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Abstract

With the ever-increasing sophistication of engineering practices, more time-variant and

structurally-varying dynamic systems are required to accomplish various demanding

tasks. The research on various aspects of the dynamics of these complex systems is

therefore becoming increasingly active. The current project, which is the modeling and

stability analysis of structurally-varying dynamic system, is initiated in such a context.

A structurally-varying system is defined as a dynamic system that consists of a number of

structural subsystems and are interconnected together through a finite set of constraints,

which are time varying. The dynamics of the overall system depends on not only the dy-

namics of the subsystems but also the interconnections between them. The focus of this

research is the stability analysis of linear, structurally-varying dynamic systems. Since

the system has a time-varying structure, the stability condition of the system is gener-

ally changing with time (or more accurately with the constraints between subsystems).

For different situations, test criteria for evaluating the stability of structurally-varying

systems are developed. The relationship between the system stability and time-varying

constraints is investigated. The relationship of the subsystem dynamics and the overall

system dynamics is also studied. The main purposes of this study can be summarized as

follows: first is to evaluate the stability of the system under certain constraints, and sec-

ond is to deliberately change these constraints according to a set of desired criteria (such

as change the constraints of the system in order to stabilize it) to maintain the system

within a desired operating region, which may serve design and development purposes.
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Chapter 1

Introduction

1.1 Literature Review

1.1.1 Modeling of Large-Scale Dynamic Systems

Since the early 1960s, the field of dynamic modeling and analysis of large complex struc-

tures has been a very active research area [Hurty, 1971], [Meirovitch, 1980]. A number of

important techniques, such as component-mode synthesis (CMS) [Hurty, 1965], branch-

mode analysis (BMA) [Gladwel1,1964], and component-mode substitution [Hurty, 1971],

have been developed for that purpose and gradually improved over the past several

decades. These techniques, in common, make use of the information collected from the

substructure (sometimes called component) analysis to study the overall structure and

they are closely related to experimental modal analysis described in [de Silva, 1984]. The

basic idea is to treat a complex structure as an assemblage of connected substructures, or

components. Each subsystem is analyzed or treated separately to derive an appropriate

dynamic model. Then the dynamic model for the overall connected structure is formu-

lated on the basis of the individual substructure models using the constraint conditions

which are derived from the connections among the substructures. A considerable amount

of literature on these techniques is available, but they have almost exclusively considered

systems with time-invariant constraints, due to the fact that the techniques were orig-

inally developed for the modal analysis of large systems with time-invariant structures

[Gladwel1,1964], [Hurty, 1965], [Smet et al, 1989]. Lately, Peng and de Silva extended

1



Chapter 1. Introduction^ 2

the CMS technique to systems with time-varying constraints [Peng and de Silva,1991].

This decomposition-aggregation approach is also widely used by electrical engineers

[Bondi etc., 1980], [Hsu etc., 1980], [Vidyasagar, 1981] in the study of the theory of dy-

namic systems. Instead of direct analysis of the whole system, analysis is carried out on an

aggregate model which consists of subsystems and interconnections [Michailesco, 1980],

[Lunze, 1985]. This actually brings about conceptual simplifications because the dynamic

analysis of the subsystems, which usually have lower order, is often simpler. Compre-

hensive study of the dynamics of large scale, interconnected systems can be found in

[Siljak, 1978], [Vidyasagar, 1981] and [GrujiC,1987].

1.1.2 Stability and Stabilization of Dynamic Systems

As a very important characteristic of dynamic systems, stability has been another ac-

tive research area for centuries. Early work of the stability of mechanical systems dated

back to the eighteenth century when Euler considered the eigenvalue problem of col-

umn buckling. Since this pioneering groundwork, a great number of mathematicians and

engineers have been working on this fascinating subject for generations. The stability

theory, as Leipholz pointed out, has experienced a dramatic development toward a cer-

tain degree of perfection [Leipholz, 1987]. Numerous approaches have been developed for

the determination of stability of various dynamic systems. Through the investigation of

vibration of a dynamic system, in 1788 Lagrange demonstrated a theory of stability for

vibratory motion of mechanical systems about an equilibrium position [Lagrange, 1788].

Energy criteria were used to determine the stability of the equilibrium positions. Routh

later extended this method to the stability analysis of perturbed motions. He tried to

apply the energy criteria to the investigation of the stability of states of motion. The

most prominent theory of stability in the nineteenth century was developed by A.M. Lia-

punov in his famous doctoral dissertation published in 1892 [Liapunov, 1949]. Liapunov
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attempted to establish a stability theory for general motions. Among the numerous

contributions, the most notable one is his second method, which is also called the Li-

apunov Direct Method [LaSalle and Lefschetz, 1961]. It provides a method to solve the

stability problem of state differential equation of a system without actually solving the

equation. Information about the stability property of the system is deduced directly

from its model, although the stability definition is phrased in terms of the system mo-

tions. Inspired by Liapunov's work in the late nineteenth century, Poincare started

qualitative analysis of nonlinear differential equations as a result of his investigation of

orbital stability. Many good books are available today on the classic theory of stabil-

ity such as [Bellman, 1953], [LaSalle and Lefschetz, 1961], [Hahn, 1967], [Leipholz, 1987]

and [Vidyasagar, 1993], which provide a thorough, comprehensive study of stability of

dynamic systems.

For the analysis of the stability of dynamic systems, there are several methods which

are often used. The Liapunov function method [LaSalle and Lefschetz, 1961] is one of the

most widely used methods of stability analysis of dynamic systems. The broadness of

this principle constitutes a difficult, often impossible task: finding of a Liapunov func-

tion. The method itself does not suggest a way to construct the Liapunov function.

One has to analyze a variety of trial functions for the kind of dynamic systems that

are under investigation in order to determine a Liapunov function, which is one of the

drawbacks of the Liapunov method. In spite of the drawbacks, this method is a very

popular approach for the stability analysis of linear, time-varying systems. New theo-

ries for stability analysis of time-varying systems are actively being pursued by many

researchers [Ljung, 1982], [Kosut and Anderson, 1985], [Wittenmark, 1990]. The Com-

parison method [Grujie,1987] is a similar method and is basically an extension of the

Liapunov function method. A comparison function has to be constructed. Although it

is generally not easy to find a comparison function, there are several common ways to
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initiate an attempt. After a comparison function is constructed, the stability analysis is

carried out based on it. From the analysis of the comparison function, a sufficient con-

dition for stability of the original system can be determined. Also as a general theorem,

small gain theory gives sufficient conditions of bounded-input-bounded-output (BIBO)

stability of dynamic systems [Desoer and Vidyasagar, 1975]. The Perturbation method is

another widely used method. The stability of a perturbed system is based on the stability

of its unperturbed counterpart and perturbation properties.

The recent trend of stability analysis has been on finding a qualitative measure of a

system stability property for various dynamic systems [Lunze, 1988]. Topological and

functional analytical methods for the treatment of the operator equation have been

used particularly in the development of stability theories, such as L p-space method

[Vidyasagar, 1981], in which the formation of the dynamic system description and the

definition of system stability are based on the concepts of operator and mapping in the

linear space theory. Very recently, a new algebraic factorization approach is innovated by

Youla [Youla, 1976] and Vidyasagar [Vidyasagar, 1985]. The latest Ho. optimal control

theory is also developed based on the concept of factorization [Francis, 1987]. The central

idea of the so-called "factorization" approach is that of "factorizing" the transfer matrix

of a system as the "ratio" of two stable rational matrices. Based on this factored system

transfer matrix, a simple parameterization of all compensators that stabilize a given plant

can be obtained. One could then, in principle, choose the best compensator for various

applications [Youla, 1976]. The factorization approach is a very general framework, which

encompasses continuous-time systems as well as discrete-time systems, lumped as well as

distributed systems, one-dimensional as well as multidimensional systems. However, the

factorization approach is a computation-intensive approach. For systems which have a

time-varying structure, required "refactorizing" in real-time may limit its application.

Robust control is another new approach for stabilization and control of uncertain
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systems with unknown, sometimes time-varying uncertainty. To date, the field of robust

control is still in a stage of intensive research [Lunze, 1988]. Numerous criteria have been

derived to characterize the uncertainty such that the stability is guaranteed if the criteria

are satisfied. A robust controller can sometimes be designed to stabilize the system for

a given uncertainty bound [Jabbari, 1991]. The literature concerning this problem is

quite extensive [Lunze, 1988], [Qu and Dorsey, 1991], [Olas, 1991], [Haddad etc., 1992],

and [Bauer, 1992]. Jabbari [Jabbari, 1991] developed a state feedback controller based on

the Lyapunov technique. The time domain framework is preserved along with the ability

to readily incorporate the time-varying uncertainty. The uncertainty, which is described

as a perturbation to the state space model of the system, is assumed to satisfy certain

matching conditions. Robust control without the matching conditions has been studied

recently by Chen [Chen, 1990], Qu and Dorsey [Qu and Dorsey, 1991]. It is shown in their

work that a general control law can be designed to guarantee the stability of the uncertain

system if the nominal system can be stabilized with an arbitrarily large convergence rate.

The Riccati approach is another widely used method in robust control [Petersen, 1986],

[Schmitendorf, 1988], in which the bound of the uncertainties does not enter explicitly

into the control scheme but appears implicitly in an associated Riccati equation for

solution of the feedback control gain. Instead of the matching conditions, the uncertainty

functions are assumed to be linear combinations of unknown parameter variations with

constant bounds and weighting matrices. In the development of a state feedback control

law, prior knowledge of the structure of the uncertainties is used. The Liapunov and

Riccati equation approaches have been shown to be very effective in analysis and synthesis

of the systems. Much research has been done via these tools especially for robust stability

and stabilization for finite dimensional time invariant systems.

For linear systems with varying structure (which may include variations of both sys-

tem parameters and system order), the usual way to estimate the parameters is through
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some kind of estimation algorithm. Usually a certain form of the system model is as-

sumed [Niu etc, 1982], [Guo etc., 1982]. If information is not sufficient in order to assume

a reasonably good model, an artificially selected black-box parametrization for a system

is sometimes used [Ljung, 1982]. In this case, the system is parameterized according to

input-output properties instead of physical insight [Guo etc., 1982]. In some sense, it is

a pure mathematical practice and system physics is either completely neglected, or not

used. In some applications, not only the system parameters, but also the system order

have to be identified simultaneously [Niu etc, 1982]. Usually a great deal of computa-

tion time is required. Recently, a different approach is adopted by Peng and de Silva

in the stability analysis of systems with time-varying structure [Peng and de Silva,1993],

[Peng and de Silva,1992]. Based on known subsystem models and constraints between

them, the model of the overall system can be updated in real-time by a recursive algo-

rithm. The stability of the system can then be determined. General discussion on dy-

namics and stability analysis of adaptive control systems can be found in [Egardt, 1979],

[Anderson etc., 1986] and [Astrom and Wittenmark, 1990].

In the stability analysis of mechanical systems, Walker and Schmitendorf proposed

an approach to evaluate the stability of a linear, time-invariant system without actually

solving the equation of motion [Walker and Schmitendorf, 1973]. The asymptotic stability

of a mechanical system is determined by evaluating the rank of a special evaluation

matrix constructed from the parameter matrices of the system. The stability of systems

with uncertain, linear and time-varying parameter perturbations was studied by Chen

and Hsu [Chen, 1988]. Sufficient stability conditions for such systems are derived by

using the possible bound of the perturbation in conjunction with the classical Liapunov

approach. More recently, Lin [Lin et al., 1991] studied the stability of a system subjected

to parameter perturbations and model uncertainties. Asymptotic stability and bounded-

input-bounded-output (BIBO) stability for a class of lumped-parameter systems under
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nonlinear time-varying perturbations are analyzed. The stability analysis is carried out

based on the analysis of time domain response. The final stability criterion is stated in

terms of a perturbation bound and several matrix norms.

It has to be pointed out that the multilateral meanings of the concept of stability

have led to various methods for stability analysis which have been formulated separately

according to different stability definitions. However, there are some common features of

all stability definitions and the associated analysis methods. In general, the most crucial

issue in the stability analysis of dynamic systems is to determine the characteristics used

to define the stability of a system. Certain quantities, such as norms of the state vector,

are sometimes emphasized, and used to characterize the system state response at any

desired time. Other methods include total energy function or trajectories in phase space

of the system. Although there has been a desire and effort to unify these concepts,

apparently none has been satisfactory.

1.2 Objectives of the Proposed Research

With the increasing complexity of process control problems, more sophisticated and effi-

cient control strategies and theories are required in order to manipulate the operation of

the process effectively and economically. This research is initiated under such a situation.

The main objective of the work is to develop modeling methodology and an approach for

stability analysis for a class of time-varying dynamic systems that are termed structurally-

varying systems, (SVS for short). A majority of the system analysis and control theory

procedures developed to date is limited to linear and time-invariant systems or structure-

fixed systems, which constitute only a small portion of real systems. For the analysis and

control of more complicated time-varying or structure-varying systems, new approaches

are needed.
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In the work to be presented, the dynamic modeling and stability analysis of an SVS

will be investigated. We assume that an SVS consists of a number of subsystems, which

are connected together. By subsystems, we mean physical entities to be identified by a

suitable partitioning method. Some knowledge of the dynamics of the subsystems, which

may be linear, is assumed. It is believed that the behavior of the overall system can be

predicted from the dynamics of the subsystems and the constraint conditions among the

subsystems. This idea is based on the hypothesis that the dynamic characteristics of a

system are solely determined by its own structure. If the subsystems are known, and also

the constraints among them are known, it can be said that the overall system will be

known. Hence, the dynamics of the overall system can be synthesized from that of the

subsystems and the constraint conditions among the subsystems. Besides, the stability

condition of an SVS will usually change if the structure of the SVS changes due to

the variations of constraint condition between subsystems. The relationship between the

system characteristics, particularly the time-varying model and the stability of the overall

system, and its structural variations will also be studied.

The proposed research has a variety of practical applications. One of them can be

in the building and deployment of a space station. In the mission of building a space

station, all materials have to be moved out into space by a space shuttle. The space

station may be assembled piece by piece by either astronauts or robots controlled from

the space shuttle. The structure of the space station being built keeps varying, which has

to be maintained stable at any instant of time. The widely used pick-and-place operations

carried out by industrial robots in factories are another example of an SVS. A direct

application of the proposed research will be in the design of a robotic fish processing

workcell. During the overall working period, the architecture of the workcell may vary

at different stages of operation. Hence a proper control strategy has to be developed to

deal with the variations of the system structure. In our research, we will concentrate on
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the theoretical aspects, especially the modeling and the stability analysis of such types

of systems. Some illustrative examples will also be given in the process of development

of the theory in order to demonstrate the effectiveness of the theory and the procedure

to apply the theory.

1.3 Motivations for the Proposed Research

Factory automation is widely recognized as an important goal for remaining competitive

in the manufacturing sector both nationally and internationally. Robotics is one of the

major research areas in manufacturing automation, which has been motivated both by

economic objectives (i.e., enhances productivity, profitability, and quality) and sociolog-

ical objectives (i.e., a desire to improve the quality of human life by releasing humans

from repetitive, hazardous, or strenuous tasks).

The fish processing industry is an old one. The technology used in current fish pro-

cessing is rather outdated. The majority of the work is done manually. With today's

outdated methods of fish processing, considerable wastage is inevitable. Upgrading the

fish processing technology will result in improved raw product recovery; it is estimated

that recovering an additional one per cent of the raw product through improved process-

ing would result in as much as $5-million annual savings for the Canadian fish processing

industry [de Silva, 1990]. With modern robot technology, we could even go beyond that

goal. There is a further promise of recovering anywhere from three-to-five per cent of

the raw product, and furthermore, productivity can be increased by speeding up the

whole plant process. On the other hand, fish cutting is a boring and tedious job. The

sharp blade of a cutter is a potential danger to the workers, especially in long workshifts

and considering the fact that the environment is very unpleasant and slippery. Develop-

ing fish processing technology relieves the humans of such hazardous work, can enhance
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productivity and keep fish processing economically viable.

This thesis is organized into five chapters. In Chapter two, we will propose some new

definitions of stability for an SVS. The basic concepts associated with the definitions

and terminology to be used in the later study will also be presented. Chapter three and

Chapter four concentrate on the development of dynamic models and stability analysis for

an SVS. Major results and contributions of the research will be summarized in Chapter

five.



Chapter 2

Basic Concepts and Definitions

It has been known that although the research on stability of dynamic systems has been an

active area for centuries, there is hardly a universal definition of this important concept

[Leipholz, 1987].  This is due to the fact that the types of dynamic systems considered

vary and also the performance requirements can be specified in many different ways.

However, this fact has not prevented the theory on stability of dynamic systems from

evolving. In fact it has provided a fertile subject for analytical research. The usual

practice of the studies of stability has been that for the kind of dynamic systems which

are of interest to us, the definition of stability is first tailored to the particular needs of

the problem, and then the relevant stability theory in that particular sense is developed.

In this chapter, we will first discuss the dynamic system which we are interested in,

specifically a structurally-varying system or SVS, and then we will provide an appropriate

definition of stability for the SVS.

2.1 Structurally-Varying Systems

For the purposes of the present development, an SVS is assumed to be composed of a

number of linear, deterministic and lumped-parameter subsystems. Lumped-parameter

systems are those for which all energy storage or dissipation can be lumped into a finite

number of discrete spatial locations. They are described by ordinary differential equa-

tions. The way these subsystems are structurally integrated is time-variant. But the

dynamics of the subsystems are assumed to be time-invariant.

11
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A simple example of an SVS is presented in Figure 2.1. The system consists of two

subsystems. There is a dynamic constraint or dynamic connection between them which

is assumed to be time-varying. mi , ki and ci are the subsystem parameters, and kci

and cci are parameters of the dynamic connection. In the real-time operation, the two

constraints are released sequentially. From the subsystem point of view, the boundary

condition is time-varying. On the other hand, the structure of the overall system is also

time-varying due to the structural perturbation. Part (a) shows the fully constrained

system configuration and part (b) shows the system configuration after the system is

completely disintegrated into two subsystems. It is not difficult to see that the system

order is a constant in this type of SVS. The variation of the structure will only change

the parameters of the overall system.

Figure 2.2 provides an example of another type of SVS. Two subsystems are con-

nected with each other through two mass nodes m 1 and m2 , which may be called a rigid

constraint or rigid connection. Each of them can be considered as a combination of two

smaller masses, m11, m12 and m21 , m22 respectively. A rigid connection is assumed to be

in one of the two states, either connected or disconnected (binary constraint model). This

two-state constraint model can also be called the static constraint model. The meaning

of the term static can be interpreted as the dynamics of the constraint being negligible.

In this case, the connection between two subsystems is rigid, or in other words, each con-

straint has infinite stiffness. In this type of SVS, the system order will change when the

constraint condition between the two subsystems changes. The system can be considered

to be growing bigger in the sense that the order of the overall system increases when the

constraints of the subsystems are being released. On the other hand, the system can

be considered to be shrinking when a new constraint is applied to the subsystems since

the order of the overall system will decrease. These two types of SVS will be studied in

Chapter 3 and Chapter 4 respectively.
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subsystem #1 subsystem #2

(a) Before Disintegration

subsystem #1 subsystem #2

(b) After Disintegration
Figure 2.1: An Example of a Fixed-Order SVS
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subsystem #1 subsystem #2

(a) Before Disintegration

subsystem #1 subsystem #2

(b) After Disintegration
Figure 2.2: An Example of a Varying-Order SVS
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Figure 2.3: Diagram of Structure of the SVS

In general, any SVS can be modeled by s system configurations and s switching

instants over a period of time, which is of interest to us. Figure 2.3 describes this

model. An SVS has an invariant or fixed system structure between any two instants

of structural variations, which are called the structural switching instants. The system

structure takes a new configuration after a structural variation. It can be seen that the

structural variation of the SVS is of a discrete nature. The configurations of the SVS

are connected to each other through the structural switching instants, and conversely,

the structural switching instants are related to each other through system configurations.

2.2 Review of Concepts of Stability of Dynamic Systems

Before we start to discuss the concepts of stability for an SVS, some conventional defi-

nitions of stability are reviewed. Although there are a variety of definitions of stability,

they can in general be grouped into two categories, i.e., perturbation definition and re-

sponse definition. A system is said to be stable if when a small disturbance is applied,

the motion of the system will return to its initial equilibrium point after a period of
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time. If the system is not able to return to its initial equilibrium point under a small

disturbance, the system is said to be unstable. This definition can be considered as a

perturbation definition of stability. The stability of a system can also be defined from

its response performance. If a well-behaved excitation produces a desired response over a

time interval, the system can be considered stable. If a well-behaved excitation does not

produce a desired response, the system is considered unstable. Here, by "well-behaved"

we mean the excitation is applied within a certain range. The definition of the range is

determined by the particular problem we are facing. In addition, by "desired" we mean

that the response of the system is what we actually want and this response meets the

special requirements of the particular task. These two categories can be unified if we look

at them from another perspective. They all use system response over a period of time

as a measuring variable or evaluation function. If the response of the system satisfies

certain requirements, the system is said to be stable. Otherwise, the system is said to be

unstable. Usually, the requirements include convergence rather than divergence of the

response of the system over a certain period of time.

Generally, the definitions of stability of dynamic systems consist of four elements:

convergence, bounds, time interval and the input. From the definitions of stability, it is

usually possible to relate certain system dynamics to its stability. The stability condition

of a system can then be expressed in terms of the particular dynamic characteristics of

the system, for instance, the eigenvalues of the system. In order to examine the stability

of dynamic systems, a measuring variable or evaluation function has to be selected which

allows us to examine the dynamic characteristics of the system. This measuring variable

or evaluation function carries the information of the dynamic characteristics of the system

from which the stability can be determined. For instance, given a linear system

= Ax+Bu
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y = Cx

with u(t) as the input vector, y(t) as an output vector and x(t) as a state vector, we

have the following definition of stability:

• A system is said to be bounded-input-bounded-output (BIBO) stable if for each

admissible bounded input u(t), the output y(t) is also bounded.

This definition is based on the system response, which is the measuring variable. The

stability of this system can also be restated in terms of system eigenvalues. If all eigen-

values of the system have negative real parts, the system is said to be stable. In the later

case, however, the eigenvalues are the parameters which describe the special dynamic

characteristics of the system.

2.3 Definition of Concepts of Stability for An SVS

One reason to discuss the concept of stability for an SVS is that an SVS has some

special dynamic features, which can make most of the popular stability definitions nei-

ther applicable nor appropriate in the stability analysis of this class of systems. Most

of the research on stability study of a dynamic system has focused upon the dynamic

performance of the system over an infinite -time period and the criteria are consequently

infinite-time ones. It is unrealistic to ascertain the stability condition of a system during

the structure-varying period merely from an infinite-time criterion since we are interested

not only in the system stability after the system operates for a long period of time, which

in other words, can be mathematically interpreted as the system stability as time co,

but also in the system stability in a relatively short period of time. Also, the time depen-

dence of the structure of an SVS is of discrete nature. Each system configuration can be

considered as a time-invariant system. Its stability is also of interest to us. Practically,
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it is often true that the stability during a finite period of operation would be of interest

to us. Most important of all, the influence of continuous structural perturbations of an

SVS cannot be studied by the conventional infinite-time criteria. Hence the concepts of

conventional stability have to be modified in order to accommodate these special features

of an SVS.

The stability of an SVS can be studied in terms of fixed-structure stability i.e., static

stability or varying-structure stability, i.e, dynamic stability. Static stability describes the

system stability condition at each fixed configuration, and dynamic stability describes

the variation of system stability condition when the system structure changes due to

perturbations.

By fixed-structure stability or static stability, we mean the stability of a particular

system configuration. We look at the stability of each system configuration individually.

When the time interval between two switching instants of an SVS is large enough, the

conventional stability theory can be adopted to study the static stability of the SVS in

that time interval. The static stability is appropriate and it has some physical meaning

in this situation. However, if the time interval between two switching instants of an SVS

is not large enough, the stability analysis results using the conventional stability theory

would be inappropriate. Since each system configuration is of time-invariant structure,

the conventional stability definitions and theories, such as BIBO stability, can be applied

directly to its stability analysis. The analysis of static stability of an SVS will reveal

information on the stability of individual system configurations. Basically, each system

configuration is placed and analyzed on an infinite time scale, as the system is a time-

invariant one. The time scale is stretched from a finite period of time to an infinite

period of time. Analysis of the static stability is in fact no different to stability analysis

of ordinary dynamic systems. The definition of static stability could be considered as

one of the conventional definitions of stability.
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On the other hand, the dynamic stability of an SVS is meant to represent the change

of the stability condition from one system configuration to the next due to perturbations,

which could be structural or state-variable-related. All together, they can be called

system perturbations. The system configurations are linked to each other through the

system perturbations. We mainly look at the change of the evaluation function of stability

from one system configuration to the next rather than the stability condition of individual

configurations. Therefore, the influence of the structural variation on the stability of an

SVS is important. It is evident that the dynamic stability of an SVS investigates

the system stability on a finite time interval only. The differentiation or the change

is emphasized. At different system configurations, the dynamic stability of an SVS is

generally different. Therefore, the dynamic stability for every configuration has to be

studied in order to determine the dynamic stability of an SVS. This issue will be the

major topic of the present research.

Based on our previous discussion, the definition of dynamic stability of an SVS is

given here:

1. Definition of Dynamic Stability: The time span which we are interested in is

divided into a number of equal segments. Each segment (such as the time interval

[ti, ti+1 ]) corresponds to a configuration of the SVS and ti and ti+i are the time

instants when the structural changes of the SVS occur. The SVS is said to be

dynamically stable in the time interval [t i , ti+1 ] if

Axraz xrax _ xraix <

where Di is the change of the maximum state response (in the sense of a suit-

able norm) in two consecutive system configurations. einam maxIII x(t) t E

[ti, ti+1 ]}, x:ny = max{11 x(t) II; t E [ti_ i , t i ]l, and II II represents a suitable norm.



Chapter 2. Basic Concepts and Definitions^ 20

In this definition, the state response of the SVS is used as the evaluation function.

The dynamic stability of an SVS can also be defined by using an energy function

as the evaluation function.

2. Definition of Dynamic Stability: The time span which we are interested in is

divided into a number of equal segments. Each segment (such as the time interval

[ti , t i+1 ]) corresponds to a configuration of the SVS and ti and 4 +1 are the time

instants when the structural changes of the SVS occur. The SVS is said to be

dynamically stable in the time interval [ti, ti+i ] if

Di = AEr" = Er" — Era,- < 0

where Di is the change of the maximum value of an energy function in two consecu-

tive system configurations. Er' = max{E(t); t E [4,4+1]}, E.17217 = max{E(t); t E

[4-1, ti]}.

It is not difficult to see that the concept of dynamic instability of an SVS can also

be defined by using either system state response or system energy function as the

evaluation function.

3. Definition of Dynamic Instability: The time span which we are interested in is

divided into a number of equal segments. Each segment (such as the time interval

[ti , ti+1 ]) corresponds to a configuration of the SVS and t i and ti+i are the time

instants when the structural changes of the SVS occur. The SVS is said to be

dynamically unstable in the time interval [ti, ti +d if

A = Asnaz = xr" — xmx > 0

where Di is defined in (1).
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4. Definition of Dynamic Instability: The time span which we are interested in is

divided into a number of equal segments. Each segment (such as the time interval

[ti, ti+1 ]) corresponds to a configuration of the SVS and t i and ti+i are the time

instants when the structural changes of the SVS occur. The SVS is said to be

dynamically unstable in the time interval [ti, ti +i ] if

= .6.Er" = Er" — Err > 0

where Di is defined in (2).

In figure 2.4, two examples are provided which illustrate the concepts of dynamic

stability and instability of an SVS.

The above concepts define the stability (and instability) of an SVS at a particular

time interval. Since an SVS is classified as a time-varying system, its stability condition

is generally changing with time. The system stability over a period of time T can be

known if the stability condition of the SVS over every time interval (such as [ti, t i+1 ])

is known. It can be observed that the excitation to the SVS is not included in the

definitions of the stability. However, we assume that there exists an external force which

is applied at the structural switching instant and causes the variation of the constraint

between subsystems.

It should be noted that the definition of dynamic stability is designed for investigation

of system dynamic performance of an SVS, either state response or energy value, during

a finite period of time. It is different from conventional definitions of stability such

as Liapunov stability or asymptotic stability which consider the dynamic response of a

system in an infinite time scale.

Also, it has to be pointed out that the theories of static and dynamic stability deal

with different dynamic aspects of an SVS. They are independent of each other. Static
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Time
(a) Dynamic Stability
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il)(11 or E^A

^■

Time
(b) Dynamic Instability

Figure 2.4: Example of Dynamic Stability and Instability of an SVS
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stability of an SVS does not assure the dynamic stability of the SVS and vice versa. In

other words, even when every configuration is statically stable, it is still possible that the

SVS is dynamically unstable. On the other hand, a dynamically stable SVS may have

statically unstable configurations. Therefore, in order to determine the stability of an

SVS comprehensively, the analysis of both static and dynamic stability has to be carried

out.

2.4 Summary

Since the dynamics of an SVS has some special features, the concepts of static and

dynamic stability are introduced and defined in order to study the stability of the SVS

comprehensively. They are modifications of some of the conventional stability concepts

and designed particularly for the special dynamic characteristics of the SVS. Based on

these new concepts, the stability of the SVS can be analyzed more thoroughly and the

influence of the discrete structural variations on the stability of the SVS can be studied.



Chapter 3

Stability of Structurally-Varying Systems With Fixed Order

3.1 Introduction

It has been known that there are two types of SVS, an SVS with fixed order and an SVS

with varying order. In this chapter, the stability analysis for an SVS with fixed order is

carried out. The SVS to be studied is assumed to have only dynamic connections between

subsystems, which implies that the connection between any two subsystems only consists

of a spring with finite stiffness and a damper, as is shown in figure (2.1). There is no

mass coupling between subsystems. This type of SVS has a constant order throughout

the entire time period of operation regardless of the perturbations on the stiffness and

damping matrices of the system. There is no perturbation on the mass matrix of the

system. Two evaluation functions, state response function and energy function will be

employed to carry out the stability analysis. A number of criteria for the evaluation of

stability of an SVS will be derived for both static stability and dynamic stability.

3.2 Modeling of Switching Instants

It is known from Chapter 2 that an SVS can be modeled by a series of configurations and

switching instants. Each configuration between two switching instants can be considered

as a time-invariant system and the structural variation occurs only at the switching

instant. In this chapter, we will study an SVS which has only flexible connections

between subsystems, which means a connection is composed of either a spring or a

24
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damper. There is no mass coupling between subsystems. As a result, the total number

of the mass nodes is a constant over the period of time of interest. Hence, the system

order is maintained.

A schematic diagram of the switching instant is given in figure (3.1). There are two

boundary mass nodes, m 1 and m 2 . Dotted lines represent the connections of these two

mass nodes to other parts of the systems. The connection between these two mass nodes

consists of a spring and a damper. The connection between subsystems is emulated by

a switch. At the time of structural change, the switch is turned off instantly so that

the two mass nodes are disconnected. The connection components can be considered

removed from the system.

Since the forces applied on the mass nodes by the spring and the damper are finite,

the application or removal of them will change the system structure only and will not

cause any sudden change of motion of the mass nodes, which means neither displacement

nor velocity vector has a sudden change at the switching instant. If we define

d = dl(t)
d2 (t)

we can have

d(tt) = d(C)

and

a ( i-sE ) a(c)

where t = t i is the instant of a structural variation. In other words, there is no pertur-

bation on displacement and velocity due to the structural variation. It has been shown

previously that the dimension of the displacement and velocity vectors will not change

either. Therefore, we have

dl (t)
d2(t)

d,+1(ti)^di ( ti )^ai(ti)^ (3.4)
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Figure 3.1: Illustration of Switching Instants

at the structural switching instants. The change of the system dynamics can then be

determined based on the structural perturbation only.

However, it should be pointed out that this model of the switching instant is an

ideal one. It assumes that the connection components, which could be either a spring

or a damper, are massless. In reality, this assumption may not be right. There may

be some mass and energy associated with the connection components. When they are

disconnected from the system, the mass and energy may go away with them. The dy-

namic model of the switching instant may have to be modified if this factor is taken into

consideration.
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3.3 State Space Approach

We first use state response as the evaluation function. The state space model of an SVS

will be developed and then the stability analysis will be carried out based on the state

space model.

3.3.1 Recursive State Space Model of a Structurally -Varying System

As has been discussed in Chapter 2, the systems being studied are confined to a certain

class of dynamic systems. The system is composed of a number of smaller systems, or

subsystems. Each of them is modeled by

Mj + K, 0 (3.5)

where Mj , C; and Ki are the mass, damping and stiffness matrices, respectively, for

the jth subsystem, and dj is the displacement vector for the jth subsystem. The overall

system model can generally be assembled from the subsystem models

M(t) d + C ( t ) K(t) d = 0 (3.6)

where M(t), C(t) and K(t) are the mass matrix, damping matrix and the stiffness matrix,

respectively, for the overall system. d is the displacement vector for the overall system.

All three parameter matrices are composed of the corresponding parameter matrices of

subsystems and constraint parameter matrices

M(t) M° Mc(t)

C(t) = C° Cc(t) (3.7)

K(t)^K° Kc(t)

where M°^C° = diag{q} and K° = diag{Kj}. Superscript o denotes

original and c denotes constraint. Subscript j denotes the subsystem number. M i , Ci
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and Ki are the parameter matrices of the jth subsystem. Mc(t), Cc(t) and K°(t) are con-

straint parameter matrices, which describe the dynamic connections between subsystems,

and

d(t) =

d i (t)

d2 (t)

     

dm(t)

The symmetry of parameter matrices M(t), C(t) and K(t) are ensured by Maxwell's

reciprocity theorem if all subsystem parameter matrices and coupling constraint matrices

Mc(t), 1<c(t) and Cc(t) are symmetric [Meirovitch, 1986].

Since we assume that the subsystems are time-invariant and the constraints which

connect the subsystems are also time-varying, the configurations of an SVS in two sep-

arate constraint conditions are generally different. For any configuration i, the system

model can be written as

Mia+Cia+Kid=0 (3.8)

To derive the state space model of the SVS, we assume

x=

then,

=

Since

d

d
(3.9)

(3. 10)

(ci ci + Ki d)
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d
[ Ki —1V1;-1 Ci

d

[ Ki Ci x (3.11)

and

----^[ci1=[0^x^ (3.12)

Combining equations (3.11) and (3.12), we obtain the state space model for the configu-

ration i,

X = Ai x^and^x(ti) = xi^ (3.13)

where

x= 
[ a ]

d

0
Ai

Ki^C.

and xi is the initial condition of configuration i. Similarly, we can have the model for

configuration i + 1

Mi+i d + C i+1 d + KJ+, d = 0^ (3.14)

Therefore, the state space model for configuration i 1 can be written as

x = Ai+1 x,^and^x(ti+i) =^ (3.15)

where

0
—1\441.1 Ki+1 _mi-+11 ci+i
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The change of parameter matrices due to the variation of the system constraint con-

dition at time t = ti+i is modeled by

AMi+i = Mi+1 — Mi

=
^

— Ci^ (3.16)

= K j+1 - Ki

Since we assume that the system only has a spring-damper connection, we have

Mi = Mi+1, i.e., AMi = 0, which implies that the variations of constraints do not incur

any perturbation on the mass matrix. Substituting equation (3.16) into equation (3.15),

we get

=
—NW (Ki^—Mi1 (Ci ACi+i )

0

— AVAKi+ i^— Mi 10Ci+1

0^I^0^0

—NW Ki •— l\V C i^—A4z4 AKi+i^ACi+i

that is

Ai+1 = Ai + AAi+i

where

0^I

Ki^Ci

0^0

-1\4 -i- 1 A/Ci.o . -Mi 1 LOC4+1

Ai =

=

(3.17)
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d2
r-•

Figure 3.2: Example of a fixed order SVS

Ai+1 is separated into two terms. The first term A i is the model of the previous

configuration, and the second term is the model perturbation due to the variation of

constraints at time ti+i • Equation (3.17) is the recursive state space model of the SVS.

• Example: Consider the system described in figure 3.2. The initial connection

between two subsystems consists of a spring with stiffness Ica . We assume that the

system stiffness increases at time t i by the value Ica . Using the precedure developed

previously, we can have

d = d1
d2

M(t) = M° =
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K(t) = K° Kc(t) =^
0^

Kc(t)
0 k2

When t <

K`(t) =
^kci —kci

and

K l = K(t) =
lc,.^0^4_
0 k2

ka —Ica

k2 ka

When t > t i ,

Kc(t) =
^+ Ica^— kc2

— Icc2^kc2

Hence,

K2 = K(t) =
^kl 0^kc —kc

^

0 k2^—kc kc

— ka — kcz

— kc2^k2 + kc, + kc2

AK 2 = K 2 —^=
[

ki + kci. + ka — kci. — kc2

—Ica — Ica k2 + ka + kc2

[

kl + ka —Ica  = [ kc2

—ka k2 + ka —kc2

—Icc2

kcz
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The state space model of the overall system can then be derived;

X = A ix,^0 <t < t1

X^A2x ,^t1 < t < oo

where

x= 
ad

0 0 I

A l = —(k1 + lcci)/mi kcl/ml 0__(A40)-1 K1 0
Ica /m2 —(k2^ko.)/m2 0

0 0 0

AA 2 = —Icc2/mi kca/mi 0

ka/m2 —kc2/m2 0

0

1
A2 =^AA2 =

_(M°) -1 K2 0

0^0^I

— (1c1 +^+ Icc2)/mi^(ka + kc2)/mi^0

(kci kc2)/m2^—(k2^Icc2)/m2 0

In order to investigate the relation between overall system stability and subsystem

stability, we rewrite equation (3.6) as

M° a + C° cl + K° d Mc(t) a + cc(i) a + Kc(i) d = 0^(3.18)
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where M°, C° and K° are assembled from the dynamic models of the subsystems and

are time-invariant. Mc(t), Cc(t) and Kc(t) describe the coupling constraints between

subsystems and are determined solely by the constraint conditions at time t.

The model for configuration i can then be written as

mo d + co ci + K° d Mat) d + q(t) d + Kat) d = 0

The system matrix can be rewritten as

Ai =

where

0
As

—(M°) -1 K° —(M°) -1 C°

0^0As^
—(M°)-1 Kf(i) _(M°)-1 cf(i)

Since k is time-invariant, the subscript i can be dropped. So

Ai = A° +

Since the recursive constraint model for the SVS is

M7 = WK-1

=^Aq

Kf^Kf_1

(3. 19)

(3.20)

(3.21)

where AMf = 0 is used, the constraint matrix Af can be further expressed in a recursive

form

DA;^ (3.22)



[ —(M°) -1 K__ 1 (t) —(M°) -1 q_ 1 (t)
A7_ 1 =

0^0
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where

o
AJK = _(M°)_1 AKf: _(1\40)-1 Aq

For various constraint conditions, we have different 1<c(t) and Cc(0. In general, the

characteristics of the Kc(t) and Cc(t) are dependent on the physical properties of the

connection between subsystems. Af_ 1 is the constraint matrix for configuration i —1 and

DAs is the constraint variation matrix at time t = ti. Substituting equation (3.22) into

equation (3.20) yields

Ai = A° +^+

= A° + E AA;
i=o

(3.23)

It can be seen that A° is determined solely by the dynamics of the original subsystem,

which is the time-invariant part of Ai. Af, on the other hand, is determined by coupling

constraints between subsystems, which is the time-varying part of Ai . The model for

configuration i of the SVS can then be expressed as

X(t) = Ai(t) x(t)

= (A° + E DAB) x(t)
^

(3.24)
j=0

where each AA; describes a structural variation of the SVS.

3.3.2 Analysis of Static Stability of an SVS

From the definition given in Chapter 2, we know that the static stability can be considered

as an extension of the conventional stability concepts to an SVS. For each of the system



Chapter 3. Stability of Structurally-Varying Systems With Fixed Order^36

configurations, we can find out if the configuration is stable (in the conventional sense,

such as bounded-input-bounded-state (BIBS) stable or asymptotically stable) when its

model is known. In this section, we are not studying the static stability of each system

configuration separately. Plenty of work has been done in this area before. We are

investigating how the static stability of an SVS changes from one system configuration

to the next due to the structural variation. To a degree, this problem is similar to the

robustness problem of dynamic systems [Haddad etc., 1992].

It has to be pointed out that although the stability analysis is carried out based on

the state space model of the SVS which is composed of subsystems modeled by the

second-order-matrix-equation, the results derived here are not limited to the system of

this category. The theory to be developed can be applied to any dynamic system as long

as its state space model is available.

The solution of equation (3.15) can be written as

x(t) = i+1 (,6,t) x(ti+i) t E [ti+i, 4+2] (3.25)

where ski+i (At) is the state transition matrix for configuration i, i = 0,1,2, • • •,m and

4,i+1(At) eA i+ , At, At = t — ti+1 . This group of equations determines the time history

of the state response at any time instant for the SVS. Substituting equation (3.17) into

413 i+1 (At) yields

44-1-1(At) e(At+AAi+i) At

= eAi At eAAi+ 1 At

= 41)i(At) • AC■i+i (At)
^

(3.26)

where

ck,(At) = eA s
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AC+1(At) ebiti+1 At

and it can be observed that Ili(At) is the state transition matrix of configuration i, which

determines the system stability at configuration i.

The condition of the static stability of an SVS can then be derived according to

equation (3.26). They are presented in the following theorems.

Theorem 3.1: If the system configuration i is statically stable in the sense of BIBS

for the time period [t i , oo), the system configuration i + 1 will also be static stable in the

sense of BIBS if II 6,4loi+1 (At) II is bounded.

Proof: Suppose the configuration i is stable for [ti, oo). Since II la i (At) II is bounded,

E^oo)

where pi E R. The notation II cbi(At) II refers to the norm of the linear transformation

x C(At)x, x E Rn, which is induced by the standard Euclidean norm on Rn. We

know that

C+1 (At) = c(zsa). Ac +1 (At)

Therefore

11 cbi-Fi(A t ) 11=11 4.i(At) Ac+1(At) 11_11 cbi( At ) II • 11 L\ci-Fi(At) 11

If II 6.434 1 (At) II is bounded

11 AC-pi(At) Il< 196,

where 1)4, E R, then

II< Pi PA = Pi+ 1

and pi+i E R. Therefore, the system configuration i + 1 is BIBS stable, i.e., statically

stable. This concludes the proof of Theorem 3.1.
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Now we take a further look at the condition that II AC(At) 11 is bounded. It is

known that

AC(At) = CAA` At

The main concern here is to find out what condition AAi has to satisfy in order to

keep the system statically stable. The result of the study is summaried in the following

theorem.

Theorem 3.2: The 11 Ack i (At) 11 will be bounded if and only if the eigenvalues

of AA,: have negative real parts. The proof for a similar theorem can be found in

[Chen, 1988].

Theorem 3.1 and Theorem 3.2 present the sufficient conditions of the static sta-

bility of a configuration. The following theorem gives a condition to make a statically

unstable configuration statically stable after a structural perturbation.

Theorem 3.3: If the system configuration i is statically unstable in the sense of

BIBS for the time period [t i , oo), the system configuration i 1 will be statically stable

in the sense of BIBS if II A■foi+i (At) 0.

Proof: Suppose the configuration i is unstable for [ti, oo), which implies that

II 41i(Ai) II> M for any M E R. Since

II C+1(At) II=11^Ai.fi(At)^C(At)II II Acki+i(At)

If 11 AC+1(At) 11= 0, we have

II C-Fi(At) 115_ 0 <

where pi+i E R. Hence, the configuration i 1 is BIBS stable, i.e., statically stable in

the sense of BIBS.

As a theoretical result, theorem 3.3 provides the design method to stabilize a stati-

cally unstable configuration through modifying its constraint condition. However, it has
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to be modified slightly in order to be applied in engineering practice because the condi-

tion II 6.1, i (At) 11= 0 hardly has any practical meaning. This situation results from the

assumption that a statically unstable system has the transition matrix 11 4 ,i(At) 11-4 oo,

which is also of little practical significance. In reality, the system would be considered

unstable if its output exceeds a certain accepted level and tends to diverge. The output

will usually saturate at the physical limits of the system rather than reach infinity. The

physical limit of the system is usually the maximum output the system could reach.

The previous study has focused on the relation between two consecutive configurations

of the SVS. The following theorem provides the criterion for the evaluation of static

stability of the overall system based on the stability of subsystems.

Theorem 3.4: If all unconstrained subsystems are BIBS stable, the constrained

system will be statically stable in the sense of BIBS if every constraint applied in the

time interval of interest is stable.

For all constraints to be stable, we mean II AckaAt)^pi , A E R and for every i,

i = 1,2,• • •,m.

Proof: Suppose the unconstrained subsystems are BIBS stable. We know from

equation (3.20)

Ai = A° + .A4

Hence, the solution to equation (3.24) can be written as

exp{(A° E LIADAt} x(ti)

exp{A'At} exp{(E ADAt} x(ti)

(1,i(At) x(t i )

4,0 (6.0 41(6d) x(t i )^t E [ti, ti+1]^ (3.27)
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where

43°(L t)^exp{A°}

a,a,t)^A41(6,0
J.0

Since all unconstrained subsystems are BIBS stable, we have

II l'o(At)11< Po,^t E [ti, oo)

where Po E R. We also know

40 i(At) = 4.°(At). (1; (At)

Therefore

II Iii(At)II = II °(i t) '6■('At) II
41'°(At) II • II 6A'aAt) II
4'° (At) II • II II '61 '.;(At)

i=o

If every II .6.4) .7(A t) II is bounded, i.e.,

4,;(At) < pi < Pmax

where Amax = max{Phi = 0,1,2, • • •, m}. We have

II^ i(At) II^Po Pnntax

Therefore, the overall constrained system is BIBS stable, i.e., statically stable in the

sense of BIBS.

• Example: Assume that a system has the model

= A°x



Chapter 3. Stability of Structurally-Varying Systems With Fixed Order^41

with

0^1
A° =

—2 —3

Its eigenvalues are a i = —1, A2 = —2. It can be shown that it is BIBS stable. If at

the time t = t i a coupling constraint is applied to the system, which has the model

Ac^0 0

0 —5

Since

11 4)°(At) 11 2 =11 exp{^At} 11 2 < 1
0 —°5

The constraint is stable. Hence, according to Theorem 3.4, we know that the

overall constrained system is statically stable, which can be verified. The model of

the overall constrained system is

ic = Ax

with

A = + A.' =
—2 —8

Its eigenvalues are A i = —7.74, A = —0.26 and it is BIBS stable, i.e., statically

stable in the sense of BIBS.
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3.3.3 Analysis of Dynamic Stability Via State Space Model

Although an SVS can be considered as a special type of time-varying system, the time

dependency of its system structure is not continuous in general. In order to examine the

stability of this type of system, we select an evaluation function which is associated with

the system configuration. When the system model changes, the value of this function

will also change. In this section, the state response of an SVS is selected as the evalu-

ation function first. The change of the maximum state response of consecutive system

configurations is used to determine the stability of an SVS.

The concept of dynamic stability has been discussed in Chapter 2. It has been shown

that dynamic stability studies a different aspect of stability of an SVS from what static

stability does. It is determined by comparison of the values of evaluation functions of

different configurations of the SVS. It is not closely related to the static stability of

the SVS. A system configuration can be dynamically stable even when it is statically

unstable.

We start the analysis from equation (3.13). The solution to equation (3.13) is

x(t) = exp[Ai(At)] x(ti) (3.28)

= i(At) x(ti) t E [ti, ti-Fl] (3.29)

where obi is the state transition matrix for each configuration, i = 1, 2, • • •,m and At =

t — ti . This group of equations determines the time history of the state response at any

time instant for the SVS.

It is also known that the change of the constraint condition at the time t = ti can

be modeled by a perturbation on system matrix Ai_ 1 . Therefore, a recursive state space

model can be determined for the system. We can write

Ai = Ai-1 AAi^ (3.30)
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Then we can determine a recursive relation for the state transition matrix as

C(At) = exp[(Ai_ i AAi) At]

floi_ i (At) • AC(At)
^

(3.31)

where

C- 1 (At) = exp[Ai_ i (At)]

AC(At) = exp[AA i (At)]

The derivation of stability criteria is based on the recursive state space model. It is

known [Vidyasagar, 1978] that

II x(t)II_< exp(ft:A[Ai]dT) II x(ti)

exp{it[A i] At} II x(ti) II
= -yi(Ai, At) II x(ti)II(3.32)

t E [ti, ti+i ]

where -yi(Ai, At) = exp{p[Ai] At}, p[Ai] is the matrix measure of Ai, At = t — ti and

II x(t) II is a suitable norm of the state vector x(t). The computation of -yi(Ai, At) consists

of algebraic calculation only and is usually very simple. This feature distinguishes itself

and makes this approach very suitable for real-time applications. The definitions of the

mathematical concepts and their properties are given in the Appendix. The following

example illustrates how to calculate the matrix measure of a matrix.

• Example: For a system

= Ax

with

10^
1 1

x(0) ^,
A =

4^0 1
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The matrix measure of A is

ico,„[A] = maxifaii E aid I}
i#i

= 2

Hence,

-yi(A, t) = exp[10 2dr] = exp(2t)

So

II x^-ri(A,i) II x(0) II.
exp(2t) II x(0) II.

= 10 exp(2t)

which gives the upper limit of II x II. at any time t.

Theorem 3.5: An SVS is dynamically stable during the time interval [ti,ti+i]

At) < 1.

Proof: From equation (3.32), we have

II x(t) 

II^
< 'y (Ai, At)^t E^ti+1]

x(ii)

If -yi(Ai , At) < 1, we have

x(t)  <1
II x(ti) II —

Equivalently,

II x(t) II^II^(ti) II

On the other hand,

II x(ti)^fir_T^t E [ti-1)ti]

if
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where ;77 is the maximum value of II x(t) II in the time interval [4_ 1 ,4 Accordingly,

x'nar = II x (t)^x:nr

which proves that the system is dynamically stable in time interval [t i , ti+1 ].

3.3.4 Recursive Algorithm for Estimation of 71 (A,, At)

Since -yi(Ai, At) is different for every configuration, an efficient algorithm is needed if

-yi (A i , At) is used to evaluate the system stability. We define

At) =--^(Ai+i , At) —^At)^ (3.33)

By substituting equation (3.30) into (3.32) we obtain

At)

exp{ft[Ai.fi ]At} — exp{A[AdAt}

expfp[Ai AAi4.1]At} — exp{A[Ai]At}

(exp{/2[A.A.i.4. 1 ]At} — 1) • exp{it[AdAt}

= i3i+1 7i(Ai, At)

where

-yi (A i , At) = exp{p[AdAt}

1^41 = exp{p[AAi+dAt} — 1

The recursive algorithm for estimating -yi +1 (A,4 1 , At) can be obtained as

(3.34)

(3.35)

At) =^At) +^At)

5_ (1 +^At)

=^At)
^

(3.36)



with

x(0)^10 ,

0
Ao =

—1 0

0 —1
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where cxi 4.1 = 1 -I- i3i 4.1 conveys the information of current structural perturbation and

is determined by AA i+i only. Using this recursive algorithm, yi +i(Ai+i , At) can be

estimated recursively. The dynamic stability of the SVS can then be determined by

Theorem 3.5.

• Example: For a system

= Ax

We assume that the system model varies by AA 1 at time t

AA, =
0 0

which gives

—2 1
A l =

0 —1

Since

pc.3 [A 1 ] = —1

Hence,

71(Ai, At) = exp(—.6a) < 1

and

According to Theorem 3.5, we know that the system is dynamically stable in the

time interval (t 1 , oo).
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In Theorem 3.5, the stability condition has been stated through -yi(Ai, Lit), which

is an overall system parameter and the subsystem dynamics is not reflected in it. From

equation (3.20), we have

(1>i(6 .t) = exp[(A° An At]

4°(At) • 4; (At) (3.37)

where

°(L t) = exp[A° (At)]

1:07(A t) = exp[A. (At)]

It can be seen that the state transition matrix 40 i is determined by (1) the dynam-

ics of unconstrained subsystems which is described by time-invariant 40 (At), and (2)

constraint-dynamic characteristics which is described by 4i (At).

If an artificial system which has the system matrix A° is created, the system state

transition matrix would be ck°(At) and the stability condition of 40°(At) does not change

because A° is time-invariant. In the analysis of the SVS, this is due to the fact that the

stability condition of 4°(L t) is determined solely by unconstrained subsystems, which

are assumed time-invariant. Their stability can be studied separately using conventional

analysis tools, such as modal analysis, at the subsystem level. Based on that, the relation

between the stability of the overall system and that of unconstrained subsystems can be

determined.

Theorem 3.6: An SVS is dynamically stable if

-yf(A., At)< 
-y°(A°, At)

where

e(A°, At) = exp{A[A°] At}

1
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-yf (117, At)^exp{E µ[DAB] At}
i=o

-y°(A°, At) is solely dependent on the subsystem dynamics and it is independent of the

system configuration. However, -yf(Af, At) is determined by the constraint dynamics and

it is dependent on the system configuration.

Proof: It is known that -yi(Ai, At) = explp[Ai] At}. By substituting equation (3.23)

into -yi(A i , At) we get

-yi(Ai, At)

= -yi(A°, A7, At)

exp{A[A° E A.nAt}
i=o

< exp{.L[AlAt} • explE p[AgAt}
j=0

It follows that,

II x(t) II exp{p[A.1 At} • explE I.L[A.k] Atl• II x(ti) II
J=o

= -y°(A°, At) • -1(14, At). IIx(ti) 11

If

-r(A°, At) • -yafq, At) < 1

we get

41"^x(t)^x(ti) II

Note that

II x(ti)^x(t) II= fincr

Hence

t E [ti,

t E [ti_ l , ti]

max =II x(t i )^x721.
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and

Di < 0

Therefore, the system is dynamically stable during the time interval [ti, ti +d. From

Theorem 3.6 the stability of the SVS can be analyzed from its subsystem stability and

its constraint conditions.

3.4 Energy Function Approach

In this section, the dynamic stability of the SVS is studied by using the energy function

as the evaluation function. This approach is especially appropriate when the system

model is given in the form of a second-order-matrix-equation since the energy function

is readily available in this case. The dynamic stability criteria are given based on the

change of the energy function due to the structural perturbation.

3.4.1 Analysis of Dynamic Stability Via Energy Function

It is known from section 3.3.1 that the models of the configuration i and i +1 of the SVS

can be written respectively as

Milt) di + ci(t) di + Ki(t) di = 0

and

mi+i(t) ai+, + ci+i(t)^+ Ki+l(t) di+1 0

The corresponding energy functions are

1 •
Ei (t) = —

2 
dTMieli + 2—

1 
dtKidi

1 AT iv A\^TEi+i (t) = — La • 1^Lti+i^
22 j+ 
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respectively. At the instant of a structural variation, we have

Mi^= Mi

Ci Ci+ 1^Ci ACi+1

Ki Ki+1 =^AKi+i

and

di -4 di+i

Substituting these relation into Ei +i (t) expression, we have

Or

Ei+ i (t) = 2d
T

iMi 
;

i+ai-Fi

1

2dT (K AK )(I

1 „,
+ -dT AK • d •2 I^ 2 2+1^2+1 2+1

Ei+i (t) = Et(t)d- AEi(t)

where

1 • T^•^1 Tgc (t)

1 , T^,

AZ4.1(t) = -a • a.n.i+l a2 "4

It has to be pointed that although El'(t) and Ei(t) have the same form, they are

not equal over the time interval [4+1,4+2] because in general di+ i(t)^di(t) for t E

[4+1 ,4+2]. However, at the instant of the structural variation t^we do have

= di(ti+1). Therefore

(ti+i) = E:(ti+i) AEi+i(ti+i)

= Ei(ti+i ) AEJ-1-1(4+1)
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It is known that when the damping matrix Ci is positive definite, the system will

dissipate energy. The total system energy will decrease with time [Meirovitch, 1980].

Hence, max{Ei(t)} = Ei(ti), t E [ti, ti+d and the final value E i (t i+i ) will be the minimum

one. If we can calculate the max{Ei(t)} from the available information, we will be able

to find the difference of maximum energy of two consecutive configurations. Therefore,

the stability in the sense of energy change can be determined.

It is known that the derivative of Ei(t) can be computed as

1 ••^•^1 • ,
ti(t) = —

2
[d: Midi + , Midi] + —

2
[d: Kidi <KA]

2[dTM2
1

^+^
1 •

i cocijai 
2
^+Kidd^(3.38)

Since Mi, Ki, Ci are symmetric, we can have

mi di + Ki di =^ (3.39)

and

(mi di + Ki di)T = ar Mi + dT Ki^Ci^ (3.40)

Hence

E^HaT ciiai +

(3.41)

It can be seen that the rate of energy decay is determined by the damping matrix. Accord-

ing to Liapunov's stability theorem, we know that the static stability of the configuration

is assured when Ci is positive definite.

Considering the fact that

max{Ei+i (t)} =^)

gr(ti+i ) 1E,4 1 (ti+1 )

=^) AEi+i (ti+i )^[ti+i, ti+2 ]^(3.42)
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The energy change of the system due to the structural variation is fully described by

AEi+i (t). If AEi+i(t) > 0, we have Ei d_ 1 (t) > Ei (t). It implies that the structural

variation increases the overall system energy level. Hence, the system is dynamically

unstable in the time period [ti, according to the definition given in Chapter 2. On

the other hand, if AEi+i (t) < 0, we have Ei+i (t) < E=(t). It can be shown that the

structural variation causes the overall system energy level to drop, which implies that

the system is dynamically stable in the time period [ti, t;.0 ]. Since

min{E1(t)} = Ei (ti+i )
ti+,

= max{Ei(t)} — ft ^Ciaidt^ (3.43)

Substituting equation (3.43) into equation (3.42), we have

max{Ei+i (t)}

.
= max{Ei (t)} —^Ciaidt AEi+i(ii+1)

[t1+1,ti+2]

Hence,

Amax{Ei+i}^max{Ei+i(t)} — max{Ei(t)}
ti+ , .

= AEi+i(ti+i)—^clT Ciaidt
t i + l^

ti+i .

idZ-Virti+1Cii+1 — cl; Cictidt
t i

(3.44)

(3.45)

It can be seen that Amax{Ei+i } consists of two terms which have the quadratic form.

The sign of the Amax{Ei+1 } is determined by the positive-definiteness of the matrices

AKi+i and Ci. It is usually true that Ci is positive definite. It is evident that if AKi+i

is negative-definite, Amax{Ei+1 } < 0. Therefore, the dynamic stability criterion can be

stated in the following theorem.
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Theorem 3.7: For any SVS, if (1) AKi +i is negative semi-definite, (2) Ci is positive

definite, the system will be dynamically stable during the time period [4, 4 +1 ].

The proof of the Theorem 3.7 is straightforward based on the derivation process

done before. Hence, it is not rewritten.

By Theorem 3.7, the dynamic stability of an SVS during a certain time interval

can be examined using the variational parameter matrices and the damping matrix.

Especially, if the system is a conservative one, the condition provided in the Theorem

3.7 becomes a necessary one.

Theorem 3.8: For any conservative SVS, iff 6.Ki +i is positive semi-definite, the

system will be dynamically stable during the time period [4, 4-E1]•

proof: Since the system is conservative, C i = 0 for i = 1,2, • • -,m. Therefore,

equation (3.45) can be rewritten as

Amax{Ei+1 } = max{Ei44 (t)} — max{Ei(t)}

6.Ei+1 (4+1)
1
—
2 

diT+1 6,Ki+idi-Ei (3.46)

If AKi+i is negative semi-definite, we will have dr+1 0Ki+i di+1 < 0. Therefore,

Amax{Ei+1} < 0 and the system is dynamically stable. On the other hand, if the

system is dynamically stable, we must have Amax{Ei+i } < 0, which implies that

d,T+1 6,Ki+i di+i < 0. Therefore, L‘Ki+i has to be negative semi-definite. This proves

the sufficient and necessary conditions of the dynamic stability of the SVS.

• Example: From the previous example shown in figure 3.2, we know that initially

Icc = /ca . If the system stiffness is increased by Ica at time t = t i

AK
^lca —Ica
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Since

I — AK I= A —
^Ica

= A 2 — 2kc2 A = 0
1Cc2^kc2

The eigenvalues of AK are A i = 0, as = 2k2c . AK is positive semi-definite.

According to Theorem 3.8, we know that the system is dynamically unstable

after the structural variation.

On the other hand, if initially kc^+ ka , and the system stiffness is decreased

by Ica at time t = t 1 , we have

AK +^—ka^[ki + Ice —Ice

ka +^k2 kc

[—ka ka

where Icc = ko. + Ica. Since

A +^—Ica
I AI — AK I=^ = A 2 + 2kc2 A = 0

—Ica A +

The eigenvalues of AK are A i = 0, A2^—2kzc . If k2 > 0, we have A2 < 0.

Therefore, AK is negative semi-definite. According to Theorem 3.8, we know

that the system is dynamically stable after the structural variation.

3.5 Summary

In this chapter, both static and dynamic stability of the fixed order SVS has been

studied. System state response and energy function have been employed respectively

as the evaluation functions. The stability analysis has been carried out based on the
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recursive state space model developed for the fixed order SVS. A number of criteria for

evaluating the static and dynamic stability have been derived. In particular, the relation

between the subsystem stability and that of the overall system has been studied.



Chapter 4

Stability of Structurally-Varying Systems With Time-Varying Order

4.1 Introduction

In this chapter, we study the stability of an SVS which has a time-varying order. The

order of a system of this type will change when a variation of constraints of the system

occurs. The system can be considered growing when the order of the system increases, or

shrinking when the order of the system decreases. A new approach has to be developed

in order to accommodate the order variation of the SVS.

In the previous study, we have assumed that the subsystems are connected to each

other through springs and dampers and there is no mass coupling between the subsystems.

In that situation, the structural variations of the SVS can be characterized analytically by

the structural perturbations or the change of the system stiffness and damping matrices

alone. The system mass matrix remains virtually unchanged. Most important of all,

the dimensions of parameter matrices are kept unchanged for every system configuration

regardless of constraint conditions among subsystems. Therefore, comparison of the

parameter matrices and the state variables, which is a crucial step in predicting the

change of the system dynamics, can be made. If this assumption is dropped, i.e., the

connection between subsystems is composed of not only springs and dampers but also

mass elements, the order of the overall system will consequently change whenever the

constraint condition among subsystems changes, as will the dimensions of the parameter

matrices. Hence, simple direct comparison or algebraic operation of any of the parameter

56
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matrices becomes unfeasible due to the incompatibility of their dimensions. Therefore,

the stability analysis of an order-varying SVS becomes more difficult than that of a fixed

order SVS.

The approach adopted to attack this problem is to find a descriptive scalar variable,

which should carry the stability information and be determined by structural properties of

the SVS. This variable has to be easily computable and physically meaningful considering

the fact that the algorithm for the computation of the stability condition may be used

in real-time applications. From this variable, the system stability can be predicted.

4.2 Energy Function Approach

It has been known that in the analysis of the dynamic stability of the SVS, the key issue

is to look at how the evaluation function would change, if it does, with the variation

of the system structure. In the previous stability study of the fixed order SVS, the

state response was used as the evaluation function. Basically, we carried out analysis on

the state transition matrix. In the case of order-varying SVS, this approach becomes

difficult to apply since the state transition matrices for different system configurations

have different dimensions, which make the comparison of the system matrices of different

configurations impossible in a meaningful way. Also, the dimension of the system state

variable will change when an SVS moves from one configuration to another, i.e., the

dimension of the system state variable will either grow or shrink. Therefore, the approach

to use the state response as the evaluation function becomes inappropriate in the present

case.

In such a context, we start by considering using the energy function as the evalua-

tion function in the stability analysis of an order-varying SVS. It is known (from the

definitions given in Chapter 2) that if the energy in a system grows over a significant
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time interval, the system may be considered unstable. On the other hand, if the energy

remains unchanged or is even diminishing in a system, the system may be considered

stable. In the stability analysis of the order-varying SVS, we will be focusing on the

change of the energy function due to the structural perturbations, i.e., dynamic stability

rather than static stability since the static stability is assured by the positive-definiteness

of the damping matrix C. In other words, we will study how the energy function varies

when the system takes a new configuration instead of looking at the changing rate of the

energy function within a fixed configuration.

The approach we adopted is to calculate and compare the maximum value of the

energy functions max{Ei(t)} and max{Ei+i (t)} of two consecutive configurations of

the SVS. Then, we use the difference A{Emax } = max{Ei+i (t)} — max{Ei(t)} as the

measuring variable to determine the dynamic stability of the SVS over this time interval.

For the kind of systems we are studying, it is known that every system configuration is

statically stable, i.e., for any system configuration i, we have ti(t) < 0 over the time

period [ti, ti+d, which has been proven in the previous chapter. In other words, the

system is dissipating energy during each time interval in which the system structure is

fixed. Therefore, max{Ei(t)} = Ei(ti), [ti, ti +d, which implies that at the initial instant

of each system configuration, the energy function Ei(t) assumes its highest value over

the period. Then the energy keeps dissipating, as shown in Figure 4.1.

The criteria of the dynamic stability can then be developed by comparing the initial

values of energy function of consecutive system configurations. In general, we have

max{Ei (t)} = max{Ei (tm) : ti (t,72 ) = 0; Ei (ti ); Ei(ti+i ); t E

depending on the characteristics of the energy function.
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E(ti)

  

Configuration i ti ti Configuration i+1 6+ 1ti++ 1

Figure 4.1: Energy Function

4.3 Modeling of Structural Perturbations

In the analysis of the dynamic stability of an SVS, the key issue is to look at how

the energy function would change, if it does at all, with the variations of the system

structure. It is known that the order of the overall system will change if the constraint

condition between subsystems varies. In the situation when the system order is varying,

we no longer have dim{d i(t)} = dim{di+i (t)}. The parameter matrices of different

system configurations cannot be directly compared to each other due to the fact that

dim{Mi}. Hence, the theorems for stability evaluation of an SVS as

derived in Chapter 3 become invalid.

In order to study the stability of the order-varying SVS, the structural perturbation

has to be modeled first. Considering the fact that the orders of two consecutive system
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configurations (ith and i lth for instance) are not equal, we assume

dim{^= ni

dimIdi+11^ni-Fi

and

ni+i = Ani+i

Ani+i more (or less) degrees of freedom are added to (or subtracted from) the previous

system configuration i after the system structure varies. Hence, Ani +i more coordinates

are required in order to fully define the dynamics of the new system configuration i 1.

We select

d i+1 = 
[ dAi+1 (i)

as(t) 
(4.47)

where the symbol "," is used to indicate that this part of di+1 is inherited from the

coordinate di(t) of the previous configuration. clAi+i (t) is the new coordinates added to

the new system configuration. Then, we partition the parameter matrices accordingly

mf+1
Mi+i

(mf+i)T
Kf

A44,41

k.7+1

(4.48)

Ki+1

= ( 1c41)T K i14 1

where MI: and IV: are of the same dimensions as Mi and Ki . Mpi+1 and KAi+1 can be

considered as parameter matrices describing the newly-created part of the SVS due to

the structural perturbation. m4 1 and 1c4 1 can be considered as parameter matrices of

the connection between the original part and the newly-created part of the SVS.
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Since MY, KY have the same dimension as Mi and Ki, we can define the perturbation

of parameter matrices on the previous system configuration as

^

AMY = MY — Mi^ (4.49)

^

AKY = KY — Ki^ (4.50)

where AMY and AK': are the perturbations of parameter matrices on the previous con-

figuration. On the other hand, we can define

MMi
Mi 0 

0^0
(4.51)

Ki
Ki 0

0^0

where the dimensions of the Mi and Ki are compatible with those of Mi +1 and

Therefore, we have

AMi+1 = Mi+i —
(4.52)

AKi+i = Ki+1 — Ki

Substituting equation (4.48) and (4.51) into equation (4.52), we obtain

AMi+ i

OMp^m,+1

(m41)T mAi+i (4.53)

AK i+i
OKp^1c7+1

(1cf4.1)T^Icfri+1

An+1 and AK i+1 can be considered as generalized parameter perturbation matrices for

configuration i+1. They describe the change of the system model due to the structural

variation occurring at time instant t = ti.

• Example: Consider the system described in figure 4.2. We assume that initially

the two switches are both on.
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Subsystem #1
d11^d12

K11^K12

K21^K22
H

d21
^

d22

Subsystem #2
Figure 4.2: Example of A Varying-Order SVS

The system is actually the same as the one shown in (a) of figure 4.3. At time

t = t i , switch #2 is turned off so that the system takes a new configuration, as is

shown in (b) of figure 4.3. The parameter matrices for system configuration #1 are

M1 =
7111 0 k2 —k2[ki

K1 =
0 M2 —k2 k2

At t = t i , the system configuration changes. Its order increases by 1.

The parameter matrices for the system configuration #2 are

M2 =

m1 0 0 lc;

0 m2 0 K2 —1c; k; 0

0 0 M3 —14 0 Ici3
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ml'

(b)

Figure 4.3: Structural Variation of the Example System
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We partition the parameter matrices of M2 and K2 as

MT 0
M2 —

0 M;

K1
K2 =

K

where

Mi = Mil^0
KT. = k;^—k;

0^m2 k;

—14
ka2 =

0

Hence, the perturbation of the parameter matrices on configuration #1 can be

determined,

AMT = — M i =
1
/
^0 M1 0

0 M2^0 M2

0^0

0 m2 —m2

[ ki, -k12^ki + k2 -k2_
^-4 k;^—k2^k2

. [
—k2^—(4 - k2 )

-(4 - k2) k2 - k2

where m il = m1 and kli = ki have been used. Also by equation (4.51), we have

M1 0
1v11 =

0 0

ml 0 0

0 m2 0

0 0 0

  

AKT = Ki — K i =
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Ki =
K1 0

0^0

k2

—k2

—k2

k2

0

0

0 0 0

Hence,

mi 0 0

AM2 = M2 — M 1 = 0 m2 0

0 0 m3

m1 0 0

0 m2 0

0 0 0

0^0^0

0 m; - M2 0

0^0^m3

k; -k; —k;

AK 2 = K2 — K1 = —k; k; 0

—k3 0^k31 _

—k2^—(4 - k2 ) 14
=^-(14 - k2 ) 14 - k2^0

14^0^14

—k2 0

k2 0

0 0

k2

—k2

0

which are the generalized parameter perturbation matrices of configuration #2.

4.4 Modeling of Switching Instants

As has been discussed in Chapter 2, any SVS can been modeled by a series of config-

urations and switching instants over a period of time. Each configuration of the SVS

can be treated as a time-invariant system and the structural change of the SVS occurs

at the switching instant. In this section, the switching instant will be analyzed and its
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dynamic model will be developed. It has to be pointed out that since the model of the

switching instant is developed for the analysis of the stability of the SVS, the emphasis

is placed on the dynamic characteristics rather than the physical characteristics of the

switching instant. More detailed analysis of the physical characteristics is being carried

out in our Industrial Automation Laboratory in another project.

4.4.1 Modeling of Switching Instants by Process Compatibility

In order to illustrate the idea of process compatibility, we start with a simple system which

initially consists of one mass node with one degree of freedom (d.o.f). The schematic

diagram of the system is shown in Figure 4.4. An external impulsive force is applied on

the mass node at the time t. As a result, the mass is broken into two smaller mass nodes

and each of these smaller masses will have one d.o.f.

At the instant of the break-up, the system momentum may change due to the appli-

cation of the external impulsive force. After the separation, the system total energy may

also change If it goes up, we say the variation of the structure makes the system unsta-

ble. In other words, the system has the trend of increasing kinetic energy and therefore is

said to be dynamically unstable. On the other hand, if the kinetic energy level remains

or even decreases, the system is said to be dynamically stable. The key issue here is to

determine the change of the energy of the system and find its varying trend.

In order to calculate the energy of the system, the velocities of the mass nodes have

to be determined first. It is known that

F = ppoat — ppre M1V1 M2V2 — my (4.54)

where ppost and ppre are the momenta of the system before and after the break-up. F is

the external impulsive force applied on the initial mass node. v1 and v2 are the velocities

of the two mass nodes after the separation. v is the velocity of the mass node before



F
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mi •Tel
• rn2 t—t
Td2

Figure 4.4: Illustration of A Breaking Instant (1)
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separation. For simplicity, we assume that the mass node is broken into two equal parts,

i.e., m 1 = m2 = mp = m/2, which is called an equal split. The equal split will lead to

v1 = v2 = vp . Therefore

F = ppoid — ppr e = 2 mpvp — my

= mvp — my = m(vp — v)
^

(4.55)

F= vP — V = —
m

(4.56)

Or

F
V = —P m

(4.57)

It can be seen that the velocity of post-separation v p is determined by the velocity of

pre-separation v and the external impulsive force . F which is applied on the mass node

at the switching instant. Equation (4.56) determines the change of the velocity of the

example system. Since the displacement of the system cannot change instantly, we have

d = d1 = d2 (4.58)

where the definitions of d, d1 and d2 can be found in Figure 4.4. If the switching instant

of the system can be modeled by process compatibility relations such as equation (4.57)

and (4.58), we say that the system is in process compatibility at the switching instant.

For the system shown, the kinetic energy function for the initial configuration is

1^2
Ep,.e = 2my (4.59)

where m is the mass and v is the velocity of the mass node. After the system is broken

up, the kinetic energy function becomes

1^2
Epost = 21 

2m2v 22
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l rnpv2 17npvp2

2^P 2
1

rn v2 = —97/V 2
P P 2 P

(4.60)

where mp is the mass of two smaller mass nodes and vp is the velocity of two mass nodes

after equal split. Based on two energy functions, we can find the varying trend of the

kinetic energy due to the structural variation.

AE Epost Epre

1^1
= — 7711) 2 — —777. V 2

2^P 2

2
m (v2

P

 _ 
u

_2) (4.61)

It can be seen that the sign of LE is dependent on the difference of vp and v. If

V 2 > V 2

then

AE > 0

The system would be said to be dynamically unstable after the break-up. On the other

hand, if

V 2
P < v2

then

AE < 0

and the system would be said to be dynamically stable after the break-up.

Substituting equation (4.57) into equation (4.61), we have

1AE = 
2
m[(v + ;1-) 2 — v2 ]

2-
1 m [v 2 + 2—Fv + ( 1 )2 — v 2 ]
 m m

21^F
[2Fv^ (4.62)
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It can be seen that the stability condition of the system can then be stated in terms of

the direction of the externally applied impulsive force F. As long as F is applied in the

same direction as v, we would have

AE > 0

Therefore we know the system energy is going to increase after the break-up and con-

sequently the system is dynamically unstable. For the system to be dynamically stable,

we must have AE < 0, which means

F2
2Fv — <0

m

Since F has to be applied in the opposite direction to the v, we have

—2111•Iv1+  F12
m

Or

0-2 I v I ^ <

Finally

IF15 2 1v 1m

This result indicates that the external impulsive force has to be applied in the opposite

direction of the velocity of the mass node and its magnitude must lie within certain range

if we don't want to increase the energy of the system. In other words, if the mass node is

pushed forward, or pushed backward too hard, the system would be dynamically unstable.

F has to be applied in a certain direction and stay within a certain range in order for

the system to be dynamically stable.

In order to incorporate this break-up model into the analysis of stability of general

order-varying SVS, we study the multi-boundary-node breaking process. Looking at the
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Figure 4.5, we can see there are # boundary nodes which are to be split into two separate

smaller mass nodes at time t = ti. After the break-up, there would be 2/3 mass nodes

produced from the original # boundary nodes.

boundary
subsystem #1

Figure 4.5: Schematic Diagram of the Order-Varying SVS

Although these boundary nodes are connected to both subsystems, we assume that

at the instance of structural variation, the forces applied on boundary nodes from other

internal parts of the system are negligible compared to the externally applied impulsive

force F. Therefore, at the switching instant, the system boundary can be considered as

a group of isolated mass nodes as is shown in Figure 4.6.
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* vpl^ fi

Figure 4.6: Schematics of the SVS at the Breaking Instance

Based on previous analysis, it is not difficult to obtain

vpi = vi
mi

for each of the # boundary nodes. Writing them in vector form, we have

V = V + MbnldF

(4.63)

(4.64)

Or

V = V + AV
^ (4.65)

where vi, = {vpi , vp2 , • • •, vpo}T , v = {vi , v2 , • • •, V iii}T Mbnd = diag {m i , m2 , • • • , ms},

F = f2, • • •, MT, and Ay = mb:-- dr. The physical meaning of these variables is

clearly shown in figure (4.6). v is the pre-breaking velocity vector of the /3 boundary

nodes. vp is the post-breaking velocity vector of the 2/3 newly-created mass nodes. M bnd

is the mass matrix of the (3 boundary nodes before break-up. F is the vector of the

externally applied impulsive force at the breaking instance. From equation (4.65), the

velocities of the pre-breaking boundary nodes and post-breaking mass nodes are related

through the impulsive force F.



Chapter 4. Stability of Structurally-Varying Systems With Time-Varying Order^73

4.4.2 Modeling of Switching Instants by Motion Compatibility

In the previous section, the process compatibility has been used in the analysis of the

switching instants of the SVS. It has been seen that the velocities of the boundary

nodes of the SVS change instantly at the switching instant due to the externally applied

impulsive forces. The important point is that the external impulsive force is applied in

the same d.o.f. of the boundary nodes. Hence, the velocities of the post-breaking mass

nodes change after the switching instant. If the impulsive force which causes the breaking

of the boundary mass nodes is applied in a slightly different way, the pre-breaking velocity

and post-breaking velocity of the boundary mass nodes will be exactly the same. In this

situation, motion compatibility occurs, and will be used to analyze the switching instants.

As has been discussed before, the boundary mass nodes can be modeled as a group of

isolated mass nodes without any connection to any subsystems at the switching instants.

To demonstrate the idea of motion compatibility, we present the model for each of the

boundary nodes in Figure 4.7. The boundary node can be thought of being composed of

two equal smaller mass nodes. The external impulsive force is applied on the boundary

node at time t, which will be broken into two mass nodes and each of them has one d.o.f..

In this case, the external impulsive force is applied in the d.o.f. in which the mass is

constrained.

If the equal split is assumed, we will have m 1 = m2 = m/2. Hence,

1
Ppost =^m2v2 = m(vi + v2)

ppre = MV

(4.66)

(4.67)

where ppost and pp, are the momenta of the system before and after the break-up. v is

the velocity of the mass node before separation. v1 and v2 are the velocities of the two

mass nodes after the separation. It is not difficult to obtain v 1 = v2 vp if m 1 = m2.
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Figure 4.7: Illustration of A Breaking Instant (2)
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According the law of conservation of momentum, we have

Ppre = Ppost
^ (4.68)

1
my = —

2
myup vp) = my

Therefore,

(4.69)

= VP
^ (4.70)

It can be seen that the velocity of post-separation yp is the same as that of pre-separation

v. Since the displacement of the system cannot change instantly, we have

d = d1 = d2^ (4.71)

where the definitions of d, d1 and d2 can be found in figure (4.7). If the switching instant

of the system can be modeled by equation (4.70) and (4.71), we say that the system is

of motion compatibility at the switching instant.

The kinetic energy function of the system for the initial configuration is

Epre^
1 
my

2
^(4.72)

After the system is broken up, the kinetic energy function becomes

1^2 ^2
—2 miv i + —2 

m2Y 2Epost

2 2
( P^P^P2

m)(v 2 + v 2 ) = mv 2

1 
V 2= —

2 m

Therefore, we have

(4.73)

Epre = Epost
^ (4.74)
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It can be seen that the energy of the boundary nodes remains unchanged at the switching

instant.

By incorporating this break-up process into the stability analysis of multi-boundary-

node order-varying SVS, we have

Vpi = Vi
^ (4.75)

for each of the 13 boundary nodes. Writing them in the vector form, we have

vp =^ (4.76)

where vp {vp1 , vp2 , • • •, vo }T is the the post-breaking velocity vector of the 2/3 newly-

created mass nodes. v = {v1 , v2 , • •, vo}T is the pre-breaking velocity vector of the

boundary nodes.

Comparing equations (4.57), (4.58) with equations (4.70), (4.71), we observe that

the motion compatibility is actually a special case of the process compatibility with

F = 0. When the external impulsive force which causes the break-up of the boundary

node is applied ih the d.o.f. in which the boundary node is constrained, we will have

F = 0. There is no instantaneous change in the velocity of the boundary node. Hence,

the switching instant of the SVS can be analyzed by using motion compatibility. On

the other hand, when the external impulsive force is applied in the same d.o.f. as the

boundary node, F 0. There is an instantaneous change in the velocity of the boundary

node. Therefore, the switching instant of the SVS has to be analyzed by using process

compatibility.
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4.5 Analysis of Dynamic Stability Using Process Compatibility

To evaluate the dynamic stability, the energy functions for two consecutive system con-

figurations have to be calculated

1 •
Ei(t) = 

2^2^ (4.77)

Ei+i (t) =^+^ (4.78)

Substituting parameter matrix equation (4.52) into equation (4.78) yields

Ei+ I (fit) •^1
= . 1--c1T±1 (tt) Mi+iiii+i(tt) + id 1 (tt) Ki+idi+i (tt)

2a • —^ 1 T
=-. f:141M (14i + AMi+l)ili-F1K) + id;+1 ( 18-i + AKi+l)di+1

1 •^• 1
= idiFi (tt) g4iiii+1(tt) + 2d41(til) kid41(tt)

1 •^ 1 T
--Pic14 1 (tt) AMi-Fiai+i(tt) + -2-di+i (tt) AKi_Fi di+i (tt)

= ei(tt) + Aei+i (tt) (4.79)

where

ei (t-iF )^4+1(it )^dr+i(tt) Kidi Fl

T

1 ^2d 2+^Aei.+1(tt) = 2 2+
—d• (V- )^+ ^ ?'

1 (
e ) AKi_F ldi+ 1 (tp )

Substituting equation (4.47) and equation (4.51) into equation (4.80), we have

ei(tt)

= -
2 

[di (tt) Mi (EL(ti ) C17(tt)Ki Cli(tt)]

1 .1i(tt) T Mi 0 .1i(tn
—^3( .

db,i+i (tt) 0^0 ilAi+1(tt)
T

Ki 0

0^0

CVO

clAi+i (tn

(4.80)

(4.81)

(4.82)
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After the energy function is determined, the stability of the order-varying SVS can be

studied. From equation (4.65), the initial velocity of a configuration can be established

in terms of the final velocity of the last configuration at a structural switching instant,

aii-1(t,t)==Ai(ti-)+Aa,+1(ti) (4.83)

where di+i(tt) is the initial velocity of the system configuration i 1, di(ti ) is the final

velocity of the system configuration i with the dimension adjusted to the Cli+i(tt) and

Aili+i (ti) is the velocity perturbation introduced by process compatibility. di +i(tt) can

be divided into three elements,

- Lint -

di (t-1-)
bn

d 
d 
(it ) (4.84)

a:n°(0

where superscript int denotes internal nodes, superscript bnd denotes the boundary nodes

and superscript new denotes newly-created nodes in the new system configuration. As

before, the symbol ",,," denotes inherited from the coordinate of the previous system

configuration. The physical meaning of every element of the coordinate can be seen in

Figure 4.8.
hint

Hence, we know that the first element d i (tt) is inherited from the coordinates of

the internal nodes of the previous system configuration i. Since these internal nodes are

not changed at the instant of the structural variation, we have

• int
di (ti = dint(q) (4.85)

where Clnt(q) is the real coordinate of the internal nodes of the system configuration i.
h bnd

For the second element d i (ft), it is inherited from the coordinates of the boundary

nodes of the previous system configuration and the mass nodes they correspond to are
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internal mass nodes
^original internal mass nodes

Figure 4.8: Definition of the Coordinates

split at the instance of structural variation. Therefore, it can be related to ilEind(q) by

equation (4.65), i.e.,

bn
d 

d
i (CiF) = dbnd(q) ACI!'nd(ti)^ (4.86)

where dIrd(q) is the real coordinate of the boundary nodes of the system configuration

i and .Ailnd(ti) is the velocity perturbation on the d/rd(ti)•

The third element ainzit ) corresponds to the newly-created mass nodes, which do

not exist in the previous system configuration. However, since they are produced from

the boundary nodes of the previous system configuration, the following relation applies

to it if the equal split is assumed,

bndCrilTeiu (tn = d i (tn

= Cl!nd(g) Ail Ird(t i )^ (4.87)

It has been shown from the previous analysis that the velocity perturbation at the

time t = ti is the function of external impulsive force F, i.e.,

Aant i) (Mrd ) -1 F^ (4.88)
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where Wfrd = diag{mrd, mr, • • •,mbond}, F =^f2, • • •, MT and p is the number of

the boundary nodes of the previous system configuration i. Substituting equations (4.85),

(4.86), (4.87) and (4.88) into equation (4.84) yields
-^ ntLi^-

di (tn^aiint )
6nd

di (in^ivrd(q) + Okra (ti)

_ d,+1(is) _^at:4(in + Aat:nd(ti) _

0

amtn + Aar(t i )

ab,nd(ti-) _^_ Add(ti)

aiint^)^0
iltmtn + (Mbnd)i 1 F

aknd(in ^(Mend) s 1 F

Comparing to equations (4.83), we have

ci!nt(q)

^

Ai(q) =^aird(q)

knd(q)
0

^Aai+l(ti) =^(mtind)-1 F

 

(4.89)

(4.90)

(4.91)

(mlind)-1 F

At the switching instant, there is a sudden change in velocity, which is determined by

the externally applied impulsive force F.

Using this model of break-up, the dynamic stability of the order-varying SVS can be

analyzed by process compatibility. As previously derived in equation (4.79), we have

Ei+i (tt) = ei(tt) Aei+i (tt)

ai+i(tt) =
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with

ei(i)^1441(tt) miai+i(tn + -2-1 cq+i (tnftidi+i

Aei+i(i) =^ -2-1(141(tt) 6,1(41441(ts)

We further assume

ei(tt) = Ei(tT) AeF(ti )
^

(4.92)

where AeF(ti) is a small perturbation term which is caused by the velocity perturbation,

or more directly by the externally applied impulsive force F. Substituting equation (4.92)

into equation (4.79) yields

Ei+i (tt)^Ei(tT) AEi(ti)

^

= Ei(tT) AeF(ti)
^

(4.93)

where Ei(tT) is the energy value just before the structural variation. AEi (ti ) is the energy

perturbation occurring at the instant of structural variation. This perturbation term

consists of two terms, one is the structural perturbation term Aei+i (tt) and the other

is the state variable perturbation term AeF(ti). In order for a system to be dynamically

stable, we must have

AEi(ti ) = Ei+i (tt) —^) < 0

AeF(ti) Aei4. 1 (fil") < 0

Since the condition of ei+i (tt) < 0 is easy to find, the condition of AEi(ti) < 0 can be

determined if we can find the condition of eF(ti) < 0.
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In order to determine AeF(ti), we substitute equation (4.83) into equation (4.80),

ei(tt)^--14:141(tt)^+^kidi+i

= 2[(a=(ti)=2[(a=(ti) micAicin+ Aai+ictim + 2diT+1 (0

2 •[u-Ii(tnT Midi(tn 20Cli+1 (ti )T g/IiCli(Cr)

IC/IjAili+1 (ti )]^1 d4 1 (tt)^ (4.94)

Since _ dint(q)

Cli(t i7) = Cl Eind(q)

dLind(tz)

and
dint(ti)

ai(tn = d ird(q)

dtpd(c)

we have

ai(tn
[ at.,,nd(tz )

di (q )

d!nd(q)

(4.95)

(4.96)

  

T

^

= I
CliK)^[Mi

^d Erd(tr)^0 o^knd(q)

= dROMiiii(tn

  

•,T^„
di (ti) Midi(q) (4.97)

(4.98)

(4.99)

(4.100)

  

and

dT+1

T

di(tn^[Ki 0^di(q)

cl /rd(q)^0 0^dIrd(ti- )
= dT(q)K idi(g)

Hence, we can rearrange equation (4.94) as

ei(tn = -j2 [CliT(q)^2AiliT+1(ti)
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where

+AC1T+i(ti)^2diT+1(tt) kidi+i

1^1
= 2 jT (ti- )MiCli(tT) 2 c1T(t -i- )Kidi(tT)

+.64_ 1 (toicil ia i (t-i-)+-1-?A iT+1 (ii ) KLAa i+1 (ti )

Ei(q) Aep(ti) (4.101)

Ej(C) =^ CIT(tT)MiCli(tT)^. 4:1T(tT)Kidi(ti . )^ (4.102)

AeF(ti)^ACIT1(ti) Midi(ti)T) + AilTF4 (ti) 1C4jAili+i (ti)^(4.103)

The energy perturbation AeF.(ti) due to the velocity perturbation is then determined.

We define

ai[F, di(q)] = ACIT+i(ti) Midi(ti)^(4.104)

then,

Aep(ti )^ai[F, di(ti)]^ 6,(1T+. 1 (ti )^ (4. 1 05 )

ai(F, di(C)) can be considered as a control variable that provides the constraint condition

on the externally applied impulsive force F. If F satisfies the condition, the system would

be dynamically stable. Based on equation (4.105), the criteria for evaluating the dynamic

stability of the order-varying SVS using process compatibility can be derived.

Theorem 4.1 Assume that dynamics of the structural variation is dominated by the

process compatibility. An order-varying SVS would be dynamically stable if AeF (ti )

Aei+I (tt) < 0.

Theorem 4.2 Assume that dynamics of the structural variation is dominated by the

process compatibility. An order-varying SVS would be dynamically stable if

1. Both AM i+1 and AKi+i are negative semi-definite,
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2. 2cxj[F, d i (tn]^g/liAili+1(ti) < o.

Proof: Since both AMi+1 and AKi+i are negative semi-definite,

AMi+iiii-f-i(in dT-Fi(tt) AKi+idi+i(tt) < 0

Since 2ai [F,^)] c14 1 (tt) AKi+idi+i (tn < 0, we have

ai[F, di(tn] ACIT+. 1 (ti) 'miAaj+1 (ti )

+ (V4. 1 (tt)^+ dr+1(4- ) AKi+idi+i(i) < 0

i.e., AeF(ti)+6,ei+i (in < 0. According to the definition, we know that the configuration

i 1 of the SVS is dynamically stable.

Theorem 4.3 Assume that dynamics of the structural variation is dominated by the

process compatibility. A conservative order-varying SVS would be dynamically unstable

iff AeF(ti) > 0.

More specifically, we have

Theorem 4.4 Assume that dynamics of the structural variation is dominated by the

process compatibility. A conservative order-varying SVS would be dynamically unstable

if

1. Both AMi+i and AKi+ i are positive semi-definite,

2. ai[F,di(tn] > 0

Proof: Since both AMi+i and AKi+i are positive semi-definite,

iiiT+1 (0 AA/1414441(o + dr+i (tt) AK i+lai+1 (in > 0

Considering ai [F, di (tn] > 0 and g/li is positive semi-definite, we have

[F, d i (tT)]^AaT+i (ti )

+ 2 tzliT+ i (tt)^+ -21 d iT+1(ti+ )^> 0
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i.e., AeF(ti)+ ei+i (tt) > 0. According to the definition, we know that the configuration

i 1 of the SVS is dynamically unstable.

4.5.1 Perturbation on Kinetic Energy Function

It has been shown that the energy function changes suddenly at the structural switching

instant. At the structural switching instant, the forces applied on mass nodes from other

internal parts of the system can be considered relatively small compared to the externally

applied impulsive force and therefore are neglected. The mass nodes can then be treated

as a group of isolated ones and the mass matrix of the system at the switching instant

can be expressed by two diagonal matrices,

Ming^0
Matut(q ) -7 (4.106)

0^Mond

Mint^0^0

(tt) = 0^M ^0 (4.107)

0^0^Mnew

where M.„„ t (t i- ) is the mass matrix pre-structural switching and M s.t (tt) is the mass

matrix post-structural switching. M—int Mbnd ' Kid and Mneu, represent system internal,

boundary, perturbed boundary and newly-created mass nodes. They are all diagonal.

Since no mass is added to or removed from the system, the system overall mass is a

constant., Mne„, is separated from Mbnd. Therefore,

1\46nd = 41)nd — M..^ (4.108)

Using the velocity relation given in equation (4.89), we can write the kinetic energy

function at the switching instant,

E7;:e(C) =^Matut(q) CVO
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T

1 aint(q^[Mint^0 1^Clint(C )
2 Gird )^o Mbnd^ard(o

[aiint(tn]T mint ipi
.nt(q) —

1
[1:16ind(07 Mbnd ilbnd(q)2^ 2

and

1 •
E;:st(in =^Mewt(tn aid-i(tn

int - T -

di (ti)^Mint^0^0
bnd

di (ti)^0 M^0bnd
new (41
^

0^0 Mnew

- h int^-
di (ti

bnd
di (ti

anT(tt)
1 int^,7 int^1 • bnd^• bnd

=^(ti )iT Mint di (ti)^(t-iF)JT Mbnd d i (tif)

-F 2 [d7_7(tn7 Mnew

where Epkee (tn is the kinetic energy function just before the structural variation and
Eptest (tn is the kinetic energy function just after the structural variation. The change of

the kinetic energy function at the switching instant can then be expressed as

AEke(ti) = EI:it(tt) E i;:e(tn
1 • int^• int^1
i [di (01 1 Mint di (ti) — Ant (c

1 z bnd^T ^bnd^1 •^

)1 Mint Cl iint (t -i- )=-

+[di (ti )]T Mbnd di (tn — i[cl"d(tn]T Mbnd a!nd(tn

-F[irs+1u(it)] 7' Mnew am(ti)

Substituting equation (4.85) and equation (4.108) into equation (4.109) yields

AEke(ti) =
1 bnd^ • bnd

2

- 

[die ^(Mbnd — Mnew) d (riF)

1^ t— [dr " (tn]T Mbnd^) 1
^

(iniT Mnew^(rif )
1 • bnd^bnd^ h bnd
2 [d; (ti^Mbnd d i (tn — —

2 
[cl

bnd
i (tt)]T Mnew di (tt)

1 .:. 

(4.109)
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2
_1 

1
rat,nd(r. iT mbnd abnd (tn

I

m 2 L
a

s+
.

1^/J
(t)iT Nine. azie_7(tt) (4.110)

Also substituting equation (4.86) and equation (4.87) into equation (4.110), we can have

1 •
AEke(ti) =^[clt:snd(ti") Aar(ti)iT Mid [ard(tz) + Altd(toi

[iirc 1 )IT Mond alimd(q )

1^•
2
_[Ad Ird(ti

)]T 
mbnd alrd(r 

)
- • 1^•

+ 2 [Ad d(ii)]T Mond Dm(ti)
1 •

+i[dr(ti Mbnd Aar(ti)

Since Mid is diagonal,

AEke(t i )^[Aard(ii)]T mbnd ard(c- )
1^•+ _
2
 [,AdIrd(to]T Mid Aed(ii)^(4.111)

It can be seen that the perturbation on kinetic energy is determined by (1) the param-

eter matrix of the boundary mass, (2) the velocity perturbation due to the externally

applied impulsive force which causes the system structural variation and (3) the time the

impulsive force is applied.

4.5.2 Perturbation on Potential Energy Function

The perturbation on the potential energy function of an SVS can be derived as follows

T
Eig(q =^(ti ) Kau,t(q) di(q)

= 2clr(q) Ki di(C)

and

Er,:: t (t -n — 2ciT+1(4)Ksuit(tp) di+1(0

= 2 4:1171_1(ft) Ki+i
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where K„„t (q) is actually the stiffness matrix of configuration i and K oeut (tt) is the

stiffness matrix of configuration i + 1. Epp,, (q) is the potential energy function just

before the structural variation and EpPot(tt) is the potential energy function just after

the structural variation. The change of the potential energy function at the switching

instant can then be expressed as

Egott (tt) — Erret (tT)
1^ 1

= ic14(tt) Ki+1 di+i(tt) —^Ki di(q)

1^ 1
= 2d T ,(t+) (K • + AKi+i ) di+i (tt) — icIT(ti) Ki di(g)

2+-

Considering equation (4.99), we have

1 m
1

AEP°t(ti) = 
2^

(t7r) AKi+i
H-

(4.112)

The perturbation on the system potential energy is determined by the generalized stiffness

perturbation matrix.

Therefore, the perturbation on the energy function at the switching instant is

AE(ti )^AEke(ti) AEP°t (ti)

= [Aa Ird (ti)]T mt.nd abnd(tz) + {Aipind(ti )jr Mond Aabind(to

1
+-2_dr+i (in AKi+1 di+i (it)

abnd[F,aird(ini + abnd[F] + a[AKi+i )

where

bnd [F abnd (0] = [Aierd(ti)iT Mend at:nd(ti-)

^abnd [F]^- {,Aatrd(toiT mb„d AC117'd (ti)

^

a[AKi+i j^-2cir+1(tn AKi+i di+i (tt)

The dynamic stability of the SVS can then be restated as follows:

(4. 113)

.6,EPc' t (ti ) =
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Theorem 4.5 Assume that dynamics of the structural variation is dominated by the

process compatibility. An order-varying SVS would be dynamically stable if

1. AKi+i is negative semi-definite,

2. abnd[F, ClIrd(tZ)]^—abnd[11.

Theorem 4.6 Assume that dynamics of the structural variation is dominated by the

process compatibility. A conservative order-varying SVS would be dynamically unstable

if

1. AKi+i is positive semi-definite,

2. abnd^abind(tf )] > — abnd [F] .

The proof of Theorem 4.5 and Theorem 4.6 is straightforward. The negative

semidefiniteness of the AKi +1 would lead to

«[AKi+i ] = diT+1 (tt) AKi+i di+i (tn < 0

If a bnd [F , Cl /rd(t;- )]^—abnd [F] ,

AE(ti) < 0

and the SVS will be dynamically stable. Condition #1 is determined by system struc-

tural variation and condition #2 is determined by the way the externally applied impul-

sive force is applied on the boundary mass nodes. In general, if the impulsive force is

applied oppositely to the moving direction of the boundary mass nodes within a certain

range, the system dynamic stability condition would be satisfied. The proof of Theorem

4.6 can be carried out in exactly the same way as that of Theorem 4.5.

In the following example, the application of Theorem 4.5 and Theorem 4.6 will

be demonstrated.
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f

d

(a)

dl
H

(b)

Figure 4.9: Example System
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• Example: Consider the system described in (a) of Figure 4.9.

The equation of motion is given by

and kd 0, d(0) = do

and

M 1 =- Mbnd m, K 1 = k

At time t t i , an external impulsive force f (the horizontal one) is applied on the

mass node and the mass is divided into two pieces instantly. The system takes a

new configuration, which is shown in (b) of the Figure 4.9. The equations of motion

are

kdi = 0

m2(12 = 0

We have

M2 =
ml^0 K2 = [lc 0

which gives

0^M2 0^0

AK2 = K2^kl
Ok^0° Ok^0° = 0

The velocity perturbation Ad due to f can be calculated as follows

f
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Hence,

1^f^p
ab"d [F] = m ( 771 ) 2 =2^ 2m

f^:abnd [F,Cerd(tn] = 7.77, m d(t 17) = f

Since LK 2 = 0, the system dynamic stability is determined by the relation between

abnd [F] and abnd [F, Cir(tn] only. If we assume a bnd [F, Cl ird(g)] < —abnd [F], we
have

ab"d [F, ard(til] = f d(ti ) C —abnd [F] = — f 2
2m

It is not difficult to see that the external impulsive force f has to be applied in the

opposite direction of the d(t), in order for the system to be dynamically stable, i.e.,

abnd [F,ard(q)]= —f d(ti) < ^= —

Finally

f < 2mci(q)

According to Theorem 4.5, the system will be dynamically stable if f is applied

in the opposite direction of the d(t) and f < 2mcktn.

On the other hand, the system would be dynamically unstable if

abnd [F,^= f d(ti) > —abnd[F] = 

If f is applied in the same direction as a(q ), the above equation would be satisfied.

According to Theorem 4.6, the system would be dynamically unstable.

f2

2m



Chapter 4. Stability of. Structurally-Varying Systems With Time-Varying Order^93

The energy function before the structural variation is

1
Ei (t) = E(tT) = -

2 
m d2 (ti") + -

2 
k d2 (tT) = -

2 
k d2 (0)

The energy function after the structural variation is

E2 (t) E(4 ) = 2 mi di(it) + ma di(ti)^k di(ti)

Since

^4(4) =^+ Acii (t 1 ) = di (ti ) +

^ci2(in =^= di (ti ) +

=

we have

; E2 = 1i mi [di(ti)+ f+ 
f;1 2 + 

1
i m2 [ai(ti) + -i-rf-] 2 + 1

2 k di (C)

^

1^:^f^1
= i m [cii (tT) + 7-71, ] 2 + i k di(ti)

^

1^.^ 1
= 2 m [CC) + (— ) 2 + 2 — d1(r)] + —

2 
k di (tT)1^m^m 1

^

1^.^1^1 f2 
= -- rn d?(C)d- i k di (C)-1- -- ( -77-n- ) + fcti (tT)

1 f2
= Ei + i (-771 ) + feii (q)

Therefore,

1 f 2

^

AE2 = E2^= -2 (—m) fai(ti7)

1 f2
AE2 E2 El = -2 ( m

— ) fd(til
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If f is applied in the opposite direction to d(C), we have

1 12^•AE2 =^) — f d(tT)

If f < 2md(q) (i.e., f /2m —^< 0), we will have

1 f2^f
f^f^di(tT)] 0

6.E2 < 0

which proves that the system is dynamically stable.

On the other hand, if f is applied in the same direction as d(tT), it is not difficult

to see that

1 f2
AE2 = -2 ( —m ) fd(iT)

— (I!
2^) f (kr) > 0

m^1

Therefore, the system is dynamically unstable. It can be seen that the previously

derived analytical results have been verified.

The numerical simulation results are shown in Figure 4.10 and Figure 4.11 for dy-

namically stable and dynamically unstable cases respectively. The initial conditions

of the system d(0) = 10, d(0) = 0 are assumed. The following parameters are used

in the numerical simulation,

m = 0.05kg,^ml = m2 = 0.025kg,^k = 6N/m

The impulsive forces f = 1.0N and f = —1.5N are used in stable and unstable

cases respectively. The symbols are defined as follows,
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—d(t): position of the mass node before structural variation; di (t), d2 (t), posi-

tions of the mass nodes after structural variation.

—v(t): velocity of the mass node before structural variation; v i (t), v2 (t), veloc-

ities of the mass nodes after structural variation.

—E(t): energy of the mass node before structural variation; E 1 (t), E2 (t), energy

of the mass nodes after structural variation.

It can be seen from (a), (b) of Figure 4.10 that although the change of the system

position is continuous, there is a sudden change in the system velocity. The change

is caused by the external impulsive force f. In this case, f is applied in the same

direction as d(ti) and also f < 2md(C). The system energy level decreases after

the structural variation, which can be observed from (c) of Figure 4.10. Hence, the

system is dynamically stable. In another case shown in Figure 4.11, f is applied in

the same direction as d(tT). There is also a sudden jump in the velocity, which can

be observed from (b) of Figure 4.11. From (c) of Figure 4.11, we can see that the

system energy level increases after the structural variation. Hence, the system is

dynamically unstable.

4.5.3 Experimental Study of Dynamic Stability Using Process Compatibility

In order to further illustrate the application of analytical results developed in this research

and verify the numerical simulation results, an experiment is carried out.

The experimental setup consists of three parts, a mechanical moving device, an EKTA

1000 motion analyser (i.e., high-speed camera) and an image acquisition and processing

system. The mechanical moving device, which is shown in Figure 4.12, is composed

of four SPB 8 super pillow blocks with linear bearings and a tubular solenoid. The
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Figure 4.10: Result of Numerical Simulation: A Dynamic Stable Case Using Process
Compatibility
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Figure 4.11: Result of Numerical Simulation: A Dynamic Unstable Case Using Process
Compatibility
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Figure 4.12: A Moving Mechanical Device
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Figure 4.13: Image Processing System
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blocks are used to emulate two mass nodes and the tubular solenoid is used to emulate

a switchable connection between the mass nodes. The tubular solenoid is controlled by

an electrical signal. The mass of each of the two mass nodes is 0.52kg. One of the

mass nodes is connected to a spring. The stiffness of the spring is 70N/m. The other

end of the spring is fixed to the supporting structure. The external impulsive force f is

generated by a 100psi air jet, which can be turned on and off by a switch. The EKTA

1000 motion analyser is used to collect and store the experimental data. The sampling

rate is set at 500 frames/second. The position is measured by using the EKTA 1000

motion analyser. The velocity and energy are calculated from the measured position

data. After the position data is collected, it is then sent to a PC-based image processing

system, which is shown in Figure 4.13, and the data is then processed there.

Initially, two mass nodes are connected through the tubular solenoid. An initial

position is given to the mass nodes. When they are released, they start to move. At

a point, an air jet is applied to the mass nodes in the same direction as the velocity of

the mass nodes and the tubular solenoid is activated so that the two mass nodes are

separated. From previous analysis, we know that the air jet will cause the system to be

dynamically unstable.

The experimental results are shown in Figure 4.14 through Figure 4.16. Figure 4.14

shows the position profile of the system. Two mass nodes are separated and go in different

ways after the solenoid is activated. Figure 4.15 shows the velocity profiles. The velocity

data is calculated from the experimental position data. It can be seen that it is very

noisy. In order to eliminate the nosie, a low-pass filter with a cutoff frequency of 8 hz

is designed using MATLAB. The velocity signal is filtered and the true velocity signal

can then be obtained. The change of the velocity at switching instant can be seen in

the Figure 4.15. The sudden change of the velocity is caused by the air jet. Since the

system energy is increased, which can be seen in Figure 4.16, we know that the system
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Figure 4.14: Experimental Result: Position Profile

is unstable after the change of the structure takes place.

This experiment further illustrates the concept of dynamic stability of the SVS (and

dynamic instability of the SVS) and shows the application of previously derived theo-

retical results.

4.6 Analysis of Dynamic Stability Using Motion Compatibility

In the previous section, the stability of the order-varying SVS has been studied using the

process compatibility. In this section, the stability of the order-varying SVS is analyzed

using the motion compatibility. By motion compatibility, we have at the instant of

structural variation,

di(C) = a,(0
a,(q) = a, (0

According to equation (4.111), we have

AEke(ti) = [Aa ird (ti)]T Mbnd alrd(t -i- )+ 1 [,a,ard(ti)]T Mbnd Aknd (ti)

(4.114)
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Figure 4.15: Experimental Result: Velocity Profile



E (t)

0.40

=3"^0.30
>-
0
w 0.20
zw

0.10

0.00^0.10^0.20^0.30^0.40
TIME (SECOND)

0.50^0.60

Chapter 4. Stability of Structurally-Varying Systems With Time-Varying Order 103

Figure 4.16: Experimental Result: Energy Profile

The motion compatibility (described in equation (4.114)) leads to Astnd(t i) = 0 at the

switching instant. Hence,

L\Eke(ti) = 0^ (4.115)

which means that there is no change of kinetic energy at the instant of structural vari-

ation. It is not difficult to see that motion compatibility is actually a special case of

process compatibility. The perturbation on the energy function is solely determined by

the potential energy function, i.e.,

1
AE(ti) = AEP°t(ti) = idT1-1(in AKi+i di+i(in^ (4.116)

The stability theorem can then be stated according to the generalized stiffness perturba-

tion matrix AICiA-1.

Theorem 4.7: Assume that dynamics of the structural variation is dominated by

motion compatibility. If AKi+i is negative semi-definite, the configuration i+1 will be

dynamically stable.
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Proof: As is shown in equation (4.116), AE(ti) is of quadratic form. If AKi +i is

negative semi-definite, we will have

2
1
—cIT

1
^AKi+idi+i (tt) < 0

t+

no matter what the values the di +i(tt) takes. Therefore, AE(ti) < 0. According to

the definition, we know the configuration i+1 of the SVS is dynamically stable, which

concludes the proof.

Theorem 4.8: Assume that dynamics of the structural variation is dominated by

motion compatibility. For any conservative SVS, if AKi +i is positive definite, the con-

figuration i+1 will be dynamically unstable.

Proof: Since the SVS is a conservative system, we have

max{Ei(t)} = Eic

max{Ei+i (t)} =

where Eic and Ei+ ic are constant over the time period [ti_ 1 , ti] and [ti, ti+i ] respectively.

If AKi+i is positive definite, AE(ti) — Eic > 0, i.e., Ei+ic > Eic. There is a

sudden jump of energy at the instant t = ti , which makes the configuration i+1 of the

system dynamically unstable.

Theorem 4.7 and Theorem 4.8 provide criteria for evaluation of the dynamic sta-

bility and instability of the order-varying SVS for the motion compatibility case. Using

these two theorems, the dynamic stability of the order-varying SVS can be predicted

based on given structural perturbation, which is described by AKi+1.

• Example: Consider the system described in (a) of Figure 4.9 again and assume the

f is applied perpendicularly to the direction of motion of the mass node, which will

lead to the process of the structural variation dominated by motion compatibility.
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Then the velocity perturbation is Ad = 0. Therefore,

abnd [F , abind(q)] = 0

abnd [1] = 0

It is known that AK 2 0, i.e., a[AKi+i] = 0. According to Theorem 4.7, we

know that the system is dynamically stable. In fact, the system energy remains

unchanged in this case although the system structure has changed.

The numerical simulation results are shown in figure (4.17). Parameters used are

m = 0.05kg,^m1 = m2 = 0.025kg,^k = 6N/m

The symbols are defined as follows,

— d(t): position of the mass node before structural variation; d 1 (t), d2 (t), posi-

tions of the mass nodes after structural variation.

—v(t): velocity of the mass node before structural variation; v i (t), v2 (t), veloc-

ities of the mass nodes after structural variation.

—E(t): energy of the mass node before structural variation; E1 (t), E2 (t), energy

of the mass nodes after structural variation.

It can be seen from (a) of Figure 4.17 that after the two mass nodes separate,

they take different trajectories. There is no sudden change in either the position

or velocity profiles, which can be observed from (a) and (b) of Figure (4.17) . The

energy remains unchanged after the structural variation. Therefore, the system is

dynamically stable.
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Figure 4.17: Result of Numerical Simulation: A Dynamic Stable Case using Motion
Compatibility
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4.7 Issues of Dynamic Control of the SVS

In this section, the control strategies and their implementation will be discussed. It

has to be pointed out that since this research project originated from interest in the

analysis of SVS dynamics and its stability, the previously developed analysis approach

is mainly for that purpose. It is not our attempt here to present an exhaustive or even

the representative picture of the general control theory of time-varying dynamic systems.

The objective instead is to demonstrate what control strategies are applicable in the

stabilization and control of SVS and how these control strategies can be implemented.

Since the systems we have investigated are of matrix-second-order form, the control

problem will be discussed in "mechanical" or physical coordinates.

The systems considered have the form

m(t) + c(t) + K(t) d f
^

(4.117)

where M(t), C(t) and K(t) are the mass matrix, damping and stiffness matrices for the

overall system, d is the displacement vector for the overall system, and f is the control

force generated from n(t) force actuators which can be further represented by

f = B(t)u^ (4.118)

where f denotes the control force, u denotes the n(t) control inputs, one for each control

device (actuator), and B(t) can be considered as actuator gain matrix. In general, its

dimensions are determined by (1) the dimension of the system mass matrix M(t) and

(2) the dimension of the control input u, which is n(t) x 1. It can be observed that since

the dimension of the system mass matrix is not constant, the dimension of the control

force could also vary over the time period of operation.

In order to feedback the position and velocity signals, we have to have sensor output

y Cp(t)d Cy (t)il^ (4.119)
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where y is the sensor output and C p (t) and Cv (t) are position and velocity sensor gain

matrices, which could include the mathematical model of the transducers and possibly

the signal processing units used in measuring of the system response. If we assume the

control strategy is modeled by G c (t), the control input can be represented by

^

u = —Gc(t)y —Gc(t)Cp(t)d — G c (t)C„(t)CI^ (4.120)

Hence, the control force can be written as

f = —B(t)G c(t)y

^

—B(t)G c(t)Cp(t)d — B(t)G c(t)Cv(t)il^ (4.121)

Substituting equation (4.121) into equation (4.117) yields

M(t) d + C(t) d + K(t) d = —B(t)G c(t)C„(t)CI — B(t)Gc(t)Cp(t)d

or simply

M(t);:i C(t) d + K(t) d —ACctri(t)d — AK ctrt(t)d

where

AKcfri(t) = B(t)G c(t)Cp (t)

ACctri(t) = B(t)Gc(t)C„(t)

(4.1 22)

Usually, B(t) and Cp(t), Cv (t) are constant matrices for a particular configuration of the

SVS. G.c (t) can then be designed to make AlCctri(t) and ACctri(t) satisfy the stability

requirement. .6,1( cot(t) and ACctri(t) can be considered as special perturbations of the

system. Rearranging equation (4.122), we have

M(t) d + [C(t) + Ac ctri (t)] d + [K(t) .6.1(ctri(t)] d = 0^(4.123)
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or

m(t) + c/(t) + KV) d =0
^

(4.124)

where

CV) = C(t) + ACctrt(t)

W(t) = K(t) + AK ch./(t)

The implementation of control strategies can be discussed respectively in two cases.

• Original System Contains No Controller

If the system expressed in equation (4.117) does not contain a controller, the control

strategy can be designed and implemeted by going through the procedure decribed

in this section from equation (4.118) to equation (4.124). Besides general engi-

neering concerns, such as the place and the number of sensors, the place and the

number of actuators, the symmetry of the system parameter matrices has to be

carefully maintained in order to apply the previously developed approaches for the

stability analysis of the system, which implies that AC ctr/(t) and AK ctri(t) have

to be symmetric. Since in general the SVS is a time-varying system, AC ct,./ (t)

and Al( ct,./(t) should accommodate this feature, which means the controller for the

SVS should have the ability to adapt to the ever-changing system dynamics. In

particular, if the system order changes, it may be necessary to add (or remove)

some of the sensors or actuators to (or from) the system. In general, not only the

parameters of ACctrt(t) and Al(col(t) have to adapt to the different system config-

urations, but also the orders of the AC ctri(t) and AlCct,./(t) have to adapt as well.

From the perturbation point of view, ACctrt(t) and AlCart(t) can be considered

as special perturbations superimposed on the structural perturbations so that the

system dynamics are properly controlled.



Chapter 4. Stability of Structurally-Varying Systems With Time-Varying Order 110

• Original System Contains A Controller

If the system expressed in equation (4.117) contains a controller, the implementa-

tion of control strategies would be slightly different. It is known from chapter 3

that the parameter matrices of equation (4.117) can be further expressed as

M(t) = M° Mc(t)

C(t) = C° Cc(t)

K(t) = K° 1<c(t)

where M°, C° and K° are determined by subsystem parameter matrices. Mc(t),

Cc(t) and Kc(t) are connection parameter matrices. Since it is assumed that the

subsystems are time-invariant, only connection matrices can be modified to change

the dynamics of the overall system. Therefore, the control strategies can only be

implemented through connection matrices.

It is not difficult to obtain

M. d + C° d + K° d = —Mc(t) d — Cc(t) d — Kc(t) d

For simplicity of illustration, we assume Mc(t) = 0. Then

mo a + co + K° d = _cc(t) _ Kc(t) d

If we separate Cc(t) and Kc(t) as

Cc(t) = C cs (t) ACctri(t)

Kc(t) = Kca(t) AKctr/(t)

(4.125)

(4. 126)

where Cc8(t), K cs (t) model the system structural perturbations, and ACct,./(t),

AKciri(t) model the dynamics of the controller. Then, equation (4.126) can be
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rewritten as

M° d + [C° + cca(t)] d + [K° + Kcs (t)] d

= —.O.Cdri (t) d — AKdri(t) d

Or

M° d + C(i) d + K(t) d = —ACctrt(t) d _ AKctri(t) d (4.127)

Comparing equation (4.127) and equation (4.122), we see that both equations es-

sentially have the same form. The design and implementation of AC ct,./(t) and

Al(ctri (t) have been discussed before. It is not difficult to realize them through

proper selection of sensors, actuators and control parameters by using the proce-

dures decribed previously. However, the symmetry of ACctri(t) and AKctri(t) has

to be maintained in order to use the previously developed approach to analyze the

stability of the system.

4.8 Summary

The stability of order-varying SVS has been studied in this chapter by using the energy

function as the evaluation function. Both process compatibility and motion compatibility

have been studied. A number of criteria for evaluation of the dynamic stability of the

order-varying SVS have been derived. The control strategy and the implementation of

the control strategy have also be discussed for the SVS.



Chapter 5

Concluding Remarks

The stability theory of dynamic systems has been constantly evolving during the past two

centuries. Various approaches have been developed for the stability analysis of different

dynamic systems. These approaches are loosely related to each other and are usually

applicable only in the stability analysis of particular kinds of dynamic systems. Although

there has long been an effort to unify the stability theory for all branches of mechanics,

significant results have rarely been achieved.

The proposed research is on the modeling and stability analysis of a special subset

of time-varying dynamic systems, called structurally-varying systems or SVS. The main

feature of the SVS is that it consists of a number of subsystems which are connected

together through a group of time-varying constraints. The dynamic model and the sta-

bility condition of the system will usually change if the constraint condition changes. In

real applications; it is always desirable to predict the change of the stability condition

due to the variation of the constraint condition, or in other words, the structural pertur-

bation. The real-time application sometimes even demands speed in the algorithm for

the evaluation of the change of the stability condition.

In order to meet these requirements, new concepts of the stability have been designed

and new approaches have been developed to analyze the stability of the SVS. We have

used both the state response and the energy function as the evaluation function in the

stability analysis of the SVS. The static and dynamic stability of the SVS have been

thoroughly studied. The major contributions of the work can be summarized as follows:

112
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• Based on the comprehensive study of various stability theories, new concepts of

stability have been proposed for the special dynamic systems, which are called

structurally-varying systems. The new concepts lay the foundation for the stability

analysis of the SVS.

• The recursive state space model of the SVS has been developed so that the dynamic

model for any system configuration can be derived in two ways, (1) using a model

of its previous configuration and the current structural perturbation, (2) using the

unconstrained subsystem models and constraint matrix which provides the most

current system constraint information.

• A qualitative measure of the stability for the SVS has been established. A recur-

sive estimation algorithm (ry-approach) has been developed for the evaluation of

the stability of the SVS. By the -y function, the stability of the fixed order SVS

can be evaluated. In particular, the algorithm has the features of simplicity and

recursiveness. Therefore it is appropriate for real-time applications.

• Thorough analysis has been carried out on the process of structural switching in-

stants. Motion compatibility and process compatibility have been proposed and

applied to the stability analysis of the SVS. Different dynamic performances have

been revealed and their influences on the stability of the SVS have been inves-

tigated. A number of criteria for evaluating the stability of the SVS have been

derived. The applications of the analytical results have been illustrated computa-

tionally and experimentally.

• Using both state response and system energy functions as the evaluation function,

a new method for analyzing the stability of the SVS has been developed. Criteria

based on two evaluation functions for predicting the static and dynamic stability
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of the SVS have been derived.



Nomenclature

Symbol^description 

SVS^structurally-varying system

m, M^mass and mass matrix

C^damping matrix

k, K^stiffness and stiffness matrix

d(t)^displacement vector

x^ state vector

A, B^system matrix and input matrix

tf•^state transition matrix

matrix measure

exp^exponential

O original

c^ constrained

A^change

E, e^energy

dim^dimension

n degree of freedom

p^ perturbed

T^ transposed

^ velocity

F, f^impulsive force vector

int^internal
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bnd
^

boundary

new^newly-created
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Appendix A

Norms and Inner Product

Some mathematical definitions of norm and inner product are reviewed in this section.

The materials come mainly from [Chen, 1988, DeCarlo, 1989]

Definition 1: Let x = [x1,x2 ,• • xn ] T E R. The norm of x, which is a function:

Rn^R, can be defined by one of the following expressions:

n

II X 111 =-11 E xi I

n

II X II2=A (E I Xi 1 2 )112
i=1

x 110. max I xi I

or in general,

n

II x IIP =6-- (E I xi IP) 11P
i=1

where p ranges between 1 and oo. In particular, the norm II x 11 2 is called the Euclidean

norm or 12 norm on Rn.

Each of the norms defined here has the following properties:

1. II x II> 0 and II x II= 0 iff = O.

2. ax 11=1 a x II for all a E R.

3. II^+ x2^xi II + II x2 II.
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These properties are easy to verify from the definition.

Definition 2: Let A = (a1) E Rnxn. The norm of A is defined as:

II A IA sup{  IIIIAxx1111
^x^0}

= sup{II Ax^II x 11= 1}

An immediate consequence of the definition of II A II is that for any x E Rn ,

II Ax11s1IA II^II x II

Since the norm of II A II is defined through the norm of II x II, it is called an induced

norm. For different 11 x II, we have different II A II.

1. For II x 111:^II A Ik= max(E I^= 1,2,

2. For II x 11 2 :^II A 112= {Amax (ATA)} 1 /2 .

n

3.^For II x1100:^II A H oc = ma,x(E I aii 1),^i = 1,2, • • •.
j=1

The norm of a matrix has the following properties:

1. II A II= 0 iff A = O.

2. II aA 11=1 a III A II for all a E R.

3. II A1 + A2 115_11 A1 II + II A2 II.



Appendix B

The Solution of i(t) = Ax(t) Bu(t)

For the state-space model of a system,

*(t) = A(t)x(t) B(t)u(t),^x(to) = X0

we have the solution

x( t ) =^to )xo + J t 4.(t, T) • B(T) • u(T)dr
to

where

1. 11.(t, to )xo is the zero-input state response,

2. j .b(t, T) • B(T) • u(T)dT is the zero-state response.

and in particular, in time-invariant cases,

4(t, to ) = 1(t — to , 0) = exp[A(t — to)]

Hence, the complete solution for a time-invariant syetem is

x(t) = exp[A(t — to )]xo^exp[A(t — r)] • B • u(T)dT

exp[A(t — to )]xo exp(At)^exp(—AT) • B • u(T)dT



Appendix C

Matrix Measure

Definition: Let II • II be an induced matrix norm on Rnxn. The matrix measure is

defined as a function A: Rnxn --+ R

III + EA —1ii[A] = lim
e,o+

From a purely mathematical point of view, the measure /4A] of a matrix A can be

thought of as the directional derivative of the norm function II • II, as evaluated at I in the

direction A. The matrix measure has some useful properties, which are provided here.

1. — II A II<^A[A] <II A II,^V A E Rnxn .

2. p[aA] = ap[A],^V a> 0 and V A E Rnxn .

3. max -WA] — 1.4-13], —1.1[—A] ji[B]l < fi[A. B] < p[A] p[B]•

4. —p[—A] 5_ Re(Ai) < p,[A] whenever Ai is an eigenvalue of A.

The proof of the properties can be found in [Vidyasagar, 1978]. Using the matrix measure,

we present a useful theorem.

Theorem Cl: Consider the differential equation x = A(t) x, t > 0, where x E B.',

A(t) E Rnxn, AO is piecewise-continuous. Let II • II be an norm on Rn, and A[A] denote

the the matrix measure on Rnxn. Then, whenever t > t o > 0, we have

II x(to) II exp{fto --/./[—A(r)]th- }^x(t)^x(to) explito p[A(r)]c/T}
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and

exp.( Ito —A[—A(r)]ch-} <11 4, (t, to) 11.. exP{ Ito it[A(T)]th- }

This theorem gives both upper and lower bounds of state variables x and state transition

matrix 40(t, to ). Proof of this theorem can be found in [Vidyasagar, 1978]. Using this

theorem, the stability of structurally-varying systems can be studied based on the concept

of matrix measure.

The calculation of the matrix measure on different norm is provided.

1. For 11 x 11.,0 =maxl xi 1, p co [A] = maxi{aii Ejoi I ail 1}.

2. For 11 x Il i = EZ=1. I xi I, p i [A] = maxj faii Eioj I

3. For 11 x 112= (E7=1 1 xi (2)1/2, /12[A] = Amax {(A*+ A) f*.



Appendix D

Properties of Symmetric Matrices

Theorem D.1: If an n x n matrix A is real and symmetric, its eigenvalues are all real.

Theorem D.2: If an n x n matrix A is real and symmetric, then all its eigenvalues are

1. positive if A is positive definite.

2. nonnegative if A is positive semidefinite.

3. negative if A is negative definite.

4. nonpositive if A is negative semidefinite.

The proof of these theorem can be found in [Orteg, 1987].
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