SOLAR RADIATION INDUCED PERTURBATIONS
AND CONTROL OF SATELLITE TRAJECTORIES

by

JOZEF CYRILLUS/VAN DER HA
M.Sc., TECHNOLOGICAL UNIVERSITY EINDHOVEN, THE NETHERLANDS, 1973

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
"DOCTOR OF PHILOSOPHY

in o
THE FACULTY OF GRADUATE STUDIES

(Department of Mechanical Engineering)

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA
June, 1977

© Jozef Cyrillus Van der Ha, 1977



In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University
of British Columbia, I agree that the Library shall
make it freely available for reference and study. I
further agree that permission for extensive copying of
this thesis for scholarly purposes may be granted by
the Head of my Department or by his representatives.

It is understood tHat publication, in paft or in whole,
or the copying of this thesis for financial gain shall

not be allowed without my written permission.

JOZEF C. VAN DER HA

Department of Mechanical Engineering

The University of British Columbia,
Vancouver, Canada, V6T 1W5

ate SEPLTENB ER 22, /Cy??




ABSTRACT

The long-term orbital perturbations due to So]ar radiation forces
as well as ways to utilize these effects for corrections in the orbit are
investigated. In order to obtain familiarity with relative merits of the
formulations and methods relevant to the present objective, the special
case of an orbit in the ecliptic plane and a force along the radiation is
considered first. The long-term valid analysis is based upon the two-
variable expansion method and incorporates the apparent motion of the sun
by treating the sun's position as a quasi-orbital element. Analytical
representations for orbital elements are derived and the perturbations are
conveniently summarized 1in the form of polar plots. showing the long-term
evolution of the eccentricity vector. While the eccentricity is periodic
with period close to one year, the argument of fhe perigee contains secular
terms. The total energy and thus major axis remain conserved in the long
run. However, in the course of one year, the effect of the earth's shadow
may lead to small secular changes in the major axisAthereby modifying the
satellite's pefiod.

Next, the analysis is extended to orbits of an arbitrary inclination
with closed-form analytical solutions established in some special cases.
An 1nteresting're1ation between the long-term behavior -of the orbital in-
~clination and thé in-plane perturbations is discovered. Also, more-genéra1
satellite configurations are studied: e.g., spacecrafts modelied as a plate
in an arbitrary fixed orientation with respect to the earth or solar radia-

tion as well as platforms kept fixed to the inertial space. In all appli-



cations a realistic solar radiation force allowing for diffuse and/or
specular reflection aé well as for re-emission of absorbed radiation is
considered. In a few cases, the analysis is extended to include arbi-
trarily shaped satellite bodies mode]?ed.by a number of surface components
of homogeneous material characteristics.

After establishing a comprehensive spectrum of the qualitative and
quantitative aspects of solar radiation induced orbital perturbations, the
attention is focused on the development of control strategies involving the
rotation of solar pane1s'attached to the satellite to.manipu1ate both the
direction and magnitude of the resu]ting'force. A few on-off switching
strategies are explored and the most effective switching locations for
several specific objectives, e.g. maximization of the major axis, are de-
termined. The switching strategies explored here constitute an attractive
possibility for orbital corrections. The concept is particularly of inte-
rest to modern communications satellite technology sihce it allows their
normal operation to remain unaffected over approximately half the time.
Although on-off switching may lead to substantial changes in the major
axis, it is not necessarily the best policy when time-varying orientations
are also taken into consideration. The optima]vcontrolhstrategy for maxi-
mization of the major axis over one revolution is determined by means of the
numerical steepest-ascent iteration procedure, and its effectiveness is com-
pared with fhat of the switching programs. The solution should prove to be
of interest in several future missions including the Taunching of a solar
sail from a geocentric orbit into a heliocentric or escape trajectory.

Subsequently, solar radiation effects upon a satellite (usually a

solar sail) in a heliocentric orbit are explored. First, the sail is



iv
taken in a fixed but arbitrary orientation to the local frame. Using
- specific initial conditions, exact solutions in the form of conic sections
and three-dimensional Togarithmic spirals are established. For an arbi-
trary initial orbit, long-term approximate representations of the orbital
elements are derived. An effective out-of-plane spiral transfer trajectory
is obtained by reversing the force component normal to the orbit at speci-
fied positions. By choosing the appropriate control angles, any point in
space can eventua11y be reached.

Finally, time-varying optimal control strategies are explored for
increasing the total energy (and angular momentum) during one revolution.
While analytical approximate'resu1ts can be established for near-circular
orbits, in the general case a numerical steepest-ascent technigue is em-
p1oyéd. The results are compared with those from the constant sail setting
indicating that the latter is a near-optimal strategy for low eccentricity

starting orbits.
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respectively
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®0 R WO _ auxiliary variables, Pog COSV + Qg S1nv and
Poo sinv - 9o COSV » respectively
Q longitude of ascending node, measured from the

autumnal equinox, Figure 3-1

Single subscripts refer to the order of the perturbation terms; 00 indicates
initial conditions; dots and primes refer to differentiation with respect

to time and v, respectively. The norm lla(v)]]| stands for the integral over
(0,2m) of the dot-product of o(v) with itself. It should be mentioned that
the branches of the inverse trigonometric functions (e.g. arctan) are not
explicitly specified but are readily determined by the initial conditions

involved and by continuity.



1. INTRODUCTION

1.1 Preliminary Remarks

Since 1965, when the first Intelsat spacecraft, appropriately némed
'Early Bird', provided 240 transatlantic te]ephoné circuits, on-board power
requirements for communications sate]]ites have been growing steadily. This
in turn has led to the use of larger solar panels, the most widely used
source of the photovoltaic power. For example, the experimental Canada/
U.S.A. Communications Technology Satellite (CTS), launched on January 17,
1976, -is provided with two solar panels 7.32 m x 1.14 m each, generating
up to 1.3 kW. The trend suggests future communication systems using more
sophisticated satellites with increased capabilities and accommodating a
larger number of smaller receiving ground terminals.

It is. 1ikely that in the near future, motive power for interplanetary
explorations and gebcentric transfer missions will be provided by the Solar
Electric Propulsion Stage (SEP or SEPS). The electrical power needed for
its ion engines is, typically, of the order of 25 kW and, in the present
state of the art, will be generated by two, 120 square meter, arrays of
solar cells.

Advances in space science and technology are overtaking our'w11dest
imaginatioh. Launching of the space shuttle is about to open up avenues
for assembling and servicing of space vehicles in orbit. It is Tikely to
bring into the realm of reality by the turn of the century the concept of
Solar Satellite Power Stations (SSPS) equipped with lightweight arrays of

solar cells, a few kilometers in area, generating around 5 GW and relaying



this energy by means of microwave transmission to receiving stations on
earth.

A promising possibility for large-scale exploration of the planetary
system is provided by the concept of solar sailing where the spaceshfp is
propelled by solar radiation forces arising from the impingement of photons
upon large sails made of aluminized Mylar or Kaptoni A technology assess-
ment of a solar sail mission to Halley's comet in the beginning of the next
decade is undertaken by NASA's Jet Propulsion Laboratory. It appears
feasible to transfer a scientific package of approximately 850 kg into a
trajectory for a rendezvous with the comet using an 850 m x 850 m aluminum-
coated 0.1 mil Mylar sail., Figure 1-1 shows the concept of a solar sail.

A characteristic common to all these space programs is the presence
of large, Tightweight appendages exposed to the solar radiation. Due to
the high area/mass ratios involved, substantial perturbative acceleratiuns
of the spacecraft may be produced by the solar radiation forces. In fact,
this is precisely the intention in the case of a spacecraft equipped with
a solar sail. In other situations however, these perturbations may become
detrimental to the spacecraft's performance, e.g., a communipations satel-
1ite may drift'away from its preferred location. In any case, a.detai1ed
knowledge of the nature of the long-term orbital effects of solar radiation
forces would facilitate the process of eliminating undesired influences in
certain applications and of enhancing desired capabilities in other situa-
tions. With this as a background, the thesis aims at providing better under-
standing of the 1ong—term_orbita1 implications of the solar radiation forces
as well as at assessing the feasibility of utilizing them for effecting pre-

scribed orbital changes.
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Figure 1-1 A sc'hemat‘ic diagram showing the concept of solar sail



1.2 Review of the Literature

1.2.1 Solar radiation induced orbital perturbations

The fact that 1ight carries momentum and exerts pressure when it
is incident upon a surface, was known long before the advent of the space

2 law. Nevertheless, the

age and is inherent in Einstein's famous E = mc
first ethbition of solar radiation effects upon an earth's satellite

(the Vanguard I, launched on March 17, 1958) caught the observers by sur-
prise: only the classical perturbations due to the higher harmonics of the
earth's potential field and luni-solar gravitational. influences were taken
into consideration. Subsequently, Musen et a1.1 incTuded the solar radiation
effect in an attempt to account for the observed discrepancy (of amplitude

2 km and period of 850 days) in its perigee height and found it to be fully
responsible. The first theoretical analysis of the effect (Musenz), deriving
the equations governing the evolution of the orbital e]ehents by means of

the vectorial method, appeared soon after. A few of the basic features of
the solar radiation pressure effects were discovered, e.g., a significant
perturbation'in thevperigee height and only small short-term periodic
variations in the semi-major axis. Furthermore, he established that for
certain combinations of altitude and inclination, the so]af radiation force
interacts with the perturbations due to the earth's oblateness: the most
interesting of these so-called 'resonance' cases is the one where the perigee
c]ose]y follows the motion of the sun producing a long-period, large ampli-
tude variation in the perigee height which could seriously affect the life-

time of the satellite. A study by Parkinson et a1.3 with réference to the

lifetime of the Beacon satellite further emphasizes this point.
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| It was the passive communications balloon-satellite Echo I, launched
on August 12, 1960, which provided a dramatic indication as to the possible
severity of solar radiation induced orbital change: in about five months the
perigee altitude decreased from more than 1500 km to 930 km and subsequently
increased again to a1mqst'1ts original value. The property which made

Echo I extremely sensitive to solar radiation effects was its high area/mass
ratio: the satellite consisted of an aluminum-coated ha1f—mi1‘th1§k mylar
sphere, 30 meter in diameter, weighing some 70 kg. Many papers are devoted

to the perturbations of the Echo 1-4'8; the latter two of these provide com-

- prehensive analyses of its orbital behavior. A very readable account on

sunlight pressure induced perturbations is given by Shapiro'et a1.9, who
describe the effect upon orbiting dipoles in the West Ford experiment.

AT1an®

extended Musen's results by including the effect of the shadow in
the pertubation equations and provided some numefica] results. By inte-

gration of the classical Lagrange's perturbation equations in terms of the
eccentric anbma1y, Kozai]].was probably the first one to establish general

12 has indicated

éna1ytica1 results, valid for a short duration. Bryant
how the method of averaging may be employed 1n'der1v1ng the equations under-
lying the Tong-term orbital perturbations, but -does not provide any results.
A very comprehensive account on the effect of solar radiation, including

the shadow effect, on the orbital period is given by Wyatt]3, who derives
short-term analytical results for several special caﬁes. An admirable
éttempt to obtaih first-order analytical results for the combined effects

of solar radiation and the earth's second zonal harmonic was undertaken

14

by Koskela ', but the validity of the application of the approach beyond

the first few revolutions must be questioned. Under certain simplifying
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assumptions, Cook et al. have derived an elegant approximate solution

to this problem for near-circular, non-resonant orbits in the context of
the West Ford experiment. An interesting, subseauent paper by Cook]6
finds a good agreement between this solution and the observed motion of the
Echo I and Explorer 9 satellites.

After these pioneering contributions, the attention was directed
either to refinements in the basic understanding of solar radiation effects
or to applications where the force can bé employed 1n‘bringing abQut de-
sired changes. The primary emphasis was focUsed on the effects of reflected
radiation from the earth, e.g. the excellent work of.Wyatt]7; which was
later extended by Baker]g. Under no circumstances, thever, can this in-
fluence rival the dominance of direct solar radiation effects. A very'
extensive summary of a]]laspects of solar radiation effects as well as the
more traditional sources of orbital perturbations is given by Shapirolg.
Especially of interest is his eprsition on stable near-earth orbits,
having the characteristic of constant eccentricity under the combined in-
f]uences of solar rédiation and the second harmonic of the earth's poten-
tial field. Another enlightening review of the main solar radiation
features, stemming from the Russian literature, is by Po]yachovazoz
although the titles of a few figures are interchanged, this péper provides
the most detaiied information on resonance conditions. Using a formulation
in terms of the Hamiltonian expressed in Delaunay variables, BrouwerZ] in-
vestigated resonance in the_case of po1ér orbits and finds general agree;
ment with numerical results. Later, Hom’22 extended the analysis to general

orbits. It can be concluded thét resonance does not occur for orbits with

a semi-major axis exceeding three times the earth's radius, except when the



eccentricity is very large. A numerical study of the solar radiation
pressure effects on satellites with several different configurations is

23 24

rresented by Lubowe Levin™" provides a fresh insight into the nature

of the solar radiation effects by analysing the behavior of the radial dis-

ee25’26 has preéented an approximate

tance for initially circular orbits. 7Z
analytical study of the combined influences of gravitational and solar ra-
diation forces for near-circular equatorial orbits. On the other hand,
Lidov27 employs double aQeraging, both in the motion of the satellite and
that of the sun to obtain approximate results valid fbr extremely long
duration. The results obtained by Isayev et a1.28’29,are valid for a short
interval only since the position of the sun is kept constant with respect
to the earth providing a uniform forée field. A high-precision short and
1ohg—term numerical integration scheme based on Kozai's equations]] in-
cluding the shadow effect was recently presented by Aksnes30. Sehna13]’32
has summarized various aspects of solar radiation 1nf1ueﬁcesﬁ A satellite
whose orbital behavior attracted almost as much attention as Echo I is
Pageos, launched in 1966. Pageos éonsists bf a balloon quite similar in
size, structure and mass to Echo I, but its shape approximates a prolate
spheroid. Many studies are devoted to explaining the anomaTies in its

33, Prior34, Fea35

orbital behavior: Sehnal , and Gambis36 analyse the in-
fluence of earth-reflected radiation upon this spacecraft. At present,
its orbital anomalies are believed to be caused by a unique interplay of

37538, the orientation of the satellite's

attitude and orbital perturbations
spin-axis as well as its spin-rate are changing continually due to solar
radiation torques thereby producing a time-dependent orbital perturbation

force.



It should be emphasized that almost all studies employ a simplified
solar radiation force model taking a constant-magnitude force-along the
direction of radiation. A more realistic formulation was provided by
Georgevic39 who includes the effects of diffuse reflection and re-emission
of absorbed energy. This model proved capable of predicting the actual
magnitude of the solar radiation force onn the Mariner 9 Mérs orbiter
within 0.1 %.

A number of papers are devoted specifically to the effects of the
earth's shadow; Escoba]40 presents a detailed analysis of the points of
entry and exit of the shadow region. The fraction of the orbit spent in
darkness, expressed in true anomaly, is determined by Karymov4], and by
Zhurin42 in terms of time. An interesting approach for incorporat{ng the
shadow effect in the analytical treatment of solar radiation perturbations

43, who multiplies the perturbation potential

is proposed by Ferraz-Mello
by a shadow function, being unity outside ahd zero inside the shadow inter-
val. After deve]opment of this function in terms of Fourier series, a
first—order.so1ution in the form of infinite trigonometric series in thé
mean anomaly is obtained for the Delaunay variables. Since the computation
of the coefficients is extreme]y laborious, the practicability of the ap-
proach must be considered limited. Other shortcomings are pointed out by
the author himself in a subsequent paper44 undertaking a new attack using
Von Zeipel's method and a Hamiltonian in extended Delaunay variables.

The main outcome of the analysis is the absence of secular perturbations

45 has

in semi-major axis, eccentricity and inclination. Vilhena de Moraes
found a close correspondence between the outcome of Ferraz-Mello's model

applied to the Vanguard II satellite and results by Kozai. Short-term
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46'48, developing their

49

semi-analytical results were obtained by Lala et al.
own shadow‘function but keeping the sun in a fixed position. Meeus ~ studied
the observed drbital behavior of a few satellites and found that, in general,
the effect of the shadow makes tﬁe semi-major axis ﬁncrease (decrease) when

the eccentricity is diminishing (growing).
1.2.2 Orbital control using solar radiation forces

Whefeas all of the previous references deal with natural perturbations
in the sense that the librational motion of the satellite body is not delibe-
~rately manipulated, the following category of papers studies the effects of
controlled changes 16 the orientation of the reflecting surface and thus the
resulting solar radiation force. The feasibility of uti]izing solar radiation
forces for controlled orbital change was assessed quite early in the space age.
In 1958, GarwinSO envisioned an exploration of the so]arvsystem by means of
large solar éai1s made of aluminized Mylar. Cecnsidering heliocentric solar
sail trajectories Tsu5] derived an approximate solution in the form of a pla-
nar logarithmic spiral neglecting the small radial velocity component.

London52 remedied this shortcoming and determined, graphically, the best sail
setting and cokresponding spiral angle for minimum-time transfer. The spiral
solution, naturally, allows only specific initial conditions. Pozzi et a1.53
suggested an iteration scheme to accomodate more general initial conditions.
A fairly complete survey of solar sail trajectories and possible missions is

54. Modi et a1.55 proposed and on-off strategy with the sail

given by Kiefer
normal to or aligned with the radiation leading to a significant elongation
of the orbit as the perigee moves towards and the apogee drifts away from the

sun.
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Other studies foresaw opportunities for using solar sails in geocen-
tric orbits. Sands56 proposed to rotate the sail about an axis perpendicular
to the orbital plane at half the rate of the satellite's motion around the.
earth. This strategy enables the satellite to reach an escape trajectory

57 deter-

eventually. For an orbit in @ plane normal to the ecliptic Fimple
mined the control strategy which maximizes the component of the solar radia-
tion force along the instantaneous velocity, thereby continuously increasing

58 achijeved substantiaT

the total energy and semi-major axis. Cohen et al.
changes in the 6rbita1 elements of an orbit in the ecliptic plane by means

of an on-off switching strategy: during the on-phase,.when the satellite
moves away from the sun, the plate is aligned with the radius vector and kept
normal to the orbital plane, while during the off-phase the plate is along
the radiatidn. The effects upon a large earth-orbiting mirror in the
ecliptic plane reflecting sunlight to the earth were determined by Bosch59
under certain simplifying assumptions. Ahmad et a].GO considered this pro-
blem as well as that of a perfect absorber facing the sun in a more realistic
equatorial orbit and obtained the orbital perturbations using a numerical
technique. Furthermore, the forces and torques required to maintain the de-
sired orientations were calculated. Shrivastava et a1.8! determined the panel
orientation for obtaining maximum changes in various orbital elements. The
feasibility of east-west station-keeping of communications satellites by means

of controlled solar radiation forces was demonstrated by Shrivastava et a1.62

and further substantiated by Modi et a1.63.
A different concept for utilizing solar radiation forces in orbital
control is presented by Buckingham64, who studied a balloon with different‘

reflective and absorptive characteristics on either side permitting control



11

of the force through rotation of the body. The same concept applied to

plates is investigated by B]ack65.

1.2.3 Small-thrust trajectories

The problem of controlled orbital change by means of .solar radiation
forces may be studied within the general framework of sma1]fthrust trajec-
tories which normally consider perturbing forces due to micro-thruster units.
A1thoﬁgh obvious differences exist in the nature of these two sources of
orbita] change (because of the constraints imposed by the instantaneous po-
sition of the sun and thus the direction of the force), a knowledge of the
methods and results of thé more classical field of small-thrust trajectories
wouid certainly be valuable. The smallness of the thrust is capitalized
upon by modé]]ing the problems in terms of perturbation theory using expan-
sions in terms of the ratio of thrust/gravity forces. The problem of either
tangential or radial constant small thrust for ciréu]ar orbits was studied

first66'68.

A comp?ehensive analysis including intermittent thrust by means
of the Krylov-Bogoliubov method has been presented by lLass et.a1.69, provi-
ding the following results: a constant radial force causes the axis of the
orbit to precess, while a tangential thrust changes an initially circular
orbit into a spiral. Rider70 proposed a control strategy for changing the

inclination and longitude of nodes of an orbit while Lass et a1.71 study

Zee72’73 refined the

the effects of a thrust normal to the orbital plane.
analysis for a small tangential tHrust and discovered small oscillations in
the spiral trajectory; The Russian 11ferature,'natura11y, abounds with
studies related to small-thrust problems as a consequence of the epoch-making

work of Krylov, Bogoliubov and Mitropo]sk1'1'74 in the field of nonlinear oscil-
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lations. Laricheva et a1.75’76

illustrated some of the pitfalls of the
method of averaging'by a few illustrative examples: for orbits with 1nitié1
eccentricity smaller or of the same order as the small perturbation para-
meter, indiscriminate application of averaging may lead to qualitatively
incorrect results. Taking‘a COnstaht tangential acceleration, Okhotsimskii77
analysed the resulting motion in detail using asymptotic representations
near e = 0 and e = 1, while Cohen78 has presented an approximate solution
accounting for the variation of the mass of the satellite due to the burning
of fue]p

The more general problem of a constant-small thrust under an arbitrary
but fixed angle to the local vertical gained the attention of the investiga-
tors next. Johnson et a1.79 derived a solution valid for short duration
only. Introducing an independent slow variable in the radial distance and
separating the oscillatory and non-oscillatory terms in-qn ad—Hoc manner,

80 offered a prelude to the application of the two-variable ex-

Ting et al.
pansion procedure to this problem. A later paper by Brofman81 also treats
the case of tangential thrust with variable mass and orbital decay due to
drag in a similar manner. Nayfeh82 found essentially the same results

using his more systematic derivative-expansion method. While all these
studies consider an initially circular orbit, the problem in its most gene-
ral form, including a starting orbit of an arbitrary eccentricity, was solved

by Shi et a1.83

using the two-variable expansion method. Due to the fact
that the ratio of thrust/gravity does not remain small for ascending fra—
jectories, their results do not predict the radial distance correctly near
escape. This deficiency is redressed by the same authors84 through a careful

analysis of the rate of change of radial distance in three different regions :
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gravity dominant, gravity and thrust of the same order, and thrust dominant.
Incorporating the change in the mass of the satellite, Moss85 studied cir-
cumferential thrust by the same (two-variable expansion) method. F1andro86
obtained approximate long-term solutions for the orbital elements under a
low thrust normal to the orbital plane.

For an illustrative description of the two-variable expansion method

87 and

one is referred to the original presentation by Cole and Kevorkian
the more comprehensive treatment by Kevorkian88. Mor‘rison89 points out the
consistency between the results obtained by this method and those derived by
the modified method of averaging. A more fundamenta1.treatment of these

90 and K1ima59]. Kevorkian92 established the

methods can be found in Perko
equivalence of the Von Zeipel and the two-variable expansion methods up to
first-order in the small parameter. Nayfeh93 has described the various per-

turbation methods and their relative advantages in detail.
1.2.4 Optimal trajectories

Finally, a few papers using optimal control theory in determining
the best steering and/or thrust program to accomplish a given objective in
a prescribed manner should be mentioned. The field of optimal control theory,
fostered by the calculus of variations, has become a full-grown science in"

itself. A theoretical foundation is given by Lee et a1.94

95

and a practical
summary is provided by Bryson et al.””. - The application of optimal control

theory in rocket and satellite trajectories is manifested in numerous papers.
A problem which has attracted continuous attention over the last two decades

concerns the optimal transfer, i.e. determination of the thrust direction

for reaching a prescribed final orbit from a given initial orbit with
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minimum fuel consumption. Early contributions dealing with various

96,97 98,99

7, Me]bourneloo’]O]

aspects of this problem are by Lawden , Faulders

102

and Hinz Of particular interest is the conclusion by Lawden that the

optimal thrust orientation approximately bisects the tangential and circum-

ferential directions. A comprehensive analytical solution for transfer be-

103 104

tween two close ellipses is presented by Edelbaum Breakwell et al.

studied the problem of reaching a specified energy level with minimum fuel

expenditure. An higher-order analytical treatment of the Tinearized equa-

. 105
tions for near-circular transfer is presented by McIntyre et al. . A

review of the early papers on optimal trajectories is given by Be111%6 1

the Russian literature, the development of the maximum principle by Pontrya-

107

gin and Boltyanskii has stimulated many researchers in the space sciences.

108'1]0, who consider

Of particular interest is the work by Lebedev and others
the minimum-time transfer between coplanar circular orbits by means of a so-
lar sail: a numerical iteration method is employed to sojve a system of
differential equations with partly initial, partly final boundary conditions.
An interesting attempt to find an approximate solution to the problem of
transfer between two coplanar orbits in minimum time using the method of

111

averaging is presented by Avramchuk et al. ; unfortunately, only the ad-

joint equations are amenable to closed-form solutions. The book by Grod-
zovskii et a1.1]2 provides a somewhat outdated, but exhaustive treatment on
various aspects of small-thrust and optimal trajectories. -More recently,

13 has presented a comprehensive treatment of the minimum-fuel trans-

Brusch
fer from an initial circular to a prescribed coplanar, elliptic orbit. An
analytical solution to the optimal (in the sense of least fuel) escape from

a circular orbit in terms of a straightforward perturbation solution was
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114

given by Anthony et al. An essentially similar problem is treated more

115 by means of the two-variable expansion pko—

accurately by Jacobson et al.
cedure. They discovered small (order € = thrust/gravity) oscillatory terms
in the near-tangential optimal control strategy. These results were sub-

116

stantiated by Reidelhuber et al. using a different formulation. An ex-

haustive review (up to 1965) of papers using optimal control theory with
emphasis on flight mechanics is given by Paiewonsky]]7.

| Unfortunately, analytical (approximate) solutions to optimal control
problems may be derived in very Timited situations only. Therefore, many
numerical methods have been developed, specifically for this purpose. A
very attractive protedure is the steepest-ascent (or gradient) method in-

volving a generalization of a problem in the ordinary calculus, viz. the

maximization of a function subject to constraints. An heuristic description

of the method is given by Ke11ey]]8

119

, while a general treatment is presented

120

by Bryson et al. and Campbell et al.

1.3 Scope and Objective of the Study

The literature survey indicates that many aspects of solar radiation
induced orbital perturbations have been investigated. Resonance conditions
leading to large amplitude variations of the orbital elements are well esta-

2,20,22 11,13,14

blished Short-term valid analytical results are available

and approximate representations for the Tong-term behavior are explored for

15,24,26,43 or Tow-inclination orbits?’.

certain special cases: near-circular
The available solutions are based upon a model where.the force is taken
along the radiation, which is justified only when the satellite can be

modelled as a sphere with homogeneous surface characteristics or as a plate
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kept normal to the radiation.

In the present investigation an attempt is made to obtain Tong-term
valid analytical solutions for the orbital elements with no restrictions
imposed on the initial orbit and the apparent motion of the sun accounted for.
Because of the successful application of the two-variable expansion procedure
in small-thrust trajectories83, it is felt that an approach along these' Tines
should deserve attention in the present situation. In addition to providing
valuable information as to the long-term evolution of orbits in general, a
comprehensive understanding of the qualitative aspects of solar radiation
effects would be a valuable guide in exploring control strategies for desired
orbital changes. Furthermore, the analysis is based upon a realistic force
model allowing for diffuse and/or specular reflection as well as for re-emis-
sion of absorbed radiation. In some cases, the 1nVestigat10n is extended to
include arbitrarily shaped satellite structures modelled by a number of flat
surface elements of homogeneous material characteristics. Other applications
such as space platforms modelled as a flat plate in an arbitrary fixed orien-
tation with‘respect to the earth as well as those kept fixed to inertial space
are also studied.

It should be mentioned that the effects of other perturbation forces
are ignored in the present investigation. For an eguatorial geosynchronous
orbit, the magnitude of the major perturbing forces as compared with the local

gravity force are of the following order:

i) solar radiation force ot 4 (A/m) 10'5 ;
ii) out-of-plane oblateness force: 107 3
i1i)in-plane oblateness force . 4 x 1070 ;
iv) Tunar attraction force . 1.5 x107° ;

v) solar attraction force . 7x10° ;
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Hence, for satellites with a 1arge A/m ratio (e.g., the SSPS and particularly
the solar sail), radiation forces would be the predominant source of pertur-
bations. However, for spacecrafts with a relatively small A/m ratio (e.g.,
communications satellites) the traditional perturbations, especially those
due to the.earth's oblateness, need to be incorporated. Except in the reso-
nance cases, the wellknown secular effects caused by the classical perturba-
tions could simply be added to the results obtained for the solar radiation
induced orbital changes in the first-order approximation.

Another part of the thesis is concerned with the development of control
strategies, involving the rotation of solar pahe]s attached to the main body,
thereby producing variations in both the magnitude and direction of the resul-
ting solar radiation force. Considerable attention is given to on-off swit-
ching programs, whefe the p1éte is aligned with the radiation during the off-
phase and normal to the radiation, generating the largest possible force, 1in
the on-phase. The optimal Tocations for‘switching are determined for a few
specific objectives such as maximum increase in total energy. While on-off
switching may lead to substantial changes in the major axis, it is not neces-
sarily the optima] strategy when time-varying orientations are also taken
into consideration. Therefore, the determination of the optimal control
strategy for maximization of the major axis after one revolution is underta-
ken and fhe éffectiveness of this control program 1s.compared with that of
the switching strategies. This investigation is of relevance for raising a
solar sail from a geocentric to a heliocentric or escape trajectofy.

Subsequently, the orbital behavior of satellites in an heliocentric
orbit is studied in detail. The resulting orbital behavior of a spacecraft

in a fixed orientation to the local frame is explored in terms of exact so-
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Tutions (specific initial conditions) or approximate Tong-term valid repre-
sentations (general case). The potential of out—of-p]ane spiral transfer
trajectories is assessed. The results are mainly of interest for inter-
planetary solar sail missions. While some aspects of interplanetary tfans—

108']]0, no studies on optimal escape are reported.

fer have been explored
Therefore, time-varying optimal control strategies are investigated with the
objective to maximize the increase in total energy and angular momentum per
revolution. 1In addition, fhese results may be used for assessing the rela-
tive effectiveness of constant sail settings.

A schematic overview of the plan of study is presented in Figures

1-2 a and b.



SOLAR RADTIATION PRESSURFE INDUCED PERTURBATIONS AND CONTROL OF SATELLITE ORBITS

eocentric orbits . . -, next
& , heliocentric orbits
- l e c— —e w— page
[ arbitrary eccentricity j- . 1
orbital perturbations . orbital control
I arbitrary l
satellite t1
normal to . - ime
, late orientation
- - body radiation P dependent
plate orientation T T
, arbitrary 1iotd
] arbitrary orbital ecliptic
normal to arbitrary fixed angle plane V switching at plane
radiation fixed angle - to radiation 1
I to local frame| |or inertial I 1. ! 1 1
c - ; half-vearlyl|velocity sun-—
ecliptic | space switching to SETYE y 1 . apogee/
I control planel||switching ||normal tojleart perigee
’ —r of orbit ' radiation]]line
- shadow I
]
effect 1 —1 -1 i I
arbitrary arbitrary line ineli- control offcontrol }control
orbital orbital of nation eccentri~ jof major|of latus E——
plane plane nodes city axis rectum 4 £
« numerical _ T T T T - zation of
I major axis

integration

+« short-term analytical
»rectification/iteration

s« two-variable expansion

eshort-term analytical.

erectification/iteration

s short-term analytical

e rectification/iteration
and/or
» two~variable expansion

s numerical steepest-
ascent iteration

Chapter 2

Chapter 3

Chapter 4

Figure 1-2 Schematic overview of the plan of study: (a) geocentric orbits

6l




arbitrary fixed
to local frame

' heliocentric orbits

plate orientation

time dependent

arbitrary

arbitrary
orbital
plane

initial
. velocity

prescribed

vector
arbitrary
orbital
plane
out-of-plane in-plane
transfer transfer

by switching

|

orbit
evolution

» exact analytical

solutions:

conic sections,
logarithmic spirals

sshort-term analytical

*» two-variable expansion

optimal control of
sail orientation

maximization of
total energy
per revolution

1

maximization of
angular momentum
per revolution

s numerical

t

= approximate analytical

e numerical steepest-
ascent iteration

*» approximate
‘analytical

Chapt

er 5

Chapter 6

Figure 1-2

Schematic overview of the plan of study: (b) heliocentric orbits

0¢



21

2. SOLAR RADIATION EFFECTS UPON AN ORBIT IN THE ECLIPTIC PLANE

2.1 Preliminary Remarks

In this chapter, the perturbations of a satellite orbit in the
ecliptic plane subjected to solar radiation forces are studied. Long-
term valid approximate solutions for the orbital elements are derived,
by means of the two-variable expansion procedure while accounting for
the apparent motion of the sun around the earth. The results are
compared with those obtained by repeated rectification of the short-
term valid solutions obtained by a straightforward perturbation method
and their relative accuracies assessed using a double precision
numerical integration routine. In the analysis, the solar radiation
force is taken along the direction of the sun-earth line which is
considered to be coincident with the sun-satellite line, since for
a geocentric orbit the relative distance of a satellite to the
earth in comparison with that to the.sun can be ignored. .’

Taking the resulting radiation force along the sun-earth
Tine is justified in the case of a satellite with large solar panels
kept normal to the incident radiation for maximum on-board power
production, e.g., communications satellites or the proposed SEPS
_mentioned before. A spherical satellite with homogeneous surface
characteristics would also experience a solar radiation force along

the sun-earth line.
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TwQ cases -of practical importance are studied separately:
first, the nondimensional solar radiation force parameter referred to
as 'solar parameter' (e) is taken to be of the same order of magnitude
as the 'frequency parameter' (8) designating relative motiqn of the
sun in the ecliptic plane. This assumption is valid for satellites
with a relatively large area/mass ratio, e.g., Echo I (A/m = 10 mz/kg)

or the proposed ssps!2t,122,123

In the other case, the solar
parameter £ is taken to be of the order 62 representing a class of
satellites with relatively small so]af radiation perﬁurbations like
the CTs %%,

By expressing the perturbation equations in terms of p=ecosw
and g =esinw, the singularity in w for e=0 is avoided making the
analysis uniformly valid for both circular and e]Tiptica] osculating
orbits. A comprehensive picture of the long-term orbital perturba-
tions is provided by polar plots (p, g-diagrams) for the eccentricity
and argument of the perigee. - The effect of the earth's shadow is
investigated separately. Note that this influence is likely to be
strongest for orbits in the ecliptic plane since the saté11{fe is now
eclipsed in every revolution. | Both short and Tong-term anaTytiEa]
representations have been established.

The qualitative and quantitative understanding of long-
term perturbations of orbits in the ecliptic plane may serve as a

guide 1in predicting the behavior of near-ecliptic, including

equatorial, orbits. Furthermore, the analysis yields considerable



insight into the nature and range of validity of the approximate
methods, thus providing a basis for establishing a rational approach

for the following chapters.

2.2 General Formulation of the Solar Radiation Force

A realistic model for the solar radiation force acting upon
a satellite has been provided by Georgevic39 in his detailed analysis
of the radiation force upon the Mariner 9 spacecraft. In case of a
satellite in a geocentric orbit up to the geosynchronous aTtitude,
fluctuations in the local value of the solar constant are almost
entirely due to the seasonal variations in the solar constant itself,
caused by the eccentricity of the earth's orbit. These variations
amount to about 3.4% from the mean value and are ignored. The solar
radiation force upon an arbitrarily shaped satellite in a geocentric

orbit can be represented in the following general form:

F = ZS',JJ ]gﬁ-gf l{O]Hé-F[OZ-Fp(Ep°E§)] gh} A, - .. (2.1)

where gh is the unit-normal to the surface element dA and A denotes the

total effective surface area of the satellite illuminated by the sun.

S

The absolute sign around Eﬁ * U~ is necessary to ensure that the force

has a non-negative component along the direction of the radiation, g?.
The material parameters 01s Op and p may vary over the surface area
and are determined by the reflectivity and emissivity of the surface

element dA :

23



o=y s oy = (1-p-1)/2 5 0, = [py(1-p,) +x(1-p; -1 V3

where o denotes the total fraction of the incident photons which are
reflected, Py the portion of these photons which are reflected
specularly, and t the portion of photons transmitted through the
surface. The constant « depends upon the temperatures and emissiv-
ities of the front and back sides of the surface element:

€ = lep Th-e T/ (e, Tht e TH
Varijations in the material parameters with time due to déterioration
of the surface or due to changes in temperature fall outside the
scope of the present investigation.

The following. table gives an idea of the va]ue§ of the

material constants for a few typical spacecraft components39

125,

including

aluminum-coated mylar solar sails

Table 2.1 Material Parameters for a Few Typical Sﬁacecraft
Components

Components 0y 0y T ec ey K o 0y d, o]

Solar panel} 0.21 1.00 0 0.81 0.81 0 {0.21 0.39 0 0.60

High-gain
Antenna | 0.30 0.67 0 0.84 0.06 0.87{0.20 0.40 0.23 0.83

Solar Sail | 0.88 0.94 0 0.05 0.60 -0.85|0.83 0.09 -0.02 | 0.90




In most practical cases the total surface area can be divided
into components representing different parts of the satellite, each
with its own homogeneous material parameters, so fhat the integral of
Equation (2.1) can be written as a summation over the variqus compon-
ents. In many applications, most notably solar sail and SSPS, the
magnitude of the force ubon one component, namely the sail and solar
_pane]s, is so predominant over the sum of the forces upon all other
components that, effectively, the satellite can be modelled as a plate

with homogeneous material characteristics.

2.3 Plate Normal to Radjation

For satellites which can be effectively modelled as a homogen-

eous plate normal to the incident radiation, the solar radiation force

of Equation (2.1) can be simplified as F=20 S'A g? , since gﬁ

and gé
. coincide for that case. It is interesting that the force upon a
spherical satellite with homogeneous surface characteristics, takes on
the same form with oemm]to(1—TN2+2[m(1-p2f+Mj-p]=TH/9
as obtained by integration over the spherical surface. In this case
A represents the cross-sectional area of the sphere.

In an inertial referencé frame fixed to the earth, the
equations of motion in polar coordinates r and v become:

2 -u/r? - 20 S'(A/m)cos[v-n(v)] ;

P - rv

rV+ 2rv

25

20 S'(A/m)sin[v-—n(v)] . (2.3)
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The solar aspect angle n(v) denotes the sun's position, Figure 2-1. For

the analysis to be valid over a long term, the relative motion of
the sun needs to be taken into account: since the sun completes one
revolution per year, i.e. 1/8 = 365.2422 days, it follows that

n{v) = 6t(v)(u/ai)1/2‘+ Noo . (2.4)

It is convenient to nondimensionalize the equations by introducing

the reference length and time units ar==42,241 km anq (ai/p)]/2 =1/(2n)
day. Forces are nondimensionalized through ai/(um) and become,
mathematically, indistinguishable from accelerations. The form of
Equations (2.3) is not convenient for finding analytical solutions,
therefore, a transformation u=1/r as in the derivation of the
classical Keplerian equations is performed, and the angle v is taken

as independent varijable (v = h/rz) leading to the (nondimensional)
equations:

u" (v) +u(v) = 1/8(v) +e {COSEv-n(v)] ~u' (v)sin[v - n(v) 7/
uz(v) }/ﬁ(v) 5

2€ﬁn[v-MvH/U%v);

=

~~
<

N
H

170%7%) 0 ) = stlv) +

—+

—

<

~—
|

00
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The solar parameter e is defined as

e = 25" (A/m)(a%/u) = 4.0 x 107° (A/m)

= N

It should be noted that the parameter ¢ is taken equal to unity (i.e.,
p=1, T=0) in the present analysis. A different value of o can
readily be accomhodated by modifying the parameter e accordingly.
Since the solar parameter is very small, it may be justified
to postulate so1qt10ns for the radial distance in the form of conic
sections with slowly changing.orbital elements, i.e. u(v) is

written in the form:
u(v) = [T1+p(v)cosv+q(v)sinv]/e(v) . (2.6)

where p (= ecosw), g (= esinw) and & are slowly varying orbital
elements. At any instant V=V, the 'ellipse' with elements Py = p(v]),
4 and Q] is referred to as the osculating ellipse. This orbit may

be 1nterpreted'as the é111ptic trajectory that would be fo]]gwed by
the satellite if the perturbation force were to vanish at v=v

1

]1n

Equations (2.5). It can also be understood that both the radius and

instantaneously.  This can be seen by taking e=0 for v > v

velocity vectors at any point in the actual (perturbed) trajectory
are identical to those of the osculating ellipse corresponding to

that point. This is referred to as the condition of osculation
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and can be stated mathematically as u'(v) =(-psinv+qgcosv)/%. The
second-order equation for u(v) can now be replaced by an equivalent
system of two first-order equations for p(v) and q(v). Thus, the complete

system of equations to be studied becomes:

p'(v) = 522{;-sinh+-(p-+cosv)sin(v-—n)/(14—pcosv-+qsinv }/

(T+pcosv + gsin v)2 ;

q'(v) = 522{ cosn+ (g+sinv) sin(\)—n)/(1+pcosv+qs1’n\))}/
(1+pwsv+qﬁnvﬁ ;
)3

' (v) = 282_351'n(\)-n)/(1+pcosv+qs1’n\)

b

3/2/(1+pcosv+qs1'n.\))2 ) I (2.7)

n'(v) = 82
It should be noted that the solar aspect angle n(v) is treated here as
a quasi-orbital element. The system of equations (2.7) will be.
written'symbo1{ca11y as a'(v) = € f(a,v) and arbitrary initial conditions
a(0) = 35p> With the vector a containing the pertinent orbital elements.

Note that f is periodic in the variable v .

2.3.1 Short-term valid approximations

A short-term valid approximation for the orbital elements

can readily be obtained by means of an expansion of the elements in
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terms of a simple perturbation series. In case ¢ is of the same order

of magnitude as &, the expansion may be taken in the form

On substitution of this serieé into Equations (2.7), it follows

(v) = a0 and integration of the first-order equations leads

y |
a;(v) = fo f laggotl dr

or explicitly:

b = 280 { cos ngg [pgByy (v) +Bap(v) /21 = sinngg Lhyy(v)

+ pOO A3'| (V) + A30(V) /2 + A32(V) / 2]} s

a v = 22, { c0s g [Ayg (V) +agq By (V) + Agg(v) / 2= Ag, (v)/2]

- sinngg lagg Ay (V) + 83,0 /21 }

N 3 .
z](v) = 2200-{ 831(v) CoS ngg - A3](v) sinngg } ,

2 )3/2

n(v) = el - egg) ™" Ay(v) . (2.9)
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where the integrals Ank(v) and Bnk(v), which depend'on Pog and 50>
are defined and evaluated in Appendix I. With these and after con-
siderabie amount of algebraic manipulation, the orbital elements can

be expressed explicitly in terms of initial conditions as follows:

vV

3

) 5 “cos(v - nOO)
a](v) = -2a { )} .

2
00 00 .
1 +p00cosv-+qoos1nv

2 . . \
(1 —eOO)s1n\)s1n(v-nOO)

: 2 2
pi(v) = agn(1-eq4)/2 {
1 00 00 -(1+p00cosv+qoos1'nv)2

. 3 (poosm\)-qoocosv)smnoO iv

-3 A]O(v)sinnoo}

)

1 +p00cosv-+qoosin v |O

o2 .
(1 -ezs)cosvsin(v-n,,)
qy(v) = -ago(1 -ego)/Z { = o

. 2
(1 +p00c05\)+qoos1nv)

(pOOsin\z—qOOcosv)cosnOO N

b

0

+ 3

- 3A.(v)cosn }
1 +p00cosv-+qoosinv 10 00

' (Pnn SINV = qpnn COS V) y |V
m) = e-ed Ve ) - 2 00 }l ..(2.10)
' 1 +p00cosxr+qoosinv 0
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It is seen that after one orbit (v==2ﬂ); only the terms containing
A]O(v) do not vanish.

While these results provide a reasonable approxfmation to the
orbital elements of the osculating ellipse at any point durjng the
first few revolutions, it is of particular interest to consider the
orbital elements at v = 2n.v The terms which vanish at v = 27 can
then be identified as short-term periodic contributions and are of
secondary importance in the long-term behavior of the orbital
elements. Writing Ag:= € a (2m), one obtains by substituting v =2n

into the integrals of Equations (2.10):

2 2 \1/2 .

Ap = —3ne:a00(1 -eOO) / sin gy

- 2 2 \1/2 .
Aq 3ws:aoo(] -eOO) Cos ngy

_ 3 2 \1/2 . .
AL = 6wea00(1-e00) [poosmnoo-qoocosnooj ;

- 3/2 .
An 21TcSaOO ;
at o= 3meall? {(4+p.)cos nant 6 Gun Sinna b +0(e2 ). ... (2.11)

| 00 Poo’ %% "o ™ © 900 00 007" :

Here the expression for At is obtained by expanding the elements in

/2

the integrand r2/2 for small €50 The change in semi-major axis

can be expressed in terms of the results of Equations (2.11) yielding
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Aa =0, so that the major axis and hence the total energy return to
their original values after one revolution in the first-order theory:'
the energy added while moving away from the sun is balanced by that
removed dufing the motion towards the sun. In case éOO* O,tthe
changes in eccentricity and argument of the perigee can also be

expressed in terms of Equations (2.11):

3 ) /2. .
Ae = (pooAp'*qOOAq)/eOO = —3n'ea00(1 —eOO) s1n(noo-w00),
2 2 .1/2
Aw = (pOOAq -qOOAp)/e00 = 3ﬂiiago(] —eOO) / cos(nOO wOO)/eOO

It is evident that these first-order solutions represent a
valid approximation only for a limited duration as the efements tend to
move away from their reference values with the passage'of time.
Eventually, the solution becomes unreliable since it is unable to
distinguish 1ong-period1c from truly secular trends. In the follow-
ing sections, a few approaches for obtaining long-term approximate

solutions are studied.



2.3.2 Rectification/iteration procedure

The short-term solutions obtained in the previous subsection
can be employed in a scheme to extend the 1nter9a1 of validity of these
solutions. Thereto, a certain interval overvwhich the first-order
straightforward perturbation solutions provide sufficiently accurate
approximations is selected, say (0, vf). For convenience, but not
out of necessity, Ve is usually taken as 2m. At v = Ve s the first-
order changes in the elements are added to the initial values, i.e.,

rectification of the initial conditions:

é-(\)1’)r‘ect. = 3 * 89-(Vf)

Subsequently, the adjusted value g(vf) is treated as the initial

rect.
condition for the next interval, say (vf, va), and again the first-
order changes in g(v) at v =2vf are calculated and the elements are
updated. All elements as well as the solar aspect angle are treated
in this manner and the procedufe can be repeated as often as needed.
Eventually, hoWever, neglected second-order influences wi]]AéffeCt the
desired accuracy adversely.

Mathematically, the procedure is described as follows: the
system of differential equations a'(v) = ef(a,v) and a(0) =.a,, is

written in integral form:

34

.13)
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Application of the first-order straightforward perturbation expansion
proposed in Equations (2.9) over the interval [kvf,(k‘+1)vf],
k=0,1,2,-+-, leads to the result:

(k+1)\)f

a [k 1)v,] = f flalkvg),] dr . N (2.14)

k\)f

Thus, the rectification/iteration procedure can be interpreted as replac-

ing the integral in Equation (2.13) at \)==Nvf by the modified Riemann

sum:
N-1 (k+])\)f
altvg) = agp+el | flakvg),7] dr
k=0 'kvf
N
= apte L o0Gv) . L (2.15)
51

Successive calculation of gq(jvf) >, J=1,2,+++,N by means of Equation
(2.14) leads to a piecewise constant approximation for the slowly
varying elements. The accuracy of the approximation depends on the

choice of the number of intervals N or the ]éngth of the interval v

-
By taking N sufficiently large or Ve sufficiently small, any desired
accuracy can be attained. In fact, in the limit N->= (or vf->0),

the approximation becomes the exact solution. Consequently, accuracies

exceeding those obtained by second and higher-order expansions without
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rectification can be attained by simply choosing a sufficiently sma11
interval before rectification of the first-order results (Lubowe]26).
Apart from providing physical insight through interpretation of the
first-order results, the rectification/iteration procedure is perfectly
suited for execution by a digital computer at a considerable saving

in cost and effort as compared to a numerical integration of the

original system of equations.

2.4 Two-Variable Expansion Procedure

A relatively recent, but extremely popular method for establish-
ing long-term valid asymptotic representations for the solutions of a
set of differential equations is the two-variable expansion method87-93.
It involves the introduction of a so-called slow variable which is
to be treated as distinctly independent of the regd]ar independent
variable, transforming ordinary into partial differential equations in
the two independent variables. Tne solution of this transformed
problem will contain certain indeterminate functions of the slow
variable to be ascertained by postulating the mathematical censtraint
that the problem possesses a consistent asymptotic expansion uniformly |
valid for times of the order of the reciprocal of the small parameter.
Physically, the imposed constraint may be interpreted as the
elimination of secular terms.

Formally, the orbital elements (including the solar aspect

angle) are expanded in asymptotic series:



av) = 1 o (2.
J=0
with the slow variable v defined by v=ev. Substituting these series

into the perturbation equations a'(v) = ef(a,v) and collecting terms
of like order in e yields ago/av:=0 for the zeroth-order elements so
that gO==gO(v) with gO(O) =3 - The unknown slowly varying functions

gO(G) will be determined by requiring that the first-order contributions
a
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_J(v,ﬁ) remain bounded as a function of v (elimination of secular terms).

This condition is equivalent (at least in the prob]ems considered here)
to the mathematical constraint mentioned before. The first-order

equations are of the following general form:

3a da
e 0 f )], a(0) =0 5 . (2
Z — L8 £ i
oV dv
with the functions f periodic in the variable v. A convenient way

of separating the terms leading to unbounded contributions from those
producing bounded results is by expanding the right-hand-side of
Equation (2.17) in terms of Fourier series with slowly varying

coefficients,
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It should be realized that the slow variable v is treated as independent
of v during the integrations (cf. the method of averaging where the
slowly changing mean variables are considered constants during integra-
tion).  The vector functions EP[QO(G)] and gﬁ[go(c)] can be evaluated
explicitly in an obvious and straightforward manner in terms of the
Fourier coefficients aﬂk, bgk’ Cgk and dgk , Appendix II. From Equation
(2.18) it is apparent that gq(v,ﬁ) will be bounded (in fact, periodic)

-as a function of v if the following relation for QO(D) is satisfied:

£ lag(9),7] de/(em) I (2.19)

QW‘AE}
n
“_ﬁ
[en]
—-h

meaning that the slow rate of change of gO(G) must equal the averaged
(over one revolution) value of the right-hand-side of the perturbation
equations. The similarity of the zeroth-order two-variable results,
Equation (2.19) with those from first-order averaging is quite apparent:
in fact, the equation obtained from first-order averaging is identical
to Equation (2.19). It is interesting to compare the zeroth-order
terms obtéined by the two-variable method with the results from

rectification/iteration, written as

2m

Loy (21) - 29(0)1/ (2n) - JO flagg.tl du/(2n) . ... (2.20)
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Comparing the expressions in Equations (2.19) and (2.20), one can
interpret gO(G) in terms of the rectification procedure as portraying
a continual rectification (i.e., interval before rectification is
infinitesimal) of the first-order results while the periodic
dependence of f upon v has been eliminated by averaging. (Note
that the left-hand-side of Equations (2.19) and (2.20) may be inter-
preted as a differential and difference quotient, respecfive]y.) Conse-
quently, the function 20(6) will generally bé a better approximation
to the exact solution than the results obtained by repeated
rectification of the first-order straightforward perfurbations when
the interval of rectification is vf==2w . However, in order to
improve upon a certain accuracy, one needs to solve for the higher-
order equations in gq(v,ﬁ) etc., in case of the two-variable expan-
sion procedure, while the accuracy of the rectification/iteration
method can be enhanced by simply choosing a smaller interval before
rectificetion of the first-order straightforﬁard perturbation
results.

The first-order solutions gq(v,ﬁ) may be obtained immediately

by integration of the remainder of Equation (2.18), yielding:

(1/3) { Aj(go)sinjv— Bj(go)cos J'v} ta,v)

o
—
<
<
N
1l
N o~ 8

where the as yet unknown functions éq(G) must be determined from a con-

straint (similar as the one upon gq) upon the behavior of gz(v,ﬁ).



40

The second-order equations can be obtained from a' =ef(§,v) by means

of a Taylor expansion of f(&a,v) around a=ay, leading to

3§2 ) agq Bfi

v oV * aaj - =1

Again, a Fourier series expansion of the right-hand-side .is usedAfor the
separation of the bounded and unbounded contributions and differential
equations for éq(G) are obtained when requiring that a, be bounded as
a function of v. This process can be continued fof higher orders,
if desired, but usually the contributions beyond the first-order can
not be expressed in analytical form. Therefore, a sensible policy
would consist of attempting to solve for the lower-order two-variable
results and, if unsuccessful, or in case a better accuracy is needed,
employing the rectification/iteration procedure with a sufficiently
small interval Ve . Note that Ve must be smaller than 2w if the
accuracy of the zeroth-order two-variable terms is to be exceeded.

A fortunate consequence of the similarities of the )
expressions in Equations (2.19) and (2.20) is that it allows us to
write down, automatically, the zeroth-order two-variable equations,
once the first-order straightforward solutions at v =27 are known

(and vice versa).



41

2.4.1 Long-term valid results, case € =0(8)

In this section the two;variab1e expansion method will be
applied to obtain long-term valid approximations for the orbital elements.
First, the case where the solar parameter is of the same order of magni-
tude as the frequency parameter of the sun in the ecliptic plane is
considered.

Applying the resulting expression of Equation (2.19), yields

the following zeroth-order equations:

dp
559- = zg {’cosno [pgBsy(2m) + Byy(2m)/2] - sinng [Ay(2m)
+ Py (21) + Agg(2m) /2 + Agy(2n)/2] (2 s

dag 5

53— = 20-{cosnO‘[A20(2ﬂ) + qOB3](2ﬂ) + A30(2ﬂ)/2
- A32(2W)/2] - S1nn0[q0A3] (ZTT) + 832(2“)/2] }/(ZTT) 5

diy ,
;R;_ = % { 83](2W)COS g - A3](2ﬂ)sinrk)} /T
dno

c (1 - pg - <1(2))3/2 A20(2ﬂ)/(2ﬂ) 5 . (2.23)
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with initial conditions gO(O) = 350 The similarity in the structure
of Equations (2.23) and the short-term results of Equations (2.10)

with v=27m is evident indeed, as explained in the previous subsection.
The integrals Ank(Zn) and Bnk(Zn) now contain the slowly varying
zeroth-order elements pO(G), qO(G), etc. Upon calculation and éub—
stitution of the integrals in Equations (2.23), a coupled nonlinear

system of differential equations is obtained:

polv) = - -3— aéo (1 - eg)”2 sinng 3

ap(®) = yaby (1-eh)Pcosng

,26(5) = 3 ago (1 - eg)]/z'[posinrb-qocosrbj )

™ = e (2.24)
where eg equa]s pg + qS . It is seen that nO(G) = n00-+c5 , denoting

that the long-term behavior of the solar aspect angle is a linear
function of the slow variable v in fhe zeroth-order approximation. Also
it follows readily from Equations (2.24) that aO(G) = 3y (write
a0==20/(1 -eé)), so that the major axis and total energy remain con-
served in the Tong run in this approximation. Another integral can

" be derived quite readily from the system of Equations (2.24):

2

c[]-eO(G)]1/2'+3aSOyO(\3)/2 = A = constant.  ..... (2.25)
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Introducing auxiliary orbital elements x and y defined by

X - sinn -cosn p = e Sin(n-w)J . (2.26)
y cosn sinn | g cos(n - w)

so that x2-+y2==p2-+q2==e2 , it follows from Equations (2.24) that xO(O)

and yO(G) satisfy the following set of equations

X (9) + b2 xg(0) = 0,
.yO (\)) +tC xo(\)) = 0 s i (2 27)
with initial conditions x, =x x'(0) =c¢ -3a2 (1 -e2 )]/2/2 and
0~ %00 ° Yoo ~ %00 00

yO(O) = Yoo - The constants X00 and Yoo can be expressed in terms of
the usual orbital elements according to Equation (2.26). The solutions
xO(G) and yO(O) can readily be determined from Equations (2.27)

2_\2)1/2

xO(v), = (b sin (bG-Fap)/ b,

yo(®) = [c(b? -2 1/2 ¢os (bs-+ap)-+3agox/2]/ be ..., (2.28)

The elements pO(G) and qo(ﬁ) become

2_,2)1/2

po(ﬁ) = (b [sin(bG-Fap)sinn04-ccos(b6-+ap)cosno/b]/b

2 2
+ 3Aa00cosn0/(2b y o,
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2

ao(®) = (6732 coos(bi+a) 510 no/b - in(b3 + o ) *

*cosnoj/b-;3moomno/(2b2) L (2.29)

The conventional e]ements~e0, 20 and W can be determined from the

results of Equations (2.28) and (2.29)
-y 3.2 ,.2 .2,1/2 - 2. .4Y 1/2
eg(¥) = {1- e - 3 ady(b” - 18 Zeos (b9 + ) 12/b } 2

3.2

- 2 .2\1/2
Ro(v) = g [ca —§-a00(b -2)

cos(bY +0Lp)]2/b4 :

2_,2)1/2

0g(3) = np(¥) - arcsin { (b sin (b0 + o)/ [be, (5)] }

The result for wO(G) is meaningful only if eO(Q) does not vanish. If
€00 is small it is recommended to calculate the argument of the perigee

from the relation
wg(v) = arctan [q,(V) /py(V)]
If A < ¢, the argument of the arcsin function can be shown to pass

through one and the arcsin function to increase continuously. In

case A > ¢, the argument remains less than one and the arcsin function
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keeps on oscillating between slowly changing upper and lower bounds.

Physically, the two cases correspond to the major axis oscillating

around its initial orientation or following the motion of the sun,

respectively.

After the determination of the zeroth-order resu]ts, the first-

order terms can be obtained by explicit calculation of the Fourier co-

‘efficients AQ(QO) and §q(gO) of Equation (2.21) for the present case.

It follows that:

Py {v,V)

qaq(vsv)

2 I . ' ' . ‘
fgcosng L (1/3) {[pobg] +b%2/2]STHJV+ [p0d§1
.

+ dg2/2](1 - CcOS jv)} - 28 sinno jz](l/j){[ago

+ pyag +agy/ 2+ad, / 2] singv+ [y +pocyy + c3g/2

~

+e3p/21(1-cos ) |+ By (3) s

(1/3) { [a)q +agb3; +a3y/2 - a3,/2 1sin jv
: |

2
SLOcosnO

H ~18

J

Jovadd +cd o cd 19101 - cos
+ [c20-+q0d3]-+c30/2-c32/2 1(1 -cos Jv)}



2 . . . i3 .
- 4 sinng Y (1/73) { [qoa%]~+b%2/2]s1n3v
Jj=1

+ [qOC%‘I +d%2/2](] - COS J\)) } + a](\_)) 3

a](v,v) = ZaSO/(1 -eS)

I o~18

(1/3) [COS U {[qgago+b%1 Isin jv
j=1

+[q0cg0+ d%]](1 —cosjv)} -sinno {[poago

+_a%]] sinjv-k[pocgo-+c%]](1 - CO0S jv) }] + 5](5) :

n](v,v) = | c(1 -e8)3/2 Y (1/3) { agosinjv-+cgo(1 -cogjxﬁ }

+' E_I (\)) e,

The Fourier coefficients a%k s bgk ,etc. are defined and calculated in
Appendix II and are functions of Pos 99> etc. The unkhown 'slow!

functions 5](5), a](ﬁ), etc. are to be determined from the boundedness
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constraint imposed upon the second-order terms and vanish for v =0.

For small €y the Fourier coefficients are proportional to (-eo)j and
converge very rapidly so that usually only the first few terms need

to be carried. The periodic terms in Equations (2.31) stay within a
band of a width of order & around the long-term zeroth—OrdeF solutions
a,(v) .
of order € for v up to order 1/e, i.e., up to about 800 days for

The secular contributions of éq(ﬁ) in Equations (2.31) are
e = 0.0002.

2.4.2 Long-term valid results, case € = 0(62)

In the case that the solar parameter ¢ is of comparable magni-

tude with 62 ,» a similar analysis as in the previous subsection can be
followed when the slow variable is taken as v = §v and the elements are
expanded in series of powers of § rather than . The zeroth-order

- = - >y R3/2 .
results become Po = Poo? 99 = 9gp> 20-200 and no(\))--a00 v +-n00, while

the first-order results are

~y L 3.2 2 \1/2
p] (V) T 9 aOO (] 'eoo) ‘[COS no - COsS nooj / C-I )
q](;) - %_ago (1 _680)1/2 [s1nn0-s1nnoo]/ c1
- .3 2 .1/2
(V) =-3a5,(1.- egy)’ [pOO (gosno-cosnoo)

+-q00(sin Ny - sin noO)] /'c]' .
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n(v) = 2227 (1/5) {a‘gosinj\) + (1 - cos jv)} e (2.32)
51 |

- J J
with ang and % dependent on 900’ 990° etc. In the usua]tmanner,
expressions for e](G) and w](ﬁ) can be written down, while for small €0
w becomes indeterminate and the argument of the perigee needs to be

found from Py and qq :
+ v) 2
6q‘l(\)) + 0(s )

~ 2
pOO + 6p](V) + 0(6 )

-~ q
w](v) = arctan 00

From this relation and Equations (2.32), it follows that for small v
and e00==0;vw](5) = Ngg t /2, reaffirming the well-known fact that for
an initially circular orbit, the perigee will appear 90° ahead of the

sun-earth Tine.

2.5 Discussion'of Results

To assess the validity of the approximate approaches de-
veloped in the previous sections, the results are compared with those
from a numerical integration of the perturbation equations. The
parameters involved were takeh corresponding to situations of
practical interest: an Echo-type saté]]jte and the SSPS representing

the case ¢ = 0(6) and the CTS illustrating the situation ¢ =o(62).



The initial orbital geometry and solar aspect angle were varied system-

atically.

2.5.1 Case € = 0(8)

From the results derived in Section 2.4.1, it is apparent that
eO(Q) and 20(5) change periodically with period

3/2

agh?/(be) = 1/(6

+ 982

In any case, this period is less than one year and smaller the €, the
closer it approaches one year, which is indeed the period in the case
g = 0(62) as found in Section 2.4.2. Also, the period increases with

decreasing a (Figure 2-2),  For .example, taking apg =1 and

00
e=0.0002, i.e., A/n|=101n2/kg and 0=0.5, which is the case for an
SSPS with p =« = 1 = 0 or a spherical satellite with p=1 and 1=0,
the fesu]ting period of the 1ong;term perturbations is approximately
363 days.

The extrema of eO(O) and Qo(v) can be determined from -
Equations (2.30). Limiting X to the physically meaningful domain

%—aéo < A <b, the eccentricity e (V) lies between

_ 2 ' 2 2\1/2 2
€0.max " [3Aa00/2 + c(b"-A%)"""]1/b°,

at

v = (2nm - ap)/ (be)

aOO/ 4)]/2 vdays . (2.
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_ 2 2 \2y1/2 2
e0.min " 3 a00/2-c(b -A) /bc
at
v = [(2n+1) ﬂ-—ap] / (be) , .. (2.
with n = 0,1,2,+++ and v > 0. It is seen that for X = b, the minimum
and maximum values are the same. Hence, eq and 20 remain constant:
eo(v) = €y and zo(v) = 250 - If A=c, the trajectory will become

circular at some point as e 0.

O,min: }
Figure 2-3 shows the accuracy of the zeroth-order two-variable

solution and the rectification/iteration (with interval vf=¥2ﬂ) results

in comparison with a double precision Runge-Kutta integration routine.

The approximate resu1fs proved to be quite effective and their com-

parison is purposely Timited to one case: e00==0.5 and Ny =™ - The

two-variable expansion procedure predicts the eccentricify correctly to

three decimal places, while the rectffication/iteration method yields

results correct to two places. The comparisons were made at v=2mn,

n=1,2,+++,1200 . It should be noted that the first-order qhanges

in time are 1nc6rporated in the rectification/iteration procedure,

whereas time is taken proportional to v in the zeroth-order two-

variable expansion results. As can be expected, the value of thev

initial solar aspect angle has no influence on the resulting behavior

of the eccentricity when e00==0, curve (d). The fluctuations in

eO(G) can be as large as 0.2, curves (b) and (d). However, a suit-

able combination of initial parameters may also result in very

small perturbations as indicated by curve (c). In fact, in the
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Figure 2-3 Long-term variations in eccentricity as predicted by the three
methods
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Timiting case of n00==0 and e00==0.109 the variations in eO(G) disappeared
completely (case A =b). '

Figure 2-4 shows the predictions of the approximafe methods
as to the behavior of the semi-latus rectum and argument of the
perigee for A<c. In case A>c, the precession of the méjor axis
is described by a large Tinear secular variation with a small amplitude
periodic motion superimposed on it as shown in Figure 2-5. For A=c,
the argument of perigee shows periodic discontinuities with a jump
through 180°. Note also that in the case x=b (i.e., eOO; 0.109 and
n00==0 here), the periodic component disappears completely leaving
only the linear variation: the major axis keeps on pointing towards
the sun, while the eccentricity remains constant. In the case XA <c,the
axis oscillates between slowly moving upper and lower bouhds.

Figure 2-6 shows the very small long-periodic variations in
the semi-major ax1§ and the osculating periods for a few values of
the initial solar aspect ahg]e obtained from the numerical integration
routine. Note that the analytical methods predict that a(v) remains con-
stant in the first-order, so that the variations depicted here are
second-order effects.

The orbital elements affected most severely by solar
radiation forces are eccentricity, semi-latus rectum and argument
of the perigee. Since the semi-major axis is not affected in the first-
order, the changes in semi-latus rectum can be expressed in terms of
those of the osculating eccentricity. Complete visualization of the _

first-order changes in orbital geometry is thus provided by the two
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Figure 2-4 Long-term behavior of semi-latus rectum and argument of the
perigee
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elements e and w (or p and gq). Complete comprehension of the nature
of the orbital perturbations could be obtained from plots showing

the ]bng-term'behavior of e and w for various initial conditions and
so]ér aspect angles. One attractive possibility is depicting e and
w as a polar plot in the p,g-plane with e the length and w fhe
argument of the eccéntricity vector e. It can be observed from
Equations (2.24) that the slope of the polar plot as a function of v

is determined from

499
dp

3/2

00 ¥t t m/2) . .....(2.36)

(v) = tan (S a
0

Considering, for illustration, an orbit with initia]]y'w00:=0 (so that
the polar plot starts out from the g=0 axis) it follows that initially the
angle at which the.tangent to the curve q = qo(po) is iﬁc]ined to the p axis
equals n00-+ /2. As v advances the tangent rotates slowly in an anti-
clockwise manner. At v = 2n/(ce), i.e. after slightly less than
one year, the tangent returns to its original value indicating
that the polar plot describes anti-clockwise 1ons in the p,g-plane,
Figures 2-7a-d. This type of plots allows an easy visualization of
the orientation of the major axis as well as the eccentricity of the
orbit over a long duration.

The initial configuration is best characterized by the
parameter A as defined by the initial orbital elements and solar

aspect angle. It can be shown that ¢ > 3a80/2 provided that
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1/2
00

ful range of A is limited to 3ago/2 <A <b . It is informative to

£ < 28/(3a,h°), which covers all practical cases. The physically use-

study a few special cases:

(a) A =c : This case defines the locus of initial conditions for
which the énsuing trajectory will have a circular osculating orbit at
some time within one year: the corresponding polar plots pass through
the origin p=qgq=0. Figure 2-7a presents a few examples belonging
to this class. For any g < 3ca80/ b2 (=0.220 in the example), an
appropriate value Ngp can be found so that the resu]tjng curve goes
through the origin. It can be seen that the argument of the perigee

Jjumps through 180° at the origin.

(b) 3ago/2 <A <c: Here, the polar plots do not pass through nor

encircle the origin and the eccentricity oscillates between the values

and e determined in Equations (2.35). The curves in

e .
O,min 0,max

Figures 2-7b qualitatively indicate the behavior for e00==0.5.' While
going around ‘in the anti-clockwise manner, a slow precession in the
é]ockwise sense is superimposed on the motion and the resu]t.fs a
trajectory describing loops between the two concentric circles of
radii e and e

As pointed out before, the period of oscil-

O,min 0,max’

Tation in eccentricity is close to but less than one year. Interest-
ing is the behavior of argument of the perigee, w: after one complete
cycle of eo(ﬁ), w has decreased by -2m(1-c/b), amounting to a

precession of -2.14° per year in the example. As the factor 1-c/b
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increases with increasing € , the precession will be faster for larger
€. Note also that the periodic variations in w become smaller for

increasing €no° physically, the major axis is more 'rigid' for larger

eOO .

(c) X -= 3aSO/ 2 : This case represents the locus of initial conditions

which eventually yield a parabolic trajectory (e=1). However, since the
semi-major remains constant in the first-order, e =1 would imply that the
perigee coincides with the center of attraction. Obviously, the life

of the satellite would end Tong before e=1 is reached. (In fact, for
ang = 1, e=0.84 will be the maximum physically meaningful eccentricity).

The minimum eccentricity to reach an escape trajectory is
2

- 4 2 _ -
eO,min"(C -9a00/4)/b , for Nog = T - In the example, eO,min"O'976’
hence the locus x==3a80/2 is not attainable.

(d) c<x<b: For these values of X the variation of w is pre-

dominantly Tlinear in character, increasing continuous1y whi]e-the
curves in the polar plot circle around the origin, Figure 2-7d. From
the definition of A, the critefion for encirclement of the origin

(c < A) can be expressed in terms of the initial conditions:

2 2 2 2
egg < 3apg ccos(noo-woo)/[c t 9, cos (

Note that for 90°_i_n00-w00_5 270° the loci can not enclose the origin.

noo-woo)/4] ..... (2.37
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(e) A =b : This interesting case represents only one possible initial
configuration, namely, €00 = 3a80/(2b), i.e. 0.7109 1in the example,
and Moo = Yoo - The.resu1t1ng eccentricity does not change at all,
i.e. ey(V) = e,y throughout while w(¥)=ny(V) , so that the major
axis keeps on pointing towards the sun and the shape of the:orbit re-
mains unchanged. The corresponding polar plot consists of a circle
of radius Sago/(Zb) around the origin, Figure 2-7c. The case 1is
interesting since a large region in space can be traversed by a
satellite satisfying A =b without altering the shape of the orbit.
The annular region is contained by the two concentric circles whosé
radii are the perigee and apogee heights aOO(]-eOO) and aOO(]-FeOO),
respectively. ~In the example, the distance between the circles
amounts to more than 9,200 km.

The actual orbit based on the result,
ro(v,v) = 20(5)/ Dl+p0(6)cosv-kq0(5)sin\)],

is depicted, for a typical case, in Figure 2-8 1illustrating the differ-
ences in the osculating ellipses at 90 day intervals: the wide band

of spatial region reached by the satellite is quite apparent. This

is significant in designing a mission aimed at scientific measurements

over a vast area in -space.

Since the short-term solutions are also known (Section 2.3.1):
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with r](v) readily expressed in terms of 21, Pys and d; by expansion,
it is interesting to show the actual path of the satellite during its
first revolution. This has been done in Figure 2-9 for an exaggerated
A/m ratio of 1,000 m2/kg : note that the point of minimum distance to
earth occurs about 90° ahead of the sun-earth line.

Finally, Toci of A = constant are plotted in the €00° Moo
plane (Figure 2-10). They can be used to advantage in assessing the

bounds of eccentricity as e and e depend on A only for given

0, max O,min
e and 350 (Equations 2.35). Obviously, the Towest and highest
~values of €ng On each curve correspond to the limiting values eO,max
and e9. min belonging to that Tlocus. Thus, for any combination of

initial eccentricity and solar aspect angle, the corresponding extremes
of eccentricity of the ensuing trajectory can be assessed immediately.
This should prove useful during the preliminary planning of a mission
as it provides ‘a convenient way of determining whether a given sate-
1Tite will dip into the free molecular environment or not. As can

be expected, the point A =.b moves to the right for larger ¢ with
corresponding increase in fluctuations of the eccentricity. The area
designated by A > ¢ corresponds with po]ar plots encircling the origin
and the locus X = ¢ denotes initial conditions with polar plots

passing through the origin.
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Figure 2-9 Actual path of satellite during first revolution (for exaggerated
solar parameter, e =0.02)
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2.5.2 Case e =0(8%)

It is apparent here that e](G) is periodic with a period of

exactly one year and the range of eccentricity is given by

172,

®,max ~ €1,min -~ 3€%0 /% >
‘regardless of initial solar aspect angle. For a satellite with the
parameters of CTS (i.e. € = 1.4 x 10'6, cy = 5.4) and ay =1 the
3

variation in eccentricity is 1.50x10 ° . In terms of perigee distance,
this result translates to a maximum fluctuation-of some 63 km in six
months. In Figure 2f11, the polar pTots for €00 =0 and 0.1 are shown
for a few.values of Moo The slope of the polar plots turns out to

be exaCt]y the same as in the previous section so that the influence

of initial solar aspect angle presented qualitatively in Figures 2-7
remains valid for this case. The periodic variation in w is over

180° in Figure 2-1la but is reduced to the order 10'2

in Figure 2-11b
where e00==0.1 . A polar plot in the form of a circle around the
origin as in the previous‘section, can a]sd be found here, namely for
- 2 2 4. .2\1/2
eOO-36aOO/(4c]r+9a006 ) e,
and n00==0. In these circumstances, the major axis follows the

ie. 0.75x10°3 in the CTS example,

motion of the sun. interesting]y, the formula for ey, found here

is identical to the expression of the previous section. If

3

eOO-<66a80/(4c$-+9agoéa)]/2, j.e. 1.50x 10~ here, the plots enclose

the origin or pass'through it provided appropriate values for the

67



e,.=0 Ago=1 5 Noo=0 Noo=TT eoo=O'1
G :137 X10— _______ T] ='n' - _3'!-1'
x10~3 Lso=0 °=/5  Moo=37)H XTO_S
o} - B
| : 3 .
q i €=150x10 3 149 x1o"3 q
— L
| { \————- <<-—-/ e \ | O
or 1 ] \ /)
g \ : ;
-1} N N / 1
~2 e NS =
~_~_‘__ -:
a 1 ’
! @ 1 1 , @ ! -2
) -1 0 1 x1073 0.099 011 0.101 0102
p P
Figure 2-11 Representative polar plots for the Communications Technology Satellite: o

(a) egg = 0;

(b) € = 0.1
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solar aspect angle are taken. For €00 larger than this value, the
orbit will always remain elliptic. |

| In conclusion, the results here are qualitatively consistent
with those of the previous section with two différences: (i) absence

of the slow clockwise precession of the polar plot; (ii) amp11tude of
variation in eccentricity does not depend on initial solar aspect

angle.

2.6 Evaluation of the Shadow Effects

The existénce of a shadow region, making the solar radiation
forces vanish wheneQer the sun as seen from the satellite is eclipsed
by the earth, presents a major obstacle for obtaining realistic long-
term solutions for the orbital elements. It is generally assumed
that the umbra and penumbra regions may well be replaced by an
equivalent simple circular cylinder of radius Re and axis along the
sun-earth line. The space within this cylinder is taken to be
completely dark with an abrupt transition to full illumination out-
side the shadow region. The points of entry and exit of the shadow
cyIinder satisfy a quartic equation in terms of the cosine of the
true anomaly. In general, its solution is too unwieldy for practical
use and numerical methods (e.g., successivé substitution) is to be
preferred. A few special cases exist, however, where the points

of entry and exit appear in a more tractable form, e.g. when the
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instantaneous orbit is circular or when the orbit lies in the ecliptic
plane.

In the present section, the influence of the shadow upon
both the short- and long-term results for the orbital elements derived
in the previous sectfons for ecliptic orbits. are determined. AnA
1ntefesting approximate relationship linking the small Tong-term
variations in thé semi-major axis to the behavior of the auxiliary
element y=ecos (n-w) is estab]ished. While these analytical
results match quite well with those found by repeated short-interval
rectification and iteration over the first 100 revoTutions; relatively
large discrepancies arise for longer spans of time. These must be
attributed to second-order effects. As to the behavior of the
eccentricity, it is found that the no-shadow results are correct to

at least two decimals over the first year.

2.6.1 Short-term shadow effects

In case of a prograde* orbit in the ecliptic plane, the points
of entry (v]) and exit (vz) of the shadow cylinder are determined

by the equations,

il
=

r(vy) sin (vy -n) , nEW/2 <vp<ntTo,

r(vy) sin(v,-n) = =R, . m+m < v, <n+3m/2 . .....(2.38)

* Prograde means that the motion of the satellite is in the same direction
as that of the sun with respect to the earth.
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Introduction of the shadow angles B] and 62 (Figure 2-1) through
B] =n+T- vy and 82 =V, -(n+m), and substitution of these angles
into Equation (2.38) leads to two quadratic equations from which
B] and B, can be expressed in terms of y = n-w and s = Re/zz

s(1 tessiny) - escos x (1 - SZiZeS s1’nx+e2s‘2)]/2

“R = arcsin
1,2 1 + 2es sin x + e2 52

Note that for a circu]ér orbit, this result simplifies to,B] =82 =arcsin s and
v]’2=r1+n‘¥ arcsin s .

A first-order approximation for the changes in the orbital elements
can be obtained by integration of the perturbation equations as in
Section 2.3.1, while excluding the cdntributions over the shadow 1ntervé1
I.. Only the resulting change in semi-major axis can be expressed

S

in a tractable form in case of an orbit of arbitrary eccentricity:

2

1-5s -2essiwx-+e252)]/2

+ ezssinzx } / (1 -ezcoszx) s (2.40)

where the integral over the full cycle (0,27) vanishes. The result
indicates that the major axis remains unaffected when the sun lies
on the major axis or the orbit is circular. Note that the change in

the major axis is maximal for y = + /2 , i.e. when the radiation
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is normal to the axis. For instance, taking e=0.1, a=1 and €= 0.0002,
it follows that Aamax equals 1.2 x 10—5 amounting to 0.5km and a change

in the period of about 1.5 sec per revolution. In general, the major
axis increases (decreases) if the point of entry is farther (closer)

to the sun than the point of exit, Which is evident from pﬁysica1 conside-
rations.  For small eccentricity, the results for the orbital elements

p and g can be written expliéitly:

Ap = -ea2 sinn { 37r-CS-2es[(1 —52) cos>(+s2 siny/tann]+ O(ez)} s
_ 2 2 2 . 2
Aq = ea“ cosn { 3Tr-CS-2es[(1 -s%) cosy-s"siny tann]+ 0(e”) } ,
Aa = 4ea3essinx { ]/(1-52)]/2 + ecosy + O(ez) } s e (2.41)

where the expansion of Equation (2.40) is also added. Note that the
contribution represented by the factor 3w originates from the
integration over the full cycle and the abbreviation CS stands for

s(1-52)172,

3 arcsin (s) - In case e#0, the changes in eccentric-

ity and argument of the perigee are obtained quite readily from

Equations (2.41):
2 . 2
Ae = -ga” siny { 3m - C, - 2escosy ¥ 0(e”) } R

eAw = ea2 COS X { 3 = Cs- 2es [(1 -52) cosx+szsinxtanx]

+O(e2)} . R, (2.42)
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It is interesting that for a circular orbit, the shadow effect upon the
elements p, q, e and w can be accounted for by simply multiplying the
'no-shadow' results by a factor 1 -CS/(3ﬂ) . For a geosynchronous
orbit, this factor is approximately 0.97 so that the shadow effect

reduces the 'no-shadow' perturbations in e and w by about three percent.

2.6.2 Long-term shadow effects

The long-term fmp]ications of the shadow effects upon the
orbital elements will be assessed both ana]ytica]]y'(for near-circular
orbits) and semi-analytically by numerical rectification and iteration
of the short-term results. The interval before rectification is,
usually, taken as n/2 and, for assessing the accuracy of the results,

a few runs with an interval of m/3 are performed. Since the short-
term (i.e., within one revolution) perturbations in the semi-major

axis could be larger than the net long-term changes, care must be

taken for proper separation of the latter effects from the former ones.
The elements at'vk= 2mk, k=1,2,3,--- are taken as representative

for the 1ong-térm trend. The upcoming points of entry and exit of

the shadow region are reassessed after each interval by substituting
the most recent orbital elements into Equations (2.39). It is esti-
mated that a rectification interval of mw/2 predicts the semi-major

axis accurately to four decimal places and the elements e and w to

at least two decimals uniformly over a 400 day time-span. These accura-
cies were established by means of a comparison with results obtained by

rectification after w/3 radians.



For near-circular orbits, it is possible to describe the
long-term evolution of the orbital elements analytically by means of
the two-variable expansion procedure. Provided the initial posf—
tion of the sun is close to the perigee axis, the eccentricity will
not become much greater than its initial value €00 and a génera1
upper limit for eO(G) may be taken e00-+3c€a001/2/(1-P9a00c§/4)
regardless of R These results have been estab]ished'in the
previous sections disregarding the shadow effects. Presuming that
this influence does not affect the order of magnitude of the
perturbations in eccentricity, the aforementioned value may be used
for assessing whether the eccentricity will remain sufficiently smé]]
throughout or not. (This is mainly determined by €5 and the
parameter c€==e/d).

As in Section 2.4, the orbital elements (including n) are
expanded in asymptotic series in v and v . While the zeroth-order
results readily lead to 3y = gO(G), the first-order equations can

be written symbolically as

74

0. da ~
a\)] = - d__o + E_ (203 \)) )
v
on dn
o9 3/2 Y
55 = - = +a /[CE(]4'DOCOS\)+QO sinv)°] , ..... (2.43)

‘where F equals f except in the interval 15(6) where F vanishes. In

the present order of approximation, the shadow interval lies between
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\)](é_o) = m+ no - B](Eo) s

and

™+ ng * By(ag) -

The sTowly varying shadow angles B](go) and Bz(go) are idehtica] in
structure as in Equation (2.39) except for the fact that e, s and X

are now all dependent upon v . The vector-function Eﬂgo,v) , though
discontinuous, is 2ﬂ—periodit in the fast variable v and can, in
principle at least, be expanded in Fourier series with coefficients
depending on the slow variable v. In practice, héwever,vthese series
converge much slower than those for the corresponding'contiﬁuous vector-
function f(go,v) discussed in Section 2.4. Nevertheless, represen-
tative trends are illustrated by the zeroth-order solutions. The

requirement that first-order terms 2y remain bounded in the variable

v, leads to the f011owfng constraints (Equations 2.43),

36 = [ Elag®), dacs(em L (2.44)

Performing the integrations, a set of coupled differential equations
in terms of 39> P and g is obtained. This system can readily be

reduced to the following set of equations in 3gs Xg = eOsir1xO and

Yo = €pCos Xy ¢
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3

2)(3) = 2Ry alxg/m [ag+yglad -2 /212 -r D) 2 hoted)
x'O(Q) Yo 0/ /c - 3ag [n-arcsin(Re/aO)]/(Zﬂ).
2
-Re(ag-Rz)]/z/(Zﬂ)'+Re(ag-Rg)yO/(naO)+ O(eo) )
o) = - xgas/fre + Roxg/(mag) +o(ed) L .. (2.45)

for uniformly small eccentricity. As mentioned before, the maximum
eccentricity will be of the order Co for a near-circular initial orbit.
For consistency, terms of the order c.eq and cg must be treated as eg.
The following expression for aO(G) is obtained from Equations (2.45)
when terms of the orders eg s (Re/aoo)4 and higher ére ignored:

ag(3) = agy-Rec, a 862 (2+R/a00)[y0() Yoollm e (2.46)

Utilizing this result, the equations for X0 and Yo can be written as

vy (9) +aggyg(9)/e, = 3agp®/2-Reage? Doy (@)/m

(V) = -y /e, . (2.47)

where terms of order eS and (Re/aoo)3 have been neglected. These



equations are solved readily ,

Yol¥) = g agh? [3/2-Ry/(magg) 101 - cos(a;9)]

* ¥gg cos [Q]\')) - Xg sin (Q]\')) R

xO(v) = { Yoo - Ce aééz [3/2&-Re/(ﬂa00)] } sin (915)

+ Xgq C€OS (Q]v) s (2.48)

showing that Yo and_xO are periodic with a slightly modified frequency
as compared to the no-shadow case. The parameter £ stands for:

3/2

o, = agh? 1+R e /(mag, /)12 /¢

€

It has been checked that the éo1ut10ns of Equations (2.46) and (2.48)

after substitution of Re==0 are identical to the expansions for small

€g of the Tong-term no-shadow solutions of Section 2.4.1.

2.6.3 Discussion of results

The validity of the approximate long-term analytical solution

has been assessed by comparing the results with those from repeated

77
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rectification and iteration of the first-order short-term solutions.
Figure 2-12 shows the comparison for a satellite with €=0.0002 in a
geosynchronous orbit with initial eccentricity of O.]land solar aspect
angle n00=?ﬂ/2 over a 400 day timefspan. The solid line represents
the most accurate result obtained by rectification after not more .

than m/3 radians where all orbfta1 elements, the solar aspect angle

as well as the next point of entry of the shadow region are reassessed.
By taking 1afger intervals before rectification, the maximum discrepancy
in semi-major axis éompared to the'so]id‘]ine is found to be 2 x]O_4

for an interval of w and 5 x]O'5 for an interval of /2 (not shown)

over a 400 day period. Also shown in Figure 2-12a is the result

obtained by rectification after a full revolution (2m). The differ-

ence between this and the aforementioned approximations is quite

notable and must be attributed to the fact that second-order contri-
butions are not picked up in this case. The importance of higher—'
order terms may be evaluated by considering the no-shadow situation, where
in the first-order theory, the semi-major axis returns to its

original value after one complete cycle. Precise numerfca] inte-
gration, however, reveals Variations in the semi-major axis up to

an amp]itudelof almost 10'3

in the long run due to higher order
influences (Figure 2-6). When the effect of the shadow is in-
corporated in the analysis, the first-order changes in semi-major
axis are caused by a difference in the distance of the points of

entry and exit with respect to the sun. The change in semi-major
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axis over one revolution amounts to approximately 4ee Rea2 siny
(Equations 2.41). Since Re and e are small and e as well as sinyare
often oscillatory in the Tong run, it is not surprising that the total
of the higher-order effects (enhanced by the addition of “interrupted'
periodié terms) can build up to and even exceed the magnitdde of the
first-order shadow effect.

The dotted curve in Figure 2-12a - represents the long-term
approximate analytical solution aO(C) of Equation (2.46). Since only
the first-order shadow effect is incorporated in this solution, it is
evident that it is closer to the 2m-rectification approximation than
to the actua]ASo1ution. Nevertheless, the analytical solution provides
a reasonable prediction for the behavior of the semi-major axis over
the first half year.

The main objective in determining thé perturbations of the
semi-major axis is to evaluate chaﬁges in the orbital period which
is of interest for assessing the drift in the overhead position of the
satellite. A change in the semi-major axis of 0.002 (after about
200 days) translates to a change in the -orbital period of more than four
minutes and a drift in overhead position of 120 km per revolution at geo-

synchronous altitude. Figure 2-12b shows the comparison for the
eccentricity in the same circumstances. In contrast to the behavior of the
semi-major axis, the eccentricity exhibits fairly large perturbations

in the first-order 'no-shadow theory' so that in comparison the shadow
affects the resulting perturbations only in a minor way (due to the factor

1 - Cs/(3w) in the short-term Equations 2.41). Comparing the results
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with those obtained by neg]ecting the shadow effect, it is found that,
in the case of eccentricity, the influence of the shadow does not show up
in the first two decimal places over a 400 day time-span. Nevertheless, its
effect is more dominant than that of the higher-order terms in eccentricity
which are not felt up to three decimal places over 1200 days.

When studying the observed perigee distances and orbital
periods of the Echo I, Pageos and 1963-30D satellites, Meeus49 con-
jectured the following rule: "The orbital period (and thus also the
semi-major axis) diminishes when the orbit becomes more eccentric and
increases when the eccentricity is decreasing." The resu]té depicted
in Figure 2-12 seem to obey this rule quite well. However, from
Equations (2.46) a slightly modified rule can be formulated: "the
changes in the major axis due to the shadow effect are proportional
to the behavior of the slowly varying function -ecos{n- w)." In the
case where the major axis follows the sun's motion, which happens
if €00 is sufffcient]y small and the jnitia] solar aspect angle is
close to the perigee axis, n-w will be nearly constant and the

two rules are consistent.

2.7 Concluding Remarks

The important conclusions of the present chapter may be

summarized as follows:
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Cohsidering a satellite in the ecliptic plane and taking
the solar radiation force along the direction of radiation,
both short and long-term valid approximations for the
orbital elements are derived using a straightforward and

a two-variable perturbation method, respectively. '

The two-variable expansion procedure is.found convenient
for derivfng closed-form analytical results for the long-
term orbital perturbations. The accuracy of the zeroth-
order solutions compares favorably with those obtained by
repeated rectification of the short-term solutions.
Numerical results successfully assess their relative

accuracies.

The results show that the variations in eccentricity and
semi-latus rectum are periodic, while the argument of the
perigee may show a secular trend in certain cases. The

semi-major axis remains constant in the first-order.

Polar plots provide an attractive and concise visualization
of the long-term orbital perturbations. Loci of initial
conditions resulting in specified extremes of eccentricity

should prove useful in preliminary mission studies.

The effect of the shadow both in the short-term and the
long-term context has been assessed. It induces small

first-order changes in the semi-major axis, while affecting
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the already Targe variations in eccentricity only in a

minor way.

An analytical approximation for the long-term behavior

of the major axis is derived for near-circular orbits

using the two-variable expansion procedure. Unfortunately,
its accuracy degenerates after about half a year due to

the build-up of second-order effects.

A simple rule linking the long-term perturbations in the
semi-major axis to a function depending on eécentricity,
so]ar'aspect angle and argument of the perigee is esta-
blished, which may be u;efu] for estimating chahges in the
orbital period. This rule appears to be consistent with the

observed satellite motion.
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3. SOLAR RADIATION INDUCED PERTURBATIONS OF AN ARBITRARY GEOCENTRIC ORBIT

The analysis of the previous chapter is now extended to satellites
in an arbitrary orbital plane. Another generalization concerns the
~direction of the solar radiation force: whereas, up to now, this force
was taken along the direction of the radiation, in later sections of this
chapter, more general configurations are studied, e.g. spacecrafts
modelled as a plate in an arbitrary, fixed orientation with respect to
the local reference frame. Also the orbital behavior of a satellite
in an arbitrary fixed orientation to the radiation or inertial space is
explored. The latter situations are of considerable practical interest
since they serve as accurate models for satellites with solar arrays
(e.g., CTS and SSPS) and instrumentation for deep-space studies (e.g.,
orbiting telescope). Finally, the analysis is extended to an
arbitrarily shaped satellite which may require a number of flat plates

for accurate modelling.

3.1 Derivation of the Perturbation Equations

A researcher in orbital mechanics finds himself surrounded by
a multitude of procedures for analyzing perturbations of trajectories.
Most of these methods originate with the great mathematicians of the

last two centuries like Lagrange, Delaunay, Gauss and Hansen in their
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~analyses of planetary motion. The 'space age' has produced many
new and revised techniques for dealing with situationé not pre-
viously encountered, e.g. air drag. The choice of a particular
formulation depends upon'the specific nature and objective of the work,
the perturbation forces involved and the availability of a digital
computer as well as personal preferences. In the present case, a
formulation is desired which is suitable for solar radiation forces,
remains valid for all eccentricities and 1nc1inatiohs, is conducive to
geometrical interpretation and, moreover, is capable of producing
closed-form long-term solutions or short-term results fit for
rectification and iteration. Probably the most popular approach is
the one based on Lagrange's planetary equations using an anomaly,
referred to the osculating ellipse, as independent variable. These
equations contain singularities for e=0 and i =0, which can be
removed by suitable transformations. Unfortunately, tﬁe equations
rarely yield closed-form solutions for an orbit of arbitrary
eccentricity due to the intricate coupling of the motion of the
orbital plane (described by i and Q) and the in-plane perturbations
(2,e,w).

In his search for an effective algorithm for computing
(manually!) planetary ephemerides, Hansen in the previous century
employed a frame of 'ideal' coordinate axes fixed to the instantan-

eous orbital p}ane]27.

The in-plane equations of perturbed motion
in this frame take on a form, identical to the equations for planar

perturbations alone, thereby effecting an uncoupling of the motion



in the osculating plane from the out-of-plane orbital changes. This
approach retains some of the desirable features, like easy geometric
visualization, inherent in the osculating elements. Furthermore, a

uniquely qualified candidate to serve as independent variable emerges

in-a natural manner.

In order to convey a physical appreciation for the qualitative

effects of the components of the solar radiation force, a simple
direct derivation of the perturbation equations based on Newtonfs
second law is presented. These equations can also be obtained frdm
Lagrange's planetary equations by 1ntroduct16n of new variables and
algebraic manipulations.

The motion of a sate]]fte in the inertial X,Y,Z frame, Figure
3-1, under the-inf1uence of gravitational attraction of the primary
(having radially symmetric mass distribution) and an arbitrary
perturbation force F can be described by Newton's second law (in

nondimensional form):

where the radius vector r(t) denotes the position of the satellite
measured from the origin at the center of the primary. It is well-
known that in absence of perturbation forces, i.e. wheh F =20, the
resulting motion of the satellite r(t) describes a coni; section

in a fixed plane formed by the initial position r(0) and velocity
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vector r(0). The five elements a, e, w, Q and i are constants
determined by the 1nftia1 conditions, and the true anomaly ¢ is implicitly.
related to time through Kepler's equation. To study effects of the
perturbation force F, a moving local frame of reference X,y,z is
introduced, Figure 3-1. At each instant, the x axis points along
the radial direction, the y axis 1lies in the orbital plane such that the
velocity vector has a positive component along this axis, and the
z axis is normal to the osculating plane. The force F is expanded
4n components (FX, Ey, FZ) along the local referencg frame. The
influence of FX and Fy is limited to an in-plane rate of change in
velocity and leaves the orientation of the orbital plane unaffected,
while FZ causes an out-of-plane rotation of the velocity vector with-
out affecting its magnitude. The compqnent FZ generates a torque
rxF k = -rFZi along the negative y axis causing the vector h to rotate
in the y,z plane with instantaneous angular rate yr = (rFZ/h)i_a1ong
the x‘axis. Thus, the effect of FZ is interpreted as imparting a
rotation yr of the orbital plane about the instantaneous radial
direction (gyroscopic effect). ’

The motion of the local x,y,z frame in the inertial X,Y,Z
frame is completely described by the sum, W, of the angular rates
gr and v, where é_points along the instantaneous z axis and represents
the rotation of the radius vector 1n.the osculating plane. It must

be emphasized that the angle v is measured from a fixed axis in the

instantaneous orbital plane indicated by Xq» Figure 3-1. The angular
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momentum vector h, defined by r x v, is equal to r x (Wxr) = rzbg_,

which is, interestingly, of the same form as that for the planar
perturbations. |

The motion of the x,y,z frame can also be described in terms of
the Eulerian angles @, i and ¢ . The precession Q_is taken along the
inertia] Z-axis, the nutation (i)' along the line of nodes, i.e. the
intersection of the oscu]ating and the X,Y planes, and the spin b |

along the z axis. A comparison of the components of the angular

velocities along the x,y,z axes leads to:

wx = rFZ/h = (i) cos¢ + Q sinicos ¢
wy =0 = (i) sin¢ - Qsinicos¢d
Wo=3=h/rf=§¢ +dcosi . L. (3.2)

The first two equations yield the standard Lagrange's perturbation

equations for the orientation of the orbital plane: -

—
e
~—
il

rFZcosqo/h ;

<
i

rFZﬁn¢/Msinﬂ ) . (3.3)

Taking into account the motion of the x,y,z frame, described by the rota-
tion vector W, with respect to inertial space, the components of Newton's

law along the local x,y, and z axes become:
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Note that the first two equations do not contain the out-of-plane compon-

ent of the perturbation force FZ. It is natural to employ the quasi-

angle v as independent variable since v = h/r2 is free of any out-of-

plane elements. Using the transformation u=1/r as in the previous

chapter and rewriting the out-of-plane Equations (3.3) in terms of the

angle v Teads to the following complete system of equations:

W) Hulv) = 1/h = (R uu)/(ue)

2" (v) . 2Fy2u3 E

it(v) = F, cos(v-y) / (ad)

2 (v) = F, sin(v-9)/ (w¥sini)

v (v) = Q'cosi

£ (v) =Yy o,

where p = v-¢ . It may be noted that the role of angular momentum is

taken over by the semi-latus rectum £ = h2.

The elements 2, i and Q
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correspond to Lagrénge's osculating elements and can be interpreted

as such. As in the planar case, u is written as (T+pcosv+qsinv)/4
where p, q and & are slowly varying osculating elements. The dependencé
of % upon v is given in the second relation of Equations (3.5) while

the condition of osculation, i.e., u'(v)=(-psinv+qgcosv)/2, leads

to a set of first-order equations for p(v) and g(v) replacing the

equation for u" in Equations (3.5),

p'(v) = {(FX- Fyu'/u) sinv + 2Fy Cos v }/ u2 ,
1 - 1 . . 2 .
q'(v) = { -(FX--Ey u'/u) cosv + 2Eys1n\)} / u s e (3.6)
with u and u' to be expressed in terms of p, q, 2 and v. The usual

form u=(1+ecos6)/%, where 6 is the true anomaly, is retained since
B =¢-w-= V- with w denoting w+ Y. It can now be seen that
p=ecoswand g = esinw. (Note that for an ecliptic orbit (i=0),
there is no distinction between w and w nor between ¢ and v.) Conse-
quently, the familiar orbital elements e and w can be derived readily
from the formulation abovef e= (p2+q2)]/2 and w==arctan(n/p) -y .
The auxiliary orbital elements p and g can be 1nterpretedlgeometric—
ally as the projections of the eccentricity vector e (pointing

towards the instantaneous perigee position) upon the X0 and Yo

coordinate axes, Figure 3-1.
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3.2 Determination of the Solar Radiation Force

The perturbation force F with its components F_, Fy and F,
along the‘local frame of reference is evaluated next for a fairly
general satellite configuration consisting of n components. Each of
these has its own material properties Ok Toks Pio k=],2,:..,n defined in
Equations (2.2), its orientation designated by the normal EE and an
effective f]atisurface area Ak. A curved surface component may be
replaced by an equivalent flat area with material characteristics

determined by integration. The total (nondimensional) solar radiation

force acting upon the satellite becomes (Equation 2.1):

Two Eulerian rotations o and Bk are sufficient to describe an arbitrary
spatial orientation of the surface element Ak with respect to the
bscu]ating b]ane, Figure 3-2b.  The normal EE points along the negative
X axis when a = Bk==0. The rotation o about the z axis takes Ak

to the required line of intersection with the orbital p]ane‘énd, sub-
sequently, Bk along the ¥y axis adjusts the éurface element Ak to the
desired inclination with the orbital plane so that EE points along

the Xo axis.  The components of the vectors gﬂ fn the x,y,z frame

are written symbolically as Eﬂzzuﬂxil+ uEy:1+-uEZk . Also the direction

of the radiation g? is expanded along the local coordinate frame:

_ .S . s .. S
uo= w4 ug(v) 3+ u, (V) k.

The components of the solar radiation force can now be written as
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where Ak has been nondimensionalized by A, the sum of all surface elements
illuminated by the sun, and U, denotes the dot-product (EE'!ES)r It
should be noted that, in general, EE are functions of v since the

satellite may experience librational motion in the local reference

frame.

3.3 Plate Normal to Radiation

In many present and proposed applications, large sojar panels are
employed for power production either for on-board requirements (e.g.
SEPS) or for external needs (e.g. SSPS). The efficiency in terms of
power production per unit area of solar cells will be largest if the
panels are kept normal to the radiation. This orientation is |

n_. s

achieved when u” =u> or in terms of the Eulerian control angles

o and B :



-v+y+arctan [cos i tann] ,

[
—
<
]

w0
1}

where the modified solar aspect angle n stands for n-Q. The result-
ing radiation force becomes F = e;g? for this case (taking o=1).

As mehtioned before, this model can also serve for calculating pertur-
bations of a spherical satellite with homogeneous surface properties,
Figure 3-2a. Since the perturbation equations are written in terméA
of the independent variable v', the explicit dependence of the
components of F and thus g§ upon v is needed:

uS(v) = -[cosz(i/Z)cos(v-w-ﬂ)-Fsinz(i/Z)cos(v-w-+ﬂ)] ;

X

uS(v) = cos2(i/2)sin(v - p-n) +sin2(i/2)sin(v-w-n)

The complete set of equations, including the motion of the sun (repre-

sented by the angular rate §) can be found from the pre]iminaries in

Section 3.1:

3 s
2er 3
€ uy

o
<
1l

erz{uisin\)+u; [cosv+(p+cosv)r/el}

o
—
<
—
1]
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arcsin [sinisin n] , L (3.9)

u =sinisinn . T (3.10)



q'(v) = er {-u)s(coswu; [sinv+(q+sinv) r/el} ;

it(v) = ers uz cos(v-y) /8

Q' (v) = ers u; sin(v-y)/(2sini)

p'(v) = Q'(v) cos i

n'(v) = 8 rl / M2 | ' 7....(3.11)

Here the radius r stands for r(v) = 2/(1+pcosv+qsinv). It must be
emphasized that the sfngu]arities in the equations for @ and ¢ for i=0
cancel out since uz also contains a term sini. In this chapter

€ will be taken of the same order of magnitude as & and the system of

Equations (3.11) will be referred to.as a'(v) =€ f (a,v).

3.3.1 Short-term analysis

~As in Section 2.3.1 for the ecliptic case, initially valid
approximations can be obtained by expanding the elements in simple
perturbation series, Equation (2.8). After substitution of these
series into the system of Equations (3.11) it follows that
go(v) = 35 and the following f1r§t—order results are found upon

integration:
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B0 = 2gg gy () - IR

109 = 205KglpggB3 (9) + By,(v)/2] - Kyg g (v)
+ Poohyr (W) FAgg(v)/2+ Agy(v)/2]}

a0 = zgo{Km[Azow)+»q00831<v>+A30<v>/z-A32<v)/21
- Kpoliggha ) + Byp(v)s2] 3 3

1](v) = ngsin 100 sin N0 [A3](v)cos Yot 83](v)sin woo] :
- 2 o2 . .
Q](v) = 200 sin n00[B3](V)COS woo-A3](v)s1n woo] ;

v (V) = 9 (v) cos i, s

o) = fa ey e o (3.12)

Here - the auxiliary constants K]O and K20 depend upon 00> 100° Yoo and
the integrals Ank(v) and Bnk(v) contain Poo and'qOO. The similarity
between the results for Pys aps 21,-and gl found here and the corres-
ponding results of the previous chapter (Equations 2.9) is evident,

hence the explicit results of Equations (2.10) for the in-plane
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perturbations remain valid here provided cosnOO and éinnoo are re-
placed by K]O and K20’ respectively. Of épecial importance are the
results for v=2m where the short-period terms vanish; they may

serve as a basis for obtaining long-term valid solutions. As in the

planar case, it follows that Aa =0, so that the major axis remains

constant in the Tong run. Similarly, the remaining 1ndependentve1ements

can be written as:
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be = -3ne agg(1-ef0)Apogkyg - dgoky o) [

Aw = 3ﬂe‘ago(1 -ego)]/z(pOOK]O-FqOOKZO)/'eSO - COS 100 AQ

AT = -37e eOOaSO sin 800 cos wOO/ (1- 680)]/2 ;

AQ = -3me eOOaSOSir‘aOO sin wyy / (1 —ego)]/zl ;

At = 3me all? {(4+p00)K]0+6q00K20} ¥ O(ego) S, (3.13)

It may be noted that the result for At can be used for calculating

the change in overhead position of a communications satellite after one
revolution: e.g., for CTS (e = 1.37 x 10_6) it follows that the
satellite may drift as much as 330 meters per day. Note also that the
possible existence of a shadow region is ovek]ooked here. For a
geosynchronous equatorial orbit, there is no éc]ipse by the earth

during about 9 months of the year. Only when the sun is near one of



the equinox positions will there be a shadow interval with duration
varying from a maximum of 70 minutes when the sun is on the equinox
axis to zero about 22 days before and after that epoch. It should

be emphasized that the effect of the earth's shadow upon an equatorial
satellite is, quantitatively, less pronounced than that for a space
probe in the ec1iptic plane analyzed in the previous chapter. Points
of entry into and exit from the shadow region as well as their long-
term effects upon the orbital elements can best be studied numeric-

ally for this arbitrary case.

3.3.2 Long-term approximations

As in the previous chapter, Section 2.3.2, long-term results
can be derived from the short-term analysis by repeated_rectification
and iteration of the initial conditions. This approach has indeed
been followed in the present case and the results will be discussed
in the next section. Here, analytical closed-form approximate
solutions arebexplored by means of the two-variable expansion method.
Following fhe procedure outlined in Section 2.4.1, the equations

for the zeroth-order approximations become:

26(5) = 28 {K]B3](2w) - K2A3](2ﬂ) } /o

h(3) = 55 {KyIngBy (2m) + Byy(2m)/2] - Ky[nyg(2n)

+ pghgy (2m) +Ago(2m)/2 +Ag,(2m)/2] }/ (2m)
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ng(v)

2

= 20

{

K][A20(2ﬂ)-+qOB3](2ﬂ)-+A3O(2ﬂ)/2 —A32(2n)/2]

- Kolaghy (2) +Bp(2n) 21 | / (2n)

100

- QgsiniosinﬂO[A3](21r) cos Y +B4p (2n) sinygl/(2n)

- zg sinfig[B5(27) cos uy - Agp (2n) sinygl/ (2n)

= Qé(G) cos 10 :
= 28/2 A20(2ﬂ)/ (2ﬂc€)

Here the integrals Ank(Zn) and Bnk(ZW) depend upon pO(G) and qO(G)

and are evaluated in Appendix I.

K](G) and KZ(G) stand for

The slowly varying functions

= c052(10/2)cos(ﬂo-+wo)-fsinz(iO/Z)COS(ao-wO) ,

= COoS

2

10/2)sin(ﬂo +9,) - sin

2(

io/2)sin(ng - ¥y)

.....



The first integral of the system of

found as

Equations (3.14) can readily be-

2

ay(3) = 20(\'))/[1-p(2)(\3)-§0(\3)] = ay, - o

Thus, the major axis and total energy of the satellite are conserved
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in the long run and the motion of the sun does not alter the conclusion

reached from the short-term analysi
On substituting the explici

and Bnk(Zw), evaluated in Appendix

performing some algebraic manipulat

a fairly compatt form as:

(/%) = 32202

3/2 21/2

S.
t results for the integrals Ank(Zw
I, into Equations (3.74) and

ions, the system can be written in

00 /2 [JO cos 10 sinng - kg cos g ] ;

Jg = -(3/}2)a00 o cosigsinny + kg cosigfy s

- ap
i = -(3/2) a2l §y s
o = -(3/2) a3 ky s
36 = c-Q

cos HO - jocosio Qé 3

~ 1/2

in 10 SinI%)/QO :
LA 1/2 .
in ”0/20 ;

.....

Here, the auxiliary elements ﬂ =n-2, j=ecosw and k=esinw have

‘been introduced for convenience.

Note that j=pcosy+qgsiny and

)
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I =qCcosyY-psiny. The simplicity of the equation for nO(G) is a
direct consequence of the fact that aO(G) =a5q SO that the orbital
period remains consfant in the long run. Integration yields |
.nO(Q) = n00-+c5 indicating that (in this order of approximation) the
motion of the sun is proportional td v, relegating the noh-
uniformity of the sun's motion (with respect to v) to higher-orders.

Apart from a0(5)==aoo ,» at least three édditiona] integrals can be

constructed, namely

2172 . .
(1 - JO) sin iy = D ,
2\1/2 . =~ ..
[kO -d(]»-eo) / sin no] sin iy = 02 R
[(1 -ez)]/2 +d k, sin n.]cosi, +dj.cosn. = D (3 18)
0 0 0 0 0 0 L :
where d stands for 3ea]/2/ (26). For the orbit to remain closed, i.e.,

00
eO(G) < 1, the constant d must be less than unity or in terms of e :

e < 0.0018 (for 350 =1), which is true for yirtua11y all practical cases.
It is interesting that by the first and second relations of Equations
(3.18), the orientation of the orbital plane, described by elements

10(6) and QO(G), can be expressed in terms of the in-plane berturbations
represented by jO(G) and ko(ﬁ). Note also that the first relation

in Equations (3.18) yields the obvious result that an orbit initially
lying in the ecliptic plane, i.e. i001=0, will remain in that plane,

10(6) =0. The constants Di’ i=1,2,3 are determined from the
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initial conditions. Due to the fact that the last relation of
Equations (3.18) admits, in principle, that kO be eliminated in favor
of jO’ only one remaining equation of the system (Equations 3.17) need
to be integrated for obtaining a complete analytical long-term repre-
sentation for the orbital e]emeﬁts. For the general case; an un-
coupled and tractable equation has not been found. - Fortunately,
special situations for which closed-form solutions can be derived
more readily exist. - In case the sun's position initially lies on
the Tline of nodes and either the initial orbit is circular or Has the
perigee lying on the Tine of nodes, it follows that ﬁOO==O.or i

and k00==0, implying that the constant D2 vanishes. In that case

~

né(@) is readily integrable, yielding the result:
L _ 2,1/2
Qo(v) = no(v) - arctan [tan(bv) / (1+d7) T (3.19)

Employing the integrals of Equations (3.18), the remaining elements

can now be derived:

3 = (-0 %6(E)/0 + ¢ cos® (b9)11/2
(9 = dsin(bG){]-(]—D]Z)GZ(\'))/D+d2c052(b\_))]}]/2,/(1+dz)]/z
eo® = { dsin (53)+ (10D () A0+ V2
) dsin (b9)[1 +d2§osz(bo)-(1 -0%)¢f(9)1"/°
solv) = eresin i 1 +d%cos?(b9) 1 2[d%sin?(b9)+(1 - 2) 62 (%) 1"/

1
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i,(9) = arcsin { D][1-Fd2cosz(b5)]]/2/[1-+d2c052(b5)

- a-oh @17} I (3.20)

with appropriate branches of the arcsin functions determined from initial
conditions and by continuity. The auxiliary function G(v) stands for

G(v) = dEcos(bv) - sign(cos 100)(1 —EZ)]/2 . .7...(3.21)

It is noteworthy that all of the functions ﬁo, kO’ jo, €ys Wy and 10
are periodic with a period of 1/(1-+d2)1/2 year, so that the elements
return to their original values just before the sun has made a full
revo]ution.. These results are consistent with those obtained for the
ecliptic orbit in the previous chapter. Note also that QO’ wO, 50, Po
and qq contain terms of two different but close periods, namely one

year and 1/(1 +d%)1/2

year, resulting in a slow secular trend in the
long run.

The higher-order terms can readily be determined by formal
integration, yielding similar (when cos Nge sin ﬁoﬂare replaced by
K](G) and KZ(G), respectively) expressions as in Equations (2.31) for

the in-plane orbital elements 27, ays Py and q7s while the out-of-

plane results are given by

. 2 oA [ i .
1](v,v) = 2051n1os1nrb {[a31cosw0+-b3]s1nwo]s1nJv
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+ [c%]cosw0+d%]sinw0]ﬂ -COSJV)}fi](G) »

- - 2 .~ J J . .. J
Q](v,v) QO sinn, {[b3] cos ¥ - a3 s1r|w0] sin qv-f [d3] cos g

J

- o3 sin wO](l - COS jv)} + Eﬁ(G) , | S (3.22)

with the slow functions $] and‘ﬁ]‘determined from the boundedness constraint
upon the second-order terms (Appendix III). However, the complexity
of the equations involved precludes any possibility of extraéting,

analytically, information on the long-range trends of these terms.

3.3.3 Discussion of results

Since an analytical Tong-term solution has been found only for the
case of D2.= 0, the rectification/iteration procedure needs to be employed
for cases where the initial conditions are different. As an example, a
catellite in a geosynchronous equatorial orbit with € = 0.0002 1is consi-
dered. A rectification interval Ve = 2t is chosen yielding sufficiently
accurate results over a 1200 day span of time.

As the major axis remains constant in fhe long run, the 1n-p1ahe per-
turbations are fully described by the eccentricity vector e or its Cartesian
.components p and g. Concise representation of the in-plane changes can be
provided by polar pldts for e in the XnsY plane. Ffom the zeroth-order

Tong-term results, the slope of the polar plot at any instant is given by

(Equations 3.14),
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dq0

ty  PHE) Ky

For an equatorial orbit, cosz(iO/Z) is about 25 times sin2(10/2) so that
‘the polar p]ots should be similar in shape to those obtained for ecliptic
orbits in the previous chapter, Figure 2-7 a-d. Figures 3-3 a,b show the
resulting polar p]oté for initially circular as well as highly eccentric
orbits (e00 = 0.5). The eccentricity is pericdic with a period of about

363 days, and the orientation of the major axis depends critically upon the
initial eccentricity: for €00 sufficiently large, the orbit remains ellip-
tic with its axis exhibiting periodic oscillations (amplitude of about 12°
for €y = 0.5) as well as a slow clockwise rotation (about 2° per year,
Figure 3-3b). For an initially circular orbit, Figure 3-3a, the behavior

of w is completely different, showing an increase of 180° over one year
followed by an instantaneous jump of 180° when the eccentricity passes
through the origin again. Also the slow clockwise rotation is apparent.

The small differences in the in-plane perturbations for an arbitrary as
compared to an ecliptic orbit are due to the fact that the magnitude of

the in-plane component of the solar radiation force varies sfight]y with

the position of the sun in the former case. The behavior of an initially
circular near-ecliptic orbit may be visualized és follows: the solar radia-
tion force changes the circular orbit into an ellipse with increasing eccen-
tricity and perigee at 90° ahead of the projection of the sun-earth line.
Subsequently, the major axis tries to maintain the 90° lead over the moving
sun, but as the eccentricity increases the orientation of the major axis be-

comes more rigid and the sun overtakes the perigee after about half a year.



Figure 3-3 Polar plots, illustrating long-term behavior of the eccentricity vector e:
(a) egp = 0 3 (b) egp = 0.5

LOL



108

At this point, the eccentricity has reached its maximum value and will
start to-decline while the sun moves ahead of the perigee position.
After almost a year the perigee is about 90° behind the sun and, while the
eccentricity vanishes again, makes a jump of 180°. The original situation
is now re-established and the cycle repeats {tse1f.

According to the results of the two-variable expansion procedure,
Equations (3.20), the auxiliary elements jO(G) and kO(G) are periodic with

a period of 1/(1 + d2)1/2

year, i.e. about 363 days in the present example.
Their'behavior can be visualized through polar plots as in Figures 3-3
without the slow clockwise rotation. Since the j,k axe§ are obtained from
the p,q axes by rotation through the angle ¢, the slow clockwise trends in
the polar plots of Figures 3-3 can be interpreted as the negative secular
growth of the angle .

In Figure 3—4, the behavior of the longitude of the ascending node Q
is depicted for an equatorial orbit and a few values of the initial solar
aspect angle N0 Of particular interest.is the insensitivity of its beha-
vior to different values of the initial eccentricity in the range 0 - 0.5.

- Results of the two-variable expansion procedure indicate quite close cor-
respondence with those obtained by rectification/iteration. As seen in
Equation (3.19), the long-term behavior of the longitude of nodes is inde-
pendent of initial eccentricity. The qualitative behavior of Qo(v) may be
visualized by considering 96(6), Equations (3.17): the rate of change of
ﬁb(ﬁ) is proportional to -kO sinﬁo, which remains negative in case Moo = 0

or 7 due to the nature of the polar plot for jo,k gy following the beha-

0
vior of kO in conjunction with that of ﬁO » it becomes evident that the

total regression of 2 after one revolution should be essentially independént
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Figure 3-4 Typical Tong-term behavior of the longitude of nodes as affected
_ by the initial solar aspect angle
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of the initial eccentricity and solar aspect angle.

Figure 3-5 shows the long-term behavior of the inclination of the
orbital plane for a few values of the solar aspect angle. .The results of
the two—variab1e expansion method match quite well with those obtained by
rectificatiqn and iteration. The fact that the period of oscillation for
Moo = ™2 and 37/2 is half that for Ngg = 0 and ™ can be understood
from the first relation in Equations (3.18) in conjunction with the in-plane
perturbations of jo. The polar plots indicate that the behavior of jg is

the same for Moo = 0 and 7 : amplitude (e )2 and period 363 days.

-0,max

Cn the cher hand, when nOO = /2 and 3w/2, jg

/2)2. This explains the occurence

oscillates with period of
181.5 days and an amplitude of (eO,max
of two different frequencies as well as the dependence of the amplitude of
variation of 10 on the initial solar aspect angle. The behavior of the in-

clination for an initially eccentric orbit, e,, = 0.1, 1is both quantita-

00
tively and qualitatively different from an initially circular orbit, Figure
3-6. The relatively large differences in amplitude depending on the solar
aspect angle can be understood by visualizing the behavior of jg in the cor-
responding po]ar plots. Figure 3-7 shows the variation of the inclination
for a very eccentric orbit, €0 = 0.5. The differences in amplitudes for
various values of Moo are much smaller than those in Figures 3-5 and 3-6,
although the magnitudes themselves are much larger (note the differences in

scale). Finally, it may be mentioned that only when 100 =0 or w the

inclination remains constant throughout in the long run.
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3.4 Satellite in Arbitrary Fixed Orientation to Radiation

The case considered here constitutes a generalization of the
analysis of the previous sections in the sense that now the plate is kept
at a fixed but arbitréry angle to the incident radiation. It serves as a
fairly accurate model for communications and other sate]]ités having one
or two-axis attitude control. The CTS satellite with solar arrays which
can be rotated about an axis normal to the orbital plane for maximization
of the ahount of solar énergy intercepted is an obvious example. Further-
more, the analysis is re]evaﬁt to the solar radiation induced orbital per-‘
turbations of a satellite with a fixed orientation in the inertial space,
e.g. a platform for deep-space studies. It is .noteworthy that the analysis
can be extended quite readily to an arbitrarily shaped satellite modelled
by n flat surfaces Ak each with its own characteristic material parameters
represented by 91> Top and P The orientation of the surface Ak with
respect to the instantaneous orbital plane is determined by the two Eulerian
rotations, oyand B,. A fixed orientation of the satellite with respect to
inertial space or the radiation (in a short-term sense) is maintained if
o, = -y ¥ &k , k=1,2,...n, with arbitrary fixed angles && and 8,. For
instance, the surface element Ak is normal to the radiation if &k =y +
arctan[cos(i) tann] and By = arcsin[sin(i) sinn], which corresponds to
the control law of Equations (3.9). Replacing the elements i, ¥ and n
by their resbective injtia] (or mean) values 100, wOO and 800 » Writing

S 0 1 2 .
u- = s" +s cosv+s sinv and gﬂ = QE + gl cosv + gﬁ sinv ,

the force expression of Equations (3.8) can be rewritten in the fo]loWing

compact form:



where Qi

]]5.
- cosv + C2 sinv}
__k _k k b

U | oq, 87+ [0, + 0, U MY AL = 0,1,2;

cosBk[K]O cosqk + K20 sinak] + sian sin(ioo) sinnoo .

It may be noted that Uk = (gﬂ-- g?) is constant in the short-term analysis

since the satellite as well as the sun maintain a fixed orientation in space.

In practise, one needs to update the solar aspect angle 300 and the control

angle &k to account for the slow motion of the sun. Naturally, also the

orbital elements change continually and need rectification after a certain

time.

Employing the usual perturbation Equations (3.5) and (3.6), integra-

tion over a short-term interva1,(vno,v) yields the following first-order

changes in the orbital elements:

3 0 1 2
2e 254 kzl {cky Ay # cky Bayd s

L2 nooa1 1
2 agp too L (CixlBrr = By = dgg Aol * Gy Ay
2 B oAy - A - po A 1T
ky “11 7 “kx'"11 T P21 7 Poo M20!7
e 2 T ote] B wCl (A kA A+ A+ 2 A]
200 (L ke P22 T Rkyteo T P22 T30 T M3z T Pop M
+C2 (A, - ALY +C2 B, + B, + 2p. B..1}/2
kx\"20 T P22 kyt®32° " P22 7 “Poo P31 ’
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_ 2 0 2 2
i) = e fgg LU o G Bop * Cylhgg = Rop * Agg = Agp + 20g Byy]
1 1 ,
= Cp(Rgg * Agp) *+ iy [Bay + Bpy + 2050 A5y 11/2 5

n

: o2 . 0 .
f(v) = e dgglhgy cosipg * Byy simigel [ €y,
2 . D0y
Q) = e 4yoIBgy costyy - Agy sinig] kZ] Cp/sinigg)
) = coslipg) o s mw) = YA L L (3.25)

Here, the ‘abbreviations Ank and Bnk stand for Ank(v) - Ank(vOO) and
_Bnk(v) - Bnk(VOO)’ respectively, and depend upon‘the e1ement$ Poo and 900
(Appendix I). It may be noted that for 100 =0, 8 and v Tose their meaning
and the angles v, ©, measured from a fixed axis in the orbital plane, coin-
cide with ¢ ahd w, respectively.

After'one revolution, the reducéd expressions of the integrals for
V.=v2ﬂ may be substituted. The result for 31(2ﬂ) vanishes after one revo-
lution so that, also in the present situation,vfirst—order secular changes
in the major axis are absent. By rectification of the orbital e]ementé, as
well as the force expression of EqUations (3.24) at v = 2m and iteration of
the results of Equations (3.25), a good appréximation for the Tong-term
perturbations may be obtained. This process has been executed for a variety’
of plate orientations, reflectivities, and initial conditions leading to the
following general conclusions. In case B =0, i.e. when the plate is kept
~normal to the orbital plane, the long-term changes in eccentricity, position

of the perigee and inclination are periodic with period of about one year
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regardless of the (specular) reflectivity p. In the examples cosidered, the
fluctuations in inclination range from zero when - p = 1 (resulting in a
force in the orbital plane) to about 0.5° when p = 0. Tybica1 long-term
in-plane perturbations for a few values of reflectivity are presented in
Figure 3-8b. Here the plate is in an equatorial orbit and A=Y+
arctanf[cos (i) tana] » aligning the plate-normal with the projection of the
radiation in the orbital plane.

When the second rctation B # 0 1is imposed, and part of the radiation
is absorbed, the qualitative nature of the in-plane perturbations changes
drasticai]y as shown in Figure 3-8a. Note that the polar plots show severe
secular perturbations in the in-plane eTements e and 5.

The orbital inclination may also exhibit ]ong—term'secu1ar changes
up to about 0.7° per year in the examples considered. The variations in
the longitude of nodes are of a long-term secular nature with a rate of
regression between 0 and -0.5 degrees per year in the case of 8= 0.

The smaller the reflectivity the h1gher this rate. When the plate is not
normal to the orbital plane (B # 0) , higher rates of precession have

been observed, e.g. -2.4° per year for o= 8 , B =23 and p = 1.
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3.5 Plate in Arbitrary Fixed Orientation to Local Frame

In this section a sate]]ite’que11ed as a flat plate, with arbitrary
but homogeneous material characteristics, kept in a general fixed orienta-
tion with respect to the local coordinate frame is studied. The analysis
is relevant to orbiting platforms or mirrors in a fixed oriéntation with
respect to the earth. In particular, large space structures a1fgned with
the local vertical due to gravity-gradient torques represent an obvious
example. The major distinction between the present situation and those en-
countered previoust, is the fact that now both sides of the plate will be
exposed to the solar radiation, each during about half a revolution. The
change-over occurs when the plate is aligned with the sun-earth line.

This raises an'interesting question'as to‘the orbital perturbations for a
plate with different material properties on the front and back sides.

The orientation of the plate is, as usual, described by the two
Eulerian rotations o and 8, which are arbitrary constants now. In a short-
term analysis, the orbital elements are considered constant (i.e. equal to
their initial or mean values) during integration of the perturbation equa-
tions and in the evaluation of the force expression. Writing wBv) =

0 1 n . Eé)

s+ s cosv + §? sinv and U(v) = (u = Uy + Uqcosv + Upsinv ,

the force can be expressed in the form:

F = ¢ su{Qp + Q}cosv + Q?sinv + Q?cos(Zv) + Qésin(Zv)} ,
N 0 1 2 2 W22 n
with: D7 = o [Ug s™ + (Up s° + Uy 55)/2] + [o, Ug + pU + (U7 + UZ)/2] U
1 _ 1 0 n .
Q = O](UO S + U'I S ) + (02 U-I + ZQUO U-I) u 3
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2 2 0 n .
D = o (U0 s& o+ U2 sT) 4+ (02 U2 + 20 U0 U2) u
3 1 2 2 2 n .
4 2 Ty n
D" = oy (Ups® +Uys)/2 +oUyUpu . (3.26)

It may be noted that the vector gﬁ is fixed in the local x,y,z frame and is
determined by the angles @ and B in such a manner that it points towards the
earth for o = £ = 0. When the plate has different material properties on
either side, care must_be taken to identify the side facing the sun initially
and make necessary adjustments after about half a revolution when the other
side becomes illuminated. The side facing the earth for « = 8 = 0 will be
designated as the back side of the plate and its material properties will
carry the subscript b. Similarly, the front side will be recognized by the
subscript f. Consequent]y,.the value of Sy equals 1 if the front side is
illuminated and -1 for the back. The switch-over points,v1, v, are deter-

minated by U(v) = 0 and can be written in the following form:

02 - at+ n+ oyt 2m(k-1) + 6

<
It

1 |
31/2 - a+ N+ p+ow(k-1) -6, , ... (3.27)

o
H

2

where the index k designates the appropriate revolution. The angles 6] and
62 vanish in the case i = 0 and for arbitrary inclination (< n/2) can be

found from the following iteration scheme: 6%0) = ééo) = 0 and

6$n) = arcsin {tan(i/2)[2 tang sinn - tan(i/2) sin(é%n']) +2n)1} ,
5£n) = arcsin {tan(i/2)[2 tang sim - tan(i/2) sin(sén_]) - 20)1}
| | ‘ . (3.28)

n=1,2,3,... ."This procedure converges very rabid]y for small inclination
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since the angles 61 and 62 are small in that case. Retrograde orbits
may be accommodated by reversing the sun's motion.

The short—term perturbations in the orbital elements can be obtained
analytically by integration of the perturbation equations over the interva]l
(vOO’ v). Provided the interval does not contaih any swit;h—over points,

the integration yields:

_ 3 .0 1. 2 3 4 ,
2](v) = 25u 200 {Dy A30 + Dy A3] + Dy 831 + Dy A32 + Dy 832} ;

3 2 2 4 0 .3 2
a1(v) = s agg 2g tPgg [0y Ay + Dy Ayy + (2D, - DY) By - DL Ay

+‘Dl By - Oy A * D) Bygl - dgg (D) Ay * (2.02 £ 03 Ay
# D Byy + D) Agy + D By, + D; Apg * Dy Byy]
ny [D3 At +'D; App * D§ B +‘D3‘A]2 + D§ B,)}
pp(v) = s, zgo {02 +D)) Ay + (D) + 2 Dg,+ Dj) Ay + (200 - 07
" Dﬁ) B,y + (D; - 08) By, + (D) + D§) B,p + (Di ; Di) Ay
+ (03 + Dﬁ) Byg + (D) + 2pgg 00) Agy + (ZpOOID; +2 Dg ¥ D;) x
s Ay + (2pgy D+ Di) Byy * (20 Dj ¥ D;) Ay, * (20 Di +
+ D§) By, + 03 Ayg + 03 Byy }/2
a (V) = s, 880 L (D) - DY) Ayg + (0) - 200 - 03) Ay + (2D - > -0}

*



x Byy - (D] + D) Agy + (D; - 0}) By - <D§ +03) Ay
¥ (Di - D)) Byg + (0 + zqoo'DS) Agg + (0§ + 299 D;) A
+ (2q4, D§ + 2 DS - 03) Byp + (204, D§ : D§) As
+ (2py, D§ + D) B, D§ Ayg + D§ Byy 12 ;
i1(v) = s, 45y € cos yyq 10 3 + (2 D, + 03) Agy *+ D) By * D) Ag
+ D, By, + D) Agg + D) By
#sin ggg (05 Agy + Dy Agy + (200 = 03) Byy - 0F Ay,
+0) By, - 03 A, + 0 833] 12
() = s, 250 { cos g 105 Agg + DF Ay + (2 0) 'VD§> B3y - 0 Ay
# D) Byy - DF Ay + D2 Byl 1/2 ;
- sin g LDl Ay + (200 + D7) Ay, +_D§ 531 + 0 Agy
+ D2 By, + D3 Ay + D) Byu] 112 sin(igg)] ;
e (3.29)

and y,(v) = 0y (v) cos(iyg) s ny(v) = 2862 AZO(\))/C€ . The abbrevia-

tions Ank and Bnk stand for Ank(v) - Ank(voo) and ‘Bnk(v) - Bnk(VOO)’

respectively, and are functions of the initial or rectified elements Poo’ 900

(Appendix I). The coefficients 99 » J =0,1,....,4 were given in Equations
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(3.26) and Sy is either +1 or -1 over the interval (VOO’ V).

The more interesting long-term perturbations are obtained by repeated
rectification of the initial conditions, i.e. iteration of the short-term
results of Equations (3.29). The switch-over points 2 and v, of Equations
(3.27) are the appropriate locations for rectification since Sy needs to be
updated at those points in any case. This rectification/iteration prqcedure
was carried out numerically for a few examples representing satellites model-
led as a plate in a geosynchronous equatorial orbit. The plate surface was
takeh as perfectly specular reflective either on both sides (pb = Pg = 1)
or on one side with the other side perfectly absorptive (pb or pg = 0).

A few representative results are shown in Figure 3-9.

Under the influence of the gravity-gradient torque, a plate in a
near-circular orbit will tend to bé oriented along the local vertical which
is the stable equilibrium position. When the plate has differeﬁt reflecting
kpropérties on either side, a gradual increase or decrease in hajor axis is
obtained. For instance, if the plate is kept normal to the orbital plane
(B = 0) it is obvious that more energy is transferred during the phase when
the sunlight strikes the reflecting rather than the absorbing side, since
the magnitude of the force is larger and its direction (in an averaged sense)
is closer to the instantaneous velocity vector 4n the former case.

This differential in energy transfer results in a continuously growing major
axis when the reflecting side is illuminated with the satellite moving away
from the sun (curve ]) and a decreasihg major axis when the absorbing side
is facing the sun during that bhase (not sHown). The polar plot belonging
to case 1, Figure 3-9b, is qualitatively similar to the ones for the case

when the plate is kept normal to the radiation (Figure 3-3) except that the
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area enclosed by the eccentricity vector after one year is much smaller here.
If both sfdes of the plate have the same reflectivity, fhe long-term changes
in major axis will be relatively small (curves 2 and 4). Also when the plate
is kept along the local horizontal (e.g., a reflecting mirror in orbit), the
semi—major axis remains virtually constant regardless of the reflectivities
on both sides, ‘since the net effect over one half revolution tends to vanish.
Curve 3 is a representative example for this case. Note that the polar plot
is quite different from the others. Curve 5 illustrates the behavior of a
plate along the Tocal vertical with its normal inclined by 30° to the orbital
plane and different reflecting properties on either side. It should be noted
that the po]ar-p]dt for this case shows a long-term secular trend. In gene-
ral, one should expect a closed polar plot only in case Py, = Pg OF when B = 0
(regard]ess.of the values for o and pf).

As to the perturbations of the orbital plane, it is found that no
changes in its orientétion take place when Py = Pg = 1 and g = 0, since the
force has no component normal to the orbital pjane. Otherwise, widely
varying perturbations in i ahd § occur with the inclination staying within
1;2 degree of the equatorial plane. On the other hand, perturbations in
the longitude of nodes may be oscillatory (within 1.5 degrees) or secular

(Tess than 2 degrees per year) in the long run for the examples considered.
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3.6 Concluding Remarks

The important aspects of the investigation and resulting conclusions

may be summarized as follows:

(i)

(ii1)

A formulation in which the out-of-plane perturbations are uncoupled
from the in-plane variations, while retaining a geometric inter-
pretation in terms of osculating elements, is found attractive for
studying the influence of the solar radiation force upon the orbital

geometry.

For a plate normal to the radiation, short- and long-term analytical
solutions Have been formulated using a straightforward and a two-
variable expansion perturbation methods. The in-plane changes are
illustrated by means of polar plots. The long-term behavior of the
orbital inclination can be interpreted in terms of the in-plane

perturbations.

A short-term analytical solution is presented for the case where a
satellite is képt in a fixed arbitrary orientation with respect to
the radiation or inertial space. The long-term perturbations in
eccentricity and argument of the perigee may be of a secular nature

when part of the radiation is absorbed.

.Solutions for a satellite modelled as a plate in a fixed orientation

with respect to the local reference frame are obtained. Relatively
large perturbations in the semi-major axis are observed when the

reflecting properties on the two sides are not the same.
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4. GEOCENTRIC ORBITAL CONTROL USING SOLAR RADIATION FORCES

4.1 Preliminary Remarks

In many situations, the perturbing effects of the solar radiation
force as assessed in the previous two chapters are detrimental in nature,
e.g. a communications satellite drifts away from its desired overhead po-
sition. On the other hand, these forces have a potential for effecting
desired changes in satellite orbits as demonstrated most dramatically by
the concept of a solar sail. The transfer of.the sail from a lTow or inter-
mediate orbit around the earth into a he]iocentric orbit forms an important
and time-consuming phase of the mission. Therefore, strategies for raising
the orbit of a spacecraft by means of solar rédiation would represent an
important aspect of this maneuver. In particular, the chapter studies
optimal sai1'sett1ngs for maximum increase in major axis over one revolution.
However, the analysis has a wider range of applicability since it also pro-
vides ways for orbital correction of a satellite with controllable solar
arrays. The proper orientation of these panels can be maintained by means
of small solar-electric servomotors. While an interesting procedure for
increasing the total energy (plate with different reflectivities on either
side) was considered in Section 3.5, a moré effective on-off switching
strategy is studied here. During the off-phase when the satellite moves
towards the sun, the plates are aligned with the radiation, while in the
on-phase (when moving away from the sun) the arrays are kept normal to the
radiation for generating the maximum force. The most effective switching

points for correction of the orbital elements are assessed and their res-
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ponses evaluated.

Another interesting application for which the analysis presented here
would be relevant consists of a mylar-coated plastic sphere with a pumping
device which inflates and deflates the balloon at prescribed instants. This
'concept has the advantage that it does not require the contjnuous orienta-
tion control of a solar sail.

For convenience the switchings are assumed to take place instanta-
neously since the time needed for completion of the operation would usually
represent a negligible fraction of the orbital period. For a particular
strategy, the first-order changes in the orbital elements after one revolu-
tion are evaluated by integration of the perturbation Equations (3.11) over

the appropriate on-interval 1__ = (v

on voff)’ while keeping the orbital

on’
elements on the right-hand-side constant.

4.2 Switching at Perigee and Apogee

An obvious switching strategy would be to switchoff at apogee and on
again at the subsequent perigee, Figure 4-1. Upon integration over the in-
terval Ion = (&OO’ 500 + 7), the following explicit results are found,
using the integrals of Appendix I:

M = 3¢ a3(1 - ez)]/2 [pK20 - qK]O]/e + 4¢ a3(1 - e2) [pK]O + qKZO]/e ;
ha = de a3(pK10 + qKZO)/e ;

Ae = 3mea

2 1/2 ,
(1 - eZ) / [PKip * qKZO]/(Ze) + 2¢ a IpK20 —.qK]O ;
20 = ea” sim(2 cosu - (31/2) siny/(1 - €91/ 2y

2= -e a® sin(i) sinn[2 sine + (31/2) cosw/(1 - e2)1/27 . L. (4.1)
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Here, it is assumed that e does not vanish. It must be mentioned that the
subscripts 00 are omitted in the present chapter for brevity. It is in-
teresting that the change in eccentricity is exactly half of the amount ob-
tained when the force acts continuously, Equations (3.13). For near-ecliptic
orbits, the expressiohs pK]0 + qK20 and pK20 - qK]O may:be replaced by
€0SY) and siny respectively, where y is the angle between the projection
of the sun-earth Tine and the major axis, Figure 4-1. It is seen that if

0 < x <m the satellite moves against the direction of radiation.and looses
energy, while if = < y < 2r the major axis increases.

‘ Obviously, the expressions of Equations (4.1) are only valid for one
~ revolution. Long-term results are derived by rectification and iteration
of the short-term orbital changes. Figure 4-2 shows the resulting long-term
response for the particular case of an orbit in the ecliptic plane. There
is a wide range of vafiation in the behavior of the semi-latus rectum de-
pending on the initial solar aspect angle. In the case that the major axis
follows the motion of the sun, a favorable situation is maintained leading
to a continuous increase in %: (curve 1). However, in most cases, especially
for larger €gp> the axis rotation fails to keep up with the sun (Chapter II),
so that in the long run no systematic build-up in the latus rectum or the
major axis occurs as shown by the other curves. The long-term varijations in
eccentricity are found to be of approximately half the amplitude as compared

to the case of a continuously acting force.

4.3 Systematic Increase in AnguTar Momentum

Since the nature of the response in the previous on-off switching

strategy seems to be strongly dependent upon the initial conditions, a more
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systematic approach is needed to generate a certain prescribed trend. .
In this section, a switching control strategy with the objective'to change
the orbital size by increasing the semi-latus rectum as much as possible is
explored. |

The most effective switching instants are the points where 2'(v)
vanishes: V] and V) Figure 4-1. The on-phase (v], v2) coincides with
2'(v) > 0 and the off-phase (vz, vyt 2r) with 2'(v) < 0. The points vy
and Vs satisfy the equation u; = (0 and represent, geometrically, the
points of intersection of the orbit with the projection of the sun-earth line
into the orbital plane: vy = Yy + arctan[cos(i) tan%] and vy = vy ot
During the on-phase the force has a positive component along the circumferen-
tial direction and produces a torque r x F adding to the magnitude of the
angular momentum vector h and the semi-latus rectum 2 - 1.

While the orbital changes can be determined readily by means of a

digital computer, analytical results are established for an orbit in the

ecliptic plane where Ion =(n, n+m):

) 2

2¢ a2213 - (1 -e%)/(1 - o2 coszx) + 3e F](e,x) sin] ;

ha = de¢ a22/(1 - e2 coszx) ;

Ap

-3¢ ag Fz(e,x) sinn ; Aq 3e as Fy(e,x) cosn ;

Ae = -3¢ af F2(e,x) siny ; Aw 3c al F2(e,x) COSY «  vu.n. (4.2)

The functions F1(e,x) and Fz(e,x) are defined by

)P0 - ) V2

b

F](e,x) = {n/2 + arctan[e siny/(1 ~



Folesx) = e sing/(1 - e® cos®y) + Fyleny) - L (4.3)
The most favorable positfon of the sun for the increase A% occurs when

the sun-earth 1ine is normal to the major axis. While the expressions in
Equations (4.2) designate the changes in the orbital elements after one
révo]ution, the long-term behavior is determined by repeated rectification
and iteration of these results. Figure 4-3 shows the Tong-term implications
of this switching strategy: takfng a satellite with the parameter € = 0.0002,
i.e. A/m=5 m2/kg, the semi-Tatus rectum increases ten-fold in less than
five years when starting out from geosynchronous altitude. The response is

almost insensitive to changes ininitial eccentricity and solar aspect angle.

4.4 Systematic Increase in Total Energy

WhiTe the strategy proposed in the previous section is the most ef-
fecfive on-off switching control for increasing the angular momentum, this .
policy is (in the cdse of a non-circufar orbit) not the most favorable one
for increasing the total energy of the satellite.

The on-off switching pdints V3 and Vg representing the zeros of
a'(v) = 0 correspond to thé instants at which the in-plane component of the
solar radiation force is normal to the instantaneous velocity vector, i.e.
the tangent to the osculating ellipse:

2

a'(§) = 2a“ (F-r)/v =

2e arz’{ui (p sinv - q cosv) + u; (1 + pcosv+asin)}/(1-e
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Locations of the switching points V3 and Vv, are indicated in Figure 4-1]

and can be expressed in the following form (for inclination less than 90°),
V3 = M +‘w + 63 + 2m(k-1) , Vg = +n+y - 64 + 2n(k-1), ..(4.5)

where k denotes the appropriate revolution and 83 and 64 are to be deter-

mined by iteration: dgo) = 620) = aq = arcsin[e sin(n - w)] and
6§n) = arcsinfe sin(n - w) + tan(12/2)[sin(6§n-1) +2n) + e sin(n + w)1},
(n) _ - . .2 . (n-1) ~ .0
§4 ' = arcsin{e sin{(n - w) + tan(i /2)[s1n(64 -2n) + e sin(n + w)l},
| (4.6)
for n =1,2,3,.... This process converges very rapidly (only four iterations

are needed for accuracy to four significant decimal places) for an équatorial
orbit. |

While the resulting orbital changes for this switching strategy are
determined numerically in the case of an arbitrary orbit, analytical ex-
pressions can be obtained for an orbit in the ecliptic plane. In that case,
a - w equals x =n - and represents the angle between the sun-earth line
and the major axis, Figure 4-1. Writing ap = arcsin(e siny) , it follows
that vy =t oy and vgE=mntomo- d] . The on-phase (v3,v4) is less than
7 radians if y Ties in (O,H).and more than w if x is in (w,2r). If e =0,
it follows that ay = 0 and the present control strategy, obviously, coin-
cides with the one of the previous section. The response of the orbital
elements is obtained by substitution-of the Timits of integration V3 and Vg

into the .integrated results of Equations (3.11). After considerable alge-

braic simplification, the changes in the elements can be written as,
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pa = 4ead(1 - e sindy)/?,
A, = 31 e a? e siny (1 ->e2)]/2
+ de a22(1 + el sinzx)/(1 - ¢ sinzx)1/2 ,

Ap = -¢ a? G(e,x)sinn - ¢ a2e2q sin(2x)/(1 - e? siﬁzx)1/2 ,

AQ = € a2 H(e,x)cosn + ¢ a2e2p sin(2y)/(1 - eZ-Sinzx)]/2 ,

he = -g a2 H(e,x)sinx ,

Mo = e al H(e,x)cosx/e + ¢ al ¢? sin(2y)/(1 - o2 sinzx)]/2 R (4.7)
with the auxiliary function H(e,x) defined by

Hles) = 3n(1 - eV 22040 4 e(1 - eD)simy (1 - 2 sindy) /2. ... (4.8)

It can be shown that Aa fs larger while A% is smaller than the corres-
ponding expressions of the previous section when e > 0 and that the results
coincide for e = 0. Furthermore, the two swﬁtching policies are identical
when x =0 or w for any eccentricity.

While the Tong-term implications of the present switching strategy
can be assessed by repeated rectification and iteration of the results of
Equations (4.7), an additional insight into the long-term orbital behavior
can be obtained by means of the two-variable expansion procedure. The
system of equations cOnsideréd here has a (partly) discontinuous right-hand-

side.and is written symbolically as
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£ %(a,v) , vin I ,
-'é'_l(\)) - J _— . on
l 9_ , Vin Ioff s
nv) = sl (4.9)

where the vector g stands for the set of usual orbital elements, excluding
the solar aspect angle n. As usual, the zeroth-order two-variable expan-
sion results yield 3, = gO(v) with gO(O) = 3py- The first-order equations

are found to be of the form:

Gy | -Fpv) + flag(v), v] » v in I (V)
a\) ’ ~ = .
-Qo(v) , v in Ioff(v) ,
M - 3/2 .2
= -no(v) + 2 /[cg(] * Py Cosv + 0 s1nv) | (4.10)
where it should be emphasized that the Timits of the intervals I and

on
Ioff are functions of the slow variable v. In order to eliminate secular

contributions to the first-order terms gq(v,5), average values of the

right-hand-sides are required to vanish, yielding

od ~
=2 - J flag(v), 1 dt/(2r) ;
on :
an . '
- ag/z(f))/c8 : P (4.11)
AV

The first-order equations for ay may be determined by a Fourier expansion

of the discontinuous, yet periodic, function on the right-hand-side of
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Equations (4.10), although convergence of the series is expected to be slow.

This scheme leads to the following set of equations in ay>

Xg = €g sin(no - &O) and 'yo = eq cos(nO - &0) :

ag(®) = 2501 - x5
X0 = yg o) fe - xgalit + (1 - -y - AV oy
o) = xgad e sy al X A L (4.12)

The system of Equations (4.12) was integrated numerically using a
double-precision Runge Kutta routine with error control. The solution was
found to be in good agreement with the one from the rectification and
iteration method: over approximately four years, the results are consistent
up to the first decimal place, Figure 4-4. Eventua11y, however; they di-
verge. Also shown is the response to the switching in case of a Tower orbit,
3o = 0.34, 1.e. about 8000 km above the earth. As the gravity force is
more dominant here, the advance to higher orbits is much slower. . Neverthe-
]ess,-geosynchrbnous altitude can be reached within fiVe years. This would
be of interest for future space stations 1ike the SSPS, which are to be
constructed in a Tow-altitude orbit: employing the present switching stra-
tegy, these structures could propel themée]ves to a geosynchronous location.

‘An analytical estimate (i.e. upper bound) for aO(Q) is readily ob-

tained from Equations (4.12),

ag(3) < agg/(1 - 45 a5yme . (4.13)
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Figure 4-5 Long-term variations in eccentricity during (v3,v4) §witching
program _
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It predicts that an escape trajectory would not be reached before

v w/(4eAaSO), i.e. about 625 revolutions or 7 years in the present example,

e = 0.0002, 30 = 1 . This crude approximation yields remarkably good
values (identical in first decimal) for the semi-major axis over the firsf
3 years (or 550 revolutions) for €00 = 0.1 and even over 4.5 years if |
€00 = 0. The same formula can also be used for predicting the major axis
vwhen the orbit is out of the ecliptic, provided that an adjustment is made
for the average effective in-plane component of the force,.which is accom-
plished by multiplying é by the factor 1 - (sinzi)/4. For an equatorial
orbit this féctorvamounts to about 0.96 and the appraximate formula predicts
the semi-major axis correctly up to the first decimal over the first 450
revolutions (about two years) for €0 = 0.1 and Moo = m/2 as compared to
the results of the rectification/iteration procedure shown in Figure 4-4.
Figure 4-5 shows the behavior of the eccentricity under the influence
of the presént switching policy. In general, it can be éonc1uded that for
small eccentricity, the resulting orbit remains near-circular, whereas for

an initially highly elliptic orbit the eccentricity decreases in the long

run.

4.5 Optimal Orbit Raising

Although the on-off switching strategy of the previous section
proves to be very effective for increasing the total energy of a solar sail,
it is obvious that a judiciously chosen, continually varying, sail setting
could be even more effeétive. ATherefore, in the present section, the optimal
control strategy{yie]ding the maximum possible increase in total energy per

revolution is determined. This is done by means of a numerical steepest-
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ascent iteration procedure]]g']zo.

To save some computational effort, the system of equations is
transformed to anautonomous form by introducing the auxiliary elements

¢, ¥, K, L and M:
{ o " cosv sinv p )
[ ¥ sinv -Cosv q J

K=cos(i), L =sin(i) sin(v -y¢), M= sin(i) cos(v - v).

..... (4.14)

The variations in the elements are now described by the system:

a'(v) = 2 afF (a) ¥/(1 + 0)° +.Fy(g)/(1 +0)}

o' (v) = v+ 2”F (a)/(1+ )7

) = e+ PR (e) + F ) 0+ /(1 4 0)2 s

v = 2 /(+e)

EO) = a0 a2

K'(v) = -Fé@ 2L/ + 0)2

L' (v) = - , Fo(a) 2%/ (1 + )3

M'(v) = L. (4.15)

The dependence of f_upoh the control angles o = (a,B) is due to the fact

that the normal to the plate is a function of a: u" =u"(a). The system

of Equations (4.15) is denoted by a'(v) = e g(a,a) for convenience.
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The various steps involved in determining the optimal control function
a* yielding the maximum Va]ue for a(2r) may be briefly described as follows.
First, a reasonable starting éontro] function go(v) is chosen and the cor-
responding response vector gjgo,v) is calculated by means of (Runge-Kutta)
integration of Equations (4.15) with initial conditions gﬁO) = 3y The
results are stored in a two-dimensional array containing the elements
aj(go,v), ji=12,...,8 at v =21 k/n, k =1,2,...,n with n taken as
360 to start with. It may be noted that it is not necessary to take n
very Tlarge or to perform a highly pretise integration in this first run
for go(v) is usually not hear the optimal contro}. Since the objective
is to determine a more effective strategy than go(v), the influence of
small variations in ag(v) is studied. The near-by control a(v) =
go(v) + Sa(v), With the norm ||8a|| (defined as the integral over (0,2m)
of the dot-product of &a(v) with itself). small and prescribed, is con-
sidered. An estimate for the difference in the final value of the semi—major
axis for this new control function as compared to the final response for
g is found by means of a first-term Taylor expansion of Equations (4.15)

around o = %> yielding:
ar 2.
sa(2m) = J [ ) A(T) cSocj(T)] dr , ... (4.16)

where the influence functions Aj(v) are defined by

8 .99
L) = T A ) [E‘i

> j=1,2, e (4.17)
) k=1 i) alog,v) |

with the vector of adjoint variables A(v) determined from the system of

equations:
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(V) | — | », k=1,2,...,8,
1 1 [ 3ak Ji(%g\)) )

aqd final conditions k](2w) =1, Aj(Zw) =0, Jj=2,3,...,8. 0One would
Tike to know: which variation of the control, 8o(v), Tleads to the maximum
possible change in response, &a(2n), given in Equations (4.16), under the
constraint that the stepsize ||8a|| is prescribed? The answer is obtained

through Lagrange multipliers, yielding the following control strategy:
1
sa(v) = {llsall / NAID2 a0y . L. (4.19)

Upon substitution of this result into Equation (4.1€), &a(2w) 1is written
in terms of the norms ||6a]] and ||A|]. Subsequently, -||8a|| can be

eliminated from Equation (4.19),

sa(v) = sa(em) A(V) / ||Al} . L.l (4.20)

expressing the variation of the control angles explicitly in terms of the
prescribed increase in the semi-major axis.

For the calculation of the 1nf1uehce functions, Equation (4.17),
the derivatives of.the right-hand-side of Equations (4.15) with respect
to all state variables as well as the control angles are needed . This is a
straightforward, though very tedious, process. With these results in hand,
the equations for ) are known, Equation (4.18), and these are integrated
backwards by means of the Runge-Kutta routine, using a piecewise constant
approximation for the state vakiab]es stored in the array mentioned before.
Now, the influence functions are also known and the new control function
is determined from Equation (4.20). Subsequently, the whole procedure is

Fepeated. While this process readily Teads to a near-optimal control, con-
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vergence becomes progressively slower near the optimum and special care
must be taken in this region. It was found that by coupling the stepsize
and the error parametef of the integration to the length of the 'gradient'
|[A]]|, reasonably accurate results could be obtained within about 40 ite-
rations, which amounted to less than a minute of the computer time. Note
that ||A|] approaches zero as o - o*.

The results of the iteration program for an orbit in the ecliptic

“plane (B is taken zero, here) and a solar sail with perfect specular re-
flection are shown in Figure 4-6. Starting out with the control function
indicated by N = 1, the response a(2m) grows rapid]y during the first few
jterations while the control program approaches the optimal strategy. The
convergence is notably faster fn_the highly sensitive region near v = /2,
even though the changes in a have been subdued here (by means of a weigh-
ting function) in favor of those near v = 3n/2. Figure 4-6b shows the
optimal orientation of the sail at a few points in the orbit. In the exe-
cution of the program, the two sides of the sail are taken to be identical.
In case the properties on the two sides are different, a rotation over 180°
of the sail will be required at v = 3n/2.

It is 1nferesting to compare the effectiveness of the‘on—off swit- -
ching policy, Section 4.4, and the plate having differeht reflectivities on
either side, Section 3.5, with thatbof the optimal control strategy esta-
bished here. Taking ¢ = 0.0002, the increase in semi-major axis after one

revolution for the various controls is summarized in Table 4.1.
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Table 4.1  Comparison of Control Strategies (e = 0.0002)

Strategy €00 | P> O ha x 104 % of optimaT
Optimal Control 0 1 11.0 100
On-0ff Switching (vs, v,) 0 1 8.0 73
a = 90° (Local Vertical), On-0ff| 0.1 1 6.2 56
o = 45°, On-Off 0 1 4.9 45
o = 90°, Different Reflectivity | 0.1 1,0 3.1 28

Judging from Figure 4-6, a linear approximation to the optimal control would
be given by &(v) = (v-n- w/Z)/Z, which remains within 10 degrees of the
optimal angle at all times. The response for this steering program was cal-
culated and an increase in the semi-major axis of 10.7 x 10—4 was obtained,
amounting to about 97% of the optimal va]ué. |
Finally, it must be emphasized that the optimal control strategy de-
termined here is valid for one revolution. For the following orbits, the
best control wog1d have to be determined using the particular initial condi-
tions involved. Naturally, to obtain a Tong-term valid optimal control and
corresponding response would take considerable amount of computer time.
Fortunately, some idea about the long-term effectiveness of the optimal
strategy may be obtained by resorting to the approximate result of Section
4.4. Presuming that the ratio of 100/73, for the increase in semi-major
axis of the optimal as compared to the (v3, v4) on-off switching strategy,
will be maintained throughout,.Equation (4.14) with £ adjusted accordingly

yields an estimate for the Tong-term effectiveness of the optimal control
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program. The result is depicted in Figure 4-4 along with those of the

on-off switching trajectories.

4.6 Orientation Control of the Orbital Plane

In.this section, the feasibility of controlling orientation of the orbital
plane by an on-off switching strategy is investigated. In the beginning,
results for the case where the force is acting continually are interpreted
so as to obtain a physical appreciation as to the nature of the solar radi-
ation effects upon the orientation of the orbital plane. Note that pertur-
bations of the osculating plane can be visualized by means of the rotation

r

vector w = e(u§/21/2)£, éffecting the direction of h through h = w'x h,

so that h rotates instantaneously in a plane normal to the radius vector.

In terms. of the 1ndepéndent variable v, the rate of change of the vector h
is written as
O 2 s B 3 s, . . . 1/2
h'(v) = h/v = er®ul(rxh)/2 = er u>(sing i - coso j )/2 ,
..... (4.21)

where 'i and j

i J, are unit vectors along and normal tQ the Tine

of nodes in the‘oscu1ating plane, respectively.

While Equation (4.21) represents the instantaneous rate of change of
h, it is interesting to calculate the total variation in h after one full
revolution of the satellite. A first-order approximation Ah is obtained by
integrating the right-hand-side of Equation (4.21) from v = 0 to 2r keeping
the siow]y changing orbital elements constant. " The vector Ah is expanded in

its components along the Xq and Y, axes: Ah = Ah] inA+ Ah2 Qﬂ , yielding:
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2m sin(v - ¥)dv

Ah] = € ui 22 f = -31m ¢ u; a5/ e siny ;
0 (1 + pcosv+qgsinv)
2m cos{v - ¢)dv

Ah2 = -g ui 22 J = 3me ui a5/2 e Cosw .
0 (1 + p cosv+ g sinv)

The changes in orientation of the orbital plane can be visualized in terms
of the vector ah (Figure 341). Also, perturbations in the orbital elements

1/2

i and Q can be expressed in terms of Ah: Af = - Aho/ % and sin(i) 09 =

Ah1/2]/2

,» where A1 and AQ are treated as 1nfinftesima1-ang1es.

It is evident that, in case of a circular orbit, the net effect of the
solar radiation torque on the direction of h must vanish after one revolution,:
since the effective component of the torque at any position v is equal in
magnitude but opposite in sign to the one at v + m (in the first-order ap;
proximation). For an elliptic orbit, variation in the orientation of the
orbital plane depends upon the argument of the perigee with respect to the
1ine of nodes: é.g. if w=0 or ﬂ,'on1y the inclination will be affected
(provided that ﬂ and i are not 0 or m), whereas for w = w/Z 3n/2, the
resulting pertufbation consists of a pure precession (or regression) of the
line of nodes.

The changes A1 and AQ obtained byvcontinuous exposure to sunlight
pressure are small in the long run, especially for near-circular orbits (of
the order ¢ e). In order tb obtain more significant changes in i and @ ,
two on-off switching strategies are proposed and their effectiveness as to

the nature and magnitude of the variations in the orbital elements is assesed

and interpreted.
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4.6.1 Control of the inclination

Since A = —AhZ/Q]/Z, it is seen from Equations (4.22) that the

inclination would increase continually if the following switching strategy

is adopted:
if ui >0: on if Yy-w/2<v<y+u/2;
if u§‘< 0: on if y+m/2<v<y+3/2. ... (4.23)

The condition for the sign of ui is easi]y'trans]ated in terms of the
quadrants of the angles i and n . The resulting changes in i and Q after
one on-off cycle can be determined using the integrals of Appendix I
evaluated over the on-interval. In terms of j = e cosw and k = e sinw,

the results can be written in a compact form as follows:

Moo= e df WS 3 - (1 - 400 - k)
- 3jIn/2 - arctan{j/(1 - ez)]/z}]/(] - 62)1/2 s

201 - k91701 - K?)

sin(i) a2 = ea |u] k {33+ 2(1 - e
| O30 - eHV.

- =3[n/2 - arctan{j/(1 - e

This particular control program changes the inclination appreciably,
while leaving the 1ongitude of nodes virtually untouched for near-circular
orbits. Note that for near-circular orbits, the change A  is half of
that obtained for the case of continuous exposure (Equations 4.22).

It is evident that by taking the opposite strategy of Equations (4.23),
i.e. replacing the on-phase by the off-interval, the results of Equations

(4.24) would change sign and the inclination decreases.
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Figure 4-7 illustrates the long-term effectiveness of the proposed
control strategy as found by repeated rectification and iteration of the
results in Equations (4.24). Starting ouf from the equator1a1 plane
(100 = 23.45°), about two degrees per year may be added to the inclination
for an Echo-type satellite in an initially circular orbit.  For orbits with
large eccentricity, the rate of change of inclination is much higher (about
10 degrees per year for €o = 0.5). Also, with an increase in 90 (up
to 100 = 90°), the increase in inclination becomes larger as exemplified by
the curve for 100 = 68.45°, i.e. the initial orbital plane is 45° above |
the equator.

It is of interest to assess the changes in the other elements under
this control strategy. The resulting behavior of the eccentricity is shown
in Figure 4-8. As a general rule, it may be concluded that the eccentricity
increases steadily until the orbit is normal to the ecliptic plane when it
starfs declining. The hajor axis (not shown) decreases at a rate between‘
0.1 and 0.15 per year and the smaller the initial eccentricity, the larger

the decline in the semi-major axis.

4.6.2 Control cf the Tine of nodes

For the line of nodes to exhibit a steady precession, it is neces-

sary that Ah]/sin(i) > 0 Tleading to the proposed switching strategy:

if sin(n-Q)>0:  on if Yy<v<y+m7;

if sin(ln-Q)<0: on if p+a<v<yPp+2r. ..... (4.25)

The changes in the elements after one revolution under this control strategy
are determined using the integrals of Appendix I evaluated over the relevant

interval:



152

60
o0
40

30

20

200 400 600 800 = 1000 1200
| Days

Figure 4-7 Controlled change in inclination for various initial conditions



08 | IL’/ | ]
A
- Ne,=0.5 ,
0.7+ / €50= 03 7]
r/ ' eOO=O.1
/ /L
06 B | /x,f v
7 T T
il, /
{ i,=684°
,,"’} e°°= O co O 5
04} i
0.3 /7
0.2} P i
0.1 aoo=1"(‘90'go}=o .____noo__zo -
’ £-00002 Teo=T7/2
i =284° T T Ne=T
| | | | ]
OO 200 400 600 800 1000 1200

Days

153

Figure 4-8 Behavior of eccentricity for switching program of Equations (4.23)
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M = ¢ a2 Isinfi] {3 - (1 - e2)/(1 - k2)
-3k[r/2 - arctan{k/ (1 - €)% - 213
Moo= e a’sin(i) [sind] (ki3 + 2 (1 - e2)/(1 - kD)0 - &9

-3(r/2 - arctan{k/(1 - e2)1/2}1/(1 - %)V},

This strategy produces a substantial change in the longitude of nodes,
while the changes in inclination are relatively small. Also for near-cir-
cular orbits, the change in inclination is only half that of the continuous
exposure.

Figure 4-9b shows the effectiveness of the proposed switching stra-
tegy: for an Echo-type satellite, the line of nodes may precess by as much
as five degrees per year, double the amount of the natural perturbations,
Section 3.3.3. On the other hand, the behavior is not very sensitive to
changes in the initial eccentricity or inclination. Figure 4-9a illustrates
the accompanying variations in the eccentricity: in general, the eccentricity
decreases for highly elliptic orbits but increases for initially near-circu-
lar trajectories. By following the opposite strategy of Equations (4.25),

the 1ine of nodes could be made to regress instead of advance.

4.7 Half-Yearly Switching

Another interesting strategy for achieving fairly large changes in thé
orbital elements is by switching off after a half-year instead of a half-
period. The eccentricity and inclination are essentially periodic functions
with a half-year period. By switching off just when an element has reached

its maximum and subsequently, switching on a half-year later just when the
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up-hill phase starts again, sizable orbital changes can be achieved.
Figure 4-10 illustrates this concept for an initially cikéu]ar, equatorial
orbit. The average rate of increase of inclination is approximately half |
of that attained by the switching strategy of Section 4.6.1, while the in-
crease in eccentricity is approximately the same in the 1ohg run. As be-
fore, the changes in inclination and eccentricityrincrease‘ for larger
initial eccentricity. |

Whereas the effectiveness of this approach upon changes in inclina-
tion is Qndoubted1y inferior to the strategy described in Equafions (4.23),
the benefit of a much lower frequency of switching (2 vs. 365 per year)

could become a decisive factor in a practical situation.

4.8 Concluding Remarks

Important aspects of the analyses presented in this chapter may be

summarized as follows:

(i) A few switching programs are explored and their effectiveness in

achieving orbital changes established.

(i1) Whereas apogee-perigee switching does not lead to readily predic-
table results, the sun-earth line switching achieves a rapid in-

crease in angular momentum and thus the semi-Tatus rectum.

(§ii) Switching when the velocity is normal to the direction of radiation
is particularly effective, since it is the best on-off switching
strategy in terms of adding energy and, consequently, increasing
the major a*is. Under this strategy, an Echo-type satellite may in-

crease its major axis by.a factor of ten in five years, starting
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from geosynchronous. altitude.

The optimal time-varying orientation of a solar sail for maximum

increase in semi-major axis per revolution is established. This

should be of importance for raising a solar sail into a helio-

centric orbit.

Two switching programs forlcontro111ng orientation of the orbital
plane are proposed and analysed. One strategy leads to appreciable
changes in the inclination, while the other produces a precession

of the line of nodes.

Changes in eccentricity and inclination in a half-yearly switching
policy are relatively less pronounced, but the benefit of a much

lTower number of switching points could be attractive.
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5. HELIOCENTRIC SOLAR SAILING WITH ARBITRARY FIXED SAIL SETTING

5.1 Preliminary Remarks

Whereas up to now the effects of solar radiation forées upon geocen-
tric orbits were studied, in this and the following chapter, the attention
is focused on heliocentric orbits. For many deep-space missions, the solar
sail constitutes a viable option since it derives its motive power from an
unremitting source of energy. The combination of useful payload and solar
sail Teads to an area ovér mass ratio in the range of 50 to 200 m2/kg with
characteristic accelerations between about 0.5 and 2 mm/secz. |

This chapter studies the solar radiation effects on the orbital be-
havior of an arbitrarily shéped spacecraft (or a solar sail in particular)
in a general fixed orientation with respect to the Tocal coordinate frame.
While a constant orientation is not necessarily the best possible setting
in an actua1 mission, a thorough understanding of its response would faci-
11fate the assessment of its potential as a function of area/mass ratio and
initial conditions. While exact solution§ in the form of logarithmic spi;

51,52 for -planar orbits, the

rals have been established in the 1iterature
analysis presented here is extended to general three-dimensional trajecto-
ries. Moreover, the parameters of the trajectories are expressed analyti-
cally by means of asymptotic series in terms of the solar parameter and a
spacecraft with arbitrary material characteristics is considered. When

the out-of-plane component of the thrust is kept constant, the orbital plane

itself exhibits a precessional motion, returning to its original orientation

after little less than one revolution. An effective out-of-plane spiral
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transfer trajectory is obtained by reversing the force component normal to
the orbital plane at specified positions in the orbit. By choosing the
appropriate control angles for the sail orientatioh, any point in space can
be reached eventually by this three-dimensional spiral trajectory.
Whereas a very specific initial velocity vector is required for em-
barking upon the spiral trajectory, other orbits emanating from different
initial conditions may also be of interest.. Henée, a three-dimensional
short-term solution is presented for arbitrary initial conditions. Subse-
quently, the long-term behavior is analysed by means of the two-variable
expansion procedure yie]ding an implicit expression for the eccentricity.
By iteration, the solution can be deﬁermined up to the desired accuracy.
For not too large values of the initial eccentricity, asymptotic expansions
up to the order e5 are derived. The other orbital elements are expressed
in terms of the eccentricity and can be evaluated up to the desired acéuracy.
Higher-order terms may become important when the area/maés ratio is large.
Equations for the higher-order terms can be derived. While the periodic
part of the solution can be evaluated readily, secular terms can be deter-

mined analytically only for a circular initial orbit.

5.2 Formulation of the Problem

An inertial X,Y,Z reference frame with origin at the centre of the
sun is introduced in Figure 5-l1a where the X axis points to the initial
position of the spacecraft and the X,Y plane constitutes the initial oscu-
lating plane, usually the ecliptic. The Z axis is aligned with the initial
angular momentum vector. In addition, a 1océ1 gO;nO’CO reference frame

moving along with the spacecraft is introduced: the EO’ g and gy axes
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Figure 5-1 (a) Configuration of the sun and solar sail in a heliocentric

trajectory; »
(b) Successive rotations o, 8 (and y) for defining arbitrary
orientation of solar sail
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point a]ong fhe local vertical, Tocal horizontal and orbit-normal directions,
respectively. Any desired orientation of the solar sail in the gO’nO’CO
can be described by three successive Eulerian rotations (Figure 5-1b).
Taking, initially, the outward normal to the sail to bé directed along the
€0 axis, a first rotation a about the Z0 axis produces the. £1>ny-5p frame
and brings the solar sail to the required line of intersection with the or-
bital plane. A subsequent rotation B about the gl axis yields the ¢&,n,z
frame and moves the normal to the sail out of the orbital plane to its pre-
scribed orientation. A final rotation y about the normal (& axis) could be
performed for attainingbthe propér attitude of the sail in its n,z plane
without affecting the resulting solar radiation force. The components of

gﬁ taken along the local go,no,co axes depend on o and 8 only:

gﬁ = (cosa cosB, sina cosB, - sing). ... (5.1)

For many satellites, solar panels form a substéntia] portion of the total
surface area. This would particularly be so for a spacecraft designed to
be propelled by solar radiatioﬁ pressure. Hence, in these situations, only
the area of solar panels or sails needs to be considered. In general, the
spacecraft is mbde11ed by a number of surface componenté,'characterized by
their own material parameters and orientation. In nondimensional form
(unit of length equals a, = 1 A.U. and unit of time is 1/(2w) year), the
solar radiation force upon an arbitrary space structure of n homogeneous,
illuminated surface components Ak in an heliocentric orbit is written as

IEE - o {O1k u [og) * pk(gE - u®)] gk} A /ety eens (5.2)
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where the physical force is nondimensionalized through multiplication by
ag/(usm). The small parameter e  denotes the ratio of solar radiation and

attraction forces,

2

e. = 2S5'(A/m) (ae

. /u) = 1.57 x 1073 (A/m) . ...l (5.3)

This illustrates that the parameter € is about 200 times as large as the
parameter € 1in Equatiqns (2.5) for geocentric orbfts. It may be mentioned
that the solar constant and hence the radiation force in Equation (5.2)
varies inversely as square of the distance from the sun. This is because

the total radiant energy emitted by the sun in a given tﬁme equals that
passing through any concentric spherical surface around the sun in that time
(taking the rate of energy output constant). Writing F = esg/rz with auxi-
Tiary vector R = (R,S,T) the components of R can be evaluated for an arbitra-

rily shaped spacecraft using Equation (5.2):

n

R = kz] cosa, cosBk {O]k + [OZk + Py COSOy cosBk] cosay cosBk} Ak ;
no »

S = kZ1 s1nuk cosay €os“By [0, + p cosay COSB ] AL 3

T = -E cosa, COSBy s1n8k oo, * P cosa, cosBkJ Ak . (5.4)

The normal gﬂ to a surface element Ak’ k =1,2,...,n 1is taken 1in such
a manner that its projection along the radiation is always positive.

In general, when T # 0, the plane of;the orbit will be subjected
to changes in its orientation. The motion of the Tocal »EO’nO’CO frame
relative to the inertial X,Y,Z frame is described in terms of the rotation

vector W = ﬂr + é, effecting an uncoupling of the in-plane and the out-of-
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plane perturbations. The equations of motion are similar to those obfained
earlier (Equations 3.5) with F to be replaced by £ UZB: ance the equation
for Q'(v) contains a singularity for i = 0, a formulation in terms of the -
unit vector K directed along the inertial Z axis with components M = sin(7)
sin(v - ¢), L = sin(i) cos(v - ) and K = cos(i) along the local
gO’nO’CO axes is favored. As the local gO’nO’CO frame moves along with
the spacecraft in its orbit, the vector K(v) ‘traces a path upon the sphere
(K« K)=1 1in the Eg2Ngetq frame. The orbital elements i and ¥ can be

determined quite readily from the vector K. The complete system of equa-

tions is written as:

u'(v) +ulv) = (1 - eR)/2(V) - e Su'(v)/Tulv) L) 5
L' (v) = ZESS/U(V) ;
MU(v) + M) = e T KOV)/[u(v) 2(v)T 3

K'(v) = -€¢ TM(v)/[u(v) oY . . (5.5)

The first two eguations fully describe the'in—p1ane perturbations and the
latter two equations define the oriéntation of the osculating plane. The
. component L(v) can be shown to be equal to M'(v). The initial conditions
for the system of Equations (5.5) are written as 2(0) = 20
u(0) = (1 + €00 cos&oo)/ﬁoo; u'(C) = (e00 sin&oo)/zoo; K(O) =] gnd
M(0) = M'(0) = O.
In a few particular situations, exact solutions for the system of

Equations (5.5) can be established: in the case where the component S

vanishes (e.g. when the normal to the solar sail lies in the EO’CO plane
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or when all of the radiation is absorbed), solutions for the orbital motion
can be obtained using the classical Keplerian procedure. After modification
of the sun's gravitational parameter to account for the apparent reduction
in attraction because of the solar radiation force, the trajectory for the
case S =0 can be written as u(v) = [1 + e cos(v - &p)]/zp with modified

2R2]1/2
S

. _ - el |
orbital elements zp = 200/(1 - eSR), gp = [e00 + 255 pOOR + € /

(1 - ESR)_ and wy = érctan[qoo/(pOO + eSR)], where all angles are measured
in the osculating plane. Another, more interesting, exact solution arises
when the initial ve1oéity vector satisfies a prescribed condition lTeading

to a trajectory in the shape of a logarithmic spiral.

5.3 Three Dimensional Spiral Trajectories

The spiral trajectory of the form r(v) = o exp(csv) emerges from
Equations (5.5) when one Tooks for solutions having the properties that the
product u(v) &(v) remains constant, say C, and u'(v) = —cs.u(v) at all
times. The constants C, and C can be evaluated from Equations (5.5) after
substitution of these two relations:

c. = {(1 - eR) - I(1 - e R)? - 8t 3211/2} /(2¢

S S)

265 S {1 e R + eg(R2 + 282) + eg R(R2 + 682)} + 0(65) :

o
H

285 S/cS = (1 - eSR) {1 - 255 52 [+ ESR + ss (R2 + 252)]} + 0(e

Taking r(0) = *oo » the complete in-plane and out-of-plane solutions of
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- Equations (5.5) can be expressed in terms of C, and C:

=

—

<

~—
i

rOOexp(csv) ;

2(v) = Cr(v)=C¢C exp(csx))/r‘OO ;

M(v) = B {1 - cos (1 + BZ)]/Zv IAGEE: 82) ;
L(v) = Bsinf(1+89)2%0 +3891/2 .
K(v) = (1 +38%osi(1+89Y2%,00+8% . .. (5.7)

Here the constant B stands for esT/C. It is seen that the radial distance
takes the form of a logarithmic spiral (outward if S > 0 and inward for

S < 0), while the orbital plane exhibits a periodic wobbling motion with
maximum inclination at v = n/(1 + 82)]/2. This is of practical interest
for a solar sail since it predicts that no secular changes in the orbital
orientation are induced by a constant force component normal to the plane of
the orbit.

It'must be emphasized that the spiral trajectory arises only when the
spacecraft possésses the right velocity vector at 1njection.. I'ts radial and
circumferential components are given by r = cS(C/r)]/Z, rv = (C/r)]/z,
and the spiral angle ds equals arctan(cs). Additional insight into the
nature of the tfajectory is provided by studying the osculating ellipses of

the spiral. The eccentricity and perigee position at any point vy are

given by

2]1/2

2 .
& lcg exp(—chv]) + (1 -C) ,

By vy - arctan[csexp(-csv])/(l -Cc)y, ... (5.8)
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50 tﬁat the equation for the osculating ellipse-at v = vy can be written as
r(v]) = C exp(csv1)/[1 e cos(v] - &])]. It is of interest to note that
the eccentricity which is of the order € to start-with, decreases slowly
attaining the Timiting value eSR + O(gg) as vy > . This is of considera-
ble importance since it predicts that a spaceprobe may be rg]éased from a
spiral solar sail trajectory into a near-circular heliocentric orbit at any
timef ‘As to the position of the perigee of the osculating e]]ipsés, it . fol-
Tows that &1 follows 2 Steadi]y, lagging behind by an angle of between 7/2
and 7 radians in case S > 0 and between m and 31/2 radians if S < 0. As the
spacecraft moves along its trajectory, the angle between the radiusvector
and osculating perigee will increase (for S > 0) or decrease (S < 0) slowly
until, finally, &] s for vy e,

An explicit expression in terms of the solar sail parameters can be

obtained for the time history in the spiral trajectory,

. | |
tv) = jo e (/e 21 d = rgh? texp(3cgvr2) - Mi/e
with .
¢, = 3sign(s)/2 {(1 - eR) - ({1 - ESR)Z - 8¢? s& /2

The radial distance as a function of time follows by combining Equations

(5.7) and (5.9),

3/2)2/3

r(t) = r 00 N

00 (1 + Cy t/r

This result is valid for both outward (S > 0) and inward (S < 0) spirals.
To obtain the most favorable sail setting for reaching the maximum
radial distance at any time t, the coefficient Ct is maximized as a function

of the rotation angles a and 8. It follows that the maximum occurs when B
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vanishes, producing a planar trajectory. The value of o is determined from

93 2 2 2,1/2, 3R _
855 S T {1 - esR) -1 - eSR) - 855 S71° 7%} T 0. s (5.11)

Since the exact solution of this-imp]icit equation for a can not easily be

found,vit is useful to determine subsequent levels of approximation for o

written as an asymptotic series in the small parameter €ct a =ay * eyt

egaz + ... . The equations for Qs i=20,1,2,..., can be derived by sub-

stituting the series into Equation (5.11), developing the relation in terms

of a Taylor expansion around o = ay and requiring that all coefficients of
n

E> N = 0,1,2,..., vanish. After a considerable amount of algebra, the fol-

Towing asymptotic representation for o is found (taking a sail with oy = 0):

o = arcsin(3"1/8y - . 3”2(01 + 20)/36 - es 21/2(01 + 20) (50 + 430/6)/288
-eg 31/2(01 + 20)/2 {1267 of + 1252 52 + 1588 poy * 72 oy + 144 o}
£36)3 + 0(52). ..... (5.12)

Subsequently, an explicit relation for the spiral angle a corresponding to
the optimal orientation is found by substituting the optimal angle into Cos
Equations (5.6). Expansion for small € yields:

o, = doe, 32,9 (1 + §1/2 e (o) + 20/3)/3

S ]

¥ eg[(c] + 20)2/08 + 2(o; + 20/3)%/3 + 80%/81]) + 0(e§) ...... (5.13)

1

In Figure 5-2a, the optimal orientation of the solar sail as well as

the corresponding spiral angle have been plotted for various values of the



3f B=0,7=0 €,=015, p=1
34
optimal
a 32 15
trajectory
& - 4
40
13
30 12
spiral 1
angle
a
S 20| . 10
0 Sz
e {i
10} e 5 1°
e __
T T 13
g —" @] , (0]
0 015 0.3 045 0.6
€s
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reflectivity p. For low values of €cs the optimal orientation can be
taken as 35.26°. It is evident that the spiral angle approaches zero for
o~ 0 since the‘case p = 0 corresponds to a closed trajectory. Figure
5-2b illustrates an exémple of a planar spiral trajectory, showing the spi-
ral angle and the orientafion of the‘sail. The value of és taken here
(0.15) would correspond to A/m of about.100 m2/kg.

It is interesting to calculate the optimal radial distance over a
long duration of time, showing the effectiveness of the spiral trajectory
in neér—circu]ar orbital transfer, for a few values of the éo]ar parameter
€ The results are summarized in Figure 5-3 for both inward and outward
spirals. In case € = 0.015, 1;e. A/m =10 mz/kg, the orbit Qf.Mars could
be reached within 9 years and Venus in 4 years. For higher values of €
the‘opportunities increase rapidly: even a long journey to the distant pla-
net Uranus may be feasible if a solar sail with A/m of the order of 400 mz/kg
could be constructed. |

The analysis remains valid when the component T of the force is non-
zero: the position and velocity vectors of the spiral trajectory lie in the
osculating plane in that caﬁe. The'orientatibn of the orbital plane descri-
bed by the ang]és i and v follows from Equations (5.7):
2)1/2 -

w21/ (1 + B)}

-—
_——

<
~

1]

arccos {1 -2 stinz[(T + B

v - arctan {tan[(1 + BV 2y21700 + 82V . L. (5.14)

A=

—

<
il

Expansion of y(v) for small e, leads to p(v) = v/2+ O(ag), 0 <v< 2m,

so that the 1ine of nodes precesses at approximately half the orbital rate.
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The inclination reaches its maximum at v = n/(1 + B and returns to

2)1/2

zero at ‘2rn/(1 + B , while ¢(v) shows a discontinuity of 7 radians

at v =21/(1 + 82)1/2. Figure 5-4a shows the orientation of the osculating

plane at a few points in the orbit.

5.4 Out-of-Plane Spiral Transfer

~In order to obtain a net increase in inclination after one revo]utidn,
the orienfation of the sail would have to be changed during the orbit. 0Ob-
vious sWitching points would be the instants when i(v) 1is stationary, i.e.
2)1/2

at vy = n/(1 + B and v, = 2v1. Assuming the switching to take place

instantaneously from -g to +8 (without affecting the control angle o) and
repeating theprocedure-during each successive revolution, the out-of-plane

component T becomes

IT], 8 <03 Vpj SV <V

2j+1 ;
T = |
AT B> 05 vagy V< s (5.15)
. | o . 22\1/2
for j = 0,1,2,...,and the switching points V) = kr/(1 + B®)'/°,

k = 0,1,2,... .. Since the operation takes place instantaneously, the force

components S and R remain unchanged throughout. Writing M, = M(v, ) and
k

k
Kk = K(vk), etc., k =0,1,2,..., the solution i(v) is found by repeated

application of the results in Equations (5.7):

arccos{Ky; + [B](My; - [B[Kys) (T = cosi(l + B2 /2u1y/(1 + B2}

i(v) = -
2 2 1M

arccoS{sz + 2[B|(M2j - |B|K2j)/(] + B%) - |B|[(3B

2j

+ B3 - BO)K,.1(1 + cosf(1 + 89)/2u1)/(1 + 89)%y

Ky ;]
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where the former relation holds for v,. < v '< v and.the latter for

2]
Vo341 < v < v2j+2 . The following recurrence relations for sz and sz

23+1

can be established:

- 2 2 2,2 2,2
Mps = -{8[BI(1 - BO)Kys , + [4B° - (1 - BY) Mys o1/ (1 + B)S
- 2 2,2 . 2y 22
Kpj = -{[4B° - (1 - B“) Ka5-2 - 41BIOY - BEIMy, o3/ (1 + BO)T
..... (5.17)
with J = 1,2,3,... and MO = 0, KO = 1. A long-term linear approximation
for i(v), i(v) = 2€s]T|(1 + 82)1/2v/ﬂ, provides a good estimate as long

as e is sufficiently small. .The line of nodes, i.e. the intersection of
the instantaneous orbital plane énd the X,Y plane is located at v = Vi - /2
=7/2 + O(es) when the first switching takes p1ace. It returns to this po-
sition at all switching points while slightly deviating from this line in
between. Through Equation (5.9), the switching instants are a]so known in
terms of time. | |
The foregoing analysis is valid for any fixed sail orientation de-
signated by the control angles o and B. Since the rate of increase in in-
clination is proportional to the magnitude of the force component [T/, the.
most effective (fixed angle) strategy is the one which maximizes IT|, i.e.
a = 0 and j81v= arcsin(3']/2) = 35.26°. In fhis case S =0 and the tra-
jectory is a degenerate spiral maintaining a constant distance-fkoh the sun
(so-called 'cranking orbit'). The behavior of the ﬁnc]ination for this case
is illustrated in Figure 5-5c¢ for a few values of € While it would take
about 14 years to make a full 180° swing through space at 1 A.U. from the
sun, the duration would be less than 5 years at 0.5 A.U. (taking € = 0.15).

An obvious application of three-dimensional spiral trajectories in
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conjunction with switching would be in a transfer mission where both incli-
nation and radial distance are to be changed. From this consideration, it
would be interesting to determine the most efficient orientation of the sail
for a near-circular out-of-plane transfer with the final radial distance
prescribed and the inclination to be maximized or, vice versa, the final
inclination is predetermined while the distance is to be maximized (mini-
mized). . Since only constant control angles are considered, the probTem may
be stated mathematically as maximizing the force component |S| as a function
of a and B under the constraint that |T| is constant and vice versa .

Using Lagrange multfp]iers, the best control program jn both cases is

found to satisfy the relation cosza cosZB = 2/3. The range of inclinations
and distances which can be reached within a given time by these strategies
is shown in Figure 5-5a. Here the solar parameter € is taken to be 0.15
(A/m = 100 m2/kg) and the results are valid for any starting radius rOO and
for outward (o > 0) as well as inward (o < 0) trajectories. The plot is
derived from the analytical values for i(v), r(v) and t(v) involving deter-
mination of the responsé for various values of o and B¥:tarccos[61/2/(3c05a)].
The arrows in Figure 5-5a indicate the direction in the r,i plane taken by
a particular control strateay a,B . In the case where the radial distance

is prescribed at some final time, the required ratio |S|/|S] for a given

max
value of e may be established in conjunction with Figure 5-4, showing the

response for the strategy with IS] = |S| (i.e. Ja| = 35.26° and B = 0).

max
The ratio of the value for € corresponding to the desired response and the
actual e, determines the required |S[/[S| .  with sufficient accuracy.

The sail setting a,B vielding the maximum inclination is given by the point

of intersection of this particular value of [S|/[S| _  and the curve
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cosa cosZB = 2/3 (i.e. the solid curve in Figure 5-5b). Conversely, if the
final inclination is prescribed, the corresponding optimal control program

can be determined as follows. For a given €¢> the required value for |T|/

7]

max may be taken equal to the ratio of the desired final inclination and

the one obtained under the control program corresponding to [T| ., i.e. a = 0,

max
B = *35.26°. (The behavior of the inclination under the latter control strate-
gy is shown in Figure 5-5¢ for a few values of ss). The optimal sail setting
follows readily from Figure 5-5b as the intersection of this value of |T| and

the solid. curve.

5.5 Arbitrary Initjal Conditions

In this section, approximate analytical solutions for solar sail tra-
jectories with an arbitrary but fixed sail setting and general initial con-

ditions are developed.

5.5.1 Short-term approximate solution

' By expanding the variables wu, &, and K in terms of a straightforward
perturbation series in the small parameter € an initially valid approxi-
mate solution is obtained with the zeroth-order solution representing the un-
perturbed Kepler ellipse with parameters ’200, Poa and 400" The first-order

equations are solved, yielding the expressions for in-plane perturbations as:

=
—
——~
<
o
§]

22008 A1O(v) ;

<
—
—
<
~
H]

R(cosv - 1)/52,0O + S{cosv[q00812 * Pog (l—\]2 - A]O) + 4A]]]

+ sinvlpggBy, = dgglAyp + Ajg) + 88111 = 803/ (2200) L o (5.18)
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It may be noted that for an initially circular orbit, the changes in a,
¢ and r after one revolution are all equal to 4naOOS . The short-term

behavior of the orbital plane expressed in terms of i and ¥ is given by

T[A]](v)sinv - B]](v)cosv]

p(v) = v - arctan + O(ez) ;
T[A]](v)cosv + 811(v)sinv]' S
i) = [Tl ) + BE oo, (5.19)

This result indicates that after one revolution the position of the ascending’

node is at @ +ﬂ‘+0(€2), i.e. near the aphelion, if' T>0 and at

00 S
&OO + O(eg) (near perihelion) for T < 0. This result can be understood
physically: although the angular rate of the orbital plane, w£'= esTu/Q]/z,

is smaller near aphelion than that near perihelion, the angular change per
radian traversed by the satellite is larger near aphelion since 1/v is
proportional to rz. Hence it is also evident that for an initially circular
ofbit, the orbital plane returns to its original position after one revolu-

tion (in the first-order approximation).

5.5.2 Long—tefm behavior of the elements

A Tong-term approximate solution for orbital elements of the solar
sail trajectory with fixed sail setting and arbitrary initial conditions can
be derived by means of the two-variable expansion procedure. Thereto, a new
fndependent sTow variable U = ev is introduced and the variables u, 2 and

K are expanded in asymptotic series:
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N-1
M) = Tl () 0(ed)

n=

N-T o - N ”
K(v) = EO e K (vv) + Oe) - ... (5.20)

n:

Substituting these series into Equations (5.5), using d/dv = 3/3v + 558/85
" and d2/dv2 = 82/8v2 + 25582/(8v av) + eg 82/852 , and collecting terms of
1ike powers in €cs leads to equations for the subsequent Tevels of approxi-

mation. The zeroth-order equations admit solutions, written as follows:

up(v,v) = 1+ pg(vlcosv + gg(v)sinvl/en(Vv), pO(O) = Pgg

a9(0) = apq 3
fo(vav) = 25(V) . o 26(0) =244 5
Mo(v,5) = AO(Q)Cosv + BO(S)sinv , AO(O) = BO(O) =0 ;
Ky(v:9) = K(9) ; 00 =1. ... (5.21)

Physically, one can interpret the expression for ug as a trajectory tangent
to osculating ellipses with slowly varying mean elements. These averaged
orbital e]emenfs differ from the usual osculating parameters in the sense
that short-term periodic variations are disregarded.

The functions Pa> 9p° %g> AO’,BO and KO of the slow variable 5.
are determined from constraints imposed upon the first-order contributions.

The equations for the first-order terms become:

2 82 2 auo ‘
- zQz-I/fQ'O = (R + S"a_'\')-_/ uo)/zo ’

u
+ Uu; = -2 9
RV RAVERY)
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852,1 dSLO
_— = - + ZS/UO s /Q/-I(O) = O,
v v
2om, 2%, M, M,
2 + M'I = -2 + TKo/( 0 O) M'I (O) = Os _(O) = - T(O) s
v SAVERY! v LAV
8K1 dK0 BMO
-— T - /- T —= /(UO,Q,O) N K](O) =0; L. (5 22)
v dv v

In order that the zeroth-order terms remain a valid approximation over a

long duration, it is required that the first-order terms do not contain un-
bounded contributions (in the variable v). Therefore, the right-hand-sides
of Equations (5.22) are developed in Fourier series with slowly varying co-
efficients. To eliminate (mixed) secular terms in the solutions for uy and
M], the coefficients of sinv and cosv need to vanish, while for suppressing
unbounded contributions in 2] and KT’ the non-harmonic terms must be set

equal to zero. This leads to the system of equations:

Ppld) = S pgll - (1 - e)Pyzel . pg(0) = ppy
ap(®) = S qp0t - (1 - ef)'/2y/el . ag0) = qgq 3
(%) = zszb/(ll- eb)!/? . 15(0) = 2y
AG(3) = T kg a1/ (1 - €))% - 1y/el . Agl0) =0
BY(D) = =T Ky pol1/(1 - ed)V/2 - 11768 . By(0) =0
Ky(9) = =TIpgBy = Aol 11/(1 - )2 - 11/ el Kp(0) =1

It follows from Equations (5.23) that éo(ﬁ) = &00 is a constant so that the

orientation of the major axis remains fixed in the long run. To analyse the
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behavior of the eccentricity, the auxiliary element w(v) =1 - [1—e2(\_))]]/2

is introduced and the following equation for Yy is found from Equations

(5.23),
wé(ﬁ) = SwO/(l - wO), wO(O) = Vgg - e (5.24)

If Yoo = 0, i.e. initial orbit is circular, it fo]]ows that the orbit will

remain circular in the long run: wO(G) = eo(ﬁ) = 0. It may be noted that
uO(v,G)zo(G) =1 and 20(5) = 200 exp(2 Sv) when egg = 0 in accordance
with the exact spiral solution discussed in Section 5.2.

For Yoo # 0, integration of Equation (5.24) leads to the following

implicit equation for wo(ﬂ),
wo(v) = W explSv + wo(v) - ool - S (5.25)

Quite accurate representations for wO(G) can be established through a pro-
cess of successive substitution. Initiating the procedure'by replacing
wO(O) with wéo)= Wop 1n the right-hand-side of Equation (5.25), subse-

gquent more accurate approximations for wO(G) follow from:

-1)

v) = Yoo exp[Sv + wén - wyol > L

for n =1,2,3,... . This iteration scheme converges very rapidly as long as
€00 is not too close to unity. For small €po> N asymptotic series in terms

- of powers of W Can be established from the scheme in Equation (5.26). It

(n)

can be shown that the errorterm in wy (v) as an approximation for wO(S)

is of the order WRB] for Yoo 0. For most purposes, the asymptotic ex-

(3)

0 (v) for Yoo 0 would provide sufficiently accurate results:

pansion of w
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wé3)(5) = Wg exp(Sv) + wgo[exp(ZSG) - exp(Sv)]
3 - - - 4
+ w00[3 exp(3Sv) - 4 exp(2Sv) + exp(Sv)1/2 + O(WOO) )
..... (5.27)
It should be emphasized that a series in terms of powers of Yoo is more use-
. . 2 4
ful than the one in powers of €40 for small €gg> Since wyg = e00/2 + O(eoo)
for ego 0. From the results for wén)(ﬁ), Equation (5.26), the corresponding
eccentricity eén)(Q) can readily be evaluated from the relation,
M) o -n-WMendle, (5.28)

to any desired accuracy by taking n sufficiently large. For small €00°

asymptotic series in terms of powers of Woo can be derived. The expansion

(3)

0 (v) would serve most needs:

of e

e (v) = €00 exp(Sv/2){1 + WOO[exp(SQ) - 11/4

+We[3 - 10 exp(SV) + 7 exp(259)1/32 + ) S (5.29)

The Tong-term solutions for pO(G) and qO(G) are readily expressed in

terms of. eO(Q),

(n)(' (n)

(n)(G) = Pgo eén)(Q)/eOO , ag v) = 900 € (5)/e00 e (5.30)

and asymptotic series are established using Equation (5.29).
The attention is focused on the behavior of the semi-latus rectum.

Through Equations (5.23), 20(5) can be expressed in terms of wO(G):
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For the first few approximations of wO(G), the integral can be evaluated

explicitly:
lé])(ﬁ) = 200(1 - eSO) exp(2Sv)/[1 - Wog exp(S\_))]2 ;
2(2)(5) ., (1 - wyp) exp(25v) .
0 00 - 2 - -
1 - wyg exp(Sv) + wOO[exp(Sv) - exp(25v)]
2 +w [(w2 - 2w~ + 5)1/2 + w.. - 11exp(Sv) 2(]-WOO) 1/2
. 00' o0 ~ “Yoo 00 P27 {(wgg-2vgg*s)
2 e\ 1/2 - ’
2 - WQO[(WOO - ZWOO + 5) - wog * 1]exp(Sv)

_2(2)(6) = 24 exp(2Sv){1 + ZWOO[exp(SO) - 1]

2 - -
*owpol4 exp(2Sv) - 6 exp(Sv) + 2] + O(W80>} e e (5.33)

A long-term approximation for the radial distance r = 1/u is given by

r(n)(v,ﬁ) = Q(n)(ﬁ)/[T + eén)(ﬁ) cos (v --600)] , .

0 0

where the desired representations for zé”) and eén) need to be substituted.

Also, a long-term approximation for the semi-major axis aO(Q) is known,

Ve = Ve -Wien? eee.(5.35)

Next, the time history of the satellite in its trajectory is studied.

1/2

Since t'(v) = r2/2 , it is obvious that
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t(v) = J? Q3/2(?) dt/[1 + e(t) cos(t - &00)]2 . (5.36)

0

Through subétitution of Qén) and eén) jnto the integrand, a long-term valid
explicit approximation for t(v) may. be derived. 1Tt is more convenient, how-
ever, to determine asymptotic series for t(v). In this.regard,'it must be

emphasized that, due to the integration of terms depending upon Vv, a consis-

tent asymptotic series of t(v) should be of the form:

tv) =t (B)/eg * ty(viD) et (v,T) + 0(ed) ... (5.37)

Substitution of Qé]) and eé]) into Equation (5.36) and integration Teads to

the following approximation for t_](G):

t(])(ﬁ) = agéz'{[exp(385) - 11/3 + ego[3 exp(4Sv) -4 exp(3Sv) + 1]

/4 +0(egg)} /S, ..., (5.38)

It is interesting to note that this result is consistent with the exact
spiral solution of Equation (5.9) when eyq = O.
Turhing to the long-term behavior of the orbital plane, it can be

seen (from Equations 5.23) that the vector KO(Q) = (MO,LO,KO) traces a path

upon a spherical surface : Ag + BS + KS = 1. Writing AO = CO sin &OO and
BO'= - CO cos &OO’ an equation for CO can be‘derived and solved,
CO(B) = sin{ T[arcsin eO(G) - arcsin epyl/S | (5.39)

Through this expression, all of MO(G), LO(S) and KO(S) can now be written
in terms of e and are thus determined up to the required accuracy by substi-
tuting the appropriate approximation eén)(5) or its expansions for small

€00 The orientation of the orbital plane in terms of the angles wo and 10

is given by:
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Wnp + 1 s T >0
Yo(v) = o0
W0 , 1 <03
ig(v) = |T] [;rcsin eg(V) - arcsineggl /S. ..., (5.40)

5.5.3 Higher-order contributions

It may be noted that the maximum deviation of the zeroth-order solu-
tion fromAthe actual solution is of the order € only fof v up to about
1/55. Thus for large values of A/m, higher-order terms may be heeded to
e§tab1ish sufficiently accurate long-term approximations.

After 1ncorporating_the zeroth-order solutions, the remainder of
Equations (5.22) can be integrated formally, yielding the first-order

results:

u](v,v) - [R + A3(5)](1 - cosv)/zo(ﬁ) + AZ(G) cosv +-Bz(5) sinv
ECIRIPRIC alg/3 = pg ddq + g cf11 sin(v)

- 12 ¢/ + pg by - g adyd cos(IL/ (G5 - 1)

2](v,5) = QO(G) { 28 jz]'{a%o sin(j&) + C%O [1 - cos(jv)1} /3 + A3(5) };

My (v,9) = T K (9) (1 - cosv)/(1 - efg) /2 + A (3) cosv + B,(5) siny

00
- T Ky(v) jzz’{ago cos(jv) + C%O sin(3v)} /(3% - 1) ;
K, (0,9) = T/2 jg]‘{[cﬁg1 - odoh Ro(9) sin(iv) - fadd? - adil Ag(o)e

- j+ j- S i+ -1,
*[1 - cos(§v)] - [a%O] + a%o]] By(v) sin(jv) - [c%01 + c%o]]*
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*By(V) [1 - cos(3v)IM/3 +A(0) . L. (5.41)

The Fourier coefficients aﬂk, bik, etc., depend on the slow functions pO(G)
and qo(ﬁ) and are evaluated in Appendix II. The function; Aj(ﬁ), Bj(G),
j = 2,3,4,5, are to be determined, as usual, from constraints imposed upbn
the behavior of the second-order terms}. Equations for thesé terms can rea-
dily be obtained (Appendix III),_1eading to lengthy equations for the func-

tions Aj’ Bj when eliminating the secular contributions to Uss 22, etc.

For instance, the least complicated one is given by,
AY(D) = - Ag ag/y - SIR + Ag) [y - a1 * Sty [A, ag] + B, bO1]
" jzzl{cgo (2 ajg/d - b ¢y * ag 3] - agg »
*[2 c%o/j * pg b%1 - Qg a%1]} ;
with all Fourier coefficients depending on v . While analytical so]utidns

have not been found for general eccentricity, in the special case of ey, = 0

00
it follows that eO(G) = 0 and the equations for Aj and Bj can be integrated

yielding the following complete first-order solutions:

QT(v).= 2200 RSv exp(2Sv) ;

{(R2 + 452)[1 + exp(Sv) - 2 exp(Sv/2) cosv]}]/2 ;

®
—_
—~
<
<
~—
[

e
_—
—
<
<
~
1

2S[exp(Sv/2) - cosv] .- R sinv
arctan { } 3
Y Rlexp(Sv/2) - cosv] + 2S sinv

r(v,v) = %00 exp(2Sv){1 + e, RIT - exp(Sv/2) cosv]

-2 e S exp(S¥/2) sinv} + 0(e5) . coo..(5.02)
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It is seen that the radial distance oscillates around the spiral solution
r = 200 exp(2Sv) with slowly increasing amplitude of oscillation.

As to the orientation of the orbital plane, it follows that

S(1 - cosv) + [2S cosv - R sinv][exp(Sv/2) - 1]
y(v,v) = v - arctan { - }
S sinv - [2S sinv + R cosv]lexp(Sv/2) - 1]

+0(el) 5

2)[8XD(SG/2) - 1]2 + 452(cosv - 1)*

—
2
<
=
]

e, ITI/ST(4s + R

s[exp(S/2) - 3/2] - RS sinvlexp(s9/2) - 11} + 0(ed) . ... (5.43)
These results illustrate that the amplitude of the perturbations grows slowly.

5.5.4 Diséussion of results

In order to assess the relative accuracies of the approximate results,
comparisons are made with a numerical solution of the exact Equations (5.5)
using a double-precision Runge-Kutta integration routine. The high value of
initial eccentricity (e00 = 0.6) s chosen to illustrate a rather extreme
situation, while € is taken to be 0.015. Figure 5-6 shows the various
approximations for the semi-latus rectum: obviously, the short-term solution
has a Timited range of validity, while the near-circular expansions of Qél)
and 262) may give fairly accurate long-term approximations provided a suf-
ficient number of terms are retained for high values of €00 (curve a).

The solution 282) is more accurate, naturally, and would be the most appro-
priate candidate for predicting Tong-term, high-eccentricity trends. The

effect of the first-order contributions, 2](v,5) from Equations (5.41) is
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added to 282) illustrating the small-amplitude oscillations around the
mean trend designated by 262) itself. The slow function A3(5) was taken
to be zero throughout. The'discfepancy between the numerical solution and
this (best) analytical approximation is largely due to the effect of A3(5).
Other contributions to fhe error may be attibuted to the fact that léz)
represents an approximation for 20(5) and the.higher—order terms are
neglected. |

Figure 5-7a shows Fhe long-term trend of the semi-major axis for a
few sail settings. The approximation aéz)(ﬁ) compares quite well with the
exact numerical solution: at Teast to two significant digits over the first
12 revolutions. The long-term behavior of eccentricity is depicted in
Figure 5-7b, where the approximation eéz)(Q). was used. Relatively large
first-order contributions separate the zeroth-order approximations from the

exact solutions in this case. Nevertheless, the qualitative trend of the

long-term behavior of the eccentricity is predicted correctly.

5.6 Concluding Remarks

The results of the present chapter can be summarized in the form of

the following general conclusions:

(i) An exact three-dimensional solution in the form of a logarithmic spi-
ral is presented for certain specific initial conditions by separating

the out-of-plane and 1n-pléne motions.

(ii) An effective near-circular, out-of-plane spiral transfer trajectory
has been explored in detail permitting any combination of final

“radial distance and orbital inclination.
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Short- as well as long-term approximate solutions have been
established for arbitrary initial conditions. For small initial’
eccentricity, asymptotic series for the orbital elements should

prove useful for long-term trajectory evaluation.
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6. DETERMINATION OF OPTIMAL CONTROL STRATEGIES IN HELIQCENTRIC ORBITS

6.1 Preliminary Remarks

Although it is evident from the results of the previous chapter that
fixed sail settings can produce effective transfer trajectokies, especially
if the best possible orientation of the sail is chosen, time-varying control
strategies are likely to bé more efficient. Therefore; the attention is
focused upon the determination of optimal control strategies in this chapter.
In many missions, e.g. ’rendezvous-with a distant planet or escape from the
planetary system, it 1s‘important to increase the size of_the orbit in the
most efficient manner. A specific optimization criterion must be formulated
accbrding to the nature and objectiVe of the actual mission involved.

~ Here, two particular criteria with general applfcabi]ity are selected: -
fifst, the optimal steering program of the orientation of the solar sail for
maximum increase in total energy (and thus semi-major axis) after one revo-
Tution is determined. Next, the best steering program for maximum increase
in angular momentum (and thus semi-latus rectum) after one revolution is
derived. While the control strategy which directs the thrust along the
instantaneous velocity vector at all times would likely be very effective
as to the first objective, especially for near-circular orbits, a formula-
tion in terms of.optima1 control theory would evaluate, for instance, the
effect of steering the spacecraft relatively closer to the sun initially
in order to take advéntage of the larger magnitude of the force there.
The solutions are found in an implicit form in terms of state and adjoint

variables by means of Pontryagin's 'maximum principle'. Approximate
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explicit représentations can, subsequently, be determined in asymptotic
series containing the small parameter € denoting the ratio of solar
radiation and gravity forces. In general, only the first few terms of these
series can be evaluated. These approximate analytical results have been
substantiated by means of a numerical iterative procedure based on the
steepest-ascent method. No restrictions are placed on the position of the
satellite in the initial orbit nor on the nature of the initial and ensuing

osculating ellipses.

6.2 Formulation of the Problem

The governing equations of motion for the solar sail are essentially
similar to Equations (5.5) except for the fact that the force components R
depend on the independent variable since R = ngjv)] here.

For convenience, the solar sail is represented by a flat plate of homogeneous
surface characteristics and the'parameter 9, is neglected. Note‘that for
a realistic solar sail surface, the magnitude of g, amounts to about two

percent of the reflectivity p, Table 2.1 . The components of R can be

written as:

=
B
it

(o] + pcosza cosZB) COS o €OS B ;

. 2
o sina cos o cos38 ;

w
—
L
~—
1l

-p cos% cosZB sing s ... (6.1)

_*

—

2
1

The vector o stands for (a, B) and is a function of v. For the analysis

of this chapter, a more convenient alternative system of autonomous first-
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order equations is derived for the in-plane orbital elements by means of

Equations (5.5):

o' (v) = - v(v) +'2€S:S(é) ; ; 0(0) =

Poo 3
V) = e(v) + e fR@) + Sl ¥(/TT + e(W1k ¥(0) = -agqs
p(v) = 2e S(a) 2(v)/[1 + 8(v)] . | }' ..... (6.2)

The variables @¢(v) and V¥(v) are defiﬁed'in Equations (4.14).
The two problems to be studied here can be stated as follows:
(1) which control strategy g(y) Teads to the maximum value of the semi-
major axis after one revolution ?

(i) which control function a(v) yields the maximum value of semi-latus

rectum after one revolution ?

These problems are approached using the results of optimal control theory.
To minimize algebraic complexity, new varjab]es a=-1/a and & = 1n(%)
are introduced and the complete system including the adjoint equations be- .

comes (note that ¢'(v) and ¥'(v) are also part of this system):

2 exp(-2) R(2) ¥ + S(o) (1+ )15 a(0) = - 1/a

Q)
—

<
~

it

00 °
2(v) = 26 S(@/(1 + o) 0) = anlagg)

A(v) = 0

~

Ai(v) = 255 AO {R(a) ¥ + S(a) (1 + @)} exp(-2) 3
Mp(v) = - ag - 2eg S(a) exp(-R) + e  S(a) (20 + A¥1/(1 + 0)°
M) =, - 2el AR(@) exp(-2) - e Ay S()/(1+ @) . ... (6.3)

The out-of-plane equations turn out to be irrelevant and are omitted here.
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6.3 Maximization of Total Energy

In this section, an approximate analytical representation for the
optimal control strategy o(v) maximizing the total energy E (and thus
major axis a) at v = 2r is derived. The Hamiltonian for the present pro-
blem, Equations (6.3), becomes:

~

H{a) = A0 - A ¥ + eRla) {2xg ¥ exp(-2) + Asl

3 2

~

+ ey S(a) {20g (1+6) exp(=2) + (20) + A5 ¥)/(1 + 8) + 21, .

For a(v) to be the optimal control vector over the fixed interval (0, 2m),

the following necessary conditions must be satisfied:

i) oH _  9H

a0 T oog 0 0
if) H(a) = constant ;
ii1) Aj(gﬂ) = 0, j o= 1,2,3 (transversa]ity)
iv)  aglv) = 1 o | SRR (6.5)

according to Pontryagin's Maximum Princip1e107. From the conditions 11),
iii) and iv) it follows that
H o= 2e {[R(e) + (1 +0) S(a)] exp(-2)}

3

-----

v = 27

which equals 3'(2w), .Equations (6.3). The conditions in i) lead to the
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following equation for a,

~ ~

[2 ¢ exp(-2) + A5l %§-+ [2(1 + &) exp(-2) + (zx] +.x3w)/(1 + ) + 2X,] %g-,

and a similar one for B . It follows readily that R(v) = 0 1is a solution
for the out-of-plane rotation confirming that the optimal trajectory is a
planar one since the solar radiation force remains in the plane of the
orbit. The equation for the control angle af(v) is reduced to the follow-
ing implicit relation:

ocos a {1 - 3 sin? o) 2¥ + g

sin a (c] +3p cos2 a) 2(1 + @) + (22, + x5 @) 2/(1 + &) + 22 A

1 3

with o 1in the interval (0, n/2) on physical grounds. For obtaining
approximate solutions for a(v) from Equations (6.8) it is imperative

to assess, carefully, the ordersvof magnitude of the various terms on the'
right-hand-side of Equation (6.8). Thereto, the orbital elements and
adjoint variables are written as a system of coupled integral equations
derived frbm Equations (6.3) by integration while taking the mixed boundary

conditions into account:

vV

a(v) = agy + e [ {a°IR ¥+ S(1+0)1/2} dr ;
0 R
v

2(v) = fgg *t2e [ {2 S/(1+0)) dr g
0

'\) N .
d(v) = @O(v) +e_ [ {2Scos(t -v)+ [R+SY¥(1+0e)] sin(t -v)}dr;
0

S
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AV
y(v) = Wo(v) * e J{IR +SY¥/(1 + )] cos(t - v) - 25 sin(t - v)} dt ;
5 .
2m
A ) = - 2e JT{R ¥+ S(1 +)]/8} dt ;
v
N
Az(v) = e {{Q sin(t - v) + P cos(t - v)} dt 3
V. .
2m
A3(v) = e [ {Qcos(t -v) - Psin(t -v)}dt . ... (6.9)
Vv
Here ®0(v) = Pgg COSV + ap sin v and Wo(v) = Pgo sinv - 990 cos.v'

and the auxiliary functions P and Q stand for:

30/ 408

v
It

2 S/% - S(2>\-l + A

fen)
It

2R/L+ Ay S/(T40) . (6.10)

An asymbtotic series for ofv) in terms of the_sma]] parameter €, can
now be conétructed. By writing o(v) = ao(v) * e u1(v) + O(eg) ,
developing the left-hand-side of Equation (6.8) 1in a Taylor series around
ag and expanding the right-hand-side using the results of Equations (6.9),

successive terms in the series for o(v) can be established. The leading

term satisfies the implicit relation:

. 2 \
p COS a0(1 - 3 sin ao). ¥O(v)

sin uO(O] + 3p Cosérao) 1 + @O(v)

A good approximation to the solution of Equation (6.11) may be obtained by
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(1)

successive substitution with a starting value oy _(v) = 35.26°,
(i.e., the solution of Equation (18) for an initially circular orbit).
The (n + 1)th approximation is obtained from aén)(v) as follows:

(n)

uén+]) (v) = arcsin 1{1/3 - ¥y tan o [(O]/3p) + cos2 o

O —
3
~—
—
~

13172

(1 +0 s e (6.12)

0
n=1,2,3,..., which converges rapidly provided that the initial eccentri-
city is not too large. Geometrically, the steering angle ao(v) in Equa-
tion (6.11) makes the resulting solar radiation force aligned with the
ve1oc1ty vector of the unperturbed initial osculating ellipse at each
instant. |

Whereas this may serve as a useful guide for very small values of
€g> it is evident‘that higher-order terms relating to the slowly varying
geometry of the osculating ellipse must be evaluated when practical values

' of e, are taken. For the analytical evaluation of the higher—order te}ms,
an explicit relation for ao(v) would be needed. In the special case
when the reflection is specular (p =1, o) = 0), a closed-form result for
ao(v) can be derived from Equation (6.11),

2]]/2

(1 + @O){[Q yoo+ 8(1 + @0)

)2

- wo}

O N

uo(v) = %—arcsin  ee...(6.13)

3[¥~ + (1 + 3,)7]

0 0

On expanding both sides of Equation (6.8) as a Téy]or series in terms of

the small parameter e_, the first-order term a1(v) now becomes |,

S’
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- L3 St () (1)
oL lv) = - = Y + Ran Ay /2
] 2 [3 - cos(ZaO)] 00 73
- ¥y 200“%”* Yo xél)/z]/m + @O)Z- %00 Yo Aé”/(] + @0)} .

where the superscript (1) denotes the coefficiént of e, in the expressions
in Equations (6.9) . The trigonometric terms in Eauation (6.14) can be
e]iminéted in favor of the orbital variab1eé ¢, and ¥, through'Equation
(6.13). Also the integrands in Equations (6.9) can be expanded for small
€ and expressed in terms of v. Whereas the resulting integrals are un-
wieldy for arbitrary eccentricity, analytical results can be obtained for
near-circular orbits. Thereto, expansions of the trigonometric terms
.for small €00 are needed. These can be derived uéing the expansion of
Equation (6.13) for small €40 and developing R(a) and S(a) around o = 0 -
With these results, all integrands in Equations (6.9) can be evaluated and

(1 ()

near-circular approximations for ¥ s Ay s etc., in Equation (6.14) are

obtained by integration. Finally, the following expression for u](v) with
an error of the order ESO is established:
_ -3/2
u](v) = -3 {1 - cos v + 3mq/2 + (4ﬁ - 3\)/2)‘{’O - (p + @0) cos v
+2p - 3g/2 sin v - 9(2'3/2)}{’O (1 - cos v)}
-V {7(31/2) (p2 - Qz) sin(2v) - 2(6]/2) ez}

- {40672y &2 4 332 g1/

sin(2v) { (p2 = a2)16'/2 - 4(3%/2)ry - pas23/18

(1 - cos(2v)] {(p% - q) (372 + 1/4) + 2(6"/%)pq1/18
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- (1 - cos v) {(p2 - 0912372 Z 178 + 4 sin(2v)] - 3e2/4
- (33/2)WDq}/18
- sin v {pq - 33/2 ('2p2 + qz)n + 3]/2[4p0 cosv + (q2 - 3p2) sinv]

- 4(3]/2) (p2 - 02) sin(2v) + 6]/2[e2 - (p2.— q2) cos(2v)

- 2pq sin(2v)1}/18

- 6]/2'{3qu0 + (81 - 3v)wg - 2(p + og)¥y cosv + 4p¥y - 3a¥, sinv.

3 )

- g 1289 + 3(27/9)¥01 (1 - cosv)}/144 + 0(ed,

Here the subscripts 00 are omitted for brevity._ It follows that the first-
order correction esa](v) for an inftia]]y circu]ar Qrbit is at most 225:S
degrees (at v = ) below the constant Gy ='35.26° control program. It is
interesting to evaluate the response of the major axis under the optimal
control strategy. For a near-circular orbit, a(v) can be written as

12

_ : 2 . -
a(v) = a5 exp{ZES(] + eOO) [2(3 v+ pyy Sinv + g 900 cosv)

00
+ 2(6]/2) (pOO - Pgg COSV - dgg sinv)/9 + egov/z

2 2\ .
+(qOO - pOO) sin(2v)/4 + Po0%00 cos(2v) - Poo%00

" o<ego)] " 0(85)} .

If o = 0 this result can be reduced considerably yielding

a(2m) = apo expl4.8368 e * 0(55)] “after one revolution.



201

6.4 Maximization of Angular Momentum

- Here, the optimal control strategy for maximum increase in angular
momentum (and thus semi-latus rectum) per revolution is determined. This
‘corresponds with maximization of E(Zw). The system of Equations (6.3)
remains valid provided that the equations for a and AO are ianored and

the equation for A1 is replaced by ki(v) = 0. Now the Hamiltonian becomes

a) = A, & - “P+£-: A R(QL)+€S S(a){(2x; + A ¥)/(1 + &) + 23,1

f 3 2 Ve Mg 1t 2

o
Application of Pontryagin's maximum principle Teads to results as in
Equations (6.5) with A o= 1 now. It follows that H, = 2'(2n) and the
out-of-plane rotation R(v) = 0 while the optimal control angle af(v) is

given by the implicit relation,

Ay (1 + @)

3

sino, (o] + 3p cos“a) | 2+ 0¥t 20,

p cos o (1 - 3sin“a)

2
2 (1 +8)

The orbital elements &, ® and ¥ can be written in the form of Equations (6.9)

while the adjoint variables Az(v) and A3(v) become

27
kz(v) = & { {QR sin(t - v) + P2 cos(t - v)} dt ,
. 2 i .
av) = el { {Q, cos(t - v) - P sin(r - v)}de, .. ., (6.19)

with PQ and QQ defined by
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P =-5(2 g ¥)/ (1 + ®)2 ,

O
1]

A3 S/(1 + o) .

The right-hand-side of Equafions (6.18) is of the order e, SO that a(v)
is written as o(v) = ag te oy ¥ O(s?) with 4 = arcsin(37]/2)
= 35.26° . The first-order term a](v) is determined by expanding both

sides of Equations (6.18) in Taylor series for small € yielding the

following explicit result,

0 (v) = - (oq + 20) 373272 (1 + o, (v)] [2 ¥y (v) *

2 \1/2
(1 - eOO) tan(v/2) } p 5 )1/2

- K% { m - arctan|
1 + Pog * qOOtan(v/Z)

2y

+ 7 - [@O(v) + cos v1/(1 + pOD)] /(1 - €00

The resulting response 2{v) under the optimal sail setting can be

approximated by 1ntegrating Q'(v) in Equations (6.3) {up to order es),

1/2

: ) (1 - e n) tan(v/2)
2(v) = Lop €XP 8€Sp 373/2 arctan| 00 1 /(1 - 880)1/2
L+ pgg * qootan(v/Z) |
..... (6.22)

Considering an initially circular orbit, it follows that 2(2w)

exp{4.8368 oe + 0(55)]. This result is identical to the one found in the
previous section wnile maximizing the semi-major axis for a near-circular
starting orbit. Obviously, the control programs in Equations (6.15) and ..

(6.21) are also identical for egg = 0 in the present approximation.
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6.5 Discussion of Results

The accuracy of the analytical solution obtained in Section 6.3
is now assessed by comparison with results from a numerical iteration pro-

cedure based upon the steepest-ascent method]19.

An arbitrary nominal con-
trol strategy is selected and the influence of a small variation in that
control program upon the response is investigated. The variation leading
to the maximum increase in major axis under a prescribed step-length (i.e.,
the integral from 0 to 2m of the sguare of the variation in the control
function) can be determined in terms of the derivatives of the system of
Fquations (6.3) with respect to the control angle. Thus, a generally more
effective new control strategy is obtained and the procedure is repeated.
While the algorithm converges rapidly to a near-optimal control sfrategy,
care must be taken in the neighborhood of the optimum due to the weakness
of the gradient field. By making both the step-size and the error para-
meter in the Runge-Kutta integration routine proportional to the length of
the gradient, satisfactory results are obtained. In the present case, the
initial control program is taken as af(v) = (2r - v)/6 and the optimal
strategy is established to within, approximately, 0.1 degree-in Tess than
30 iterations, Figure 6-1. A relatively small value of the solar parameter
(based on A/m = 10 mz/kg) is taken in this example. The first-order ana-
lytical result of Equation (6.15) for a near-circular initial orbit in con-
junction with the exact zeroth-order term in Equation (6.13) yields an ex-
tremely close approximation when €00 = 0.2 (Figure 6-1a): the maximum
discrepancy is lTess than 0.1 degree. On the other hand, if €00 = 0.4
(Figure 6-1b), the near-circular analytical solution is in error by almost

three degrees around v = 270°, while still providing a valid representa-
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tion for the optimal strategy in the remaining portion of the orbit. The
breakdown in accuracy must be attributed to two reasons: first, it should
be recognized that the first-order analytical result developed here does
not contain terms of order ego and higher which are likely to be 1nf1uentia1
when the eccentricity is as high as 0.4. Secondly, the state and adjoint
variables are represented as perturbation series in terms of € and only
the first-order solutions are taken into account leading to a rapidly gro-
wing error when away from the initial and final points.

Figure 6-2 shows the results for a higher value of €¢» namely
€ = 0.09, corresponding to A/m = 60 mz/kg. As can be expected, the
aﬁa]ytica] prediction for the optimal control is most accurate in the case
€0 ° 0; the maximum discrepancy of about one degree is due to higher-order
(in es) effects. It is interesting to note that initially the solar radia-
tion force points slightly inwards from the velocity vector and its magni-
tude is smaller than that for the case where the force is aligned with the
velocity. This is true for both the numerical and the first-order analyti-
cal results, although the effect 15 less pronounced in the Tatter case.
This apparent waste of energy is more than recouped during the middle phase
of the orbit when the spacecraft is closer to the sun and the force is lar-
ger. In this phése, the direction of the force is kept outward from the
Ve]ocity vector, thus providing an additional boost to its magnitude. In
the final phase the force tends to align itself with the velocity. The os-
culating ellipses corresponding to the resulting trajectory show that the
eccentricity increases from 0 to a maximum of about 0.2 near v = 190°

and decreases to about 0.02 with the position of the perigee at about 70°

in the end, v = 2r . The analytical result for €00 = 0.2 shows a maxi-
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mum error of about 2.5 degrees as compared to the steepest-ascent solution.
Figure 6-3 shows the optimal steering programs for three different starting

points in the same initial orbit of eccentricity = 0.2 (e_=0.15) ,

€00 s

obtained by the steepest-ascent iteration routine. It is seen that the
nature of the control strategy as well as the resulting final value a(2n)
vary considerably with the position of the starting point.

It is interesting to compare the effectiveness of the optimal strate-
gies with that of other near-optimal control programs, in particular the
constant sail setting o = arcsin(3—]/2) = 35.26°. The latter control is
expected to be a very effective strategy for small es,and small €00 since
it generates the maximum component of the force along the velocity for an
unperturbed circular orbit. Table 6.1 gives a comparative overview of the
response af(2m) for a few values of £ and e .(wOO is taken zero).

00

Table 6.1 Response a(2r) for Optimal Control Strategy and

for o = arcsin(3']/2) '

0.015 0.09 0.15
—
0 1.0761 1.590 2.280
1.0760 1.587 2.258
0.2 1.0808 1.668 2.608
1.0796 1.640 . 2.454
0.4 _ 1.0984 1.962 4,314
1.0922 1.819 3.202

*
The upper values correspond to the optimal response while the
lower ones represent the results for o = 35.26°.
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Although the results seem to be close in most cases; it muct be emphasized
that a difference of one digit in the fourth decimal pjace represents a
physical distance of about 15,000 km. On the other hand, it is evident
that a(v) = 35.26° is a very effective control strategy even for eccen-
trfcities as high as 0.4. It should be mentioned that the results in
Table 6.1 are derived numerically, since the analytical prediction for the
response under the optimal control, Equation (6.16), yields useful Va]ues
for a(2m) only for small e, and ey, and is not capable of providing accu-
racy beyond three.significant digits in the most favorable case, while being
in error by as much as 0.3 in the most severe situation of Table 6.1.

The actual trajectory resulting from the optimal strategy for
€ = 0.09 is depicted in Figure 6-4. It is seen that Mars' orbit is inter-
cepted at about v = 135° after approximately one year. Also the inward
trajectory crossing Venus' orbit is shown. These trajectories are obtained
from the steepest-ascent results. It may be mentioned tﬁat the leading
term in the analytical solution of the optimal strategy for inward trajec-
tories is equal to but opposite in sign compared to the one for the outward
ones. The first-order (fn cs) terms, however, are different and can be
readily eva]uated by taking XO = -1 vrather-than +1 . These conc1usions

are substantiated by the numerical results.

Finally, the optimal sail settings leading to the maximum increase
in angular momentum for a few values of initial eccentricity and solar
parameter afe shown in Figure 6-5. The approximate analytical solution for
the present case is- likely to‘be more accurate than the ones presented before

(Section 6.4) due to the fact that. a1(v) is obtained for general €qp>
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Equation (6.21), leaving only the errors caused by higher-order (in es)

terms. It may be noted that the resulting optimal control for =0

€00
corresponds identically (up to first-order) to the one which maximizes
a{2m), Figure 6-2. Compared to the optimal strategy for maximization of
a(2m), the present control programs are closer to the 35.26° line, repre-

senting the zeroth-order approximation of the optimal control for circular

as well as'e]iiptic orbits.

6.6 Concluding Remarks

Important aspects of the analysis and conclusions based on them

can be summarized as follows:

(1) Analytical approximate so1uf10ns for the time-dependent optimal
sail sefting maximizing the total energy (major axis) or the angular
momentum (Tatus rectum) after one revolution are obtained from
Pontryagin's maximum principle by means of a straightforward pertur-

bation expansion of the state and adjoint variables.

(i1)  The validity of the approximate solution is assessed by means of a
.numerical 1teratioh procedure based upon the steepestfascent method.
In general, the accuracy of the analytical solution decreases with
increasing € and eccentricity. For values of e as high as 0.1 and
e up to 0.2, the maximum deviation in control angle is less than 3°

(which is comparable to the expected error in manoevring the sail).

(iii) It is found that the optimal strategy as well as the response may

vary considerably depending on the starting point in the orbit.
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Effectiveness of the optimal sail setting is compared with that of
a near-optimal constant sail orientation showing a growing diver-

gence in responses for increasing values of € and 00

The optimal steering program for maximizing angular momentum stays
relatively close to the 35.26° line and coincides with the optimal

sail setting for maximizing a(2r) (in first-order) when eqg ° 0.

The optimal control strategies developed here should prove useful
in planning missions by solar sail to the distant planets and for

reaching an escape trajectory from the solar system.
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7. CLOSING COMMENTS

Summary of Conclusions

The main objective of the study, to gain insight into the long-term

evolution of satellite orbits under the influence of a realistically

‘modelled solar radiation force as well as exploring possible control stra-

tegies for desired orbital change, is accomplished in some measure. The im-

portant aspects and conclusions of the thesis may be summarized as follows:

i)

ii)

The‘1bng—term orbital perturbations of satellites modelled as a plate
normal to the incident radiation are determinéd using the two-variable
expansion procedure and rectification/iteration of the short-term
results. The in-plane orbital changes are easily visualized through
polar plots for the eccentricity vector. The Tong-term periodic
variations in the inclination of the orbital p]éne are explained in
terms of the in-plane perturbations, while the line of nodes regresses

in a slow secular manner.

Analytical representations for the short-term behavior of arbitrarily
shaped space structures pointing in a fixed direction with respeét to
inertial space or those kept in an arbitrary fixed orientation to the
solar radiation are obtajned. Subsequently, long-term results are
obtained by rectification and iteration. Also the perturbations of
a satellite modelled as a plate in an arbitrary orientation to the
local reference frame with differént material properties on béth sides

are analysed.
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i11) A few.on-off switching strategies are proposed and their effectiveness
in changing orbital parameters is explored. While substantial changes
in the major axis can be achieved in this manner, the time-dependent
optimal control strategy for maximization of total energy is derived by
means of a numerical iteration scheme based on the steebest—ascent
method. This result should be of interest for raising a solar sail

from a geocentric into a heliocentric or escape trajectory.

iv) A detailed investigation of the Tong—term evolution of heliocentric
trajectories for arbitrary fixed sail setting is presented which should
be useful for evaluating possible solar sail missions depending on sail
parameters and initial conditions. For specific initial condftions,
exact three-dimensional solutions in the from of spirals and conic
sections are established, while an effective near-circular out-of-plane
spiral transfer trajectory is obtained by switching at appropriate

Tocations.

v) Optimal time-dependent steering angles for maximization of total energy
and angular momentum are determined both by an approximate analytical
perturbatfon'method and the numerical steepest-ascent procedure. The
results are of interest for designing solar sail missions with the ob-
jective to rendezvous with a distant planet or to escape from the pla-

netary system.

7.2 Recommendations for Future Work

While the thesis may provide an overview of the various aspects of solar

radiation effects upon satellite orbits, it is by no means exhaustive and
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numerous options for future work are available. An obvious extension may
concern the derivation of an analytical prediction for the orbital behavior
of an arbitrarily shaped space structure of general material characteristics
under a suitable control strategy. An interesting manner to describe a
time-dependent control would be by means of a Fourier series. The main
difficulty would lie in keeping track of the continuously changing number

of illuminated surface components. Conversely, after the analysis has shown
its practical usefulness, it might be possible to derive conclusions as to
the Tong-term degradation of reflecting properties of surface materials by
carefully studying the orbital behavior of the spacecraft.

Various possibilities exist for extending the and]ysis on control
strategies using solar radiation forces. For instance, the control stra-
tegy developed here for optima] orbit raising might be extended to allow’
for constraints on the final state and/or for a second component of the
control vector. Convergence problems are expected near the optimum and
a proper combination of step-size and weighting function needs to be de-
veloped for each case. Also other optimization criteria could be investi-
gated, e.q. minjmum-time transfer problems, for which a formulation in
terms of radius and velocity vectors would Tikely be more expedient than
the present one in orbfta] elements. As to heliocentric solar sail orbits,
many topics are still open for study. Especially a generalization of the
spiral out-of-plane transfer trajectory to arbitrary initial and final

conditions would be of interest.
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APPENDIX I

EVALUATION OF THE INTEGRALS Ank AND Bnk

The integrals Ank and Bnk are defined as

A (V)

Bnk(V)

for k = (0),1,2,...

initial conditions

While the integral

n0

v
J cos(kt) dt/(1 + p cost + @ sint)"

0
Vo . n
J sin(kt) dt/(1 + p cost + q sint) , ..... (1.7)
0 ‘ _
; n=1,2,3.... The parameters p and g represent the

Poo and apy or the stow functions pO(S) and qO(B).

A]O can be evaluated by elementary means, the integrals

A . for higher values of n can be obtained from A]O by repeated differen-

tiation within the integrand , -

Alglv) =

Azplv) =

3 {2+ Do) - 300/01 4000 T - 30/(1 +p)

(1 - 62)1/2 tan(v/Z) } /(] B 62)]/2 ,

2 arctan {
1+ p+a tan(v/2)

{Mot) - ¥uD o] - arem 7 (1B



The integrals Ank(v) and Bnk(v) for k>1 may be expressed in terms of

An-],k-]’ Bn_],k_], An,k—]’ and Bn,k—] according to the following

recurrence formulae

2 : _ (n+k) . (n+k)
EBnH,kH_q{—__'_n Ank'An+1,k}+p{ B

for k = 0,1,2,¢+-

- p{(n:k)

Bnat } B

[pcos (kv) =qsin(kv)]

P

4

n[1+a(v)]"

and n=1,2,3,°++ .

obtained from Equations (I.3):

The following.results can be

n(1+p)"

-

k
Ank ) An+1,k }-—q {<E%;_)Bnk
[psin(kv)+qcos (kv)] _
+ b
n[1+e(v)]" n(1+p)"
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{-p A1) + (@ *siny) /01 +0(v)]- 0/ o)}/ (-8

“ahyg(v) - (preosu) /01 +o(n)I+1 |/ (1= ;

—_—

2

- 3q/(1+p) + (1 -e2)(q+s1'nv)/[1 +o(v)]

- q(l-e

2

/(1+p)?

|
J

/(1-¢e)

2

{ “3p A (v) + [30 + (1 +269)5inv] /01 +9(v)]

2
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By (v) = ‘7{ “3 Ay (v) - [3p+ (1 +2¢9) cos vI/[1 +4(v)]
+(1+3p+2e2)/(1+p)—(1-ez)(p+cosv)/[1+®(v)]

(1 -ez)/(1+p)‘}/(1-e2)2 L (1.4)

The integrals with n<k can usually be determined quite readily:

Ajpv) = {p[v-A]O( J]+q 2n I%QL(T\& ’}/ 2
By (v) = { alv-Ag(v)]-p an [ 152N ety

Rpa) = 2La ) Vet - (68 -a¥) (2= eh)a ()

-2V]/e4-4pq2n DTQL(-\Q

+p

Byp(v) = 2lp - o(v) /e + 2pal(2 - e?)A, o (v) - 2v]/e”

2 2)

- 2(p”-g7)an

TFp |/ - e

1+0(v) I/e4' . | (1.5)

These results are not suited for e~>0, and are to be replaced by:

Ajp(v) = -pu/2+ ] +3p2/4+4%/8] sinv-psin (2v)/4

+pg(1-cosv)/2- q[1-cos(2v)]/4+ (p2_- q2) sin(3v)/12

+pa[1 - cos(3v)1/6 + 0(e”)

H



Byp(v) = -qu/2+pq sinv/2+[1 +p2/4 + 36574101 - cos )
+qsin(2v)/4 -p[1-cos(2v)]/4 - pgsin(3v)/6

2

+(p? - q%)[1 - cos(3v)1/12 + O(e3) ;

A]Z(v) = sin(2v)/2-p/2sinv+q(l -cosv)/2-psin(3v)/6

-q[T —cos(3\))]/6+_0(e2) 5
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B]Z(V) = [1-cos(2v)]/2-q/2sinv+p(1l-cosv)/2+qsin(3v)/6
~p[1-cos(3v)]/6+0(e?) . B (1.6)
In many applications, the values of Ank(v) and Bnk(v) for
v =271 are required. These can be determined from the integral
‘ 2m exp(ikt) ‘dr
Ink(p’q) = o s
0 [l+pcost+qsint]
n=1,2,3,s++ 3  k=0,1,2,+00 35 . ... (1.7)
with i = (—1)]/2 and (p2+q2)]/2 =e<1. The intégra] I can be
evaluated by means of residues: |
' n-1 .
Ink(p,q) = 2mexp (ikw) e_k(l _82)-(n—k)/2 Y 23—n+1 *
J=0
n+k-1 -n . - -d-
(M) (M- (1= fy T2kt (1.8)

J n-j-1
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where w = arctan (q/p). The binomja] coefficients are defined by

(D = (n)(en-1) e [-n-(3-1)1730 4 G=1,2,000, ... (1.9)
and (-8) =1. The values Ank(2ﬂ) and Bnk(Zﬂ) are simp]y;

Ank(Zﬂ) = Re { Ink(p;q)} = 2mcos (ka)[-++]

Bnk(2n) = Im { Ink(p,q) } = 2wsin (ko)[e--+1 . ..., (1.10)

The following explicit results are obtained:

Aolzm) = 2r/(1-e9)V2 o py(em) = 2w/(1-e8)Y%
Ay = m(2+e8)/(1-e%)%2

Ajj(2n) = 2np[1 - (1-e?)"V23e%

B (2m) = 2wq[1--<1-e2>']72]/e2 :

Maten) = 2n(pf - {2~ (2- )/ (1-A) 2L et

B]Z(Zn) = -47 pq {2- (2-e2)/(1 —e2)]/2}-/ e4 ;
Ayp(2m) = -2mp/(1-e2)¥2 oy (om) = -2nq/(1-e8)Y7
paten) = 2x(p? - qP) 2+ (362 - 201127 et
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4mpq { 2+(3é2—2)/(1 —e2)3/2 } / e4 3

822(2ﬂ) =
Agglen) = -2m(p” - 38| 8-3(2- )/ (1 - D)2
4
+(3e% - 2)/(1 —e2)3/2} /e s
‘823(27r) = -21Tq(3p2-q2'){ 8-3(2—e2)/1‘(1 —ez)]/2
v (3ef-2)/1-) V2 Ly et
Agp(2m) = - 3m/(1-eD¥? 5 By em) = -3nes(1-e9)E
Agp(em) = 3n(pP-q%)/(1-eD)¥ 2 5 Boy(2n) = 6upa/(1-e9)>°

Agglem) = (=338 { 8+ (12e - 8)/(1 - D)7
3et/(1-e%)%/? } /et
555020 = ma(3p? - af) { 8+ (1267 -8)/(1 - D)2

_3et/(1 - e?)5/2 } st (1.11)



APPENDIX II

EVALUATION OF THE FOURIER COEFFICIENTS ag

The Fourier coefficients of the functions

cos(kv)/[1+pcosv+gq sinv]n

sin(kv)/[1+pcosv+q sinv]"

for k = (0),1,2,....and n = 1,2,3,...

Ank(Zﬂ) and Bnk(ZW) as follows:

2m
S - l_J cos(kt) cos(jt) dt »
nk my (T4 pcost+.q sing)"
2w .
bj _ l_f sin(kt) cos{jt) dr
nk ™4 (1 + p cost + q sint)"

J 1 cos(kt) sin(jt) dt

™) (1 + p cost + q sint)"

NI l_J sin(kr) sin(jt) dr
my (1 +pcost +qsing)”

i-k T An,k-j
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O (o]
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.bgk/z + ) {
-3
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'.nn‘j-
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+
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By means of the results of Equations(1.10), the following explicit

expressions for the Fourier coefficients can be derived:

a. cos (jw) C

C%O sin(jw) ‘

a%o [ cos(ju) 2.1/2 ' 2.1/2 -3 2.3/2
=2 (0 - V2 oI+ - e e 0 - )

C%O | sin(jw)

C2\1/2 4§ | cos(jw) '
) [(]j (? : 2)5/;] (2 + &2 + 35(1-e%) + 32(1-e%))
e - e

sin(jw)

. b oes
. J+'| j 2 ]/2 . S1nw
c%] € 1-e") sin(jw) -cos(juw)
f bj 2 1/2 . (' ) . .
1| 2l -e)t - 1) { sin w cos\Jw -sin(je) )y
j eIt (1 - e2)1/2 e J
k d; _ sin{-jw) cos(jw)
. (

- 2f(1 - 172 gyl { 2 2y1/2 cos (juw)
R + (1 -
11 - e2)3/2 | [e” + j(1 - &)/ “lcosuw

a%1 ] . ZF(] ) e2)1/2 _ 1]j‘{ coé " cos (jw) sin(juw) }
(

sin(jw)

sin(jw)’ } ;

+ 3501 - e%)sine

-cos (Jjw)

j .

bl 2t - &R - 1y { o451 - e
, 3+ 2.3/2 !
] el (1 -e7)
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cos(juw)
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sin(jw)
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5 -sin(juw) _
+ 3(1 - e%) cosw :
cos(jw)
3 i
‘a . 24\1/2 J ,
Vo J L0 =) -1 52 4 501+ 262 (1 - )Y 2 4 5201 - e2)1x
. 3+ 1 2+5/2
o e” (1 - e%)
31
cos (ju) sin(jw)
*COSW + 30 - ez)[1 + 301 - ez)]/z]sinw };
sin(ju)| ' -cos (jw)
bJ 2.1/2 .
31 - L0 -e A 13e? 4 501+ 262)(1 - )2 4 5201 - e2)1s
. Jj+l 1 2\5/2 8 :
a3 e” (1 -e%)
31
- cos (juw) : -sin{jw)
£STinw + 301 - e2)[1 + j(1 - ez)]/Z]COSw },
sinfiw) cos (ju)
..... (I11.3)

, .. 0 0 1 1 .
The coefficients an o bn] are equal to a g > bnO respectjve1y. For values

of k Targer than 1, the dominant coefficients can be expressed in terms of the

results of Equations (II1.3):
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APPENDIX ITI
DERIVATION OF HIGHER-ORDER EQUATIONS

The unknown secular terms in the first-order so1utidns obtained by
the two-variable expansion method may become of importance evertually, especial-
ly in the heliocentric case and when the A/m ratio is large. These terms are
to be determined from the boundedness constraint imposed upon the second-order
solutions. In assessing the nature of the various contributions, products of
(sometimes incomplete) Fourier expansions need to be'ana1ysed. Thereto, the

- following formal result is employed:.’

{ T [a¥ cos(iv) + {8} sin(jv)] } { I iyFcos(iv) + 61sin(3v)] }
N - N

-=] '='|
=@l ) I{a}k cos(kv) + ik sin(kv)] ,
k=1

with:

@ = 7 " o+ e a2 s

: : n=1
arl = e (2 + (e 18¥82
7 " (™ ™ e a™ s ™2
n=2 -
B L T L TS A P L WYY

v 7 " (s - @™ =™ (™ ™ Y
n=2 . _

etc. (I11.7)
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Depending upon the nature of the Teft-hand-side of the differential equations,
either the non-harmonic or the first-harmonic terms are required to vanish.
The equations for the secular first-order as well as for the second-order
periodic terms can now be derived readily; these equations are untractable

in  general. Solutions have been obtained only for circular starting orbits.
It may be mentioned that numerical integration of the original equations is

preferable in the general case.



