
STRAIN SENSITIVITY ENHANCEMENT

FOR THE

HOLE-DRILLING RESIDUAL STRESSES MEASUREMENT METHOD

by

MORAMMAD TOOTOONIAN

B.Sc., Tehran University, Iran, 1980

A TILESIS SUBMITTED iN PARTIAL FULFILLMENT OF

TILE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of Mechanical Engineering)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1993

© Mohammad Tootoonian



In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of ft( €Cit VCt /
The University of British Columbia
Vancouver, Canada

Date A’yte 3e/ 3

DE-6 (2/88)



ABSTRACT

Two methods for enhancing the strain sensitivity of the hole-drilling method for

measuring residual stress fields were examined in this thesis. Such enhanced strain

sensitivity is important because it improves the accuracy of the residual stress evaluation.

The first method involves enlarging the effective hole size by drilling a reverse taper hole.

A simple practical technique for drilling reverse taper holes is described. The strain

sensitivity for this new method is compared with that of the conventional hole-drilling

method. Experimental results show excellent correspondence with theoretical results.

The reasons for the sensitivity improvement are explained. The second method involves

designing a 6-element strain gauge rosette. It is shown that the new 6-element rosette

significantly enhances the strain sensitivity of the hole-drilling method. Experimental

results show excellent agreement with predicted results. Moreover, it is shown that this

new rosette improves the accuracy of the method concerning the measurement of the

variation of residual stresses with depth.
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CHAPTER 1

INTRODUCTION

1.1 Residual Stresses

Residual stresses are stresses that exist in a material in the absence of any external

loads. They can be induced in almost every step of most manufacturing processes.

Usually, a permanent dimensional change in a portion of a work-piece is the source of the

residual stresses. This dimensional change can occur by a plastic deformation, for

example, during rolling, forming, and machining. Plastic deformation also can be caused

by the large temperature gradients that occur during welding, heat treating or sintering.

Elastic deformation also can be a source of dimensional changes and residual stresses, for

example by tight fitting of assembled components or by solid-state phase transformations.

Residual stresses can significantly affect the serviceability of engineering components.

The influence of residual stresses on fatigue strength is well known. Fracture, surface

corrosion, and crack propagation are also directly influenced by to distribution of residual

stresses in materials. Residual stresses are one of the important causes of failure of

materials. Residual stresses can be beneficial as well as detrimental. Compressive residual

stresses are mostly considered beneficial and tensile stresses are generally detrimental.

Dimensional stability of a piece is impaired by residual stresses, compressive or tensile.

Despite their significance, residual stresses are often ignored in design and

manufacturing, mostly because they are difficult to evaluate. Ever-growing needs for

enhanced reliable design of lighter and smaller but safer components demand a better

understanding of residual stresses. Reliable methods for measurement of residual stresses

are essential for studying these stresses.
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Conventional methods for measuring stresses due to applied loads in experimental

stress analysis may not be suitable for measuring residual stresses. In conventional

methods relative stresses are measured, i.e., the applied stresses are measured by

comparing the current state of stress or strain with the zero state of stress or strain (by

removing or applying external loads). However, there are no external loads in the case of

residual stresses. Thus, specialized stress measurement methods must be used. These

methods are divided into two categories: non-destructive methods which measure the

absolute state of stress, and destructive methods which involve removing some stressed

materials [1].

1.2 Methods of Measurement of Residual Stresses

The non-destructive measurement methods generally measure the properties of

material that are altered by the absolute state of the stress of the specimen. Often the

relation between these properties and stresses are not filly established and the results of

the measurements by non-destructive methods are subject to interpretation. The most

commonly used of these methods is the X-ray method. Others include the ultrasonic,

magneto-acoustic, photoelastic, and the neutron diffraction methods. Following are brief

descriptions of the most widely used of these methods [1].

The X-ray method is by far the most developed and the most widely used of the non

destructive methods for measuring residual stresses. It uses X-ray diffraction to measure

the distance between two crystallographic lattice layers. This distance is changed by the

state of stress of the material. Despite its widespread use, the X-ray diffraction method

has some limitations. For example, the small penetration range of X-rays only permits

measuring the surface residual stresses. The neutron diffraction method that is similar to
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the X-ray method, has its penetration range of several orders of magnitude larger than the

X-ray method, but has a low precision due to weak sources of neutrons.

The ultrasonic method uses changes in the velocities of ultrasonic waves due to

stresses as a basis to measure residual stresses. One of the shortcomings of this method is

that the average stress is measured, and therefore sharp stress gradients cannot be

measured.

A few well-known destructive methods for residual stress measurement are the

dissection method, the ring core method, and the hole drilling method. These methods

evaluate residual stresses by measuring strains or displacements caused by removal of

stressed material.

The most powerfbl, and most destructive, method is the dissection method. In this

method, the stressed material is dissected layer by layer and at each step the deformation

of the remaining material due to the removal of the material is measured. The original

residual stresses can then be calculated. The method is very time consuming and the

sample is completely destroyed.

Unlike the dissection method, which involves complete destruction of the

measurement area, the ring core and hole drilling methods cause much less damage. For

that reason they are often referred to as “semi-destructive “ methods. The ring core

method involves cutting a small ring core in the stressed material and measuring the

relieved strains on the surface of the material remaining in the ring. The original existing

residual stresses then can be calculated from the measured relieved strain data. The hole

drilling method is similar to core ring method in principle, however, instead of a ring core

a small hole is drilled and the relieved strains around the hole are measured. The ring core

method has a higher sensitivity than the hole drilling method. However the size of the

annular ring is relatively large, causing more damage than the hole drilling method.
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Moreover, the results are much less localized. In contrast the hole drilling method does

relatively little damage to the specimen and it is capable of more localized residual stress

measurement. In addition drilling a hole is easier than cutting a ring core.

Despite its relatively low sensitivity, the hole drilling method is the most widely used

technique for measuring residual stresses. The popularity of the method is mostly due to

its simplicity, reliability and ease ofuse.

1.3 The hole drilling method

The hole drilling method involves drilling a cylindrical hole at the point of interest in a

stressed material, measuring the relieved strain (or displacement) around the hole and

calculating the original stresses from these measured strains [2]. The hole drilling method

was first introduced by Mathar in 1934 [31. He used a mechanical extensometer to

measure the displacements around a through hole in a stressed plate. For his calculation

he used the well-known Kirsch [4] solution for the stress distribution around a small hole

in a thin plate subject to uniform stress. The accuracy of the method used by Mathar was

low because of the use of a mechanical extensometer. Soete and Vancrombrugge, in

1950, greatly improved the accuracy of the method by using electrical strain gauges, in

place of the extensometer [51.

In 1956, Kelsey [6] published his investigation into using the hole drilling method to

measure stress variation with depth. He was also the first to use blind holes instead of

through holes. Previously, the use of through holes limited the method only to thin plates.

The method gained became standardized in 1966, when Rendler and Vigness developed

the method into a systematic and reproducible procedure [7]. Their work is used as a base
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for the ASTM E837 [8] standard for hole drilling method. Figure 1

a typical hole-driffing rosette.

schematically shows

Figure 1 Typical strain gauge rosette for the hole-drilling method.

In 1974, Beaney and Procter [9] improved the practical aspect of the method by using

air abrasive machining to enable stress free hole drilling. Flaman [10] developed the use

of ultra high speed drilling to achieve stress free hole.

Schajer [11], in 1981, provided the first comprehensive finite element analysis of the

method. Later in 1988, he published his systematic investigation on using the hole drilling

method for determination of residual stress variation with depth and provided the finite

element analysis for the case [12].

The technical literature on the hole drilling method is extensive and continues to

grow.
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1.4 Objective and overview of the study

Despite its widespread use and popularity, however, a weakness of the hole drilling

method is that the measured strain reliefs are quite modest in size. The inevitable small

experimental errors that occur may not be trivial compared with the measured strains. In

such cases, the small errors could significantly impair the accuracy of the computed

residual stresses.

In most hole-drilling measurements, it is assumed that the stresses in the specimen

material do not vary with depth from the measured surface. However, in recent years,

considerable interest has arisen for using the hole-drilling method to determine residual

stresses that vary with depth from the measured surface. The associated stress

calculations are numerically very sensitive, and even quite small strain measurement errors

can have devastating effects on the accuracy of the results. Thus, in the non-uniform

stress case, it is especially important to make the strain sensitivity of the hole-drilling

method as high as possible, and to minimize the relative size of the experimental errors.

Three key factors controlling the strain sensitivity of the hole-drilling method are the

diameter and geometry of the hole and the geometry of the strain gauge rosette. The

strain sensitivity of the hole-drilling method depends directly on the size of the hole

relative to the rosette size. Maximum sensitivity for a given rosette size is achieved when

the hole has the maximum allowable size. This maximum size is determined by the

distance between the edge of the hole and the strain gauge grids. Unfortunately, even

with maximum size hole, the sensitivity of the hole-drilling method is not very high. This

modest sensitivity means that small strain measurement errors can cause significant errors

in the calculated residual stresses. Two methods are proposed here to improve strain

sensitivity and stress calculation accuracy: taper hole drilling and a modified design for the

rosette.
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Taper hole drilling improves the sensitivity of the hole drilling method by increasing

the hole size without exceeding the limit for hole radius at the surface of the specimen. In

this method, a truncated cone shape hole is drilled instead of a conventional cylindrical

hole. By modifying the geometry of the hole, the effective size of the hole and the

flexibility of the material in the region close to the hole are increased. This increase in

flexibility of the material causes larger strain reliefs and improved sensitivity. This thesis

describes and explains the sensitivity improvement that is achieved by tapered hole drilling.

A practical drilling procedure is also briefly described. Experimental measurement of the

sensitivity is compared with numerical results.

The geometrical design of the strain gauge rosette is the third key factor which

influences the sensitivity of the method and its stress calculation accuracy. The ASTM

standard hole-drilling rosette [8] is the most commonly used design, and is almost

universal in North America. The pattern derives from the original 1966 work of Rendler

and Vigness [7]. These two pioneering researchers do not give much detail concerning

their choice of rosette geometry. One can speculate that theirs was a pragmatic choice

between strain sensitivity and available strain gauge shapes. Certainly, their final selection

has served well over many years. However, the more recent requirements for improved

strain measurement accuracy for non-uniform stress evaluations heavily tax the capabilities

of their rosette design.

This thesis examines how various rosette design factors contribute to overall strain

sensitivity. It compares four different potential rosette geometries, and suggests an

improved design that has an effective strain sensitivity almost three times greater than the

present the ASTM standard pattern. The non-uniform stress calculations associated with

the proposed rosette patterns are also numerically less sensitive than those for the ASTM

design. Non-uniform residual stress profiles can be determined to depths about 25%

greater than previously. Furthermore, the proposed pattern includes thermal strain
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compensation, so the absolute sizes of the strain measurement errors are also reduced. A

series of experiments was undertaken using the proposed strain gauge pattern, and the

various features of the design were successfully demonstrated.

8



CHAPTER 2

THE HOLE DRILLING METHOD

2.1 Background Theory

The hole drilling method involves drilling a small hole into the stressed material. A

specially designed strain gauge rosette measures the associated strain reliefs in the

surrounding material [7,8]. Figure 2 shows a typical hole geometry. The residual stresses

originally existing at the hole location can then be evaluated from the measured strains. In

most hole-drilling measurements, it is assumed that the stresses in the specimen material

are uniform with depth from the surface. However, in recent years, considerable interest

has arisen for using the hole-drilling method to determine residual stresses that vary with

depth from the specimen surface. Both cases are discussed in this thesis.

Figure 2 A typical hole geometry.

stress after
drilling
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2.1.1 Uniform Residual Stress

When the residual stresses in a specimen do not vary with depth from the surface, the

relationship between the measured relieved strains after the hole drilling and original

existing residual stresses is of the form [7]:

6 = A(Jmax+Eymin) +(Uma—c7)coS2cP (1)

where

6 = relieved strain measured by the strain gauge

umax = maximum principal residual stress

minimum principal residual stress

(0 = angular coordinate of the radial mid axis of the strain gauge

measured counterclockwise from the maximum principal stress,

A, = calibration coefficients

The principal stresses and their orientations can be calculated by applying the above

Equation for each of the strain gauges.

—

8 + 63 ((262 6 — 83)2 + (8 — 83)2)1/2

2Umax0min
—

()

1 282—61—83
(0 = —arctan (3)

2 61S3
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where

8i, 82, and 63 = strains measured by the three strain gauges

= clockwise angle from gauge 1 to direction of

Numerical values of the calibration coefficients A and must be known to determine

residual stresses using Equation (2). For the idealized case of infinitesimal relieved radial

strains around a through hole in a thin uniformly stressed plate the coefficients A and

can be determined analytically at a distance r from the hole radius as [2]:

A

-

B =

— 1 + v F 4
(2 (-41 (5)

2E Ll+vr) isrJj

where ra is the hole radius. In Equations (4) and (5), A and B are written without “bars”

to emphasize that they refer to infinitesimal relieved strains. The corresponding

infinitesimal A and B values for circumferential relieved strains are:

A
= 1-v

(6)

B =
1+ F 4 v fl2 - (7)
2E [1+vr) rJ]

In the early years of the hole-drilling method, constants A and B from Equations (4)

and (5) were sometimes used for hole-drilling residual stress calculations. However, this

practice gives inferior results because practical relieved strain measurements occur over

the entire areas of the strain gauges, not just at infinitesimally small areas. The values of
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the calibration coefficients A and can be calculated by integrating the values of A and B

over the active areas of the strain gauges, [11].

In most cases, through holes are not practicable and blind holes must be used instead.

When a blind hole is used, there are no convenient analytical values for the calibration

coefficients A and . For this case, values of A and are obtained either experimentally

or numerically.

In experimental evaluation of the calibration coefficients [7, 8], a separate sample of

the specimen material is used. A strain gauge rosette identical to actual residual stress

measurement is installed on the sample surface. A hole with same geometry as the hole in

actual residual stress measurement is drilled into this sample. By subjecting the sample to

a known uniform stress field and by measuring the strains before and after the hole drilling,

the calibration coefficients can be determined. The experimental calibration has the

advantages of conceptual simplicity and accounting for the procedural influences and

material-dependent effects on measured strain response. One disadvantage is that a

separate time consuming calibration is needed for every material, hole size, and rosette

geometry.

Numerical determination of the calibration coefficients A and was made possible by

the development of the finite element method [11]. Numerical calibration is more general

and covers a wide range of measurement conditions. Numerical calibration closely

matches the experimental calibration, and is widely accepted and used.

Figure 3 schematically shows the state of stress in a specimen both before and after

hole-drilling. Figure 3(a) shows the stresses before hole drilling, including the stresses that

exist at the boundary of the hole which is about to be drilled. Figure 3(b) shows the

stresses after the hole drilling. The far boundary is assumed to be sufficiently distant that

the stresses there are unaffected by the hole drilling. Figure 3(c), which shows the stress
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difference between Figure 3(a) and Figure 3(b), represent the stress and strain

redistribution caused by hole drilling. An analysis of the state of stress in Figure 3(c)

directly gives the strain reliefs measured after hole drilling. The state of stress of Figure

3(c) can be modeled by the finite element method to determine the displacement field in

the area surrounding the hole. This displacement field can be numerically integrated over

the active strain gauge area to simulate the measured relieved strains [13]. Substituting

these calculated strains and known stresses in Equation (1) yield the calibration

coefficientsA and .

HOLE LOCATION

/

___ ____ ___ ____

i!i-tJL_1=L_I
(a) (b) (c)

Figure 3 Stress distribution before and after the hole drilling.
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Numerical calculations for each of the calibration coefficients A and are done

separately. In this way by applying a hydrostatic stress = = 1 coefficient A can

be evaluated from Equation (1).

2
(8)

where 8h is average strain (over the strain gauge grid) due to hydrostatic stress. Similarly

can be calculated as

(9)
2cos2ço

where c is the average strain due to shear stress (om — = 1) and g is the angle

between the strain gauge mid radial axis and the principal stress direction.

The numerical values of the calibration coefficients depend on the hole diameter,

hole depth, geometry of the strain gauge rosette, and the specimen material properties,

Young modulus B and Poisson’s ratio v. The material property dependency can be mostly

eliminated by introducing two dimensionless calibration coefficients and b [11]:

2EA
b=2E (10)

1+ V

In terms of these two constants, Equations (1) and (2) become

6
= (1+v)ã (maxmm) + -!? (maxmin) cos2q, (11)

E 2 E 2

1 2 2’f2

E (6, +83) — E k(282 — 6 —83) + (8, —83) ,,
°max, nn = I \ — + — (12)

i1+vj 2a 2b
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Further non-dimensionalization is effective in simplifying the hole radius and depth

dependencies. Normalizing these two quantities with respect to the mean radius, rm, of

the strain gauge rosette make the calibration coefficients ä and b (or A and )
approximately proportional to the square of the normalized hole radius [11]. Figure 4

shows the variation of ä and b with normalized hole depth for a normalized hole radius

of r/rm =0.5 [11]. The corresponding values of A and for a given material can be

evaluated through Equation (10). The numerical values of the calibration coefficients,

then, can be substituted in Equation (2) to evaluate the residual stresses.

0.8

0.6
z

• —

C

C
•—
-.

Li

•—

0.2

0

h/rm

Figure 4 Calibration coefficients for ra /rm = 0.5.

0.750 0.25 0.5

depth,
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2.1.2 Non-Uniform Residual Stress

The assumption that the residual stresses do not vary with depth is not always valid.

In many practical cases the residual stress fields are significantly non-uniform. Processes

such as shot peening, plating, and heavy grinding induce non-uniform stresses.

In measurement of the non-uniform residual stress field by the hole-drilling method,

relieved strains are measured after drilling of several successive small increments of hole

depth [12, 14, 15]. The analysis of the variation of these measured relieved strains with

depth can be used to determine the original non-uniform stress field. There are a few

stress calculation methods. Among these methods the Integral method probably is the

most general [12].

The basis for the Integral method is that the strains measured during hole drilling are

the cumulative result of relieving the residual stresses originally existing at all depth

locations within the total hole depth. The individual contributions of the stresses at each

depth location to the total measured strains are identified and the individual stresses are

calculated from these total strain measurements [12, 14].

The method involves drilling the hole incrementally. The residual stresses are assumed

constant within each increment. The total measured strain is the sum of the strains caused

by relieving the residual stresses originally existing with each of the hole depth increments:

6
= [(1+1))ii (maxj°mmj) + h mjmuuij) cos2i] (13)

where

= total measured relieved strain for i increments deep hole

16



0maxj = maximum principal residual stress at the increment j

minimum principal residual stress at the increment j

= angular coordinate of the radial mid axis of the strain gauge measured

counterclockwise from the maximum principal stresses at j increment

b = calibration coefficients for j increment within a hole i increments deep

The individual calibration coefficients and b relate the original existing residual

stresses and relieved strains.

Equation (13) can be written in matrix form as

= (1±’’) []{ama)aminj} + []{(maxjminj)c0s2q)} (14)

where {6) is a vector of the strain reliefs measured at series of hole depth increments from

the hole surface. The corresponding stress vectors contain the principal stress quantities

and directions within each hole depth increment. The calibration coefficients [a} and []
become matrix quantities with a lower triangular structure [12]:

11 11

[a]
= a32 a33

= : :: (15)

Conceptually the stress within each increment can be calculated from the measured

stress {8} by solving the matrix Equation (14). This equation is non-linear, and stress

solutions are usually found in practice using a linear reformulation, [12, 15]. The values

of the individual coefficients and b depend on the width position of increment j and

the total depth and diameter of the hole. Figure 5 shows a physical interpretation of the
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calibration coefficients . The same interpretation applies for b . The columns of the

matrices [a] and [b] correspond to the relieved strains caused by the stresses within a

fixed increment for holes of increasing depth. The increasing hole depth causes these

individual coefficients to increase within each column. The rows of the matrices

correspond to the relieved strains caused by stresses within successive increments of a

hole of fixed depth. The sum of all the coefficients in each row corresponds to a uniform

stress field over the entire depth, i.e., and b in Equation (11).

a11

a21 a22

LI
a31

LI
a32

LI
a33

a43

Figure 5 Stress loadings corresponding to calibration coefficients

a41 a42
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In practice, it is very difficult to produce layered stress fields of the type shown in

Figure 5. Thus, the calibration coefficients matrices [a] and [b] are not determined

experimentally. Finite element calculation, however, provides a very effective and reliable

method for evaluating these coefficients. A full description of such calculations is given by

Schajer [12].

2.2 Strain Sensitivity of the Role-drilling Method

The strain sensitivity of the hole-drilling method is typically quite modest. A low

strain sensitivity can diminish the reliability of the calculated residual stresses by reducing

the size of the measured strains relative to that of the strain measurement errors. The

strain sensitivity, defined as the relieved strain per unit residual stress, is quantified

through the calibration coefficients and b. Larger calibration coefficients are desirable

because they indicate higher strain sensitivity, and hence greater resistance to the effects of

strain measurement errors.

The values of ä and b (or A and B) are low because the strain gauges are located at

some distance from the hole. The material underneath the gauges is subjected only to

partial strain relief If it were possible to relieve completely the strains in the material

under all the gauges, then it may be shown from Hooke’s Law that the corresponding

calibration coefficients would be:

maximum value of
= 1 V

= 0.54 for v = 0.3
1+ V

(16)

maximum value of b = 1+ v = 1.3 for v = 0.3
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Figure 4 shows that for the traditional straight hole, the maximum values of and b

are at most only half of the full strain relief values. Thus, significant scope exists for

increasing the strain sensitivity of the strain measurements.

Stress calculation accuracy is an additional major concern when using Equation (14)

to determine the profile of residual stresses with respect to depth [12, 16]. The matrix

quantities [] and {b] become poorly conditioned numerically at larger depths. This effect

causes the calculated stresses at greater depths from the specimen surface to be much

more prone to error than the stresses at the lesser depth. This error sensitivity can be

quantified through condition numbers of the matrices {a] and [b]. A simple

approximation is given in [121 as:

C = and CBI = (17)
a11 b1

where C and CBL are the condition numbers of matrices [a] and [b] for stress

calculations at increment i. The quantities and b1 are the and b values

corresponding to a hole i increments deep in a uniform stress field. Their numerical values

are:

(18)

The condition numbers C and CB indicate the percent stress calculation errors for

the ith increment caused by one percent strain measurement error within the same

increment. The larger the condition numbers, the greater is the influence of strain

measurement errors on the computed residual stresses.

Strain sensitivity and matrix numerical conditioning both control how strain

measurement errors influence the calculated residual stresses. High strain sensitivity and
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low condition numbers are desirable to reduce stress calculation error. These two effects

can be combined into stress evaluation reliability factors defined as:

F = and FB1 (19)

High values of these factors indicate reduced influence of strain measurement errors.

Hole size and rosette geometry both strongly influence the reliability factors. Hole

size mainly affects the strain sensitivity. Rosette geometry affects both strain sensitivity

and condition numbers. The objective of this study is to improve both the strain sensitivity

and numerical conditioning of hole drilling method. This objective will be approached in

two ways. The first way will be to modify the shape and size of the drilled hole. The

second way will be to modify the geometry of the strain gauge rosette. This study will

concentrate on the effect of these two factors, and how they can be affected to produce

beneficial results.
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CHAPTER 3

TAPER HOLE DRILLING

The strain sensitivity of the hole-drilling method increases with the increasing size of

the hole relative to the rosette size. The maximum allowable size is determined by the

distance between the edge of the hole and the strain gauge grids. However, this hole size

limit is not quite as restrictive as it may appear. The limitation applies strictly only to that

part of the hole that intersects the specimen surface. By drilling a reverse tapered hole as

shown in Figure 6, instead of a straight hole it is possible to increase the effective size

while maintaining the hole size limit of the surface. More stressed material is removed

close to the measurement area and more strain is relieved locally.

Figure 6 Cross section of a taper hole.

relieved stres stress after
drilling
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3.1 Drilling a Taper Hole

A reverse taper hole can be cut using an inverted cone drill bit in a high-speed air-

turbine drive. Figure 7 shows a photograph of the jig that was designed to drill reverse

taper holes for this study. Figure 8a shows a schematic cross-section of the drilling jig

used in this study. A high-speed air turbine drive “A” mounts inside an upper slide “C”,

secured by a vertical height adjustment micrometer “B”. A diagonal motion, at 50° to the

horizontal, is provided by a dovetail slider “D”, and is controlled by a micrometer “I”. The

slider is secured to the working specimen “H” through a ball bearing “E”. The bearing has

a split inner ring to eliminate any free play. An inverted cone drill bit “G”, shown in detail

in Figure 8b, mounts at the lower end of the high speed air turbine “A”.

Figure 7 Photograph of the taper hole drilling jig.
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Figure 8 Taper hole drilling device: (a) = cross-section; (b) = detail of drill bit; A =

high speed turbine; B = height adjustment micrometer; C = upper slide tube;
D = lower slider; E = ball bearing, F = base; 0= inverted cone drill bit; H =

specimen; I diagonal micrometer; A-A fixed central axis; B-B = drilling
axis.
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The taper drilling procedure starts by adjusting the diagonal adjustment micrometer

so that the air turbine “A” and the drill bit “G” are centered relative to the ball bearing “E”

(axis A-A). The vertical height micrometer “B” is then adjusted so that the drill bit “G”

just touches the surface of the specimen “H”. Drilling proceeds by incrementally lowering

the diagonal micrometer “I”, causing the drill bit to move diagonally downward, The

diagonal motion displaces the relative axis of the drill bit from A-A to B-B. Rotation of

the bearing “E” causes the drill bit axis B-B to orbit around the fixed axis A-A, thus

creating a reverse taper hole. This hole can be enlarged by further lowering of the upper

slide by the diagonal micrometer “I” and repeated orbiting by rotating the bearing “E”.

After drilling, the surface diameter of the taper hole must be measured. Conventional

measurement tools are not suited to measure the diameter of small taper holes. An

electronic vernier caliper was modified by silver soldering two 2.4 mm diameter balls to

the tips of the caliper fingers, as shown in Figure 9. The caliper measures the distance

between the bails when the balls touch the perimeter and the bottom surface of the taper

hole. The surface diameter of a taper hole can then be calculated from the distance

between the balls and depth of the hole.

To confirm the reliability of the modified caliper, eight sample taper holes were

drilled. A caliper measurement was made on each hole, from which the surface diameter

was calculated. Typical surface diameters were in the range 5.8-6.1 mm. Then, surface

diameters were measured in a different way. Each hole specimen was sectioned so that a

diameter of the hole was exposed. The surface diameter was then measured optically

using a traveling microscope. Figure 10 shows a cross-section of a typical taper hole.

The root mean square difference between the surface diameter measurements from the

two methods was found to be 0.03 mm.
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Figure 9 Measurement of taper hole diameter by a modified caliper.

Figure 10 A cross-section of a sample drilled taper hole.

diameter
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3.2 Taper Hole Calibration Coefficients

Equations (11) and (1) still apply to taper hole drilling. However, the numerical

values of the calibration coefficients ä and b (or A and B) are larger than when drilling a

straight hole. They can be evaluated, as in the case of a straight hole, either by experiment

or by numerical calculation.

The numerical procedure for determining and b for a taper hole by finite element

calculation is similar to the calculation for the case of a straight hole. As shown in [11],

the strain reliefs caused by hole drilling correspond to the strains induced by applying

stresses to the hole boundaries which are equal in magnitude but opposite in sign to the

existing residual stresses. The surface displacements caused by this loading are calculated

using the finite element method. The strains over the strain gauge area can then be

directly determined from the surface displacements [13].
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Figure 11 Detail of the finite element mesh for a tapered hole.
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A finite element mesh of 432 nodes and 396 elements was used for the calculation.

Figure 11 shows the portion of the mesh for the area around the hole. The depth of the

hole is adjusted during the various calculations by assigning a near zero elastic modulus to

the elements within the required hole depth. Figure 12 shows a result of these

calculations, a graph of the calibration coefficients ä and b, for the taper hole case. For

comparison, Figure 12 also shows calibration coefficients for the straight hole case.

As can be seen, the calibration coefficients for taper hole drilling compare favorably in

two different aspects with their corresponding straight hole values; they are larger in

magnitude, and have their peaks at shallower depths. These two features allow greater

measurement accuracy to be achieved while causing less damage to the specimen.

1

0.8

rj

O.6

O.4

0

0 0.25 0.5 0.75

Hole depth, h /rm

Figure 12 Theoretical calibration coefficients for straight and tapered holes
for ra/rm=O.5.
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Figure 13 Exaggerated displaced shape profile of straight and tapered holes.
(a) straight hole (b) taper hole

Figure 13 explains the reason for these favorable changes. The figure shows

exaggerated views of the displaced shapes around a straight hole and a taper hole

subjected to a unit biaxial stress field. In the taper hole case, the displacements are

generally much larger than those of the straight hole case. This feature implies that the

taper hole drilling more effectively relieves the residual stresses around the hole, and that

the remaining adjacent material is more flexible than in the straight hole case. These

factors combine to increase the rate of strain relief during taper hole drilling, i.e., the

increase in initial slopes of the curves in Figure 12. Maximum strain reliefs are also

reached sooner, so that the peaks of the curves for taper holes in Figure 12 occur at

smaller depths than those for straight holes.
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3.3 Experimental Verification

Experiments were conducted to verify the theoretical results in Figure 12. The

experiments had three objectives: (1) to determine how well the finite element

calculations can predict the actual ä and b values measured experimentally, (2) to

compare the experimental calibration coefficients for straight hole and taper holes, (3) to

demonstrate the practicality of using taper holes for hole-drilling residual stress

measurements.

Two 125-RE strain gauge rosettes were installed on a 12.7 x 38.1 x 565 mm

aluminum bar sample shown in Figure 14. Two additional single strain gauges were

installed on the sides of the sample to monitor any bending loads. Undesirable bending

strains were minimized by applying the loads through loading pins inserted through holes

drilled at each end of the sample. The additional strain gauges mounted on the side faces

of the test sample confinned that bending strains, both within and out of plane, were less

loading pin

strain gauge
rosette

strain
gauges

Figure 14 Tension test sample.
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than 2% of the tensile strain. The sample was subjected to a range of tensile loads from

zero to 35 kN in 7 kN increments, and the corresponding strains were recorded. The

measured response of the strain gauges per unit load was determined from the gradient of

the strain versus load plots. This procedure reduces the effect of random strain

measurement errors and of any existing residual stresses.

A taper hole was drilled into the material at the center of the strain gauge rosette in

four consecutive 0.58 mm depth increments. Drilling was done by the device described in

Section 3.1. After drilling each increment, the sample was subjected to the same range of

loads and the corresponding strains were recorded. Again, the response of the strain

gauges per unit applied load was determined from the gradient of the strain versus load

plots. After the drilling, the surface diameter of the taper hole was measured as 5.79 mm.

This corresponds to a normalized hole radius ra/rm 0.564. From these data, the

calibration coefficients ä and b for a taper hole were evaluated using the method

described by Rendler and Vigness [7]. To provide comparative results, the entire

experimental procedure was repeated using conventional straight hole drilling, using a hole

diameter of 5.72 mm corresponding to a value of r8 /rm = 0.557.

Figure 15 compares the experimentally determined calibration coefficients ä and b

with the theoretical values from the finite element calculations. The results show

excellent agreement between numerically calculated calibration coefficients and their

values determined by experiment. The differences between experimental results and

theoretical predictions are typically less than 2%, reaching to 3% only in extreme cases.

The experimental results confirm the theoretical prediction that taper hole drilling

significantly increases the strain sensitivity of the hole-drilling method. Also, strains are

relieved more rapidly so that shallower holes can be used. The experimental work also
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confirms the practicality of drilling reverse taper holes instead of the conventional straight

holes using a drilling jig such as the one shown in Figure 8.
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Figure 15 Comparison of experimentally measured calibration coefficients with
theoretically predicted values.
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CHAPTER 4

NEW STRAIN GAUGE GEOMETRY

The second key factor that affects the strain sensitivity of the hole-drilling method is

rosette geometry. Rosette geometry also strongly influences the condition numbers

(Section. 2.1.2). This chapter focuses on rosette geometrical design, and identifies

features that lead to improved strain sensitivity and stress evaluation reliability factors.

4.1 Influence of strain gauge geometry on the calibration coefficients

The strain sensitivity of the hole drilling method is directly indicated by the

calibration coefficients and b. However the effects of these calibration coefficients on

stress calculation accuracy of the method are not equal. Because the calibration

coefficient has a smaller value than b, it has a more detrimental influence on the stress

calculation accuracy. This effect can be seen in Equation (12). The first term on the right

side represents the isotropic (equal biaxial) stress component, and the second term

represents the shear stress component. On average, these stress components have similar

magnitudes. However, the value of ä in the first term is much smaller than that of b in

the second term. This difference makes the first stress term more sensitive to strain

measurement errors than the second term. The calculated principal stress values combine

the errors in both terms, particularly the larger error. Thus, for most effective stress

calculation accuracy improvement, effort should be concentrated on increasing the value

of ä, preferably so that it reaches the value of b.

The length, the difference between inner and outer radii of the strain gauge,

significantly influences strain sensitivity. This can be seen from the fact that the strains

around the hole diminish rapidly with distance from the hole. Therefore, the smaller the
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length of the strain gauge a greater fraction of the strain gauge will be in the high-strain

region close to the hole.

Shorter strain gauge lengths enhance the numerical values of and significantly.

However, a short gauge length can reduce the active area of the gauge and reduce its

capacity as a heat sink. Such a gauge will be more susceptible to thermal drift. The active

area of the strain gauges can be a measure of thermal stability of different strain gauge

designs. For comparable thermal stability, the different strain gauge designs investigated

in this study have equal active areas.

The other important geometrical factor that influences strain sensitivity is the

orientation of grid lines of the strain gauges. To study the effects of this factor on the

values ä and b, two new strain gauge designs with their grid lines oriented radially and

circumferentially were studied. Comparison of these two designs with the existing

rectangular design helped to design a more effective pattern for the strain gauge rosette.

The active areas of these two new strain gauges were designed to be the same as the

standard ASTM strain gauge. Figure 16 shows the radial strain gauge rosette and Figure

17 shows the circumferential rosette.
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Figure 16 Radial strain gauge rosette.

Figure 17 Circumferential strain gauge rosette.
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4.2 Evaluation of calibration coefficients for different strain gauge geometries

To investigate the influence of strain gauge geometrical design on the numerical

values and conditioning of the calibration coefficients the radial and circumferential strain

gauge designs shown in Figures 16 and 17 were examined. For comparison a rectangular

model, which has the same geometry as conventional ASTM strain gauge rosette shown in

Figure 1 was also considered. The calibration coefficients, condition numbers and

reliability factor for these strain gages for uniform and non-uniform stresses are calculated.

The thickness and width of the strain gauge filaments are kept the same as the standard

ASTM rosette. The active area of the strain gauge grid is the same as the standard rosette

to maintain thermal stability. These strain gauges have the same inner radius as ASTM

rosette so that the maximum allowable hole sizes are the same.

Calibration coefficients and b were calculated by averaging the finite element

calculated surface displacement data [13] over the strain gauge grid [11]. These

displacement data are the same for each different strain gauge geometry; however, the

required calculations are different for each different geometry.

For the calculation of average strain over the rectangular and radial strain gauge the

following Equation, derived by Schajer [13], is used.

U2i-U1

1

(20)

iwi

where

U11 and U21 = displacements in the direction of the filament i at its two ends

L., w1 = length and width of the filament i
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Equation (20) is only valid for straight line grids of uniform width and can be used in

evaluation of strains for rectangular and radial strain gauge grids. Corresponding values

of these strain reliefs can be used to evaluate calibration coefficients and b from

Equations (8), (9) and (10). The results of these calculations for rectangular and radial

strain gauge are shown in Figure 18. Note that in this and subsequent graphs, the hole

depth is nonnalized relative to the inner gauge radius, r1, rather than the mean radius, rm.

This is done so that the graphs all refer to the same maximum hole size, independent of

changes in strain gauge length.

Calculating and b for a circumferential strain gauge needs a different analytical

approach that is described in the appendix. The final results are given here.

E
- (U+2V).

= and b = 2 B (21)
(1+v) r

where

U1 and V1 radial and circumferential displacements at filament i

= grid angle of the strain gauge

= mean radius of the filament i

Figure 18 also shows graphs of calibration coefficients for a circumferential strain gauge

based on the above equations.
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4.3 Calibration coefficients for different strain gauge geometries

Figure 18 demonstrates that both calibration coefficients and b are larger for a

radial strain gauge than a rectangular one. On the other hand, the calibration coefficients

for a circumferential strain gauge are smaller in magnitude than for a rectangular one. In

addition the circumferential coefficients have the opposite sign relative to rectangular and

radial strain gauge coefficients.

Calibration coefficient ä for a radial strain gauge is increased by about 40 % and b by

about 35 %. Two factors cause these improvements: (1) a larger fraction of the strain

gauge area is in the high-strain region close to the hole boundary, due to the shorter length

of the radial strain gauge relative to rectangular design. (2) by using radial filaments, the

negative effect of the circumferential strain, which is present in the rectangular strain

gauge grid, is eliminated, An additional advantage ofusing a radial strain gauge is that the

calibration coefficient curves for this strain gauge reach their maximum values at a

shallower depth compared with a rectangular strain gauge; therefore, a shallower hole

needs to be drilled.

In contrast, a circumferential strain gauge provides smaller calibration coefficients

than a rectangular strain gauge. These reductions in the values of calibration coefficients

are due to the smaller circumferential strains around the hole area compared with the

radial strains.

These results indicate that a radial strain gauge has higher strain sensitivity and is

better suited to measuring a uniform stress field than the conventional ASTM strain gauge.

However, the influence of these new designs on stress calculations for measuring non

uniform stress fields must also be studied.
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The effects of the various strain gauges on calculations of the non-uniform residual

stress fields can be examined by considering the condition numbers C and CBI Figure 19

shows a graph of the inverse of these condition numbers, i.e., 1/C and 1/Crn versus

increasing hole depth. Small inverse condition numbers indicate worse numerical

conditioning and higher error. These graphs show that the effects of the different strain

gauge geometries are not very significant for calibration coefficient b. However for

calibration coefficient ä the circumferential strain gauge has the best inverse condition

number and the radial one has the worst inverse condition number.

Figures 18 and 19 show that the radial strain gauge has higher strain sensitivity but

poorer condition number and the circumferential strain gauge has lower strain sensitivity

but better condition numbers. However, both the strain sensitivity and condition number

affect the stress calculation errors due to strain measurement errors. Therefore, the effects

of these factors must be considered together. The stress evaluation reliability factors F

and FB are defined in Section 2.2 for this purpose. Higher stress evaluation reliability

factors indicate more reliable stress evaluations. Figure 20 shows the values of these

reliability factors for the radial, circumferential, and rectangular strain gauge rosettes.

Figure 20 shows that the reliability factors for a radial strain gauge has larger values

than for a rectangular one up to the depth 0.4r1 for F and up to depth 0.6r1 for FBI.

However the rectangular strain gauge is reliable for measuring residual stresses up to

depth 0.7r1 [12, 15, 16]. Therefore the radial strain gauge is useful only when residual

stresses are within the 0.4i of the surface. In contrast, the circumferential strain gauge

has larger values for F than the rectangular strain gauge for depths larger than 0.4r1.

However the corresponding values FBI are very low.
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The above observations show that the radial and the circumferential strain gauge

designs have opposite strengths and weaknesses. The radial design has higher sensitivity

and the circumferential design has better non-uniform stress calculation stability. The

strength of both designs can be combined by using a six-element rosette, as shown in

Figure 21. This rosette has both radial and circumferential strain gauges. Each

corresponding pair is connected in a half bridge circuit. This arrangement effectively adds

the strains of two gauges together because the circumferential strains have the opposite

sign to the radial strains. Greatly increased thermal stability is an additional benefit.

Figure 21 A layout of a 6-element combined radial and circumferential rosette.
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Figure 22 shows strain sensitivity of the 6-element rosette, as indicated by the

calibration coefficients and b of the combined strain gauge is shown in . Calibration

coefficient increases by more than 130 % and calibration coefficient b increases by

more than 60%. The increased strain sensitivity of the combined strain gauge is

accomplished without any cost on the part of the stress calculation accuracy of the method

for measuring non-uniform residual stress measurement. To examine the improvement of

this new 6-element rosette relative to other three designs, especially to the rectangular

one, the graphs of the reliability factors of these rosettes are shown in Figure 23. Figure

23 shows that the reliability factors for the 6-element rosette have greater values relative

to corresponding values for the rectangular rosette. This means that measuring residual

stresses by a 6-element rosette gives more accurate results in the same depth range which

a rectangular rosettes gives reliable results. In addition, a 6-element rosette increases the

practical depth limit for measuring residual stress variation with depth. For example,

considering the values of F for rectangular rosette at depth equal to 0.7r1 as the criterion

for acceptable accuracy, then as can be seen from Figure 23 the limit of measurement

increases to depth equal to 0.9r which is 30% improvement.
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4.4 Experimental verification

To verilr that the hole drilling method has a higher sensitivity using a 6-element

rosette than a conventional ASTM rectangular rosette, a set of experiments similar to the

experiments in Section 3.3 were conducted. One 6-element rosette and one rectangular

RK-120 rosette were installed on a 12.7 x 38.1 x 565 mm aluminum bar. Similar

precautions as mentioned in Section 3.3 were conducted to contain undesirable bending

strains within 2%. The bar was subjected to a range of tensile loads from zero to 35 kN in

7 kN increments, and corresponding strains were recorded. The measured response of the

strain gauges per unit load was determined from the gradient of the strain versus load

plots. This procedure reduces the effect of random strain measurement errors and of any

existing residual stresses.

Holes were drilled at the centers of the two strain gauge rosettes in 14 consecutive

0.20 mm depth increments. After drilling each increment, the sample was subjected to the

same range of loads and the corresponding strains were recorded. Again, the response of

the strain gauges per unit applied load was determined from the gradient of the strain

versus load plots. After the drilling, the diameters of the hole at the centers of 6-element

rosette and rectangular rosette were measured as 2.46 mm. From these data, the

calibration coefficients ã and b for a taper hole were evaluated using the method

described by Rendler and Vigness [7].

Figure 24 compares the experimentally determined calibration coefficients and b

for the 6-element rosette with the corresponding ones for the standard RK-120 rosette.

These graphs confirm that the 6-element rosette improved over the standard RK-120

rosette by more than 130% for calibration coefficient and more than 60% for the

calibration coefficients b. In addition, the theoretical values and b from finite element

calculations for these two rosettes also are shown in Figure 24. The agreement between
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numerically calculated calibration coefficients and their values determined by experiment

were very good. The differences between experimental results and theoretical predictions

are less than 3% for the 6-element rosette and 4% for RK-120 rosette. Note that in these

graphs, the hole depth is specified in millimeters rather than normalized with respect to the

mean rosette radius, r. This is done because the rm values for the 6-element rosette and

the standard rectangular rosette are different.
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CHAPTER 5

CONCLUSION

The strain sensitivity and the accuracy of the hole-drilling method for measuring

residual stresses was investigated in this study. This investigation focused on the effects

of hole geometry and strain gauge rosette design. The study showed how these two

features could be modified to improve the strain sensitivity and accuracy of the method.

This study demonstrated that the strain sensitivity can be improved significantly by

modifying the geometry of the hole. Using of a reverse taper hole instead of straight hole

was found to increase strain sensitivity by between 20-80%. This increased strain

sensitivity reduces the effect of strain measurement errors on the residual stress

calculation.

The sensitivity increase is mostly due to increased flexibility of the reverse taper hole

compared with a straight hole of the same surface diameter. This flexibility contributes to

faster stress relief in the area surrounding the hole. It also causes the strains around the

hole to be relieved more rapidly which in turn make it possible to get the maximum

possible strain reliefs and consequently maximum strain sensitivity in a relatively shallow

hole compared with the straight hole case. Therefore, a higher sensitivity is achieved

while less damage is done to the specimen. The practicality of taper hole drilling was

demonstrated by designing and building a special taper hole drilling jig. The jig combined

downward feed motion with and an off center orbiting.

Experiments were conducted to verify the theoretical results obtained from the finite

element calculations. Agreement within 3% was achieved when comparing the finite

element calculated calibration coefficients and b for straight and taper holes with the

corresponding experimentally determined values. This confirms that the finite element
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procedure is effective in determining the calibration coefficients for the hole-drilling

method. The experiments also verified that the specially designed taper hole drilling jig

was able to drill reverse taper hole reliably. The jig was easy and convenient to use, and

required only a small extra effort compared with straight hole drilling.

The second part of the thesis investigates the effects of the strain gauge rosette design

on the strain sensitivity and accuracy of the hole drilling method. The strain sensitivity of

radial and circumferential strain gauges was compared with that of conventional

rectangular strain gauges. Calibration coefficients for these three different designs were

evaluated. The relative merits of these designs for evaluating the variation of residual

stresses with depth were investigated by studying their numerical conditioning and

reliability factors.

A radial strain gauge rosette showed a significant improvement in strain sensitivity

relative to the conventional rectangular design. Condition numbers of the radial strain

gauge, however, were worse than the corresponding condition numbers for the

rectangular strain gauge. The circumferential strain gauge, on the other hand, has

relatively poor strain sensitivity, but has strong condition numbers. Because of its poor

strain sensitivity the circumferential strain gauge is not suitable for measuring residual

stresses when used alone.

A new 6-element rosette design is proposed which combines the beneficial

characteristics of both radial and circumferential strain gauges. The new combined rosette

has the benefit of higher strain sensitivity and temperature compensation. This 6-element

design improves the calibration coefficients ä by more than 130% and the calibration

coefficients b by more than 60%. The 6-element rosette also improves the accuracy of

the incremental method for measuring non-uniform residual stress fields and increases the

maximum allowable depth by 30%.

51



A set of experiments was conducted to verif,’ the higher strain sensitivity of the new

6-element design in practice. These experiments confirmed the theoretical results that the

6-element rosette has better strain sensitivity than the standard rectangular rosette, and

that the theoretical method realistically models practical experimental measurements.
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APPENDIX

Calibration coefficients for a circumferential strain gauge

At each point of a single arc filament with the width w, radius r, and arc angle ii6

the circumferential strain is:

u dv
— +
r rd6

This strain changes the resistance dR in a infinitesimal arc d8 as:

z dR=F 8 dR=Fr-60

Integrating over the arc length

AR=
FprjB2 I+-i8 (Al)
w 0 r rd9}

For calibration coefficient A the displacement field is symmetrical, therefore for the ith

filament:

AR. = FArIu$02d9 Fpu
A

w r°i w

Total change of resistance for n filaments is:

ART =AR =A 8u,
i=1 1=1
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But ART = F RT8, where RT is the total original resistance of the grid and 6 is average

strain measured over the strain gauge. But RT
= Fp tX9

r. Substituting in the above
w

Equation gives:

u. u.
1

= A= (A2)
2r

In the case of evaluating B: u. = U(rjcos26 and v1 = V(i)sin2& then from Equation

(Al):

AR. FPrfB2 I--+-5-Id8= Fpç f02 I-cos26dO+!dv.1
w Lr r1dO) w

r u. ÷2v
sinAOcos2q = (u1+2v)sinA8cos2ço

w 2r1 w

where o is angle between the mid radial axis and the principal stress direction. Then B

can be calculated as follow:

ART = = sinAOcos2ç(U +2)= T6
i=1 w i=1

=

— (U+2VJsinA9cos2ço
8-

r1A6

= B=
(U+2VjsjnAO

(A3)
2cos2ç A9
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