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ABSTRACT

The feasibility of utilizing the environmental
forces for three-axis librational damping and attitude
controi of spinning satellites is investigated in detail.
An appreciation of the environmental influence is first
gained through a librational dyhamics study of spinning,
axisymmetric, cylindrical satellites in the solar radiation
pressure field. The highly nonlinear, nonautonomous,
coupled equations of motion are analyzed approximately using
the method of variation of parameters. The closed form
solution proves to be quite useful in locating periodic
solutions and resonance characteristics of the system. A
numerical parametric analysis, involving large amplitude
motion, establishes the effect of the radiation pressure
to be substantial and destabilizing.

Next, a possibility of utilizing this adverse
influence to advantage through judiciously located rotatable
control surfaces is explored, A controller configuration
for a dual-spin spacecraft is analyzed first. The govern-
ing equations, in the absence of a known exact solution,
are solved namerically to evaluate the effect of system
parameters on the performance of the control system. The

available control moments are found to be sufficient to
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compensate for the rotor spin decay, thus dispensing with
the necessity of energy sources maintaining the spin rate.
The controller is able to damp extremely severe disturbances
in a fraction of an orbit and is capable of imparting
arbitrary orientations to a satellite, thus permitting it
to undertake diverse missions.

The development of an efficient vet structurally
simple controller configuration is then considered. A
logical approach for solar controller design is proposed
which suggests a four-plate configuration. 1Its performance
in conjunction with a bang-bang control law is studied in
detail. The utilization of maximum available control
moments leads to a substantial improvement of the damping
characteristics.

Attention is then focussed oﬁ using the earth's
magnetic field interaction with onboard dipoles for attitude
control. Magnetic torgquing, however, is unable to provide first
order pitch cbntrol in near equatorial orbital planes. The
shortcoming is overcome by hybridizing the concepts of
magnetic and solar control. .Two magnetic controller models,
employing a single rotaﬁable dipole or two fixed dipoles,
are proposed in conjunction with a solar pitch controller.
The system performance is evaluated er a wide range of
system parameters and initial conditions. Although high

spin rates lend considerable gyroscopic stiffness to the
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spacecraft, the controllers continue to be quite effective
even in the absence of any spin. Even with extremely
severe disturbances, damping times of the order of a few
ofbital degrees are attainable. As before, thg concept
enables a satellite to change the desired attitude in
orbit.

The effectiveness of the controllers at high
altitudes having been established, the nekt logical step was
to extend the analysis to near-earth satellites in free
molecular environment. A hybrid control system, using
the solar pressure at high altitudes ana the aerodynamic
forces near perigee, is proposed. The influence of
important system parameters on the bang-bang operatiQn of
the controller is analyzed. The concépt appears to be quite
effective in damping the satellite librations. Both the
orbit normal and the local vertical orientations of the
axis of symmetry of the satellite are attainable. However,
fqr arbitrafy pointing of the symmetfy axis, small limit
cycle oscillation about the desired final orientation
results.

Finally, the time-optimal control,_through solar
radiation pressure, of an unsymmetrical satellite executing
planar pitch librations is examined analytically. The
switching criterion, synthesized for the linear case, is
found to be quite accurate even when the system is subjected

to large disturbances.



Throughout, the semi-passive character of the

system promises an increased life-span for a satellite.
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1. INTRODUCTION

1.1 Preliminary Remarks

Success of a vast majority of space missions
depends on the ability of a spacecraft to point accurately
in the desired direction. Even a correctly positioned
satellite tends to deviate in time from its preferred orien-
tation due to environmental influences, such as, micrometeor-
ite impacts, solar radiation pressure, aerodynamic forces,
gravitational and magnetic field interactions, etc.
Fortunately, several methods of attitude control are
available which damp the resulting undesirable librations.
These procedures may be broadly classified as active, passive
énd semi-passive (or semi-active).

Active stabilization procedures involve mass
expulsion schemes and/or components requiring a large amount
of energy, an expensive commodity aboard a spacecraft,
leading to increased weight and space requirements with a
reduced satellite life—span.' The main advantage of the
technique is its ability to achiéve a specified orientation
with almost any desired degree of accuracy.

.Stabilization techniques reéuiring no power
consumption are termed passive. This is generally achieved

by designing satellites with physical characteristics which
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interact with the environmental fqrces in a manner so as to
attain a specific equilibrium position. Spin stabilization
presents an alternative that relies on the inherent tendency
of a spinning body to maintain its attitude in space. The
pointing accuracies attained through passive methods,.
however, are limited and deteriorate due to the influence

of environmental forces.

The semi-passive methods attempt to utilize the
environmental forces, through the introduction of appropriate
controllers, and thereby achieve attitude control. The
possibility of attaining high pointing accuracies with low
power consumption promises an increased satellite life-span.
The design of suitable controller configurations, however,
requires a thorough understanding of the system dynamics
under the influence of the environmental force used for
control.

The development and analysis of several semi-
passive control systems, with particular reference to
spinning satellites, forms the main objective of this

thesis.

1.2 Literature Review

Spinning bodies have received, in the past decade,
considerable attention owing to their particular stability

properties. For rigid axisymmetric bodies under the



influence of gravity forces and with the axis of spin
perpendicular to the orbital plane, Thomson1 (1962) presented
a stability criterion using linearized analysis while
Pringle2 (1964) investigated motion in the large employing
the Hamiltonian as a Lyapunov fuhction. Asymmetry was taken

3

into account by Kane and Shippy~ (1963) applying the Floquet

theory. The same method was used later by Kane and Barba4

(1966) to deal with motion in the small for arbitrary
5

eccentricity. Wallace and Meirovitch® (1967) studied the

same problem by an asymptotic analysis in conjunction with

6=9 (1968-72)

Lyapunov's direct method. Neilson énd Modi
gave insight into the problem of stability in the large by
making use of the integral manifold concept.

According to classical mechanics, the stable
rotational motion of a rigid body in absence of external
forces is possible only if the axis of rotation is a prin-
cipal axis of least or greatest inertia. If the body is
not rigid-and energy is dissipated'by the cyclic forces
acting on it while under nutation, then only the motion
about the axis of maximum inertia is stable. It turns out
that for slowly spinning rigid satellite, the inteinally
dissipated energy is such as to overcome the stabilizing
influence of gravity and the system ends up in a state of
tumbling about the axis of maximum moment of inertia: the

classical example is that of Explorer Ilo.
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The constraint of "major axis spin rule" was sub-
sequently removed by the introduction of the dual-spin
concept which allows two sections to nominally rotate about
a common axis at different rates relative to inertial spacé.
An early paper by Robersonll (1958) had anticipated that
torques generated by a disc rotating about an axis fixed in
a rigid body could substantially affect its motion. However,
the first fundamental contribution to the feasibility of
dual-spin stabilization was by Landon and Stewart12 (1964) :
an energy-sink method indicated no constraints on inertias
when energy dissipation took place on the slowly-rotating
part of the system. Iorillol3, a year later, extended
this concept to the case where energy dissipation occurs
on both bodies.

Likinsl4 (1967) developed, for a specific configura-
tion involving an axisymmetric rotor and an asymmetric body
containing a ball-in-tube damper cbnstrained to move parallel
to the rotor axis, an accurate stability criterion based
on the Routh analysis. Mingori15 (1969) took a more general
approach which involved two dissipative sections. The
Floquet analysis stressed the sensitivity of the system
behaviour to the relative effectiveness of the sources of

enerqgy dissipation. Pringle16

(1969) extended his theorems
on Lyapunov stability to the case of dual-spin spacecraft
and gave a rigorous proof of the "maximum moment of inertia

spin-axis" rule. Cloutierl7 (1968) investigated the



stability and performance of a nutation damper consisting
of mass shifting perpendicular to tﬁe spin-axis: again, it
led to no restrictions on inertia ratios or damper size
when dissipation occurs on a despun platformf In another
paper18 (1969), the author extended the analysis to a

damper involving two degrees of freedom in a plane perpen-
dicular to the spin axis. An approximate solution was
derived for the nutation angle and its decay was optimized
in terms of system parameters. Sen19 (1970) studied a four
mass nutation damper whose design constraints were not as

20 (1971) applied the

severe as those of Likins. Vigneron
method of averaging to obtain a closed-form first approxi-
mation solution for a dual-spin system containing both
platform and rotor mounted dampers. Bainum et al.21'(1970)
conducted a stability and performance analysis of the dual-
spin Small Astronomy Satellite (SAS-A) and found that asymmetry
noticeably deteriorates the performance of the nutation
damping system. In a subsequent paper22 (1972), the authors
included the effect of damping in the momentum wheel by
permitting the plane of the wheel to flex with two degrees
of freedom with respect to the hub. The analysis established
stability criteria for the SAS-A satellite.

Although passive methods for attenuating nutation
are generally reliable and conceptually simple, their

effectiveness may be limited. A device containing an

actively controlled mass, capable of attaining any nutation
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angles, was studied by Kane and Scher (1969). Mingori

et al.24 (1971) analyzed both semi-passive and active
nutation dampers for dual-spin spacecraft, the former in-
volving single axis control moment gyros (CMG's) whose
rotational motion relative to the spacecraft was restrained
passively by a spring and dashpot. The active damper was
realized by controlling the CMG's in accordance with the
information from a rectilinear accelerometer. Both devices
were found to be capable of reducing nutation several

times faster than passive dampers of équal mass.

Studies which take the gravity torque into account

are rare but offer, nevertheless, valuable results. Of
particular interest is the conclusion by Kane and Mingori25
(1965) that the stability of undamped axisymmetric dual-spin
satellites is equivalent to that of rigid spinning bodies.

26

White and Likins (1969) extended the research to slightly

asymmetric system by making use of asymptotic expansions

and resonance lines. The efforts of Roberson et al.27'28

(1966, 1969) and Yu29 (1969) should also be noted who
analyzed the equilibrium positions of a single rigid body
containing a symmetric, constant speed, fixed axis rotor,
also called a gyrostat, in presence of gravity forces.

The concept of dual-spin spacecraft gained sufficient
recognition by 1967 to be considered seriously as a design

30

alternative The first flight data for a prolate dual-spin

satellite (Tacsat 1), however, became publicly available
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only recently (1970). It was found that the spacecraft

did not maintain the nominal inertial attitude but executed
stable 1limit cycle in a nearby state of free precession.
None of the previous analyses employing linear models

for the energy dissipation mechanisms could explain this

32

anomaly. In a recent paper, Likins et al. (1971) found,

via the 'energy-sink' method, the limit cycle oscillation
to be a consequence of nonlinearities in the damping forces.
On the other hand, the possibility of constant or variable
amplitude limit cycles due to nonlinear restoring forces

33

has been indicated by Mingori et al. (1972).

It should be emphasized that although several
authors have recognized the importance of environmental
forces, they were ignored in the analyses of spinning space-
craft discussed above. |

Although extensive volume of literature exists

on the librational dynamics of gravity stabilized

34,35,et al.

satellites + serious efforts at analyzing the

influence of environmental forces and exploiting them for

36

attitude control are relatively recent. Roberson (1958)

37

gave a general outline of the problem and Wiggins (1964)

presented estimates of the relative magnitudes of these

forces. Clancy and Mitchell38 39,40

(l964)land Modi et al.
(1971) investigated the influence of solar radiation pressure
on the attitude motion of satellites. The effect of the

atmosphere on satellite librations was the subject of
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study by Debra41 (1959), Schrello42

44

(1961), Garber?3 (1963),

Meirovitch and Wallace (1966), et al. The environmental
effect, in general, was found to be detrimental to the
satellite performance.

On the other hand, the environmental forceé offer
an exciting possibility of trajectory and attitude control
through the introduction of a carefully designed controller.
As no mass expulsion or active gyros requiring large
power consumption are involved, these schemes are essentially
semi-passive and hence promise an increased satellite life-~
span.

The use of solar radiation pressure for propulsion

45

within the solar system was first proposed by Garwin (1958) .

Sohn46 (1959) suggested a specific configuration using plates
of large surface areas to orient the satellite with respect
to the sun. Galitskéya and Kiselev47 (1965) studied,
qualitatively, the principle of libration control of space

probes about three axes. Mallach48

(1966) presented a system
for solar damping of gravity oriented satellites and gave a
simplified analysis using average torques. Modi and
Flanagan49 (1971) examined the planar attitude control of

a gravity gradient system in an ecliptic orbit using the
solar pressure as a damping torque. Modi and Tschann50
(1971) extended the analysis by the introduction of a

displacement and velocity sensitive controller enabling

the satellite to attain any desired orientation. Modi and
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K'umar51

(1973) further generalized the concept for the case
of three degree of freedom motion. Their analysis demon-
strated the feasibility of achieving general three-axis
librational damping and attitude control.

Literature on the use of solar pressure for
attitude control of spinning vehicles appears to be rather

52
e

- limited. Ul (1963) was the first to consider aligning

the spin axis-along the sun-satellite line employing a

corner mirror array fixed to the spacecarft. Similar devices

53 (1966), Colombo>4

56

were further explored by Peterson (1966) ,

55 (1966) , et al. Crocker

Falcovitz (1970) considered the
same problem using spacecraft-fixed and spring-mounted
paddies. An adequate nutation damper was assumed so that
the angular momentum vector remained close to the spin axis.
A péssibility of using the solar pressure for general three-
axis librational damping and attitude control of spinning
satellites remains virtually unexplored.

It would be appropriate to mention here the experi-
ment aboard Mariner IV spacecraft57, conducted on depletion
of the attitude control gas,_to align the roll axis along
the sun-line using passive solar radiation control. Each
of the four solar panels was provided with a rotatable
solar pressure vane for this purpose. Unfortunately, one
of the vanes proved to be inoperative during a major portion

of the mission. However, subsequent reactivation of the

vane enabled the solar pressure control system, in con-
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junction with active gyros, to maintain the spacecraft
attitude within 1° of the sun-line.

Generation of control torgques through the inter-
action of onboard electromagnetic dipoles and the earth's
magnetic field appears to be particularly attractive as
the system reliability is enhanced by the elimination of
moving parts.

Libration damping of gravity oriented satellites

58

was considered by Alper and O'Neill (1967) who proposed a

59 (1968),

passive hysteresis damper. Bainum and Mackison
on the other hand, considered three mutually perpendicular
electromagnets controlled according to the sample and hold
concept. Although time constants of approximately one to
two orbits for roll-yaw damping were achieved, the
inadequacy of the system for pitch control in equatorial
orbits, where the geomagnetic field is nearly parallel to
the orbit normal, became apparent.

The ‘problem of maintaining the spin axis of a
satellite perpendicular to the orbital plane has been a

60

subject of considerable study by Vrablik et al. (1965),

61 62

Sonnabend (1967) and many others. Fischell (1966)

considered the possibility of using magnetic control for

63 (1967)

regulating the spin rate of a satellite. Wheeler
investigated the use of a single dipole along the spin
axis for both attitude control and nutation damping. The

analysis, however, assumes the desired final orientation
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to be inertially fixed and the spin rate constant during

the control maneuver. Sorensen64 (1971) applied the

Kalman filter technique to estimate pointing errors for a
system with limited attitude determination capabilities and

developed the minimum energy control law using these

65

estimates. In a recent paper, Shigehara (1972) studied

a control law, based on the asymptotic stability criterion,
for the spin-axis and the spin rate using dipoles along
the axis and perpendicular to it, respectively. The

first operational magnetically controlled satellites,

66

the TIROS wheels, were discussed by Hecht and Manger (1964)

67

and Lindorfer and Muhlfelder (1966) .

The use of aerodynamic forces for attitude control

of satellites in near-earth orbits was a subject of several

68 69

early discussions by Wall (1959), Schrello (1961) ,

et al. 1In practice, however, it has been used successfully
only for the pitch control of COSMOS-149, with the other

degrees of freedom governed by gyroscopic forces70.

71

Ravindran (1971) optimized, through linearization, a set

of controller flaps for a satellite in a circular orbit.

72 (1971) , on the other hand, have

Modi and Shrivastava
proposed several schemes of semi-passive aerodynamic control-
lers. Their nonlinear analysis showed the system to be
effective in damping severe disturbances in a fraction of

an orbit. The performance of the controller appeared

promising even in elliptic orbits where the corrective



12

- moments are available only over a portion of the trajec-
tory. In a subsequent paper73 (1973) , the authors

optimized the performance of the controller in both circular
and elliptic orbits, using the damping time and the steady

state pointing error as the respective criteria.

1.3 Purpose and Scope of the Investigation

From the foregoing, it is evident that the influence
of environmental forces on the attitude motion of spinning
satellites and their utilization for attitude control has
received little attention in the past. On the other hand,
the importance of such a study becomes apparent when one
recognizes the fact that the majority of the communications,
applied technology and scientific satellites are indeed
spin stabilized. The thesis aims at filling this gap by
systematically analyzing environmental effects and exploit-
ing them to advantage over a wide range of operational
altitudes.

The influence of solar radiation pressure, con-
stituting the dominant environmental force at high altitudes,
on the librational motion is examined first. Both analytical
and numerical techniques are employed to study the system
response. Stability of the periodic solutions is ascertained
using the Floquet theory. Numerical results establish

regions of nontumbling motion in the system parameter space.
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Next, the possibility of using solar radiation
pressure for general thrée—axis libration damping and
attitude control of a dual-spin system is explored. The
results establish the effectiveness of the concept. Effort
is then directed towards devising a solar controller model
that is structurally simple and operationally efficient.

This is followed by an investigation of attitude
damping and control utilizing the earth's magnetic field.

A comparative study of two controller models is conducted.
For the reason pointed oﬁt earlier, the magnetic controllers
fail to provide first order pitch control in synchronous
orbits. To compensate for this, the magnetic controllers
are hybridized with a solar pitch controller.

-Attitude control of near-earth satellites in
elliptic trajectories, normally preferred to minimize
degeneration of the orbit due to atmospheric drag, is
considered next. A hybrid control system, utilizing the
aerodynamic forces at low altitudes and solar radiation
pressure when beyond the atmosphere, is proposed. Finally,
the problem of time-optimal pitch control of satellites
using the radiation pressure is examined analytically.

Figure 1.1 schematically presents the plan of

study.
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Figure 1.1

Schematic diagram of the proposed plan of study
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2. LIBRATIONAL DYNAMICS OF SPINNING AXISYMMETRIC
SATELLITES IN PRESENCE OF SOLAR

RADIATION PRESSURE

This chapter investigates the attitude dynamics
of axisymmetric, cylindrical, spinning satellites under
the influence of solar radiation pressure and gravity gradient
torques. The equations of motion of the system are obtained
first using the classical Lagrangian formulation followed
by an evaluation of the generalized forces due to the
radiation pressure.

As the nonlinear, nonautonomous, coupled equations
of motion do not poSsess a known closed-form solution, an
approximate study is undertaken using Butenin's extension of
the method of slowly varying parameters74. The approximate
analytical solution proves to be an excellent tool in locating
periodic solutions of the system, whose importance in the
attitude dynamics study of satellites has been well emphésized
9’75’76. The Floquet theory?7 is employed to examine the
variational stability of the periodic solutions. The
possibility 6f resonant oscillations of the system in presence
of the solar torque is also investigated.

The quasi-linear analytical method, however, fails
to deécribe the large amplitude motion of the system. To

this end, the governing equations are analyzed numerically



16

and the librational response is studied as a function of
the system parameters. The available information is con-
densed in the form of design plots, which clearly emphasize
the importance of the solar parameter characterizing the
radiation pressure torque, and should prove useful during

the design of an attitude control system.

2.1 Formulation of the Problem

Figure 2.1 shows an axisymmetric cylindrical
satellite with the center of mass S moving in a Keplerian
orbit about the center of force 0. The spatial orientation
of the axis of symmetry of the satellite is completely
specified by two successive rotations y and B8, referred to
as roll and yaw, respectively, which define the attitude of
the satellite principal axes x,y,z with respect to the
inertial reference frame x',y',z'. The satellite spins
in the x,y,z reference with angular velocity &. In terms of
these modified Eulerian rotations, the expressions for the

potential and kinetic energies to 0(1/R3) are obtained as:

U = —ums/R - u{(IX/2R3)(I—l)/I}(1—3 sinzycoszB) (2.1)

H
]

(ms/z)(é +R262)+(Ix/21){I(&—Qsine+écosscosy)2

+ (é—ésiny)2 + (?cosB+ésinBcosy)2} (2.2)
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vernal
equinox

Figure 2.1 Geometry of motion of spinning satellite in
the solar pressure environment
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Neglecting orbital perturbations due to the

librational motion78’79, the classical Lagrangian formulation

Yields the governing equations of motion in the roll, yaw
and spin degrees of freedom as:
(d/dt){—I(&—QsinB+écosBcosY)sinB+(§cosB+ésinBcosY)cosB}
+I(&—§sin8+écosBcosY)écosBsiny+(é—ésiny)écosY

+(§cosB+ésinBcosy)ésinBsiny+3(u/R3)(I—l)x

sinYcosycoszﬁ = QY/IY (2.3a)

(d/dt) (B-8siny)+ (YcosB+6sinBcosy) {I (&-ysinB+BcosBcosy)
+(§sinB—écosBcosY)}—3(u/R3)(I—l)sinzysinBCOSB

= QB/Iy (2.3b)

(d/dt)(&—QsinB+écosBcosy) = Qu/Ix (2.3¢c)

where Qi(i=y,B,u) represent the generalized forces due to
" solar radiation pressure.

Consider an area element dA, of the curved surface
of the satéllite, of length dx, angular width dO and located
at an axial distance x from the center of mass S such that
the surface normal n makes an angle O with the y axis

(Figure 2.2a). The force acting on the area element due to

solar radiation pressure is given by,
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- dF = —podAlcosil{(l—T)ﬁ+p§} ' (2.4)

with the resulting moment about the satellite center of mass

as
MC = [Arc X 4drF (2.5)

where the'integration extends over the entire curved surface
"seen" by the sun. The limits of integration for x are
-(%/2-¢) to (%/2+¢) and those for O are tan I (—uj/uk) to
{w+tan—l(—uj/uk)}, which correspond to &=m/2.

Evaluation of the integral in Equation (2.5),

after considerable algebraic manipulations, leads to

= 24 _ J/ o+ 213
MC'_ { (ﬂ/z)pogr (1-1 p)uiuk+2(l T+p/3)por2€uk u§+ui}3

+{(ﬂ/2)p02r2(1—T—p)uiuj—2(l—T+p/3)por2€uj/u§+ui}E (2.6)

The expression for the moment due to the flat ends
of the cylindrical satellite (Figure 2.2b) is obtained in a
similar manner,
M_ = {((1/2)p 2r2(l-t=-p)u,u +mp re(l-t-p)u_|u.|}3
E o ik o) k'"1
-{(m/2)p zrz(l—r—p)u u.+7mp rzefl—T—p)u.lu | 1k (2.7)
o i7j o j'i

The total moment due to solar radiation pressure

is thus given by



21

2(l—1+p/3)p0r2€uk[/u2+u2+(nr/él){(1—T—p)/
j 'k
(1-T+p/3)}|ui|]3—2(1-T+p/3)porzeujx
[/u2+u2 +(1r/28) {(1-1-p) /(1-T+p/3) } |u; | 1k (2.8)
ik :
The application of the principle of virtual work

~yields the generalized forces in the y,B and o degrees of

freedom as:

QY =-2(l-r+p/3)porleuj[/u§+u§ +(1r/28) x

{(l—T-p)/(l~T+O/3)}IuiI]COSB (2.9a)
QB = 2(1—T+p/3)por2€uk[/u§+u§ +(1r/2%) x

{(l_T"p)/(l"T+p/3)}luil] (2.9b)
Q, =0 (2.9c¢)

The generalized force in the o degree of freedom
being zero, a first integral of motion defining the satellite

spin rate o is furnished by Equation (2.3c),

&—?sinB+écosBcosY = ha : (2.10)



22

As ha is a measure of the spin rate, a dimension-

less spin parameter o, defined as

o = (a/f) =_(ha/é) -1 (2.11)
. B=B=v=0 6=0

may be used to eliminate the cyclic coordinate a. Changing
the independent variable from t to 6, through the Keplerian

orbital relations

R = hg/u(l+ecos6) | (2.12a)

De
il

he/R2 | (2.12b)

and making use of the spin parameter o, the governing
equations of motion in the roll and vaw degrees of freedom
(Equations 2.3a and b, respectively) transform to:
v —ZB'Y'tanB+26'cosy-I(o+l){(l+e)/(l+ecose)}2x
(B'-siny) secB+{3(I-1) /(1l+ecosh) -1} x
sinycosY-{2esin6/(l+ecoéeﬂ (Y'+cosytanB)

=“{(l+e)3/(l+ecose)4}Cu.{¢ 2, 2 +G|u,|}secB (2.13a)
s uj+uk i

g —Y'COSY+[I(0+1){(l+e)/(l+ecose)}2

+(y'sinB-cosBcosy) ] (Y'cosB+cosysinB)

—{3(I—l)/(l+ecose)}sinzysinBcosB
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-{2esin6/(1l+ecosb) } (B'-siny)

={(1+e) 3/ (1l+ecosh) 4}Cuk{fu-_§_+uﬁ +G|ui| } (2.13b)

where the solar parameter C and the solar aspect ratio G

are defined as:

Q
i

3
(2Rp/uIy)por£e(l—T+p/3)

®
I

(rx/2%) (1-1=-p) /(1-T+p/3) (2.14)

2.2 Analytical Results
2.2.1 Approximate analytical solution

In absence of a known, exact, closed form solution
to such a complex system, it was decided to analyze the
problem approximately using Butenin's extension of the method
of variation of parameters. The case of w=¢=0 is analyzed
here which leads to a considerable reduction in algebra with-
out affecting the physics of the problem. |

Replacing the trigonometric functions of the
dependent variables by their series expansidns, ignoring
fourth and higher order terms in 8,y, and their derivatives
as well as terms of o(e2), Equations (2.13) take the

form:
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Y"+niY—llB'=2Ce—C(1+3e)cos@+2CecosZG+f(Y,Y',B,B',e)

(2.15a)
g +ﬁ§5+22y' = —C(1+3e)sin6+2Cesin26+g(y,Y',8,8",6)
(2.15b)
where
ni = 3I-4+I(0+1) (1+2e)
X |
n2 = I(o+l) (1+2e)-1
21 = 22 = I(o+1) (1+2e)-2 (2.16)

and the nonlinear functions f and g are defined as

£ = C(l+3e-decost) [y2cos8/2+8%sinbcos0 /2
2 3 . 2 .
+y“cos~6/2+yBsinfcos“6-G|ycos8+Bsinb|cosh]
-2I (o+1) (B'-Y) ecosf+3(I-1)vyecosB+2(y'+B)esinb
3,42 2
+I (0+1)(1+2e-2ecosB) (Y +3B8'B“-3YB") /6
+2BB 'Y +B ' Y2+ (2/3) { (31-4) -3 (I-1) ecos8}y>

+(B3/3-BY2/2)2esin6

2

g = C(l+3e—4ecosG)[YBcose+stin36/2+Y sinecosze/2

+yBsin’Bcosh-G|ycosB+Bsind |sin®]+2I (5+1)
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x(Y'+B) ecost+2 (B'-y) esinf+I (0+1) (1+2e-2ecos)(3y' 82+3y2p+83)

—2y12-gy2oy12p-y1y2-283/343 (1-1) (1-ecos8) y2B+y Jesind /3

(2.17)

The solution for the corresponding linear system

(i.e., f=g=0) is given by

lcose+A2cosze

<
It

asin(k, 94+B.)+bsin(k.,6+8.,)+A +A
1 1 2 2 o) (2.18a)

o acos(k16+81)+u2bcos(k26+82)+B sin6+B,.sin26

1 2 (2.18b)

w
il

1

where a, b, 61,82 are constants to be determined from initial
conditions and the characteristic frequencies kl and k2
(kl>k2) are the roots of the equation

4 2

2
k (n +n +2122)k +nl

2 _
5 =0 (2.19)

The constants o Ai and Bi are defined as:

2 2 .
(ki—nl)/llki, i=1,2

aQ. =
1
_ 2
Ao = 2Ce/nl
A, = C(1+3e) (1-n2-2%.)/(1-k?) (1«k2)
1 2 1 1 2

A, = 2Ce(n +2Q -4) / (4- k )(4 k )
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B, = C(l+3e)(l—ni-%z)/(l—ki)(l—kg)
B. = 2Ce (n2+28.-4) /(4-k2) (4-k2) (2.20)
2 124, 1 2 -

A solution of the similar form is sought for the
nonlinear system, however, allowing the amplitude and phase

to be functions of 6, i.é.,

Y = a(8)sin(k,6+B, (8))+b(0)sin (k,6+B,(8))+A_

+Alcose+A2cosze (2.21a)

B = ala(e)cos(kle+81(e))+a2b(9)cos(k29+82(6))

+Blsin6+stin26 : (2.21b)
As the four unknown functions defining the variable

amplitude and phase cannot be determined from four initial

conditions alone, the solution in the present form is over-

specified. Hence four constraint relations must be obtained.
Keeping the first derivatives of Y and B to be

the same as that of the linear system gives two of the

constraint relations:

a'sinwl+b'sinw2+aB&poswl+bBécosw2 =0 - (2.22a)

| ] — | P [ R —
0@ cos¢l+a2b cosw2 alaslslnwl azbszslnwz 0 (2.22Db)
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where

Uy = ky0+B1(8), ¥, = k,0+B,(6)

Equations of motion (2.15) in conjunction with
the assumed solution(2.21) yield the other two constraint

relations as:

' ] _ [ P - v s = *
kla'coswl+k2b cosw2 kla6151nwl kzbszs;nwz £ (2.23a)
' . . ] 1 = -k
alkla 51nwl+a2k2b's1nw2+alkla8lcoswl+a2k2b82cosw2 g
(2.23b)

* *
where £ , g are the modified nonlinear functions.
Solving Equations (2.22) and (2.23) simultaneously

for a', b', B!

1 and 82 yields:

v o * . * 2,2
a' = -{ng s1nwl—(£2/al)f coswl}/(kl—kz)
, ok L 2 .2
b' = {Klg 51nw2—(22/u2)f coswz}/(kl—kz)
By = —{ng*COswl+(£2/al)f*sinwl}/{a(ki—ké)}
" — * * b kz-kz)}
B) = {ng cosy,+(L,/a,) £ siny,}/{b (k] 5 (2.24)

Equations (2.24) represent an exact transformation

of the two second order equations of motion (2.15) into four



28

first order differential equations. For small amplitude

* %*
- motion, £ and g are small. Consequently, a, b, B, and 82

1

are slowly varying parameters. Using their average values

over one period gives:

2T 2T 27
_{l/8n3(ki—k§)} JO JO IO {llg*sinwl

I

—(22/al)f*coswl}dwldw2de

bl

f

2T 2T 2
{1/8ﬂ3(ki—k§)} Jo fo [0 {2, g siny,

-(zz/az)f*cqswz} dy, dy,de

2T 2T 2T
—{l/8ﬂ3a(k§—k§)} f [ f {llg*coswl

0

w
[P
Il

+(22/al)f*sinwl}dwldw2d9

w
N =
Il

2T ¢ 27 ¢ 27T
{l/8ﬂ3b(ki—k§)}f [ -J (2,9 cosv,
0’0’0

* 3
+(22/a2)f 51nw2}dwld¢2d6 (2.25)
Solving Equations (2.25) for a, b, Bl and 82, and

substituting in Equations (2.21), the solution takes the

form:
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Y = as1n(wle+cl)+b51n(w26+c2)+AO+A cose+A2cosze (2.26a)

1

B = alacos(wle+cl)+azbcos(w26+c2)+B151n6+stin26 (2.26Db)

where
| 2
[{(Bo oL2w2(yo o 1 2) 1 2 2)/(ul 1 OL2 2)}

' 5 1/2
+{(azyo—wzso)/(alwz—uzwl)} ] (2.27a)

-— ] - — - — —-— - 2
b = [{(B+agw) (Y ~A -A -A,) B ~2B,) /(0 0, -0,u,) }

LT , 21/2.
oy yomw B ) /lagwy-a,wy ) 7] (2.27b)

c, = tan_l[{(Bé+a2w2(Yo-Ao—Al—A2)—Bl-2B2)/(ulwl—a2w2)}/

[loyvi-w,B.) /(o wy=ayw,) }] (2.27¢)

— -1 ' - - - - - -
c., = tan [{(Bo+alwl(yo A_-A; A2) By 2B2)/(0L1wl azwz)}/
" _ -
{ogvl-wB )/ (0gwy=a,w,) 1] | (2.274)
The frequencies Wy and w, are represented by rather lengthy

functions (Appendix I) of librational amplitudes and

system parameters,
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w, = fl(a,b,I,c,e,C,G) (2.28a)

w, = £,(a,b,I,0,e,C,G) ' (2.28b)

2.2.2 Periodic solutions of the system

The approximate, closed-form solution shows the
system response to be characterized by three distinct

components: response at 'high' frequency w 'low' frequency

17
Wy and the orbital frequency. The resulting motion would,
in general, be non-periodic except in the special situation
when the frequencies Wy and w, assume rational values for
non-zero C, or, the ratio wl/w2 is a rational number with
C =0. | A search extending over a reasonable rénge of system
parameters and initial conditions showed such frequency
combinations to be rare indeed.

On the other hand, the solution indicates that
the system would execute periodic motion subject to initial
conditions which excite only one of the three frequencies.
Various relationships exist in the initial condition space
for which the resulting motion is periodic. The high and
low frequency periodic librations in the absence of solar
radiation pressure (C = 0) are discussed first, followed

by the solar pressure excited periodic oscillations of orbital

frequency.
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(a) High frequency oscillations (C = 0)

In the absence of solar radiation pressure,
Ai = Bi = 0. Hence, the system would execute high frequency
periodic motion for b = 0. This is satisfied by two sets

of initial conditions. The oscillations of type I result

with

= V' =
Y B, =0

<
|

o = (wl/al)BO (2.29a)

The corresponding amplitude and frequency of motion
are obtained from Equations (2.27a) and (2.28a), respec-

 tively, as:

wy = kl + fl(Bo/al,I,o,e) (2.29Db)

The other set of initial conditions, leading to

high frequency oscillations of type II, is readily found

to be,

" —
Bo = -0y WYy (2.30a)
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with the amplitude and the frequency of motion,

w, =k + El(yo,x,o,e) (2.30b)

Relations (2.29) and (2.30), governing the initial
conditions for high frequency periodic oscillations and the
resulting frequency (oscillations per orbit), are plotted in
Figure 2.3 for typical values of satellite parameters. The
system behaves as a hard-spring oscillator showing an increase
in the frequency with amplitude. Note.that the change in
satellite's configuration from spherical (I = 1) to disc-like
(I = 2) results in a corresponding increase in frequency.

An increase in orbital eccentricity also has similar effect.
(b) Low frequency oscillations (C = 0)

The low frequency periodic oscillations result from
initial conditions leading to a = 0. As in the case of the
high frequency oscillations, two distinct relationships
between the initial states are found to yield periodic motions
of low frequency.

Periodic motion of type I is obtained with,
' = p—t
BO Y 0

(2.31a)
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with amplitude and frequency as
b = Bo/oc2

wy = k2 + fz(Bo/az,I,o,e) (2.31b)

while that of type II is governed by the conditions,

Vo= =
Yo Bo 0
" — o
Bo azwzyo (2.32a)
leading to
b = Yo
Wy = k2 + f2(YO,I,0,e) (2.32b)

Relations (2.31) and (2.32) are presented in
Figure 2.4 for typical values of the system parameters.
The variation of the frequency is found to be relatively small.
The slight decrease in its value with increasing amplitude
indicates a soft-spring type.of nonlinear effect over the
range of initial conditions considered. 1Influence of the
inertia parameter follows essentially the same trend as
before. On the other hand, an increaée in eccentricity tends

to reduce the frequency of motion.
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(c) Solar pressure excited oscillations (C # 0)

For the solar pressure excited periodic solutions,
having the same frequency as that of the orbital motion,
a=0, b =0. Substituting these conditions in Equations

(2.27a and b) results in the initial state,

o] 1 2

Y, =0

B, = O

Bé = By + 2B, | (2.33)

Figure 2.5 shows the variation of the initial
conditions Yo and Bé with the satellite spin parameter for
both circular and noncircular orbital motion. The influence
of the solar parameter C is to raise the initial conditions
for periodic motion. The initial state appears to be highly
sensitive to the spin rate for slowly spinning satellites,
however, it asymptotically approaches a constant value with
increasing spin parameter. 1In general, the effect of
eccentricity is to increase the magnitude of the initial
conditions except at the lower end of the spin parameter

spectrum.
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(d) Accuracy of the analytical solution

To assess the accuracy of this analytical pro-
cedure in predicting the periodic solutions, the governing
equations of motion (2.13) were integrated numerically with
initial conditions derived from the analytical solution.
Typical responses are presented in Figure 2.6.

In circular orbits, the librational response is
observed to be periodic with insignificant error. The
frequency of oscillations is also predicted very accurately,
thus demonstrating the effectiveness of the approximate,
closed-férm analysis.

The method continues to predict the periodic
motions quite accurately even in elliptic orbits. The
accuracy, however, was found to deteriorate with increasing
e. Results showed the amplitude and frequency of the numericai—
ly generated response to be within five percent of their
analytically predicted values for e < 0.1, the normal range

of interest.
(e) Stability of periodic solutions

The stability of periodic solutions can be studied
using variational analysis, The variational equations are

obtained by letting

Y = v, v Y
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where YP’ BP represent a periodic solution and Yo Bv are

small perturbations. Substituting in Equations (2.13)

and linearizing with respect to Yy and Bv leads to:

" [} ]
Yy FiYy * Fovg + F3B + F 80

T v ' :
BV = GlYV + GZYV + G3Bv + G4BV (2.34)

where the details of lengthy functions

b
|

1,2,3,4

= F,(YpsBp,0), i

G, = Gi(YP,BP,e), i 1,2,3,4 (2.35)
are given in Appendix II.
For circular orbital motion, the functions Fi and

Gi assume the form Fi = Fi(YP,BP), G. = Gi(YP,BP) and hence

i
have periodicity of the solution. The Floquet theory can
thus be applied to investigate the stability of the varia-
tional system (2.34). The stability criteria for distinct

roots can be expressed as:
IA.] <1, i =1,2,3,4; stable

any of the lAil >1, i =1,2,3,4; unstable (2.36)
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For satellite librations in noncircular orbits,
the functions Fi and Gi'are periodic only if the solution
period is a rational multiple of the orbital period. The
Floquet theory may again be used to assess the variational
stability of these solutions. Figures 2.3 - 2.5 also show
the results of this analysis.

The stable motion at smaller values of the initial
conditions is, of course, anticipated. Whét-is of particular
significancé is the possibility of periodic motions of large
amplitudes. The amount of computational effort involved
for stability analysis in an eccentric trajectory is
enormous. Large values of the common period of the libra-
tional and orbital motion lead to extended integration
limiting the stability investigation to isolated points
(Figure 2.3). Of course, the solar pressure excited motion
of the orbital period does not present this problem (Figure
2.5). The ability of the approximate closed form solution
to predict nonlinear character of the system is indeed

promising.

2.2.3 Resonance

It is of particular relevance to recognize here
several possibilities of solar pressufe excited resonance
(Equations 2.15). Equivalence of kl or k2 to the frequency
of one of the forcing terms implies existence of certain

combinations of the satellite inertia parameter I, spin
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‘parameter ¢ and the orbital eccentricity e which would lead
to unbounded motion.

In circular orbits, the condition k, and/or k2=l

1

results in the resonance conditions,

or, I(c + 1)-2 =0 (2.37)

The conditions for resonance in elliptic orbits are
obtained, for one of the frequencies kl’ k2 assuming the

value 1 or 2, as:

I=1
or, I(c + 1)(1 + 2e)=2 =0
or, 2I (0+1) (1+2e) - (I+1) * v&2—181+33 =0 (2.38)

Figure 2.7 shows resonance conditions (2.37) and
(2.38) in the system parameter space with typical responses
presented in Figure 2.8. The large amplitude beat phenomenon
in some cases indicates near resonant conditions. The
value of C is purposely taken here to be small to emphasize
the destabilizing effect of the radiation pressure. Larger
values of the solar parameter as often observed in practice
(C = 1.5 for Anik, 2 for the CTS) would magnify the amplitude

build-up. This clearly indicates the need for avoiding such
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Figure 2.7

Resonance conditions in system parameter space
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critical combinations of system parameters for a safe

satellite design.

2.3 Numerical Results

The quasi-linear character of the analytical solution
limits its usefulness to the study of small amplitude motion.
As anticipated, with large amplitudes, its accuracy was
found to deteriorate due to the increased effect of system
nonlinearities. A parametric study of the system was, there-
fore, carried out by numerically integréting the governing
equations of motion. The Adams-Bashforth predictor-corrector
quadrature with the Runge-Kutta starter was used, in con-
junction with a step-size of 3°, which gave resulté of
sufficient accuracy without involving excessive computational

effort.

2.3.1 significant system parameters

The significance of the inertia parameter I, the
spin parameter ¢ and the orbital eccentricity e in the
librational dynamics of spin stabilized satellites cannot be
ovéremphasized. Sensitivity of the system response to these
parameters is vividly demonstrated in Figure 2.9. It shows
the variation of ¢, the angular deviation of the axis of
symmetry of the satellite from the orbit normal( against 6,
the position of the satellite in an orbit. It is apparent
that a judicious choice of parameter values is essential to

avoid tumbling motion (&>7/2).
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Of particular interest is the disturbing influence
of solar radiation pressure. Note that the value of C as
small as 0.5, which would physically correspond to € = 0.1
ff for INTELSAT IV category of satellites.at synchronous
altitude, causes the satellite to tumble over. The critical
values of eccentricity, intertia and spin parameters would
only accentuate this behaviour. Of coursé, in actual practice,
a higher spin rate and/or active control system would counter
this tendency. Nevertheless, the analysis clearly brings out
the fact that the solar parameter C is of the same importance
as I, 0 and e in the design of the satellite attitude control

system.

2.3.2 System plots

In order to better understand the solar pressure
excited dynamical behaviour of the satellite, the system
parameters were varied over the desired range and the
librational response observed. To isolate and emphasize the
influénce of the radiation pressure no other disturbances in
the form of initial conditions were introduced. The resulting
information was condensed in the form of system plots.

Figure 2.10a shows the effect of the satellite
inertia parameter I on the coning amplitude Qmax and the
average "nodding" frequency of the axis of symmetry, W

expressed as oscillations per orbit, for different values of
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the solar parameter C. It may be observed that a satellite,
when the solar pressure effects are neglected, remains in
the equilibrium position (¢ = o). However, Qith non-

zero C (say, C = 0.05), the librational motion is excited
which increases in amplitude with increasing C. It is of
interest to recognize the presence of a critical value of

I =1 leading to large amplitude motion finally resulting
in instability. This amplitude build-up was found to occur
even for very small values of the éolar parameter C, thus
confirming the resonant behaviour at these critical combin-
ations of the system parameters predicted earlier by the
analytical method. On the other hand, the average nodding
frequency of the axis of symmetry appears to be relatively
unaffected by changes in the inertia or solar paremeter.

The effect of the spin parameter o on the libra-
tional behaviour is indicated in Figure 2.10b. Here again,
critical.values of the spin parameter exist for which the
satellite tumbles over. A large value of the spin
parameter, in general, 1eads to smaller coning angles as
anticipated.

Figure 2.10c shows the influence of the orbit
eccentricity on the attitude motion. 1In general, higher
values of the orbit eccentricity result in larger amplitude
motion. Unlike the effect of the inertia and the spin
parameters, no resonant behaviour is noticed for the

typical values of system parameters considered here.
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The influence of the significant orbital para-
meteré, such as i, ¢, w and the solar_aspect ratio G, on
the satellite perfofmance was aiso investigated. The
amplitude of oscillation was found to reduce gradually
with an increase in the orbital inclination from the ecliptic
(Figure 2.16d). Changes in the solar aspect angle ¢, which
depends upon the location of the line of nodes and the appar-
ent position of the sun, did not affect the amplitude of
librations and their frequency. The influence of the
perigee position w and the solar aspect ratio G was also

found to be insignificant.

2.3.3 Design plots

From design considerations, it would be desirable
to assess the magnitude of the solar pressure torque that a
satellite can withstand without exceeding the permissible
bound of libration as governed by the mission requirements.
This bound then would establish a criterion for stability.
Here, the stability limit is purposely taken as a large
value of ¢ = m/2 to emphasize the vulnerability of the
satellite's performance to the solar pressure torque.

Figure 2.1la shows a typical stability chart for
librational motion in a circular orbit with the radiation
pressure as the only excitation. The equations of motiéh
(2.13) were integrated over 15-20 orbits for a range of

values of satellite inertia and spin parameters. The result-
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ing information about the maximum amplitude of the coning
angle Qmax was then condensed in the form of stability
plots in the I-o space. The analysis shows that in addition
to the main stable region for high inertia parameter values,
there also exist small isolated stable areas. However,
there are substantial unstable regions even for positive
spin or large inertia parameters. It is observed that the
stable areas reduce drastically, as expected, with an
increase in the value of the solar parameter.

The effect of the orbital eccentricity on the
stability of librational motion is presented in Figure 2.11b.
An increase in orbital eccentricity further enhances the
destabilizing influence of the solar pressure. The effect
appears to be more pronounced for satellites with the

retrograde spin.

2.4 Concluding Remarks

The important features of the analysis and the

conclusions based on them may be summarized as follows:

(i) The approximate analytical solution developed
using the method of slowly varying parameters
proves to be an excellent tool in establishing
the periodic solutions of the system. The closed
form character of the solution provides con-

siderable insight into the system behaviour.



(ii)

(iii)

(iv)

(v)
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The analytical method predicts the system

'response and frequency quite accurately in

circular orbits. Even for noncircular orbital
motion (e < 0.1), the errors are confined to
less than 5%.

The influence of the solar pressure on the
satellite librations, in general, is adverse.
The analysis shows, however, that the system
can execute stable periodic motions of con-
siderable magnitude in the solar pressure field
under suitable initial conditions.

There exist combinations of system parameters
for which large amplitude oscillations result,
even in the presence of a very small solar
torque, due to resonant interaction.

The solar parameter affects stability of the
motion substantially and hence merits equal
consideration with the satellite inertia and

spin parameters and the orbital eccentricity.
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3. ATTITUDE CONTROL USING SOLAR RADIATION PRESSURE

The analysis of the last chapter clearly estab-
lishes the substantial adverse influence of solar radiation
pfessure on satellite librations. On the other hand, the
findings of earlier investigations of gravity oriented
systems49"51 suggest that the radiation force can provide
effective damping torques to maintain a satellite in a
desired attitude. However, as pointed out in the literature
review, available analyses of solar pressure control of
spinning satellites are only of a preliminary nature. This
is unfortunate because, in many space applications, a
satellite with a directional sensor has a preferred
orientation which is normally achie&éd by mounting the
device on a sfabilized platform aboérd the spinning
satellite. .The spin,'through a gyroscopic moment, provides
stability while the platform, despun by control moments,
tracks a given object in space. The concept of sélar
pressure control provides an exciting possibility of
stabilizing the entire system through a semipassive
approach. )

This chapter investigates-the feasibility of
the general.fhree-axis nutation -damping and attitude control
of spinning.satellites using a solar controller sensitive

to angular displacement and velocity errors. The analysis
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is kept quite general to.accbmmodate.eccentric orbits

and arbitfary inclinations of the orbital plane with respect
to the éclipfic. The nonlinear, nonautonomous, coupled
equations of motion are analyzed numerically and the
influence of system parameters on the response studied.

In the latter part of the chapter, a logical
approach for controller design is developed. Analytical
solutions for the control variables are obtained which
suggest reduced software requifements. Several examples
using representative satellites illustrate the effectiveness
of the control system and help gain.an appreciation as to

the controller size required for a desired performance.

3.1 Feasibility of Solar Pressure Control
3.1.1 Equations of motion

Figure 3.1 shows an axisymmetric (Iy = Iz)
satellite with the center of mass S moving in a Keplerian
orbit about the center of force O. The satellite consists
of a central.body I, spinning at a constant average angular
velocity, connected to a stabilized platform II through a
viscous damper effective in axial rotgtion. The spatial orien-
tation of the axis of symmetry, as stated before, is specified
by two successive rotations y and B, referred to as roll

and yaw, respectively, which define the attitude of the

satellite principal axes x,yY,z with respect to the inertial
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the solar pressure environment
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reference fraﬁe x', ¥y', z'. The rotor and the platform spin
in the x,y,z reference with angular velocities o and i,
respectively. 1In terms of these modified Eulerian rotations,
the expressions for the potential and kinetic energies

lto O(l/R3) are obtained as:

c
I

—umS/R—u{(IX/2R3)(1-1)/1}(1_3sin2ycos28) (3.1)

222

T = (ms/z)(§2+R 0 )+(1X/2I>{(1—J)1(&»§sins+écos3cosy)2

+ JI(i—?sinB+écosBcosy)2+(é—ésiny)2
+(§cosB+ésinBcosy)2} (3.2)
The Rayleigh dissipation function is given by
. 2 02
F = (1/2)Kd(k—u) : (3.3)

Using the Lagrangian formulation, the equation of

motion in the o degree of freedom becomes,

._I . 8 - l_. - . .
(d/dt){Ixr(a Y51n,+6cosBcosy)}+Kd(a X) Q, (3.4)
As the rotor is considered to spin at a constant
average spin rate (i.e., no spin decay), the usual

assumption in the analysis of dual—épin spacecraft,
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Q0. = K,(a-1) _ (3.5)

This is equivalent to assuming an energy source countering

the bearing drag on the rotor. The first integral

a-YsinB+8cosBcosy = h, (3.6)
may now be used to eliminate the cyclic coordinate o through

the spin parameter o defined as,

o = (a/8)] =(h_/6). -1
e:Bz’Y:O o =0 (30 7)

Neglecting orbital perturbations due to librational

motion78’79

and making use of the spin parameter, the
Lagrangian formulation yields the governing equations of
motion in the roll, yaw and pitch degrees of freedom.

Changing the independent variable from t to 6 through the

Keplerian orbital relations, they finally take the form:
Y'" =-2B'(y'tanB-cosy)-(B'-siny)secB[(1-J) I (o+1) %

{(l+e)/(l+ecos8)}2+JI(A'—y'sinB+cosBcosy)]

+{3(I—1)/(l+ecos€)—l}sinycosy—{zesine/(l+ecose)}x

(y'+cosytanB) = QY (3.8a)
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B'" -y'cosy-{2esinb/(1l+ecosh) } (B'-siny) +(y'cosB+cosysinB) X

[(1—J)I(0+1){(l+e)/(l+ecose)}2+JI(A'—Y'sin8+cosBc05Y)

+(Y'sin8—cosBcosY)]—3{(I—1)/(1+ecqs6)}sinzYsinBcosB = Q

8
-(3.8Db)

A" -=y" sinB~{2esinB/(l+ecosB) } (A'-y'sinB+cosBcosy)

-B'y'cosB-y'cosBsiny-B'cosysinB+ (K/JI) X

3/2 e 20

{ (1+e) / (l+ecosB) “} [A'-y'sinB+cosBcosy-(o+1) X

{(l+e)/(l+ecose)}2] = Q5 _ (3.8c)
where Qi(i = Y,B,A) represent the generalized forces due

to solar radiation pressure.

3.1.2 Controller configuration

A controller, in general, cbnsists of light, rigid,
highly reflective plates (membranes) suitably mounted on
the platform to be stabilized. The control moments resulting
from the solar radiation force on the plates may be varied

by changing any one of the following: .

(1) the distance between the center of pressure and
the satellite center of mass by translating the

plate support;
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(ii) the area of the membrane through wrapping or
unfurling portions of it;
(iii) the projected area of the plate as 'seen' by the

sun by rotating the plate.

Practical considerations make the last alternative
the most attractive, especially, when servomotors can bé
located within the'controlled environment of the spacecraft.
In order that the three degrees of freedom of the system,
namely the roll vy, the yaw B8 and the platform pitch A, be
controlled independently, it is necessary to provide at

§ and §,.

1" "2 3

Various controller configurations were studied

least three independent plate rotations §

which, in general, yield expressions for the generalized

forces of the form:

Q= Q>\(51, 52, 53) (3.9)

where the functions in the right hand side are transcendental.

As the rotations 61, 62, and 63 are real, the

simultaneous maxima [Q_]|

Y 'max’ IQBImax and IQleax' for which

the set of Equations (3.9) possesses a real solution,
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represent the physical limit on the generalized forces that
a particular controller configuration can yield. The
.problem of determining the maximum values of QY' QB’ and
Qy which would satisfy the above criterion is, in general,
a complex one. Any attempt to simplify the problem, through
the choice of controllers vielding compietely decoupled
moments, would lead to increased hardware complexities. One
is, therefore, forced to compromise by selecting a controller
configuration resulting in a partial uncoupling of the Qi'

Figure 3.2 shows the schematic diagram of the
proposed semi-passive controller. It consists of five sets
of plates Pi(i = 1,2,3) and Pj(j = 1,2) with their axes
mounted on the platform. The plates are permitted rotations
6i(i = 1,2,3) about these axes. The angles Gi(i =1, 2)

are measured from the yz-plane and §, is measured from a

3
platform-fixed reference line at an angle A from the y axis.
At a given instant, the set P3, controlling the A motion,
operates in conjunction with the sets Pi(i ='1,2) or
P%(j =1,2) or PiPé(i # j), which provide corrective torgques
in the Yy and B degrees of freedom.

The determination of the moments due to solar
radiation pressure is somewhat involved. Figure 3.3 shows

a plate in an arbitrary orientation with respect to the sun.

The force on an elemental plate area dA is given by
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dF = -p_dA|cosg | {(1-1)u+ps} (3.10)

with the resulting moment about the satellite center of

mass as
M = f r X aF (3.11)
A _

Expressing the angle of incidence & and the unit
vectors u and s as functions of the attitude angles, the
solar aspect angle ¢ and the platé rotations Gi, and
evalﬁating the integral in Equation (3.11l) yield the desired
expression for M. The application of the principle of
virtual work finally leads to the generalized forces Qi'
-The expressions are rather lengthy, however, ignoring the
terms of order (l-t1-p)/2p compared to unity, which is justi-

fiable for surfaces of high reflectivity, results in a

considerable similification:

Q, = —E(e)[UicllcosEJJcos£]§inélsinA
+U2C2|cos EJ cosgzsinézcosﬂsec":8 | (3.12a)
Qg = —E(e)[Ulcl]cosi llcos Elsinéicosk

- U2C2]cosg 2[cosg 2sinézsin)\] . _ (3.12b)



Q, = -E(0) (C4/3) |cos £ 4]cos &4
where
U. = +1 for P., -1 for P!; i =1,2
1 . 1 1

cos gl= uicos61+(uj51n>\-ukcos>\)51n6l

sink)sind2

cos £2= uicos<82+(ujcos>\+uk

cos £3=-ujsin(d3+x)+u cos (8 441)

k

The solar parameters, Ci’ are defined as

3 .
C, = (4ppORp/uIy)Ai€i, i=1,2

_ 3
C3 = (4ppORp/uIX)A3e3

3.1.3 Control strategy

65

(3.12c)

(3.13)

(3.14)

The generalized forces Qi are controlled in a

velocity and position sensitive manner according to the

relations:

Q = -u

' .- -
y Y vY(Y Yc)

QB = -UBB'-vB(B—BC)

Q) = =My A'=v,y (A=)

(3.15a)

(3.15b)

(3.15¢c)
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where the system gains My vi are chosen according to some
suitable criterion, such as, the least time of damping or
the maximum permissible displacement during a nutation
cycle. The position control parameters Yoo Bc’ and xc,
however, are functions of the desired final orientation
Ygo Bf, and Af and are obtained from the equilibrium
consideration of the controlled system (Equations 3.8).

For nutation damping in a circular orbit, this results in

Yo © Bc =0, Ac = —(l/vA)KO/JI (3.16)

In principle, the plate rotations can be obtained
by substituting Equations (3.15) into Equations (3.12) and
solving for 6i. This, of course, implies specification

of the signs of U, and U i.e., a combination of the plate-

1 27

sets to be operated. However, there are still several
mathematical problems as the system of Equations (3.12)
may not possess a real solution. A trial with different

sign combinations of U, and U, is thus necessary. Fortun-

1 2

ately, for many applications, ]uil << Iuj], |u, | and A

K|

executes small oscillations in the neighbourhood of nominal
pitch attitudes Af = 0, /2, ®™ or 3n/2. In such situations,

the required signs of U, and U, may be determined

1 2

analytically.
Furthermore, the controller may be unable to

provide the corrective moments demanded by the system
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(Equations 3.15) at all times due to its physical limita-
tions. It is;'therefore, necessary to introduce saturation
constraints on the control moments Qi' Hence the real
solution for 6i has to be determined consistent with this
constraint.

QA being a function of 63 only, its maximum
attainable value can easily be found,

= E(B)(C3/J)(u§+u2 (3.17)

IQ)\lmax k)

hence it is

But QY' Q, are functions of both 8. and §

B 1 27
necessary to specify a rational criterion for the controller
operation. In the present analysis, based on physical

considerations, it is taken to be the maximum of the total

transverse torque, (Q$COSZB+Q§)1/2. This occurs at
61 = n/2+tan_l[(3/2)(ujsinX—ukcosA)/uii{(9/4)(ujsinx
—ukcosk)z/u§+2}l/2] (3.18a)
+ for{(ujsink—ukcosk)/ui} s o0,
and 8, = W/2+tan_l[(3/2)(ujcosk+uksinx)/uit{(9/4)(ujcosk
+u sinh) 2/uf+23 /2] (3.18b)

t for {(ujcosx+uksinx)/ui} < 0.
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Substitution for Gi(i = 1,2) from Equations (3.18)
into Equations (3.12) yields the desired maximum values of
QY and QB' Appropriate signs of Uy and U, are to be

introduced which yield signs of Q and QBmax consistent

Ymax
with those governed by Equations (3.15).
The control procedure may now be summarized as

follows:

(i) sense the roll, yaw and pitch angles and rates,
orbital position and the apparent position of
the sun;

(ii) compute the control moments demanded by the
system using Equations (3.15);

(iii) evaluate the maximum attainable moments using
Equations (3.17, 3.18, 3.12a and b);

(iv) compare the moment demand with the attainable
values. If the demand exceeds the maximum
available, set it equal to the latter;

(v) determine the plates to be operated for roll-

yaw control (through U, and U2) and the rotations

1

61, 62 and 63 from Equations (3.12).

3.1.4 Results and discussion

The response of the system was studied by numeric-
ally integrating the equations of motion (3.8) along with

the control relations (3.15). Again the Adams-Bashforth
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predictor-corrector quadrature with the Runge-Kutta starter
was used in conjunction with a step size of 3°. The impor-
tant system parameters were varied gradually over the range
of interest and the controller performance evaluated both
in circular and elliptic orbifs. In general, the system is
exposed to extremely severe disturbances, much higher than
it is likely to encounter in the normal operation, to evaluate

the controller's performance under adverse conditions.
(a) Nutation damping

Figure 3.4 summarizes the inflﬁence of the controller
gains My v, on the.response. In general, an increase in My
provides an overdamped character to the system (Figures
3.4a and b) while a corresponding increase in vy for a given
My results in oscillations suggesting a reduction in damping
(Figures 3.4a and c). The existence of an optimum choice
of controller gains for a set of given system parameters is -
thus apparent. This is indicated in Figure 3.4d.

The effects of the satellite inertia parameter I
and the spin parameter ¢, presented in Figure 3.5 suggest.that
short, disc-like satellites (I = 1.5) withstand and damp a
given disturbance relatively better than long, slender
satellites (I = 0.5). It is of interest to point out that
here the value of J, representing the ratio of the axial
inertias of the platform and the satellite, is taken as 0.5.
The analyses with J varying from 0.25 to 0.75 showed the

system response to remain virtually unaffected. This is
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understandable as large J makes it more amenable to con-
troller corrections. The effect of the spin parameter ¢
- was also found to be relatively insignificant. This is
to be expected as the natural stiffness of the system, to
which the spin parameter contributes, is largely provided
by the controller gain vy (Figures 3.5c and d).

Figure 3.6 shows the influence of the solar
parameters Ci and aspect angle ¢ on the controller per-
formance. The limitation imposed by Ci on the maximum
allowable control moments is clearly reflected in the
response plots (Figures 3.6a and b). Note that an increase
in Ci results in an oﬁerall improvement of the transient
performance of the system. However, there is a restriction
as to the makimum attainable values for Ci as imposed by
the control plate areas and their moment arms.

The relative position of the sun (¢) affects the
response in the y and B degrees of freedom through the corres-
ponding change in the available control moment. Thus foll and
yaw attain different relative amplitudes in an orbit, how-
ever, their damping time remains essentially unaffected
(Figures 3.6c and 4).

The performance of the controller in an eccentric
orbit remains essentially the same except fér a Steady.state
limit cycle appearing in the A degree of freedom due to
the periodic forcing function dependent on e (Equation

3.8¢). This is indicated in Figures 3.7a and b, where the
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roll and yaw motions damp out quite quickly but the platform
pitch persists as a limit cycle._ The sustained oscillation
of the platform would, in general, be highly undesirable.
Fortunately, it can be eliminated using a modified control

relation for QX sensitive to the eccentricity induced

disturbance,
- . 3/2 2
Xc = (l/vx)[-2e51n6/(l+ecose)+{(K/JI)(1+e) / (l+ecosB) “} x
{1-(0+1) (1+e) 2/ (1+ecos8) 2}] (3.15¢) "

Figures 3.7c and d illustrate the effectiveness of the
modified control relation in eliminating the 1limit cycle.

The information presented so far pertains to
orbital motion in the plane of the ecliptic (i = 0). Of
course, depending upon the mission, the orbital plane would
be at an angle to the ecliptic. A systematic study showed
the effect of i to be confined to local changes in fesponse
character without significantly altering the overall con-
trol performance. The plots in Figures 3.8a and b

substantiate this conclusion.
(b) Rotor spin decay

The present analysis consideérs the rotor (body I)
to have a constant average spin rate. Apparently, this
would be achieved through some active energy source. HoWever,

the influence of possible rotor spin decay on the librational
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response of the system would be appropriate to explore.
Although o still remainé a cyclic coordinate, and hence
the first intégral is available, it is not possible to
eliminate the rotor spin degree of freedom from the rest
of the equations of motion. Thus one is faced with the
solution of a 7th ofder system (as against the 6th order
in the previous case). As can be anticipated, the roll
and yaw motions damp out as before, coupling with the o
degree of freedom being weak. However, the platform piﬁch
angle X tends to drift away from its preferred orientation
Af (Figure 3.8c).

This does not reflect in any way a limitation
on the capability of the controller but failure on our part
to exploit it fully. The validity of this observation
becomes quite apparent when one examines the modified

pitch equation in the presence of dissipation,

A" -y" sinB~{2esinb/(1+ecosB) } (A'-y'sinB+cosBcosy)

-B'y'cosB-y'cosfsiny-R'cosysinB+ (K/JI) x

{(1+e)3/?/(14ecos0) 23 (A1-a") = (3.8¢)"
Note the dynamic coupling between the rotor and
the platfofm. On the other hand, the control relation for
QA (Equation 3.15c) does not involve o' explicitly. Thus
the controller's potential to account for the rotor spin

decay is not utilized. The situation can easily be
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corrected by modifying the control function as indicated,

QA = —uAX'—a(G)a‘—Vx(A—AC) (3.15¢) "
where

a(8) = (K/J1) (1+e) 372/ (1+ecosd) 2

Ac = —(l/vk)(2esin6)/(l+ecose)

A typical system response using this modified control function
is presented in Figure 3.8d.

Implication of this analysis is rather far reaching.
It is no longer necessary to maintain the rotor spin rate
from attitude dynamics considerations as the controller is
able to provide sufficient torque irréspective of the spin
rate. The system thus has a truly semi-passive character

promising an increased satellite life-span.
(c) Attitude control

The controller provides an interesting possibility
of changing the satellite's preferred orientation in orbit.
This is accomplished by using the position control parameters

Y., B, and Xc in accordance with the desired equilibrium

C C

configuration Yer Bf, and Af. As. an illustration, for a
static equilibrium of the satellite in a circular orbit,
Equations (3.8) in conjunction with Equations (3.15) lead

to
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.Yc = (l/vY)[(51nyf/cos$f){(1—J)I(o+l)
+JIcostcoszh431—4)sinyfcosyf]+yf (3.19a)
Bc = (l/vB)[coszsian{(l—J)I(o+l)+(JI—l)costcosz}
. 2 .
-3(I-1)sin Yf51n8fcost]+Bf (3.19b)
A = (1/9,) [(R/IT){ cosB .cosy-0-1}]+X (3.19¢)
Note that in this particular case of e = 0, the position

control parameters are fixed once the final orientation is
specified. On the other hand, for the case of an eccentric
orbit, the parameters depend, in addition, on the satellite
position in the orbit. Figure 3.9 illustrates the
versatility of the semi-passive controller in achieving
arbitrary orientations in space, for both circular and
elliptic orbits. This suggests an exciting possibility

for a space vehicle to extend its range of applicability

and undertake diverse missions.
(d) Illustrative example

It was decided to demonstrate the effectiveness
of the concept through a preliminary attitude dynamics study
of the two well-known satellites, INTELSAT IV and Anik,

when provided with the proposed controller. Appropriate
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geometrical and inertia properties were assigned. As seen
before, it is no longer.necessary to spin a satellite for
attitude control. However, nominal value of o = 1 was taken
to account for possible spin introduced_from other consider-

ations, e.g., temperature control. The solar parameter

R

2 for INTELSAT IV can be obtained with control

plate areas Ai =3 ft2 and moment arms e, = 5 ft. Similarly,

value of C.
i

Ci = 5 for Anik may be achieved with plate areas Ai =.1.2 ft2
and moment arms e, = 5 ft. Subjecting the satellites to a
disturbance equivalent to that imparted by micrometeorite
impaets over 24 hrs, which.represents an enormous magnifi-

cation of the real situation, gives80

- < ' ' v
0.05 < Yor 80, Ao

< 0.05. It is apparent (Figure 3.10) that the controller

is able to damp such a severe disturbance quite effectively
with the maximum deviation from the preferred orientation of

less than 0.25°. The figure also shows the controller's

effectiveness in achieving specified spatial orientations.

3.2 Improvement of Controller Design

Poﬁential of the concept having been established,
‘attention is next directed at rendering it more efficient
and structurally more attractive. As the solar controller
was found to be quite effective even in the absence of any

spin, the case of a nonspinning satellite is now considered..
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3.2.1 Equations of motion
The governing equations of motion follow directly

from Equations (3.8) on substituting J =1, K = 0:

Y" -2B8' (y'tanB-cosY)-I(A'-y'sinBR+cosBcosy) (R'-sinvy) secB

+{3(1-1) /(l+ecosbH)-1}sinycosy-{2esinb/ (1+ecosb) } x

i

(y'+cosytanB) Q (3.20a)

Y
B" —y'cosYy~-{2esinb/(l+ecosb) } (B'-siny)+{I(A'-y'sinB
+cosBcosy)+(y'sinB-cosBcosy) } (Y'cosB+cosysinB)

~3{(I-1) (1+ecosd) }sin’ysinBcosB = 0,

(3.20Db)

A" -y" sinB-{2esinb/(l+ecosb) } (A'-y'sinB+cosBcosY)

-B'y'cosB-Y'cosBsiny-B'cosysinf = QA (3.20c¢)

3.2.2 Development of controller models

Controllers capable of providing general libration-
al damping and three-axis attitude control require the
three degrees of freedom of the system (y, B and 1) to be
controlled independently. A versatile solar controller
configuration would thus result in generalized forces Qi
as functions of at least three control variables, Gi. of
various configurations satisfying this requirement, only
those permitting relatively easier solution for the control
variables with a given set of Qi would be practically

feasible.
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At the outset, it appears instructive to study the

" control moments generated by a single plate P with its

support

arm gimballed at the point T on the axis of symmetry

of the satellite (Figure 3.1l1a). The arm supporting the

plate is allowed rotations oy and o, while the plate can

turn about it through an angle § measured from the plane TSW.

Following the procedure discussed earlier in detail, the

generalized forces Qi due to solar radiation pressure can

be written as:

where

cosé§

—EE(G)|cos£|cos£{(h/e+sina2)(sinalcosé+cosulsinazsin6)

2
cos a

+COSOL1 2

sind}/ (I cosp) | ~(3.21a)

—EE(G)IcosEIcosE{(h/e)(cosalcosé-sinalsinuzsiné)

+cosa, sina,cosd—-sina

1 5 2sin6}/Iy (3.21b)

= CE(8) |cosE[cos £ cosa,coss/T (3.21c)

-u. a~.sind+u. (si 8§+ 0.si ;nG
jcosa,sin uj(s na, cosé+cos 151na251 )

—uk(cosalcosé—51na151na251n6) (3.22)

As is evident, each of the Qi depends on the

variables al, a, and 6. The transcendental nature of these

2

functions makes it difficult to establish the bounds
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Ilemax’ IQB!max and lQX]max within which Equations (3.21)

17 %o and §. It is, therefore,

necessary to consider modifications which would reduce

possess real solutions for a

these equations to a more amenable form.

A logical approach seems to lie in devising con-
figurations where some of the three variables become con-
stants. The best choice, from a practical viewpoint, would
be to remove the gimbal and fix the axis of the plate to
constants.

the satellite body, thereby rendering o, and a

1 2
This reduction in the number of control variables, of course,
would have to be compensated by a corresponding increase in
the number of blates erating about body-fixed axes. Numerous
controller configurations were considered to this end, how-
ever, for conciseness, only a few are discussed here.

Figure 3.11b shows an arrangement of three plates
Pi(i = 1,2,3) rotatable about three mutually perpendicular
body-fixed axes. The rotations Gi(i = 1,2) are measured
from the.yz—?lane while 63 is measured from the xy-plane.
The evaluation of the generalized forces Qi resulting from
this configuratioh may be carried out either from the first
principles, or, by appropriate substitutions for @y, and

§ for each plate into Equations (3.21). These are found

to be:



where
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E(O){CllcosillcosElcosélcosA—Cz|cos£2|cosizc056251nx

+E3]cos£3|cos£3sin63}/(;ycosB) | | (3.23a)

E(G){-Cl]cosgllcosalCOSG 51nA—C2[cos£2|cos&zcosdzcosA

1

+C3|c0563|cos£3cosé3}/1y | (3.23b)

= E(B){Cllcos£1|cosglsin61+C2|cosEZIcos£251n62}/IX

(3.23¢c)
cosF;l = uicosél+(uj51n}\—ukcos)\)51n6l
cosE2 = uic0562+(ujcpsk+uk51nk)51n62
cosF,3 =—uj51n63+uk00563 (3.24)

It may be observed that the dependence of the

' generalized forces Qi(i = v,B,A) on the control variables

Gi(i = 1,2,3) is gquite involved and the system of Equations

(3.23) does not appear to lend itself to an analytical

treatment. Figures 3.1llc and 4 show alternative arrangements.

An analysis of the generalized force eXpressions, which are

essentially of the same nature as Equations (3.23), showed

them to present similar difficulties.
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Following the approach discussed in preceding
sections,.the controller configuration shown in'Figure 3.12
is finally arrived at. The performance of this model is
investigated in.detail as both the hardware and software
requirements are relatively simple to implement. It consists
of four plates Pi(i =1,2,3,4) with their support arms

forming a crisscross. The plates Pl and P2 rotate about

the axis of symmetry of the satellite, the rotations Gl.and

62 being measured from the xy-plane. The plates P3 and P4

rotate about arms, lying in the plane perpendicular to

the axis of symmetry, with the rotations &, and 64 measured

3

from the yz-plane. The moments generated by this arrangement

are found to be:

Q, = E(e)[Cl|cosEllcosElsinél—Cz|cos£2|c055251n62
+I{C3!cos€3|cosE3cos63—C4|cosE4Icos£4cosé4}cosk]secB
(3.25a)
Qg =_E(6)[CllcosgllcosilcoscSl—Cz|cos€2|cos£2cosé2

+I{—C3]cos£3lcos£3cosé3+c4|cos€4|cosE4cosé4}51nA]

(3.25b)

Q, = E(G){C3|cos£3|cos€3sin6 +C4]cosE4|cos£4sin64}

3
(3.25¢)

" where
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, -u.sing.+ ) i =
.cosil ujs:.ndl ukcosdl, i 1,2

cosE3 = uicos6 +(ujsink—u coslA)sind

3 k 3

(3.26)

cos'g4 uicosé4-(uj51nk—ukcosk)51n6

4

and the solar parameters are defined as,

0Q
Il

(2ppOR;/uIy)Ai€i, i=1,2

: 3 .
(2ppoRp/uIX)Aiei, i= 3,4 (3.27)

Although Equations (3.25) indicate a rather complex
dependence of Qi on the control variables, it is possible
to obtain relatively simple analytical solutions for Gi

(i =1,2,3,4) through'a judicious control strategy.

3.2.3 Control strategy

An inspection of Equations (3.25) indicates that
the plates ?l and P2 do not produce any moment in the pitch
(A) degrée of freedom, hence this control will have to be
P

accomplished through plates P Ideally, one would like

3" 74°
their operation to be free of coupling roll-yaw moments.
Fortunately, this can be achieved through a simple control

law:
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§, = 1/2, 64 = 'off!

or

o
Il

off', 8, = 1/2, | (3.28)
the option being dicated by the sign required of Q, -

di = 'off' implies its rendering the corresponding cos&i'= 0,
i.e., physically, the sun~line would lie in the plane of

the plate. A pure pitch moment thus produced has the
magnitude

- o . 2
QA = E(G)C3,4(uj51nk u, CosA) , (3.29)

k
“where C3 = C4 = C3’er is assumed for convenience.

In order to provide the roll-yaw moments controlling
the orientation of the axis of symmetry of the satellite,
plates Pl and P2_may be operated simultaneously or one at a
time with the other 'off'. The latter-mode of operation,
resulting in greater transverse torques, is considered here.
"The generalized forces in the roll and yaw degrees of freedom
now take the form:

Q. = iE(6)Ci|-uj51n61+ukcosﬁi](—uj51n6i+u cosGi)51n6isecB

k

(3.30a)

QB =_iE(G)Cil—uj51n6i+ukcoséil(—ujs1n61+u cosdi)cosdi

k

(3.30b)
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where the plus'and minus signs correspond to plates P, and

1
P2, respectively. Note that the moments QY and QB are
coupled through the plate rotation angle éi.

The next step would be to maximize the available
moments consistent with the control requirements of

appropriate:sign. There are several aspects to this problem.

One approach is to maximize the total transverse torque,
2)1/2
B

(orienting the control plate so as to maximize cosEi)

(Q$COS28+Q . Unfortunately, the resulting critical Gi

yields only two of the four possible combinations of the
roll and yaw moment directions:
Y

QrQB':++r'_"_l_+r""

An alternate procedure would be to maximize

IQYI and IQBI' in turn, with respect to §,. the maximum

value of |QY{ = Q$ is found to occur at
=1 . 2,,.2.1/2

Gim = m/2+tan ~[{ 3uji(9uj+8uk) }/2uk] (3.31a)
with the corresponding IQBI = Qg being given by Equation

' . _ L. . . |
(3.30b) with Gi = Gim' Similarly, the maximum of IQBI = QB
occurs at

— -1 2 2,1/2
Gim = tan .[{3uki(9uk+8uj) }/2uj] (3.31b)
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with the corresponding IQY] = Q$ given by Equation (3.30a).
The prbper-sign of the quantity within the square-root is

determined from the coupling constraint imposed by

Equations (3.30), i.e.,
tan_di = QYCOSB/QB (3.32)

A consideration of Equations (3.3la and b) indicates that
in each.case, the two values of Gim’ corresponding to the
plus and the minus signs, lie in adjacent quadrants. Hence,
one of them always satisfies the constraint relation (3.32).
Thus use of the proper sign in the evaluation of 6im
(Equations 3.31) in conjunction with an appropriate choice
of the plate Pl or P2 (Equations 3.30) enables the controller
to provide all possible sign combinations of QY and QB' Of
the two admissible sets of moments, (Q?, Qg) and (Qs, QE),
the one resulting in a greater magnitude of the total torque
to control the axis of symmetry of the satellite, i.e.,
(Q3c0s28+Q§)l/2, is used. |

For example, let the required control moments be
'QY>O-and QB<O' As cosB is positive, tan 6i<0. Thus Gi
must lie either in the second or the fourth quadrant (Figure
3.13) .- Let the two values of aim as given by Equation
(3.31a) be (Gim)al and (cSim)a2 as shown. Note that they
have to be in adjacent quadrants as pointed out before.

Let the dim corresponding to Equation (3.31b) be in the

third and the fourth quadrants. Consistent with our require-
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ments, the admissible values are (8. ) and (§. ) . Of
im a2 im bl

these, the one resulting in a higher value of the total
transverse torque is used in the analysis.

The control moments thus detérmined are applied
in a bang-bang fashion in conjunction with linear displace-

ment and velocity sensitive switching functions,

Q, = —éisgn 5. (3.33)
where
S; = i' +mli-ig, i =7v,8) (3.34)
2 2 2 2
3, = of, G, = of for (d cos28+Q§ )2 cos26+Q§ )
o. = 0%, &, =0" for (szcoszB+ch)<(Qc2cos2B+Qm2)
QY Y’ "B *B Y B Y B

and m represents the system gain, chosen according to some
suitable criterion.
The control procedure may now be summarized as

follows:

(i) sense the roll, yaw and pitch angles and rates,
orbital position and the solar aspect angle;

(ii) determine the signs required of Qi'according to
the switching criterion (Equations 3.33);

(iii) during pitch control, use (63 = n/2, 64 = 'off"

or (63 = 'off', = n/2) for QA/(ujsinX—ukcosA)

64
2 0, respectively (Equations 3.25c and 3.26).
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(iv) for roll-yaw control, compute the four values
of Gi = dim from Equations (3.3la and b) and of
the two satisfying the quadrant constraint
(3.32), choose the 6i producing the greater
resultant transverse torque. Substitute into
Equation (3.30a or b) and select the plate to

be operated through the sign required in the

right hand side.

3.2.4 Results and discussion

As before, the response of the system is studied
by numerically integrating the equations of motion (3.20)
along with the control relations (3.33). Much smaller inte-
gration steps were required due to the bang-bang nature of
the control law. A step size of 0.1° gave results of
sufficient accuracy for the solar parameters Cii 5. For
cases with larger values of Ci, the step size had to be
correspondingly decreased. The controller performance was
evaluated in both circular and elliptic orbits and the

influence of important system parameters investigated.
(a) Libration damping in circular orbits

Figure 3.14 summarizes the performance of the
controller in damping the librational motion in circular
orbits in the form of optimization plots for the controller

gain m. It shows the variation of the damping time Tq
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defined here as the time taken for all the three libration
angles to settle within 0.1° of the final orientation, with
the gain m for different combinations of system parameters
and initial conditions. The plots, in general, indicate
the existence of an optimum value of the system gain result-
ing in the least time of damping.

The influence of the satellite inertia parameter I

on the performance of the controller is indicated by a

comparison of curves (a) and (b). Despite the drastic change
in the satellite mass distribution from pencil-like (I = 0.1)
to spherical (I = 1), only a small variation in the optimum

value of m gnd the general damping behaviour is observed.

It may be pointed out here that curves (a) and (b) were
obtained using a relatively small value of the solar para-
meters Ci = 2. For larger values of Ci, the effect of I was
hardly perceivable. The effectiveness of the control system
in libration damping of satellites with a wide variety of
mass distributions is thus apparent.

The effect of the solar parameters Ci’ characterizing
the magnitude of the solar torques, is observed by comparing
curves (a and c) and (b and di. An increase in Ci not only
results in a substantial reduction in the damping time but
renders the controller performance relatively insensitive
to the system gain m as well.

A comparison of curves (d and f) and (c and e)

shows the effect of the initial disturbances. An increase
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in the initial conditions results in longer damping times
as anticipated. In addition, for smaller values of Ci’
the system performance shows a strong dependence on the
controller gain m (curves d and f).

The influence of the apparent position of the
sun, indicated by the solar aspect angle ¢, and the perigee
argumeht w on the system behaviour was also studied. The
results, however, showed local changes in the response
character only, leaving the damping performance essentially
unaffected. |

Typical optimal responses for a satellite in an
equatorial orbit are presented in Figure 3.15a. Even when
subjected to severe impulsive disturbances in the roll, yaw
and pitch degrees of freedom simultaneously, the controller
is able to damp the satellite librations in a’few degrees
of orbital travel with the amplitudes remaining quite

small.
(b) Libration damping in elliptic orbits

‘The effectiveness of the controller in damping the
roll-yaw (y, B) oscillations of the.axis of symmetry of the
satellite remained virtually unchanged in eccentric orbits.
The pitch (A) degree of freedom, hdwever, executes a steady-
state limit cycle (Figure 3.15b). These oscillations result
due to the presence of the periodic forcing function
dependent on e (Equation 3.20c¢) and the inability of the
controller to generate sufficient torque to counter it at

all times.
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Figure 3.15 (a) Typical optimum response in circular
orbits; (b) Limit cycle oscillation in
elliptic orbits; (c¢) Variation of limit

cycle amplitude with system parameters
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From design considerations, it is of interest to
investigate the limit cycle amplitude as a function of
system parameters. Once the roll-yaw oscillations are
completely damped, Equations (3.20a and b) are identically
satisfied. Letting vy = y' = 8 = B' = 0 and substituting
from Equations (3.29 and 3.33) into Equation (3.20c), the
goVerning equation for the pitch oscillations reduces to

A" -{2esinf/(l+ecosh) }A' = E(0) x

=C3,4

2
(ujsink-ukcosk)sgn SA+2esin6/(l+ecose) (3.200)

The limit cycle oscillation being the steady-state solution

of this equation, its amplitude may be expressed as

Amax = f(C3,4,e,m,Af,i,w,¢) (3.36)
The largest amplitudes would result when the

maximum magnitude of the eccentricity induced disturbance

and the minimum (zero) magnitude of_the pitch control torque

occur simultaneously. The latter would physically correspond

to the projection of the sun-line on the yz-plane becoming

coincident with the axis about which plates P3 and P4

rotate. Note that such a situation.would arise only twice

~a year for an earth satellite. Considering small e, the

condition for worst limit cycle is given by



102

tan¢ = (tankfsinw—cosw)seci/(tanAfcosw+sinw) (3.37)
Figure 3.15c shows the variation of the pitch
limit cycle amplitude with the orbital eccentricity for a
‘range of values of the solar parameter C3 4 under the most
!

adverse situation. Even here, only moderate values of C3 4
7 .
are required to limit the amplitude to a generally acceptable

value.
(c) Attitude control

The ability of the controller in imparting arbi-
trary orientations to the satellite and thus enabling it
to undertake diverse missions appears interesting to explore.
Figure 3.16a shows, for both circular and elliptic orbits,
the effectiveness of the control system in providing an
arbitrary pitch attitude to the satellite while the axis
of symmetry remains normal to the orbital plane. The ability
to align the symmetry axis with the local vertical direction
and simultaneously attain a desired pitch attitude is
indicated in Figures 3.16b and c. Note the excessive over-
shoots with a larger value of the system gain which suggest
the use of small m for a smooth transition between widely
differing attitudes.

Thus with the.present control system, an antenna
aboard the spacecraft is able to scan substantial regions

of the sky as arbitrary pitch attitudes are attainable
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with the axis of symmetry either along the orbit normal

or the local vertical. The possibility of stabilizing

the satellite axis of symmetry at other orientations was also
investigated. The analysis suggests that the controller is
abie to achieve this but only at the cost of higher values

of C,.
i
(d) Illustrative example

In order to obtain preliminary estimates of the
control plate areas and moment arms required, the proposed
Canadian Communications Technology Satellite (CTS) and
Anik, are considered. The latter is assumed to be non-
spinning which represents an adverse situation. An impulsive
disturbance of 0.1 is applied in all the three degrees of
freedom which is in excess of that imparted by micrometeorite
" impacts over 24 hours. As the inertia parameter (I = 0.1
for CTS, 1 for Anik) did not affect the performance signifi-
cantly, most curves in Figure 3.14 (especially curves c, d
and e) are representative of the librational behaviour of
both satellites considered here. The solar parameter value
of Ci = 5 can be obtained for CTS ﬁsing plate areas
Al’2 = 12 ftz, A3’4 = 1.2 ft2 with the moment arms € = 10 ft.
Similarly, Ci ~ 20 for Anik may be achieved with each of
the plétes Having an area of 5 ft2 and moment arm 10 ft.

As indicated by curves (d and c¢) in Figure 3.14 these moderate

control plate areas are sufficient to damp the satellite
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librations within a few degrees of orbital travel. The
librational amplitudes also remained within a fraction of
a degree. The plots presented in Figure 3.16 indicate the
effectiveness of the controller in providing attitude
control to the CTS.

Finally, a comment concerning earth shadow,
which would render the solar controllers ineffective, is
appropriate here. Fof a geostationary orbit, the influence
of shadow is confined to quarter of the satellite's
lifespan, and even here, only during 5% of the orbital
period. The results showed the controller performance to

remain virtually unaffected.

3.3 Concluding Remarks

The significant conclusions based on the analysis

may be summarized as follows:

(1) The feasibility of a semi-passive controller using
solar radiation pressure for three-axis nutation
damping and attitude control of spinning
satellites is clearly deﬁonstrated.

(1i) The system is capable of damping extremely severe
disturbances in a fraction of an orbit. The time
of damping can be further reduced by an optimum
choice of the system gains.

(1ii) With the use of the general controller configura-
tion a directional device aboard the stabilized

platform may be earth-oriented, space-oriented
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or made to track a specified celestial object
through a proper choice of the position control
parameters. Even with the simplified model,
scanning of a substantial fegion of the sky is
possible. The solar pressure controllers thus
impart versatility to a space vehicle in under-
taking diverse missions.

(iv) The effectiveness of the system remains unaffected,
.even during a spin decay, with a proper choice
of the modified control function. Thus it is no
longer necessary to maintain a constant spin rate
by compensating for the dissipated energy.

(v) A logical approach for evolving a three-axis solar
controller model suitable for practical implemen-
tation is presented. The proposed four-plate
controller model appears to be quite attractive
due to its simplicity of design and the associated
software.

(vi) The use of bang-bang control relations substantially
improves the system performance. For solar
parameter values attainable in practice, a wide
range of controller gain yield near optimum
performance. Satellites with different mass
distributions exhibit essentially the same

damping characteristics.
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As the controllers do not require any mass
expulsion scheme or active gyros involving
large power consumption, the solar pressure
control system is essentially semi-active.

This promises as increased lifespan.
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4. MAGNETIC-SOLAR HYBRID ATTITUDE CONTROL

The earth's magnetic field presents an interesting
possibility of generating control moments by interaction
with onboard dipoles. Magnetic torquing appears to be
particularly attractive as it offers increased reliability
through the elimination of moving parts. The shortcoming
of the method, as pointed out by Bainum and Mackison59 and
others, lies in its inability to produce sufficient pitch
control torgques in equatorial orbits where the geomagnetic
field is nearly parallel to the orbit normal. On the other
hand, the usefulness of placing satellites in equatorial
orbits cannot be overemphasized, e.g., the communications_
satellites in the geostationary orbit.

A need for evolving a system which retains the
simplicity of the magnetic concept and yet able to provide
pitch control, is thus apparent. Having established the
effectiveness of the solar pressure controller, it is
proposed here to utilize it for damping pitch oscillations.

This chapter explores the feasibility of the
three-axis nutation damping and attitude control of a
dual-spin satellite using a magnetic-solar hybrid control
system. Two magnetic controller models are considered. A
bang-bang control law with linear displacement and velocity

sensitive switching functions is employed and analytical
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_solutions for the control variables are obtaiped. The
performance of the control system is evaluéted numerically
and the results are presented as functions of system
parameters. An illustrative example towards the end

establishes the effectiveness of the system.
4.1 Formulation of the Problem

4.1.1 Equations of motion

The geometry of motion (Figure 4.1) of the satellite
beiﬁg the same as the dual-~spin spacecraft considered in
'Chapter 3, Egquations (3.8) apply where Qi(i = v,B,2) now
represent the total generalized forces due to the magnetic
and solar controllers. For convenience, the governing

equations of motion are cited again:
Y'" -28"'(y'tanB-cosy)-(B'-siny) sec B[ (1-J) I (0o+1) x
2
{(1+e) /(1+ecosb) } “+IJI (A'-Y'sinB+cosBcosy) ]

+{3(I-1)/(1+ecosb)-1}sinycosy~{2esinb/(l+ecosb)} x

(Y'+cosytanB) = QY (4.1a)

B" -y'cosy-{2esinf/(1l+ecosB) } (B'-siny) + (Y'cosB+cosysinB) x

[(l—J)I(0+l){(l+e)/(1+ecose)}2+JI(A'-Y'sin8+cosBcosY)
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Figure 4.1 Geometry of motion of dual-spin satellite in
the earth's magnetic field
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+(Y'sinB—cosBcosY)]—3{(I—l)/(l+ecose)}sinzysinBcosB= QB

(4.1b)
A"—y"sinB-{2esinG/(l+ecose)}(A'—Y'sin8+cosBcosy)—B'Y‘cosB
] . ] . 3/2 2 '
-Y'cosBsiny-B'cosysinB+ (K/JI) { (1+e) / (l+ecosf) “} x

[X'—Y'sin6+cosscosY—(0+1){(l+e)/(l+eCOSe)}2] = Q,

(4.1c)

4.1.2 Magnetic roll-yaw control

Consider a single dipole onboard the platform with
an arbitrary orientation p, strength hi and polarity U.
The moment generated by interaction with the earth's magnetic

field is then given by,
D7I=PXB=Uhme}§ (4.2)

Expressing the unit vector p and the geomagnetic
induction vector B in terms of their components along the
xyz—axes and using the principle of virtual work, the
generalized forces in the roll, yaw and pitch degrees of
freedom can be written as:

QY = UCm(piBj—iji)secB/(l+ecose) (4.3§)
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Q, = UCm(pkBi-pin)/(l+ecose) (4.3b)

B

me= U(Cm/JI)(PjBk-pkBj)/(l+ecose) (4.3c)

where the magnetic parameter Cm’ characterizing the magnitude

of the magnetically generated moments, is defined as

_ .2
Cm = hmMe/uIy (4.4)

The body components of E/Dm are given by the relations

d -~ r— — pee —

Bi cosBcosy cos851nYcosnm c05851nys1nnm an
+51n851nnm -s1nBcosnm

Bj = | -siny cosYcosnm cosYs1nnm Byn (4.5)

Bk sinBcosy 51n851nycosnm s;n631ny51nnm an
—c05651nnm +cosBcosnm I

The geomagnetic induction components along the

orbit normal, ascending node and perpendicular to the line

of nodes in the orbital plane are well establishedgl. For
an earth-centered canted dipole model, they are:
B = -cosi_cose_ + sini_sin¢ sine (4.6a)
Xn m m m m m
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Byn = (3/2)sinimsinancossm+(l/2)[cos¢m+(3/2)x

{(l+cosim)cos(2nm-¢m)+(1—cosim)cos(2nm+¢m)}]sinem

(4.6b)
'an = (1/2)sinim(l—3c052nm)cossm+(l/2)[cosimsin¢m
+(3/2){(l+cosim)sin(2nm—¢m)+(l—cosim)x
sin(2nm+¢m)}]sin€m (4.6¢)

It may be pointed out here that the angle ¢m
varies due to the earth's rotation and the regression of
the line of nodes, according to ém = (ne+nr). Its governing
equation with the orbital angle as the independent variable

is,
o) = (ne+nr)(R;/u)l/2(1+e)3/2/(l+ecose)2 4.7)

which has the solution (for e < 1)

1/2

O = Ongt L (ngtn) R/ (14e) 32/ (1-07) ) x

1/2 1

[—esine/(1+ecos6)+{2/(l~e2) } tan~

{(1-e) Y %tan(8/2) / (1+e) 1721 (4.8)
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where the appropriate quadrant for the arctan function is
to be introduced. The present analysis ignores the
nodal regression as a dynamic effect which is equivalent to
assuming the earth to be gravitationally spherical.
For controlling satellite nutations in an
equatorial orbit with the nominal position of the spin axis

along the orbit normal, it can be easily shown that the

maximum transverse torque, (Qicos28+Q§)l/z, results when
p:. = 0. Accordingly, two magnetic controller models with

1

dipoles in the satellite's transverse plane are considered
here (Figure 4.2).
Model A consists of a single dipole rotatable

about the xp axis in the platform fixed reference xp,yp,zp.
Physically, it would correspond to a single electroﬁagnet
rotating about the axis of symmetry or two (or more) fixed
electromagnets with variable currents. The moments generated

are given by,

QY = -UCmijisecB/(l+ecose)' (4.9a)
QB = UCmpkBi/(1+ecose) (4.9b)
me = U(Cm/JI)(ijk—pkBj)/(lfecose) (4.9c)

where
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pj = cos(6m+A), Py = s1n(6m+A) (4.

116

9d)

A constant dipole level h;, leading to a constant

value of the magnetic parameter Cm’ is assumed in the

present analysis. The components of the total transverse

torque are controlled according to the relations:

sgn(chosB) = —-sgn SY (4.
sgn QB = —-sgn SB (4.
QYCOSB/QB = SY/SB (4.

10a)

10Db)

10c)

where the switching functions Si(i = v,B) are defined as

1

and m represents the system gain.
This results in a simple control law for the

dipole angle em (Figure 4.2),

m

Note that no polarity reversals are required

the angle em is permitted any values in the range 0 to

S, = i'+ m(l-lf)l i= Y,B (4.

o -1
6 = —-A-tan (SB/SY) (4.

11)

12)

if

2T.

However, it would be desirable to restrict Gm to the range

-1/2 to 1/2 (for the gimballed electromagnet) and permit
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polarity reversals, which leads to the controls:

6 = -tan'l{(s

n 8 tani) } (4.13a)

+Sytan>\)/(Sy—SB

U = sgn{(SycosX-SBsinA)/Bi} (4.13Db)

where the principal value of the arctan function is to be

admitted.

Model B consists of two mutually perpendicular
dipoles with orientations 51 and 52 fixed in the platform
and allowed polarity reversals (Figure 4.2). Substituting
for the unit vectors 51 and 52 in Equations (4.3), the

magnetic control moments become,

Q = -(Ulplj+U2p2j)CmBisecB/(1+ecose) (4.143)

QB = (Ulplk+U2p2k)CmBi/(l+ecos6) (4.14b)

O = (U (P 4B=PyyBy) U, (py 3By —Pyy B) I x
(Cm/JI)/(l+eéose) (4.14c¢c)
where
plj = ka = COS(6m+>\) 14 plk = —pzj'= Sln(em'l-)\)

(4.144)
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Although the bang-bang controller can no longer
distribute the total transverse moment between the roll
and yaw degrees of freedom in proportion to the demands
governed by the switching functions, appropriate signs of
Q. and QB (Equations 4.10a and b) may be achieved with

Y
the polarity controls:

forltan(em+k)|<l, U, = sgn{SY/Bicos(6m+l)}

u, = —sgn{SB/Bicos(6m+A)} (4.15a)
for]tan(em+k)|>l, U, = —sgn{SB/Bisin(em+X)}

u, = sgn{SY/Bi51n(em+X)} (4.15Db)

Note that em defining the locations of the dipoles
with réspect to the platform-fixed axes is a constant in
this case. For the final pitch orientation Af = 0 (the axis
yp pointing towards the earth), minimum cancellation of the
torques due to the two dipoles occurs when Gm = 0. Further-
more, for most applications requiring -m/4 < A < w/4, the

controls reduce to:

Ul = sgn(SY/Bi), U2=-sgn(SB/Bi) (4.16)
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4.1.3 Solar pitch control

The platform pitch control is accomplished using
a solar pressure controller consisting of plates PP which
are allowed a rotation § about the axis of symmetry of the
satellite (Figure 4.2). For highly reflective plates, the
pure pitch moment resulting from solar radiation pressure

is (Equation 3.1l2c),

Q,, = —c{(1+e)3/(1+ecose)4}|-ujsin(5+x)

+uk¢os(6+x)l{—ujsin(a+x)+ukcos<a+x)} (4.17)
where

C = (4pp R3/uI )Ace (4.18)

op Xxp ' )

Using the control relation

Qs = —,kalmaxsgn Sa (4.19)
with

SA = A'+m(A—Af), | (4.20)

the control law for the plate rotation § becomes,

for uj>0, 1 tan-l(uk/uj)—x—(ﬂ/2)sgn S

A

for uj<0, ) W+tan—l(uk/uj)-k—(n/2)sgn S

A
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for u. 0, 8§ = cos {-sgn(u,S,)} (4.21)
Jj _ k™A
where the principal value of the arctan function is to be

introduced.
The total generalized force in the pitch degree

of freedom is then given by,
QA = me + ka (4.22)

It may be pointed out here that the components of
the unit vector in the direction of the sun involve orbital
parameters Q, i and w referred to the ecliptic plane while
the formulation of the magnetic controller requires the same
_angles referred to the earth's equatorial plane. The
relations governing these parameteré for an arbitrary orbital

plane are readily obtained as:

sinf)_sini_ = sinQsini : (4.23a)
m m .

cosficosw-sinQlsinwcosi

cosf)_cosw_-sinf_sinw_cosi
m m m m m

(4.23b)

cosfl_sinw_+sinfl _cosw_cosi_ = cosQsinw+sinficoswcosi
m m m m m _ .

(4.23c)



121

4.2 Results and discussion

The response of the system was studied by numeric-
ally integrating the equations of motion (4.1) along with
the control relations governing the magnetic and solar
moments, i.e., Equations (4.9, 4.13, 4.21 and 4.22) and

Equations (4.14, 4.15, 4.21 and 4.22) for models A and B,
respectively. The Adams-Bashforth predictor-corrector
quadrature with the Runge-Kutta starter was used with a
step size of 0.1°, The important system parameters were
varied gradually over the range of interest and.the
controller performance evaluated both in circular and elliptic
orbits. The amount of information thus generated is rather
extensive; however, for conciseness, only the typical results

sufficient to establish trends are presented here.

4.2.1 Nutation damping

Figure 4.3 summarizes the performance of the
proposed magnetic-solar hybrid.controller in damping the
nutational motion of the satellite spin axis and the pitch
oscillation of the platform. It shows the variation of
the damping time T3 with the controller gain m for a variety
of combinations of the system parameters and initial
conditions. Here the damping time is defined as the time
required for all the three degrees of freedom; namely, the

roll v, yvyaw B and the platform pitch A, to settle within
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0.1° of the desired final orientation. The responses of
both magnetic controller models A and B are presented,
which, in general, indicate the existence of an optimum
value of the system gain m leading to the minimum time of
damping, and the sensitivity of the optimum to the system
parameters and initial conditions.

The influence of the satellite inertia and spin
parameters on the attitude dynamics of passively stabilized
satellites is well recognized. Their effect on the
nutation damping performance of the present controlled system,
however, appears to be negligible. This is indicated by
curve (a) in Figure 4.3A where the results for pencil-like

to spherical mass distributions (I = 0.1 to 1) and non-

spinning to moderate spin rates (o 0 to 10) were virtually
indistinguishable. The banding together of curves (a,b and
f) in Figure 4.3B reflects similar system behaviour. The
insensitivity of the transient response to I and moderate
values of ¢ is understandable as these parameters, con-
tributing restoring forces to the system, are now largely
provided for by the controller gain m. The performance under
high spin rates is investigated in a later section.

The effect of the magnetic parameter Cm' character-
izing the magnitude of the magnetic control torques, is
indicated by a comparison of curves (b,a and c¢) in Figure

4.3A for the case of the single rotatable dipole. As

anticipated, increasing the value of Cm leads to a corres-
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ponding reduction in the damping time T Larger values

a-
of the magnetic parameter (curves a and c) show a response
pattern that is relatively insensitive to the controller
gain h, thus indicating a large range of values of the
latter to provide near-optimum damping. It may, however,
be pointed out that the maximum attainable value of Cm is
subject to constraints imposed by the electromagnet welight
and power requirement. Curves (c,a and d) indicate similar
effect of the magnetic parameter for the model with two
fixed transverse dipoles (Figure 4.3B).

A comment concerning the influence of the solar
parameter would be appropriate here. An increased value of
C led to a reduced damping time for the pitch ()) degree
of freedom. However, even with a value of C = 2, the pitch
motion, in general, damped out faster than the roll-yaw
motion, except for the case of large viscous drags on the
platform (large K, 0).

A comparison of curves (a and d) in Figure 4.3A
and curves (d and e) in Figure 4.3B shows the effect of
initial conditions on the performance of controller models
A and B, respectively. In both cases, an increased
impulsive disturbance not only leads to an anticipated
increase in thé damping time but also renders the response
quite sensitive to the system gain m. With larger values
of Cm’ however, the latter effect was found to be less

pronounced.
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It is of interest to compare the performance of
the two magnetic controller models in damping the attitude
motion. A suitable criterion for the comparison is the
same total electromagnet weight and power consumption which
requires the value of the magnetic parameter Cm for model
A to be twice the value for model B. Comparisons may be.
made of curves (b, a and ¢) in Figure 4.3A with curves (c,

a and d) in Figure 4.3B, respectively, towards this end.
The results clearly indicate a better performance of the
single rotatable dipole model A. This is explained by

the ability of this model to distribute the total magnetic
torque between the roll and yaw degrees of freedom in-
proportion to their demands, determined here by the switch-
ing functions SY and SB’ respectively.

The single rotating dipole model A may be obtained
by using a rotating electromagnet, which, however, would
involve additional weight and power requirement for the
turning mechanism and a reduction in the system reliability
due to physical movement of the electromagnet. Alternately,
two fixed electromagnets with variable currents may be
employed. Unfortunately, this would require each electro-
magnet to be the same size as the single rotating one in
order to maintain the same resultant dipole strength as the
.latter, thus doubling the total weight. The choice between
the physical arrangements leading to model A or B would

be governed by such mission oriented factors as the system



126

.reliability, associated hardware and software, and
performance requirements.

Typical damped responses of a satellite subjected
to an extremely severe impulsive disturbance are shown
in Figure 4.4 for both controller models. The time history
of the controls is also included. Figure 4.4a shows the
response in a circular orbit with a nominal value of ¢ = 1,
which may be required from.such considerations as tempera-
ture control. The damped attitude motion of a nonspinning
satellite in an eccentric orbit is shown in Figure 4.4b,
which indicates a slight increase in the maximum amplitude
and the damping time. The effectiveness of the controllers
in damping such a severe impulsive disturbance in a few
degrees of the satellite's orbital travel is thus apparent.
The amplitudes are also limited to a few degrees. The
controls,_in géneral, require rather infrequent switching
until the corresponding amplitudes become very small and
chatter initiates. This may, however, be prevented by the
inclusion of suitable deadbands in the control relations
which would depend on the pointing accuracies required.

The effectiveness of the control system in
capturing a satellite from initial roll, yaw and pitch
errors is presented in Figure 4.5. Both circular and
eccentric orbit as well as nonspinning and moderate spin

rate cases are considered. The initial error of 20° in
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each degree of freedom is corrected in approximately one-
third of an orbit with model A and half an orbit with
model B. The performance may be improved further through

an optimum choice of the controller gain.

4.2.2 High spin rates and spin decay

The discussion so far pertains to satellites which
are either nonspinning or have moderate spin rates. The
effectiveness of thé control system (model B) for satellites
with high spin rates is_indicated by the response data
presented in Table 1, which shows the coning amplitude of

the spin axis, ¢ , and the damping time T The coning

max a’
amplitude Qmax reached in the absence of the controller is
also presented. For low spin rates, the control system,

in addition to providing quick nutation damping; helps keep
the amplitudes low. However, for high spin rates, it
essentially acts as a damper. A comparison of the controller
performance with m = 10 and m = 30 shows its effect on the
amplitude to be slight but the damping time is affected
appreciably, ﬁp to spin parameter . values as high as ¢ = 200.
These observations substantiate the'éarlier conclusion regard-
ing the controller gain lending stiffness to the system.

For still higher spin rates (¢ > 200), however, the influence

of m is negligible indicating the dominance of the gyroscopic

restoring forces.
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TABLE 4.1
Reéponse With High Spin Rates

e =0 I=1.2 i =0 Q =92 =0 Yo = By = Ay =0
J=0.5 ¢ = 45° i=23.5°w =w=30° yl=8!=0.3

K =0 C =4 dpo= 10° AL =0 Ye = B = Ag =0

c =2, m=10 C. =2, m=30 Ca=0

o I(';lax Ta I?ﬂaX Ta I‘;laX

0 1.86 28.20 1.86 29.50 39.88

10 1.78 28.26 1.77 30.86 6.61

25 1.61 26.04 1.53 34.56 2.99

35 1.39 30.96 1.34 43.56 2.19

50 1.12 24.22 1.10 25.50 1.56

75 0.84 21.84 0.84 35.56 1.05
100 0.67 19.44 0.67 33.88 0.79
200 0.37 15.54 0.37 22.26 0.40
300 0.25 11.82 0.25 13.20 0.27
400 0.19 9.70 0.19 9.78 0.20
500 0.16 6.68 0.16 6.66 0.16
600 0.13 4.50 0.13 4.52 0.13




131

The analysis so far considered the rotor (body I)
to have a constant average spin rate. Apparently this
would be achieved through some active energy source compen-
sating for rotor spin decay due to bearing losses. Even
in the absence of such energy éupply, the analysis continues
to be valid provided the spin parameter ¢ remains sensibly
invariant over a time interval of the order of the damping
times attained here. This is of considerable value as any
spin decay is likely to occur very slowly indeed. Thus the
 data presented in Table 1 can also be used to predict the
long range performance of a spinning satellite. The
controller's effectiveness in achieving quick nutation
damping even in the absence of any spin promises an increased

satellite 1ife—span.

4.2.3 Attitude control

The control system offers the exciting possibility
of stabilizing the satellite along any arbitrary orientation
in space, thus enabling it to undertake diverse missions.

This may be achieved through the parameters Yer Bf and Af,
defining the final desired orientation, which are incorporated
in the switching functions SY' SB and Sy respectively.

Figure 4.6 shows the ability of the controller in achieving

a variety of spatial orientations, the time taken being well
within an orbit. ©Note that a fairly small value of the

gain m used here leads to a smooth transition between widely
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differenf attitudes. On the other hand, larger values of
m were found to result in an undesirable overshoot of the
final orientation. It may be pointed out further that
exéept for final orientations along equilibrium points of
the system, the controller must at all times provide
corrective torques to counter the gravity gradient and
gyroscopic moments. Moderate values of the magnetic
parameter taken here, Cm = 4 for model A and Cm = 2 for
model B, are found to be sufficient for both nonspinning
and a nominal spin rate in circular as well as eccentric

orbits (Figure 4.6).

4.2.4 1Illustrative example

It appears interesting to evaluate the performance
of the magnhetic-solar controller through a preliminary
attitude dynamics study of two well-known satellites, the
proposed Canadian Communications Technology Satellite (CTS)
and Anik, when provided with the proposed control system.
For convenience the latter may be considered as nonspinning
which only represents an adverse situation. Values of the
magnetic parameter Cm = 4 for model A and 2 for model B
are attainable with total dipole levels of approximately
200 and 20 ampere—meter2 for the CTS and Anik, respectively.
A control plate area A =~ 0.5 ft2 and moment arm € = 5 ft
yield a solar parameter value of C = 2. On the other hand,

pitch control may be achieved using a reaction wheel of
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capacity = 0.1 lb-ft-sec/day which is equivalent to C = 2.
An impulsive disturbance of 0.1 is applied in all the three
degrees of freedom simultaneously which is in excess of
that imparted by micrometeorite impacts over 24 hrs, and
thus represents an enormous magnification of the real
situation. As the inertia parameter (I = 0.1 for CTS, 1 for
Anik) did not affect the performance significantly, most of
the results presented in this chapter are representative
of these satellites. It is apparent (Figure 4.3) that the
controllers are able to damp out such a severe distufbance
in about 3° and 5° of the orbit with models A and B, respec-
tively. The maximum deviation from the orbit normal
attitude also remained less than 0.2°. Any arbitrary
orientations may be imparted to the satellites in well within
an-orbital period (Figure 4.6).

Finally, it may bé mentioned that the comment con-
cerning the earth shadow made earlier also applies here.
The results showed the controller performance to remain
virtually unaffected. Furthermore, the ahalysis ignores
dynamics due to relative motion of the gimballed electro-
magnet (model A) and the solar control plates as well as

the shadowing of the latter by the satellite.
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4.3 Concluding Remarks

The conclusions based on the analysis may be

summarized as follows:

(i)

(ii)

(1ii)

(iv)

(v)

The analysis clearly establishes the potential
of a magnetic-solar hybrid system for nutation
damping and attitude contrdl of satellites.

The concept permits interchangeability of the
solar controller and a variable speed pitch
momentum wheel, thus effectively providing a
gyromagnetic control system.

The ability of the system in damping extremely
severe disturbances in a few degrees of the
orbit makes it quite suitable for applications,
such as, communications satellites.

Even with rotor spin decay, the system continues
to function effectively which promises an
increased satellite 1life-span.

It is possible for a satellite to attain any
arbitrary orientation in space, both in circular
and elliptic orbits, thus widening the scope of

its mission.
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5. AERODYNAMIC-SOLAR HYBRID ATTITUDE CONTROL

The analyses in the earlier chapters apply primarily
to satellites in high altitude orbits since the influence of
the earth's atmosphere was ignored. However, several space
applications, such as, weather forecasting, earth resources
exploration, military scouting, etc., depend on high resolution
photography and hence necessarily negotiate near-earth
trajectories. Unfortunately, interaction with free molecular
reaction forces reduces their effective life-span leading
to expensive periodic replacement. One possible solution
would be to employ an elliptic trajectory making a space
vehicle to spend major portion of its orbital period above
the atmosphere and dip into it only when actively engaged in
its mission. This presents an interesting situation where
aerodynamic forces may be used to advantage for.attitude
control, possibly in conjunction with solar radiation
pressure.

The present chapter explores the feasibility of
such a hybrid control system. The governing equations of
motion, together with a bang-bang control law, are analyzed
numerically and the influence of the important system

parameters on the performance is evaluated.
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5.1 Formulation of the Problem

5.1.1 Equations of motion

The case of a nonspinning satellite is considered
here, which, in view of the analysis in Chapter 4, represents
an adverse situation. Equations (3.20) thereforé apply where
.Qi(i = Y,B,A) now represent the total generalized forces
due to the solar pressure and the aerodynamic forces:

y'" -28"' (y'tanB-cosy)-I(A'-Yy'sinB+cosBcosy) (B'-siny) secB

+{3(1-1)/(1l+ecosb)-1}sinycosy-{2esinb/ (1l+ecosb)} X

(y'+cosytanB) = QY (5.1a)

B'" -y'cosy-{2esin6/(l+ecosH) } (B'-siny)+{ I (A'~y'sinB+cosBcosy)

+(y'sinB-cosBcosy) } (y'cosB+cosysinB)-3{ (I-1)/ (1l+ecoshd)} x

sinzysinBcosB = QB (5.1b)
A" -y" sinB-{2esinb/(l+ecosB) } (A'-y'sinB+cosRcoSY)
-B'y'cosB-y'cosBsiny-B'cosysinf = QA (5.1c)

5.1.2 Controller configuration and generalized forces

The controller configuration studied for establish-

ing the feasibility of solar pressure control is considered
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for the hybrid aerodynamic-solar coﬁtrol as well (Figure
5.1). The generalized forces due to solar radiation

pressure were found earlier (Equations 3.12) as:

QYS = —E(G)[Ulcllcos€l|cosEls1nélsinA
+ UzC2|cos£2|0055251n62cosk]sec8 (5.2a)
Qpg = —E(e)[UlCl[cosEl!cosE151n61cosk
- U2C2|cos£2|cos£251n6251nk] (5.2b)
0, = —E(G)C3|cosi3]cos€3 (5.2c)
where
U. = +1 for P., -1 for P!/; i =1,2
i i i
cosEl = uicosdl+(uj51n>\-—ukcos)\)s1n6l
cosE2 = uicoséz+(ujcosk+uk51nk)51n62
cosE3 = -uj51n(63+k)+ukcos(63+x) (5.3)

The solar parameters, Ci’ are given by,

- 3 f -
c, = (4opORp/uIy)Aiei, i=1,2



Figure 5.1 Aerodynamic-solar hybrid controller configuration
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_ 3
C3 = (4ppoRp/qu)A3€3 (5.4)

The resultant free molecular force on an elemental

. . . 82
area, considering specular reflection, may be expressed as ,

= 2 _ _ -

dF_ = (1/2)p_V dA]cosEal{(CD CLcosecéalcosgal)v
+(CLcosec£asgncos£a)n} (5.5)
Evaluating the total moment about the satellite

center of mass due to the aerodynamic forces and using the

principle of virtual work leads to:

0y = J(e)[Uical!cosiall{Vj—(CL/CD)cosgcial(vjlcosgall
-51n6ls:.nksgncos?;al)}+U2Ca2|cos€a2]{vj—(CL/CD)coseCEa2 x

(vj|cosEazl—sindzcosksgncosgaz)}—Ca3|cos£a3|{l—(CL/CD)x

cosec£a3|cos€a3|}vicos(63+x)]secB - (5.6a)

Qpy = —J(e)[Ulcal]cos£a1|{Vk-(CL/CD)cosecEal(VklcosEalI
+sindlcosksgncos%lﬂﬁﬁzCa2|cos£a2|{vk—(CL/CD)cosecEa2 x
(vklcosEaz|—31n6251nksgncos%2)}—ca3]cos€a3|{l—(CL/CD)x

cosec£a3|cos£a3|}visin(63+x)] (5.6b)
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0, = J(e)ca3[|cosga3|+(cL/cD)singa3]cosga3 (5.6¢)

where

U. = +1 for P,, -1 for P!; 1i=1,2
i i i

cosEal = vicosél+(vjs1n>\—vkcos>\)SJ_nGl

cosEa2 = vic0562+(vjcosk+vk51nk)51n62

I

cosEa3 —vj51n(63+x)+vkcos(63+k) (5.7)

The aerodynamic parameters, Cai' are defined as

— 2 . T
Cai = (CDpapRp/Iy)Aiei, i=1,2
C = (C.P R2/I YA_ € (5.8)
a3 Dapp’" " x" "33

The variation of the atmospheric density with altitude, incor-
porated in the definition of the function J(8), is modelled

according to the relation

= - _ n
0a = Papl (R-RQ/ (R -R)) (5.9)

where n varies in the range -5 to -7 depending on the

altitude83.

The total generalized forces due to the radiation
pressure and the aerodynamic forces may be expressed as
functions of the control variables Ui(i=l,2) and Gi(i=l,2,3)

in the form:
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Q= 0, (U1,Uy81,8,)4Q _ (Uy,U,,8,,8,,8,) (5.10a)
QB = QBS(Ul,U2,51,52)+QBa(Ul,U2,61,62,63) (5.10b)
Q)\ = Q>\S(63)+Q>\a(63) (S.lOC)

In view of Equations (5.2 and 5.6), the dependence
of the moments Qi on the control variables is quite complicated.
However, it is possible to obtain relatively simple analytical
solutions for the plate rotations Gi through a judicious

control strategy.

5.2 Control Strategy

The magnitudes of the control moments are constrained
by the control surface areas and moment arms (through the
solar parameters Ci and the aerodynamic parameters Cai). In
order to utilize the maximum moments available from the

controller, the following bang-bang control law is employed

here:

Q. = -|0.]|

i il maxS9n S. (5.11)

1

where the switching functions Si are defined as

Si = i'+m(i-i i=v,8,A (5.12)

f)l

and m represents the system gain.
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The determination of the simultaneous maxima,

lo. | , that the controller can provide, is rather involved.

i'max
The problem may be simplified considerably by recognizing
that the solar pressure and the aerodynamic forces represent
the respective dominant influences at high and low altitudes.
Only over a small portion of an elliptic trajectory are the
two effects cbmparable in magnitude. The plate rotations

Gi, producing the maximum moments, may thus be obtained in
accordance with the solar pressure at high altitudes and
aerodynamic forces at low altitudes. The switch-over poinf

can be determined by comparing the magnitudes of the two

forces.

5.2.1 High altitude

Maximization of the solar pitch moment, ka’ leads

to the following control law for 63:

—_— _l — —
for uj > 0, 635 = tan (uk/uj) A=(m/2) sgn SA
- —l -— -
for uj <0, 635 = ﬂ+tan_ (uk/uj) A= (m/2) sgn SA
— P —l -
for uy = 0, 635 = cos {sgn(uksx)} X (5.13)

where the principal value of the arctan function is to be
admitted.
The solar roll-yaw control moments QYs and QBs

being coupled through the rotations 61 and 52, the total
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transverse torque, (QiscoszB+Q§s)l/2, is maximized which
occurs at:
_ -1 .
Gls = m/2+tan [(3/2)(ujs1nk ukcosk)/uii{(9/4) X
(ujsink—ukcosk)2/uif2}l/2] (5.14a)
+ for {(ujsink-ukcosk)/ui} S o,
_ -1 , '
and 625 = m/2+tan [(3/2)(ujcosk+uk51nx)/uii{(9/4)(ujcosx
+u sind) 2/u?+231/2) (5.14b)

+ for {(ujcosk+uksink)/ui} s o.

In general, all sign combinations of QYs and QBS
are available through an appropriate choice of the control
plates to be operated. Occasionally, due to the time-varying
nature of the components Usr ULy W, the desired signs Qf

J
Q and QBS may not be available. In such situations, the

Ys
roll-yaw control plates are to be turned 'off', which may
be done either by making the corresponding Gi = 0 or,
by aligning the plates parallel to the incident radiation,

i.e., choosing di so as to render the corresponding cosEi = 0.

The control moments at high altitude thus become,
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QY = QYs(Ul’UZ’Gls’525)+an(Ul’U2’615’625’635) (5.15a)
Qp = Qpg(UyrU0508;4,8,04Q5 (U1,U,, 8,468, 4850) (5.15b)
Q}\ = QXS(63S)+Q>\a(63s) _ (5.15C)

5.2.2 Low altitude

In a manner similar to the solar control at high
altitude, the moments due to the aerodynamic forces may be
maximized at low altitude. The exact determination of the
critical Gi being more complicated in this case, simplifying
assumptions such as Ivil, Ivjl<<|vk| and C;/C<< 1 are
employed. These approximations, however, extend only as to
the determination of the maximizing Gi, the subsequent
evaluation of the moments being exact.

The control law for the rotation 63, maximizing

the aerodynamic pitch control torque QAa’ is found to be:

N -1, _
for vj > 0, 63a = tan (Vk/Vj) A+ (7/2) sgn SA
- -1 _
for vj <0, 63a = T+tan (vk/vj) A+(m/2) sgn SA
- : - -1, -
for vy = 0, 63a = cos { sgn(kaA)} A (5.16)

-where the principal value of the arctan function is to be:

introduced.
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The aerodynamic roll-yaw moment is maximized

by the rotations 61 and 62 given by,

cos\) } (5.17a)

la

=1 .
S = 1/2-tan {vi/(vj51nk Vi

62a = n/2—tan—l{vi/(vjcosk+vksink)} (5.17b)
An investigation of Equations (5.6) indicates that,

in highly eccentric orbits, the drag component of the aero-

dynamic force governs the directions of both the roll and

the yaw moments. As a result, all sign combinations of

Q and Q

Ya Ba’
option as to controlling either the roll or the yaw moment

in general, are not available. This presents an

and retaining the associated torqgues in the other degree of
freedom. Recognizing that lQBaI >> ]anlfor small yaw angles
B, a large proportion of the total transverse torque may

- be utilized by selecting the control plates according to the
sign required of QB' A preliminary investigation of the
system performance, however, revealed the effect of the coupled
roll moment QYa to be generally adverse. The roll-yaw control
law in the aerodynamic region is, therefore, modified to
exercise control action only over those portions of the
trajectory where the associated roli moment QYa is also of

the correct sign, the controller being switched 'off' other-
wise. The iatter may be accomplished by making all the roll-

yaw control plates parallel to each other or to the flow
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direction (by choosing Gi so as to render the corresponding
cos€ai = 0). |
The control moments at low altitude thus take the

form:

Qp = Qg (UyrUys8y 148,040, (U405, 87 ,48,,483,)  (5.18b)
Q, = 0,4 (85,040, (8,) - (5.18c)

The control procedure may be summarized as follows:

(1) sense the roll, yaw and pitch angles and rates,
orbital position and the solar aspect angle.
Estimate the atmospheric density.

(ii) determine the switch-over point by comparing the
magnitudes of the solar énd aerodynamic parameters;
It may change due to variations in the atmospheric
density.

(iii) for pitch control, provide rotation 63 determined
from Equations (5.13) and (5.16) at high and low
altitudes, respectively.

(iv) for roll-yaw control at.high altitude, compute
si(i = 1,2) from Equations (5.14) and provide
these rotations to the sets of plates resulting

in the signs of QYS and Q s governed by Equatién

B
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(5.11). If the proper signs are not available,

turn the'roll—yaw control plates 'off'. At

low altitude, compute Gi(i = 1,2) from Equations
(5.17) and determine the plate sets yielding
maximum QBa of the proper sign. If the associated
Q is of the correct sign, provide these rotations;

Ya
otherwise, turn the roll-yaw control plates 'off'.

5.3 Results and Discussion

The response of the proposed hybrid control system
was studied by numerically integrating the equations of motion
(5.1) along with the appropriate control relations (Equations
5.15 or 5.18). The Adams-Bashforth predictor-corrector
quadrature with the Runge-Kutta starter was used. A step
size of 0.1° at high altitudes and 0.02° at low altitudes
.gave results of sufficient accuracy. The important system
parameters were varied gradually over the range of interest
and the controller performance evaluated. For conservative,
estimate of the controller's performance, it was purposely
subjected to severe disturbances.

It should be pointed out here that the atmospheric
density depends, in addition to the altitude, on several
classes of solar and geophysical phenomena. In the present
analysis, density variations due to the latter over a few
orbits of the satellite are ignored and a reference atmos-

phere corresponding to an exospheric temperature of 1250°K is
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considered ~. The value of P, = 0.74 x 10 gm/cm” at
the perigee altitude hp = 250 miles and the drag coefficient
CD = 2.2 yield the ratio Cai/Ci = 50. The switch-over
point is found to be at an altitude of approximately 500

miles.

5.3.1 Libration Damping

The performance of the controller in damping the
librational motion of the satellite is summarized in
Figure 5.2 in the form of optimization plots for the controller
gain m. The damping time Tgr defined as the time taken for
all the three libration angles to settle within 1° of the
desired orientation, is presented as a function of the system
gain. Various combinations of the important system parameters
and initial conditions are considered. The plots, in general,
indicate the existence of an optimum value of the system
gain resulting in the minimum settling time.

The influence of the satellite inertia parameter
I on the controller performance is indicated by a comparison
of curves (a) and (b). A reduction in the damping time
with an increaééd value of I is apparént. Curves (f), (c)
and (g) exhibit a similar trend for the case of a larger
Ci(=l). The zero settling time in curve (g) simply implies
that, with this set of parameters, none of the attitude
angles exceeded 1° in amplitude. The advantage of disc-1like

satellite mass distribution (I > 1) is thus obvious.



175

150

125

75

50

25

150

j;:0.l J

. ~
=0.1,C=1,],=0.1

€=0.1  ®=45" C,/Cp=0.1 h,=250 Mi. Y=B=A50
W=0 i=23.5" Cq/C,=50 j=Y,B,A Y=B=A=0
] ( ] | I
o L (e) -
(a) B}

Figure 5.2

| (f)
1=1,C=1,i=0.1 (c)
1=2,C=1,j.=0.1
| | ] \ | (g)
5 10 15 20

m
Optimization plots for the aerodynamic-solar
controller gain m

25



151

The effect of the solar parameters Ci and the
aerodynamic parameters Cai’ which are directly related for
a given plate size and moment arm, is shown by curves (a)
and (c¢), and (b) and (g). Increasing the value of Ci leads
to a substantial reduction in the damping time. This, of
course, can be anticipated as Ci characterize the magnitudes
of the control moments available. Their maximum attainable
values in practice, however, are constrained due to considera-
tions such as launch, deployment and operation. It is
interesting to determine the physical size of the controller
yielding a given Ci (or Cai). Fér example, consider a
satellite with the mass properties of the Canadian communi-
cations satellite Anik (I = 1). A value of Ci =1 (Cai = 50)
is found to be attainable with plate sizes of about 5' X 5'
and moment arms €, = 10 ft for a perigee altitude hp = 250
miles.

A comparison of curves (c), (d) and (e) indicates
the system performance as affected by the initial impulsive
disturbance. As expected, an increased disturbance implies
larger damping times. In addition, this results in a left-
ward shift of the optimum gain m, suggesting the use of a
smaller systém gain for quick damping of large impulsive
disturbahces. The optimum gain being dependent on initial
conditions, a value of m would have to be selected that

promises reasonably good libration damping rates for all

initial conditions that the satellite is likely to encounter
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in its normal operation. This does not appear to be
difficult as for Yo = By = AL 2 0.2, which represents an
extremely severe disturbance, a large range of values of
the system gain m yield near-optimum performance.

Typical damped responses of the satellite are
presented in Figure 5.3, with severe initial disturbances
applied at different positions of an elliptic trajectory.
Figure 5.3a shows the damping of a disturbance encountered
at the pericenter. The large aerodynamic yaw and pitch
moments restrict the corresponding amplitudes to a negligible
value. On the other hand, the satellite executes a small
roll oscillation resulting from the relatively smaller roll
control torques and occasional loss of roll-yaw control at
low altitude. "Note the small hump in yaw due to a reduction
of control moments in the neighbourhood of the switch-over
point (0 = 67°). Figure 5.3b shows the response to a
disturbance occuring just before the switch-over point.

The satellite traverses a short distance through the aero-
dynamic region and most of the damping occurs under the
influence of solar pressure torques.

Figure 5.3c presents the response to a disturbance
applied at the apocenter where solar radiation pressure has
the greatest influence. As anticipated, quick libration
damping results with the attitude errors settling within
1° in about 30° of the satellite's.orbital travel. The

same disturbance, applied shortly before the satellite is
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about to re-enter the aerodynamic region, leads to the
response indicated in Figure 5.3d. The loss of continuous
roll-yaw control in the aerodynamic region is reflected

by the relatively larger (=7°) roll amplitude and the longer

damping time.

5.3.2 "Attitude control

At times, missions involving diverse objectives may

reguire a satellite to change its preferred orientation in orbit.

The controller's ability to impart any desired orientation
to the satellite is explored here. Figure 5.4a shows the
effectiveness of the control system in providing arbitrary
pitch attitudes with the axis of symmetry of the satellite
.along the orbit normal.

The ability to align the symmetry axis with the
local vertical direction and simultaneously attain a desired
pitch attitude is indicated in Figure 5.4b for a slender
satellite (I = 0.1). For satellites with large I, the
controller was able to accomplish the same, but only at the
cost of higher values of Ci as it must now overcome the
gravity torques in addition to the inertia of the satellite.
Note that the attitude angle B represents the planar
oscillation in the local vertical configuration. The steady
state motion noticeable for the case of e = 0.2, resulting
from the eccentricity induced disturbance (Equation 5.1b),

indicates the need of a larger value of Ci for its elimination.
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Figure 5.4c presents results for stabilization along
arbitrarily chosen values for all the three degrees of
freedom.

Finally, a comment concerning the earth's shadow,
which would render the controller ineffective in the solar
pressure mode, is appropriate here. It is apparent that
its effect would be negligible in near-polar orbits. On the
other hand, the influence would be maximum for orbits in the
plane of the ecliptic. Even in the latter case, the effect
of shadow would be of little consequence if the apparent
position of the sun is in the neighbourhood of the apocenter
as now the control in the shadow region is primarily
accomplished aerodynamically. Hence, depending upon the
mission, a judicious selection of the location of the line
of nodes, orbital inclination from the ecliptic and the
perigee argument could effectively minimize the influence

of the earth's shadow.

5.4 Concluding Remarks

The significant conclusions based on the analysis
may be summarized as follows:

(i) The feasibility of aerodynamic-solar hybrid control
of near-earth satellites in elliptical orbits is
established.

(ii) The control system is capable of damping extremely

severe disturbances in a fraction of an orbit
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with the maximum amplitudes during the process
limited to a few degrees.

(iii) The controller permits the spacecraft to undertake
diverse missions through stabilization along
arbitrary attitudes. The pointing accuracies
appear to be sufficient for many applications of
near-earth satellites.

(iv) The system is essentially semi-active which

promises an increased satellite life-span.
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6. TIME-OPTIMAL PITCH CONTROL USING SOLAR RADIATION PRESSURE

The investigations presented in the preceding chapters
clearly establish the possibility of utilizing the environ-
mental forces to achieve general three-axis librational damping
"and attitude control. With the control systems offering
increased satellite life-times through their semi-passive
character, it seems logical to direct efforts at improving
their performance. This involves two aspects, namely, physical
controller design and efficient control laws. The former
having been stressed in the earlier chapters, attention here
is directed at the possibility of using optimal control laws.

As the energy required to turn the control plates
is low and could be generated easily through the use of solar
cells, the performance index need only include the damping
time wﬁich is of prime concern. Time-optimal control of
multi-degree 6f freedom systems, such as the coupled roll-
yaw-pitch motions of a satellite, can generally be achieved
only through enormous software complexities since the solution
of a two poin£ boundary value problemlis involved. This is
why switching criteria that are simple functions of the state
variables were considered in the earlier analyses. On
the other hand, a single degree of freedom system may lend

itself to an analytical synthesis of the time-optimal
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switching criterion. This is significant as, if successful,
it not only could be applied to several situations of
practical importance (platform pitch control of a spinning
satellite or pure pitch control of a gravity gradient system
as in the case df COSMOS—l4970) but may also suggest switching
laws that are likely to be efficient in controlling the
general motion.

This chapter investigates the development of the
time-optimal control law for the planar pitch motion of a
satellite. The utilization of solar radiation pressure for
attitude control in a circular orbit is considered. The
analysis leads to a useful relationship between the magnitude
of the disturbance, control plate areas and moment arms,

and the corresponding minimum damping time.

6.1 Formulation of the Problem

Figure 6.1 shows an unsymmetrical satellite
executing planar pitch libration Yy, with the center of mass
S moving in a circular orbit about the center of force O.

The governing equation of motion is well-known,

y' o+ 3Kisinwcosw = Qw (6.1)

where Q, represents the generalized force due to solar

Y

radiation pressure.
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in the solar pressure environment



161

The solar pressure controller consists of two
highly reflective control plates Pl and P2 which are permitted
rotations 61 and 62, respectively, in the orbital plane.
The center of pressure of each plate is taken to lie on
the satellite y axis (could be anywhere on the yz-plane) so
as to yield a pure pitch moment. The moment generated by

the controller is

o =liCilsin(ﬁi+c)|sin(6i+c)coséi, i=1,2 (6.2)

(+ for P - for Pz)

ll

where the solar parameter is defined as

_ 3 i 2 2,

Ci = (2ppORp/uIX)Aiei(l sin“¢sin“i)- (6.3)
Through a judicious choice of the plate to be

operated (Pl or P2), in accordance with the angle (6i+;), Qw

may be controlled in sign. The magnitude of the control

moment, Ile, varies with both the angle 7 and the control

variable 6i. Its maximum with respect to 6i occurs at
6, = tan '[(-3/2)tanz{(9/4) tan®z+2}1/?) (6.4)
where the * signs apply for tan ¢ 2 0, respectively. The

variation of |[Q with ¢ is shown in Figure 6.2a where

wlmax
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Cl = C2 = C is assumed for convenience. The system is able

to provide a value |0 = (2/3/3)C at all times. The

wlmax

governing equation of motion (6.1) may thus be presented
as
P+ 3Kisinwcosw = u(6) . (6.5)

with
—(2/3/§)C—3Ki51nwecoswe < u(6)< (2/3/§)C~3K151nwecoswe
A symmetrical bahd on the control,
. *
lu(o)|<c = (2/3/§)c—!31<isinwecoswe|, (6.6)

is considered here for convenience. Its effect is only to
yield a slightly conservative bound on the control either on
the plus or the minus side depending on the nominal

attitude we.

6.2 Time-Optimal Synthesis

Uéing the state variables x, = Y and X, = v,

1
and linearizing about the nominal attitude Yy = we, the system

(6.5) can be expressed in the form,

x' = Ax + Bu (6.7)
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where

A=| 2 B = and Iu(Q)[iC*

Taking the initial time eo = 0, the state-transition

matrix ®(0) is obtained as

cosnb (1/n)sinn®
9(0) = . (6.8)

-nsinnb cosn®b

The solution for the system of Equation (6.7) then

becomes,
0
x(0) = 0(8)x(0) + J ®(6-1)Bu(t)dT (6.9)
28 2 0 u
A control u(t) is sought which will bring the system
state from x(0) to g(ef) = 0 in minimum Gf. Substituting

the initial and the final states in Equation (6.9) results in

O¢
f ¢ (-t)Bu(t)dTt = -x(0) (6.10)
0

The solution for u(6) bringing the system state to
. *
rest in minimum Sf is well-known to be u(6) = #C , with
the number of switches depending upon the initial state of
85

the system ~. Considering initial states that can be driven

to rest in a single switch, the control takes the form
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u(6)=Kl, 0§e<eS
(6.11)
u(o) = Ky es < 8 < ef
where
*
x| = Ixyl = ™.
Substituting for u(6) in Equation (6.10) leads
to:
K, = n{-nxl(O)(sinnef—sinnes)+x2(0)(cosnef—cosnes)}/A
(6.12a)
K, = n{nxl(0)51nnes+x2(0)(l—cosnGs)}/A (6.12Db)
where

A = sin(nef—ne }~sinn® _+sinn6
s s

f

The proper signs of Kl and K2 are best obtained

from the phase plane portrait of the optimally controlled

system (Figure 6.2b). The trajectories are circular arcs

*

: *
with centers at x, = *C /n2, X, = 0 for u = *C , respectively.

1

The switching boundary is composed of semi-circles passing

through the origin. For any initial condition x(0), the



system state moves on the switching boundary for 6 < 6 < ©
as shown in the figure. It is apparent that all initial
states lying within the region ABCDA of the phase diagram can
be driven to the origin with a single switch of the control.
For optimal response, the control u(0) assumes the value

u = —C* if the system state lies above the switching boundary
and u = +C* if it is below the switching boundary.

Equations (6.12) may now be solved to obtain the
switching time es and the final time Sf for a given initial
condition. This yields the open-loop realization of the
control in the form u = u(f). On the other hand, use of the
switching boundary yields the feedback realization u = u(x),
which makes the system self-correcting to slight deviations of
the state vector.

Of particular interest are impulsive disturbaﬁces
which a satellite is likely to encounter through, say,
micrometeorite impacts. The phase portrait immediately yields
the maximum impulsive disturbance from which the satellite
can be brought to rest in a single switch of the control and

the error amplitude during the process as:

l %5 (0) | 2/2 (6.13a)

max

1%, (0) | a2 (6.13b)

max
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where the normalized state variables §l and %2 are defined

as

N 2 *
xl(e) = n xl(e)/C (6.13c)

= n X2(9)/C* (6.134d)

e
N
—~
D
~
|

The variation of the normalized error amplitude
with the initial impulsive disturbance is shown in Figure 6.3a.
The switching and the final times obtained by solving
Eqﬁations (6.12) are also presented as functions of the

impulsive disturbance (Figure 6.3b).

6.3 Results and Discussion

In order to ascertain the applicability of the
optimal control law synthesized from linear theory to the
actual nonlinear system, the response of both the linearized
and nonlinear equations governing the motion was evaluated.
The two systems were subjected to the same disturbance and
control.

Figures (6.4a and b) show response plots indicating
the effect of the inertia parameter to be negligible for the
pitch attitude nominally along the local vertical. As
anticipated, the open-loop and the feedback response of the
linear system are identical. On the other hand, the open-
loop control system is unable to bring the nonlinear system

to rest exactly. The feedback system, however, accomplishes



168

| 1 } 1

0.1

Figure 6.3

0.2 ~ 0.3 ' 0.4 0.5

(a) Variation of transient amplitude
'xl(e)lmax with initial condition %,(0);

(b) Variation of switching time 0g and final
time 6. with initial condition §2(0)

006



X (8)

- Open loop , feedback (linear system)
---------------- Open loop (nonlinear system)
—-—.. Feedback (nonlinear system)

C.z10 Xo(0) =0.5
J ] ] !
¢g: 4@::0
K.=0.5 Ki:] 0
(a) (b)

......

0 15 30

15 30 45

8 - degrees

Figure 6.4

System response to impulsive disturbance



170
this, the nonlinear system state approaching the origin
asymptotically using a number of switches of the control. 1In
order to avoid any relay-chatter, it appears advisable to
use only a single switch for the actual nonlinear system as
well and employ a passive device to damp the small residual
motion in the neighbourhood of the origin.

Figures 6.4c and d present the system response
for a satellite stabilized in an arbitrary pitch attirude.

Note that the gravity gradient torque now represents

a destabilizing effect, which the controller must neutralize
in addition to countering the disturbance. The longer damping
time required with a higher value of the inertia parameter
clearly reflects a greater reduction in the value of C* for
increased Ki.

The system response may now be projected for the
pitch control of the CTS. At synchronous altitude, the
value of Ci » 10 corresponds to Ai = 2.5 ft2 and e; = 10 ft.
When subjected to an extremely severe impulsive disturbance
of x2(0) = 0.5, a damping time of the order of 20° of the
orbit is attained (Figure 6.4). A disturbance x2(0) = 0.1
on the other hand would be damped out in approximately 4°.
(Figure 6.3b). The system thus appears promising.

It should be pointed out here that the constraint
,lei(2/3/§)c represents the most adverse situation as [le
may attain a value as large as C during certain orbital

positions (Figure 6.2a). The performance of the controller,
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therefore, would always exceed the responses presented here

(Figure 6.4).

6.4 Concluding Remarks

(1)

(ii)

(iii)

(iv)

The analysis clearly demonstrates the feasibility
of the time-optimal pitch control of satellites
using the solar pressure.

The controller is capable of damping extremely
severe disturbances in a few degrees of the
satellite's orbital travel. The transient
amplitude is also small.

The controller is able to provide nominal control
at an orientation which is not an equilibrium
position of the uncontrolled system.

The optimal control strateqgy, developed for

the linearized system, may be applied effectively

to the actual nonlinear system.
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7. CLOSING COMMENTS

7.1 Summary of the Conclusions

The significant conclusions based on the pre-

ceding investigation may be summarized as follows:

(1) The solar radiation pressure, normally neglected
in the analysis of spinning satellites, can
affect the librational performance substantially.
It merits the same consideration as the inertia
properties, spin rate and eccentricity during
the design of an attitude control system.

(ii) The environmental forces can be used quite
effectively to provide three-axis libration
damping and attitude control of spinning space-
craft.

(iii) As substantial control moments are available
even with the use of moderate controller sizes,
it does not appear necessary to spin a satellite
from attitude control cbnsiderations. Of course,
the presence of spin would improve the nutation
damping performance.

(iv) A logical procedure is established for the
development of an effective solar pressure con-
trol system. This should prove useful in evolving

a suitable controller depending upon the mission .

requirements.
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(v) The magnetic roll-yaw controller, in conjunction
with the solar pitch controller, provides an
efficient three-axis control system.

(vi) The hydrid aerodynamic-solar system offers
effective control of near-earth satellites in
elliptic trajectories which promise an increased
life-span.

(vii) Utilization of the maximum available control
moments, through bang-bang operation, leads
to smaller damping times compared to the linear
control law with.saturation constraints. The
near-optimum performance resulting for a wide
range of system parameters and initial distur-
bances is particularly attractive.

(viii) Approximate analytical techniques can be used
quite effectively during preliminary stages of
satellite design. For small amplitude motion,
usually the case of interest, they can predict
the libration amplitude and frequency with
considerable accuracy.

(ix) The attitude control systems analyzed here are
semi-passive, as they do not involve any mass
expulsion schemes and/or active gyros requiring
large power consumption. This promises an

increased satellite life-span.
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7.2 Recommendations for Future Work

The investigation reported here suggests several

topics for future exploration. Only some of the important

problems are mentioned here:

(1)

(ii)

(iii)

The feasibility of using environmental forces to

- advantage having been established here, it

appears logical to direct efforts at improving
the efficiency of these systems. The design
approach suggeéted in Chapter 3 could be applied
to devise alternative controller configurations.
An extension of the approach in Chapter 6 to

the synthesis of optimal or suboptimal control
laws for the coupled motion is likely to improve
the control performance.

A defailed hardware oriented study would permit
precise comparison of the methods proposed here
with the currently used active control systems.
Such analyses should also include any inertia
variations and reaction forces arising from con-
trol system operation.

With ever increasing energy requirements, the
use of large solar panels by the future generation
of satellites is likely to be indispensable.

Substantial energy savings may result if the semi-
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passive attitude control systems utilizing the
environmental forces could be extended to flexible

satellite configurations. The dynamical problem

is going to be more involved. Hence, more

sophisticated controllers and control strategies
would be required as the disturbances, such as,
panel &ibration, differential thermal heating, etc.,
are of the continuous type. The problem appears to
be quite useful as well as challenging.

The possibility of employing the environmental
forces for orbital transfer and trajectofy control

appears interesting. As the concept promises

considerable energy saving and reduction in payload

(no mass expulsion is required), it could be of
immenée value in interplanetary travel as well

where long time durations are involved. It presents
an exciting possibility of achieving controlled
variations in the orbital parameters of a space-
vehicle. Optimization of system performance in

the foregoing represents a vast challenging area

that has remained virtually unexplored.
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APPENDIX I

The expressions for the frequencies Wy and w,

are given by,
Wy = fl(a,b,I,o,e,C,G)

k.,k

2’71 2%

= F(a,b,al,a L.,C,G,A
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APPENDIX II

The functions Fi and Gi (i=1,2,3,4) are given

g
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