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ABSTRACT 

The f e a s i b i l i t y of u t i l i z i n g the environmental 

forces for three-axis l i b r a t i o n a l damping and attitude 

control of spinning s a t e l l i t e s i s investigated i n d e t a i l . 

An appreciation of the environmental influence i s f i r s t 

gained through a l i b r a t i o n a l dynamics study of spinning, 

axisymmetric, c y l i n d r i c a l s a t e l l i t e s i n the solar radiation 

pressure f i e l d . The highly nonlinear, nonautonomous, 

coupled equations of motion are analyzed approximately using 

the method of va r i a t i o n of parameters. The closed form 

solution proves to be quite useful i n locating periodic 

solutions and resonance c h a r a c t e r i s t i c s of the system. A 

numerical parametric analysis, involving large amplitude 

motion, establishes the e f f e c t of the radiation pressure 

to be substantial and d e s t a b i l i z i n g . 

Next, a p o s s i b i l i t y of u t i l i z i n g t h i s adverse 

influence to advantage through jud i c i o u s l y located rotatable 

control surfaces i s explored. A c o n t r o l l e r configuration 

for a dual-spin spacecraft i s analyzed f i r s t . The govern

ing equations, i n the absence of a known exact solution, 

are solved numerically to evaluate the e f f e c t of system 

parameters on the performance of the control system. The 

available control moments are found to be s u f f i c i e n t to 
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compensate for the rotor spin decay, thus dispensing with 

the necessity of energy sources maintaining the spin rate. 

The c o n t r o l l e r i s able to damp extremely severe disturbances 

in a f r a c t i o n of an o r b i t and i s capable of imparting 

arbi t r a r y orientations to a s a t e l l i t e , thus permitting i t 

to undertake diverse missions. 

The development of an e f f i c i e n t yet s t r u c t u r a l l y 

simple c o n t r o l l e r configuration i s then considered. A 

l o g i c a l approach for solar c o n t r o l l e r design i s proposed 

which suggests a four-plate configuration. Its performance 

i n conjunction with a bang-bang control law i s studied i n 

d e t a i l . The u t i l i z a t i o n of maximum available control 

moments leads to a substantial improvement of the damping 

c h a r a c t e r i s t i c s . 

Attention i s then focussed on using the earth's 

magnetic f i e l d i nteraction with onboard dipoles for attitude 

control. Magnetic torquing, however, i s unable to provide f i r s t 

order p i t c h control i n near equatorial o r b i t a l planes. The 

shortcoming i s overcome by hybridizing the concepts of 

magnetic and solar control. Two magnetic c o n t r o l l e r models, 

employing a single rotatable dipole or two fixed dipoles, 

are proposed i n conjunction with a solar p i t c h c o n t r o l l e r . 

The system performance i s evaluated for a wide range of 

system parameters and i n i t i a l conditions. Although high 

spin rates lend considerable gyroscopic s t i f f n e s s to the 



spacecraft, the c o n t r o l l e r s continue to be quite e f f e c t i v e 

even i n the absence of any spin. Even with extremely 

severe disturbances, damping times of the order of a few 

o r b i t a l degrees are attainable. As before, the concept 

enables a s a t e l l i t e to change the desired attitude i n 

o r b i t . 

The effectiveness of the c o n t r o l l e r s at high 

altitudes having been established, the next l o g i c a l step was 

to extend the analysis to near-earth s a t e l l i t e s i n free 

molecular environment. A hybrid control system, using 

the solar pressure at high a l t i t u d e s and the aerodynamic 

forces near perigee, i s proposed. The influence of 

important system parameters on the bang-bang operation of 

the c o n t r o l l e r i s analyzed. The concept appears to be quite 

e f f e c t i v e i n damping the s a t e l l i t e l i b r a t i o n s . Both the 

o r b i t normal and the l o c a l v e r t i c a l orientations of the 

axis of symmetry of the s a t e l l i t e are attainable. However, 

for a r b i t r a r y pointing of the symmetry axis, small l i m i t 

cycle o s c i l l a t i o n about the desired f i n a l orientation 

r e s u l t s . 

F i n a l l y , the time-optimal control, through solar 

radiation pressure, of an unsymmetrical s a t e l l i t e executing 

planar p i t c h l i b r a t i o n s i s examined a n a l y t i c a l l y . The 

switching c r i t e r i o n , synthesized for the l i n e a r case, i s 

found to be quite accurate even when the system i s subjected 

to large disturbances. 
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Throughout, the semi-passive ch a r a c t e r of the 
system promises an increased l i f e - s p a n f o r a s a t e l l i t e . 
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1. INTRODUCTION 

1.1 Preliminary Remarks 

Success of a vast majority of space missions 

depends on the a b i l i t y of a spacecraft to point accurately 

in the desired d i r e c t i o n . Even a c o r r e c t l y positioned 

s a t e l l i t e tends to deviate i n time from i t s preferred orien

tat i o n due to environmental influences, such as, micrometeor-

i t e impacts, solar radiation pressure, aerodynamic forces, 

g r a v i t a t i o n a l and magnetic f i e l d interactions, etc. 

Fortunately, several methods of attitude control are 

available which damp the r e s u l t i n g undesirable l i b r a t i o n s . 

These procedures may be broadly c l a s s i f i e d as active, passive 

and semi-passive (or semi-active). 

Active s t a b i l i z a t i o n procedures involve mass 

expulsion schemes and/or components requiring a large amount 

of energy, an expensive commodity aboard a spacecraft, 

leading to increased weight and space requirements with a 

reduced s a t e l l i t e l i f e - s p a n . The main advantage of the 

technique i s i t s a b i l i t y to achieve a s p e c i f i e d orientation 

with almost any desired degree of accuracy. 

S t a b i l i z a t i o n techniques requiring no power 

consumption are termed passive. This i s generally achieved 

by designing s a t e l l i t e s with physical c h a r a c t e r i s t i c s which 
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interact with the environmental forces i n a manner so as to 

a t t a i n a s p e c i f i c equilibrium p o s i t i o n . Spin s t a b i l i z a t i o n 

presents an alternative that r e l i e s on the inherent tendency 

of a spinning body to maintain i t s attitude i n space. The 

pointing accuracies attained through passive methods, 

however, are limited and deteriorate due to the influence 

of environmental forces. 

The semi-passive methods attempt to u t i l i z e the 

environmental forces, through the introduction of appropriate 

c o n t r o l l e r s , and thereby achieve attitude control. The 

p o s s i b i l i t y of attaining high pointing accuracies with low 

power consumption promises an increased s a t e l l i t e l i f e - s p a n . 

The design of suitable c o n t r o l l e r configurations, however, 

requires a thorough understanding of the system dynamics 

under the influence of the environmental force used for 

control. 

The development and analysis of several semi-

passive control systems, with p a r t i c u l a r reference to 

spinning s a t e l l i t e s , forms the main objective of this 

thesis. 

1.2 Literature Review 

Spinning bodies have received,in the past decade, 

considerable attention owing to t h e i r p a r t i c u l a r s t a b i l i t y 

properties. For r i g i d axisymmetric bodies under the 



3 
influence of gravity forces and with the axis of spin 

perpendicular to the o r b i t a l plane, Thomson''" (1962) presented 

a s t a b i l i t y c r i t e r i o n using l i n e a r i z e d analysis while 
2 

Pringle (1964) investigated motion i n the large employing 
the Hamiltonian as a Lyapunov function. Asymmetry was taken 

3 
into account by Kane and Shippy (1963) applying the Floquet 

4 
theory. The same method was used l a t e r by Kane and Barba 

(1966) to deal with motion i n the small for a r b i t r a r y 

e c c e n t r i c i t y . Wallace and Meirovitch^ (1967) studied the 

same problem by an asymptotic analysis i n conjunction with 
6-9 

Lyapunov's d i r e c t method. Neilson and Modi (1968-72) 

gave insight into the problem of s t a b i l i t y i n the large by 

making use of the in t e g r a l manifold concept. 

According to c l a s s i c a l mechanics, the stable 

r o t a t i o n a l motion of a r i g i d body i n absence of external 

forces i s possible only i f the axis of rotation i s a p r i n 

c i p a l axis of least or greatest i n e r t i a . I f the body i s 

not r i g i d and energy i s dissipated by the c y c l i c forces 

acting on i t while under nutation, then only the motion 

about the axis of maximum i n e r t i a i s stable. I t turns out 

that for slowly spinning r i g i d s a t e l l i t e , the i n t e r n a l l y 

dissipated energy i s such as to overcome the s t a b i l i z i n g 

influence of gravity and the system ends up i n a state of 

tumbling about the axis of maximum moment of i n e r t i a : the 

c l a s s i c a l example i s that of Explorer 1^. 
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The constraint of "major axis spin rule" was sub

sequently removed by the introduction of the dual-spin 

concept which allows two sections to nominally rotate about 

a common axis at d i f f e r e n t rates r e l a t i v e to i n e r t i a l space. 

An early paper by Roberson 1 1 (1958) had anticipated that 

torques generated by a disc rotating about an axis fixed i n 

a r i g i d body could s u b s t a n t i a l l y a f f e c t i t s motion. However, 

the f i r s t fundamental contribution to the f e a s i b i l i t y of 
12 

dual-spin s t a b i l i z a t i o n was by Landon and Stewart (1964): 

an energy-sink method indicated no constraints on i n e r t i a s 

when energy d i s s i p a t i o n took place on the slowly-rotating 
13 

part of the system. I o r i l l o , a year l a t e r , extended 

this concept to the case where energy d i s s i p a t i o n occurs 

on both bodies. 
14 

L i k m s (1967) developed, for a s p e c i f i c configura

tion involving an axisymmetric rotor and an asymmetric body 

containing a ball-in-tube damper constrained to move p a r a l l e l 

to the rotor axis, an accurate s t a b i l i t y c r i t e r i o n based 
15 

on the Routh analysis. Mingori (1969) took a more general 

approach which involved two d i s s i p a t i v e sections. The 

Floquet analysis stressed the s e n s i t i v i t y of the system 

behaviour to the r e l a t i v e effectiveness of the sources of 
16 

energy d i s s i p a t i o n . Pringle (1969) extended his theorems 

on Lyapunov s t a b i l i t y to the case of dual-spin spacecraft 

and gave a rigorous proof of the "maximum moment of i n e r t i a 
17 

spin-axis" r u l e . C l o u t i e r (1968) investigated the 
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s t a b i l i t y and performance of a nutation damper consisting 

of mass s h i f t i n g perpendicular to the spin-axis: again, i t 

led to no r e s t r i c t i o n s on i n e r t i a r a t i o s or damper siz e 

when d i s s i p a t i o n occurs on a despun platform. In another 
18 

paper (1969), the author extended the analysis to a 

damper involving two degrees of freedom i n a plane perpen

dicul a r to the spin axis. An approximate solution was 

derived for the nutation angle and i t s decay was optimized 
19 

in terms of system parameters. Sen (1970) studied a four 
mass nutation damper whose design constraints were not as 

20 
severe as those of L i k i n s . Vigneron (1971) applied the 

method of averaging to obtain a closed-form f i r s t approxi

mation solution for a dual-spin system containing both 
21 

platform and rotor mounted dampers. Bainum et a l . (1970) 

conducted a s t a b i l i t y and performance analysis of the dual-

spin Small Astronomy S a t e l l i t e (SAS-A) and found that asymmetry 

noticeably deteriorates the performance of the nutation 
22 

damping system. In a subsequent paper (1972), the authors 

included the e f f e c t of damping i n the momentum wheel by 

permitting the plane of the wheel to f l e x with two degrees 

of freedom with respect to the hub. The analysis established 

s t a b i l i t y c r i t e r i a for the SAS-A s a t e l l i t e . 

Although passive methods for attenuating nutation 

are generally r e l i a b l e and conceptually simple, t h e i r 

effectiveness may be l i m i t e d . A device containing an 

ac t i v e l y controlled mass, capable of attaining any nutation 
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23 angles, was studied by Kane and Scher (1969). Mingori 

24 
et a l . (1971) analyzed both semi-passive and active 

nutation dampers for dual-spin spacecraft, the former i n 

volving single axis control moment gyros (CMG's) whose 

rot a t i o n a l motion r e l a t i v e to the spacecraft was restrained 

passively by a spring and dashpot. The active damper was 

rea l i z e d by c o n t r o l l i n g the CMG's i n accordance with the 

information from a rectilinearaccelerometer. Both devices 

were found to be capable of reducing nutation several 

times faster than passive dampers of equal mass. 

Studies which take the gravity torque into account 

are rare but o f f e r , nevertheless, valuable r e s u l t s . Of 
25 

pa r t i c u l a r i n t e r e s t i s the conclusion by Kane and Mingori 

(1965) that the s t a b i l i t y of undamped axisymmetric dual-spin 

s a t e l l i t e s i s equivalent to that of r i g i d spinning bodies. 
2 6 

White and Liki n s (1969) extended the research to s l i g h t l y 
asymmetric system by making use of asymptotic expansions 

27 2 8 
and resonance l i n e s . The e f f o r t s of Roberson et a l . ' 

(1966, 1969) and Y u 2 9 (1969) should also be noted who 

analyzed the equilibrium positions of a single r i g i d body 

containing a symmetric, constant speed, fixed axis rotor, 

also c a l l e d a gyrostat, i n presence of gravity forces. 

The concept of dual-spin spacecraft gained s u f f i c i e n t 

recognition by 1967 to be considered seriously as a design 

alternative"^. The f i r s t f l i g h t data for a prolate dual-spin 

s a t e l l i t e (Tacsat 1), however, became p u b l i c l y available 
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31 only recently (1970). I t was found that the spacecraft 

did not maintain the nominal i n e r t i a l attitude but executed 

stable l i m i t cycle i n a nearby state of free precession. 

None of the previous analyses employing l i n e a r models 

for the energy d i s s i p a t i o n mechanisms could explain t h i s 
32 

anomaly. In a recent paper, L i k i n s et a l . (1971) found, 

v i a the 'energy-sink' method, the l i m i t cycle o s c i l l a t i o n 

to be a consequence of n o n l i n e a r i t i e s i n the damping forces. 

On the other hand, the p o s s i b i l i t y of constant or variable 

amplitude l i m i t cycles due to nonlinear restoring forces 
33 

has been indicated by Mmgon et a l . (1972) . 
I t should be emphasized that although several 

authors have recognized the importance of environmental 

forces, they were ignored i n the analyses of spinning space

c r a f t discussed above. 

Although extensive volume of l i t e r a t u r e exists 

on the l i b r a t i o n a l dynamics of gravity s t a b i l i z e d 

s a t e l l i t e s 3 4 ' 3 5 , e t a l " , serious e f f o r t s at analyzing the 

influence of environmental forces and e x p l o i t i n g them for 
3 6 

attitude control are r e l a t i v e l y recent. Roberson (1958) 
37 

gave a general outline of the problem and Wiggins (19 64) 

presented estimates of the r e l a t i v e magnitudes of these 

forces. Clancy and M i t c h e l l 3 8 (1964) and Modi et a l . 3 9 , 4 0 

(1971) investigated the influence of solar r a d i a t i o n pressure 

on the attitude motion of s a t e l l i t e s . The e f f e c t of the 

atmosphere on s a t e l l i t e l i b r a t i o n s was the subject of 
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study by Debra 4 1 (1959) , S c h r e l l o 4 2 (1961), Garber 4 3 (1963) , 
44 

Meirovitch and Wallace (1966), et a l . The environmental 

e f f e c t , i n general, was found to be detrimental to the 

s a t e l l i t e performance. 

On the other hand, the environmental forces o f f e r 

an e x c i t i n g p o s s i b i l i t y of trajectory and attitude control 

through the introduction of a c a r e f u l l y designed c o n t r o l l e r . 

As no mass expulsion or active gyros requiring large 

power consumption are involved, these schemes are e s s e n t i a l l y 

semi-passive and hence promise an increased s a t e l l i t e l i f e 

span. 
The use of solar radiation pressure for propulsion 

45 
within the solar system was f i r s t proposed by Garwin (19 58). 

46 
Sohn (1959) suggested a s p e c i f i c configuration using plates 
of large surface areas to orient the s a t e l l i t e with respect 

47 
to the sun. Galitskaya and Kiselev (1965) studied, 
q u a l i t a t i v e l y , the p r i n c i p l e of l i b r a t i o n control of space 

48 
probes about three axes. Mallach (1966) presented a system 
for solar damping of gravity oriented s a t e l l i t e s and gave a 

s i m p l i f i e d analysis using average torques. Modi and 
49 

Flanagan (1971) examined the planar attitude control of 
a gravity gradient system i n an e c l i p t i c o r b i t using the 

50 
solar pressure as a damping torque. Modi and Tschann 

(1971) extended the analysis by the introduction of a 

displacement and v e l o c i t y sensitive c o n t r o l l e r enabling 

the s a t e l l i t e to a t t a i n any desired orientation. Modi and 
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51 Kumar (1973) further generalized the concept for the case 

of three degree of freedom motion. Their analysis demon

strated the f e a s i b i l i t y of achieving general three-axis 

l i b r a t i o n a l damping and attitude control. 

L i t e r a t u r e on the use of solar pressure for 

attitude control of spinning vehicles appears to be rather 
52 

limited. Ule (1963) was the f i r s t to consider aligning 

the spin axis along the s u n - s a t e l l i t e l i n e employing a 

corner mirror array fixed to the spacecarft. Similar devices 53 54 were further explored by Peterson (1966) , Colombo (1966) , 
55 56 Falcovitz (1966), et a l . Crocker (1970) considered the 

same problem using spacecraft-fixed and spring-mounted 

paddles. An adequate nutation damper was assumed so that 

the angular momentum vector remained close to the spin axis. 

A p o s s i b i l i t y of using the solar pressure for general three-

axis l i b r a t i o n a l damping and attitude control of spinning 

s a t e l l i t e s remains v i r t u a l l y unexplored. 

I t would Joe appropriate to mention here the experi-
57 

ment aboard Mariner IV spacecraft , conducted on depletion 

of the attitude control gas, to ali g n the r o l l axis along 

the sun-line using passive solar radiation control. Each 

of the four solar panels was provided with a rotatable 

solar pressure vane for t h i s purpose. Unfortunately, one 

of the vanes proved to be inoperative during a major portion 

of the mission. However, subsequent rea c t i v a t i o n of the 

vane enabled the solar pressure control system, i n con-



junction with active gyros, to maintain the spacecraft 

attitude within 1° of the sun-line. 

Generation of control torques through the i n t e r 

action of onboard electromagnetic dipoles and the earth's 

magnetic f i e l d appears to be p a r t i c u l a r l y a t t r a c t i v e as 

the system r e l i a b i l i t y i s enhanced by the elimination of 

moving parts. 

L i b r a t i o n damping of gravity oriented s a t e l l i t e s 
5 8 

was considered by Alper and O'Neill (1967) who proposed a 
59 

passive hysteresis damper. Bainum and Mackison (1968), 

on the other hand, considered three mutually perpendicular 

electromagnets controlled according to the sample and hold 

concept. Although time constants of approximately one to 

two orb i t s for roll-yaw damping were achieved, the 

inadequacy of the system for pitch control i n equatorial 

o r b i t s , where the geomagnetic f i e l d i s nearly p a r a l l e l to 

the o r b i t normal, became apparent. 

The problem of maintaining the spin axis of a 

s a t e l l i t e perpendicular to the o r b i t a l plane has been a 
6 0 

subject of considerable study by Vrablik et a l . (1965), 

Sonnabend 6 1 (1967) and many others. F i s c h e l l 6 2 (1966) 

considered the p o s s i b i l i t y of using magnetic control for 
6 3 

regulating the spin rate of a s a t e l l i t e . Wheeler (1967) 

investigated the use of a single dipole along the spin 

axis for both attitude control and nutation damping. The 

analysis, however, assumes the desired f i n a l orientation 
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to be i n e r t i a l l y fixed and the spin rate constant during 

64 
the control maneuver. Sorensen (1971) applied the 

Kalman f i l t e r technique to estimate pointing errors for a 

system with limited attitude determination c a p a b i l i t i e s and 

developed the minimum energy control law using these 

estimates. In a recent paper, Shigehara 6^ (1972) studied 

a control law, based on the asymptotic s t a b i l i t y c r i t e r i o n , 

for the spin-axis and the spin rate using dipoles along 

the axis and perpendicular to i t , respectively. The 

f i r s t operational magnetically controlled s a t e l l i t e s , 
6 6 

the TIROS wheels, were discussed by Hecht and Manger (1964) 
6 7 

and Lindorfer and Muhlfelder (1966). 
The use of aerodynamic forces for attitude control 

of s a t e l l i t e s i n near-earth or b i t s was a subject of several 

early discussions by W a l l 6 8 (1959), S c h r e l l o 6 9 (1961), 

et a l . In practice, however, i t has been used successfully 

only for the p i t c h control of C0SM0S-149, with the other 
70 

degrees of freedom governed by gyroscopic forces 
71 

Ravindran (1971) optimized, through l i n e a r i z a t i o n , a set 
of c o n t r o l l e r flaps for a s a t e l l i t e i n a c i r c u l a r o r b i t . 

72 
Modi and Shrivastava (1971), on the other hand, have 

proposed several schemes of semi-passive aerodynamic c o n t r o l 

l e r s . Their nonlinear analysis showed the system to be 

e f f e c t i v e i n damping severe disturbances i n a f r a c t i o n of 

an o r b i t . The performance of the c o n t r o l l e r appeared 

promising even i n e l l i p t i c o r b i t s where the corrective 
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moments are available only over a portion of the t r a j e c -
73 

tory. In a subsequent paper (1973), the authors 

optimized the performance of the c o n t r o l l e r i n both c i r c u l a r 

and e l l i p t i c o r b i t s , using the damping time and the steady 

state pointing error as the respective c r i t e r i a . 

1.3 Purpose and Scope of the Investigation 

From the foregoing, i t i s evident that the influence 

of environmental forces on the attitude motion of spinning 

s a t e l l i t e s and t h e i r u t i l i z a t i o n for attitude control has 

received l i t t l e attention i n the past. On the other hand, 

the importance of such a study becomes apparent when one 

recognizes the fact that the majority of the communications, 

applied technology and s c i e n t i f i c s a t e l l i t e s are indeed 

spin s t a b i l i z e d . The thesis aims at f i l l i n g t h i s gap by 

systematically analyzing environmental e f f e c t s and e x p l o i t 

ing them to advantage over a wide range of operational 

a l t i t u d e s . 

The influence of solar radiation pressure, con

s t i t u t i n g the dominant environmental force at high a l t i t u d e s , 

on the l i b r a t i o n a l motion i s examined f i r s t . Both a n a l y t i c a l 

and numerical techniques are employed to study the system 

response. S t a b i l i t y of the periodic solutions i s ascertained 

using the Floquet theory. Numerical results e s t a b l i s h 

regions of nontumbling motion i n the system parameter space. 
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Next, the p o s s i b i l i t y of using solar radiation 

pressure for general three-axis l i b r a t i o n damping and 

attitude control of a dual-spin system i s explored. The 

results e s t a b l i s h the effectiveness of the concept. E f f o r t 

i s then directed towards devising a solar c o n t r o l l e r model 

that i s s t r u c t u r a l l y simple and operationally e f f i c i e n t . 

This i s followed by an investigation of attitude 

damping and control u t i l i z i n g the earth's magnetic f i e l d . 

A comparative study of two c o n t r o l l e r models i s conducted. 

For the reason pointed out e a r l i e r , the magnetic c o n t r o l l e r s 

f a i l to provide f i r s t order p i t c h control i n synchronous 

o r b i t s . To compensate for t h i s , the magnetic c o n t r o l l e r s 

are hybridized with a solar pitch c o n t r o l l e r . 

Attitude control of near-earth s a t e l l i t e s in 

e l l i p t i c t r a j e c t o r i e s , normally preferred to minimize 

degeneration of the o r b i t due to atmospheric drag, i s 

considered next. A hybrid control system, u t i l i z i n g the 

aerodynamic forces at low a l t i t u d e s and solar r a d i a t i o n 

pressure when beyond the atmosphere, i s proposed. F i n a l l y , 

the problem of time-optimal p i t c h control of s a t e l l i t e s 

using the radiation pressure i s examined a n a l y t i c a l l y . 

Figure 1.1 schematically presents the plan of 

study. 



L i b r a t i o n a l 
dynamics i n 
presence of 
solar 
rad i a t i o n 
pressure 

1 

L 

ATTITUDE CONTROL OF 
SPINNING SATELLITES 

USING ENVIRONMENTAL FORCES 

± Attitude control 
using solar 
r a d i a t i o n 
pressure 

Attitude control 
using the earth's 
magnetic f i e l d 
and solar 
r a d i a t i o n 
pressure 

A n a l y t i c a l 
study 

• Periodic 
solutions 

• Resonance 

Numerical 
study 
• System 
response 
• Libra
t i o n a l 
s t a b i l i t y 

F e a s i b i l i t y 
study 
Nutation 
damping 
Attitude 
control 

r 

Attitude control 
using aerodynamic 
forces and solar 
radiation 
pressure 

Improvement 
of c o n t r o l l e r 
design 

• L i b r a t i o n 
damping 
•Attitude 
control 

Time-optimal 
p i t c h control 
using solar 
r a d i a t i o n 
pressure 

F e a s i b i l i t y of 
magnetic-solar 
hybrid control 
•Nutation 
damping 
•Attitude 
control 

F e a s i b i l i t y of 
aerodynamic-
solar hybrid 
control 
Libration 
damping 
Attitude 
control 

Optimal 
synthesis | 
• System 
response 

Figure 1.1 Schematic diagram of the proposed plan of study i—• 
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2. LIBRATIONAL DYNAMICS OF SPINNING AXISYMMETRIC 

SATELLITES IN PRESENCE OF SOLAR 

RADIATION PRESSURE 

This chapter investigates the attitude dynamics 

of axisymmetric, c y l i n d r i c a l , spinning s a t e l l i t e s under 

the influence of solar r a d i a t i o n pressure and gravity gradient 

torques. The equations of motion of the system are obtained 

f i r s t using the c l a s s i c a l Lagrangian formulation followed 

by an evaluation of the generalized forces due to the 

radiation pressure. 

As the nonlinear, nonautonomous, coupled equations 

of motion do not possess a known closed-form solution, an 

approximate study i s undertaken using Butenin's extension of 
74 

the method of slowly varying parameters . The approximate 

a n a l y t i c a l solution proves to be an excellent tool i n locating 

periodic solutions of the system, whose importance i n the 

attitude dynamics study of s a t e l l i t e s has been well emphasized 
9 7 5 V 6 77 ' ' . The Floquet theory i s employed to examine the 
v a r i a t i o n a l s t a b i l i t y of the periodic solutions. The 

p o s s i b i l i t y of resonant o s c i l l a t i o n s of the system i n presence 

of the solar torque i s also investigated. 

The quasi-linear a n a l y t i c a l method, however, f a i l s 

to describe the large amplitude motion of the system. To 

this end, the governing equations are analyzed numerically 
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and t h e l i b r a t i o n a l r e s p o n s e i s s t u d i e d a s a f u n c t i o n o f 

t h e s y s t e m p a r a m e t e r s . The a v a i l a b l e i n f o r m a t i o n i s c o n 

d e n s e d i n t h e f o r m o f d e s i g n p l o t s , w h i c h c l e a r l y e m p h a s i z e 

t h e i m p o r t a n c e o f t h e s o l a r p a r a m e t e r c h a r a c t e r i z i n g t h e 

r a d i a t i o n p r e s s u r e t o r q u e , a n d s h o u l d p r o v e u s e f u l d u r i n g 

t h e d e s i g n o f an a t t i t u d e c o n t r o l s y s t e m . 

2.1 F o r m u l a t i o n o f t h e P r o b l e m 

F i g u r e 2 .1 shows an a x i s y m m e t r i c c y l i n d r i c a l 

s a t e l l i t e w i t h t h e c e n t e r o f mass S m o v i n g i n a K e p l e r i a n 

o r b i t a b o u t t h e c e n t e r o f f o r c e 0 . The s p a t i a l o r i e n t a t i o n 

o f t h e a x i s o f s y m m e t r y o f t h e s a t e l l i t e i s c o m p l e t e l y 

s p e c i f i e d b y t w o s u c c e s s i v e r o t a t i o n s y a nd B, r e f e r r e d t o 

as r o l l a n d y a w , r e s p e c t i v e l y , w h i c h d e f i n e t h e a t t i t u d e o f 

t h e s a t e l l i t e p r i n c i p a l a x e s x , y , z w i t h r e s p e c t t o t h e 

i n e r t i a l r e f e r e n c e f r a m e x ' , y ' , z ' . The s a t e l l i t e s p i n s 

i n t h e x , y , z r e f e r e n c e w i t h a n g u l a r v e l o c i t y a . I n t e r m s o f 

t h e s e m o d i f i e d E u l e r i a n r o t a t i o n s , t h e e x p r e s s i o n s f o r t h e 

p o t e n t i a l a n d k i n e t i c e n e r g i e s t o 0 ( 1 / R ) a r e o b t a i n e d a s : 

U 
g 

- ym /R - y { ( I / 2 R 3 ) ( I - l ) / I } ( 1 - 3 s i n 2 y c o s 2 B ) ( 2 . 1 ) 

T 2 

+ ( B - 8 s i n y ) 2 + (ycosB+SsinBcosy) 2) ( 2 . 2 ) 



Figure 2.1 Geometry of motion of spinning s a t e l l i t e i n 
the solar pressure environment 
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Neglecting o r b i t a l perturbations due to the 

7 8 79 

l i b r a t i o n a l motion ' , the c l a s s i c a l Lagrangian formulation 

yie l d s the governing equations of motion i n the r o l l , yaw 

and spin degrees of freedom as: 

(d/dtj{-I(a-ysinft+QcosBcosy)sin3+(Ycos3+8sin3cosY)cos3) 

+1 (a--ysin3+9cos3cosY) 8cos3siny+ (3-8sinY) 8cosy 

+ (Ycos3 + 8sin3cosY)8sin3sinY+3(y/R 3) (1-1) * 

2 
sinycosYcos 3 = Q^/I (2.3a) 

(d/dt)(3-esiny)+(Ycos3+6sin3cosY){I 

+(Ysin3-8cos3cosY)>-3(y/R 3)(I 

" Qe/Zv 

(d/dt)(a-Ysin3+8cos3cosY) = Q / I 
Ot X 

where Q^(i=Yf3,a) represent the generalized forces due to 

solar radiation pressure. 

Consider an area element dA, of the curved surface 

of the s a t e l l i t e , of length dx, angular width d0 and located 

at an a x i a l distance x from the center of mass S such that 

the surface normal n makes an angle 0 with the y axis 

(Figure 2.2a). The force acting on the area element due to 

solar radiation pressure i s given by, 

(a-ysin3+8cos3cosy) 

2 
- 1 ) s i n ysin3cos3 

(2.3b) 

(2.3c) 



19 

Figure 2.2 E v a l u a t i o n of g e n e r a l i z e d forces due to s o l a r 
r a d i a t i o n pressure: (a) curved surface; 
(b) f l a t ends 
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dF = -podA|cos£|{(l-T)u+ps> (2.4) 

with the re s u l t i n g moment about the s a t e l l i t e center of mass 

as 

M = C rr X dF (2.5) 
A U 

where the integration extends over the entire curved surface 

"seen" by the sun. The l i m i t s of integration for x are 

-(V2-e) to (l/2+z) and those for 9 are t a n - 1 (-u./u.) to 
J K 

{ir'+tan ^ (-u-/u, ) } , which correspond to £=TT/2 . 1 K-
Evaluation of the i n t e g r a l i n Equation (2.5), 

after considerable algebraic manipulations, leads to 

M = {- (TT/2) p£r 2(1-T-p) u.u.+2 (l-T+p/3) p r£eu, / 2+ 2}j 
O 1 .K O J s ! U > Ui 

J K 
+ { ( T T/2)P £r 2(l-T-p)u.u.-2 (l-T+p/3)p r k u . / 2^_ 2}k (2.6) ' *o i n ' * 0 1 u.+u, J J j k 

The expression for the moment due to the f l a t ends 

of the c y l i n d r i c a l s a t e l l i t e (Figure 2.2b) i s obtained i n a 

simi l a r manner, 

ME = { ( 7 T/2)p oS.r 2 ( l - T - p ) u i u k + T r p o r 2 e ( l - T - p ) u k | u i | }j 

- { ( 7 T/2)p o5,r 2(l-T-p)u iUj+Trp or 2£(l-T-p)Uj|u i| }k (2.7) 

The t o t a l moment due to solar radiation pressure 

i s thus given by 
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M = M c + ^ 

= 2 ( l - T + p/3)p or£eu k[/ u2 + u2+(7 r r/2£) { ( 1 - T - p ) / 
j k 

( l - T + p / 3 ) } | u ± | ] j - 2 ( l - T + p / 3 ) p o r £ e u j x 

[/ 2 + u2 +(TTr/2A) {• ( 1 - T - p ) / ( l - T + p/3) } | u ± | ]k (2.8) 
j k 

The application of the p r i n c i p l e of v i r t u a l work 
yield s the generalized forces i n the Y»3 and a degrees of 
freedom as: 

Q =-2 ( l - T + p/3) p r & e u . [ / 2, 2 + ( i T r / 2 £ ) x 
Y o i 1 u .+u, 7 

J D k 

{ ( 1 - T - p ) / ( l - T + p / 3 ) } | u ± | ] c o s 3 (2.9a) 

Q B = 2 ( l - T + p/3) p rfceu k [/ 2 2 +{T\r/2l)x 

j k 

{ ( l - T - p ) / ( l - T + p / 3 ) } | U i | ] 

Q = 0 
a 

The generalized force i n the a degree of freedom 

being zero, a f i r s t i n t e g r a l of motion defining the s a t e l l i t e 

spin rate a i s furnished by Equation (2.3c), 

(2.9b) 

(2.9c) 

• • • 
a-Ysin3+6cos3cosY = h 

(2.10) 



As h a i s a measure of the s p i n r a t e , a dimension
l e s s s p i n parameter c, d e f i n e d as 

a = (a/9)I = (h /9) 
I6=6=Y=0 a 

-1 (2.11) 
9=0 

may be used to e l i m i n a t e the c y c l i c coordinate a. Changing 
the independent v a r i a b l e from t to B, through the K e p l e r i a n 
o r b i t a l r e l a t i o n s 

R = hg/y(l+ecos6) (2.12a) 

9 = h Q/R 2 (2.12b) 

and making use of the s p i n parameter a, the governing 
equations of motion i n the r o l l and yaw degrees of freedom 
(Equations 2.3a and b, r e s p e c t i v e l y ) transform t o : 

Y" -23 ,Y'tan3+23'cosY-I(a+lj{(1+e)/(l+ecos9)} 2x 

(3'-sinY)sec8+{3(I-l)/(l+ecos8)-1}x 

sinYcosY-{2esin9/(l+ecos9)} (Y 1+cosYtanB) 

=-{ (1+e) 3/(l+ecos9) 4}Cu. {/^2~^2 +G|u i|}secB (2.13a) 
3 u j u k x 

B" -Y ' C O S Y + [ I(a+1){(1+e)/(1+ecosG)} 2 

+ ( Y'sinB-cosBcosY)](Y'cosB+cosYsinB) 

- { 3 ( I - l ) / ( l + e c o s 9 ) } s i n 2 Y s i n $ c o s B 
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-{2esin9/(l+ecos9)} (B'-siny) 

= {(1+e) 3/(l+ecos6) 4}Cu, {/ 2, 2 +G|u. |} (2.13b) 
u j + u k 1 

where the solar parameter C and the solar aspect r a t i o G 

are defined as: 

C = (2R 3/uI y)p Qrile ( l - T + p / 3 ) 

G = (7rr/2£) ( l - T - p ) / ( l - T + p / 3 ) (2.14) 

2.2 A n a l y t i c a l Results 

2.2.1 Approximate a n a l y t i c a l solution 

In absence of a known, exact, closed form solution 

to such a complex system, i t was decided to analyze the 

problem approximately using Butenin's extension of the method 

of v a r i a t i o n of parameters. The case of w=c()=0 i s analyzed 

here which leads to a considerable reduction i n algebra with

out a f f e c t i n g the physics of the problem. 

Replacing the trigonometric functions of the 

dependent variables by t h e i r series expansions, ignoring 

fourth and higher order terms i n B,Y, and t h e i r derivatives 
2 

as well as terms of o(e ), Equations (2.13) take the 

form: 



Y " +n 2 Y-^ 1 B'=2Ce-C(l+3e)cos9+2Cecos20+f(Y,Y',3,3',9) 

(2.15a) 

3" + n 2 3 + & 2 Y ' = -C(l+3e)sin0+2Cesin29+g (Y ,Y ' ,3,3' ,9) 
(2.15b) 

where 

n 2 = 3I-4+I(a+1)(l+2e) 

n 2 = I (a+1) (l+2e)-1 

£1 = l2 = I ( C T + 1 ) ( 1 +2e)-2 (2.16) 

and the nonlinear functions f and g are defined as 

f = C(l+3e-4ecos9)[Y 2cos6/2+3 2sin0cos9/2 

+Y 2cos 39/2+Y3sin9cos 29-G|Ycos8+3sin9|cos9] 

-2I(a+l) (3'-Y) ecos9+3(1-1)Yecos0+2(Y' + 3)esin9 

+1 (a+l)(l+2e-2ecos9) (Y 3+33' 3 2-3Y3 2)/6 

+ 233'Y'+3'Y2+(2/3) { (31-4)-3 (I-l)ecos9>Y 3 

+ (3 3/3-3Y 2/2)2esin9 

g = C (l+3e-4ecos9) [Y3cos9 + 3 2sin 39/2+Y 2sin9cos 29/2 

+Y3sin 29cos9-G|Ycos0+3sin9|sin9]+2I(a+1) * 
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x(Y'+S )ecose+2(6 1 -Y)esinB+I(a+1) (l+2e-2ecos9)(3Y'3 2+3y 23+3 3) 

-2Y'3 2-3Y 2-Y' 23-Y'Y 2-23 3/3+3(1-1)(1-ecosG)y 2B+Y 3esin9/3 

(2.17) 

The solution for the corresponding l i n e a r system 

( i . e . , f=g=0) i s given by 

Y = asin(k,9+3,)+bsin(k„9+3 9)+A +A.cos9+A„cos29 
1 1 A 1 ° 1 * (2.18a) 

3 = a, acos (k, 9 + 3,)+a bcos (k.,9+3.,)+B, sin0+B_sin28 
1 1 1 2 i 2. i 2. (2.18b) 

where a, b, 3-|_'32
 a r e constants to be determined from i n i t i a l 

conditions and the c h a r a c t e r i s t i c frequencies k^ and k 2 

(k^>k2) are the roots of the equation 

k 4-(n 2+n 2+Ji 1£ 2)k 2+n 2n 2 = 0 (2.19) 

The constants a., A. and B. are defined as: 
i i l 

a. = (k 2-n?) A,k. , i = 1,2 l l 1 ' 1 l 

A = 2Ce/n 2 

o 1 

A1 = C(l+3e) ( l - n 2 - 5 , 1 ) / ( l - k 2 ) (1-k 2) 

A 2 = 2Ce(n 2+2il 1-4)/(4-k 2) (4-k 2) 
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B 1 = C(l+3e) (l-n 2-£ 2)/(l-k 2) (1-k2,) 

B 2 = 2Ce(n 2+2^ 2-4)/(4-k 2)(4-k 2) (2.20) 

A solution of the si m i l a r form i s sought for the 

nonlinear system, however, allowing the amplitude and phase 

to be functions of 0, i . e . , 

Y = a(0)sin(k 10+3 1 (0))+b(0)sin(k„0+6„(0))+A 

1 1 2 2 O 

+A 1cos8+A 2cos20 (2.21a) 

8 = a 1a(8) cos (kjĵ O + B-L (0) )+a 2b (0) cos (k 20 + 8 2 (0) ) 

+B 1sin0+B 2sin20 (2.21b) 

As the four unknown functions defining the variable 

amplitude and phase cannot be determined from four i n i t i a l 

conditions alone, the solution i n the present form i s over-

sp e c i f i e d . Hence four constraint relations must be obtained. 

Keeping the f i r s t derivatives of y and 8 to be 

the same as that of the l i n e a r system gives two of the 

constraint r e l a t i o n s : 

a' sinijj1+b' sinip2+a8'1cosip1+b82cosiJ;2 = 0 (2.22a) 

a^a ' cosi^+o^b' cosij; 2-a^aB^sini^-a 2b8 2sinip 2 = 0 (2.22b) 
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where 

^ = k 1e+B 1(e), y2 = k 2e+B 2(e) 

Equations of motion (2.15) i n conjunction with 
the assumed solution(2.21) y i e l d the other two constraint 
relations as: 

k ^ ' c o s ^ 1 + k 2 b I c o s ^ 2 - k 1 a 6 ^ s i n ^ 1 - k 2 b 8 2 s i n ^ 2 = f* (2.23a) 

a l k l a ' S ^ n ^ l + a 2 ^ 2 ^ ' S ^ n ^ 2 + a l k l a ^ l C O S ^ l + a 2 k 2 b ^ 2 C O S ^ 2 = 

(2.23b) 

* * 
where f , g are the modified nonlinear functions. 

Solving Equations (2.22) and (2.23) simultaneously 
for a', b', B| and B 2 y i e l d s : 

a' = - { ^ 1 g * s i n ^ 1 - ( i i 2 / a 1 ) f*cos^ 1}/(k 2-k 2) 

b' = { i i i g * s i n ^ 2 - ( £ 2 / a 2 ) f*cos^ 2}/(k 2-k 2) 

31 = -{ £
1g* co s^ 1+(^ 2/a 1) f*sini|J 1}/{a(k 2-k 2) } 

3 2 = {ii 1g*cos^ 2+(£ 2/a 2) f*sinij; 2}/{b(k 2-k 2) } (2.24) 

Equations (2.24) represent an exact transformation 

of the two second order equations of motion (2.15) into four 
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f i r s t order d i f f e r e n t i a l equations. For small amplitude 
* * 

motion, f and g are small. Consequently, a, b, 3-̂  and 3 2 

are slowly varying parameters. Using t h e i r average values 

over one period gives: 

a ' = - U / 8 T T 3 ( k 2 - k 2 ) } 
(2TT r2TT 

0 J 0 

2TT 
{£^g s i n ^ 

- ( J l 2/a 1)f cosiJJ 1 }d^ 1 d^ 2 de 

b' = { l / 8 T T 3 ( k 2 - k 2 ) } 
2TT 2TT 2^ 

{£^g s i n ^ 

- ( A 2 / a 2 ) f cosi^} d i j ^d^de 

3j_ = - { l / 8 T i 3 a ( k 2 - k 2 ) } 
/•2TT r2v 

0 0 
{5--̂ g COSIJJ^ 

+ (£ 2/a 1)f s i n ^ l d i ^ d i j ^ d e 

3 2 = { l / 8 T r 3 b ( k 2 - k 2 ) } 
2T\ 2TT 

0 J 

2TT 
7C 

{ i^g cos^ 2 

+ (£ 2/a 2)f s i n ^ d ^ d i j ^ d Q (2.25) 

Solving Equations (2.25) for a, b, 3-̂  and 3 2 , and 

substituting i n Equations (2.21), the solution takes the 

form: 
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Y = asin (o3 ie+c 1)+bsin (co 26+c 2)+A o+A 1cose+A 2cos29 (2.26a) 

6 = a 1acos (w 10+c 1)+a 2bcos ( to 2e+c 2)+B 1sin6+B 2sin2e (2.26b) 

where 

a = [{(6;+a 2a) 2(Y 0-A o-A 1-A 2)-B 1-2B 2)/(a 1a ) ; L-a 2ca 2)} 2 

,2 1/2 
+ {(a0Y'-a)„6 )/(a,a>.,-a,a>.I) } ] (2.27a) 

2. O 2 O X ^ X 

b = [{ (B^+a 1 o) 1(Y o-A o-A 1-A 2)-B 1-2B 2 ) / (a 1 co 1 -a 2 a) 2 ) }2 

2 I/2 

+ { (a 1Y^-a3 1 B o ) / (a 1 u) 2 -a 2 a ) l ) } ] ( 2 > 2 ? b ) 

c 1 = tan 1[{ (3^+a 2w 2(Y o-A o-A 1-A 2)-B 1-2B 2)/(a 1 0) 1-a 2a) 2) }/ 

* ( a2 Yo~ a )2^o ) / ( a
1

a )
2

_ a 2 t J J l ) ^ (2.27c) 

c 2 = t a n - 1 [{ (B(^+a1co1 (Y Q-A o-A 1-A 2)-B 1-2B 2) / (a 1 o) 1 -a 2 co 2 ) }/ 

{ (a 1Y (! )-(jJ 1 B 0 ) / (a 1 co 2 -a 2 w 1 ) }] (2.27d) 

The frequencies and (JO 2 are represented by rather lengthy 

functions (Appendix I) of l i b r a t i o n a l amplitudes and 

system parameters, 
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U). f (a,b,I,a,e,C,G) 

C O - = f 2 (a,b,I,a,e,C,G) 

(2.28a) 

(2.28b) 

2.2.2 Periodic solutions of the system 

The approximate, closed-form solution shows the 

system response to be characterized by three d i s t i n c t 

components: response at 'high' frequency <JÔ  , 'low' frequency 

a) 2 and the o r b i t a l frequency. The r e s u l t i n g motion would, 

in general, be non-periodic except i n the sp e c i a l s i t u a t i o n 

when the frequencies oô  and u>2 assume r a t i o n a l values for 

non-zero C, or, the r a t i o W2./(JJ
2 i s a r a t i o n a l number with 

C = 0. A search extending over a reasonable range of system 

parameters and i n i t i a l conditions showed such frequency 

combinations to be rare indeed. 

On the other hand, the solution indicates that 

the system would execute periodic motion subject to i n i t i a l 

conditions which excite only one of the three frequencies. 

Various relationships e x i s t i n the i n i t i a l condition space 

for which the r e s u l t i n g motion i s periodic. The high and 

low frequency periodic l i b r a t i o n s i n the absence of solar 

radiation pressure (C = 0) are discussed f i r s t , followed 

by the solar pressure excited periodic o s c i l l a t i o n s of o r b i t a l 

frequency. 
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(a) High frequency o s c i l l a t i o n s (C = 0) 

In the absence of solar ra d i a t i o n pressure, 

A^ = B^ = 0. Hence, the system would execute high frequency 

periodic motion for b = 0. This i s s a t i s f i e d by two sets 

of i n i t i a l conditions. The o s c i l l a t i o n s of type I r e s u l t 

with 

Y = 3' = 0 o o 

Y^ = ( 0 ) 1 / a 1 ) 8 o (2.29a) 

The corresponding amplitude and frequency of motion 

are obtained from Equations (2.27a) and (2.28a), respec

t i v e l y , as: 

a = 8 0 / a 1 

W l = k l + f i ( ^ 0 / a i _ ' I' a' e) (2.29b) 

The other set of i n i t i a l conditions, leading to 

high frequency o s c i l l a t i o n s of type I I , i s readi l y found 

to be, 

Y' = B = 0 
O Q 

B ' = -a 1u ) ,Y (2.30a) o 1 1 o 



with the amplitude and the frequency of motion, 
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u>1 = 'k1 + f 1(Y 0 / I f(?,e) (2. 30b) 

Relations (2.29) and (2.30), governing the i n i t i a l 

conditions for high frequency periodic o s c i l l a t i o n s and the 

res u l t i n g frequency ( o s c i l l a t i o n s per o r b i t ) , are plotted i n 

Figure 2.3 for t y p i c a l values of s a t e l l i t e parameters. The 

system behaves as a hard-spring o s c i l l a t o r showing an increase 

i n the frequency with amplitude. Note that the change i n 

s a t e l l i t e ' s configuration from spherical (I = 1) to d i s c - l i k e 

(I = 2) results i n a corresponding increase i n frequency. 

An increase i n o r b i t a l e c c e n t r i c i t y also has s i m i l a r e f f e c t . 

(b) Low frequency o s c i l l a t i o n s (C = 0) 

i n i t i a l conditions leading to a = 0. As i n the case of the 

high frequency o s c i l l a t i o n s , two d i s t i n c t relationships 

between the i n i t i a l states are found to y i e l d periodic motions 

of low frequency. 

The low frequency periodic o s c i l l a t i o n s r e s u l t from 

Periodic motion of type I i s obtained with, 

Y = 0 ' o 

(2.31a) 



C = o e = o s table 
a = 2 e = 0.05 it s table ©unstable 

0.2 _ 0.4 0 0.2 0.4 

Figure 2.3 Frequency and i n i t i a l conditions for high f r e 
quency periodic motion 
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with amplitude and frequency as 

b = 6 D/a 2 

u 2 = k 2 + f 2 ( 6 o / a 2 , I , a , e ) (2.31b) 

while that of type II i s governed by the conditions, 

Y' = 8 = 0 o o 

6' = -a„u„Y (2.32a) o 2 2 o 

leading to 

b = ^o 

w 2 = k 2 + r 2(Y Q,I,a,e) (2.32b) 

Relations (2.31) and (2.32) are presented i n 

Figure 2.4 for t y p i c a l values of the system parameters. 

The v a r i a t i o n of the frequency i s found to be r e l a t i v e l y small. 

The s l i g h t decrease i n i t s value with increasing amplitude 

indicates a soft-spring type of nonlinear e f f e c t over the 

range of i n i t i a l conditions considered. Influence of the 

i n e r t i a parameter follows e s s e n t i a l l y the same trend as 

before. On the other hand, an increase i n e c c e n t r i c i t y tends 

to reduce the frequency of motion. 
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C = o e = o • s tab le 
a = 2 e = 0.05 

0 0.2 p 0.4 0 0.2 y 0.4 

Figure 2.4 Frequency and i n i t i a l c o n d i t i o n s f o r low f r e 
quency p e r i o d i c motion 



(c) Solar pressure excited o s c i l l a t i o n s (C ^ 0) 

For the solar pressure excited periodic solutions, 

having the same frequency as that of the o r b i t a l motion, 

a = 0, b = 0. Substituting these conditions i n Equations 

(2.27a and b) results i n the i n i t i a l state, 

Y = A + A, + A„ o o 1 2 

Y . , o 

8 o - 0 

Figure 2.5 shows the v a r i a t i o n of the i n i t i a l 

conditions Y Q and 3^ with the s a t e l l i t e spin parameter for 

both c i r c u l a r and noncircular o r b i t a l motion. The influence 

of the solar parameter C i s to r a i s e the i n i t i a l conditions 

for periodic motion. The i n i t i a l state appears to be highly 

sensitive to the spin rate for slowly spinning s a t e l l i t e s , 

however, i t asymptotically approaches a constant value with 

increasing spin parameter. In general, the e f f e c t of 

e c c e n t r i c i t y i s to increase the magnitude of the i n i t i a l 

conditions except at the lower end of the spin parameter 

spectrum. 
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F i g u r e 2.5 I n i t i a l c o n d i t i o n s l e a d i n g t o s o l a r p r e s s u r e 
e x c i t e d p e r i o d i c m o t i o n 
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(d) Accuracy of the a n a l y t i c a l solution 

To assess the accuracy of t h i s a n a l y t i c a l pro

cedure i n predicting the periodic solutions, the governing 

equations of motion (2.13) were integrated numerically with 

i n i t i a l conditions derived from the a n a l y t i c a l solution. 

Typical responses are presented i n Figure 2.6. 

In c i r c u l a r o r b i t s , the l i b r a t i o n a l response i s 

observed to be periodic with i n s i g n i f i c a n t error. The 

frequency of o s c i l l a t i o n s i s also predicted very accurately, 

thus demonstrating the effectiveness of the approximate, 

closed-form analysis. 

The method continues to predict the periodic 

motions quite accurately even i n e l l i p t i c o r b i t s . The 

accuracy, however, was found to deteriorate with increasing 

e. Results showed the amplitude and frequency of the numerical

ly generated response to be within f i v e percent of t h e i r 

a n a l y t i c a l l y predicted values for e <_ 0.1, the normal range 

of i n t e r e s t . 

(e) S t a b i l i t y of periodic solutions 

The s t a b i l i t y of periodic solutions can be studied 

using v a r i a t i o n a l analysis. The v a r i a t i o n a l equations are 

obtained by l e t t i n g 

Y = Y + Y 1 'p 'v 
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Figure 2.6 T y p i c a l p e r i o d i c s o l u t i o n s of the system 



where y p , B p represent a periodic solution and y , B v are 

small perturbations. Substituting i n Equations (2.13) 

and l i n e a r i z i n g with respect to Y v and B v leads to: 

y " = F - y + F_ y ' + F_B + F.B' v 1 v 2 v 3 v 4 v 

B" = G , Y + G _ y 1 + G-B + G .B' (2.34) v 1 v 2 v 3 v 4 v 

where the d e t a i l s of lengthy functions 

F i * F i ( Y P ' 3 P ' 9 ) ' 1 = x ' 2 ' 3 ' 4 

G± = G i ( Y p , B p , e ) , i = 1,2,3,4 (2.35) 

are given i n Appendix I I . 

For c i r c u l a r o r b i t a l motion, the functions F^ and 

G ^ assume the form F^ = F ^ ( y p , 3 p ) , G ^ = G ^ ( Y p , 8 p ) and hence 

have p e r i o d i c i t y of the solution. The Floquet theory can 

thus be applied to investigate the s t a b i l i t y of the v a r i a 

t i o n a l system (2.34). The s t a b i l i t y c r i t e r i a for d i s t i n c t 

roots can be expressed as: 

| A I | <_ 1 , i = 1,2,3,4; stable 

any of the \X±\ > 1 , i = 1,2,3,4; unstable (2.36) 
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For s a t e l l i t e l i b r a t i o n s i n noncircular o r b i t s , 

the functions F^ and are periodic only i f the solution 

period i s a r a t i o n a l multiple of the o r b i t a l period. The 

Floquet theory may again be used to assess the v a r i a t i o n a l 

s t a b i l i t y of these solutions. Figures 2.3 - 2.5 also show 

the results of th i s analysis. 

The stable motion at smaller values of the i n i t i a l 

conditions i s , of course, anticipated. What i s of p a r t i c u l a r 

significance i s the p o s s i b i l i t y of periodic motions of large 

amplitudes. The amount of computational e f f o r t involved 

for s t a b i l i t y analysis i n an eccentric t r a j e c t o r y i s 

enormous. Large values of the common period of the l i b r a 

t i o n a l and o r b i t a l motion lead to extended integration 

l i m i t i n g the s t a b i l i t y investigation to is o l a t e d points 

(Figure 2.3). Of course, the solar pressure excited motion 

of the o r b i t a l period does not present this problem (Figure 

2.5). The a b i l i t y of the approximate closed form solution 

to predict nonlinear character of the system i s indeed 

promising. 

2.2.3 Resonance 

It i s of p a r t i c u l a r relevance to recognize here 

several p o s s i b i l i t i e s of solar pressure excited resonance 

(Equations 2.15). Equivalence of or k 2 to the frequency 

of one of the forcing terms implies existence of certain 

combinations of the s a t e l l i t e i n e r t i a parameter I, spin 



parameter a and the o r b i t a l e c c e n t r i c i t y e which would lead 

to unbounded motion. 

In c i r c u l a r o r b i t s , the condition and/or k 2=l 

results i n the resonance conditions, 

1 = 1 

or, I (a + 1) -2 = 0 (2.37) 

The conditions for resonance i n e l l i p t i c o r b i t s are 

obtained, for one of the frequencies k^, assuming the 

value 1 or 2, as: 

1 = 1 

or, I(a + 1) (1 + 2e)-2 = 0 

or, 2I(a+l) (l+2e)-(I+l)± f/l 2-18I+33 = 0 (2. 38) 

Figure 2.7 shows resonance conditions (2.37) and 

(2.38) i n the system parameter space with t y p i c a l responses 

presented i n Figure 2.8. The large amplitude beat phenomenon 

in some cases indicates near resonant conditions. The 

value of C i s purposely taken here to be small to emphasize 

the d e s t a b i l i z i n g e f f e c t of the radiation pressure. Larger 

values of the solar parameter as often observed i n practice 

(C - 1.5 for Anik, 2 for the CTS) would magnify the amplitude 

build-up. This c l e a r l y indicates the need for avoiding such 
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Figure 2.8 Typical responses under resonant conditions 
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c r i t i c a l combinations of system parameters for a safe 

s a t e l l i t e design. 

2.3 Numerical Results 

The quasi-linear character of the a n a l y t i c a l s o l u t i 

l i m i t s i t s usefulness to the study of small amplitude motion. 

As anticipated, with large amplitudes, i t s accuracy was 

found to deteriorate due to the increased e f f e c t of system 

n o n l i n e a r i t i e s . A parametric study of the system was, there

fore, c a r r i e d out by numerically integrating the governing 

equations of motion. The Adams-Bashforth predictor-corrector 

quadrature with the Runge-Kutta s t a r t e r was used, i n con

junction with a step size of 3°, which gave res u l t s of 

s u f f i c i e n t accuracy without involving excessive computational 

e f f o r t . 

2.3.1 S i g n i f i c a n t system parameters 

The significance of the i n e r t i a parameter I, the 

spin parameter a and the o r b i t a l e c c e n t r i c i t y e i n the 

l i b r a t i o n a l dynamics of spin s t a b i l i z e d s a t e l l i t e s cannot be 

overemphasized. S e n s i t i v i t y of the system response to these 

parameters i s v i v i d l y demonstrated i n Figure 2.9. It shows 

the v a r i a t i o n of $, the angular deviation of the axis of 

symmetry of the s a t e l l i t e from the o r b i t normal, against 9, 

the p o s i t i o n of the s a t e l l i t e i n an o r b i t . I t i s apparent 

that a judicious choice of parameter values i s e s s e n t i a l to 

avoid tumbling motion ($>u/2). 
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Figure 2.9 T y p i c a l unstable responses demonstrating the, 
s i g n i f i c a n c e of system parameters 
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Of p a r t i c u l a r i n t e r e s t i s the disturbing influence 

of solar radiation pressure. Note that the value of C as 

small as 0.5, which would ph y s i c a l l y correspond to e = 0.1 

f t for INTELSAT IV category of s a t e l l i t e s at synchronous 

a l t i t u d e , causes the s a t e l l i t e to tumble over. The c r i t i c a l 

values of e c c e n t r i c i t y , i n t e r t i a and spin parameters would 

only accentuate t h i s behaviour. Of course, i n actual practice, 

a higher spin rate and/or active control system would counter 

this tendency. Nevertheless, the analysis c l e a r l y brings out 

the fact that the solar parameter C i s of the same importance 

as I, a and e i n the design of the s a t e l l i t e attitude control 

system. 

2.3.2 System plots 

In order to better understand the solar pressure 

excited dynamical behaviour of the s a t e l l i t e , the system 

parameters were varied over the desired range and the 

l i b r a t i o n a l response observed. To i s o l a t e and emphasize the 

influence of the radiation pressure no other disturbances i n 

the form of i n i t i a l conditions were introduced. The r e s u l t i n g 

information was condensed i n the form of system plo t s . 

Figure 2.10a shows the e f f e c t of the s a t e l l i t e 

i n e r t i a parameter I on the coning amplitude $ and the c max 
average "nodding" frequency of the axis of symmetry, con, 

expressed as o s c i l l a t i o n s per o r b i t , for d i f f e r e n t values of 
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Figure 2.10 System plots showing the- coning angle and 
average nodding frequency as affected by: 
(a) i n e r t i a parameter; (b) spin parameter; 
(c) o r b i t e c c e n t r i c i t y ; (d) o r b i t i n c l i n a t i o n 



the solar parameter C. I t may be observed that a s a t e l l i t e , 

when the solar pressure e f f e c t s are neglected, remains i n 

the equilibrium p o s i t i o n ($ = o). However, with non

zero C (say, C = 0.05), the l i b r a t i o n a l motion i s excited 

which increases i n amplitude with increasing C. I t i s of 

in t e r e s t to recognize the presence of a c r i t i c a l value of 

1 = 1 leading to large amplitude motion f i n a l l y r e s u l t i n g 

i n i n s t a b i l i t y . This amplitude build-up was found to occur 

even for very small values of the solar parameter C, thus 

confirming the resonant behaviour at these c r i t i c a l combin

ations of the system parameters predicted e a r l i e r by the 

a n a l y t i c a l method. On the other hand, the average nodding 

frequency of the axis of symmetry appears to be r e l a t i v e l y 

unaffected by changes i n the i n e r t i a or solar paremeter. 

The e f f e c t of the spin parameter a on the l i b r a 

t i o n a l behaviour i s indicated i n Figure 2.10b. Here again, 

c r i t i c a l values of the spin parameter e x i s t for which the 

s a t e l l i t e tumbles over. A large value of the spin 

parameter, i n general, leads to smaller coning angles as 

anticipated. 

Figure 2.10c shows the influence of the o r b i t 

e c c e n t r i c i t y on the attitude motion. In general, higher 

values of the o r b i t e c c e n t r i c i t y r e s u l t i n larger amplitude 

motion. Unlike the e f f e c t of the i n e r t i a and the spin 

parameters, no resonant behaviour i s noticed for the 

t y p i c a l values of system parameters considered here. 
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The influence of the s i g n i f i c a n t o r b i t a l para

meters, such as i , 4>, OJ and the solar aspect r a t i o G, on 

the s a t e l l i t e performance was also investigated. The 

amplitude of o s c i l l a t i o n was found to reduce gradually 

with an increase i n the o r b i t a l i n c l i n a t i o n from the e c l i p t i c 

(Figure 2.10d). Changes i n the solar aspect angle cf>, which 

depends upon the location of the l i n e of nodes and the appar

ent position of the sun, did not a f f e c t the amplitude of 

l i b r a t i o n s and t h e i r frequency. The influence of the 

perigee position co and the solar aspect r a t i o G was also 

found to be i n s i g n i f i c a n t . 

2.3.3 Design plots 

From design considerations, i t would be desirable 

to assess the magnitude of the solar pressure torque that a 

s a t e l l i t e can withstand without exceeding the permissible 

bound of l i b r a t i o n as governed by the mission requirements. 

This bound then would e s t a b l i s h a c r i t e r i o n for s t a b i l i t y . 

Here, the s t a b i l i t y l i m i t i s purposely taken as a large 

value of $ = T T/2 to emphasize the v u l n e r a b i l i t y of the 

s a t e l l i t e ' s performance to the solar pressure torque. 

Figure 2.11a shows a t y p i c a l s t a b i l i t y chart for 

l i b r a t i o n a l motion i n a c i r c u l a r o r b i t with the radiat i o n 

pressure as the only e x c i t a t i o n . The equations of motion 

(2.13) were integrated over 15-20 o r b i t s for a range of 

values of s a t e l l i t e i n e r t i a and spin parameters. The r e s u l t -



Figure 2.11 T y p i c a l s t a b i l i t y charts showing adverse 
i n f l u e n c e of s o l a r r a d i a t i o n pressure: 
(a) e = 0; (b) e = 0.1 
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ing information about the maximum amplitude of the coning 

angle $ was then condensed i n the form of s t a b i l i t y max J 

plots i n the I-a space. The analysis shows that i n addition 

to the main stable region for high i n e r t i a parameter values, 

there also e x i s t small i s o l a t e d stable areas. However, 

there are substantial unstable regions even for p o s i t i v e 

spin or large i n e r t i a parameters. I t i s observed that the 

stable areas reduce d r a s t i c a l l y , as expected, with an 

increase i n the value of the solar parameter. 

The e f f e c t of the o r b i t a l e c c e n t r i c i t y on the 

s t a b i l i t y of l i b r a t i o n a l motion i s presented i n Figure 2.11b. 

An increase i n o r b i t a l e c c e n t r i c i t y further enhances the 

d e s t a b i l i z i n g influence of the solar pressure. The e f f e c t 

appears to be more pronounced for s a t e l l i t e s with the 

retrograde spin. 

2.4 Concluding Remarks 

The important features of the analysis and the 

conclusions based on them may be summarized as follows: 

(i) The approximate a n a l y t i c a l solution developed 

using the method of slowly varying parameters 

proves to be an excellent tool in establishing 

the periodic solutions of the system. The closed 

form character of the solution provides con

siderable insight into the system behaviour. 
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( i i ) The a n a l y t i c a l method predicts the system 

response and frequency quite accurately i n 

c i r c u l a r o r b i t s . Even for noncircular o r b i t a l 

motion (e <_ 0.1), the errors are confined to 

less than 5%. 

( i i i ) The influence of the solar pressure on the 

s a t e l l i t e l i b r a t i o n s , i n general, i s adverse. 

The analysis shows, however, that the system 

can execute stable periodic motions of con

siderable magnitude i n the solar pressure f i e l d 

under suitable i n i t i a l conditions. 

(iv) There e x i s t combinations of system parameters 

for which large amplitude o s c i l l a t i o n s r e s u l t , 

even i n the presence of a very small solar 

torque, due to resonant in t e r a c t i o n , 

(v) The solar parameter affects s t a b i l i t y of the 

motion subs t a n t i a l l y and hence merits equal 

consideration with the s a t e l l i t e i n e r t i a and 

spin parameters and the o r b i t a l e c c e n t r i c i t y . 
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3. ATTITUDE CONTROL USING SOLAR RADIATION PRESSURE 

The analysis of the l a s t chapter c l e a r l y estab

l i s h e s the substantial adverse influence of solar r a d i a t i o n 

pressure on s a t e l l i t e l i b r a t i o n s . On the other hand, the 

findings of e a r l i e r investigations of gravity oriented 
49-51 

systems suggest that the radiation force can provide 

e f f e c t i v e damping torques to maintain a s a t e l l i t e i n a 

desired attitude. However, as pointed out i n the l i t e r a t u r e 

review, available analyses of solar pressure control of 

spinning s a t e l l i t e s are only of a preliminary nature. This 

i s unfortunate because, in many space applications, a 

s a t e l l i t e with a d i r e c t i o n a l sensor has a preferred 

orientation which i s normally achieved by mounting the 

device on a s t a b i l i z e d platform aboard the spinning 

s a t e l l i t e . .The spin, through a gyroscopic moment, provides 

s t a b i l i t y while the platform, despun by control moments, 

tracks a given object in space. The concept of solar 

pressure control provides an exciting p o s s i b i l i t y of 

s t a b i l i z i n g the entire system through a semipassive 

approach.. 

This chapter investigates the f e a s i b i l i t y of 

the general three-axis nutation damping and attitude control 

of spinning s a t e l l i t e s using a solar c o n t r o l l e r sensitive 

to angular displacement and v e l o c i t y errors. The analysis 
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i s kept quite general to accommodate eccentric o r b i t s 

and a r b i t r a r y i n c l i n a t i o n s of the o r b i t a l plane with respect 

to the e c l i p t i c . The nonlinear, nonautonomous, coupled 

equations of motion are analyzed numerically and the 

influence of system parameters on the response studied. 

In the l a t t e r part of the chapter, a l o g i c a l 

approach for c o n t r o l l e r design i s developed. A n a l y t i c a l 

solutions for the control variables are obtained which 

suggest reduced software requirements. Several examples 

using representative s a t e l l i t e s i l l u s t r a t e the effectiveness 

of the control system and help gain an appreciation as to 

the c o n t r o l l e r size required for a desired performance. 

3.1 F e a s i b i l i t y of Solar Pressure Control 

3.1.1 Equations of motion 

Figure 3.1 shows an axisymmetric (I = 1^) 

s a t e l l i t e with the center of mass S moving i n a Keplerian 

o r b i t about the center of force 0. The s a t e l l i t e consists 

of a central body I, spinning at a constant average angular 

v e l o c i t y , connected to a s t a b i l i z e d platform II through a 

viscous damper e f f e c t i v e i n a x i a l rotation. The s p a t i a l o r ien

tation of the axis of symmetry, as stated before, i s s p e c i f i e d 

by two successive rotations y and 8, referred to as r o l l 

and yaw, respectively, which define the attitude of the 

s a t e l l i t e p r i n c i p a l axes x,y,z with respect to the i n e r t i a l 



F i g u r e 3.1 Geometry of motion of d u a l - s p i n s a t e l l i t e i n 
the s o l a r p r e s s u r e environment 



reference frame x', y', z 1 . The rotor and the platform spin 

in the x,y,z reference with angular v e l o c i t i e s a and X, 

respectively. In terms of these modified Eulerian rotations, 

the expressions for the pot e n t i a l and k i n e t i c energies 

to 0(1/R ) are obtained as: 

U = -ym /R-y{(I /2R 3)(I-1)/I}(l»3sin 2Ycos 28) (3.1) 
y o 2i. 

T = (m g/2)(R 2+r 26 2)+(I x/2I){(1-J)I(a-ysin3+8cos8cosY) 2 

+ JI(A-YsinB+0cos3cosY) 2+(B-8sinY) 2 

• 2 
+ (YcosB+6sin(3cosY) > (3.2) 

The Rayleigh d i s s i p a t i o n function i s given by 

F = (l/2)I< d(X-a) 2 (3.3) 

Using the Lagrangian formulation, the equation of 

motion in the a degree of freedom becomes, 

(d/dt) {I v v. (a-YsinB+6cosBcosY) > (a-X) = (3.4) 

As the rotor i s considered to spin at a constant 

average spin rate ( i . e . , no spin decay), the usual 

assumption i n the analysis of dual-spin spacecraft, 
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Q a = K d(a-X) (3.5) 

T h i s i s e q u i v a l e n t to assuming an energy source c o u n t e r i n g 

the b e a r i n g drag on the r o t o r . The f i r s t i n t e g r a l 

a-Ysin3+6cos3cosy = h a (3.6) 

may now be used to e l i m i n a t e the c y c l i c c o o r d i n a t e a through 

the s p i n parameter a d e f i n e d as, 

(a/9) j =(h /6) 
'e=3=Y=o 9 = 0 - 1 ( 3 - 7 ) 

N e g l e c t i n g o r b i t a l p e r t u r b a t i o n s due to l i b r a t i o n a l 
78 79 

motion ' and making use o f the s p i n parameter, the 

Lagrangian f o r m u l a t i o n y i e l d s the governing equations of 

motion i n the r o l l , yaw and p i t c h degrees of freedom. 

Changing the independent v a r i a b l e from t t o 0 through the 

K e p l e r i a n o r b i t a l r e l a t i o n s , they f i n a l l y take the form: 

Y" -2 3' ( Y ' t a n 3 - c o s Y ) - ( 3 ' - s i n Y ) s e c 3 [ ( l - J ) I ( a + l ) x 

{ (l+e)/(l+ecos9)} 2+JI(A 1-y'sin3+cos3cosy)] 

+{3(1-1)/(1+ecose)-l}sinYcosY-(2esin9/(l+ecos9)} x 

(Y'+cosYtan3) = Q y (3.8a) 
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8" -Y'cosY-{2esin9/(l+ecos9)}(8 1-sinY)+(Y'cos8+cosYsin8) x 

[ (1 - J ) I(a+1){(1+e)/(l+ecos9) } 2 + J I(A'-Y'sin8+cos8cosy) 

+ ( Y ' s i n 3 - c o s 8 c o s Y ) ] - 3 { ( I - l ) / ( l + e c o s 0 ) } s i n 2 Y s i n 8 c o s 8 = Q D 

p 

(3.8b) 

A " - Y " sin8-{2esin0/(l+ecos9)}(A'-Y'sin8+cos8cosY) 

-3 IY'cos3-Y lcos8sinY-3'cosYsin8+ ( K / J I ) x 

{ (1+e) 3 y / 2 / ( l + e c o s 9 ) 2 } [A 1 -y1 sin8+cos8cosY- (a+1) x 

{ ( l + e ) / ( l + e c o s 9 ) } 2 ] = Q A (3.8c) 

where Q ^ ( i = Y*8,A) r e p r e s e n t the g e n e r a l i z e d f o r c e s due 

to s o l a r r a d i a t i o n p r e s s u r e . 

3.1.2 C o n t r o l l e r c o n f i g u r a t i o n 

A c o n t r o l l e r , i n g e n e r a l , c o n s i s t s o f l i g h t , r i g i d , 

h i g h l y r e f l e c t i v e p l a t e s (membranes) s u i t a b l y mounted on 

the p l a t f o r m t o be s t a b i l i z e d . The c o n t r o l moments r e s u l t i n g 

from the s o l a r r a d i a t i o n f o r c e on the p l a t e s may be v a r i e d 

by changing any one of the f o l l o w i n g : 

(i) the d i s t a n c e between the c e n t e r of p r e s s u r e and 

the s a t e l l i t e c e n t e r of mass by t r a n s l a t i n g the 

p l a t e support; 
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( i i ) the area of the membrane through wrapping or 

unfurling portions of i t ; 

( i i i ) the projected area of the plate as 'seen' by the 

sun by rotating the plate. 

P r a c t i c a l considerations make the l a s t alternative 

the most a t t r a c t i v e , e s p e c i a l l y , when servomotors can be 

located within the controlled environment of the spacecraft. 

In order that the three degrees of freedom of the system, 

namely the r o l l Yr the yaw 6 and the platform p i t c h X, be 

controlled independently, i t i s necessary to provide at 

least three independent plate rotations 6^, S 2, and 63. 

Various c o n t r o l l e r configurations were studied 

which, i n general, y i e l d expressions for the generalized 

forces of the form: 

Q Y = Q Y ( 5 l f 6 2 , 6 3 ) 

Q 3 = Q B ( 6 l f 6 2 , 63) 

Q A = Q A ( 5 1 # 6 2 , 63) (3.9) 

where the functions i n the ri g h t hand side are transcendental. 

As the rotations 6^, a n < ^ 3̂ a r e r e a l , the 

simultaneous maxima |Ct I „ . | Q Q L „ v and I Q ^ I for which 
Y max p max 1 A max 

the set of Equations (3.9) possesses a r e a l solution, 



represent the physical l i m i t on the generalized forces that 

a p a r t i c u l a r c o n t r o l l e r configuration can y i e l d . The 

problem of determining the maximum values of Q^, Q^, and 

Q^, which would s a t i s f y the above c r i t e r i o n i s , i n general, 

a complex one. Any attempt to simplify the problem, through 

the choice of co n t r o l l e r s y i e l d i n g completely decoupled 

moments, would lead to increased hardware complexities. One 

i s , therefore, forced to compromise by selecting a c o n t r o l l e r 

configuration r e s u l t i n g i n a p a r t i a l uncoupling of the . 

Figure 3.2 shows the schematic diagram of the 

proposed semi-passive c o n t r o l l e r . I t consists of f i v e sets 

df plates P i ( i = 1,2,3) and P^(j = 1,2) with t h e i r axes 

mounted on the platform. The plates are permitted rotations 

6 ^ ( i = 1,2,3) about these axes. The angles 6 ^ ( i = 1, 2) 

are measured from the yz-plane and 6 ^ i s measured from a 

platform-fixed reference l i n e at an angle A from the y axis. 

At a given instant, the set P^, c o n t r o l l i n g the A motion, 

operates i n conjunction with the sets P ^ ( i = 1»2) or 

Pj (j = 1,2) or P^Pj (i j) i which provide corrective torques 

in the y and 8 degrees of freedom. 

The determination of the moments due to solar 

radiation pressure i s somewhat involved. Figure 3.3 shows 

a plate i n an ar b i t r a r y orientation with respect to the sun. 

The force on an elemental plate area dA i s given by 



F i g u r e 3.2 Solar c o n t r o l l e r c o n f i g u r a t i o n 
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Figure 3.3 Radiation force on a p l a t e element 
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dF = -p dA|cos£ | {(l - T)u+ps} (3.10) 

with the re s u l t i n g moment about the s a t e l l i t e center of 

mass as 

M = 
f 

r X dF (3.11) 
A 

Expressing the angle of incidence £ and the unit 

vectors u and s as functions of the attitude, angles, the 

solar aspect angle (f> and the plate rotations 6^, and 

evaluating the in t e g r a l i n Equation (3.11) y i e l d the desired 

expression for M. The application of the p r i n c i p l e of 

v i r t u a l work f i n a l l y leads to the generalized forces Q^. 

The expressions are rather lengthy, however, ignoring the 

terms of order ( 1 - T - p ) / 2 p compared to unity, which i s j u s t i 

f i a b l e for surfaces of high r e f l e c t i v i t y , r e s u l t s i n a 

considerable s i m i l i f i c a t i o n : 

= -E(0) [U1C11 cos ? ̂  cos 5 1sin6 1sinA 

+^^2 I c o s ^ ̂  C O S?2 S^" n^2 C O S^-' s e c ^ (3.12a) 

= -E (9) [U 1C 11cos K 11cos K 1sin6 1cosA 

- U 2C 2 | cos E, 2 | cos £ 2 s i n S 2 s i n A ] (3.12b) 



Qx = -E(6) (C 3/J) |cos £ 3|cos ? 3 (3.12c) 

where 

U i = +1 for P i f -1 for P^; i = 1,2 

cos ^ = u. cos6. + (u . sinA-u, cosA) sin6. 
X 1 X 1 K X 

cos ? 2= u icos6 2+(UjCosA+u ksinA)sin6 2 (3.13) 

cos C 3
= -UjSin(6 3+A)+u kcos(6 3+A) 

The solar parameters, C^, are defined as 

C i = ( 4 p P 0
R p / y I y ) A i e i ' 1 = 1 ' 2 

C 3 = ( 4 p p o R 3 / y I x ) A 3 £ 3 (3.14) 

3.1.3 Control strategy 

The generalized forces are controlled i n a 

v e l o c i t y and position sensitive manner according to the 

re l a t i o n s : 

Q y = -y YY'-v y(Y-Y c) (3.15a) 

QB = ~ y B 6 ' " v 3 ( 6 " 6 c ) (3.15b) 

QA = ~ y A A ' " V A ( A " A c ) (3 .15c) 



where the system gains , are chosen according to some 

suitable c r i t e r i o n , such as, the least time of damping or 

the maximum permissible displacement during a nutation 

cycle. The position control parameters y , B c, and X^, 

however, are functions of the desired f i n a l orientation 

Yff Bf, and X^ and are obtained from the equilibrium 

consideration of the controlled system (Equations 3 . 8 ) . 

For nutation damping i n a c i r c u l a r o r b i t , t h i s results i n 

Y c = B c = 0, A c = - ( l / v A ) K a / J I (3.16) 

In p r i n c i p l e , the plate rotations can be obtained 

by substituting Equations (3.15) into Equations (3.12) and 

solving for 6 ^ . This, of course, implies s p e c i f i c a t i o n 

of the signs of and U^, i . e . , a combination of the plate 

sets to be operated. However, there are s t i l l several 

mathematical problems as the system of Equations (3.12) 

may not possess a r e a l solution. A t r i a l with d i f f e r e n t 

sign combinations of and i s thus necessary. Fortun

ately, for many applications, |u.| << |u.|, | u,| and X 
1 j K 

executes small o s c i l l a t i o n s i n the neighbourhood of nominal 

pitch attitudes X^ = 0, TT/2 , ir or 3TT/2 . In such situations 

the required signs of U-̂  and may be determined 

a n a l y t i c a l l y . 

Furthermore, the c o n t r o l l e r may be unable to 

provide the corrective moments demanded by the system 



(Equations 3.15) at a l l times due to i t s physical limita
tions. It i s , therefore, necessary to introduce saturation 
constraints on the control moments Q.. Hence the real 

1 
solution for 6. has to be determined consistent with this x 
constraint. 

being a function of 6̂  only, i t s maximum 
attainable value can easily be found, 

But 0^, Qg are functions of both 6̂  and hence i t is 
necessary to specify a rational criterion for the controller 
operation. In the present analysis, based on physical 
considerations, i t is taken to be the maximum of the total 

2 2 2 1/2 
transverse torque, (Q^cos 3+Q̂ ) . This occurs at 

6 = Tr/2+tan~1[ (3/2) (u.sinA-u, cosA)/u.±{ (9/4) (u.sinA 
X T K 1 "J 

lO, I = E(6) (C-/J) (u2+u.2) 1 A 1 max 3' j k (3.17) 

-U VCOSA) 2/u 2+2} 1 / 2] 
K 1 

(3.18a) 

3 

and 6 

+u, sinA) 2/u 2+2} 1 / 2] k x (3.18b) 
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Substitution for 6^(i = 1,2) from Equations (3.18) 

into Equations (3.12) y i e l d s the desired maximum values of 

and Qg. Appropriate signs of and are to be 

introduced which y i e l d signs of Q and Qa consistent 
J ^ ymax 3max 

with those governed by Equations (3.15). 
The control procedure may now be summarized as 

follows: 

(i) sense the r o l l , yaw and pit c h angles and rates, 

o r b i t a l p o sition and the apparent position of 

the sun; 

(i i ) compute the control moments demanded by the 

system using Equations (3.15); 

( i i i ) evaluate the maximum attainable moments using 

Equations (3.17, 3.18, 3.12a and b); 

(iv) compare the moment demand with the attainable 

values. I f the demand exceeds the maximum 

available, set i t equal to the l a t t e r ; 

(v) determine the plates to be operated for r o l l -

yaw control (through and U2) and the rotations 

6^, $2 and 6^ from Equations (3.12). 

3.1.4 Results and discussion 

The response of the system was studied by numeric

a l l y integrating the equations of motion (3.8) along with 

the control relations (3.15). Again the Adams-Bashforth 



predictor-corrector quadrature with the Runge-Kutta s t a r t e r 

was used i n conjunction with a step size of 3°. The impor

tant system parameters were varied gradually over the range 

of i n t e r e s t and the c o n t r o l l e r performance evaluated both 

i n c i r c u l a r and e l l i p t i c o r b i t s . In general, the system i s 

exposed to extremely severe disturbances, much higher than 

i t i s l i k e l y to encounter in the normal operation, to evaluate 

the c o n t r o l l e r ' s performance under adverse conditions. 

(a) Nutation damping 

Figure 3.4 summarizes the influence of the c o n t r o l l e r 

gains u^, on the response. In general, an increase i n y^ 

provides an overdamped character to the system (Figures 

3.4a and b) while a corresponding increase i n for a given 

y^ results i n o s c i l l a t i o n s suggesting a reduction i n damping 

(Figures 3.4a and c ) . The existence of an optimum choice 

of c o n t r o l l e r gains for a set of given system parameters i s 

thus apparent. This i s indicated i n Figure 3.4d. 

The e f f e c t s of the s a t e l l i t e i n e r t i a parameter I 

and the spin parameter a , presented i n Figure 3.5 suggest that 

short, d i s c - l i k e s a t e l l i t e s (I = 1.5) withstand and damp a 

given disturbance r e l a t i v e l y better than long, slender 

s a t e l l i t e s (I = 0.5). I t i s of int e r e s t to point out that 

here the value of J, representing the r a t i o of the a x i a l 

i n e r t i a s of the platform and the s a t e l l i t e , i s taken as 0.5. 

The analyses with J varying from 0.25 to 0.7 5 showed the 

system response to remain v i r t u a l l y unaffected. This i s 



70 

20 

10 

0 

1 r-

* - h = 5 

: \ V. =20 
• 1 1 
i t 

i i 
i i 

i i 
i i 

~'/\ • 
jr\ \ ' 1 V •• 

1 1 

/ \ V ; = 25 
, 1 
, I 
f 1 
1 1 

1^ \ 

1 \ 

K x 

^ - A . »-•,.. ^ , \*^-.'' j 

\ / 
\ / 

-

(C) 

\ / 
\./ 

0 0.25 0.50 0 0.25 0.50 0.75 

Orb i t 
Figure 3.4 Influence of the solar c o n t r o l l e r gains 

y., v. on the response 



71 

e = o K=o.i }A.=io Yf=p=Af=o Y° 

i,CJ=0 C |=4 V | = 2 S Y=P0=X=o P° 
J = 0.5 <f>=60° 

0.25 0.50 0.25 0 
Orbit 

Figure 3.5 Damped response as affected by s a t e l l i t e 
i n e r t i a and spin parameters 



72 

understandable as large J makes i t more amenable to con

t r o l l e r corrections. The e f f e c t of the spin parameter a 

was also found to be r e l a t i v e l y i n s i g n i f i c a n t . This i s 

to be expected as the natural s t i f f n e s s of the system, to 

which the spin parameter contributes, i s largely provided 

by the c o n t r o l l e r gain (Figures 3.5c and d). 

Figure 3.6 shows the influence of the solar 

parameters and aspect angle <j> on the c o n t r o l l e r per

formance. The l i m i t a t i o n imposed by on the maximum 

allowable control moments i s c l e a r l y r e f l e c t e d i n the 

response plots (Figures 3.6a and b). Note that an increase 

in r esults i n an o v e r a l l improvement of the transient 

performance of the system. However, there i s a r e s t r i c t i o n 

as to the maximum attainable values for as imposed by 

the control plate areas and t h e i r moment arms. 

The r e l a t i v e position of the sun (cf>) affects the 

response i n the y and 3 degrees of freedom through the corres

ponding change i n the available control moment. Thus r o l l and 

yaw a t t a i n d i f f e r e n t r e l a t i v e amplitudes i n an o r b i t , how

ever, t h e i r damping time remains e s s e n t i a l l y unaffected 

(Figures 3.6c and d). 

The performance of the c o n t r o l l e r i n an eccentric 

o r b i t remains e s s e n t i a l l y the same except for a steady state 

l i m i t cycle appearing i n the A degree of freedom due to 

the periodic forcing function dependent on e (Equation 

3.8c). This i s indicated i n Figures 3.7a and b, where the 
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Figure 3.7 Response p l o t showing l i m i t c y c l e o s c i l l a t i o n s 
i n e c c e n t r i c o r b i t s and t h e i r removal through 
the modified c o n t r o l f u n c t i o n 



r o l l and yaw motions damp out quite quickly but the platform 

p i t c h p e r s i s t s as a l i m i t cycle. The sustained o s c i l l a t i o n 

of the platform would, i n general, be highly undesirable. 

Fortunately, i t can be eliminated using a modified control 

r e l a t i o n for sensitive to the e c c e n t r i c i t y induced 

disturbance, 

X c = (l/v x)[-2esin6/(l+ecos6)+{(K/JI)(1+e) 3 / 2/(l+ecos6) 2}x 

U-(a+l) (1+e) 2/(l+ecos9) 2}] (3.15c)' 

Figures 3.7c and d i l l u s t r a t e the effectiveness of the 

modified control r e l a t i o n i n eliminating the l i m i t cycle. 

The information presented so far pertains to 

o r b i t a l motion i n the plane of the e c l i p t i c ( i = 0). Of 

course, depending upon the mission, the o r b i t a l plane would 

be at an angle to the e c l i p t i c . A systematic study showed 

the e f f e c t of i to be confined to l o c a l changes i n response 

character without s i g n i f i c a n t l y a l t e r i n g the o v e r a l l con

t r o l performance. The plots i n Figures 3.8a and b 

substantiate t h i s conclusion. 

(b) Rotor spin decay 

The present analysis considers the rotor (body I) 

to have a constant average spin rate. Apparently, t h i s 

would be achieved through some active energy source. However, 

the influence of possible rotor spin decay on the l i b r a t i o n a l 
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response of the system would be appropriate to explore. 

Although a s t i l l remains a c y c l i c coordinate, and hence 

the f i r s t i n t e g r a l i s available, i t i s not possible to 

eliminate the rotor spin degree of freedom from the rest 

of the equations of motion. Thus one i s faced with the 

solution of a 7th order system (as against the 6th order 

in the previous case). As can be anticipated, the r o l l 

and yaw motions damp out as before, coupling with the a 

degree of freedom being weak. However, the platform p i t c h 

angle A tends to d r i f t away from i t s preferred orientation 

A^ (Figure 3.8c). 

This does not r e f l e c t i n any way a l i m i t a t i o n 

on the c a p a b i l i t y of the c o n t r o l l e r but f a i l u r e on our part 

to exploit i t f u l l y . The v a l i d i t y of t h i s observation 

becomes quite apparent when one examines the modified 

pitch equation i n the presence of d i s s i p a t i o n , 

A" - Y " sinB-{2esine/(l+ecos8)}(A'-Y'sinB+cosBcosY) 

-B'Y'cosB-Y'cosBsiny-B'cosYsinB+(K/JI)x 

{ ( l + e ) 3 / 2 / ( l + e c o s e ) 2 } ( A , - a ' ) = Qx (3.8c)' 

Note the dynamic coupling between the rotor and 

the platform. On the other hand, the control r e l a t i o n for 

(Equation 3.15c) does not involve a' e x p l i c i t l y . Thus 

the c o n t r o l l e r ' s potential to account for the rotor spin 

decay i s not u t i l i z e d . The s i t u a t i o n can e a s i l y be 
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corrected by modifying the control function as indicated, 

Q A = -y AA ,-a(6)a ,-v A(X-A ) (3.15c)" 

where 

a(6) = (K/JI)(1+e) 3 / 2/(l+ecos0) 2 

A c = -(l/v A)(2esin6)/(1+ecosG) 

A t y p i c a l system response using t h i s modified control function 

i s presented i n Figure 3.8d. 

Implication of t h i s analysis i s rather far reaching. 

I t i s no longer necessary to maintain the rotor spin rate 

from attitude dynamics considerations as the c o n t r o l l e r i s 

able to.provide s u f f i c i e n t torque i r r e s p e c t i v e of the spin 

rate. The system thus has a t r u l y semi-passive character 

promising an increased s a t e l l i t e l i f e - s p a n . 

(c) Attitude control 

The c o n t r o l l e r provides an i n t e r e s t i n g p o s s i b i l i t y 

of changing the s a t e l l i t e ' s preferred orientation i n o r b i t . 

This i s accomplished by using the position control parameters 

Y c, B c and A^ i n accordance with the desired equilibrium 

configuration y^, 6^, and A^. As an i l l u s t r a t i o n , for a 

s t a t i c equilibrium of the s a t e l l i t e i n a c i r c u l a r o r b i t , 

Equations (3.8) i n conjunction with Equations (3.15) lead 

to 
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Y c = (1/v ) [ ( s i n y f / c o s B f ) { ( l - J ) I ( a + l ) 

+JIcosBfcosYf:}+(3I-4) sinY^cosy^] +Y (3.19a) 

(3.19b) 

X c = ( V v x)-[(K/JI){cosS fcosY f - a-l}]+X f (3.19c) 

Note that i n t h i s p a r t i c u l a r case of e = 0, the po s i t i o n 

control parameters are fixed once the f i n a l orientation i s 

sp e c i f i e d . On the other hand, for the case of an eccentric 

o r b i t , the parameters depend, i n addition, on the s a t e l l i t e 

p o s ition in the o r b i t . Figure 3.9 i l l u s t r a t e s the 

v e r s a t i l i t y of the semi-passive c o n t r o l l e r i n achieving 

ar b i t r a r y orientations i n space, for both c i r c u l a r and 

e l l i p t i c o r b i t s . This suggests an e x c i t i n g p o s s i b i l i t y 

for a space vehicle to extend i t s range of a p p l i c a b i l i t y 

and undertake diverse missions. 

(d) I l l u s t r a t i v e example 

of the concept through a preliminary attitude dynamics study 

of the two well-known s a t e l l i t e s , INTELSAT IV and Anik, 

when provided with the proposed c o n t r o l l e r . Appropriate 

It was decided to demonstrate the effectiveness 
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Figure 3.9 Effectiveness of the solar c o n t r o l l e r in 
achieving a r b i t r a r y orientations of the 
s a t e l l i t e 
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geometrical and i n e r t i a properties were assigned. As seen 

before, i t i s no longer necessary to spin a s a t e l l i t e for 

attitude control. However, nominal value of a = 1 was taken 

to account for possible spin introduced from other consider

ations, e.g., temperature control. The solar parameter 

value of C. - 2 for INTELSAT IV can be obtained with control 
2 

plate areas A^ = 3 f t and moment arms ^ = 5 f t . S i m i l a r l y , 
2 

- 5 for Anik may be achieved with plate areas A^ = 1.2 f t 

and moment arms = 5 f t . Subjecting the s a t e l l i t e s to a 

disturbance equivalent to that imparted by micrometeorite 

impacts over 24 hrs, which represents an enormous magnifi-
8 0 cation of the re a l s i t u a t i o n , gives -0.05 < y', 8', A' ^ — o o o 

£0 . 0 5 . I t i s apparent (Figure 3.10) that the c o n t r o l l e r 

i s able to damp such a severe disturbance quite e f f e c t i v e l y 

with the maximum deviation from the preferred orientation of 

less than 0.25°. The figure also shows the co n t r o l l e r ' s 

effectiveness i n achieving s p e c i f i e d s p a t i a l orientations. 

3.2 Improvement of Controller Design 

Potential of the concept having been established, 

attention i s next directed at rendering i t more e f f i c i e n t 

and s t r u c t u r a l l y more a t t r a c t i v e . As the solar c o n t r o l l e r 

was found to be quite e f f e c t i v e even i n the absence of any 

spin, the case of a nonspinning s a t e l l i t e i s now considered.. 
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Figure 3.10 Projected c o n t r o l l e r performance i n achieving 
nutation damping and attitude control of 
INTELSAT IV and Anik s a t e l l i t e s 



83 

3.2.1 Equations of motion 

The governing equations of motion follow d i r e c t l y 

from Equations (3.8) on substituting J = 1, K = 0: 

Y" -28* (Y'tan3-cosy)-I(A'-y'sinB+cosBcosy)(B'-siny)secB 

+{3(1-1)/(l+ecos9)-l}sinYcosY-{2esin6/(l+ecos8)}x 

(Y'+cosytanB) = Q y (3.20a) 

B" -Y'cosY-{2esin9/(l+ecose)}(B'-sinyJ + d(A'-y'sinB 

+COSBCOSY)+(Y 1sinB-cosBcosy)}(Y'cosB+cosysinB) 

-3{ (I-l)/(l+ecos9) }sin 2YsinBcosB = Q D (3.20b) 
P 

A" - Y " sinB-{2esin9/(l+ecos9)}(A'-Y'sinB+cosBcosy) 

-B'Y 1cosB-Y'cosBsiny-B'cosysinB = Q, (3.20c) 

3.2.2 Development of c o n t r o l l e r models 

Controllers capable of providing general l i b r a t i o n 

a l damping and three-axis attitude control require the 

three degrees of freedom of the system (y , 3 and A) to be 

controlled independently. A v e r s a t i l e solar c o n t r o l l e r 

configuration would thus r e s u l t i n generalized forces 

as functions of at least three control variables, 6.. Of 
l 

various configurations s a t i s f y i n g t h i s requirement, only 

those permitting r e l a t i v e l y easier solution for the control 

variables with a given set of would be p r a c t i c a l l y 

f e a s i b l e . 
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At the outset, i t appears i n s t r u c t i v e to study the 

control moments generated by a single plate P with i t s 

support arm gimballed at the point T on the axis of symmetry 

of the s a t e l l i t e (Figure 3.11a). The arm supporting the 

plate i s allowed rotations and a 2 while the plate can 

turn about i t through an angles measured from the plane TSW. 

Following the procedure discussed e a r l i e r i n d e t a i l , the 

generalized forces due to solar radiation pressure can 

be written as: 

Q Y = -CE (0) |cos?|cos?{(h/e+sina 2) (sina^cosS+cosa^sina^sinS) 

2 +cosa,cos a_sin6}/(I cosB) (3.21a) j. z y 

= -CE (0) |cos?|cos?{(h/e) (cosa^cosS-sina^sino^sinfi) 

+cosa,sina 0cos6-sina„sinS}/I (3.21b) 1 2 2 y 

Q, = CE(0) |cos?[cos? cosa_cos6/I (3.21c) 
A c. X 

where 

cos? = -u^coso^sinfi+Uj(sina^cos<5 + cosa^sina 2sin6) 

-u, (cosa,cos6-sina,sina„sinS) (3.22) k 1 1 2 

As i s evident, each of the 0^ depends on the 

variables o^, and 6. The transcendental nature of these 

functions makes i t d i f f i c u l t to esta b l i s h the bounds 



Figure 3.11 Development of s o l a r c o n t r o l l e r c o n f i g u r a t i o n s 



86 

I Q I , | Q „ ! and lQ-,1 within which Equations (3.21) 1 y max' 1 8'max 1 A 1 max ^ 
possess r e a l solutions for a^, a 2 and 6. It i s , therefore, 

necessary to consider modifications which would reduce 

these equations to a more amenable form. 

A l o g i c a l approach seems to l i e i n devising con

figurations where some of the three variables become con

stants. The best choice, from a p r a c t i c a l viewpoint, would 

be to remove the gimbal and f i x the axis of the plate to 

the s a t e l l i t e body, thereby rendering and a 2 constants. 

This reduction i n the number of control variables, of course, 

would have to be compensated by a corresponding increase i n 

the number of plates rotating about body-fixed axes. Numerous 

con t r o l l e r configurations were considered to t h i s end, how

ever, for conciseness, only a few are discussed here. 

Figure 3.11b shows an arrangement of three plates 

P ^ ( i = 1,2,3) rotatable about three mutually perpendicular 

body-fixed axes. The rotations 6 ^ ( i = 1,2) are measured 

from the yz-plane while 6̂  i s measured from the xy-plane. 

The evaluation of the generalized forces r e s u l t i n g from 

thi s configuration may be ca r r i e d out either from the f i r s t 

p r i n c i p l e s , or, by appropriate substitutions for a^, a 2 and 

6 for each plate into Equations (3.21). These are found 

to be: 



8 7 

= E (0) {(^ |cos£ 1 1cos? 1cos6 1cosA-C 2|cos£ 2|cos? 2cos6 2sinA 

+C 3|cos? 3| c o s 5 3sin6 3>/(I cos6) (3.2 3a) 

= E(0){-C 1|cos? 1|cos^ 1cos6 1sinA-C 2|cos? 2| c o s 5 2cos6 2cosA 

+C 3|cos£ 3|cos£ 3cosS 3}/I y (3.23b) 

= E ( 0 ) { C 1 | c o s ? 1 | c o s 5 1 s i n 6 1 + C 2 | c o s ? 2 | c o s ? 2 s i n 6 2 } / I x 

(3.23c) 

where 

cos£^ = u^cos6^+(u_.sinA-u^cosA) sinS^ 

c o s ^ = u^cos5 2+(UjCosA+u^sinA) s i n 6 2 

cos£ 3 =-UjSin6 3+u kcos6 3 (3.24) 

I t may be observed that the dependence of the 

generalized forces Q i ( i = y,3,A) on the control variables 

6^(i = 1,2,3) i s quite involved and the system of Equations 

(3.23) does not appear to lend i t s e l f to an a n a l y t i c a l 

treatment. Figures 3.11c and d show alternative arrangements, 

An analysis of the generalized force expressions, which are 

e s s e n t i a l l y of the same nature as Equations (3.23), showed 

them to present si m i l a r d i f f i c u l t i e s . 
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Following the approach discussed i n preceding 

sections, the c o n t r o l l e r configuration shown i n Figure 3.12 

i s f i n a l l y arrived at. The performance of th i s model i s 

investigated i n d e t a i l as both the hardware and software 

requirements are r e l a t i v e l y simple to implement. I t consists 

of four plates P ^ ( i = 1,2,3,4) with t h e i r support arms 

forming a c r i s s c r o s s . The plates and P 2 rotate about 

the axis of symmetry of the s a t e l l i t e , the rotations 6̂  and 

62 being measured from the xy-plane. The plates P^ and P^ 

rotate about arms, l y i n g i n the plane perpendicular to 

the axis of symmetry, with the rotations 63 and 6^ measured 

from the yz-plane. The moments generated by t h i s arrangement 

are found to be: 

= E(8) [C^|cosC11cos?1sin61-C2|cos?2|cos£2sin62 

+l{C 3 | cos £ 3 I cos^cosS 3~C;j | cos£4 | cos^cos6^}cosX] sec 3 

(3.25a) 

Q g = E (9) [C]_ I c o s ^ I cos? 1cos(S 1-C 2 | cos? 2 I cos5 2cosS 2 

+1{-C^I cos?^Icos?3Cos63+C4I cos£4|cosE^cosfi^sinA] 

(3.25b) 

= E ( 6 ) { C 3 | c o s 5 3 | c o s ? 3 s i n 6 3 + C 4 | c o s ? 4 | c o s ? 4 s i n 6 4 } 

(3.25c) 

where 





9 0 

cos?. = -u .sinS . +u. cos6 . , i = 1.2 

cos?_ = u.cosS_+(u.sinA-u, cosA)sin6_ 

cos?. = u. cos6 .-(u . sinA-u. cos A) sinS . (3.26) 4 I 4 ] k 4 

and the solar parameters are defined as, 

C. = (2pp R 3/yI )A.e., i = 1,2 l co p y l l 

= ( 2 p p o R 3 / y I x ) A i e i , i = 3,4 (3.27) 

Although Equations (3.25) indicate a rather complex 

dependence of on the control variables, i t i s possible 

to obtain r e l a t i v e l y simple a n a l y t i c a l solutions for 

(i = 1,2,3,4) through a judicious control strategy. 

3.2.3 Control strategy 

An inspection of Equations (3.25) indicates that 

the plates and P 2 do not produce any moment i n the pi t c h 

(A) degree of freedom, hence th i s control w i l l have to be 

accomplished through plates P^, P^. Ideally, one would l i k e 

t h e i r operation to be free of coupling roll-yaw moments. 

Fortunately, t h i s can be achieved through a simple control 

law: 
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• o f f 

or 
• o f f , T T / 2 , ( 3 . 2 8 ) 

the option being dicated by the sign required of Q^. 

6̂  = 'off* implies i t s rendering the corresponding cos£^ = 0, 

i . e . , p h y s i c a l l y , the sun-line would l i e in the plane of 

the plate. A pure pi t c h moment thus produced has the 

magnitude 

Q, = E(9)C_ „ (u.sinX-u. cosA) 2 (3.29) 

where C., = C„ = C 0 „ i s assumed for convenience. 

the orientation of the axis of symmetry of the s a t e l l i t e , 

plates P^ and maY be operated simultaneously or one at a 

time with the other ' o f f . The latter mode of operation, 

resulting in greater transverse torques, is considered here. 

The generalized forces in the r o l l and yaw degrees of freedom 

now take the form: 

Q = ±E (9) C . I -u . sin6 . +u, cos6 . I (-u . sin6 . +u, cos6 . ) sin6 . secB y i ' j l k l 1 i l k l l 

(3.30a) 

QQ = ±E ( 8) C . I-u . sin6 .+u. cos6 . I (-u . sin6 .+u, cos6 .) cos6 . 3 • i l l k I 1 3 • i k i I 

(3.30b) 

3,4 
In order to provide the roll-yaw moments c o n t r o l l i n g 



where the plus and minus signs correspond to plates and 

?2' respectively. Note that the moments Q and are 

coupled through the plate rotation angle 6 ^ . 

The next step would be to maximize the available 

moments consistent with the control requirements of 

appropriate sign. There are several aspects to thi s problem. 

One approach i s to maximize the t o t a l transverse torque, 
2 2 2 1/2 

(Q^cos B+Qg) . Unfortunately, the res u l t i n g c r i t i c a l <5̂  

(orienting the control plate so as to maximize c o s ^ ) 

yi e l d s only two of the four possible combinations of the 

r o l l and yaw moment directions: 

Q y, Q g: ++,+-,-+, 

An alternate procedure would be to maximize 

|Q | and | | , i n turn, with respect to 6 ^ . the maximum 

value of |Q̂ | = Q™ i s found to occur at 

6im = ^ / 2 + t a n 1[{-3u.±(9u 2+8u 2) 1 / 2}/2u k] (3.31a) 

with the corresponding |Q̂ | = being given by Equation 

(3.30b) with 6 . = 6 . . S i m i l a r l y , the maximum of |QR| = Q m 

occurs at 

6 i m = tan~ 1[{3u k±(9u 2+8u 2) 1 / 2}/2u j] (3.31b) 



I l c 
with the corresponding \Q^\ = Q given by Equation (3.30a). 

The proper sign of the quantity within the square-root i s 

determined from the coupling constraint imposed by 

Equations (3.30), i . e . , 

tan6 ± = Q^cosB/Qg (3.32) 

A consideration of Equations (3.31a and b) indicates that 

i n each case, the two values of <5̂  , corresponding to the 

plus and the minus signs, l i e i n adjacent quadrants. Hence, 

one of them always s a t i s f i e s the constraint r e l a t i o n (3.32). 

Thus use of the proper sign i n the evaluation of 6. 
im 

(Equations 3.31) i n conjunction with an appropriate choice 

of the plate or P 2 (Equations 3.30) enables the c o n t r o l l e r 

to provide a l l possible sign combinations of Q^ and Qg. Of 
m c c m the two admissible sets of moments, (Q^, Qg) and (Q^, Qg), 

the one r e s u l t i n g i n a greater magnitude of the t o t a l torque 

to control the axis of symmetry of the s a t e l l i t e , i . e . , 

(Q 2cos 2B+Qg) 1 / 2 , i s used. 

For example, l e t the required control moments be 

Q̂ > 0 and Qg< 0. As cosB i s p o s i t i v e , tan 6̂ < 0- Thus 6̂  

must l i e either i n the second or the fourth quadrant (Figure 

3.13). Let the two values of as given by Equation 

(3.31a) be (6. ) and (6. ) as shown. Note that they im a^ im a.2 

have to be i n adjacent quadrants as pointed out before. 

Let the 6^m corresponding to Equation (3.31b) be i n the 

t h i r d and the fourth quadrants. Consistent with our require-
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Figure 3.13 Quadrant c o n s t r a i n t f o r p l a t e r o t a t i o n 6. 
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merits, the admissible values are (6. ) and (6. ). . Of 

im a 2 im b 1 

these, the one re s u l t i n g i n a higher value of the t o t a l 

transverse torque i s used i n the analysis. 

The control moments thus determined are applied 

i n a bang-bang fashion i n conjunction with l i n e a r displace

ment and v e l o c i t y s e n s i t i v e switching functions, 

Q i = ~ Q i s 9 n s
± (3.33) 

where 

S i = i ' + m ( i - i f ) , i = Y , B , A (3.34) 

2 2 2 2 
Q y = Q ™ , Q B = for (C-J cos 2B+Qg ) > ( Q ° cos 2 B+Q m ) 

Qy = Q Y, Qg-Qg for (Q'y
l cos Z B+Q^ ) < ( Q ° cos^B+Q m ) 

and m represents the system gain, chosen according to some 

suitable c r i t e r i o n . 

The control procedure may now be summarized as 
follows: 

(i) sense the r o l l , yaw and p i t c h angles and rates, 

o r b i t a l position and the solar aspect angle; 

( i i ) determine the signs required of according to 

the switching c r i t e r i o n (Equations 3.33); 

( i i i ) during pitch control, use (6^ = TT/2, <5̂  = ' o f f 

or (6 3 = ' o f f , 6 4 = TT/2) for Q^/ ( U j S i n A - u ^ c o s X) 

^ 0, respectively (Equations 3.25c and 3.26). 



(iv) for roll-yaw control, compute the four values 

of 6^ = 6̂  from Equations (3.31a and b) and of 

the two s a t i s f y i n g the quadrant constraint 

(3.32), choose the 6̂  producing the greater 

resultant transverse torque. Substitute into 

Equation (3.30a or b) and select the plate to 

be operated through the sign required i n the 

r i g h t hand side. 

3.2.4 Results and discussion 

As before, the response of the system i s studied 

by numerically integrating the equations of motion (3.20) 

along with the control r e l a t i o n s (3.33). Much smaller i n t e 

gration steps were required due to the bang-bang nature of 

the control law. A step size of 0.1° gave results of 

s u f f i c i e n t accuracy for the solar parameters 5. For 

cases with larger values of C^, the step size had to be 

correspondingly decreased. The c o n t r o l l e r performance was 

evaluated i n both c i r c u l a r and e l l i p t i c o r b i t s and the 

influence of important system parameters investigated. 

(a) L i b r a t i o n damping i n c i r c u l a r o r b i t s 

Figure 3.14 summarizes the performance of the 

c o n t r o l l e r i n damping the l i b r a t i o n a l motion i n c i r c u l a r 

orbits i n the form of optimization plots for the c o n t r o l l e r 

gain m. I t shows the v a r i a t i o n of the damping time x,, 



97 

e = 0 CO = 0 0 = 4 5 ° i = 2 3.5° 

Y,= P,= A,= o Y f=ft=A f=o J = Y ,P ,X 

i 1 i i i i I 

0 5 10 15 20 25 30 
m 

Figure 3.14 Optimization plots for the solar c o n t r o l l e r 
gain m 
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defined here as the time taken for a l l the three l i b r a t i o n 

angles to s e t t l e within 0.1° of the f i n a l orientation, with 

the gain m for d i f f e r e n t combinations of system parameters 

and i n i t i a l conditions. The p l o t s , i n general, indicate 

the existence of an optimum value of the system gain r e s u l t 

ing i n the least time of damping. 

The influence of the s a t e l l i t e i n e r t i a parameter I 

on the performance of the c o n t r o l l e r i s indicated by a 

comparison of curves (a) and (b). Despite the d r a s t i c change 

in the s a t e l l i t e mass d i s t r i b u t i o n from p e n c i l - l i k e (I = 0.1) 

to spherical ( 1 = 1 ) , only a small v a r i a t i o n i n the optimum 

value of m and the general damping behaviour i s observed. 

It may be pointed out here that curves (a) and (b) were 

obtained using a r e l a t i v e l y small value of the solar para

meters = 2. For larger values of C^, the e f f e c t of I was 

hardly perceivable. The effectiveness of the control system 

in l i b r a t i o n damping of s a t e l l i t e s with a wide variety of 

mass d i s t r i b u t i o n s i s thus apparent. 

The e f f e c t of the solar parameters C\ , characterizing 

the magnitude of the solar torques, i s observed by comparing 

curves (a and c) and (b and d). An increase i n not only 

results i n a substantial reduction i n the damping time but 

renders the c o n t r o l l e r performance r e l a t i v e l y i n s e n s i t i v e 

to the system gain m as well. 

A comparison of curves (d and f) and (c and e) 

shows the e f f e c t of the i n i t i a l disturbances. An increase 
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i n the i n i t i a l conditions r e s u l t s i n longer damping times 

as anticipated. In addition, for smaller values of C\, 

the system performance shows a strong dependence on the 

con t r o l l e r gain m (curves d and f ) . 

The influence of the apparent position of the 

sun, indicated by the solar aspect angle cj>, and the perigee 

argument w on the system behaviour was also studied. The 

re s u l t s , however, showed l o c a l changes i n the response 

character only, leaving the damping performance e s s e n t i a l l y 

unaffected. 

Typical optimal responses for a s a t e l l i t e i n an 

equatorial o r b i t are presented i n Figure 3.15a. Even when 

subjected to severe impulsive disturbances i n the r o l l , yaw 

and pitch degrees of freedom simultaneously, the c o n t r o l l e r 

i s able to damp the s a t e l l i t e l i b r a t i o n s i n a few degrees 

of o r b i t a l t r a v e l with the amplitudes remaining quite 

small. 

(b) L i b r a t i o n damping i n e l l i p t i c o r b i t s 

The effectiveness of the c o n t r o l l e r i n damping the 

roll-yaw ( y , 3) o s c i l l a t i o n s of the axis of symmetry of the 

s a t e l l i t e remained v i r t u a l l y unchanged i n eccentric o r b i t s . 

The p i t c h ( A ) degree of freedom, however, executes a steady-

state l i m i t cycle (Figure 3.15b). These o s c i l l a t i o n s r e s u l t 

due to the presence of the periodic forcing function 

dependent on e (Equation 3.2 0c) and the i n a b i l i t y of the 

con t r o l l e r to generate s u f f i c i e n t torque to counter i t at 

a l l times. 
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Figure 3.15 (a) T y p i c a l optimum response i n c i r c u l a r 
o r b i t s ; (b) L i m i t c y c l e o s c i l l a t i o n i n 
e l l i p t i c o r b i t s ; (c) V a r i a t i o n of l i m i t 
c y c l e amplitude w i t h system parameters 
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From design considerations, i t i s of in t e r e s t to 

investigate the l i m i t cycle amplitude as a function of 

system parameters. Once the roll-yaw o s c i l l a t i o n s are 

completely damped, Equations (3.20a and b) are i d e n t i c a l l y 

s a t i s f i e d . Letting Y = Y i = 3 = B i = 0 and substituting 

from Equations (3.29 and 3.33) into Equation (3.20c), the 

governing equation for the pit c h o s c i l l a t i o n s reduces to 

A" -{2esin8/(l+ecos6) } A * = -C-. -E(6)x 
3 i 4 

2 
(u.sinA-u. cosA) sgn S,+2esin0/(l+ecos6) (3.20c)1 

J K A 

The l i m i t cycle o s c i l l a t i o n being the steady-state solution 

of t h i s equation, i t s amplitude may be expressed as 

A = f(C_ . ,e,m, A,-,i,(d,<t)) (3.36) max v 3 , 4 f 

The largest amplitudes would r e s u l t when the 

maximum magnitude of the e c c e n t r i c i t y induced disturbance 

and the minimum (zero) magnitude of the p i t c h control torque 

occur simultaneously. The l a t t e r would ph y s i c a l l y correspond 

to the projection of the sun-line on the yz-plane becoming 

coincident with the axis about which plates and P^ 

rotate. Note that such a s i t u a t i o n would arise only twice 

a year for an earth s a t e l l i t e . Considering small e, the 

condition for worst l i m i t cycle i s given by 
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tancf) = (tanA^sinoo-cosoo) s e c i / (tanA^cosoo+sinoo) (3.37) 

Figure 3.15c shows the v a r i a t i o n of the p i t c h 

l i m i t cycle amplitude with the o r b i t a l e c c e n t r i c i t y for a 

range of values of the solar parameter C, . under the most 

adverse s i t u a t i o n . Even here, only moderate values of 4 

are required to l i m i t the amplitude to a generally acceptable 

value. 

(c) Attitude control 

The a b i l i t y of the c o n t r o l l e r i n imparting a r b i 

trary orientations to the s a t e l l i t e and thus enabling i t 

to undertake diverse missions appears i n t e r e s t i n g to explore. 

Figure 3.16a shows, for both c i r c u l a r and e l l i p t i c o r b i t s , 

the effectiveness of the control system in providing an 

arbitrary p i t c h attitude to the s a t e l l i t e while the axis 

of symmetry remains normal to the o r b i t a l plane. The a b i l i t y 

to al i g n the symmetry axis with the l o c a l v e r t i c a l d i r e c t i o n 

and simultaneously a t t a i n a desired p i t c h attitude i s 

indicated i n Figures 3.16b and c. Note the excessive over

shoots with a larger value of the system gain which suggest 

the use of small m for a smooth t r a n s i t i o n between widely 

d i f f e r i n g attitudes. 

Thus with the present control system, an antenna 

aboard the spacecraft i s able to scan substantial regions 

of the sky as a r b i t r a r y p i t c h attitudes are attainable 
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0 1 0 1 2 
Orb i t s 

Figure 3.16 Effectiveness of the four-plate model in 
achieving a r b i t r a r y orientations of the 
s a t e l l i t e 
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with the axis of symmetry either along the o r b i t normal 

or the l o c a l v e r t i c a l . The p o s s i b i l i t y of s t a b i l i z i n g 

the s a t e l l i t e axis of symmetry at other orientations was also 

investigated. The analysis suggests that the c o n t r o l l e r i s 

able to achieve t h i s but only at the cost of higher values 

of C. . 
1 

(d) I l l u s t r a t i v e example 

In order to obtain preliminary estimates of the 

control plate areas and moment arms required, the proposed 

Canadian Communications Technology S a t e l l i t e (CTS) and 

Anik, are considered. The l a t t e r i s assumed to be non-

spinning which represents an adverse s i t u a t i o n . An impulsive 

disturbance of 0.1 i s applied i n a l l the three degrees of 

freedom which i s i n excess of that imparted by micrometeorite 

impacts over 24 hours. As the i n e r t i a parameter (I - 0.1 

for CTS, 1 for Anik) did not a f f e c t the performance s i g n i f i 

cantly, most curves i n Figure 3.14 (especially curves c, d 

and e) are representative of the l i b r a t i o n a l behaviour of 

both s a t e l l i t e s considered here. The solar parameter value 

of C^ - 5 can be obtained for CTS using plate areas 
2 2 A^ 2 = ± 2 r t r ^ = 1.2 f t with the moment arms = 10 f t . 

S i m i l a r l y , C^ - 20 for Anik may be achieved with each of 
2 

the plates having an area of 5 f t and moment arm 10 f t . 

As indicated by curves (d and c) i n Figure 3.14 these moderate 

control plate areas are s u f f i c i e n t to damp the s a t e l l i t e 
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l i b r a t i o n s within a few degrees of o r b i t a l t r a v e l . The 

l i b r a t i o n a l amplitudes also remained within a f r a c t i o n of 

a degree. The plots presented i n Figure 3.16 indicate the 

effectiveness of the c o n t r o l l e r i n providing attitude 

control to the CTS. 

F i n a l l y , a comment concerning earth shadow, 

which would render the solar c o n t r o l l e r s i n e f f e c t i v e , i s 

appropriate here. For a geostationary o r b i t , the influence 

of shadow i s confined to quarter of the s a t e l l i t e ' s 

l i f e s p a n , and even here, only during 5% of the o r b i t a l 

period. The results showed the c o n t r o l l e r performance to 

remain v i r t u a l l y unaffected. 

3.3 Concluding Remarks 

The s i g n i f i c a n t conclusions based on the analysis 

may be summarized as follows: 

(i) The f e a s i b i l i t y of a semi-passive c o n t r o l l e r using 

solar radiation pressure for three-axis nutation 

damping and attitude control of spinning 

s a t e l l i t e s i s c l e a r l y demonstrated, 

( i i ) The system i s capable of damping extremely severe 

disturbances i n a f r a c t i o n of an o r b i t . The time 

of damping can be further reduced by an optimum 

choice of the system gains, 

( i i i ) With the use of the general c o n t r o l l e r configura

tion a d i r e c t i o n a l device aboard the s t a b i l i z e d 

platform may be earth-oriented, space-oriented 
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or made to track a s p e c i f i e d c e l e s t i a l object 

through a proper choice of the pos i t i o n control 

parameters. Even with the s i m p l i f i e d model, 

scanning of a substantial region of the sky i s 

possible. The solar pressure c o n t r o l l e r s thus 

impart v e r s a t i l i t y to a space vehicle i n under

taking diverse missions, 

(iv) The effectiveness of the system remains unaffected, 

.even during a spin decay, with a proper choice 

of the modified control function. Thus i t i s no 

longer necessary to maintain a constant spin rate 

by compensating for the dissipated energy, 

(v) A l o g i c a l approach for evolving a three-axis solar 

c o n t r o l l e r model suitable for p r a c t i c a l implemen

tatio n i s presented. The proposed four-plate 

c o n t r o l l e r model appears to be quite a t t r a c t i v e 

due to i t s s i m p l i c i t y of design and the associated 

software. 

(vi) The use of bang-bang control relations s u b s t a n t i a l l y 

improves the system performance. For solar 

parameter values attainable i n practice, a wide 

range of c o n t r o l l e r gain y i e l d near optimum 

performance. S a t e l l i t e s with d i f f e r e n t mass 

di s t r i b u t i o n s exhibit e s s e n t i a l l y the same 

damping c h a r a c t e r i s t i c s . 
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( v i i ) As the c o n t r o l l e r s do not re q u i r e any mass 

expulsion scheme or a c t i v e gyros i n v o l v i n g 
l a r g e power consumption, the s o l a r pressure 
c o n t r o l system i s e s s e n t i a l l y semi-active. 
This promises as increased l i f e s p a n . 
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4. MAGNETIC-SOLAR HYBRID ATTITUDE CONTROL 

The earth's magnetic f i e l d presents an in t e r e s t i n g 

p o s s i b i l i t y of generating control moments by inte r a c t i o n 

with onboard dipoles. Magnetic torquing appears to be 

p a r t i c u l a r l y a t t r a c t i v e as i t offers increased r e l i a b i l i t y 

through the elimination of moving parts. The shortcoming 
5 9 

of the method, as pointed out by Bainum and Mackison and 

others, l i e s i n i t s i n a b i l i t y to produce s u f f i c i e n t pitch 

control torques i n equatorial o r b i t s where the geomagnetic 

f i e l d i s nearly p a r a l l e l to the o r b i t normal. On the other 

hand, the usefulness of placing s a t e l l i t e s i n equatorial 

orbits cannot be overemphasized, e.g., the communications 

s a t e l l i t e s i n the geostationary o r b i t . 

A need for evolving a system which retains the 

si m p l i c i t y of the magnetic concept and yet able to provide 

pit c h control, i s thus apparent. Having established the 

effectiveness of the solar pressure c o n t r o l l e r , i t i s 

proposed here to u t i l i z e i t for damping pitch o s c i l l a t i o n s . 

This chapter explores the f e a s i b i l i t y of the 

three-axis nutation damping and attitude control of a 

dual-spin s a t e l l i t e using a magnetic-solar hybrid control 

system. Two magnetic c o n t r o l l e r models are considered. A 

bang-bang control law with l i n e a r displacement and v e l o c i t y 

sensitive switching functions i s employed and a n a l y t i c a l 
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solutions for the control variables are obtained. The 

performance of the control system i s evaluated numerically 

and the res u l t s are presented as functions of system 

parameters. An i l l u s t r a t i v e example towards the end 

establishes the effectiveness of the system. 

4.1 Formulation of the Problem 

4.1.1 Equations of motion 

The geometry of motion (Figure 4.1) of the s a t e l l i t e 

being the same as the dual-spin spacecraft considered i n 

Chapter 3, Equations (3.8) apply where ( i = y,$,X) now 

represent the t o t a l generalized forces due to the magnetic 

and solar c o n t r o l l e r s . For convenience, the governing 

equations of motion are c i t e d again: 

Y 1 1 -23' (Y'tanB-cosy)-(3*-siny) sec 3 [(l-J)I(a+l) x 

{ (1+e)/(1+ecosG)} 2+JI(X'-y'sin3+cos3cosy)] 

+{3(1-1)/(l+ecos0)-l}sinycosY-{2esine/(l+ecos6)} x 

(Y'+cosytanB) = Q„ (4.1a) 

3" -Y'cosY-{2esin0/(l+ecos6)}(3 1-siny)+(y'cosB+cosysinB) x 

[ (1-J)I(a+1){(1+e)/(l+ecos9)} 2+JI(X'-y'sin3+cos3cosy) 
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Figure 4.1 Geometry of motion of d u a l - s p i n s a t e l l i t e i n 
the earth's magnetic f i e l d 



I l l 

+(Y'sinB-cos3cosY)]-3{(I-l)/(1+ecose)} sin 2YsinBcosB= 

(4.1b) 

A" - Y " sinB-{2esin6/(l+ecos6)}(A'-Y'sinB+cosBcosYi-B'Y'cosB 

-Y'cosBsinY-B'cosYsinB+(K/JI){(1+e) 3^ 2/(l+ecos6) 2} x 

[A l-Y ,sinB+cosBcosY-(a+l) { (1+e)/.(1+ecosG) } 2] = 

(4.1c) 

4.1.2 Magnetic roll-yaw control 

Consider a single dipole onboard the platform with 
- 2 

an a r b i t r a r y orientation p, strength h^ and p o l a r i t y U. 
The moment generated by in t e r a c t i o n with the earth's magnetic 

f i e l d i s then given by, 

M = P X B = Uh 2p X B (4.2) 

Expressing the unit vector p and the geomagnetic 

induction vector B i n terms of t h e i r components along the 

xyz-axes and using the p r i n c i p l e of v i r t u a l work, the 

generalized forces i n the r o l l , yaw and pitch degrees of 

freedom can be written as: 

Q = UC (p .B.-p .B.)secB/(l+ecos9) (4.3a) Y m i j j i 
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QB = u S n ( p k B i ~ p i B k ) / ( 1 + e c o s e ) 

QAm= U< Cn/ J I ) ( P j B ^ B ^ / d + e c o s e ) 

(4.3b) 

(4.3c) 

where the magnetic parameter C , characterizing the magnitude 

of the magnetically generated moments, i s defined as 

C = h M / y l m m e y (4.4) 

The body components of B / D are given by the r e l a t i o n s 
m 

• — 

B . 
l 

B . 
3 

Bk 

cosBcosy c o s B s i n y c o s n m c o s B s i n y s i n n m 

t s i n B s i n n m -sinBcosn m 

- s i n y cosycosr^ cosysinn m 

sinBcosy sinBsinycosn s i n B s i n y s i n n 
m ' m 

-cosBsinn m +cosBcosn m 

B xn 

B yn 

B zn 

(4.5) 

The geomagnetic induction components along the 

o r b i t normal, ascending node and perpendicular to the l i n e 
81 

of nodes i n the o r b i t a l plane are well established . For 

an earth-centered canted dipole model, they are: 

B, =• - c o s i cose + s i n i sintj) s ine xn m m m m m (4.6a) 
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Byn = ( 3 / 2 ) s i n i
m

s i n 2 n r n c o s e m + ( l / 2 ) [cos<j>m+ (3/2) x 

{ (1+cosi ) cos (2n-<j) )+(l-cosi )cos(2n + cj) )}]sine m mm m m m m 

(4.6b) 

B z n = (1/2) s i n i m (l-3cos2n m) cose m+(1/2) [cosi msincj) m 

+(3/2){(1+cosi )sin(2n )+(l-cosi )x m m m m 

sin(2n + 6 ) } ] s i n e m (4.6c) m m m 

rm It may be pointed out here that the angle <$> 

varies due to the earth's rotation and the regression of 

the l i n e of nodes, according to <j>m = (n e+n r) . Its governing 

equation with the o r b i t a l angle as the independent variable 

i s , 

<t>̂  = (n e+n r) ( R 3 / y ) 1 / 2 ( l + e ) 3 / 2 / ( l + e c o s 0 ) 2 (4.7) 

which has the solution (for e < 1) 

*m = c j )mo + { ( ne + nr ) ( R p / ^ ) 1 / 2 d+e) 3 / 2 / d ~ e 2 ) } x 

[-esin9/(l+ecos9)+{2/(l-e 2) 1^ 2}tan - 1 

{ (1-e) 1 / 2tan(6/2)/(l+e) 1 / 2} I (4.8) 
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where the appropriate quadrant for the arctan function i s 

to be introduced. The present analysis ignores the 

nodal regression as a dynamic e f f e c t which i s equivalent to 

assuming the earth to be g r a v i t a t i o n a l l y spherical. 

For c o n t r o l l i n g s a t e l l i t e nutations i n an 

equatorial o r b i t with the nominal p o s i t i o n of the spin axis 

along the o r b i t normal, i t can be e a s i l y shown that the 
2 2 2 1/2 

maximum transverse torque, (Q cos 3+QQ) , re s u l t s when 
y p 

p^ = 0. Accordingly, two magnetic c o n t r o l l e r models with 

dipoles i n the s a t e l l i t e ' s transverse plane are considered 

here (Figure 4.2). 
Model A consists of a single dipole rotatable 

about the x axis i n the platform fixed reference x ,y , z . 
p v p , j rp' p 

Physically, i t would correspond to a single electromagnet 

rotating about the axis of symmetry or two (or more) fix e d 

electromagnets with variable currents. The moments generated 

are given by, 

QY = ~ u c
m P j B i s e c 3 / d + e c o s e ) (4.9a) 

Q g = UC mp kB i/(l+ecos9) (4.9b) 

QAm = u(C m/JI)(PjB k-p kBj)/(l+ecose) (4.9c) 

where 
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Figure 4.2 Magnetic-solar c o n t r o l l e r configurations 
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Pj = cos(6 m+A), p k = sin(0 m+X) (4.9d) 

o 

A constant dipole l e v e l h , leading to a constant 

value of the magnetic parameter C , i s assumed i n the 

present analysis. The components of the t o t a l transverse 

torque are controlled according to the r e l a t i o n s : 

sgn(Q^cosB) = -sgn (4.10a) 

sgn Q Q = -sgn S D (4.10b) 
P P 

Q cosB/Qg = S /S p (4.10c) 

where the switching functions S ^ ( i = y,B) are defined as 

S i = i'+ m ( i - i f ) , i = y,3 (4.11) 

and m represents the system gain. 

This results i n a simple control law for the 

dipole angle 8^ (Figure 4.2), 

) m = -A-tan _ 1(S 3/S Y) (4.12) 

Note that no p o l a r i t y reversals are required i f 

the angle 6^ i s permitted any values i n the range 0 to 2TT . 

However, i t would be desirable to r e s t r i c t 0 to the range 
m 

- T T / 2 to T T/2 (for the gimballed electromagnet) and permit 



p o l a r i t y reversals, which leads to the controls: 
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3m = ~ t a n _ 1 { ( S 3 + S Y t a n A ) / ( S Y - S g t a n X ) } (4.13a) 

U = sgn{(S^cosX-S^sinX)/B ± > (4.13b) 

where the p r i n c i p a l value of the arctan function i s to be 
admitted. 

Model B consists of two mutually perpendicular 

dipoles with orientations p^ and p 2 fixed i n the platform 

and allowed p o l a r i t y reversals (Figure 4.2). Substituting 

for the unit vectors p^ and p 2 i n Equations (4.3), the 

magnetic control moments become, 

Q = -(U p +U„p„.)C B.secB/(l+ecos0) (4.14a) 

Q 8 = ( U l p l k + U 2 p 2 k ) C m B i / ( 1 + e c o s 9 ) (4.14b) 

QXm = { U l ( p l j B k - p l k B j ) + U 2 ( p 2 j B k - p 2 k B j ) } x 

(C m/JI)/(1+ecose) (4.14c) 

where 

p i j = p2k = c o s ( e m + X ) , p l k = - p 2 j = s i n ( e m + X ) 

(4.14d) 
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Although the bang-bang c o n t r o l l e r can no longer 

d i s t r i b u t e the t o t a l transverse moment between the r o l l 

and yaw degrees of freedom i n proportion to the demands 

governed by the switching functions, appropriate signs of 

Q and (Equations 4.10a and b) may be achieved with 

the p o l a r i t y controls: 

for I tan(9 + X)|<1, U, = sgn(S /B.cos(9 +X)} 1 m 1 1 3 Y i m 

U 0 = -sgn{S„/B.cos(9 + A) } (4.15a) 
2 p i m 

for|tan(9 M+A)|>1, = -sgnCS^/B^in (9 M+X) } 

U 0 = sgn{S /B.sin(0 +X)} (4.15b) 2 3 Y i m 

Note that 9^ defining the locations of the dipoles 

with respect to the platform-fixed axes i s a constant i n 

this case. For the f i n a l p itch orientation X^ = 0 (the axis 

y pointing towards the earth), minimum cancellation of the 

torques due to the two dipoles occurs when 0^ = 0. Further

more, for most applications requiring —TT/4 < X < T T / 4 , the 

controls reduce to: 

U 1 = sgn(S /B.^, U 2 =- sgn (Sg/B^ (4.16) 



4.1.3 Solar pitch control 

The platform pitch control i s accomplished using 

a solar pressure c o n t r o l l e r consisting of plates PP which 

are allowed a rotation 6 about the axis of symmetry of the 

s a t e l l i t e (Figure 4.2). For highly r e f l e c t i v e plates, the 

pure pi t c h moment r e s u l t i n g from solar radiation pressure 

i s (Equation 3.12c), 

Q X s = -C{(1+e) 3/(l+ecose) 4}|-UjSin(6+A) 

+u kcos(S+A)|{-UjSin (6+A)+u kcos (6+A)} (4.17) 

where 

C = ( 4 p p o R 3 / u I x p ) A E (4.18) 

Using the control r e l a t i o n 

Q, = -|Q, I sgn S, (4.19) As 1 As'max ^ A 
with 

S A = A'+m(A-Af), (4.20) 

the control law for the plate rotation 6 becomes, 

for u_.>0, 6 = t a n ~ 1 ( u k / u j ) - A - ( 7 r / 2 ) s g n S x 

for u_.<0, <5 = T r + t a n - 1 (u k/Uj)-A-(TT/2) sgn S A 
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for U j = 0, 6 = cos _ 1{-sgn(u kS A)} (4.21) 

where the p r i n c i p a l value of the arctan function i s to be 

introduced. 

The t o t a l generalized force i n the pitch degree 

of freedom i s then given by, 

Q A = Q A m + Q A s <4'22> 

It may be pointed out here that the components of 

the unit vector i n the d i r e c t i o n of the sun involve o r b i t a l 

parameters Q, i and ui referred to the e c l i p t i c plane while 

the formulation of the magnetic c o n t r o l l e r requires the same 

angles referred to the earth's equatorial plane. The 

relations governing these parameters for an a r b i t r a r y o r b i t a l 

plane are rea d i l y obtained as: 

sinQ, s i n i = s i n ^ s i n i (4.23a) m m 

cosfi cosw -sinfi sino) cosi = cos^cosoj-sinfisincocosi m m m m m 
(4.23b) 

cosfi sinu) +sin^ cosw cosi = cosfisinco+sinficosucosi m m m m m 
(4.23c) 
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4.2 R e s u l t s and d i s c u s s i o n 

The response o f the system was s t u d i e d by numeric

a l l y i n t e g r a t i n g the equations of motion (4.1) along w i t h 

the c o n t r o l r e l a t i o n s governing the magnetic and s o l a r 

moments, i . e . , Equations (4.9, 4.13, 4.21 and 4.22) and 

Equations (4.14, 4.15, 4.21 and 4.22) f o r models A and B, 

r e s p e c t i v e l y . The Adams-Bashforth p r e d i c t o r - c o r r e c t o r 

quadrature w i t h the Runge-Kutta s t a r t e r was used w i t h a 

step s i z e of 0.1°. The important system parameters were 

v a r i e d g r a d u a l l y over the range of i n t e r e s t and the 

c o n t r o l l e r performance e v a l u a t e d both i n c i r c u l a r and e l l i p t i c 

o r b i t s . The amount of i n f o r m a t i o n thus generated i s r a t h e r 

e x t e n s i v e ; however, f o r c o n c i s e n e s s , o n l y the t y p i c a l r e s u l t s 

s u f f i c i e n t to e s t a b l i s h trends are presented here. 

4.2.1 N u t a t i o n damping 

F i g u r e 4.3 summarizes the performance of the 

proposed m a g n e t i c - s o l a r h y b r i d c o n t r o l l e r i n damping the 

n u t a t i o n a l motion of the s a t e l l i t e s p i n a x i s and the p i t c h 

o s c i l l a t i o n of the p l a t f o r m . I t shows the v a r i a t i o n of 

the damping time w i t h the c o n t r o l l e r g a i n m f o r a v a r i e t y 

of combinations of the system parameters and i n i t i a l 

c o n d i t i o n s . Here the damping time i s d e f i n e d as the time 

r e q u i r e d f o r a l l the three degrees of freedom; namely, the 

r o l l y, yaw 8 and the p l a t f o r m p i t c h A , to s e t t l e w i t h i n 
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0.1° of the desired f i n a l orientation. The responses of 

both magnetic c o n t r o l l e r models A and B are presented, 

which, i n general, indicate the existence of an optimum 

value of the system gain m leading to the minimum time of 

damping, and the s e n s i t i v i t y of the optimum to the system 

parameters and i n i t i a l conditions. 

The influence of the s a t e l l i t e i n e r t i a and spin 

parameters on the attitude dynamics of passively s t a b i l i z e d 

s a t e l l i t e s i s well recognized. Their e f f e c t on the 

nutation damping performance of the present controlled system, 

however, appears to be n e g l i g i b l e . This i s indicated by 

curve (a) i n Figure 4.3A where the re s u l t s for p e n c i l - l i k e 

to spherical mass d i s t r i b u t i o n s (I = 0.1 to 1) and non-

spinning to moderate spin rates (a = 0 to 10) were v i r t u a l l y 

indistinguishable. The banding together of curves (a,b and 

f) i n Figure 4.3B r e f l e c t s s i m i l a r system behaviour. The 

i n s e n s i t i v i t y of the transient response to I and moderate 

values of a i s understandable as these parameters, con

t r i b u t i n g restoring forces to the system, are now largely 

provided for by the c o n t r o l l e r gain m. The performance under 

high spin rates i s investigated i n a l a t e r section. 

The e f f e c t of the magnetic parameter C , character

i z i n g the magnitude of the magnetic control torques, i s 

indicated by a comparison of curves (b,a and c) i n Figure 

4.3A for the case of the single rotatable dipole. As 

anticipated, increasing the value of C leads to a corres-



ponding reduction i n the damping time T^. Larger values 

of the magnetic parameter (curves a and c) show a response 

pattern that i s r e l a t i v e l y i n s e n s i t i v e to the c o n t r o l l e r 

gain m, thus in d i c a t i n g a large range of values of the 

l a t t e r to provide near-optimum damping. I t may, however, 

be pointed out that the maximum attainable value of C i s * m 
subject to constraints imposed by the electromagnet weight 

and power requirement. Curves (c,a and d) indicate s i m i l a r 

e f f e c t of the magnetic parameter for the model with two 

fixed transverse dipoles (Figure 4.3B). 

A comment concerning the influence of the solar 

parameter would be appropriate here. An increased value of 

C led to a reduced damping time for the pi t c h (A) degree 

of freedom. However, even with a value of C = 2, the p i t c h 

motion, i n general, damped out faster than the roll-yaw 

motion, except for the case of large viscous drags on the 

platform (large K, a). 

A comparison of curves (a and d) i n Figure 4.3A 

and curves (d and e) i n Figure 4.3B shows the e f f e c t of 

i n i t i a l conditions on the performance of c o n t r o l l e r models 

A and B, respectively. In both cases, an increased 

impulsive disturbance not only leads to an anticipated 

increase i n the damping time but also renders the response 

quite sensitive to the system gain m. With larger values 

of C , however, the l a t t e r e f f e c t was found to be less m 
pronounced. 
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I t i s of in t e r e s t to compare the performance of 

the two magnetic c o n t r o l l e r models i n damping the attitude 

motion. A suitable c r i t e r i o n for the comparison i s the 

same t o t a l electromagnet weight and power consumption which 

requires the value of the magnetic parameter C m for model 

A to be twice the value for model B. Comparisons may be 

made of curves (b, a and c) i n Figure 4.3A with curves (c, 

a and d) i n Figure 4.3B, respectively, towards t h i s end. 

The results c l e a r l y indicate a better performance of the 

single rotatable dipole model A. This i s explained by 

the a b i l i t y of t h i s model to d i s t r i b u t e the t o t a l magnetic 

torque between the r o l l and yaw degrees of freedom i n 

proportion to t h e i r demands, determined here by the switch

ing functions S and Sg, respectively. 

The single rotating dipole model A may be obtained 

by using a rotating electromagnet, which, however, would 

involve additional weight and power requirement for the 

turning mechanism and a reduction i n the system r e l i a b i l i t y 

due to physical movement of the electromagnet. Alternately, 

two fixed electromagnets with variable currents may be 

employed. Unfortunately, t h i s would require each e l e c t r o 

magnet to be the same size as the single rotating one i n 

order to maintain the same resultant dipole strength as the 

l a t t e r , thus doubling the t o t a l weight. The choice between 

the physical arrangements leading to model A or B would 

be governed by such mission oriented factors as the system 
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r e l i a b i l i t y , associated hardware and software, and 

performance requirements. 

Typical damped responses of a s a t e l l i t e subjected 

to an extremely severe impulsive disturbance are shown 

in Figure 4.4 for both c o n t r o l l e r models. The time history 

of the controls i s also included. Figure 4.4a shows the 

response i n a c i r c u l a r o r b i t with a nominal value of a = 1, 

which may be required from such considerations, as tempera

ture, control. The damped attitude motion of a nonspinning 

s a t e l l i t e i n an eccentric o r b i t i s shown i n Figure 4.4b, 

which indicates a s l i g h t increase i n the maximum amplitude 

and the damping time. The effectiveness of the c o n t r o l l e r s 

in damping such a severe impulsive disturbance i n a few 

degrees of the s a t e l l i t e ' s o r b i t a l t r a v e l i s thus apparent. 

The amplitudes are also limited to a few degrees. The 

controls, i n general, require rather infrequent switching 

u n t i l the corresponding amplitudes become very small and 

chatter i n i t i a t e s . This may, however, be prevented by the 

inclusion of suitable deadbands i n the control relations 

which would depend on the pointing accuracies required. 

The effectiveness of the control system i n 

capturing a s a t e l l i t e from i n i t i a l r o l l , yaw and pit c h 

errors i s presented i n Figure 4.5. Both c i r c u l a r and 

eccentric o r b i t as well as nonspinning and moderate spin 

rate cases are considered. The i n i t i a l error of 20° i n 
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Figure 4.4 Damped response and time h i s t o r y of c o n t r o l s 
subsequent to i n i t i a l impulsive disturbance 
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Figure 4.5 Damped response and time h i s t o r y of c o n t r o l s 
subsequent to i n i t i a l p o s i t i o n disturbance 
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each degree o f freedom i s c o r r e c t e d i n approximately one-

t h i r d o f an o r b i t w i t h model A and h a l f an o r b i t w i t h 

model B. The performance may be improved f u r t h e r through 

an optimum ch o i c e o f the c o n t r o l l e r g a i n . 

4.2.2 High s p i n r a t e s and s p i n decay 

The d i s c u s s i o n so f a r p e r t a i n s t o s a t e l l i t e s which 

are e i t h e r nonspinning or have moderate s p i n r a t e s . The 

e f f e c t i v e n e s s o f the c o n t r o l system (model B) f o r s a t e l l i t e s 

w ith h i g h s p i n r a t e s i s i n d i c a t e d by the response data 

presented i n Table 1, which shows the coning amplitude o f 

the s p i n a x i s , $ m a x * and the damping time x^. The coning 

amplitude $ m a x reached i n the absence of the c o n t r o l l e r i s 

a l s o p r e sented. For low s p i n r a t e s , the c o n t r o l system, 

i n a d d i t i o n to p r o v i d i n g quick n u t a t i o n damping, helps keep 

the amplitudes low. However, f o r h i g h s p i n r a t e s , i t 

e s s e n t i a l l y a c t s as a damper. A comparison of the c o n t r o l l e r 

performance w i t h m = 10 and m = 30 shows i t s e f f e c t on the 

amplitude to be s l i g h t but the damping time i s a f f e c t e d 

a p p r e c i a b l y , up t o s p i n parameter values as h i g h as a = 200. 

These o b s e r v a t i o n s s u b s t a n t i a t e the e a r l i e r c o n c l u s i o n r e g a r d 

i n g the c o n t r o l l e r g a i n l e n d i n g s t i f f n e s s t o the system. 

For s t i l l h i g h e r s p i n r a t e s (a > 200), however, the i n f l u e n c e 

of m i s n e g l i g i b l e i n d i c a t i n g the dominance o f the g y r o s c o p i c 

r e s t o r i n g f o r c e s . 
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TABLE 4.1 

Response With High Spin Rates 

e = 0 I = 1.2 i = 0 ft = ft = 0 Y = B = A = 0 
m m o o o 

J = 0.5 <j> = 45° i = 23.5° u> = u = 30° Y 1 = B 1 = 0.3 
m o o 

K = 0 C = 4 cj> = 10° A' = 0 = B . = A = 0 
mo o f f f 

C = 2, 
m 

m = 10 C = 2, 
m 

m = 30 C =0 m 
a $° max Ta max T d max 
0 1. 86 28.20 1. 86 29.50 39.88 

10 1.78 28.26 1.77 30.86 6.61 

25 1. 61 26.04 1. 53 34. 56 2.99 

35 1.39 30.96 1. 34 43.56 2.19 

50 1.12 24. 22 1.10 25.50 1.56 

75 0.84 21. 84 0.84 35.56 1.05 

100 0.67 19. 44 0.67 33. 88 0.79 

200 0.37 15.54 0. 37 22.26 0. 40 

300 0. 25 11.82 0.25 13. 20 0. 27 

400 0.19 9. 70 0.19 9.78 0.20 

500 0.16 6.68 0.16 6.66 0.16 

600 0.13 4. 50 0.13 4. 52 0.13 
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The a n a l y s i s so f a r cons ide red the r o t o r (body I) 

to have a constant average s p i n r a t e . Apparen t ly t h i s 

would be achieved through some a c t i v e energy source compen

s a t i n g fo r r o t o r s p i n decay due to bea r ing l o s s e s . Even 

i n the absence o f such energy supp ly , the a n a l y s i s cont inues 

to be v a l i d p rov ided the s p i n parameter o remains s e n s i b l y 

i n v a r i a n t over a time i n t e r v a l of the order o f the damping 

times a t t a i n e d here . T h i s i s o f c o n s i d e r a b l e va lue as any 

s p i n decay i s l i k e l y to occur very s l o w l y indeed . Thus the 

data presented i n Table 1 can a l s o be used to p r e d i c t the 

long range performance o f a s p i n n i n g s a t e l l i t e . The 

c o n t r o l l e r ' s e f f e c t i v e n e s s i n a c h i e v i n g qu ick n u t a t i o n 

damping even i n the absence o f any s p i n promises an i nc rea sed 

s a t e l l i t e l i f e - s p a n . 

4 .2 .3 A t t i t u d e c o n t r o l 

The c o n t r o l system o f f e r s the e x c i t i n g p o s s i b i l i t y 

o f s t a b i l i z i n g the s a t e l l i t e a long any a r b i t r a r y o r i e n t a t i o n 

i n space, thus enab l ing i t t o undertake d i v e r s e m i s s i o n s . 

Th i s may be achieved through the parameters y ^ , 3^ and A^, 
d e f i n i n g the f i n a l d e s i r e d o r i e n t a t i o n , which are i nco rpo ra t ed 

i n the s w i t c h i n g func t ions S^, and s^, r e s p e c t i v e l y . 

F i g u r e 4.6 shows the a b i l i t y of the c o n t r o l l e r i n a c h i e v i n g 

a v a r i e t y of s p a t i a l o r i e n t a t i o n s , the time taken be ing w e l l 

w i t h i n an o r b i t . Note tha t a f a i r l y s m a l l va lue o f the 

ga in m used here leads to a smooth t r a n s i t i o n between w i d e l y 
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Figure 4.6 E f f e c t i v e n e s s of the magnetic-solar c o n t r o l l e r 
i n imparting a r b i t r a r y o r i e n t a t i o n s to the 
s a t e l l i t e 
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d i f f e r e n t attitudes. On the other hand, larger values of 

m were found to r e s u l t i n an undesirable overshoot of the 

f i n a l orientation. I t may be pointed out further that 

except for f i n a l orientations along equilibrium points of 

the system, the co n t r o l l e r must at a l l times provide 

corrective torques to counter the gravity gradient and 

gyroscopic moments. Moderate values of the magnetic 

parameter taken here, C =4 for model A and C = 2 for 
m m 

model B, are found to be s u f f i c i e n t for both nonspinning 

and a nominal spin rate i n c i r c u l a r as well as eccentric 

orbits (Figure 4.6). 

4.2.4 I l l u s t r a t i v e example 

I t appears i n t e r e s t i n g to evaluate the performance 

of the magnetic-solar c o n t r o l l e r through a preliminary 

attitude dynamics study of two well-known s a t e l l i t e s , the 

proposed Canadian Communications Technology S a t e l l i t e (CTS) 

and Anik, when provided with the proposed control system. 

For convenience the l a t t e r may be considered as nonspinning 

which only represents an adverse s i t u a t i o n . Values of the 

magnetic parameter c
m
 = 4 for model A and 2 for model B 

are attainable with t o t a l dipole le v e l s of approximately 
2 

200 and 20 ampere-meter for the CTS and Anik, respectively. 
2 

A control plate area A = 0.5 f t and moment arm e = 5 f t 

y i e l d a solar parameter value of C - 2. On the. other hand, 

pitch control may be achieved using a reaction wheel of 
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capacity = 0.1 lb-ft-sec/day which i s equivalent to C = 2. 

An impulsive disturbance of 0.1 i s applied i n a l l the three 

degrees of freedom simultaneously which i s i n excess of 

that imparted by micrometeorite impacts over 24 hrs, and 

thus represents an enormous magnification of the r e a l 

s i t u a t i o n . As the i n e r t i a parameter (I - 0.1 for CTS, 1 for 

Anik) did not a f f e c t the performance s i g n i f i c a n t l y , most of 

the r e s u l t s presented i n thi s chapter are representative 

of these s a t e l l i t e s . I t i s apparent (Figure 4.3) that the 

cont r o l l e r s are able to damp out such a severe disturbance 

i n about 3° and 5° of the o r b i t with models A and B, respec

t i v e l y . The maximum deviation from the o r b i t normal 

attitude also remained less than 0.2°. Any ar b i t r a r y 

orientations may be imparted to the s a t e l l i t e s i n well within 

an o r b i t a l period (Figure 4.6). 

F i n a l l y , i t may be mentioned that the comment con

cerning the earth shadow made e a r l i e r also applies here. 

The results showed the c o n t r o l l e r performance to remain 

v i r t u a l l y unaffected. Furthermore, the analysis ignores, 

dynamics due to r e l a t i v e motion of the gimballed e l e c t r o 

magnet (model A) and the solar control plates as well as 

the shadowing of the l a t t e r by the s a t e l l i t e . 
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4.3 Concluding Remarks 

The conclusions based on the analysis may be 

summarized as follows: 

(i) The analysis c l e a r l y establishes the pote n t i a l 

of a magnetic-solar hybrid system for nutation 

damping and attitude control of s a t e l l i t e s , 

( i i ) The concept permits interchangeability of the 

solar c o n t r o l l e r and a variable speed p i t c h 

momentum wheel, thus e f f e c t i v e l y providing a 

gyromagnetic control system, 

( i i i ) The a b i l i t y of the system i n damping extremely 

severe disturbances i n a few degrees of the 

o r b i t makes i t quite suitable for applications, 

such as, communications s a t e l l i t e s , 

(iv) Even with rotor spin decay, the system continues 

to function e f f e c t i v e l y which promises an 

increased s a t e l l i t e l i f e - s p a n . 

(v) I t i s possible for a s a t e l l i t e to a t t a i n any 

arb i t r a r y orientation i n space, both i n c i r c u l a r 

and e l l i p t i c o r b i t s , thus widening the scope of 

i t s mission. 
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5. AERODYNAMIC-SOLAR HYBRID ATTITUDE CONTROL 

The analyses i n the e a r l i e r chapters apply primarily 

to s a t e l l i t e s i n high a l t i t u d e o r b i t s since the influence of 

the earth's atmosphere was ignored. However, several space 

applications, such as, weather forecasting, earth resources 

exploration, m i l i t a r y scouting, etc., depend on high resolution 

photography and hence necessarily negotiate near-earth 

t r a j e c t o r i e s . Unfortunately, i n t e r a c t i o n with free molecular 

reaction forces reduces t h e i r e f f e c t i v e l i f e - s p a n leading 

to expensive periodic replacement. One possible solution 

would be to employ an e l l i p t i c trajectory making a space 

vehicle to spend major portion of i t s o r b i t a l period above 

the atmosphere and dip into i t only when a c t i v e l y engaged i n 

i t s mission. This presents an in t e r e s t i n g s i t u a t i o n where 

aerodynamic forces may be used to advantage for attitude 

control, possibly i n conjunction with solar radiation 

pressure. 

The present chapter explores the f e a s i b i l i t y of 

such a hybrid control system. The governing equations of 

motion, together with a bang-bang control law, are analyzed 

numerically and the influence of the important system 

parameters on the performance i s evaluated. 



5.1 Formulation of the Problem 

5.1.1 Equations of motion 

The case of a nonspinning s a t e l l i t e i s considered 

here, which, i n view of the analysis i n Chapter 4, represents 

an adverse s i t u a t i o n . Equations (3.20) therefore apply where 

Q^(i = Y,B,A.) now represent the t o t a l generalized forces 

due to the solar pressure and the aerodynamic forces: 

y" -26* (y 1 tanB-cosy)-I(A'-y 1sinB+cosBcosy) (B'-siny)secB 

+ {3 (1-1)/(l+ecos6)-l}sinYcosy-{2esin0/(l+ecos6)} x 

(y'+cosytanB) = Q y (5.1a) 

B" -Y'cosy-{2esine/(l+ecose)}(B'-siny)+{ I(X'-y 1sinB+cosBcosy) 

+(y 1sinB-cosBcosy)}(y 1cosB+cosysinB)-3{(1-1)/(l+ecos9)} x 

. 2 
s m ysxnBcosB = (5.1b) 

X" -y" sinB-{2esin9/(l+ecos6)}(X'-y'sinB+cosBcosy) 

-B'Y 1cos3 _Y'cosBsiny-B 1cosysinB = (5.1c) 

5.1.2 Controller configuration and generalized forces 

The c o n t r o l l e r configuration studied for e s t a b l i s h 

ing the f e a s i b i l i t y of solar pressure control i s considered 
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f o r t h e h y b r i d a e r o d y n a m i c - s o l a r c o n t r o l a s w e l l ( F i g u r e 

5 . 1 ) . T h e g e n e r a l i z e d f o r c e s due t o S o l a r r a d i a t i o n 

p r e s s u r e w e r e f o u n d e a r l i e r ( E q u a t i o n s 3 . 1 2 ) a s : 

Q ŝ = - E (0) [L T

1 C 1 1 c o s ? 1 1 c o s ? 1 s i n 6 1 s i n A 

+ U2C2 I cos?2 I c o s?2 s :'- n^2 C O S^'' s e c ^ ( 5 . 2 a ) 

Qgs = - E(0) [U 1 C 1 1 c o s ? 1 1 c o s ? 1 s i n 6 1 c o s A 

- U 2 C 2 I c o s ? 2 I c o s ? 2 s i n ( 5 2 s i n ^ J ( 5 . 2 b ) 

Q, = - E ( 0 ) C _ c o s ? J c o s ? _ (5.2c) 
A S J J -J 

where 

U. = +1 f o r P., -1 f o r P!; i = 1,2 1 1 1 

cos?, = u. cos S , + (u . s i n A—u, cosA)sin5. 1 1 1 j k 1 

cos?2 = u^cos62+(UjCosA+u^sinA)sin62 

cos?^ = -UjSin(6^+A)tu^cos(6^+A) ( 5 .3 ) 

The s o l a r parameters, C \ , are given b y , 

c i = ( 4 p P 0
R p / M l y ) A i e i ' 1 = 1 , 2 



X 
i 

Figure 5.1 Aerodynamic-solar hybrid c o n t r o l l e r configuration 
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C 3 = ( 4 p P o R p / y I x ) A 3 £ 3 ( 5 ' 4 ) 

The r e s u l t a n t free molecular force on an elemental 
8 2 

area, c o n s i d e r i n g specular r e f l e c t i o n , may be expressed as , 

dF = (1/2)p V 2dA|cos£ |{(C -C Tcosec£ |cos£ |)v 
d a. a. U Lt 3. 3. 

+ (C Tcosec? sgncos? )n} (5.5) ij a a 

E v a l u a t i n g the t o t a l moment about the s a t e l l i t e 
center of mass due to the aerodynamic forces and using the 
p r i n c i p l e of v i r t u a l work leads t o : 

Q y a = J ( 0 ) [ U l C a l l C o s 5 a l l { v j - ( C L / C D ) c o s e c ? a l ( v j l C O S ? a l l 

-sin6 1sinAsgncos? a-])}+U 2C a 2 | c o s C a 2 I ^ v j ~ ^ L ^ D ^ c o s e c ^ a 2 

( V j | c o s ? a 2 | -sin6 2cosAsgncosC a 2) ̂ - c
a 3 I c o s ^ a 3 ^ ^ C l / C D ^ 

cosec?^^|cos? a 3|}v^cos(6^+A)]sec3 (5.6a) 

S a = - J ( 9 ) [ U l C a l l c o s ? a l l { v k - ( C L / C D ) c o s e c ? a l ( v k l c o s ? a l l 

t s i n S ^ c o s A s g n c o s ^ ) } + u
2

c
a 2 I c o s ^ a 2 I ̂ vk~ ^ C l / C D ^ c o s e c ^ a 2 

(v k | c o s ? a 2 | -sin6 2sinAsgncos? a 2) }~Ca3 | c o s C a 3 | (1- (C^/C^) x 

c o s e c ? a 3 | c o s C a 3 | } v ^ s i n ( 6 3 + A ) ] (5.6b) 
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QXa = J ( e ) C a 3 [ l C O S ? a 3 l + ( C L / C D ) s i n ? a 3 l c O S ? a 3 ( 5 ' 6 c ) 

where 

U. = +1 for P., -1 for P!; i = 1,2 l i i 

cos? , = v. cosS, + (v . sinA-v. cosA) sin6, a l I 1 j k 1 

cos? a2 = v^cos62 +( vj c o sA+v^sinA)sin62 

cos? _ = -v . s i n ( 6 +A)+v, cos (6 + A) (5.7) 

The aerodynamic parameters, are defined as 

C . = (cr p R 2/I )A.e., i = 1,2 a i DKap p/ y' I i ' ' 

Ca3 = < CD pa E P p / I x , A3 e3 ( 5 ' 8 ) 

The v a r i a t i o n of the atmospheric density with a l t i t u d e , incor

porated i n the d e f i n i t i o n of the function J ( 0 ) , i s modelled 

according to the r e l a t i o n 

p = p {(R-R )/(R -R ) } n (5.9) a ap e p e 

where n varies i n the range -5 to -7 depending on the 

a l t i t u d e ^ 3 . 

The t o t a l generalized forces due to the radiation 

pressure and the aerodynamic forces may be expressed as 

functions of the control variables U\ (i=l,2) and S^(i=l,2,3) 

in the form: 
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QY = Q Y S ( U l ' U 2 ' 6 l ' 6 2 , + Q
Y a { U l ' U 2 ' 6 l ' 6 2 ' 6 3 )  

Q3 = Q
B s ( U l ' U 2 ' 6 l ' 6 2 ) + Q 3 a ( U l ' U 2 ' 6 l ' 6 2 ' 6 3 ) 

°A = Q A s ( 6 3 ) + Q A a ( 6 3 ) 

In view of Equations (5.2 and 5.6), the dependence 

of the moments on the control variables i s quite complicated. 

However, i t i s possible to obtain r e l a t i v e l y simple a n a l y t i c a l 

solutions for the plate rotations 6^ through a judicious 

control strategy. 

5.2 Control Strategy 

The magnitudes of the control moments are constrained 

by the control surface areas and moment arms (through the 

solar parameters C. and the aerodynamic parameters C . ) . In 
l a i 

order to u t i l i z e the maximum moments available from the 

co n t r o l l e r , the following bang-bang control law i s employed 

here: 

Q. = -|Q.I sgn S. (5.11) l 1 l'max ^ l 

where the switching functions S. are defined as 

S i = i ' + m ( i - i f ) , i = Y,3,A (5.12) 

(5.10a) 

(5.10b) 

(5.10c) 

and m represents the system gain. 



The d e t e r m i n a t i o n o f t h e s i m u l t a n e o u s m a x i m a , 

|Q.I , t h a t t h e c o n t r o l l e r c a n p r o v i d e , i s r a t h e r i n v o l v e d 1 1 max c 

The p r o b l e m may be s i m p l i f i e d c o n s i d e r a b l y b y r e c o g n i z i n g 

t h a t t h e s o l a r p r e s s u r e a n d t h e a e r o d y n a m i c f o r c e s r e p r e s e n t 

t h e r e s p e c t i v e d o m i n a n t i n f l u e n c e s a t h i g h a n d l o w a l t i t u d e s 

O n l y o v e r a s m a l l p o r t i o n o f a n e l l i p t i c t r a j e c t o r y a r e t h e 

two e f f e c t s c o m p a r a b l e i n m a g n i t u d e . The p l a t e r o t a t i o n s 

6^, p r o d u c i n g t h e maximum m o m e n t s , may t h u s be o b t a i n e d i n 

a c c o r d a n c e w i t h t h e s o l a r p r e s s u r e a t h i g h a l t i t u d e s a n d 

a e r o d y n a m i c f o r c e s a t l o w a l t i t u d e s . The s w i t c h - o v e r p o i n t 

c a n be d e t e r m i n e d b y c o m p a r i n g t h e m a g n i t u d e s o f t h e t w o 

f o r c e s . 

5 . 2 . 1 H i g h a l t i t u d e 

M a x i m i z a t i o n o f t h e s o l a r p i t c h moment , Q, , l e a d s 
AS 

t o t h e f o l l o w i n g c o n t r o l l a w f o r 6_: 

f o r u . > 0 , 6_ = t a n (u, / u .) - A-(TT/2) s g n S, 
J JS K J A 

f o r U j < 0 , 6 3 s = T T + t a n - 1 ( u k/Uj )-A- ( T T / 2 ) s g n 

f o r u . = 0 , 6 3 s = c o s "'"{sgn (u^S )̂ }-A ( 5 . 1 3 ) 

w h e r e t h e p r i n c i p a l v a l u e o f t h e a r c t a h f u n c t i o n i s t o be 

a d m i t t e d . 

The s o l a r r o l l - y a w c o n t r o l moments Q and Q„ 
J ys 3s 

b e i n g c o u p l e d t h r o u g h t h e r o t a t i o n s 6^ a n d 6^, t h e t o t a l 
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2 2 2 1/2 transverse torque, (Q cos $+QR ) ' , i s maximized which 

occurs at: 

6, = ff/2+tan-1[ (3/2) (u.sinA-u, cosA)/u.±{ (9/4) x 

(u^sinX-Uj^cosA) 2/u 2+2} 1 / 2] (5.14a) 

+ for { (u . sinA-u, cosA)/u-} > 0, 
J K 1 

and 6 = u/2+tan" 1[(3/2) (u .cosA+u, sinA)/u.±{(9/4) (u.cosA 
^ & J K 1 J 

+u ksinA) 2/u 2+2} 1 / 2] (5.14b) 

± for {(u.cosA+u, sinA)/u.} > 0. 
~\ K 1 

In general, a l l sign combinations of Q and Q R 

y S P S 

are available through an appropriate choice of the control 

plates to be operated. Occasionally, due to the time-varying 

nature of the components u^, u_. , u^, the desired signs of 

Q and Q„ may not be available. In such s i t u a t i o n s , the 
ys |3s J 

roll-yaw control plates are to be turned ' o f f , which may 

be done either by making the corresponding 6^ = 0 or, 

by aligning the plates p a r a l l e l to the incident radiation, 

i . e . , choosing 6^ so as to render the corresponding cos?^ = 0. 

The control moments at high a l t i t u d e thus become, 
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QY = Q Y s ( U l ' U 2 ' 6 l s ' 6 2 s ) + Q
Y a ( U l ' U 2 ' 6 l a ' 6 2 s ' 6 3 s )  

QB = Q 0 s ( U l ' U 2 ' 6 l a ' 6 2 s , + Q 3 a ( U l ' U 2 ' 6 l s ' 6 2 s ' 6 3 s > 

Q X = Q x s ( 6 3 s , + Q X a ( 6 3 s ) 

5.2.2 Low a l t i t u d e 

In a manner s i m i l a r to the solar control at high 

a l t i t u d e , the moments due to the aerodynamic forces may be 

maximized at low a l t i t u d e . The exact determination of the 

c r i t i c a l 6^ being more complicated i n this case, simplifying 

assumptions such as | v^| , |v_.|<<|vk| and C
L/C D<< 1 are 

employed. These approximations, however, extend only as to 

the determination of the maximizing 6^, the subsequent 

evaluation of the moments being exact. 

The control law for the rotation 6^, maximizing 

the aerodynamic pi t c h control torque Q, , i s found to be: 
A a 

f or v . > 0, 6_ = tan ^ (V. /v .) - X + (TT/2) sgn S, 
j 3a k y ^ X 

for v. < 0, 6 _ = iT+tan (v, /v .)-A+ (TT/2) sgn S, ] 3a k j X 

for v. = 0, '6_ = cos 1{-sgn (v, S, ) }-X (5.16) 
J o a K A 

where the p r i n c i p a l value of the arctan function i s to be 

introduced. 

(5.15a) 

(5.15b) 

(5.15c) 
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The aerodynamic roll-yaw moment i s maximized 

by the rotations 6^ and 6 2 given by, 

S, = TT/2-tan "*"{v. / (v . sinA-v, cosA) } (5.17a) l a l j k 

<5 = T T/2-tan _ 1{v. / (v .cosA+v, sinA) } (5.17b) ^a I j K 

An investigation of Equations (5.6) indicates that, 

i n highly eccentric o r b i t s , the drag component of the aero

dynamic force governs the directions of both the r o l l and 

the yaw moments. As a r e s u l t , a l l sign combinations of 

C) and QD , i n general, are not available. This presents an ya pa 
option as to c o n t r o l l i n g either the r o l l or the yaw moment 

and retaining the associated torques i n the other degree of 

freedom. Recognizing that \Qa | >> | Q | for small yaw angles 
pa y a 

B, a large proportion of the t o t a l transverse torque may 

be u t i l i z e d by selecting the control plates according to the 

sign required of Qg. A preliminary investigation of the 

system performance, however, revealed the e f f e c t of the coupled 

r o l l moment Q to be generally adverse. The roll-yaw control 

law i n the aerodynamic region i s , therefore, modified to 

exercise control action only over those portions of the 

trajectory where the associated r o l l moment Qya i s also of 

the correct sign, the c o n t r o l l e r being switched ' o f f other

wise. The l a t t e r may be accomplished by making a l l the r o l l -

yaw control plates p a r a l l e l to each other or to the flow 
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d i r e c t i o n (by choosing 6^ so as to render the corresponding 

cos? • = 0). a i 
The control moments at low a l t i t u d e thus take the 

form: 

Q y ' Q y s ^ l ' ^ ^ l a ' ^ a ^ V ^ l ' ^ ' ^ a ' ^ a ' S a ) ( 5 ' 1 8 a ) 

Q B = Q B s ( U l ' U 2 ' 6 l a ' 6 2 a , + Q B a ( U l ' U 2 ' 6 l a ' 6 2 a ' 6 3 a ) ( 5 - 1 8 b ) 

Q X = QXs"< 63a , + QXa ( 63a ) ( 5 - 1 8 c ) 

The control procedure may be summarized as follows: 

(i) sense the r o l l , yaw and p i t c h angles and rates, 

o r b i t a l position and the solar aspect angle. 

Estimate the atmospheric density, 

( i i ) determine the switch-over point by comparing the 

magnitudes of the solar and aerodynamic parameters. 

It may change due to variations i n the atmospheric 

density. 

( i i i ) for pitch control, provide rotation 6̂  determined 

from Equations (5.13) and (5.16) at high and low 

a l t i t u d e s , respectively, 

(iv) for roll-yaw control at high a l t i t u d e , compute 

6^(i = 1,2) from Equations (5.14) and provide 

these rotations to the sets of plates r e s u l t i n g 

i n the signs of Q v a and Q R c governed by Equation 
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(5.11). I f the proper signs are not available, 

turn the roll-yaw control plates ' o f f 1 . At 

low a l t i t u d e , compute 6 ^ ( i = 1,2) from Equations 

(5.17) and determine the plate sets y i e l d i n g 

maximum Q^a of the proper sign. I f the associated 

Q i s of the correct sign, provide these rotations; 

otherwise, turn the roll-yaw control plates ' o f f . 

5.3 Results and Discussion 

The response of the proposed hybrid control system 

was studied by numerically integrating the equations of motion 

(5.1) along with the appropriate control relations (Equations 

5.15 or 5.18). The Adams-Bashforth predictor-corrector 

quadrature with the Runge-Kutta s t a r t e r was used. A step 

size of 0.1° at high alt i t u d e s and 0.02° at low a l t i t u d e s 

gave results of s u f f i c i e n t accuracy. The important system 

parameters were varied gradually over the range of i n t e r e s t 

and the c o n t r o l l e r performance evaluated. For conservative 

estimate of the co n t r o l l e r ' s performance, i t was purposely 

subjected to severe disturbances. 

I t should be pointed out here that the atmospheric 

density depends, i n addition to the a l t i t u d e , on several 

classes of solar and geophysical phenomena. In the present 

analysis, density variations due to the l a t t e r over a few 

o r b i t s of the s a t e l l i t e are ignored and a reference atmos

phere corresponding to an exospheric temperature of 1250°K i s 
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84 -14 3 considered . The value of p = 0.74 x 10 gm/cm at 

cl 

the perigee a l t i t u d e h = 250 miles and the drag c o e f f i c i e n t 
P 

= 2.2 y i e l d the r a t i o C ./C. - 50. The switch-over D J a i 1 
point i s found to be at an a l t i t u d e of approximately 500 

miles. 

5.3.1 L i b r a t i o n Damping 

The performance of the c o n t r o l l e r i n damping the 

l i b r a t i o n a l motion of the s a t e l l i t e i s summarized i n 

Figure 5.2 i n the form of optimization plots for the c o n t r o l l e r 

gain m. The damping time x^, defined as the time taken for 

a l l the three l i b r a t i o n angles to s e t t l e within 1° of the 

desired orientation, i s presented as a function of the system 

gain. Various combinations of the important system parameters 

and i n i t i a l conditions are considered. The p l o t s , i n general, 

indicate the existence of an optimum value of the system 

gain r e s u l t i n g i n the minimum s e t t l i n g time. 

The influence of the s a t e l l i t e i n e r t i a parameter 

I on the c o n t r o l l e r performance i s indicated by a comparison 

of curves (a) and (b). A reduction i n the damping time 

with an increased value of I i s apparent. Curves ( f ) , (c) 

and (g) exhibit a si m i l a r trend for the case of a larger 

C^(=l). The zero s e t t l i n g time i n curve (g) simply implies 

that, with this set of parameters, none of the attitude 

angles exceeded 1° i n amplitude. The advantage of d i s c - l i k e 

s a t e l l i t e mass d i s t r i b u t i o n (I > 1) i s thus obvious. 
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e =o.i 0 = 4 5 ° C L / C D = o.i hp=25o mi. Y0=P0=X=o 

CO = 0 i = 23 . 5 ° C g j / C ^ s o j=Y,p,X Y f = pf=Af=o 

0 5 10 15 20 
m 

Figure 5.2 Optimi z a t i o n p l o t s f o r the aerodynamic-solar 
c o n t r o l l e r gain m 
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The e f f e c t of the solar parameters C\ and the 

aerodynamic parameters C ^, which are d i r e c t l y related for 

a given plate s i z e and moment arm, i s shown by curves (a) 

and (c), and (b) and (g). Increasing the value of C\ leads 

to a substantial reduction i n the damping time. This, of 

course, can be anticipated as C\ characterize the magnitudes 

of the control moments available. Their maximum attainable 

values i n practice, however, are constrained due to considera

tions such as launch, deployment and operation. I t i s 

inte r e s t i n g to determine the physical size of the c o n t r o l l e r 

y i e l d i n g a given C. (or C . ) . For example, consider a 
x ax 

s a t e l l i t e with the mass properties of the Canadian communi

cations s a t e l l i t e Anik (I - 1). A value of C. = 1 (C . = 50) 
x ax 

i s found to be attainable with plate sizes of about 5' x 5' 

and moment arms = 10 f t for a perigee a l t i t u d e h^ = 250 

miles. 

A comparison of curves (c), (d) and (e) indicates 

the system performance as affected by the i n i t i a l impulsive 

disturbance. As expected, an increased disturbance implies 

larger damping times. In addition, t h i s results i n a l e f t 

ward s h i f t of the optimum gain m, suggesting the use of a 

smaller system gain for quick damping of large impulsive 

disturbances. The optimum gain being dependent on i n i t i a l 

conditions, a value of m would have to be selected that 

promises reasonably good l i b r a t i o n damping rates for a l l 

i n i t i a l conditions that the s a t e l l i t e i s l i k e l y to encounter 
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i n i t s normal operation. This does not appear to be 

d i f f i c u l t as for y' = B1 = A' < 0.2, which represents an 
'o o o — 

extremely severe disturbance, a large range of values of 

the system gain m y i e l d near-optimum performance. 

Typical damped responses of the s a t e l l i t e are 

presented i n Figure 5.3, with severe i n i t i a l disturbances 

applied at d i f f e r e n t positions of an e l l i p t i c t r ajectory. 

Figure 5.3a shows the damping of a disturbance encountered 

at the pericenter. The large aerodynamic yaw and p i t c h 

moments r e s t r i c t the corresponding amplitudes to a n e g l i g i b l e 

value. On the other hand, the s a t e l l i t e executes a small 

r o l l o s c i l l a t i o n r e s u l t i n g from the r e l a t i v e l y smaller r o l l 

control torques and occasional loss of roll-yaw control at 

low a l t i t u d e . Note the small hump i n yaw due to a reduction 

of control moments i n the neighbourhood of the switch-over 

point (0 = 67°). Figure 5.3b shows the response to a 

disturbance occuring just before the switch-over point. 

The s a t e l l i t e traverses a short distance through the aero

dynamic region and most of the damping occurs under the 

influence of solar pressure torques. 

Figure 5.3c presents the response to a disturbance 

applied at the apocenter where solar radiation pressure has 

the greatest influence. As anticipated, quick l i b r a t i o n 

damping results with the attitude errors s e t t l i n g within 

1° i n about 30° of the s a t e l l i t e ' s o r b i t a l t r a v e l . The 

same disturbance, applied shortly before the s a t e l l i t e i s 
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Figure 5.3 Typical responses showing the effectiveness of 
the aerodynamic-solar c o n t r o l l e r at d i f f e r e n t 
o r b i t a l positions 



about to re-enter the aerodynamic region, leads to the 

response indicated i n Figure 5.3d. The loss of continuous 

roll-yaw control i n the aerodynamic region i s r e f l e c t e d 

by the r e l a t i v e l y larger (-7°) r o l l amplitude and the longer 

damping time. 

5.3.2 "Attitude control 

At times, missions involving diverse objectives may 

require a s a t e l l i t e to change i t s preferred orientation i n orb 
The c o n t r o l l e r ' s a b i l i t y to impart any desired orientation 

to the s a t e l l i t e i s explored here. Figure 5.4a shows the 

effectiveness of the control system i n providing a r b i t r a r y 

pitch attitudes with the axis of symmetry of the s a t e l l i t e 

along the o r b i t normal. 

The a b i l i t y to a l i g n the symmetry axis with the 

l o c a l v e r t i c a l d i r e c t i o n and simultaneously a t t a i n a desired 

pitch attitude i s indicated i n Figure 5.4b for a slender 

s a t e l l i t e (I = 0.1). For s a t e l l i t e s with large I, the 

c o n t r o l l e r was able to accomplish the same, but only at the 

cost of higher values of as i t must now overcome the 

gravity torques i n addition to the i n e r t i a of the s a t e l l i t e . 

Note that the attitude angle 3 represents the planar 

o s c i l l a t i o n i n the l o c a l v e r t i c a l configuration. The steady 

state motion noticeable for the case of e = 0.2, r e s u l t i n g 

from the e c c e n t r i c i t y induced disturbance (Equation 5.1b), 

indicates the need of a larger value of C.. for i t s elimination 
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Figure 5.4 Effectiveness of the aerodynamic-solar c o n t r o l l e r 
i n imparting a r b i t r a r y orientations to the 
s a t e l l i t e 
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Figure 5.4c presents r e s u l t s for s t a b i l i z a t i o n along 

a r b i t r a r i l y chosen values for a l l the three degrees of 

freedom. 

F i n a l l y , a comment concerning the earth's shadow, 

which would render the c o n t r o l l e r i n e f f e c t i v e in the solar 

pressure mode, i s appropriate here. It i s apparent that 

i t s e f f e c t would be n e g l i g i b l e i n near-polar o r b i t s . On the 

other hand, the influence would be maximum for o r b i t s i n the 

plane of the e c l i p t i c . Even i n the l a t t e r case, the e f f e c t 

of shadow would be of l i t t l e consequence i f the apparent 

position of the sun i s i n the neighbourhood of the apocenter 

as now the control in the shadow region i s primarily 

accomplished aerodynamically. Hence, depending upon the 

mission, a judicious selection of the location of the l i n e 

of nodes, o r b i t a l i n c l i n a t i o n from the e c l i p t i c and the 

perigee argument could e f f e c t i v e l y minimize the influence 

of the earth's shadow. 

5.4 Concluding Remarks 

The s i g n i f i c a n t conclusions based on the analysis 

may be summarized as follows: 

(i) The f e a s i b i l i t y of aerodynamic-solar hybrid control 

of near-earth s a t e l l i t e s i n e l l i p t i c a l o r b i t s i s 

established. 

( i i ) The control system i s capable of damping extremely 

severe disturbances in a f r a c t i o n of an o r b i t 
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w i t h the maximum amplitudes during the process 
l i m i t e d to a few degrees, 

( i i i ) The c o n t r o l l e r permits the space c r a f t to undertake 
d i v e r s e missions through s t a b i l i z a t i o n along 
a r b i t r a r y a t t i t u d e s . The p o i n t i n g a c c u r a c i e s 
appear to be s u f f i c i e n t f o r many a p p l i c a t i o n s of 
near-earth s a t e l l i t e s , 

(iv) The system i s e s s e n t i a l l y semi-active which 
promises an increased s a t e l l i t e l i f e - s p a n . 
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6. TIME-OPTIMAL PITCH CONTROL USING SOLAR RADIATION PRESSURE 

The i n v e s t i g a t i o n s presented i n the p r e c e d i n g chapters 

c l e a r l y e s t a b l i s h the p o s s i b i l i t y of u t i l i z i n g the e n v i r o n 

mental f o r c e s to achieve g e n e r a l t h r e e - a x i s l i b r a t i o n a l damping 

and a t t i t u d e c o n t r o l . With the c o n t r o l systems o f f e r i n g 

i n c r e a s e d s a t e l l i t e l i f e - t i m e s through t h e i r semi-passive 

c h a r a c t e r , i t seems l o g i c a l to d i r e c t e f f o r t s a t improving 

t h e i r performance. T h i s i n v o l v e s two a s p e c t s , namely, p h y s i c a l 

c o n t r o l l e r d esign and e f f i c i e n t c o n t r o l laws. The former 

having been s t r e s s e d i n the e a r l i e r c h apters, a t t e n t i o n here 

i s d i r e c t e d a t the p o s s i b i l i t y of u s i n g o p timal c o n t r o l laws. 

As the energy r e q u i r e d to t u r n the c o n t r o l p l a t e s 

i s low and c o u l d be generated e a s i l y through the use of s o l a r 

c e l l s , the performance index need o n l y i n c l u d e the damping 

time which i s of prime concern. Time-optimal c o n t r o l of 

multi-degree of freedom systems, such as the coupled r o l l -

yaw-pitch motions of a s a t e l l i t e , can g e n e r a l l y be achieved 

o n l y through enormous software c o m p l e x i t i e s s i n c e the s o l u t i o n 

of a two p o i n t boundary value problem i s i n v o l v e d . T h i s i s 

why s w i t c h i n g c r i t e r i a t h a t are simple f u n c t i o n s of the s t a t e 

v a r i a b l e s were co n s i d e r e d i n the e a r l i e r a n a l y s e s . On 

the other hand, a s i n g l e degree of freedom system may lend 

i t s e l f to an a n a l y t i c a l s y n t h e s i s of the time-optimal 
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switching c r i t e r i o n . This i s s i g n i f i c a n t as, i f successful, 
i t not only could be applied to several situations of 

p r a c t i c a l importance (platform p i t c h control of a spinning 

s a t e l l i t e or pure pi t c h control of a gravity gradient system 
70 

as i n the case of COSMOS-149 ) but may also suggest switching 

laws that are l i k e l y to be e f f i c i e n t i n c o n t r o l l i n g the 

general motion. 

This chapter investigates the development of the 

time-optimal control law for the planar p i t c h motion of a 

s a t e l l i t e . The u t i l i z a t i o n of solar radiation pressure for 

attitude control i n a c i r c u l a r o r b i t i s considered. The 

analysis leads to a useful rel a t i o n s h i p between the magnitude 

of the disturbance, control plate areas and moment arms, 

and the corresponding minimum damping time. 

6.1 Formulation of the Problem 

Figure 6.1 shows an unsymmetrical s a t e l l i t e 

executing planar pitch l i b r a t i o n \\i, with the center of mass 

S moving in a c i r c u l a r o r b i t about the center of force 0. 

The governing equation of motion i s well-known, 

i j j " + 3K isim | ; cos i | j = (6.1) 

where represents the generalized force due to solar 

radiation pressure. 



Figure 6.1 Geometry of motion of unsymmetrical s a t e l l i t e 
i n the solar pressure environment 



The solar pressure c o n t r o l l e r consists of two 

highly r e f l e c t i v e control plates and P 2 which are permitted 

rotations 6 ^ and 6 2 , respectively, in the o r b i t a l plane. 

The center of pressure of each plate i s taken to l i e on 

the s a t e l l i t e y axis (could be anywhere on the yz-plane) so 

as to y i e l d a pure p i t c h moment. The moment generated by 

the c o n t r o l l e r i s 

Qip =
 ± C i '

 s i n ( 6 i + ? ) I sin (6i+?) cos6 i, i = 1,2 (6.2) 

(+ for P , - for P 2) 

where the solar parameter i s defined as 

C. = (2pp R 3/yI )A. e . (l - s i n 2 ( j ) s i n 2 i ) (6.3) 
I ^o p x 1 1 

Through a judicious choice of the plate to be 

operated (P^ or ? 2) » in accordance with the angle ( 6 ^ + £ ) , 

may be controlled in sign. The magnitude of the control 

moment, | | , varies with both the angle £ and the control 

variable 6 . . Its maximum with respect to 6 . occurs at i i 

6 i m = tan - 1[(-3/2)tanc±{(9/4)tan 2?+2} 1 / 2] (6.4) 

where the ± signs apply for tan C £ 0, respectively. The 

vari a t i o n of |Q,[ with L i s shown i n Figure 6.2a where 
1 \p 1 max ^ 
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= C 2 = C i s assumed for convenience. The system i s able 

to provide a value |Q,| = (2/3/3)C at a l l times. The 

governing equation of motion (6.1) may thus be presented 

as 

4>" + SK^sin^cosiJj = u(9) (6.5) 

with 

- (2/3/3) C-3K isini|) ecos^ e < u(0);< (2/3/3) C - ^ K ^ i n i ^ c o s ^ 

A symmetrical band on the control, 

|u(9)|<_C*= (2/3/3) C- | 3K isiniJ; ecosiJJ e| , (6.6) 

i s considered here for convenience. Its e f f e c t i s only to 

y i e l d a s l i g h t l y conservative bound on the control either on 

the plus or the minus side depending on the nominal 

attitude . 
re 

6.2 Time-Optimal Synthesis 

Using the state variables x^ = i> and x 2 = i>' , 

and l i n e a r i z i n g about the nominal attitude ^ = i1

e> the system 

(6.5) can be expressed in the form, 

(6.7) 
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where 

A = 

- • 

0 1 0 
2 0 B = -n 0 B = 1 and u ( 6 ) I< C 

Taking the i n i t i a l time 8 Q = 0, the s t a t e - t r a n s i t i o n 
matrix $(0) i s obtained as 

$(9) = (6.8) 
cosnG (l/n)sinn0 

-nsinn0 cosnS 

The solution for the system of Equation (6.7) then 
becomes, 

x(0) = $(8)x(0) + $ (0--T)Bu(T)dT 
0 

(6.9) 

A control U ( T ) i s sought which w i l l bring the system 

state from x(0) to x ( 8 f ) = 0 i n minimum 8 f. Substituting 

the i n i t i a l and the f i n a l states in Equation (6.9) re s u l t s i n 

<H-x)Bu(T)dT = -x(0) (6.10) 

The solution for u(8) bringing the system state to 
* 

rest i n minimum G f i s well-known to be u(8) = ±C , with 
the number of switches depending upon the i n i t i a l state of 

8 5 

the system . Considering i n i t i a l states that can be driven 

to rest in a single switch, the control takes the form 
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where 

u ( 9 ) = K 1 , 0 £ 9 < 0 g 

u(9) = K2, 0 g < 9 < Q 

Kl> = |K2> = C*' 

(6.11) 

Substituting for u(9) in Equation (6.10) leads 

to: 

K 1 = n{-nx 1(0)(sinn9 f-sinn0 s)+x 2(0)(cosn9 f-cosn0 s)}/A 

(6.12a) 

K 2 = n{nx 1(0)sinn9 g+x 2(0)(l-cosn9 g)}/A (6.12b) 

where 

A = sin(n0„-n0 )-sinnGJ-+sinn9 f s f s 

The proper signs of and K 2 are best obtained 

from the phase plane p o r t r a i t of the optimally controlled 

system (Figure 6.2b). The t r a j e c t o r i e s are c i r c u l a r arcs 
* 2 * 

with centers at x^ = ±C /n , x 2 = 0 for u = ±C , respectively. 

The switching boundary i s composed of semi-circles passing 

through the o r i g i n . For any i n i t i a l condition x(0), the 



system state moves on the switching boundary for 0 g <_ 0 <_ 0^ 

as shown i n the figure, It i s apparent that a l l i n i t i a l 

states l y i n g within the region ABCDA of the phase diagram can 

be driven to the o r i g i n with a single switch of the control. 

For optimal response, the control u(0) assumes the value 
* 

u = -C i f the system state l i e s above the switching boundary 
* 

and u = +C i f i t i s below the switching boundary. 

Equations (6.12) may now be solved to obtain the 

switching time 0 and the f i n a l time 0_ for a given i n i t i a l 
s f 3 

condition. This y i e l d s the open-loop r e a l i z a t i o n of the 

control in the form u = u(0). On the other hand, use of the 

switching boundary y i e l d s the feedback r e a l i z a t i o n u = u (x) , 

which makes the system s e l f - c o r r e c t i n g to s l i g h t deviations of 

the state vector. 

Of p a r t i c u l a r i n t e r e s t are impulsive disturbances 

which a s a t e l l i t e i s l i k e l y to encounter through, say, 

micrometeorite impacts. The phase p o r t r a i t immediately y i e l d s 

the maximum impulsive disturbance from which the s a t e l l i t e 

can be brought to rest i n a single switch of the control and 

the error amplitude during the process as: 
x~ (0) 2 max = 2/2 (6.13a) 

x, (0) 1 max { l + x 2 ( 0 ) } 1 / 2 - l (6.13b) 
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where the normalized state variables x^ and i<2 are defined 
as 

3^(6) = n 2x 1(9)/C* (6.13c) 

x 2 (0) = n x 2(0)/C* (6.13d) 

The v a r i a t i o n of the normalized error amplitude 

with the i n i t i a l impulsive disturbance i s shown i n Figure 6.3a. 

The switching and the f i n a l times obtained by solving 

Equations (6.12) are also presented as functions of the 

impulsive disturbance (Figure 6.3b). 

6.3 Results and Discussion 

In order to ascertain the a p p l i c a b i l i t y of the 

optimal control law synthesized from l i n e a r theory to the 

actual nonlinear system, the response of both the l i n e a r i z e d 

and nonlinear equations governing the motion was evaluated. 

The two systems were subjected to the same disturbance and 

control. 

Figures (6.4a and b) show response plots indicating 

the e f f e c t of the i n e r t i a parameter to be n e g l i g i b l e for the 

pitch attitude nominally along the l o c a l v e r t i c a l . As 

anticipated, the open-loop and the feedback response of the 

li n e a r system are i d e n t i c a l . On the other hand, the open-

loop control system i s unable to bring the nonlinear system 

to rest exactly. The feedback system, however, accomplishes 
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0 0.1 0.2 0.3 0.4 0.5 0.6 

Figure 6.3 (a) Variation of transient amplitude 
|x, ( 8 ) | with i n i t i a l condition x o ( 0 ) ; 

(b) Variation of switching time 0 S and f i n a l 
time 9̂  with i n i t i a l condition x „ ( 0 ) 
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Open loop , f e e d b a c k ( l inear s y s t e m ) 

O p e n loop ( non l inear s y s t e m ) 

F e e d b a c k ( n o n l i n e a r s y s t e m ) 

C = 10 x 2 (o ) -0.5 

1 T 

f \ ib =o 
/ \ 

/ \ K.= 0.5 
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1 \ {b) 
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30 0 15 

6 - deg r e e s 

30 45 

Figure 6.4 System response to impulsive disturbance 
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t h i s , the nonlinear system state approaching the o r i g i n 

asymptotically using a number of switches of the control. I 

order to avoid any relay-chatter, i t appears advisable to 

use only a single switch for the actual nonlinear system as 

well and employ a passive device to damp the small residual 

motion i n the neighbourhood of the o r i g i n . 

Figures 6.4c and d present the system response 

for a s a t e l l i t e s t a b i l i z e d i n an ar b i t r a r y p i t c h a t t i t u d e . 

Note that the gravity gradient torque now represents 

a d e s t a b i l i z i n g e f f e c t , which the c o n t r o l l e r must neutralize 

in addition to countering the disturbance. The longer dampi 

time required with a higher value of the i n e r t i a parameter 
* 

c l e a r l y r e f l e c t s a greater reduction i n the value of C for 
increased K.. 

1 

The system response may now be projected for the 

pitc h control of the CTS. At synchronous a l t i t u d e , the 
2 value of C =10 corresponds to A. - 2.5 f t and e. = 10 f t . 

x c i I 

When subjected to an extremely severe impulsive disturbance 

of ^(O) = 0.5, a damping time of the order of 20° of the 

or b i t i s attained (Figure 6.4). A disturbance ^(O) = 0.1 

on the other hand would be damped out i n approximately 4°. 

(Figure 6.3b). The system thus appears promising. 

I t should be pointed out here that the constraint 

|[£(2/3/3)C represents the most adverse s i t u a t i o n as | | 

may at t a i n a value as large as C during cer t a i n o r b i t a l 

positions (Figure 6.2a). The performance of the c o n t r o l l e r , 
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therefore, would always exceed the responses presented here 

(Figure 6 . 4 ) . 

6.4 Concluding Remarks 

(i) The analysis c l e a r l y demonstrates the f e a s i b i l i t y 

of the time-optimal p i t c h control of s a t e l l i t e s 

using the solar pressure, 

( i i ) The c o n t r o l l e r i s capable of damping extremely 

severe disturbances i n a few degrees of the 

s a t e l l i t e ' s o r b i t a l t r a v e l . The transient 

amplitude i s also small, 

( i i i ) The c o n t r o l l e r i s able to provide nominal control 

at an orientation which i s not an equilibrium 

position of the uncontrolled system, 

(iv) The optimal control strategy, developed for 

the l i n e a r i z e d system, may be applied e f f e c t i v e l y 

to the actual nonlinear system. 
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7.. CLOSING COMMENTS 

7.1 Summary of the Conclusions 

The s i g n i f i c a n t conclusions based on the pre

ceding investigation may be summarized as follows: 

(i) The solar radiation pressure, normally neglected 

in the analysis of spinning s a t e l l i t e s , can 

af f e c t the l i b r a t i o n a l performance su b s t a n t i a l l y . 

It merits the same consideration as the i n e r t i a 

properties, spin rate and e c c e n t r i c i t y during 

the design of an attitude control system, 

( i i ) The environmental forces can be used quite 

e f f e c t i v e l y to provide three-axis l i b r a t i o n 

damping and attitude control of spinning space

c r a f t . 

( i i i ) As substantial control moments are available 

even with the use of moderate c o n t r o l l e r sizes, 

i t does not appear necessary to spin a s a t e l l i t e 

from attitude control considerations. Of course, 

the presence of spin would improve the nutation 

damping performance, 

(iv) A l o g i c a l procedure i s established for the 

development of an e f f e c t i v e solar pressure con

t r o l system. This should prove useful i n evolving 

a suitable c o n t r o l l e r depending upon the mission 

requirements. 
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(v) The magnetic roll-yaw c o n t r o l l e r , i n conjunction 

with the solar p i t c h c o n t r o l l e r , provides an 

e f f i c i e n t three-axis control system, 

(vi) The hydrid aerodynamic-solar system o f f e r s 

e f f e c t i v e control of near-earth s a t e l l i t e s in 

e l l i p t i c t r a j e c t o r i e s which promise an increased 

l i f e - s p a n . 

(vii) U t i l i z a t i o n of the maximum available control 

moments, through bang-bang operation, leads 

to smaller damping times compared to the l i n e a r 

control law with saturation constraints. The 

near-optimum performance r e s u l t i n g for a wide 

range of system parameters and i n i t i a l d i s t u r 

bances i s p a r t i c u l a r l y a t t r a c t i v e , 

( v i i i ) Approximate a n a l y t i c a l techniques can be used 

quite e f f e c t i v e l y during preliminary stages of 

s a t e l l i t e design. For small amplitude motion, 

usually the case of in t e r e s t , they can predict 

the l i b r a t i o n amplitude and frequency with 

considerable accuracy, 

(ix) The attitude control systems analyzed here are 

semi-passive, as they do not involve any mass 

expulsion schemes and/or active gyros requiring 

large power consumption. This promises an 

increased s a t e l l i t e l i f e - s p a n . 
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7.2 Recommendations for Future Work 

The investigation reported here suggests several 

topics for future exploration. Only some of the important 

problems are mentioned here: 

(i) The f e a s i b i l i t y of using environmental forces to 

advantage having been established here, i t 

appears l o g i c a l to d i r e c t e f f o r t s at improving 

the e f f i c i e n c y of these systems. The design 

approach suggested i n Chapter 3 could be applied 

to devise alt e r n a t i v e c o n t r o l l e r configurations. 

An extension of the approach i n Chapter 6 to 

the synthesis of optimal or suboptimal control 

laws for the coupled motion i s l i k e l y to improve 

the control performance, 

( i i ) A detailed hardware oriented study would permit 

precise comparison of the methods proposed here 

with the currently used active control systems. 

Such analyses should also include any i n e r t i a 

variations and reaction forces a r i s i n g from con

t r o l system operation, 

( i i i ) With ever increasing energy requirements, the 

use of large solar panels by the future generation 

of s a t e l l i t e s i s l i k e l y to be indispensable. 

Substantial energy savings may r e s u l t i f the semi-
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passive attitude control systems u t i l i z i n g the 

environmental forces could be extended to f l e x i b l e 

s a t e l l i t e configurations. The dynamical problem 

i s going to be more involved. Hence, more 

sophisticated c o n t r o l l e r s and control strategies 

would be required as the disturbances, such as, 

panel vibration, d i f f e r e n t i a l thermal heating, etc., 

are of the continuous type. The problem appears to 

be quite useful as well as challenging, 

(iv) The p o s s i b i l i t y of employing the environmental 

forces for o r b i t a l transfer and trajectory control 

appears inte r e s t i n g . As the concept promises 

considerable energy saving and reduction i n payload 

(no mass expulsion i s required), i t could be of 

immense value i n interplanetary t r a v e l as well 

where long time durations are involved. It presents 

an exciting p o s s i b i l i t y of achieving controlled 

variations in the o r b i t a l parameters of a space-

vehicle. Optimization of system performance i n 

the foregoing represents a vast challenging area 

that has remained v i r t u a l l y unexplored. 
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APPENDIX I 

The expressions for the frequencies and w2 

are given by, 

o>1= f1 (a,b,I,a,e,C,G) 

= F(a,b,a 1,a 2,k 1,k 2, 2, 1,£ 2,C,G,A 1,B 1) 

= ^ - { 1 / (k 2-k 2) } £ c (l+3e) { (5A1+7B1-4G) l±a2+ (7A1+B1~4G) % 2 }/ 

16a 1+£ 1[{I(a+1)(l+2e)-4}{k 1(3a 2a 2+2a 2b 2+2B 2)+4k 2a 1a 2b 2}/ 

16+{I (a+1) (l+2e)+2 (31-4) }a;L (a2+4b2+4A2)/32+{I(a+1) (l+2e) -4}x 

a1(a2a2+2a2b2+2B2)/16-{3a1k2a2/8+a1k2b2/4+a1A2/4+a2k1k2b2/2} 

-k 1(a 2+b 2+A 2)/4] + (£ 2/a 1) [{l(a+l) (l+2e)+4 (31-4)}x 

(a 2+2b 2+2A 2)/16-{l(a+1)(l+2e)}a 1k 1(a 2a 2+a 2b 2+B 2)/8 

- [I(a+1) (l+2e)}(a 2a 2+4a 2b 2+4B 2)/32-a 2k 2a 2/8 

- a 1a 2k 1k 2b 2/2+a 1k 1A 1B 1/2-a 2k 2b 2/2-a 1k 1(3a 2+2b 2+2A 2)/8]J 

w_ = F(b,a,a 0,ot,,k 0,k, rZ 0,C,G rA 1,B,) 
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APPENDIX II 

The functions and G^ (i=l,2,3,4) are given 

£-1(a+1){(l+e)/(l+ecos9)} 2cosy p-{3(I-l)/(l+ecos9) 

-DcosB ( c o s 2 Y p - s i n 2 Y p ) - [{2esin6/ (l+ecos9) }sinB p 

-23 pcos6 p]sinY p-{(1+e) 3/(l+ecos9) 4}Ccos9 x 

2 
[{(sinYpSinB pcos0-cos3pSin9)sinBp-sinY pcos9}cos Y pcos9/ 

2 2 1/2 { (sinY psin3pCOs9-cosBpSin9) + (cosY pcos9) } 

2 2 1/2 {(sinYpSin3pCOS0-cosBpSin9) +(cosY pcos0) } s i n Y p 

-G j sinY pcos6pCos0+sin3pSin9|sinY p]J secB p 

[{2esin9/(l+ecos9)}cosBp+23 psinBp]secB p 

[{3 (I-l)/(l+ecos9)}sin3 psinY pcosYp+{2esin9/(l+ecos9)} x 

(cos3pCOSYp-YpSin3p)+23pYpCOs3p+{Yp +(23p-sin Y p)x 
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x cosY p}sing p-{(1+e) 3/(l+ecos6) 4}Ccos9(sinY psinB p x 

cos0-cosB psin0)(sinY pcosB pcos0+sinB psin0)cosY p/((siny p x 

2 2 1/2 sin3 pcos0-cosB psin0) +(cosY pcos0) } ' ]secB p 

[I (a+1){(l+e)/(l+ecos0)} 2+2Y psinB p-2cosB pcosY p]secB p 

I (a+1){(l+e)/(l+ecos0)} 2sinB psinY p+ 

2{3 (I-l) / (l+ecos0) -1} sinB pcosB psiriY pcosY p 

2 2 
-{2esin0/(l+ecos0)}cosY p-(cos B p ~ s i n B p+l)Y psinY p 

+{(1+e) 3/(l+ecos0) 4}Ccos0[{(sinY psinB pcos0-cosB psin0)x 

sinB^-sinY^cos©} (sinY^sinBcCOsO-cosBpSin©) C O S Y P / 

2 2 1/2 {(sinY psinB pcos0-cosB psin0) +(cosY pcos0) } 

2 2 1/2 +cosY psinB p{(sinY psinB pcos0-cosB psin0) +(cosY pcos0) } 

+GcosY psinB p|sinY pcosB pcos0+sinB psin0|] 
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[-I(a+D { (l+e)/(l+ecos0) } 2+2Y psinB p]cosB! 

2 2 + (cos Bp-sin Bp+DcosYp 

I(a+1){(l+e)/(l+ecos6)} 2(Y psin8 p-cosB pcosY p) 

+ [{3 (I-l)/(l+ecos0)}sin 2Yp+cos 2Y p-Yp 2] ( c o s 2 B p - s i n 2 B p ) 

-4YpSinB pcosB pcosYp+{(1+e) 3/(l+ecos0) 4}C x 

2 
[(sinYpSinBpCos0-cosBpSin6) (sinY pcos3pCOS0+sinB psin0)/ 

2 2 1/2 {(sinYpSinBpCOse-cosBpSine) +(cosY pcos0) } 

2 
+(sinYpCosB pcos0+sinBpSin0){(sinY psinB pcos0-cosB psin0) 

2 1/2 

+(cosY pcos8) } ' +G(sinYpCOsBpCOS0+sin3pSin0) x 

|sinY pcosBpCOS0+sinBpSin0|] 

2esin0/(l+ecos0) 


