these benefits is then used to evaluate and compare a number of 

options for automation of the patching table, based on the results from the basecase patching table 

simulation. 

5.1 Operational Parameters 

Several important operational parameters of the canning line are tabulated in Table 5.1. It is 

assumed that a typical canning line will process a percentage of each of the various salmon species 

according to the data in Figure 5.1 (provided by the B.C. Salmon Marketing Council database)1. 

Thus, the average price per pound of raw material is determined from the data appearing in 

Figures 5.1 and 5.2 (also from the same database). 

1 www.bcsalmon.ca 

http://www.bcsalmon.ca
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The remainder of the operational parameters are based on data provided by various personnel 

at B.C. Packers Ltd. 

Fish (raw materials) $1.13/Lb 
Operating hours 640/season 
Production hours 560/season 

hours/shift 8 hrs 
Line-rate 240 can/min. 

Patching table labour Cost $21/hr/worker 
Inspection labour cost $25/hr/inspector 
Hand inspection rate 3 cans/min. 

Batch size 19020 cans 
Weight tolerance 9 grams (l/21b) 

Label weight 213 grams (l/21b) 
Filler Operational Time 95% 

Table 5.1: Operational parameters. 
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Figure 5.1: Canadian salmon canning statistics 

Figure 5.2: Canadian wholesale salmon prices 
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5.2 Monetary Savings 

5.2.1 Direct Labour Savings (DLS) 

Direct labour savings are realized when the utilization of the patching table workers is reduced 

such that one or more workers can be eliminated from the table. Based on the worker utilization 

observed in the basecase, the mean worker utilization is 80.6%. That is, the average worker is 

physically handling the product about eighty percent of the time. If simulation shows that through 

the implementation of automation 80.6% or more worker utilization is 'freed' then a worker can be 

saved. In this manner, on average, no extra work will be required of the remaining workers. Based 

on the data in Table 5.1 the cost (wages plus benefits) of a single patching table worker working 

the entire season at regular time pay rate is about $13,440, yielding the DLS for the replacement 

of one worker. 

5.2.2 Indirect Labour Savings (ILS) 

Indirect labour savings are generated when the percentage of flange defects leaving the patching 

table is reduced. In short, a percentage of flange defects which leave the patching table can result 

in seam defects when the cans are lidded and sealed. The sealed cans are automatically inspected 

using checkweighers and double dud detectors on the labeling line, prior to labeling. (Further details 

about this inspection process are given in Appendix E). If the number of serious seam defects in a 

batch of cans (cans produced in a single/shift by a single line) is above a government specified level, 

namely, 25/100,000, then the cans must be hand inspected (culled). Hand culling is very expensive 

since it is labour intensive. Therefore, a reduction in flange defects, leads to a reduction in seam 

defects, and thus to a reduction in the probability of a hand cull being required. This reduction in 

hand culls results in the Indirect Labour Savings. 



5.2 Monetary Savings 60 

In order to determine the ILS derived from reductions in flange defects an estimate of the mean 

industry cull rate is required. Based on industry data 2.47% is used in this analysis. Of the serious 

seam defects, 47.3% can be attributed to flange defects [66]. Thus a cull rate.of 1.17% attributable 

to flange defects is estimated. A linear relation between outgoing flange defects and cull rate is 

assumed. 

The busiest canning lines, where automation would most likely be applied operate about 60 days 

a season. Twenty days of the season are double shift days. Thus, the filler at 95% capacity yields 

7,660,800 cans or 402.8 batches per line per season based on the data in Table 5.1. Consultation 

with industry personnel indicates that the time required for a worker to hand inspect a can ranges 

from 1-5 cans per minute and a mean of 3 cans per minute has been assumed. Based on an average 

of 19020 cans per batch and an inspection labour cost of $25/hr the cost of a hand cull is $2,642. 

Thus the expected cost to the producer for hand culls per season is the number of batches, times 

the cost per cull, times the probability of a cull, (402.8 x 2,642 x 0.0117) = $12,451.1/season/table. 

A new probable cost can be calculated for a reduced value of outgoing flange defects. The reduction 

in this expected cost of culling is the ILS. 

5.2.3 Raw Material Savings 

In order to comply with government regulations regarding average and minimum fill weights, in

dustrial producers overfill the cans resulting in a mean fill weight greater than the label weight. 

Hence, by shifting the mean fill weight downwards, closer to the label weight, raw material savings 

can be realized. It is required that the mean fill weight of the cans be equal to or greater than the 

label weight. Hence the best improvement possible through automated weight correction would 

be to set the mean fill weight to the label weight and correct those which fall one tolerance below 

that weight. A cost function of the form in Equation 5.1 can be defined. The distribution of the 
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fill weight is normal, Equation 5.2. Hence the expected savings per can is given by Equation 5.3. 

However, the distribution is cut at one tolerance below the label weight, since cans falling below 

this cut-off are patched. It is assumed that these cans are repaired to the label weight and hence 

do not contribute to savings or losses. Figure 5.3 plots Equation 5.3 using the mean and standard 

deviation obtained from the experimental data and the average price per gram based on the data in 

Table 5.1. Total savings per can are determined by integrating this curve, Equation 5.4. The total 

savings in the basecase are negative since the filler was filling at 216.9 grams (i.e., losing money 

due to the use of extra raw material). The total raw material savings are found by multiplying the 

absolute value of Equation 5.4 by the total number of cans processed over the course of the season. 

f(x) = (Xtb - X)C9 (5.1) 

Cg = cost per gram of product($). 

xib = label weight 

1 2CT2 (5.2) 

probable savings per can($) = f(x)g(x) = h(x) (5.3) 

(5.4) 

(tol = weight tolerance) 

*\/x < tol, x — Xlb => f(x) = 0 
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Figure 5.3: Probable savings per can. 

5.3 Economic Parameters 

The Discounted Cash Flow, (DCF), rate of return is used to economically evaluate possible auto

mation options for the patching table. In this methodology the present worth of all cash flows in 

and out are set equal to zero. The discount rate which achieves this state is the DCF rate of return. 

Generally the solution to this problem requires an iterative solution in order to solve for the rate 

of return. If however, the investment is such that a single capital expenditure (cash outflow) is 

required at the start of the project followed by a number of years of ensuing cash inflows a closed 

form solution exists. This is the case in the present study, and the ROI (return on investment) 

can be computed using Equation 5.5, where R is the ROI and the initial investment is made in 

year zero and the cash inflows take place uniformly over years 1 to n. In the analyses herein an 

economic planning horizon of 5 years is assumed, therefore n=5. 

. R[l + R)n annual cash inflow 
capital recovery factor = — — — . . . , . (5.5) 

(1 + R)n - 1 initial investment 

Additionally, the pay-out period for each of the automation options is calculated. The pay-out 
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period is the capital expenditure divided by the annual savings (or profits) incurred due to the 

implementation of the automation option. 

5.4 Non-Monetary Effects 

In addition to economic benefits, improvements in product quality in terms of the reduction of 

poor-fills and cross-packs leaving the table should be considered, although they do not directly 

lead to cost savings (i.e., labour or raw materials). These defect levels are, however, important, 

given their relationship to reputation and customer satisfaction. In addition, it may be possible 

to produce higher grade product from poorer quality fish if the level of these aesthetic defects is 

decreased. However, the relative importance of these quality effects is not clearly defined by the 

industry. Thus, in order to present this data in a compact format two indices have been defined. 

A quality index (QI) was defined as the level of poor-fill and cross-pack defects occurring in 

the basecase divided by those occurring in the automation option being investigated. Thus values 

below unity indicate a reduction in quality on the basis of aesthetic characteristics while values 

above unity indicate an improvement in the product quality. Similarly a safety index (SI) has been 

defined as the percentage of flange defects occurring in the basecase divided by those occurring 

in the automation option being investigated. Again values below unity suggest a reduction in the 

safety of the product while values above unity indicate an improvement in the product safety. 
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Chapter 6 

Automat ion Technologies and 

Prototypes 

Three main functions of the patching table have been examined for automation 

• Can inspection, (identifying defective cans and removing them from the line for patching.) 

• Weight correction, and 

• Flange cleaning/trimming. 

Other tasks such as patching cross-pack, or poor-fills, were identified as being too manipulation 

intensive to be suitable for cost effective automation. In addition, the success rate of the repair 

is not expected to be sufficiently high in such a complex task. Finally, until well-defined costs or 

benefits can be associated with changes in the aesthetic appearance of the pack, further analysis of 

the automation of such tasks is not well motivated. 

In each case, research into existing, new (under development) and/or feasible technology was 

done to determine suitable automation for the task. In this chapter, the results of this research is 

reported. Then, based on the results, various automation options are considered, simulated, and 

evaluated in Chapter 7. 
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6.1 Automated Can Inspection 

The task of accessing the f i l l quality of the pack has been addressed through the use of a machine 

vis ion inspection system. A prototype machine vision system is currently under development i n the 

Industr ia l Au toma t ion Laboratory at the Universi ty of B r i t i s h C o l u m b i a [67, 65]. F igure 6.1 shows 

the prototype machine vision inspection system under development. The inspection system captures 

a d ig i ta l image of each can entering the patching table and through image processing determines 

i f the f i l l is cross-packed or has a flange defect. Those cans which the system determines to be 

defective are ejected to wait ing queues for manual patching or to automated correction systems. It 

is desired to evaluate the effect introducing the machine vis ion inspection system into the patching 

table workcell , and to investigate performance variations in the vis ion system. 

Figure 6.1: Prototype Machine V i s i o n C a n Inspection System. 
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6.2 Automated Weight Correction 

6.2.1 Slurry Injection System 

The object of the weight correction task is mainly to add additional product to underweight cans in 

order to bring them up to label weight. A much less frequent task is to reduce the fill in overfilled 

(overweight) cans. Furthermore, fill accuracy is important since the high raw material cost coupled 

with high production indicates the possibility of significant savings being realized if the overfilling 

is reduced. In the early stages of design, a concept for the automation of weight correction was 

formulated which utilized ground salmon or "slurry". The idea was to correct the weight of the fill 

by injecting a precisely controlled amount of ground salmon into the fill. 

Prior industry experience indicated that deposition of ground product on the top surface of 

the fill was not acceptable to the consumer[68]. Thus, the idea in the proposed system was to 

inject the slurry underneath the steak. The method was evaluated experimentally in the Industrial 

Automation Laboratory using the apparatus shown in Figure 6.2. Ground salmon was loaded into 

a hypodermic syringe attached to a short section of thin plastic tubing. The results of testing were 

positive. The delicate salmon meat was easily penetrated by the plastic tubing, and the slurry was 

deposited evenly on the underside of the steak. 

The added weight could be precisely controlled and a prototype could be assembled from relat

ively inexpensive equipment. In addition, the mechanism could be loaded with raw material which 

is currently scrap (e.g., tail pieces) increasing savings for the producer. 

However, on further review, personnel at B.C. Packers decided that this solution would probably 

also be unacceptable to the consumer. 
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Figure 6.2: Schematic representation of the slurry meat injection concept. 

6.2.2 Chunk Injection Systems 

A revised design concept utilizes a method of inserting chunks of salmon, much like the patching 

table workers do, was proposed. This solution is, however, significantly more mechanically complex. 

A more versatile insertion system would be required. Furthermore, the weight correction would be 

less precise than for a slurry system. When correcting the weight of the fill the patching workers 

typically insert their finger between the wall of the can and the side of the steak and then pull 

radially inward towards the center of the can. Then they insert a piece of prepared salmon of 

the appropriate weight/size into the pocket created at the side of the can. Figure 6.3 shows two 

conceptual designs employing the same approach. The first, (A), utilizes a fixed hopper which 

is loaded with scrap material (salmon tails etc.) and a pocket forming mechanism. The pocket 

former rotates from a vertical position such that its edge is inserted between the can wall and the 

steak. The pocket former then translates a couple of centimeters towards the can center. The 

hopper could be pneumatically driven or through the use of a plunger or possibly even a positive 

displacement pump. The can would require the use of a fixturing pallet but the accuracy would 
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not be very high, (e.g. 2mm). 

A second concept, (B), utilizes a two axis (planar) manipulator which is fitted with a hollow cyl

inder. The outside housing of the cylinder is fitted with a spring loaded "finger" which performs the 

pocket forming operation in a similar manner as the patching workers do. Initially the manipulator 

cores several salmon steaks using the cylindrical cutter thereby filling the "load chamber". The 

manipulator then positions the finger at the inside edge of the can, and translates down between 

the steak side and the can. The manipulator is then moved radially inwards forming the required 

pocket. At this point air pressure is used to deposit one or more of the cored pieces. 

A filler operating with a mean fill of 213 grams with the observed standard deviation (i.e., it 

is assumed that the standard deviation remains constant regardless of mean fill weight) produces 

an average of 8.82 cans/min. below 204 grams. Thus a complete task cycle time of less than 6.8 

seconds would be required of the system. 
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Figure 6.3 Conceptual automated salmon meat addition mechanisms. 



6.3 Automated Flange Cleaning 70 

6.3 Automated Flange Cleaning 

6.3.1 Prototype Trimmer 

It was not known that B . C . Packers employs a t r imming machine unt i l a ful l year into the project 

and hence pre l iminary designs for a flange cleaning mechanism had been conceptualized, prototyped 

and tested i n the Industr ial Au tomat ion Laboratory. The first design to be prototyped is shown i n 

Figure 6.4. The design employs an outer holding housing to secure flange defects and a translat ing 

rotat ing cutter. Th i s design was tested i n the laboratory on hand packed flange defective cans w i t h 

encouraging results. However this prototype was abandoned wi th the advice from B . C . Packers 

that close metal-can contact could prove potentially dangerous. It was indicated that this close 

metal-can interface might introduce metal shavings into the salmon steak. 

Figure 6.4: C u t t i n g flange defect prototype. 



6.3 Automated Flange Cleaning 71 

A second design concept was derived from observation of how the patching workers themselves 

patch these types of defects. It was observed that the patching table workers often do not cut 

the offending skin or bone but simply stuff it down between the side of the steak and the can 

wall. Thus a stuffing technique was incorporated into an automatic flange defect correction design. 

The prototype design is shown in Figure 6.5. The prototype utilizes a PVC housing with the 

end machined to form a thin wall which fits snuggly between the inside can wall and the side of 

the steak. The holding mechanism is spring loaded to apply pressure to the top surface of the 

steak thereby holding the steak in the can upon withdrawal. The mechanism pushes offending 

flange defects down the inside wall of the can in much the same manner as the patching workers 

do. In addition the holding mechanism serves to provide the "tamping" effect referred to earlier, 

which is normally done by the spotter on cans leaving the table facilitating proper lidding. The 

design was tested in the Industrial Automation Laboratory on hand packed flange defective cans 

and performed extremely well. Upon notification of a new commercial "trimmer" system employed 

at Prince Rupert further design activities in formalizing the mechanical implementation of this 

concept were abandoned. 



6.3 Automated Flange Cleaning 72 

6.3.2 Existing Trimmer Design 

The development process of the currently employed trimmer was quite lengthy covering several 

years and multiple prototypes. It was indicated that a large source of trouble in the design was 

that cans were being chewed by the cutting blades due to the necessarily high can positioning 

accuracy required. If in the future B.C. Packers would like to avoid the present arrangement of a 

lease on an automatic flange cleaning system it is felt that the "stuffer" concept would provide a 

rapid development schedule with minimal prototyping due to the absence of a cutter assembly. The 

use of a stuffing mechanism reduces the number of moving parts, eliminates the need for sharpening 
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and as mentioned has the added benefit of tamping the surface of the steak. 

The automated flange trimmer B.C. Packers employs at their cannery in Price Rupert man

ufactured by Marco Marine is shown in Figure 6.6. This device has been reported to operate 

satisfactorily however, the cost of the lease has made the cost effectiveness of the device less than 

satisfactory. Due to proprietary concerns a detailed analysis of the savings generated from the use 

of the trimmer is not possible, however, as will be demonstrated in the subsequent chapter the 

installation of the automated inspection system could facilitate a far more cost effective use of the 

trimmer. 

Figure 6.6: Automatic flange cleaning unit employed at B.C. Packers. 
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Chapter 7 

Automation Option Simulation and 

Evaluation 

As described in Chapter 6 three patching table tasks were identified as feasible for automation: 

• Can inspection. 

• Weight correction. 

• Flange cleaning/trimming 

This chapter details the simulation and evaluation of a number of automation scenarios incor

porating these automatons. 

7.1 Automated Inspection (V) 

7.1.1 System Assumptions 

The vision system is assumed to have three efficiency factors, two for the correct identification of 

the defects (cross-pack and flange defects) and one for correct identification of non-defects. For 

the purposes of simulation, an operating point was assumed about which sensitivity analysis is 
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conducted. The operating point was assumed to be 97% efficiency in recognizing flange and cross-

pack defects and a 99% efficiency in recognizing non-defects. To model worker behaviour, results 

from the basecase simulation were used. In light of the fact that no human can work 100% of 

the time, the average utilization of the workers was limited to not exceed 95% utilization. The 

estimated distribution time for a worker to process the various defect types remain unchanged from 

the basecase with the exception of those in Table 7.1. The sensitivity of all of these parameters 

were investigated and reported in Section 7.1.5. 

Defect Processing Time (sec.) 
on-the-fly flange 2.0 

non-defect 1.0 

Table 7.1: Task times for workers processing certain cans. 

7.1.2 Implementations 

Two implementations are considered, vision 1 (VI) and vision 2 (V2) in lieu of the fact that these 

implementations employ automated product inspection with no other new automation. V I assumes 

that the producer would attempt to patch all detected flange defects. The second implementation, 

V2, assumes that the producer is willing to let some of the minor flange defects through the system 

under the assumption that these minor defects would likely not result in a seam defect. In case 

V I , the simulated system routes all detected flange defects, in addition to all of the underweight 

cans from the checkweigher, to the patch workers for patching. The workers patch all flange and 

weight defects. The spotter task is eliminated. Any excess worker capacity is then directed to 

patching of those cross-packs which the vision system identifies, and to scanning the line for poor-

fills. Simulation shows that it requires more than three workers to patch all of the weight defects 

and flange defects. 

Intuitively, the sole addition of an automatic inspection system would seem to remove the need 
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for one worker, namely, the spotter. This is not the case since the spotter performs significant 

patching of the "on-the-fly" flange defects and the remainder of the workers cannot make up this 

work. Hence, direct labour savings are not possible for VI . However, the level of worker utilization 

is, increased since the workers are now engaged in patching duties for a significantly increased 

period of time, since less scanning is required. The maximum level of utilization is assumed to be 

95%. The additional utilization over the basecase utilization is shown in Table 7.2. Hence the total 

additional utilization is 38.3%. 

basecase task new task basecase utilization new utilization 
spotter/worker #1 spotting/tamping scanning/patching 100 95 

worker #2 scanning/patching scanning/patching 83 95 
worker #3 scanning/patching scanning/patching 86.1 95 
worker #4 scanning/patching scanning/patching 72.6 95 

Table 7.2: Changes in the worker utilizations and activities resultant from automated inspection. 

In order to optimize the worker untilizations the automated inspection system has been modelled 

to direct defective fills to defect specific waiting queues, namely: underweight, flange defective, 

cross-packed, poor-fills and multiple defects. Those fills which are checkweighed as being underfilled 

are always routed to the underweight queue. Workers repairing underweights repair any additional 

defects simultaneously. In order to allow the cross-pack patching worker to divide their time evenly 

between cross-packs and poor-fills proximity sensors are used to monitor the size of the cross-pack 

patching queue. Then, the vision system adjusts the cross-pack ejection criteria such that this 

worker is kept busy but not at over capacity allowing sufficient time to scan for and patch some 

poor-fills. In this way, the worst of the cross-packs are always patched. Tuning of this system would 

be required in order to achieve a balance between idle time for the worker to engage in scanning of 

the line for poor-fills and patching of those cross-packs that the vision system ejects. 

The network model, Figure 7.1, represents the workers drawing from the waiting queues. Se

lection priority is first given to the underweight queue and then to the flange queue. When these 
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two queues are empty the other three queues are selected from in a cyclic manner. In this simula

tion, tuning has been assumed to result in equal weighting of cross-packs and poor-fill defects. In 

implementation it would be up to the producer to decide the actual weighting for patching of these 

defects. 

Create cans 
@232/min 

Initialize.can. 
defects. 
VEVENT.cT 

Machine vision 
system. 
VEVENT.c,2-

ResourceT1 

No Defect Detected 

Underweights 
Cross-packs . 

Select node 
to choose ' 
which queue 
to draw from. 
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Flange Defects 
Poof-fills 
Multiple Defecs-

Patching time 
VUSERFc, '! 

This net ensures • 
utilization of. 
workers is less than 
100%. • • • 

Figure 7.1: Simplified vision network 

7.1.3 Physical Layout 

The proposed physical layout of the modified patching table for cases VI and V2 is detailed in 

Figure 7.3. The physical changes from the current patching table setup are the addition of the 

vision system, with multiple ejection devices (kickers), and multiple queues (tracks) on the table. 

The new waiting queues, parallel to the "through track" would hold cross-packs and flange defects 

respectively while the weight queue function is the same as in the current system. Estimated costs 

and part sourcing for the system are given in [69]. 
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Figure 7.2: Current table layout. 

7.1.4 Results 
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Figure 7.3: Modified table layout for vision sys
tem. 

In the VI simulation all flange defects are patched; as a result no direct labour savings were realized, 

Table 7.3. However, significant indirect labour savings are realized due to the reduction in flange 

defects leaving the table. The quality index is essentially unchanged from the basecase and the 

safety index is, very high due to the patching of all of the identified flange defects. 

The V2 implementation assumes that some of the flange defects are allowed to pass un-patched 

through the table, reducing the number of required workers to three. Thus the direct labour 

savings is one worker. The number of flange defects leaving the patching workcell is still reduced 

significantly relative to the basecase as indicated by a safety index of nearly two. The quality 

index, however, is reduced because less time is spent patching poor-fill and cross-pack defects than 

in either V I or the basecase. In the V2 case the only time these types of defects would receive 

attention is when a localized reduction in the flange defect rate occurred enabling scanning of the 

line and patching of cross-packs and poor-fills. 

Automation Option DLS ILS RMS SI QI POP (years) ROI 
VI $0.00 $11,255 $0.00 10.15 0.923 1.97 42.0% 
V2 $13,440 $6,079.4 $0.00 1.95 1.07 1.13 84.0% 

Table 7.3: Effect of implementing automated inspection systems. 
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7.1.5 Sensitivity 

The sensitivity of the results have been examined for perturbations of the following parameters: 

• reliability of the vision system in classifying non-defects as non-defective (true negatives), 
Figure 7.4 

• reliability of the vision system in classifying defects as defective (TP, true positives), Figure 7.5 

• the handling time required for type 1 errors (i.e., the handling time required to recognize a 
non-defect and return it to the line), Figure 7.6 

• the patching time required for on-the-fly type flange defects, Figure 7.7 

• the time utilization of the workers, Figure 7.8 

Figure 7.4 shows a 17.7% variation in expected savings for a four percent variation in suscept

ibility to making type 1 errors. The vertical divisions in the figures mark the operational point 

of each parameter. The quality index varies about 0.5% while the safety index varies by 90%. 

Figure 7.5 shows the variation caused by a six percent change in the systems ability to correctly 

identify defects. A 0.85% variation in estimated savings, a 0.1% variation in QI and a 5% variation 

in SI result from this perturbation. Figure 7.6 shows the variability due to a 150% change in the 

handling time of non-defects. The estimated savings change by 1.36%, QI changes by 0.1% and 

SI varies by 8%. These small effects are in part due to the fact that the operational point for the 

susceptibility of type 1 errors was only one percent. If this value was increased the effects of vary

ing the handling time of these mis-classifications would be more noticeable (i.e., the effects of this 

parameter are dependent not only on the task time but also the frequency of this task occurring). 

A one hundred percent variation in the required patching time for on-the-fly type flange defects 

results in a 15% variation in the expected savings. The safety index varies by 95% while the quality 

index ranges varies by 2.1%, Figure 7.7. A ten percent variation in worker utilization generates a 

change in the expected savings of 12.8%. The safety and quality indices vary by 81% and 1.7% 

respectively. Based on this analysis the most important factor to be controlled is the susceptibility 

of the system to making type 1 errors. 
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Figure 7.4: Sensitivity to type 1 errors. Figure 7.5: Sensitivity to defect recognition 
accuracy. 
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Figure 7.8: Sensitivity to worker time utilization. 
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7.2 Automated Weight Correction (W) 

7.2.1 System Assumptions 

The assumed meat addition system is one of the chunk style meat addition systems, (Section 6.2.2). 

A cost estimate for this system has been made and is included in [69]. The weight addition system 

is feed by the checkweigher and is assumed to patch underweight cans exactly to the label weight. 

Al l other patching activities and task times remain the same as in the vision, (V), implementations. 

7.2.2 Implementations 

A checkweighing system operating with 100% weighing accuracy has been assumed for the present 

analysis. Two implementations of the automated weight patching system have been considered in 

the analysis, W l and W2. W l assumes that the mean fill weight is the same as observed on the 

day of the experimental data collection in Prince Rupert, namely 216.9 grams. This represents 

a 3.9 gram average overfill and thus the implementation of automated weight patching results in 

tremendous raw material savings. At this high fill weight, however, the basecase simulation requires 

only 37% utilization of one worker to patch all the weight defects. Thus the elimination of this 

patching task does not translate into the reduction of the required patching table staff. Instead, in 

the W l simulation, this spare utilization created by the implementation of an automated weight 

patching system is directed into the patching of other defects. For an optimistic evaluation we 

can assume that all of this utilization is directed into patching of flange defects. This assumption 

provides the best case scenario, since in reality some of the utilization would probably be used to 

patch other types of defects. Simulation of a worker patching flange defects for an extra 37% of 

the time results in a flange defect reduction of 19.5%. Applying this to the 6.4% output flange 

defect rate observed in the basecase results in a new output flange defect rate of 5.15%. This 
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translates to indirect labour savings through a reduction in hand culls, Table 7.5. The quality 

index is unchanged and the safety index is greater than one. This represents the best case as 

mentioned and upon implementation we would see somewhat of a shift in these indices, SI would 

drop and QI would increase. Raw material savings are very high in that the mean fill weight is 

almost four grams over the label weight. 

Consultation with B.C. Packers management personnel indicated that the mean fill weight 

recorded during the data collection day was atypical. The mean fill weight is normally set to 

1 gram over the label weight (i.e., 214 grams).1 Thus, a second economic analysis was done 

using a mean fill weight of 214 grams, and designated W2, Table 7.5. The material savings are 

reduced significantly although direct labour savings are now realizable. Simulation shows that 

163.3% utilization is required in order to patch all of the underweights. Since the utilization rate 

required to replace a single worker is 80.6%, just over two workers are needed to keep pace with 

the weight defects. Two possibilities are considered. W2a, assumes that upon implementation of 

the automated system the producer eliminates two workers from the patching table. W2b assumes 

that the producer eliminates one worker and leaves one in place to boost quality and/or reduce 

flange defects. In this case a "best case scenario" is again employed where the extra worker patches 

only flange defects. A worker employed 80.6% of the time (i.e., fully utilized) reduces flange defects 

by 42.6%. In this simulation, flange defects are reduced by 42.6% to 3.7% from the basecase, 6.4%. 

In all of these simulations spare labour capacity was directed into flange defects. This can 

only be achieved if a vision system is implemented to detect defects. However, even if a vision 

system was not implemented the savings from automated weight addition alone would not be 

greatly affected since most savings are from direct labour saving (reduced weight patching) and 

^ h e actual mean fill weight is difficult to establish. Management guidelines are 1 gram above label weight. 
However, this results in a large number of underweight cans and a high workload for the patching table workers. 
Therefore, the workers (who control the filler) may tend to increase the average fill weight in order to reduce the 
workload at the patching table. 
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raw material savings. 

7.2.3 Physical Layout 

The physical layout for the weight addition automation options is not well denned since the actual 

mechanisms which would be employed are not known. The automated station would have a waiting 

queue feed by the checkweigher and would employ a fixturing mechanism with which to secure the 

can for patching. The station would need to precede the patching table since the patching of weight 

problems would not necessarily repair other defects present in the fill. Section 6.2.2 details two 

chunk meat addition concepts. 

7.2.4 Results 

From Table 7.4 it is apparent that even with a costly weight addition system assumed, automated 

meat addition is an economically viable option. If, in the future consumer surveys shows that the 

less expensive weight addition method using a meat slurry (Section 6.2.1) is acceptable, this option 

would only increase in viability. Furthermore, given the current trade off between low mean fill 

weight and worker utilization, the introduction of automation for this process has multiple benefits 

(savings of raw materials, and direct/indirect labour savings). 

Automation Option DLS ILS RMS 57 QI POP (years) ROI 
W l $0.00 $2,432.9 $64,945 1.24 1.0 1.86 38.8% 
W2a $13,440 $5,303.4 $15,568 1.74 1.0 3.64 22.4% 
W2b $26,880 $0.00 $15,568 1.0 1.0 2.94 26.8% 

Table 7.4: Effect of adding an automated weight addition systems to the patching table system. 

7.2.5 Sensitivity 

No additional parameters outside of those examined in the vision sensitivity section, Section 7.1.5, 

are introduced and hence a sensitivity analysis is not indicated here. 
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7.3 Hybrid System 

Using the vision system it is possible to split the utilization of the costly, but effective, trimmer 

currently used by B.C. Packers over multiple lines. At present the trimmer is utilized by a single 

line and trims every can regardless of whether or not it has any flange defects. With a vision 

system, only those cans which are identified as defective need to be routed to the trimmer. 

7.3.1 System Assumptions 

The data from Prince Rupert showed a flange defect rate of about 15% and hence the trimmer 

could theoretically handle the load from over six separate lines. It is, however, somewhat unlikely 

that the producer would elect to install six vision systems, at least initially. In addition routing 

problems become very complex as more lines are fed to the trimmer, for two reasons. Firstly the 

product from the various lines cannot be mixed, and secondly overhead routing becomes necessary. 

For these reasons a workcell employing two vision system equipped lines in conjunction with a 

single trimmer has been analysed. The results of this implementation, denoted VT, are shown in 

Table 7.5. The modifications required to the line are shown in Figure 7.9. 

It was required for simulation purposes to estimate the efficiency of the trimmer in correcting 

flange defects. Information from personnel at B.C. Packers indicates that the trimmer correctly 

trims flange defects better than 95% of the time. 

7.3.2 Physical Layout 

In this implementation the cans which the vision system classes as having flange defects are sent to 

the trimmer and after trimming are returned to the vision system for reclassification. The action of 

trimming is a simple routine called by the event node code, 3, (VTEVENT.c,3) which repairs the 

flange defect 95% of the time. The workers are assumed to patch flange defects which go unnoticed 
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Figure 7.9: Recommended physical layout for the combined vision/trimmer automation option. 

by the vision system but which are classed as having other defects and hence enter other defect 

queues for patching. The network layout of the system is shown in Figure 7.10. The physical setup 

required differs little from the vision only system. Cost estimates for the required modifications 

and the costs associated with the trimmer are found in [69]. 

In order to install the trimmer and the vision system in the physical plant a number of criteria 

must be met. The physical size of the cell must be constrained to be no larger than the present 

workcell. Additionally, it is essential that the required modifications be kept to a minimum in 
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Figure 7.10: Simplified vision/trimmer network 

order to minimize capital costs and to disrupt the present working conditions as little as possible. 

Reducing the deviation from the present workcell will mean less stress for the patching workers 

and a minimization of training on the new workcell. The additional waiting queue required for 

cross-packs needs to be controlled such that it does not overfill. To do this a number of sensors are 

placed along the queue length such that the capacity of the queue may be monitored. 

7.3.3 Results 

Implementation of the vision system in conjunction with the trimmer serves to relieve two patching 

workers and in addition generates significant savings due to the reduction in flange defects. This 

set-up increases the safety factor markedly and in addition improves the quality index somewhat, 

Table 7.5. Consultation with B.C. Packers personnel indicates that the trimmer mechanism alone 

results in significant worker savings not indicated with the present analysis and hence the benefits 

of this dual configuration represents a highly conservative estimate. 
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Automation Option DLS ILS RMS SI QI POP (years) ROI 
VI $0.00 $11,255 $0.00 10.15 0.923 1.97 42.0% 
V2 $13,440 $6,079.4 $0.00 1.95 1.07 1.13 84.0% 
W l $0.00 $2,432.9 $64,945 1.24 1.0 1.86 38.8% 

W2a $13,440 $5,303.4 $15,568 1.74 1.0 3.64 22.4% 
W2b $26,880 $0.00 $15,568 1.0 1.0 2.94 26.8% 
V T $26,880 $11,572.6 $0.00 14.2 0.897 1.09 88.0% 

Table 7.5: Automation option comparison. 

7.3.4 Sensitivity 

No additional parameters were introduced in the VT implementation which warrant a sensitivity 

analysis. 
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7.4 Summary 

The results of this analysis indicate that the industrial producers could save a considerable amount 

of money through the implementation of various automation options. The savings for each proposed 

option are tabulated in Table 7.5. The option with the highest payback for the least investment 

is case V2. This case employs the vision system as a stand alone add on to the workcell. The V2 

implementation would pay for itself in a little over one year with an 84% ROI while providing a 

doubling of the safety factor and leaving the quality index essentially undisturbed. 
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Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

Discrete event simulations have been identified as the most suitable technique for use in modelling 

mixed automation processes. The use of time motion studies to predict task times required by 

manual workers is well documented. Relevant factors affecting manual inspection accuracy at the 

patching table include; event rate, vigilance duration and signal density. 

The task times required by the patching workers to repair can fill defects have been shown to 

follow lognormal distributions. The filling machine fills 213 gram cans with a standard deviation 

of about 5 grams. This represents a 250% overshoot of the desired variation indicated by B.C. 

Packers. 

A simulation of the current patching table (i.e., the basecase) was completed and provided 

good results and a reference by which to judge table modifications. Simulation of various table 

automation options was successfully completed. 

The major savings incurred through automation of the patching table are due to three factors: 

direct labour savings incurred through the reduction in required patching workers, indirect labour 



8.2 Recommendations 90 

savings incurred through the reduction in the number of required hand culls leading to fewer 

required inspections and lastly savings generated through the reduction in raw material wastage. 

Analyzing the simulation results of a vision system implementation indicate lucrative savings 

would be realized. An 84% ROI and just over one year payout period are indicated for the second 

of the two inspection system implementations considered. The costs associated with the economic 

analysis for this implementation are considered to have a high confidence. 

The implementation of an automated weight addition system indicates less attractive economic 

savings, 39% ROI in the best case. However, one can note that the cost estimate for this system 

was based on a conceptual design and hence could vary considerably. A higher confidence cost 

estimate would provide a better estimate on the benefits which could be achieved. 

The coupling of the automated trimming machine used by the industrial producer with the 

automated inspection system allows for the sharing of one trimmer between two lines. The modi

fications are such that different product (i.e., species) can be run on the two lines without mixing. 

This system indicates a 69.6% ROI which would be paid off in about a season and a third. Addi

tionally this configuration nearly eliminates the problem of flange defects as indicated by a safety 

index of 14.2. 

8.2 Recommendations 

• A proposal for implementation is that the producers first invest in the vision system alone, 

VI , and evaluate its effectiveness. When confidence is established in the system a worker may 

be removed from the line, V2. 

- Following this implementation the coupling of two lines to a single trimmer can be 

facilitated with the purchase of an additional vision system. The effect of coupling two 
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lines to a single trimmer is that the lease is divided over the production of the two lines. 

This implementation, which ensures no mixing of the products from the two lines has 

herein been referred to as VT. This implementation would pay for itself in one and a 

third seasons if it was implemented from the start, (i.e., prior to purchase of the vision 

system). 

- It should be noted that the quoted savings for the V T implementation are for one line 

and hence the savings are actually double when considering the two lines involved. 

• It is suggested that the producer carefully examine the mean fill weight of the pack utilizing 

an independent audit. A screening of the weight for instance after the pack would suffice. 

- If indeed the mean fill weight is tightly controlled at only one gram over the fill weight 

then the pursuit of automated weight addition is not highly economically viable. 

- Due to the high cost of the raw material, if this mean is higher than one gram over the 

label weight the viability of an automated weight correction system becomes significant. 

- Due to the highly labour intensive nature of weight patching, if the cost of labour was 

to significantly increase, the viability of automation would again become viable. 

- If the producer conducts customer surveys which find the use of ground salmon slurry 

deposited underneath the salmon steak to be acceptable, the automation of weight ad

dition will be very viable. 

- The high cost of the proposed meat addition system is the major detriment to the 

justification of automating this process. In addition if the producer is able to secure an 

acceptable cheaper automation option for this procedure the viability would again be 

high. 
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• The industrial producer should privately examine the benefits of coupling the trimmer to two 

lines with the use of a vision system. 

- Consultation with B.C. Packers personnel indicates conflicting information on the cost 

effectiveness of the trimmer as it now stands, and hence the estimate made herein is 

subject to these uncertainties. A savings analysis based on the methods employed in 

this study place the savings incurred through the use of the trimmer alone at the low 

end of those indicated by B.C. Packers personnel. Hence, the V T analysis may be 

significantly more lucrative than already indicated. This analysis has not been included 

within this study in order to preserve the proprietary concerns of the industrial producer. 

• Analysis of the experimental data indicates that a single day sample of the patching data is 

not sufficient for analysis. 

- Studies which are not differential in nature, should endeavour to secure a least 5 shifts 

of patching table data. 

- The traits of cross-packed, flange defective and underweight cans are well denned, how

ever, those of poor-fill require more attention. 

- More data should be acquired and used to expand the model to better deal with poor-fills 

and to reinforce the task time distributions. 

- A more diverse data set should be acquired for patching tables with other configurations 
i 

such as those employing upto 7 workers and those with the trimmer operating as well 

as for various fish grades and species. 
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Appendix A 

Distribution Acceptance 

The Chi-squared Goodness of Fit Test 

The Chi-squared goodness of fit test is a hypothesis type test used to determine whether or not a 
population (i.e. the sample) has a particular underlying theoretical distribution. This test checks 
the correlation between the frequency of occurance of the sample data and the expected frequencies 
generated by the hypothesized distribution. This test of goodness of fit is based on the Chi-squared 
quantity [70]: 

X2 is a random variable whose distribution is closely matched by the Chi-squared distribution with 
degrees of freedom (u), v = k-1. The Oj and represent the observed and expected frequencies for 
the ilh cell. If x2 falls below the rejection area of the Chi-squared distribution for the chosen level of 
significance at the appropriate number of degrees of freedom then there is insufficient grounds upon 
which to reject the null hypothesis. In our case the null hypothesis being a specified distribution 
type, mean and standard deviation. 

Flange Patch Times 

Off-line 
Computing x 2 for the data in table A - l generated by a lognormal distribution with mean, 0.094649, 
and standard deviation, 1.255953, results in a value of 1.648. The number of degrees of freedom is 
k-1, thus u=5-l = 4. For significance level o;=0.05 the rejection criterion starts at 9.488, thus we 
cannot reject the hypothesis of a lognormal distribution with ^=0.0946 and a=1.256. 

Poor-fill Patch Times 

Computing %2 for the data in table A-3 generated by a lognormal distribution with mean, 3.025157, 
and standard deviation, 0.382421, results in a value of 0.214. The number of degrees of freedom is 
k-1, thus z^=3-l = 2. For significance level a=0.05 the rejection criterion starts at 5.991, thus we 
cannot reject the hypothesis of a lognormal distribution with /J,=3.025 seconds and <r=0.382. 

(A-l) 



bin(ln(sec.)) Oi 

-co. . . -2 .4 0 0.916 
-2.4...-2.0 
-2.0...-1.6 

2 
3 

7 0.943 
1.597 

5.901 

-1.6...-1.2 2 2.445 
-1.2...-0.8 
-0.8...-0.4 

4 
3 

7 
3.386 
4.240 

7.626 

-0.4...0.0 6 Q 4.802 
9.719 

0.0...0.4 2 O 4.917 
9.719 

0.4...0.8 
0.8...1.2 

7 
4 

11 
4.554 
3.814 

8.367 

1.2...1.6 2 2.888 
1.6...2.0 4 1.978 
2.0...2.4 0 6 1.225 7.387 
2.4...2.8 0 0.686 
2.8...CO 0 0.609 

Table A - l : Pa tch t ime data for off-line patches. 

bin(ln(sec.)) Oi ei 
oo...0.4 5 Q 4.227 

6.130 
0.4...0.6 3 O 1.903 

6.130 

0.6...0.8 3 2.422 
0.8...1.0 1 6 2.941 8.769 
1.0...1.2 2 3.405 
1.2...1.4 2 3.761 
1.4...1.6 2 7 3.961 11.700 
1.6...1.8 3 3.979 
1.8...2.0 
2.0...2.2 

4 
7 

11 
3.812 
3.483 

7.294 

2.2...2.4 3 3.035 
2.4...2.6 3 2.522 
2.6...2.8 4 14 2.000 12.106 
2.8...3.0 4 1.511 
3.0...co 0 3.038 

Table A - 2 : Pa tch t ime data for weight. 

bin(sec) Oi ei 

—oo...1.8 2 0.016 
1.8...2.1 0 0.163 
2.1...2.4 1 12 0.995 10.897 
2.4...2.7 2 3.352 
2.7...3.0 7 6.352 
3.0...3.3 6 6 6.671 6.671 
3.3...3.6 3 3.905 
3.6...3.9 2 5 1.272 5.432 
3.9...co 0 0.255 

Table A - 3 : Pa tch t ime data for poor-fi l l patches. 

bin(ln(sec.)) Oi ei 
-co...0.2 3 1.178 
0.2...0.4 0 

9 
1.342 

8.212 
0.4...0.6 2 

9 
2.287 

0.6...0.8 4 3.405 
0.8...1.0 4 4.433 

9.479 
0.8...1.0 

7 
4.433 

9.479 
1.0...1.2 3 5.046 

9.479 

1.2...1.4 8 8 5.021 5.021 
1.4...1.6 3 4.367 
1.6...1.8 5 3.321 
1.8...2.0 1 11 2.208 12.288 
2.0...2.2 2 1.283 
2.2...co 0 1.108 

Table A - 4 : Pa tch t ime data for cross-pack 
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Cross-pack Patch Times 

Type (a) Patches, (cutting required) 
The amount of available data for this type of patching task was extremely limited and hence the 
distribution was not discernible. For this reason a normal distribution was placed at the mean of 
the sample data with the sample standard deviation. Since only four data points for this type of 
patch were observed there is little point in performing goodness of fit analysis on the distribution 
fit. The sample data: 16.8, 27, 30.2 and 16 seconds gives a mean of 22.5 seconds with a standard 
deviation of 7.17 seconds. 

Type (b) Patches, (no-cutting) 
Computing %2 for the data in table A - 4 generated by a lognormal distribution with mean, 1.192569, 
and standard deviation, 0.542464, results in a value of 2.627. The number of degrees of freedom is 
k-1, thus v=h-l = 4. For significance level a=0.05 the rejection criterion starts at 9.488, thus we 
cannot reject the hypothesis of a lognormal distribution with ^—1.19 seconds and CT=0.54. 

Weight 

Defect Distribution 
It was assumed in the analysis that the incoming distribution of weights was normally distributed 
around the mean. In order to test this, Geary's test [71] is used to test the normality assumption. 

n 
^]2Y.\ Xi-Jt\ln 

u = i = 1 (A-2) 

\ i=i 
This test is based on the ratio of two estimators or the sample standard deviation. The numerator 
is a good estimator of a if the distribution is normal and the denominator is a good estimator of a 
regardless of the distribution. Hence, departures from u values near 1.0 are indicative of departures 
from normality. Using the data of the 565 can sample (should this go into an appendix ????)with a 
mean of 216.9 grams the Geary test gives a u value of 0.977 indicating a high confidence in assuming 
a normally distributed weight distribution. 
Weight Patch Times 
Computing x2 f ° r the data in table A - 2 generated from a lognormal distribution with mean, 
1.618938, and standard deviation, 0.917078, results in a value of 5.512. The number of degrees 
of freedom is k-1, thus v=5-l = 4. For significance level Q=0.05 the rejection criterion starts at 
9.488, thus we cannot reject the hypothesis of a lognormal distribution with ^i=1.62 seconds and 
(7=0.92. 
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Appendix B 

Quality Control Survey 

University of British Columbia 
Industrial Automation Laboratory 

Salmon Can Filling Quality Control Survey 

In order to help us gain a better understanding of the salmon can filling process and the factors 
that effect the quality of a can of salmon, the following survey has been developed. In particular, 
the criteria and methods for identifying and correcting patching problems before the can is sealed is 
being studied. In conjunction with BC Packers personnel we have developed a number of questions, 
contained herein. In addition, we have packed and photographed a number of cans of salmon 
with possible filling problems. These may not be representative of the problems that are actually 
produced by a real salmon canning machine. If the packed cans are not representative of the 
problems actually seen on the patching line, please describe the differences as best as you can. We 
greatly appreciate your time and input in this project. 
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1. A number of quality control problems are indicated below. Please rate them on their severity 
and frequency from 1 to 5: 5 meaning "critical failure" or "most common" - 1 meaning 
"minor problem" or "least common". Please fill in any other quality control problems which 
can occur on the canning line. 

Cross-pack 5 
Bones on the top of the steak 5 

Too many backbones 5 
Skin and/or bone obstructing the edge . 5 

Under-weight 5 
Over-weight 5 

Poor meat colouration 5 

Damage to can edge 5 

Too much air space 5 

Other 5 

Severity 
4 3 2 

3 
3 
3 
3 
3 
3 
3 
3 
3 

Frequency 
4 3 2 

3 
3 
3 
3 
3 
3 
3 
3 
3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Other 

Other 

5 4 3 2 1 

5 4 3 2 1 

4 
4 
4 

2. Please briefly list, in order of importance, the features which are associated with 
"good appearance" and "poor appearance." 

Good Appearance 

1. 

Poor Appearance 

1. 

3. Can the presence of meat on the edge of the can cause a sealing problem? 

4. Is there a limit as to the number of small steaks with backbones which would be allowed to 
be in one can? 
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- Yes ( ) If yes when? 

- Sometimes ( ) 

-No ( ) 

- Yes ( ), Max. # ( ) 
-No ( ) 

Comment: 

5. How much head space is considered too little and too much for each of the following can sizes? 

1/4 lb. Low: 
High: 

1/2 lb. Low: 
High: 

1 lb. Low: 
High: 

6. The following are pictures of packed salmon cans. Please indicate which cans have problems 
that warrant patching by circling the problem and commenting beside each picture what steps 
would be required to patch the can. If the problem is extremely rare or very common please 
make a note of this. In particular, we are interested in determining the following: 

(a) Which cans have enough meat, skin, or bone on the edge of the can to require cleaning. 
(b) Which cans have enough skin showing to be considered a cross packed can or simply 

unacceptable. 





Can 4 Problems: 



Can 6 Problems: 



Can 7 Problems: 

Can 8 Problems: 





Can 11 Problems: 

Can 12 Problems: 

ii 

0 



Can 14 Problems: 



Can 15 Problems: 

Can 16 Problems: 



Can 18 Problems: 



Can 19 Problems: 





Can 24 Problems: 



Can 26 Problems: 
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Can 27 Problems: 

Can 28 Problems: 



Can 30 Problems: 







Can 36 Problems: 



Appendix C 

Awesim Networks 





F
ig

ur
e 

C
.2

: 
C

om
p

le
te

 n
et

w
or

k 
em

pl
oy

ed
 i

n 
th

e 
vi

si
on

 s
im

ul
at

io
ns

. 



Fi
gu

re
 C

.3
: 

C
om

pl
et

e 
ne

tw
or

k 
em

pl
oy

ed
 i

n 
th

e 
vi

si
on

/tr
im

m
er

 s
im

ul
at

io
ns

. 



Appendix D 

Awesim User Written C Routines 

Basecase Coding 

BEVENT . c 

This code is called by the event nodes in the basecase scenario. 

#include "vslam.h" 

#define poorfill 7.85 /* '/, poor-fill */ 
#define numdefects LTRIB[1] 
#define underweight LTRIB[2] 
#define sflangedefect LTRIB[3] /* serious flange defect, off-line */ 
#define poorfilldefect LTRIB[4] 
#define crosspackdefect LTRIB[5] 
#define mflangedefect LTRIB[6] /* minor flange defect, on-the-fly */ 

void SWFUNC EVENT(int JEVNT, ENTITY * peUser) 
{ 

double weight, temp; 
double effflange4 = 0.275; 
double effxpack4 = 0.405; 
double effflange3 = 0.13; 
double effxpack3 = 0.02; 
double efffl2 =0.0; 
double effxp2 = 0.105; 
double effpf2 =0.0; 
double effpoorfilll = 0.068; 

#define 
#define 
#define 
#define 
#define 
#define 
#define 

rimdef 14.69 
split 48.9 
labelwt 213.0 
weighttol 9.0 
weightmean 216.9 
weightdev 5.07 
xpck 7.845 

/* flange defect Y/. */ 
/* Y/o serious flange defects */ 
/* the label weight (g) */ 
/* tolerance on the checkweigher (g)*/ 
/* mean weight of f i l l (g) */ 
/* std dev of f i l l weight (g) */ 
/* cross-pack \'/, */ 
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double effxpackl = 0.107; 
double effflangel = 0.46; 

switch(JEVNT) 
{ 

case 1: 

This case is designed to assign the defects to each entity (can) 
entering the system based on the statistical data. 

peUser->numdefects =0; 
peUser->underweight = 0; 
peUser->sflangedefect = 0; 
peUser->mflangedefect = 0; 
peUser->poorfilldefect = 0; 
peUser->crosspackdefect = 0; 

/* number of defects in can */ 
/* weight defect */ 
/* serious flange defect */ 
/* minor flange defect */ 
/* poor-fill */ 
/* cross-pack */ 

weight = RN0RM(weightmean,weightdev,1); 
if (weight < (labelwt - weighttol)) { 

peUser->underweight = 1; 
} 

temp = DRAND(2); 
if (temp < (xpck/100.0) ) { 

peUser->crosspackdefect = 1; 
} 

temp = DRAND(3); 
if (temp < (rimdef/100.0)) { 

temp = DRAND(4); 
if (temp > (split/100.0)) { 

peUser->mflangedefect = 1; 
} 
else 

peUser->sflangedefect = 1; 
} 

temp = DRAND(5); 
if (temp < (poorfill/100.0)) { 

peUser->poorfilldefect = 1; 
} 

peUser->numdefects = (peUser->underweight + peUser->mflangedefect 
+ peUser->sflangedefect + peUser->poorfilldefect 
+ peUser->crosspackdefect); 

break; 
case 2: 



/********************************************************************* 
This case is designed to simulate the scanning of the can line by 
worker 4 for flange and cross-pack defects. This worker will not 
select a can with a poor-fill defect regardless of whether it has a 
cross-pack or a flange defect. 

************************************************************ 

peUser->STRIB[l] = ("unrecognized"); 

if ((peUser->sflangedefect ==1) I I (peUser->mflangedefect ==1)) { 
temp = DRAND(6); 
if (temp < effflange4) 

peUser->STRIB[l] = ("recognized"); 
> 
if (peUser->crosspackdefect == 1) { 

temp = DRAND(7); 
if (temp < effxpack4) 

peUser->STRIB[l] = ("recognized"); 
> 
if (peUser->poorfilldefect == 1) { 

peUser->STRIB[l] = ("unrecognized"); 
} 

break; 
case 3: 
/********************************************************************* 
This case is designed to simulate the scanning of the can line by 
worker 3 for flange and cross-pack defects. Again poor-fills are not 
selected by this worker. 

**********************************************************************/ 

peUser->STRIB[l] = ("unrecognized"); 
if ((peUser->sflangedefect ==1) II (peUser->mflangedefect == 1)){ 

temp = DRAND(8); 
if (temp < effflange3) 

peUser->STRIB[l] = ("recognized"); 
} 
i f (peUser->crosspackdefect == 1) { 

temp = DRAND(9); 
if (temp < effxpack3) 

peUser->STRIB[l] = ("recognized"); 
> 
if (peUser->poorfilldefect == 1) { 

peUser->STRIB[l] = ("unrecognized"); 
} 

break; 



case 4: 
/********************************************************************* 
This case is designed to simulate the scanning of the can line by 
worker 2 for poor-fills, flange defects, and cross-packs. 

******************************************************* 

peUser->STRIB[l] = ("unrecognized"); 

if ((peUser->mflangedefect ==1) II (peUser->sflangedefect == 1)) { 
temp = DRAND(IO); 
if (temp < efffl2) 

peUser->STRIB[l] = ("recognized"); 
> 
if (peUser->poorfilldefect == 1) { 

temp = DRAND(11); 
if (temp < effpf2) 

peUser->STRIB[l] = ("recognized"); 
} 
if (peUser->crosspackdefect == 1) { 

temp = DRAND(12); 
if (temp < effxp2) 

peUser->STRIB[l] = ("recognized"); 
} 

break; 
case 5: 
/********************************************************************** 
This case simulates the spotter scanning the line for defects and 
routes poor-fill defects to worker 2, flange and cross-packs are 
routed to worker 3. 
**********************************************************************/ 

peUser->STRIB[l] = ("unrecognized"); 

if (peUser->sflangedefect == 1) { 
temp = DRAND(13); 
if (temp < e f f f l a n g e l M 

1 peUser->STRIB[l] = ("recog3"); 
} 

} 

if (peUser->crosspackdefect == 1) { 
temp = DRAND(14); 
if (temp < e f f x p a c k l M 

peUser->STRIB[l] = ("recog3"); 
} 

} 
if (peUser->poorfilldefect == 1) { 
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temp = DRAND(15); 
if (temp < effpoorfilll){ 

peUser->STRIB[l] = ("recog2"); 
} 

} 

break; 
case 6: 

this case ensures the spotter patches al l minor flange defects, this 
is done to reflect the tamping action carried out by the spotter on 
al l cans exiting the system resulting in those on-the-fly flange 
patches (51.1% of al l flange defects) which make it through the table 
are fixed by the spotter but with no task time as the spotter does not 
interupt their scanning to do so. 

*********************************************** 

if (peUser->mflangedefect ==1) 
peUser->STRIB[l] = ("onthefly"); 

break; 
} /* close switch */ 
} 

BUSERF .c 
/********************************************************************* 

This code is called by the USERF calls in the basecase scenario. 
**********************************************************************/ 
#include "vslam.h" 
#include <stdio.h> 
#include <math.h> 

/* WEIGHT STATISTICS */ 
#define wghtmean 1.972985 /* LOGNORM mean for weight patch */ 
#define wghtdev 0.731795 

/* CROSS-PACK STATISTICS */ 
#define axp 10.2 /* this is the % of type a cross-packs */ 
#define bxp 89.8 /* this is the % of type b cross-packs and 

must be changed if a is */ 
#define axpmean 24.0 /* this is the mean value for the NORMAL dist 

used in modelling type (a) patch operation */ 
#define axpdev 7.171239 /* this is the std dev for the NORMAL dist */ 
#define bxpmean 1.559038/* this is the mean value for the LOGNORM dist 

used in modelling type (b) patch operation */ 
#define bxpdev 0.343788 /* this is the std dev for the LOGNORM dist */ 
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/* FLANGE STATISTICS */ 

#define olinemean 0.67672 
#define olinedev 0.613708 

/* LOGNORM mean */ 
/* LOGNORM std deviation */ 

/* POOR-FILL STATISTICS */ 

#define poormean 3.492833 /* mean of the LOGNORMAL dist fit to 
poor-fill patch times */ 

#define poordev 0.299851 /* std deviation */ 

double SWFUNC USERF (int iCode, ENTITY*peUser) 
{ 

double ptchtime = 0.0; 
double tempi,temp2,temp3,temp4,temp5,temp6,a,b,c.maximum; 
double temp; 

switch(iCode) 

I ************************************************ 
Function USERF(l) used to calculate the patch time for 
workers patching defects. 
/*********************************************************************/ 

tempi = peUser->LTRIB[2] ; 
temp2 = peUser->LTRIB[3]; 
temp3 = peUser->LTRIB[4]; 
temp4 = peUser->LTRIB[5]; 
temp5 = DRAND(16); 
temp6 = peUser->LTRIB[6]; 

if (tempi == 1) { 
tempi = RNORM(wghtmean,wghtdev,17); 
tempi = exp(templ); 

} 

if (temp6 == 1) { 
temp6 = 0; 

{ 
case 1: 

} 

if (temp2 
temp 2 
temp2 

- 1) { 
RN0RM(olinemean,olinedev,19); 
exp(temp2); 

} 

i f (temp3 
temp3 

' 1) { 
RN0RM(poormean,poordev,20); 
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temp3 =exp(temp3); 
} 

i f (temp4 == 1) { 
if (temp5 > (bxp/100.0)) { /* then its type a */ 

temp5 = RN0RM(axpmean,axpdev,21); 
} 

else { 
temp5 = RN0RM(bxpmean,bxpdev,22); 
temp5 = exp(temp5); 

> 
} 

else 
temp5 = 0; 

a = (tempi > temp6) ? tempi : temp6; 
b = (a > temp2) ? a : temp2; 
c = (b > temp3) ? b : temp3; 
maximum = (c > temp5) ? c : temp5; 

ptchtime = maximum; 

if (ptchtime < 0.0) { 
ptchtime =0.0; 

> 
break; 
case 2: 

this case generates the task time for the meat preparation task based 
on a monte carlo simulation of the data for worker #2. 

********************************************** 

temp = DRAND(23); 

if (temp <= 0.083333) 
ptchtime = 2.0; 

else if (temp <= 0.166666) 
ptchtime = 4.0; 

else if (temp <= 0.25) 
ptchtime = 11.0; 

else if (temp <= 0.416666) 
ptchtime = 13.0; 

else if (temp <= 0.583333) 
ptchtime = 14.0; 

else if (temp <= 0.666666) 
ptchtime = 16.0; 

else if (temp <= 0.75) 



ptchtime = 17.0; 
else if (temp <= 0.833333) 
ptchtime =19.0; 

else if (temp <= 0.916666) 
ptchtime = 25.0; 

else 
ptchtime = 32.0; 

break; 

case 3: 
/********************************************************************* 

this case does the same as case 2 only for worker #4. 
*********************************************** 

temp = DRAND(24); 

if (temp <= 0.125) 
ptchtime = 2.0; 

else if (temp <= 0.1875) 
ptchtime = 4.0; 

else if (temp <= 0.3125) 
ptchtime = 5.0; 

else if (temp <= 0.375) 
ptchtime = 6.0; 

else if (temp <= 0.4375) 
ptchtime = 8.0; 

else if (temp <= 0.5) 
ptchtime = 11.0; 

else if (temp <= 0.5625) 
ptchtime = 16.0; 

else if (temp <= 0.6875) 
ptchtime = 17.0; 

else if (temp <= 0.75) 
ptchtime =18.0; 

else if (temp <= 0.8125) 
ptchtime = 19.0; 

else if (temp <= 0.9375) 
ptchtime = 22.0; 

else 
ptchtime = 25.0; 

break; 
} 
return (ptchtime); 

> 



Vision Coding 

VNQS .c 

this code is called from the select node in the vision scenario, 
the code selects which queue to select from for patching. 

*********************************************** 
#include "vslam.h" 
UINT SWFUNC NQSCint iCode, ENTITY *peUser, SN.NODE *pNode) 

{ double a,b,c,largest,temp; 
UINT iReturn; 

switch(iCode) 
{ 

case 1: iReturn = 0; 
if ((NNQ(1)==0) && (NNQ(2)==0) && (NNQ(3)==0) && (NNQ(4)==0) && 

(NNQ(5)==0)) break; 

if (NNQ(2) > 0) 
iReturn = 2; 

else if (NNQ(l) > 0) 
iReturn = 1; 

else { 
if ((NNQ(3) > 0) && (XX [7] ==0)) { 

iReturn = 3; 
XX [7] = 1; 

> 
else if ((NNQ(4) > 0) && (XX[7] ==1)) { 

iReturn = 4; 
XX[7] = 2; 

> 
else if ((NNQ(5) > 0) && (XX[7] ==2)) { 

iReturn = 5; 
XX [7] = 0; 

} 
else{ 

a = NNQ(3) 
b = NNQ(4) 
c = NNQ(5) 
temp = (NNQ(3) > NNQ(4)) ? NNQ(3) : NNQ(4); 
largest = (temp > NNQ(5)) ? temp : NNQ(5); 
if (largest = a){ 

iReturn = 3; 
XX [7] = 1; 

} 



else if (largest = b){ 
iReturn = 4; 
XX [7] = 2; 

} 

else{ 
iReturn = 5; 
XX[7] = 0; 

> 
} 

} 
break; 

> 
return iReturn; 
> 

VEVENT.c 
/****************************************************************** 
This code is for the event nodes in the vision scenario 

********************************************* 
#include "vslam.h" 

#define rimdef 14.69 
#define split 48.9 
#define labelwt 213.0 
#define weighttol 9.0 
#define weightmean 216.9 
#define weightdev 5.07 
#define xpck 7.845 
#define poorfill 7.85 
#define effflg XX[1] 
#define effpfl XX[2] 
ttdefine effxpk XX[3] 
#define efftypel XX[4] 
#define numdefects LTRIB[1] 
#define underweight LTRIB[2] 
#define sflangedefect LTRIB[3] /* serious flange defect, off-line 
#define poorfilldefect LTRIB [4] 
#define crosspackdefect LTRIB[5] 
#define mflangedefect LTRIB[6] /* minor flange defect, on-the-fly 

void SWFUNC EVENT(int JEVNT, ENTITY * peUser) 
{ 

double weight, temp; 
int vector [3]; 

/* flange defect °/. */ 
/* % serious flange defects */ 
/* the label weight (g) */ 
/* weight tolerance (g)*/ 
/* mean weight of f i l l (g) */ 
/* std dev of f i l l weight (g) */ 
/* cross-pack % */ 
/* 7, poor-fill */ 

/* vision system performance */ 

switch(JEVNT) 



{ 
case 1: 

/*************************************************************** 
This case is designed to assign the defects to each new can 
entering the system based on the distribution fits. 

peUser->numdefects = 0; 
peUser->underweight = 0; 
peUser->sflangedefect = 0; 
peUser->mflangedefect = 0; 
peUser->poorfilldefect = 0; 
peUser->crosspackdefect = 0; 

/* number of defects in can */ 
/* weight defect */ 
/* serious flange defect */ 
/* minor flange defect */ 
/* poor-fill */ 
/* cross-pack */ 

assigns an underweight defect to the can if the sampling 
distribution indicates a weight of 9 grams or more under the 
can label weight. LTRIB[2] = 1 

************************************************* 
weight = RNORM(weightmean,weightdev,1); 
if (weight < (labelwt - weighttol)) { 

peUser->underweight = 1; 
} 

/*************************************************************** 
assigns a cross-pack defect "xpck" percent of the time. 
LTRIB[5] = 1 

temp = DRAND(2); 
if (temp < (xpck/100.0) ) { 

peUser->crosspackdefect = 1; 
} 

/***************************************************************** 
assigns a flange defect "rimdef" percent of the time, of which 
"split" percent are serious defects requiring off-line patching 
the remainder are on-the-fly patches. 
LTRIB[3] = 1 or LTRIB[6] =1 

temp = DRAND(3); 
if (temp < (rimdef/100.0)) { 

temp = DRAND(4); 
if (temp > (split/100.0)) { 

peUser->mflangedefect = 1; 
} 
else 

peUser->sflangedefect = 1; 



} 

assigns a poor-fill defect "poorfill" percent of the time. 
LTRIB [4] = 1 

*********************************************** 
temp = DRAND(5); 
if (temp < (poorfill/100.0)) { 

peUser->poorfilldefect = 1; 
> 

/***************************************************************** 
assigns LTRIB[1] as the total number of defects. 

******************************************************************/ 
peUser->numdefects = (peUser->underweight + peUser->mflangedefect 
+ peUser->sflangedefect + peUser->poorfilldefect 
+ peUser->crosspackdefect); 

break; 

case 2: 
/***************************************************************** 
This code is designed to simulate the operation of the robotic 
vision system and the associated routing of the defects. 

******************************************************************/ 
vector [0] = (peUser->sflangedefect + peUser->mflangedefect); 
vector [1] = peUser->poorfilldefect; /* poor-fill */ 
vector [2] = peUser->crosspackdefect; /* x-pack */ 

/***************************************************************** 
the following section simulates the vision system where eff*** 
is the probability of correctly recognizing a *** type defect 
efftypel is the prob of correctly recognizing a non-defect. 

******************************************************************/ 
temp = DRAND(6); 
if (vector [0] == 1) { 

if (temp > effflg) 
vector[0] = 0; / / missclassification type(2) l->0 / / 

else 
vector[0] = 1; 

} 
else { 

if (temp > efftypel) 
vector[0] = 1; / / missclassification type(l) 0->l / / 

else 
vector [0] = 0; 

} 

temp = DRAND(7); 
if (vector [1] == 1) { 

if (temp > effpfl) 



vector[1] = 0; / / missclassification type(2) l->0 / / 
else 

vector [1] = 1; 
} 
else { 

if (temp > efftypel) 
vector[1] = 1; / / missclassification type(l) 0->l / / 

else 
vector [1] = 0; 

temp = DRAND(8); 
if (vector [2] == 1) { 

if (temp > effxpk) 
vector[2] = 0; / / missclassification type(2) l->0 / / 

else 
vector[2] = 1; 

> 
else { 

if (temp > efftypel) 
vector[2] = 1; / / missclassification type(l) 0->l / / 

else 
vector[2] = 0; 

} 
************************************************ 

this is the routing section of the code. The logic is such 
that the "multi" queue contains those cans with poor-fill and 
cross-pack. If the can is underweight or has a flange defect 
it goes to the associated queue regardless if it has multiple 
defects. In the case of the can having flange defects and 
underweight it is sent to the weight queue. 

**************************************************************** 
if (vector [1] == 1) 
peUser->STRIB[l] = ("poor-fill"); 

if (vector [2] == 1) 
peUser->STRIB[l] = ("xpack"); 

if ( (vector [1] + vector [2]) == 2 ) 
peUser->STRIB[l] = ("multi"); 

if ((vector [0] + vector [1] + vector[2]) == 0) 
peUser->STRIB[l] = ("noprobdetected"); 

if (vector [0] == 1) 
peUser->STRIB[l] = ("flange"); 



if (peUser->LTRIB[2] == 1) 
peUser->STRIB[l] = ("underweight"); 

break; 

} /* close switch */ 
} 

VUSERF . c 
/********************************************************************* 

This code is called by the USERF calls in the vision scenario. 
****************************************** 
#include "vslam.h" 
#include <stdio.h> 
#include <math.h> 

/* Underweight statistics */ 

#define wghtmean 1.972985 /* 
#define wghtdev 0.731795 /* 

/* Cross-pack statistics */ 

LOGNORMAL mean for weight patch */ 
standard deviation */ 

#define axp 10.2 
#define bxp 89.8 

#define axpmean 24.0 

/* 
/* 

/* 

#define axpdev 7.171239 /* 

#define bxpmean 1.559038 /* 

#define bxpdev 0.343788 /* 

this is the °/0 of type a cross-packs */ 
this is the % of type b cross-packs and 
must be changed if a is */ 
this is the mean value for the NORMAL 
dist used in modelling type (a) patch 
operation */ 
this is the std dev for the NORMAL dist 
*/ 
this is the mean value for the LOGNORMAL 
dist used in modelling type (b) patch 
operation */ 
this is the std dev for the LOGNORMAL 
dist */ 

/* Flange statistics */ 

#define olinemean 0.67672 
#define olinedev 0.613708 

/* LOGNORMAL mean for off-line patches */ 
/* LOGNORMAL std dev */ 

/* POOR-FILL STUFF */ 

#define poormean 3.492833 

#define poordev 0.299851 

/* mean of the LOGNORMAL dist f it to 
poor-fill patch times */ 

/* std dev */ 



/* Other data */ 

#define onthefly XX[5] 
#define nodefect XX[6] 

/* patch time for on the fly flange */ 
/* handling time for typel errors */ 

double SWFUNC USERF (int iCode, ENTITY*peUser) 
{ double pfpreptime = 0.0; 

double wtpreptime = 0.0; 
double ptchtime = 0.0; 
double tempi, temp2, temp3, temp6; 
double temp, temp5, a, b, c, maximum; 

switch(iCode) 

Function USERF(l) used to calculate the patch time for workers 
patching defects. When the can has multiple defects of any kind the 
patch time is the maximum of the separate patch times for the 
problems. Meat preparation task in this scenario is hard coded and 
based on a percentage of the poor-fills and underweights. The 
percentages are the same as in the basecase and use the same monte 
carlo simulations for the preparation times. 

temp5 = DRAND(9); 

if (peUser->LTRIB[2] == 1) { 
tempi = RNORM(wghtmean,wghtdev,10); 
tempi = exp(templ); 

> 

if (peUser->LTRIB[6] == 1) { 
temp6 = onthefly; 

} 

if (peUser->LTRIB[3] == 1) { 
temp2 = RN0RM(olinemean,olinedev,11); 
temp2 = exp(temp2); 

} 

if (peUser->LTRIB[4] == 1) { 
temp3 = RN0RM(poormean,poordev,12); 
temp3 = exp(temp3); 

> 

{ 
case 1: 



if (peUser->LTRIB[5] == 1) { 
if (temp5 > (bxp/100.0)) { /* then its type a cross-pack*/ 

temp5 = RNORM(axpmean,axpdev,13); 
} 
else { 

temp5 = RNORM(bxpmean,bxpdev,14); 
temp5 = exp(temp5); 

> 
} 
else 

temp5 - 0; 

a = (tempi > temp6) ? tempi : temp6; 
b = (a > temp2) ? a : temp2; 
c = (b > temp3) ? b : temp3; 
maximum = (c > temp5) ? c : temp5; 

ptchtime = maximum; 

this section is the code for the meat preparation tasks and is based 
on the data that of the underweights that are patched 81.8% are done 
by worker number 4 and of these 62.8% generate a preparation 
activity. Worker 2 patches the remaining 18.2% of those 
underweights which are patched. 

************************************************ 
f (peUser->LTRIB[2] == 1){ /* underweight */ 

tempi = DRAND(15); 
temp2 = DRANDU6); 

if (tempi <= 0.818M /* worker 4 */ 
if (temp2 <= 0.628){ 

temp = DRAND(17); 

if (temp <= 0.083333) 
wtpreptime = 2.0; 

else if (temp <= 0.166666) 
wtpreptime = 4.0; 

else if (temp <= 0.25) 
wtpreptime = 11.0; 

else if (temp <= 0.416666) 
wtpreptime = 13.0; 

else if (temp <= 0.583333) 
wtpreptime = 14.0; 

else if (temp <= 0.666666) 
wtpreptime = 16.0; 

else if (temp <= 0.75) 
wtpreptime = 17.0; 
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else if (temp <= 0.833333) 
wtpreptime = 19.0; 

else if (temp <= 0.916666) 
wtpreptime = 25.0; 

else 
wtpreptime = 32.0; 

} 

> 

else{ /* worker 2 */ 
temp2 = DRAND(18); 
temp = DRANDQ9); 
if (temp2 <= 0.628M 

if (temp <= 0. 125) 
wtpreptime = = 2.0; 

else if (temp <= 0.1875) 
wtpreptime = 4.0; 

else if (temp <= 0.3125) 
wtpreptime = 5.0; 

else if (temp <= 0.375) 
wtpreptime = 6.0; 

else if (temp <= 0.4375) 
wtpreptime = 8.0; 

else if (temp <= 0.5) 
wtpreptime = 11.0; 

else if (temp <= 0.5625) 
wtpreptime = 16.0; 

else if (temp <= 0.6875) 
wtpreptime = 17.0; 

else if (temp <= 0.75) 
wtpreptime = 18.0; 

else if (temp <= 0.8125) 
wtpreptime = 19.0; 

else if (temp <= 0.9375) 
wtpreptime = 22.0; 

else 
wtpreptime = 25.0; 

} 

} 

} 

i f (peUser->LTRIB[4] == 1){ /* meat preps generated by poor-fills*/ 
tempi = DRAND(20); 
if (tempi <= 0.125M 

temp = DRAND(21); 
if (temp <= 0.125) 

pfpreptime = 2.0; 



else if (temp <= 0.1875) 
pfpreptime = 4.0; 

else if (temp <= 0.3125) 
pfpreptime = 5.0; 

else if (temp <= 0.375) 
pfpreptime = 6.0; 

else if (temp <= 0.4375) 
pfpreptime = 8.0; 

else if (temp <= 0.5) 
pfpreptime = 11.0; 

else if (temp <= 0.5625) 
pfpreptime = 16.0; 

else if (temp <= 0.6875) 
pfpreptime = 17.0; 

else if (temp <= 0.75) 
pfpreptime = 18.0; 

else if (temp <= 0.8125) 
pfpreptime = 19.0; 

else if (temp <= 0.9375) 
pfpreptime = 22.0; 

else 
pfpreptime = 25.0; 

> 
> 
if ((pfpreptime != 0.0) && (wtpreptime != 0.0)) 

wtpreptime = 0.0; 

ptchtime = (ptchtime + pfpreptime + wtpreptime); 

if (ptchtime < 0.0) { 
ptchtime = 0.0; 

} 

if (peUser->LTRIB[l] == 0){ 
ptchtime = nodefect; /* time for a non-defective */ 

} 

break; 
} /* close switch */ 
return (ptchtime); 
} 

Vision/Trimmer Coding 

VTEVENT . c 
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This code is for the event nodes in the vision/trimmer scenario 
********************************************** 
#include "vslam.h" 

#define rimdef 14.69 
#define split 48.9 
#define labelwt 213.0 
#define weighttol 9.0 
#define weightmean 216.9 
#define weightdev 5.07 
#define xpck 7.845 
#define poorfill 7.85 
#define effflg XX[1] 
#define effpfl XX[2] 
#define effxpk XX[3] 
#define efftypel XX[4] 
#define numdefects LTRIB [1] 
#define underweight LTRIB[2] 
#define sflangedefect LTRIB[3] /* serious flange defect, off-line */ 
#define poorfilldefect LTRIB[4] 
#define crosspackdefect LTRIB[5] 
#define mflangedefect LTRIB[6] /* minor flange defect, on-the-fly */ 
#define trimeff 0.95 /* trimmer efficiency */ 

void SWFUNC EVENT(int JEVNT, ENTITY * peUser) 
{ 

double weight, temp; 
int vector [3]; 

switch(JEVNT) 
{ 

case 1: 
/*************************************************************** 

This case is designed to assign the defects to each new can 
entering the system based on the distribution fits. 

**************************************************************** J 

/* flange defect 7, */ 
/* '/, serious flange defects */ 
/* the label weight (g) */ 
/* weight tolerance (g)*/ 
/* mean weight of f i l l (g) */ 
/* std dev of f i l l weight (g) */ 
/* cross-pack '/, */ 
/* 7. poor-fill */ 

/* vision system performance */ 

peUser->numdefects = 0; 
peUser->underweight = 0; 
peUser->sflangedefect = 0; 
peUser->mflangedefect = 0; 
peUser->poorfilldefect = 0; 
peUser->crosspackdefect = 0; 

/* number of defects in can */ 
/* weight defect */ 
/* serious flange defect */ 
/* minor flange defect */ 
/* poor-fill */ 
/* cross-pack */ 

/*************************************************************** 
assigns an underweight defect to the can if the sampling 
distribution indicates a weight of 9 grams or more under the 



can label weight. LTRIB[2] = 1 
********************************************* 
weight = RNORM(weightmean,weightdev,1); 
if (weight < (labelwt - weighttol)) { 

peUser->underweight = 1; 
} 

/*************************************************************** 
assigns a cross-pack defect "xpck" percent of the time. 
LTRIB[5] = 1 

****************************************************************/ 
temp = DRAND(2); 
if (temp < (xpck/100.0) ) { 

peUser->crosspackdefect = 1; 
} 

assigns a flange defect "rimdef" percent of the time, of which 
"split" percent are serious defects requiring off-line patching 
the remainder are on-the-fly patches. 
LTRIB[3] = 1 or LTRIB[6] =1 

temp = DRAND(3); 
if (temp < (rimdef/100.0)) { 

temp = DRAND(4); 
if (temp > (split/100.0)) { 

peUser->mflangedefect = 1; 
} 

else 
peUser->sflangedefect = 1; 

> 
I **************************************************************** 

assigns a poor-fill defect "poorfill" percent of the time. 
LTRIB[4] = 1 

*****************************************************************/ 
temp = DRAND(5); 
if (temp < (poorfill/100.0)) { 

peUser->poorfilldefect = 1; 
} 

/***************************************************************** 
assigns LTRIB[1] as the total number of defects. 

******************************************************************/ 
peUser->numdefects = (peUser->underweight + peUser->mflangedefect 
+ peUser->sflangedefect + peUser->poorfilldefect 
+ peUser->crosspackdefect); 

break; 
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} 
else { 

i f (temp > e f f t y p e l ) 
vector[2] = 1; // m i s s c l a s s i f i c a t i o n t y p e ( l ) 0->l // 

else 
vector[2] = 0; 

} 
/***************************************************************** 

t h i s i s the rou t i n g section of the code. The l o g i c i s such 
that the "multi" queue contains those cans with p o o r - f i l l and 
cross-pack. If the can i s underweight or has a flange defect 
i t goes to the associated queue regardless i f i t has mul t i p l e 
defects. In the case of the can having flange defects and 
underweight i t i s sent to the weight queue. 

i f (vector [1] == 1) 
peUser->STRIB[l] = ( " p o o r - f i l l " ) ; 

i f (vector [2] == 1) 
peUser->STRIB[l] = ("xpack"); 

i f ( (vector [1] + vector [2]) == 2 ) 
peUser->STRIB[l] = ("multi"); 

i f ((vector [0] + vector [1] + vector [2]) == 0) 
peUser->STRIB[l] = ("noprobdetected"); 

i f (vector [0] == 1) 
peUser->STRIB[l] = ("flange"); 

i f (peUser->LTRIB[2] == 1) 
peUser->STRIB[l] = ("underweight"); 

break; 

case 3: 
/******************************************************************** 

This case represents the act i o n of the trimmer i n r e p a i r i n g the 
flange defects. 

****************************************** 
i f ((peUser->LTRIB[3] ==1) II (peUser->LTRIB[6] == 1)){ 
temp = DRAND(22); 
i f (temp < t r i m e f f M 

peUser->LTRIB[3] =0; 
peUser->LTRIB[6] = 0; 
peUser->LTRIB[l] = peUser->LTRIB[1] - 1; 

} 
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break; 
} /* close switch */ 
} 

VTNQS.c 

this code is called from the select node in the vision scenario, 
the code selects which queue to select from for patching. 

********************************************* 
#include "vslam.h" 
UINT SWFUNC NQSCint iCode, ENTITY *peUser, SN.NODE *pNode) 

{ double a,b,c,largest,temp; 
UINT iReturn; 

switch(iCode) 
{ 

case 1: iReturn = 0; 
if ((NNQ(1)==0) && (NNQ(2)==0) && (NNQ(3)==0) && (NNQ(4)==0)) 

break; 

if (NNQ(l) > 0) 
iReturn = 1; 

else { 
if ((NNQ(2) > 0) && (XX [7] ==0)) { 

iReturn = 2; 
XX[7] = 1; 

} 

else if ((NNQ(3) > 0) && (XX [7] == D) { 
iReturn = 3; 
XX [7] = 2; 

} 
else if ((NNQ(4) > 0) && (XX [7] ==2)) { 

iReturn = 4; 
XX [7] = 0; 

} 
else{ 

a = NNQ(2); 
b = NNQ(3); 
c = NNQ(4); 
temp = (NNQ(2) > NNQ(3)) ? NNQ(2) : NNQ(3); 
largest = (temp > NNQ(4)) ? temp : NNQ(4); 
if (largest = a){ 

iReturn = 2; 
XX[7] = 1; 

} 



else if (largest = b){ 
iReturn = 3; 
XX[7] = 2; 

} 

else{ 
iReturn = 4; 
XX [7] = 0; 

> 
} 

> 
break; 

> 
return iReturn; 
> 

VTUSERF .c 
/********************************************************************* 
This code is called by the USERF calls in the vision/trimmer scenario. 

********************************************** 
#include "vslam.h" 
#include <stdio.h> 
#include <math.h> 

/* Underweight statistics */ 

#define wghtmean 1.972985 /* 
#define wghtdev 0.731795 /* 

/* Cross-pack statistics */ 

LOGNORMAL mean for weight patch */ 
standard deviation */ 

#define axp 10.2 
#define bxp 89.8 

#define axpmean 24.0 

/* 
/* 

/* 

#define axpdev 7.171239 /* 

#define bxpmean 1.559038 /* 

#define bxpdev 0.343788 /* 

this is the °/, of type a cross-packs */ 
this is the of type b cross-packs and 
must be changed if a is */ 
this is the mean value for the NORMAL 
dist used in modelling type (a) patch 
operation */ 
this is the std dev for the NORMAL dist 
*/ 
this is the mean value for the LOGNORMAL 
dist used in modelling type (b) patch 
operation */ 
this is the std dev for the LOGNORMAL 
dist */ 

/* Flange statistics */ 



#define olinemean 0.67672 
#define olinedev 0.613708 

/* LOGNORMAL mean for off-line patches */ 
/* LOGNORMAL std dev */ 

/* POOR-FILL STUFF */ 

#define poordev 0.299851 

#define poormean 3.492833 /* mean of the LOGNORMAL dist fit to 
poor-fill patch times */ 

/* std dev */ 

/* Other data */ 

#define onthefly XX[5] 
#define nodefect XX[6] 

/* patch time for on the fly flange */ 
/* handling time for typel errors */ 

double SWFUNC USERF (int iCode, ENTITY*peUser) 
{ double pfpreptime = 0.0; 

double wtpreptime = 0.0; 
double ptchtime = 0.0; 
double tempi, temp2, temp3, temp6; 
double temp, temp5, a, b, c, maximum; 

switch(iCode) 
{ 
case 1: 
/***********************************^ 
Function USERF(l) used to calculate the patch time for workers 
patching defects. When the can has multiple defects of any kind the 
patch time is the maximum of the separate patch times for the 
problems. Meat preparation task in this scenario is hard coded and is 
based on a percentage of the poor-fills and underweights. The 
percentages are the same as in the basecase and use the same monte 
carlo simulations for the preparation times. 

temp5 = DRAND(9); 

if (peUser->LTRIB[2] == 1) { 
tempi = RN0RM(wghtmean,wghtdev,10); 
tempi = exp(templ); 

} 

if (peUser->LTRIB[6] == 1) { 
temp6 = onthefly; 

} 

i f (peUser->LTRIB[3] == 1) { 
temp2 = RNORM(olinemean,olinedev,11); 



temp2 = exp(temp2); 
} 

if (peUser->LTRIB[4] == 1) { 
temp3 = RNORM(poormean,poordev,12); 
temp3 = exp(temp3); 

} 

if (peUser->LTRIB[5] == 1) { 
if (temp5 > (bxp/100.0)) { /* then its type a cross-pack*/ 

temp5 = RNORM(axpmean,axpdev,13); 
> 
else { 

temp5 = RNORM(bxpmean.bxpdev,14); 
temp5 = exp(temp5); 

} 

} 
else 

temp5 = 0; 

a = (tempi > temp6) ? tempi : temp6; 
b = (a > temp2) ? a : temp2; 
c = (b > temp3) ? b : temp3; 
maximum = (c > temp5) ? c : temp5; 

ptchtime = maximum; 

this section is the code for the meat preparation tasks and is based 
on the data that of the underweights that are patched 81.87, are done 
by worker number 4 and of these 62.87o generate a preparation 
activity. Worker 2 patches the remaining 18.27o of those 
underweights which are patched. 

************************************************* 
if (peUser->LTRIB[2] == 1){ /* underweight */ 

tempi = DRAND(15); 
temp2 = DRAND(16); 

if (tempi <= 0.818H /* worker 4 */ 
if (temp2 <= 0 . 6 2 8 M 

temp = DRAND(17); 

if (temp <= 0.083333) 
wtpreptime = 2.0; 

else if (temp <= 0.166666) 
wtpreptime = 4.0; 

else if (temp <= 0.25) 
wtpreptime = 11.0; 
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else i f (temp <= 0.416666) 
wtpreptime = 13.0; 

else if (temp <= 0.583333) 
wtpreptime =14.0; 

else if (temp <= 0.666666) 
wtpreptime = 16.0; 

else if (temp <= 0.75) 
wtpreptime = 17.0; 

else if (temp <= 0.833333) 
wtpreptime = 19.0; 

else if (temp <= 0.916666) 
wtpreptime = 25.0; 

else 
wtpreptime = 32.0; 

> 
} 

else{ /* worker 2 */ 
temp2 = DRAND(18); 
temp = DRAND(19); 
if (temp2 <= 0.628){ 

if (temp <= 0 125) 
wtpreptime = = 2.0; 

else if (temp <= 0.1875) 
wtpreptime = = 4.0; 

else if (temp <= 0.3125) 
wtpreptime = = 5.0; 

else if (temp <= 0.375) 
wtpreptime = 6.0; 

else if (temp <= 0.4375) 
wtpreptime = 8.0; 

else if (temp <= 0.5) 
wtpreptime = 11.0; 

else if (temp <= 0.5625) 
wtpreptime = 16.0; 

else if (temp <= 0.6875) 
wtpreptime = 17.0; 

else if (temp <= 0.75) 
wtpreptime = 18.0; 

else if (temp <= 0.8125) 
wtpreptime = 19.0; 

else if (temp <= 0.9375) 
wtpreptime = 22.0; 

else 
wtpreptime = 25.0; 

} 
} 



} 

i f (peUser->LTRIB[4] == 1){ /* meat preps generated by poor-fill 
tempi = DRAND(20); 
if (tempi <= 0.125M 

temp = DRAND(21); 
if (temp <= 0.125) 

pfpreptime = 2.0; 
else if (temp <= 0.1875) 

pfpreptime = 4.0; 
else if (temp <= 0.3125) 

pfpreptime = 5.0; 
else if (temp <= 0.375) 

pfpreptime = 6.0; 
else if (temp <= 0.4375) 

pfpreptime = 8.0; 
else if (temp <= 0.5) 

pfpreptime = 11.0; 
else if (temp <= 0.5625) 

pfpreptime = 16.0; 
else if (temp <= 0.6875) 

pfpreptime = 17.0; 
else if (temp <= 0.75) 

pfpreptime = 18.0; 
else if (temp <= 0.8125) 

pfpreptime = 19.0; 
else if (temp <= 0.9375) 

pfpreptime = 22.0; 
else 

pfpreptime = 25.0; 
} 

} 
if ((pfpreptime != 0.0) && (wtpreptime != 0.0)) 

wtpreptime =0.0; 

ptchtime = (ptchtime + pfpreptime + wtpreptime); 

if (ptchtime < 0.0) { 
ptchtime = 0.0; 

> 

if (peUser->LTRIB[l] == 0){ 
ptchtime = nodefect; /* time for a non-defective */ 

} 

break; 
} /* close switch */ 
return (ptchtime); 
} 
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Appendix E 

Screening Program Details 

The canning industry suffered a tremendous setback in July of 1978. Four people from Birmingham 
England contracted botulism poisoning after eating canned Alaskan red salmon. Two of these 
people subsequently died. In February of 1982 two people in Belgium were stricken by botulism 
poisoning attributed to consumption of Alaskan canned salmon, and one person died. Both of these 
incidents proved exceptionally costly to the industry both through necessary recalls, enforced hand 
inspection and loss of sales and reputation. In both instances a failure in the hermetical seal was the 
cause of the poisoning. In order to deal with this issue, the industry adopted a quality assurance 
program known as, 'the can screening program'. The purpose of this program is to reduce the 
possibility of a faulty seal reaching market. 

The screening program employs a checkweighing machine in-line with a double-dud-detector, 
(DDD). The DDD is a device which measures the deflection of the lid of the salmon can. This 
deflection is an indication of the level of vacuum in the can which is a good indicator of seal integrity. 
The purpose of the checkweigher preceding the DDD is to eject underweight and overweight cans. 
Underweight cans are ejected since during retorting or cooking of the cans when they are under 
high internal pressure occasionally a leak will occur through which material is leaked. Subsequently 
at some point the leak can be plugged by the cooking of a protein into the gap and upon cooling 
the can will re-vacuum. Thus although the can would appear to the DDD as properly sealed, 
it may still be defective. Overweight cans are ejected since these cans might be ejected by the 
DDD not due to inadequate vacuum but simply because the can is too full to allow significant lid 
deflection. The DDD is then tuned such that those cans ejected make up the two percent of the 
population with the least lid deflection. This 2% is then hand inspected for seam defects. If more 
than 25/100,000 are found to have serious seam defects the entire batch must be hand inspected 
or "culled". 
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