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A B S T R A C T 

Space manipulators present several features uncommon to ground-based robots: they 

are highly flexible, often mobile, and have a degree of redundancy. A s space robots become 

more complex, effective formulation procedures and efficient algorithms are required to 

evaluate their performance. The present study aims at development of some basic tools and 

their application to assess dynamics and control of a novel, flexible, multi-module 

manipulator with slewing and deployable links. To begin with, a rather general three-

dimensional, order N, Lagrangian formulation for the system is developed which accounts 

for interactions between orbital, librational, slew, deployment and elastic degrees of freedom. 

The versatile character of the formulation makes it applicable to a large class of manipulator 

systems of contemporary interest. Validity of the formulation and associated computer code 

is established through conservation of energy in the absence of dissipation. 

A planar parametric study follows which provides better appreciation as to the 

influence of several important system variables, initial disturbances and maneuver profiles. 

Behaviour of a two-unit gross and fine manipulator is also discussed. Results suggest that the 

system flexibility could significantly affect the manipulator's performance, which may not be 

acceptable. This suggests a need for control. 

A nonlinear controller based on the Feedback Linearization Technique (FLT) is 

developed to regulate rigid degrees of freedom which proves to be quite effective. Flexible 

generalized coordinates, though not actively controlled, are regulated through coupling. 

Optimal trajectory design for the gross-fine manipulator system with redundant degrees of 

freedom is also investigated. 
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Finally, the general formulation is reduced to represent the ground-based two-unit 

prototype manipulator thus demonstrating its wide scope of application. Simulation results 

for the ground-based system are obtained with the F L T control and compared with those 

given by the prototype. Considering the friction and backlash effects for the prototype, the 

correlation may be considered satisfactory. 

Such a comprehensive investigation involving a novel configuration of the space-

based manipulator, three-dimensional formulation, dynamics and controlled performance, as 

well as ground-based experiments on a prototype system is indeed rare. It should prove 

useful in the design of this new class of manipulators. 
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1. INTRODUCTION 

1.1 Preliminary Remarks 

The term robot is derived from the Czech word robota, meaning "compulsory labor." 

It was first used in the 1921 play "Rossum's Universal Robots" by the Czech novelist and 

playwright Karel Capek. The word described a mechanical device that looked human but, 

lacking human sensibility, could perform only automatic, mechanical operations. Ever since, 

engineers have tried to adapt robot like devices to useful tasks. In the mid-1970s, General 

Motors financed a development program in which Massachusetts Institute of Technology 

researcher Victor Scheinman expanded upon a motor-driven "arm" he had invented to 

produce a so-called "Programmable Universal Manipulator for Assembly," or PUMA. The 

PUMAs that resulted mark the beginning of the age of robots in North America. In 1997, 

there were around 712,000 industrial robots in operation. As can be anticipated, 

approximately 413,000 were in Japan - one for every 36 workers. In Toyota's car assembly 

plant, one literally has to search to notice workers because their role has changed to checking 

and maintaining tuned conditions of robots. 

Robotic systems have been used in space as early as the 1960's [1]. In the late 60's, 

unmanned Surveyor lunar mission used a rudimentary manipulator arm to dig and collect 

soil samples. The versatility of the space robots was demonstrated during the Surveyor 7 

mission where the manipulator was employed to jab open an instrument that had failed to 

deploy automatically. In 1970, and again in 1973, the Soviet Lunakhod rovers surveyed large 

areas of the moon and used a deployable arm to lower an instrumentation package to the 

surface. The Viking landers, in 1976, used robotic manipulators to collect and process 

Martian soil samples. 
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The Canadian contribution to space robotics has been through the now famous 

Canadarm, introduced in 1981. It has played diverse, significant roles in almost all NASA's 

Space Shuttle missions: platform to support astronauts; position experiment modules; 

satellite launch and retrieval; loosened a jammed solar panel; even knocked-off a block of ice 

from a clogged waste water vent [2]. Perhaps its most dramatic success came in 1993 when it 

successfully retrieved the malfunctioning Habble Telescope, placed it in the cargo bay for 

repair and relaunched it. In December 1998, it assisted in the integration of the U.S. "Unity" 

module with the Russian control module called "Zarya" (Sunrise), launched a few weeks 

earlier, thus initiating construction of the International Space Station. 

For the Space Station, which is scheduled to be operational in year 2004, the 

Canadian contribution is through an extension of the Canadarm in the form of Mobile 

Servicing System (MSS, Figure 1-1). It consist of the Space Station Remote Manipulator 

System (SSRMS) and Special Purpose Dexterous Manipulator (SPDM). The MSS will play 

an important role in the construction, operation, and maintenance of the space station [3-5]. 

It will also assist in the Space Shuttle docking maneuvers; handle cargo; as well as assemble, 

release, and retrieve satellites. 

A number of other space robots have been proposed and some are under 

development. The American Extravehicular Activity Helper/Retriever (EVAHR) and Ranger 

Telerobotic Flight Experiment, as well as the Japanese ETS-VII, are examples of free-flying 

telerobotic systems which will be used for satellite inspection, servicing and retrieval [6,7]. 

Thus manipulators are serving as a useful tool in the space exploration. All indications 

suggest the trend to accentuate with future missions becoming more dependent on 
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Figure 1-1 Artist view of the International Space Station with its Mobile Servicing System 
(MSS) as prepared by the Canadian Space Agency. 

robotic systems. As the Space Station will operate in the harsh environment at an altitude of 

400 km, it is desirable to minimize extravehicular activity by astronauts. Robotics is 

identified as one of the key technologies to reach that goal. It is important to point out that all 

the space-based robotic devices mentioned above use revolute joints, i.e. links are free to 

undergo slewing motion (Figure 1-2), as in the case of the Canadarm and MSS abode the 

International Space Station. 

With this as background, the thesis undertakes a study aimed at a novel flexible 

multimodule manipulator capable of varying its geometry. Each module consists of two links 

(Figure 1-3a), one free to slew (revolute joint) while the other is permitted to deploy and 

retrieve (prismatic joint). A combination of such modules can lead to a snakelike variable 

geometry manipulator (Figure l-3b) with several advantages [8]. It reduces coupling effects 
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=\ Payload 

Arm 2 

Arm 1 

Orbit 

Mobile Base 
Platform 

Figure 1-2 All the space-based manipulators have used, so far, revolute. joints thus 
permitting oirly slewing motion of links. 
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(b) Payload 

Module of Slewing-
Deployable Links 

Trajectory 

Figure 1-3 Variable geometry manipulator showing: (a) single module with a pair of 
slewing and deployable links; (b) several modules connected to form a 
snakelike geometry. 



resulting in relatively simpler equations of motion and inverse kinematics, decreases the 

number of singularities, and facilitates obstacle avoidance (Figure 1-4). Dynamics and 

control of such Multi-module Deployable Manipulator System (MDMS), free to traverse an 

orbiting elastic platform and carrying a payload, represent a challenging task. 

1.2 A Brief Review of the Relevant Literature 

As can be expected, the amount of literature available on the subject of robotics is 

literally enormous. The objective here is to touch upon contributions directly relevant to the 

study in hand. 

1.2.1 Characteristics of space-based manipulators 

There are several significant differences between the orbiting space platform 

supported manipulators and their ground-based counterparts: 

(a) Due to zero weight condition at the system center of mass and microgravity field 

elsewhere, the environmental torques due to gravity gradient, Earth's magnetic field 

and solar radiations can become significant in the study of space manipulators [9]. 

The large temperature variations encountered in space may significantly affect the 

system dynamics and control due to thermal deformations [10,11]. 

(b) As the manipulator rests on a flexible orbiting platform, their dynamics are coupled 

[12,13]. The manipulator maneuvers can affect attitude of the platform as well as 

excite it to vibrate [14]. Conversely, the librational motion of the platform would 

affect the manipulator's performance. Fortunately, manipulator maneuvers in space 

tend to be relatively slow permitting the end-effector to approach equilibrium [15]. 

6 



Figure 1 -4 Variable geometry manipulator showing obstacle avoidance character. 
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(c) Space manipulators tend to be large in size, lighter and highly flexible. Obviously, 

this will make the study of system dynamics , and its control, a formidable task. 

(d) The ratio of the payload to manipulator mass for a typical space-based system can be 

several orders of magnitude higher [16]. For example, in case of the Canadarm the 

ratio is 61.5. The corresponding ground based manipulator used in nuclear industry 

(supplied by the same manufacturer) has the payload to manipulator mass ratio of 

0.167! 

(e) Obviously, space manipulators are not readily accessible for repair in case of, say, 

joint failure. This requires incorporation of a level of redundancy in their design [17]. 

Correspondingly, more degrees of freedom are involved than required for a given 

task. 

(f) Remote operation of a space-based manipulator would involve time delay, an 

important factor in control of the system. For the ROTEX teleoperation experiment it 

reached seven seconds [18] ! 

These important differences emphasize the fact that one cannot entirely rely on the 

vast body of literature available for ground-based manipulators. We will have to explore and 

understand distinctive character of the space robotic systems. Dynamics and control of a 

large orbiting flexible platform (like the International Space Station), supporting a mobile 

elastic manipulator, carrying a compliant payload represent a class of problems never 

encountered before. Major challenges presented by such large-scale systems are summarized 

in Figure 1-5. It is only recently, some of the issues mentioned here have started to receive 

attention. Obviously, there is an enormous task facing space dynamicists and control 

engineers that will keep them occupied for years to come. The points which concern us are 
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the nonlinear, nonautonomous and coupled character of the governing equations of motion, 

relatively low frequencies, and development of a controller, preferably robust. 

1.2.2 Dynamics of space-based manipulators 

From the observations made earlier, it is apparent that space manipulators, as well as 

large flexible space structures in general, have unveiled a new and challenging field of 

spacedynamics and control. Over the years, a large body of literature has evolved, which has 

been reviewed quite effectively by a number of authors including Meirovitch and Kwak [19], 

Roberson [20], Likins [21], as well as Modi et al. [22 - 26]. Dubowski and Papadopoulos 

have discussed the important problems associated with the dynamics and control of space 

robots and reviewed the advances made in this field [27,28]. They concluded that a thorough 

understanding of the fundamental dynamics of these systems would result in effective 

solutions to their control problems. For this purpose, they introduced the concept of "virtual 

manipulator" to describe the dynamics of space robots. Other authors have also emphasized 

the need for realistic dynamic modelling for the precise and accurate control of space robotic 

systems [29,30]. The desirability for accurate mathematical models is further emphasized by 

the prohibitive cost of conducting dynamic experiments in orbit and the virtual impossibility 

of simulating the space environment on the ground. 

Development of relatively general computer codes for studying dynamics of 

multibody systems, like the space station and multilink manipulators, have also received 

some attention. Dynamic simulation codes such as DISCOS [31], treetops [32], and several 

others are publicly available. However, the inherent limitations of these software have 

prompted several researchers to develop their own computer codes. 
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Pascal developed a simplified model for a flexible space manipulator based on a 

servicing satellite [33]. She then used this model to study the dynamics and control of the 

robot while grasping another satellite. Chan investigated the planar dynamics of a two-link 

manipulator located on a base free to translate on a space platform [34]. Although flexibility 

effects were included in the manipulator links and joints, the platform was assumed to be 

rigid. Mah derived the equations of motion of a general flexible multibody system in chain 

topology [35]. He used this model to study the dynamics of a general manipulator based on 

an orbiting platform, both considered flexible. The studies mentioned so far focused on open-

chain configurations. On the other hand, Lilly and Bonaventura developed a generalized 

formulation for the simulation of space robots in either open- or closed-chain geometry [36]. 

Xu and Shum investigated the coupling between the motion of the manipulator and 

supporting platform [13]. They proposed a coupling factor representing the degree of 

dynamic interactions between the two. It was suggested that the coupling factor might serve 

as a performance index for optimizing robot configuration and location to reduce base 

motion. Papadopoulos focused on large payload manipulation [37]. The effects of satellite 

capture, berthing, docking, and other types of impacts on the dynamics of the 

platform/manipulator system have also received some attention [38,39]. 

In the above-mentioned studies aimed at manipulators, only revolute joints were 

involved, i.e. links were permitted to undergo slewing motion. On the other hand, several 

space structures feature deployment capabilities. For instance, a large solar array was 

deployed from the Space Shuttle cargo-bay during the Solar Array Flight Experiment 

(SAFE), in September 1984. Cherchas [40], as well as Sellappan and Bainum [41], studied 

the deployment dynamics of extensible booms from spinning spacecraft. Modi and Ibrahim 
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developed the equations of motion for a system with multiple booms (beams) deploying from 

a central rigid body, with considerable emphasis on the proposed Waves In Space Plasma 

(WISP) experiment [42]. Subsequently, Modi and Shen [43] extended the study to permit the 

slewing degree of freedom to deploying appendages. About the same time, Marom proposed 

a two-link, deployable manipulator and investigated its planar dynamics and control [44]. 

Here, the manipulator links were taken to be rigid, however, the joint flexibility was 

accounted for. Hokamoto et al. extended this model by accounting for an arbitrary number of 

flexible links [45]. Recently, Caron et al. developed a relatively general model for studying 

planar dynamics of a space-based manipulator with slewing and deployable links. A 

parametric analysis of the system dynamics showed significant coupling between the rigid-

body motion and structural vibration [46]. 

A subject of considerable importance is the effect of manipulator maneuvers on the 

dynamic's of the supporting platform. Presence of redundancy is often desirable in order to 

cope with partial failure of joints. As pointed out by de Silva [47], redundancy can also be 

used, quite effectively, to isolate dynamic coupling between manipulator maneuvers and the 

supporting platform, or between links. 

1.2.3 Formulation of multibody systems 

Dynamical formulation of multibody systems can be approached in a variety of ways. 

Major, among these are: application of dAlembert principle, Newton-Euler method, 

Lagrangian approach, and Hamilton's principle. Of these, the Newton-Euler method and 

Lagrangian approach have been more popular. The former, involving freebody analysis, is 

attractive for relatively simple rigid systems having a small number of degrees of freedom. 
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However, for a flexible system with moving center of mass and a large number of degrees of 

freedom, its application, without approximations, presents a challenge. Under such situations, 

the Lagrangian approach is preferred. It has well-established energy-based methodology, 

does not suffer form any limitations, and satisfies both holonomic (implicitly) and 

nonholonomic constraints (through Lagrange multipliers). Furthermore, energy expressions 

can be used to validate the formulation and corresponding numerical code. 

The equations governing dynamics of robotic systems may be expressed in the general 

form as 

M(q,t)q + F(q,q,t) = Q(q,q,t) , (1.1) 

where: M(q,t) is the system mass matrix; q, the vector of the generalized coordinates; 

F(q,q,t) contains the nonlinear terms associated with the centrifugal, Coriolis, gravitational, 

elastic, and internal dissipative forces; and Q(q, q, t) represents generalized forces, including 

control inputs. Equation (1.1) describes the inverse dynamics of the system. For simulations, 

forward dynamics of the system is required, i.e. Eq. (1.1) must be solved for q, 

q = M\Q-F). (1.2) 

The solution of these equations of motion generally requires 0( TV3) arithmetic operations, 

where TV represents the number of bodies considered in the study. In other words, the number 

of computations required by an 0( ) algorithm will vary with the cube of the number of 

bodies. Clearly, the computational cost can become prohibitive for a large N. This is 

particularly true with a manipulator system that has redundant degrees of freedom. Hence, 

development of an 0(N) algorithm, where the number of arithmetic operations increases 
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linearly with the number of bodies (or degrees of freedom) in the system, has been the focus 

of several studies in the field of multibody dynamics. 

Hollerbach has proposed a recursive 0(N) Lagrangian formulation for the inverse 

dynamics of rigid multibody systems [48], which makes real-time applications possible. It 

should be noted that the forward dynamics of the same model is not of 0(N). Keat has used a 

velocity transformation approach to obtain an 0(N) algorithm describing the dynamics of 

flexible multibody systems [49]. Rosenthal has based his 0(N) formulation, which considers 

rigid bodies, on Kane's equations [50]. Suzuki and Kojima applied this approach to analyze 

the deployment of a spacecraft panel [51]. Banerjee extended Rosenthal's algorithm in order 

to consider deployment and retrieval of beams with large bending and rotation [52]. Jain and 

Rodriguez used the filtering and smoothing approach of optimal estimation, and introduced 

spatial operators to obtain a recursive 0(N) formulation for flexible multibody systems [53]. 

' On the other hand, Bae and Haug adopted an approach based on the virtual work to the same 

end [54]. 

Most 0(N) formulations reported in the literature are recursive: they rely on a series 

of forward and backward passes along the chain of bodies in order to compute accelerations 

and forces in the system. The main advantage of a nonrecursive formulation is that the 

computations for each body can be executed independently making it suitable for parallel 

processing. Pradhan et al. [55] have introduced a nonrecursive formulation procedure for 

flexible multibody systems, which uses the Lagrangian approach, in conjunction with two 

velocity transformations. The velocity transforms decompose the system mass matrix into a 

product of matrices. The inversion of this new form of the mass matrix is computationally far 
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less intensive. As most arithmetic operations in Eq. (1.2) arise from the inversion of the 

mass matrix, the resulting algorithm is of 0(N) and hence considerably more efficient. 

1.2.4 Control of space-based manipulators 

In the recent past, experiments have been carried out in orbit to investigate the 

dynamics and control of robots, as well as large flexible structures. The goal of the 

Spacecraft COntrol Laboratory Experiment (SCOLE) was to control a reflector antenna 

supported by a beam, located in the Space Shuttle cargo bay, during slewing maneuvers [56]. 

Although tests were carried out on the ground, the experiment was not flown. The German 

ROTEX experiment took place during the Spacelab II mission: A robotic manipulator, 

located on the Shuttle Orbiter, was teleoperated from the ground to conduct various 

maneuvers, including the capture of floating objects [57]. 

Precise and efficient dynamical models are required for the control of space robotic 

systems. The attitude of the space platform, the motion of the manipulator links, the location 

of the manipulator base along the platform, as well as the vibration of the various structural 

components must be controlled to an acceptable level for successful completion of a given 

mission. 

Relatively coarse control of the space platform's attitude can be achieved even by use 

of the environmental forces such as Earth's gravity gradient and magnetic fields [9]. For 

instance, the "long" axis (i.e. the axis of minimum moment of inertia) of the platform may be 

aligned with the local vertical direction. This stable equilibrium configuration can be used to 

advantage. However, normally thrusters and Control Momentum Gyros (CMGs) are used to 

regulate the attitude of the system [58,59]. Librational control of the platform by reorienting 
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the manipulator has also been suggested [60]. However, this method is limited to cases where 

the mass of the manipulator is significant compared to that of the platform. 

As mentioned earlier, the orbiting platform and the manipulator links can be highly 

flexible. Moreover, the compliance of the actuator shafts and transmission drives may lead to 

significant flexibility of the joints. Undesirable vibrations can arise and the accuracy of the 

manipulator can be severely affected. Consequently, control of manipulators with flexible 

links, flexible joints, or both, have also received some attention [61-63]. Structural damping, 

as well as other passive dampers can reduce the amount of vibrations experienced. However, 

active vibration suppression is often desirable. Through adequate path planning of the 

manipulator joints, excessive elastic deformations as well as attitude disturbances can be 

avoided. As pointed out earlier, redundant degrees of freedom provided by manipulators can 

be used to advantage in isolating the base from disturbances arising from the manipulator 

motion [47,64]. In fact, Hanson and Tolson have shown that the base reaction could be 

decreased by as much as 90% with such schemes [65]. Vibration of the manipulator links and 

joints can also be reduced by applying compensating torques at the revolute joints [34]. The 

use of distributed piezoelectric films or lumped piezoelectric elements acting as collocated 

sensor/actuator systems has also been suggested for vibration control [66]. 

Several strategies are available for the control of space robotic systems. Often, simple 

proportional-derivative (PD) feedback control schemes are adequate [67]. The computed 

torque technique has been widely used for ground-based robots [68,69]. The Feedback 

Linearization Technique (FLT) has been proposed for the attitude control of the platform, as 

well as for the control of the rigid motion of the manipulator [70]. Optimal control has also 

received considerable attention. Here, position and velocity errors, actuator outputs, 
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structural vibration, as well as various other cost functions are minimized throughout the 

operation of the system. When all state variables are available, a Linear Quadratic Regulator 

(LQR) may be used for optimal control [71,72]. If these quantities are not directly available, 

but are observable, a Linear Quadratic Gaussian (LQG) controller has been proposed [73,74]. 

The field is wide open to other control procedures including adaptive, knowledge-based and 

fuzzy logic strategies, to mention a few. 

1.3 Scope of the Investigation 

In the present investigation, an efficient mathematical model is developed for 

studying the three-dimensional dynamics and control of a flexible, space-based manipulator 

(Figure l-3b). The relatively general nature of the model considers a serial manipulator with 

an arbitrary number (AO of flexible modules. Each module is free to rotate, i.e. slew, and is 

capable of changing its length, thus is deployable. 

The formulation provides for arbitrary variation of geometric, inertia, stiffness, and 

damping characteristics along the manipulator. The manipulator is mounted on a mobile base 

which is free to translate along an orbiting space platform. The coupling effects between the 

orbital, librational, slew, deployment, and vibrational degrees of freedom, associated with the 

platform and manipulator, are also taken into account. An essential feature of the model is 

the time-varying length of each unit, with prismatic joints providing the deployment degrees 

of freedom. As each of the manipulator units can be deployed and retrieved independently, 

there is a machanism for changing the librational and vibrational characteristics of the 

system. Note, the model considered here is rather general and is applicable to a large class of 

17 



systems. A number of existing space- and ground-based manipulators become particular 

cases of the general model developed here. 

In Chapter 2, the governing equations of motion are derived, using the Lagrangian 

procedure and 0(N) approach, for spatial operation of the manipulator. It also includes an 

explanation of Lagrange multipliers to account for constraint forces. 

Chapter 3 discusses development of a F O R T R A N code for integration of the 

equations of motion. The structure of the program is presented and computational issues are 

discussed. Validity of the formulation and computer code is checked through the 

conservation of energy for a few test-cases. 

A comprehensive parametric study is presented in Chapter 4. The effects of various 

sets of initial disturbances, parameter combinations, manipulator maneuvers, and manipulator 

configurations are assessed. It also evaluates, for a particular case, improvement in 

computational efficiency due to 0(N) character of the formulation. Results suggest that under 

some combinations of system parameters and disturbances the response may not confirm to 

the acceptable limit. This points to a need for active control. 

The performance of a nonlinear control strategy, based on the Feedback Linearization 

Technique (FLT), is assessed in Chapter 5. It successfully regulates the attitude of the 

platform, as well as the rigid-body maneuvers of the single module manipulator. 

Chapter 6 focuses on reduction of coupling between modules which, in turn, 

decreases transmission of force and moment to the platform during trajectory tracking. A 

two-module manipulator is considered and effects of module mass ratio as well as 

force/moment weighting function are investigated. 
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In Chapter 7, the general equations of motion developed in Chapter 2 are reduced for 

application to the ground-based, two-module manipulator constructed by Chu [8]. 

Effectiveness of the PID and FLT control procedures is assessed on the prototype performing 

several trajectory-tracking maneuvers and results are compared with the corresponding 

numerical simulation data. 

Finally, Chapter 8 summarizes the important findings of this thesis, outlines its 

contributions, and suggests future avenues of investigation. 

19 



2. FORMULATION OF THE PROBLEM 

2.1 Introductory Remarks 

As pointed out before, the thesis aims at studying dynamics and control of a novel 

manipulator. The distinctive character of the manipulator lies in its module with slewing as 

well as deployable links (Figure 1-3). This combination of revolute and prismatic joints in a 

manipulator design for space application has received virtually no attention although, as 

mentioned earlier, it presents several important advantages. Significant features of the system 

under study may be summarized as below: 

(a) The manipulator with an arbitrary number of modules, each with a slewing and a 

deployable link thus involving both revolute and prismatic joints, is supported by 

a mobile base free to traverse a platform. The platform is in an orbit around 

Earth. 

(b) The supporting platform, manipulator modules and revolute joints are treated as 

flexible. Prismatic joints are considered as integral parts of modules. 

(c) The module is permitted to have variable mass density, flexural rigidity and 

cross-sectional area along its length. 

(d) The system is permitted to undergo three-dimensional librational as well as 

vibrational motions. The slewing maneuver at any joint can also be spatial. 

(e) The damping is accounted for through Rayleigh's dissipation function. 

(f) The governing equations account for gravity gradient effects, shift in center of 

mass and change in inertia due to maneuvers. 
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Note, the model considered is rather general and applicable to a large class of space as well 

as ground-based manipulator systems. The Canadarm and the MSS on board the International 

Space Station are particular cases of the model. 

The Lagrangian approach adopted here for derivation of the governing equations is 

particularly well suited for the flexible multibody system, with a large number of degrees of 

freedom, under consideration. It automatically satisfies holonomic constraints while the 

nonholonomic constraints can be accounted for, quite readily, using Lagrange multipliers. 

The form of the equations of motion conveys a clear physical meaning in terms of 

contributing forces. Equally important is the fact that the equations are readily amenable to 

stability study and well suited for controller design. 

As pointed out in Chapter 1, dynamics of a robotic system is governed by an equation 

of the form 

M(q,t)q+F(q,q,t) = Q(q,q,t), (2.1) 

i.e. q = M\Q-F). (2.2) 

where: M(q,t) is the system mass matrix; q is the vector of the generalized coordinates; 

F{q,q,t) contains the nonlinear terms associated with the centrifugal, Coriolis, gravitational, 

elastic, and internal dissipative forces; and Q(q,q,t) represents generalized forces, including 

control inputs. Computational demand associated with the evaluation of M"1 was indicated, 

and advantage of the order N formulation procedure was emphasized. Such algorithm would 

reduce the computational time and memory requirements considerably making the real-time 

applications possible. 

This chapter focuses on the Order N, Lagragian formulation approach. 
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2.2 Kinematics of the System 

2.2.1 Reference frames 

The mobile manipulator with an arbitrary number of modules (bodies) is supported by 

a platform orbiting around Earth. To help appreciate notation for such a general system, let 

us consider a simple case of the manipulator with one module (Figure 2-1). Note, body 1 

refers to the orbiting platform and body 2 represents module 1 o f the manipulator, supported 

by the mobile base. 

Body 2 (Manipulator Module 1) 

Figure 2-1 Simplified system showing a space platform supporting one-module 
manipulator. 
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The inertial frame FQ is located at the center of Earth. The xo, vo-axes establish the 

orbital plane and ZQ represents the orbit normal. The position and attitude of each body are 

described by the body-fixed frames F\ and F-i. The frame F\ has its origin at the center of 

mass of the platform while F2 is attached to body 2 at the joint with the mobile base. As the 

platform and manipulator modules are considered to be beam-type structures, the x\ is taken 

along the beam axis, y\ is perpendicular to x\ in the orbital plane and z\ completes the 

orthogonal triad according to the right hand rule. For a massive platform, as in the case of the 

International Space Station, the system center of mass will essentially coincide with the 

platform center of mass. However, the present formulation accounts for their distinct identity. 

The orbital reference frame FR has its origin at the center of mass (C.M.)i of the 

platform. Here, xr is along the local vertical, yr is aligned with the local horizontal, and zr is 

the orbit normal. Thus relative motion between the F\ and FR frames corresponds to the 

platform's librational motion (pitch, roll and yaw). 

The base provides for the translational motion of body 2 (manipulator) on body 1 

(platform). Such motion of the Mobile Servicing System (MSS) will be present on the 

International Space Station and hence must be accounted for in the formulation. So a word 

about the position of the base on the deflected configuration of the platform would be 

appropriate. This is specified by the three vectors: l\, di, and/2. Here l\ represents distance 

from the (C.M.)i to the tip of the platform; di is measured from the platform tip to the mobile 

base when the platform is undeformed; and/2 corresponds to deflection of the platform at the 

location of the base. Thus /) + di + gives position of the base (i.e. origin of the frame F 2 ) 

with respect to the center of mass of the platform. To keep the formulation general, such 

relative translational motion between adjacent bodies is permitted throughout the chain, 
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although normally it w i l l be present only between bodies 1 and 2. The relative translational 

motion, when not present, can be eliminated quite readily by the introduction of constraints 

through Lagrange multipliers. 

With these introductory comments, consider the chain-type manipulator with N 

bodies as shown in (Figure 2-2). A s before, body 1 represents the platform, while the 

remaining bodies (2 to N) correspond to the manipulator modules. Thus, the second body 

represents the first module of the manipulator, while the body N corresponds to the (Nth - 1) 

module. Note, the lengths of bodies 2 to Wean vary with time. Moreover, each body is free to 

rotate and translate with respect to its neighbors. A s in the case of one module system (Figure 

2-1), the xi axis is along the length /, of the body i; v,- is perpendicular to xt in the orbital 

plane; while z, completes the orthogonal triad. It may be emphasized that for both the 

platform and manipulator modules, the stiffness, damping and inertia properties can vary 

along Xi. Di represents the position vector to the frame F T , attached to the body i at the joint 

between bodies z'-l and i, with respect to the frame FQ. A S explained earlier, + di + ft 

would represent position of the base, free to traverse body z'-l, i f it were present. If not, d, 

w i l l be eliminated through introduction of the Lagrange multipliers. 

2.2.2 Position and velocity vectors of a mass element 

The derivation of the equations of motion begins with the evaluation of the kinetic 

energy of an arbitrary body i o f the multibody system. This would require velocity of a mass 

element drtii in the body. The approach here is to evaluate the position vector Rdm. defining 

location of the mass element with respect to the inertial frame FQ. Its time derivative w i l l give 

the required velocity. Note, the i'h body of the system is free to translate and rotate in a three 
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th 

dimensional space. From Figure 2-2, the vector Rdm. to the mass element dm, on the i body 

can be written as 

Rdmi=Dl+Tl(ri+^iSi), (2.3) 

where Z) refers to the inertial position of the frame F, ; ri = [x., v,,zi ]7 is the position 

vector to dm, with respect to the frame F, ( in absence of deformation of the body i) and 

fi(ri) = is the flexible deformation at IJ . Here <D, are the admissible shape functions 

and c% represents generalized coordinates (Appendix A). 

The matrix T, in Eq. (2.3) denotes a rotational transformation from the body fixed 

frame F, to the inertial frame Fo, i.e. Fo = T ,F; . It is defined by the standard 3-2-1 sequence 

of the Eulerian rotations as 

CVn SVn CVu CV;\ + SVu SVn SVn ~ SVu CVn + CV* SWn SVn (2.4) 

where y/a , y/a and y/& are the Euler angles with C x , S x representing cos(x) and sin(x), 

respectively (Appendix B). 

The rotation ^, of the frame F{ with respect to the frame F,_i has three contributions. 

Figure 2-3(a) shows two components of rotation about the x,-axis: rotation of the actuator 

rotor (a,), which corresponds to the controlled motion of the revolute joint; and elastic 

deformation of the joint i (z n)- Figure 2-3 (b) presents rotation in the x,-, vrplane: elastic 

deformation of the (z'th - 1) body ( ^ , 2 ) ; rotation of the actuator rotor (/?,), which corresponds 
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Figure 2-3 Description of the rotations of the body-fixed frame Ft relative to the preceding 
frame F,-.] : (a) rotation about xt along the length of the module; (b) rotation 
about the axis z, perpendicular to the length of the module. 
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to the controlled rotation of the revolute joint; and the elastic deformation of the joint i (xa). 

Rotations in the z„ x,-plane can be described in the similar fashion. The three revolute joints, 

in reality, would be physically distinct. In the formulation, they are taken to be coincident at 

a point. Thus: 

Ci\ = Xi\+<Xi ; (2-5a) 

Ci=4a + Za +A" i (2-5b) 

fn=€a + Zi3+rt • (2-5c) 

Let 

7, = 

Va 

Vn 

\Piij 

(2-6) 

be the vector of three Eulerian angles indicating the orientation of the rotor of joint / with 

respect to the inertial frame Fo. Considering three components representing joint flexibility 

i% ii» X a, X'3] T> orientation of F, relative to F Q can be written as 

Note, y/-t represents new locations of the axes for Eulerian rotations. 

(2.7) 

Let gt = rt + Qjjdj. Differentiation of Eq. (2.3) with respect to time leads to 

(2.8) 

where: PJg,) =t /g i; (/,•=[{/,-,, V n . V n Y > st =i-j- + ®l'i#i ; and /,• is the length of 

the i'h module. Details are presented in the Appendices B and C. 
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2.3 Kinematics of the System 

2.3.1 Cylindrical orbital coordinates 

The D, term in Eq.(2.3) describes the orbital motion of the first body and is 

composed of three Cartesian coordinates Dx ,Dy ,D (Figure 2-4). However, over the cycle 

of one orbit, Dx,Dy^ vary significantly, in the range of Earth's radius. This must be avoided 

since large variation in the coordinates can cause severe truncation error during their 

numerical integration. Hence, it is desirable to express the Cartesian components in terms of 

more stationary variables. This is readily accomplished by using cylindrical coordinates. 

Xw • 
/ X -

/ X . 
/ 3 ^ / Jf 

(CM.), } 
/ Body 1 

• 

f 
V 

^ \ 
*» 

/ / / / / 

Vl 

Figure 2-4 Vector components in cylindrical orbital coordinates. 

Note, cylindrical coordinates are applied only to Z), as the center of mass of body 1 closely 

follows the orbital motion. From Figure 2-4, it is apparent that 
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D , cos 6, 

Dr s\n0, > 

C O S ^ 0 0" 
sintf, 0 0 

0 0 1 

D T 

D , 

Ox 
D 

D r D . 
7, S r 

(2.9) 

where Z) r ] is the in-plane radial distance; 9\, the true anomaly; and Z) Z ] , the out-of-plane 

perturbation normal to the orbital plane. 

The total derivative of D\ with respect to time gives, in the column matrix form, 

50. 3D, 
1 Z l 

(2.10) 

where 

cosOj - D ^ s i n O j 0 
sinOj D r ] cosO] 0 

0 0 1 
(2.11) 

For all the remaining bodies, 

1 0 0 
0 1 0 
0 0 1 

i = 2...N, (2.12) 

and 
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i = 2 ...N. (2.13) 

2.3.2 Generalized coordinates 

If the position and orientation of the body-fixed frames are known relative to the 

inertial frame, in addition to the length (/,) and elastic deformation (/J) of each body, then 

the kinematic description of the system is complete. In Eq. (2.3), position of the frame Ft is 

specified directly relative to the inertial frame by D , and its orientation by the Eulerian angles 

The kinematics of the space platform is described by the generalized coordinates: DSi, 

y/\ and S\. The coordinates D S ] characterizes the orbital motion of the center of mass of the 

platform, as described in the last section. The set of generalized coordinates which specify 

the motion of the platform can be represented as 

The kinematics of the manipulator units is represented by the generalized coordinates 

D „ y/i ?]j and It should be noted that /, is included as a generalized coordinate for each 

manipulator unit to account for deployment. Therefore, the set of generalized coordinates 

describing the kinematics of each manipulator module is given by 

1\ = (2.14) 
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Ii 

Vi 

Si 

(2.15) 

with i = 2,...,N. The set of generalized coordinates required for the complete description of 

the system kinematics can thus be written as 

\.QN 

(2.16) 

where N is the total number of bodies involved in the system. 

2.4 Kinetic Energy 

With the velocity representation of an arbitrary mass element dntj in the i body in 

hand and considering the revolute joint actuator's mass and inertia (mm-, Jai, respectively), the 

kinetic energy Tof the system can be readily obtained using Eq. (2.8) as 

T = ZZU X L * d m  d m i + X ^ A ^ A + V ^ a i V i ) , (2-17) 
.2  J mi "  1  

where: 

m = 

mail 0 0 0 0 

0 0 0 Jan 0 ; (2-18) 

0 0 mai3_ 0 0 

and 7,. represents rotor angular velocity with respect to the inertia reference frame FQ. 
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Rewriting Eq.(2.8) in a matrix-vector form, gives the relation 

Rdm=[V 0 Yt(gi) T,.<D, ! > , . ] £ , (2.19) 

where I is the identity matrix and 

Vi 

Inserting from Eq. (2.19) into Eq. (2.17) and integrating, the kinetic energy for the system 

can be written as 

N L N j 
T = I - ? , r M / i ? i + I - ^ 

;=2' 

m a / 0 0 

Ki o 0 

0 0 0 

(2.20) 

where 

M , = 

mtl
3 0 

0 0 

P.tJs.Jm,) T j o ^ m , . Tjsfrf/w,-

sym 0 J P i T ( ^ ) P f U ( ) ^ J P j 1 ^ ) ^ ^ , . | P , r ) T f - s,- dm,-

J<Df s(. rf/wf 

Jsf 5,- dm, 

5 V W 0 

sym 0 

Denoting 
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M ; = 

Pi({s,^,) Tj J<D, dmt Tj Js, dntj ( m ; I
J + m a ( . ) 0 

0 Jai 0 ' 0 ' 0 
sym 0 | P i

T ( ^ ) P , r ( ^ ) ^ J P i

T ( g , ) T i 0 ^ m / Jp /^- )T ; -s , ^ 

sym 0 syw sy/w Js'/'s, dm. 

(2.21) 

the kinetic energy for the entire system, i.e. with N bodies, can now be stated as 

(2.22) 

where if = (#, , § 2 ) and Mis ablock diagonal matrix with M,on its diagonal, 

M = 

M, 

0 
0 

0 0 
M 2 0 
0 M , 

0 0 

... 0 

... 0 

... 0 

0 M L 

(2.23) 

Note, for rigid bodies, this symmetric mass matrix is considerably simpler and can be 

described in terms of the center of mass and inertia tensor of the bodies. Furthermore, the 

kinetic energy expression in Eq. (2.22) has the quadratic form, which can be easily 

manipulated during the Lagrangian formulation of the equations of motion. Finally, most 

integrals in Eq. (2.21) can be evaluated symbolically (using, e.g., MAPLE) and hence coded 

directly in the FORTRAN language. 
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2.5 Gravitational Potential Energy 

The gravitational potential energy of the ih body, in Earth's gravitational field, is given 

as 

im> \Rdm: 

(2.24) 

where ju is Earth's gravitational constant: Using the binomial expansion and retaining terms 

up to the third degree gives 

_ - / /m, - M 
ft \ D . \ 13 2D,-

\gj gt dm, + 2 Dj T,. jgi dm, - - L - Dj if Jgj gt dmft Dt 

D: 

which is expressed in terms of symbolically evaluated integrals. 

2.6 Strain Energy 

(2.25) 

The strain at a location x\ on the ith body can be written as 

du, 1 
e, =—'- + -

' dx,. 2 

dv, \ 2 

dx + 
dwt 

dx;, 
(2.26) 

where uh v, and wt are deformations in the longitudinal (*j) and transverse (vi, z\) directions, 

respectively (Appendix A, Eq. A.5). The strain energy of body / is given by 

(2.27) 
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where EiAt is the flexural stiffness. The strain energy due to flexible revolute joints can be 

written as 

where 

(2-28) 
1=2 

*72 

is the stiffness matrix of the joint /. Thus total potential energy of the system has the form 

(2.29) 

2.7 Lagrange Equations of Motion 

With the kinetic and potential energy expressions derived, the equations of motion can 

be obtained quite readily using the Lagrangian principle 

d_ 

dt 

<' dT\ <?(T-PJ 

H i 
(2.30) 

Substituting from Eqs.(2.22) and (2.29) into Eq. (2.30) leads to the familiar matrix form of 

the coupled equations of motion for the system, 

M(q,t)q + F(q,q,t) = Q(q,q,t), (2.31) 
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where M is the nonlinear symmetric mass matrix; F contains the terms associated with the 

centrifugal, Coriolis, gravitational, elastic and internal dissipative forces; and Qq is the 

vector of generalized external forces, including control inputs. Note, inversion of the mass 

matrix M is required to solve the equation. Normally, it leads to a large number of 

computational steps, of the order of N3

q, where is the total number of generalized 

coordinates in the system. However, in the present case, due to block diagonal character of 

the mass matrix M , its inversion involves only O(A0 operation where N is the number of 

bodies. Note, in deriving the energy expressions of the system, the focus was on the 

decoupled system; i.e., each body was considered independent of others. Thus we are still 

faced with the problem of constraints imposed by joints connecting the adjacent bodies. 

Although choice of decoupled generalized coordinates qt simplified evaluation of the kinetic 

and potential energies, it is not suitable for specification of constraints. This is better 

achieved through specifying the body frame F\ with respect to the inertial frame Fo 

recursively along the chain of bodies from one to i - 1 . A new set of generalized coordinates 

qi accomplishes this, 

such that q = (q*,q2
T,...,qN')' gives the total generalized coordinate vector of the system. 

Thus the formulation involves two different sets of generalized coordinates: qt to evaluate 
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energy of the system; and q\ to account for constraints imposed by interconnected bodies. 

The next logical step is to find relations between these two sets of generalized coordinates. 

This is achieved through position and velocity transformations. 

2.8 Coordinate Transformations 

The only difference between qt and q. is the presence of dt in place of Dt. Here, D, 

is the inertial position of F ; from Fo, whereas </, is defined as the offset position of F ; 

relative to the end of the body i-l in absence of its elastic deformation (Figure 2-2). 

2.8.1 Position transformation 

From Figure 2-2, Z), can be defined as 

7=1 

where fJ(oj) = <I>j_][(lj_l + dxj)]SjA is the translational motion caused by the deflection at the 

end point of the vector Oj on the j-l body. Defining KA ;_, = <!>_,._,[(/,._, +dxj)] and 

recognizing that / 0 = 0, SQ = 0 give 

D, = ^(Tj.idj+TjKAj^j+Tjil^ + T^dt. (2.33) 
y=i 
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From Eq.(2-32) 

A-i = E(Ty.irfy +1j.\fj(oj) + TJ>ltlj_dt (2-34) 

therefore 

Z> = £>,, + T,_, {/,,, / + dt} + T , ,^ , , , [ ( / w + dxi)}5^ • (2-35) 

In matrix form the relationship between qt and q, can now be written as 

T 0 0 T ; K A . T / 
J 

T 
x i - i 

0 0 0 0" 

1-1 
0 0 0 0 0 Vj 0 I3 0 0 0 Vi 

= 1 0 0 0 0 0 Vj + 0 0 I 3 0 0 V, 

0 0 0 0 0 Sj 0 0 0 I"" 0 Si 

UJ _ 0 0 0 0 0 _ UJ _ 0 0 0 0 1_ 

(2.36) 

where «/,• is the number of modes considered for the ith body. 

i - i 

Thus «, + (2-37) 

where: 

T,-> 0 0 T , K A , T,i 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

and 
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R; 

T,_, 0 0 0 0 

0 I3 0 0 0 

0 0 I3 0 0 

0 0 0 I"" 0 

0 0 0 0 1 

For the entire system, 

q=R"q (2.38) 

Here R" is a lower block diagonal matrix relating q and q. 

Rp = 

0 0 

R2 0 

R? R, 

R? R2

P Rp

N_, 

0 

0 

0 

R„ 

(2.39) 

2.8.2 Velocity transformations 

The velocities of the generalized coordinates q and q are related by the following two 

transformations. The first one is in the format of multiplication of several matrices. It will 

extend the benefit of the order-TV format into the formulation with constraints. The second 

one relates the vectors ^and q to make the formulation consistent with the q set of 

generalized coordinates. 

First transformation 

From Figure 2-2 as well as Eq. (2.33), 
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A-^+T.-J/^+^+KA,,^,,,] (2.40) 

Differentiating Eq. (2.40) with respect to time gives (Appendix C) 

A = A - , + T,_, {I3 + K A D ^ . / K + P H (A w ) f / w 

+ T M K A , _ I i J / _ I + T M { / + K A L M < y M } / M > (2.41) 

where: KAD,-,! = ̂ M ; K A L M = ; and * M = di + //,._, + KA M <t i • 

Following a procedure similar to the one used in the position transformation, Equation (2.41) 

can be rewritten as 

V. 0 p,- ,KA, -1 T , K L M " ft) } 

Vi 0 0 0 0 0 7,-1 

V\ - 0 0 0 0 0 Vi-\ 

Si 0 0 0 0 0 St-i 
0 0 0 0 0 \ li-\ J 

0 0 0 0" di 
0 I 3 0 0 0 Vi 

+ 0 0 I 3 0 0 Vi 
0 0 0 l"fl 0 Si 
0 0 0 0 1 UJ 

(2.42) 

where: K D , ! = I 3 + KAHt_xS^; and KL, = / + KAL,_,S t _ x . 

The relation between q{ and qt can now be obtained as 

? /=R?.1§i-_,+R |.« I., (2.43) 

with 
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I3 0 T , - , K A M T , K L W " X . K D , , 0 0 0 0 

0 0 0 0 0 0 I3 0 0 0 

0 0 0 0 0 0 0 I3 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

For the entire system, 

(2.44) 

(2.45) 

Here: 

R" = 

0 0 0 

R? 0 0 

0 R$ 0 

0 0 ••• R N - \ 

(2.46) 

and 

R 

0 0 ... o 
0 R 2 0 ... o 
0 0 R 3 ... o 

0 0 0 R 4 

(2.47) 

Thus, in matrix form, for the entire system, 

? = ( i - R n r ' R 9 (2.48) 

42 



Note the inverse character of the matrix (I-R")"1. This is beneficial for the order N 

property. 

Second transformation 

Vector D, in Eq.(2.40) can also be expressed in the recursive fashion as 

A = Z ( T y - i r f y + V i ^ y - i ^ - i + T y - i ' V i ) - <2-49> 

As / 0 = ̂ 0 = S0 = 0, 

Di=ZZ(TJ_]dj+TjKAjd>j.+ Tjilj) + T^di. (2.50) 

Taking the time derivative of Z), as before and following the similar procedure, 

A = Z{T ; - , [I 3 +KAD + P , ( * Y ) ^ + T , K A + T , [ / + KAL/ . ] / 7 . } . 

+ T 1._ 1[I 3+KADM^._ 1/ I'K . (2.51) 

In matrix form 

T J - . K D H O P ^ T j K A 

Vi i-i 
0 0 0 0 0 

¥i 0 0 0 0 0 Yj-i 

Sx 0 0 0 0 0 Sj-i 

0 0 0 0 0 { li-y J 

" T M K D , - i o 0 0 0" (',) 
0 I 3 0 0 0 Vi 

+ 0 0 I 3 0 0 

0 0 0 I " 0 

0 0 0 0 1_ U; 
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or in short 

1-1 
(2.53) 

where 

Rr f = 

T . ^ K D . . , 0 P.(A ;) TJKAJ T ; K L . 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(2.54) 

For the entire system, 

*=R V ? (2.55) 

with 

R v 

R. 0 0 0 

Rf R 2 0 0 

Rf R? R 3 0 

Rf R* R /v- i RN 

(2.56) 

The second transformation relates the q and q through matrix R v . It is used for terms, such 

as F in (Eq. 2.2), which do not involve inverse operation in solving the equations of motion. 

As mentioned earlier, the details are given in Appendix C. It may be pointed out that such 
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velocity transformation for the three-dimensional variable geometry manipulators, with non-

recursive formulation, have not be developed before. 

2.9 Energy Dissipation 

Dissipation of energy was included in the model. Accurate mathematical model for 

damping is an area of research in itself. Here, the objective is to capture its overall effect on 

the system response. To that end, a Rayleigh dissipation function is used [75]. It is defined 

as one-half of the instantaneous rate of change of mechanical energy occurring in the system, 

(2.57) 

where the first term accounts for the damping in the flexible joints; the second term 

corresponds to the structural damping in the longitudinal direction, while the third and the 

fourth terms represent the dissipation in the transverse v, and z, directions, respectively. I 

denotes the sectional mass moment of inertia while A corresponds to the moment of inertia of 

the cross-sectional area about its neutral axis. Note that C ^ C , ^ , and C/T, represent joint 

damping coefficients while 0^,0^, and C^.correspond to equivalent viscous damping 

coefficients for the longitudinal as well as the transverse modes of vibration of the bodies, 

respectively. 
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2.10 Equations of Motion 

As seen before, there are velocity transformations from q to q (Eqs. 2.48, 2.55). 

Correspondingly, they lead to two kinetic energy expressions in terms of q. Substituting 

from Eq. (2.55) into Eq. (2.22), the first of the two expressions for kinetic energy can be 

written as 

T = ^qT[(Rv)TMRv]q. (2.58) 

Similarly, substituting from Eq. (2.48) into Eq. (2.22) yields the second expression as 

T = ^qT[(I-R"TlR]TM[(I-Rn)-iR]q. (2.59) 

Consequently, two factorized coupled mass matrices of the system can be represented as 

M = R y 7 M R v (2.60) 

and 

M = [(I - R") _ 1 R] r M[(I - R " ) _ 1 R ] . (2.61) 

Inverting Eq. (2.61) leads to 

M _ 1 = (R) _ 1 (I - R " ) M _ 1 [(R) _ 1 (I - R")] r . (2.62) 

Since both R and M are block diagonal matrices, their inverse is simply the inverse of 

each block on the diagonal. Also, each block is of the size nt x where is the number of 
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generalized coordinates considered for the i'h body. Note, the order N character suggests that 

when the number of bodies increases by one, the cost of inverting M will rise only through 

the presence of one more block matrix. Thus inversion of M is the O(N) operation. Also, the 

form of M in Eq. (2.60) does not involve inverse operation and hence can be readily 

5\T P ) 
employed in evaluating the term — — in Eq. (2.30). 

The equations of motion with the damping effect, in the O(A0 form, can now be 

obtained using the Lagrangian procedure 

d_ 
dt 

d(T-Pe) dR 

dq, dq, 
+ ^ = Q9i, (2-63) 

where Qq corresponds to the nonconservative generalized forces. The governing equations 

can be written as 

( 
q = M 'Q-M 1 

1 d(qTMq) , dPe , dR, 
(2.64) 

dq dq dq 

where Pe and Rd are defined in Eqs. (2.29) and (2.57), respectively; and M _ I is given by 

Eq. (2.62). The terms M and ̂ (9 M<y) ^ described in detail in Appendix D. 
dq 

2.11 Generalized Forces 

The generalized forces Q can represent nonconservative environmental effects, such 

as atmospheric drag, solar radiation pressure and thermal effects, interaction with Earth's 

magnetic field, etc. However, the present study considers only the generalized forces arising 

from the system's control actuators. They correspond to the torques applied by control 

momentum gyros on the platform, revolute joint actuators, as well as forces applied by linear 

actuators (at prismatic joints) responsible for link deployment. 
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The control inputs applied to the space-platform are the torques arising from the 

control momentum gyros which regulate its attitude in pitch, roll, yaw (T\) and its vibration 

(Te\). Motion of the mobile base would involve the force Fb. The actuator located at the i'h 

joint of the manipulator provides the i'h body with a torque J , which results in slewing 

motion of the unit. Furthermore, each module is equipped with a linear actuator responsible' 

for its deployment and retrieval. This actuator provides a force F, along the length of the i'h 

body. Therefore, the set of actuator forces can be written as 

u = [Tl

T, T*. Fb

T, T2

T, F2,-, Tl, Fit-JT

N, FN]T, (2.65) 

Note, the total number of actuators involved is na = 5 + 4(7v~- 1 ). 

The generalized forces Q can be evaluated through the principle of virtual work, 

M " dai 

where Qi and qt represent the i'h components of Q and q, respectively; and Fej symbolize the 

/ * external force applied at Rj. Eq. (2.63) is used to derive the relationship between Q and «, 

(2.67) 

e R " r t ; (2.68) 

2 = Q V 

where: 

0 0 • • 0 

0 0 • • 0 

0 0 • 0 

L ° 0 - o Qi 

with 
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0 0 0 0 0 " "1 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 A. 0 0 0 0 0 0 0 0 

0 0 0 0 <p\b 0 0 0 0 0 0 0 

0 0 0 0 0 _ 0 0 0 0 0 0 1 

"0 0 0 0" 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 0 ; i 3,... .,N. 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 1 

It may be pointed out that fa and fa are evaluated at the locations of the momentum gyros. 

Here ns represents the number of generalized coordinates for the system: 

Body One - three for orbital position of the C M . , three for librational motion, three 

for vibration (considering one mode in each direction), and one for 

deployment, i.e. ten degrees of freedom for the platform. 
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Body Two - three for the mobile base, three for the revolute joint slew motion, three 

for the joint flexibility, three for vibration (one mode representation as in 

the case of body one), and one for deployment, i.e. thirteen degrees of 

freedom. 

Bodies Three to N - same as body two except the base motion is eliminated through 

introduction of the Lagrange multipliers as explained in the 

following section, i.e. ten degrees of freedom. 

2.12 Specified Equations of Motion 

The equations of motion were derived with a time dependent offset of the joint 

attachment point, rf,, which was treated as a generalized coordinate. However, one may 

constrain it to a fixed or time-specified value. This is achieved through the introduction of 

Lagrange multipliers. One begins by assigning the multiplier to all the constrained equations. 

Thus letting / = F -Q in Eq.(2.1) gives 

M ? + / = P C A , (2.69) 

where A is the vector of Lagrange multipliers and P e is the permutation matrix assigning the 

appropriate A, to its corresponding constrained equations. Inverting M and pre-multiplying 

T 

both sides by P c gives 

P c r (^ + M _ 1 / ) = [P c : r M" 1 P c ]A. (2.70) 

i.e. 

^ + P c r M-7 = [P c jM-'P c ]A, (2.71) 
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T 
where ^is the desired offset acceleration vector. Note that, both qs and (P c M - 1 / ) a r e 

known. Thus, the solution for A has the form 

A = [ P c r M - 1 P c r 1 ( ^ + P c r M - 1 / ) . (2.72) 

Now, substituting Eq. (2.72) into Eq. (2.69) and rearranging the terms gives 

^ r ^ - M - ' Z + M - ' P ' t P ^ M - ' P ' r ' ^ + P ^ M - 1 / ) , (2.73) 

which is the constrained vector equation of motion with specified coordinates qs 

predetermined. 

It may be pointed out that the equations of motion still retain their 0(N) character, even 

in the presence of constraints, as the Lagrange multipliers can be obtained recursively [76]. 

Thus, in the case where the j'h variable is constrained to be constant at its initial value, 

qSj = 0. In the case of prescribed maneuvers, qs is simply defined as the desired 

acceleration profile. Later in the study, a sinusoidal acceleration profile is adopted for 

prescribed maneuvers. It assures zero velocity and acceleration at the beginning and end of 

the maneuver, thereby reducing the structural response of the system. The maneuver time 

history considered is as follows, 

Aasj \ AT 
qs = -<r sin 

SJ AT 2X 

<2TT ^ 
T 

\AT J 
(2.74) 

where ^ i s the constrained coordinate; A ^ i s its desired variation; ris the time; and Aris 

the time required for the maneuver. The time history for qSj, qSj, and qSj are plotted, for the 
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case Aqs - 1 and A r = 1, in Figure 2-5. In case other profile is needed, one can always 

change the format of Eq. (2.74) to specify the motion. 

-1 - ' - v — ' 
1 1 i - i I I I i < l 

T/AT 1 

Figure 2-5 Normalized time histories of the sinusoidal maneuvering profile showing 
displacement, velocity, and acceleration. 



3. C O M P U T E R I M P L E M E N T A T I O N 

3.1 Introduction 

The equations of motion governing general three-dimensional dynamics of an N-body 

space-based manipulator system were derived in Chapter 2. As can be expected, the 

equations are extremely lengthy even in the matrix notation. Furthermore, they are highly 

nonlinear, nonautonomous and coupled. As pointed out before, they can be cast into a form 

M(q,t)q + F(q,q,t) = Q(q,q,t) , (3.1) 

which is suitable for studying inverse dynamics of the system. In the present study, the 

interest is in the forward dynamics as given by 

q = Ml(Q-F). (3.2) 

As a closed-form solution of this formidable set of equations is virtually impossible (except 

for some particular, trivial cases), one is forced to turn to a numerical approach. 

At the outset it was recognized that this would represent an enormous commitment of 

time. The main objective of the thesis is to lay a sound foundation for approaching this class 

of novel manipulators free to undergo three-dimensional dynamics. There lies the challenge 

and innovation (Chapter 2). Development of the corresponding computer code, though 

important, was not considered the primary objective and contribution of the thesis. 

It was recognized that three-dimensional character of the formulation significantly 

added to the complexity of the governing equations, and hence would demand commensurate 

time for the code development. What is important is to give physical appreciation of the 

system dynamics (interactions between various degrees of freedom) and control behaviour. 

Therefore, it was decided to develop a program for the planar case. 
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The planar dynamics refers to the situation where the system is free to vibrate in the 

orbital plane. Thus the platform is free to undergo pitch motion, and its vibration is confined 

to the plane of the orbit (xo,yo -plane). The same is true with the manipulator maneuvers and 

the module vibrations. This closely resembles important dynamics of the International Space 

Station with the Mobile Servicing System. 

Furthermore, as pointed out in Chapter 1, one of the objectives of the investigation is 

to compare numerical simulation results, during controlled operation, with those obtained 

using the ground-based prototype manipulator, already constructed by Chu [8]. This is 

discussed in Chapter 7. As the prototype is free to operate in the horizontal plane, the 

governing equations in Chapter 2 will have to be reduced to correspond to the ground-based 

planar condition. This not only strengthened the case for development of a code for planar 

study, but also brought to light that such reduction of the formulation for space-based system 

to earthbound manipulators has not been reported. Such versatility is indeed desirable and 

would constitute an important contribution. 

The acceleration vector q must be integrated twice over time to obtain the 

displacement response q(t) of the various degrees of freedom. Although, conceptually it 

appears simple, in reality it is a formidable task due to the character of the set of equations. 

The problem is further complicated by the fact that the equations of motion form a stiff set of 

differential equations; i.e. the bandwidth involved shows large differences. For instance, the 

librational period of the system has the order of the orbital period, while the structural 

vibrations of the various components have frequencies in the range of a few Hz. Any 

algorithm developed must take this into account; otherwise numerical error may result. 
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As pointed out before, the variable geometry manipulator system is highly redundant. 

That means, it has more degrees of freedom than are minimally required to perform a task. 

Presence of kinematic redundancy in robot manipulators is often desirable in order to cope 

with failure of some of the joints, or navigate around obstacles in a specified task path. The 

redundancy can also be used, quite effectively, in isolating the dynamic coupling between the 

manipulator supporting structure (platform) and links, or. between links, from the 

disturbances induced by manipulator maneuvers [51]. Furthermore, it can serve as an 

effective tool to optimize the task trajectory according to a suitable performance criterion 

(e.g., minimum dynamic interactions; minimum base reaction; minimum actuator effort; 

etc.). 

This chapter discusses the computer program written for the dynamical simulation of 

the manipulator and its supporting platform. The aim has been to develop an efficient code 

that is capable of dealing with a wide range of conditions likely to be encountered in practice. 

First, the structure of the computer code is introduced. Then, the procedure followed to 

validate both the formulation and the computer code is presented. Some sample test cases are 

provided to illustrate the validation procedure and to confirm the accuracy of the numerical 

model. 

3.2 Numerical Algorithm 

3.2.1 Structure of the computer code 

The simulation of the system's dynamics requires solution of Eq.(3-2). Therefore, the 

main task of the program consists essentially in finding MT1, F, Q, and thus q for each time-

step. The system dynamics is represented in the first order form as 

x = 
9 

Ml(Q-F) 
(3-3) 
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where x = [qT qT]T . The state rate vector* is integrated at each desired point in time using 

Gear's method, which is essentially a backward differentiation formula for stiff equations, 

employing an implicit linear multi-step approach of the predictor-corrector type [52]. 

The architecture of the program, which performs these tasks, is shown in Figure 3-1. 

The program was designed in a highly modular fashion to provide the necessary flexibility 

and to facilitate modifications. The number of manipulator units and the number of 

vibrational modes per body are specified in the file "number.dat". It should be pointed out 

that every time this file is modified, the entire program must be re-compiled in order to adjust 

the size of the matrices accordingly. 

Initially, the program asks the user if the platform and the manipulator links are rigid 

or flexible. In the rigid case, the appropriate flexibility generalized coordinates are 

"disabled". This is computationally more efficient than modeling rigid bodies by using 

extremely large stiffness. After the appropriate choice is made for a rigid or flexible model 

for the platform and the manipulator units, the code reads assigned values of parameters from 

input files. These are: 

• initial conditions for all degrees of freedom, i.e. x(0) = [q{0)T q(0)T]T 

• system's inertia, stiffness, and damping parameters; 

• payload mass and inertia; 

• starting time, duration, and amplitude of joint slewing, deployment, and mobile base 

translation; 

• relative error tolerance, initial integration step-size, and number of time-steps for the 

simulation. 
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Figure 3-1 Flow diagram showing the architecture of the computer program. 
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Except for the initial conditions and integration parameters, all input quantities are 

made available to the other subroutines through common statements. The initial conditions 

define the state JC(0), which is saved in an output file. 

After the input parameters have been specified, the IMSL DGEAR subroutine is 

called in. It features a version of Gear's method where the selection of the integration step-

size is automatic and based on the user-specified relative error-bound. The subroutine reads 

in the initial state x(0), the error tolerance, and the initial step-size. It then calls the 

"equation" subroutine, which calculates x. The "equation" subroutine is called as many 

times as the number of iterations required by Gear's method to converge to the solution x(tj), 

within the specified error-bound. It automatically avoids presence of any numerical 

instability. The final solution x(ti) is recorded in an output file and becomes the new initial 

state for the next time-step. This procedure is repeated in the subsequent time-steps, up to the 

final simulation time-step, tf. All the solution states \{to), x(ti), x(ti), ... , x(tj) are recorded in 

output files. It may be pointed out that the vectors x(ti) can be modified into more suitable 

forms using various output subroutines. 

The "equation" subroutine constitutes major part of the program. For each iteration 

that is required by the D G E A R subroutine, it defines theM, M , M ~ \ R _ 1 ( I - R n ) , R v , 

R v , 8{qTMq}/dq, dUg/dq, dUe/dq, 8RP/dq, and Q matrices. This allows 

computation of the term M~\Q - F). The "equation" subroutine then calls the "constraint" 

subroutine, which computes the Lagrange multipliers A and the matrix P c . The constrained 

acceleration vector q is obtained and converted into the first order derivative form x. It 

should be noted that most cases do involve specified coordinates. The specified components 

of the x vector are not integrated, since their respective time histories are already known. 
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The computations leading to the acceleration vector q require a significant number of 

matrix multiplications and additions. Several of the matrices involved have a number of 

constituent block submatrices as zero. Efficient subroutines were designed specifically for 

each matrix product. An effort was made not to multiply the zero elements, thereby reducing 

considerably the number of computations. 

Finally, it should be noted that the shape functions used and their derivatives must be 

integrated over each body. These integrations can become quite involved for time-varying 

shape functions. In the past, many researchers have coped with those integrals using 

numerical integration routines. However, the integrals must be evaluated in every iteration 

cycle of the solution. Therefore, numerical integration can reduce significantly the speed of 

the simulation. This emphasized a need for symbolic expressions for the integrals. The 

symbolic manipulator MAPLE Fwas used in order to evaluate analytically the shape function 

integrals. It offered the additional advantage of converting the expressions to FORTRAN 

code directly. 

3.2.2 Verification of the computer code 

The validity of the computer code was established through several checks. The size of 

the governing equations of motion, in addition to the number of operations required to derive 

them, can easily lead to formulation and programming errors (the computer code contains 

over 10,000 lines!). To some extent, these errors can be minimized through careful, 

systematic derivation and programming. Furthermore, discrepancies may reveal themselves 

when the computer code is compiled and its constituting parts are linked, thereby resulting in 

"compiling" and "linking" errors. However, some errors may be quite elusive and require 

precise checks. 
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Ideally, the results obtained with the code should be compared with data collected 

from an actual spacecraft supporting a flexible manipulator. Unfortunately, dedicated well-

planned dynamics and control experiments in space are rare. Furthermore, frequently such 

information is not made available in the open literature. Obviously, for the novel system 

proposed here, no such data are available. Hence, the lack of relevant information does not 

permit comparison of the simulation results with those for an actual space-based manipulator. 

A more convenient avenue is to check the conservation of energy for undamped systems. 

Similarly, the conservation of angular momentum can also be verified. Another alternative is 

to match simulation results for particular cases studied by other researchers. In the thesis, the 

conservation of energy check is used to ensure the validity of the computer code and 

formulation. 

3.3 Conservation of Energy 

In the absence of damping and external, nonconservative, generalized forces, the total 

energy of the system must remain constant. Thus, variation of the total energy for a 

conservative system would indicate an error in the program or/and in the derivation of the 

equations of motion. 

A thorough check of the conservation of energy was performed on several cases, 

involving a variety of system parameters, initial conditions, number of bodies, and 

manipulator configurations. A check was considered successful if and only if the variation of 

energy was found to correspond to the numerical noise. It was observed that even small 

truncation errors led to significant variations in the total energy of the system. Hence, even 

errors which might be considered negligible were found to have noticeable effects on the 

conservation of energy. Since the orbital motion of the platform accounts for most of the 
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system's total energy, its effects were removed in test-cases. In other words, the gravitational 

parameter //, as well as the orbital velocity and acceleration, were all set to zero, resulting in 

a free-floating system. This allowed errors associated with structural vibrations to become 

more apparent. This phase of the program verification was considered complete when the 

selected cases led to constant total energy. The following two test-cases serve as examples. 

They illustrate the methodology adopted and validity of the. computer code for widely 

differing situations. 

The first case considers a five-body system. The first body, representing the rigid 

platform, has a length of 120 m and a mass of 120000 kg. Each of the remaining rigid bodies 

(manipulator with four modules) is 10 m long with a mass of 400 kg. The bodies are all 

connected with flexible joints of a torsional stiffness K = 104 Nrn/rad. The chain is initially 

straight, aligned with the platform, which is in equilibrium along the local vertical. The 

system is nominally in a circular orbit at an altitude of 400 km with an angular velocity of 

0 — 0.06487s. It is now subjected to an initial disturbance of 30° in pitch (y/ = 30°) and a 

small change in 0. Figure 3-2 shows evolution of the system dynamics over one orbit. The 

change in the motion of the system's center of mass is shown (AD]) as well as the attitude 

motion of each individual body. Note, the altitude after half the orbit period has diminished 

by 120 m (AZ>i) resulting in a slightly elliptic orbit of eccentricity 0.0066. The flexible 

revolute joints cause the manipulator modules to vibrate with a maximum amplitude that is 

less than one degree (X2), while the system is undergoing undamped librational motion of 

« 30°. Thus there is transfer of energy between orbital, librational and joint vibrational 

degrees of freedom. Even in this complex situation, the total energy is conserved with an 

error (e) of less than 10"12 %, which essentially represents computational noise having no 
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Initial Conditions: 

Z)i=400km, D, =0; 

^ = 3 0 ° , ^ = 0; 

0=0, 0 = 0.0645 7s; 
Zi=0, i = 2,...,5; 
X =0, i = 3,...,5, 

%2 =-0.0645 7s; d2 = 60m 

Body 1: rigid with a length 
of 120 m and a mass of 
120,000 kg. 

Bodies 2-5: rigid, / = 10 m 

and m = 400 kg; 
flexible joints. 

Altitude Variation 

0.5 
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Rotation of Fifth Body 
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Conservation of Energy 

Orbit 

Libration of First Body 

0.5 

Rotation of Third Body 

0.5 

Elastic Potential Energy 

AE 

J 

111 
iisjiiiii 

0 0.5 1 

Conservation of Energy 

• X 1011 J . AE 
AKE 
APE 

• 

\ 

0 0 5 Orbit 1 

Figure 3-2 Verification of the conservation of energy for a rigid five-body chain system 
with flexible joints (E, total energy; PE, potential energy; K E , kinetic energy). 
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discernable features. Note, the change in energy (AE) is virtually zero. The program is indeed 

quite sensitive and is able to track time variation of the strain energy (Pe) as small as 1 J. 

The second case examines the effect of link flexibility on the position of the 

manipulator's end-effector with the system in a circular orbit at a height of 400 km (92.5 

minutes period, Figure 3-3). A five-unit manipulator (i.e. 10 links, five free to slew while the 

other five deployable), shown in the inset, is located at the center of the platform with its 

base held fixed. The individual joints are locked in position as stated in the legend for the 

diagram (specified coordinates), and so are the deployable links. The platform is subjected to 

an initial tip deflection of 2 m in the first mode together with a pitch disturbance of 30°. To 

assess the effects of link flexibility, the response of a rigid manipulator (with flexible joints) 

system is also included for comparison. The joint rotations due to tip deflections of the 

flexible links, about the specified /? positions, are represented by <j>2, ^ <t>6 (Figure 3-3a). 

Note, the manipulator modules two to six exhibit oscillations with insignificant amplitude ((j>3 

to <|>6, amplitude less than 0.01°), while the first module (§2) displays around ± 9° oscillations 

about the specified = 50° orientation. As expected, the response is at the forcing frequency 

corresponding to the platform vibration. Note the modulations of the pitch response ({^ due 

to joint ( solid line) as well as platform flexibility. The platform tip oscillations progress 

undamped (Figure 3-3b). x e represents the manipulator-tip motion parallel to the undeformed 

platform, while y e gives the displacement in the transverse direction, both with respect to the 

reference coordinate frame F\. The results clearly show significant influence of the system 

flexibility on the position of the end-effector. Obviously, this has implication on the path 

planning. Furthermore, although there is a considerable transfer of energy between various 
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Initial Conditions: Specified Coordinates: 

p=30°,y = 0; / , - 10 m, i = 2,...,6; 
e, = 0,z = 3,...,7; fo = 50°; fo = 30°; 
e2 = 2.0m(0,in ^ 4 = 30°; ^ 5 = 10°; 

rigid case) 06 = -\5°; 
0i = fii, i = 2,...,6. 

Rigid System (Flexible Joints) 
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Figure 3-3 Effect of flexibility of the platform and manipulator on the system dynamics with 
a platform tip displacement of 2 m and librational disturbance of 30°. The system 
comprises of a five-unit manipulator supported by an orbiting platform: (a) 
platform libration, rotations of links and energy conservation; (b) platform and 
manipulator tip dynamics. 
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Figure 3-3 Effect of flexibility of the platform and manipulator on the system dynamics with 
a platform tip displacement of 2 m and librational disturbance of 30°. The system 
comprises of a five-unit manipulator supported by an orbiting platform: (a) 
platform libration, rotations of links and energy conservation; (b) platform and 
manipulator tip dynamics. 
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degrees of freedom, the total energy is conserved. As before, variation in the total energy, of 

the order of 10' 1 2 %, is attributed to the computational noise. 

A wide variety of such studies gave confidence as to the validity of the formulation 

and computer code. 
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4. D Y N A M I C A L STUDY OF T H E S Y S T E M 

The previous chapter described an approach to the development of a computer code to 

simulate dynamics of a serial manipulator with an arbitrary number of slewing, deployable 

modules. The next logical step is to gain physical insight into the dynamics of this class of 

space manipulators through parametric analysis. Several factors are of importance: 

configuration of the system; variation of system parameters; number of manipulator units; 

initial disturbance; and specifications of manipulator maneuvers. The parametric study 

provided, literally, enormous amount of information. For conciseness, only a few 

representative cases, illustrating typical dynamical behavior, are reported here. 

To begin with, the case of an orbiting platform, supporting a one-unit manipulator, is 

investigated. This relatively simple system exhibits important dynamical characteristics 

inherent to more complex configurations, and hence helps in the physical understanding of the 

response. This is followed by the study of more elaborate manipulator systems consisting of 

two, three, and five modules connected in series by revolute joints (Figure 4-1). Finally, 

dynamics of the system, having two modules of different scales, is explored with application 

aimed at gross and fine manipulations. 

4.1 Numerical Data 

Unless otherwise specified, the following numerical data were used in simulations: 

Orbit 

• Circular orbit at an altitude of 400 km; Period = 92.5 min. 

Platform 

• Cylindrical geometry with axial to transverse inertia ratio of 0.005; 

• Mass, mp= 120,000 kg; 
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Figure 4-1 A schematic diagram of the multiunit manipulator system, based on an orbiting 
space platform, used for parametric study. 
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• Length, lp= 120m; 

• Flexural Rigidity, EIP = 5.5 x l0 8 Nm 2 . 

Manipulator Joints 

• Type: Revolute Joints; 

• Mass, ntj = 20 kg; 

• Moment of Inertia = 10 kg m 2 ; 

• Stiffness (K) = 104 Nm/rad. 

Manipulator Links ("Slewing and Deployable) 

• Cylindrical geometry with axial to transverse inertia ratio of 0.005; 

• Mass; m s , ma = 200 kg; 

• Length; ls, ld = 7.5 m; 

• Flexural Rigidity; EIS, EId = 5.5 x 105 Nm 2 . 

Recall that a manipulator module consists of two telescopic links: one is free to slew and 

supports the other, which is deployable. 

In the following simulations, longitudinal deformations being negligible are not 

reported, as well as the dynamics of the mobile base. Normally, the base will be locked in 

position during manipulator maneuvers. In general, only the first mode of transverse vibration 

is considered for the deformation of each body. Furthermore, the manipulator supports a point 

payload at the extremity of the last link. The ratio between the payload mass and the mass of a 

single module, referred to as the payload ratio, is used to specify the mass of the payload. For 

most cases, a payload ratio of 1 is considered, i.e. a payload of 400 kg. Cases involving 

different values of the payload ratio are clearly identified. It should also be noted that, for 
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most cases in this dynamical parametric study, energy dissipation is purposely not included in 

order to obtain a conservative estimate of the system response. 

In the simulations, the following degrees of freedom are specified: 

dix, djy offsets of the mobile base from the center of mass of the platform; 

dix, diy base offsets of the (z'th-l) manipulator unit from the tip of the (z'th-2) unit; 

P commanded rotation of the joint i, i.e rigid body rotation of the body /relative 

to the body (z-1); 

/, length of the (zth-l) manipulator unit. 

Here: 

d2y = 1.5 m, 

dix = diy = 0. 

d2x, the offset of the manipulator system along the platform, ft and /, are either fixed at their 

respective initial values or vary as specific functions of time, as defined by Eq. (2-71). Once 

the manipulator maneuver and time taken are specified, Equation (2-71) can be used to 

compute the time-history of that variable. Note that, unless mentioned otherwise, the mobile 

base is taken to be located 60 m from the center of the platform, i.e. at the tip, to impart a 

severe disturbance. 

At times, it is convenient to represent response of the system using variables other than 

the generalized coordinates for better understanding of the system dynamics. Hence, the 

following response variables are used: 

y/ 'pitch' angle between the platform's long axis and the local vertical (LV), y/= y/\ - 9, 

e2 elastic displacement of the platform's tip relative to its undeformed position, 

2 
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Xi elastic angular deformation of the i" joint, Xi= ¥i 'Pi' &' 

ei tip deflection of the (z'th-l) module relative to its undeformed position, 

In general, the platform is initially oriented along the local vertical, i.e. ^(0) = 0, and 

#(0) = 0, i = 2,...,N; 

e,-(0) = 0, i = 2,...,N; 

Important response variables are indicated in Figure 4-2. 

4.2 System Response 

This section briefly summarizes principal findings of a comprehensive dynamical 

response study. 

4.2.1 Effect of manipulator location and orientation 

Before proceeding to assess the influence of complex manipulator maneuvers on the 

system response, it would be of interest to explore the effect of unbalance caused just by its 

location and orientation, in absence of any maneuvers. The nominal stable equilibrium 

position of the platform is close to the local vertical with the base located at the center of the 

platform and the manipulator modules aligned with the longitudinal axis x\ of the platform. 

Each of the manipulator modules has a length of 7.5 m and orientation as specified by the /? 

initial conditions mentioned before. 

Figure 4-3 shows the effect of base location for a two-module manipulator. Note, with 

p\ - p\ = 0 the platform would essentially remain aligned with the local vertical, except for a 

small offset of the module attachment point at the base (Figure 4-1) which is taken as 1.5 m. 
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Figure 4-2 Schematic diagram of the manipulator system showing the coordinates 
considered for the dynamical study. xr, yr represent the orbital coordinates 
with origin at the system center of mass; x\, y\ correspond to the platform-
based body coordinates. 
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L.V. Parameters: 

EIP = 5.5x 10 8 Nm 2 

£ / , = 5.5x 10 5 Nm 2 

£7 r f = 5.5x 10 5Nm 2 

K= l.Ox 10 4Nm/rad 

Specified Coordinates: 
rf2 = 30 m; h = h = 7.5 m; 
A = -30°; # = 10°. 

Initial Conditions: 

0; e2 = 0; 
^ 2 = 0; e3 = 0; 
^ 3 = 0; e4 = 0. 

Librational Angle 
0.3 i : 

Figure 4-3 System response with a two-module manipulator located at different positions on 
the platform: (a) at the center; (b) 30 m from the center; (c) 60 m from the center. 
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With p\= -30° and p\ = 10°, movement of the manipulator center of mass results in a moment 

which increases as the base moves towards the platform tip. This leads to the librational 

motion with an amplitude of around 0.28°. It may appear small, however, depending on the 

mission, the permissible deviation may be as small as 0.1°. 

Figure 4-4 presents the libration response as affected by the number of modules with 

the manipulator located at the platform tip (dix = di = 60 m) with p\ = -30°, and/% to J3$ equal 

to 10°. As can be expected, the unbalance moment increases with the number of modules 

(each module weighs 400 kg) resulting in large amplitude vibrations. 

In the above two cases, the platform was initially in the local vertical stable 

equilibrium position. Figure 4-5 considers the situation where the platform is initially in the 

unstable local horizontal configuration. The one-module manipulator is located at the tip as in 

the case of Figure 4-4. Note the unbalance leads to large amplitude librations about the local 

vertical. The flexible joint as well as manipulator and platform tip show rather minute 

oscillations, with modulations, which the formulation and the associated numerical code are 

able to capture quite effectively. The peak response corresponds to the instant when the 

platform crosses the local vertical and has the maximum velocity. Similarity between the joint 

and manipulator responses is due to their closely coupled character (joint motion excites the 

manipulator tip). The high frequency component corresponds to the manipulator's 

fundamental frequency (3.1Hz) with a payload of 400 kg. 

4.2.2 One unit manipulator 

The first case examines the response of the one-unit manipulator to the vibration of the 

supporting platform (Figure 4-6). The manipulator configuration, important parameters, and 

initial conditions are indicated in the legend. The slew and deployment joints are both locked 
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Initial Conditions: Specified Coordinates: 

y/= 0, \j/ = 0; /,= 7.5 m, i = 2,...,6; 

\ L V e i = 0,i = 2,...,l; /? 2 = -30°; /? 3 = 10°; 
A = 10°; / ? 5 = 1 0 ° ; j06 = 1 0 ° . 

xi \ \ V' Parameters: 
\ V ' £ ^ = 5.5x 10 8 Nm 2 EIS = 5.5x 10 5 Nm 2 

\ \ EId = 5.5x 10s Nm 2 K= l.Ox 10 4Nm/rad 

Librational Angle 

Orbit 

Figure 4-4 System response with different number of modules in the manipulator system: (a) 
one-unit; (b) two-units; (c) three-units; (d) five-units. 
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L V Parameters: Initial Conditions: 

EIp = 5.5x 10 8 Nm 2 y/= 90° 
EIS = 5.5x 10 5 Nm 2 e2 = 0m 
EId = 5.5x 10 5Nm 2 ^ 2 = 0 
tf = l.Ox 10 4Nm/rad e3 = 0 
Specified Coordinates: 
h = 10m;/% = -50° 

Platform Libration Platform Tip Deflection 

Joint Vibration Manipulator Tip Vibration 

Figure 4-5 System response for unstable platform configuration (y/= 90°) with one-module 
manipulator. 
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IN Parameters: 

K = l.Ox 10 4Nm/rad 

Initial Conditions: 

£Jp = 5.5x 108 Nm 2 

£ / , = 5.5x 10 5 Nm 2 

e2 = 2.0 m 
Z 2 = 0 

£7 d = 5.5x 10 5Nm 2 e3 = 0 

Specified Coordinates: 
/ 2 = 1 0 m ; ^ = 50° 

Platform Libration Platform Tip Vibration 

0.01 0.01 

Joint Vibration 

Orbit 0.01 

Manipulator Tip Vibration 

Orbit 0.01 

Figure 4-6 Response of the one-module manipulator to the vibration of the supporting 
platform. 
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in positions ( h = 10 m, p\ - 50° ) . The platform is given an initial tip deflection e2 = 2 m. The 

figure describes the system response to this disturbance. 

Energy is transferred from the platform's vibration to other degrees of freedom. 

Clearly, the joint, link, and platform vibrations, as well as the system pitch librational motion, 

are coupled. It should be noted that, because of the manipulator's position and orientation, the 

platform's equilibrium pitch angle changes from y/ = 0 to y/ = 0.082°. Therefore, the system 

oscillates about this new equilibrium orientation. Since the librational period is approximately 

0.58 orbit, this motion is not observable in the figure. Note, the librational motion is 

imperceptibly small, yet clearly shows modulations at the vibrational frequency of the 

platform. This reflects favorably on the formulation as well as the computer code. They are 

able to capture such minute features associated with coupling effects. 

The vibration of the platform progresses, essentially, unaffected by the motion of the 

manipulator. This is understandable as the mass of the platform is 150 times greater than that 

of the manipulator/Payload combination. Therefore, the motion of the manipulator has almost 

negligible effects on the platform's response. On the other hand, it is apparent that the platform 

dynamics has a significant influence on the manipulator response, which now goes through 

slewing oscillations with an amplitude of %i x 8°, around the specified orientation of p\ = 50°. 

The joint response clearly shows the platform's forcing frequency (0.18 Hz), modulated by the 

joint frequency (0.07 Hz). The joint motion, in turn, would excite the module to vibrate at its 

own natural frequency (3.1 Hz). One can also discern these minute high frequency 

modulations at the peaks of the %i response. Of particular interests are the manipulator tip 

oscillations, £3. They clearly show modulations in the presence of three vibrational 

frequencies, which correspond to the natural frequencies of the platform, joint and link. 
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Figure 4-7 examines effects of the payload mass on the system response. The mobile 

base is located at the edge of the platform for maximum effect. The manipulator undergoes a 

180° slewing maneuver in 0.005 of the orbit. Payload ratios of 1, 2 and 5 are considered. EIP, 

EIS and EU correspond to flexural rigidities of the platform, slewing and deployable links, 

respectively. K refers to torsional stiffness of the revolute joint. Note, the maximum 

amplitudes are reached near the end of the maneuver. It is apparent that an increase in the 

mass of the payload increases the amplitude of the responses. Furthermore, a higher payload 

also increases the inertia of the system while the system's stiffness parameters remain 

unchanged. As a result, the vibrational frequencies for the joint deformation and manipulator 

tip deflection become lower. 

As explained before, the manipulator dynamics has virtually no effect on the 

platform's librational response due to its large inertia in pitch. As the manipulator is located at 

the platform's tip and the maneuver is rather fast (normally, in practice, such maneuver will be 

completed in 0.1 orbit, i.e. approximately nine minutes), the platform's tip motion (e2) reaches 

a modest value of 6 cm for the case of the largest payload of 2,000 kg. The rate of maneuver 

particularly affects the manipulator dynamics. For the case where the payload ratio is 5, the 

vibrational amplitudes reach 90° and 15 cm, for the manipulator joint and payload, 

respectively. Thus in presence of a large payload and a fast maneuver, active control of the 

manipulator will have to be implemented. 

The next four test cases also consider one-module manipulator system. The response of 

the system to a 0.1 m initial deflection of the manipulator's tip is first investigated (Figure 

4-8). The manipulator's vibration results in almost negligible response of the platform. 

However, it leads to significant vibration of the joint about its equilibrium position. In turn, 
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Parameters: 

K= l.Ox 10 4 Nm/rad 
EIP = 5.5x 10 8 Nm 2 

EIs = 5.5x 10 5 Nm 2 

EId = 5.5x 10s N m 2 

Initial Conditions: 

^=0 
e2 = 0 
Z2 = 0 
e3 = 0 

Specified Coordinates: Payload Ratio: 
d2 = 60 m; l2 = 10 m; 1; 2 ; -
j% = 0°^» 180° in 0.005 orbit. 

Platform Libration Platform Tip Vibration 
0:002 

0.01 

-0.04 

0.01 

Joint Vibration Manipulator Tip Vibration 

Figure 4-7 Effect of the payload mass on the system response to the slewing maneuver 
through 180°. 

80 



Parameters: Initial Conditions: 

EIp = 5.5x 1 0 8 N m 2 y/=0 
EIS = 5.5x 1 0 5 N m 2 e 2 = 0 m 
EId = 5.5x 10 s N m 2 ^ 2 = 0 
/:= 1 .Ox 10 4 N m / r a d e 3 = 0.2 m 

Specified Coordinates: Links Damping: 
/ 2 = 10m;/32 = 50°. £ = 0.001 

Libration Angle Platform Tip Deflection 

0.0001 h m 

-0.0001 

0.01 

Joint Vibration Manipulator Tip Vibration 

Orbit Orbit 0.01 

Figure 4-8 Effect of structural damping on the dynamical response o f the manipulator to a 
0.1 m displacement applied at its tip. A damping ratio corresponding to 0.1 % of 
the critical damping is assumed for the manipulator. 
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the vibration of the joint slightly modulates the link response. The vibrational motion of the 

platform is also modulated by the joint and link responses. The platform's response clearly 

exhibits all three vibrational frequencies (platform, joint, and manipulator links). 

It should be noted that structural damping was included in the manipulator links for 

this case. A damping ratio corresponding to 0.1% of the critical damping was assumed. 

Figure 4-8 shows that even this minute amount of damping has a significant effect on the 

system response. As expected, the vibration of the manipulator module decreases in an 

underdamped fashion. It is interesting to note that the slewing oscillations of the joint also 

decrease with time; not only the modulation due to the vibration of the links, but also the 

oscillations at the joint's natural frequency. This can be attributed to the strong coupling 

between the joint and link dynamics. 

Thus, inclusion of a small amount of structural damping in the manipulator links 

appears to modify the system response significantly. However, the effect consists mainly in 

attenuation of the free response. With the exception of the damped oscillations, the qualitative 

nature of the response remains relatively unchanged. For cases involving maneuvers, 

damping was observed to have little effect. Therefore, in the remaining cases, the damping is 

purposely neglected in order to obtain conservative estimates for the system response. 

Next, the system response to slewing maneuvers is investigated. Figure 4-9 describes 

system's motion with the manipulator executing a 180° slewing maneuver from t = 0 to t = 

0.005 orbit. The unit is carrying a 400 kg payload. The response is shown for three locations 

of the mobile base: d2 = 0 (i.e., center of the platform), d2 = 30 m, and d2 = 60 m (i.e., tip of 

the platform). 

82 



L V Parameters: Initial Conditions: 

EIP = 5.5x 1 0 8 N m 2 i//=0 
/ < \ \ 
/ \ \S 
' \ ^ 

EIS = 5.5x 1 0 5 N m 2 e2 = 0 

i AC 
i v 

A 

EId= 5.5x 1 0 5 N m 2 

AT = l .Ox 1 0 4 N m / r a d 
Z2 = 0 
e3 = 0 

Specified Coordinates: 

V 
• / 2 = 10 m; = 0° 

d2 = 0 
180° in 0.005 orbit; 
d2 = 30 m d2 = 60 m. 

Platform Libration Platform Tip Vibration 
0.002 

0.001 h 

-0.001 h 

0.01 0.01 

Joint Vibration 

Orbit 0.01 

Manipulator Tip Vibration 

0.05 h 

-0.05 

Orbit 0.01 

Figure 4-9 System response to a 180° slewing maneuver of the manipulator for various 
locations of the mobile base. 
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The maneuver slightly modifies the system's equilibrium orientation, due to transient 

change in inertia, resulting in rigid body oscillations of the platform. Librational motion is also 

induced by the inertia forces of the manipulator transmitted to the platform through the base. 

However, as before, the response is negligible. The slewing maneuver also induces vibration 

of the platform. The largest elastic deformation is obtained when the base is located near the 

platform's tip, with tip deflections reaching 1 cm during the maneuver. After the end of the 

maneuver, some residual vibrations persist in all three cases, but they are of the order of 10"4 

m. It is interesting to note that the smallest platform vibrations correspond to the case where 

di= 30 m. Here, mobile base is located close to one of the nodes of the shape function, which 

is at x\ = 33.1 m. Therefore, it is difficult for the exciting force to deform the platform at this 

location. 

One would expect the influence of the maneuver on the manipulator's own dynamics 

to be essentially independent of its location on the platform. This is substantiated by the %i 

and £3 responses. Note, as the platform motion is negligible, the form of the manipulator joint 

and tip vibrations is quite similar. As before, the peak responses are reduced during the 

maneuver, with a maximum joint deformation of 15° and a peak tip deflection approaching 

12 cm. After the end of the maneuver (i.e., t > 0.005 orbit), residual vibrations continue, with 

an amplitude of 4.0° for the manipulator joint and 3 cm for its tip deflection. 

Figure 4-10 (a) shows the effect of higher order modes on the system response for the 

case investigated in Figure 4-9, but with a payload of 2000 kg, and with the manipulator 

located at the very edge of the platform. Only the time histories of the platform and 

manipulator tip deflections are shown, as higher modes had no noticeable effects on the 

platform libration and joint vibration. From the figure, it can be seen that the second mode 
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LV Parameters: Initial Conditions: 

e2 = 0 
Z2 = 0 
e3 = 0 

Legend: 

EIp = 5.5x 108Nm" 
EIS = 5.5x 105Nm2 

EId= 5.5x 105Nm2 

K=l.0x 104Nm/rad 
Specified Coordinates: 
d2 = 60 m; l2 = 10 m; 1 mode; 
(a) p\ = 0 —• 180° in 0.005 orbit; 2 modes; 
(b) p\ = 0 —•90° in 0.005 orbit. 3 modes. 

(a) 

Platform Tip Vibration 
0.005 

-2 o 

-0.005, 

1 mode 
2 modes 
3 modes 

0 0.01 

Manipulator Tip Vibration 

0.02 

0.08 

(b) 

Platform Tip Vibration 

0.01 h 

0.02 

0.12 

0.06 

e, o 

-0.06 

Manipulator Tip Vibration 

m 
/ v. 

• 

/Six 

1 

0.01 orbit 0 0 2 0.01 Orbit 0.02 

Figure 4-10 Effect of higher modes on the system's structural vibration. The manipulator is 
supporting a 2000 kg payload and is located at d2 = 60 m: (a) 180° maneuver; (b) 
90° maneuver. 
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introduces only minor correction to the response. Thus, the use of only one mode provides a 

sufficiently accurate result for the design purpose, with a significant saving in computational 

time. The third and higher modes have negligible effect on the system response. 

Figure 4-10 (b) considers the same case, but with a faster maneuver through 90°. A s 

can be expected, being a relatively severe disturbance, the e2, ej responses are larger. 

Contributions o f the second and higher order modes still remain negligible. The first mode 

continues to be sufficient to describe the vibration of the manipulator unit, even in demanding 

situations. 

Thus it can be concluded that, in general, the fundamental mode is adequate to model 

the system dynamics. However, a word o f caution is appropriate, particularly at extremely 

high maneuvering speeds, which may excite higher modes. On the other hand, it is a common 

practice in robotic control to limit the motion frequency to no more than half of the 

fundamental frequency of the structural components [48]. Thus the use of the fundamental 

mode appears to be sufficient to describe the system structural response. 

The effect of manipulator deployment is now assessed. The manipulator is taken to be 

located near the edge of the platform (d2 = 60 m) and is oriented perpendicular to the 

platform's longitudinal axis (p\ - 90°). Initially, the deployable link is fully retracted, i.e. 

h = 7.5 m, and the vibration o f the manipulator links is excited with an initial tip deflection o f 

10 cm. Softer links are considered in this case (EIS = Eld — 5.5 x l O 4 N m 2 ) to accentuate the 

response and capture coupling effects, i f any. From t = 0 to t = 0.005 orbit, the manipulator 

length remains unchanged at h = 7.5 m. From t = 0.005 to t = 0.01 orbit, the manipulator is 

extended to its maximum length o f 15 m. It remains fully deployed until the end o f the 

simulation. 
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The system response is shown in Figure 4-11. The initial tip deflection results in 

vibrations of the manipulator joint and links, as well as the platform. The deployment of the 

manipulator unit changes the inertia tensor of the system and modifies its attitude, as shown in 

the figure. Note, the program is sensitive enough to pick up minute platform librations and tip 

vibration. The peak platform tip deflections are experienced during the deployment. It should 

be noted that deployment makes the module structurally softer and lowers its natural 

frequency. Retrieval has the opposite effect and results in a higher natural frequency. This 

becomes obvious when the time history of the manipulator's tip deflection (e3) is considered: 

when the module is fully extended, the vibrational amplitude of the links is larger and its 

frequency is lower. This strongly affects the joint vibration as well through coupling. 

4.2.3 Manipulator with two units 

The next case studies the response of the system when it is subjected to slewing 

maneuvers from two units (Figure 4-12). The manipulator is initially "folded over" (fy ~ 

180°, /% = -180° ), with both units parallel to the platform, and its base and tip are located 

exactly at the center of the platform. From t = 0.00 to t = 0.05 orbit, the joints rotate until the 

links are aligned along the direction perpendicular to the platform. Throughout the maneuver, 

the length of each unit remains constant (h = h = 15 m). The figure shows the vibrational 

response of the manipulator units and joints, as well as the platform's elastic character. The 

system's librational response is also presented. The maneuver is illustrated in the inset. The 

slewing maneuvers result in tip deflections of around 0.5 m to 1.3 m for two modules as well 

as joint deformations of, approximately, 12°-35°. The maneuver also excites a vibrational 

response of the platform resulting in a rather small tip deflection of around 3 mm. Note, the 

coupling between the various degrees of freedom is evident through modulations. 

87 



Parameters: Initial Conditions: 

EIP = 5.5x 1 0 8 N m 2 ^ = 0 
EIS = 5.5x 1 0 5 N m 2 e 2 = 0 
EId= 5.5x 1 0 5 N m 2 ^ 2 = 0 
A > l.Ox 1 0 4 N m / r a d e 3 = 0 . 1 m 

Specified Coordinates: 
d2 = 60 m; fa = 90°; 
h = 7.5 m — • 15 m from 0.005-0.01 orbit. 

Platform Libration Platform Tip Vibration 

Figure 4-11 Effect of the manipulator's deployment maneuver on the system response in the 
presence of a 0.1 m disturbance of the manipulator tip. 
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Parameters: 

EIP = 5.5x 10 8 Nm 2 

EIS = 5.5x 10 5 Nm 2 

EId = 5.5x 10 5Nm 2 

l.Ox 10 4Nm/rad 

Initial Conditions: 

i//= 0; e2 = 0; 
Z2 = 0; e3 = 0; 
^ 3 = 0; e4 = 0; 

Specified Coordinates: 
d2 = 60 m; h = h - 15 m; 
^ 2 = 180° — ^ 9 0 ° ; 
$ = 180° —•Oin 0.005 orbit. 

Platform Libration Platform Tip Vibration 

Joint 1 Vibration Manipulator Module 1 Tip Vibration 

Joint 2 Vibration Manipulator Module 2 Tip Vibration 

Figure 4-12 System dynamics due to simultaneous slew maneuvers involving two 
manipulator modules. 

89 



4.2.4 Three unit manipulator system 

In practical situations, a service area to be covered by the manipulator would remain 

the same. Hence, with a large number of units, it would be logical to reduce the link lengths, 

which, in turn, would affect its mass and flexural rigidity. Of course, the joint conditions may 

also change. The revised parameters used for manipulators with three and larger number of 

units are as follows: 

Manipulator Joints: 

Type: revolute joints; Mass = 5 kg; 

Moment of Inertia (Izz) = 2.5 kg m 2; 

Stiffness (K) = 1 x 103 Nm/rad. 

Manipulator Links (Slewing and Deplovablej: 

Geometry: cylindrical, with axial to transverse inertia ratio of 0.005; 

Mass (ms, md) = 50 kg: 

Length (ls, ld) = 2.5 m; 

Flexural Rigidity (EIS,. EId) = 1 x 104 Nm 2 . 

Thus, each module has a maximum length of 5.0 m. All other parameters remain the 

same as before. 

Figure 4-13 presents the response of a three-unit manipulator to a simultaneous 

rotation of its three revolute joints and deployment of the three units. The manipulator base is 

located at the extremity of the platform and the manipulator is initially in a folded 

configuration {Jh ~ -p ~ PA - 180°), with all the three manipulator units parallel to the 

platform (inset). In 0.01 orbit, the joints rotate in order to align all the units in the direction 

perpendicular to the platform's long axis. At the same time, each unit deploys from a length of 
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Parameters: 

EIp = 5.5x 10 8 Nm 2 

EIs = EId = 5.5x 10 5 Nm 2 

K= l.Ox 10 4Nm/rad 

Initial Conditions: 

e2 = e-i = en = = 0 m; 

Specified Coordinates: 
c?2 = 60 m; l2 = h = h = 2.5 m-> 4.0 m in 0.01 orbit; 
# = 1 8 0 ° - + 90°, /% = - 1 8 0 ° — • 0 ,and 
fit, = 180°—• Oin 0.01 orbit. 

Platform Libration Platform Tip Vibration 

- 0 . 0 2 h 

- 0 . 0 4 h 

0 . 0 0 0 1 h 

0 . 0 2 0 . 0 2 

Joints Vibration Manipulator Module Tip Vibration 

0.04H 

0 .02 h 

' 0 

- 0 . 0 2 

- 0 . 0 4 h 

Orbit 
0 . 0 2 Orbit 0 .02 

Figure 4-13 Simultaneous slew and deployment maneuvers of a three-module 
manipulator. 
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2.5 m to 4.0 m. Hence, the maneuver takes the tip of the manipulator from its initial location 

on the surface of the platform, 2.5 m from the platform's tip, to a point located 12 m from the 

surface of the platform. 

The results show that while the vibrational motion induced in the platform remains 

small, the platform pitch response is relatively large. This can be attributed to the large effect 

that manipulator maneuvers have on the system's inertia tensor when the base is fixed near the 

tip. The joint and unit vibrations are also shown. One notes that the amplitude of vibration of 

both joints and links are greater for modules close to the platform. Joints and links located 

near the end of the manipulator exhibit vibrational modulations at the natural frequency of the 

links. Moreover, after the maneuver, all joint and link deformations seem to pass through zero 

at the same instant. These trends are also observed for manipulators with a greater number of 

units. This suggests that all .'flexible components reach their maximum and minimum elastic 

energies at the same time. Furthermore, these extrema should remain the same once the 

maneuver is completed as the total energy of the manipulator system remains constant. 

4.2.5 Manipulator with four units 

Here the base of the manipulator is locked at the center of the platform. Each module is 

deployed to a length of 4.0 m. The first three modules are aligned in the direction 

perpendicular to the platform, while the last unit undergoes a 180° slewing maneuver during 

0.01 orbit. Figure 4-14 illustrates the maneuver, as well as the vibrational response of the 

platform, joints and manipulator units, in addition to the librational dynamics of the system. 

One notes that the amplitudes of joint and link vibrations are larger for components (i.e. joints, 

links) which are closer to the platform (i.e. away from the tip). In addition, the vibrational 
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Parameters: Initial Conditions: 

EIP = 5.5x 10 8 Nm 2 0; e2 = 0 
\ EIs = EId= 5.5* 10 5 Nm 2 e, = 0, z' = 2,...6; 

/ ft Wd2 1 -Ox 104 Nm/rad ^, = 0, i = 2,...6. 

\ \ \ Specified Coordinates: 

\ u \ \ \ d2 = 0m\h = h = k=h = 4.0 m 
v « 

\ \ \ fi= 9 0 ° , / 3 = 0,/?4 = 0,and 
w /% = - 90° —**90° in 0.01 orbit. 

Platform Libration Platform Tip Vibration 

-10t 

0.01 

Joint Vibration 

0.02 

0.01 0.02 
Orbit 

-0.0001 

0.01 

Manipulator Tip Vibration 

0.02 

Orbit 0.02 

Figure 4-14 System response of a four-module manipulator to a 180° slewing maneuver 
from the fourth module. 

93 



frequencies are higher for components closer to the tip of the manipulator. Both observations 

seem to indicate that each unit acts as a tip mass for the previous unit and thus effectively 

reduces its natural frequency. Coupling effects are also apparent from the joint vibrations and 

tip deflections of the manipulator units. Again, the joint and link deformations pass through 

zero at the same instant near the end of the maneuver and after it is completed. 

4.2.6 Five-unit manipulator system 

The final case studies the system response of the five-unit manipulator to a translation 

maneuver along the platform. The manipulator base is initially located at d2 = 30 m, i.e. 30 m 

away from the platform's centerline. All manipulator modules are fully retracted to their 

minimum length of 2.5 m and are aligned in the direction perpendicular to the platform. The 

base is now commanded to translate through 30 m in 0.01 orbit. Figure 4-15(a) shows the 

platform and manipulator tip responses. xe represents the motion of the manipulator tip parallel 

to the undeformed platform, while ye gives the displacement in the transverse direction, both 

with respect to the reference coordinate frame F\, located at the center of the platform. To 

assess the effects of link and joint flexibility, the response of a rigid manipulator system is also 

included for comparison. The results clearly show significant influence of the system 

flexibility, on the position of the end-effector. Obviously, this has considerable implication on 

the path planning. The joint deformations result in large oscillations, mostly in the xe 

direction, about the desired position. The joint and link vibrations are shown in Figure 4-15(b) 

for all components. As before, the vibrational amplitudes are larger for components located 

close to the platform because of the inertia effects. Again, the elastic joint deformations and 

tip deflections of the manipulator units pass through zero at the same instant, i.e. the 

deformation time-histories are in phase. Thus all flexible components continue to reach their 
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Parameters: Initial Conditions: 

EIP = 5.5x 108Nm2 ^=0; 
EIs = EId= 5.5x 105Nm2 e, = 0m,i = 2,...,6; 

W"j2 A" = 1 .Ox 104 Nm/rad ^, = 0, i = 2 7. 
\ \ Specified Coordinates: 

\ \ \ rf2 = 30m— 6̂0 min 0.01 orbit; 
ye \ \ \ p\= 90° , /? = 0 , i = 3,...6; ?, = 2.5 m, i = 2,...6. 

(a) 

0.04 

Platform Libration Platform Tip Vibration 

0.0006 h 
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• 1 1 

0.01 0.02 

Manipulator Tip Motion 
12.6 

Manipulator Tip Motion 

0.01 Q r b i t 0.02 0.01 Q r b i t 0.02 

Figure 4-15 System dynamics during and after a 30 m translational maneuver along the 
platform: (a) platform response and trajectory of the end-effector; (b) joint 
and manipulator modules' response. 
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(b) 

Joints Vibration 

Figure 4-15 System dynamics during and after a 30 m translational maneuver along the 
platform: (a) platform response and trajectory of the end-effector; (b) joint 
and manipulator modules' response. 
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maximum and minimum elastic potential energies at the same time. 

4.3 Computational Efficiency of the O(N) Formulation 

As mentioned before, the formulation of the governing equations of motion, presented 

in Chapter 2, has the property of 0(/V). Thus, ideally, the computational cost should increase 

linearly with the number of bodies involved in the system. To assess validity of this property, 

the case of the platform along the local vertical was considered with the base located at d2 = 30 

m. The platform, manipulator modules and joints were taken to be flexible. Four cases were 

studied with the number of modules, N, increasing from 1 to 5. Note, no manipulator 

maneuvers are involved as in Section 4.2.1. The computer used was Compaq 5177 Presario 

with Pentium II 350Hz processor and 128 M B R A M . The results are shown in Figure 4-16. 

Essentially linear behavior is apparent. Note, doubling the number of bodies from three to six 

increases the time by 53 minutes, instead of 424 minutes for the conventional procedure. 

80 n 

2 4 6 8 

Number of Bodies 

Figure 4-16 Execution time vs. number of bodies with 0(/V) formulation. 
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4.4 Gross and Fine Manipulations 

4.4.1 Preliminary remarks 

In this section, the idea of gross and fine manipulations is introduced for a robotic 

system with redundant degrees of freedom. If the manipulator is expected to perform a precise 

task, and at the same time has a large working space, a long arm carrying small and precise 

robotic unit may be able to effectively accomplish the job. The larger manipulator as a 

delivery tool, will move in a gross fashion to position the small robot close to the target. Now 

the latter will be able to perform the required fine, precise tasks on the work-piece. These two 

types of operations may be termed gross and fine manipulations of the robotic system [78]. A 

manipulator having redundant degrees of freedom will assist in implementing this concept in 

accurate and efficient manner. This emphasizes versatility of the formulation, which makes a 

variety of applications possible. 

4.4.2 Dynamics of gross and fine manipulations 

A two-module manipulator, i.e. with four links, two capable of slewing while the other 

two deployable, was considered (Figure 4-17). The manipulator, supported by the mobile base 

was free to translate over a flexible platform (free-free beam). To help appreciate complex 

interactions, the deployable links were locked in positions. The model accounts for the joint 

flexibility, however the links are purposely taken to be rigid to facilitate isolation of coupling 

effects. The base was also held fixed. The numerical data used in the simulation are 

summarized below: 

length of the space platform lp = 120 m; 

mass of the space platform 77^=120,000 kg; 
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length of module 1 l\ = 7.5 m; 

mass of module 1 m\ = 250 kg; 

R = m2lm\=l2ll\ =1,0.5,0.1; 

joint flexibility =10 4Nm/rad. 

Here m2 and l2 are mass and length of module 2, respectively. 

Local Vertical 

Fine Manipulation, Module 2 

Gross Manipulation, 
Module 1 

Orbit 

Space Platform 

Reference, 6 = 0 

Figure 4-17 Planer two-module space manipulator system for gross and fine operations. 

To begin with, the long duration behavior of the system was studied when subject to an 

initial disturbance of A = A = 30° /min, with the revolute joints kept free and R = 1 (Figure 

4-18). As can be expected, in absence of any dissipation, module 1 exhibits rotary motion with 

module 2 oscillating about the longitudinal axis of module 1. Essentially the system response 

is similar to that of a double pendulum in a horizontal plane with the normal component Fi„ of 
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Slewing angle of module 1 Slewing angle of module 2 

Figure 4-18 System response to an initial impulsive disturbance of fi2

 = A = 30° / m m -

Module 2 Periodic 
Fi„ Oscillations. 

Module 1 j 
,,n) Rotational / 

Motion / 

Figure 4-19 Schematic diagram showing coupled free oscillation of a two-module 
manipulator. 
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the centrifugal force F 3 c providing the restoring moment (Figure 4-19). The transient period 

extended to around 50 s. 

Next, the free response of the system was assessed under a variety of initial 

disturbances and three different values of the mass ratio: R = 1, 0.5, 0.1. Figure 4-20 shows 

response of the system with both the modules subjected to an initial disturbance of 30°/ min. 

In absence of any coupling, the modules should show a rotation of 60° in two minutes. 

However, due to interaction dynamics, angular velocities of the modules are affected. For m2 I 

m\ = \, P2 is slightly increased giving the fi2 = 78° at t = 120 s. This is directly attributed to 

the moment on module 1 created by the reaction force at joint 2. The effect of decrease in mi I 

m\ is to decrease the fi2 by a small amount giving the J32 « 6 0 ° at t = 120 s for m2lm\ = 0.1. 

On the other hand, the coupling effect on module 2 is to reduce /? 3 . The reduction is rather 

large, particularly for large m2 I m\ Note, for m2 I m\ = 0.5 and 1, module 2 slows down so 

much in the opposite sense (i.e. clockwise direction ) as to have a negative / ? 3 . For example, 

atr= 120s, # * -5° . 

The effect of initial impulsive disturbance of fl3 = 30°/min, applied to module 2, on 

system dynamics is presented in Figure 4-21. Note the small motion of module 1 ( « 9 . 5 ° in 2 

min) due to the moment created by the reaction force at joint 2 as pointed out earlier. The 

effect of a reduction in m21 m\ is as expected. Also larger the 02, greater it contributes to the 

reduction in /? 3 . This is quite apparent from the trend observed in Figure 4-21. 

Finally, Figure 4-22 shows response of the manipulator when module 1 executes a 

prescribed slewing maneuver from fi2

 = 0 to fi2 =90° in 1 min. The maneuver follows a sine 

on ramp profile giving zero initial as well as terminal velocity and acceleration. 
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Slewing Angle of Unit 1 Slewing Angle of Unit 2 
80 

20 h 

60h - -

40 h 

I I I L . 50 _. 100 
Time, s 

50 100 
Time, s 

Figure 4-20 System response to an initial impulsive disturbance of f32

 = Pi ~ 30° / m m f ° r 

three values of the mass ratio R. Note, the transient dynamics is computed over 
120 s. 

Figure 4-21 Effect of an initial impulsive disturbance of P3 = 30° /min (i.e. applied to 

module 2) on the system dynamics. 
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Slewing Angle of Module 1 Slewing Angle of Module 2 

module 2 dynamics. 

Figure 4-23 Interaction dynamics showing the effect of the prescribed maneuver of 90° 
slewing maneuver in one minute of module 2 on the module 1 response. 
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As anticipated, the second module attains approximately - 9 0 ° position by the end of 

the maneuver. A small positive overshoot near the beginning of the maneuver and negative 

overshoot near the terminal phase may be attributed to the acceleration and deceleration of 

module 1 and associated inertia. The high frequency modulations of the J0T, response are due to 

the flexibility of the joint. Response of the system to a similar maneuver by module 2 is 

presented in Figure 4-23. Note, now the mass ratio has significant effect on the module 1 

response. Of particular interest is the negative value of / ? 2 ( as against positive /7 2 in 

Figure 4-21) suggesting the response to depend on the acceleration time history. To 

summarize: 

(i) Dynamics of the outer module has relatively less effect on the inner module response. 

On the other hand, the inner module dynamics affects the outer module response quite 

significantly. This is true during both an initially applied disturbance as well as a 

prescribed maneuver. 

(ii) An initial slewing disturbance applied to the outer module induces angular velocity 

causing the inner module to move in the same sense as that of the disturbance. The 

induced motion accentuates with an increase in the mass ratio. On the other hand, an 

initial disturbance to the inner module leads to an induced velocity of the outer module 

in the opposite sense. Also, a higher mass ratio increases this effect as before. 

(iii) Effect of a slewing maneuver by the outer module is to induce the inner module's 

motion. The effect of reducing the mass ratio is to decrease this coupling effect. The 

direction of the induced motion depends on the time history of the slewing maneuver. 

On the other hand, slewing motion of the inner module causes motion of the outer 
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module in the opposite sense. The module mass ratio has virtually no effect on this 

induced motion of module 2. 

The results suggest that one can increase the length of the inner module and reduce the 

length of the outer module, i.e. reduce R, to minimize dynamical coupling without affecting 

the amount of work-space. This would help separation of gross and fine manipulations without 

seriously affecting the system performance. 
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5. NONLINEAR CONTROL 

5.1 Preliminary Remarks 

Versatility of the general formulation in studying dynamics of a variety of space-

based manipulator configurations was demonstrated in Chapter 4. Results suggest that there 

are situations where the system response may not be acceptable. Hence, the next logical step 

is to develop a control algorithm suitable for the governing equations of motion which are 

nonlinear, non-autonomous and coupled. Furthermore, they are quite lengthy, even in matrix 

notation, as pointed out earlier. 

Nonlinear control has received considerable attention in the robotics research. 

Although linear control procedures have served us well for a variety of relatively simple 

situations, with highly flexible nonlinear space-based systems they have often proved to be 

inadequate. Furthermore, for extremely lengthy as well as nonlinear equations of motion, as 

in the present case, linearization process itself becomes a demanding task. One possible 

solution was put forward by Freund [79]. The idea is to use the state feedback to decouple the 

nonlinear system in such a way that an arbitrary placement of poles is possible. The 

technique, however, was found to be difficult to apply to systems with more than three 

degrees of freedom. Freund [80] subsequently showed that by careful partitioning of the 

equations of motion, the procedure can be extended to systems with more than three degrees 

of freedom. However, the approach did involve simplification of the equations of motion. 

Slptine and Sastry [81] applied the sliding mode theory to the control of robot 

manipulators. Consider a differential equation with the right-hand side discontinuous around 

a hyper-surface. If the trajectory of the solution points toward the discontinuity, it is plausible 

that the trajectory eventually slides along the hyper-surface. By a suitable choice of sliding 
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surfaces, control laws can be formulated to force the manipulator to travel along a specified 

trajectory defined by the surfaces. However, unmodeled dynamics usually results in high 

frequency oscillations of the manipulator as it slides along the surface. Slotine [82,83] 

improved the performance by using a filtering process with a high bandwidth for the sliding 

variable. Slotine and Li [84] also incorporated the sliding mode control in an adaptive PD 

feedback approach. The idea is to utilise the PD controller to give zero velocity error. The 

nonzero position errors are then eliminated through the sliding mode controller. 

Inverse control, based on the Feedback Linearization Technique (FLT), was first 

investigated by Beijczy [85] and used by Singh and Schy [86] for rigid arm control. Spong 

and Vidyasagar [87,88] also used the FLT to formulate a robust control procedure for rigid 

manipulators. Using the FLT and given the dynamics model of the manipulator, the 

controller first utilizes the feedback to linearize the system followed by a linear compensator 

to achieve the desired system output. At times, the method is also referred to as the 

Computed Torque Technique which is, to be precise, is a particular case of the FLT. Spong 

[89] later extended the method to the control of robots with elastic joints. Advantages of this 

approach are twofold: (i) the control algorithm based on the FLT is simple; and (ii) the 

compensator design, based on a feedback linearized model, is straightforward. Recently, 

Modi et al. [70, 90] extended the technique to include structural flexibility for models of an 

orbiting manipulator system. The technique is found to provide adequate control for both 

rigid as well as flexible degrees of freedom. 

The study in this chapter is based on the F L T as applied to the variable geometry 

manipulator system. The chapter begins with an introduction to the FLT. The method is 
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utilised to control the rigid degrees of freedom. This is followed by the application of the 

FLT to control the flexible manipulator system subjected to a variety of disturbances. 

5.2 Feedback Linearization Technique 

The governing equations of motion, Eq. (2.1), can be represented as 

(5.1) 

where subscripts r and / refer to the variables associated with rigid and flexible degrees of 

freedom, respectively. Assuming only the rigid degrees of freedom to be regulated, the 

control force Qf is not applicable and hence set to zero giving: 

Mrrqr+Mrfqf+Fr=Qr, 

M

/ r < i r + M j r i i f + F f = 0 -

Objective is to select Qr in such a way that the system becomes linear and uncoupled in rigid 

degrees of freedom. A suitable choice for Qr would be 

fir=Mv + F , (5.3) 

where v = (q,), + Kv{(q,)d-qr} + Kp{(qr)d -qr}; M = Mrr-Mr/M^M/r; 

F = Fr-MrfMffFf. Subscript'd' refers to the desired value of the coordinate. Now the 

controlled equations of motion become: 

qf=-MJf-1Mfrv-MJf-]Ff. 
(5.4) 

The error relation in Eq.(5.4) can now be written as 

e + Kve + Kpe = 0 , (5.5) 

with e = (qr)d-qr-
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The function of Kp and Kv is now obvious; they are position and velocity gains to ensure 

asymptotic behaviour of the closed-loop system. A suitable candidate for Kp and Kv would be 

diagonal matrices of the form leading to a globally decoupled system with each generalized 

coordinate behaving as a critically damped oscillator with frequency cof. 

2cox 

; K V -
2 2a)„ 

In attitude control of a rigid spacecraft, and I C , are 3 x 3 matrices for pitch, roll, and yaw 

degrees of freedom. In general, a larger value of co, gives rise to a faster response of the z'-th 

generalized coordinate. 

Figure 5-1 shows a block diagram for the FLT. There are two loops in the system. 

The inner loop linearizes and decouples the system while the outer loop accomplishes the 

control. Since the system is linear and decoupled, any controller suitable for a linear system 

can be used. In this chapter only the PD control is employed to this end. 

Outer Loop (control) 

K . , 

Inner Loop (linearization) 

> 0 

• Q — > K „ 

M • O — * S Y S T E M 
1r 

Figure 5-1 Block diagram for the Feedback Linearization Technique (FLT). 
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5.3 Controlled Behaviour of the System 

The FLT is now applied to the space platform based one-module manipulator system 

as shown in Figure 5-2. The numerical values used in this study are the same as those given 

earlier (Chapter 4, p.68). When different, they are pointed out during the discussion of results 

or in the legend of the associated figure. Initial conditions, system configurations, 

manipulator maneuver speeds and system properties were varied to assess effectiveness as 

well as robustness of the controller. 

Local Vertical 

Figure 5-2 One-module space manipulator system for control study. 
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The first case considers the FLT control during a slew maneuver. The maneuver is 

through -90 °, from -30 0 to -120 °. The module length is held fixed at 10 m. The initial 

conditions are summarized below as well as indicated in the legend (Figure 5-3): 

d2 = 30 m, base fixed 30 m from the platform centerline; 

y/ = 0, platform aligned with the local vertical; 

fi2 = -30°; 

/ 2 = 10 m. 

The ATV and AT values were selected around the critically damped response estimate to account 

for changing manipulator geometry in an approximate manner: 

• Platform libration Kp =1.5x10"1, ATV = 4; 

• module slew Kp = 8.2943x10'2, ATV=5.76; 

• module deployment ATp = 8.2943x10"2, ATV=5.76. 

The First row of Figure 5-3 shows the controlled librational motion and the 

corresponding torque time-history. Since the platform is a large structure, 120 m long and 

weighing 120 T, even with a small oscillation, 3X10" 4 degree, a large amount of control 

torque is needed (700 Nm). However, the FLT controller very effectively brings the platform 

back to its desired orientation in less than 0.07 orbit (6 minutes). The second row shows the 

controlled joint motion of the module (fl2) and corresponding torque (T2). It is apparent that 

controlled system reaches the desired position without overshoot. Although the flexible 

degrees of freedom are not under control, the coupling effect between rigid degrees of 

freedom and elastic generalized coordinates still exists. Note, both joint and tip vibrations of 

the module are thus indirectly controlled and stability is retained. 

Next, the manipulator is moved to the tip of the platform (i.e. d2 = 60 m). All the 
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Parameters: Initial Conditions: 

K= l.Ox 10 4Nm/rad y/= 0 
e2 = 0 

Zi = 0 
e3 = 0 

EIp = 5.5x 10 8Nm 2 

EIS = 5.5* 10 5 Nm 2 

EL = 5.5x 10 5Nm 2 

Specified Coordinates: Controlled Coord.: 
/ 2 = 10m;d 2 = 30m $ from-30° to-120°; 

^=0 

x -|ô  Librational Angle 

r „ N m 

0.05 0.1 0.15 0.2 
Module 1 Revolute Angle 

Libration Control Torque 

100, 

0 0.05 0.1 0.15 0.2 
Module 1 Revolute Control Torque 

-50 

PI 
-100 

T 2 ,Nm 0 

-100 

-150 -200 1 

0.05 0.1 0.15 

Module 1 Joint Vibration 

0.2 0.05 0.1 0.15 0.2 
x 10 3 Module 1 Tip Vibration 

Figure 5-3 FLT control of the one-module manipulator system, executing a 90° maneuver, 
when located 30 m from the center of the platform. 
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other conditions are kept the same as before to facilitate comparison (Figure 5-4). Due to 

longer moment arm, the disturbance is relatively more severe. This is reflected in the 

librational response and the peak value of the control torque which now reaches around 2000 

Nm. The manipulator reaches the commanded value of -120 0 rather quickly as before, and 

the flexible degrees of freedom (%2, e3) are still controlled even in presence of such a large 

disturbance, through coupling. 

In Chapter 4, Figure 4-5, an unstable system configuration ( y / = 90°) was investigated. 

Without control, platform experienced a large librational motion and attempted to settle at the 

stable equilibrium of y/= 0. Figure 5-5 shows the system behaviour under the FLT control. 

Note, the manipulator is commanded to a position inclined to the platform (J32 = -50 °). This 

being not an equilibrium position, it acts as a small disturbance, inducing the platform to 

move towards the local vertical. However, the FLT control is quite successful in keeping the 

platform in the unstable local horizontal position. The demand on the controller is rather 

small (7, = 1.3 Nm, T2 = 0.15 Nm). The elastic degrees of freedom remain virtually 

unexcited. 

The extreme maneuver case studied in the Chapter 4 (Fig. 4-7) is now re-examined 

with the FLT control (Figure 5-6). All the conditions are kept the same as before with the 

payload to manipulator mass ratio taken to be 5, i.e. a 400 Kg manipulator is carrying a 2000 

kg payload. The system is well under control with a small librational angle (0.005°). 

Manipulator reaches the desired angle in about 0.0195 orbit. Comparing with the 

uncontrolled case (Figure 4-7), vibration of the revolute joint reduces from around ± 90° to ± 

18°. The manipulator tip vibration amplitude also shows a significant decrease, from 1.25 m 

(uncontrolled) to around 0.4 m (controlled). Note, the flexible degrees of freedom are 
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j L V Parameters: Initial Conditions: 
1 

^^^^^^^^^^^^^^^^^^^^^^^^ 

K= l.Ox 10 4Nm/rad 
EIp = 5.5x 10 8Nm 2 

EI= 5.5x 10 5Nm 2 

EId= 5.5x 10 5Nm 2 

^=0 
e2 = 0 
Z 2 = 0 
e3 = 0 

Specified Coordinates: 
/ 2 = 10 m; c?2 = 60 m 

Controlled Coord.: 
p\ from -30° to -120°; 
i^=0 

A 0 

10 

5 

0 

-5 

( 

0 

-50 

-100 

-150 
I 

2 

1 

x 10"4 Librational Angle 

Z 2 

1000 
Libration Control Torque 

T,, Nm 0 

0.05 0.1 0.15 0.2 
Module 1 Revolute Angle 

100 

0 0.05 0.1 0.15 0.2 
Module 1 Revolute Control Torque 

T 2 ,Nm °F 

0.05 0.1 0.15 0.2 
Module 1 Joint Vibration x 10 Module 1 Tip Vibration 

0 0.05 0.1 0.15 0.2 

Orbit 

0.05 0.1 

Orbit 

0.2 

Figure 5-4 FLT control of the one-module manipulator system undergoing a 90° maneuver. 
The manipulator is located at the tip of the platform. 
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L V Parameters: Initial Conditions: 

EIp = 5.5x 10 8Nm 2 ^ = 9 0 ° 
EIS = 5.5x 10 5Nm 2 e2 = 0 m 

e ^ Y v %2 
EId = 5.5x 10 5Nm 2 ^ 2 = 0 
A > l.Ox 10 4Nm/rad e3 = 0 

c Specified Coordinates: Controlled Coord: c 
l2 = 10 m £ = -50° 

e2 tf2 = 60m ys=90° 

Librational Angle Libration Control Torque 

_ ! l . , , 1 . 8 1 , . . 

0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 

Orbit Orbit 

Figure 5-5 System response with the FLT control for unstable platform configuration (y/ 
90°). The one-module manipulator is located at the platform tip. 
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Parameters: 

K= l.Ox 10 4Nm/rad 
EIp = 5.5x 10 8Nm 2 

EIS = 5.5x 10 5Nm 2 

EL = 5.5x 10 5Nm 2 

Initial Conditions: 

^=0 
e2 = 0 
Z2 = 0 
e3 = 0 

Specified Coordinates: Controlled Coord: 
d2 = 60 m; l2 = 10 m; 
Payload Ratio: 5. 

^ = 180°; ^=0 

Librational Angle x 10 4 Libration Control Torque 

0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 

Orbit Orbit 

Figure 5-6 FLT controlled system response with a heavy payload (payload to manipulator 
mass ratio is five). 
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regulated indirectly, only through coupling. Even for this extreme maneuver, the control 

effort demand is rather modest. For platform, the peak control torque needed is about 2.4x104 

Nm, while at the revolute joint actuator 3200 Nm of torque is required. Of course, with a 

limited power supply, one would normally avoid fast maneuvers with a heavy payload. 

To assess effect of the manipulator flexibility, its flexural rigidity was changed 

systematically. Three values were considered: EIds = 2.75 xlO 5 Nm 2 ; EIds = 5.5 xlO 5 Nm 2; 

and EIds = 1.1 xlO 6 Nm 2. They correspond to soft, medium and hard cases, respectively 

(Figure 5-7). The manipulator is located at d2 = 30 m and carries a payload of 400 kg. It is 

commanded to reorient from fi2 = 30° to fi2 = 120°. Note, it is able to do so in around 130 s, 

irrespective of the manipulator's flexural rigidity. The same is true for the platform response. 

Even the flexible joint behavior remains virtually unaffected by the variation in the link 

flexibility. Of course, as can be expected, the main effect is on the manipulator tip response, 

which diminishes as the system becomes hard. 

The effect of deployment maneuver on the FLT control is studied with the same 

conditions as in Fig.4-11 of Chapter 4. The manipulator is commanded to deploy from 7.5 m 

to 15 m. The results are shown in Fig. 5-8. The libration angle continues to remain small and 

the vibration components are "negligible due to the coupling effect. Of course, they can be 

suppressed completely by introducing a small amount of damping as seen earlier in Chapter 4 

(Figure 4-8). 
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Parameters: Initial Conditions: 

0; 
0;e3 

0; 
0. 

K= l.Ox 10 4Nm/rad 
EI5 = 5.5x 10 5Nm 2 

EId = 5.5x 10 5Nm 2 

Specified Coordinates: Controlled Coord: 
/ 2 =10m; $ from 30° to 120° 
S o f t , £ / i r f = 2.75x 10 5Nm 2 

Medium, EIsd = 5.5x 105 Nm 2 

Hard, £ / s d = 1.1 x 10 6Nm 2 

x 10"3 Librational Angle 

•o 0 

150 

PI 

r „ N m 

0 0.005 0.01 0.015 0.02 
Module Revolute Angle 

1000 

T 2 ,Nm 

0.005 0.01 0.015 0.02 
Module Jonit Vibration 

Libration Control Torque 

0.005 0.01 0.015 0.02 
Module Revolute Torque 

0.005 0.01 0.015 0.02 
Module Tip vibration 

0.005 0.01 0.015 0.02 

Orbit 

0.005 0.01 0.015 0.02 

Orbit 

Figure 5-7 Effect of the manipulator link stiffness on the FLT control of the system. 
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Parameters: 

EIp = 5.5x 10 8 Nm 2 

EIS = 5.5x 10 5 Nm 2 

EId = 5.5x 10 5Nm 2 

AT = l.Ox 10 4Nm/rad 

Initial Conditions: 

^ = 0 
e2 = 0 
Z 2 = 0 
e3 = 0.1 m 

Specified Coordinates: Controlled Coord: 
d2 = 60 m; p2 = 90°; / 2 = 7 . 5 — • I S m ; 

^=0. 

x io"4 Librational Angle 

/ „ m 15 

%2 

x io4Libration Control 

0 0.005 0.01 0.015 0.02 
Module 1 Deployment 

1000 

0 0.005 0.01 0.015 0.02 
Modudle 1 Deploy Force 

500 

0.005 0.01 0.015 0.02 
Module 1 Joint Viration 

-500 
0 0.005 0.01 0.015 0.02 

x 10 Module 1 Tip Vibtation 

e 3 ,m 

0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 

Orbit Orbit 

Figure 5-8 Effect of the manipulator's deployment maneuver on the FLT controlled system 
response. 
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The results show that the FLT controller is quite effective and robust. It performs 

remarkably well under a wide variety of system conditions, using the same set of controller 

gains. Active control of elastic degrees of freedom can further improve the performance if 

necessary. 
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6. OPTIMIZATION CONSIDERATIONS 

As mentioned before, the presence of redundant degrees of freedom can be used to 

advantage. It may enable the manipulator to track a desired trajectory even when one or more 

joints are not functional. Furthermore, it may provide means to satisfy criteria for 

optimization: minimum control effort; minimum time to complete a task; minimum 

transmission of reaction forces and moments to the platform; and others. Here the focus is on 

the reduction of forces and moments at the base supporting the manipulator, i.e. at the 

platform. This is important for maintaining desired attitude of the platform and minimizing 

its vibratory response. Of course, the approach developed here can be applied to satisfy any 

other criterion. 

6.1 Sequential Conjugate Gradient-Restoration Algorithm 

There are several different methods for optimization. Here the suitable candidate is 

considered to be simple, reliable and able to provide global optimization. Here the sequential 

conjugate gradient-restoration algorithm, introduced by Miele [91] in 1979, is used to serve 

this purpose. 

6.1.1 Problem definition 

Consider the problem of minimizing the functional 

l 

/= \f{x,u,x,t)dt + [g{x,x,t)]x (6.1) 
o 

with respect to the state x(i), the control «(/), and the parameter ^which satisfy the 

differential constraint 

x = F{x,u,n,t), 0><t<\; (6.2) 

the non-differential constraint 
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S(x,u,x,t) = Q, 0<f<l ; (6.3) 

and the boundary conditions 

M 0 = given, (6.4a) 

[{/(*, * ,0 ] i=0, (6.4b) 

where symbol [/]x denotes value off at point x. Thus Eqs. (6.2) - (6.4) define the system 

under consideration. 

6.1.2 Augmented functional 

From the calculus of variation, the problem posed in Eqs.(6.1) to (6.4) is one of the 

Bolza type, i.e. it can be recast as that minimizing the augmented functional 

i 

J=\[f + $ (x-F) + pTS]dt + [g + //> ], 
0 

= [Sxl + )(f - ATF + pTS - ATx)dt + [g + M > ] , (6-5) 

0 

with respect to the state x(t), the control u(t), and the parameter K which satisfy Eqs.(6.1) to 

(6.4). Here A(t), p (t) and constant / / are the Lagrange multipliers. 

6.1.3 Optimality conditions 

The optimal solution must satisfy not only the system Eqs.(6.2) to (6.4), but also the 

first-order optimality conditions: 
X - fx + FXA - Sxp = 0, 0 < / < l ; (6.6) 

fu-FuA + Sup = 0, 0<t<\; (6.7) 

l 

| ( / / r + Snp)dt + (gxVx//)i = 0 ; (6.8) 
o 

+ =0. (6.9) 
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Summarizing, the solution is seeking functions x(t), u(t), n and Lagrange multipliers Mj), 

p (t), p which satisfy the constraints in Eqs.(6.2) to (6.4) and optimality conditions given by 

Eqs.(6.6) to (6.9). 

6.1.4 Approximate approach 

Since the differential constraints represented by Eqs.(6.2) to (6.4) and optimality 

conditions given by Eqs.(6.6) to (6.9) are generally nonlinear, iterative techniques are used in 

their solution. For this purpose, scalar functionals P and Q are defined: 

l l 
P = \N(x - F)dt + $N(S)dt + N[(<//)\ ; (6.10) 

0 o 

1 i 

Q = \N{X -fx+ FXA - Sxp)dt + \N(fu -FJ + Sup)dt + 
0 

" 1 

N 

(6.11) 

+ N[A + gx+y/xp]1; 

where P denotes the constraint error, Q represents the error in the optimality conditions, and 

N(v) is an operator acting on vector v as 

N(v) = vTv. 

Note that, for the optimal solution, P = 0 and Q = 0. For an approximation to the optimal 

solution, let: 

P<£x\ (6.12a) 

Q<s2; (6.12b) 

where £\ and £j are small, pre-selected numbers. 
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6.1.5 Construction of the sequential conjugate gradient-restoration algorithm 

The sequential conjugate gradient-restoration algorithm is an iterative technique that 

includes a sequence of cycles having the following properties. 

Property 1 

The functions x(t), u(t), and available both at the beginning and end of each cycle, 

must be feasible; that is, they must be consistent with constraints in Eqs. (6.2) to (6.4) within 

the pre-selected accuracy stated in Eq. (6.12a). 

Property 2 

The functions x(t), u(t), and n obtained at the end of each cycle must be 

characterized by a value of the functional Q (Eq. 6.11) which is smaller than that associated 

with the functions available at the beginning of the cycle until Eq. (6.12b) is satisfied. 

Property 3 

The functions x{t), u(t), and /T" obtained at the end of each cycle must be characterized 

by a value of the augmented functional J(Eq. 6.5) which is smaller than that associated with 

the functions available at the beginning of the cycle. 

Note that Property 3 is a consequence of Properties 1 and 2. Conversely, Property 2 

is an outcome of Properties 1 and 3. To achieve the above properties, each cycle is made of 

two phases, a conjugate gradient phase and restoration phase. 

6.1.6 Conjugate gradient phase 

This phase is started only when the constraint error P satisfies the inequality in Eq. 

(6.12a). It involves iteration designed to decrease the value of the functional / or the 

augmented functional J, through minimization of the functional Q (Eq.6.12b), while 
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satisfying the constraints to the first order (i.e. the linearized system Eqs. 6.2 - 6.4). During 

this iteration, the first order variation of the functional Q is minimized, subject to the 

linearized constraints. This corresponds to the conjugate gradient phase loop in the flow

chart (Figure 6-1). 

6.1.7 Restoration phase 

This iteration phase is started only when the constraint error P violates the condition 

in Eq.(6.12a). In each of the restoration iterations, the objective is to reduce the error P, while 

the constraints are satisfied to the first order (Eq.6.6), and the norm of the variations of the 

control (Eq.6.7) and the parameter n (Eq.6.8) are minimized. The restoration phase is 

terminated when Eq. (6.12a) is satisfied. Figure 6-1 also shows the restoration phase. 

START 

Yes 

Restoration 
Phase 

Gradient 
Phase 

STOP 

Figure 6-1 Flow-chart of the sequential conjugate gradient-restoration algorithm. 

125 



6.2 Optimal Trajectory Design 

The optimal trajectory design was undertaken for a two-module manipulator as shown in 

Figure 6-2. To illustrate the approach, a simple ground-based system, operating in a 

horizontal plane, is purposely considered for clarity. It used the method by Miele [91] 

summarized in Section 6.1 and the corresponding algorithm developed as indicated in Figure 

6-1. Note, in the planer case, the manipulator has four degrees of freedom (p\, l\, p\, h) but 

only two generalized coordinates are required to identify the position of the manipulator tip. 

Thus there are two redundant degrees of freedom which are used to minimize transmission of 

force F\ - [F\x, Fiy]T and moment T\ to the platform. 

Figure 6-2 Two-module manipulator system used to study optimal trajectories for 
minimum transmission of force and moment. 

Various symbols appearing in Figure 6-1 are defined below: 

m\ = mass of module 1, ms\ + ntdu 

ms\, md\ = mass of slewing and deployable links of module 1, respectively; 

m2 = mass of module 2, mS2 + md2, 
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ni2 = mass of module 2, mS2 + m^; 

mS2, nid2 = mass of slewing and deployable links of module 2, respectively; 

ni21 m\ = mass ratio, R; 

I\ = mass moment of inertia of module 1 about its center; 

Is\, Id\ = mass moment of inertia of slewing and deployable links of module 1 

respectively; 

h, h = lengths of module 1 and 2, respectively; 

h2, Ui ~ lengths of slewing and deployable links of module 2, respectively; 

F\, T\\ F2> T2 = forces and moments at joint land 2, respectively; 

p\ = slew angles at joints 1 and 2, respectively. 

For this investigation, prismatic joint of module 1 is locked in position with l\ = 7.5 m. The 

corresponding equations of motion can be written as: 

\2 
J\ + h i + Jd3 + m \ 

h 
v 2 y 

+ mS2Ui + si 2U 
v 2 j 
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The objective is to minimize the coupling effect acting on the joint between the 

manipulator and platform (joint 1) due to the motion of module 2. The cost function was 

taken in the quadratic form as 

w2 0 

0 w2 

F\)dt , (6.16) 

where: T\ = base reaction torque ; 

w\ = weight factor for T\; 

Fx = [F\x,Fly]T, reaction force at joint 1 between the manipulator 

and platform; 

wi = weight factor for F\. 

The task is to move the tip of the manipulator from point A (0, 15 m) to point B 

(12.61 m, 5.12 m) using module 2 keeping the force and moment at joint 1 minimum. The 

sequential conjugate gradient-restoration algorithm discussed earlier is used to this end. The 
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differential constraints are the equations of motion (Eqs.6.13 to 6.15) and the boundary 

conditions are the starting point and the final position configurations. The following cases 

are considered to determine the optimal trajectory of the manipulator tip, the effect of weight 

ratio W1/W2 and the mass ratio of module 2 to module 1. 

Case Umass ration R = 1) 

• Module 1 (free to slew): mass = 250 kg, uniformly distributed; length (A) = 7.5 m, i.e. 

the link is fully deployed and remains locked. 

• Module 2 (free to slew and deploy): mass msi, md2 = 125 kg, uniformly distributed; 

length ls2, Ui - 3.75 m. 

• Initial Conditions: p\, = p\ = 0; l2 = 7.5 m, i.e. the deployable link of module 2 is fully 

extended. 

• Initial tip position A: x = 0, y= 15 m. Final tip position B: x = 12.61 m,y = 5.12 m. 

• Maneuver time: 1 minute. 

From the dynamic point of view, if a heavier penalty is put on the torque (w-i:W2 = 

10:1), the optimal tip trajectory would tend to reduce the length of the module (thus 

diminishing its inertia) in order to decrease the torque required to rotate it. On the other hand, 

if reduction in the reaction force is more important, the optimal solution would emphasize 

slewing the module and then utilize the advantage of less coupling effect for the prismatic 

joint to retrieve the tip. This approach is open to a variety of optimization considerations. 

One can easily modify the cost function or change it completely to serve the desired 

objective. 

The optimized tip trajectories for several different values of weight ratio are shown in 

Fig. 6-3(a) for m21 m\ = 1. It is apparent that with an increase in w-i: W2, the optimization 
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procedure tends to emphasize the reduction in the length of module 2 to reduce the moment 

of inertia. Thus, the torque required for the slew motion is globally minimized. From Fig. 6-

3(b), it is clear that the length of module 2 reduces with an increase in the ratio W1/W2. In 

Figures 6-4(a) and 6-4(b), time histories of the rotation angles, deployable length and their 

associated torques and force are plotted. Note, with the increase in weight ratio from 1:1 to 

10:1 the torque excursion diminishes from * 25.42 Nm (* +11.00 to -14.42) to 21.25 Nm (« 

+9.57 Nm to -11.68 Nm). Due to heavier penalty on torque (w-i: W2 = 10:1), the procedure 

provides configuration time history that will lead to reduced demand on moment. On the 

other hand, the force excursions increase from 1.48 N (1:1) to 2.74 N (10:1). 

The same optimization procedure is now applied to the cases where the mass ratio 

between the two modules changes to assess the characteristic of the gross-fine manipulations. 

Case 2 (mass ration R = 0.33) 

• Module 1 (free to slew): mass = 375 kg, uniformly distributed; length (/1) = 11.25 m, i.e. 

the link is fully deployed and remains locked. 

• Module 2 (free to slew and deploy): mass nisi, nidi = 62.5 kg, uniformly distributed; 

length Isi, ldi - 1.875 m. 

• Initial Conditions: p\,= p\ = 0; h = 3.75 m, i.e. the deployable link of module 2 is fully 

extended. 

• Initial tip position A: x = 0, y = 15 m. Final tip position B: x = 12.61 m, y = 5.12 m. 

• Maneuver time: 1 minute. 
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Case 3 (mass ration R = 0.2) 

• Module 1 (free to slew): mass = 416.67 kg, uniformly distributed; length = 12.5 m, 

i.e. the link is fully deployed and remains locked. 

• Module 2 (free to slew and deploy): mass ms2, mai = 41.67 kg, uniformly distributed; 

length lS2, ld2 = 1-25 m. 

• Initial Conditions: p\, = p\ = 0; / 2 = 2.5 m, i.e. the deployable link of module 2 is fully 

extended. 

• Initial tip position A: x = 0, y = 15 m. Final tip position B: x = 12.61 m, _y = 5.12 m. 

• Maneuver time: 1 minute. 

Figure 6-5 shows optimal tip trajectories of the manipulator as affected by the weight 

ratio. It follows the same trends as in the case of mass ratio of 1 except for a reduction in the 

retrieval distance for module 2. Note, decrease in the mass ratio also leads to a reduction in 

the coupling effect. However variations in the optimized trajectories with R are relatively less 

compared to those in Figure 6-3. This is particularly evident in Figure 6-6. Thus, with a 

properly designed manipulator system for a certain task, i.e. with a small mil m\, fine 

manipulations can be considered independent of the weight ratio. This simplifies 

optimization procedure significantly, particularly for a complex system. 
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Figure 6-5 Effect of weight function on the tip trajectory for Case 2: matrix = 0.33. 

Y, m 

X, m 
Figure 6-6 Effect of weight function on the tip trajectory for Case 3: rmlm\ = 0.2. 
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7. GROUND-BASED E X P E R I M E N T S 

Experiments in space are very costly and time consuming. They can become 

prohibitive and infeasible in many cases. That is one of the main reasons for the necessity of 

lengthy mathematical modelling and investigation through computer simulation. As an 

alternative to space-based experimentation, one often turns to prototypes located on Earth. Of 

course, for practical reasons, no ground-based setup can simulate the space environment 

exactly. However, a carefully designed ground-based facility can be used to advantage in 

assessing the performance trends. Furthermore, once the ground-based computer simulations 

are verified through prototype experiments, it is possible to justify, by induction, their 

validity in space where the forces are significantly small. In fact, since the beginning of the 

space-age in 1957, around 20,000 spacecraft have been launched. Every one of them was 

primarily designed through extensive numerical simulations, complemented by a few 

simplified ground-based experiments. The objective here is to evaluate real-time controlled 

performance of the variable geometry manipulator using the ground-based prototype facility 

designed by Chu [8]. 

7.1 System Description 

Figure 7-1 shows the manipulator system that has been developed and located in the 

IRIS Spacecraft Control Laboratory of the Department of Mechanical Engineering, 

University of British Columbia. The prototype manipulator, employed in the experimental 

study, consists of a fixed base that supports two modules of the robot connected in series. 

Each module has two links: one able to slew, and the other free to deploy and retract. The 

manipulator workspace has the shape of a human heart, extending 2 m from top to bottom 

and 2.5 m across. Rotational motion is made possible through the use of revolute joints 
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Figure 7-1 The prototype manipulator system. 

actuated by DC servo-motors. The deployment and retraction are carried out with prismatic 

joints consisting of lead-screw and roller-nut assemblies, each of which transforms the 

rotational motion of a servo-motor into the translational motion of a deployable link (Figure 

7-2). Actuator motors integrated with optical-encoder motion sensors are interfaced with a 

Pentium 200 MHz M M X PC through a three-axis multi-function input/output motion control 

card. 

7.1.1 Manipulator base 

The base supports the manipulator system. The first robot module is attached to the 

pivot plate, which is threaded to the pivot shaft. An 80 mm thrust bearing located between 

the pivot plate and the top plate of the base carries the weight of the manipulator. 
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This bearing also provides the slewing freedom about the rotational axis. A second bearing is 

located under the top plate of the base and is held in place with a lock nut. A flexible 

coupling connects the pivot shaft to a gear head with a transmission ratio of 20:1, which 

reduces the speed and amplifies the torque delivered by the DC servo-motor. The rotational 

motion of the base motor is transmitted in series, through the gear box, the flexible coupling, 

the pivot shaft, and finally to the pivot plate that holds the slew unit of the first module of the 

manipulator system (Figure 7-3). 

7.1.2 Manipulator modules 

Both modules of the prototype manipulator system are nearly identical in 

construction, each having one revolute joint and one prismatic joint. The first revolute joint is 

located at the base, while the second one is at the end of the first module; i.e. at the elbow 

joint. The deployment is realized with the transformation of the rotational motion of the 

motor that drives the lead screw into the translational motion of a roller nut that is fixed to 

the deployable link (Figure 7-4). The pitch of the lead screw of the first module is 2.5 mm 

(i.e., the deployable link moves 2.5 mm per revolution) while it is 1 mm for the second 

module. 

7.1.3 Elbow joint 

The elbow joint connects the deployable end of module 1 to the slewing link of 

module 2. The structural connection consists of two pivot plates bolted onto the deployable 

end of module 1. These plates support the slewing motor and the gear head. The elbow joint 

is supported on a flat structure within the workspace, through a spherical joint. The 

mechanism that provides the rotational motion at the elbow joint is identical to the one 

located at the base (Figure 7-5). 
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Figure 7-3 Main components of the manipulator base assembly (Module 1). 
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ure 7-4 Prismatic joint mechanism which provides the deployment and retrieval 
capability. 

Figure 7-5 Main components of the elbow joint assembly. 
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7.2 Hardware and Software Control Interface 

The hardware of a closed control loop of the prototype manipulator mainly consists of 

an IBM compatible host computer, an MFIO 3A motion control interface, a linear power 

amplifier, and a DC servo-motor with a built-in optical encoder (Figure 7-6). The control 

structure for all the degrees of freedom is identical. 

Computer System 

The computer used for control purposes is a Pentium 200 MHz M M X IBM compatible 

machine, with QNX as the operating system. Real-time application of a digital control 

system depends on an operating system that is capable of handling multiple events in a 

coordinated manner, within specified time constraints. The more responsive the operating 

system, the more freedom a real-time application has to meet its deadline. The QNX 

operating system provides multi-tasking, priority-driven preemptive scheduling, with fast 

context switching; and is particularly suitable for real-time control. Implementation time for 

the control loop was 2 ms. 

Motion Control Interface Card 

An MFIO-3 A high-speed interface card for PCs is used for multi-axis, coordinated 

motion control. It has three-channel 16-bit digital-to-analog converter (D/A); three 

quadrature encoder inputs; 24 bits of programmable digital I/O, synchronized data reading 

and writing; a programmable, interval timer; and a watchdog timer. The card has a SYNC 

signal, which allows for synchronization of data acquisition and analog outputs. The data 

from the D/A converters are latched into registers through the SYNC signal. The D/A 

channels have a 16-bit resolution. The encoder inputs are digitally filtered for noise 

suppression. The programmable interval timer can generate timed intervals from 0.25 us to 

515 seconds. The feedback controller runs as a task in the QNX operating system. 
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Figure 7-6 Open architecture of the manipulator control system for a single joint. 

The card may be programmed either by accessing the hardware at the register level in C or 

through the use of Precision MicroDynamics' C-subroutine libraries. The source code is 

compiled with the Watcom-C compiler for QNX. A C-program library provides access to the 

MFIO-3A hardware with routines to initialize the board; set up the Programmable Interval 

Timer (PIT), watchdog timer, and SYNC signal; start the PIT and watchdog timer; set up the 

interrupts; read and write the digital I/O; read and write the encoders; and write the digital-to-

analog converters. 

Linear Power Amplifier 

Linear amplifiers are used with the joint motors of the prototype manipulator. Their 

function is to transform the voltage signal in the range +/- 10 V from the controller, into a 

proportional current to drive the joint motors. The amplifier gain is set so that a 10V 

command generates the maximum drive current. 
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DC Servo-Motors 

Slewing motors of the manipulator are Pittman 14202 (109 oz-in peak torque) and 

9413 (16 oz-in peak torque) for modules 1 and 2, respectively. A N E M A 23-20 reduction 

gear head of transmission ratio 20:1 is used. The gear head reduces the speed while 

increasing the output torque of the motor nearly by a factor of twenty, depending on the 

efficiency. The deployment motors are Pittman 9414 (24 oz-in peak torque). The motors 

operate through the DC current supplied by the power amplifier, in response to a controller 

signal. 

Optical Encoders 

The position of each motor is sensed through the use of an optical encoder attached to 

the motor shaft. The encoders have the offset track configuration (two tracks with their 

windows having an offset of 1/4 pitch with respect to each other). A n encoder disk has two 

identical tracks, each having 1000 windows. A third track with a lone window generates a 

reference pulse for every revolution. The physical resolution of the encoders is 0.09°. The 

pulse count gives the joint position, while the pulse frequency provides the joint speed. The 

signal from the encoder is monitored at every sampling interval by the controller whose 

objective is to correct any deviation of the actual joint position from the desired one. 

7.3 Dynamical Formulation for the Prototype Manipulator 

A ground-based model can be obtained by eliminating the orbital motion of the 

space-based model. For testing control algorithms on the rigid degrees of freedom, the 

ground-based model is purposely chosen to be rigid. 
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Design parameters of the manipulator system are: 

Slewing arm length 

Maximum extension of the deployable arm 

Slewing arm sweep range 

Maximum rotational speed 

Maximum deployment speed 

0.3 m; 

0.2 m; 

-135 to 135 deg; 

60 deg/s; 

0.04 m/s. 

Joint 1 

Module 2 

Figure 7-7 Two-module ground based manipulator system. 

Various symbols shown in Figure 7.-7 are defined below: 

ni\ = mass of module 1, ms\ + nidV, 

ms\, nidi = mass of slewing and deployable links of module 1, respectively; 

mz" mass of module 2, mS2 + nid2, 

mS2, nidi ~ mass of slewing and deployable links of module 2, respectively; 

I\ = mass moment of inertia of module 1 about its centroid; 

IS], Id\ = mass moments of inertia of slewing and deployable links of module 1 

about their centroids, respectively; 
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7s2, hi = mass moments of inertia of slewing and deployable links of module 2 

about their centroids, respectively; 

h,h~ lengths of modules 1 and 2, respectively; 

hi, h\ = lengths of slewing and deployable links, respectively, of module 1 ; 

lS2, Idi - lengths of slewing and deployable links, respectively, of module 2; 

F\, T\\ F2t T2 = forces and moments at joints land 2, respectively; 

P, fi = slew angles at joints 1 and 2, respectively. 

With \J3\ I] fi /2Jras the vector composed of generalized coordinates, the equations of 

motion can be derived by eliminating the orbital motion, gravity gradient, and the flexible 

degrees of freedom from the general space-based formulation described in Chapter 2. The 

resulting equation may be expressed as: 
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Note, even a simple ground-b'ased manipulator with rigid links leads to governing equations 

of motion which are highly nonlinear, coupled and lengthy. A ground-based model is 

essential in the development of model-based control algorithms such as the FLT and LQR. 

For model-based controller, due to computational constraints, significant pre-processing is 

required to manage the task. 
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7.4 Validation of the Ground-Based Model 

The ground-based model is first validated through energy conservation and 

comparison with known results. The system parameters used for this purpose are: 

Module 1 

• slewing link mass ms\ = 0.69 kg 

• slewing link length 4i = 0.69 m 

• deployable link mass md\ = 0.69 kg 

• deployable link length ld\ = 0.69 m 

• slewing link moment of inertia = 0.0274 kg m 2 

• deployable link moment of inertia Id\ = 0.0274 kg m 2 

Module 2 

• slewing link mass ms2 = 0.69 kg 

• slewing link length lsi = 0.69 m 

• deployable link mass mdl = 0.69 kg 

• deployable link length l<n = 0.69 m 

• slewing link moment of inertia IS2= 0.0274 kg m 2 

• deployable link moment of inertia 1*1 = 0.0274 kg m 2 

These parameters are identical to the ones reported by Chu [8]. 

For the validation test, the manipulator was treated as a double pendulum free to 

oscillate in a vertical plane. The lengths of both modules were held fixed at 1.38 m. The 

initial conditions were: fix = 80° ; /? 2 = A = A = 0 • T n e results are shown in Figure 7-8. It is 

seen that the total energy is conserved with a remarkable degree of accuracy. Note, AE 

148 



(a) 

A° 

Kinetic Energy 

(b) 

1 2 3 

x 1 0 ' 7 Total Energy Change % 
4 0 

Potential Energy 

o 1 2 

System Energy 

Kinetic Energy 

AE 

Potential Energy 

1 2 

Time, s 

Figure 7-8 Double pendulum test results: (a) joint motion; (b) energy variations. 
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representing deviation of the total energy from its initial value divided by the initial value is 

less than 10"7% ! 

Furthermore, it is well-known that for /?i(0)/[/J1(0) + /?2(0)] = ±0.707, the double 

pendulum executes simple harmonic motion with frequencies given by co1 =(g-//)(2±V2). 

Taking the case as shown in Figure 7-9(a) with /51(0)/[/J,(0) + /52(0)] =-0.707, i.e. 

co2 =(g//)(2-V2), the oscillation frequencies of modules would be 4.926 rad Is, or the 

period of 1.275 seconds (/ = 1.38 m). This matches rather well (Figure 7-9b). The total 

energy is also conserved with a fine measure of accuracy. 

7.5 Control of the Ground-Based Model 

From the equations of motion and Figure 7-2, it follows that the manipulator, as a 

control plant, is nonlinear, non-autonomous and coupled. That makes the Feedback 

Linearization Technique (FLT) a reasonable choice as a control procedure for this 

manipulator. As shown in Figure 5-1, the FLT, sometimes called the computed torque 

method, when applied in a feedforward fashion in robotics, consists of an innerloop which 

linearizes the nonlinear system and an outerloop with the proportional plus derivative action 

that controls the linearized system. A typical Proportional-Integral-Derivative (PID) 

controller is also implemented for the purpose of comparison with the FLT. 

7.5.1 Control system parameters 

The FLT has been discussed in Chapter 4. This control technique has several 

desirable properties as pointed out before. However, in order to implement the FLT, the 

system model and associated parameters must be known precisely. To that end, values of the 

moments of inertia Is\, Uu hi, and were obtained experimentally through swing tests 

150 
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(b) 

100 

Time, s 
Figure 7-9 Double pendulum test for periodic motion: (a) schematic diagram of the test 

arrangement; (b) system response. 
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Center of Mass 

Figure 7-10 Schematic diagram of the swing test to determine the moments of inertia of 
the prototype modules with various lengths of the deployable link. 

as shown in Figure 7-10. A typical test involved application of a small displacement from the 

vertical and counting the number of cycles over a known period of time. The moment of 

inertia about the swing axis is given by 

mgl _ mglT2 

2 A 2 ' V ' - - 5 / 

co An 

where 7 = period of oscillation. The parameter values determined in this fashion are shown in 

Table 7-1. The moments of inertia were measured for the whole module with three different 

positions of the deployable link. For the FLT control, a single-module manipulator (module 

2) was used, hence only the parameters for this module are relevant in the experiments. 

152 



Table 7-1 Swing test results for the ground-based robot. 

Mass (kg) /(m) r(s) / (kgm 2 ) Position 

Module 1 
4.5 0.276 1.343 0.557 fully 

retracted 
Module 1 

4.5 

0.322 1.444 0.750 middle 
Module 1 

4.5 

0.373 1.560 1.015 fully 
deployed 

Module 2 2.4 0.106 1.021 0.066 fully 
retracted Module 2 2.4 

0.119 1.063 0.080 middle 

Module 2 2.4 

0.129 1.109 0.094 fully 
deployed 

The parameters for the manipulator are: 

Module 1 

• slewing link mass 

• slewing link length 

• deployable link mass 

• deployable link length 

Module 2 

slewing link mass 

slewing link length 

deployable link mass 

deployable link length 

msX = 4.30 kg; 

ls\ = 0.33 m; 

mdl = 0.20 kg; 

ld\ = 0.31 m; 

ms2 = 2.20 kg; 

ls2 = 0.33 m; 

md2= 0.20 kg; 

ld2= 0.31m; 

Based on system parameters, the time constant varied in the range of 0.23 s to 0.28 s. 
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7.4.1 Controller design 

Design of the PID controller is based on the experimental approach to selection of 

gains as proposed by Ziegler and Nichols [94]. In this context a linear and time-invariant 

system is assumed. The parameters obtained from the Ziegler-Nichols method give an initial 

set of values for the PID gains. Due to the nonlinear and non-autonomous nature of the 

system, these parameters need to be further refined and tuned for improved performance of 

the system. 

As the FLT control is a model based method, it is rather computationally intensive. In 

the present set of experiments, it is applied only to the outer module of the system, with 

relatively simpler governing equations, in order to make the computational process 

manageable. Equations (7.3) and (7.4) with module 1 fixed reduced to: 

L 
mdll1-m(i2{l1-l-^-){fi1)2=F1 ; 

n \ 2 

s2 

V * J 
+ md2 V 2 J 

ld2,i i, - r r . (7-6) /?2+2md2(l2-^-)l2/?2=T2 ; 

I 

where lis the moment of inertia of module 2 about the swing axis, with linear 

representation of the results from the swing test (Table 7-1), we have: 

/ = 4.206 x l ( T s « + 0.066, (7.7) 

where n (4000 counts/mm) is the encoder reading from the actuator of the prismatic joint. 

The FLT algorithm can be expressed as 

r = M(qd-u) + F, (7.8) 
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where: M = 
md2 0 

F = 

I 

2 m 2 ( / 2 - ^ 2 
A 

T = and 

u--K e- Kde with e = qd - q. The FLT involves compensation for change in the mass 

matrix M as the system moves and also for the dynamical coupling term F. As a result, it 

should provide better performance compared to the fixed gain PID controller. 

7.6 Trajectory Tracking 

Once the controllers are designed, a series of trajectories tracking tests were 

performed using both the FLT and PID algorithms. These tests fall into two main categories: 

a) straight line tracking; b) circle tracking. The PID and FLT gains are shown in Tables 7-2 

through 7-4. 

Table 7-2 Controller gains for the prismatic joint of module 2. 

Module 2 (Prismatic) Kd Ki 

PID 0.5 0.001 0.0001 

FLT 0.5 0.001 

Table 7-3 Controller gains for the revolute joint of module 2. 

Module 2 (Revolute) Kp Kd 

PID 3 0.001 0.001 

FLT 0.5 0.001 
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Table 7-4 Controller gains for the revolute joint of module 1. 

Module 1 (Revolute) KP 
Kd Ki 

PID 4 0.001 0.001 

These gains were used throughout the experiments. For the FLT, a PD controller is used in 

the outer loop, for the errors and the derivatives of the errors, as mentioned in Chapter 5. Any 

other suitable controller may be used for the outer-loop control after linearization. Possible 

choices would be the Linear Quadratic Gaussian (LQG) and H«, procedures. Important 

symbols involved in the trajectory tracking are defined below: 

et ,ep ,ep tracking errors at prismatic, revolute joint 1 and revolute joint 2, respectively; 

11 ,1p, Ip driving currents at prismatic and revolute joints, respectively; 

p\ rotation angles at revolute joints 1 and 2, respectively; 

A h change in length of the deployable link of module 2. 

7.6.1 Straight line trajectory ( 

The first tracking test involves making the tip of the manipulator to follow a straight 

line by using one-revolute joint and one prismatic joint of the outer module (module 2) while 

the inner module is kept locked. First, the PID controller is used to perform the test. The line 

is located 41.5 cm from the base of module 2 and its length is 20 cm along the y direction. 

Figure 7-11(a) shows the location of the tracked line and the configuration of the 

manipulator. The specified tracking time is 4 seconds, and the tip trajectory has a prescribed 

ramp-on-sine profile as given in Eq. (2.74). The results of the tracking experiment are shown 

in Figure 7-12. It is seen that the manipulator tip follows the straight line with reasonable 
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Figure 7-11 Schematic diagrams for straight line tracking using: (a) one revolute joint and 
one prismatic joint; (b) two revolute joints. 
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Figure 7-12 Straight line tracking using one revolute and one prismatic joint under the PID 
control: (a) tip trajectory; (b) joint motion and the corresponding control 
signals. 
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reasonable accuracy. The saturation in / ^ 2 is caused by the safety limit of the current that is 

transmitted to the motor, which is constrained to 1 A. 

Figure 7-11 (b) shows another manipulator configuration for straight-line tracking. 

Now a distance of 20 cm is tracked along the x direction using two revolute joints, in 8 

seconds. Note, the prismatic joints are locked with each module length fixed at 41.5 cm. As 

pointed out in previous chapters, a prismatic joint has the advantage that it does not possess 

dynamic coupling with the revolute joint of the same module, since the reaction force passes 

through the center of the joint. When two revolute joints are used, the reaction torque due to 

the rotational dynamics of the second module will try to rotate the first module in the 

counter-clockwise direction resulting in over-rotation of the first module. Thus the tracking 

error is biased in the negative direction of the v-axis, as is evident from the experimental 

results shown in Figure 7-13 (a). From the plot of ep in Figure 7-13 (b), it is clear that error 

is in the negative side, as a result of the dynamical coupling. In a robotic system that has 

kinematic redundancy, it will be possible even to maneuver the first module to an appropriate 

position and then use only the prismatic joint for the line tracking. This will cause virtually 

no error in the tracking. 

Next, the FLT controller is used to carry out the same task as that shown in Figures 7-

12 for the PID control. Again, the execution time is set at 4 seconds and the length of the line 

is 20 cm. The results are shown in Figures 7-14. By comparing the behaviors of the PID and 

FLT controllers the following observations can be made: (i) The FLT has an adaptive 

capability with respect to the variation of the mass matrix. It also has a compensation 

capability for dynamical coupling. Thus, FLT produces more active control signals (high 

frequency /p2 and I{ ). (ii) The PID controller is simpler, requires less computational 
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Figure 7-13 Straight line tracking using two revolute joints under the PID control: (a) tip 
trajectories; (b) joint motion and corresponding control signals. 
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Figure 7-14 Straight line tracking using one revolute and one prismatic joint with the 
FLT: (a) tip trajectory; (b) joint motion and the corresponding control signals. 
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Figure 7-15 Straight line tracking: comparison of the FLT and PID using one revolute and 
one prismatic joint. 

power, and does not depend on a model of the robot (the experimental, Ziegler-Nichols 

method is used here to tune the PID gains). 

One is able to tune the FLT controller by incorporating a multiplicative confidence 

factor into the dynamical compensation term F, and gradually increasing it as more 

experience is gained through experimentation. This approach is used for tuning the FLT 

controller of the prototype robotic system. 

The tip trajectories of the robot under the control of PID and FLT separately, are 

plotted in Figure 7-15. It is clear that at the expense of the computation cost, FLT gives 

better tracking accuracy than PID. Note that towards the end of the tracking, both controllers 

produce larger errors. This is due to increased dynamical coupling that exists and the greater 

effort that is required for synchronizing the two joints at the end of the trajectory. Another 
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major source of error is the unmodeled friction. It causes steady-state error and stick-slip 

motion. These nonlinear effects reduce the tip position accuracy and cause vibrations. 

7.6.2 Circular trajectory 

In order to further investigate the system, tracking of a circular trajectory was 

undertaken as a typical test-case. To begin with, tracking is carried out under the PID control. 

Different trajectory speed profiles were employed to assess the effectiveness of the controller 

and influence of the speed profile. The circular profiles are defined as: 

where: Px , Py are tip positions in the x and y directions, respectively; r is the radius of the 

circle; and co is the angular velocity of the circular motion. For instance, a> = O.ITC 

corresponds to a tip motion around the circle in 20 seconds. Figure 7-16 schematically shows 

the tracked circle and the corresponding manipulator configurations at different instants of 

tracking. The radius r is taken to be 10 cm for all the cases. Each circle is tracked twice to 

check the repetitiveness of tracking. 

Px = 4\.5 + r-rcos(d)t); 

Py= rsm(a)t); 
(7.9) 

y 

Module 1, 
Revolute and 
Prismatic Joints 
Locked , 

X 

Figure 7-16 Schematic diagram showing tracking of a circular trajectory using module 2. 
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The first experiment of tracking a circular trajectory uses co = O.ITT; i.e. 20 seconds a 

circle. The results are shown in Figures 7-17. The maximum errors occur at locations where 

joints change their directions of motion. Due to Coulomb friction, the joints have nonlinear 

dead zones. The signal from the controller is generated based on the motion error. Once a 

joint stops, the error must be large enough to overcome the steady-state friction. This, in turn, 

causes a larger error. When the joint starts to move, the smaller dynamic friction results in a 

lower error. Of course, dynamical coupling also plays a role in causing the motion error. 

This can be seen when the speed of the profile increases from 20 seconds a circle to 10 

seconds a circle (Figures 7-18). It is clear that with increased speed the tip trajectory is not as 

smooth as the one in Figure 7-17. This is mainly due to the dynamical coupling. The 

corresponding control effort also has increased. The repetitiveness of trajectory worsens as 

well due to the same reason. When the speed of the profile decreases from 20 seconds a 

circle to 30 seconds a circle (Figure 7-19), the repetitiveness improves but the error is slightly 

larger than that for the 20 seconds a circle. Here, dynamical coupling is lower, which makes 

the trajectory smoother and the level of repetition better. However, when desired trajectory 

moves slower, the error increases gradually and the control effort needed to overcome 

steady-state friction takes a longer time to accumulate. This causes the nonlinear dead-zone 

effect to worsen. 

The FLT controller was also used in the case of 20 seconds a circle (Figures 7-20). As 

before, the performance of the FLT controller is better than that of the PID controller. It 

compensates for the dynamical coupling effect, which significantly reduces the error of the 

revolute joint. It is seen that, in area C, the tip error is low. In other areas (A, B, D), the 
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Figure 7-17 Tracking of a circle, at a speed of 0.314 rad/s, using the PID control: (a) tip 
trajectories; (b) joint dynamics and control signals. 
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ure 7-18 Tracking of a circle, at a speed of 0.628 radVs, using the PID control: (a) tip 
trajectories; (b) joint motion and control signals. 
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Figure 7-19 Circle tracking behavior under the PID control at a speed of 0.209 rad/s: (a) 

. tip trajectories; (b) joint dynamics and control effort. 
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Figure 7-20 Tracking of a circle, at a speed of 0.314 rad/s, with the FLT: (a) tip 
trajectories; (b) joint dynamics and control effort. 
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dynamical compensation effort is evident. The FLT controller tries to compensate for the 

nonlinearity and dynamics, and consequently reduces the error and improves the 

repetitiveness. Again, it may be pointed out that the FLT needs a higher level of active 

control signal, and hence its bandwidth will be higher. The FLT controller will generate a 

higher frequency and a lower control magnitude. 

The ground-based experiments verify several distinguishing characteristics of the 

variable-geometry manipulator system and its controllers: 

• Prismatic joints have lower dynamical coupling, and are preferable for executing 

high precision tasks. 

• Kinematic redundancy of a robot is useful in task planning to improve the 

tracking accuracy. 

• The FLT controller is efficient, robust, and stable. It gives fine performance, but 

at a computational cost. It is suitable for the variable-geometry manipulator 

system. 

• The PID controller is simple and fast. It works well with most trajectory following 

cases. Its parameters need to be fine tuned once they are assigned by a technique 

such as the Ziegler-Nicholes approach. 

• Friction plays a significant role in causing tracking errors. It should be carefully 

modeled and compensated for. This is a difficult job, however, due to the highly 

nonlinear and time varying nature of friction. Even in presence of friction, the 

FLT is able to handle the control task in a robust manner. Modification of the FLT 

algorithm to account for friction should provide improved control performance. 
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8. C O N C L U D I N G R E M A R K S 

8.1 Contributions 

The main contributions of the thesis can be summarized as follows: 

(i) A relatively general formulation for studying three dimensional dynamics and control 

of a novel manipulator system, with slewing as well as deployable links, is developed. 

It is applicable to a large class of both space- and ground-based systems. Such a 

versatile approach has not been reported before. The nonrecursive O(A0 character of 

the Lagrangian formulation for the three-dimensional system also represents a major 

step forward. Thus: 

• Novel variable geometry manipulator; 

• Three-dimensional character of the formulation; and 

• Nonrecursive 0(N) property of the equations 

are innovative features of the thesis. 

(ii) The planar dynamical study of a flexible, multimodule, space-based manipulator, 

involving up to 10 links in the present study, and that too accounting for orbital, 

librational and vibrational interactions, is indeed rare. Providing understanding of 

such complex interactions is indeed a contribution of importance. 

(iii) In-plane control of this novel manipulator has received virtually no attention. The 

study lays a sound foundation to build on with the nonlinear FLT control of a single 

module orbiting manipulator. 

(iv) Minimization of force and torque transmission to the platform supporting the 

manipulator is an important problem. The sequential conjugate gradient-restoration 

method has never been applied to this class of manipulators. 
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(v) It was indeed fortunate to have a two-module ground-based prototype manipulator 

designed and constructed by Chu [8]. This has made it possible to assess performance 

of control strategies not only through numerical simulation but also with ground-

based experiments. Such correlation study, in horizontal plane, for the novel robotic 

system is an important contribution. 

8.2 Summary of Conclusions 

The project was so formulated as to emphasize development of methodology that may 

help understand complex dynamical interactions involved with the particular class of 

manipulators studied here. It was not intended to generate comprehensive design data, 

although the established methodology can be readily used to that end. The objective has been 

to assess versatility of the new tools developed through the study of a few representative 

cases and establish general trends. Based on the investigation, the following general 

conclusions can be made: 

(a) The manipulator units act as payloads, and lower the natural frequency of those 

supporting them. The choice of shape functions used to model their flexibility 

can affect the speed of convergence. In general, the fundamental mode is 

sufficient to capture important features of the system dynamics. 

(b) Significant coupling exists between the platform, link, and joint vibrations, as 

well as system libration. The most pronounced coupling was observed between 

the joint and link vibrations. In general, slewing and deployment maneuvers 

have a significant effect on the flexible degrees of freedom response. 

(c) Motion of the manipulator modifies the system's inertia tensor and thus can 

induce considerable librational motion during the translation of the mobile base. 
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When the manipulator base is located near the platform's extremity, slewing and 

deployment maneuvers can also result in significant rigid body motion of the 

platform. 

(d) Deployment alters the inertia and stiffness properties of each unit. This feature 

can be used to advantage to adapt the system's dynamic properties to given 

specifications. 

(e) Excitation of the system's flexible degrees of freedom can deteriorate 

significantly the accuracy of the manipulator, particularly near the end of 

maneuvers. 

(f) The system exhibits unacceptable response under critical combinations of 

parameters. The control strategy based on the FLT is found to be quite effective 

in regulating the rigid-body motion of manipulator links as well as the attitude 

motion of the platform. The unmodeled flexibility of the platform, joint, and 

manipulator links has virtually no effect on the performance of the FLT 

controller. It is able to regulate the elastic degrees of freedom rather well 

through coupling. The controller is remarkably robust. 

(g) The optimization method based on sequential conjugate gradient-restoration 

algorithm is quite effective in minimizing transmission of forces and moments 

to the platform supporting the manipulator. Through a judicious choice of mass 

ratio of the modules for a given task, fine manipulations can be made without 

affecting dynamics of the gross manipulator. In the present study the mass ratio 

R = 0.2 was found to be adequate. 
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(h) The ground-based experiments generally validate trends indicated by the 

numerical simulation results. This is encouraging as the prototype system has 

limitations in terms of backlash, friction and, at times, less than smooth 

operation. 

(i) Such a comprehensive study aimed at a general approach to this class of 

problems has not been reported before. 

8.3 Recommendations for Future Work 

Considering the diversity of research areas associated with the field of space robotics, 

the present thesis should be viewed as an initial step in the analysis and development of this 

particular class of space manipulators. The general formulation developed here can serve as 

a useful tool in future studies. However, there are several avenues which remain unexplored 

or demand more attention. Some of the more interesting and useful aspects include: 

(i) extension of the present model to account for closed loops or contact 

dynamics. 

(ii) modeling of system flexibility using various admissible functions, quasi-

comparison functions, as well as system modes, and assessment of their 

effects on accuracy as well as convergence; 

(iii) path planning and inverse kinematics with emphasis on obstacle avoidance, 

as well as minimization of structural vibrations and base reaction; effect of 

redundancy on system performance; completion of a given mission with one 

or more joints inoperational; 

(iv) dynamics of satellite capture and release with the manipulator; 
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(v) comparative study of various optimal, adaptive, intelligent and hierarchical 

control strategies to regulate the rigid and flexible dynamics of single and 

multi-module systems; 

(vi) more two-dimensional ground-based experiments to help validate numerical 

simulation results; 

(vii) animation of simulation results for visual appreciation of the physics of the 

problem. 
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APPENDIX A: M O D E L I N G O F B E A M V I B R A T I O N 

For beam-type bodies, the Euler-Bernoulli beam theory, which does not model the effects 

of shear deformation and rotatory inertia, is employed in the formulation. The partial differential 

equation governing this type of beam flexure (v in the y direction) in the absence of external 

loading, is given as 

d 2 ( ^ \ 

dx2 

V
 d x J 

d2v 
+ mb^L = 0, (A.1) 

where nib represents the beam mass per unit length, and EIZZ is the flexural rigidity in the y 

direction. An analogous expression can be written for beam deflections in the z direction. The 

boundary conditions can be of four types: related to the shear force, bending moment, deflection 

and rotation experienced by the beam at the boundaries. The former two are referred to as 

natural boundary conditions, while the latter two as geometric boundary conditions. The natural 

boundary conditions can be represented as 

Vy

b(x) = -EI2!p^, (A.2) 
ox 

and 

Wb(x) = EIzz^, (A3) 
22 dx2 

where Vy and J^* denote the beam shear force and bending moments, respectively, in the 

directions indicated by the subscripts. Corresponding expressions can be written for flexure in 

the z direction. 

Equation (A.2) can be solved exactly by taking the beam deflection v(x, i) to be a function 

of both time, Y(t), and the spatial domain, 0(x), as 
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v<x,t) = 0(x)Y(t). (A.4) 

Thus elastic deformations of the manipulator and platform can be discretized using 

assumed modes for each component of the system. Deformation of the body is expressed as 

the product of spatially varying admissible shape functions and time dependent generalized 

coordinates (S t). Now, the elastic displacement of the ith body can be expressed as 

V IX 
0 0 " 

= 0 o 
>y 

0 1 1 ' 
(A.5) 

-wi. 
0 0 0 

1Z _ 

where «,• , v, and w, correspond to the longitudinal and transverse elastic displacements, 

respectively, of an elemental mass located on the i'h body at rt. Similarly, the subscripts x, y and 

z refer to the longitudinal and transverse modes of vibration, respectively. Although the 

formulation accounts for the longitudinal elastic deformation, simulation results focus on the 

transverse displacements. The modules are considered to be Euler-bernoulli cantilever beams 

with tip masses. For the transverse vibration, in the y direction of the ith body, the admissible 

shape functions for the k"1 mode take the form [92] 

®iyk(Xi>li) = Am sin 
K h J 

+ A i k 2 cos 
A i k x i 

\ li J 
+ 4*3 sinhl 

A i k x i 

K '/ J 
+ A i k 4 cosh| 

v h j 
(A.6) 

where is the length of the i'h body; x, is the position along / , ; and the parameters Aug and A i k 

depend on boundary conditions of the i'h body. 

Of particular interest is the solution of Eq.(A.6), because the family of shape functions 

under various loading conditions will be used subsequently as admissible functions. These shape 

184 



functions are excellent candidates as admissible functions as, in a number of cases, the boundary 

conditions experienced by individual bodies in a multibody system approximate the fundamental 

loading conditions for which the exact shape functions can be found readily (e.g. free-free, 

clamped-free, etc.). Discarding the subscripts i, y, k in Eq.(A.6) for simplicity, the modal 

function can be written as 

<t>(x) = Al sin ax + A2 cos ax + A3 sinh ax + A4 cosh ax, (A.7) 

where: a = A IL\ A\,. . ., A4 are constants which depend on the boundary conditions; A, a multi

valued frequency parameter given by a transcendental equation, which depends on the boundary 

conditions, and L denotes the beam length. For several boundary conditions, these relations are 

summarized in Table A - l . 

Table A - l Euler-Bernoulli beam shape function parameters 

Boundary Condition Equation for A Formula for ,4] 

Free-Free cos A cosh A - 1 = 0 cos A - cosh A 

sinh A - sin A 

Clamped-Free cos A cosh A + 1 = 0 
sinh A - sin A 

cosh A + cos A 

Clamped-Clamped cos A cosh A -1=0 
cos A - cosh A 

sinh A - sin A 

The coefficients have the value: 

Az=A], A2=A4 = I, free-free beam; 

Az = -A\, A2 = -A4 = -1, clamped-free beam; 

AT, = -A\, A2 = -AA = -1, clamped-clamped beam. 

185 



The mode shape function (admissible function) for the free cantilever beam with a tip mass 

payload has the form of [67] 

<&(x) - (sin kx - sinh kx) - s m ^ + s m n ^ ( c o s fa _ c o s n fa); (A. 8) 
cos A + cosh A 

where k is the number of the mode and A is the root of the characteristic equation 

m 
cos A cosh A +1 = ——A{smAcoshA-cosAsmh.A). (A.9) 

pi 

Here /? is the linear density of the beam, / is the length of the beam, and mp is the tip mass. The 

tip mass ratio is defined as m J ph. 

This transcendental equation has infinite number of roots thus leading to an infinite 

number of mode shapes. The first five characteristic spatial frequencies Aj (z = 1,2,...,5) for the 

cantilever beam with tip load mass ratio of one are shown in Table A-2 [93]. 

Table A-2. A/ values for different modes 

Number of Mode A 

1 1.8751 

2 4.6941 

3 7.8548 

4 10.996 

5 14.137 
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APPENDIX B: R O T A T I O N M A T R I X AND ITS T I M E DERIVATIVES 

B. l T Matrix 

In the thesis the orientation of a body is defined using Euler angles with 1-2-3 order. In 

going from Ft.\ to Ft, the first rotation is about X M , the next about y,-.i and finally with respect to 

Zj.\. The following is the derivation of the rotation matrix T. For the rotation in Fig. B - l , about x, 

axis, y' and z' can be obtained as: 

y = y, cos a + zt sin a; 
z' = - y , sin a + z, cos a; 

(B.l) 

thus 

V 

z' zi. 

(B.2) 

yt y 

Figure B-l Rotation about the JC, axis where 

1 0 0 

0 cos a sin a 
0 - sin a cos a 

(B.3) 

Similar procedure can be applied to the rotations about y, and z, axes. Corresponding matrices T / 

and T z ' can be given as 

T = 
y 

and 

T ' = 

cos fi 0 - sin fi 

0 1 0 

sin ft 0 cos fl 

cos/ s i n / 0 

- s i n / cos/ 0 

0 0 1 

(B.4) 

(B.5) 
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Here /?and y are the rotation angles with respect toy,- and z„ respectively. The relation after 

three Euler rotation angles has the form 

V X , " V 
" / > = T T T • 

z y x 
yt yt 

z' 

(B.6) 

In the thesis, the Euler angles are measured with respect to the initial frame. Furthermore, 

position of a mass element is also evaluated with respect to the initial frame. Hence the following 

relation 

(B.7) 

-
xi xr 

• yt 
= T f 

y • 
z\ 

is needed, where T = (T') 1 . As can be expected, T ' is an orthogonal matrix thus 

T = (T ' ) 

- CySpCa + SySa CpCa 

(B.8) 

where Cx and Sx are abbreviations for cos(x) and sin(x), respectively. 
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B.2 t Matrix 

Taking derivative with respect to time gives 

T = 

- srcpy - crsp/3 - crcpy+srspp 

(-srspsa + crca)r (-crs,sa - srca)r 

+ {crcpsa + srca)p + {-srcpsa + CrCa)/3 

+ {CySpCa - SySa)a .+ (SrSfiCa - CrSa)a 

(S,SpCa + CrSa)y {CrSpCa-SrSa)y 

+ {-CrCpCa + SrSa )ft + (SyCpCa + CrSa Yfi 

+ irCrSpSa + SrCa)a + (SySpSa + CrCa)a 

cpp 

SpSj-CpCaa 

SpCj-CpSaa\ 

In a simpler matrix form, this can be rewritten as 

where: 

and 

(B.10) 

CrSpCa - SrSa - SrSpCa - CySa - CpCa 

' CySpSa + SyCa - SySpSa + CrCa - CpSa 

(B.H) 

CrCpSa + SrCa - SyCpSa + CyCa SpSa 

' CrCpCa + SySa SrCpCa + CySa - SpCa 

(B.12) 
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For any vector v, 

or 

srsfisa + crca -crsflsa-srca o 

srsAca + crsa c r s , c a - s r s a 0_ 

(B.13) 

f v = T > + T / , v ^ + T v / (B.14) 

j v = [ T a v ; i > v ; T y v f l - P(v){7}; (B.15) 

where P(v) = [Tav : 1„v: T v ] . This is the expression used in Eq. (2.8). 

190 



APPENDIX C: T I M E DERIVATIVES O F V E C T O R S fir,) AND fto,) 

The time derivative of /(#•,•) is needed to evaluate kinetic energy of the body i, 

•dfiiri) _dd>iSi_dOi 

dt 
dO 

dl 

dt 

L S l + 

dt 
d® 

S{ + 0 ,3 , 

dr 
1 Sit-, + 0 ,3 . 

Let the deployable link of the manipulator have a telescopic type of motion as 

I 

Now Eq. (C l ) becomes 

d /(/•) dOt • J 0 , _ r : _ ^ 
dt dl " dr I 

d®j J 0 , r 
~dl~ + ~dl~l 

3/', + 0 , 3 , 

(C l ) 

(C.2) 

(C.3) 

or 

where 

Mp = 0L,3/,. + 0 , 3 , 

0 L ; = 
c/0. c?0,. r 
~dT + ~dTl 

(CA) 

(C.5) 

This is the expression used in Eq. (2.8) of Chapter 2. 

Similar approach can be used to obtain the time derivative of / (o,). From Eq. (A.5), 

KA(o,) can be written as 

KA(o,.) = 

0 i x (o , ) 0 0 

0 0 i y (o , ) 0 

0 0 0 i z ( O / ) 

= ®i(Oi), (C.6) 
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where ot = / M + rf,. As both / M and dt are generalized coordinates, the time derivative of KA(o,) 

must account for them: 

dt dt 

+ 

o 

o 

dlt 

0 

0 

dd, 

0 

dM o 

gq> f e (g<) 

a</, 

h 0 o 

o 

dl 

St + K A & ; (C.7) 

Here: 

= K A D , [St ] dM + K A L , [#] / f + KA,* , 

and 

K A D , 

K A L , = 

ddi 

0 

0 

31, 

0 

0 

0 

a</, 

o 

o 
^ , > ( g , - ) 

a/, 

o 

0 

0 

a,/, 

o 
0 

a/,. 

(C.8) 

(C.9) 
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A P P E N D I X D: D E R I V A T I V E S I N V O L V E D IN T H E L A G R A N G I A N P R O C E D U R E 

As presented in equation (2-64), 

Mq-
1 d(qTMq) dPe 8R 

+ —=- + • 2 dq dq dq 

There are several derivatives to be evaluated. M is the time derivative of coupled mass matrix M 

while 
d(q'Mq) 

dq 
is a more complex derivative with respect to q. Since M = (Rv) MR", the 

time derivative M can be obtained as 

M = (Rvy MRV + (R")' MRV + (Rv)' MR (D.l) 

The next derivative with respect to q is in the form 

d(q'Mq) d(q'Rv MR"q) 

dq 

Expanding the expression gives 

dq 
(D.2) 

d(qTMq) 

dq 

din 

rdRVTMR<+R<T™R>+R'MdR 

dqy dqy 

8q dq. JVn„ 

(D.3) 

Detailed derivation of this matrix is purposely omitted in order to keep the formulation more 

comprehensible. However, with the above information, one can readily go further to obtain the 

result either manually or using symbolic manipulation software, for example M A P L E V. 
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