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Abstract 

This thesis deals with the problem of minimum time control of a rigid robot manipulator with 

point-to-point motion subject to constraints on the control inputs. Due to the nonlinear and 

coupled dynamics of the robot manipulator, finding minimum time strategies is algorithmically 

difficult and computationally very intensive, even when the dynamic equations and parameters 

of the manipulator are precisely known. As a result, the practical applicability of the available 

methods currently is very limited. 

In this research, we assume the control inputs are always bang-bang and switch once. Using 

the Principle of Work and Energy, a simple and practical "zero-net-work" searching approach 

is proposed. The proposed method focuses on changes in the manipulator's kinetic energy 

during the time optimal motion, instead of concentrating on the system's state variables, as 

is usually done in conventional approaches. The "zero-net-work" method is used to develop 

the controllers for one-link manipulators, a 3-degree of freedom cylindrical manipulator and a 

two-degree of freedom revolute manipulator. The results show that if the structure of the exact 

minimum time control is bang-bang with a single switch, using the "zero-net-work" method we 

will get the exact minimum time solution. If the exact minimum time control has more than 

one switch, using the "zero-net-work" method we will get a near-minimum-time solution. The 

major advantages of the proposed method are that it does not require initial boundary value 

guesses and is computationally efficient. 

n 
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Chapter 1 

Introduction 

1.1 Review of Literature 

The problem of minimum time control of a robotic manipulator concerns the determination of 

control efforts and corresponding trajectories that will drive the end-effector of a manipulator 

from a given initial position to a specified desired position in minimum time while satisfying 

constraints e.g. the limits on the actuator efforts. 

Kahn and Roth (1971) first studied this problem. Since then, the interest in this problem has 

increased tremendously. The problem can be divided into two categories in terms of different 

constraints on the manipulator motion: 

a) There are constraints on the intermediate configurations of the robot arm so that the manip­

ulator either follows a specified path or performs the movement avoiding collisions with 

obstacles in the work space. 

b) The motion path space is obstacle-free and unconstrained between the two end points. 

For the first category, some algorithms have been proposed for minimum time control of robot 

manipulators along a specified geometric path (Shin and Mckay 1985; Bobrow et al. 1985; Chen 

and Desrochers 1989; Shiller and Dubowsky 1991). Improvements in computational efficiency 

of the algorithm were studied by Slotine and Yang (1989). With given paths, 2n dimensional 

(n is the number of the links) trajectory planning problems reduce to simple 2 dimensional 

searching problems. 

Solving the minimum time control problem for the second category represents a difficult 

and elusive point-to-point minimum time control problem. The approaches to this problem can 

1 
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be categorized into two groups: 

a) Dynamic programming or space search methods. 

b) Calculus of variation based methods. 

The first group includes some approximation methods, such as artificial intelligence (Al) ap­

proaches (Sahar and Hollerbach 1985; Rajan 1985; Shiller and Dubowsky 1988) and nonlinear 

parameter optimization methods (Bobrow 1988). The basic idea is the use of an approximation 

of an initial feasible trajectory in conjunction with an exhaustive search to determine the uncon­

strained motions between two end points. In general, the algorithm for this class of approaches 

consists of three steps: 

a) Characterize the path in some manner (e.g. spline function); 

b) Given a path determine the time optimal trajectory by using existing algorithms (e.g. Bo-

brow's algorithm 1988; or Shin's algorithm 1985); 

c ) Vary the path until the minimum time path and trajectory are obtained. 

Shiller and Dubowsky (1988) proposed a practical method to obtain the global time optimal 

motions of robotic manipulators. They extend the predefined path methods (e.g. Bobrow et 

al. 1985; Shin and Mckay 1985) to point-to-point problems. In their work, a set of best 

paths are obtained first in a global search over manipulator workspace, using graph search and 

hierarchical pruning techniques; and then vary the path under certain criteria to search for the 

shortest travel time between two given configurations. 

Following the same idea, a technique was developed by Bobrow (1988). Similar to (Rajan 

1985), in his work the Cartesian path along cubic B-splines and the shape of this path is varied 

in a manner that minimizes the travel time using a nonlinear parameter optimization algorithm. 

For any set of B-spline vertices (parameters to be determined) the algorithm in (Bobrow et al. 

1985) was used to evaluate the minimum final time. In order to speed up convergence and 
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improve computational efficiency for those existing optimization methods, a close initial guess 

for the path is necessary. 

The calculus of variation based methods use the techniques of variational calculus and 

apply Pontryagin's maximum principle to reduce the time optimization problem to a Two 

Point Boundary Value Problem (TPBVP). The difficulty in finding a solution for the T P B V P 

problem is that state and costate variables at the initial and final times are only partially known, 

hence initial values must be guessed to match the correct set of final values. Since most of the 

robot manipulators are nonlinear systems, the numerical methods used to solve the nonlinear 

TPBVP were found to be highly sensitive to the initial guess of the costate values. However, it 

is extremely difficult to have a good guess of the initial costate values intuitively, because the 

costate variables do not have any simple interpretation or physical meaning. In general, time 

optimal control solutions are very difficult to obtained by direct solving the TPBVP. 

Kahn and Roth (1971) first studied the problem. A near minimum time solution for a three-

degree of freedom articulated arm was obtained by using Pontryagin's maximum principle. The 

major portion of this work consisted of finding a closed-loop regulation around the time optimal 

nominal trajectory using linearization, gravity compensation, and averaged compensation of the 

effects of angular speeds. The possibility of singular time optimal control was not investigated. 

Weinreb and Bryson (1985) were the first to obtain substantive information about the 

minimum time behavior of the two-link manipulator with open initial conditions. They did not 

assume that the optimal controls were bang-bang, but results from Weireb's adjusted control 

weight (ACW) algorithm, which was based on Bryson's steepest descent algorithm (Bryson 

1975), indicated that most cases tended toward bang-bang. Because the ACW program was 

a continuous function optimization code, it was unable to achieve sharp discontinuities in the 

controls, and it was computationally intensive. 

Wen and Desrochers (1986) examined a sub-optimal time control algorithm which utilizes 

the concept of "Averaged Dynamics" (Kin and Shin 1985). It uses all available dynamics 

information of the current and final states to update the dynamics continually at each sampling 
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interval. Unfortunately there is no guarantee that the system will achieve the desired final state 

with this method. 

In Geering's paper (1986), time optimal trajectories for a cylindrical and a spherical robot, 

and a robot with a horizontal articulated arm with two links were obtained by using the shooting 

algorithm and a parameter optimization method. It was pointed out that the most important 

physical effects responsible for the nature of the time optimal solution are: (a) Minimization of 

the mass moment of inertia with respect to revolute joints; (b) Enhancement of accelerations 

and decelerations by exploiting reaction torques and forces. 

Chen and Desrochers (1988) proved that for an n degree of freedom robot system with no 

path constraints on the motion, the structure of the optimal control requires that at least one 

of the control torques be always in saturation on every finite time interval. In other words, not 

all control torques are simultaneously singular (where the control variables are not bang-bang) 

on the time interval. 

Meier and Bryson (1990) suggest a fast algorithm for a planar two-link manipulator to travel 

a specified distance in minimum time with initial and final position unspecified. The method 

reduces the computation time by forcing the control inputs to be 'bang-bang' on both regular 

and singular intervals, and thus makes it feasible to find minimum time solutions for various 

initial and final positions and various dynamic properties of a robot. 

Lin (1992) proposed an efficient two-level (master and slave) parallel algorithm for solving 

the general time optimal problem in discrete form. However, the convergence of the algorithm 

was shown under the following two conditions: 

a) The step size in the solution to the master problem is small enough. 

b) The initial guess of final time is sufficiently close to the minimum final time. 

The second condition is in general not easily satisfied since the knowledge of the final time is 

not known a priori. 

Chen et al. (1993) develop a general procedure for computing the time optimal trajectory 
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for robotic point-to-point motion based on perturbation and continuation methods. Both non-

singular and singular cases can be handled by converting the original time optimal problem into 

a perturbed time optimal problem. The algorithm is composed of two phases: initialization 

and refinement. In the initialization phase, a Two Point Boundary Value Problem (TPBVP) 

resulting from the perturbed time optimal problem is solved for an appropriately chosen per­

turbation parameter. Then, the solution obtained from the initialization phase is refined by 

solving a set of Initial Value Problems (IVP) sequentially and/or in parallel until the desired 

solution is achieved. The method is computationally efficient since the resulting TPBVP is 

solved once for a large perturbation parameter and the remaining problem becomes solutions 

to a set of IVP sub-problems. 

In Yang (1994) , a "two-step" Lyapunov approach generating near-minimum-time point-to-

point motion of a robot manipulator is proposed, motivated by the physics of the minimum 

time motion. The method is based on the observation of the kinetic energy mechanisms in 

minimum time operations of robot manipulators. 

In summary, it is extremely difficult, if not impossible, to obtain an exact closed-form 

solution to the problem of point-to-point minimum time control of robotic manipulators, due 

to the nonlinearity and the coupled nature of the robotic manipulator dynamics. The available 

numerical solutions are computationally very intensive, require good initial boundary values 

guesses, or are sensitive to the time-step or some other variables in the numerical procedures. 

Also the numerical solution is essentially an open-loop control and does not accommodate any 

system disturbance or parameter uncertain. The complete structure of the solution of exact 

minimum time motion of robotic manipulators is currently still unclear. In particular, the 

question of existence of time optimal controls containing singular arcs is open. As a result, the 

practical applicability of available methods is very limited. 
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1.2 Purpose and Scope of This Work 

For most manufacturing tasks, it is desirable to move a manipulator at its highest speed to 

minimize the task cycle time. This project is significant in the sense that the execution time 

for robot tasks and industrial productivity are directly related, productivity may be increased 

significantly by fully exploiting the potential of existing robots. Furthermore, this is an im­

portant problem in the implementation of automatic programming for intelligent robots. The 

short term objective of this work is the determination of a minimum time control algorithm for 

robot manipulator motion. The long term objective is the reduction in execution time in the 

performance of industrial robot tasks and subsequent improvement in industrial productivity. 

This thesis deals with time optimal point-to-point motion (obstacle-free and unconstrained 

motion paths between two endpoints) control problem for robot manipulators with actuator 

bounds. We assume the friction forces can be neglected compare with the control inputs. For 

simplicity, we assume the initial and final velocity of each link equal to zero. In this thesis, 

an approximation to the optimal control which results in a near-minimum-time control will 

be developed. While not producing exactly minimum time solutions, the algorithm can be 

easily used in practical applications to generate the near-minimum-time control inputs of robot 

manipulators. 



Chapter 2 

Problem Formulation and Solution Guidelines 

2.1 Review of Conventional Variational Calculus Method 

2.1.1 Optimal Control Problem for General Dynamic Systems 

Suppose the plant is described by the nonlinear time-varying dynamic equation 

x(i) = f(x,u,i) (2.1) 

with state vector x(i) E R n and control input vector u(t) E R m. 

The performance index is 

J(x,u,t) =</>(x(i/),i/) + [ t f L(x(t),u(t),t)dt (2.2) 
Jto 

where [to,*/] is the time interval of interest. The final time weighting function 0(x(t/),£/) is 

a function of the final state. The weighting function L(x(i), u(t), t) depends on the state and 

input at intermediate times in [in,*/]. The performance index is selected to make the plant 

exhibit a desired type of performance. The optimal control problem is to find the input u*(i) 
on the time interval [to, tf] that drives the plant given in Equation (2.1) along a trajectory x*(£) 

such that the cost function in Equation (2.2) is minimized. 

To solve this problem, we shall use Lagrange multipliers to adjoin the constraints given in 

Equation (2.1) to the performance index in Equation (2.2). Since Equation (2.1) holds at each 

t E [to,tf], we require an associated multiplier X(t) E R n, which is a function of time. If we 

define the Hamiltonian function as: 

H(x, u, A, t) = L(x, u, t) + A T f (x, u, t) (2.3) 

7 
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Using the variational calculus analysis as in Lewis (1986) to minimize J , the necessary conditions 

for the optimal controller are : 

State equation: 

Costate equation: 

Ft J-f 
x = | r = f(x,u,t) (2.4) 

A = - f (2.5) ax 

Boundary conditions: 

x(t 0) = x 0 (2.6) 

(<f>x - Xf \tf 6x(tf) + (<fc + H) \tf Stf = 0 (2.7) 

and if the control is unconstrained, the stationarity condition is: 

If the control u(t) is constrained to lie in an admissible region u(t) £ Ct, which for example, 

might be defined by a requirement that its magnitude be less than a given value, the stationarity 

condition is: 

#(x*,u*,A*,i) < if(x*,u,A*,t), for all admissible u. (2.9) 

where * denotes optimal quantities. The optimality requirement (2.9) is called Pontryagin's 

maximum principle: "The Hamiltonian must be minimized over all admissible u for optimal 

values of the state and costate". 

The optimal control signal is: 

u*(x,t) = argmin#(x*,u,A*,£) (2.10) 

When Hamiltonian does not depend on time explicitly, and the final time is free, we have 

one additional necessary condition: 

H(x*,u*,\*,t) = 0 (2.11) 

/ 
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Above additional necessary condition means that if the final time is free, Hamiltonian is 

equal to zero on the optimal trajectory. 

Equation (2.4 - 2.7) and Equation (2.9) are necessary conditions of optimality in general, 

that is Pontryagin maximum principle can be applied to problems with bounded and unbounded 

controls. From Equation (2.10), we can see the optimal control is a feedback control law, because 

it depends, at time t on x(t), which itself depends on what happened over the whole interval 

from the initial time to current time. 

From above we can see, the necessary conditions for optimal control of general dynamic 

system are a set of 2n first order differential equations (state and costate equations), and a set 

of m algebraic relations (Equation (2.10)). The set of functions to be determined includes n 

state variables, n costate variables A, and m controls u. The solution of the state and costate 

equations will contain 2n constants of integration. Notice that regardless of the problem specifi­

cations, the boundary conditions are always split; thus, to find an optimal trajectory, in general, 

a nonlinear, Two Point Boundary Value Problem (TPBVP) must be solved. Unfortunately, it 

is very difficult to solve the TPBVP in most case. So it is necessary to consider some more 

specific problems in order to get solutions in practice. An important feature of the variational 

approach is the form of the optimal controls can be determined. Hence, it is necessary only to 

consider the subset of controls having the appropriate form. This is a significant conceptual 

and computational advantage. 

2.1.2 Exact Minimum Time Control Problem for Robot Manipulators 

The Lagrange-Euler equations of motion for n-link manipulators can be written as 

M(q(t))q(t) + C(q(t), q(*)) + G(q(*)) = r(t) (2.12) 

where 

q(t) = n x 1 vector representing the joint positions of the corresponding n-link manipulator, 

M = n x n generalized mass inertia (positive definite real symmetric) matrix, 

C(q(t),q(t)) = centrifugal, coriolis and friction term, 
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G(q(t)) = n x l generalized gravity term (gravitational torques), 

r(t) = n x 1 vector of applied joint torques. 

The state space representation of equations of motion can be formulated from the above 

Lagrange-Euler equations of motion. Let us define a 2n x 1 state vector of a manipulator 

as 

xT(fO = [ q T ( * ) , q T ( * ) ] = [91 (*),-",gn(*), 91, •••,?»(*)] 

= [xi

,(<),x5'(*)] (2.13) 

where xi(t) = q(i) and x2(£) = q(t). 

Define an n x 1 input vector as 

UT(t) = [T1(t),T2(t),---,Tn(t)}. (2.14) 

The equations of motion can be expressed in state space representation as 

*i(<) = x2(t) (2.15) 

x2(t) = - M - 1 ( x i ) [ C ( x 1 , x 2 ) + G ( x 1 ) ] + M - 1 u ( * ) (2.16) 

or simply 

x(t) = A(x(t)) + B(x(t))u(t) (2.17) 

At the initial time t = to, the system is assumed to be in the initial state x(£ 0) = xo, and at the 

final time t = tf the system is required to be in the desired final state x(fy-) = xy. In general, 

the mathematical model of a system will include certain constraints on the controls u(t). These 

constraints are expressed in terms of a constraint set fl. A piecewise continuous control, u(t) 

satisfying the condition 

u(t)en Vte[t0,tf} (2.18) 

is said to be as an admissible control. In this thesis, the admissible controls of the system are 

assumed to be bounded and satisfy the constraints, 

H < ( « i U V * e [ * 0 , * / ] (2.19) 
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The solution of the time optimal control problem is given by the admissible controls which 

minimize the cost functional 

In order to emphasis the difference between the true minimum time control and the near-

minimum-time control (NMTC), in this thesis we define the true minimum time control as 

Exact Minimum Time Control (EMTC). The Exact Minimum Time Control (EMTC) of robot 

manipulator can be stated as follows: 

Given the continuous dynamical system described by Equation (2.17) with the initial state 

xo, the terminal constraint x/ , and the control constraint set f2; find the admissible control 

u(t) 6 Q, which transfer the state of the system from xo to Xf in minimum time, i.e. , such 

that the cost functional J defined in Equation (2.20) is a minimum. 

The EMTC problem can be treated as a special class of general optimal control problem 

presented in Section 2.1.1. For the EMTC problem, the final time tf is free. 

Define the Hamiltonian as 

where vector A G R is called the costate variable vector. 

Let u*(t) be an optimal control and let x*(t) denote the optimal state vector and A*(t) 

the optimal costate variable vector. Using the techniques of variational calculus and applying 

Pontryagin's maximum principle (Kirk 1970), the necessary conditions for u*(t) to be optimal 

control are: 

(2.20) 

H(x, u,A) = 1 + A T [A(x) + B(x)u] (2.21) 

dx*(t) _ dff(x*,A*,u*) 
dt ~ OX t € [to,*/] (2.22) 

d\(tf 
dt 

di7(x*,A*,u*) 
<9x te [t0,tf] (2.23) 

i7(x*, A*, u*) < H(x*, A*, u) t e [t0, tf] for all admissible controls (2.24) 
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Equations (2.22) and Equation (2.23) are known as the canonical equations. The optimal 

control is the control which minimizes the Hamiltonian at every instant within the given interval. 

Therefore, the Exact Minimum Time Control (EMTC) law is: 

IHmax if Si < 0 

- u i m a x if Si>0 (2.25) 

undetermined if Si = 0 

where Si(t) is the ith component of the m, x 1 switching functions S(t) defined by 

S(t) - B T A (2.26) 

When Si = 0 for a period of time, the Pontryagin maximum principle is not able to define 

any optimal value of Ui. It is called a singular condition, and the control is referred to as 

singular control. Thus, for singular control, the necessary condition that u must minimize H 

provides no information about the value of the controls. If the switch function Si is zero at 

individual point only, the control is nonsingular. This type of control is referred to as bang-bang 

control. The controls take their extremal values throughout the whole motion to minimize the 

maneuver time. 

If H is not an explicit function of time, the additional necessary condition is: : 

i7(X*,A*,u*) = 0 te[t0,tf] (2.27) 

This means if H is not explicit function of time, for the exact minimum time trajectory, the 

Hamiltonian is always equal to zero. 

The boundary conditions are: 

x(*0) = x 0 (2.28) 

x(t/) = x / (2.29) 

The set of differential equations (Equation (2.22) and (2.23)), the requirement equations 

(Equation (2.25) and (2.27)), and the boundary conditions (Equation (2.28) and (2.29)) com­

pletely define the EMTC problem for robot manipulator. This leads to a bang-bang exact 
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minimum time control solution, except when a singularity occurs, i.e. Si(t) is zero for some 

finite time interval. As can be seen from the above optimality conditions, no boundary condi­

tions for the costate state variables Aj are defined. This fact leads to the problem of solving 

a Two Point Boundary Value Problem (TPBVP) with boundary conditions on the state x(t) 

at the initial and final times but unspecified boundary values for A , which is a major cause of 

the difficulties in finding exact minimum time solution for nonlinear systems such as the robot 

manipulators. 

2.2 Guidelines for Developing a Near-Minimum-Time Algorithm 

From Section 2.1, we can see that using the calculus-of-variations approach to the Exact Mini­

mum Time Control (EMTC) problem for robot manipulators will lead to a Two Point Boundary 

Value Problem (TPBVP). Due to the nonlinearity of the equations of motion, a numerical so­

lution is usually the only approach to the problem. Since the boundary conditions for the 

canonical adjoint system of differential equations are not known, solving the T P B V P for robot 

manipulators is very difficult and computationally intensive. It requires good initial guesses for 

the unknown parameters, and is very sensitive to the unknown initial conditions. The solution 

is optimal for the unique initial and final conditions, Hence, the computations for the optimal 

control have to be performed for each manipulator motion. 

In this thesis, we will develop a new method for generating not an exact minimum time point-

to-point manipulator motions, but rather a near-minimum-time solution. The near-minimum-

time solution has a similar structure of the exact minimum time solution and satisfies all the 

boundary conditions and work-energy constraints. The major advantage of the new method is 

that it is computationally efficient and easy to use and does not require good initial boundary 

value guesses. So the method is practical for improving the efficiency of robot manipulators. 



Chapter 3 

Development of the Proposed Zero-Net-Work Method 

3.1 Motivation 

3.1.1 The Structure of the Exact Minimum Time Control Law 

From Chapter 2, we have found that Pontryagin's maximum principle yields the optimal control 

law: 

IHmax if S{ < 0 

<(*) = I -Uimax if Si>0 

undetermined if Si = 0 

where S(t) — B r A is the switching function vector. 

Definition 3.1 Bang-bang Control: A control u is bang-bang if Ui(t) — Uimax or —Uimax 

with finite switchings for i G {1,2, ...,n}. For the bang-bang control, the switching functions 

Si can only have finite zeros, and Ui(t) switches among Uimax and —Uimax at the zero of Si. 

Definition 3.2 Singular Control: A control u is singular if the canonical equations 

(Equation (2.22 - 2.23)) are satisfied and Si(t) = 0 for a finite time interval t e [*i,*2], where 

to<h <t2< tf and i G {1, 2 , n } . 

Next we will show that the Exact Minimum Time Control (EMTC) of a robot manipulator, 

a singular control does not exist. That is the EMTC of a n-link robot manipulator can not be 

singular simultaneously over a finite time interval t^}. The equations of motion for an n-link 

robot manipulator are 

xi(t) = x 2(t) (3.1) 

x 2(t) = M - 1 (x i ) [ -C(x 1 ,x 2 ) -G(x 1 ) + uW] (3.2) 

14 
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Let 

\(t) = l\T

a(t),\l(t)}T (3.3) 

where Aa £ R n, Aft £ R n are the costate variables and Aa. Aft can not be identically zero 

over a finite time interval. 

The Hamiltonian is: 

H = 1 + \Tx2(t) + A 6

r M- 1 (x 1 ) [ -C(xx ,x 2 ) - G ( X l ) + u(t)] (3.4) 

The switching functions are: 

S(^) = (M- 1 (xi)) TAft (0 (3.5) 

The necessary conditions for u*(t) to be an optimal control are: 

d\(t) OH 
dt <9x 

Substituting Equation (3.3) into Equation (3.6) we obtain: 

(3.6) 

A.W = ~§ (3-7) 
1 

MO = - g (3.8) 

Substituting Equation (3.4) into Equation (3.8) we obtain: 

k " { t ) = ( ^ ) r ( M _ 1 ( X l ) ) T A 6 W - Xa(t) (3.9) 

In Equation (3.9), for the finite time interval [ti,t2] if Aj,(t) = 0 then Aft(̂ ) = 0. Because 

Aa, Aft can not be identically zero over a finite time interval, in order to satisfy Equation (3.9), 

we have Xb(t) ^ 0 t £ 12]. 

The inertia matrix M(xi ) is always nonsingular, so from Equation (3.5) we get the switching 

functions: 

s ( t ) # o te[h,t2} (3.10) 

This means that all the controls can't be simultaneously singular over the interval [ti,t2], 

where t\ < t2 < tf. The structure of the EMTC of n-DOF robot system (Chen, 1989) is that at 
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least one of the control inputs is always in saturation (bang-bang) on every finite time interval; 

in other words, not all control inputs are simultaneously singular on the time interval. 

3.1.2 The Double Integrator Problem 

Next, let us consider a simple one-link horizontal robot manipulator shown in Figure 3.1. 

Figure 3.1: One-link-torque system 

It is a second-order, linear time invariant system. The dynamic equation is: 

I9 = T 

The absolute value of the torque r is bounded. 

r < T, _ ' max 

The state equations are: 

±i(t) = x2(t) 

x2(t) = u(t) 

where 

X!(t) = 9(t) 

x2(t) = 8(t) 

U(t) = T{t)/I 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Assume without loss of generality that the final states are at the origin. 

The initial states 

x1(t0) = 90 = xw (3.17) 

•*2(<o) = ô = 0 (3.18) 

and final states 

xi(tf) = 9f = 0 (3.19) 

x2{tf) = 9f = 0 (3.20) 

The control is constrained such that 

-Umax < u(t) < +Umax t0 < t < tf (3.21) 

where umax = Tmax/I . The point-to-point exact minimum time motion of one link manipulator 

with a bounded torque is well-known as a double integrator problem and is solved in the optimal 

control literature (Kirk,1970). 

The Hamiltonian function is 

H = 1 + Xix2 + X2u (3.22) 

Using Pontryagin's maximum principle, for u*(t) the optimal control 

H[x*,u*(t),X*(t),t] < H[x*,u(t),X*(t),t] (3.23) 

The costate equations are 

' Ai = 0 

A 2 = - A i 

Both initial and final states are fixed, the corresponding conditions on the costate variables 

are free. The solution to the costate equations has the form 

Xi(t) = fci (3.24) 

A2(f) = -kit + k2 (3.25) 
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where k\ and k2 are undetermined constants. Equation (3.25) shows that X2(t) is a linear 

function of time and, provided k± ̂  0, can therefore be zero at only one point in time interval 

[to, ti]. This information together with the control law Equation (3.23) implies that the optimal 

control u* is of the "bang-bang" form and the control input is constant expect at the switching 

instant. By integrating Equation (3.11) we obtain 

9(t) = ±umaxt + Pi (3.26) 

0(t) = ± 0 . 5 W 2 + fat + fo (3.27) 

Let to = 0 and tsw is the switching time, tf is the final time. We get the state equations before 

switch is: 

6bf(t) = ±umaxt (3.28) 

9bf(t) = ± 0 . 5 u m a x * 2 + 0O (3.29) 

The state equations after switch is: 

0af(t) = =PUmax(t-tf) (3.30) 

Oaf(t) = T0.5u m a x t 2 ± Umaxtftzp 0.5umaxt2f (3.31) 

At the switching point: 

9bf(tSw) = Oaf (tsw) (3.32) 

Bbf(tsw) = 8af(tsw) (3.33) 

Substitute Equation(3.28) and Equation (3.30) into Equation (3.32) we get: 

tsw = 0.5tf (3.34) 

Substitute Equation(3.29) Equation (3.31) into Equation (3.33) and using Equation (3.34) we 

get: n~ i n 
tsw = \ — — = \ —— (3.35) 
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From the above we can see for the one link robot manipulator, the final and switching time 

are depend on the input bounds, the initial position and the mass moment of inertia. The 

costate state variables \i(t), A2(*) can be obtained as below. Because H is not an explicit 

function of time, we have, 

H(x*(t),\*(t),v*(t)) = 0 t€[Q,tf) (3.36) 

Substituting Equations (3.22) (3.24) (3.25) into the above equation and using the initial con­

ditions, we obtain 

h = < 3 3 7 > 

where u*(0) is the optimal control at the initial point. 

At the switching point, 

Htsw) = -htsw - = 0 (3.38) 

Substituting Equation (3.35) into Equation (3.38) we obtain 

U*(0)tsw 7**(0) V 10o 

So 

7 _ 1 _ 1 /Umax / „ O Q \ 

™-*®m  ( 3- 4 o )  

For the numerical calculations the following values are used for the one link robot manipulator: 

Tmax = 10JV.M, I = 10m2kg, 0O = 1. 

Substituting above values into Equation (3.35) and Equation (3.34), the switching time 

tsw = Is, and the final time tf = 2s. 

The state equations before switching (0 < t < 1) are: 

9\f{t) = -t (3.42) 

9bf(t) = -0.5£ 2 + l (3.43) 
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The state equations after switching (1 < t < 2) are: 

eaf(t) = t-2 (3.44) 

9{t)af = 0 .5 t 2 -2 i + 2 (3.45) 

The costate variables are: 

Ai(t) = 1 (3.46) 

A2(t) = 1 - t (3.47) 

Figure 3.2 shows the position and velocity trajectories. Figure 3.3 shows the applied joint 

torque, we can see the control is bang-bang and switches once at t = tsw = Is. The costate 

trajectories are shown in Figure 3.4. The costate variable A 2 determines when to switch. If A 2 

changes the sign once, the optimal control is bang-bang and switches once. If the sign of A 2 

changes more than once, and is not equal to zero at finite time interval, the optimal control is 

still bang-bang, but will have more than one switch. 

Slate trajectories of one-link manipulator 

0.5 

-1 

— Position 
— Velocity 

i g l I I I 1 1 1 1 1 1 1 
' 0 0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 1.8 2 

Time (second) 

Figure 3.2: Joint position and velocity of the one-link planar manipulator 
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Control trajectory of one-link manipulator 
1 1 

£ 0 
o 

c 
5 

0.2 0.4 0.6 0.8 1 1.2 
Time (second) 

1.4 1.6 1.8 2 

Figure 3.3: Applied joint torque of the one-link planar manipulator 
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Figure 3.4: Costate trajectories of the one-link planar manipulator 
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3.1.3 Dynamically Decoupled Two Link Robot Manipulator 

22 

L i n k l 

Link 2 

Figure 3.5: Dynamically decoupled two-link robot manipulator 

Next, consider a dynamically decoupled two-link robot manipulator as shown in Figure 3.5. 

The dynamic equations of motion can be written as 

777,1 + 777,2 0 <7i T\ 

0 r77,2 fa T2 

where m,\, m<i are the masses of each link. Solving the optimal control problem for this 

case, the exact minimum times are: 

tfi — 2tswi — 2 |<?io|(™i + m2) 

tf2 = 2tSW2 = 2\ |«?20|"7-2 

T2r, 

(3.48) 

(3.49) 
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where qio, <?20 are the initial position for each link, and tsw\ tsw2 are the switching times. In 

this case, the final time of the exact minimum time motion can be different for each link, 

depending on the remaining trajectory travel required, the input bound and the mass. One 

link can reach to the final position earlier than the other and wait until the other one reaches 

the final position. If the two links are dynamically coupled, than they will influence each other. 

Because the structure of the EMTC is such that at least one of the control inputs is always 

bang-bang on every finite time interval, the exact minimum time solution will be such that one 

control input is bang-bang and the other control input varies within the bound in such a way 

that simultaneous reaching of final time be guaranteed. If the control input, which is singular 

and therefore not bang-bang, is treated to be bang-bang, then it forces one link to reach the 

final position faster than the other one, and the slower final time sets an upper bound on the 

final time of the system. 

3.1.4 Work Energy Behavior 

Next we will investigate the work energy behavior of the Exact Minimum Time Control (EMTC) 

motion. Consider the robot manipulator moving from position P i to position P 2 . The Work 

Energy Principle for each individual link states that: The net work done by all the forces/torques 

is equal to the change in kinetic energy, i.e. 

where 

Tn,Ti2 = initial and final values of the kinetic energy of link i , 

Worki = work done by all the forces/torques acting on link i . 

Because the initial and final values of the kinetic energy of each link are equal to zero, so 

for link i , 

Ti2 - Ttl = Worh (3.50) 

Worki = WAi + Wm + WGt = 0 (3.51) 

where 
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WAI = work done by the actuator, 

WRI = work done by the reaction forces/torques, 

Wa = work done by gravity. 

So the work energy behavior of the exact minimum time motion is such that, for each individual 

link, the work done by all forces/torques is equal to zero. 

3.2 Zero-Net-Work Method 

The dynamic response of Exact Minimum Time Control (EMTC) can be interpreted in the 

physical sense as follows: During the exact minimum time motion, the kinetic energy is initially 

increased as quickly as possible and then decreased after the switching point while satisfying the 

control constraints (|r| < T m a x ) and boundary conditions. For each individual link, the work 

done by all forces acting on the link is equal to the change in kinetic energy of the link. If the 

robot system is total decoupled, then the control is bang-bang and there is only one switch per 

link. We can treat each link as a one-link robot system, and the problem is a double integrator-

problem. Unfortunately, most robot systems are nonlinear and coupled systems, and the links 

can influence each other, so the optimal motion is such that at least one control input is bang-

bang, while the other control inputs vary within the given bound in a way to guarantee that 

the robot will reach the final state. In summary the basic structure of the EMTC is bang-bang, 

and if there is dynamic coupling of the links, the optimal control will still be bang-bang, but 

will switch more than once, and for some links the control input may vary within the given 

bound in order to satisfied the boundary conditions. 

The basic idea of the zero-net-work method is that we assume, the control inputs are bang-

bang (This will keep the basic structure of the EMTC). Also, for each link, we assume the 

control input switches only once (This will reduce the computation time and increase the 

efficiency of the algorithm). If we can find the switching point for each link that satisfies all the 

constraints (boundary conditions, work energy constraints, input bound constraints), then we 

can obtain a solution which is close to the EMTC solutions. Using the zero-net-work method, 
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we can have a Near-Minimum-Time Control (NMTC) solution. Because we assume the control 

input is bang-bang, that is for each link the control input = ±Uimax, the control constraints 

\IH\ < ihmax
 a r e always satisfied. We assume the initial velocities and final velocities are equal 

to zero and from the work energy behavior of the exact minimum time motion, we can say 

that if we find the switching points for each link such that work done by all the forces/torques 

for each link Worki = 0, then the velocity constraints can be satisfied. So the basic task for 

zero-net-work method is to search for the switching points for each link so that the work done 

on each individual link is equal to zero. Since in the zero-net-work method, we assume only 

one switch, the switching point for each link is very important. 

Next we will investigate the influence of different switching point for a single link. Figure 

3.6 shows a planar one-link robot. 8SW is the angle at the switching point. For different values 

of 6SW there are following three cases: 

Case i. esw = e™w 

6SW is equal to the switching point of the zero-net-work (ZNW) switching point 6g^w • 

The robot stops exactly at the final position. Work = 0 at the final position. The free body 

diagram of this case is shown in Figure 3.6. The position and velocity trajectories are shown 

in Figure 3.7. 

Case 2. 9SW > 6 ™ w 

In this case the switching point is greater than the zero-net-work switching point. This 

means the robot arm switches earlier than it should be. The free body diagram of this case 

is shown in Figure 3.8 . When the velocity equals to zero, the robot hasn't reached the final 

position yet as shown in Figure (3.8). In this case Work ̂  0 at the final position. The position 

and velocity trajectories are shown in Figure 3.9. 

Case 3. 8SW < 9 ™ w 

In this case the switching point is smaller than the zero-net-work switching point. This 

means the robot arm switches too late than it should be. The free body diagram of this case 

is shown in Figure 3.10. When the robot reach the final position, the velocity is not equal to 
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zero, so it can't stop at the final position as shown in Figure (3.11). In this case Work ^ 0 at 

the final position. The position and velocity trajectories are shown in Figure 3.11. 

Initial position 

For the zero-net-work method, we set the initial value of the switching point smaller than the 

zero-net-work switching point. If the searching step size is small enough, case 2 will not happen. 

We can always control the robot reach the final position. If the switching position is not equal 

to the zero-net-work switching position, at the final position the work energy constraint can't 

be satisfied and Worki > 0. If we assume the initial switching position for each link equals to 

zero, and then increase the values of the switching position step by step until we get for each 

link Worki = 0, then we find the zero-net-work near-minimum-time solution for the robot. 

From the work energy behavior of the robot we obtain for link i , the total work done by all 

the forces: 

Switching position 

Final Position 

Figure 3.6: Free body diagram of one-link robot for case 1 

Worki = WAl + Wm + WGi (3.52) 

Because we assume the control inputs switch once so the work done by the actuator, 

WM = Wb

Al + Wa

Ai (3.53) 

0o) + Tmax sw } (3.54) 
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switching point 
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Figure 3.7: Position and velocity trajectories of case 1 

Initial position 

Figure 3.8: Free body diagram of case 2 
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Figure 3.9: Position and velocity trajectories of case 2 

Initial position 
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Figure 3.10: Free body diagram of case 3 
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Figure 3.11: Position and velocity trajectories of case 3 

where WAi is the work done by the actuator before the switching point, 

W^i is the work done by the actuator after the switching point, 

6o,9f are the initial and final position of link i, respectively, 

8SW is the switching position. From above equations we get, 

Worki = -2Tmax6sw + Tmax60 + WRi + WGi (3.55) 

The work done by the reaction and gravity forces can be found by using Newton-Euler 

formulation. Because we know the switching positions, so we know the control inputs, we can 

then integrate the dynamic equations of the system. We can get the vectors q , q , q , which are 

the position, velocity and acceleration of the robot. By using Newton-Euler formulation we can 

calculate the work done by all the forces for each link. 

Next we will develop the general Newton-Euler formulation of n-link revolute manipulator. 

Newton's Second Law: The rate of change of the linear momentum equals the total force 

applied to the body. 

f = dP d(mv) 
dt dt 

(3.56) 

where P is the linear momentum. 
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Euler's Angular Momentum Law: The rate of change of the angular momentum equals 

the total torque applied to the body. 

r = = dJM (3.57) 
dt dt v ; 

where H is the angular momentum. 

In the Newton-Euler formulation we treat each link of the manipulator separately. Newton-

Euler approach is a recursive method for computing joint forces and torques. We first step 

forward through the chain of links to compute the kinematic parameters of the links (velocity, 

angular velocity, linear & angular acceleration), then step backwards through the links and 

using Newton's second law and Euler's angular momentum law to computer the joint forces 

and torques. Each link of the manipulator is coupled to other links, by using forward-backward 

recursion we can determine all the coupling forces and torques. Thus through Newton-Euler 

approach, we can calculate all the forces and torques acting on each link. Also the closed-form 

dynamic equations of the system can also be developed. 

We first choose frame Fo,... ,Fn using Denavit-Hartenberg (D-H) convention. Frame FQ is 

an inertial frame, and frame F{ is rigidly attached to the end point of link i . The following 

vectors are all defined in frame Ff. 

aC)j = the acceleration of the center of mass of link i . 

a e )j = the acceleration of the end of link i (i.e. joint i+1). 

u>j = the angular velocity of frame Fi w.r.t. frame FQ. 

at = the angular acceleration of frame Fi w.r.t. frame Fo. 

gi = the acceleration due to gravity (expressed in frame Fi). 

fi = the force exerted by link i-1 on link i . 

T j = the torque exerted by link i-1 on link i. 

R* + 1 = the rotation matrix from frame Fi+\ to frame Fi. 

m,i = the mass of link i . 

Ii = the inertia matrix of link i about a frame parallel to frame Fi whose origin is at the center 

of mass of link i . 
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r;,ci = the vector from joint i to the center of mass of link i . 

ri+hci = the vector from joint i+1 to the center of mass of link i . 

r i t i + i = the vector from joint i to joint i+1. 

- R fi+i 

Figure 3.12: Forces and moments on link i 

Now consider the free body diagram shown in Figure (3.12), this shows link i together with 

all forces and torques acting on it. Applying Newton's second law, we have the force balance 

equation for link i: 

fi = R - + 1 f , + i + mjaCji - migi (3.58) 

Applying Euler's law about center of mass, the moment equation of link i is: 

Ti = R - + 1 r i + 1 - U x r i ) C i + (R- + 1f i +i) x r i + i ) C i + /.a; I W J X ( 2 ^ ) (3.59) 

We can now state the Newton-Euler formulation as follows. 

Forward recursion: 

Start with the initial conditions 

u>0 = 0, a o = 0, aC io = 0, a 6 j o = 0 

and solve following equations to compute W j , a,, and aC;, for i increasing from i to n. 

OLi = 

&r..i — 

(Rt i fwi-i + b ^ 

(Ri_i) Tai-i + biiji + Ui x bitji 

(Ri_i) T a e jj_i +d>iX r M + 1 + Ui x (ut x r i j i + 1 ) 

(Ri_ x)Ta e ii_i +w;x ritd + WiX (o>j x r i ) C i) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 
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where b* = (R | , ) r Zi_ i is the axis of rotation of joint i expressed if frame F,. 

Backward recursion: 

Start with the terminal conditions f n+i, Tn+\ and use Equation (3.58) Equation (3.59) to 

compute fj and T j for i decrease from n to 1. 

By using above forward and backward procedure we can find all the forces and torques 

acting on link i . The work done by all the forces and torques acting on link i can then be 

calculated. 

The overall scheme of the proposed zero-net-work method is shown in Figure 3.13. We first 

set the initial switching position for each link to zero, that is the link torque does not switch 

until the link reaches the final position. By doing this, case 2 will never happen for each link, 

that means we can always control the robot to reach the final position. But case 3 may happen, 

that is the robot can reach the final position but the work done by all the forces for each link 

is not equal to zero at the final position. 

The control input can be found based on the switching point Qsw, 

q > CLsw, T — -Tmox (3.65) 

q < <lsw, r = +Tmax (3.66) 

After we find the control input, we can integrate the dynamic equations of the system by one 

time step. From that we know the position, velocity and acceleration of each link, by using 

Equation (3.58) and Equation (3.59), and we can calculate all the forces/torques act on each 

link. So the work done by all the forces/torques for each link can be calculated. If the robot 

reaches the final position and Work > 0, this means the initial value of switching position qsw 

is too small, we then increase c[sw by one step c\sui — Qsw + Iswstep, recalculate the work, and 

continue to iterate on qsw until Work = 0. After we find the zero-net-work switching positions 

for each link. They can then be used online to control the robot manipulator. This will result 

a near-minimum-time control law. 
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Figure 3.13: Overall scheme of the zero-net-work method 



Chapter 4 

Development of the Zero-Net-Work Controller for One-Link Manipulators 

4.1 One-Link Horizontal Manipulator 

Next we will investigate the control of a one-link horizontal manipulator. First we will use the 

traditional method to obtain the exact minimum time solution of the manipulator, and then use 

the proposed zero-net-work method to solve the problem. We will compare the zero-net-work 

solution with the true minimum time solution using a computer simulation. 

4.1.1 Dynamic Model 

The one-link horizontal manipulator in Chapter 3 which is shown in Figure 3.1 will be used. 

4.1.2 Exact Minimum Time Solution 

The Exact Minimum Time Control (EMTC) of the one-link horizontal robot is a double inte­

grator problem. In Chapter 3, we integrate the dynamic equation of the system and find tf for 

the exact minimum time solution as, 

Where tf is the final time and tsw is the switching time, and 9Q is the initial joint position. 

When t < tsw the control input is —Tmax, when t > tsw the control input is +Tmax. 

4.1.3 Zero-Net-Work Solution 

Next we will use the zero-net-work method to control the one-link horizontal manipulator. First 

we assume the control input is bang-bang and has one switch. The torque before the switching 

(4.1) 

34 
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point 6SW is Tfc = — | r m a i | , the torque after the switching point is r a = +|r m a x | . The work before 

the switching point is: 

f&sw 

wb = / ndB 

= n(9sw - 0O) 

= -\Tmax\(0sw - Oo) (4.2) 

The work after the switching point is: 

[Of 

Wa = radd 
@ SW 

= ra(0f - 8sw) 

= I ' T m a x l ^ s u i (4-3) 

The work energy equation of the system is: 

Work = Wb + Wa = 0 (4.4) 

Substituting Equation (4.2) and Equation (4.3) into Equation (4.4) we obtain 

Work = -2\Tmax\0Sw + \Tmax\Oo = 0 (4.5) 

So the switching position: 

0Sw = y (4.6) 

From above we can see , for one link robot manipulator, using zero-net-work method the 

switching point can be easily found. Base on this we can design the zero-net-work controller for 

the one-link horizontal manipulator as follow: We use the position sensor to get the position of 

the robot arm at every moment. When 0(t) < 6SW the control input is +Tmax; when 6(t) > 6SW 

the control input is — Tmax- Figure 4.1 is the block diagram of the zero-net-work control system. 

file:///Tmax/Oo
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Zero Net Work 
Controller 

T(t) = + h™,| if e(t) < e 
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Figure 4.1: Block diagram of the zero-net-work control system 
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Figure 4.2: Simulation block diagram of the horizontal robot 
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4.1.4 Computer Simulation 

Next we will show the simulation results of the zero-net-work control. We use the same param­

eters for the manipulator as in Chapter 3 , and use the Simulink for the simulation. Figure 4.2 

is the block diagram of the simulation. The system's s-function "onel.m" can be found in the 

Appendix A . l . The simulation results for two different motion configurations are presented in 

the follow: 

Simulation 1: 

Move the arm from initial state (1, 0) to final state (0,0). Using the zero-net-work method, we 

obtain the switching position for this case is: 

0SW = j = 0.5 (4.7) 

Figure 4.3 shows the position and velocity trajectories. Figure 4.4 shows the applied joint 

torque. The simulation results show that the final time of the zero-net-work solution is tf = 

Isecond. The exact minimum time solution for this case is: 

tf = 2tsw = 2i / = 2second (4.8) 
V T M A X 

So for this case using the zero-net-work method we obtain the exact minimum time solution. 

Simulation 2: 

Move the arm from initial state (7r/2,0) to final state (0,0). 

The switching position for this case is: 

0SW = y = TT / 4 (4.9) 

Figure 4.5 shows the position and velocity trajectories. Figure 4.6 shows the applied joint 

torque. The simulation results show that the final time of the zero-net-work solution is tf = 

2.51 second. The exact minimum time solution for this case is: 
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State trajectories of one-link manipulator 
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Figure 4.3: State trajectories of zero-net-work control simulation 1 

Control trajectory of one-link manipulator 
1 ! ! ! r 

j I I , , i , I 
" 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Time (second) 

Figure 4.4: Applied joint torque of zero-net-work control simulation 1 
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State trajectories of one-link manipulator 
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Figure 4.5: State trajectories of zero-net-work control simulation 2 

tf = 2tsw = 2JL^- = 2.51 second (4.10) 

So for this case using the zero-net-work method we can also obtain the exact minimum time 

solution. 

4.1.5 Summary 

From above we can see, for one-link horizontal manipulator, the zero-net-work method can 

obtain the exact minimum time solution. The zero-net-work method is very simple for this one 

link manipulator and the switching position can be easily found based on the initial position. 
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Control trajectory of one-link manipulator 
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Figure 4.6: Applied joint torque of zero-net-work control simulation 2 

Figure 4.7: One-link vertical manipulator 
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4.2 One-Link Vertical Manipulator 

4.2.1 Dynamic Model 

Next we will consider a one-link vertical manipulator as shown in Figure 4.7. Assume gravity 

acts vertically downward. The equation of motion of the robot can be obtained using the 

Euler-Lagrange equation. 

The kinetic energy of the system is: 

KE = ^I62 (4.11) 

where I is the moment of inertial about the joint O. 

The potential energy of the system: 

PE = ^mglsinO (4.12) 

The Lagrangian L is given by: 

L = KE-PE 

= )-I62 -)-m,glsin6 (4.13) 

Substituting above expression into Euler-Lagrange equation yields the equation of motion: 

The absolute value of the control torque r is bounded: 

\T\ < T M A X (4.15) 

The state space equations are: 

xi{t) = x2(t) (4.16) 
. . . r(t) mqlcosixxit)) 

X2(t) = - y - y

 2 y y > ) (4.17) 

where 
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xi = 9(t) (4.18) 

x2 = 9(t) (4.19) 

\T\ < W (4.20) 

4.2.2 The Exact Minimum Time Solution 

The initial conditions of the robot are: 

*i(0) = *io (4.21) 

.T2(0) = 0 (4.22) 

The final conditions are: 

Xl(tf) = 0 (4.23) 

x2(tf) = 0 (4.24) 

The cost functional is: 

J= ldt (4.25) 
Jto 

The Exact Minimum Time Control (EMTC) problem of the one-link vertical robot can be 

stated as follows: 

For the robot governed by the differential Equations (4.16 - 4.17) find an admissible control 

r satisfying the constraints (|r| < T M A X ) which transfer the robot from initial position the fixed 

final position in minimum time, i.e., such that the cost functional J denned in Equation(4.25) 

is minimized. 
Define the Hamiltonian as, 

77(x,r,A) = l + A 1 , 2 + A4-^^i] (4.26) 
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where A x , A 2 are the costate variables. Using the techniques of variational calculus and ap­

plying Pontryagin's maximum principle, the necessary conditions for the EMTC can be written 

as: 

State equation: 

Costate equation: 

x = H = / ( x , T , t ) (4.27) 

Stationary Condition: 

H(x*, A*, r*) < H(x*, A*, r) (4.29) 

Where r* is the optimal control, x* and A* are the corresponding optimal state and costate 

trajectories. Substitute Equation (4.26) into Equation (4.29), we obtain: 

A 2 r* < A 2 r (4.30) 

From above equation, we can see the optimal control r* is depend on costate variable A 2 . 

T*(t) = 
Tmax if A 2 < 0 

- T M A X if A 2 > 0 

Substitute Equation (4.26) into Equation (4.27) and Equation (4.28), the necessary condi­

tions for EMTC of the one-link vertical robot are: 

Xl - X2 

T m,glcosx\ 
X2 21 

Ai = ——X2smxi 

A 2 = - A i (4.31) 
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where the control input r is depend on A 2 . For the exact minimum time control problem the 

initial and final position are fixed so the boundary conditions for the above differential equation 

are: 

x1(0) = x10 .T 2 (0)=0 

x1(tf)=0 x2(tf)=0 (4.32) 

Since the Hamiltonian function does not explicity depend on time: 

H(X*,X*,T*) = 0, Vt €[(),</] (4.33) 

From the above optimality conditions, we can see no boundary conditions for the state 

variable Ai , A 2 are defined. This fact leads to the problem of solving the Two Point Boundary 

Value Problem (TPBVP), which is very difficult to solve. In this thesis, for the purpose of 

comparing the zero-net-work method with the exact minimum time solution, we will use multiple 

shooting method to solve the resultant TPBVP. More specifically, the subroutine MUSN written 

in FORTRAN 77 and available through Netlib repository (http://www.netlib.org/) is used to 

obtain the solution (see Appendix B.1 for more detail). 

MUSN ( FDIF,YOT,G,N,A,B,ER,TI,NTI,NRTI,AMP,ITLIM,Y,Q,U,NU,D,PHI,KP,W,LW, 

IW,LIW,WG,LWG,IERROR ) uses a multiple shooting method to solve nonlinear T P B V P of 

the form: 

y ' = /(*,y), a<t<b (4.34) 

g(y(a),y(6)) = 0 (4.35) 

Routine MUSN requires three subroutines. Subroutine FDIF(T,Y,F) evaluate the righthand 

side of the differential equation f(t,y) for t = T and y = Y and places the result in F(l) , 

. . . ,F(N). where N is the order of the system; and Subroutine YOT(T,Y) must evaluate the 

initial approximation yO(t) of the solution, for any value t = T and place the result in Y( l ) , 

http://www.netlib.org/
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. . . ,Y(N) . The third subroutine G(N,YA,YB,FG,DGA,DGB) must evaluate g(y(A),y(B)) for 

y(A) = YA and y(B) = YB and place the result in FG(1),... ,FG(N). Moreover G must 

evaluate the Jacobians dg(u,v)/du for u — YA and dg(u,v)/dv for v = YB and place the 

result in the arrays DGA anb DGB respectively. The convergence of the solution depend on 

the initial guess of the costate vector, so it can only handle problem of relatively less complexity. 

For the robot of more than three DOF, it becomes less efficient and very difficult to get the 

solution. 

For exact minimum time control problem, the final time tf is unknown, in order to use 

MUSN solving the resultant TPBVP, we have to transform it into a fixed time interval problem 

by a time normalization approach. 

Let T = t/tf, then T e [0,1] for t <E [0, tf], and x(t) = x(T), X(t) = A(T), so 

dx(T) dx(t) dt dx(t) 

^ = -dTdT =
 t f ^ r ( 4 - 3 6 ) 

~dT~ ~ t f ^ r ( 4 - 3 7 ) 

We introduce an additional dynamics equation for the final time to be minimized by letting 

tf = z(T), then dz(T)/dT = 0. Combining the above equations and invoking the boundary 

conditions yields the following equivalent TPBVP: 

State equation: 
d x [ T ) ~z (T) / (x , r ,T ) (4.38) Costate equation: 

dT 

d\(T) , m u ffi, ^ 

Stationary Condition: 

tf(x*,A*,r*) < # ( X * , A * , T ) (4.40) 
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Boundary conditions: 

x(0) = x 0 x(l) = x / (4.41) 

Additional equation: 
dz(T) 

dT 

The equivalent TPBVP for the one-link vertical robot is: 

= 0 (4.42) 

dxi 
~dT ZX2 

dx2 {T mglcosx\. 
~dT = T 21 • 
d\\ m,gl 
—— = —z Xosinx-i 
dT 21 
dM 
dT 
dz 
dT 

— —zX\ 

= 0 (4.43) 

The boundary conditions are: 

x1(0)=xw x2(0) = 0 

.TI(1) = 0 .x 2 ( l)=0 (4.44) 

We then can use subroutine MUSN to solve the above TPBVP and obtain the true minimum 

time solution. 

4.2.3 Zero-Net-Work Solution 

Next we will design the zero-net-work controller for above one-link vertical robot manipulator. 

There is one gravity force and one control torque act on the robot. For the zero-net-work 

method, we assume the control input is bang-bang and switch once. The torque before the 

switching point 9SW is T^, = — | T m a 3 ; | , the torque after the switching point is r a = \TMAX I, The 

work done by the torque and gravity before the switching point is 
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fds-w fOsw 

/ dt+ -mg[l/2cc*6]d9 

Tmax\(Osw ~ <?o) - mgl/2(sin0sw - sin60) (4.45) 

Wb = -|r, 
I0o 

The work done by all the force after the switching point is: 

Wa = +\rmax\ I ' dt+ lS -mg[l/2cos6]d6 
** @sw J QSVJ 

= +\Tmax\(Qf ~ 8sw) ~ mgl/2(sin6f - sin0sw) 

= -\Tm.ax\0sw + mgl/2sin9sw (4.46) 

The work energy equation is: 

Work = Wb + Wa 

= -2\Tmax\0sw + \Tmax\0Q + \j2m.glsin0Q = 0 (4.47) 

So the switching point is: 
„ ,„ mqlsinOa 

'max\ 
From above we can see, for the one link vertical manipulator, using the zero-net-work 

method, the switching point can be easily found. Based on this, we can design the zero-net­

work controller for the one-link vertical manipulator as follow: We use the position sensor to get 

the position of the robot arm at every moment. When 9(t) < 0SW the control input is +Tmax, 

and when 9(t) > 9SW the control input is — Tmax. The block diagram of the zero-net-work control 

system of the one-link vertical robot is the same as for the one-link horizontal manipulator as 

shown in Figure 4.1. 

4.2.4 Computer Simulation 

The proposed zero-net-work method will now be simulated for the one-link vertical manipula­

tor, and its performance will be compared with exact minimum time solution. The physical 

file:///j2m.glsin0Q
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parameters of the manipulator are : 

T~max = 8N.m,, m = 5kg, I = 0.3m, / = Q.\bm?kg. 

We use Simulink for the simulation. Figure 4.8 is the block diagram of the simulation. 

The system's S-function "one2.m" can be found in Appendix A.2 . The control input is bang-

bang and has one switch and at every moment we compare the position output 9(t) with the 

switching position 9SW. The control input switches from the maximum value to minimum value 

when 9{t) = 9SW. If 9(t) < 9SW, the control input r(t) = -rmax\ if 9(t) > 6SW, control input 

r(t) = + T m a x . The simulation results for two different motion configurations are presented in 

the following: 

Simulation Case 1: 

In this case we will move the manipulator from initial state (1,0) to final state (0,0). Using 

zero-net-work method from Equation (4.48), we can find the switching position as: 

9SW = 0.8866 (4.49) 

Once we find the switching point, we can use this value in simulation block diagram shown in 

Figure 4.8 and use Simulink runs the simulation. Figure 4.9 and Figure 4.10 show the state and 

control trajectories of the robot. The simulation results show that the control input switches 

once at tsw = 0.0531s, and the final time of the zero-net-work solution is tf = 0.6268s. The exact 

solution for this case can be obtained by using MUSN to solve the equivalent T P B V P (Equation 

4.43). The FORTRAN program for the one-link vertical exact minimum time solution can be 

found in Appendix A.3. Figure 4.11 is the state trajectories and Figure 4.12 is the control 

trajectory, Figure 4.13 is the costate trajectories of the exact minimum time solution. For 

the exact minimum time solution the control input switches once at tsw = 0.0531s, the exact 

minimum time is ttf = 0.6268s. The initial values for the costate variable are Ai = 0.2446, 

A 2 = 0.0125. From Figure 4.12 and Figure 4.13 we can see the control input depends on A 2 . 

When A 2 > 0 the control input is —Tmaxi £Lncl when A2 ^> 0 the control input is Trr\,ax' From 

above we can see for the one-link vertical manipulator in this case, using zero-net-work method 
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Figure 4.8: Case 1: Simulation block diagram of the one-link vertical manipulator 

we obtain the exact minimum time solution. 

Simulation Case 2: 

In this case we will move the manipulator from initial state (1.57,0) to final state (0, 0). Using 

zero-net-work method from Equation (4.48), we can find the switching position as: 

esw = 1.2444 (4.50) 

Once we find the switching point, we can use this value in simulation block diagram shown in 

Figure 4.14 and use Simulink runs the simulation. Figure 4.15 and Figure 4.16 show the state 

and control trajectories of the manipulator. The simulation results show that the control input 

switches once at tsw = 0.1079s, and the final time of the zero-net-work solution is tf = 0.7525s. 

The exact solution for this case can be obtained by using MUSN to solve the equivalent 

TPBVP (Equation 4.43). Figure 4.17 is the state trajectories and Figure 4.18 is the control 

trajectory, Figure 4.19 is the costate trajectories of the exact minimum time solution. For 

the exact minimum time solution the control input switches once at tsw = 0.1079s, the exact 

minimum time is ttf = 0.7525s. The initial values for the costate variable are Ai = 0.2051, 

A 2 = 0.0187. From above we can see for the one-link vertical manipulator in case 2, using 
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State trajectories of one-link vertical manipulator (zero-work solution) 
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Figure 4.9: Case 1: State trajectories of the one-link vertical manipulator (zero-net-work solu­
tion) 

Control trajectory of one-link vertical manipulator (zero-work solution) 
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Figure 4.10: Case 1: Control trajectory of the one-link vertical manipulator (zero-net-work 
solution) 
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State trajectories ot one-link vertical manipulator (exact minimum time solution) 
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Figure 4.11: Case 1: State trajectories of the one-link vertical manipulator (exact minimum 
time solution) 
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Figure 4.12: Case 1: Control trajectory of one-link vertical manipulator (exact minimum time 
solution) 
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Costate trajectories of one-iink vertical manipulator (exact minimum time solution) 
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Figure 4.13: Case 1: Costate trajectories of the one-link vertical manipulator (exact minimum 
time solution) 

zero-net-work method we can also obtain the exact minimum time solution. 

4.2.5 Summary 

From above simulations we can see, for a one-link robot manipulator, the zero-net-work method 

yields the exact minimum time solution. The zero-net-work method is much easier to imple­

ment and much simpler compared to the traditional method which requires the solution of 

the TPBVP. The traditional method requires the solution of the T P B V P for different initial 

positions, and also requires a good initial guess for the missing boundary values. For different 

initial conditions, the zero-net-work method can use the Equation (4.48) to find the switching 

position very easily, and the control input is based on the switching position. 
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Figure 4.14: Case 2: Simulation block diagram of the one-link vertical manipulator 

State trajectories of one-link vertical manipulator (zero-work solution) 
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Figure 4.15: Case 2: State trajectories of the one-link vertical manipulator (zero-net-work 
solution) 
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Control trajectory of one-link vertical manipulator (zero-work solution) 
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Figure 4.16: Case 2: Control trajectory of the one-link vertical manipulator (zero-net-work 
solution) 
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Figure 4.17: Case 2: State trajectories of the one-link vertical manipulator (exact minimum 
time solution) 
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Control trajectory of one-link vertical manipulator (exact minimum time solution) 
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Figure 4.18: Case 2: Control trajectory of one-link vertical manipulator (exact minimum time 
solution) 

Costate trajectories of one-link vertical manipulator (exact minimum time solution) 
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Figure 4.19: Case 2: Costate trajectories of the one-link vertical manipulator (exact minimum 
time solution) 



Chapter 5 

Development of the Zero-Net-Work Controller for a Cylindrical Manipulator 

5.1 Dynamic Model 

Next we will investigate the control of a cylindrical manipulator as shown in Figure 5.1. The 

first joint is revolute and produces a rotation about the base, while the second and third joints 

are prismatic. The joints of the robot's hand are neglected here. The first degree of freedom is 

the rotation 9\. This coordinate is driven by a limited torque T\ . The second degree of freedom 

is the radial translation r. It is driven by a limited force F2. The third degree of freedom is the 

vertical translation. This coordinate is decoupled both from the first and second coordinate, so 

we can treat it separately as a one-link problem. We can use the zero-net-work method shown 

in Chapter 4 to design the zero-net-work controller for this link. The detail is neglected here, 

because it is same as the one-link manipulator in Chapter 4. 

The control of the cylindrical robot can be treated as two parts: the first part is the one-link 

robot control problem of the third link; the second part is the planar Revolute and Prismatic 

(RP) two-link robot control problem. The influence of the third link on the first and second 

link is neglected and the second and the third link are lumped into a point mass m,^. The 

configuration for the second part of the cylindrical robot can be simplified as a two-link planar 

Revolute and Prismatic (RP) robot as shown in Figure 5.2, where I\ is the moment of the 

inertial about the center of mass of link 1, mi is mass of link 1 and m,2 is mass of link 2. The 

absolute value of the control torque for link 1 is bounded: 

I T i l < Timax (5.1) 

56 



Chapter 5. Development of the Zero-Net-Work Controller for a Cylindrical Manipulator 

Sketch of the cylindrical robot 

Figure 5.1: Sketch of the cylindrical robot 
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Figure 5.2: Sketch of two-link revolute and prismatic manipulator 

Link cn Cti ch 6i 
1 0 TT / 2 0 TT / 2 + 6{ 
2 0 0 d*2 0 

Table 5.1: D-H parameters of two-link revolute and prismatic manipulator 

The control force F 2 for link 2 is also bounded: 

1̂21 < F2max (5.2) 

We establish the base frame Fo as shown in Figure 5.2. Once the base frame is established, 

the F\ frame and F 2 frame is fixed as shown by the Denavit-Hartenberg (D-H) convention. The 

D-H parameters are shown in Table 5.1,where * means variable. 

The homogeneous transformation from frame F Q to frame F\ is: 
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Hoi = 

—sin9\ 0 cos9\ 0 

cos9\ 0 sin8\ 0 

O l O O 

0 0 0 1 

The homogeneous transformation from F\ to F2 is: 

(5.3) 

H 12 

1 0 0 0 

0 1 0 0 

1 0 1 d2 

0 0 0 1 

So the homogeneous transformation from FQ to F2 is: 

(5.4) 

H-02 = H01H12 = (5.5) 

—sinOi 0 cos9\ d2cos9\ 

cos9\ 0 sin9\ d2sin9\ 

0 1 0 0 

0 0 0 1 

Next we will use the Newton-Euler method shown in Chapter 3 to obtain the dynamic 

equations of the robot. We begin with the forward recursion to express the various velocities 

and accelerations in term of 9\, d2 and their derivatives. The angular velocity and acceleration 

of link 1 are: 

ui = [0 e\ Of 

aj = [0 9\ 0] T 

The angular velocity and acceleration of link 2 are: 

u, 2 = [0 6\ 0] T 

<*2 = [0 9\ 0 ] r 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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5.1.1 Forward Recursion 

The acceleration of the end of link 1 is: 

ae,i = w i x r ^ + wi x(wi x r y ) 

= [d26\ 0 -d,29\]T (5.10) 

The acceleration of the center of mass of link 1 is: 

ac,i = wixri ) C i + wix(wiXri, c i) 

= [ | * o - ljelf ( 5 . i i ) 

The acceleration of the center of mass of link 2 is: 

aC ) 2 = (R?)Tae>i + u2 x r 2 , c 2 + u>2 x (u>2 x r2, c 2) + 2u>2 x z i d 2 + z i d 2 

= [{d29\ + 20\d2) 0 {-d29\ + d2)]T (5.12) 

5.1.2 Backward Recursion 

Now we carry out the backward recursion to compute the forces and joint torques. The force 

exerted by link 1 on link 2 is: 

f2 = m 2a C i2 

d29\ + 2B\d2 

= rn,2 | 0 

-d2e\ + d2 

The torque exerted by link 1 on link 2 is : 

r 2 = [0 0 0] T 

(5.13) 

(5.14) 

So there are two forces act on link 2, f2x and f2z, Figure 5.3 shows all the forces and torques 

acting on link 1 and link 2. 

hx = (d291 + 29ld2)m,2 

hz = {~d29l + d2)m2 

(5.15) 

(5.16) 
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Initial Position 

l i n k l 

Final Position 

Figure 5.3: Forces and torques act on link 1 and link 2. 

The force exerted by base the on link 1 is: 

fi = mia C j i + R 2 f 2 

(miZi/2 + m,2d2)9\ + 29\d2m,2 

0 (5.17) 

-(mih/2 + m2d2)9\ + m2d2 

The torque exerted by the base on link 1 is: 

r i = R 2 r 2 - fi x n , c i + (Rff 2) x r2,ci + hai + u>i x 

0 

(7i + mi/ 2 /4 + m2d$)b\ + 2m,2d29\d2 (5.18) 

0 

From the above we can obtain the dynamic equations of the two-link RP robot as: 

[h + mi(Zi/2) 2 + m,2dl\b\ + 2m2d2d29\ = n 

m,2d2 - m2d292 — F2 

(5.19) 

(5.20) 
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The moment of inertia of link 1 about the origin of frame Fo is: 

I 0 i = J i + 7 7 i 1 ( / 1 / 2 ) 2 (5.21) 

and 

d2(t) = r1+r(t) (5.22) 

Substituting Equation (5.21) and Equation (5.22) into Equation (5.19), (5.20) we obtain: 

[hi + ™,2{r + ri)2](9i + 2m2(r + ri)r0\ = r : (5.23) 

m2r - m2(r + n)9j = F2 (5.24) 

The dynamic equations in state space form are: 

xi = x2 (5.25) 
• n - 2m2(.T3 + ri)x2x4 

X2 = ; ; (5.26) 
loi +m2(x3 +riY 

x3 = x4 (5.27) 
.4 = F2 + m,2(xz+n)xl ( 5 2 8 ) m2 

where 

xi = 6i(t) x2 = 6\(t) (5.29) 

.x3 = r(t) X i = r(t) (5.30) 

5.2 The Exact Minimum Time Solution 

The initial conditions of the robot are: 

.Ti(0) = .x 1 0 x2(Q) = 0 (5.31) 

a*(0) = x20 .r4(0) = 0 (5.32) 

The final conditions are: 

xi(tf) - x2(tf) = x3(tf) = x4(tf) = 0 (5.33) 
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where tf is the final time. 

The absolute values of the control inputs are bounded: 

In | < rlmax (5.34) 

1̂ 21 < F2max (5.35) 

The cost functional is: 

J = / ldt (5.36) 
Jto 

The Exact Minimum Time Control (EMTC) problem of the two-link planar Revolute and 

Prismatic (RP) can be stated as follows: 

For the robot governed by the differential Equations (5.25 - 5.28) find an admissible control 

T\ and F2 satisfying the constraints in Equation (5.34) and Equation (5.35) which transfer the 

robot from initial position to the fixed final position in minimum time, i.e., such that the cost 

functional J defined in Equation(5.36) is minimized. 

Referring to Equations (5.25 - 5.28), we define 

V i = n - 2 m 2(x3+ r 1)x2X 4 

V2 = ^ + m 2 (x 3 + r 1 ) x l 
m,2 

The Hamiltonian is then 

H(x, n,F2, A) = 1 + A I . T 2 + X2Vi + A3 .T4 + A4V2 (5.39) 

where X\, X2 , A 3 , A 4 are the costate variables. The necessary conditions for the EMTC can 

be written as: 

State equation: 

x = — = / (x , r 1 , F 2 , t ) (5.40) 

Costate equation: 
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7 T = - A (5-41) 
ax 

Stationary Condition: 

H(x\ A*, T I * , F2*) < (x*, A*, n , F 2 ) (5.42) 

Where rj* and F£ are the optimal controls, x* and A* are the corresponding optimal state 

and costate trajectories. Substituting Equation (5.39) into Equation (5.42), we can see the 

optimal controls are dependent on the costate variables A 2 and A 4 . 

TImax if A 2 < 0 

— Tlmax if A 2 > 0 
Tl*(t) = 

F2*(t) 
F2max if A 4 < 0 

—F2max if A 4 > 0 

By using the time normalization technique shown in Chapter 4, we can transform EMTC 

problem into a fixed time interval problem. The equivalent Two Point Boundary Value Problem 

(TPBVP) for the two link RP robot is: 

~dT 
dx2 

~dT 
dx3 

dT 
dx± 

~dT 
d\i 

IT 
d\2 

dT 

dh 

dT 

dX^ 

IT 
dz 

dT 

= zx2 

= zVi 

= 2.T4 

= zV2 

= 0 

dvx dv2 

dx3 dx3 

— = 0 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 
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where T G [0,1] for t 6 [0, tf], and 

Let 

V2 = 

Then 

dVi 
dx2 

dVi 
dx3 

dVi 
dx^ 
dV2 

dx2 

dV2 

dx3 

The boundary conditions are: 

*(T) = tf 

T = 
tf 

U_ 
V 
ri - 2m2(x3 + ri)x2x± 

hi + m2(xz + r i ) 2 

F2 +m,2(x3 + r{)x\ 
m2 

-2m,2(x3 + ri)x4 

V 
-2m,2x2x4V - 2m,2(x3 + r{)U 

V2 

-2m,2(x3 + ri)x2 

V 

2x2(x3 + ri) 

r 2 x2 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

xi (0) = .Tio 

•̂ 3(0) = x20 

xi(l) = 0 

xs(l) = 0 

x2(0) = 0 

.T4(0) = 0 

.T2(l) = 0 

.T4(l) = 0 (5.61) 

From the above equations, we can see the boundary conditions for the costate variables 

are unknown. In order to get the exact minimum time solution, we have to solve the above 

TPBVP. We can use subroutine MUSN to solve the TPBVP. The convergence of the solution 
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depend on the initial guess of the unknown parameters. In this case we have to give the initial 

guesses for 5 unknown parameters, that is Ai , A 2 , A 3 , A 4 and the final time z. The convergence 

of the solution is very sensitive to the unknown initial guesses. For this reason, it is very hard 

to get the exact minimum time solutions using the traditional calculus of variation method. 

5.3 Zero-Net-Work Solution 

Next we will design the zero-net-work controller for above two-link Revolute and Prismatic (RP) 

robot manipulator. The basic algorithm of the zero-net-work method has been given in Chapter 

3. For the RP manipulator in this chapter, we assume the final positions and velocities of each 

link are equal to zero. For zero-net-work method the control torque for link 1 is bang-bang 

and has one switch and the control force for link 2 is also bang-bang and has one switch. We 

can use the results from Newton-Euler formulation of the dynamic equations in Section 5.1 to 

calculate the work done by all the forces/torques for each link. Al l the work will be calculated 

in base frame Fo. 

For link 1 the work done by all the forces/torques can be calculated as follow: As shown 

in Figure 5.3, there are one torque T\ and four forces ( / i x , / i 2 , —f2x, ~hz) act on it. In frame 

Fo, the displacement of point o is always zero. If we move all the forces to point o, forces 

fix,fiz, —f2z pass through point o, so the work done by these forces is always zero. 

The displacement of 02 in x direction in frame Fo is: 

Sx = 6[(r± + r)cos6i] (5.62) 

The displacement of o2 in y direction in frame Fo is: 

8y = 6[(ri + r)sin9i] (5.63) 

Reaction force: 

hx = m 2[(ri + r)6i + 20if 1] (5.64) 

Work done by all the forces/torques for link 1 is: 

Worh = TISOI - f2x(ri + r)86i (5.65) 
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For link 2 as shown in Figure 5.3, there are two forces f2x,f2z act on it. f2z = F2 is the 

control input for link 2. Work done by all the forces for link 2 is: 

Work2 = (-f2xsindi + F2cos9i)6x + (f2xcos9x + F2sin9{)8y (5.66) 

Since we assume the control input for each link is alway bang-bang and switch once. For 

different physical parameters and motion configurations, we can not always find the solution 

that both link reach the final position at the same time using maximum or minimum control 

input only. Following assumption must be made: once the link reaches the final position, the 

control input will be changed to the torque/force needed to hold the link at the final position. 

For the two link planar RP manipulator there is only two possibilities: 

Case 1: Link 1 reaches the final position first. This means: 

01 = 0; 0i = 0; 9\ = 0 (5.67) 

In order to hold link 1 at it's final position, from Equation (5.23) the control input for joint 

1 is: 

TI = 0 (5.68) 

This means the movement of link 2 has no effect on link 1, once link 1 reaches the final 

position. When link 1 reaches the final position, we can turn the control input n off. 

Case 2: Link 2 reaches the final position first. This means: 

r = 0 ; r = 0 ; f = 0 (5.69) 

In order to hold link 2 at the final position, from Equation (5.24) the control input for joint 

2 is: 

F2 = -m2rx9\ (5.70) 

Once the link 2 reaches the final position, the control input for link 2 is changed to —m.2r\9\. 
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We first set the switching positions of link 1 and link 2 to zero, this means the control inputs 

do not switch until the final point is reached. So each link can reach the final position, but the 

work done by all the forces and torques for each link is not equal to zero at the final point. 

We will then increase the switching position for each link, and calculate the work done by all 

the forces and torques at the final position. When the work done for each link at final position 

is zero, then we have found the zero-net-work switching point for each link. After we find the 

zero-net-work switching point for each link, we have specified the zero-net-work controller for 

the RP robot manipulator. We use the position sensor to obtain the position of the robot arm 

at every moment. For link 1, when 6\(t) < 6\sw the control input is + T i m a x ; when Q\(t) > 9isw 

the control input is — T i m a x . For link 2, when r(t) < rsw the control input is +F2max', when 

r[t) > rsw the control input is — F2max- The FORTRAN program which is used to find the 

zero-net-work switching positions is shown in Appendix A.4. FORTRAN subroutine DDASSL 

shown in Appendix B.2 is used to integrate the dynamic equations of the robot system. 

5.4 Computer Simulation 

The proposed zero-net-work method will now be simulated for the two-link Revolute and Pris­

matic (RP) manipulator, and its performance will be compared with the exact minimum time 

solution. We will use the zero-net-work method to two different parameter sets of the RP 

manipulator. For each parameter set, we will perform simulations for two different motion 

configurations. Table 5.2 shows the two different parameter set for the simulations. 

Set Tlmax F2max n h 777,1 777,2 h 
N.m N m m Kg Kg kgm? 

1 2 2 0.6 0.9 3 1 0.81 
2 3 2.5 0.4 1.2 4 1.5 1.92 

Table 5.2: Physical parameters of two-link revolute and prismatic manipulator 

We use Simulink to perform the simulation. The system's S-function can be found in 
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Figure 5.4: Case 1: Simulation block diagram 

Appendix A.6. The parameter set 1 shown in Table 5.2 is used for the simulation case 1 and 

case 2, the parameter set 2 is used for the simulation case 3 and case 4. The simulation results 

for different parameters and motion configurations are presented in the following: 

5.4.1 Simulation Case 1: 

Case 1 00 ro rsw t-lsw ^2sw * 2 / error 
Zero-net-work 7T/4 0 0.3927 0.6778 1.3449 6.74 % 

EMTC TT / 4 0 0.6308 0.3510 
0.9094 1.2600 

Table 5.3: Case 1: Simulation results of two-link revolute and prismatic manipulator 

In this case we will move the manipulator from initial state 0, 0, 0) to final state (0, 0, 

0, 0). The FORTRAN program using zero-net-work method to find the switching position for 
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Casel: Joint Position Trajectories ot Link 1 
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Figure 5.5: Case 1: State trajectories of link 1 

Casel: Joint Position.Trajectories of Link 2 
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Figure 5.6: Case 1: State trajectories of link 2 
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Casel: Control Trajectories of Link 1 
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Figure 5.7: Case 1: Control trajectories of link 1 

Casel: Control Trajectories of Link 2 
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Figure 5.8: Case 1: Control trajectories of link 2 
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Casel: Work done by all the forces and torques of R&P two-link robot 
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Figure 5.9: Case 1: Work done by forces/torques for each link (zero-net-work solution) 

each link is shown in Appendix A.4 . The simulation results are shown in Table 5.3. For link 1, 

#o is the initial position, 6SW is the switching position, tXsw is the switching time, t\f is the final 

time. For link 2, rn is the initial position, rsw is the switching position, t2SW is the switching 

time, t,2f is the final time. 

In this case, the initial velocity and position of link 2 are zero. So there is no minimum to 

maximum switch for link 2. The control input for link 2 start from the beginning is the force 

needed to hold link 2 at the final position while link 1 is moving. Control input for link 1 has 

one switch: 0isw = 0.3927rad. From offline calculation we find the switching positions, we can 

then use these values in simulation block diagram shown in Figure 5.4 and use Simulink run the 

simulation. Exact minimum time solution can be obtained by solving the Two Point Boundary 

Problem (TPBVP). The FORTRAN program for exact minimum time solution of the two-link 

revolute and prismatic manipulator can be found in Appendix A.5. The exact minimum time is 

tf exact = 1.2600sec, zero-net-work time is tfzw = l-3449sec. The time difference between the 
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proposed zero-net-work control method and Exact Minimum Time Control (EMTC) is 6.74%. 

Thus we can say zero-net-work control method leads to a near minimum time solution. Figure 

5.5 shows the state trajectories of link 1, Figure 5.6 shows the state trajectories of link 2. Figure 

5.7 shows the control trajectories of link 1, Figure 5.8 shows the control trajectories of link 2. 

The work done by external and reaction forces/torques for zero-net-work method are shown in 

Figure 5.9. 

5.4.2 Simulation Case 2: 

Case 2 i~-2sw t2f error 
Zero-net-work 0.2 0.3 0.1083 0.1426 0.3709 0.4007 0.7383 0.7810 1.69 % 

EMTC 0.2 0.3 0.0170 
0.4020 

0.3999 
0.7680 

Table 5.4: Case 2: Simulation results of two-link revolute and prismatic manipulator 

In this case we will move the manipulator from initial state (0.2, 0, 0.3, 0) to final state 

(0, 0, 0, 0). The simulation results are shown in Table 5.4. Control input for link 1 has one 

switch: 0\sw = 0.1083rad. Control input for link 2 has one switch: rsw — 0.1426m. From offline 

calculation we find the switching positions, we can then use these values in simulation block 

diagram shown in Figure 5.10 and use Simulink run the simulation. The exact minimum time 

is tfexact = 0.7680sec, zero-net-work time is tfzw = 0.7810sec. The time difference between 

the proposed zero-net-work control method and EMTC is 1.69%. Figure 5.11 shows the state 

trajectories of link 1, Figure 5.12 shows the state trajectories of link 2. Figure 5.13 shows the 

control trajectories of link 1, Figure 5.14 shows the control trajectories of link 2. The work done 

by external and reaction forces/torques for zero-net-work method are shown in Figure 5.15. 
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Case2: Control Trajectories of Link 2 
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Figure 5.14: Case 2: Control trajectories of link 2 

Case2: Work done by all the forces and torques of R&P two-link robot 
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Case3: Joint Position Trajectories of Link 2 
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Figure 5.18: Case 3: State trajectories of link 2 
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Case3: Control Trajectories of Link 2 
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Figure 5.20: Case 3: Control trajectories of link 2 

Case3: Work done by all the forces and torques of R&P two-link robot 
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Figure 5.21: Case 3: Work done by forces/torques for each link (zero-net-work solution) 
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Case 3 Oo Qsw rsw tlsw t-2sw hf * 2 / error 
Zero-net-work TT/4 0 0.3927 0.7520 1.5005 2.63 % 

EMTC TT/4 0 0.7250 0.3850 
1.0816 1.4620 

Table 5.5: Case 3: Simulation results of two-link revolute and prismatic manipulator 

5 . 4 . 3 S i m u l a t i o n C a s e 3 : 

In this case we will move the manipulator from initial state (j, 0, 0, 0) to final state (0, 0, 0, 0), 

parameter set 2 of the RP manipulator in Table 5.2 will be used for simulation. The simulation 

results are shown in Table 5.5. For link 1, f?o is the initial position, 9SW is the switching position, 

t\sw is the switching time, t\f is the final time. For link 2, ro is the initial position, rsw is the 

switching position, t2sw is the switching time, t2f is the final time. Control input for link 1 

has one switch: Q\sw = 0.3927rad. From offline calculation we find the switching positions, we 

can then use these values in simulation block diagram shown in Figure 5.16 and use Simulink 

run the simulation. The exact minimum time is tfexact = 1.4620sec, zero-net-work time is 

tfzw — 1.5005sec. The time difference between the proposed zero-net-work control method 

and EMTC is 2.63%. Figure 5.17 shows the state trajectories of link 1, Figure 5.18 shows the 

state trajectories of link 2. Figure 5.19 shows the control trajectories of link 1, Figure 5.20 

shows the control trajectories of link 2. The work done by external and reaction forces/torques 

for zero-net-work method are shown in Figure 5.21. 

5 . 4 . 4 S i m u l a t i o n C a s e 4 : 

In this case we will move the manipulator from initial state (0.2, 0, 0.3, 0) to final state (0, 

0, 0, 0), parameter set 2 of the RP manipulator in Table 5.2 will be used for simulation. The 

simulation results are shown in Table 5.6. For link 1, 6Q is the initial position, 6SW is the 

switching position, t\sw is the switching time, t\f is the final time. For link 2, ro is the initial 

position, rsw is the switching position, t2sw is the switching time, t2f is the final time. Control 
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Case 4 00 rsw t\sw t-2sw *2/ error 
Zero-net-work 0.2 0.3 0.1050 0.1441 0.3997 0.4363 0.7915 0.8449 2.04 % 

EMTC 0.2 0.3 0.0250 
0.4465 

0.4350 
0.8280 

Table 5.6: Case 4: Simulation results of two-link revolute and prismatic manipulator 

input for link 1 has one switch: 9\Sw = 0.1050rad. Control input for link 2 has one switch: 

rsw = 0.1441m. From offline calculation we find the switching positions, we can then use these 

values in simulation block diagram shown in Figure 5.22 and use Simulink run the simulation. 

The exact minimum time is tf exact = 0.8280sec, zero-net-work time is tfzw = 0.8449sec. The 

time difference between the proposed zero-net-work control method and EMTC is 2.04%. Figure 

5.23 shows the state trajectories of link 1, Figure 5.24 shows the state trajectories of link 2. 

Figure 5.25 shows the control trajectories of link 1, Figure 5.26 shows the control trajectories 

of link 2. The work done by external and reaction forces/torques for zero-net-work method are 

shown in Figure 5.27. 
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Case4: Joint Position Trajectories of Link 2 
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Figure 5.24: Case 4: State trajectories of link 2 
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Case4: Control Trajectories of Link 2 
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Figure 5.26: Case 4: Control trajectories of link 2 

Case4: Work done by all the forces and torques of R&P two-link robot 
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Figure 5.27: Case 4: Work done by forces/torques for each link (zero-net-work solution) 



Chapter 6 

Development of the Zero-Net-Work Controller for a Revolute Manipulator 

6.1 Dynamic Model 

Figure 6.1: Sketch of two-link revolute manipulator 

In this chapter we will investigate the control of a Two-Link Revolute Planar Manipulator 

(TLRPM) as shown in Figure 6.1. The T L R P M consists of two horizontal rigid links, and is 

controlled by torque inputs r± and r 2 . The first degree of freedom is the angular rotation 9\ 

of the inner link (shoulder), and the second degree of freedom is the angular rotation f?2 of the 

outer link (elbow). The remaining degrees of freedom used for positioning the end effector are 

85 
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neglected. The absolute value of the control torque for each link is bounded: \T\\ < r i m a i , 

\ T 2 \ < T2max-

Let us give the notations as follow: For i = 1, 2, qi denotes the joint angle, which also serves 

as a generalized coordinate, m,i is the mass of link i , Zj denotes the length of link i , lci is the 

distance from the joint i to the center of mass of link i , 7j is the moment of inertia of link i 

about the center of mass of link i, and M is the mass of end effector with load. The base frame 

Fo, frame F\ and frame F 2 are chosen using D-H convention as shown in Figure 6.1. The D-H 

parameters are shown in Table 6.1,where * means variable. 

Link a.i CXi di Oi 
1 h 0 0 
2 h 0 0 Q*2 

Table 6.1: D-H parameters of two-link revolute manipulator 

The homogeneous transformation from frame FQ to frame Fi is: 

Hi 01 

cosqi —sinqi 0 l\cosq\ 

sinqi cosqi 0 l\sinq\ 

0 0 1 0 

0 0 0 1 

The homogeneous transformation from F\ to F 2 is: 

cosq2 —sinqi 0 l2Cosq2 

H 1 2 = 

smq2 cosq2 

0 0 

0 0 

1 

0 

0 

1 

(6.1) 

(6.2) 
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So the homogeneous transformation from FQ to F2 is: 

H02 = H01H12 

co.s(qx + q 2 ) -svn{q\ + q2) 0 l x c o s q x + l2cos(qi + q2) 

sin(qx + q 2 ) cos{q} + q 2 ) 0 l x s i n q x + l 2 s i n ( q x + q2) 

0 0 1 0 

0 0 0 1 

(6.3) 

Next we will use the Newton-Euler method shown in Chapter 3 to obtain the dynamic 

equations of the T L R P M . We begin with the forward recursion to express the various velocities 

and accelerations in term of q \ , q 2 and their derivatives. The angular velocity and acceleration 

of link 1 and link 2 are: 

W] = q\k, oci = q\k 

u2 = (q\ + </2 )k, e*2 = (f/i + <?2)k 

(6.4) 

(6.5) 

{i,j,k} denotes the unit vector along .7:, y, z axes. The vectors that are independent of the 

configuration are as follows: 

r i . c i = lc\l r 2 , c i = (lr.\ - r i i 2 = lx\, 

r2,c2 = lc2l r.3,c2 = {lc:i - h)U r 2 , 3 = 

(6.6) 

(6.7) 

6.1.1 Forward Recursion 

Using Equation (3.64) with / = 1 and noting that a f, ( J = 0 gives the acceleration for center of 

mass of link 1: 

ac,i = djx x r l i r l +W] x (u>i x r ] ] C i ) 

= q}k x Z r l i + qxk x (chk x / c l i ) 

-ic\<i\ 

Wn (6-8) 

0 
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The acceleration of the end of link 1 is obtained from above equation by replacing lc\ by /]: 

- w 

0 

(6.9) 

For link 2, using Equation (3.64) with i = 2 and substitute u>2 from Equation 6.5 we have: 

aC,2 = (R?) 7 a e > 1 + u2 x r2,F:2 + u>2 x (u>2 x r 2 x 2 ) 

= ( R ? ) T a e J + (<7, + cy2)k x lc:A + (ry, + <j2)k x [(qi + ry2)k x / c 2i] (6.10) 

The first term of the above equation is: 

R ? ) T a f U = 

cos<]<2 sinq2 0 

-sinq2 eosq2 0 

0 0 1 

-liqjcosqz + liq\sinq2 

l\q{s)nq2 + hqieosqi 

0 

Substituting Equation (6.11) into Equation (6.10) gives: 

- w 

o 

a (- 2 

6.1.2 Backward Recursion 

-lX(f{cosq2 + /I'/'I •-''//'/:. - /c2(<7i + ry2) 

' ;'/'/•-""/:' + h(hcosq2 + / c 2 (gi + <72) 

0 

(6.11) 

(6.12) 

Now we carry out the backward recursion to compute the forces and joint torques. Figure 6.2 

shows all the forces and torques acting on each link. For the end effector, we assume mass 

moment of inertia of M about axis z2 is zero. The force exerted by link 2 on mass M is: 
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Figure 6.2: Forces and torques act on each link 

= M 

-hq\cosq2 + l\q\sinq2 - l2(qi + q2)' 

hq2sinq2 + hq\cosq2 + l2(q\ + q2) 

0 

The force exerted by link 1 on link 2 is: 

f2 = m2aCi2 + f3 

= m.2aCt2 + Ma e >2 

(m,2 + M)(-hq2cosq2 + hq\sinq2) - (m,2lc2 + Ml2)(q\ + q2f 

(m2 + M)(l\q2sinq2 + liq\cosq2) + (m 2/ c2 + Ml2)(q\ + q2) 

0 

(6.13) 

(6.14) 

The torque exerted by link 1 on link 2 is: 

r2 = / 2 « 2 + UJ2 x (I2u2) - f2 x r2,c2 + f3 x r3i, c2 
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= I2a2 + u>2 x {I2u:2) - f2 x lc2i + f3 x (lc2 - l2)'\ 

= I2a2 - m,2&c,2 x tai - Ma C i 2 x Z2i 

= h{q\ + q2)k 

+m,2lc2[liqfsinq2 + hq\cosq2 + lc2(q\ + q2)]k 

+Ml2[l±qfsinq2 + l\q\cosq2 + Z 2 ( < ? 1 + <?2)]k 

r 2 = (72 + m,2l12 + Mil + m2lc2l1eosq2.+ MZiZ2cosg2)g'ik 

+ ( / 2 + ™,2Z2

2 + Ml%)q2k 

+ [ ( " ? - 2 Z c 2 Z i + Ml\l2)sinq2}q\k (6.15) 

Backward recursion for link 1, with i = 1, the force and torque exerted by link 2 on link 1 

are: 

- R | T 2 = -r 2 k (6.16) 

-R?f2 = -

cosq2 —sinqi 0 

sinq2 eosq2 0 

0 0 1 

(m2 + M)(~hq2cosq2 + hq\sinq2) - (m,2lc2 + MZ2)(gi + <j2)2 

(mi + M)(liq\sinqi + hq\cosq2) + (m2Zc2 + Ml2)(q\ + q2) 

0 

-(m2 + M)Ziq2 - (m2Zc2 + MZ2)[(<h + q2)2)cosq2 + (q\ + q2)2sinq2) 

(mi + M)hq\ + (m2Zc2 + MZ2)[(gi + q2)cosq2 - (qx + q2)2sinq2} 

0 

The force equation for link 1 is: 

fi = miac,! + Rif 2 

The torque equation for link 1 is: 

(6.17) 

(6.18) 

TI = Iiai + wi x (liwi) + R 2 r 2 - fi x Zcii - (R2f2) x (Zi - Zci)i (6.19) 
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Substitute T i , fi and f2 into above equation we have: 

n = hoti + r 2 - (mia ci + R?f 2) x lcli - (R?f2) x (Zi - i c l ) i 

= hqk + r 2 - mia c i x lcl\ - (R?f2) x hi 

= [h + ™i4 + (m 2 + M ) / 2 + i 2 + m 2 / 2

2 + MZ 2 + 2(m,2lc2lx + Mhl2)cosq2}q\k 

+ (I 2 + m 2Z 2

2 + Ml2 + (m2lc2h + Mhl2)cosq2)q2k 

-{{m,2lc2h + Mhl2)sinq2]{2qiq2 + g|)k (6.20) 

From Equation (6.15) and Equation (6.20), we obtain the closed form dynamic equations 

of the system: 

n = (ci + c 2 + 2c3cosq2)g'i + (c2 + c3cosq2)q2 - c?,sinq2(2qiq2 + g|) (6.21) 

T 2 = (c2 + c3cos92)g'i + c2<?2 + czsinq2q\ (6.22) 

where 

ci = h+ mil2

cl + (m 2 + M)Z 2 

c 2 = I 2 + m 2Z 2

2 + Ml\ 

c 3 = m2l\lc2 + MZiZ2 

(6.23) 

The dynamic equations in state space form are: 

±i = x2 

_ C2[UI - U2 + C 3 ( . T 2 + .T4)25in.7;3] - cs(u2 - c3.T2sin.T3)co5.T3 

X 2 c\c2 - cKcosxs)2 

X3 = X4 

(ci + czcosxz)(u2 - c 3 . r 2 s m . T 3 ) - (c2 + cscosxs)[ui - u2 + c3(.x2 + .r4)2sm.r3] 
. T 4 

C l C 2 - C | (C0S .T3) 2 

(6.24) 

where 

xi = qi{t) x3=q2(t) (6.25) 

http://c3.r2sm.T3
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x2 = qi(t) x4 = q2(t) (6.26) 

ui = T^t) « 2 = T2(t) (6.27) 

6.2 The Exact Minimum Time Solution 

The initial conditions of the Two-Link Revolute Planar Manipulator (TLRPM) are: 

,TI(0)=.TIO .T2(0) = 0 (6.28) 

x3(0) = x20 ,T4(0) = 0 (6.29) 

The final conditions are: 

xi(tf) = x2{tf) = x3(tf) = x4(tf) = 0 (6.30) 

where tf is the final time. 

The absolute values of the control inputs are bounded: 

In I < T i m a x (6.31) 

\r2\ < T2max (6.32) 

The cost function is: 

J = / Idt (6.33) 
•'to 110 

The Exact Minimum Time Control (EMTC) problem of the T L P R M can be stated as 

follows: 

For the robot governed by the differential Equation (6.24) find an admissible control T\ and r2 

satisfying the constraints in Equation (6.31) and Equation (6.32) which transfer the robot from 

initial position to the fixed final position in minimum time, i.e., such that the cost functional 

J defined in Equation (6.33) is minimized. 

Referring to Equations (6.24), we define 

c2[ui - u 2 + c3(x2 + x4)2sinx3] - c3(u2 - c3X2\sinx3)cosx3 

Vi = 

V2 = 

c\c2 - e\[cosx3)
2  

(ci + c3cosx3)(u2 - c3x
2sinx3) - (c2 + c3cosx3)[ui - u2 + c3(x2 + x4)

2sinx3) 

c\c2- c\(cosx3)
2  
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The Hamiltonian is then 

H(x, ui,u2, A) = 1 + Xix2 + A 2 Vi + A3 .T4 + A 4 V 2 (6.34) 

where Ai , X2 , A3, A 4 are the costate variables. The necessary conditions for the EMTC can 

be written as: 

State equation: 

Costate equation: 

Stationary Condition: 

dH 
x = — = /(x, ui,u2, t) (6.35) 

TJ— = —X (6.36) ox 

H{x*, A*, uj,u*2) < H{x\ X*,Ul,u2) (6.37) 

where and u\ are the optimal controls, x* and A* are the corresponding optimal state 

and costate trajectories. 

By using the time normalization technique shown in Chapter 4, we can transform EMTC 

problem into a fixed time interval problem. The equivalent Two Point Boundary Problem 

(TPBVP) is: 

d^ zx2 (6.38) 

zVi (6.39) 

zxA (6.40) 

zV2 (6.41) 

dx\ 

tW 
dx2 

~dT 
dxz 
dT 
dX4 

IT 
dXi 
IT 

IT = -z[Al + A 2^+.A 4W (6'43) 

-dT = -Z[X2dx-3

+X*dx~3

] ( 6 - 4 4 ) 

dX4 dV± dV2 

IT = - Z [ M + X * d x - A

+ M d ^ ( 6 - 4 5 ) 

% = 0 ^ 

0 (6.42) 
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where T G [0,1] for t G [0,tf], and 

z(T) = tf (6.47) 
t 

The boundary conditions are: 

T = — (6.48) 

*I(0) = .TIO .T2(0) = 0 

x3(0) = x20 .x4(0) = 0 

.TI(1) = 0 ar 2(l)=0 

,x3(l) = 0 .T4(1) = 0 (6.49) 

In order to get the exact minimum time solution, we have to solve the TPBVP. We can 

use subroutine MUSN to solve above TPBVP. For stability of numerical procedures such as 

shooting method used by subroutine MUSN, it is required that small changes to the initial 

values should result in small changes in the solution. Such problem are called well conditioned. 

Any problem which does not has this property is called ill conditioned. Such problems are 

numerically unstable, and very sensitive to the initial guess of the unknown initial conditions. 

Unfortunately the TPBVP for the T L P R M belongs to this class of problem. The convergence 

of the solution depend on the initial guess of the unknown parameters. In this case we have 

to give the initial guesses for 5 unknown parameters, that is Ai , A 2 , A 3 , A 4 and the final time 

z. However, it is extremely difficult to have a good guess of the costates intuitively, because 

the costates do not have any simple interpretation or physical means. It has been shown that 

for the T L P R M , the initial guess for some of the costates must be within a very narrow range 

to obtain convergence of the shooting method (Fotouhi, 1996). For example, for a 0.65m 

(Zx + l2 = 0.65m) long manipulator considered in Geering et al. 1986, for the maneuvers within 

the range 0.6 < D/(l\ + Z2) < 2.0 (D is the geometrical distance between the starting and 

the final distance between the manipulator tip), the corresponding values of the initial costates 

were within the limits -0.31 < A2(0) < -0.21 and -0.088 < A4(0) < -0.074. Therefore, if 
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the guessed values of the costates in the shooting method are outside of the narrow limits the 

target is calculated with large errors causing the method to diverge. For above reasons, it is 

very hard to get the exact minimum time solutions using the traditional calculus of variation 

method. 

6.3 Zero-Net-Work Solution 

Next we will design the zero-net-work controller for the two-link revolute planar manipulator. 

Figure 6.3 is the block diagram of the overall zero-net-work control scheme. The overall zero-

net-work control procedure consists of two step: offline calculation of the bang-bang switching 

position for each link and online application of the pre-calculated switching positions to control 

the robot manipulator. 

6.3.1 Offline Calculation 

We assume the initial and final velocity for each link of the manipulator are zero, also the 

final position of each link is zero. These are the boundary conditions. When we design the 

zero-net-work controller, we assume that control input for each link of the manipulator is 

bang-bang, and switches only once from the minimum to the maximum control constraints. 

The offline zero-net-work algorithm is to search the bang-bang switching position for each 

link that satisfies all the boundary conditions, control input limit constraints and work energy 

constraints. Because we assume the control input is bang-bang when we search the switching 

position, so the control input will always within the control constraints. This means that the 

control constraints will always be satisfied. We set the initial switching position for each link 

equals to the final position, this will guarantee that each link will reach the final position. So 

the position boundary conditions also are always satisfied. The only constraints we need to 

search is the work energy constraints. The algorithm will search the switching positions that 

the work done by all the forces/torques for each link is zero, this will be the switching position 

used online to control the manipulator. 
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Offline Calculation 
Boundary Conditions 
Control Constraints 

Dynamic Model 

V 
Zero Net Work Searching 

Algorithm 

Bang-bang Switching Positions 

Online Application 

ZW Controller 

State Monitor 

PID Controller 

Manipulator 

Switch Function 

State Feedback 

Figure 6.3: Block diagram of overall zero-net-work control scheme 
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We can use the results from Newton-Euler formulation of the dynamic equations in Section 

6.1 to calculate the work done by all the forces/torques for each link. Al l the work will be 

calculated in base frame Fo. 

For link 1 the work done by all the forces/torques can be calculated as follow: If we move 

all the forces to point o'0 (see Figure 6.2). The work done by all the forces that passing o 0 is 

always zero. So we have for link 1 in frame Fo: 

Work, = [(n - Ta) - (RfeWil&fc (6.50) 

For link 2 the work done by all the forces/torques in frame Fo: 

Work2 = fa - ({3)y2h)(Sqi + Sq2) + [(fa)* - (fs)x]Sx + [ ( f 2 ) v - (f3)y]6y (6.51) 

where 6x = 6{l\cosq\) and 8y = 8{l\sinq\) 

Since the initial control inputs for each link are alway bang-bang and switch once. For 

different physical parameters and motion configurations, we can not always find the solution 

that both links reach the final position at the same time. Following assumption must be made: 

once the link reaches the final position, the control input will be changed to the torque needed 

to hold the link at the final position. For the two link revolute manipulator there is only two 

possibilities: 

Case 1: Link 1 reaches the final position first. This means: 

qi = 0;qi = 0; q\ = 0 (6.52) 

In order to hold link 1 at the final position, from Equation (6.21 - 6.22) the control input 

for joint 1 is: 

(c 2 + c3cosq2)T2 . .2 TI = c3smq2q2 (6.53) 
c 2 

Case 2: Link 2 reaches the final position first. This means: 

q2 =0; q2 = 0; q2 = 0 (6.54) 



Chapter 6. Development of the Zero-Net-Work Controller for a Revolute Manipulator 98 

In order to hold link 2 at the final position, from Equation (6.21 - 6.22) the control input 

for joint 2 is: 

= (C2 +03)71 
ci + C2 + 2c3

 v ; 

Figure 6.4 shows the flowchart of the overall offline searching method. At the beginning, 

we set the switching positions to zero. Next we fix the switching position of link 1, and search 

the switching position of link 2. If no solution is find, then increase the switching position of 

link 1 by one step. If no solution is find after we search the whole range of link 1 and link 2, 

this means the searching step is too large. We need to reduce the searching step. At any time, 

when one of the link reach the final position, we need to change to control input from maximum 

torque to holding torque based on Equation (6.53) and (6.55). The FORTRAN program which 

is used to find the zero-net-work switching positions is shown in Appendix A.7. 

6.3.2 Online Application 

From the offline searching, we find the switching positions. Now we can use them online 

to control the manipulator. We use Simulink to simulate the online application of the zero-

net-work controller. Figure 6.5 shows the simulation block diagram. Block 'ZW Controller' 

is Simulink S-function that generates the controller inputs. It compares state feedback with 

the switching positions and then decides the control inputs. The detail program is listed in 

Appendix A. 10. Block 'PD Controller' is also a S-function. It's a PD controller that is used 

to bring the manipulator to the final position in case of large model error or large disturbance. 

Block 'Switch Function' is used to make a decision on which controller to use. If the zero-net­

work controller can bring the manipulator to the final position accurately, the PD controller 

will not be turn on. If the position of the manipulator is away from the final position, the PD 

will be turned on to make sure the manipulator will reach the final position. Detail program of 

'PD Controller' is listed in Appendix A.11. Block 'TLRPMsimfun' is a S-function that is used 

to model the two link planar revolute manipulator, see Appendix A.9 for detail. 



Chapter 6. Development of the Zero-Net-Work Controller for a Revolute Manipulator 99 

1. Start from initial conditions 
2. Input parameters. ) 
3. Set qisw = 0 J 

1. qi is joint position of link i. 
2 . qisw is the switching position of link i. 
3 . qstep is the switching position step size 
4. Worki is the work done by all the inputs of link i 
5 . ui is the control input, uiholding is the holding force/torque 

Initialized q, qprime, T, Tout, Work 
Start a new integration 

90 
Decided control inputs: 

1. ui = - uimax 
ui = + uimax 

If q i >= q isw 
If qi < qisw 

ul= uiholding lfql = 0, q2>0 
u2 = u2holding lfql>0, q2=0 
ui = 0 If q l =0,q2 = 0 

Tout = Tout + Tstep 

Integrate one time step 
Call D D A S S L 

q2sw = q2sw + qstep 
qisw = 0 

qisw =qlsw + qstep 

Calculate Worki 

Decrease qstep 
Reset qisw 

Yes 

Yes 
T 

^ Done ^ 

Figure 6.4: Flowchart of offline calculation 
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State Feedback 

Figure 6.5: Simulation block diagram of two-link revolute manipulator 

If there is model error or large disturbance, PD controller will be used to guarantee asymp­

totic tracking. Because there is no gravitational term in the dynamic equations of the manip­

ulator, we can prove that PD control can achieve zero steady state error. In case there are 

gravitational terms present in the dynamic equations, there will be a steady state error, PID 

controller will be used. 

To show PD control alone can achieve zero steady state error for the Two-Link Revolute 

Planar Manipulator (TLRPM). Consider the dynamic equations in matrix form: 

D(q)q + C(q, q)q = u (6.56) 

PD control scheme in vector form is: 

u = KpCi - iCjq (6.57) 

q — q — q is the difference between the desired joint position q and the actual joint 

position q. Kp, Kd are proportional and derivative gains, respectively. Consider Lyapunov 
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function candidate: 

V = ^ q T D ( q ) q + i q T X p q (6.58) 

The derivative of V is: 

V = qTD(q)q + ^qTD(q)q - qTKjA (6.59) 

From Equation (6.56), we have: 

D(q)q=u-C(q,q)q (6.60) 

Substitute above equation into Equation (6.59): 

V = q T (u - Kpq) + iqT(D(q) - 2C(q, q))q (6.61) 

Using the fact that D — 2C is skew symmetric and substitute the PD control law for u into 

above equation yields: 

V = - q T i Q q < 0 (6.62) 

LaSalle's Theorem: Suppose a Lyapunov function candidate V is found such that, along 

solution trajectories V < 0, system is asymptotically stable if the only solution of the system 

satisfying V = 0 is the null solution. 

From Equation (6.62), if V = 0, we have q = 0 and hence q = 0. From the equation of 

motion with PD control: 

D(q)q + C(q, q)q = Kpq - iY d q (6.63) 

We must then have iv"pq = 0, which implies that q = 0, q = 0. Lasalle's Theorem then 

implies that the system is asymptotically stable. 

6.4 Computer Simulation 

The proposed zero-net-work method will now be simulated for two-link revolute manipulator, 

and its performance will be compared with the exact optimal solution. We will use the zero-

net-work method to three different parameter sets of two-link revolute manipulator. For each 
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parameter set, we will perform simulations for different motion configurations. Simulink will 

be used to perform the simulation. The system's S-function can be found in Appendix A.9. 

The simulation results for different parameters and motion configurations are presented in the 

following: 

6.4.1 Simulation Case 1: 

Case 1 QlO 920 Qisw Q2sw t'lsw t'2sw t2f error 
Zero-net-work 0.975 0 0.4880 0.5746 1.1440 5.59 % 

Exact 0.975 0 0.5417 0.0875 
0.5872 1.0834 

PD 0.975 0 3.8865 3.8865 258.73 % 

Table 6.2: Case 1: Simulation results of two-link revolute manipulator 

Physical parameters for the IBM 7535B 04 robot are used for simulation in this case: 

h = 2lcX = 0.4m l2 = 2lc2 = 0.25m 

mi = 29.58% m 2 = 15.00% M = 6.0kg 
(6.64) 

h = 0.416739%m2 I2 = 0.205625%m2 

uimax = 25NM u2max = 9NM 

This example is a rest to rest motion of the manipulator from straight to straight configu­

rations. The initial and the final conditions of the states in [rati] and [rad/s] are: 

x(0) = [0.975 0.0 0.0 0.0]T (6.65) 

x(t/) = [0 0.0 0.0 0.0] r (6.66) 

The FORTRAN program using zero-net-work method to find the switching positions for each 

link is shown in Appendix A.7 . The simulation results are shown in Table 6.2. For i = 1, 2, qio 

is the initial position of link i , Qisw is the switching position of link i, tiSW is the switching time 

of link i , and Uf is the final time of link i . In this case, the initial velocity and position of link 
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2 are zero. So there is no minimum to maximum switch for link 2. The control input for link 2 

start from the beginning is the torque needed to hold link 2 at the final position while link 1 is 

moving. Control input for link 1 has one switch: q\sw = 0.4880ra<i From offline calculation we 

find the switching positions, we can then use these values in simulation block diagram shown 

in Figure (6.5) and use Simulink run the simulation. Exact minimum time solution can be 

obtained by solving the Two Point Boundary Problem (TPBVP). The exact minimum time is 

tfexact = 1.0834sec, zero-net-work time is tjzw — 1.1440sec. The time difference between the 

proposed zero-net-work control method and Exact Minimum Time Control (EMTC) is 5.59%. 

Thus we can say zero-net-work control method leads to a near minimum time solution. The 

simulation results of the fastest response using PD control method with input bounds are also 

shown. In the PD control method, the control gains are tuned by trial and error, so we can 

get the fastest response while satisfies the control and state constraints. The best PD control 

gains are: Kp\ = 25.6, Kp>\ = 27, Kp2 = 300, Kp>2 = 100. Kp\ and K p 2 are the proportional 

gain for link 1 and link 2, respectively. KDI and Kp>2 are the derivative gain for link 1 and 

link 2, respectively. From the simulation results, we can see the fastest response of PD control 

(tfPD = 3.8865sec) is still far slower than the response of the proposed zero-net-work method 

(tfzw — 1.1440sec). Figure 6.6 shows the state trajectories of link 1, Figure 6.7 shows the state 

trajectories of link 2. Figure 6.8 shows the control trajectories of link 1, Figure 6.9 shows the 

control trajectories of link 2. The work done by external and reaction forces/torques for each 

link are shown in Figure 6.10 and Figure 6.11. 

6.4.2 Simulation Case 2: 

Physical parameters for the IBM 7535B 04 robot for case 1 is also used in this case. This 

example is a rest to rest motion of the manipulator from broken to straight configurations. The 

initial and the final conditions of the states in [rad] and [rad/s] are: 

x(0) = [0.76 0 0.2618 0.0]T 

x(tf) = [0.0 0.0 0.0 0.0]T 

(6.67) 

(6.68) 
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Casel: Joint Position Trajectories of Link 1 
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Figure 6.6: Case 1: State trajectories of link 1 

Casel: Joint Position Trajectories of Link 2 
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Figure 6.7: Case 1: State trajectories of link 2 
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Casel: Control Trajectories of Link 1 
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Figure 6.8: Case 1: Control trajectories of link 1 

Casel: Control Trajectories of Link 2 
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Figure 6.9: Case 1: Control trajectories of link 2 
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Casel: Work done by all the forces and torques of TLRPM of Link 1 
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Figure 6.10: Case 1: Work done by forces/torques for link 1 

Casel: Work done by all the forces and torques of TLRPM of Link 2 
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Figure 6.11: Case 1: Work done by forces/torques for link 2 
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Case 2 710 720 Qisw Q2sw tlsw t2sw t2f error 
Zero-net-work 0.76 0.2618 0.4139 0.0388 0.5302 0.2127 1.0552 0.2485 3.08 % 

Exact 0.76 0.2618 0.5119 0.4625 
0.9508 1.0237 

Table 6.3: Case 2: Simulation results of two-link revolute manipulator 

The simulation results are shown in Table 6.3. In this case, Control input for link 2 has 1 

minimum to maximum switch: q2sw — 0.0388raii. Link 2 reaches the final position at t2f = 

0.2485sec. The control input for link 2 switches from maximum value to the torque needed to 

hold link 2 at the final position while link 1 is moving for t > 0.2485sec. Control input for 

link 1 has one switch: qisw — 0.4139rari. The exact minimum time is tfexact = 1.0237sec, zero-

net-work time is tfzw = 1.0552sec. The time difference between the proposed zero-net-work 

control method and EMTC is 3.08%. In this case the proposed zero-net-work solution is very 

close to the exact minimum time. Figure 6.12 shows the state trajectories of link 1, Figure 

6.13 shows the state trajectories of link 2. Figure 6.14 shows the control trajectories of link 1, 

Figure 6.15 shows the control trajectories of link 2. The work done by external and reaction 

forces/torques for zero-net-work method are shown in Figure 6.16. 

6.4.3 Simulation Case 3: 

Case 3 710 720 Qisw Q2sw tlsw t-2sw t2f error 
Zero-net-work 0.376 0 0.1880 0.6340 1.2649 2.58 % 

Exact 0.376 0 0.6165 0.0396 
0.6645 1.2331 

Table 6.4: Case 3: Simulation results of two-link revolute manipulator 
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Case2: Joint Position Trajectories of Link 1 

0.8 

'8 a. 
£ 0.4 

0.2 

0 

I I I 
— Zer 
- - EM 

>-work 
rc 

N . \ 

N. \ 

N 

N 

N 

N 
• 

0 0.2 0.4 0.6 0.8 1 
Time (second) 

Figure 6.12: Case 2: State trajectories of link 1 

Case2: Joint Position Trajectories of Link 2 
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Figure 6.13: Case 2: State trajectories of link 2 
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Case2: Control Trajectories of Link 1 
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Figure 6.14: Case 2: Control trajectories of link 1 

Case2: Control Trajectories of Link 2 
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Figure 6.15: Case 2: Control trajectories of link 2 
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Case2: Work done by all the forces and torques of TLRPM 
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Figure 6.16: Case 2: Work done by forces/torques for each link (zero-net-work solution) 

Following physical parameters are used for simulation in this case: 

lx = 2lcl = 0.4m l2 = 2lc2 = 0.25m 

mi = 0.245% m 2 = 0.15315% M = 0.5% 
(6.69) 

h = 3.2688e - 3%m 2 I2 = 0.7986e - 3%m 2 

uimax = 0.25 NM u2max = 0.10NM 

This example is a rest to rest motion of the manipulator from straight to straight configu­

rations. The initial and the final conditions of the states in [rad] and [ra,d/s] are: 

x(0) = [0.376 0.0 0.0 0.0]T (6.70) 

x(t/) = [0.0 0.0 0.0 0.0]T (6.71) 

The simulation results are shown in Table 6.4. The exact minimum time is tfexact = 

1.2331sec, zero-net-work time is tfzw = 1.2649sec. The time difference between the proposed 

zero-net-work control method and EMTC is 2.58%. Figure 6.17 shows the state trajectories 
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Case3: Joint Position Trajectories of Link 1 
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Figure 6.17: Case 3: State trajectories of link 1 

of link 1, Figure 6.18 shows the state trajectories of link 2. Figure 6.19 shows the control 

trajectories of link 1, Figure 6.20 shows the control trajectories of link 2. The work done by 

external and reaction forces/torques for zero-net-work method are shown in Figure 6.21. 

6 . 4 . 4 S i m u l a t i o n C a s e 4 : 

Case 4 710 720 Qisw Q2sw ^ l S U ! 1-2sw f'2f error 
Zero-net-work 0.8 0.2 0.4471 0.0142 0.9572 0.2801 1.7026 0.2998 5.07 % 

Exact 0.8 0.2 0.1018 
0.9120 

0.4322 
1.4980 1.6204 

Table 6.5: Case 4: Simulation results of two-link revolute manipulator 
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Case3: Joint Position Trajectories of Link 2 
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Figure 6.18: Case 3: State trajectories of link 2 

Case3: Control Trajectories of Link 1 
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Case3: Control Trajectories of Link 2 
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Case3: Work done by all the forces and torques of TLRPM 
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Following physical parameters are used for simulation in this case: 

lx = 2/ c l = 1.0m l2 = 2Zc2 = 0.625m 

mi = 0.61261% m 2 = 0.38288% M = 1.25% 

h = 51.0547e - 3%m 2 I2 = 12.4660e - 3%m 2 

(6.72) 

= 3.9ATM ^2max = 1.5WM 

This example is a rest to rest motion of the manipulator from broken to straight configura­

tions. The initial and the final conditions of the states in [rad] and [rad/s] are: 

The simulation results are shown in Table 6.5. The exact minimum time is tf exact — 

1.6204sec, zero-net-work time is tfzw = 1.7026sec. The time difference between the proposed 

zero-net-work control method and EMTC is 5.07%. Figure 6.22 shows the state trajectories 

of link 1, Figure 6.23 shows the state trajectories of link 2. Figure 6.24 shows the control 

trajectories of link 1, Figure 6.25 shows the control trajectories of link 2. The work done by 

external and reaction forces/torques for zero-net-work method are shown in Figure 6.26. 

x(0) = [0.8 0.0 0.2 0.0] r 

x(t/) = [0.0 0.0 0.0 0.0]T 

(6.73) 

(6.74) 
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Case4: Joint Position Trajectories of Link 1 
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Figure 6.22: Case 4: State trajectories of link 1 

Case4: Joint Position Trajectories of Link 2 
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Case4: Control Trajectories of Link 1 
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Figure 6.24: Case 4: Control trajectories of link 1 

Case4: Control Trajectories of Link 2 

-1 

-2 

: Ze 
— Eiv 

o-work 
TC 

; ; 

; ! 

| ; : 

; 
: 1 :1 

1 : i 
1 1 

! 

1 1 

1 : i 
: 1 : l 
: J -.1 

; 
1 : | 

1 :1 
1 :1 

1 : | 

1 :1 
1 :1 

' ' "1 _ ' 

i i i i 

' ' "1 _ ' 

i i i i 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Time (second) 
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Case4: Work done by all the forces and torques of TLRPM 
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Figure 6.26: Case 4: Work done by forces/torques for each link (zero-net-work solution) 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In this thesis a near minimum time zero-net-work control algorithm has been developed to 

control the point to point motion of a robot manipulator. This proposed zero-net-work method 

has the basic structure of the exact minimum time control. The zero-net-work method assumes 

for each link the control input is bang-bang and switches from its minimum to maximum value 

only once, also the solution satisfies all the constraints (control input, boundary condition and 

work-energy constraints). Based on this idea, we have designed zero-net-work controllers for 

one-link manipulators, a cylindrical and a revolute manipulator. From the simulation results, 

we can see if the exact minimum time solution is bang-bang, and has one switch for each link, 

using the zero-net-work method we can find the exact minimum time. If the exact minimum 

time solution has more than one switch for each link, using the zero-net-work method we can 

find near minimum time solution. 

The main advantage of the zero-net-work method is that it is computationally efficient and 

does not require a good initial guess for the unknown initial boundary conditions. Because the 

zero-net-work method uses the maximum control input magnitude most of the time, it is much 

faster than a traditional PID controller. Also, the zero-net-work method does not need to solve 

the Two Point Boundary Value Problem (TPBVP), it can generate the control input much 

faster than the exact minimum time method. So we can say the proposed method provides 

a practical solution to control the motion of a robot manipulator near the minimum time. 

Currently, the zero-net-work method has two stages: offline calculation and online application. 

If we further improve the efficient of the algorithm, it can be used online. 
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7.2 Suggestion for Further Research 

The limitations of the zero-net-work method are: 

a) Like all model based control algorithm, the zero-net-work method requires a very good 

model of the plant. It can not deal with large model mismatch or large disturbances. 

Currently, a PID controller is used as a backup controller to guarantee the manipulator 

reaches its final position. A better plant model could be of benefit in future work. 

b) In this thesis we assume the control constraints for each link is — ^ m a 3 ; ^ iii ^ W j m a 3 ; . In 

practice, most actuators do not allow to switch from minimum to maximum value in very 

short period of time. More constraints on control input must be defined. We can set the 

actuator constraints as a saturation limit and a slew rate limit for example. 

Further research includes: 

a) Improving the efficiency of the zero-net-work method. Currently, the searching start point 

for each link is at its final position, and using a fixed step size. Computation time can be 

reduced by using variable searching step size. First we can use a large step size to reduce 

the searching range, and then use a smaller step size to find the exact switching position. 

b) Practical implementation of the algorithm should be investigated. 

c) A more practical model of the actuator should be used. A smooth switching period function 

should be defined and used to search for the solution. 

d) A robust controller for large model mismatch or disturbances need to be developed. 
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Appendix A 

Simulation Program Listings 

A . l S-function of One-link Horizontal Manipulator 
%V:I:I:I:I:I:I:I:I:I:I^^ 
% File name onel.m V, 
% Chapter 4 
'/, One link horizontal manipulator 
'/. This is s-function for simulink 
function[sys,x0] =robot2(t,x,tau,flag,x01,x02) 
1=10; 
if abs(flag)==l 
a=[x(2); 

tau/I] ; 
sys=a; 
elseif abs(flag)==3 
sys=x; 
elseif abs(flag)==0 
sys=[2,0,2,l,0,l]; 
x0=zeros(2,1); 
x0(l)=x01; 
x0(2)=x02; 
else 
sys=[] ; 
end 

A.2 S-function of One-link Vertical Manipulator 
'/. Chapter 4 
% Onelink vertical manipulator 
'/, This is s-function for simulink 
function[sys,x0]=robot2(t,x,tau,flag,xOl,x02) 
if abs(flag)==l 
1=0.3; 
m=5; 
I=l/3*m*l"2; 
% I = 0.1500 
g=9.8; 
a=[x(2); 

(tau-m*g*l/2*cos(x(l)))/I]; 
sys=a; 
elseif abs(flag)==3 
sys=x; 
elseif abs(flag)==0 
sys=[2,0,2,l,0,l]; 
x0=zeros(2,l); 
x0(l)=x01; 
x0(2)=x02; 
else 
sys=[] ; 
end 
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A.3 Exact Minimum Time Solution of One-link Vertical Manipulator 

cy:/:///:///:/://///://///:/:/:/:/:/.,/.,/:/.,/.y.'/.,/:/:/.'/.,/.y. 

C'/. File name: onelkMT.for */. 
cy//:///:/:///://///:/.y.y.y.y.y.y.y.y.,/.y.y.y.y.y.y.y.y.y.y. 
C'/. Chapter 4 
C Main program onelkMT.for 
C 
C***BEGIN PROLOGUE onelkMT.for 
C***DATE WRITTEN 030501 (YYMMDD) 
C***REVISI0N DATE 030601 (YYMMDD) 
C***AUTH0R TA0 FAN 
C***PURP0SE SOLVING TPBVP PROBLEM IN CHAPTER 4. 
C***DESCRIPTI0N 
C This is FORTRAN program used to solve exact minimum time control 
C problem of one-link vertical robot manipulator 
C in chapter 4 of the thesis. 
C Subroutine "MUSN" is used to solve 
C the nonlinear TPBVP. 
C***REFERENCES (NONE) 
C***R0UTINES CALLED MUSN, FDIF, X0T 
C ROUTINES FDIF is used to define the differential equations of the system 
C ROUTINES X0T is used to evaluate the initial approximation 
C X0(t) of the solution. 
C Description of variables used in the program: 
C Taumax is maximum control inputs 
C Tau is control inputs 
C***END PROLOGUE onelkMT.for 

C 
IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
DIMENSION ER(5),TI(12),X(5,12),Q(5,5,12),U(15,12),D(5,12), 

1 PHIREC(15,12),W(360),UGR(20) 
INTEGER IU(60) 
EXTERNAL FDIF,X0T,G 

C 
C 
C N is the order of the system. 
C 
C NU is one of the dimension of U and PHI. 
C NU must be greater than or equal to N * (N+l) / 2. 
C 
C NTI is one of the dimension of TI, X, S, Q, U en PHI. 
C NTI must be greater than or equal to the total number of 
C necessary output points +1 (i.e. if the entry value for 
C NRTI > 1, NTI may be equal to the entry value of NRTI + 1) 
C 
C LW is the dimension of W. LW >= 7*N + 3*N*NTI + 4*N*N 
C 
C LIW is the dimension of IW. LIW >= 3*N + NTI 
C 
C ER(3) must contain the machine precision 
C 
C LWG is the dimension of WGR. LWG >= (total number of grid points) 
C / 5. The minimum number of grid points between 2 succesive output 
C points is 5, so the minimum value for LWG is the number of actually 
C used output points. Initially a crude estimate for LWG has to be made 
C 
C ER(1) must contain the required tolerance for solving the differential 
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C equation. 
C ER(2) must contain the initial tolerance with which a first aproximate 
C solution will be computed. This approximation is then used as an 
C initial approximation for the computation of an solution with an 
C tolerance ER(2)*ER(2) and so on until the required tolerance is 
C reached. As an initial tolerance max(ER(l),min(ER(2),1.d-2)) will 
C be used 
C 
G A,B the two boundary points 
C 
C NRTI is used to specify the output points. There are 3 ways to 
C specify the output points: 
C 1) NRTI = 0, the output points are determined automatically using AMP. 
C 2) NRTI = 1, the output points are supplied by the user in the array TI. 
C 3) NRTI > 1, the subroutine computes the (NRTI+1) output points TI(k) by 
C TI(k) = A + (k-1) * (B - A) / NRTI ; 
C so TI(1) = A and TI(NRTI+1) = B. 
C Depending on the allowed increment between two succesive output points, 
C more output points may be inserted in cases 2 and 3. 
C On exit NRTI contains the total number of output points. 

C AMP must contain the allowed increment between two output 
C points. AMP is used to determine output points and to assure that the 
C increment between two output points is at most AMP*AMP. A small value 
C for AMP may result in a large number of output points. 
C Unless 1 < AMP < .25 * sqrt(ER(l)/ER(3)) the default value 
C .25 * sqrt(ER(l)/ER(3)) is used. 

C ITLIM maximum number of allowed iteration 
C IERR0R=1, diagnostics will be printed during computation 

N = 5 
NU = 15 
NTI = 12 
LU = 360 
LIW = 60 
ER(3) = 1.1D-15 
LWG = 20 
ER(1) = l.D-6 
ER(2) = l.D-2 
A = 0.D0 
B = 1.D0 
NRTI=10 
AMP=0.01D0 
ITLIM=20 
IERR0R=1 
OPEN(FILE='datalMT.m',UNIT=6,status='unknown') 
WRITE(6,30) 

30 FORMAT(2X,'% This is the results of TPBVP') 
CALL MUSN(FDIF,X0T,G,N,A,B,ER,TI,NTI,NRTI,AMP,ITLIM,X,Q,U,NU,D, 

1 PHIREC,KPART,U,LW,IW,LIW,WGR,LWG,IERR0R) 
WRITE(6,*) * MUSN: IERR0R =',IERR0R 
WRITE(6,200) A,B,ER(1),ER(2),ER(4),ER(5),KPART 

200 FORMAT(' A = ',F8.4,3X,'B = *,F8.4,/,' REQUIRED TOLERANCE = ',1P, 
1 D12.5.3X,'START TOLERANCE = '.D12.5,/, 
2 ' CONDITION NUMBER = \D12.5,3X, 
3 'AMPLIFICATION FACTOR = '.D12.5,/,' K-PARTITIONING =',I2,/) 
IF (IERR0R.NE.0) GOTO 3000 
WRITE(6,215) 

215 FORMAT( ' I ' ,4X,'T',9X,'XI' , 12X,'X2 ' , 12X,'X3' , 12X,'X4', 12X,'X5' , 
1 /) 
DO 2200 K = 1 , NRTI 
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WRITE(6,220) K.TKK) , (X(J,K) , J=1,N) 
2200 CONTINUE 
220 FORMAT(' ',12,IX,F6.4,IP,5(2X,D12.5)) 

3000 CONTINUE 
STOP 
END 

SUBROUTINE FDIF(T,Y,F) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION Y(5),F(5) 
DOUBLE PRECISION zm,zl,zI,zg,Taumax,Tau 

* X1,X2,P1,P2,Z 

X1=Y(1) 
X2=Y(2) 
P1=Y(3) 
P2=Y(4) 
Z=Y(5) 

C Physical parameters of the manipulator 
zm=5.0D0 
zl=0.3D0 
zI=0.15D0 
zg=9.8D0 
Taumax=8.ODO 

C Decided the control input 
IF(P2.LT.0.0D0) THEN 

Tau=Taumax 
ELSE 

Tau=-Taumax 
END IF 

F(l) = Z*X2 
F(2) = Z*(Tau-zm*zg*zl*DC0S(Xl)/2.0D0)/zI 
F(3) = -Z*zm*zg*zl*P2*DSIN(Xl)/(2.0D0*zI) 
F(4) = -Z*P1 
F(5) = O.ODO 
RETURN 
END OF FDIF 
END 

SUBROUTINE XOT(T.X) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION X(5) 

C 
C Casel 

X(l) = l.DO 
X(2) = O.ODO 
X(3) = 0.2446D0 
X(4) = 0.0125D0 
X(5) = 0.6268D0 

C Case2 
C X(l) = 1.57D0 
C X(2) = O.ODO 
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C X(3) = 0.2051D0 
C X(4) = 0.O187D0 
C X(5) = 0.7525D0 

RETURN 
C END OF XOT 

END 

SUBROUTINE G (N, XA, XB, FG, DGA, DGB) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION XA(N),XB(N),FG(N),DGA(N,N),DGB(N,N) 

C 
DO 1100 I = 1 , N 
DO 1100 J = 1 , N 

DGA(I.J) = O.DO 
DGB(I.J) = O.DO 

1100 CONTINUE 
DGA(1,1) = l.DO 
DGA(2,2) = l.DO 
DGB(1,1) = l.DO 
DGB(2,2) = l.DO 

C Case 1 
FG(1) = XA(1) - l.DO 
FG(2) = XA(2) 
FG(3) = XB(1) 
FG(4) = XB(2) 

C Case 2 
C FG(1) = XA(1) - 1.57D0 

RETURN 
C END OF G 

END 

A.4 Zero-net-work Solution of Two-link Revolute and Prismatic Manipulator 
cy//////:/.y////////://///////////.7.,/.y.,/.,/.y.y.'/.y.y.,/.y.y. 
C'/. File name: RP21ink.for '/. 
cy.y////////////.yx/x/x/x/.y//:/x///x///.y.y.y.y. 
C/. Chapter 5 
C Main program RP21ink.for 
C 
C***BEGIN PROLOGUE RP21ink 
C***DATE WRITTEN 030501 (YYMMDD) 
C***REVISION DATE 030601 (YYMMDD) 
C***AUTHOR TAO FAN 
C***PURPOSE OFFLINE CALCULATION OF ZERO WORK METHOD IN CHAPTER 5. 
C 
C***DESCRIPTION 
C This is FORTRAN program used to solve near-minimum time control 
C problem of two-link planar R&P arm in chapter 5 of the thesis. 
C The first link is revolute, the second is prismatic. 
C The algorithm is based on the zero work 
C method presented in the thesis. 
C Subroutine "ddassl" is used to solve 
C the ordinary differential equations with initial conditions. 
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C***ROUTTNES CALLED DDASSL,DRES 
C ROUTINES DRES is used to define the differential equations of the system 
C 
C Description of variables used in the program: 
C rl, 11, ml, m2, J are physical parameters of the manipulator 
C X0(4) initial states, Xf(4) final states 
C XPRIME0C4) initial values for XPRIME(4) 
C Xsw0(2) initial guess for switch positions 
C Xsw(2) switch positions, Tsw(2) switch times 
C XswOstep initial position step size 
C Xswstep position step size 
C Tstep time step 
C Nsw(2) switch indicator, it's used to indicate if the link have 
C switched, Nsw=-1 before switch, Nsw=+1 after switch 
C Nfinal(2) final position indicator, initial value=-l, 
C if link reach it's final position, 
C Nfinal=+1, control input changes to holding force/torque. 
C Tau0(2) initial values for control inputs 
C Taumax(2) maximum control inputs 
C Tau(2) control inputs 
C Work(2) work done by all forces/torques for each link 
C RCforce reaction force between two link 
C Xlast(4) store previous state values used to calculate work 
C Tfinal(2) final times for each link 
C Tstop stop time for simulation 
C Xerror absolute position error, 
C Werror absolute work error 
C Xdeta, Ydeta displancement in X,Y direction 

C***END PROLOGUE RP21ink 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
COMMON Tau(2), rl, 11, ml, m2, J 
EXTERNAL DRES 
DIMENSION X(4), XPRIME(4), DELTA(4),INF0(15),RW0RK(300),IW0RK(60) 
DOUBLE PRECISION rl, 11, ml, m2, J 
DOUBLE PRECISION X0(4), Xf(4),XPRIME0(4), Xsw0(2),Xsw(2),Tsw(2), 

* Xswstep,XswOstep,Tstep,Nsw(2),Nfinal(2), 
* Taumax(2),Tau0(2), Uork(2), RCforce, Xlast(4), Tfinal(2), 
* Xerror,Werror, Xdeta, Ydeta, Tstop 
PARAMETER (PI=3.14159D0) 

C LRW — Set it to the declared length of the RWORK array. 
C You must have LRW .GE. 40+CMAX0RD+4)*NEQ+NEQ**2 

LRW=300 

C LIW — Set it to the declared length of the IWORK array. 
C You must have LIW .GE. 20+NEQ 

LIW=60 

C Number of differential equations 
NEQ=4 

C Physical parameters for simulation case 1,2 
C 

rl=0.6D0 
C length of the first link 

11=0.9D0 
C mass of the first link 

ml=3.D0 
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C mass moment of inertia of the linkl 
J=0.81D0 

C mass of the second link 
m2=l.D0 

C Maximum torque of linkl 
Taumax(l)=2.D0 

C Maximum force of link2 
Taumax(2)=2.D0 

C Physical parameters for simulation case 3,4 
C 
C rl=0.4D0 
C length of the first link 
C 11=1.2D0 
C mass of the first link 
C ml=4.D0 
C mass moment of inertia of the linkl 
C J=1.92D0 
C mass of the second link 
C m2=1.5D0 

C Maximum torque of linkl 
C Taumax(l)=3.D0 
C Maximum force of link2 
C Taumax(2)=2.5D0 

C Initial position for case 1,3 
X0(1)=PI/4.D0 
X0(2)=0.D0 
X0(3)=0.D0 
X0(4)=0.D0 

C Initial position for case 2,4 
C X0(1)=0.2D0 
C X0(2)=0.D0 
C X0(3)=0.3D0 
C X0(4)=0.D0 

C Final position 
Xf(1)=0.D0 
Xf(2)=0.D0 
Xf(3)=0.D0 
Xf(4)=0.D0 

C 
Xerror=1.0D-4 
Uerror=3.0D-4 
Tstop=1.5D0 

C Initial torque 
IF (X0(1).LT.Xerror) THEN 
Tau0(l)=0.D0 
E1SE 
TauO(1)=-Taumax(1) 
END IF 

IF (XO(3).LT.Xerror) THEN 
Tau0(2)=-m2*rl*X0(2)**2 
E1SE 
TauO(2)=-Taumax(2) 
END IF 

C Initial velocity and accelaration 
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XPRIMEO(1)=X0(2) 
XPRIMEO(2)=(TauO(1)-2.DO*m2*(XO(3)+r1)* 

& X0(2)*X0(4))/(J+m2*(X0(3)+rl)**2) 
. XPRIMEO(3)=X0(4) 

XPRIMEO(4)=(TauO(2)+m2*(X0(3)+rl)*X0(2)**2)/m2 

C Initial step size 
XswOstep=0.001DO 
Xswstep=XswOstep 
Tstep=0.01DO 

C Initial vaules for switch positions 
XswO(l)=Xf(1) 
XswO(2)=Xf(3) 

C Start of a new integration problem 
C Initialized the switch position 

3 Xsw(l)=XswO(l) 
Xsw(2)=XswO(2) 

5 CONTINUE 
C Reset the switch indicator 

Nsw(l)=-1.0D0 
Nsw(2)=-1.0D0 
Nfinal(l)=-1.0D0 
Nfinal(2)=-1.0D0 
Tfinal(l)=0.0D0 
Tfinal(2)=0.0D0 
Tsw(l)=0.0D0 
Tsw(2)=0.0D0 

C Dimension of INFO(N) 
DO 7 1=1,15 

INF0(I)=0 
7 CONTINUE 

C Do you want the solution only at 
C TOUT (and not at the next intermediate step) . 
C Yes - Set INFO(3) = 0 
C No - Set INF0(3) = 1 **** 

C Do you want the code to decide 
C on its own maximum stepsize? 
C Yes - Set INFO(7)=0 
C No - Set INF0(7)=1 
C and define HMAX by setting 
C RW0RK(2)=HMAX **** 

C Do you want the code to define 
C its own initial stepsize? 
C Yes - Set INFO(8)=0 
C No - Set INF0(8)=1 
C and define HO by setting 
C RW0RK(3)=H0 **** 

INF0(3)=1 
INF0(7)=1 
INF0(8)=1 

C maximum stepsize 
RW0RK(2)=0.0001D0 

C initial stepsize 
RWORK(3)=0.001DO 

C Relative tolerance 
RT0L=1.0D-11 
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C Absolute tolerance 
AT0L=1.0D-8 

C Initialize the parameters 
T=0.D0 
DO 10 1=1,NEQ 
X(I)=X0(I) 

10 XPRIME(I)=XPRIMEO(I) 

C Initial value of workdone by external force 
C of each link 

DO 20 1=1,2 
20 Work(I)=0.D0 

C Open file "datal.m' to store data of Linkl 
OPEN(FILE='datal.m',UNIT=6,status='unknown') 
URITE(6,30) 

30 FORMAT(2x, ''/.'/, This is the simulation result of Linkl') 
WRITE(6,40) 

40 FORMAT(lOx, ''/, Time' ,9x, 'Position' ,5x, 'Velocity' ,4x, 'Force', 
* 9x,'Uork') 
WRITE(6,50) 

50 FORMAT(2x,'output1=[') 

C Open file "data2.m' to store data of Link2 
OPEN(FILE='data2.m',UNIT=7,status='unknown') 
WRITE(7,60) 

60 FORMAT(2x,'*/.'/. This is the simulation result of Link2') 
WRITE(7,40) 
WRITE(7,80) 

80 F0RMAT(2x,'output2=[') 

C Decide the control input Tau 
90 CONTINUE 

DO 100 1=1,2 
IF((X(2*I-1) .GE. Xsw(I))) THEN 

Tau(I)=-Taumax(I) 
Tsw(I)=T 
IF (X0(2*I-1).LT.Xerror) THEN 
Tsw(I)=0.0D0 
END IF 

ELSE 
Tau(I)=+Taumax(I) 
Nsw(I)=1.0D0 

C Nsw indicates the link has switched 
END IF 

100 CONTINUE 

C Linkl reaches final position 
IF (((X(l)-Xf(l)).LT.Xerror).OR.(Nfinal(l).GT.O.DO)) THEN 

IF (Nfinal(l).LT.O.DO) THEN 
Tfinal(l)=T 
END IF 

Tau(l)=0.D0 
Nfinal(l)=+1.0D0 

END IF 

C Link2 reaches final position 
IF (((X(3)-Xf(3)).LT.Xerror) .OR.(Nfinal(2).GT.O.DO)) THEN 
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IF (Nfinal(2).LT.O.DO) THEN 
Tfinal(2)=T 
END IF 

Tau(2)=-m2*rl*X(2)**2 
Nfinal(2)=+1.0D0 

END IF 

C Both links reach final position 
IF (((X(l)-Xf(1)).LT.Xerror).AND.((X(3)-Xf(3)).LT.Xerror)) THEN 
Tau(l)=O.DO 
Tau(2)=0.D0 

END IF 

C Output the data 
WRITE(6.,110) T, (X(I) ,1=1,2) ,Tau(l) ,Work(l) 

110 F0RMAT(7x,6(F10.6,3x)) 
WRITE(7,111) T,(X(I),1=3,4),Tau(2),Work(2) 

111 F0RMAT(7x,6(F10.6,3x)) 

C Reaction force between linki and link2 
RCforce=m2*((X(3)+rl)*XPRIME(2)+2*X(2)*X(4)) 
DO 120 1=1,4 

120 Xlast(I)=X(I) 
C Integrate one time step 

TOUT=T+Tstep 
CALL DDASSL (DRES, NEQ, T, X, XPRIME, TOUT, INFO, RTOL, ATOL, 

* IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR.JAC) 

C Calculate work for each link 
C Workd of linki 

Work(l)=Work(l)+(X(l)-Xlast(l))*Tau(l) 
& -(X(l)-Xlast(1))*RCforce*(rl+Xlast(3)) 

C 
C Displacement in x direction 

Xdeta=(X(3)+rl)*DC0S(X(l))-(Xlast(3)+rl)*DC0S(Xlast(1)) 
C Displacement in y direction 

Ydeta=(X(3)+rl)*DSIN(X(l))-(Xlast(3)+rl)*DSIN(Xlast(l)) 
C 
C Work of link2 

Work(2)=Work(2)+Tau(2)*(DSIN(Xlast(1))*Ydeta+DC0S(Xlast(1))*Xdeta) 
& - RCforce*DSIN(Xlast(l))*Xdeta+RCforce*DCOS(Xlast(l))*Ydeta 

IF (((ABS(Tau(l))).LT.1.0D-8).AND.((ABS(Tau(2))).LT.1.0D-8) 
* .OR.(T.GT.Tstop)) THEN 

C Final point, check for works 
IF ((((ABS(X(1))).LT.Xerror).AND.((ABS(X(3))).LT.Xerror)).AND. 

* (((ABS(Work(l))).LT.Werror).AND.((ABS(Work(2))).LT.Werror))) 
* THEN 

GOTO 126 
END IF 

IF (Xsw(l) .LT.XO(D) THEN 
C Increase switch position for link 1 and restart integration 

Xsw(l)=Xsw(l)+Xswstep 
PRINT*,'Updating Xswl=',Xsw(l) 
CLOSE(6,STATUS='DELETE') 
CLOSE(7, STATUS=' DELETE' ) 
GOTO 5 
END IF 
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IF (Xsw(2).LT.X0(3)) THEN 
C Increase switch position for link 2 and restart integration 

Xsw(l)=XswO(l) 
Xsw(2)=Xsw(2)+Xswstep 
PRINT*,'Updating Xsw2=',Xsw(2) 
CLOSE ( 6, STATUS=' DELETE' ) 
CLOSE(7,STATUS='DELETE') 
GOTO 5 
ELSE 

C Reduce step size by half 
Xswstep=Xswstep/2.0D0 
PRINT*,'Updating Xswstep=',Xswstep 
CLOSE(6,STATUS='DELETE') 
CLOSE(7,STATUS='DELETE') 
GOTO 3 
END IF 

ELSE 
C Continue integration 

GOTO 90 
END IF 

126 WRITE(6,110) T,(X(I),1=1,2),Tau(l),Work(l) 
WRITE(7,111) T,(X(I),1=3,4),Tau(2),Work(2) 
WRITE(6,130) 
WRITE(7,130) 

130 FORMAT(2x,']; ') 
WRITE(6,140)XswO(l) 

140 FORMAT(3x, '"/, The initial guess of XswO(l) = ',F10.6) 
WRITE(6,150)Xsw(l) 

150 FORMAT(3x, ''/, The switch position of linkl Xsw(l) = ',F10.6) 
WRITE(6,170)Tsw(l) 

170 FORMAT(3x, "/. The switch time of linkl Tsw(l) = ' ,F10.6) 
WRITE(6,190)Tfinal(l) 

190 FORMAT(3x,'"/. The final time of linkl Tfinal(l) = ',F10.6) 

WRITE(6,240)XswO(2) 
240 FORMAT(3x,''/. The initial guess of Xsw0(2) = ',F10.6) 

WRITE(6,250)Xsw(2) 
250 FORMAT(3x,''/. The switch position of link2 Xsw(2) = ',F10.6) 

WRITE(6,270)Tsw(2) 
270 FORMAT(3x,''/. The switch time of link2 Tsw(2) = ',F10.6) 

WRITE(6,290)Tfinal(2) 
290 F0RMAT(3x, 7. The final time of link2 Tfinal(2) = *,F10.6) 

WRITE(6,300) XswOstep.Xswstep 
300 FORMAT(lx, '*/, XswOstep=',F9.5,3x,'Xswstep=',F10.6) 

END 

SUBROUTINE DRES(T,X,XPRIME,DELTA,IRES,RPAR,IPAR) 
IMPLICIT DOUBLE PRECISION(A-H.O-Z) 
DIMENSION X(4), XPRIME(4), DELTA(4) 
DOUBLE PRECISION rl, 11, ml, m2, J 
COMMON Tau(2), rl, 11, ml, m2, J 

DELTA(1)=XPRIME(1)-X(2) 
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DELTA(3)=XPRIME(3)-X(4) 
DELTA(2)=(J+m2*(X(3)+rl)**2.0D0)*XPRIME(2)+ 

& 2.0D0*m2*(X(3)+rl)*X(2)*X(4)-Tau(l) 
DELTA<4)=m2*XPRIME(4)-m2*(X(3)+rl)*X(2)**2.D0-Tau(2) 
RETURN 
END 

A.5 Exact Minimum Time Solution of Two-link Revolute and Prismatic Manip­
ulator 

cy//.y////////.v//.r///////:///.•/.'/.•/.•/.•/.•/.•/.•/.•/.•/.•/.•/.'/.'/. 
C/. File name: RP21inkMT.for "/. 
cy//j////.y.y////.y////.y//////.%y.y.y.y.y.y.y.y.y.,/.y.y.y. 
C'/. Chapter 5 
C Main program RP21inkMT.for 
C 
C***BEGIN PROLOGUE RP21inkMT.for 
C***DATE WRITTEN 030501 (YYMMDD) 
C***REVISI0N DATE 030601 (YYMMDD) 
C***AUTH0R TA0 FAN 
C***PURP0SE SOLVING TPBVP PROBLEM IN CHAPTER 5. 
C***DESCRIPTION 
C This is FORTRAN program used to solve exact minimum time control 
C problem of two-link planar R&P arm in chapter 5 of the thesis. 
C The first link is revolute, the second is prismatic. 
C Subroutine "MUSN" is used to solve 
C the nonlinear TPBVP. 
C***REFERENCES (NONE) 
C***R0UTINES CALLED MUSN, FDIF, X0T 
C ROUTINES FDIF is used to define the differential equations of the system 
C ROUTINES XOT is used to evaluate the initial approximation 
C X0(t) of the solution. 
C Description of variables used in the program: 
C Taumax is maximum control inputs 
C Tau is control inputs 

C***END PROLOGUE RP21inkMT.for 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION ER(5),TI(12),X(5,12),Q(5,5,12),U(15,12),D(5,12), 

1 PHIREC(15,12),W(900),WGR(20) 
INTEGER IW(60) 
EXTERNAL FDIF,XOT,G 

C 
C 
C N is the order of the system. 
C 
C NU is one of the dimension of U and PHI. 
C NU must be greater than or equal to N * (N+l) / 2. 
C 
C NTI is one of the dimension of TI, X, S, Q, U en PHI. 
C NTI must be greater than or equal to the total number of 
C necessary output points +1 (i.e. if the entry value for 
C NRTI > 1, NTI may be equal to the entry value of NRTI + 1) 
C 
C LW is the dimension of W. LW >= 7*N + 3*N*NTI + 4*N*N 
C 
C LIW is the dimension of IW. LIW >= 3*N + NTI 
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c 
C ER(3) must contain the machine precision 
C 
C LWG is the dimension of WGR. LWG >= (total number of grid points) 
C / 5. The minimum number of grid points between 2 succesive output 
C points is 5, so the minimum value for LWG is the number of actually 
C used output points. Initially a crude estimate for LWG has to be made 
C 
C ER(1) must contain the required tolerance for solving the differential 
C equation. 
C ER(2) must contain the initial tolerance with which a first aproximate 
C solution will be computed. This approximation is then used as an 
C initial approximation for the computation of an solution with an 
C tolerance ER(2)*ER(2) and so on until the required tolerance is 
C reached. As an initial tolerance max(ER(l),min(ER(2),1.d-2)) will 
C be used 
C 
C A,B the two boundary points 
C 
C NRTI is used to specify the output points. There are 3 ways to 
C specify the output points: 
C 1) NRTI = 0, the output points are determined automatically using AMP. 
C 2) NRTI = 1, the output points are supplied by the user in the array TI. 
C 3) NRTI > 1, the subroutine computes the (NRTI+1) output points TI(k) by 
C TI (k) = A + (k-1) * (B - A) / NRTI ;. 
C so TI(1) = A and TI(NRTI+1) = B. 
C Depending on the allowed increment between two succesive output points, 
C more output points may be inserted in cases 2 and 3. 
C On exit NRTI contains the total number of output points. 

C AMP must contain the allowed increment between two output 
C points. AMP is used to determine output points and to assure that the 
C increment between two output points is at most AMP*AMP. A small value 
C for AMP may result in a large number of output points. 
C Unless 1 < AMP < .25 * sqrt(ER(l)/ER(3)) the default value 
C .25 * sqrt(ER(l)/ER(3)) is used. 

C ITLIM maximum number of allowed iteration 
C IERR0R=1, diagnostics will be printed during computation 

N = 9 
NU = 45 
NTI = 12 
LW = 900 
LIW = 60 
ER(3) = 1.1D-15 
LWG = 20 
ER(1) = l.D-6 
ER(2) = l.D-2 
A = 0.D0 
B = 1.D0 
NRTI=10 
AMP=0.01D0 
ITLIM=20 
IERR0R=1 
OPEN(FILE='datalMT.m',UNIT=6,status='unknown') 
WRITE(6,30) 

30 FORMAT(2X, ''/, This is the results of TPBVP') 
CALL MUSN(FDIF,X0T,G,N,A,B,ER,TI,NTI,NRTI,AMP,ITLIM,X,Q,U,NU,D, 

1 PHIREC,KPART,W,LW,IW,LIW,WGR,LWG,IERR0R) 
WRITE(6,*) ' MUSN: IERR0R =',IERR0R 
WRITE(6,200) A,B,ER(1),ER(2),ER(4),ER(5),KPART 
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200 FORMAT (' A = ',F8.4,3X,'B = * ,F8.4,/,' REQUIRED TOLERANCE = ',1P, 
1 D12.5,3X,'START TOLERANCE = >,D12.5,/, 
2 ' CONDITION NUMBER = ',D12.5,3X, 
3 'AMPLIFICATION FACTOR = ',D12.5,/,' K-PARTITIONING =',I2,/) 
IF (IERROR.NE.O) GOTO 3000 
WRITE(6,215) 

215 FORMAT(' I ',4X,'T',9X,'XI',12X,'X2',12X,'X3',12X,'X4',12X,'X5', 
1 /) 
DO 2200 K = 1 , NRTI 

WRITE(6,220) K,TI(K),(X(J,K),J=l,N) 
2200 CONTINUE 
220 FORMAT(' ',12,IX,F6.4,IP,5(2X,D12.5)) 

3000 CONTINUE 
STOP 
END 

SUBROUTINE FDIF(T,Y,F) 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION Y(9),F(9) 
DOUBLE PRECISION rl,11,ml,m2,I,Taumax(2),Tau(2), 

* X1,X2,X3,X4,P1,P2,P3,P4,Z,V1,V2,V12,V13,V14,V22,V23 

X1=Y(1) 
X2=Y(2) 
X3=Y(3) 
X4=Y(4) 
P1=Y(5) 
P2=Y(6) 
P3=Y(7) 
P4=Y(8) 
Z=Y(9) 

C Physical parameters for simulation case 1,2 

C 
C 

C 

C 

C 

C 

C 

rl=0.6D0 
length of the first link 
11=0.9D0 
mass of the first link 
ml=3.D0 
mass moment of inertia of the linkl 
I=0.81D0 
mass of the second link 
m2=l.D0 

C 

C Maximum torque of linkl 
Taumax(l)=2.DO 
Maximum force of link2 
Taumax(2)=2.D0 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

Physical parameters for simulation case 3,4 
rl=0.4D0 
length of the first link 
11=1.2D0 
mass of the first link 
ml=4.D0 
mass moment of inertia of the linkl 
I=1.92D0 
mass of the second link 
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C m2=1.5D0 
C Maximum torque of linkl 
C Taumax(l)=3.D0 
C Maximum force of link2 
C Taumax(2)=2.5D0 

C Decided the control input 
IF(P2.LT.0.0D0) THEN 

Tau(1)=Taumax(1) 
ELSE 

Tau(1)=-Taumax(1) 
END IF 

IF(P4.LT.0.0D0) THEN 
Tau(2)=Taumax(2) 

ELSE 
Tau(2)=-Taumax(2) 

END IF 

U = Tau(l)-2.0D0*m2*(X3+rl)*X2*X4 
V = I+m2*(X3+rl)**2 
VI = U/V 
V12 = (-2.0D0*m2*(X3+rl)*X4)/V 
V13 = (-2.0DO*m2*X2*X4*V-2.0DO*U*m2*(X3+rl))/V**2.0DO 
V14 = -2.0D0*m2*X2*(X3+rl)/V 
V2 = (Tau(2)+m2*(X3+rl)*X2**2.0D0)/m2 
V22 = 2.0D0*X2*(X3+rl) 
V23 = X2**2 

F(l) = Z*X2 
F(2) = Z*V1 
F(3) = Z*X4 
F(4) = Z*V2 
F(5) = 0.0D0 
F(6) = -Z*(P1+P2*V12+P4*V22) 
F(7) = -Z*(P2*V13+P4*V23) 
F(8) = -Z*(P3+P2*V14) 
F(9) = 0.0D0 
RETURN 

C END OF FDIF 
END 

SUBROUTINE XOT(T.X) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION X(5) 

C 
Case 1,3 
X(l) = 3 14D0/4.0D0 
X(2) = 0 0D0 
X(3) = 0 ODO 
X(4) = 0 ODO 
X(5) = 1 ODO 
X(6) = 1 ODO 
X(7) = 1 ODO 
X(8) = 1 ODO 
X(9) = 1 ODO 



Appendix A. Simulation Program Listings 

Case 2 4 
X(l) = 0 2D0 
X(2) = 0 ODO 
X(3) = 0 3D0 
X(4) = 0 ODO 
X(5) 1 ODO 
X(6) = 1 ODO 
X(7) = 1 ODO 
X(8) = 1 ODO 
X(9) = 1 ODO 
RETURN 

C END OF XOT 
END 

SUBROUTINE G(N,XA,XB,FG,DGA,DGB) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION XA(N),XB(N),FG(N),DGA(N,N),DGB(N,N) 

C 
DO 1100 I = 1 , N 
DO 1100 J = 1 , N 

DGA(I,J) = 0. 
DGB(I.J) = 0. 

CONTINUE 
DGA(1,1) = 1 DO 
DGA(2,2) = 1 DO 
DGA(3,3) = 1 DO 
DGA(4,4) = 1 DO 
DGB(1,1) = 1 DO 
DGB(2,2) = 1 DO 
DGB(3,3) = 1 DO 
DGB(4,4) = 1 DO 

C Case 1,3 
FG(1) = XA(1) - 3.14D0/4.0D0 
FG(2) = XA(2) 
FG(3) = XA(3) 
FG(4) = XA(4) 
FG(5) = XB(1) 
FG(6) = XB(2) 
FG(7) = XB(3) 
FG(8) = XB(4) 

C Case 2,4 c FGCl) = XA(1) - 0.2D0 
c FG(2) = XA(2) 
c FG(3) = XA(3)- 0.3D0 
c FG(4) = XA(4) 
c FG(5) = XB(1) 
c FG(6) = XB(2) 
c FG(7) = XB(3) 
c FG(8) = XB(4) 

c 
RETURN 
END OF G 
END 



Appendix A. Simulation Program Listings 

A.6 S-function of Two-link Revolute and Prismatic Manipulator 
y:///:/:///;/:/:/:/;/:/.y.7.'/.,/.'/.y.'/.7.,/.,/.'/.'/.,/.'/:/:/.v.y. 
'/• File name: RPsimfunl.m '/, 
y://///:/:/:/:///.,/.y.y.y.y.y.y.y.y.y.y.y.y.y.y.,/.y.y.y.y.y. 
'/, Chapter 5 
'/, This is the s-function of two link planar revolute and 
% prismatic manipulator. 
'/, The first link is revolute, the second is prismatic 

function [sys,x0,str,ts] = robot2(t,x,u,flag.xOl,x02,x03,x04) switch flag 
case 0 

sys = [4, 
0, 
4, 
2, 
0, 
0, 
1] 

x0(l)=x01 
x0(2)=x02 
x0(3)=x03 
x0(4)=x04 
str = [] ; 

% number of continuous states 
% number of discrete states 
'/, number of outputs 
% number of inputs 
y, reserved must be zero 
7, direct feedthrough flag 
'/, number of sample times 

'/, Initialization 

ts [0 0]; '/, sample time: [period, offset] 

case 1 '/, Derivatives 
% Physical parameters for simulation case 1,2 
rl=0.6; 
11=0.9; */. length of the first link 
ml=3; % mass of the first link 
m2=l; % mass of the second link 
I=l/3*ml*ll'2; % mass moment of inertia of the linki 

% Physical parameters for simulation case 3,4 
•/.rl=0.4; 
'/.11=1.2; */. length of the first link 
%ml=4; % mass of the first link 
ym2=1.5; % mass of the second link 
y,I=l/3*ml*ll~2; '/, mass moment of inertia of the linki 

a=[x(2); 
(u(l)-2.*m2.*(x(3)+rl).*x(2).*x(4))/(I+m2.*(x(3)+rl)."2); 
x(4); 
(u(2)+m2.*(x(3)+rl).*x(2).~2)/m2 ;]; 

sys=a; 
case 2 

sys = [] ; '/, do nothing 
Discrete state update 

case 3 
sys = x; 

case 9 
sys = [] ; '/. do nothing 

'/, Terminate 

otherwise 
error(['unhandled flag = ',num2str(flag)]); 

end 
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A.7 Zero-net-work Solution of Two-link Revolute Manipulator 
c y ; / / / / / / / / / . y / / / / / / . y : / / / / / / / / / / / / / / / / / r / / / : / / / / / x / . • / . • / . 

C'/. File name: TLRPM.for '/. 
c y / / : / / / / / / / / / ; / / / / / : / / / / / : / / / / / : / : / . y . y . y . y . y x / . y . y . y . y . y . 
C/. Chapter 6 
C Main program TLRPM.for 
C 
C***BEGIN PROLOGUE TLRPM.for 
C***DATE WRITTEN 030501 (YYMMDD) 
C***REVISI0N DATE 030601 (YYMMDD) 
C***AUTH0R TAO FAN 
C***PURP0SE OFFLINE CALCULATION OF ZERO WORK METHOD IN CHAPTER 6 . 
C***DESCRIPTION 
C This is FORTRAN program used to solve near-minimum time control 
C problem of two-link planar revolute arm in chapter 6 of the thesis. 
C The algorithm is based on the zero work 
C method presented in the thesis. 
C Subroutine "ddassl" is used to solve 
C the ordinary differential equations with initial conditions. 
C* PREFERENCES (NONE) 
C***ROUTINES CALLED DDASSL,DRES 
C ROUTINES DRES is used to define the differential equations of the system 
C 
C Description of variables used in the program: 
C X0(4) initial states, Xf(4) final states 
C XPRIME0(4) initial values for XPRIME(4) 
C Xsw0(2) initial guess for switch positions 
C Xsw(2) switch positions, Tsw(2) switch times 
C XswOstep initial position step size 
C Xswstep position step size 
C Tstep time step 
C Nsw(2) switch indicator, it's used to indicate if the link have 
C switched, Nsw=-1 before switch, Nsw=+1 after switch 
C Nfinal(2) final position indicator, initial value=-l, 
C if link reach it's final position, 
C Nfinal=+1, control input changes to holding force/torque. 
C Tau0(2) initial values for control inputs 
C Taumax(2) maximum control inputs 
C Tau(2) control inputs 
C Work(2) work done by all forces/torques for each link 
C RCforce reaction force between two link 
C Xlast(4) store previous state values used to calculate work 
C Tfinal(2) final times for each link 
C Tstop stop time for simulation 
C Xerror absolute position error, 
C Werror absolute work error 
C Xdeta, Ydeta displancement in X,Y direction 

C***END PROLOGUE TLRPM 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
COMMON Tau(2),11, lcl, 12,lc2,ml,m2,II,12,M,cl,c2,c3 
DOUBLE PRECISION 11, lcl, 12,lc2,ml,m2,II,12,M,cl,c2,c3 
EXTERNAL DRES 
DIMENSION X(4), XPRIME(4), DELTA(4),INFO(15),RW0RK(300),IW0RK(60) 
DOUBLE PRECISION X0(4), Xf(4),XPRIME0(4), Xsw0(2),Xsw(2),Tsw(2), 
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* Xswstep,XswOstep,Tstep,Nsw(2),Nfinal(2), 
* TaumaX(2),TauO(2), Work(2), RCforce, Xlast(4), Tfinal(2), 
* Xerror.Werror, Xdeta, Ydeta, Tstop 
PARAMETER (PI=3.14159D0) 

C LRW — Set it to the declared length of the RWORK array. 
C You must have LRW .GE. 40+(MAX0RD+4)*NEQ+NEq**2 

LRW=300 

C LIW — Set it to the declared length of the IWORK array. 
C You must have LIW .GE. 20+NEQ 

LIW=60 

C Number of differential equations 
NEQ=4 

C Physical parameters for Case 1 and Case 2 
C length of the link 1 

11=0.4D0 
lcl=ll/2.OD0 

C length of the link 2 
12=0.25D0 
Ic2=12/2.0D0 

C mass of the first link 
ml=29.58D0 

C mass of the second link 
m2=15.00D0 

C mass moment of inertia of the linki 
I1=0.416739D0 

C mass moment of inertia of the link2 
I2=0.205625D0 

C mass of end effector and load 
M=6.0D0 

C maximum torque for link 1 
Taumax(l)=25.0D0 

C maximum torque for link 2 
Taumax(2)=9.0D0 

C Physical parameters for Case 3 
C length of the link 1 
C 11=0,4D0 
C lcl=ll/2.0D0 
C length of the link 2 
C 12=0.25D0 
C Ic2=12/2.0D0 
C mass of the first link 
C ml=0.245D0 
C mass of the second link 
C m2=0.15315D0 
C mass moment of inertia of the linki 
C Il=3.2688D-3 
C mass moment of inertia of the link2 
C I2=0.7986D-3 
C mass of end effector and load 
C M=0.5D0 
C maximum torque for link 1 
C Taumax(l)=0.25D0 
C maximum torque for link 2 
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C Taumax(2)=0.1D0 

C Physical parameters for Case 4 

C length of the link 1 
C 11=1.0D0 
C lcl=ll/2.0D0 
C length of the link 2 
C 12=0.625D0 
C Ic2=12/2.0D0 
C mass of the first link 
C ml=0.61261D0 
C mass of the second link 
C m2=0.38288D0 
C mass moment of inertia of the linki 
C 11=51.0547D-3 
C mass moment of inertia of the link2 
C 12=12.4660D-3 
C mass of end effector and load 
C M=1.25D0 
C maximum torque for link 1 
C Taumax(1)=3.90D0 
C maximum torque for link 2 
C Taumax(2)=1.56D0 

cl=Il+ml*lcl**2.0D0+(m2+M)*11**2.0D0 
c2=I2+m2*lc2**2. 0D0+M*12**2. 0D0 
c3=m2*ll*lc2+M*ll*12 

C Initial position for case 1 
X0(1)=0.975D0 
XO(2)=0.DO 
X0(3)=0.D0 
XO(4)=0.DO 

C Initial position for case 2 
C X0(1)=0.76D0 
C X0(2)=0.D0 
C X0(3)=0.2618D0 
C X0(4)=0.D0 

C Initial position for case 3 
C X0(1)=0.376D0 
C X0(2)=0.D0 
C X0(3)=0.D0 
C XO(4)=0.DO 

C Initial position for case 4 
C X0(1)=0.8D0 
C X0(2)=0.D0 
C X0(3)=0.2D0 
C X0(4)=0.D0 

C Final position 
Xf(1)=0.D0 
Xf (2)=0.D0 
Xf(3)=0.D0 
Xf(4)=0.D0 

C 
Xerror=1.0D-4 
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Werror=1.0D-4 
Tstop=2.0D0 

C Initial torque 
TauO (1) =-Taumax (1) 
Tau0(2)=-Taumax(2) 

IF (X0(1).LT.Xerror) THEN 
TauO(1)=(c2+c3*DC0S(XO(3)))*TauO(2)/c2-c3*DSIN(X0(3))*X0(4)**2.ODO 
END IF 
IF (X0(3).LT.Xerror) THEN 
Tau0(2)=(c2+c3)*Tau0(l)/(cl+c2+2*c3) 
END IF 

IF ((X0(1).LT.Xerror).AND.(X0(3).LT.Xerror)) THEN 
TauO(1)=0.ODO 
Tau0(2)=0.0D0 
END IF 

C Initial velocity and accelaration 
XPRIHE0(1)=X0(2) 

XPRIMEO(2)=(c2*(TauO(1)-TauO(2)+c3*(XO(2)+ 
* X0(4))**2.0D0*DSIN(X0(3))) 
* -c3*(Tau0(2)-c3*(X0(2)**2.0D0)*DSIN(X0(3)))*DC0S(X0(3))) 
* /(cl*c2-c3**2.0D0*(DC0S(X0(3)))**2.0D0) 

XPRIME0(3)=X0(4) 

XPRIME0(4)=((cl+c3*DC0S(X0(3)))* 
* (TauO(2)-c3*X0(2)**2.OD0*DSIN(XO(3))) 
* -(c2+c3*DC0S(X0(3)))*(Tau0(l)-Tau0(2) 
* +c3*(XO(2)+XO(4))**2.0DO*DSIN(XO(3)))) 
* /(cl*c2-c3**2.ODO*(DCOS(X0(3)))**2.ODO) 

C Initial step size 
Xsw0step=0.01D0 
Xswstep=XswOstep 
Tstep=0.001DO 

C Initial guess for switch positions 
XswO(l)=Xf(1) 
XswO(2)=Xf(3) 

C Start of a new integration problem 
C Initialized the switch position 

3 Xsw(l)=XswO(l) 
Xsw(2)=XswO(2) 

5 CONTINUE 
C Reset the switch indicator 

Nsw(l)=-1.0D0 
Nsw(2)=-1.0D0 
Nfinal(l)=-1.0D0 
Nfinal(2)=-1.0D0 
Tfinal(l)=O.ODO 
Tfinal(2)=0.0D0 
Tsw(l)=O.ODO 
Tsw(2)=0.0D0 

C Dimension of INFO(N) 
DO 7 1=1,15 

INF0(I)=0 
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7 CONTINUE 
C Do you want the solution only at 
C TOUT (and not at the next intermediate step) ... 
C Yes - Set INFO(3) = 0 
C No - Set INF0(3) = 1 **** 

C Do you want the code to decide 
C on its own maximum stepsize? 
C Yes - Set INFO(7)=0 
C No - Set INF0(7)=1 
C and define HMAX by setting 
C RW0RK(2)=HMAX **** 

C Do you want the code to define 
C its own initial stepsize? 
C Yes - Set INFO(8)=0 
C No - Set INF0(8)=1 
C and define HO by setting 
C RW0RK(3)=H0 **** 

INF0(3)=1 
INF0(7)=1 
INF0(8)=1 

C maximum stepsize 
RW0RK(2)=0.0001D0 

C initial stepsize 
RW0RK(3)=0.001D0 

C Relative tolerance 
RT0L=1.0D-11 

C Absolute tolerance 
AT0L=1.0D-8 

C Initialize the parameters 
T=0.D0 
DO 10 1=1,NEQ 
X(I)=X0(I) 

10 XPRIME(I)=XPRIMEO(I) 

C Initial value of workdone by external force 
C of each link 

DO 20 1=1,2 
20 Work(I)=0.D0 

C Open file "datal.m' to store data of Linki 
OPEN(FILE='datal.m',UNIT=6,status='unknown') 
WRITE(6,30) 

30 FORMAT(2X,''/,'/, This is the simulation result of Linki') 
WRITE(6,40) 

40 FORMAT(10X,'% Time',9X,'Position',5X,'Velocity',4X,'Force 
* 9X,'Work') 
WRITE(6,50) 

50 FORMAT(2X,'output 1=[') 

C Open file "data2.m' to store data of Link2 
OPEN(FILE='data2.m',UNIT=7,status='unknown') 
WRITE(7,60) 

60 FORMAT(2X, ''/,'/, This is the simulation result of Link2') 
WRITE(7,40) 
WRITE(7,80) 
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80 F0RMAT(2X,'output2=[') 

C Decide the control input Tau 
90 CONTINUE 

DO 100 1=1,2 
IF((X(2*I-1) .GE. Xsw(I))) THEN 

Tau(I)=-Taumax(I) 
Tsw(I)=T 
IF (X0(2*I-1).LT.Xerror) THEN 
Tsw(I)=0.0D0 
END IF 

ELSE 
Tau(I)=+Taumax(I) 
Nsw(I)=1.0D0 

C Nsw indicates the link has switched 
END IF 

100 CONTINUE 

C Linkl reaches final position 
IF (((X(l)-Xf(1)).LT.Xerror).OR.(Nfinal(l).GT.O.DO)) THEN 

IF (Nfinal(l).LT.O.DO) THEN 
Tfinal(l)=T 
END IF 

Tau(l)=(c2+c3*DC0S(X(3)))*Tau(2)/c2-c3*DSIN(X(3))*X(4)**2.0D0 
Nfinal(l)=+1.0D0 

END IF 

C Link2 reaches final position 
IF (((X(3)-Xf(3)).LT.Xerror) .OR.(Nfinal(2).GT.O.DO)) THEN 

IF (Nfinal(2).LT.O.DO) THEN 
Tfinal(2)=T 
END IF 

Tau(2)=(c2+c3)*Tau(l)/(cl+c2+2.0D0*c3) 
Nfinal(2)=+1.0D0 

END IF 

C Both links reach final position 
IF (((X(l)-Xf (D).LT.Xerror).AND. ((X(3)-Xf (3)).LT.Xerror)) THEN 
Tau(l)=0.D0 
Tau(2)=0.D0 

END IF 

C Output the data 
WRITE(6,110) T,(X(I),1=1,2),Tau(l),Uork(l) 

110 F0RMAT(7X,6(F10.6,3X)) 
WRITE(7,111) T,(X(I),1=3,4),Tau(2),Work(2) 

111 FORMAT(7X,6(F10.6,3X)) 

DO 120 1=1,4 
120 Xlast(I)=X(I) 

C Integrate one time step 
TOUT=T+Tstep 
CALL DDASSL (DRES, NEQ, T, X, XPRIME, TOUT, INFO, RTOL, ATOL, 

* IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR.JAC) 

C Calculate work for each link 

C Work of linkl 

Work(l)=1.0D0/2.0D0*(ml*lcl**2.0D0+Il)*X(2)**2.0D0 
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C Work of link2 
Work(2)=1.0D0/2.0D0*(I2+m2*lc2**2.0D0)*(X(2)+X(4))**2.0D0 

* +1.0D0/2.0D0*m2*ll**2.0D0*(X(2))**2.0D0 
* +DC0S(X(3))*X(2)*(X(2)+X(4))*ll*lc2*m2 

IF (((ABS(Tau(l))).LT.1.OD-8).AND.((ABS(Tau(2))).LT.1.OD-8) 
* .OR.(T.GT.Tstop)) THEN 

C Final point, check for works 
IF ((((ABS(X(1))).LT.Xerror).AND.((ABS(X(3))).LT.Xerror)).AND. 

* (((ABS(Work(l))).LT.Werror).AND.((ABS(Work(2))).LT.Werror))) 
* THEN 

GOTO 126 
END IF 

IF (Xsw(l) .LT.XO(D) THEN 
C Increase switch position for link 1 and restart integration 

Xsw (1) =Xsw (1) +Xswstep 
PRINT*,'Updating Xswl=',Xsw(l) 
CLOSE(6,STATUS='DELETE') 
CLOSE(7,STATUS='DELETE') 
GOTO 5 
END IF 

IF (Xsw(2).LT.X0(3)) THEN 
C Increase switch position for link 2 and restart integration 

Xsw(l)=XswO(l) 
Xsw(2)=Xsw(2)+Xswstep 
PRINT*,'Updating Xsw2=',Xsw(2) 
CLOSE(6,STATUS='DELETE') 
CLOSE(7,STATUS='DELETE') 
GOTO 5 
ELSE 

C Reduce step size by half 
Xswstep=Xswstep/2.0D0 
PRINT*,'Updating Xswstep='.Xswstep 
CLOSE(6,STATUS='DELETE') 
CLOSE(7,STATUS='DELETE') 
GOTO 3 
END IF 

ELSE 
C Continue integration 

GOTO 90 
END IF 

126 WRITE(6,110) T,(X(I),1=1,2),Tau(l),Work(l) 
WRITER,111) T, (X(I),I=3,4),Tau(2) ,Work(2) 
WRITE(6,130) 
WRITE(7,130) 

130 FORMAT(2X,']; ') 
WRITE(6,140)Xsw0(l) 

140 FORMAT(3X, "/, The initial guess of Xsw0(l) = ',F10.6) 
WRITE(6,150)Xsw(l) 

150 FORMAT(3X,''/. The switch position of linki Xsw(l)=' ,F10.6) 
WRITE(6,170)Tsw(l) 

170 FORMAT(3X,'"/, The switch time of linki Tsw(l) = ' ,F10.6) 
WRITE(6,190)Tfinal(l) 

190 FORMAT(3X, '*/, The final time of linki Tfinal(l) = ',F10.6) 
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WRITE(6,240)XswO(2) 
240 FORMAT(3X, "/. The initial guess of Xsw0(2)=',F10.6) 

WRITE(6,250)Xsw(2) 
250 FORMAT(3X, 7. The switch position of link2 Xsw(2) = ',F10.6) 

WRITE(6,270)Tsw(2) 
270 FORMAT(3X, "/. The switch time of link2 Tsw(2)=',F10.6) 

WRITE(6,290)Tfinal(2) 
290 FORMAT(3X, ''/, The final time of link2 Tfinal(2) = ',F10.6) 

URITE(6,300) XswOstep.Xswstep 
300 FORMAT(IX,7. XswOstep=',F9.5,3X,'Xswstep=',F10.6) 

END 

SUBROUTINE DRES(T,X,XPRIME,DELTA,IRES,RPAR,IPAR) 
IMPLICIT DOUBLE PRECISION(A-H.O-Z) 
DIMENSION X(4), XPRIME(4), DELTA(4) 
COMMON Tau(2),ll, lcl, 12,lc2,ml,m2,II,12,M,cl,c2,c3 
DOUBLE PRECISION 11, lcl, 12,lc2,ml,m2,II,12,M,cl,c2,c3 

DELTA(1)=XPRIME(1)-X(2) 
DELTA(3)=XPRIME(3)-X(4) 
DELTA(2)=XPRIME(2)-(c2*(Tau(l)-Tau(2)+c3*(X(2)+ 

* X(4))**2.0D0*DSIN(X(3))) 
* -c3*(Tau(2)-c3*(X(2)**2.0D0)*DSIN(X(3)))*DC0S(X(3))) 
* /(cl*c2-c3**2.ODO*(DCOS(X(3)))**2.ODO) 

DELTA(4)=XPRIME(4)-((cl+c3*DC0S(X(3)))* 
* (Tau(2)-c3*X(2)**2.0D0*DSIN(X(3))) 
* -(c2+c3*DC0S(X(3)))*(Tau(l)-Tau(2) 
* +c3*(X(2)+X(4))**2.0D0*DSIN(X(3)))) 
* /(cl*c2-c3**2.ODO*(DCOS(X(3)))**2.ODO) 
RETURN 
END 

A.8 Exact Minimum Time Solution of Two-link Revolute Manipulator 
c7//:///:///:/://///://///:/://///:/:/:/:/:/.'/.,/.'/.•/.•/.•/.'/.,/. 
Cl File name: TLRPM_MT.for '/. 
cy.y.y.y//.v.r/.v.M,/.,/.,/.,/.,/.v.,/.v.y.,/.y.y.,/.,/.'/.%"/.y.y. 
C/, Chapter 6 
C Main program TLRPM_MT.for 
C 
C***BEGIN PROLOGUE TLRPM_MT.for 
C***DATE WRITTEN 030501 (YYMMDD) 
C***REVISION DATE 030601 (YYMMDD) 
C***AUTH0R TAO FAN 
C***PURP0SE SOLVING TPBVP PROBLEM IN CHAPTER 6. 
C***DESCRIPTION 
C This is FORTRAN program used to solve exact minimum time 
C problem of two-link planar revolute arm in chapter 6 of 
C Subroutine "MUSN" is used to solve 
C the nonlinear TPBVP. 
C***REFERENCES (NONE) 
C***ROUTINES CALLED MUSN, FDIF, XOT 
C ROUTINES FDIF is used to define the differential equations 
C ROUTINES XOT is used to evaluate the initial approximation 

control 
the thesis. 

of the system 
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C XO(t) of the solution. 
C Description of variables used in the program: 
C Taumax is maximum control inputs 
C Tau is control inputs 

C***END PROLOGUE TLRPM_MT.for 
C 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION ER(5),TI(12),X(5,12),Q(5,5,12),U(15,12),D(5,12), 

1 PHIREC(15,12),W(900),UGR(20) 
INTEGER IW(60) 
EXTERNAL FDIF,XOT,G 

C 
C 
C N is the order of the system. 
C 
C NU is one of the dimension of U and PHI. 
C NU must be greater than or equal to N * (N+1) / 2. 
C 
C NTI is one of the dimension of TI, X, S, Q, U en PHI. 
C NTI must be greater than or equal to the total number of 
C necessary output points +1 (i.e. if the entry value for 
C NRTI > 1, NTI may be equal to the entry value of NRTI + 1) 
C 
C LW is the dimension of W. LW >= 7*N + 3*N*NTI + 4*N*N 
C 
C LIW is the dimension of IW. LIW >= 3*N + NTI 
C 
C ER(3) must contain the machine precision 
C 
C LWG is the dimension of WGR. LWG >= (total number of grid points) 
C / 5. The minimum number of grid points between 2 succesive output 
C points is 5, so the minimum value for LWG is the number of actually 
C used output points. Initially a crude estimate for LWG has to be made 
C 
C ER(1) must contain the required tolerance for solving the differential 
C equation. 
C ER(2) must contain the initial tolerance with which a first aproximate 
C solution will be computed. This approximation is then used as an 
C initial approximation for the computation of an solution with an 
C tolerance ER(2)*ER(2) and so on until the required tolerance is 
C reached. As an initial tolerance max(ER(l),min(ER(2),1.d-2)) will 
C be used 
C 
C A,B the two boundary points 
C 
C NRTI is used to specify the output points. There are 3 ways to 
C specify the output points: 
C 1) NRTI = 0, the output points are determined automatically using AMP. 
C 2) NRTI = 1, the output points are supplied by the user in the array TI. 
C 3) NRTI > 1, the subroutine computes the (NRTI+1) output points TI(k) by 
C TI(k) = A + (k-1) * (B - A) / NRTI ; 
C so TI(1) = A and TI(NRTI+1) = B. 
C Depending on the allowed increment between two succesive output points, 
C more output points may be inserted in cases 2 and 3. 
C On exit NRTI contains the total number of output points. 

C AMP must contain the allowed increment between two output 
C points. AMP is used to determine output points and to assure that the 
C increment between two output points is at most AMP*AMP. A small value 
C for AMP may result in a large number of output points. 
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C Unless 1 < AMP < .25 * sqrt(ER(l)/ER(3)) the default value 
C .25 * sqrt(ER(l)/ER(3)) is used. 

C ITLIM maximum number of allowed iteration 
C IERR0R=1, diagnostics will be printed during computation 

N = 9 
NU = 45 
NTI = 12 
LW = 900 
LIW = 60 
ER(3) = 1.1D-15 
LWG = 20 
ER(1) = l.D-6 
ER(2) = l.D-2 
A = 0.D0 
B = 1.D0 
NRTI=10 
AMP=100.D0 
ITLIM=20 
IERR0R=1 
0PEN(FILE='datalMT.m',UNIT=6,status='unknown') 
WRITE(6,30) 

30 FORMAT(2X, This is the results of TPBVP') 
CALL MUSN(FDIF,XOT,G,N,A,B.ER.TI,NTI,NRTI,AMP,ITLIM,X,Q,U,NU,D, 

1 PHIREC,KPART,W,LW,IW,LIW,WGR,LWG,IERROR) 
WRITE(6,*) ' MUSN: IERROR =',IERROR 
WRITE(6,200) A,B,ER(1),ER(2),ER(4),ER(5),KPART 

200 FORMAT (' A = ',F8.4,3X,'B = \F8.4,/,' REQUIRED TOLERANCE = \1P, 
1 D12.5,3X,'START TOLERANCE = '.D12.5,/, 
2 ' CONDITION NUMBER = ',D12.5,3X, 
3 'AMPLIFICATION FACTOR = '.D12.5,/,' K-PARTITIONING =',I2,/) 
IF (IERROR.NE.O) GOTO 3000 
WRITE(6,215) 

215 FORMAT(' I ',4X,'T',9X,'XI',12X,'X2',12X,'X3',12X,'X4',12X,'X5', 
1 /) 
DO 2200 K = 1 , NRTI 

WRITE(6,220) K.TKK) , (X(J,K) , J=1,N) 
2200 CONTINUE 
220 FORMAT(' ',12,IX,F6.4,IP,5(2X,D12.5)) 

3000 CONTINUE 
STOP 
END 

SUBROUTINE FDIF(T,Y,F) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION Y(9),F(9) 
DOUBLE PRECISION 11,lcl,12,lc2,II,12,M,Taumax(2),Tau(2), 

k Cl,c2,c3,c4,all,al2,al3,a22,al4,a24,s(2),deta 
C f22,f24,f32,f34,f42,f44 
C DOUBLE PRECISION XI,X2,X3,X4,P1,P2,P3,P4,Z 

X1=Y(1) 
X2=Y(2) 
X3=Y(3) 
X4=Y(4) 

P1=Y(5) 
P2=Y(6) 
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P3=Y(7) 
P4=Y(8) 
Z=Y(9) 

C Physical parameters for Case 1 and Case 2 

C length of the link 1 
11=0.4D0 
lcl=ll/2.0D0 

C length of the link 2 
12=0.25D0 
Ic2=12/2.0D0 

C mass of the first link 
ml=29.58D0 

C mass of the second link 
m2=15.00D0 

C mass moment of inertia of the linki 
I1=0.416739DO 

C mass moment of inertia of the link2 
I2=0.205625D0 

C mass of end effector and load 
H=6.0D0 

C maximum torque for link 1 
Taumax(l)=25.0D0 

C maximum torque for link 2 
Taumax(2)=9.0D0 

C Physical parameters for Case 3 
C length of the link 1 
C 11=0.4D0 
C lcl=ll/2.0D0 
C length of the link 2 
C 12=0.25D0 
C Ic2=12/2.0D0 
C mass of the first link 
C ml=0.245DO 
C mass of the second link 
C m2=0.15315D0 
C mass moment of inertia of the linki 
C Il=3.2688D-3 
C mass moment of inertia of the link2 
C I2=0.7986D-3 
C mass of end effector and load 
C M=0.5D0 
C maximum torque for link 1 
C Taumax(l)=0.25D0 
C maximum torque for link 2 
C Taumax(2)=0.1D0 

C Physical parameters for Case 4 
C length of the link 1 
C 11=1.0D0 
C lcl=ll/2.0D0 
C length of the link 2 
C 12=0.625D0 
C Ic2=12/2.0D0 
C mass of the first link 
C ml=0.61261D0 
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c mass of the second link 
m2=0.38288D0 
mass moment of inertia of the linki 
11=51.0547D-3 
mass moment of inertia of the link2 
12=12.4660D-3 
mass of end effector and load 
M=1.25D0 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

maximum torque for link 1 
Taumax(1)=3.90D0 

maximum torque for link 2 
Taumax(2)=1.56D0 

cl=Il+ml*lcl**2.0D0+(m2+M)*ll**2.0D0 
c2=I2+m2*lc2**2.0D0+M*12**2.0D0 
c3=m2*ll*lc2+M*ll*12 
c4=ml*lc1+(m2+M)*11 
c5=m2*lc2+M*12 

all=cl+c2+2.0D0*c3*DC0S(X3) 
al2=c2+c3*DCDS(X3) 
al3=c3*DSIN(X3) 
a22=c2 
al4=c4*DC0S(XI)+c5*DCQS(X1+X3) 
a24=c5*DCQS(Xl+X3) 

deta=cl*c2-c3**2.0D0*(DCOS(X3))**2.0D0 

C Decided the control input 
S(l) = (P2*a22-P4*al2)/deta 
S(2) = (-P2*al2+P4*all)/deta 

IF(S(1).LT.O.ODO) THEN 
Tau(1)=Taumax(1) 

ELSE 
Tau(l)=-Taumax(l) 

END IF 

IF(S(2).LT.O.ODO) THEN 
Tau(2)=Taumax(2) 

ELSE 
Tau(2)=-Taumax(2) 

END IF 

f21=-1.0D0 
f22=-2.0D0*al3*(al2*X2+a22*X4)/deta 
f24=2.0D0*al3*(all*X2+al2*X4)/deta 
f32=-l.0D0*((al2-a22)*(a22*(2.0D0*X2+X4)*X4+al2*X2**2.0D0)-al3**2.0D0 

* *X2**2.0D0+al3*Tau(2))/deta + 2.0D0*al3*(al2-a22)* 
* (al3*(a22*(2.0D0*X2+X4)*X4+al2*X2**2.0D0) 
* +a22*Tau(l)-al2*Tau(2))/deta**2.0D0 

f34=((al2-a22)*(al2*(2.0D0*X2+X4)*X4+al1*X2**2.0D0)-al3**2.0D0 
& *((X2+X4)**2.0D0+X2**2.0D0)+al3*(2.0D0*Tau(2)-Tau(l)))/deta 
& -2.0D0*al3*(al2-a22)*(al3*(al2*(2.0D0*X2+X4)*X4 
& +all*X2**2.0D0)+al2*Tau(l)-all*Tau(2))/deta**2.0D0 

f42=-2.0D0*al3*a22*(X2+X4)/deta 

f44=2.0D0*al3*al2*(X2+X4)/deta 
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F(l) = Z*X2 
F(2) = Z*(al3*(a22*(2.0D2*X2+X4)*X4+al2*X2**2.0D0) 

& +a22*Tau(l)-al2*Tau(2))/deta 

F(3) = Z*X4 

F(4) = Z*(-al3*(al2*(2.0D2*X2+X4)*X4+all*X2**2.0D0) 
& -al2*Tau(l)+all*Tau(2))/deta 

F(5) = O.ODO 
F(6) = -Z*(-Pl+P2*f22+P4*f24) 
F(7) = -Z*(P2*f32+P4*f34) 
F(8) = -Z*(-P3+P2*f42+P4*f44) 
F(9) = O.ODO 
RETURN 

C END OF FDIF 
END 

SUBROUTINE XOT(T.X) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION X(5) 

C 
C Case 1 

X(l) = 0.975D0 
X(2) = O.ODO 
X(3) = O.ODO 
X(4) = O.ODO 
X(5) = -0.456692 
X(6) = -0.298622 
X(7) = -0.093548 
X(8) = -0.074258 
X(9) = 1.083378 

c Case 2 
c X(l) = 0.76 
c X(2) = O.ODO 
c X(3) = 0.2618 
c X(4) = O.ODO 
c X(5) = -0.534711 
c X(6) = -0.310833 
c X(7) = -0.117210 
c X(8) = -0.07799 
c X(9) = 1.023704 
c 
c Case 3 
c X(l) = 0.376 
c X(2) = O.ODO 
c X(3) = O.ODO 
c X(4) = O.ODO 
c X(5) = -0.534711 
c X(6) = -0.310833 
c X(7) = -0.117210 
c X(8) = -0.07799 
c X(9) = 1.233072 
c 
c Case 4 
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c X(l) 0.8 
c X(2) = O.ODO 
c X(3) = 0.2 
c X(4) = O.ODO 
c X(5) -0.534711 
c X(6) = -0.310833 
c X(7) = -0.117210 
c X(8) = -0.07799 
c X(9) = 1.620396 

RETURN 
C END OF XOT 

END 

SUBROUTINE G(N,XA,XB,FG,DGA,DGB) 
c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION XA(N),XB(N),FG(N),DGA(N,N),DGB(N,N) 

C 
DO 1100 I = 1 , N 
DO 1100 J = 1 , N 

DGA(I.J) = O.DO 
DGB(I.J) = O.DO 

1100 CONTINUE 
DGA(1,1) = 1 DO 
DGA(2,2) = 1 DO 
DGA(3,3) = 1 DO 
DGA(4,4) = 1 DO 
DGB(1,1) = 1 DO 
DGB(2,2) = 1 DO 
DGB(3,3) = 1 DO 
DGB(4,4) = 1 DO 

C Case 1 
FG(1) = XA(1) - 0.975D0 
FG(2) = XA(2) 
FG(3) = XA(3) 
FG(4) = XA(4) 
FG(5) = XB(1) 
FG(6) = XB(2) 
FG(7) = XB(3) 
FG(8) = XB(4) 

C Case 2 
C FG(1) = XA(1) - 0.76D0 
C FG(2) = XA(2) 
C FG(3) = XA(3)- 0.2618D0 
C FG(4) = XA(4) 
C FG(5) = XB(1) 
C FG(6) = XB(2) 
C FG(7) = XB(3) 
C FG(8) = XB(4) 
C Case 3 
C FG(1) = XA(1) - 0.376D0 
C FG(2) = XA(2) 
C FG(3) = XA(3) 
C FG(4) = XA(4) 
C FG(5) = XB(1) 
C FG(6) = XB(2) 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

FG(7) = XB(3) 
FG(8) = XB(4) 

Case 4 
FG(1) = XA(1) - 0.8D0 
FG(2) = XA(2) 
FG(3) = XA(3)- 0.2D0 
FG(4) = XA(4) 
FG(5) = XB(1) 
FG(6) = XB(2) 
FG(7) = XB(3) 
FG(8) = XB(4) 

C 
RETURN 
END OF G 
END 

A.9 S-function of Two-link Revolute Manipulator 
vx/x/x/x/x/x/x/x/x/x/x/x/x/x/.% 
'/, File name: TLRPMsimfun.m % 
mx/x/x/x/x/x/x/x/x/x/x/x/x/:/. 
% Chapter 6 

7. This is the s-function of two-link planar revolute manipulator 

function[sys,xO]=robotTLRPM(t,x,u,flag,xOl,x02,x03,x04) 

if abs(flag)==l 
7. physical parameters for Case 1 and Case 2 
7.11=0.4; */. length of the link 1 
'/.lcl=ll/2; 
*/.12=0.25; 7. length of the link 2 
7.1c2=12/2; 
7jnl=29.58; 7. mass of the first link 
7jn2=15.00; 7. mass of the second link 
7,11=0.416739; 7. mass moment of inertia of the linkl 
7.12=0.205625; 7. mass moment of inertia of the link2 
7.M=6.0; 7. mass of end effector and load 
7,ulmax=25; 7. maximum torque for link 1 
7,u2max=9; 7. maximum torque for link 2 
7. physical parameters for Case 3 
7.11=0.4; 7. length of the link 1 
7.1cl=ll/2; 
7.12=0.25; 7. length of the link 2 
7.1c2=12/2; 
%ml=0.245; % mass of the first link 
7jn2=0.15315; 7. mass of the second link 
7.11=3.2688e-3; 7. mass moment of inertia of the linkl 
7.12=0.7986e-3; % mass moment of inertia of the link2 
7.M=0.5; 7. mass of end effector and load 
7.ulmax=0.25; % maximum torque for link 1 
7.u2max=0.1; % maximum torque for link 2 

7. physical parameters for Case 4 

11=1.0; 7, length of the link 1 
lcl=ll/2; 
12=0.625; '/. length of the link 2 
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lc2=12/2; 
ml=0.61261; '/. mass of the first link 
m2=0.38288; '/. mass of the second link 
11=51.0547e-3; 7. mass moment of inertia of the linkl 
12=12.4660e-3; 7. mass moment of inertia of the link2 
M=1.25; 7. mass of end effector and load 
ulmax=3.90; 7. maximum torque for link 1 
u2max=1.56; 7. maximum torque for link 2 

cl=Il+ml*lcl-2+(m2+M)*ll~2; 
c2=I2+m2*lc2~2+M*12-2; 
c3=m2*ll*lc2+M*ll*12; 

a=[x(2); 
(c2*(u(l)-u(2)+c3*(x(2)+x(4))-2*sin(x(3)))-c3*(u(2) 
-c3*(x(2)-2)*sin(x(3)))*cos(x(3)))/(cl*c2-c3-2*(cos(x(3)))-2); 
x(4); 
((cl+c3*cos(x(3)))*(u(2)-c3*x(2)-2*sin(x(3))) 
-(c2+c3*cos(x(3)))*(u(l)-u(2)+c3*(x(2)+x(4))-2*sin(x(3)))) 
/(cl*c2-c3-2*(cos(x(3)))~2)] ; 

sys=a; 

elseif abs(flag)==3 

sys=x; 

elseif abs(flag)==0 

sys=[4.0,0.0,4.0,2.0,0.0,1.0]; 
x0(l)=x01; 
x0(2)=x02; 
x0(3)=x03; 
x0(4)=x04; 
else 
sys=[] ; 
end 

A. 10 S-function of Zero-net-work Controller for Two-link Revolute Manipulator 
mx/x/x/x/x/x/xmvx/x/x/x/x/. 
7 . File name: ZWcontroller.m 7 , 
vx/x/x/x/x/x/x/x/x/x/x/x/x/xa 
'/. Chapter 6 
7. This is the s-function 
7. used for generating the controller inputs 
7. of two link planar revolute manipulator. 
function[sys,xO,str,ts]=ZWcontroller(t,control,Q,flag,qisw,q2sw) 
7. physical parameters for Case 1 and Case 2 
11=0.4; 7. length of the link 1 
lcl=ll/2; 
12=0.25; 7. length of the link 2 
lc2=12/2; 
ml=29.58; 7. mass of the first link 
m2=15.00; 7. mass of the second link 
11=0.416739; 7. mass moment of inertia of the linkl 
12=0.205625; V. mass moment of inertia of the link2 
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M=6.0; 7. mass of end effector and load 
ulmax=25; 7. maximum torque for link 1 
u2max=9; 7. maximum torque for link 2 

7. physical parameters for Case 3 
7.11=0.4; 7. length of the link 1 
7.1cl=ll/2; 
7.12=0.25; 7. length of the link 2 
7.1c2=12/2; 
%ml=0.245; 7. mass of the first link 
7«m2=0.15315; 7. mass of the second link 
7.11=3.2688e-3; 7. mass moment of inertia of the linki 
7.12=0.7986e-3; 7. mass moment of inertia of the link2 
7.M=0.5; 7. mass of end effector and load 
7.ulmax=0.25; 7. maximum torque for link 1 
7.u2max=0.1; 7. maximum torque for link 2 

7. physical parameters for Case 4 

7.11=1.0; 7. length of the link 1 
7.1cl=ll/2; 
7.12=0.625; 7. length of the link 2 
7.1c2=12/2; 
7.ml=0.61261; 7. mass of the first link 
7.m2=0.38288; 7. mass of the second link 
7.11=51.0547e-3; 7. mass moment of inertia of the linki 
7.12=12.4660e-3; 7. mass moment of inertia of the link2 
7.M=1.25; 7. mass of end effector and load 
7.ulmax=3.90; 7. maximum torque for link 1 
7.u2max=l. 56; 7. maximum torque for link 2 

error=0.0001; 7. final position error 

cl=Il+ml*lcl-2+(m2+M)*ll"2; 
c2=I2+m2*lc2-2+M*12_2; 
c3=m2*ll*lc2+H*ll*12; 

switch flag, 
vx/x/x/x/x/x/x/x/:/. 
7. Initialization 7. 
vx/x/x/x/x/x/x/xa 
7. Initialize the states, sample times, and state ordering strings 
case 0 

[sys,x0,str,ts]=mdlInitializeSizes; 

7X/X/XIX/XI. 
7. Outputs 7. 
'IXIXIXIXIXI. 
7. Return the outputs of the S-function block, 
case 3 
sys=mdl0utputs(t,control,Q,uimax,u2max,cl,c2,c3,error,qlsw,q2sw) 

v/x/x/x/x/x/x/x/xa 
7. Unhandled flags 7. 
v/x/x/x/x/x/x/x/xa 
7. There are no termination tasks (flag=9) to be handled. 
7. Also, there are no continuous or discrete states, 
7. so flags 1,2, and 4 are not used, so return an emptyu 
7. matrix 
case { 1, 2, 4, 9 } 
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sys=[] ; 
v:///://///:/:/:///:///x///:/:/:/:/:/:/:///;///////////////:///:/.v.•/. 
'/. Unexpected flags (error handling)'/, 
v.r/.y.y.y.v.v.y.y.y.y.y.v//.v.%v//.r/.v.y.v.,/.,/.'/.y.,/.,/.'/.,/.y.,/.,/.y. 
'/, Return an error message for unhandled flag values, 
otherwise 

error(['Unhandled flag = ',num2str(flag)]); 
end 

% end timestwo 

*/. 
•/. =========================== ============= ======= 

y, mdllnitializeSizes 
'/, Return the sizes, initial conditions, and sample times for the S-function. 
•/. ================ ============== ========= 
function [sys,x0,str,ts] = mdllnitializeSizes() 

sizes = simsizes; 
sizes NumCont St at e s = 0 
sizes NumDisestates = 0 
sizes NumOutputs = 2 
sizes Numlnputs = 4 
sizes DirFeedthrough = 1 
sizes NumSampleTimes = 1 
sys = simsizes(sizes, ; 
str = • ; 
xO = • ; 

has direct feedthrough 

ts = [-1 0]; % inherited sample time 
'/, end mdllnitializeSizes 

*/. 
•/,==, ========================= =========== == 

V. mdlOutputs 
7, Return the output vector for the S-function 
•/============= = = = = = = = = = = = = = = = = = = = = = = =========== 
•/. 
function sys = mdlOutputs(t,control,Q,ulmax,u2max,cl,c2,c3.error,qisw,q2sw) 

Q(l) is position of linkl 
'/• Q(3) is position of link2 
if Q(l)>qlsw 

control(1)= - ulmax; 
else 

control(1) = ulmax; 
end 

if Q(3)>q2sw 
control(2)= - u2max; 

else 
control(2)= u2max; 

end 

if abs(Q(1)<=error)feabs(Q(3)<=error) 
'/.turn on PD controller 
*/. Kp=100; 
'/. Kd=20; 
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7. control(l)=-Kp*Q(l)-Kd*Q(2); 
'/. control(2)=-Kp*Q(3)-Kd*q(4) ; 
control(1)=0; 
control(2)=0; 

elseif abs(Q(l)<=error)&abs(Q(3)>error) 
control(l)=(c2+c3*cos(Q(3)))*control(2)/c2-c3*sin(Q(3))*Q(4)-2; 

elseif abs(Q(l)>error)&abs(Q(3)<=error) 
control(2)=control(l)*(c2+c3)/(cl+c2+c3*2); 

end 

sys = [control(l); 
control(2)]; 

7. end mdlOutputs 

A.11 S-function of Proportional and Derivative (PD) Controller for Two-link Rev­
olute Manipulator 

v//////://///://///:/.•/.•/.•/.'/.7.'/.•/.•/.•/.•/.,/.7.•/.•/.•/.•/.•/.7.•/. 
% File name: PDcontroller.m 7, 
7//:/:/;/:///:/://///://///.y:/.y.7.7.7.7.y.7.7.y.7.7.7.7.7. 
7. Chapter 6 
7. This is the s-function 
7. used for generating the PD control inputs 
7. for two-link planar revolute manipulator. 
function[sys,x0,str,ts]=MTcontroller(t,control,Q,flag,kp,kd) 

switch flag, 
7X/X/.7X/X/.7X/X/X/.7. 
7, Initialization 7. 
7X/X/X/X/X/X/X/X/.7. 
7. Initialize the states, sample times, and state ordering strings, 
case 0 

[sys,xO,str,ts]=mdlInitializeSizes; 
7X/X/X/X/X/. 
7. Outputs 7. 
7X/X/X/X/X/. 
7. Return the outputs of the S-function block, 
case 3 
sys=mdlOutputs(t,control,Q,kp,kd); 

7X/X/X/X/X/X/X/X/X/. 
7« Unhandled flags 7. 
7X/X/X/X/X/X/X/X/X/. 
7. There are no termination tasks (flag=9) to be handled. 
7o Also, there are no continuous or discrete states, 
7. so flags 1,2, and 4 are not used, so return an emptyu 
7. matrix 
case { 1, 2, 4, 9 } 

sys=[] ; 

7:///:/.7//.7.y.7.y:/.7.y////:///://///:/:///:/:/.7.7.7.7.7.7.7.7.7.y.7. 
7. Unexpected flags (error handling)7. 
7//////////:///:/://///:///.7:///://///:/:/:/://///.77.7.7.7.7.7.7.7.7. 
7. Return an error message for unhandled flag values, 
otherwise 

error(['Unhandled flag = ',num2str(flag)]); 
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end 

end timestwo 
•/. 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

'/. mdllnitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
y=======================================m 

function [sys,xO,str,ts] = mdllnitializeSizesO 

sizes = simsizes; 
sizes NumContStates = 0 
sizes NumDiscStates = 0 
sizes NumOutputs = 2 
sizes Numlnputs = 4 
sizes DirFeedthrough = 1 
sizes NumSampleTimes = 1 

7. has direct feedthrough 

sys = simsizes(sizes); 
str = [] ; 
xO = []; 
ts = [-1 0] ; 7. inherited sample time 

7. end mdllnitializeSizes 
*/. 
%==================================== 

% mdlOutputs 
7. Return the output vector for the S-function 
•/. == 
7. 
function sys = mdlOutputs(t,control,Q,kp,kd) 
7. turn on PD controller 
control(l)=-kp*q(l)-kd*Q(2); 
control(2)=-kp*q(3)-kd*q(4); 

sys = [control(l); 
control(2)]; 

% end mdlOutputs 
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Subroutines Used in This Thesis 

B . l Subroutine MUSN for Solving Nonlinear T P B V P 

Subroutine MUSN is written in FORTRAN 77 and is available 
through Netlib repository (http://www.netlib.org/). 
The Netlib repository contains freely available software, 
documents, and databases of interest to the numerical, 
scientific computing, and other communities. 
The repository is maintained by AT&T Bell Laboratories, 
the University of Tennessee and Oak Ridge National Laboratory, 
and by colleagues world-wide. The collection is replicated 1 

at several sites around the world, automatically synchronized, ! 
to provide reliable and network efficient service to the ! 
global community. 

MUSN 
**************** 
SPECIFICATION MUSN 
**************** 

SUBROUTINE MUSN(FDIF,YOT,G,N,A,B,ER,TI,NTI,NRTI,AMP,ITLIM,Y,Q,U, 
1 NU,D,PHI,KP,W,LW,IW,LIW,WG,LUG,IERROR) 

C 
C DOUBLE PRECISION A,B,ER(5),TI(NTI),AMP,Y(N,NTI),Q(N,N,NTI), 
C 1 U(NU,NTI),D(N,NTI),PHI(NU,NTI),W(LW),WG(LWG) 
C INTEGER N,NTI,NRTI,ITLIM,NU,KP,LW,IW(LIW),LIW,LWG,IERROR 
C EXTERNAL FDIF,YOT,G 
**************** t 
Purpose 
**************** 

MUSN solves the nonlinear two-point BVP 

dy(t)/dt = f(t,y) A <= t <= B or B <= t <= A 

g(y(a),y(b)) = 0 , 

where y(t) and f(t,y) are N-vector functions. 

**************** 
Method 
**************** 

MUSN uses a multiple shooting method for computing an approximate solution of I 
the BVP at specified output points, which are also used as shooting points. 
If necessary, more output points (shooting points) are inserted during computâ  
tion. 
For integration a fixed grid is used. Output points are also grid points and th 
minimum number of grid points between two output points is 5. 

161 

http://www.netlib.org/
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**************** 
Parameters 

FDIF SUBROUTINE, supplied by the user with specification: 

SUBROUTINE FDIF(T,Y,F) 
DOUBLE PRECISION T,Y(N),F(N) 

where N is the order of the system. FDIF must evaluate the righthand-
side of the differential equation, f(t,y) for t=T and y=Y and places the 
result in F(l) F(N) . 
FDIF must be declared as EXTERNAL in the (sub)program from which MUSN is 
called. 

YOT SUBROUTINE, supplied by the user with specification 

SUBROUTINE .YOT(T,Y) 
DOUBLE PRECISION T,Y(N) 

where N is the order of the system. YOT must evaluate the initial appro­
ximation yO(t) of the solution, for any value t=T and place the result 
in Y(l),...,Y(N). 
YOT must be declared as EXTERNAL in the (sub)program from which MUSN is 
called. 

G SUBROUTINE, supplied by the user with specification 

SUBROUTINE G(N,YA,YB,FG,DGA,DGB) 
DOUBLE PRECISION YA(N),YB(N),FG(N),DGA(N,N),DGB(N,N) 
where N is the order of the system. G must evaluate g(y(A),y(B)) for 
y(A)=YA and y(B)=YB and place the result in FG(1),...,FG(N). Moreover G 
must evaluate the Jacobians 

dg(u,v)/du for u = YA and dg(u,v)/dv for v = YB 

and place the result in the arrays DGA anb DGB respectively. 
G must be declared as EXTERNAL in the (sub)program from which MUSN is 
called. 

N INTEGER, the order of the system. 
Unchanged on exit. 

A,B DOUBLE PRECISION, the two boundary points. 
Unchanged on exit. 

ER DOUBLE PRECISION array of dimension (5). 
On entry: 
ER(1) must contain the required tolerance for solving the differential 

equation. 
ER(2) must contain the initial tolerance with which a first aproximate 

solution will be computed. This approximation is then used as an 
initial approximation for the computation of an solution with an 
tolerance ER(2)*ER(2) and so on until the required tolerance is 
reached. As an initial tolerance max(ER(l),min(ER(2),1.d-2)) will 
be used. 

ER(3) must contain the machine precision. 
On exit: 
ER(1), ER(2) and ER(3) are unchanged. 
ER(4) contains an estimation of the condition number of the BVP. 
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ER(5) contains an estimated error amplification factor. 
TI DOUBLE PRECISION array of dimension (NTI). 

On entry : if NRTI = 1 TI must contain the output points in strict 
monotone order: A=TI(1) < TI(2) <...< TI(n)=B. 

On exit TI(j), j=l,...,NRTI contains the output points. 

NTI INTEGER, NTI is one of the dimension of TI, X, S, Q, U en PHI. 
NTI must be greater than or equal to the total number of necessary 
output points +1 (i.e. if the entry value for NRTI > 1, NTI may be 
equal to the entry value of NRTI + 1). 
Unchanged on exit. 

There are 3 ways to 
NRTI INTEGER. 

On entry NRTI is used to specify the output points, 
specify the output points: 
1) NRTI = 0, the output points are determined automatically using AMP. 
2) NRTI = 1, the output points are supplied by the user in the array TI. 
3) NRTI > 1, the subroutine computes the (NRTI+1) output points TKk) by 

TI(k) = A + (k-1) * (B - A) / NRTI ; 
so TI(1) = A and TI(NRTI+1) = B. 

Depending on the allowed increment between two succesive output points, 
more output points may be inserted in cases 2 and 3. 
On exit NRTI contains the total number of output points. 

AMP DOUBLE PRECISION. 
On entry AMP must contain the allowed increment between two output 
points. AMP is used to determine output points and to assure that the 
increment between two output points is at most AMP*AMP. A small value 
for AMP may result in a large number of output points. 
Unless 1 < AMP < .25 * sqrt(ER(1)/ER(3)) the default value 
.25 * sqrt(ER(l)/ER(3)) is used. 
Unchanged on exit. 

ITLIM INTEGER, maximum number of allowed iteration. 

Y DOUBLE PRECISION array of dimension (N.NTI). 
On exit Y(.,i), i=l,...,NRTI contains the solution at the output points 
TI(i), i=l,...,NRTI. 

Q DOUBLE PRECISION array of dimension (N,N,NTI). 
On exit Q(.,.,i), i=l,...,NRTI contains the orthogonal factors of the 
incremental recursion. 

U DOUBLE PRECISION array of dimension (NU.NTI). 
On exit U(.,i), i=2,...,NRTI contains the upper triangular factors of 
the incremental recursion. The elements are stored column wise, the j-th 
column of U is stored in U(nj+1,.),U(nj+2,.),...,U(nj+j,.), where 
= (j-D * j / 2. 

NU INTEGER, NU is one of the dimension of U and PHI. 
NU must be greater than or equal to N * (N+l) / 2. 
Unchanged on exit. 

D DOUBLE PRECISION array of dimension (N.NTI). 
On exit D(.,i) i=2,...,NRTI contain the inhomogeneous terms of the 
incremental recursion. 

PHI DOUBLE PRECISION array of dimension (NU.NTI). 
On exit PHI(.,i), i=l NRTI contains the fundamental solution of the 
incremental recursion. The fundamental solution is upper triangular and 
stored in the same way as the upper triangular U. 
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KP INTEGER, 
On exit KP contains the dimension of the increasing solution space. 

W DOUBLE PRECISION array of dimension (LW). 
Used as work space. 

LW INTEGER. . 
LW is the dimension of W. LW >= 7*N + 3*N*NTI + 4*N*N . 

IW INTEGER array of dimension (LIW). 
Used as work space. 

LIW INTEGER. 
LIW is the dimension of IW. LIW >= 3*N + NTI . 

WG DOUBLE PRECISION array of dimension (LWG). 
WG is used to store the integration grid points. 

LWG INTEGER. 
LWG is the dimension of WG. LWG >= (total number of grid points) / 5. 
The minimum number of grid points between 2 succesive output points is 
5, so the minimum value for LWG is the number of actually used output 
points. Initially a crude estimate for LWG has to be made (see also 
IERROR 219). 

IERROR INTEGER, error indicator. 
On entry : if IERR0R=1, diagnostics will be printed during computation. 
On exit : if IERROR = 0 no errors have been detected. 

**************** 
Error indicators 

IERROR 

0 No errors detected. 

101 INPUT error: either ER(1) < 0 or ER(2) < 0 or ER(3) < 0. 
TERMINAL ERROR. 

105 INPUT error: either N < 1 or NRTI < 0 or NTI < 3 or NU < N*(N+l)/2 or 
A=B. 
TERMINAL ERROR. 

106 INPUT error: either LW < 7*N + 3*N*NTI + 4*N*N or LIW < 3*N + NTI. 
TERMINAL ERROR. 

120 INPUT error: the routine was called with NRTI=1, but the given output 
points in the array TI are not in strict monotone order. 
TERMINAL ERROR. 

121 INPUT error: the routine was called with NRTI=1, but the first given 
output point or the last output point is not equal to A or B. 
TERMINAL ERROR. 

122 INPUT error: the value of NTI is too small; the number of necessary 
output points is greater than NTI-1. 
TERMINAL ERROR. 
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123 INPUT error: the value of LWG is less than the number of output points. 
Increase the dimension of the array WG and the value of LWG. 
TERMINAL ERROR. 

216 This indicates that during integration the requested accuracy could not 
be achieved. User must increase error tolerance. 
TERMINAL ERROR. 

219 This indicates that the routine needs more space to store the integra­
tion grid point. An estimate for the required workspace (i.e. the value 
for LWG) is given. 
TERMINAL ERROR. 

230 This indicates that Newton failed to converge. 
TERMINAL ERROR. 

231 This indicates that the number of iteration has become greater than 
ITLIM. 
TERMINAL ERROR. 

240 This indicates that the global error is probably larger than the error 
tolerance due to instabilities in the system. Most likely the system is 
ill-conditioned. Output value is the estimated error amplification 
factor. 
WARNING ERROR. 

250 This indicate that one of the upper triangular matrices U is singular. 
TERMINAL ERROR. 

260 This indicates that the problem is probably too ill-conditioned with 
respect to the BC. 
TERMINAL ERROR. 

**************** 
Auxiliary routines 
**************** 
Calls are made to the MUS library routines: DBCMAV, DCHINC, DCROUT, DCSAOJ, 
DCSHPO, DFQUS, DFUNRC, DGTUR, DINPRO, DINTCH, DJINGX, DKPCH, DLUDEC, DMATVC, 
DNEWPO, DPSR, DQEVAL, DQUDEC, DRKF1S, DRKFGG, DRKFGS, DRKFMS, DSBVP, DSOLDE, 
DSOLUP, DSORTD, DTAMVC, ERRHAN. 

Remarks 
**************** 

MUSN is written by R.M.M. Mattheij and G.W.M. Staarink. 
Last update: 02-15-88. 
**************** 
Example of the use of MUSN 
**************** 

Consider the differential equation: 

u' = .5 u*(w-u) / v 
v' = -0.5 (w-u) 
w' = (0.9 - 1000 (w-y) - 0.5 w(w-u)) / x 
x' = 0.5 (w-u) 
y' = -100 (y-w) 
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and the boundary conditions: 
u(0) = v(0) = w(0) = 1 
x(O) = -10 
w(l) = y(l) 

As an initial guess for the solution we take: 

u(t) = 1 ; v(t) = 1 ; x(t) = -10 ; 
w(t) = -4.5 t*t + 8.91 t + 1 ; y(t) = -4.5 t*t + 9 t + 0.91 

The next program computes and prints the solution for t=0, 0.1,0.2,...,1. 
This program has been run on a Olivetti M24 PC, operating under MS-DOS V2.ll, 
using the Olivetti MS-Fortran V3.13 R1.0 compiler and the MS Object Linker V2.01 
(large). 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION ER(5),TI(12),X(5,12),Q(5,5,12),U(15,12),D(5,12), 

1 PHIREC(15,12),W(315),WGR(20) 
INTEGER IU(27) 
EXTERNAL FDIF,YOT,G 

C 
C SETTING OF THE INPUT PARAMETERS 
C 

N = 5 
NU = 15 
NTI = 12 
LW = 315 
LIW = 27 
ER(3) = 1.1D-15 
LWG = 20 
ER(1) = l.D-6 
ER(2) = l.D-2 
A = O.DO 
B = 1.D0 
NRTI = 10 
AMP = 100 
ITLIM = 20 
CALL MUSN(FDIF,YOT,G,N,A,B,ER,TI,NTI,NRTI,AMP,ITLIM,X,Q,U,NU,D, 

1 PHIREC,KPART,W,LW,IW,LIW,WGR,LWG,IERROR) 

END 
SUBROUTINE FDIF(T,Y,F) 

c 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION Y(5),F(5) 

C 
Y3MY1 = Y(3) - Y(l) 
Y3MY5 = Y(3) - Y(5) 
F(l) = 0.5D0 * Y(l) * Y3MY1 / Y(2) 
F(2) = - 0.5D0 * Y3MY1 
F(3) = (0.9D0 - 1.D3 * Y3MY5 - 0.5D0 * Y(3) * Y3MY1) / Y(4) 
F(4) = 0.5D0 * Y3MY1 
F(5) = 1.D2 * Y3MY5 
RETURN 

C END OF FDIF 
END 
SUBROUTINE YOT(T.X) 

http://V2.ll
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Q 
c 

IMPLICIT.DOUBLE PRECISION (A-H.O-Z) 
DIMENSION X(5) 

C 
X(l) = l.DO 
X(2) = l.DO 
X(4) = -10.DO 
X(3) = - 4.5D0*T*T + 8.91D0 * T + l.DO 
X(5) = - 4.5D0*T*T + 9.DO * T + 0.91D0 
RETURN 

C END OF YOT 
END 
SUBROUTINE G(N,XA,XB,FG,DGA,DGB) 

C 
IMPLICIT DOUBLE PRECISION (A-H.O-Z) 
DIMENSION XA(N),XB(N),FG(N),DGA(N,N),DGB(N,N) 

C 
DO 1100 I = 1 , N 
DO 1100 J = 1 , N 

DGA(I.J) = O.DO 
DGB(I.J) = O.DO 

1100 CONTINUE 
DGA(1,1) = 1-DO 
DGA(2,2) = l.DO 
DGA(3,3) = l.DO 
DGA(4,4) = l.DO 
DGB(5,3) = l.DO 
DGB(5,5) = -l.DO 
FG(1) = XA(1) - l.DO 
FG(2) = XA(2) - l.DO 
FG(3) = XA(3) - l.DO 
FG(4) = XA(4) + 10.DO 
FG(5) = XB(3) - XB(5) 
RETURN 

C END OF G 
END 

B.2 Subroutine DDASS for Solving Nonlinear IVP 
C This is FORTRAN subroutine used to solve ordinary differential equations 
C with initial conditions. 
C It is written in FORTRAN 77 and is available through Netlib repository 
C (http://www.netlib.org/). 
C It can direct use in the SUN station. When use PC change the 
C subroutine "dlmach" at the end of the program. 

SUBROUTINE DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL, 
+ IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC) 

C***BEGIN PROLOGUE DDASSL 
C***PURPOSE This code solves a system of differential/algebraic 
C equations of the form G(T,Y,YPRIME) = 0. 
C***TYPE DOUBLE PRECISION (SDASSL-S, DDASSL-D) 
C***KEYWORDS DIFFERENTIAL/ALGEBRAIC, BACKWARD DIFFERENTIATION FORMULAS, 
C IMPLICIT DIFFERENTIAL SYSTEMS 
C***DESCRIPTION 
C***ROUTINES CALLED D1MACH, DDAINI, DDANRM, DDASTP, DDATRP, DDAWTS, 
C XERMSG 

http://www.netlib.org/


Appendix B. Subroutines Used in This Thesis 

•Usage: 
EXTERNAL RES, JAC 
INTEGER NEQ, INFO(N), IDID, LRW, LIW, IWORK(LIW), IPAR 
DOUBLE PRECISION T, Y(NEQ), YPRIME(NEQ), TOUT, RTOL, ATOL, 

* RWORK(LRW), RPAR 

CALL DDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL, 
* IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC) 

*Arguments: 
(In the following, all real arrays should be type DOUBLE PRECISION.) 
RES:EXT This is a subroutine which you provide to define the 

differential/algebraic system. 
NEQ:IN This is the number of equations to be solved. 

T:IN0UT This is the current value of the independent variable. 

Y(*):IN0UT This array contains the solution components at T. 

YPRIME(*):INOUT This array contains the derivatives of the solution 
components at T. 

TOUT:IN This is a point at which a solution is desired. 
INFO(N):IN The basic task of the code is to solve the system from T 

to TOUT and return an answer at TOUT. INFO is an integer 
array which is used to communicate exactly how you want 
this task to be carried out. (See below for details.) 
N must be greater than or equal to 15. 

RTOL,ATOL:INOUT These quantities represent relative and absolute 
error tolerances which you provide to indicate how 
accurately you wish the solution to be computed. You 
may choose them to be both scalars or else both vectors. 
Caution: In Fortran 77, a scalar is not the same as an 

array of length 1. Some compilers may object 
to using scalars for RTOL,ATOL. 

IDID:OUT This scalar quantity is an indicator reporting what the 
code did. You must monitor this integer variable to 
decide what action to take next. 

RWORK:WORK A real work array of length LRW which provides the 
code with needed storage space. 

LRW:IN The length of RWORK. (See below for required length.) 
IWORK:WORK An integer work array of length LIW which probides the 

code with needed storage space. 

LIW:IN The length of IWORK. (See below for required length.) 
RPAR,IPAR:IN These are real and integer parameter arrays which 

you can use for communication between your calling 
program and the RES subroutine (and the JAC subroutine) 

JAC:EXT This is the name of a subroutine which you may choose 
to provide for defining a matrix of partial derivatives 
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C described below. 
C 
C Quantities which may be altered by DDASSL are: 
C T, Y(*), YPRIME(*), INFO(l), RTOL, ATOL, 
C IDID, RW0RK(*) AND IWORK(*) 
C 
C *Description 
C 
C Subroutine DDASSL uses the backward differentiation formulas of 
C orders one through five to solve a system of the above form for Y and 
C YPRIME. Values for Y and YPRIME at the initial time must be given as 
C input. These values must be consistent, (that is, if T,Y,YPRIME are 
C the given initial values, they must satisfy G(T,Y,YPRIME) = 0 . ) . The 
C subroutine solves the system from T to TOUT. It is easy to continue 
C the solution to get results at additional TOUT. This is the interval 
C mode of operation. Intermediate results can also be obtained easily 
C by using the intermediate-output capability. 
C 
C The following detailed description is divided into subsections: 
C 1. Input required for the first call to DDASSL. 
C 2. Output after any return from DDASSL. 
C 3. What to do to continue the integration. 
C 4. Error messages. 
C 
C 
C INPUT — WHAT TO DO ON THE FIRST CALL TO DDASSL 
C 
C The first call of the code is defined to be the start of each new 
C problem. Read through the descriptions of all the following items, 
C provide sufficient storage space for designated arrays, set 
C appropriate variables for the initialization of the problem, and 
C give information about how you want the problem to be solved. 
C 
C 
C RES — Provide a subroutine of the form 
C SUBROUTINE RES(T,Y,YPRIME,DELTA,IRES,RPAR,IPAR) 
C to define the system of differential/algebraic 
C equations which is to be solved. For the given values 
C of T,Y and YPRIME, the subroutine should 
C return the residual of the defferential/algebraic 
C system 
C DELTA = G(T,Y,YPRIME) 
C (DELTA(*) is a vector of length NEQ which is 
C output for RES.) 
C 
C Subroutine RES must not alter T,Y or YPRIME. 
C You must declare the name RES in an external 
C statement in your program that calls DDASSL. 
C You must dimension Y,YPRIME and DELTA in RES. 
C 
C IRES is an integer flag which is always equal to 
C zero on input. Subroutine RES should alter IRES 
C only if it encounters an illegal value of Y or 
C a stop condition. Set IRES = -1 if an input value 
C is illegal, and DDASSL will try to solve the problem 
C without getting IRES = -1. If IRES = -2, DDASSL 
C will return control to the calling program 
C with IDID = -11. 
C 
C RPAR and IPAR are real and integer parameter arrays which 
C you can use for communication between your calling program 
C and subroutine RES. They are not altered by DDASSL. If you 
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C do not need RPAR or IPAR, ignore these parameters by treat-
C ing them as dummy arguments. If you do choose to use them, 
C dimension them in your calling program and in RES as arrays 
C of appropriate length. 
C 
C NEQ — Set it to the number of differential equations. 
C (NEQ .GE. 1) 
C 
C T — Set it to the initial point of the integration. 
C T must be defined as a variable. 
C 
C Y(*) — Set this vector to the initial values of the NEQ solution 
C components at the initial point. You must dimension Y of 
C length at least NEQ in your calling program. 
C 
C YPRIME(*) — Set this vector to the initial values of the NEQ 
C first derivatives of the solution components at the initial 
C point. You must dimension YPRIME at least NEQ in your 
C calling program. If you do not know initial values of some 
C of the solution components, see the explanation of INFO(ll). 
C 
C TOUT — Set it to the first point at which a solution 
C is desired. You can not take TOUT = T. 
C integration either forward in T (TOUT .GT. T) or 
C backward in T (TOUT .LT. T) is permitted. 
C 
C The code advances the solution from T to TOUT using 
C step sizes which are automatically selected so as to 
C achieve the desired accuracy. If you wish, the code will 
C return with the solution and its derivative at 
C intermediate steps (intermediate-output mode) so that 
C you can monitor them, but you still must provide TOUT in 
C accord with the basic aim of the code. 
C 
C The first step taken by the code is a critical one 
C because it must reflect how fast the solution changes near 
C the initial point. The code automatically selects an 
C initial step size which is practically always suitable for 
C the problem. By using the fact that the code will not step 
C past TOUT in the first step, you could, if necessary, 
C restrict the length of the initial step size. 
C 
C For some problems it may not be permissible to integrate 
C past a point TSTOP because a discontinuity occurs there 
C or the solution or its derivative is not defined beyond 
C TSTOP. When you have declared a TSTOP point (SEE INFO(4) 
C and RWORK(D), you have told the code not to integrate 
C past TSTOP. In this case any TOUT beyond TSTOP is invalid 
C input. 
C 
C INF0(*) — Use the INFO array to give the code more details about 
C how you want your problem solved. This array should be 
C dimensioned of length 15, though DDASSL uses only the first 
C eleven entries. You must respond to all of the following 
C items, which are arranged as questions. The simplest use 
C of the code corresponds to answering all questions as yes, 
C i.e. setting all entries of INFO to 0. 
C 
C INF0(1) - This parameter enables the code to initialize 
C itself. You must set it to indicate the start of every 
C new problem. 
C 
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C **** Is this the first call for this problem ... 
C Yes - Set INFO(l) = 0 
C No - Not applicable here. 
C See below for continuation calls. **** 
C 
C INFO(2) - How much accuracy you want of your solution 
C is specified by the error tolerances RTOL and ATOL. 
C The simplest use is to take them both to be scalars. 
C To obtain more flexibility, they can both be vectors. 
C The code must be told your choice. 
C 
C **** Are both error tolerances RTOL, ATOL scalars ... 
C Yes - Set INF0(2) = 0 
C and input scalars for both RTOL and ATOL 
C No - Set INFO(2) = 1 
C and input arrays for both RTOL and ATOL **** 
C 
C INFO(3) - The code integrates from T in the direction 
C of TOUT by steps. If you wish, it will return the 
C computed solution and derivative at the next 
C intermediate step (the intermediate-output mode) or 
C TOUT, whichever comes first. This is a good way to 
C proceed if you want to see the behavior of the solution. 
C If you must have solutions at a great many specific 
C TOUT points, this code will compute them efficiently. 
C 
C **** Do you want the solution only at 
C TOUT (and not at the next intermediate step) ... 
C Yes - Set INF0(3) = 0 
C No - Set INF0(3) = 1 **** 
C 
C INF0(4) - To handle solutions at a great many specific 
C values TOUT efficiently, this code may integrate past 
C TOUT and interpolate to obtain the result at TOUT. 
C Sometimes it is not possible to integrate beyond some 
C point TSTOP because the equation changes there or it is 
C not defined past TSTOP. Then you must tell the code 
C not to go past. 
C 
C **** Can the integration be carried out without any 
C restrictions on the independent variable T ... 
C Yes - Set INF0(4)=O 
C No - Set INF0(4)=1 
C and define the stopping point TSTOP by 
C setting RWORK(1)=TSTOP **** 
C 
C INF0(5) - To solve differential/algebraic problems it is 
C necessary to use a matrix of partial derivatives of the 
C system of differential equations. If you do not 
C provide a subroutine to evaluate it analytically (see 
C description of the item JAC in the call list), it will 
C be approximated by numerical differencing in this code. 
C although it is less trouble for you to have the code 
C compute partial derivatives by numerical differencing, 
C the solution will be more reliable if you provide the 
C derivatives via JAC. Sometimes numerical differencing 
C is cheaper than evaluating derivatives in JAC and 
C sometimes it is not - this depends on your problem. 
C 
C **** Do you want the code to evaluate the partial 
C derivatives automatically by numerical differences ... 
C Yes - Set INFO(5)=0 
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C No - Set INF0(5)=1 
C and provide subroutine JAC for evaluating the 
C matrix of partial derivatives **** 
C 
C. INFO(6) - DDASSL will perform much better if the matrix of 
C partial derivatives, DG/DY + CJ*DG/DYPRIME, 
C (here CJ is a scalar determined by DDASSL) 
C is banded and the code is told this. In this 
C case, the storage needed will be greatly reduced, 
C numerical differencing will be performed much cheaper, 
C and a number of important algorithms will execute much 
C faster. The differential equation is said to have 
C half-bandwidths ML (lower) and MU (upper) if equation i 
C involves only unknowns Y(J) with 
C I-ML .LE. J .LE. I+MU 
C for all 1=1,2 NEQ. Thus, ML and MU are the widths 
C of the lower and upper parts of the band, respectively, 
C with the main diagonal being excluded. If you do not 
C indicate that the equation has a banded matrix of partial 
C derivatives, the code works with a full matrix of NEQ**2 
C elements (stored in the conventional way). Computations 
C with banded matrices cost less time and storage than with 
C full matrices if 2*ML+MU .LT. NEQ. If you tell the 
C code that the matrix of partial derivatives has a banded 
C structure and you want to provide subroutine JAC to 
C compute the partial derivatives, then you must be careful 
C to store the elements of the matrix in the special form 
C indicated in the description of JAC. 
C 
C **** Do you want to solve the problem using a full 
C (dense) matrix (and not a special banded 
C structure) ... 
C Yes - Set INFO(6)=0 
C No - Set INF0(6)=1 
C and provide the lower (ML) and upper (MU) 
C bandwidths by setting 
C IW0RK(1)=ML 
C IW0RK(2)=MU **** 
C 
C 
C INFO(7) — You can specify a maximum (absolute value of) 
C stepsize, so that the code 
C will avoid passing over very 
C large regions. 
C 
C **** Do you want the code to decide 
C on its own maximum stepsize? 
C Yes - Set INFO(7)=0 
C No - Set INFO(7)=1 
C and define HMAX by setting 
C RW0RK(2)=HMAX **** 
C 
C INFO(8) — Differential/algebraic problems 
C may occaisionally suffer from 
C severe scaling difficulties on the 
C first step. If you know a great deal 
C about the scaling of your problem, you can 
C help to alleviate this problem by 
C specifying an initial stepsize HO. 
C 
C **** Do you want the code to define 
C its own initial stepsize? 
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C Yes - Set INFO(8)=0 
C No - Set INF0(8)=1 
C and define HO by setting 
C RW0RK(3)=H0 **** 
C 
C INFO(9) — If storage is a severe problem, 
C you can save some locations by 
C restricting the maximum order MAXORD. 
C the default value is 5. for each 
C order decrease below 5, the code 
C requires NEQ fewer locations, however 
C it is likely to be slower. In any 
C case, you must have 1 .LE. MAXORD .LE. 5 
C **** Do you want the maximum order to 
C default to 5? 
C Yes - Set INFO(9)=0 
C No - Set INFO(9)=1 
C and define MAXORD by setting 
C IW0RK(3)=MAX0RD **** 
C 
C INFO(IO) —If you know that the solutions to your equations 
C will always be nonnegative, it may help to set this 
C parameter. However, it is probably best to 
C try the code without using this option first, 
C and only to use this option if that doesn't 
C work very well. 
C **** Do you want the code to solve the problem without 
C invoking any special nonnegativity constraints? 
C Yes - Set INF0(10)=0 
C No - Set INF0(10)=1 
C 
C INFO(ll) —DDASSL normally requires the initial T, 
C Y, and YPRIME to be consistent. That is, 
C you must have G(T,Y,YPRIME) = 0 at the initial 
C time. If you do not know the initial 
C derivative precisely, you can let DDASSL try 
C to compute it. 
C **** Are the initialHE INITIAL T, Y, YPRIME consistent? 
C Yes - Set INFO(ll) = 0 
C No - Set INFO(ll) = 1, 
C and set YPRIME to an initial approximation 
C to YPRIME. (If you have no idea what 
C YPRIME should be, set it to zero. Note 
C that the initial Y should be such 
C that there must exist a YPRIME so that 
C G(T,Y,YPRIME) = 0.) 
C 
C RTOL, ATOL — You must assign relative (RTOL) and absolute (ATOL 
C error tolerances to tell the code how accurately you 
C want the solution to be computed. They must be defined 
C as variables because the code may change them. You 
C have two choices — 
C Both RTOL and ATOL are scalars. (INF0(2)=O) 
C Both RTOL and ATOL are vectors. (INF0(2)=1) 
C in either case all components must be non-negative. 
C 
C The tolerances are used by the code in a local error 
C test at each step which requires roughly that 
C ' ABS(LOCAL ERROR) .LE. RT0L*ABS(Y)+AT0L 
C for each vector component. 
C (More specifically, a root-mean-square norm is used to 
C measure the size of vectors, and the error test uses the 



Appendix B. Subroutines Used in This Thesis 174 

C magnitude of the solution at the beginning of the step.) 
C 
C The true (global) error is the difference between the 
C true solution of the initial value problem and the 
C computed approximation. Practically all present day 
C codes, including this one, control the local error at 
C each step and do not even attempt to control the global 
C error directly. 
C Usually, but not always, the true accuracy of the 
C computed Y is comparable to the error tolerances. This 
C code will usually, but not always, deliver a more 
C accurate solution if you reduce the tolerances and 
C integrate again. By comparing two such solutions you 
C can get a fairly reliable idea of the true error in the 
C solution at the bigger tolerances. 
C 
C Setting AT0L=0. results in a pure relative error test on 
C that component. Setting RT0L=0. results in a pure 
C absolute error test on that component. A mixed test 
C with non-zero RTOL and ATQL corresponds roughly to a 
C relative error test when the solution component is much 
C bigger than ATOL and to an absolute error test when the 
C solution component is smaller than the threshhold ATOL. 
C 
C The code will not attempt to compute a solution at an 
C accuracy unreasonable for the machine being used. It will 
C advise you if you ask for too much accuracy and inform 
C you as to the maximum accuracy it believes possible. 
C 
C RW0RK(*) — Dimension this real work array of length LRW in your 
C calling program. 
C 
C LRW — Set it to the declared length of the RWORK array. 
C You must have 
C LRW .GE. 40+(HAXORD+4)*NEQ+NEQ**2 
C for the full (dense) JACOBIAN case (when INF0(6)=0), or 
C LRW .GE. 40+(MAX0RD+4)*NEQ+(2*ML+MU+l)*NEq 
C for the banded user-defined JACOBIAN case 
C (when INF0(5)=1 and INF0(6)=1), or 
C LRW .GE. 40+(MAX0RD+4)*NEQ+(2*ML+MU+l)*NEQ 
C +2*(NEQ/(ML+MU+1)+1) 
C for the banded finite-difference-generated JACOBIAN case 
C (when INF0(5)=0 and INF0(6)=1) 
C 
C IW0RK(*) — Dimension this integer work array of length LIW in 
C your calling program. 
C 
C LIW — Set it to the declared length of the IWORK array. 
C You must have LIW .GE. 20+NEQ 
C 
C RPAR, IPAR — These are parameter arrays, of real and integer 
C type, respectively. You can use them for communication 
C between your program that calls DDASSL and the 
C RES subroutine (and the JAC subroutine). They are not 
C altered by DDASSL. If you do not need RPAR or IPAR, 
C ignore these parameters by treating them as dummy 
C arguments. If you do choose to use them, dimension 
C them in your calling program and in RES (and in JAC) 
C as arrays of appropriate length. 
C 
C JAC — If you have set INF0(5)=0, you can ignore this parameter 
C by treating it as a dummy argument. Otherwise, you must 
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C provide a subroutine of the form 
C SUBROUTINE JAC(T,Y,YPRIME,PD.CJ,RPAR,IPAR) 
C to define the matrix of partial derivatives 
C PD=DG/DY+CJ*DG/DYPRIME 
C CJ is a scalar which is input to JAC. 
C For the given values of T,Y,YPRIME, the 
C subroutine must evaluate the non-zero partial 
C derivatives for each equation and each solution 
C component, and store these values in the 
C matrix PD. The elements of PD are set to zero 
C before each call to JAC so only non-zero elements 
C need to be defined. 
C 
C Subroutine JAC must not alter T,Y,(*),YPRIMEC*), or CJ. 
C You must declare the name JAC in an EXTERNAL statement in 
C your program that calls DDASSL. You must dimension Y, 
C YPRIME and PD in JAC. 
C 
C The way you must store the elements into the PD matrix 
C depends on the structure of the matrix which you 
C indicated by INFO(6). 
C *** INFO(6)=0 — Full (dense) matrix *** 
C Give PD a first dimension of NEQ. 
C When you evaluate the (non-zero) partial derivative 
C of equation I with respect to variable J, you must 
C store it in PD according to 
C PD(I,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)" 
C *** INFO(6)=1 — Banded JACOBIAN with ML lower and MU 
C upper diagonal bands (refer to INFO(6) description 
C of ML and MU) *** 
C Give PD a first dimension of 2*ML+MU+1. 
C when you evaluate the (non-zero) partial derivative 
C of equation I with respect to variable J, you must 
C store it in PD according to 
C IROW =I-J+ML+MU+1 
C PD(IR0W,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)" 
C 
C RPAR and IPAR are real and integer parameter arrays 
C which you can use for communication between your calling 
C program and your JACOBIAN subroutine JAC. They are not 
C altered by DDASSL. If you do not need RPAR or IPAR, 
C ignore these parameters by treating them as dummy 
C arguments. If you do choose to use them, dimension 
C them in your calling program and in JAC as arrays of 
C appropriate length. 
C 
C 
C OPTIONALLY REPLACEABLE NORM ROUTINE: C 
C DDASSL uses a weighted norm DDANRM to measure the size 
C of vectors such as the estimated error in each step. 
C A FUNCTION subprogram 
C DOUBLE PRECISION FUNCTION DDANRM(NEQ,V,WT,RPAR,IPAR) 
C DIMENSION V(NEQ),WT(NEQ) 
C is used to define this norm. Here, V is the vector 
C whose norm is to be computed, and WT is a vector of 
C weights. A DDANRM routine has been included with DDASSL 
C which computes the weighted root-mean-square norm 
C given by 
C DDANRM=SQRT((1/NEQ)*SUM(V(I)/WT(I))**2) 
C this norm is suitable for most problems. In some 
C special cases, it may be more convenient and/or 
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C efficient to define your own norm by writing a function 
C subprogram to be called instead of DDANRM. This should, 
C however, be attempted only after careful thought and 
C consideration. 
C 
C 
C OUTPUT — AFTER ANY RETURN FROM DDASSL ' 
C 
C The principal aim of the code is to return a computed solution at 
C TOUT, although it is also possible to obtain intermediate results 
C along the way. To find out whether the code achieved its goal 
C or if the integration process was interrupted before the task was 
C completed, you must check the IDID parameter. 
C 
C 
C T — The solution was successfully advanced to the 
C output value of T. 
C 
C Y(*) — Contains the computed solution approximation at T. 
C 
C YPRIME(*) — Contains the computed derivative 
C approximation at T. 
C 
C IDID — Reports what the code did. 
C 
C *** Task completed *** 
C Reported by positive values of IDID 
C 
C IDID =1 — A step was successfully taken in the 
C intermediate-output mode. The code has not 
C yet reached TOUT. 
C 
C IDID =2 — The integration to TSTOP was successfully 
C completed (T=TST0P) by stepping exactly to TSTOP. 
C 
C IDID =3 — The integration to TOUT was successfully 
C completed (T=TOUT) by stepping past TOUT. 
C Y(*) is obtained by interpolation. 
C YPRIMEO) is obtained by interpolation. 
C 
C *** Task interrupted *** 
C Reported by negative values of IDID 
C 
C IDID = -1 — A large amount of work has been expended. 
C (About 500 steps) 
C 
C IDID = -2 — The error tolerances are too stringent. 
C 
C IDID = -3 — The local error test cannot be satisfied 
C because you specified a zero component in ATOL 
C and the corresponding computed solution 
C component is zero. Thus, a pure relative error 
C test is impossible for this component. 
C 
C IDID = -6 — DDASSL had repeated error test 
C failures on the last attempted step. 
C 
C IDID = -7 — The corrector could not converge. 
C 
C IDID = -8 — The matrix of partial derivatives 
C is singular. 
C 
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C IDID = -9 — The corrector could not converge. 
C there were repeated error test failures 
C in this step. 
C 
C IDID =-10 -- The corrector could not converge 
C because IRES was equal to minus one. 
C 
C IDID =-11 — IRES equal to -2 was encountered 
C and control is being returned to the 
C calling program. 
C 
C IDID =-12 — DDASSL failed to compute the initial 
C YPRIME. 
C 
C 
C 
C IDID = -13,..,-32 — Not applicable for this code 
C 
C *** Task terminated *** 
C Reported by the value of IDID=-33 
C 
C IDID = -33 — The code has encountered trouble from which 
C it cannot recover. A message is printed 
C explaining the trouble and control is returned 
C to the calling program. For example, this occurs 
C when invalid input is detected. 
C 
C RTOL, ATOL — These quantities remain unchanged except when 
C IDID = -2. In this case, the error tolerances have been 
C increased by the code to values which are estimated to 
C be appropriate for continuing the integration. However, 
C the reported solution at T was obtained using the input 
C values of RTOL and ATOL. 
C 
C RWORK, IUORK — Contain information which is usually of no 
C interest to the user but necessary for subsequent calls. 
C However, you may find use for 
C 
C RW0RK(3)—Which contains the step size H to be 
C attempted on the next step. 
C 
C RW0RK(4)—Which contains the current value of the 
C independent variable, i.e., the farthest point 
C integration has reached. This will be different 
C from T only when interpolation has been 
C performed (IDID=3). 
C 
C RW0RK(7)—Which contains the stepsize used 
C on the last successful step. 
C 
C IW0RK(7)—Which contains the order of the method to 
C be attempted on the next step. 
C 
C IW0RK(8)—Which contains the order of the method used 
C on the last step. 
C 
C IWORK(ll)—Which contains the number of steps taken so 
C far. 
C 
C IW0RKC12)— Which contains the number of calls to RES 
C so far. 
C 
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C IW0RK(13)—Which contains the number of evaluations of 
C the matrix of partial derivatives needed so 
C far. 
C 
C IW0RK(14)—Which contains the total number 
C of error test failures so far. 
C 
C IW0RK(15)—Which contains the total number 
C of convergence test failures so far. 
C (includes singular iteration matrix 
C failures.) 
C 
C 
C INPUT — WHAT TO DO TO CONTINUE THE INTEGRATION 
C (CALLS AFTER THE FIRST) 
C 
C This code is organized so that subsequent calls to continue the 
C integration involve little (if any) additional effort on your 
C part. You must monitor the IDID parameter in order to determine 
C what to do next. 
C 
C Recalling that the principal task of the code is to integrate 
C from T to TOUT (the interval mode), usually all you will need 
C to do is specify a new TOUT upon reaching the current TOUT. 
C 
C Do not alter any quantity not specifically permitted below, 
C in particular do not alter NEQ,T,Y(*),YPRIME(*),RW0RK(*),IW0RK(*) 
C or the differential equation in subroutine RES. Any such 
C alteration constitutes a new problem and must be treated as such, 
C i.e., you must start afresh. 
C 
C You cannot change from vector to scalar error control or vice 
C versa (INFO(2)), but you can change the size of the entries of 
C RTOL, ATOL. Increasing a tolerance makes the equation easier 
C to integrate. Decreasing a tolerance will make the equation 
C harder to integrate and should generally be avoided. 
C 
C You can switch from the intermediate-output mode to the 
C interval mode (INFO(3)) or vice versa at any time. 
C 
C If it has been necessary to prevent the integration from going 
C past a point TSTOP (INF0(4), RWORK(D), keep in mind that the 
C code will not integrate to any TOUT beyond the currently 
C specified TSTOP. Once TSTOP has been reached you must change 
C the value of TSTOP or set INFO(4)=0. You may change INFO(4) 
C or TSTOP at any time but you must supply the value of TSTOP in 
C RWORK(l) whenever you set INF0(4)=1. 
C 
C Do not change INF0(5), INF0(6), IWORK(1), or IW0RK(2) 
C unless you are going to restart the code. 
C 
C *** Following a completed task *** 
C If 
C IDID = 1, call the code again to continue the integration 
C another step in the direction of TOUT. 
C 
C IDID = 2 or 3, define a new TOUT and call the code again. 
C TOUT must be different from T. You cannot change 
C the direction of integration without restarting. 
C 
C *** Following an interrupted task *** 
C To show the code that you realize the task was 
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C interrupted and that you want to continue, you 
C must take appropriate action and set INF0(1) = 1 
C If 
C IDID = -1, The code has taken about 500 steps. 
C If you want to continue, set INF0(1) = 1 and 
C call the code again. An additional 500 steps 
C will be allowed. 
C 
C IDID = -2, The error tolerances RTOL, ATOL have been 
C increased to values the code estimates appropriate 
C for continuing. You may want to change them 
C yourself. If you are sure you want to continue 
C with relaxed error tolerances, set INF0(1)=1 and 
C call the code again. 
C 
C IDID = -3, A solution component is zero and you set the 
C corresponding component of ATOL to zero. If you 
C are sure you want to continue, you must first 
C alter the error criterion to use positive values 
C for those components of ATOL corresponding to zero 
C solution components, then set INF0(1)=1 and call 
C the code again. 
C 
C IDID = -4,-5 Cannot occur with this code. 
C 
C IDID = -6, Repeated error test failures occurred on the 
C last attempted step in DDASSL. A singularity in the 
C solution may be present. If you are absolutely 
C certain you want to continue, you should restart 
C the integration. (Provide initial values of Y and 
C YPRIME which are consistent) 
C 
C IDID = -7, Repeated convergence test failures occurred 
C on the last attempted step in DDASSL. An inaccurate 
C or ill-conditioned JACOBIAN may be the problem. If 
C you are absolutely certain you want to continue, you 
C should restart the integration. 
C 
C IDID = -8, The matrix of partial derivatives is singular. 
C Some of your equations may be redundant. 
C DDASSL cannot solve the problem as stated. 
C It is possible that the redundant equations 
C could be removed, and then DDASSL could 
C solve the problem. It is also possible 
C that a solution to your problem either 
C does not exist or is not unique. 
C 
C IDID = -9, DDASSL had multiple convergence test 
C failures, preceeded by multiple error 
C test failures, on the last attempted step. 
C It is possible that your problem 
C is ill-posed, and cannot be solved 
C using this code. Or, there may be a 
C discontinuity or a singularity in the 
C solution. If you are absolutely certain 
C you want to continue, you should restart 
C the integration. 
C 
C IDID =-10, DDASSL had multiple convergence test failures 
C because IRES was equal to minus one. 
C If you are absolutely certain you want 
C to continue, you should restart the 
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C integration. 
C 
C IDID =-11, IRES=-2 was encountered, and control is being 
C returned to the calling program. 
C 
C IDID =-12, DDASSL failed to compute the initial YPRIME. 
C This could happen because the initial 
C approximation to YPRIME was not very good, or 
C if a YPRIME consistent with the initial Y 
C does not exist. The problem could also be caused 
C by an inaccurate or singular iteration matrix. 
C 
C IDID = -13,..,-32 Cannot occur with this code. 
C 
C 
C *** Following a terminated task *** 
C 
C If IDID= -33, you cannot continue the solution of this problem. 
C An attempt to do so will result in your 
C run being terminated. 
C 
C 
C ERROR MESSAGES 
C 
C The SLATEC error print routine XERMSG is called in the event of 
C unsuccessful completion of a task. Most of these are treated as 
C "recoverable errors", which means that (unless the user has directed 
C otherwise) control will be returned to the calling program for 
C possible action after the message has been printed. 
C 
C In the event of a negative value of IDID other than -33, an appro-
C priate message is printed and the "error number" printed by XERMSG 
C is the value of IDID. There are quite a number of illegal input 
C errors that can lead to a returned value IDID=-33. The conditions 
C and their printed "error numbers" are as follows: 
C 
C Error number Condition 
C 
C 1 Some element of INFO vector is not zero or one. 
C 2 NEQ .le. 0 
C 3 MAXORD not in range. 
C 4 LRW is less than the required length for RWORK. 
C 5 LIW is less than the required length for IWORK. 
C 6 Some element of RTOL is .It. 0 
C 7 Some element of ATOL is .It. 0 
C 8 All elements of RTOL and ATOL are zero. 
C 9 INF0(4)=1 and TSTOP is behind TOUT. 
C 10 HMAX .It. 0.0 
C 11 TOUT is behind T. 
C 12 INF0(8)=1 and H0=0.0 
C 13 Some element of WT is .le. 0.0 
C 14 TOUT is too close to T to start integration. 
C 15 INF0(4)=1 and TSTOP is behind T. 
C 16 —( Not used in this version )— 
C 17 ML illegal. Either .It. 0 or .gt. NEQ 
C 18 MU illegal. Either .It. 0 or .gt. NEQ 
C 19 TOUT = T. 
C 
C If DDASSL is called again without any action taken to remove the 
C cause of an unsuccessful return, XERMSG will be called with a fatal 
C error flag, which will cause unconditional termination of the 
C program. There are two such fatal errors: 
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c 
C Error number -998: The last step was terminated with a negative 
C value of IDID other than -33, and no appropriate action was 
C taken. 
C 
C Error number -999: The previous call was terminated because of 
C illegal input (IDID=-33) and there is illegal input in the 
C present call, as well. (Suspect infinite loop.) 
C 
c 

C***END PROLOGUE DDASSL 


