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ABSTRACT

The purpose of the investigation is to study the
dynamics of the internal combustion engine-vehicle-driver system.
Specifically, the system variables, engine angular velocity and
engine angular acceleration are examined as potential observers
of the engine mean torque. Such an observer is a requirement
for the application of adaptive control to internal combustion
engines. This type of control system has shown promise in
providing solutions to the present problems of fuel economy,
air pollution and performance.

A nonlinear dynamic model of the engine-vehicle-driver
system is developed. This model is linearized and simplified
to provide expressions for the variables of interest, the
engine angular acceleration and velocity. The validity of the
simplified model is established by comparison with results
obtained from the computer simulation of the nonlinear model.
The agreement between the two models is good.

The solutions of the equivalent system model are
analyzed to determine which is the best observer for the mean
torque. It is established that the steady state forced oscilla-
tory engine angular acceleration response provides the best

observer.
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Ap
B2,B,82, ...
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Dc

Dt
Dt'
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Jeq
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Ji'
Ke
Kr
Ks
Ks'
Kt
Kt'
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NOTATION

Description

vehicle projected area
Fourier sin torque series coeffiecients
Fourier cos torgue series coefficients

equivalent linear clutch damping coeffic-
ients

tire damping coefficient

equivalent tire damping coeffiéient at
engine speed

engine inertia

equivalent system inertia

load inertia

equivalent load inertia at engine speed
clutch spring constant

rolling resistance drag coefficient
driveshaft spring conétaht

equivalent driveshaft spring constant at
engine speed

tire spring constant

equivélent tire spring constant at engine
speed

ratio of the maximum to the mean torque
per engine cycle

front wheel reaction



Symbol . Description

Nr rear wheel reaction‘

R rear end ratib

Rg ' gear ratio

Rw dynamic wheel radius

Tav engine mean torgque output

TOV** ‘ optimum engine mean torque output

Tb brake torque

Tc - nonlinear coulomb clutch damping

Te . engine instantaneous torgque output

T -.vehicle load torque

T|' equivalent vehicle load torque at engine
speed »

We | engine angular velocity

VVengi initial engine velocity

Wn natural frequency 

Wnd damped natural frequency

w " vehicle weight

lXI 4 magnitude of variable x

t time"

aeng ' engine cénstant acceleration

] crank angle

ch,écx,écx transient motions of variable x

6i - gradient angle |

s spérk timing

QSSCX,éSSCX,éSSCX steady state constant motions of variable x



Symbol

Bssox,8ss0x,Hssox

r
e

'Y

' 0 L]
Description

steady state oscillatory motions of
variable x

period of transient oscillation
transient time constant

throttle position

. time of transient

damping ratio

x1i



1 INTRODUCTION

(1.1) Purpose and Scope

The chief problems of the current internal combustion
automotive engine are air pollution, fuel economy and performance
[iﬂ;[Z],[3],[4],[5],[6],[7].1 A concept which has shown promiée
|
in providing a solution to these problems is that of Adaptive
Control [81]1,[9],[10]. Using this concept the present distri-
butor advance unit and carburetor would be replaced by spark
timing and air-fuel ratio devices regulated by an adaptive
controlier; The potential advantages of adaptive conprol
include improved fuel economy, reduced emissions, reducéd
maintenance and improved reliability [8],[9],[10].

An adaptf;e control scheme fequires>a signal which
indicates system output or performance. It has been shown by
Adams [11] that for internal combustion ehgines,the"mogtw
suitable signal is the engine mean torque (Tay). The primary
purposé of this work is to determine the best means of obtain-
ing this torque signal. A secondary phrpqse is to construét a
model of the dynamics of an engine-vehicle-driver system for
later work in determining the optimuﬁ adaptive controller config-

uration.

Numbers in square brackets designate references at end of
thesis.



Any variable of the system-which acté as an observer
of Tavy will be affected by disturbances acting on the system.
Therefore, it is necessary to study the dyhamics of the entire
system to learn how a potential observer is affected b§ the
disturbances encountered under normal operat;ng conditions.

The dynamics of a lumped parameter engine vehicle
system are considered in this work; An“initia} model is
developed and its equations of motion arévsélbgdsbyuéimmiétion on
the IBM 370 computer. This model is linearized and simplified
to provide equations of motion which can be so;vgd_anqutigally.
The validity of the linearization and simplification made is
checked by comparison of the simulated and analytic solutions
for a special éase. The analytié solutions are used to
evaluate potential observers for Tav .

In connection with this work, models describing the
engine mean torque (Tav) and vehicle load torque (T | ) are
developed. Some preliminary work on the adaptive control
model and the human contfol model has also been undertaken.

This work will be necessary in future to determine the Optimum

adaptive controller configuration.

(1.2) Work by Others

The recent work done in the application of automatic
control theory to internal combustion engines falls into three

categories, digital memory fuel injection control (DMC), closed



loop fuel injection control (CLC), and extremum seeking adaptive
controls (AC).

(1.2.1) Digital Memory Fuel Injection Control

The DMC improves upon the conventional carburetor by
eliminating the mechanical wear and aging problems [12],[13],
The memory stores predetermined optimum fuel injection pﬁlse
times. These pulse times are addressed by information derived
from engine speed and throttle position. The drawback of this
system is the predetermined nature of the stored information.
For example, pulse times stéred in the memory are obtained from
tests on a standard engine under standard environmental conditions.
These pulsevtimes are optimum fof this engine at the particglar
time they are detérmined,

However, production tolerances in engine manufactur-
ing are not tight gnough to assure that the pulse times will be
optimum for every engine rolling off the assembly line. An even
more serious problem is the wide range in environmental conditiqns
a production engine will experience during its life. This range
of environmental conditions definitely affects the optimum pulse

time [14].

(1.2.2) cClosed Loop Fuel Injectipn Control
_The CLC senses the oxygén content of the exhaust gas
stream and compares it with a reference value [14],[15]; If
the measured value differs from the reference Qaluec theAcéntrol

adjusts the fuel injection pulse time until the difference



disappears. This type of cont;pi Was initially developed to
insure satisfactory operation of catalytic converters by regu-
lating the exhaust gas stream composition [14]. TIater invest-
igators [15] have extended the work to providing bptimum air-
'fuel ratios, but the workefs have not shown how this optimum

may be identified.

(1.2.3) Extremum-Seeking Adaptive Control

AC adjusts the spark timing and/or aif—fuel ratio:.
until a local optimum in performance has been reached L8J,[91;
[10]. Thus, AC differs from conventional automotive gngine
controls and feedback controls in that it searches for and
maintains the optimum setpoint values of the v§riabl¢s;under

control. These values maximize the engine performance.

(1.3) Adaptive Control

Figure 1 is a block diagram representation of a:single
level extremum seeking adaptive control system. _Thé objecti?e
of such a control system is tbvidentify and maintain the optimum
setpoint X*#of the system. This setpoint will maintain the out-
put Z at its extremum (in this case its maximum) vaanZ*{ In
this simple system the relationship between the input and the
output (the system characteristic) has been aSsﬁmed to be giﬁen

by:

Z = Z2¥- A\ (X¥#-Xo)2 (1.3-1)



SYSTEM CHARACTERISTIC

Z=(Z2% A (X#-X9?)

Xo
7 ¥
Zo —_\\\\\\
Ax=2x(x4txo)5_
Xo )(*#

CONTROL LAW

-K

SLOPE DISCRIMINATOR

%=-2X(X‘£Xo)

Figure 1: Single Level Extremum Seeking

Adaptive Controller



The condition which determines that the optimum is
reached occurs when the slope of the system characteristic
(AZ/AX) becomes zero. For example, if the system is initially
at some point Xo away from )(# and the contrel makes a change
to some new X, then a corresponding change in Z will result.

The change in output Z is then determined with respect to the
change in input X. The resulting signal QAZ/AX) is used to
drive the system toward the optimum .X#where AZ /AX approaches.
0. ‘

The control law (i.e. the iaw which ‘governs the éontrgl
response for a given érror signal (AZ/AX) in Figure 1 is a simple
proportional gain K. More sophisticated‘qonprglulaWs m§ybprqve
valuable in improving system stability and response time.
Stability:refers to the tendency of the system to épprpacﬁ the
optimum with a decreasing amplitude of Qscillapiqn;v ;futhg'M
éystem were to oscillate with increasing amplitude a?ound»the_
optimum it would be classed as‘ﬁnstable;: Response time refers
to the time taken for thevsyStem to reach the optimum:fqrﬂap
initial setpoint an arbitrafy distance away from the optimum.

For example, derivative control (i.e.»controlzp;opoxtional to

the rate of change of error) may be appligd'iﬁ conjunction with
the proportional control to improve the system response time.

A complete discussion of the stability and response time problems
is beyond the scope of this work and the interested reader is

‘referred to [16],[17].



An important featureAOf'adaptive control illustrated
in Figure 1 is that if there is only one maximum within the
operating range then this will be the point the control will
seek to operate at. All other pqints will produce a local
graciient ﬂZ/AX). Thus a control signal K(AZ/AX) will exist
and drive the system until AZ/AX becomes zero at a local optimum.

Adaptive control can be easily extended to control two
or more variables. Initial small perturbations are made in the
setpoints of the variables under control. The effects of-these
perturbations are then observed. The observations enable the
controller to determine the direction in which the inpﬁts are
adjusted to achieve the "steepest ascent" toward their optimum

setpoints.

(1.4) Application of Adaptive Control to Internal Combustion
Engines ’

Figure 2 illustrates the structure of the controls and
dynamics of the enéine—vehicle—driver system. The adaptive con-
trol supervises the control of several plant variables in response
to the driver control of fuel rate.

Figure 3 is a conceptual illustration of an adaptiye
spark timing controller for an‘internal combustion engine. The
truth table of the And-Nor logic gate of this controller is
presented in Table I. The control senses the engine mean torque

and spark timing. The two wariables are then compared by the
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Spark Timing Controller
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TABLE I: ADAPTIVE SPARK TIMING CONTROLLER TRUTH TABLE

: Torque Signal

O-Decreasing
l-Increasing

Spark Timing

O-Retarding
l-Advancing

Logic Gate Output

O-Retard the Spark
l-Advance the Spark

10



11

And-Nor logic gate which activates the appropriate control law.
A dither signal, wnich is merely a small perturbation applied to
the control signal, prevents the control from sticking on a false
optimum. For example, if the control had initially reached an
optimum which because of disturbances has subsequently shifted,
the system could not respond without a small dither to push the
system off its old, now false optimum.

Figure 4 illustrates the relationship between T@v and
Os correlated for all loads and speeds. The relationship displays
the single maximum torque which insures Fhat”an gdaptiye_cpn;rgl
scheme will achieve the optimum setpoint3-_Figu:eﬂSuillnstratés
the hypersurface relationship_thWeen the four variables Tav,
We,¢T , and 88 for a typicé_ml internal combustion éng_i_n‘e_.‘._“ The
throttle effect is to shift the three dimgngibnal“su;facg up and
down without affecting its shape app;egiably; -The surface
describing a real system is mofe“compiéx'than that of Figure 5
because many more variables qre’invqued; One of the advantages
of adaptive control is that it requires no more than a qualita-
tive underétanding of this hypersurface. SpecifiqallyA as long
as only one optimum setpoint exists in the operating range this
is a sufficient condition to guarantee thg realizability of an
adaptive controller. |

The effects of disturbances in variables influencing
engine operation will in most circumstances affect the location

of the optimum spark timing and air-fuel ratio. Thus adaptive
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control will compensate for distufbances in other uncontrolied
variables by continuouslyiadjusting the spark;timing to its
local optimum.

This compensation can be illustrated by considering
the result of a change in throttle position. As a result of the
change in throttle position a change in'engine Velocity'(ﬁwva
will occur as shown in Figure 5. Thus the location of the
optimum spark timing es#will shiff bY,Ag,S#" The controller
will sense this shift by obServing”anwincrease in the local
gradient (ATagv/A@s). This gradient wili drive the sysnem up
to its new optimum.

The adaptive contiol of inte;nai‘cembuetion enginesA
depends upon the fact that adjustment of tneivariables under
control will be on the order of only several cycles. Ideally,
the control would adjust on a cycle to cycle basis. This fact
will:require the replacement of the current carburetor and
distributor advance units by electronic fuel injection and
~electronic spark distribution end timing devices. The preeent
carburetor and distribntor advance units have response times
in the order of many engine cycles. These long responsestimes
are caneed by delays due to long vacuum and manifold connections.
The electronic devices  have the capability of readjusting tne;
air-fuel ratio and spark timing on a cycle to cycle basis thus

achieving the desired controller response.
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The disturbances encountered by thé automobile engine
ordinarily have long time consténts (i.e. the time taken for the
disturbed variable to move from its initial value to within 37%
of its final value). For example, the disturbances to the opti-
mum spark timing Os*kduring warmup have time constants in the _
order of minutes. Other disturbances are caused by accglgrgtioqﬁ
(with time constants determined experimentall?»to be between 5 and
10 seconds in ﬁormal urban driving), aging and wear (time”cqn4.
stants on thé order of months) and environmental ghaﬁger(;img N
constants on the order of hours).. Thebadaptive contto;lér with
its ability'to adjust the spark timingvahd air—fueljratiomop a
éycle to cycle baéis will have little problem in compensatiné'v
for these disturbances. B
| Some disturbances encountered will have very short
time constants and may produce'large chanées in the loéatignM_;
of the optimum setpoint. Such disturbances are capsgd>b?md;iving
onto ice or going up‘a steep hill.” The system response time to.
such disturbances is determined by the controller timercgngtgnt;

Careful design of the control law will minimize this response

time.

(1.5) Mean Torque Measurement

Several methods of measuring the engine mean torque
output are possible. One way is to measure the twist in the
crank or driveshaft. This involves bonding strain gauge or

variable reluctance transducers to the shaft. Disadvantages of



this method include the space required, the transmission of the
signal off the rotating shaft, cost and reliability. Location
of this type éf system downstream of the flywheel presents
problems because of phase»lag and attenuétion.

A second method of measuring output torque which is
used in helicopters consists of a helical gear system..>The
output shaft of the power plant as well as driving'the 1é§d”

also engages a helical gear connected to a hydraulic“cy;ipdgrw

16

and control value. If the output torque of the engine increases,

the helical gear causes the control pressure to change; thereby

repositioning the fuel control spool. The disadvantageé of this

system include frequency response, size and cost.. The frequency

response‘problem ;s the chief disadvantage. In the internal
combustion engine torgque changes occur at a frequency of
150.rad/sec or higher. Preliminary analysis shows that a
helical gear system will not respond to changes at this
frequency.

A third possibility is to measure the mean torque by
observation of motion which is dependent on the mean torque
(Tav). Such motions include the flywheel acceleration and the
relative angle across the clutch (i.e. the displacement of the
driven plate relative to tﬁe driving plate). These motions
could be measured by using suitable magnetic pickups above the
flywﬂeelstegth or notches on the clutch plates. These signals

from the magnetic pickups could then be processed in digital
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timing and logic circuits to produce the desired control signals.

The third possibility is the subject of this work.

(1.6) Preview of Thesis

Section 2 presents the dynamics of the lumped parameter
system. The engine torque model and the load torque model are
also presented in this éection. Section 3 presents the deriva-
tion of an equivalent linear system. In Section 4 the equations
of motion developed in Section 3 are solved for the general case.
Section 5 presents the solutions of Section 4 for a special case.
In Section 6 the equations of motion from Section 2 are simu-
lated. by the IBM 370 éomputer for the same special case as in
Section 4. A comparison of the analytic and simulated solutions
is also made in Section 6. Section 7 evaluates potential observ--

ers for Tav and Section 8 presents the conclusions of the thesis.

Section 9 presents recommendations for future work.
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2 DYNAMIC ANALYSIS OF INTERNAL COMBUSTION ENGINE
DRIVER VEHICLE SYSTEMS

(2.1) System Dynamics

Figure 6 is a schematic representation of the chief
dynamic elements and their arrangement in an idealized lumped
parameter engine vehicle system. The chief dynamic elements
are; the engine inertia (QQ), the clutch spring (Kg)., the clutch
damper (nonlinear coulomb damping,T¢), the transmission ratio
(Rg), the driveshaft spring (Ks), the rear end ratio (R), the
tire spring (Kt), the tire damper (PDt) and the vehicle inertia
(Jl). The system has six degrees of freedom given by; 9[,92;'
83,04,0506, Three external torqués act on the system; the
engine output torque (Te), the load torque_(TI) and the brake
torque (Tb). The dynamic analysis of.the system results in the

following equations of motion:

Te=Je 61 +Kc(81-62) +Tc (2.1-1)
T3=Rg(Kc(81-82)+Tc) (2.1-2)
82 =Rg 63 (2.1-3)
T3=T4=Ks(63- 64) | © (2.1-4)
84=R05 (2.1-5)

Ts=R Ta _ |  (2.1-6)
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Ts=Kt(65- 86)+Dt(65- 86) (2.1-7)
JI 66+ TI+Tb=Kt(65-06)+D1(85-8e) (2.1-8)

For a detailed analyéis and derivation of the system

governing equations including assumptions see AppehdiX'I;

(2.2) External Torques

The three external torques acting on the system are
examined in this section. Assumptions are made which simplify
the expressions for these torques. These simplificatioﬁs are
made so that the resulting model may be easily solved analyti:z-

cally.

(2.2.1) Engine Output Torgue (Te)

"It is shown in [18] that the instantaneous engine
torque Te for a four stroke cycle engine can be expressed as a

Fourier series;

%__e_ = |+C1sin@ +Cisin@ +C3sind38+----
av 2 2 2 2
+Bicos8+Bicos8 +B3cos30 +---- -
! A go0e2 ('2.2.1 1)

Here @ is the crank angle (8=Wet) and Tav is the engine mean
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output torque. The coefficients Ci,C1,C3,...,B1.B1,B3,..., are
2 2 2 2

given in [18] for a single cylinder four stroke cycle engine.
The analysis will assume constant values for these torque
coefficients. In actual engines this is not generally the case
as considerable cycle to cycle variation occurs in practice.
In future work the model being developed will be used in testing
adaptive control schemes. For the later work disturbances in
the coefficients can be introduced to simulate the variations
when evaluating adaptive control schemes.

For a four cylinder engine (the case of interest in
this analysis) the instantaneous output torque is given by summing
the torques from individual cylinders. The resulting torque

expression is:

25 = 142C2sin20+4Casin48+ - - - - +8Bscos8o (2.2.1-2)

where terms to the eighth order have been included. Terms higher
than the eighth order are much smaller and have much less effect
on the instantaneous engine torque. For the purpose of the
analytic investigation the expression (2.2.1-2) is simplified
further to:

-T-e—-=l+KIsin(2We)t (2.2.1-3)
Tav

where KI=Trnaxhhv=2.5 for four cylinder four stroke cycle engines
[19] and We/"‘is the period of the torgque fluctuation.

The error between the expression (2.2.1-2) and the

expression (2.2.1-3) is illustrated in Figure 7. As shown, the
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apﬁroximation made in eguation (2,2.1-3) modifies the energy
input £iming‘but maintains approximately the same energy input
per cycle.

The factor Tav must be investigated to produce an
analytic expression for use in the simulated model. Figure 8
illustrates the relationship between engine speed (We),
throttle (¢t) and mean engine output torque (Tav) for the Ford
Cortina 2000 c.c. Engine (which will be the engine to which the
analysis will be applied). Recall that Figure 4 presents a sim-
ilar relationship between spark timing (0s) and mean engine
output torque (Tav). Keeping the above‘relationships in mind

a functional»relationship of the following form is suggested:

Tav iTaV(We,¢t,Os,A/ Fy,T,P,W¢) (2.2.1-4)
In this rélationship A/F is the air-~-fuel ratio, ¥ is the
relative humidity, T is the ambient air temperature, P is the
ambient air pressure, W is the engine wear (age); and § is to
account for other factors. 1In this analysis all effects other
than those of speed (We), throttle (¢t) and spark timing (@fs)

will be ignored. Equation (2.2.1-4) then reduces to:

Tav =T'uv(We,¢>1, 8s) | (2.2.1-5)

To evaluate (2.2.1-5) it is noted that in Figure 8
for a fixed throttle position there exists a maximum torgque

(th\i_ma)o which occurs at a particular velocity (W5 . Botn
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of these variables then are functions of throttle (¢ﬁ)'alone,

or:
chmax='3f1jvmdx(¢i) : ‘ (2.2.1-6)
Wé"’=w‘éf(#§1.) | (2.2.1-7)

In the case of the Cortina 2000 c.c. engine they have been eval-
uated by making plots of Tavmaxvs ¢t and We# vs ¢t. The
following relationships result:
Tavmax=93.4 +d.355x<ft (Nm) | (2.2.1-8)
We =3.86X¢ t (rad/sec) . (2.2.1-9)

Assuming the relationship between Tav and We to be parabolic

in nature the following eguation may be written:
, We 2 :
Tav(¢t,We)=T avmax [l-CWe W;-'Fl}] ' (2.2.1-10)

This leaves one remaining constant CWewhich has to be evaluated .

from Figure 8. The result of this evaluation is:

CWe=0.275 | | (2.2.1-11)

The other factor, the spark timing, is analyzed in the
same fashion as the throttle. The first step is determining the
spark timing at which the maximum torque occurs. In this

analysis it is treated as a function of speed alone:

o¥- 6s¥(1) : C(2.2.1-12)
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From data for the Cortina 2000 c.c. engine, it is

found that:

0s#=(1.48%10"%)We '('Degre_es BTDC) (2.2.1-13)

With this equation and remembering Figure 4, the following

relationship is proposed:’

Tov(es)=Tov(4>1,We)[I- CisT(8s - 8s¥) - Cas1( 65-95#)2] (2.2.1-14)
where CIsT=1.246X10™* and CosT =3.684%I073
From the "preceding paragraphs the engine mean torque
(Tav) is given by:

Tav=Tavmax[l- CWe { ey I ][1-Cisr(os-08- Cst(Bs-eé‘:i]z .

k2,2;2)1_Load Torque (Tl)

As shown'in‘Figure!2ithe load on a vehiclélreSulgs
from three separate forces; the>aerodynamic drag force, the
rolling resistance erce-and the gradient force. An examina=
tion of these three forces follows. An expression for the

load torque (Tl) is derived from these forces.

(2.2.2,1) Aerodynamic Drag Force (Df}
The aerodynamic drag force may be calcu-

lated from the well known relationship:

Df =—2‘|- V2 x Coo Ap | (2.2.2 .'1--"1)
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In this relationship CpO is the drag coefficient‘
taken as 0.45 (typical of modern streamlined Vehicles),Ap is
the vehicle projected area (which is 1.53n° for the Cortina
sedan) andHJQZZ:is the dynamic préssure (where p is the air
density (1.23 N secz/m4) and V is the relative velocity of the
air). This results in the following expression for the aero-

dynamic drag:

Df=0.424xV?2 (N) | (2.2.2.1-2)

where V is in m/sec. _

(2.2.2.2) Rolling Resistance Force (Rf)

As shown in [20] the rolling resistancé
force is given by:

Rf =KrXW't | (2.2.2.2-1)
where Kr is an empirical constant giving the rolling resistance
due to mechgnical friction, tire inflation and the aerodynamié
and pumping effects in the tires in (N drag)/(N vehicle weight).

The constant is given as:

Kr=0.005+|.0g><|03+I.2'IDXV2 , (2.2.2.2-2)

where P is the tire inflation pressure in Pascals and V is the
vehicle velocity in m/sec. Consulting Table II, p=l.66x105'(Pa)

and Kr becomes:

Kr= 0.01126 + 7.3%10"¢ v2 (2.2.2.2-3)



TABLE II: PHYSICAL CONSTANTS OF THE
CORTINA 200 c.c. SEDAN

Quantity Symbol Value Units

Engine Inertia Je 01136 NmsecZ/rad
2

Load Inertia Ji 102 Nmsec /rad
Clutch Spring Ke 1500 , Nm/rad
Driveshaft Spring Ks 7800 Nm/rad
Tire Spring Kt 6950 Nm/rad
Clutch Damper TCE

Dynamic ) +3.2 Nm

Static s +6.0 Nm
Linearized Dc 3.8 Nmsec/rad
Clutch Damping e
Tire Damper Dt 58.0 Nmsec/rad
Vehicle Weight Wt 1100 N
Frontal Area Ap 1.53 m

. : . o 4 2

Tire Inflation P l.66xlO5 Pa (N/m")
Pressure )
Dynamic .Wheel | R/W_ 0.3 m
Radius L
Rear End Ratio R 3.44
Gear Ratios Rg

lst 3.65

2nd 1.97

3rd 1.37

4th 1.00



Again consulting Table IT and findix@;“ﬁ=&l&00 (N) (the vehicle

weight) the final result for Rf can be given:

Rf =KrXWt=125 +0.0809%x V2 (N) (2.2.2.2-4)

(2.2.2.3) Gradient Drag Force (Gf)

The increase (or decrease) in load experi-
enced by a vehicle climbing (or descending) a gradient is

given by the familiar expression:.

Gf=WtXsin @i (2.2.2.3=1)

where 8| is the incline angle. Therefore, the expression

(2.2.2.3-1) can be written:

Gf=11100Xsin8i  (N) 02.2.2.3-1)

(2.2.2.4) Combination of the Load Force

Figure 9 is a free body diagram illustrating
the three forces acting on the vehicle. Therefore, the total

force acting against the vehicle becomes:

Fl=Df +Rf+Gf (2.2.2.4-1)
which shows up as an external torque (Tl) at the rear wheels:
T1=FIXRw (2.2.2.4-2)

In the expression (2.2.2.4-2) RW is the wheel radius which is

given as 0.3 meters in Table II. As well V can be replaced by:

\

V=RwX 86 (2.2.2.4-3)

29
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Figure 9: Free Body Diagram Illustrating the

External Forces on a Vehicle
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which results in:

TI=37.5+1.52X1072(86)% + 3.32x10%(sin 8i)  (Nm)
(2.2.2.4-4)
The first two terms of (2.2.2.4-4) are plotted in
Figure 10 for a normal range of operating Spéeds. 'Thé effect
of the third term is illustrated by the shifting of the piotted
curve upward aé indicated in Figure lQ-‘ |
The relationship of (2.2.2.4-4) is ﬁonlinear. The
analysis can be simplified by introdﬁcing the concept of an
operating point (T|°,é6°). That is, éjpoint at which the system

is in equilibrium operation as shown in Figure 10. If a linear

impedance of the form:

d(potential) _dTs°® (2.2.2.4-5)
d(flow). dfe® '

is introduced where TS is the torque from the second term of
(2.2.2.,4-4). The equation (2:2:2¢4-5) may then be writteﬁ:
L A - - 2 - > Y o
Ts=1.52 X1072 862~ 1.52x1074§6°+3.04 x107286°(86-66°) (Nm)

Y .o (2.20204_6)

for small perturbations ( 86— 88) around the operating point.
The third term of (2.2.2.4-4) may be linearized by

recognizing that @i will generally be small (<§%) and there- -

fore the small angle épproximation can be made to obtain:

Tg=3.32X%103(8i) (.2'2'2'4—7)

where @1 is in radians.
Therefore, the final expression for the load torque

(T1) linearized about an operating point (TI°,96°) is:
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TI1=37.5+1.52X1072(86°) + 3.04X10~%(66°)( 06— 06°) +

3,32x103(81) (2.2.2.4-8)

(2.2.3) Brake Torque (Th

. The brake torque can be thought of as an increase in
the load torgue which occurs as a result of the driver's desire
to slow down. The simplest model for the brake torque can be

given by the expression:

Tb=BCIXTbmax \ (2.2.3-1)

Here BCI is a brake command input (percent of maximum possible
brake action). Th represents the brake torque applied which is a
fraction of the maximum available brake torque, Tbmax. The

expression (2.2.3-1) assumes the brake action is linear.
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3 AN EQUIVALENT LINEAR SYSTEM

The system described by equations (2.2-1) to (2.1-8)
and Figﬁre 6 is a six degree of freedom system which is cumber-
some to analyze anglytically. Variables downstream of 81 will
experience attenuation and phase shifts in the affects caused
by Tav. Thus it is desirable to focus primary attention on 8i
and its relationship to Tav. Therefore, by replacing the more
complicated system of Figure 6 by the equivalen£ linearized
system of Figure 11 the analysis can be considerably éimplified
without eliminating the important information. The validity of
this simplification is established later by compﬁtef simulation
of the system of Figure 6 and comparing the results with those

obtained from the analytic investigation of Figure 11.

(3.1) A Constant Speed System

The first step in the derivation of the edquivalent
system of Figure 11l is to elimihate both the transmission and
rear end ratios. All components of the resulting system will
rotate at the same speed (the engine speed (We)). The elimi-
nation of the transmission and rear end is accomplished by

making the following substitutions:

66=086XRXRg (3.1-1)
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Tl |
S 5 (3.1-2)
T R(Rq) |

Jr=—d (3.1-3)
(R(Rg))?

1 Kt .
Kt's —— (3.1-4)
(R(Rg))? |

Dt : ' -
Dt's —=1— (3.1=5)
(R(Rg))?

KS';—"E_'sf'; | (3.1-6)
‘ R'ga;-

k3.2) Equivalent Spring and Damper

The next step is to replace the spring-damper network
between 81 and 86 by a single equivalent spring (Keq) and a single

equivalent damper (Deg . This can be done by first recognizing:

Te-Je81=Ti | _ (3.2-1)

and
TI'+J1'66'=Te'=T (3.2-2)

where the components are all rotating_at the same speed. The

displacement across the clutch,Adriveshaft and tire (el-eb is:
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(61-8¢')= ;f(':+ i's,+ TKlt' or _ (3.2=3)
(Gn—ee')=-%1e; . (3.2-4)

Using (3.2-3) and (3.2-4) the following result is obtained:

eq= chKs'Kt' (3.2-5)
(KcKs' +Ks'Kt'+ KcKt')

The first step in combininé the clutch damper (T¢) and the
equivalent tire damper (Dt is to replace the nonlinear clutch
damper with an equivalent linear oﬂe.  The method is described
in [21) and the results are presented here. The equivalent

linear damper (D¢) for the coulomb damped clutch is given by:

Dc=4XxIc__ ~ (3.2-6)
TWX 8o

>

In this equation TC is the coulomb damping torque which is given
in Table I as *3.2 (Nm) andWis the frequency of the torque
signal (which is twice the engine frequency @2We)). 8o is the

amplitude of (@)-@2) and is given by:

_( 4Tc )a (3.2-7)
9o =-LavKl o 7 TavKil
Ke w\2
(W)

In equation (3.2-7) WN is the natural frequency of the clutch

which is given by:

Wn=, /-\% ' (3.2-8)
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where Jeq is the equivalent system inertia. For this two inertia

system, Jeq is given byx

Jed!'

Je+dl (3.2-9)

Jeq=

Having arrived at the equivalent linear clutch damping
the equivalent system damping can be found. The difference
between the rotational speeds of the engine and the load (el-eé

must be dissipated in the network between these two elements.

Therefore:
(él—és')=-%(-: +—%;—. or | (3.2-10)
(§1-86')= =L (3.2-11)
De :

From equations (3.2-10) and (3.2-11) the expression for the

equivalent system damping Deq is:

DcDt'

Deq-= Dc+DT (3.2-12)

(3.3) Eqgquations of Motion of Equivalent Linear System

Having completed the above analysis the equations of

motion of Figure 11 can be written:

Je§i+Deq(81-86')+Keq(61-66')=Tav(l+KIXsin(2We)t)=Te
‘ - (3.3-1)

JI'd6'+ TI'=Deq(61-66')+Keq(8i1-86') (3.3-2)



4 SOLUTION OF THE EQUIVALENT LINEAR SYSTEM

The solutions of equations (3.3-1) and (3.3-2) will
consist of three parts; the homogeneous (transient) part, and
two pérticular parts. fhe particular parts are a constant
solution and a sinusoidal solution. A detailed analysis of
the solutions is presented in Appendix II and the results are

given here.

(4.1) The Transient Response

The solution of the homogeneous equations of motion
provides the transient response. For the system of Figure 11

the transient response is given by:

39

Bci=e "PTAcos qr +Bsingz) (4.1-1)
Bce'=ePT [—%‘-‘f](Acosqr +BsinqT) (4.1-2)

In these -equations Q is the damped natural frequency and P
is the negative exponent of decay. These two variables are

given by:

q=Wn./1-(£)? = Wnd (4.1-3)

p=L Wn (4.1-4)
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where § is the damping ratio and Wn is the undamped_ natural

frequency. { ana Wn are given by:

L-:.gﬂ. (4.1-5)
cr .

"Keq (4.1-6)
Wn= Jeq

where Dcris the critical damping coefificient given by:

| 4.1-7
Der=2, / JeqKeq ( )

A and B are arbitrary constants which are determined

from the system boundary conditions. For example, for a step

change in mean torque: (ATaQv) the boundary conditions can be
given by: |
gci =210 (r=0) B i
Keq
6¢1=0 (x=0)  (4.1-9)
=0 when t=t' and f'is the time when the disturbance exciting

the transient occurs.

(4.2) The Constant Response

The constant response is given by the following
equations:

= a - 0 ':M . (402"'1)
aeng=0ssci=0ssce Jerl ‘ ,

Weng=9550|=ésscs'=Wengi+faeng dr (4.2-2)
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feng =8sscl= 9engi+fWengdr (4.2=3)

Tav__ Je(Tav-Tic' (4.2-4)

y=(8ssci-fssce')= 2% Keq Keq(Je+JI")

In the special case wherefaeng=0‘the results (4.2-2) to

(4.2-4) reduce to=x

Weng=constant | - (4.2-5)

8eng=0ssci +Weng(r) | (4.2-6)
-Tav |

v= Keq (4..2-7)

(4.3) The Oscillatory Response

The oscillatory response of the system is of the

form:

2
8sso1=Kl Tav —%'-—:—_—E_JT sin(2Wet-V¥1) (4.3-1)

2 2
8ssoe=K| Tav /_Cs_z-l-_l'.l% sin(2Wet - ¥¢') (4.3=2)
Ee“+Fe ,

In these solutions C1,C6,D!,D6E1,E6 and FiI,Fe a&\ep'ad_ep‘eriden_t-‘upon
the system constants. For a more complete explanation of this

solution see Appendix II. The phase angle Wis given by:

‘Wi=tan™ [—?1'7] (4.3-3)
\I/s'=ton“'[—(l_-5|%] (4.3-4)



(4.4) The Total Response

The total reSponsé of the system can be calculated

by summing algebraically the responses given in Sections (4.1)

to (4.3). This is possible because of the linear nature of the

system described by equations (3.3-1) and (3.3-2). For example

the total solution for 81 is given by summing equations (4.1-1),

(4.2-3) and (4.3-1) to yield:

61=e"PT (Acosqr +Bsingr) + 8erig_i+fWeng dr + (4.4-1)

2.2
Kl Tav QElT’f-!ETIE sin(2Wet - ¥))

42
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5 SOLUTIONS OF A SPECIAL CASE

(5.1) The Vehicle Considered

The analysis of Sections 3 and 4 is now applied to a
typical small car system. The system selected was a Ford Cortina
automobile. The reason for thié choice is that this vehicle is
typical of modern compéct car design. Table II presents the
- physical constants for the 2000 c.c. engine Cortina Sedan.
Appendix III presents the derivation and determination of these
constants. The analysis can be easily extended to other vehicles
and engines by substitution of the appropriate physical constants
and torque signals, equation(2.2.1-3), for those used in this

analysis.

(5.2) The Particular Case Considered

For the equivalent system of Figure ll‘and equations

(3.3-1) and (3.3-2), the solutions (4.1-1) and (4.1-=2), (4.2-1),
(4.2=2), (4.2=3) and (4.2-4), (4.3-=1) and (4.3.2) are determined
for a particular case for later comparison purposes with a com-
puter simulation of the system of Figure 6 and equations (2.1-1)
to (2.1-8). The particular case investigated is an initial
engine speed for 280 rad/sec (~2800 rpm), in third gear (Rg=1.37)
producing a 23.5 Nm mean torque (18.5% of maximum output torque).

A 10% step change in throttle position is then made resulting in
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a new mean output torque of 80 Nm (62% of maximum output torque).

The system response to this step change is presented below.

(5.3) The Transient Response

Consulting Table II and using equations (4.1-3),

(4.1-4), (4.1-5), (4.1-6), (4.1-7) the following results are

obtained:
Wn =,—“Re=42;4 (rad/sec) | (5.3-1)
Jeq
Deg __Deg =0087 : (5.3-2)

&% TDer JeqKeq

Wnd=Wn,/1-{2 =42.2 (rad/sec) (5.3-3)

Using these results in equations (4.1-1) and (4..1-2)  the follow-

ing solutions can be written:

Oci=e 3% T(Ac0s42.2 r+Bsind2.27) (5.3-4)

Bce'= 38T D(Acos42.27 + Bsin42.2) (5.3-5)
The constant D can be evaluated by the method illustrated by
equations (AII.3-11) and (AII.3-12). The other two constants
A and B are evaluated by consideration of the boundary conditions
which are the same as those given by (4.1-8) and (4.1-9).

The evaluation of these constants produces the follow-

ing set of results:



8c1=-¢73887 (2 49%107! c0s42.27 +2.09 X107 2sin42.27)
‘ (5.3-6)

Bci=e~ 3687 (9.80sind42.2) (5.3-7)

fel=e~3-88T (414 x102¢c0s42.2 7~ 3.60%10'sin42.2+)
' (5.3-8)

Bce=0 3987 (7- | 6 X107 %5in42.27+6.20X10" *cos42.27 )% -|

(5.3-9)
fce'=~3-687(3 02x10"'sin42.27) : (5.3-10)
Bce'=073-58T) 28x10'c0os 42.2 v -1.09sin 42.2 1) (5.3-11)
These results (5.3-6) to (5.3-11) imply a time constant:
| ‘
Tc= = I
c EWn 0.2714 (sec) | (5.3-12)

The amplitude of the engine angular. velocity transient is:

|8cif= 980 xo~3-687 | (5.3-13)

and the engine angular .acceleration. transient - is.:

|6eil=416 x ¢=3-687 - * (5.3-14)



(5.4) The Constant Response

For the step change imposed on the system edquation

(4.2-1) can be evaluated to give:

80-23.5
4702

Equation (4.2-2) can be evaluated assuming geng is constant

aeng= =V|_2'-'0 (rad/ sec?) (5.4-1)

for the first second after the step change in Tav to produce:
8ssc1=292 (rad/sec) (5.4-2)

The assumption of constant angular acceleration @€Ng is not

strictly true because Tﬂe will increase due to the increase

in speed (Weng@. This increase will reduce the magnitude of

aeng which thus does not remain constant.

(5.5) The Oscillatory Response

For the particular case under consideration the value

KiTav is:
KITav=200 (Nm) (5.5-1)

after the step input. Substitution of the physical constants
of Table II into equations (4.3-1) and (4.3-2) will result in

the following set of solutions: -

fssol= 453X%10 3sin(560 1 - 0.869°) (5.5-2)

@ssoi= KITav(2We)(2.2 65%10~5) cos(2Wet - V1) (5.5-3)
=2.54 c0s(560t -0.869°) |

46
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Gssoi=-KI Tav(4We?)(2.265%10-5) sin(2Wet ~¥1) (5.5-4)
=-1.43x103sin(560t - 0.869°)

fs506'=6.02x107®5in(560t-90°) . (5.5-5)

'5ssos'=KlTav(2We)(3.0|xIO‘a)cos(zwet-\I/s') © (5.5-6)
=3.37 %1073 cos (5601 - 90°)

Gss06'=K|Tav (4 We2)(3.01X10~8)x-sin(2Wet -V ¢') (5.5-7)
=-1.885in(560t-90°) -

The solution (5.5-3) implies a final equilibrium engine angular

velocity amplitude of:

|8ssoll =254 (rad/sec) © (5.5-8)
and a final equilibrium engine angular acceleration amplitude
of:

|8ssoil =1420 (rad/sec?) (5.5-9)

The phase difference between the change in torque:and the
response is 0.0151 radians (0.8690) or 5.39x,10-5 sec at the

original operating frequency (280 rad/sec).



48

6 COMPUTER SOLUTION OF THE NbNLINEAR SYSTEM

The dynamics of the system of Figure 6 and equations
(2.1-1) to (2.1-8) are simulated on the IBM 370 Computer using
the CSMP language. The mean torque (Tav) and load torque (TI)
models given by equations (2.2.1-15) and (2.2.2.4-4) respect-
ively are included in the simulation. The instantaneous torque
(Te) used in the simulation is computed using expréssion
(2.2.142) iather than expression (2.2.1-3). Theé computer
programs used are presented in Appéndix Iv.

The simulation is carried out for the same particular
case as that given in Section (5.2). to facilitate comparison
between the simulated and analytic results. Figure 12 illus-
trates the throttle input command step. Figure 13 illustrates
the response of mean torque (Tqy) to the throttle step input.
Figure 14 and Figure 15 illustrate respectiveiy the response of
the engine rotational velocity and rotational acceleration ‘to the
throttle input.

The agreement between the analytic and simulated
models is quite good as’illustrated in Table III. No reiative
error between the two solutions exceeds 10%. What errors do
occur can be explained. The calculations made in calculating

both the transient response and the oscillatory response have
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TABLE IIT: COMPARISON OF ANALYTIC AND SIMULATED
RESPONSES TO A STEP CHANGE IN ENGINE
OUTPUT TORQUE (80-23,5-56.5 (Nm))

Response - % Error
Item ’ _ Analytic/
Analytic Simulated Simulated

Transient Response (8c¢CI)
Time Constant ([’c) 0.2714(sec) 0.27(sec) 0.
Damped Natural Frequency (Wnd) 42.2(rad/sec) 42 .0 (rad/sec) .5
Velocity Amplitude 9.80(rad/sec) 9.5(rad/sec)
Acceleration Amplitude 416(rad/sec) 400 (rad/sec) 4.0
Forced Steady State Oscillatory
Response (6sSOl)
Velocity Amplitude 2.54(rad/sec) 2.40(rad/sec) 5.8
Acceleration Amplitude l420(rad/sec2) l320(rad/sec%) 7.6
Forced Steady State Constant
Response (@SSCI)
Velocity at 7=1.0(sec) 292 (rad/sec) 292.3(rad/sec) 2.5
@Enitial Velocity=280.0(rad/sec)) '

€9
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assumed that the freguency of the torque signal (2We) has
remained constant. As Figure 14 shows this is cleariy not the
case. This assumption then can account for the error between
these two solutions. For example, consider the oscillatory
angular velocity amplitude as giveh by equation (5.5-8) this
was calcglated,assuming\Ne=280 rad/sec but as shown in Figure
14 We ranges from 280 to 294 rad/sec. This variation produces
errors in the calculated response relative to the simulated
response from O to 5%. Another error iﬁ the analytic results
which has been pointed out previously is the assumption that
aeng is constant. This error explains the difference between
the analytic and simulated constant velocity for 7=1 sec.
The analytic model then, represents the dynamics of the
simulated systemlclosely; ’

The simulation model can be used to .evaluate proposed
control laws for adaptive controls. The law would be programmed
and the response observed over a typical urban driving cycle.

Air-fuel ratio control will require a further extension of the

mean torque model given by equation (2.2.1-15).
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7 MEAN TORQUE INDICATORS

Now that the analysis has been verified, the results
can be used to investigate possible indicators of the mean
torque. Inspection of the solutions (5.5-2) to (5.5-7) and
(5.4-1) and (5.4-2) shows that they are all dependeﬁt on the
mean torque (Tav). The transient solution }5.3—6) to (5.3-11)

is also dependent on Tav for the special case of Section (5.2).

A more detailed analysis of the potential observers follows.

(7.1) The Transient Response

The'trapsient‘response will be excited by disturbances
other than thoSe in Tav thus making the boundary conditions and
hence the response independent of Tav. Another problem>posed
by using the transient response as an indicator of torque is
illustraﬁed by Figure 16. The figure shows an initial trans-
ient followed by another transient beginning in the next cycle.
Note that these transients have cancelled each other out. The
cancellation means that no indication o%: the wrong indication
of the change in torque may result from looking ét the transient

response.



INITIAL TRANSIENT
CANCELLATION

ANY VARIABLE

 LATER TRANSIENT

TIME .

Figure 16: Transient Cancellation
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(7.2) The Constant Response

The constant response could be used as an indicator of
the mean torque. For example, measuring the gross vehicle accel-
eration or measuring the steady state constant part of the rela-
tive clutch angle will provide a signal of the constant response.
The prqblem,with using the gross vehicle acceleration is that it
takes too long to see the effect due to a control change because
of phase shift. With the control adjustment being on the order
of every few cycles this lag will be unacceptablé. Another
serious problem arises because the constant response is also
affected by disturbances in load. The constant response will
not, therefore, always indicate how the engine mean torque is
behaving because 6f the interference of these load torgue.

disturbances.

(7.3) The Oscillatory Response

The steady state oscillatory response is dependent
on the rotational frequency (We) as well as the mean torque
(TdV). However,Afrom one cycle_to the next little change in
speed will occur. As well, the speed changes tend to be in
the same direction as the changes in mean torque, thus
enhancihg the indication of the change. The control would
first observe the amplitude of the.steady state oscillatory

response, then adjust the spark timing and then observe the



'steady state oscillatory amplitude of the first cycle after the
adjustment.' A comparison of the two amplitudes would then be
made to determine the input to the controller of Figure 3.

The transient can be effecgtively separated from the
steady state oscillatory response by a high pass filter. The
transient ffequency is always given by the damped natural
frequency which in the case of the analysis carried out in this
work is 42.6 rad/sec (400 rpm) and by design is kept well below
the lowest operating frequency. The lowest frequency of the
steady state oscillatory signal is tWice therengiquidle i
frequency or 160 rad/sec (1500 rpm). Therefore, there is
normally a greater than fourfold separation of frequencies;

The steady state-oscillatory acceleration has a much
larger amplitude than the velocity signal as can be seen from
inspection of equations (5.5-3) and (5.5-4). For this reason

it will be a much easier signal to measure and changes in Tav

will result in larger absolute changes in acceleration amplitude

than in velocity amplitude.
The merits and drawbacks of all the responses as

indicators of Tav are summarized in Table IV.



TABLE IV: EVALUATION OF SYSTEM RESPONSE SOLUTIONS
AS INDICATORS OF MEAN TORQUE

' . Affected by Disturbances | Frequency :
Solut}on ‘ Other than in Tay (rad/sec) émplltude Phase (rad)
Transient
fci
2 depends on depends on
” =
fci Yes Wnd=42.0 disturbances disturbance
fct |
Constant
aeng |
> depends on _
Yes - disturbance
w -
Oscillatory
8sso! KITav (2.27%1075)
gssol T No 2We 2WeKITav(2.27x1078) | 0.0151
. -5
8ssol | 4We?KITav(2.27%107")
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8 CONCLUSIONS

A simplified linear model of the dynamics of the
internal combustion engine vehicle driver system has been dev-
eloped. This model is verified by comparison with a computer
simulation model which includes the important nonlinearities.

The linear model is shown to be a good approximation of its

60

simulated counterpart. Models describing the engine mean torque,

are also developed.

The problems of measuring the mean torque are dis-
.cussed. It is established that measuring one of the engine
variables will provide the best observer for the mean torque.
Other véfiables downstream of the engine are subject. to phase
shifts and attenuation. The sdlutidhs obtained for these
variables from the linear model have been used in the. evalua-
tion and selection of the best engine variable. It is shown
that the transient and constant solutions are excited by
disturbances in the load torque as well as by disturbances in
the engine mean torque. This fact rules them out as potential
observers of the mean torque.

The evaluation and selection has determined that the
steady state oscillatory acceleration response provides the

,; e IR o
best indication of the mean torque. A system has b
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]—9 RECOMMENDATIONS FOR FUTURE WORK

kFuture work éhould be directed towards the develop-
ment of a device for measuring the oscillatory acceleration.
As well, the structure and quantitative determination of the
adaptive controller should be pursued. To achieve the latter
goal the simulation model developed in this work should be
extended to include the human, adaptive and feedback models.
The simulation model would then be a useful tool in the design,

selection and optimization of adaptive control for internal

combustion engines.
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APPENDIX I: EQUATIONS OF MOTION OF AN INTERNAL
COMBUSTION ENGINE VEHICLE SYSTEM

(AT.1) Purpose

The purpose of this Apéendix is to derive the equa-
tions of motion (2.2-1) to (2.2-8) which apply to Figure 6.
Theximportant assumptions made in making the lumped parameter
system approximation are presented'and their validity investi-

gated.

(AI.2) Assumptions

The assumptions made in the lumped parameter model
are; all inertias other than the engine and load inertias are

neglected, all springs in the system other than the tires,

driveshaft or clutch are assumed rigid and damping effects other

than those of the clutch and tires are ignored.

(AT.2.1) TInertia Assumptions

The components having the largest inertias next to
the engine are the gears, clutch plates and driveshaft. The
inertia of a typical gear (Ig), a typical clutch plate (ICp)

and a typical driveshaft (IdS) are presented below:

Ig:—é—mg-rgz ' (AT.2.1-1)

65.
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2
where:mg@=mass of gear=p (1r'rgz)f =1.54 (Nsec /m)
p =density of steel=7.89x10—3 (Nsecz/(m)cm3)
fg =gear radius=5.0(cm)

t =gear thickness=2.5 (cm)

Ig = 0,00194 (Nmsecz/rad) (AI.2.1=2)
Icp=-2'—-mc-rc2 | (AT.2.1-3)

where: m¢=mass of clutch=0.72 (Nsecz/m)

rc=ciutch radius=10.79 (cm)

;Z Icp=0.004l9 (Nmsecz/rad) (AI.241-4)

Ids=L2mds(r02—ri2) - (AI.2.1-5)

. : 2
where:mds=ass of driveshaft=4.4 (Nsec /m)
rO=outside diameter of driveshaft=2.5 (cm)

ri =inside diameter of driveshaft=2é35-(¢m)

..Ids=0.00016 (Nmsecz/rad) (AT1.2.1-6)

These inertias are all at least two orders of magnitude
. . . 2,
smaller than the engine inertia of 0.14 (Nmsec /rad). Therefore,
the inertias of these componehts as well as smallerﬁcomponents

may be safely neglected.
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(AI.2.2) Spring Assumptions

The components having the lowest spring rates will
generally be those of smallest cross sectional area, greatest
length or made of the most flexibie material (e.g. tires). The
torsional spring constant of shafts in the system is inversely
proportional to their lengths. Therefore, shafts such as the
Crankshaft,lwill be essentially rigid when compared with the
driveshaft. The épring cohstant for a section of crankshaft is

given by:

Kcs=1§-g+°s‘2 (AT.2.2-1)

: 2 2
where: G=shear modulus of steel=8.45x105 (Nsec /(m)cm )
. . 2
g=acceleration of gravity=9.8 (m/sec”)
dcs=5.699 (cm)

| =2.54 (cm)

'.:;Kcs=5.96x105 (Nm/rad) (AI.2.2=2)

This spring constant is two orders of magnitude greater than the
driveshaft spring constant of:

Ks=7800 (Nm/rad) (AT.2.2=3)

The assumption that all components of the system other than'the

tire, driveshaft or clutch are rigid is thus established.

(AI.2.3) Damping Assumptions

Equation (5.3-2) illustrates that the damping ratio §
is in the range 0.1l. Other forms of damping present in the

system include structural damping (§=0.0l), journal bearing
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friction ({=0.001) and gear friction ({=0.001).. The effects of
these damping mechanisms are ignored because their contribution

to the motion of the system is very small when compared with

that of the clutch and tire.

(AT.2.4) Limitations of Analysis

Several factors have not been considered in this analy-
sis which may be of importance in later work. Among these factors
is the engagement and disengagement analysis of the clutch, the
effect of the differential upon the vehicle dynamics and the

analysis of slipping of the rear wheels.

(AI.3) Eguations of Motion

‘Figure 6 maylbe used to draw free body diagrams of the

system components to obtain the equations of motion.

(A1.3.1) Thé'Enqine

Figure l@ is a free body diagram of the engine ideal-
ized as a pure inertia Je. A torque Te is imposed on this system
and torque T results. The analysis of this system produces the

following result:

Te-Jefe=Ti (AI.3.1-1)

(AI.3.2) The Clutch’

Figure ig is a free body diagram of the clutch ideal-

ized as a parallel spring (K€) and nonlinear coulomb damper (T€).



Tav

Je

T

Figure 1l#: Free Body Diagram of Engine
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Figure(ﬂ@: Free Body Diagram of Clutch
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The torque in Tl is equal to the torque out T2 and is given by:

Ti=Kc(81-82)+Tc : (AI.3.2-1)

where T¢ is the value of the nonlinear coulomb damping.

(AT.3.3) The Transmission
The free body diagram of Figure ;9 illustrates the

transmission. The following equations result from this system:

82=63XRg (AI.3.3-1)
RgXxT2=T3 | |  (AT.3.3-2)

where RQ is the gear ratio.

(AI.3.4) The Driveshaft

Figure ?@;présents the free body diagram of the drive-
shaft which is idealized as a spring (KS). The equations of
motion of this system are: N

T3=Ta | (A1,3,'4i1)

T3=Ks(@3-04) | (AT.3.4-2)

(AI.3.5) The Rear End

Figuret?%'which is much the same as Figure 19 is the
free body diagram of the rear end which is an ideal transformer.
The analysis pfoduces the following results:

- T5=RXTa4 o » (A{I,73,5»-:1)

84=RX 05 (AI.3.5-2)

(AI.3.6) The Tires
Figure/??‘is the free body diagram of the tires. The

tires are idealized as a parallel combination of a spring (Kt).



T2

Ts

Figure'19: Free Body Diagram of Transmission

LE % | Ta

Ks

Figure 20: Free Body Diagram of Driveshaft
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Ts

A Figure;?i: Free Body Diagram of Rear End
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Ts K4 Te
N
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Dt
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FiguremZZ%Q Free Body Diagram of Tires
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and a damper (Dt). Analysis of the system shows:
Ts5=Tse (AI.3.6-1)

Ts=Kt(85- 66) +D1(95-06) | (AL.3.6-2)

(AI.3.7) The Load

Figure'ZB/is the freé body diagram of.the load ideal-
ized as a pure inertia (J]). - The .inputs to the system are the
torque Te and T|. Ti is the load torque thch is a function of
speed. The investigation of this system provides the following

equation of motion:

Ti+Jl86=Te g (AT.3.7-1)



7 4;‘?
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Figure"23: Free Body Diagram of Load
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APPENDIX II: SOLUTIONS OF THE EQUATIONS OF MOTION
OF THE LINEAR EQUIVALENT SYSTEM

(ATII.1l) Homogeneous Solution

The homogeneous equations of motion are:

Je Oci +Deq(fc1 - c6) +Keq (8ci- Bce)=0 (ATT.1-1)

JI'8ce' +Deql8ce' -8c1)+Keq(bce'-0¢c1)=0 ;AI‘Iil‘_-z)-
The.solutions of these equations are of .the form:

8cr=8a1xe®" | ,. (ATI.1-3)

.066'5006')( i ;(A]AZI.Z'L-'-‘ZLI);'E -

where s=-p44qammi p'iS'the negative of the exponent of decay'ef
the amplitude while Q is the damped natural frequency. Suﬂsti—
tuting (AII.1-3) and (AIi.l—4) into (AII.1-1) and (AII.1-2)
results in: |

[Je s26a1+Deq s(fai-Hae')+Keq(fal - 806')] e%%=0 (AII.1-5)

[Jl'szaae'+Deqs(Gas' -8a1)+Keq(Qas'-6ai) ]es'=0 (ATII.1-6)

Rewriting (AII.1l-5) and (ALL.1-6) produces the following results: -

fai __Degs+Kegq -4 (AII.1-7)
8ae' Jes®+Deqs+Keq

8aé'_ Ji's® +Degs+Kegq (AII.1-8)
fai Deqgs+Keq

Equating (AII.1-7) and (AII.1-8) results-in the frequency edqua-.

tiong
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JeJl' 2 |
m“Deqs +Keq=0 (ATI.1-9)

Equation (AII.1-9) can be solved to produce the following result:

i (ATII.1-10)
~Deqt [Deq? -4(-dedl
. «/eq (el )keq
Je Jl'
2 \
(Je+dl)

This result can be evaluated.knowing the numerical values of
f ' o
Je,J|I ,Deq and Kegq The final solution can be written in the

form:

fci =e'p"(Acosqr+Bsinqr) (AII._l;-ll)

6ce'=De PT(Acosqr +Bsingr) | . (AII.1-12)
__Deq (the real part of ATI.1-10) (AII.1-13)

i 2Jeq

-

=j Keq Deq2 (the imaginary part of AII.1-10)
Jeq - 4Jeg? - (ATT.1-14)

q

The value of D can be calculated from either ejuatioen : (AII.1-7)
or (AIT.1-8) and is:

_ Bas'

= (AIT.1-15)
6ail

A and B are arbitrary constants which are evaluated from the

system bouﬂdafyheénditions.
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(AII.2) Constant Solution

The steady state constant equations of motion are:
Jefssci +Deq(Fssci - §ssce') +Keq(Ossci-0ssce' )= Tav  (aT1.2-1)

J |'558¢6'+Deq(éssc€- Bssci)+Keq(Bssce'~fssci)=Tlc' (AII.2-2)

where TWC'is the constant part of the ejuivalent load torquesd

Now the solutien of these equations are:.

Gssci=0ssce'=aeng . (AII.2-3)
ésscl=éssés'=Wengi+fa engdr _ (ATI.2-4)
fssci-0ssce'= y (AII.2-5)

where @eng is the engine angular acceleration!VVengi is the
initial engine angular velociéy and Y is the angular deflection.
Substituting the results (AII.2-3) to (AII.2-5) into

(AII.2-1) and (AII.2-2) produces;

Tav -Ti¢
D e r——— (ATI.2-6
aeng Je+JV )
and
Tav - Je(Tav -Tlc') (AII.2-7)

¥ Keq Keq(de+dl')

In the special case where aeng=0 the result'(AII,2—&)‘redu¢es toQ

Tav
Keq

(AII.2-8)

.
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(AII.3) Oscillatory Solution

The steady state forced oscillatory equations of motion
are:
. . . . .
Je Ossol +Deq(8ssoi—8ss06') +Keq(Ossoi—08ss06')= Tavo (AIT.3-1)

tpo [} A ] A -
JI'8sso6 +Deq(fsso6 —8sso1)+Keq (Osso6'-8sso1)=-Tlo' (ATI.3-2)
In these equations Tl& represents the fluctuating part of the

load torque and Tavo represents the fluctuating part of the

engine torque. These two factors are given by:

Tlo'=C2 éSSOGl : (ATT.3-3)
and |
Tavo=KITavsin2Wet ' (AII.3-4)

Agssuming the solutions of equations (AII.3-11l) and (AII.3-2)

are of the form:

Bssol=|8sso1le? 12Wet (AII.3-5)

Bssoe = |8ssoelet i2Wet (ATI.3-6)

.the following equations result:

i

[‘- Je 4We?|0ssol| +Deq 2iWe(]8ssoi| -] 8sso6’ |)+Keq(l8ssoil -

|8ssos'l )] el2Wet gy oi2Wet (AII.3=7)
[-J I'awe?|8ss06'| -i-];De"'d'ZiWe(_lesg,e'l— lessq!_l) +Keq(l8ssos'l -
lessml)] elZWgt =- C2 2iWel8ssos'|e’ 2Wet ~ (AII.3-8)

These equations can be rewritten to produces

[Keq +Deq2Wei- Je4We2]|9ssmI - [D eq2Wel +Keq]lessos' | =kiTav
- ' - (AII.3-9)
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| [Keq +(Deq+C2)2Wei- JI'(4We"")]Iessos'| -[D eq 2Wei+Keq]|05501|=0
. (ATT.3-10)

These equations can be solved by using Cramer*®s Rule:

KITav --(Deq2Wei+Keq)
0 (Keq+(Deq+C2)2Wei- JI'4We?)
(Keq+Deq2Wei-Je 4We?) (Deq2Wei+Keq)

{Deq2Wel+Keq)(Keq+(Deq+C2)2Wel + JI'4We?)
(AII.3—11)

lossoil=

i

(Keq+Deq2Wei-Je4We?) KITav
Deq2Wei+Keq) o

(Keq+Deq2Wei- Je 4We?) (Deq2Wei+Keq)
(Deq2Wei+Keq)(Keq+(Deq+C2)2Wei +Ji'4We?)

|Bssoe'|=

(ATT.3-12)

Once the values of the physical constants and the operating fre-
quency are known, equations (AII.3-11) and (AII.3-12) can be

evaluated. The final results will be of the form: -

Ossoi=A1sin(2Wet+y1) : (AII.3-13)

Bsso6'=Ae'sin(2Wet + y6') (AII.3-14)
where Al,AG',-\[II and \116l are evaluated using equations (AII.3-11)

and (AII.3-12).



APPENDIX IITI: PHYSICAL CONSTANTS USED IN THE ANALYSIS

(AITII.1) Purpose
The purpose of this Appendix is to present the sources
and derivation of the physical constants used in the analysis in

Sections 2,3,4, and 5.

(AITII.2) Engine Inertia (Je)

Figure ég;illustrates the flywheel and crankshaft lay-
out in the Cortina 2000 c.c. engine. Figuref%é'illustrates a
connecting rod, piston pin and piston from the same engine. Both
Figures 2%3and é%;are somewhat idealized and were constructed

from data taken from [24].

(ATII.2.1) Weight of Piston

The weight of thé;piston is determined by evaluating

the following:

_ P9 2 4:2 2
W =2 [w(do -di¢)h1 + rdo h2] (A111.2.1f1)

LA, .

where the symbols are as shown in Figures 24 and 25, except that:
B . B -3 2 3
p =density of steel=7.89x10 (Nsec”/(m)cm™)

g =acceleration of gravity=9.8 (m/secz)

J.Wp =9.75 (N)  (AIII.2.1-2)
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(AIII.2.2) Weight of Piston Pin

The weight of the piston pin is given from:

pgipindpin?

Wpin=. 2 =2.519 (N) (ATII.2.2-1)

(AIII.2.3) Weight of the Connecting Rod

The weight of the connecting rod is given by:

2_ 4,12y , 2 2 '
Wcr=pgt3-[ "(g% q‘t" “)\'+,ﬁ3d\+‘ L4 d'% —dli ] (AIII.2.3-1)

S.Wer=5.297  (N)

(AIITI.2.4) Weight of Crank Journal

The weight of the crank jourhal is calculated from:

Wcj=-%g- »dcj21cj=5.01  (N) | (ATTT.2.4-1)

(AIII.2.5) Weight of Crank Pin

The weight of the crank pin is given by:

Wcps %’- wdcp2tcp=4.171  (N) | ~ (AIIT.2.5-1)

(AITI.2.6) Weight of Small Web)

The weight of the small webnisgéiven by:

Wsw=pg-Isw-hsw-dsw=4.175 (N) | (AIII.2.6-1)



B4

(AIII.2.7) Weight of Large Web

The weight of the large web is given by:

Wiw = [lw-dlw-hiw-pg=6.089  (N) (AIII.2.7-1)

(AIII.2.8) Weight and Inertia of Reciprocating Mass
Dividihg the connecting rod mass so that one third is

reciprocating and two thirds is rotating the total reciprocating

weight becomes:

-Wrm=Wp+Wpin+—% Wer=14.03 (N) (ATII.2.8-1)

The moment of inertia of the reciprocating masses is:

Irm=-v%n-(sfroke X 0.5)=2.12X10~3 (Nmsec?) (ATTI.2.8-2)

(ATII.2.9) Inertia of Rotating Portion of the
Connecting Rod

The moment of inertia of the rotating mass of the con-—

necting rod is:

2
Ircr= wec;(S"Oke) =5.33X10"% (Nmsec?) (ATII.2.9-1)

(AIII.2.lQ) Inertia of Crank Journal

The moment of inertia of the crank journal is:

1c]=‘2V—‘;j'—°L=2.oex|0'4 (Nmsec?) (ATII.2.10-1)

(AIII.2.11) Inertia of Crank Pin

The moment of .inertia of the crank pin with respect to

its own centre of mass is:

2
Icp(cm)=—vvzcgﬁ =1.438x10"% (Nmsec?) (AIII.2.11-1)
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Using the parallel axis theorem this inertia is transferred to

the crank journal axis:

| 2
Icp/cj=Icplcm) + chgrcp/m =6.3%10"4 (Nmsec®) (arrr.2.11-2)

(ATII.2.12) Inertia of.Largé’Web

The moment of inertia of the large web relative to its

centre of mass is:

Ilw(cm)= Tvg'-;‘ Iw? +hiw?)=8.246x107* (Nmsec?®) (arrr.2.12-1)

The moment of inertia of the large web transferred to the crank

journal axis is:

Iiw/cj=9.14%x10"%  (Nmsec?) (AIIT.2.12-2)

(AIII.2.13) Inertia of Small Web

The moment of inertia of the small web is calculated

in a similar manner as that of the large web. Its value is:

Isw/cj=4.36X10"% (Nmsec?) (ATII.2.13-1)

(AIII,2.14) Total Inertia Associated With One Cylinder

The total inertia associated with one cylinder is found

from:

Icyl= Irm + Ircr +Icj+ Icp/CajAﬂ-Il'w/cj+Isw/cj =4.84x1073(Nmsec?)
(AIIT.2.14-1)



86

(ATIIT.2.15) Weight and Inertia of Flywheel

The weight of the flywheel is given as:

adfwiifw
Wiw= —37 =120.9

(ATTI.2.15-1)
2 (N)

where: dfw=28.0 (cm) (flywheel diameter)

tfw=2.54 (cm) (flywheel thickness)

The moment of inertia of the flywheel is:

rfw ‘
Ifw=m=l.2IXlO" (Nmsec?) ‘ : (ATII.2.15-2)

2g

(AIIT.2.16) Weight and Inertia of Shaft Between
' Crank and Flvywheel

The weight of the connecting shaft is:

Ws=pg-7-1fls=8.769 (N) (AIII.2.16-1)
The moment of inertia of this shaft is given by:
_ Wsrs? _ im—d o
Is-—-é—- 6.46X%I10"% (Nmsec®) (AIII.2.16-2)
g ,

(AIII.2.17) The Total Inertia of The Engine

The total inertia of the engine is given by:

Je=4Icyl+Is+Ifw=0.141 (Nmsec®/rad) (AIII.2.17-1)

(AIII.3) Clutch Spring (K€) and pDamper (T€) Constants

The clutch spring and damping constants were determined
from experiments with a small (16.5cm in diameter) clutch. The

results are then extrapolated to the Cortina clutch (21.5cm in

diameter).
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FigureiZG‘illustrates the experimental setup. - Figure
(f2?3presents the results of the experiment. The intercept of the

straight line is the static damping torque which is:

Tcs=6.0 (Nm») | (AIII.3-1)
The dynamic damping torque can be calculated knowing the“rétio of
the dynamic friction coefficient to the static friction coeffi-
cient for the clutch plate material. This ratio is found to be

0.53 for asbestos [25]. The dynamic damping torque is then:

Tecd=3.2 (Nm) (AIII.3-2)
The slope of the straight line given in Figure ég\gives thei
spring constant. Thus the spring constant is given by

Kcv='IO3O (Nm/rad)’ | | (ATII.3-3)
As a check,‘the-spring constant is calculated. Figureléé illus-
trates the dimensions and arrangement of*the clutch plateeused in
hthe experiment. The spring constant of one spring of the clutch.
plate is:

4
Kci= G d

8nD3=2'32x'05 (N/m) | -  (AIII.3-4)
where: G=shear modulus of steelE7.92xlolo(N/m2)

A one Newton force acting on this spring is equivalent

to a torque of:

| Newtonx -"f =3.5%1072 (Nm) . . | (AIII.3-5)

Therefore, the spring constant Kcinmy be written:

Kci=284.0 (Nm/rad) - | | (AIII.3-6)
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The total spring constant is the sum of the individual

spring constants or:

Kc=4XKci=1140 (Nm/rad) (AIII.3-7)

Comparison of the results indicates that the.disagreement is less

than 10%.
Scaling the spring constants linearly with clutch .

diameter produces the following result:

Ke=1500 (Nm/rad) . | (AIII.3-8)

The damping torque is not affected by any change in size.

(AIII.4) Gear Ratios (RQ@)

The gear ratios are found in [24]. ‘They are:

Gear Ratio
1lst - 3.65
2nd 1.97
* (AIIT.4-1
3rd 1.37 ( )

4th 1.00

(AIII.5) Driveshaft Spring Constant (KsS)
The driveshaft spring constant is calcuiated using the

dimensions illustrated in Figureiéa; The resulting value is:

Gm(do*-di*)

3] =7800 (Nm/rad) : (AIIT.5-1)

Ks

(AIIT.6) ‘Rear End Ratio (R)

The rear end ratio is - given in [24] as:

R=3.44 | . (AITI.6-1)

[
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(AIII.7) Tire Spring (Kt) and Damping (Dt) Constants
The tire spring and damping constants are reported in

[23]. The average spring constant is:

Kt=6950 (Nm/rad) (AIIT.7-1)

and the average damping constant is:

Dt=58.0  (Nmsec/rad) | (AITI.7-2)

(AIII.8) Load Inertia (JI)

Figure j@ is a free body diagram of the vehiecle and one
of its wheels., Tﬁe force E»acting on the wheels can be written:
F=pNr - ) | _‘(>A,I'II.8—1).
where Nr is the portion of the vehicle weight over'the rear
wheels. The vehicle weight is given in [24] as 11;160 (ﬁ). The
weight distribution is 45% rear and 55% front. The coefficients
of friction between the tire and a dry road is found in [25] to

be I"'=O‘8‘ Therefore:

F=4995 (N) ’  (AIII.B8-2)

The maximum acceleration achieved by the vehicle is calculated

from: ’

omax=—:r=4.'4l (m/sec) © (ATII.8-3)

At the rear wheels, the maximum torque developed is given by:

Tmax=RwXF (AIII.8-4)"
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where RWis the dynamic wheel radius given in [25] as:

Rw=0.2997 = (m) (AIII.8-5)
for the Cortina tires. The maximum torgue is related to the

vehicle inertia by:

Tmax =Jlamax . (AIII.8-6)

where amax=—mt= 4,71 (rad/sec?)

Therefore, the vehicle inertia is given as=

_ Tmax
a max

JI =102 (Nmsec%¥rad) (ATIT.8-7)

(AIII.9) Vehicle Frontal Area (Ap) 6

| Figureréi)is a front view of the Cor;ina sedan. . The
frontal area is calculated with the aid of this Figure and is
given by:

Ap=(h1-h2)x1r=1.53 }(mz) (AIII.9-1)

ATIII.10 Engine Torque Coefficients
The engine torque coefficients used in equation (2.2.1-2)

are given in References [18] as:

c2=1.2 B2=-0.1
C4=0.2 B4=~0.02
C6=0.05 B6==0.008

c8=0,01 B8=-0.005
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APPENDIX IV: COMPUTER PROGRAM

The purpose of this Appendix is to present the com- h
puter program used in the simulation of Section 6.

The program is stored in the file ICFILE (a listing
of this file appears in this Appendix) under the ID CNTL. The
statements in the INITIAL and TERMINAL sections may require
revision from run to run. To execute the program the féllowing
sequence of commands is required:

$SIG CNTL

Password

SR *CSMPTRAN SCARDS=ICFILE

SR *FORTRAN SCARDS=-CSMP#7

SR *CSMPEXEC¥-LOAD#+*CSMPLIB 5=-CSMP#5 SPRINT=DFILE

This sequence will place the results of the simulation

in the file DFILE.



NoJ - BN SR IR R G RN A

21
22
23
24
25
2¢
27
28
28
30
31
32

MACRO ZZ=NONLIN({AACC,I,J,CANVEL,RELTOR)

PROCEQURAL . __

XX=DELAY(I s JoRELTCR)

YY=ABS (XX)

Ww=DELAY (I,J,CANVEL)
VV=ARS(hh)

IF(TIME-Pls.LE.Q.0) GO TC 107
IF{VV-0a1) 100,100,101

100 LZ=XX
' IF(YY-6.0) 102,4102,103

103 IF(Z24CTe6e0) GO TQO 104
ZZ=-302
GO TO 102

107 L2=AACC . . S
GO T0 102

104 11=12.2
GO TO 102

101 IF(WheGTe3.0) GO -TC 105

: ll=-3.2 :

CO TO.102

105 12=3.2

102 CCANTINUE

ENDMAC

*THE ABOVE MACKO DESCRIPTION MODELS THE.NONLINEAR CLUTCH DYNAMICS
MACRO SS=DLAY(AABByN,PA, ANVEL)
PROCEDLRAL

108

W=DEL AY (M, PA, ANVEL )
V=W

IF(TIME-PA.LE.O0.0) GO TC 108

SS=V*R*RG
GO 70 109
SS=AABB

963



32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

109  CCNTINUE

C e e e SR ren CLARMCIS, . |

ENDMAC ,

MACRO TT=ANGLE (NNyANGE,PKN)

PROCEDUR AL
CQ=DELAY(N,PKyANGE)

lll PP=QQ-NN*2,0%3,1416
IF(PP-2,0%3,1416.,LE.0.0) GO TO 110

AN=NN+1

GG 70 111
110 TT=2,0%PP
ENDMAC

*THE ABROVE MACRO DESCRIPTION CALCULATES THE CRANKSHAFT AhGULAR_mmmm_“
*DISPLACEMENT

INITIAL
*THIS SECTION DEFINES THE SYSTEM PARAMETERS AND INITIAL CONDITIONS
MEMORY NONLIN
MEMORY DLAY
MEMORY ANGLE ' _
PARAMETER JE=04144JL=102.0,KC=1500.0,KT=6950.0,KS=7800.04DT=58.0)000
R=3,449P6=1437,P1=0.0005yP2=0,001,P3=0.00154P4=0s4002yP5=0e0025 yeee
P6=0,003,P7=0,0035,P8=0e004yPS=0.0045,P10=0.C054P11=0,0055,P12=0.006)40s
P13=0.00654P14=0,C07,P15=0,0C75+P16=0.008,4P17=0.0085,P18=04009 1000
P19=0.00959P20=0.014P21=0.0105,P22=0.011,P23=0.01154P24=CaCl2900s
P23=0.0125+P26=0,C13,P27=Q.C0135,P28=0.014,P29=0,0145,P30=0.015yN2=1yeee
C2=162+1C4=042¢9C6=0.05y08=0.01,B2=-041yB4=-0s(24B6=-0.008,88=-0.005
INCON 1C1=280.,0,1C2=0,126,1C3=0,0132,1C5=0.0+1C6=0.0
IC4=1C1/ (R*RC)
DYNAMIC
«THIS SECTION MODELS THE DYNAMICS OF THE SYSIEW
FREC=DLAY(IC1,1,P1,S1TLC)
TMAX=93.4+Ce355%THRCT
*THROTTLE INPUT
THROT=2741+10.0%STEP(1.0)



66
67
64d
69
70
11
712
13
14
75
76
117
78
13
82
81
82

83

B84
85
86
87
€8
H9
90
91
92
93
94
355
96
87
G8

SOTHEO=3, 86%THROT

*AVERPAGE TOPQUE

TAV=TMAX*(1.0=Q. 275*(((FREQ/SOTHEQ) -1.002%2))

SOTOR=ANGLE(N2,SOTHE+P1,1)

*INSTANTANEOUS ENGINE TORQUE®

*L0OAD

*L0OAD

SOTE=TAV*(1l. 04C2%2%SIN(SOTOR) +C4%4*SIN(2%SOTUR ) teae. . .
EZ*Z*COS(SOTOR)*B4*4*C0<(2*SOTGR|*C6*6*SXN(3*SDTOR)*...
CB*B*SIN(4*SOTOR)+Eb*6*COS(3*SOTOR)*BS*B*COS(é*SOTCR))
TORQUE .

SOTR= 37. ,5+(0. 0152*(51TLO**2))+<0TRD
TCRQUE DISTURBANCES
SOTRPD=0.0

*SYSTEM EQUATICNS OF MCTICN

e e e aon S Ak

S2THE=SOTE/JE+SOTHE 2%KC /JE~- SOTD/JE KC*‘OTHE/JE
SITHE=INTGRL(ICL,S2THKE)

SOTHE= INTGRL(IC24S1THE)
SOTHE2=(SOTC*{RG¥**2 ) +KC#{RG*%2)*SOTHE+KS*RG*SOTHE4) /ee
(KC*(RG*%2)+KS) .

SGTHE3=SOTHEZ2/RG

SOT4=KS* (SOTHE3-SOTHE4)

SOTHE4=R*SOTHEE

S1THES= R*SOTQ/DT+KT*SOTLO/DT+SITLD KT#SOTHES/ DT
SOTHES=INTGRL{IC3,S1THES) :
S2TLO=(DT*S1THES+KT*SOTHES~SOTR-DT*S1TLO=KT*S0TLO) /JL
S1TLO=INTGRL(IC4,S2TLO)

SOTLO=INTGRL{ICS5,S1TLO)

SITHE2=DERIV(ICL1,SOTFE2).

S1CLLT=S1THE~-S1THEZ2

SOCLUT=SOTHE~SOTH+E2

SOTD=NCNLIN(IC6414P1yS1CLUT,SORR)

SORR=SOTE- SOTR/(R*RG)-JL*CZTLC/(R*RG)—JE*SZTHE
SOJE=JE*S2TFE

SQCS=KC*(SOCLUT)

j86 l\



99

100
101
102
103
104
105
10¢
107
108
1CS
110
111
112
113
114
115
116

'NOSORT

¥*OUTPUT PRINTER CONTROL
TIMEI=TIMEI+DELT
IF(TIMET-2.C*DELT.EQ.0e0Q) GO TO 117
CO TO 118

117 TIMEL=0,.0

WRITE(64116) TIME,TAV, THROT 4S1THE 4 S2THE
116 FORMAT(S5EL244)
118 CCNTINLE
SORY

" TERMINAL

*THIS SECTICN CONTROLS THE EXECUTICN PHASE QOF IHEMMQQEL

TIMER FINTIM=3,0,PRDEL=0.01,CELT=0.0005
METHOD RECY

EMD '

sToe

ENDJOB

$END
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