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Abstract 

The optimal kinematic design of robots is an interesting problem in contemporary 

robotics. It is important to have measures for determining the precision of the mechanism 

and size of the robot manipulator at the design phase. This all has been done before 

mostly on the basis of experience. The most essential issue for setting up any measures 

seems to be the ease of changing arbitrarily the position and orientation of the end-

effector at the tip of the manipulator. 

In the majority of recent works on optimal robot design, one of the most important 

criteria is that the robot can achieve isotropic configurations. The operation near isotropic 

configuration is considered as a high performance for robotic manipulators. At these 

configurations, the best servo accuracy can be achieved, the likelihood of error is equal in 

all directions, and equal forces may be exerted in all directions [29]. 

A measure of isotropy called the Global Isotropy Index or G i l [49] has been used in this 

work, which is based on the robot behavior in the entire workspace. The G i l is computed 

as the ratio of the minimum singular value of a robot's Jacobian matrix to the maximum 

one throughout its workspace. In search for finding the optimum design parameters that 

provide the most isotropic performance, the positions that offer the minimum ratio of 

singular values for each set of design parameters are compared to each other to find the 

maximum one. This strategy illustrates in fact a minimax optimization problem. 

A "Genetic Algorithm" has been developed to optimize the minimax problem in order to 

find optimal design parameters such as link lengths of the best isotropic robot 

configurations at optimal working points of the end-effector and later, it has been 

implemented to optimize globally throughout the whole robot workspace. The method 

has been demonstrated for two types of robotic manipulators. 
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Chapter 1 

Introduction 

In modern robotics, the need for intrinsically accurate kinematic structures of robotic 

manipulators has become a very important issue. With the increasing application of 

precise manipulators such as mechanical fingers and articulated hands especially in vital 

real-life functions such as surgery, the need for mechanical design optimization of robotic 

manipulators is quite apparent. For these applications, accurate manipulation is highly 

demanded. Therefore, a high degree of dexterity has turned out to be one of the most 

important characteristics of robotic manipulators. 

A number of different descriptions of the concept of dexterity for robotic manipulators 

have led to many different performance indices for the quantification. Dexterity has been 

interpreted to mean different physical concepts such as the kinematic extent to which a 

manipulator can reach all the orientations, which is in fact the description of the 

dexterous workspace [34]. It has also been interpreted as a specification of the dynamic 

response of a manipulator [55], and joint range availability [35]. 

Local kinematic measures of dexterity are mostly based on the Jacobian matrix of the 

manipulator. The basic idea of a local kinematic isotropy is that it may be desirable to 

design or configure a robot so that manipulation can be performed very accurately at a 

work point [35]. Various mathematical measures have been proposed for quantification 

of local kinematic accuracy. They include the determinant of robot's Jacobian matrix, 

manipulability, minimum singular values, and condition number which is defined as the 

ratio of the minimum singular value of manipulator's Jacobian matrix to the maximum 

one. 
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When the condition number is at its optimal value of one, the resulting robot has been 

described as being perfectly isotropic. Isotropic configuration has a number of advantages 

including good servo accuracy and singularity avoidance [35]. 

The term singularity is used when referring to infinite condition number of either square 

singular matrices or rectangular rank deficient matrices, and hence with regard to matrix 

invariability, isotropy and singularity are in fact at the opposite sides of the scale. 

Because an infinite condition number characterizes a singularity, isotropy can be 

considered as being the furthest possible distance from singularities. 

The "Global Isotropy Index" or G i l [49] is one of the proposed isotropy measures, which 

is based on the robot behavior in the entire workspace. It is defined as the ratio of the 

minimum singular value of robot's Jacobian matrix to the maximum one obtained 

throughout the whole workspace not just at a single point. Since the G i l is the ratio of the 

minimum over the maximum singular value, it allocates a value of 1 to perfect isotropy 

and a value of 0 instead of °° to a singularity. Furthermore, as a workspace inclusive 

measure, it takes into account both positional and directional isotropy. 

The application of the G i l as an isotropy measure leads to a minimax optimization 

problem. In the local optimization algorithm, the workspace positions are searched to find 

the positions that provide the minimum ratio of singular values for each set of design 

parameters. Then all those minimum values are compared to each other and the 

maximum of them is considered as the best GIL The position at which the best G i l is 

obtained is considered the optimal working point in local isotropy measure and the 

associated set of design parameters providing that best performance at that optimal point 

is the optimal design set. This leads to the concept of local isotropy optimization of 

robotic manipulators. 

The G i l is also employed in this work to solve the problem for global isotropy, thus 

designing a manipulator that performs optimally over the entire workspace. In this case, 

for each set of particular design parameters, the minimum ratio of the minimum singular 

value of Jacobian to the maximum one is derived by comparing minimum and maximum 

singular values in the entire workspace and not just at a single position. 
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A minimax optimization algorithm called the "Culling Algorithm" is applied in [49] to 

solve for the GII optimization problem. It is designed to specifically optimize the 

minimax problems by descritizing the search space, identifying non-optimal parameters, 

and culling them from the search space until the optimal parameter remains. However, 

since all the existing points of the search space are examined in each iteration, the 

algorithm becomes significantly demanding as the size of the workspace and design 

parameter space increase. In addition, because of its discrete nature, the culling algorithm 

cannot be actually applied when a very high resolution is needed. 

Most of the other optimization algorithms especially the traditional ones are limited to 

continuous and differentiable systems based on deriving some auxiliary functions. For 

example in gradient methods, the derivative information of the function should be 

defined. Such methods usually perform well on functions with only one optima 

(unimodal functions) and in case of functions with many peaks (multimodal functions), 

they occasionally become trapped in local optima. 

Like most of the real world problems, the robot design optimization problem is a multi­

modal, non-differentiable, and highly non-linear problem that cannot be solved by 

traditional optimization methods. Therefore, there is a need for an efficient optimization 

technique that can deal with complex functions such as the GII. One of the most powerful 

optimization algorithms that can solve for such functions is a "Genetic Algorithm". 

Genetic algorithms (GAs) are global search methods that are based on the procedure of 

natural evolution to guide their exploration in the search space. They require little 

knowledge of the problem itself and do not require the search space to be necessarily 

discrete. 

A genetic algorithm models Darwin's theory by simulating the evolution of a population 

of possible solutions to a particular problem. The variables of a problem are represented 

as coded strings, which are called chromosomes. By breeding these chromosomes, a 

population of new solutions is created. These new individuals are closer to the optimal 

result of the problem than the ones in previous generation. 
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Genetic algorithms are the selected optimization methods in this work. To solve for a 

minimax problem, two genetic algorithms run simultaneously. The program starts with 

creating a population of individual candidates for the first G A by randomly selecting 

points from the design parameter space. The first member of the population enters the 

second G A as the input value of design parameter and a population is initialized for the 

second G A by randomly selecting position points through robot workspace. The second 

G A runs until the optimal working point is found that gives the minimum ratio of 

singular values for that particular input design parameter. The fitness score of that best 

position is now assigned to the design parameter and the program returns to the first GA. 

The same procedure is repeated for the rest of the population until the maximization 

process of the first G A is ended and the best design parameter vector that provides the 

best isotropic configuration of the robot at a workspace position is found. 

In the algorithm for global isotropy, the singular values for all workspace positions are 

compared during the second G A to find the minimum ratio of the minimum to maximum 

singular values of the entire workspace. 

The applied tool for demonstrating the two GAs of our approach is the "Genetic and 

Evolutionary Toolbox in M A T L A B " [44], which includes a variety of genetic algorithm 

features as explained in chapter 5. 

This thesis is organized as follows. Chapter 2 presents several local and global condition 

indices that have been proposed before as well as different optimization algorithms to 

solve for kinematic design optimization of robotic manipulators. In chapter 3, the robot 

singularities, the "singular value decomposition" and the concept of manipulability 

ellipsoid are described and the global isotropy index [49] has been explained as the 

applied isotropic measure in this work. Chapter 4 includes an introduction to genetic 

algorithms and their various operators. In chapter 5, the "Genetic and Evolutionary 

Toolbox in M A T L A B " is introduced and an algorithm is proposed to solve for the 

kinematic design of a robot as a minimax optimization problem. In chapter 6, the 

proposed algorithm is applied to design two types of robotic manipulators and some 

results are compared to the ones after applying a culling algorithm in [49]. In the end, the 

work is concluded in chapter 7. 
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Appendix 1 contains the equations of inverse kinematics for a 3-DOF RRR serial 

manipulator. Appendices 2 and 3 present the Jacobian matrices of a 2-DOF and a 3-DOF 

planar manipulator and in appendix 4, singular values are derived mathematically for a 2-

DOF and a 3-DOF planar manipulator. 
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Chapter 2 

Background 

This chapter describes past proposals on local and global condition indices as a measure 

of robotic isotropy and several optimization methods that have been used to find the best 

isotropic robot configuration. In section 2.1, past proposals and results related to local 

and global condition numbers have been discussed. In section 2.2 some recent global 

isotropy measures have been stated and in section 2.3 different optimization algorithms 

are compared for solving a minimax problem such as a culling algorithm. 

2.1 Condition Numbers 

Condition numbers are used as a tool to measure the degree of dexterity in a robot 

manipulator. In numerical analysis, the condition number is interpreted as an indicator of 

the sensitivity of the solution of a linear system. If we consider the system Ax=y, then the 

following relation exists 

ox is the uncertainty in finding x resulting form an uncertainty by my, and con(A) stands 

for condition number of A [35]. 

We recall that the Jacobian matrix of a serial-type manipulator is defined as the 

transformation mapping the joint rates into Cartesian velocities at an operation point x of 

the end-effecotr. This transformation is shown in expression (2.2) and used when finding 

the joint velocities given end-effector velocities. 

(2.1) 

v = J(x)q (2.2) 
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The transpose of the Jacobian matrix can be interpreted as a linear transformation that 

maps the forces applied at a workspace point JC into the torque vector. This transformation 

is shown in expression (2.3) and used when finding end-effector forces given joint 

torques 

T = JT(x)f (2.3) 

Thus when the condition number of Jacobian has its optimal value of one, minimum 

sensitivity in velocity exists. It means that the variation in relationship between the 

robot's actuators' motion and its end-effector velocity is at a minimum as the position 

or/and orientation of the end-effector is/are changed. Therefore, the manipulator can 

control equally well in all directions at that particular workspace point. The same strategy 

is applied for relationship (2.3) when the optimal condition number of JT is interpreted as 

the minimum variation in relationship between the end-effector forces and actuator 

torques. 

Typically, the condition number of the Jacobian matrix is considered as a measure of the 

kinematic accuracy of the manipulator. As the condition number of Jacobian matrix gets 

closer to unity, the resulting robot becomes more kinematically isotropic. 

There are some particular points in the robot workspace where the determinant of square 

Jacobian matrices becomes zero or the rank of rectangular matrices defects. In this case 

the manipulator is expressed to be at singular configuration. When manipulator 

configuration gets near singular positions, very large joint rates are required to create 

small end-effector displacements. At a singularity, the required joint actions become 

unbounded and the manipulator loses at least one degree of freedom. This means the 

manipulator cannot move or exert forces (or torques) along (or around) some directions. 

The condition numbers are derived from Jacobian matrix as explicit functions of joint 

coordinates and link lengths. With the manipulator Jacobian being a function of its joint 

variables, the manipulator condition number is configuration dependant. Within the 

concept of kinematic dexterity, several measures have been proposed as Jacobian 
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condition number of a manipulator such as determinant, manipulability and minimum 

singular values. 

One of the first measures for determining of the mechanism was proposed by Yoshikawa 

[54]. He proposed a quantitative measure of manipulability of robotic mechanisms in 

positioning and orienting end-effectors. This measure of manipulability is given in 

equation (2.4) as a scalar value of w in terms of Jacobian matrix J at state 9. 

In Yoshikawa [55], this index for various robotic mechanisms has been applied to find 

the best posture that gives the greatest manipulability measure at a given position of end-

condition number, which reduces the accuracy of the result. Furthermore, this measure 

represents an average mobility over all direction at the end-effector and has an analytical 

expression, but it depends on the scale of a manipulator [33]. 

The manipulability index can be applied for both redundant and nonredundant 

manipulators. When nonredundant manipulators are considered, the manipulability 

measure shrinks to 

Although a determinant going to zero marks the presence of a singularity, the value of the 

determinant cannot be considered as a useful measure of the isotropy. The determinant of 

a square matrix, or that of the product of a rectangular matrix by its transpose -under the 

assumption that the matrix has more columns than rows- does not measure how far from 

singularity a matrix is. In fact the determinant of a square matrix tells only when a matrix 

is invertible, but it does not quantify the invariability of the matrix. 

Instead, the matrix condition number has been recommended by numerical analysts 

because of its quantitative accuracy estimates. The condition number indicates the 

uniformity of the Jacobian transformation [34]. It measures the round-off error 

(2.4) 

effector in the workspace. However, the calculation of the matrix product JJT squares the 

w = \deU(0)\ (2.5) 
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amplification on solving a system of linear algebraic equations associated with that 

matrix, whereas the determinant never comes into the picture when assigning the amount 

of that error in equation solving [1]. 

In Klein and Blaho [34], several measures of dexterity have been examined and 

compared to find an optimal configuration of a three-link planar manipulator for a given 

end-effector position for two-dimensional positioning tasks. Also, an optimal work point 

in which the manipulator has the greatest dexterity has been derived. One of the applied 

dexterity measures is the minimum singular value of Jacobian. 

Defining the condition number as the ratio of the largest singular values of Jacobian to 

the smallest one, Klein and Blaho briefly discussed manipulator design problem with an 

isotropic configuration at a fixed working point for a fixed total arm length. However, 

this condition number has not been expressed analytically. It has been used with regard to 

the fact that for a nonredundant system to be isotropic, the rows or alternatively the 

columns of the Jacobian must have the same vector magnitude and be orthogonal. The 

above condition on the columns can be interpreted as the end-effector being an equal 

distance form the joint axes, and the incremental rectilinear motions of the end-effector 

caused by each joint must be orthogonal to the motion caused by the other joints. 

Kim and Khosla [32] indicate two problems of Yoshikawa's manipulability measure 

when it is used for a design problem, Scale dependency and order dependency. These two 

problems create difficulties for design when needed to compare manipulators with 

different sizes. The scale dependency prevents a fair comparison between a longer 

manipulator and a shorter one and the order dependency makes it impossible to derive the 

physical meaning of the manipulability. Thus they overcome this shortcoming by 

defining a new measure of dexterity termed the measure of isotropy, which is the ratio of 

the geometric mean and the arithmetic mean of the eigenvalues of JJT [32]. 

trace (JJ ) 
order m (2.6) 
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A stands for the measure of isotropy and W is the manipulability measure proposed by 
Yoshikawa. This measure is nondimensional and thus independent of the scale of a 
manipulator. 

In their late work [33], Kim and Khosla employ their measure as an optimization 
criterion for task based design of a 3-DOF manipulator. The optimization method used is 
a multi-population genetic algorithm and has the same number of optimization function 
as task points. 

In Gosselin [22], dexterity indices for planar and spatial manipulators are presented and 
the approach used is to describe the velocity of the end-effector as the velocity of some 
points on it instead of using the velocity of only one point together with the angular 
velocity. He proposes to redefine the manipulator Jacobian as that matrix mapping joint 
rates into the velocities of a set of points on the end-effector, thereby eliminating the end-
effector angular velocity and hence producing a dimensionally homogeneous Jacobian. 

In Klein and Miklos [35], a technique called "Spatial Isotropy" is demonstrated that uses 
both positional and orientational isotropy. They extend the concept of isotropy to include 
simultaneous positioning and orienting of a work piece in three-dimensional space which 
is termed as spatial isotropy". They believe that if the Jacobian is considered as a measure 
of whole isotropy just in one term, it would be a relatively weak and artificial condition. 

In Ma and Angeles [39], the dynamic performance of manipulator is considered when 
optimizing to find the best robot architecture. The "Dynamic Conditioning Index" (DCI) 
is defined which measures the dynamical coupling and numerical stability of the 
generalized inertia matrix of a manipulator in its dynamic model. They applied DCI in 
design of serial and parallel manipulators. The results are well suited for a particular 
position, however, satisfactory performance is not guaranteed as the robot moves to other 
points. Therefore, it is not appropriate for optimal global performance when the 
manipulator contains a large workspace dimension. 

In Angeles [1], the manipulator conditioning index (CI) is defined. It is defined in terms 
of the minimum condition number on proper choice of the joint variables. It is regarded 
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as a local property, for it does not take into account the distribution of the manipulator 

condition number over the whole workspace. He proposes an alternative approach to 

Gosselin's work that consists writing the point-velocity manipulator equations in 

nondimensional form by suitably dividing both sides of the velocity equation by a natural 

length of the manipulator. 

As the ratio of minimum singular value of Jacobian to the maximum one, the condition 

number has been used as a measure of dexterity in many previous works for several 

reasons. First, when robot is at its isotropic configuration, the optimal condition number 

has a fixed value of 1 and that happens when all the singular value of Jacobian are the 

same at that particular working point. Secondly, a simple numerical procedure can be 

employed to find the best robot posture that moves the condition number towards unity 

for given mechanism and end-effector at a given working point. However, all the 

condition indices mentioned so far do depend on the operating point and the location of 

the point is critical in obtaining a good kinematic manipulation performance. Hence, they 

fail to give a reliable measure of the global performance of the manipulator throughout 

the whole workspace. 

Even though in most occasions accurate end-effector hand motion at a workpiece is much 

more important than the accuracy along the trajectory leading there, global kinematic 

criteria should been considered to ensure the accuracy of manipulator performance over 

the whole workspace. Thus, several other measures have been proposed to overcome this 

problem as mentioned in section 2.2. 

2.2 G l o b a l Isotropy Measures 

Most of the global measures that have been proposed so far are derived as an overall of 

the calculated local measures. They generalize the local isotropy at all positions to 

propose a global measure such as the best average performance value of all local 

measures. These measures are not reliable since the best average performance might 

contain some poor performances at some points that result in very weak behaviors as the 

robot reaches those points in practice. 
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In Gossolin and Angeles [23], The "Global Conditioning Index" (GCI) is proposed as the 

integral of the condition number k of Jacobian matrix over the workspace scaled by the 

size of the workspace as shown in equation (2.7). 

I dW 

GCI = -, (2.7) 
\dW 
w 

This global measure encounters the same deficiency as the average value. Some poor 

behaviors might be ignored at some intermediate workspace positions. Besides, 

computing the integral is quite demanding as the condition number is a highly non-linear 

function. 

Stocco [49] introduces a measure of global isotropy called the "Global Isotropy Index" 

(Gil). G i l is used in his work to optimize the design of a number of manipulators such as 

a haptic pen. G i l is the ratio of the smallest singular value of Jacobian matrix to the 

largest singular value of the Jacobian matrix in the entire workspace as shown in 

expression (2.8) 

xQ,xxeW am&x(J(p,xx)) 

G i l is the selected measure of isotropic performance in this work. More about the concept 

of the G i l is mentioned in the next chapter. 

2.3 Optimization Algorithms 

The optimization of the G i l introduced in previous section leads to a minimax 

optimization problem. 

In Kim and Khosla [33], the "Multi-population Genetic Algorithm" is introduced to 

overcome the huge increase in size of the search space as the number of variables of a 

genetic Algorithm is increased. This algorithm is used to optimize the task based design 

of a 3-DOF manipulator. It has the same number of optimization function as task points. 
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Each objective function represents a manipulator (which are all just one) and all these 

objective functions have been connected by "connecting constraints". It is actually an 

assumption of designing m manipulators for m task points. In this parallel implementation 

of GAs, the number of variables for each optimization function is fixed. The total fitness 

of an individual is obtained from its objective function and the adjusting value from 

connecting constraints by comparison with individuals in other populations. 

In Buckley [7], genetic algorithms have been applied to solve for inverse kinematics of a 

kinematically redundant manipulator. The final results were awkward due to lack of 

diversity of the population. To overcome this problem, they later improved the results by 

enhancing the G A with heuristic based knowledge of manipulator kinematics. However, 

the final results were still not accurate. 

In [48], "Culling Algorithm" is proposed as an approach to optimize the design of robotic 

manipulators. This algorithm is defined to solve a minmax optimization of the global 

isotropy index as a measure of isotropic performance of manipulators. This method is 

described in more details in the following chapter. 
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Chapter 3 

Minimax Problems 

This chapter discusses the robot singular configurations and minimax optimization 

problem in more details. In section 3.1, the nature of singularities and their effect on 

robot performance are explained. Section 3.2 goes through the analytical calculation of 

singular values and leads to the concept of the manipulability ellipsoid, which gives more 

insight into the concept of condition number as the ratio of singular values of Jacobian 

matrix. In section 3.3, the global isotropy index is described based on the concept of the 

manipulability ellipsoid, and finally in section 3.4 the minimax robot design problem is 

introduced. 

3.1 Singularities 

The Jacobian matrix operates as a bridge that relates variations in joint velocities to the 

corresponding variations in Cartesian velocities. If the matrix is invertible for all values 

of joint angles, then knowing Cartesian velocities, joint velocities can be determined. The 

Jacobian is not invertible when its determinant is equal to zero. In this case, variations in 

Cartesian velocities cannot be related to joint velocities. That's when the Jacobian matrix 

is termed to be singular. Many manipulators have configurations where the Jacobian 

becomes singular. In singularities, there might not be a solution to the inverse kinematics 

problem or there might be an infinite number of solutions. When a manipulator is in a 

singular configuration, it has lost rank. In other words, it has lost one or more degrees of 

freedom in Cartesian space. 

It is common to classify singularities in two groups: workspace boundary singularities 

and workspace interior singularities. Workspace boundary singularities occur when the 

end-effector is at or near the boundary of the manipulator's workspace. In this state 

usually the manipulator is fully stretched out or folded back on itself. Workspace interior 
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singularities occur at configurations inside the workspace usually when two or more joint 

axes line up. 

3.1.1 Effects of Singularities 

Singularities cause many problems in robot performance, both for nonredundant and for 

redundant robots. Although redundant robots may be able to avoid singularities inside the 

workspace boundaries by the use of their redundant degrees of freedom, nonredundant 

robots have to find methods to pass through the singular configurations unless the 

Cartesian trajectory is modified. However, singularities that lie at the workspace 

boundaries are not avoidable even by redundant manipulators. 

At singularities the Jacobian is not invertible for a six degree of freedom manipulator and 

thus regardless of the joint rates, the manipulator is unable to move in certain directions. 

Sometimes a manipulator may exhibit a couple of different singularities at a particular 

configuration causing the manipulator to be unable to move in different directions. For 

manipulators with less than six degrees of freedom, a singularity causes the manipulator 

to lose one or more of its degrees of freedom. Whenever a manipulator loses a degree of 

freedom, there are directions along or around which it cannot move or exert forces. 

At manipulator configurations near singular positions, very large joint motions are 

required to produce relatively small end-effector displacements. In velocity domain, near 

a singularity the joint velocities that are required to maintain a desired end-effector 

velocity in certain directions can be extremely large. When a singularity is encountered, 

the required joint velocities become boundless and the manipulator loses at least one 

degree of freedom. This implies that excessive output demands will be placed on the joint 

actuators in the neighborhood of a singularity. As one or more actuators saturate, the end-

effector will deviate from the prescribed trajectory. Furthermore, when a desired end-

effector placement corresponds to a singular position, there may be an infinite number of 

possible joint configurations, a situation that complicates task planning [53]. 

The singularities can affect the manipulator in the force domain as well as in the velocity 

domain. They can have an effect on the size of forces that the manipulator can apply at 

the end-effector. In the force domain, the Jacobian transpose relates the Cartesian forces 
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applying at the end-effector into equivalent joint torques. When the Jacobian transpose 

loses one or more degrees of freedom, there are some directions in which the static forces 

cannot be applied by the end-effector. 

3.2 Singular Value Decomposition 

Singular value decomposition (SVD) of the Jacobian Matrix is employed to represent the 

"character" of the transformation from joint space to Cartesian space expressed by the 

Jacobian and used in solving the problems of robot operation such as inverse velocity 

near singular configurations. It has been extensively used as a tool for the analysis of the 

kinematic and dynamic characteristics of robotic manipulators. Most of the proposed 

dexterity measures are some functions of the singular values of the Jacobian matrix and 

closely linked to the singular values and vectors of Jacobian. For example, it will be 

shown that the manipulability measure proposed by Yoshikawa in 1984 is basically the 

product of the singular values of Jacobian. Some other measures in this category include 

the trace of the Jacobian matrix and the global isotropy index (Gil). 

In general, SVD has been known as being numerically expensive to calculate. This matter 

resulted in the popularity of the manipulability measure in the past, since it is numerically 

simple to compute and that its zeros coincide with the singularities of the Jacobian. 

However, as indicated in the previous chapter, it is not a suitable measure of robot 

performance. 

The most popular technique for computing the SVD is commonly referred to as the 

Golub-Reinsch Algorithms (Gloub and Reinsch 1970). It is available in many linear 

algebra software tools such as M A T L A B . This algorithm is generally regarded as one of 

the most efficient and numerically established technique for computing the singular 

values of an arbitrary matrix. 

3.2.1 Mathematical Background 

For a manipulator with n degrees of freedom whose joint variables are defined by qt, 

i=l,2,....,n, a class of tasks are described by m variables Xj , j=l,2,...,m. The relation 

between qt and X{ is given by 
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X=/Q) (3.1) 

T r T 

Where Q=[qi,q2, •••,qn] is the joint vector, X—[xI,x2, ...,xj is the manipulation vector, 
and the superscript T denotes the transpose. The aim is to solve the linear system of 
equations (3.2) which is the relation between the manipulation velocity x and the joint 
velocity q 

X = J(q)q q<=QczRn xeXczRm (3.2) 

Where J(q)e RmXn is the manipulator Jacobian matrix, m=n for non redundant robots 
and m<n for redundant robots where degree of redundancy is (n-m). 

The Jacobian matrix J is non-singular if the relation (3.3) exists. 

Max rank J(q) =m (3.3) 
q 

If for some q * 

rank J(q*)<m (3.4) 

then the manipulator is in a singular state. The state q* is not desirable because the 
manipulation vector X can not move in a certain direction, meaning that the 
manipulability is seriously deteriorated. However, it is not only the singular state which is 
undesirable. A neighboring region of any singular state is also undesirable because in that 
region, the manipulation vector X can only move very slowly in a certain direction. In 
other words, the manipulability of the robot in this region is very limited. 

It is known from linear algebra that if J is a real m X n matrix, then there exist orthogonal 

matrices U = [uh un]e RmXm, V = [vi, vn]eRnXn such that J=UZVT 

where 
Z=[diag((jh ,(7m)0jERmxm (3.5) 
with 
Gi>o2> >cm>0 (3.6) 
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The Gi are the singular values of J, and the vectors w,- and v,- are the ih left singular vector 

and the ih right singular vector of J, respectively. This decomposition is called the 

singular value decomposition. 

Another important theorem from linear algebra, the "Symmetric Real Schur 

Decomposition Theorem" [31 ], says that i f A is a real nxn symmetric matrix, then there 

exists a real orthogonal QeR nXn such that 

QTAQ=diag(XhX2,...,K) (3.7) 

Where A, are the eigenvalues of A. The columns of matrix Q are the eigenvectors of A. 

There are important relationships between the singular value decomposition of a matrix J 

and the Real Schur decomposition of symmetric matrices JTJ and JJT. Indeed, i f 

UTJV=diag(a, ,a2 am) (3.8) 

is the SVD ofJeR mXn , (m<n), then 

VT (JTJ)V=diag(o2 ,o2

2 aj,0, 0) eR nXn (3.9) 

and 

UT(JJT)U=diag(a,2,a2

2 am

2) eR mXm (3.10) 

Therefore, the eigenvectors of J J are the right singular vectors of J (matrix V), whereas 

the eigenvectors of JJ are the left singular vectors of J (matrix U). Moreover, the 

eigenvalues of JJ are equal to the squared singular values of J. 

It has been proved in [31 ] that the singular values of a Jacobian matrix do not depend on 

the coordinate frames in which the Jacobian is expressed. This allows us to choose the 

best coordinate frame that simplifies the Jacobian matrix as much as possible. The 

derivation of Jacobian matrix and SVD for a 2-DOF and a 3-DOF planar manipulator are 

shown in Appendices 2,3, and 4. 

If we map a hypersphere of joint velocities q in the space Rn into the Cartesian space Rm 

such that 

= ql2 + q2

2 + qn

2<l (3-H) 
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then, the result is an ellipsoid with principal axis G\ ui, (J2U2,..., <7mum where UjG Rm is 

the /'* column vector of U [20]. This ellipsoid is called the manipulability ellipsoid and 

was one of the first measures for the analysis, design and control of robot manipulators. 

Therefore, the "Principal Kinematic Axes" (PKAs) {CTJUJ , (J2U2,..., C3U3} may be 

identified by examining the transformation from joint space to Cartesian space expressed 

by Jacobian J. The singular value decomposition is employed to represent the character 

of the transformation [20]. 

The manipulability index is proportional to the ellipsoid volume spanned by the PKAs. 

This volume is approximated in practice by the product of the singular values. Since the 

volume of an ellipsoid increases as it becomes more spherical, there is a correlation 

between high manipulability indices and isotropic conditioning [20]. The volume of the 

manipulability ellipsoid is given by: 

do\.o2 om (3.12) 

where the constant d in equation (3.12) is given by 

d = (2K)"'12 l(2A.6....(m-2).m) when m is even 
2(2n)(m"xvl /(1.3.5....(IW-2).IW) when m is odd (3.13) 

Therefore, manipulability measure w in (2.4) is equal to the volume of the kinematic 

manipulability ellipsoid except for the constant coefficient d. It is shown in (3.14) in 

terms of singular values of Jacobian matrix J. 

w = Oi.G2...Om = ^XXX2...XM (3.13) 

Where ki>X2> ^Am>0 are eigenvalues of JJT and o; = -JX~ ^ Q singular values of 

Jacobian matrix. 

[20] points out that the singular vectors for the force relationship T = JTf are the same as 

those describing the velocity domain, but that the singular values are reciprocal. This 

suggests that the direction for favorable velocity amplification is orthogonal to the 

direction for favorable force amplification. Moreover, since accuracy is inversely 
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proportional to amplification, a reciprocal relationship also exists between accuracy and 

amplification in both the velocity and force domains. 

In Figure (3.2), reproduced from [49], the resulted manipulability ellipse is shown from 

plotting actuator torques that produce an end-effector force of unit magnitude and 

arbitrary direction for the manipulator of Figure (3.1) [49]. 

Figure 3.1: Constrained Planar Elbow Manipulator 

fy 

1 1 / 1 1 = 

/ i j 1 
\ 1 

g(JT(p, x)) 
6-(J (P,X)) 

J T(P,X) 

Figure 3.2: Torque Ellipse at x=5 
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The lengths of the major and minor axis of the ellipse shown in Figure (3.2) indicate the 

highest and lowest effective transmission ratios occurring in all directions which are 

related to maximum Gmax(J(l,x) and minimum omi„(J(l,x)) singular values of the of f(x) . 

The Jacobian is a function of both position x and geometry p. For minimizing the 

variation in relationship between robot actuators and its end-effector, these transmission 

ratios should be as close to each other as possible. Perfect isotropy exists when those 

ratios are equal. It means that the singular values of Jacobian are the same and the ellipse 

shifts to a circle. Therefore, the manipulator is isotropic i f all its singular values are 

identical and nonzero. This is equivalent to saying that, i f J is isotropic, then the product 

JJT is proportional to the identity matrix, i.e. a positive scalar a exists in this case for 

which 

JJT=od (3.14) 

3.3 Global Isotropy index (Gil) 

The global isotropy index is proposed by [49], which is computed from the singular 

values of a design matrix in the entire workspace. G i l gives an insight of global 

performance of a robot throughout the workspace by a scalar value. 

As mentioned before, most condition numbers defined in the past are calculated from a 

design matrix such as Jacobian evaluated at a single position of the workspace as shown 

in (3.15). 

K(l,x) = <jmax(J(l,x))/ (Jmin(J(l,x)) (3.15) 

Because the Jacobian is computed at a position x, the condition number is a local measure 

of isotropy and the manipulator is isotropic at that individual position. However, the 

manipulator may not show similar levels of isotropy as it moves from that point to other 

points in the workspace. 

In [49], torque ellipses are computed at three different positions for the manipulator of 

Figure (3.1) and the results are shown in Figure (3.3). 
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Figure 3.3: Force/Torque Transformation 

The shape of each ellipse relates to directional isotropy and roundness presents positional 

isotropy. As it can be seen in the above figure, the condition number only measures the 

roundness of the ellipse, but ignores information related to its size. So directional 

isotropy is lacking in definition of the condition number in (3.15). For example, the 

ellipses at x-0 and x=±5 have the same shape, but their size are quite different. The 

condition number, which is the ratio of the largest singular values to the smallest one is 

the same at both positions. However, the average of singular values is different at each 

position. To overcome this deficiency, [49] proposes the global isotropy index (GII). 

max b{J{p,xt)) 
x, e W 

g(J(p,x0)) 

Figure 3.4: Force/Torque Ellipse and GII 
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In Figure (3.4), local actuator torque ellipses are computed and plotted for the previous 

manipulator at all values of x ranging from -5 to 5 [49]. The G i l is the ratio of the radius 

of the largest circle contained within all of these ellipses to the radius of the smallest 

circle containing all of these ellipses. When all singular values are identical throughout 

the workspace, the mechanism is both directionally and positionally isotropic at each 

position of its workspace and the G i l has a value of unity. Therefore a manipulator 

behaves consistently in all directions and that behavior doesn't change as the mechanism 

moves in its workspace. 

An optimally isotropic robot design parameter p* is the one that maximizes the value of 

the GIL 

p*=arg max GII(p) peP (3.16) 

3.4 The Minimax Robot Design Optimization 

The culling algorithm is used in [48] to optimize for G i l to find the optimal design 

parameter that provides the best isotropic design for the manipulator. It is a branch and 

bound optimization method that culls non-optimal parameters from the search space until 

the best parameter remains. The method discretizes both the end-effector position space 

and the design parameter space to finite number of parameters and discovers the worst 

parameters in each search and culls them off. 

At the beginning of the algorithm, a random point Pt is chosen from the set of all design 

parameter candidates. The singular values of all positions in the workspace are computed 

for that particular design parameter and two positions xt and x, are found that provide the 

minimum singular value and maximum singular value for Pt. The G i l is measured as the 

ratio of minimum singular value to the maximum one obtained at those positions. The 

new G i l is compared to the old one and i f it is greater than the old one, the best G i l found 

so far is updated to the new one. 

In the next step, all the singular values at positions xt and Xj are measured for all points in 

the design parameter space. For each design parameter, the minimum singular values 

found at those two positions are compared to each other and also compared to the best 
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minimum singular value from previous iterations. The minimum of these three numbers 

is set as the upper bound for the minimum singular values. The same strategy is applied 

to find the maximum singular values lower bound. 

A l l the design parameters that their ratio of minimum singular value upper bound to 

maximum singular value lower bound is less than the best G i l found so far are culled 

from the design parameter space. The design parameter that has the maximum ratio of 

minimum singular value upper bound to maximum singular value lower bound is chosen 

as the next candidate. The same steps are applied to the next chosen parameter and more 

parameters are culled until eventually only one parameter is left in the search space that is 

considered as the best result. 

The culling algorithm reaches a global optimum with less objective value calculations 

than a global search since many function evaluations are avoided. However, it is limited 

to solving only for minimax problems. The algorithm becomes significantly less efficient 

when the value obtained form the objective function does not change through large parts 

of the workspace. Also because the search space is discretized, the resolution of the result 

weakens since in case of real numbers, adding even one more resolution makes a major 

increase in the size of search space. Even though in each iteration, at least one parameter 

is culled from the search space, the computational effort is still huge. Since an average of 

one or two positions are checked for each design parameter, the parameter space search 

doesn't improve the optimization approach. Also i f better results are not found in some 

iterations, the algorithm turns into an exhaustive search. Therefore an alternative method, 

a genetic algorithm, is proposed in this work to overcome the deficiencies of the culling 

algorithm in solving for kinematic design optimization of manipulators. 
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Chapter 4 

Genetic Algorithms 

This chapter provides an introduction to evolutionary and genetic algorithms. In section 
4.1, the general concept of evolutionary algorithms is described. In section 4.2, the 
genetic algorithms are introduced and their operators are discussed in section 4.3. In 
section 4.4, a number of selection schemes are describes and in section 4.5, various 
algorithms for recombination are presented. Mutation algorithms are defined in section 
4.6 and in section 4.7, other GA steps and operators are briefly described. Finally in 
section 4.8, the GA termination criteria are discussed. 

4.1 Evolutionary Algorithms 

Evolutionary algorithms are random search techniques that take their inspiration from 
natural selection and survival of the fittest in the biological world. They differ from more 
traditional optimization techniques in the way that they involve a search from a 
population of solutions, not from a single point. At each generation, a new set of 
estimations is created by selecting individuals based on their level of fitness and breeding 
them using natural genetics operators. This process leads to the evolution of populations 
of individuals that are better suited to their environment than the individuals that they 
were created from, just as in natural adaptation. 

Evolutionary algorithms model natural processes, such as selection, recombination, 
mutation, and migration. The solutions with high fitness scores are recombined with other 
solutions by swapping parts of a solution with another. Solutions are also mutated by 
making a small change to a single element of the solution. 

The idea of evolutionary computing was first introduced in the 1960s by I. Rechenberg 
from Germany in his work on "Evolution strategies". His idea was then developed by 
other researchers to introduce different approaches of evolutionary algorithms. 
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As evolutionary algorithms require no derivative information or formal initial estimates 

of the solution, and are stochastic in nature, they are capable of searching the entire 

solution space with more chance of finding the global optimum than traditional 

optimization algorithms. They perform well on functions with multiple local optima and 

can find a globally optimal solution. 

4.2 Genetic Algor i thms 

Genetic algorithms (GAs) are part of the evolutionary computing that were first 

introduced by John Holland and developed by him, his students and colleagues at the 

University of Michigan. GAs are adaptive evolutionary methods, which are inspired by 

the genetic processes of biological organisms. Over many generations, natural 

populations evolve according to the principles of Darwinian theory of survival of the 

fittest. By mimicking this process, genetic algorithms are able to evolve solutions to real 

world problems. 

GA's have received a considerable attention regarding their potential in dealing with 

constrained problems. They are robust, adaptive and very different from conventional 

search and optimization methods. They are very powerful tools in solving complex, 

multi-variable, real-world search and optimization problems and therefore, they have 

become a common optimization technique in the field of Artificial Intelligence. 

They work with a population of individuals, each representing a possible solution. These 

individuals can be represented as coded strings containing a set of parameters. These 

parameters are known as genes and the whole string of variables for each possible 

solution is referred to as a chromosome. Each chromosome is assigned a fitness score 

according to how good it is as a solution to the problem. The fitness score can be thought 

as a measure of profit, utility, or goodness. The highly fit individuals are given 

opportunities to reproduce, by breeding with other individuals in the population. This 

produces new individuals as offspring, which share some features taken from each parent. 

The least fit members of the population are less likely to be selected for reproduction, and 

so they die off. 
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A whole new population of possible solutions is thus produced by selecting the best 

individuals from the current generation, and mating them to produce a new set of 

individuals. If the G A is well designed, the population will converge to an optimal 

solution to the problem. 

The applications of GAs are numerous. They include optimization problems, scheduling, 

planning, games, image processing, adaptive fuzzy controllers and neural network weight 

learning. Also, GAs can be used directly to predict the stock market, make buy/sell 

decisions or to schedule airline flights. 

The genetic algorithm approach is the result of the search for robustness. Natural 

systems are robust and efficient as they adapt to a wide variety of environments. By 

simulating nature's adaptation algorithm, we can reach similar extent of performance. 

4.2.1 G A Advantages 

Genetic Algorithms differ from more traditional optimization and search procedures in 

various ways. They usually work with a coding of the parameter set, not the parameters 

themselves. The coding discretizes the search space of the problem. Thus, GAs are able 

to work with discrete or discontinuous functions. The objective function in a G A can be 

numerical or logical because the variables are coded. This gives GAs a great flexibility to 

be applied to a wide range of systems. 

GAs evaluate a population of possible solutions instead of a single point. Hence, the 

probability of getting trapped in a local optimum is reduced over single point search 

methods. 

Most of the traditional techniques need to measure some particular characteristics of the 

problem such as gradient, Hessian or so to determine the next search point whereas in a 

GA, the next search is directed based on stochastic rules and there is no need for 

deterministic transition rules. 

Another characteristic of GAs that makes them more flexible for a variety of real world 

problems is that they deal with the objective function itself to explore the search space 

and there is no need for derivative computation or other secondary functions. 
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GAs are a suitable method for multi-objective optimization and scheduling problems 

since they can provide a number of potential solutions. Therefore, the final solution is 

based on the user's choice from all the alternative solutions. 

In general, genetic algorithms are applicable in optimization of many systems because no 

restrictions for the definition of the objective function exist. Simplicity of operation and 

the precision of the results are the main appeals of genetic algorithms. 

4.2.2. GA Coding 

In GAs coding, each individual of the population is represented as a sequence of genes 

from a certain alphabet. This whole string of the individual representation is called a 

chromosome that could consist of binary digits, floating point numbers, integers or real 

numbers. The coding scheme in a G A determines how the problem is structured and what 

type of genetic operators should be used. The common way in the past for coding the 

parameters of a G A was a binary string representation. For example for two individuals 

with real values of 26 and 17, the chromosomes would look like this: 

Jchromosome 1 11010 

jChromosome 2 10001 

Table 4.1: Binary Representation of Individuals in a GA 

As table 4.1 indicates, each chromosome has one binary string. Each bit in this string 

represents a gene that contains some characteristics of the individual. 

The most suitable way of coding depends mainly on the nature of the problem. However, 

it has been shown that the real-valued G A is an order of magnitude more efficient in 

terms of CPU time. In addition, a real-valued representation offers higher precision with 

more consistent results across replications [25]. 

In [27], some special encoding techniques have been introduced that are claimed to result 

in faster convergence of Genetic Algorithms. 
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4.3 G A M a j o r Operators 

A simple genetic algorithms is basically composed of three major operators: 

1. Reproduction 

2. Recombination 

3. Mutation 

At the beginning of the algorithm, a number of individuals are randomly initialized to 

produce the first population or generation. The objective function is then evaluated for 

every single individual. If the optimization criteria are not met, another new generation is 

created. For this purpose, individuals of old generation are selected as parents according 

to their fitness and recombined to produce offspring. A l l offspring will be mutated with a 

certain probability and then the fitness of this new generation is measured to evaluate the 

generation. The process is repeated until the optimization criteria are reached. 

When choosing the size of the population, attention should be paid because i f there are 

too few chromosomes selected, the G A has a few possibilities to perform crossover and 

only a small part of search space is explored. On the other hand, i f there are too many 

chromosomes, the G A slows down. Research shows that after some limits, which depend 

mainly on the nature of the problem and the method of encoding, it is not useful to 

increase population size because it drops the speed of the convergence of the problem 

In the following sections, various operators of a genetic algorithm are described in more 

details. 

4.4 Reproduct ion 

Reproduction is a process in which individuals are selected according to their fitness 

function for mating. In reproduction, each string in the selection pool is assigned a 

reproduction probability according to its own objective value and the objective value of 

all other individuals in the selection pool. Individuals with higher reproduction 

probability are more likely to produce offspring for the next generation. If reproduction is 

not performed correctly, weak members are selected for producing the next generation. 

This will result in a divergence in G A operation since the fit individuals that are not 
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selected for reproduction are caused to die off and have no chance to transmit their genes 

to the next generation. 

There are several selection methods for determining which individuals should be chosen 

for recombination. Some of the most common ones have been described in next parts 

briefly. 

4.4.1 Roulette Wheel Selection 

Roulette wheel selection or "stochastic sampling with replacement" is one of the simplest 

and most common selection methods. It is a stochastic scheme in which individuals are 

mapped to adjacent slices of a roulette wheel. The mapping is shown in Figure ( 4 . 1 ) for a 

population of four individuals. Each individual's segment size is proportional to its fitness 

score. Individuals with higher fitness score have more chances to be selected as mating 

population. The type of fitness assignment is considered the "proportional fitness 

assignment" which has been explained in section 4 . 4 . 2 . 

For selecting the mating population, a random number is uniformly generated between 

0.0 and 1.0 and the individual whose slice spans the random number is selected. The 

process is repeated until the desired number of individuals for recombination is obtained. 

• Chromosome 1 
• Chromosome 2 
• Chromosome 3 
• Chromosome 4 

Figure 4.1: Roulette Wheel Selection 

4.4.2 Proport ional Fitness Assignment 

In proportional fitness assignment, the individuals are selected with a probability 

proportional to their fitness values. For a fixed population size, the probability P{ of 

selecting the i t h member of the population is shown in ( 4 . 1 ) . 
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Pi=fi I 2 fi (4-1) 

j 

Where f is the fitness value of the ith individual and Nind is the number of individuals in 

population. As the expression (4.1) indicates, this method gives a greater chance to 

above-average individuals to be selected as parents than below-average members. 

4.4 .3 Rank Based Fitness Assignment 

In this algorithm, the individuals are sorted according to their objective values. Then, 

each individual is assigned a fitness score based on its sorted position and not the 

objective value. The worst individual will have position 1, second worst 2, and the best 

will set in position Nind where Nind is the number of individuals in population. After 

ranking, each individual's fitness is normalized by the total fitness of the population to 

assign the probability of selection to that individual. 

The method overcomes the weakness of the proportional fitness assignment when the 

objective values of the individuals of the population significantly differ. For example, i f 

the best individual's fitness has result in the occupation of 90% of the roulette wheel, 

then the rest of the individuals will have very few chance to be selected for mating. This 

results in premature convergence since the gap has caused the search to narrow down too 

quickly. 

Figure (4.2) shows the distribution of individuals in roulette wheel selection with 

proportional fitness assignment and rank based fitness assignment. 
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• Chromosome 1 
• Chromosome 2 
• Chromosome 3 
• Chromosome 4 

Situation Before Ranking (Graph of Fitness Scores) 

• Chromosome 4 

• Chromosome 2 
• Chromosome 3 

• Chromosome 1 

Situation After Ranking (Graph of Order Numbers) 

Figure 4.2: Proportional and Rank Based Fitness Assignment 

Ranking can be performed in two different forms of "linear ranking" and "non-linear 
ranking". In [45], selective pressure is defined as the probability of the best individual 
being selected compared to the average probability of selection of all individuals. If we 
consider Pos as the position of an individual in the population, least fit individual has 
Pos

=l, and the fittest individual has P0s=Nj„d. For Linear ranking, the fitness value for an 
individual is calculated as [45]: 

SP stands for the selective pressure. Linear ranking allows a range [1.0,2.0] for values of 
selective pressure. 

The expression for non-linear ranking is shown in (4.3). 

Fitness(Pos) = 2- SP+2(SP-l)(Pos-l)/(Nind-l) (4.2) 

(4.3) 

Where X is computed as the root of the polynomial (4.4). 
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(SP-l).XNind1+SP.XNind2+ +SP.X+SP=0 (4.4) 

In non-linear ranking higher values of selective pressures in [I, Nind-2] can be considered. 

4.4.4 Stochastic Universal Sampling 

In this algorithm, the individuals are mapped to contiguous segments of a roulette wheel 

according to their fitness function as in roulette wheel selection. However, instead of 

random selection of individuals, equally spaced pointers are placed over the wheel as 

many as the desired number of individuals. If we consider Nind as the number of 

individuals to be selected, then the angle between each two adjacent pointers is 360°INind 

and the position of the first pointer is given by a randomly generated number in the range 

[0, 360°/Nind\. This method offers a selection of offspring which is more efficient than the 

roulette wheel selection. 

4.4.5 Truncation Selection 

Truncation selection is an artificial selection method that is usually used for large 

populations. In this method, individuals are ranked according to their fitness and the best 

individuals are selected for parents to produce offspring. 

4.4.6 Tournament Selection 

In tournament selection, a group of individuals is chosen randomly from the population 

and the fittest individual from this group is selected as a parent. This process is repeated 

until enough mating individuals are selected. The parameter for tournament selection is 

the tournament size. It takes values ranging from 2 to the number of individuals in 

population. 

4.4.7 Local Selection 

In this method, individuals are dwelled in several constrained environments called the 

local neighborhoods and each individual is considered only with regard to the individuals 

inside its neighborhood. The structure of the neighborhood can be linear in forms of full 

ring, half ring, two-dimensional in forms of full cross, half cross or full star/half star and 

also three-dimensional with any combination of the above structures [45]. 
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At the beginning of the selection, first half of the mating population is selected uniformly 

at random. Each of the pre-defined selection methods can be used for this purpose. Then 

for each selected individual, a local neighborhood is considered and the best member of 

that region is chosen for mating with that individual. The selection of the mating 

individual from local neighborhood can be made in a number of different ways such as 

random selection. 

The size of the neighborhood is determined by the distance from other neighbors and the 

structure of the neighborhood. The speed of transmission of genes between the 

individuals is related to the size of the neighborhood. Local selection in a small 

neighborhood usually gives better results than local selection in a bigger neighborhood. 

However, this might lead to less diversity in interaction between the individuals and 

premature convergence. Therefore, a precise decision should be made to meet both rapid 

propagation and maintenance of diversity in the population. 

4.4.8 Compar ison of Selection Schemes 

As mentioned before, rank-based fitness assignment overcomes the scaling problems of 

the proportional fitness assignment. Ranking introduces a uniform scaling across the 

population and provides a simple and effective way of controlling selective pressure. The 

reproductive range is limited, so that no individuals generate an excessive number of 

offspring [45]. 

In truncation selection, all individuals below a certain fitness level do not have a 

probability to be selected as parents to produce offspring. Therefore, this selection 

scheme is more likely to eventually replace less fit individuals with fitter offspring. 

Ranking and tournament selection seem to behave similarly. However, in tournament 

selection only discrete values can be assigned. Hence, ranking selection can be applied in 

a greater variety of problems where tournament selection cannot. 

In general, rank-based fitness assignment behaves in a more robust manner than other 

selection methods and thus, is the chosen method of selection for this work. 
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4.5 Recombination 

After reproduction, recombination happens by mating each two individuals that have 

been selected as members of mating population during reproduction procedure. The 

variable values or genes of the parents are combined and the new individuals are 

produced. 

Several methods of recombination are established based on the representation of the 

variables. The term "Crossover" is usually used when referring to the recombination of 

binary valued variables. Crossover is one of the first methods of recombination in which, 

variables of the individuals are represented as binary digits of 0 and 1. Crossover operates 

by choosing randomly some crossover points in the binary strings of parents. Two new 

individuals are created then by swapping the strings of the parents from the crossover 

points. Crossover is a special case of the discrete recombination and can be applied to 

integer valued and real valued variables as well by converting them to binary format. 

4.5.1 Crossover 

For the recombination of binary valued variables, the name "crossover" is used. In 

crossover, the binary string individual is divided into one or more segments at crossover 

points. The number of cross points differentiates between different crossover schemes. In 

single-point crossover, one crossover position is selected randomly from the range of 

[l,2,...,Nvar-l] where Nvar is number of variables of an individual. Then, the variable 

segments are swapped form this point and hence two new offspring are produced. Table 

(4.2) shows two offspring that are produced from two individuals by exchanging their 

genes at a random crossover point of 5. Crossover Point 

Individual 1 10011 00100110110 
Individual 2 01011 111000011110 
Offspring 1 10011|11000011110 
Offspring 2 01011 |00100110110 

Table 4.2: Single Crossover 

35 



In double-point crossover, two crossover positions are selected randomly and the 

variables of individuals are exchanged at these points to produce two new offspring. In 

multi-point crossover, m different crossover positions are chosen at random from the 

range [\,2,...,Nvar-l]. The first segments of the parents that are chosen this way remain 

unchanged and the variables are exchanged between each successive crossover points of 

the two parents from the second segment. 

Table (4.3) shows two individuals that are divided at crossover points 5, 9, and 16 and the 

two new children that are produced by exchanging the information between two parents. 

Crossover Joints 

Individual 1 10011 0010 0110110 001 
Individual 2 01011 1100 0011110 100 
Offspring 1 10011 1100 0110110 100 
Offspring 2 01011 0010 0011110 001 

Table 4.3: Multi-point Crossover 

The multi-point crossover improves robustness of the G A by exploring the search space 

and avoids premature convergence early in the search. 

Uniform crossover is another method of crossover in that a mask is created with the same 

length as the string of individuals. If we consider the following table, the offspring 1 is 

produced by using mask one. If the correspondeing bit in the mask is 1, that gene is taken 

from individual 1 and i f the corresponding mask bit is 0, that bit is taken from individual 

2. 
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Individual 1 01110011010 
Individual 2 10101100101 
Mask 1 01100011010 
Mask 2 10011100101 

Offspring 1 11101111111 

Offspring 2 00110000000 

Table 4.4: Uniform Crossover 

In shuffle crossover, a single crossover position is selected like single-point crossover. 

But before the variables are exchanged, they are randomly shuffled in both parents. After 

recombination, the variables in the offspring are unshuffled in reverse. This removes 

positional bias as the variables are randomly reassigned each time crossover is performed 

[45]. 

Crossover probability indicates how often will the crossover be performed. If crossover 

probability is 100%, then all offspring are made by crossover. If it is 0%, whole new 

generation is made from exact copies of individuals from old population, however this 

does not mean that the new generation is the same. 

Crossover is made with the hope that new chromosomes will have good parts of old 

chromosomes and maybe the new chromosomes will be better. However it is useful to 

leave some part of population survive to next generation. 

4.5.2 Discrete Recombination 

Discrete recombination can be applied to binary, integer, or real variables. In discrete 

recombination, each individual is chosen randomly from the mating pool and the values 

of variables are exchanged between each two parents to produce individuals that inherit 

characteristics from their parents. 

If we consider the following two individuals in table (4.5) with 5 variables each, there 

would be two new children produced by randomly choosing each of their variables from 

the corresponding variable of those two individuals. 
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Individual 1 67 87 23 29 94 
Individual 2 20 95 34 55 74 
Offspring 1 20 95 23 29 74 
Offspring 2 20 87 23 55 74 

Table 4.5: Discrete Recombination 

It is obvious that this method is not appropriate when the individuals consist of just one 

variable. 

4.5.3 Intermediate Recombination 

Intermediate recombination is applied only to real value variables. In this method, the 

variable values of the offspring are chosen somewhere around and between the variable 

values of the parents from expression (4.5) [45]. 

Var°=Varr + VarP(l-ai) ie(l,2, ,Nvar) (4.5) 

ciiG [-d,l+d] uniform at random, d=0.25, at for each new i 

Where Van0 stands for the ith variable of offspring and Varf for the ith variable of the 

parents. For each new variable, a is chosen uniformly at random over an interval [-d, 

1+d]. The variable d defines the size of the area for possible offspring, which is usually 

set to 0.25. This value is driven statistically to make sure that the range for choosing the 

offspring variables always remains the same as the one owned by the parents and doesn't 

decrease over the generations. 

4.5.4 Line and Extended Line Recombination 

Line recombination is the same as the intermediate recombination except that in Line 

recombination, only one value 0 is used for a-,. 

In Extended line recombination, the parents define a line based on their variable values 

and the offspring are created on this line. The domain of variables defines the size of the 

area for possible offspring. The selection of offspring is not distributed at random. The 

probability of creating offspring near the parents is high and the probability that offspring 
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are created far away from the parents is low. Moreover, i f the fitness of the parents is 

available, then offspring are mostly created around the fitter parents. 

4.6 Mutation 

Mutation is another operator of genetic algorithms that normally takes place after 

recombination. Mutation is needed because, despite the fact that reproduction and 

crossover search and recombine the individuals, they may occasionally lose some 

potentially useful genetic characteristics. Mutation prevents the solutions to fall into a 

local optimum, but it should not occur very often, because then it turns the G A into a 

random search. 

Mutation usually happens with small mutation step and low probability or mutation rate. 

Mutation step refers to the size of the changes for each mutated variable and mutation 

probability says how often parts of chromosome are mutated. If mutation probability is 

100%, the whole chromosome is changed, i f it is 0%, nothing is changed. Usually 

mutation steps and the mutation rate remain constant during a genetic algorithm run. 

However, in some cases, they change during the run according to the information 

obtained from the previous mutation. 

Different mutation methods have been described in the following sections. In the past, 

real values were decoded to binary forms before mutation. Now with powerful real value 

techniques explained in section 4.6.2., there is no need for decoding and mutation can 

directly happen to real values. 

4.6.1 Binary Mutation 

In binary representation of variables, each string contains only two state of 0 or 1. In 

binary mutation, a variable value is chosen at random. Then, the value of that gene is 

switched from 1 to 0 or from 0 to 1. Table 4.6 shows the switching of the chosen gene 

from 1 to 0 after applying mutation. 
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-Mutation Point 

Individual Before Mutation 1110011010 
Individual After Mutation 1111011010 

Table 4.6: Binary Mutation 

The size of the mutation step is always 1 in binary mutation. 

4.6.2 Rea l Va lue Muta t ion 

In real value mutation, randomly created values are added to the real value variables with 

a low probability. The probability of mutating a variable is inversely proportional to the 

number of variables or dimension of the problem. The more dimensions one individual 

has, the smaller is the mutation probability. [45] 

It has been discussed that a mutation rate of 1/Nind produces good results for a wide 

variety of functions [45]. With this assumption, only one variable per individual is 

changed in each mutation. 

When the individual is well adapted, small mutation steps often work better to reach the 

optimum result. However, small steps decrease the speed of convergence. Usually, small 

step size with a high mutation rate and large step sizes with a low mutation rate works as 

an efficient operator. 

4.7 Other G A Operators 

In this section, other effective genetic algorithm operators are mentioned. They usually 

play a secondary role in GA. 

4.7.1 Reinsert ion 

When size of the new generation differs from size of the old one, reinsertion operates to 

maintain the size of the original population. Therefore, i f less offspring are generated 

than the parents, some of the offspring are reinserted into the old population to produce 

another offspring until the required number of individuals is attained. Also, i f more 
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offspring are produced than needed, then reinsertion selects the individuals that must be 

omitted from the new population. 

There are two forms of reinsertion scheme, local reinsertion and global reinsertion. Local 

reinsertion is used along with local selection and global reinsertion is used for all other 

selection methods. 

Local reinsertion happens in the same bounded neighborhood with the same structure as 

in the local neighborhood to save the locality of the information. Local reinsertion 

happens by inserting every offspring and replacing individuals in the neighborhood 

uniformly at random or replacing the weakest individuals in the neighborhood. It can also 

happen by inserting offspring fitter than weakest individual in the neighborhood and 

replacing weakest individuals or replacing parents. Another form of local reinsertion can 

happen by inserting offspring fitter than weakest individual in the neighborhood and 

replacing parents or replacing individuals in the neighborhood uniformly at random. 

As well, there are several schemes of global reinsertion. The simplest scheme is called 

"pure reinsertion" in which the number of produced offspring is the same as parents and 

all parents are replaced by the offspring. In this scheme, every individual lives only one 

generation and therefore, it is possible that very good individuals are replaced without 

producing better offspring. In "uniform reinsertion", less offspring are produced than 

parents and parents are replaced uniformly at random. In "elitist reinsertion", less 

offspring than parents are produced and the worst parents are replaced by offspring 

whereas in "fitness-based reinsertion", more offspring are produced than needed and 

only the best offspring are reinserted. 

The elitist combined with fitness-based reinsertion prevents the information loss as it 

happens in pure reinsertion and therefore is the recommended method. 

4.7.2 Population Models 

Based on the definition of the selection pool, three population models can be defined. 

They are local model, global model and regional model. 
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The local model restricts the selection of parents to a local neighborhood. The local 

model considers every individual separately and uses the local selection to get the mating 

partner in a local neighborhood. 

In global model, there are no limitations and the selection takes place inside the entire 

population. Two terms of "master" and "slave" are usually used in this model. Master 

handles the calculations where the whole population is needed such as fitness assignment 

or selection and a number of slaves do the rest of the calculations that are basically 

defined for one or two individuals such as recombination and mutation. This is known as 

synchronous master-slave-structure [45]. 

The slave calculations can be done in parallel. When evaluation of the objective function 

is the most time consuming part, the whole evolutionary algorithm is usually calculated 

by the master and only the objective function evaluation is done by the slaves. This 

defined distribution of objective function evaluation can be employed for any other 

population model as well to reduce long computation times. 

In the regional model, parents are selected from isolated parts of the population called 

subpopulations. Inside each subpopulation, no limitations exist on selection the same as 

the global model. The subpopulations evolve separately for a certain number of 

generations, which is termed as the isolation time. After the isolation time, some of 

individuals are exchanged between the subpopulation. This process is called migration 

and the number of exchanged individuals is considered as the migration rate. The 

individuals for migration can be selected uniformly at random or best individuals are can 

be selected. Many possibilities exist for the structure of the migration of individuals 

between subpopulation. In the most general migration strategy, the individuals may 

migrate from any subpopulation to another. A pool of potential immigrants from other 

subpopulations is created in each subpopulation and the individuals are then selected 

uniformly at random from this pool. 

In comparison to the single population algorithm, the parallel implementation of the 

regional model in forms of various subpopulations decreases the computation time, as it 

needs less objective function evaluations to find the global optimum. It has been proved 
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that the multi population evolutionary algorithm reaches better results for many systems 

than a single population algorithm with the same number of individuals. 

4.8 G A Terminat ion 

The GAs move forward from one generation to the next until a termination criterion is 

met. One termination criterion involves the detection of the population convergence. In 

[4], Convergence is defined as the progression towards increasing uniformity. A gene is 

said in [4] to have converged when %95 of the population share the same value and the 

population said to have converged when all the genes have converged. In [25], when the 

sum of the deviations among individuals becomes smaller than some specified threshold, 

the algorithm is terminated. 

The most frequently used stopping criterion in most of the G A software packages and 

tools is the completion of a pre-defined number of generations. This simple strategy is 

applied in Genetic and Evolutionary Toolbox for M A T L A B that has been used in this 

work. 
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Chapter 5 

Minimax Genetic Algorithms 

This chapter describes genetic algorithms that have been developed to solve the minimax 

problem for both local and global isotropy. In section 5.1, the genetic and evolutionary 

toolbox in M A T L A B that has been used in this work, is described and section 5.2 

demonstrates the developed genetic algorithms. 

5.1 Genetic and Evolut ionary A lgor i thm Toolbox in M A T L A B 

M A T L A B is a powerful language for technical computing and simulation in a broad 

range of areas. It has an open design that allows the users to develop additional tools for 

their own applications. 

The Genetic and Evolutionary Algorithm Toolbox (GEATbx) is an application in 

M A T L A B for evolutionary algorithms to optimize a wide variety of systems. The 

toolbox was developed by Hartmut Pohlheim in 1995 [44]. The first release has been 

updated several times since then and some new features and functions have been added. 

For this work, version 1.92 is used which has been last updated in October 1999. 

The GEATbx contains m-file implementation of the G A steps that are executed 

throughout the completion of the algorithm. For a variety of the genetic algorithm 

features, associated parameters have been set internally to appropriate default values. 

Some of these values are calculated based on the number of variables and size of the 

problem. However, all these default values can be set to a desired value by the user inside 

the program. 

Some particular algorithms such as multi-population genetic algorithms are produced as 

specific commands in the toolbox. These functions add some specific features to the 

simple genetic algorithm and thus define a special algorithm. In multi-population genetic 

algorithm, each population is divided into several subpopulations that are stored in the 
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population matrix in order. For a few generations, every subpopulation evolves isolated 

the same as a simple genetic algorithm. Then one or more individuals are exchanged 

between the subpopulations. This produces better results and models the evolutionary 

algorithm in a way more similar to nature than the simple genetic algorithm. 

Choosing the appropriate evolutionary algorithm is mostly dependent on the format of the 

variables in the problem. In the toolbox, real, binary, and integer representation of the 

variables are supported. There exist functions for conversion between these 

representations. If the variables of the objective function are real, the real value 

representation for the genetic algorithm implementation is recommended. 

The implementation of the problem's objective function is the most demanding issue 

while using the toolbox. Inside the objective function m-file, all the problem specific 

variables and default values for domain of variables should be defined. The objective 

function is called with a randomly created matrix representing the initial population of 

the first generation. This matrix contains as many rows as the predefined number of 

individuals and as many columns as the number of variables of the objective function or 

in other words, the dimension of the problem. 

The mathematical expression of objective function is calculated for every single 

individual of the population. Each individual is assigned a fitness function based on its 

objective function value and the process moves towards the recombination of the best 

individuals, which are selected as parents for the next generation. Other steps of the G A 

such as recombination and mutation are taken place and therefore, the second generation 

of individuals is generated. The same evaluations are made for the new generation until 

the best result is derived. 

The mathematical representation of the fitness function can be calculated for every single 

individual of the population in a for-loop. However, the execution time can be greatly 

reduced by vectorization. 

5.1.1 Features of the GEATbx 

The general frame for all types of data in the GEATbx is a 2-D matrix. This allows the 

toolbox to be compatible with the older versions of M A T L A B such as M A T L A B 4. 
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Chromosomes are one type of data that are used in the toolbox. They are also called 

individuals and classified as genotypes. The entire population is stored in chromosome 

data structure in the form of a matrix with as many rows as the individuals of the 

population and as many columns as the variables of each individual. Each row represents 

the genotypic representation of that individual that might be binary, integer or real values. 

Decision variables or phenotypes are another type of data in the toolbox. It is possible to 

have integer, real and binary variables in the same phenotype data structure. In many 

occasions, the phenotypes and genotypes are basically the same and there is no mapping 

necessary between these two sets of data. For example, i f variables are real and the 

algorithm has been defined to work with real valued variables, phenotypes and genotypes 

are identical and no mapping is necessary. 

Objective function is a scalar number that assigns a performance evaluation to each 

phenotype. In case of multiple objectives, objective function is in fact a vector containing 

components that correspond to each objective. Each row of the objective function matrix 

represents a particular individual's objective vector. The number of columns of the 

objective function matrix is equal to the number of individuals of the current population. 

Fitness values are another sort of data that are derived from the objective values. They are 

non-negative values that are not necessarily the same as objective values. Fitness values 

are stored in a matrix with same dimension as objective function's matrix. In case of 

multi-objective functions, the fitness of each individual is derived as a function of the 

vector of objective function values. 

The central point in the G A is a main function that calls all the necessary G A operators 

and does most of the administrative works such as population initialization, displaying 

and saving the results. When the population of individuals is initialized, the G A starts. 

New populations are generated and are evaluated by G A operators for predefined number 

of generations. 

Selection operator has been supported in toolbox in several forms such as linear/non­

linear ranking, stochastic universal sampling, truncation, tournament, roulette wheel, and 

local selection. The desired method can be chosen by the user and set internally within 

the program. Recombination has been defined in a number of forms as well such as 
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discrete, intermediate, line, extended line and also as crossover for binary representation 

of variables in single/double point, shuffle and uniform crossover. For mutation, toolbox 

supports binary and real valued mutation depending on the variable representation. For 

real value representation, several mutation functions are represented. 

There are also a number of different population models that have been defined in the 

toolbox. Global model, regional model (multiple subpopulations) and local model (local 

selection, global/regional, local reinsertion, and different neighborhood structures) can be 

mentioned as some of them. The migration operator is defined in regional model in the 

forms of unrestricted, ring, and neighborhood. 

The results can be shown in a classified form during the execution of the algorithm. The 

format of the visualization can be set to have the number of objective function calls, best 

objective value and rank of subpopulations on the screen as well as the graphical results 

while the program is running. 

5.2 Minimax Genetic Algorithm 

In this section, the algorithm for solving the isotropic minimax problem is given. It is 

based on the implementation of a G A that runs another G A while executing to assign the 

fitness score to each individual of its current population. 

At the beginning of the program, all the necessary input parameters of both GAs such as 

the number of generations, number of individuals in each generation, number of sub 

populations of each population and the lower and upper bounds for each variable are 

defined. However, these are not the only default parameters that need to be set. Other 

options such recombination, crossover, and mutation methods should be set internally as 

well as the generation gap and selective pressure. 

If the user does not define the above inputs, the toolbox automatically considers 200 Jn 

generations where n is the number of independent variables of the objective function. 

Each population consists of 24n subpopulations of 20+n/10 individuals. The selection 

algorithm is set to stochastic universal sampling, the recombination algorithm to discrete 

recombination and the mutation algorithm to real mutation and the variables are treated 
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as real values. Furthermore, the generation gap and migration rate are set to 1 and 0.2, 

respectively. 

Generally, the G A termination should be detected automatically by the program as it 

converges towards the optimum result. This feature is not yet implemented in the genetic 

and evolutionary algorithm toolbox and the G A ends after evaluating the predefined 

number of generations. Therefore, attention should be paid when choosing the number of 

generations to find the optimal result. The adequate number of generations to get the best 

solution can be figured out after a few trials. 

The algorithm is shown step by step for both local and global isotropy through equations 

(5.1)-(5.22). 
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List of Symbols 

i, j, m, n = looping indices 

/ = design parameter 

x = end-effector position 

Gmin = minimum singular value at a position 

Gmax

 = maximum singular value at a position 

Ngen = number of generations of a genetic algorithm 

Nind = number of individuals of a population 

Nsub = number of subpopulations of a genetic algorithms 

F = fitness score of an individual 

F* = best fitness score obtained through all generations 

bmax = upper bound of variables 

bmin = lower bound of variables 

P = current population of the genetic algorithm 

p = an individual of the current population 

GA i = a minimization genetic algorithm 

GA2 = a maximization genetic algorithm 

Prefixes 1 and 2 stand for the parameter of the GAi and GA2, respectively. 
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Minimax Genetic Algorithm Optimization Approach 
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UNTIL j = 'Nind (5.16) 

Apply G A i operators (5.17) 

i f i<]Ngen+l (5.18) 

Set LPi+l(l) (5.19) 

UNTIL i = 'NGEN+1 (5.20) 

The minimax genetic solution is the parallel implementation of two GAs. GA2 develops a 

minimization search to find the position that gives the minimum ratio of singular values 

for a given design parameter and G A i searches through all design parameters to find the 

optimum one that provides the maximum value of that minimum ratio at a position. 

The algorithm starts in (5.1) with a loop to create the generations of the G A i . The first 

population {PQ(1) is randomly chosen in (5.2) from all the candidates in the design 

parameter space. Next, the first chromosome of the population enters into G A 2 as the 

known design parameter so that the isotropy can be evaluated for that particular link 

length at different workspace positions. Another loop starts in (5.5) to create the 

generations of GA2 and the first population of the current generation is randomly chosen 

form the robot workspace points in (5.6). The measurement of the performance index 

takes place in (5.9) as a function of input design parameter /,• at a position x„ obtained 

form (5.8). The computation of the objective function is completed during the execution 

of the third loop for all positions of the current population of G A i and the next generation 

is created in (5.13) after applying the G A operators in (5.11). 

After the GA2 completes, the best performance index obtained during all its generations 

is assigned in (5.15) to the current design candidate as its fitness score for G A i 

maximization development. Similarly, the next individuals of the current population of 

G A i are chosen one by one and go through all the previous stages until the termination 

criteria are met. 

Inside the loop, the objective function calculates the same mathematical expressions for 

each individual separately and since the algorithm contains several loops, it takes a 

considerably long time for the program to converge to the final result. This matter 
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aggravates as the dimension of the program increases since more generation and 

individuals are needed to converge to the optimal answer. Therefore, instead of defining 

the repeating nature of the objective function in for-loops, the program is vectorized so 

that each mathematical expression is calculated for the entire members of the population 

simultaneously. This action significantly reduces the execution time with the same final 

results as before. 

The previous algorithm has been demonstrated for local isotropic optimization in which 

the minimum and maximum singular values of the performance index are both obtained 

at the same position. The algorithm can be modified for a global measure of isotropy by 

replacing expression (5.9) with (5.21) and (5.22). 

Find x„ i= arg min<jmin(li,xn), xn2 = arg maxamax(li,xn) (5.21) 

Find F(xn,xn2) = ~ Tj " r (5.22) 
u max vi;')x«2' 

Here the comparison of the singular values happens at two different positions of the 

workspace. The smallest "minimum singular value" and the greatest "maximum singular 

value" of positions x„i and xn2 are considered in the performance measure (5.22). 

Therefore the final result assures the global isotropy of robot throughout the entire 

workspace. 
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Chapter 6 

Implementation of the Minimax GA for Robotic Manipulators 

This chapter illustrates the application of genetic algorithms in kinematic design 

optimization for two typical robotic manipulators. In section 6.1, the method has been 

applied to a two-DOF planar elbow manipulator and the results have been compared to 

those obtained using the culling algorithm in [49]. In section 6.2, the algorithm is further 

developed to globally optimize the same manipulator. Finally, the method has been used 

to optimize the design of a 3-DOF planar manipulator in section 6.3. 

6.1 Design of a Locally Isotropic 2-DOF Planar Manipulator 

In [49], the minimax culling algorithm has been applied to find the local isotropic design 

of a planar elbow manipulator shown in Figure (6.1). The condition index is considered 

as a measure of the local isotropic performance, which is a non-linear, non-differentiable 

ratio of the minimum singular value of Jacobian matrix of the robot to the maximum one 

at a workspace position. The position space is reduced to one dimension x by setting y to 

a constant value of 2 unit of length. The minimum forearm length l2 is calculated fromm 

(6.1) to ensures that the boundaries of the usable and reachable workspace shown in 

Figure (6.1) are separated by a minimum safety margin of length K such that {/c/.&i} >K 

[49]. Therefore, the parameter space and the position space are reduced to one dimension 

// and x, respectively. 

(6.1) 
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Figure 6.1: A 2-DOF Planar Elbow Manipulator 

Applying the culling algorithm in [49], a resolution of one decimal point is considered 

for discretizing the parameter space. Assuming xmax=5 and 2 < // < 8, the defined 

workspace has been divided into 11 discrete positions and the parameter space has been 

divided into 61 discrete design parameters. With K=0.4 and an intermediate initial value 

of link length l/=6, the culling algorithm starts by searching all the positions in 

workspace for that particular design parameter .The worse parameters are culled 

throughout the search in the parameter space until only //= 4.5 remains to be the optimal 

link length that provides the best isotropic state for the manipulator at the optimal 

working point of x=0. 

The 2-D and 3-D mesh plots of the objective function for the manipulator of Figure (6.1) 

are shown in Figure (6.2) with respect to the link length // and position x. 
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Figure 6.2: Surface and Contour Plots of Variation of the Local Isotropic Measures 
for a 2-DOF Planar Manipulator 
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According to Figure (6.2), if we take a move from the minimum objective value to the 

peak of the graph, the colors shift from dark orange to red as shown in Figure (6.3) 

Greater Objective Value 

Figure 6.3: Co lo r Classif icat ion 

As the Figure (6.2) shows, the maximum "minimum value of objective function" is 

around lj=4.5 at positions x=0 and x=±5 and is associated with color green. In other 

words, the minimum condition number at li=4.5 has a greater value in comparison to all 

other link lengths and this minimum occurs at three end-effector positions. 

For all other link lengths, the colors associated with the minimum objective function are 

all below green at all positions. Furthermore, for li=4.5, other positions offer a higher 

objective function value than those three positions because the colors related to the 

minimum objective function at other positions appear above the green area in Figure 

(6.3). Therefore, the optimal link length is located around U=4.5 that provides the most 

possible isotropic performance of the manipulator in Figure (6.1) at x=0 and the 

boundary points of x = ±5. 

In minimax G A algorithms, the two multi-population genetic algorithms that are 

developed to optimize for the manipulator in Figure (6.1) run with 30 generations each. 

Every generation contains 2 subpopulations each of which includes 20 individuals. The 

program converges to the optimal solution of GII=0.4014 for link length lj=4.4798 at 

workspace point of 0. The results from the last generation of one of the runs are shown in 

table 6.1. As the results indicate, the best isotropic configurations occur at either the 

intermediate point of x=0 or the end points of x= ±5 as was visually noticed before from 

Figure 6.2. 
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Link Length Position Performance Measure 
4.3433 
5.0878 
4.4879 
4.4873 
4.4719 
4.4849 
4.4983 
4.4737 
4.3282 
4.7794 
4.4909 
4.4896 
4.5381 
4.4101 
4.4855 
5.0855 
4.3532 
4.4855 
4.0533 
4.1857 
4.1855 
4.4914 
4.4098 
4.5055 
4.4874 
4.4410 
4.5605 
4.5581 
4.5075 
5.6434 
4.5181 
4.4799 
4.4410 
4.5160 
4.4798 
5.5872 
4.7715 
4.7645 
5.6185 
4.1535 
5.6913 
5.6913 
3.2189 
3.5845 
4.2189 
4.6139 

5.0000 
-0.0000 
0.0004 
0.0000 
-5.0000 
-O.fJOOO 
-0.0000 
-5.0000 
5.0000 
0.0001 
0.0000 
0.0000 
0.0000 
-5.0000 
-0.0003 
0.0001 
5.0000 
-0.0002 
5.0000 
-5.0000 
-5.0000 
-0.0000 
5.0000 
-0.0000 
0.0001 
5.0000 
0.0001 
0.0001 
-0.0001 
-0.0000 
0.0004 
0.0001 
-5.0000 
-0.0001 
0.0000 
-0.0000 
-0.0004 
-0.0001 
0.0001 

-5.0000 
0.0000 
0.0000 
-5.0000 
-5.0000 
-5.0000 
0.0001 

0.3682 
0.3467 
0.4006 
0.4006 
0.3997 
0.4009 
0.3996 
0.4001 
0.3644 
0.3732 
0.4003 
0.4004 
0.3957 
0.3847 
0.4008 
0.3469 
0.3707 
0.4008 
0.2908 
0.3275 
0.3274 
0.4002 
0.3847 
0.3989 
0.4006 
0.3923 
0.3936 
0.3938 
0.3987 
0.3056 
0.3977 
0.4014 
0.3923 
0.3979 

0.4014 <— Best Result 
0.3094 
0.3740 
0.3746 
0.3072 
0.3188 
0.3024 
0.3024 
0.1630 
0.1671 
0.3363 
0.3885 

Table 6.1: The Results of the Last Generation of the GA for Local Isotropic 
Optimization of an Elbow Manipulator 
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The graphs in Figure (6.4) show the variation of best objective values and best individual 

candidates for // throughout the 30 generations. 

Best obj. vals 
0.4016 

0.3937 
0 10 15 20 

generation 
Best individuals 

15 
generation 

Figure 6.4: The Results of the GA for Local Isotropic Optimization of a 2-DOF 

Elbow Manipulator 

In comparison to the culling algorithm, G A presents a resolution of 4 decimal points for 

both the parameter and position space. This results in more accurate results. If the culling 

algorithm runs to provide such a resolution, a huge number of objective function 

evaluations should take place since the search happens in a position space of 110001 

points and a design parameter space of 60001 points. 

As it is clear from Figure (6.2), the objective function plot has left/right symmetry for 

workspace positions. Therefore, future optimizations need to only consider half of the 
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workspace, [-5,0] or [0,5]. This reduces the size of the workspace to 55001 points and 

results in a faster convergence. 

6.2 Design of a Globally Isotropic 2-DOF Planar Manipulator 

In this section, the minimax genetic algorithm is considered for a global optimization of 

the manipulator of Figure (6.1). For this purpose, the performance index is considered as 

the ratio of the minimum singular value of Jacobian matrix to the maximum one obtained 

through search in the entire workspace. 

For each of the two GAs of the program, 30 generations complete. Each generation in 

turn includes 30 individuals in each of its 3 subpopulations. The surface and the contour 

plots of the global objective function are shown in Figure (6.5) and the results obtained 

from the last generation are shown in table (6.2). As the table indicates, the program 

converges to an optimal solution of li=5.46 and the most isotropic performance with GII 

= 0.2334 is obtained as the ratio of singular values of position sets {-5,0} or {5,0} which 

include the workspace middle point and the boundaries. It can also be seen from Figure 

(6.4) that at these sets, the minimum GII value is associated with the dark orange which 

has the lowest rank in color classification of Figure (6.3). This minimum is the maximum 

objective value in comparison to all other minimum ones of other link lengths at all 

workspace positions. Hence, the robot with a design of h=5.46 has the most isotropic 

behavior through its global performance in the entire workspace than any other feasible 

designs. 

As the color transitions in both Figures (6.2) and (6.5) indicate, each point demonstrates 

an approximately similar behavior as its neighbors and the transition is gradual. 

Therefore, there is not a huge loss of information when discretizing the workspace for 

optimal search. This is one of the advantages of robot design optimization problem that 

makes the discrete optimization algorithms such as the culling algorithm to be applicable. 

The culling algorithm is not used in [49] for global isotropic design optimization of the 

manipulator of Figure (6.1). However, in case of 4 decimal point resolution, any discrete 

search algorithm should take place in a position space of 5,000,150,001 points and a 

parameter space of 60001 points. 
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Position 2 

Position 1 

Figure 6.5: Surface and Contour Plots of Variation of the Local Isotropic Measures 

for a 2-DOF Planar Manipulator with h=5.5 
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Link Length Position Xi Position x 2 Performance Measure 

6.0624 5.0000 0.0034 0.2325 
5.4362 5.1HIOH o.ooou 0.2334 
5.4432 -n.oo:: 0.2334 
6.X 130 0.0003 -5.i II II H I 0.2280 
6.S5«4 -5.0000 0.0012 0.2275 
5.5384 - S 011(11) 0.0013 0.2334 
5.I23S 0.1)001 5.0000 0.2331 
*.4ti2n 5.011(11) o.ooos 0.2334 
6.6142 -u.0024 5.0000 0.2298 
6.8514 -5.0000 -0.0025 0.2276 
5.7618 -5.0000 0.0004 0.2332 
5.6514 -5.0000 0.0001 0.2333 
5.6545 0.0040 -5.0000 0.2333 
5.8051 -0.0018 5.0000 0.2331 
6.8185 -5.0000 -0.0051 0.2280 
6.8091 -0.0041 -5.0000 0.2281 
5.5717 -0.0024 -5.0000 0.2333 
5.5429 -o.ooio -5.0000 0.2334 
4.8722 -0.0001 5.0000 " "5.2325 
5.1722 5.0000 0.0289 0.2332 
4.9285 5.0000 -0.0032 0.2326 
4.8535 5.0000 -0.0006 0.2324 
5.3978 0.0005 5.0000 0.2334 
5.2449 5.0000 -0.0008 0.2333 
5.4042 -0.0016 5.0000 0.2334 
5.3992 - ( J ( > ( > * ! 0.2334 
5.2809 -5.0000 -0.0025 0.2333 
5.2812 -5.0000 0.0008 0.2333 
5.3965 5.0000 0.2334 
5.3965 -0.0001 -5.0000 0.2334 
5.4811 -5.0000 0.2334 
v4si 1 n.nrc" 5.0000 0.2334 
5.4982 0.000(i 5.0000 0.2334 
5.S65S 0.0006 -5.0000 o ; M\ w — -
5.5472 O.CiiMi: 0.2334 
5.4864 -5.0(Mio 0.2334 

Table 6.2: The Results of the Last Generation of the GA for Global Isotropic 

Optimization of an Elbow Manipulator 

61 



As Figure (6.5) indicates, the plot of the objective function has left/right and top/bottom 

symmetry for workspace points. Therefore, a quarter of the workspace would be 

sufficient for optimization. That is, the global search for minimum and maximum 

singular values of the entire workspace can be done in range of [-5,0] or [0,5]. 

The graphs in Figure (6.6) represent the variation the best individual candidates for link 

length //throughout 30 generations. 

Best individuals 
5.491 1 1 1 

0 5 10 15 20 25 30 
generation 

Figure 6.6: The Results of the GA for Global Isotropic Optimization of the Elbow 

Manipulator 
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6.3 Design of a 3 - D O F Planar Manipu la tor 

In this section, the minimax genetic algorithm is applied to solve for a 3-DOF planar 

manipulator shown in Figure (6.7). 

Figure 6.7: A 3-DOF Planar Manipulator 

The robot moves in a square workspace (xe[-2,2], y€[-2,2]) that is located at a fixed 

distance of yo=2 cm above the base coordinate frame X Y . Physical constraint of lte [2,4], 

i=l,2,3 is imposed on all link lengths. The program runs with 50 generations for each 

GA. Each generation includes 50 individuals in each of its 3 subpopulations. 
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Il h 13 
X Y GII 

4.iH)(i(i 3.7045 4.0000 -Hindu 2.0000 -1.2489 0.0486 -
3.6938 3.7106 4.0000 2.0000 2.0000 -1.8925 " 0.047T 
2.6922 3.6604 3.9781 2.0000 2.0000 -1.8922 0.0428 
3.3956 3.2386 4.0000 -2.0000 2.0000 -1.2489 0.0376 
2.0000 3.4596 4.0000 -2.0000 2.0000 -1.2479 0.0377 
4.0000 3.4984 3.9875 -2.0000 2.0000 -1.2490 0.0450 
3.9499 3.7042 4.0000 -2.0000 2.0000 -1.2490 0.0483 
3.9939 2.6591 3.8052 2.0000 2.0000 -1.8922 0.0302 
4.0000 2.7445 3.7901 2.0000 2.0000 -1.8917 0.0318 
3.8996 3.4981 4.0000 -2.0000 2.0000 -1.2490 0.0444 
3.6000 2.9946 4.0000 -2.0000 2.0000 -1.2490 0.0341 
4.0000 2.7445 3.7901 -2.0000 2.0000 -1.2488 0.0318 
3.8996 3.4981 4.0000 -2.0000 2.0000 -1.2490 0.0444 
3.6000 2.9946 4.0000 -2.0000 2.0000 -1.2490 0.0341 
4.0000 2.7445 3.7901 -2.0000 2.0000 -1.2488 0.0318 
3.9000 2.9729 3.6999 -2.0000 2.0000 -1.2490 0.0358 
4.0000 3.6606 4.0000 -2.0000 2.0000 -1.2490 0.0478 
3.9898 2.8213 3.9737 -2.0000 2.0000 -1.2487 0.0328 
3.9000 2.9950 3.9983 2.0000 2.0000 -1.8924 0.0354 
3.9000 2.9950 4.0000 -2.0000 2.0000 -1.2485 0.0354 
2.8948 3.6312 4.0000 2.0000 2.0000 -1.8922 0.0427 
4.0000 3.4043 4.0000 -2.0000 2.0000 -1.2490 0.0433 
3.9891 2.7803 3.9967 -2.0000 2.0000 -1.2490 0.0320 
4.0000 3.4507 4.0000 -2.0000 2.0000 -1.2490 0.0441 
4.0000 3.2536 3.5871 -2.0000 2.0000 -1.2490 0.0418 
4.0000 3.2661 3.5746 2.0000 2.0000 -1.8921 0.0421 
3.6584 3.6839 4.0000 2.0000 2.0000 -1.8925 0.0465 
2.8780 3.6196 4.0000 2.0000 2.0000 -1.8925 0.0425 
2.8506 3.7596 4.0000 -2.0000 2.0000 -1.2488 0.0449 
4.0000 3.3388 3.9872 -2.0000 2.0000 -1.2489 0.0421 
3.8954 3.2562 4.0000 -2.0000 2.0000 -1.2487 0.0401 
4.0000 3.7595 4.0000 2.0000 -2.0000 -0.1719 0.0471 
2.3136 3.7171 4.0000 2.0000 2.0000 -1.8925 0.0428 
4.0000 3.5205 4.0000 -2.0000 2.0000 -1.2490 0.0453 
4.0000 3.2559 4.0000 -2.0000 2.0000 -1.2490 0.0406 

Best 
Result 

Table 6.3: The Results of the Last Generation of the GA for Local Isotropic 

Optimization of a 3-DOF Planar Manipulator 
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Table (6.3) presents the results of optimizing for the 3-DOF manipulator of Figure (6.6). 

The optimal result appear to be li=4.0000, h= 3.7045, lg= 4.0000, and that configuration 

has the best isotropic performance at X= -2.0000 and Y= 2.0000for </f= -1.2489 rod with 

a GII=0.0486. However, other results shown in table (6.3) will provide a near optimum 

behavior of robot at their related optimal points. 

The graph in Figure (6.8) presents the variation of best individual candidates for link 

lengths // ,h and I3 throughout 40 generations. 

Best individuals 

CO 

4 

3 . 8 •HI I 
4 

3 . 8 •HI 
3 . 6 r 

/ VI 
3 . 4 

/ VI 
-

3 . 2 -

3 -

2 . 8 -

2 . 6 J—_ 1 1 1 i i 

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 

generation 

Figure 6.8: The Results of the GA for a 3-DOF Manipulator 

65 



In case of the 3-DOF manipulator, all three link lengths and the orientation angle are free 

design parameters. Using a minimax G A algorithm, the results with a resolution of 4 
decimal points forX, Fand and link lengths //, 12 and 13 are obtained. 
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Chapter 7 

Conclusions 

This chapter summarizes the research detailed in this thesis and makes some suggestions 

for future work in this area. 

7.1 Overview of the Research 

The main objective of this research work was to identify the power of genetic algorithms 

in solving minimax problems such as robot design optimization. The objective function 

of the optimization problem was a highly non-linear, non-differentiable mathematical 

expression based on the singular values of a Jacobian matrix. The work was completed 

for two types of robotic manipulators. First, the isotropic design of a 2-DOF planar elbow 

manipulator was considered where the condition index was a local measure of isotropy. 

Describing the second link of the robot as a function of the first link and a 1 -D workspace 

in form of a horizontal line, the optimal link lengths of the manipulator were derived as 

well as the optimal working point at which the robot had the most isotropic performance. 

The final results were compared to the results of a previous work on the same 

manipulator applying a culling algorithm and it was concluded that the genetic algorithm 

seems to converge faster to a solution. Furthermore, it should be noted that the genetic 

algorithm has a higher resolution since the search need not to be discretized. 

The algorithm was also implemented to solve for global optimization of the same 2-DOF 

manipulator. In this approach, the comparison between the singular values of the 

Jacobian took place at all positions of the workspace and the optimal design resulted in a 

robot that would perform "most uniformly" throughout the entire workspace. 
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In the last step, the optimization was implemented to solve for a 3-DOF planar 

manipulator performing in a 2-D square workspace with four design variables, three link 

lengths and an orientation angle. 

7.2 Future Work 

The algorithm proposed in this work can be applied to all other minimax optimization 

algorithms. It works for all types of problems with logical, mathematical, continuous, 

discrete, non-linear, non-differentiable or multi-modal objective functions. The algorithm 

is not sensitive to the initial conditions or the nature of the objective function 

For the specific application in robot design optimization, the work can be promoted by 

combining the culling algorithms and the genetic algorithms approaches. In this strategy, 

the computational expense of both algorithms can be greatly reduced and the optimal 

results can be obtained in a faster convergence with a higher resolution. In this combined 

algorithm, a generation of random points can be evaluated by a genetic algorithm through 

the search step of the culling algorithm instead of evaluating all of the points. The 

combined algorithm benefits the elimination nature of the culling algorithm for reducing 

the search space and the stochastic nature of the genetic algorithm for reducing the 

amount of objective function evaluations. The final result is guaranteed to be the same as 

a global search in a much shorter time. 
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Appendix 1 

Inverse kinematics of a 3-DOF RRR Serial Manipulator 

Figure A .1 : A 3 - D O F R R R Seria l Man ipu la to r 

Consider the planar 3-DOF serial manipulator shown in Figure A . l . It is desired to find 

the joint variables qu q2 and qi corresponding to a given end-effector position and 

orientation. We define two coordinate X3, V3 for the origin of wrist frame and the angle (j) 

which is in fact the orientation angle of link 3 in the plane. Having specified that 

orientation, the following relation exists 

(j) =qi + q2+ qi (A. l) 

The following relations can be easily derived from the figure. 

X2 = *3 - hc+ =hc, + l2c,2 (A.2) 
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yi = y3 - =hsi + (A.3) 

Which describes the position of the origin of frame 2. This depends only on two angles qi 

and q2 where 

c12 = cos(q,+q2)=c,C2-s,s2 (AA) 

s12 = sin(q}+q2)=c1S2+s1c2 (A.5) 

Squaring and summing Eqs. (A.2) and (A.3) and using relations (A.4) and (A.5) Yields: 

x2+y2 = h2 + l2

2+ 2l,hc2 (A.6) 

Solving (A.6) for c2, we get 

2^ 2 ,2 , 2 

_*2 +yi ~h ~h 
°2 = llj2 (A-.7) 

The existence of solution obviously imposes that -1< c2 < 1, otherwise the given point 

would be outside the arm reachable workspace. Assuming the point is inside the 

workspace, we ca writete expression (A.8) for S2 

s2 = ± A / l - c 2

2 (A.8) 

Where the positive sign is relative to the elbow-down posture and the negative sign to the 

elbow-up posture. Therefore, the choice of sign corresponds to multiple solutions. In 

solving for q2, both sine and cosine of the desired joint angle are determined to ensure 

that all solutions are found and the solved angle is in the proper quadrant. Hence 

applying the two-argument arctangent, the angle q2 can be computed as 

q2 = Atan2(s2,c2) (A.9) 

Substituting q2 into (A.2) and (A.3) yields an algebraic system of two equations in the 

two unknowns si and cj whose solution is 

(/ 1+/ 2c 2)y 2 - / 2 5 2x 2 

5 l = Y~~2 (A-10> 
*2 +y2 
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_ ( / 1 + / 2 C 2 ) x 2 + / 2 5 2 ^ 2 

C l ~ x~Y7v~~2 ( A - U ) 

In analogy to the above, qi can be found 

qi = Atan2(s,,c,) (A. 12) 

Finally the angle q$ is found from (A.l) as 

q3 = Q-qi-q2 (A.13) 

If <p is not specified, the arm is redundant and there exists infinite solutions to the inverse 

kinematics problem. 
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Appendix 2 

Jacobian Matrix of a 2-DOF RR Serial Manipulator 

The Jacobian of a 2-DOF serial manipulator in figure A.2 is written is frame {0} in 

(A. 14) with the origin and frame considerations shown in Fig A.2 where all joint angles 

are set to zero [50]. 

Jo 

Co 
11 

(O 

Figure A.2: A 2-DOF Robot 

j T(O0-O2) f{Ox-02) 
i T(O2-O0) i T(o2-ox) 

(A.14) 

where 

J T(20-02) = -I, sin(q,) - l2sin(q1+q2) 

JT(Q.i -Q2) = - l2sin(q,+q2) 

iT(O2-O0) = I, cos(q,)+ l2cos(q,+q2) 

iT(.Q2-Q-\) = hcos(qi+q2) 

(A. 15) 

(A. 16) 

(A. 17) 

(A. 17) 

Therefore, 
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|_ /j COS(#i) + l2 C O S ^ + q2) l2 C O S f ^ +q2) 

The Jacobian written in frame {3} can be obtained as 

/ , s in(^ 2 ) 0 
/, cos(42) + /2 h 
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Appendix 3 

Jacobian Matrix of a 3-DOF R R R Serial Manipulator 

The Jacobian of the planar serial manipulator in figure A. 3 is computed from (A.20) 

using the terms defined in A.21- A.26 and the origin and frame assessment shown in Fig 

A.3, where all joint angles are set to zero [50]. 

Figure A . 3 : A 3 - D O F Robot 

jT(Q0-o3) jT{Ox-o3) jT(o2-o3) 
iT{o3-q0) iT{o3-qx) iT(o3-o2) 

1 1 1 
(A.20) 

where 

/ ( 2 0 
-03) = -11 sin(q) - l2sin(qi+q2) - hsin(qi+q2+q3) 

/ ( 2 i -Q_3) = -l2sin(q,+q2) - l3sin(q,+q2+q3) 

JT(Q2 -o3) = - l3sin(qi+q2+q3) 

iT(03- -O0) = I, cos(q,)+ l2cos(q,+q2) + l3cos(qt+q2+q3) 

iT(03- -0.x) = l2cos(q,+q2) + l3cos(q,+q2+q3) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 
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iT(Q3 -02) = l3 cos(q1+q2+q3) (A.26) 

The Jacobian written in frame {3} can be obtained as [39]. 

J-
l 2 s 3 +/1S23 ks3 0 

h + l 2 c 3 + l l c 2 3 h + l 2 c 3 h 
(A.27) 
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Appendix 4 

Singular Values of Jacobian Matrix for a 2-DOF and 3-DOF 
Planar Manipulator 

Figure A.4: A 2-DOF Planar Manipulator 

Consider the nonredundant 2-DOF planar manipulator shown in Fig A.4. Since the 

singular values of Jacobian matrix are not dependent on coordinate frame in which 

Jacobian is expressed, we consider the Jacobian matrix that corresponds to task 

coordinates expressed in the coordinate frame which is located at the manipulator tip. 

That makes the elements of the Jacobian simpler than any other frames [29]. 

J = 2J 
l2+l\c2 h 

(A.28) 

Where // and l2 are the lengths of the links 1 and 2. , s2 = sinq2 and c2 = cosq2 and qi and 

q2 are joint angles. 

T 

To use the relationship between eigenvalues of J J and singular values of J, we consider 

the following matrix 
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fj h2 hih+hci) 
l2(l2+hc2) i2

2 

(A.29) 

Where h is the length between the manipulator base and the tip. 

h2 = h2 + // + 2lil2c2 (A.30) 

Considering the relations: 

det(J) = ±01.02 om (A.31) 

trace(JTJ) = 0 / +o2

 2 + ...+ om

2 (A.32) 

We obtain: 

o2 + o2

2 = l2

2 + I2 (A.33) 

det(J) = l,l2s2 = 0 , . 0 2 detfUV) (A.34) 

Oi.02 = l,l2\s2\ (A.35) 

det(UV) = sgn(s2) (A.36) 

Oi .o2> 0. Here sgn(^denotes the signum function. 

The eigenvalues ofJJ can be easily derived as the roots of the characteristic polynomial 

det (JTJ-AI) = 0. The square root of these eigenvalues (i.e., singular values of J) thus 

become 

\h2 +h2 ± A / ( / 2

2
 + / 3 2 ) 2 -4/I 2/ 2V 

oia =-J (A.37) 

substituting l3 in (1.36) results in 

lx

2 +2/2
2 +2ld2c2 ±^(k2 +2/2

2 +2/ 1/ 2c 2) 2 - 4 l l

2 l 2

2 s 2

2 

For a 3-DOF manipulator, considering the Jacobian in second frame in (A.38) is 

considered. 
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7 = 
l 2 s 3 +lxs23 I2s3 0 

h+l2c3+kc23 h + l 2 c 3 h. 

ju hi o ~ 

_h\ J22 Jl3_ 
(A.39) 

The singular values of the above Jacobian are derived as shown in (A.40). 

hx

2 + h2

2 ±^{hx

2 +h2

2)2-4(/?1V-hn

2) 

Where 

, 2 . 2 , - 2 
hi =jn +J12 

i 2 • 2 , • 2 , . 2 
h2 =J2I +J22 +J23 

hl2 =jllJ21+jl2J22 

(A.40) 

(A.41) 
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