ELSA: An Intelligent Multisensor Integration
Architecture for Industrial Grading Tasks

by
Michael David Naish

B.E.Sc., University of Western Ontario, 1996
B.Sc., University of Western Ontario, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(Department of Mechanical Engineering)

We accept this thesis as conforming

to the required standard
Vg!

THE UNIVERSITY OF BRITISH COLUMBIA
November 1998
© Michael David Naish, 1998

in presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of _WECAMM (AL EAGINEERING,

The University of British Columbia
Vancouver, Canada

Due _DECEMERL 9 (1

DE-6 (2/88)

Abstract

The Extended Logical Sensor Architecture (ELSA) for multisensor integration has been developed
for industrial applications, particularly, the on-line grading and classification of non-uniform food
products: It addresses a number of issues specific to industrial inspection. The system must be
modular and scalable to accommodate new processes and changing customer demands. It must be
easy to understand so that non-expert users can construct, modify, and maintain the system.

The object model used by ELSA is particularly suited to the representation of non-uniform
products, which do not coanrm to an easily specified template. Objects are represented by a con-
nected graph structure; object nodes represent salient features of the object. Object classifications
are defined by linking to primary features, each primary feature may be composed of a number of
lower-level subfeatures.

Sensors and processing algorithms are encapsulated by a logical sensor model, providing robust-
ness and flexibility. This is achieved by separating sensors from their functional use within a system.
The hierarchical structure of the architecture allows for modification with minimal disturbance to

'othe.r components.

The construction methodology enables domain expérts, who often lack signal processing knowl-
edge, to design and understand a sensor system for their particular application. This is achieved
through a formal design process that addresses functional requirements in a systematic way. Each
stage involves the extraction and utilization of the user’s expert knowledge about the process and
desired outcomes. Specification of the requirements leads to the identification of primary features

~ and object classifications. Primary features are expanded into subfeatures. Logical sensors are then
chosen to provide each of the features defined by the object model; this in turn determines what
physical sensors are required by the system. The object classifications determine the rulebase used
by the inference engine to infer process decisions.

ii

Contents

Abstract ' ii
Table of Contents _ iii
List of Tables ix
List of Figures _ x
Acknowledgements xii
1 Introduction 1
1.1 Traditional Industrial Inspection and Grading 1
1.2 Automated Inspection S 2
1.3 The Need for Multiple Sensors, 3
1.4 The Industrial Problem, P 3
1.5 Potenti_al Benefits of a New Approach e e e 4
1.6 Project Scope and Objectives L 5
1.7 Thesis Outline S 6
2 Literature Review 7
2.1 Multisensor Integration vs. Multisensor Fusion 7
2.2 Advantages of Multisensor Integration, 8
2.3 Multisensor Integration Architectures 8

23.1 Logical Sensor-Based Architectures e 11

CONTENTS iv
2.4 Sensor Technologies 14
2.5 Sensor Sta’ndardé S 15
2.6 Industrial Applications 17
2.7 Uncertainty and Accuracy 20
2.8 Object Modelling e 22
Object Modelling 27
3.1 Imtroduction. B 27
3.2 Rationale e 27
3.3 Approach to Modelling 28
3.4 Model Structure L 29

- 3.4.1 Classification Layer 31
342 FeatureLayer e 31

3.5 Properties of Objects e 32
3.5.1 Physical Properties 32
3.5.2 Relational Properties. 32

3.6 Model Components e e e e e 33
3.6.1 Object Nodes e 33
3.6.2 Unconditional Links 35
3.6.3 Fuzzy Links 35
3.6.3.1 Linguistic variables 35

3.6.3.2 Membership functions L. 37

3.7 Model Definition e 38
3.8 SUMIATY . .« o o oot 39
System Architecture 40
4.1 Inmtroduction. 40
4.2 Loéica] SENSOTS v v it e 41
4.2.1 Logical Sensor Characteristics 45
422 T/O . 46

CONTENTS v

4221 1/O Controller e 46

4222 Datalnput 47

4223 DataOutput 47

4224 ControlInput 48

4225 Control Output 48

423 Controller o 48
4.2.3.1 Logical Sensor Controller 49

4.2.3.2 Local Exception Handling 50

4.2.3.3 Local Knowledge Base 51

4.2.4 Programs e 51
4.2.4.1 DeviceDrivers 51

4.2.4.2 Processing Algorithms00 52

4.3 Integration e 52
4.3.1 Integration Controller 53
4.3.2 Validation 53
4.3.3 Diagnostics L. o 54
4.3.4 Exception Handling 54
4.3.4.1 Error Classification 55

4.3.4.2 Error Recovery L 56

4.4 Inference Engine 56
44.1 Rule/Knowledge Base b8

4.5 Post Processing L 59
T46 0 SUMMATY e e e e e e e 59
5 Construction Methodology 60
5.1 Problem Definition/Requirements Specification 60
5.2 Object Model Development 62
5.3 Logical/ Physicél Sensor Selection e 64
5.4 Rulebase Definition L 67
5.5 | System Implementation e 70

CONTENTS vi
5.6 Modification and Refinement Lo o 72
5.7 Summary e 74

6 Application Examples , 75
6.1 Can Defect Detection 75

6.1.1 Background 75
6.1.2 Problem Definition/Requirements Specification 76
6.1.3 Object Model Development 78
6.1.4 Logical/Physical Sensor Selection 79
6.1.5 Rulebase Definition Lo o 81
6.1.6 Summary e e e e e 84
6.2 Herring Roe Grading 84
6.2.1 Background 84
6.2.2 Problem Definition/Requirements Specification 86
6.2.3 Object Model Development 88
6.2.4 Logical/Physical Sensor Selection 89
6.2.5 Rulebase Definition L o oo 97
6.2.6 | SUMMATY .« .« v v o v e v e e et e e e e e e e e e e 98
6.3 Discussion L e e e 99

7 Concluding Remarks 101
7.1 Summary and Conclusions e 102
7.2 Recommendations L o oo 103

References 106

Appendices 112

A Object Model Class 112
AL InErodUCHON . « .+« vt e e e e 112
A2 ClassSummary L e e e e e e 112

A3 The Classes o v o v o e e e e e e 113

CONTENTS vii
CNode e e 113
CObjectNode e 115
CClassificationNode e e e 119
| CObjectProperties L L 121
CPhysicalProperties 122
CRelationalProperties e 125

B Extended Logical Sensor Class 128

B.1 Introduction. L e 128

| B2 TheClass o e e 128
CELSBase 128

C Fuzzy Variable Class 136
C.1 Introduction e e 136
C.2 Class SUMmMAry« v v e e e e e e e e e e e e e 136
C.3 TheClasses e 138
CFuzzyDegree e e 138
CFuzzyVariable L. e e e 140
CFuzzyMember e 145
"CFuzzyGeomMember 147
CFuzzyTriMember 150
CFuzzyTrapMember e 153
CFuzzyArrayMember L. e e 156

. D Rulebase Classes 159
D.1 Introduction. 159
D.2 Class Summary e e e 159
D3 The Classes o i v i e e e e e e 160
CFuzzyClause i o, 160

| CFuzzyRule 162

| CFuzzyRuleBase e 166

CONTENTS | viii

E Supﬁort Classes ‘ 170
E.l Introduction. e 170
E.2 Class Summary 170
E.3 The Classes o . e e e 171

Max . . o e e 171
Min . ..o e 17

List of Tables

2.1
3.1

4.1
4.2
43

6.1
6.2
6.3

Al
A2

B.1

B.2

Examples of sensors for industrial inspection classified by type. 14
Components of object node for feature representation. 33
Summary of Extended Logical Sensor components. 44
Standard logical sensor control commands. FE 49
Standard logical sensor error conditions. Lo L oL 50
Summary of herring roe grades. L oL 85
Dependencies of roe classifications on primary features. 91
Calculation of structured light geometry. L. 95
Enumeration of object types.o 116
Enumeration of property types. R 124
‘Abstract and derived types. L o 131
Enumeration of ELS control commands: CommandID. 132

ix

- List of Figures

21
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1

4.2
4.3

5.1

5.2

5.3

Basic components of a logical sensor. L L. 12
Instrumented Logical Sensor. 13
Networked smart transducer model. e e e 16
Distinction between bias error and precision error.o 21
Presumed processing stages in human object recognition. 24
Four steps in object grading. e e 24
Model used to recognize cranial CT images. 25
Graph structure for object representation. 30
Object node for feature representation. 34
Classificationnode. L 34
Effect of hedge definitely. e e 37
Membership function used to represent confidence in the detection of a particular

feature. L 38
Overview of Extended Logical Sensor Architecture. 42
Basic components of an Extended Logical Sensor. 43
The Inference Engine used by ELSA. 57
Overview of construction methodology. o oo 61
Object model development methodology. 63
Methodology for the development of the ELS hierarchy. . . e 66

LIST OF FIGURES xi

5.4

9.5
0.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15

6.16
6.17

6.18

C1
C.2

Methodology for the definition of the rulebase for object classification using the object
model. . . .o e 69
Methodology for the definition of the decision rulebase based on object classifications. 70

Membership function used to represent confidence that an object is of a particular

classification. L e 71
Examples of canner’s double seam defects — side view. 77
Examples of canner’s double seam defects — top view. 77
Object model for metal can inspection. 79
Logical sensor hierarchy for metal can inspection. 80
Full view of can sides reconstructed from four viewpoints. 81
Rules used to identify the classification of metal cans from primary features. 82
Rules used to decide whether to reject cans based on object classifications. 82
Membership functions used for classification of metal can defects. 83
Prototype herring roe grading system. 86
Object model for herring roe grading. 90
Logical sensor hierarchy for herring roe grading. e 92
Examples of herring roe classification grades imaged on-line under diffuse light con-
ditions. e 93
Geometry of structured light used for acquisition of 3D features. 94
Basic geometry for reconstruction of 3D profile information using structured light. . 95
Example of herring roe classification grades imaged on-line under structured light |
conditions. B 96
Rules used to identify herring roe grades from primary features. 97
Rules used to determine decisions about how roe should be handled based on object
classifications. Lo 98
Membership functions used for classification of herring roe grades. 99
Triangular membership function. 151
‘Trapezoidal membership function. 154

Acknowledgements

This thesis is a reality due to the help, guidance, and support of many people. Foremost, I would
like to extend thanks to Dr. Elizabeth Croft for providing me with an opportunity to study at UBC.
Her door always open, red pen ever ready, I thank her for supervision and guidance. Together with
Dr. Clarence de Silva, I also thank her for providing me with an excellent working environment in
the Industrial Automation Laboratory.

I am grateful to Dr. Beno Benhabib of the University of Toronto for providing insightful, helpful,
and always interesting comments on my work during his sabbatical on the West Coast. Offering a
critical outside perspective, he contributed greatly to the improvement' and validation of this work.

The financial support provided by the Natural Sciences and Engineering Research Council of

‘Canada and the Gordon M. MacNabb Scholarship Foundation is gratefully acknowledged. Addi-

~ tional support was provided by the Garfield Weston Foundation.

Thanks to my friends and colleagues in the Industrial Automation Laboratory and the Neuro-

motor Control Laboratory who, despite extending my stay in Vancouver, made my time here much

more rewarding and enjoyable.

I thank my family: My parents, David and Sharon Naish, who have been unfailing in their love,
support, encouragement, and assistance throughout my life. I am eternally indebted to them. Also,
my sisters Jeﬁnifer and Victoria who provide me with a refreshingly unscientific view of the world.
I am a better person for them. |

Finally, I must thank Ana Luisa Trejos Murillo whose love, understanding, and encouragement

has helped immensely through the final months of this thesis. Thank you for your patience.

xil

Chapter 1

Introduction

1.1 Traditional Industrial Inspection and Grading

The ability to consistently produce high-quality products is important to the success of manufactur-
ing and processing operations. Traditional quality assurance methods have often relied on human
operators who use visual cues in order to determine product quality. Such methods are tedious,
time-consuming, and inconsistent.

For example, for many food products, grading is performed by seasonal workers. The shifts are
often long, the working conditions difficult, and there are often time constraints imposed to ensure
product freshness. Grading is often a dull, repetitive task that requires lbng periods of concentration.
Performahce, and henée product quality, often degrades over the period of a shift. Furthermore,
value-conscious consumers are demanding an increasing number of product classifications of high-
consistency. Unfortunately, grading consistency is inversely proportional to the number of grades
— as the number of grades increase, consistency decreases.

Most human multi-factor grading decisions are based on the subjeétive interpretation of visual
information and cues from other senses (e.g. smell, firmness, weight). Thus, the characterization
of grading classifications is often difficult and the ability to make repeatable decisions is hampered.
This problem is compounded by the nature of natural and biologically formed products which
generally do not have crisp, ideal templates [1], but rather, exhibit non-standard and non-uniform

characteristics. For example, products such as fish, apples, potatoes, chicken, tomatoes, and other

1.2 Automated Inspection _ 2

types of produce may, even within a single classification or grade, vary widely in appearance. The
problem is further compounded by variations in the product characteristics within a species, region,
or industry. Recent trends are reducing the tolerances for acceptable products while the number of
varieties and overall demand for products continue to increase. Industry has reacted by turning to

automation to address these grading and quality assurance needs.

1.2 Automated Inspection

The majority of inspection and grading tasks require the acquisition and processing of visual infor-
mation. In the context of industrial automation, this is handled using a machine vision system. If
required, visual information may also be augmented with data from other sensors to properly assess
product quality.

Machine vision systems offer a number of potential benefits to industries which rely on manual

quality assurance. Since most production facilities run continuously, defects may go undetected if

an inspector looks away or experiences a lapse in concentration. On the other hand, a machine
vision system can guarantee that 100% of the objects leaving.the system are inspected. The rate of
defect detection may fall below 100% but, by increasing the inspection rate, it may achieve higher
defect detection rates than a human inspector. |

In addition to the reliability and repeatability of the grading system, industrial users require the

_ability to modify the grading scheme to meet changing market demands and customer criteria. An

automated system has a consistent internal representation of product and quality classifications.
This representation may be redefined by adding or removirg information which governs the decision

making process. Such ‘global’ changes offer increased consistency and flexibility over trained workers

“who each maintain slightly different interpretations of quality [2].

An automated system has the ability to collect on-line data about the process. This data may be
used to close the control loop of the system. For example, the process parameters could be adjusted
in response to fluctuations in the defect rate. This information may also be useful to marketing and
sales departments who could tie the value of the product to documentéd quality levels.

| Finally, by reducing or eliminating the need for manual inspection, labour costs would be re-

duced. Automation may reduce burden of maintaining a trained workforce for seasonal industries

1.3 The Need for Multfple Sensors 3

— either in retaining skilled workers or providing training for new-hires at the start of the season.
An automated system may also provide the potential for increased production speeds.

The choice to adopt an automated solutioﬁ must be balanced against the inherent disadvantages.
Industrial systems require a capital expénditure for initial acquisition and installation that can be
significant. For some tasks, manual labour or a combination of mixed automation and labour may be
more cost effective. Humans are easily trained and can adapt to new conditions and criteria quickly.
This contrasts with the setup and ‘training’ of an automated system which may be time-consuming,
complex, and difficult to adapt. Also, while automation typically surpasses human capabilities for
product throughput, humans are better able to handle unexpected events and tasks which involve

a combination of inspection and handling operations, such as the patching of salmon cans [3].

1.3 The Need for Multiple Sensors

Systems which have attempted to make multi-factored grading decisions on the basis of information
from a single sensor have met with limited success. Despite the richness of information available
from a colour camera, such a device can only produce a two-dimensional array of intensities from
a single viewpoint. Features that may have a significant influence on the assigned grade may be
occluded from view or require depth information for detection. Often, it is desirable to combine
visual information with data from other sensors to improve the outcome. Possibilities include the
combination of vision with simpler sensors, such as load cells and thermocouples, or the use of
multiple cameras to eliminate occlusion or produce depth maps (through stereo vision algorithms).
In addition to the advantages of using complementary information as mentioned above, multiple

sensors may also provide redundant information to improve the accuracy and robustness of a system.

1.4 .'The Industrial Problem

The role of machine vision and multisensor integration is becoming widely accepted in the food
processing industry [4,5]. Intelligent multisensor systems are intended to provide complementary
qualities to the industrial user; namely, the repeatability and reliability of automation together with

the feature discrimination, classification capability, and adaptability of humans. However, there are

1.5 Potential Benefits of a New Approach - 4

two main problems with current industrial multisensor systems.

First, in an effort to use multiple sensors to improve process performance, many systems have
been constructed in an ad-hoc fashion. Pieces are added as new technology is acquired, often with
the need to redesign significant portions of the existing system to facilitaﬂ:e the integration of the new
sensors. Such systems lack a formal architecture and are typically designed by experts in machine
vision and/or systems integration. This is a general problem for systems that have been designed
and constructed for a specific task or operation. For industries competing in dynamic markets that
require systems which can adapt to changing needs for speed, feature recognition, accuracy, and
product differentiation, this approach is problematic.

Second, much of the success of machine vision and multisensor systems is dependent upon the
ease of use of these systems for industrial users. Such users may understand the process but not
the details of the sensor technology. In order to achieve full acceptance, the associated sensor and
artificial intelligence technologies must become transparent to the end user, so that process experts
in the food industry do not have to understand the technical details.. A completely transparent
system is likely many years away. As a result, opportunities exist to develop systems which work
towards this goal, while achieving the proper balance between utility and ease of use. Such systems

should be orderly, comprehensible, and simple.

1.5 Potential Benefits of a New Approach

" There is currently no accepted formal approach for the design and construction of a multisensor
.integration system for indusfrial inspection. An open and scalable architecture will enable indus-
trial users to design systems which inherently reduce the risk of obsolescence. Systems may be
reconfigured, modified, and adapted to respond to changing requirements and advances in sensor
technology.

By organizing the system in a manner that industrial users can understand, these same people
can specify, .conﬁgure, and maintain their own systems, without the need to retain outside experts.
This places the power to define and modify the process with those that understand it best, reducing

the need to transfer process knowledge to automation experts.

1.6 Project Scope and Objectives : 5

1.6 Project Scope and Objectives

This work represents the first stage of an initiative to develop both é methodology to construct
multisensor integration systems in a systematic way and to provide the tools required to do so.
This thesis focuses on the development of the Extended Logical Sensor Architecture (ELSA) to
allow for the systematic construction of a multisensor integration system for industrial tasks. In
doing so, the underlying structure, the major components dealing with sensing and inference issues,
the object representation, and the construction methodology are preseﬁted. It should be noted that
while inspection is the focus of this work, it is intended to be applicable to a variety of automation
tasks which may benefit from a multiple sensor perception system. Other potential applications
include material handling, assembly, and machining operations.

To address the industrial needs outlined in the sections above, ELSA is presented as new, open
architecture.approach for intelligent multisensor integration in an iﬁdustrial environment. The

specific objectives of this thesis are detailed below:

1. To provide a modular and scalable architecture which serves as a robust platform for intelligent

industrial sensing applications.
-2. To specify an encapsulation of physical devices and processing algorithms.

3. To specify a data representation scheme which allows for the quantification of deviations from

an ideal model.

4. To ensure that the data representation scheme provides the user with insight as to how the

system is structured and how the sensor information is used to make decisions.

5. To provide a robust exception handling mechanism to ensure the reliability of an implemen-

tation of this architecture.

6. To ensure that the architecture is applicable to a broad range of industrial applications,

especially those involving non-uniform product grading.

1.7 Thesis Outline 6

1.7 Thesis Outline

The structure of this thesis is summarized in the outline below:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Cha{pter 6

Chapter 7

Introduction: This introductory chapter.

Literature Review: Introduces literature from a variety of topics related to the problem
of industrial multisensor integration. Topics include: visual inspection, multisensor

integration, integration architectures, and object representation.

Object Modelling: Describes how objects are represented using an object model which

also provides a basis for sensor selection and inference engine implementation.

System Architecture: Presents the overall structure of the Extended Logical Sensor
Architecture (ELSA). Each of the major components, particularly those for sensing

and inference, are detailed.

Construction Methodology: Discussion of the ELSA approach to the design of, and

selection of components for, a multisensor integration system for industrial tasks.

Application Examples: Presents two illustrative example applications taken from in-
dustry. These serve to demonstrate how a system is implemented within the ELSA

architecture.

Conclusions and Recommendations: Concludes the thesis with a summary which high-

lights the contributions of this work. Suggestions for future improvements to ELSA

“and related systems are also given.

Chapter 2

Literature Review

Herein, the relevant literature dealing with multisensor integration, visual inspection, and object
modelling is presented. The majority of the work in the area of multisensor integration has focused
on’.is'sues Speciﬁé to mobile robotics and target tracking applications; however, many aspects of
these systems are applicable to visual inspection. The object modelling literature, on the other
hand, is closely tied to the image processing and machine vision research. This work is therefore
a synthesis of the ideas from these different fields, applied to the problem of sensor integration for

industrial inspection.

2.1 Multisensor Integration vs. Multisensor Fusion

Multisensor integration and multisensor fusion are closely related. The role of each in the operation
of intelligent machines and systems is best understood with reference to the type of information
that the integré,ted multiplé sensors can uniquely provide to the system. Multisensor integration
refers to the synergistic.use of the information provided by multiple sensory devices to assist in the
accomplishment of a task by a system [6] The somewhat more restricted notion of multisensor fusion
refers to any stage in the integration process where there is an actual combination (or fusion) of
different sources of sensory information into one representational format. Fusion may occur at a low-
level (signal), mid-level (pixel), or high-level (feature or symbol) of representation. These definitions

serve to distinguish the system-level issues relating to integration of multiple sensory devices at the

architecture and control level from the more specific mathematical and statistical issues presented

7

2.2 Advantages of Multisensor Integration 8

by the actual fusion of sensory information. In this work, the focus is on integration.

2.2 .Advantages' of Multisensor Integration
. .

Automated systems which attempt to make multi-factored decisions about non-uniform products
on the basis of information from a single sensor have had limited success. Often, there is simply
inadequate data for a proper product assessment. The transition to rnultiple sensors can extend the
capabilities and improve the robustness of existing systems.

A system which employs multiple sensors may enjoy several advantages over single sensor sys-
tems [6] The primary advantages are: information can be obtained more accurately and features
undetectable with individual sensors may be perceived in less time and with less cost. Of these,
redundant and complementary information are the most certain.

Redundant information is acquired by a group of sensors (or a single sensor over time); each sen-
sor perceiving the same features in the environment. By integrating and/or fusing this information,
the accuracy of the system can be increased by reducing the overall uncertainty. Redundant sensors
also serve to increase the robustness of the system in the event of sensor failure. Complementary
sensor groups, on the other hand, perceive features in the environment that are imperceptible to
individual sensors. Each sensor provides a subset of the required feature space; these feature subsets
afe combined to obtain the intact feature.

Liftle published wofk has been done in the area of non-specialized, sensor integration architec-

tures for industrial applications. Section 2.3 provides a brief review of general sensor integration

architectures.

2.3 Multisensor Integration Architectures

A system architecture provides a framework upon which individualized systems can be built and
adapted. For complex systems, an architecture is essential to ensure that the system is comprehen-
sible, robust, and that it is easily extensible. An architecture for sensor integration systems must

provide the following éomponents:

2.3 Multisensor Integration Architectures 9

Data structure and communication protocols.

Resolution of information from sensors.

Data fusion/integration engine.

Exception handling.

Decision making (inference from sensory information).

Control mechanism or method of utilizing system output.

A number of different architectures have been developed for the purpose of multisensor inte-
gration, each for a specific application such as mobile robot navigation and control, autonomous
guided vehicles, military target tracking, and industrial control systems. While, on the whole, these
architectures are not directly applicable to the task of industrial inspection and classification, each
-o.f the following examples presents some aspects which are potentially useful to this problem.

Architectures developed for mobile robot navigation and control are primarily concerned with
prioritizing objectives and ensuring that high priority (real-time) objectives are met. Brooks’ sub-
sumption architecture [7] utilizes a number of different layers to ensure that while performing a
high—level task, low-level operations continue to perform. For example, the task of chasing a mouse
around a room is overridden by the goal of avoiding obstacles and this, in turn, is overridden by the
need to maintain balance. Sensory information may be used differently by each layer; only those
sensors which perception processing identifies as extremely reliable are used to maintain a central
representation.

An action-oriented perception paradigm is utilized by the SFX architecture developed by Murphy
[8,9]. Robot actions are decomposed into a motor behaviour and the perception of some object
or event which drives the behaviour. Perception considers both the percept being sensed and a
measure of certainty in the sensing. A cognitive science model proposed by Bower [10] is used as
the basis for discordance-based sensor fusion to combine information from multiple sensors. There

are four fusion modes as follows:

2.3 Multisensor Integratibn Architectures 10

1. Complete sensor unity (fusion of sensor data). In this mode, sensor data is fused without
a mechanism for detecting discordances. Sensory information is tightly coupled such that

discordances do not arise.

2. Awareness of discordance where Tecalibration is possible (integration of sensor data). Here,

the discordance between sensors is reconciled by recalibration of the offending sensors.

3. Awareness of discordance where recalibration is not possible (comparison of sensor data). In

this case, sensors providing erroneous data are temporarily suppressed.

4. No unity at all (independent use of sensor data). Sensors observe attributes without any

spatial correspondence. Here, sensor data is used independently.

In Murphy’s architecture, sensing failures are handled by error classification and error recovery
- modules. Classification pf the error type and source is attempted using a modified generate-and-
test procedure. Once the error source is identified, the error recovery module selects a predefined
recovery scheme to either repair or replace the current sensing configuration.

Lee [11,12] has developed the Perception Action Network (PAN) architecture which provides
a mechanism for dealing with uncertainty in the process of data fusion. Feature Transformation
Modules (FTM), Data Fusion Modules (DFM), and Constraint Satisfaction Modules (CSM) are
placed along the connections between logical sensors (to be defined shortly). These modules de-
: ﬁne'relationships which allow the perception net to reduce uncertainties through data fusion and
~ constraint satisfaction, in addition to identifying possible biases.

Architectures developed for Autonomous Guided Vehicles (AGVs), are concerned with issues
similar to those of mobile robotics. The approach taken by Draper et al. [13] in the development
~ of the sensor integration system for the Mobile Perception Laboratory (MPL) was to focus on the
“types of informatién required to perform a task and the representations needed to express them.
This shifts the use of data from multiple sensors from low-level fusion to higher—level integration.
Another. approach to an architecture for AGVs is presented by Shafér, Stentz, and Thorpe [14].

Sensor integration research within the military has focused on target tracking applications. The

major issues here are proper synchronization, communication, and routing between sensor systems

that are widely distributed. Architectures which have been developed include those by Iyengar et

2.3 Multisensor Integration Architectures 11

al. [15,16] based on a multilevel binary de Bruijn network (MBD), Klein [17], and the object-oriented
approach taken by Queeney and Woods [18].

The industrial operating environment is often quite different from the operating environments
of mobile robots, AGVs, and target tracking systems. For these, the environment is assumed to
be unstructured and la;rgely unknown. A priori knowledge of lighting conditions, expected objects,
obstacles, and failure modes is often unknown or unavailable. In an industrial context, many of these
factors may be controlled. Additionally, industrial systems do not have to address the behaviour
issues of mobile robotics.

There are few integration architectures that have been developed to address problems specific
to the industrial environment. One exception is the HINT architecture developed by Alarcén et al.
This is a generic architecture for plant-wide industrial control [19]. It aims to support the integration
of different artificial intelligence techniques to provide solutions to process control problems that
currently require human expertise. While not directly applicable to industrial inspection and grading
tasks, it presents some interesting ideas. In particular, the proposed methodological approach and

hierarchical structure of the framework are useful starting points for the design of a new architecture.

2.3.1 Logical Sensor-Based Architectures

Sensors are one of the principal building blocks of a multisensor integration architecture. The data
provided by sensors may be used as input to processing algorithms which combine and convert the
data into higher levelv representations of the information. One approach that is well suited to the
inéorporation of sensors into a multisensor integration architecture is the logical sensor model.

A logical sensor (LS) is an abstract definition for a sensor. Logical sensors were first defined
by Henderson and Shilcrat [20] and later broadened to include a control mechanism by Henderson,
Hanson, and Bhanu [21], Figure 2.1. This definition provides a uniform framework for multisensor
integration by separating physical sensors from their functional use within a system. Logical sen-

' SOrS are‘ used to encapsulate both physical sensors and processing algorithms. This encapsulation
defines a common interface for all sensor types allowing the straightforward addition, removal, and

replacement of sensors within the architecture.

Using this definition, physical sensors such as load cells, thermocouples, cameras, and laser

2.3 Multisensor Integration‘ Architectures 12

LOGICAL SENSOR CONTROL
OUTPUT COMMANDS

LOGICAL SENSOR LOGICAL SENSOR COMMANDS TO
INPUTS INPUTS LOGICAL SENSORS

Figure 2.1: Basic components of a logical sensor as proposed by Henderson
et al. [21].

rangé—ﬁnders may be represented. The data from these sensors may also be combined and processed
using a variety of available algorithms. In this way, logical sensors, such as a line detector, which
do not physically exist, may be made available to the user. Output from a variety of logical sensors
may be combined to extract complex features. Physical sensors may be replaced or added without
disturbing the entire system — only the associated logical sensor need change.

The logical sensor model provides a control structure which allows for the selection of a dif-
ferent program (which may rely on different sensor inputs) should the sensor performance prove
unacceptable. Control commands are generated from higher-level logical sensors.

The Originai Légical Sensor Specification (LSS) handles error conditions in a simple manner.
An ‘acc'eptvance test’ is used to judge each input. Inputs which pass the test are accepted and used;
those that fail are rejected. Rejection results in the system attempting to obtain input from one of
a number of alternate inputs. When all alternatives are exhausted, the sensor fails. The source of
the error is not determined. Replacement rather than recovery is the only method of error handling.

Weller, Groen; and Hertzberger adopted the logical sensor concept and developed an architecture
which uses a hierarchy of sensor modules [22]. Before replacing sensor modules in an effort to

obtain correct ihput, an attempt is made to locate the cause of the error. If found, recovery is

attempted through the adjustment of sensor parameters and/or input to the sensor. This approach

2.3 Multisensor Integration Architectures - ' 13

requires that the sensor itself contain expert knowledge for both the detection and isolation of error
conditibns, and thé rules upon which the recovery strategy is based. This cohcept was further
refined by Groen, Antonissen, and Weller when applied to a mpdel—based robot vision system [23].

Dekhil and Henderson extended the concepts introduced by Weller et al. and introduced Instru-
mented Logical Sensor Systems (ILSS) [24-27]. The application was again mobile robot navigation.
The ILSS, as shown in Figure 2.2, is an extension of the LSS. The primary difference between
ILSS and LSS is the addition of components which provide mechanisms for on-line monitoring and
debugging. These mechanisms are designed to increase the robustness of the sensor. For example,
monitors use a set of rules to validate the output of the ILSS. The user is alerted to any undesired
results. Local embedded testing is used for on-line checking and debugging purposes. These tests
operate by generating input data designed to check different aspects of the module. The data may
~also be directed at other sensors to enable the testing of a group of modules. A set of rules and
constraints is used to examine the resulting sensor output.

COMMANDS ,, COV,

COMMANDS ;. GOV,

Figure 2.2: Instrumented Logical Sensor [27].

Using the ILSS, data from physical sensors may be combined and processed using a variety of al-
gorithms to create sensors which do not physically exist. A sensor system may be constructed which

can extract complex high-level features. These features form the basis of the object representation

for recognition and classification.

2.4 Sensor Technologies 14

2.4 Sensor Technologies

Sensors are most often classified in accordance with the type of physical phenomenon that is detected
and the subject of measurement. Often sensors are developed to satisfy particular objectives. A
large number of sensors exist for an ever increasing number of applications which utilize sensor
technologies [28]. Table 2.1 presents examples of sensors which are particularly suited to industrial

inspection tasks.

Table 2.1: Examples of sensors for industrial inspection classified by type.

Sensor Type Detection Data, Detector
Position .
Dist Cameras, position sensors, range
Visual 1stance finders, line image sensors, area
Form image sensors.
Features
Proximity Photoelectric switches, LED
Proximity Spacing lasers, phototransistors,
Inclination photodiodes, ultrasound sensors.
Contact Limit switch, metal detectors,
Tactile Force strain gauges, conductive rubber,
Pressure pressure sensors.
Aural Sound Ultrasound sensors.
. Gas Emission spectroscopy,
Chemical Odour chromatographs, densitometers,
pH gravimeters, X-rays.
Dvnamic Weight Load cells, accelerometers,
y Speed anemometers, LIDAR.

.Typi_cally, the sensor output signal is in the form of an electrical signal such as a voltage. The
output could be in either analog or digital form. Since most current applications process sensor
information using a computer, sensors which provide digital output are preferable. Analog signals
are converted into a digital representation using an analog-to-digital (A/D) converter.

Device drivers are required to interface between the hardware of the sensor énd the processing
system. These programs serve to package data and commands in a format that may be understood

by both sides. Unfbrtunately, there is little standardization of sensor hardware — even for devices

2.5 Sensor Standards 15

that perform the same task. As a result, each sensor typically requires a unique driver. This reduces

the interoperability of sensor technologies.

2.5 Sensor Standards

There is currently a major effort to develop a standard for the integration of sensor technologies.
This effort, led by the the National Institute of Standards and Technoldgy (NIST) and the Institute
of Electrical and Electronics Engineers (IEEE), is working toward the development of the IEEE-
P1451 Standard for a Smart Transducer Interface for Sensors and Actuators. The goals of this

standard are to:

_ e Enable plug and play at the transducer level by providing a common communication interface

for transducers.
o Enable and simplify the creation of networked smart transducers.

e Facilitate the support of multiple networks.

The standard consists of four subsections: P1451.1 — Network Cdpable Application Processor
(NCAP) Information Model, P1451.2 — Transducer to Microprocessor Communication Protocols
and Transducer Electronichata Sheet (TEDS) Formats, P1451.3 — Digital Communication and
Transducer Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems, and P1451.4
— Mixed-mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats.
Currently, draft versions exist for P1451.1 [29] and P1451.2 {30].

P1451.1 specifies networking support for a transducer. The objective is to develop standardized
connection methods for smart transducers to control networks. Little or no changes should be
required to use diffefent methods of A /D conversion, different microprocessors, or different network
protécols. This objective is achieved through the use of a common object model, together with
interface specifications to these components. There are two key views of the networked smart
transducer, as shown in Figure 2.3.

The Smart Transducer Object Model provides two key interfaces. The first, to the Transducer

Block, encapsulates the details of the transducer hardware implementation within a simple pro-

2.5 Sensor Standards 16

NETWORK NETWORK MICROPROCESSOR I/0
HARDWARE PROTOCOL STACK PORT HARDWARE
ETWORK |

SENSORS

QY

| TRANSDUCER

o
\

- = | SOFTWARE | TRANSDUCER
il
""""""""""""""""""""""""""""" ACTUATOR
|
TRANSDUCER
HARDWARE
INTERFACE
SPECIFICIATION
NETWORK PROTOCOL TRANSDUCER LOGICAL (P1451.2)
LOGICAL INTERFACE SMART TRANSDUCER INTERFACE
SPECIFICATION OBJECT MODEL SPECIFICATION
(NETWORK BLOCK) (P1451.1) (TRANSDUCER BLOCK)

Figure 2.3: Networked smart transducer model [29]. Physical components
are shown by solid lines; dotted lines indicate logical compo-
nents.

gramming model. This results in the sensor or actuator hardware appearing like an I/O-driver.
The second is the interface to the Network Block. This interface encapsulates the details of the
different network protocol implementations behind a small set of communication methods. These
logical models and interfaces are used in defining a data model for the smart transducer that is
supported by the network.

P1451.2 provides an interface specification to allow the interoperability of transducers. It allows
for self-identification and configuration of sensors and actuators while allowing extensibility so that
vendors may provide for growth and product differentiation. The Transducer Electronics Data
Sheet (TEDS) provides a mechanism to specify a combination of transducer, signal conditioning,
and signal conversion to the rest of the system; it does not specify the actual signal conditioning or
data conversion methodologies. TEDS contains fields that fully describe the type, operation, and
attributes of one or more transducers. The TEDS is physically associated with each transducer,
encapsulating the measurement aspects of a Smart Transducer Interface Module.

The interfaces specified in P1451.1 and P1451.2 are optional in that an implementation may
adopt one without the other. For example, if a transducer is networked but support for interop-

erability is not required, the P1451.1 Object Model may be used without the P1451.2 Interface

2.6 Industrial Applications B

Specification. Similarly, if networking is not suppo.rted, or the network implementation is closed,
P1451.1 does not have to be used to get the benefits of interoperability provided by P1451.2.

These standards have been developed to support a wide variety of transducers as well as a digital
interface to access the TEDS, read sensors, and set actuators. This allows transducer manufacturers
to differentiate themselves not by the supported interface(s), but by cost, feature set, and quality.
Manufacturers design to a common interface which can be used by a variety of applications.

By providing a standard low-level interface, these smart transducers may be easily integrated
into a sensor syétem. This model extends to the device level the concepts of modularity and
flexibility that are desirable in a multisensor integration system. A truly encapsulated system may
then be constructed — from high-level integration and processing algorithms to the low-level sensing

devices.

2.6 Industrial Applications

In the area of quality assessment and assurance, machine vision is often used to gather the bulk
of the required information, especially for the grading or classification of non-uniform (biological)
products. -Other sensors, such as scales, mechanical measurement devices, and ultrasound are
employed to gather information that is used to enhance the machine vision data. Industrial systems

which employ machine vision perform one or more of the following activities [4]:

Gauging: Performing precise dimensional measurements.

Verification: Ensuring that one or more desired features are present and/or undesired fea-

tures are absent.

Flaw detection: Location and segmentation of undesired features which may be of unknown

size, location, and shape.

Identification: Use of symbols, including alphanumeric characters, to determine the identity

of an object.

-Recognition: Use of observed features to determine the identity of an object.

Locating: ~ Determination of object location and orientation.

2.6 Industrial Applications ' 18

The controlled environment of an industrial plant greatly simplifies the generic recognition prob-
lems considered by many machine vision researchers. Segmentation is simplified by knowledge about
both the objects and the background against which objects must be segmented. Typical production
arrangements involve the use of conveyor belts which serve to provide physical separation between
the objects being transportéd. This separation eliminates the need for algorithms which perform
well when objects are ocduded; such algorithms are typically computationally expensive. In addi-
tion, structured and predictable lighting is possible, further simplifying the object recognition task
by ensuring that objects appear under the same intensity of light and shadow field. This improves
feature}v discriminatibn, reduces processing time, and reduces processing hardware requirements [4].

There have been a number of vision-based multisensor systems developed for quality assurance
and assessment over the past decade. In most of these applications, ad-hoc methods are used to
develop a sensor integration system to monitor the process. Such systems lack a formal architecture
é,nd are typically designed by experts in machine vision and/or systems integration. This can result
in difficulties with the use and maintenance of the system for the everyday user. Additionally,
upgrading the system to change or add additional sensors and/or requirements often requires the
system to be redesigned. This is a problem for industrial users whose requirements in terms of
speed, feature recognition, accuracy, and other process monitoring parameters invariably change
over time. A number of examples of recent industrial systems follow.

‘Luzuriaga, Balaban, and Yeralan [31] have developed a system for the machine vision inspection
6f white shrimp. The back-lit shrimp are inspected by a single colour CCD array camera for colour
and 2D shape features. _Colour changes and melanosis development of the stored shrimp are used as
a basis of evaluation. Additionally, the weight of each shrimp is estimated from the 2D view area.
While designed for and tested in an industrial environment, this system relies on manual placement
and turning of each shrimp.

A‘s.imilar systém for catfish feéture identification was developed by Jia, Evans, and Ghate [32],
though_it was concerned primarily with the detection of the head, tail, and fins. These features
wefe then used to determine appropriate cutting lines for processing.

Daley et al. [33] are working towards the automation of poultry grading and inspection. This

system uses a colour CCD camera to obtain information regarding the HSI colour, size, and shape

2.6 Industrial A pplications 19

of each bird. Global defects are identified with a 96% success rate; local defects are identified only
about 60% of the time. This is due to the increased difficulty in extracting 'the local features. To
properly address the problem, _additior___lal sensors are required to allow for the méasurement of the
surface texture and structure.

A low-cost system for fruit and vegetable grading was developed by Calpe et al. [34] as an
alternative to expensive commercial systems. This open platform may handle up to 12 lanes simul-
taneously at a speed of 10 items per second. Classification is based on RGB colour information.
Conveyor rollers mechanically separate and rotate the fruit. The captured image contains two lanes
with four pieces of fruit in each lane. A colour index is computed for all eight pieces as the con-
veyor moves forward and another image is taken. In this way, four images of each piece of fruit are
acquire)d; the rollers ensuring that the majority of surface area is considered. Currently, a grading
decision is made by averaging the colour information.

Recent work in the Industrial Automation Laboratory at the University of British Columbia
has involved the grading of herring roe skeins [35-38]. Images obtained with a CCD camera are
processed to extract colour, contour, and curvature information. Skein weight is estimated from
the 2D area using a multiple-regression estimator. Firmness is estimated from the brightness of
ultr@sonic echo images: All of this information is combined to determine a classification for each
roe. Grading accuracy ranges from 72%—-95%. Classification accuracy between Grade 1 and Grade 2
roe is about 95%.; however, the system is less successful at subclassifying the Grade 2 roe into various
sub-grades. Additional sensors are required to improve the overall performance of the system.

Other applications which make use of sensory information for grading and classification include
potato gr'ading‘ [39], shrimp inspection [31], material surface inspection [40], printed circuit board
inspection [41], and visual inspection of unsealed canned salmon [42].

A number of proprietary industrial systems exist for product inspection and classification. These
include the QualiVision system from Dipix Technologies Inc. for the qhality control of bakery and
snack food products. This system uses 3D imaging to assess product consistency to 10 microns [43].

'Lumetech A /S has developed the Fisheye Waterjet Portion Cutter for trimming and portioning fish

fillets [44]. Lullebelle Foods Ltd. utilizes a cell-based vision sys'tem to eject unripe blueberries from

the processing line [45]. Key Technologies Inc. offers the Tegra system for grading agricultural

2.7 Uncertainty and Accuracy 20

products according to size and colour [46]. Typically, such systems sort products based on 1-2

discrete thresholds.

2.7 Uncertainty and Accuracy

There are a number of standard terms [47] which may be used to describe the validity of sensor
data and the analysis of uncertainty. As the use of this termipology has not been consistent in the
literature [48], a brief review follows:

Error is defined as the difference between the measured value and the true value of the measur-

and, as illustrated by Equation (2.1).
error = measured value — true value (2.1)

There are two general categories of error which may be present: bias errors (systematic or fixed
errors) and precision errors (random errors) [49]. Both degrade the validity of the sensed data,
though the causes of each are different and each is minimized in a different manner.

Bias errors are consistent, repeatable errors; however, they are often not obvious and considerable
effort is usually required to minimize their effects. There are three forms of bias error. The first,
calibration error, is the result of error in the calibration process, often due to linearization of
the calibration process for devices exhibiting non-linear characteristics. The second source of bias
error is loading error. This is due to an intrusive sensor which, through its operation, alters the
measurand. Loading error may be avoided through the use of nonintrusive sensors. Lastly, a bias
error may result from the sensor being affected by variables other than the measurand. Bias errors

are defined by Equation (2.2).

bias error = average of readings — true value (2.2)

Precision errors are caused by a lack of repeatability in the output of the sensor. These are

2.7 Uncertainty and Accuracy 21

defined by Equation (2.3). Bias errors and precision errors are contrasted in Figure 2.4.

precision error = reading — average of readings (2.3)

TRUE VALUE - RANGE OF
‘ PRECISION ERROR

4 @
MEASURAND
BIAS ERROR

AVERAGE OF
MEASURED VALUES

Figure 2.4: Distinction between bias error and precision error.

Precision errors can originate from the sensor itself, the industrial system, or from the environ-
ment. They are usually caused by uncontrolled variables in the sensing process.
| Uncertainty is an estimate (with some level of confidence) of the limits of error in the mea-
surement. The degree of uncertainty may be reduced through the use of calibrated, high-quality
sensors. Accuracy is a term commonly used to specify uncertainty. It is a measure of how closely a
measured value agrees with the true value. Precision is used to characterize the precision error of a
sensor. In general, the accuracy of a sensor cannot be any better than the measurement constraints
provided by the sensor precision, and often, is much worse.

Accuracy is offen degraded by hysteresis errors (bias), resolution errors (precision), repeatability
errors (precision), linearity errors (bias), zero errors (bias), sensitivity errors (bias), and drift and
thermal stability errors (precision), among others.

Digital signal processing requires the conversion of analog sensor signals into digital form. A/D
converters are used for this purpose; however, they are prone to three bias errors: linearity, zero,
and sensitivity (or gain) errors. Since the output of an A/D converter changes in discrete steps,
there is also a resolution error (uncertainty) known asa quantizing error, which is a type of precision
error. Together, these errors are known as elemental error sources.

To facilitate the identification and comparison of sensing errors, ASME/ANSI suggests grouping

elemental errors into three categories: calibration errors, data acquisition errors, and data reduction

errors (47]. Calibration errors originate in the calibration process and may be caused by uncertainty

2.8 Object Modelling ‘ ' 22

in standards, uncertainty in the calibration process, and randomness in the calibration process.
Hysteresis. and non-linearities are usually included here. Data acquisition errors are introduced
into the measuremenf when the sensor is making a specific measurement. These include random
variation in the measurand, loading errors and A/D conversion errors. Data reduction errors are
caused by a variety of errors and approximations used in the data reduction process.

Grading and inspection tasks rely upon various sensors to obtain information about the objects
under consideration. Accurate decisions require that the sensed information be valid and robust.
Validation of data through sensor integration provides one mechanism by which uncertainty may
be represented and collaboratively reduced. A multisensor integration system must check for errors
which are the result of unexpected events, such as sensor malfunctions or environmental changes,
which cause a device to fail to perform within specifications. If found, an attempt must be made
to correct the cause of the error. This is usually handled through an exception and error handling

mechanism.

2.8 Object Modelling

To utilize a multisensor architecture for object grading, a model of the object is required. An object
model is necessary for a computer system to perform object recognition. The model provides a gen-
eralized description of each object to be recognized. The mbdel is used for tasks such as accurately
determining object boundaries in an image and choosing an object’s best class membership from
among many possibilities. For industrial grading applications, the object model must represent the
import.ant features which designate the ‘grade’ or value of a particular object. Ideally, the model is
- simple to construct.

Methodoldgieé foi’ object recognition and representation abound; however, much of the research
in the field has focused on the recognition of generic objects, categorizing objeéts into broad group-
ings [50]. Many of these are further limited by requiring geometric representations of the ob-
jects [51,52]). With the exception of facial and handwriting recognition [53-55], little work has been
done to develop systems capable of detecting subtle differences. This is the requirement of an in-
dustrial inspection and grading system where objects are classified on the basis of subtle differences.

The problem is not one of differentiating an apple from an orange, but rather one of discriminating

2.8 Object Modelling 23

the quality of a particular apple based on such cues as colour, size, weight, surface texture, and
shape. Despite this, there are a nurnf)er of object models which have been developed which are
applicable, at least in part, to tﬁh‘e pro&ﬁct classification problem.

Studies into how humans perform object recognition have yielded some interesting results. Bie-
derman [56] has suggested that objects are recognized, and may therefore be represented, by a small
number of simple components and the relations between them. These simple geometric components
are called geons (for geometrical ions). Objects are typically segmented at regions of sharp concav-
ity. Geons and relations among them are identified through the principle of non-accidentalness. In
other words, critical information is usually represented by nonaccidental properties — an accident
in viewpoint should not affect the interpretation. These basic phenomena of object recognition

indicate the following:

1. The representation of an object should not be dependent on absolute judgments of quantitative

~ detail.

2. Information which forms the basis of recognition should be relatively -invariant with respect

to orientation and modest degradation.

3. A match should be achievable for occluded, partial, or new exemplars of a category.

These ideas form the basis for the theory of recognition-by-components (RBC). The associated
stages of processing are presented in Figure 2.5. This indicates that for feature-based recognition
distinguishing features are used to recognize and differentiate objects. This method is efficient, as
it is not necessary to discriminate every feature of every object. By closely modelling the object
representation to the human methodology, this scheme may also have the advantage of being more
intuitive to the user.

An ihteresting parallel may be drawn from this to the series of steps that a typical vision-based
grading system follows in recognizing and classifying the objects in a given image, as illustrated by
Figure 2.6.

Havaldar, Medioni, and Stein [57] have developed a system for generic recognition based on
Biederﬁlein’s ideas. Images are‘processed to extract edge sets from which features of parallelism,

symmetry, and closure are identified. These features are then grouped and represented within

2.8 Object Modelling ' 24

Figure 2.6: Four steps in object grading.

an adjacency matrix. This is a robust system, able to recognize objects which deviate from the
exemplar; however, it is not designed to recognize the deviations themselves — a requirement for

object classification.

2.8 Object Modelling. . 25

A feature-based object model was developed by Tomita and Tsuji [58] for object recognition from
texture features. Their primary application was a system designed to recognize various structures
of the human brain visible in computed tomography (CT) images.

ijects are repre‘sentevd by a connected graph structure as shown in Figure 2.7. Each node
represents a kind of objéct to be récognized in the image; the root node represents a category of
image. The node contains slots for the name, the type of unit in the image, and the properties of
the unit. Nodes which are white indicate that the object is always recognized; black nodes signify
that the object may not always be present, as in the case of abnormalities. Solid links are used to
" represent a parent-child relations_hip between nodes. Dotted links represent an OR relationship ~—
only one of the linked objects will be recognized. This relationship may be used to represent an

object which, due to possible variations, cannot be defined by a single node.

FH1
FH2
V3
| AC
IR1
IR2
TH1

TH2

Figure 2.7: Model used to recognize cranial CT images [58]. White nodes
indicate brain features that are always present; black nodes rep-
resent abnormal features.

Models are built in an intAeréuctive manner. Programs are selected and applied to input images
to extract the désifed features. Parameters are adjusfed until the desired results are obtained.
Successfully extracted units are identified to the system. Each unit generates a new node in the
graph; each unit may be further subdivided into smaller units. Once the initial model has been

constructed, the model may be refined by adjusting the program parameters, adjusting the object

2.8 Object Modelling : 26

properties and/or relations, declaring an OR relationship between objects, or by specifying that an
object may not always be present.

Other feature-baséd systems include the work of Han, Yoon, and Kang [40] who identify a
number of features for automatic surface inspection. Lang and Seitz [59] represent and recognize
objects through the use of a number of hierarchical feature templates.

Fuzzy logic has been used by a number of researchers to describe varying relationships between
features. Cho and Bae [60] describe objects in terms of functional primitives which are constructed
from extracted shape primitives. An object is represented by a collection of these primitives related
by fuzzy memberships. Luo and Wu [54] and Lee and Huang [55] have developed methodologies
for handwritten Chinese character recognition. In these systems, each stroke is extracted from
the character as a feature. Features are then classified as particular stroke types, each with an
associated degree of fuzziness. The classified features are then combined based on connectedness
and regularity to arrive at a predefined character classification.

While none of these approaches are directly applicable to representation of non-uniform products
for the purpose of classification, each presents some interesting ideas for the basis of such an object
model.. A feature-based system will allow for the efficient representation of the distinguishing
characteristics of objects to be classified. Fuzzy logic provides a mechanism by which human
expertise may be applied in a form very close to our natural language [61]. Relating object features

with fuzzy membership functions should enable the system to incorporate human expertise for the

determination of object classifications.

Chapter 3

Object Modelling

3.1 Introduction

An intelligent system which attempts to perform object recognition must have a facility for percep-
tion. Machine perception consists of converting raw sensor information into a form which may be
utilized within the system to accomplish a task. To facilitate this conversion, an object model is
used as the interface between the real environment and the internal processes which are dependent
on the eﬁternal information. The object of interest is represented by the object model through char-
acteristic properties and relaﬁonships between features, with a particular focus on those features
which are most relevant to the application. Therefore, an object model is a generalized description

of each object to be recognized.

3.2 Rationale

As discussed in Section 2.6, demand for improved automated quality assurance systems has led
to the development of a number of vision-based multisensor systems. Typically, these systems are
unstructured, complex, and difficult to maintain and modify. To enable industrial users to better
react to changing market conditions and improved technology, a formal approach to system design
is needed to replace these ad-hoc systems. '

1In this work, the Extended Logical Sensor Architecture (ELSA) has been developed to address

a number of these limitations in current industrial practice. The purpose of this architecture is to

27

3.3 Approach to Modelling 28

provide a structured, yet flexible methodology for building robust sensor systems aimed at product
inspect.ion; A weil—deﬁned, structured object model is the starting point of this organized approach
to the design and coﬁstructio_n of a multisensor integration system.

There are two objectives that determine the structure of the object model used within ELSA.
The first objective is to provide a representation for objects which exhibit deviations from an ideal
template or model, or an object for which an ideal cannot even be concretely established. The
model should allow for the representation of both quantitative and qualitative information. This
addresses a problem of particular relevance to non-uniform product inspection and grading. The
structﬁre of the model should provide users with an intuitive understanding of how to construct
and represent real-world objects.

The second objective is to develop the object model as a guide for the selection of components
and construction of an ELSA system. The features represented in the object model should guide
the selection of the sensing devices and/or processing algorithms required to extract them. The
high-level representations of the object and its classifications should provide a basis for inferring
the proper identity of the object from the extracted features.

The object model then serves two purposes: (i), In the completed system, the object model is
used to recognize and represent objects that are presented to the system sensors; (ii), once defined,
it may be used to specify the components that are necessary for the system to identify and classify

objects.

3.3 Approach to Modelling

There are Itwo épproaches which may be taken towards object modelling for classification and
grading. They differ in the how the object is represented and therefore how it is identified.

The traditional approach to object recognition attempts to identify’ an entire object based upon
the features contained within the object model [50,62]. Once an object has been identified, extracted
ebject properties may then be used for further evaluation based on attributes such as size, colour,
and mass. Recognition proceeds in a top down manner from the root nodes of the model graph,
which represent the different objects or object classifications. The selection of a particular parent

is contingent on the successful identification of all descendant objects. Should the system fail to

3.4 Model Structure 29

find an expected iject at a particular level, the system returns to the previous level and attempts
to follow another branch. If a proper match cannot‘ be found, the systeni issues an error message
requiring the user to improve the object model.

The sécond approach defines object models somewhat differently. Instead of attempting to
identify an object based on the discrimination of every feature of the object, only distinguishing or
characteristic features are extracted. These features are then combined to produce object classifi-
cations. The presence or absence of particular features and the associated object properties m‘:ay
then be used to classify the object into a particular grade. This idea is supported by the theory of
recognition-by-components (RBC) [56], which suggests that objects may be represented by a small
number of simple components.

It is this feature-based approach that is adopted herein. Unlike the first approach which is
best sﬁited to simple objects, it is applicable to both simple and complex models. Objects that
demonsﬁrate deviation from an ideal model may be represented using appropriate features combined
into classifications. Additionally, by identifying only those feaﬁures necessary for object recognition
and/or classification, the storage requirements for object representation are reduced. Concentration
on distinguishing features also reduces the processing requirements for the extraction of features

from the environment.

3.4 Model Stru_cture

In the ELSA object model, objects are represented by a connected graph structure similar to that
proposed by Tomita and Tsuji [58]. The components of the structure are shown in Figure 3.1. This
is a top-down representation of an object, consisting of a number of layers of abstraction. Object
nodés are used to represent salient features of an object. The object itself is represented at the
highest level of abstraction within the classification layer. Below this lie nodes representing the
high-level features upon which classifications are made. Traversing down the graph, further into the
feature layer, other nodes represent the mid and low-level features of the object. Each subsequent
level becomes more and more'detailed. This enables compact and efficient object models. Only the

level of detail required for identification or classification need be specified.

This approach allows for scalable complexity of the object model. By adding nodes and layers

3.4 Model Structure 30

CLASSIFICATION v FEATURE LAYER
LAYER

PRIMARY FEATURES SUBFEATURES
(High Level) (Mid to Low Level)

OBJECT

FUZEY DESCRIPTORS

Figure 3.1: Graph structure for object representation.

3.4 Model Structure . ’ : 31

to the graph, models may be made as simple or complex as required to properly model the objects
considered by the system. The hierarchical structure minimizes the disturbance to the model should
a feature used for classification require modification. Thus, refinement may focus on specific features

and classifications without disturbing other classifications.

3.4.1 Classification Layer

The classification layer represents the kind (grade, grouping, category) of the object. Different
object classifications may be grouped within the classification layer because they each share similar
features or qualities. This is the priﬁciple advantage of feature-based object recognition. The
" features common to each object need not be specified. Rather, the features that distinguish one
object from another are used. For example, a classification layer could represent apples; different
classifications could include ripe, bruised, large, and small. The common features describing the
general characteristics of all apples: stem, skin, shape, etc., need not be articulated.

Each cléssiﬁcation is defined by associating it with the appropriate primary features. Associa-
t.ions are made using fuzzy links, which are described in Section 3.6.3. An object whose relevant
features are invariant or which does not require classification may be defined with a single node in

the classification layer.

3.4.2 Feature Layer

A feature is defined as a distinct quality, detail, characteristic, or part of an object. An object may
be described and recognized as a collection of features. The ELSA object model categorizes features
based on the level of abstraction. The highest-level features are termed primary features. These
features are linked directly to the classification layer and serve to define each classification.

Most primary features are themselves composed of one or more subfeatures. Subfeatures repre-
sent lower-level, less abstract features. As the graph is traversed downward, features become more
specific and detailed. At the extreme, the lowest-level subfeatures are called atomic features. These

represent features that are indivisible. The unprocessed data from a sensor is often represented as

an atomic feature. The nodes of the feature layer are connected with unconditional links.

3.5 Properties of Objects 32

3.5 Properties of Objects

Within the data representation, objects may have two different types of properties, namely: physical

object properties and relational properties. Relational properties are dependent upon the extraction

~ of a pair of physical properties which are then related in some way. Due to this increased complexity,

objects are modelled using only physical object properties whenever possible.

3.5.1 Physical Properties

Physical object properties are used to describe intrinsic qualities of an object. Each property is
characterized such that it may be considered indepehdently from any others. Examples of physical
objectA properties include position, mass, temperature, shape, colour, intensity, and texture.

These properties are represented within the mbdel structure with the appropriate data structﬁre.
For example, colour may be represented at a low level with a data structure containing the RGB
(red, green, blue) or HSI (hue, saturation, intensity) channel values. Abstractions may occur such
that the degree of a particular colour value is interpreted from the HSI data. Such a data structure
could indicate the hue, e.g. RED, and a value that specifies the ‘redness’ of the object. This value
could be a measure in the range [0-1]: 0 representing no presence of red; 1 complete red saturation.

Similar structures would be defined for other types of physical properties.

3.5.2 Relational Properties

Relational properties describe an object in relation to other objects. Unlike physical object prop-
erfies, each relational property is dependent upon at léast one other object. Symmetry, adjacency,
relative position, and relative orientation are examples of relational properties.

Whereas physical properties are computed for each feature extracted, it is unlikely that all of
the possible relations between each pair of objects can be computed, even for a small number of
objects. This is due to the large number of relations which may be defined. Therefore, only those
relations which are specifically identified by the user are computed. A relation between objects is
defined only when thelsystem in unable to recognize objects based on the physical properties of the
objects themselves.

Relational properties are represented within the structure of the object model using a data

3.6 Model Components 33

structure which contains a field for each object, a field to identify the type of relation, and a field

for parameters which specify exactly how the objects are related.

3.6 Model Components

The object model is comprised of a number of different components. Object nodes are used to
represent object features. Subfeature dependencies are represented using unconditional links; object
classifications are specified using fuzzy links. The following subsections provide details about each

component. Implementation issues are discussed in Appendix A.

3.6.1 Object Nodes

Each ﬁode of the graph represents a recognizable object or feature. An object may refer to the
representation of any signal, attribute, or thing which may be recognized by the system. These
may be complex features extracted from information provided by one or more sensors. Each node
may be a parent node, that is, it is associated with one or more child nodes which further detail
features of the parent node. In other words, the child nodes are representative of the subfeatures
of the parent node. For example, a parent node may be the size of an apple, while child nodes may
include the volume, area, and height of the apple. Alternatively, a node may contain simple crisp
measurements provided by a single sensor, for example, mass and temperature. Primary features
are represented by root nodes that, by definition, do not have a parent. The components which

comprise the object node are outlined in Table 3.1.

Table 3.1: Components of object node for feature representation.

Component | Description

Object
Name

Uniquely identifies the object or feature.

Object Type | Indicates the type information that this particular node represents.

Physical . .

Prg;iecriies | Data structure for the physical properties of the feature.
Relational Data structure for the relational properties of the feature, if
Properties required.

Free Tag If set, it indicates that this feature may not always be present.

3.6 Model Components 34

The node structure contains the name of the object, the type of object, and the object properties.
Nodes that represent features which are not always present are markéd by a free node tag. This
usually applies to féatures that correépond to object classifications that are defective or otherwise
deviate from the ideal. Links to parenﬁ and child nodes are maintained within the structure. This

is illustrated in Figure 3.2.

PARENT NODE

CHILD NODE s CHILD NODE

Figure 3.2: Object node for feature representation.

Classification nodes, Figure 3.3, may be considered as a special case of an object node. They do
not have parents, do not maintain object properties, and do not have free node tags. Instead, the
primary features upon which the classification is dependent are stored along with the corresponding

fuzzy feature descriptions.

PRIMARY . PRIMARY
FEATURE FEATURE

Figure 3.3: Classification node.

3.6 Model Components _ : 35

3.6.2 Unconditional Links

Unconditional links are used to represent parent-child relationships between features. They are
unconditional in that the relationship between the nodes (which correspond to features) is constant
and is not modified in any way. Unconditional links are stored within the nodes as pointers.

Graphically, they are represented as a solid line.

3.6.3 Fuzzy Links

Si‘mila,r to unconditional links, fuzzy links represent a relationship between object classifications and
primary features (root object nodes). They differ by attaching additional information in the form
of a fuzzy descriptor. The fuzzy descriptors are used by the classification nodes to help assess how
the primary features contribute to the representation of the object. Fuzzy descriptors are realized
using fuzzy logic membership functions.

Fuzzy logic provides a mechanism by which human expertise may be applied in a form very
close to our natural language [61]. This enables the system to incorporate human expertise relating
features to the determination of object classifications. This is especially useful for applications such
as non-uniform product grading that tend to use subjective interpretations of product quality. For
examplei, the ripeness of an apple may be described using linguistic variables such as not very red,
sort of green, and sZightly red as opposed to some quantification of apple colour ‘in RGB or HSI
colour space. Such descriptors may be constructed from a number of atomic terms as discussed by

Zadeh [63].

3.6.3.1 Linguistic variables

Linguistic variables are in the form of natural language phrases. They are used to label fuzzy subsets
from the universe of discoufse, U. A linguistic variable z, over the universe U = [1,100] of weight,
may have values such as: light, not light, very light, not very light, heavy, not very heavy, not light
and not heavy, etc.

In general, the value of a linguistic variable is a composite term x = 212 - - - Z,,. In other words,

z is a concatenation of atomic terms z1,--- ,z,. There are four categories of atomic terms:

3.6 Model Components

36

1. Primary terms, are labels of specified fuzzy subsets of the universe of discourse. (e.g. light

~and heavy).
2. The negation not and the connectives and and or.
3. Hedges, such as very, much, slightly, more or less, etc.

4. Markers such as parentheses.

Hedges are used to generate a larger set of values for a linguistic variable from a small collection

of primary terms. Hedges allow definition of subsets while maintaining a minimum set of primary

terms. They are particularly useful for translating human descriptions into mathematical notation.

The hedge h may be regarded as an operator. h transforms fuzzy set M (u) into the fuzzy set

M (hu). These form the foundation for information granulation and computing with words.

For example, consider the hedge definitely which acts as an intensifier. This hedge may be

implemented as a concentration operation. Like all hedges, it generates a subset of the set upon

which it operates. ‘Therefore, definitely x, where x is a term, may be defined as:

definitely © £ 2

or, more explicitly:

definitely z £ /ng(y)/y

_This is further illustrated by the following equations, plotted in Figure 3.4.

z = heavy object

L5

(3.1)

(3.2)

(3.3)

3.6 Model Components 37

z* = definitely heavy object

4 /5:00 (1 + (gg_m)_g) ’ /y . .

DEFINITELY
HEAVY

0 -

Figure 3.4: Effect of hedge definitely.

Linguistic variables constructed from these atomic terms are used to describe how primary fea-
tures rélate to object classifications. A minimum set of primary terms is chosen for a given feature
or classification. In most cases, this will be a pair of descriptors such as: cold/hot, young/old,
light /dark, small/large. Additional classifications are achieved through the use of negation, connec-

tives, and hedges.

3.6.3.2 Membership functions

Linguistic variables are associated with fuzzy membership functions. These membership functions,
referred to by the linguistic variable, are used to define the fuzzy descriptors used to construct
object classifications.

Many features, such as shape and texture, are not easily quantified. To enable the classification
of such features, the membership functions no, low, and high are used to express the confidence in
the detection of the feature. These may also be thought of as describing a feature as does not belong
to the class, could belong to the class, and (definitely) does belong to the class. As shown in Figure
3.5, these functions span the universe 0 to 1. This is intended to provide users with an intuitive feel
for the specification of classifications. The user does not consider values or fuzzy membership, but

rather thé linguistic variables no, low, and high.

3.7 Model Definition 38

NO LOwW HIGH

CONFIDENCE
IN FEATURE
0 0.5 1 DETECTION

0

Figure 3.5: Membership function used to represent confidence in the detec-
-tion of a particular feature.

For features that are easily quantified, such as length and mass, the universe of discourse (range
of expected values) is specified along with linguistic variables for the classifications in this universe.
Triangular or trapezoidal membership functions centred at the mean values of each variable are
used, since with sufficient representation the membership function shape is not critical [64]. The
chbice to use trapezoidal membership functions is based on the need to encompass a broad range of
values by a single fuzzy label. Most often this is at the limits of the universe of discourse, but may
also be used to spesify narrow overlapping regions between labels while using a minimum number

of labels to cover the universe of discourse.

3.7 Model Definition

The object‘model is defined by first identifying the primary features. FEach is associated with
an object node which occupies the top of the feature layer.' If necessary, each primary feature is
decomposed into subfeatures — each represented by an object node. These are linked together
using unconditional links.

The dsﬁnition of the classification layer follows. Object classiﬁcations are associated with classi-
ﬁ‘cation nodes. These are then linked to appropriate primary feature nodes using fuzzy links. Each
fuzzy link is assignéd a fuzzy descriptor which describes how the feature is used to represent the

classification. The detailed algorithm used for the construction and refinement of the object model

is presented in Chapter 5.

3.8 Summary 39

3.8 Summary

In this chapter, the object model used by the architecture has been presented. This structure
satisfies two objectives. The first is to provide a representation for. features and objects which
allows for the quantification of deviations from an ideal model. Secondly, it provides a structure
by which the user may easily undefstand how objects are modelled while guiding the selection of

sensing devices and the development of the inference engine. These components are presented as

part of ELSA in the following chapter.

Chapter 4

System Architecture

4.1 Introduction

This chapter presents the basic structure and functions of the Extended Logical Sensor Architecture
for multisensor integration. A system designed using the principles of ELSA is composed of a
number of different modules. The primary modules are the logical sensors and inference engine.
Other modules — such as those for integration, validation, and diagnostics — provide vital, though
sécondary, sﬁpport to the operation of the system.

The ‘deﬁnition and construction of an ELSA-based multisensor system is based on the object
model outlined in Chapter 3. The feature layer guides the selection and interaction of sensor
components. The classification layer is used to construct a rulebase which defines how the sensor
informatidn is used and what the system can infer from it.

The relationship between the object model and the system architecture allows the system to be
designed with inherent modularity and scalability. Additionally, by utilizing a sté,ndard approach,
componénts may be shared and reused by applications with differing object models and logical
sensor hierarchies. Examples of the construction of an ELSA system are given in Chapter 6.

The ELSA architecture may be decomposed into three groups, according to the following tasks:

1. Sensing: The acquisition of information from the environment which is used as the basis for

inference and decision making.

2. Inference: The combination of the sensory information with information contained in a

40

4.2 Logical Sensors 41

knowledge base to infer decisions.

3. Action: The conversion of decisions into commands and signals which control process ma-

" chinery.

The structure of ELSA is illustrated in Figure 4.1. An object-oriented approach to the system
configuration has been adopted. The encapsulation of the primary components leads to a scalable
and flexible sysf,em which is particularly suited to industrial grading tasks. The system may be
edsily reconfigured to adapt.to advances in sensor and processing technologies or changing market
demands. Due to the nature of industrial inspection and grading, the primary focus of this work is
on the sensing and inference groups.

Sensing is performed by the coordinated actions of the sensors, the Integration Controller, and
the Validation and Diagnostic modules. Sensors are encapsulated by a logical sensor model. The
Integration Controller is capable of coordinating the reconfiguration of the sensor hierarchy to meet
process goals. This is assisted knowledge by contained in the Knowledge Base which is shared with
the Inference Engine.

Process decisions are made by the Inference Engine. The validated sensor information from the
sensing group provides the required input to the Rulebase. The action group includes the Post
Processor, drivers, and process machinery. Control systems for grading systems typically range
from very"simple to extremely complex. Herein, the details of the control issues associated with the

action group are not considered and are open problems for future work.

4.2 Logical Sensors

The logical sensof hierarchy structures data in a bottom-up manner. The raw data collected by
the physical sensors is processed through different levels of logical sensors to produce high-level
representations of sensed objects and features. This approach offers considerable flexibility. High-
level tasks may be implemented without regard to the specific sensing devices. The low-level physical
sensors and low-level data processing routines are invisible to the higher levels. That is, to higher-
level sensors, each antecedent logical sensor appears as a single entity with a single output, regardless

of the scope of its antecedents. Using the logical sensor model, a hierarchy of subordinate and

4.2 Logical Sensors

42

SENSING

Figure 4.1: Overview of Extended Logical Sensor Architecture.

4.2 Logical Sensors 43

controlling sensors can be built, ultimately providing sensor input to the Integration Controller.

The logical sensor model outlined in Section 2.3.1 has been extended herein for a model-driven
open architecture. As shown in Figure 4.2, the proposed Extended Logical Sensor (ELS) is com-
prised of a number of different components. The components are object-oriented by design; each
component is responsible for a single task within the sensor. A list of these components and tasks is
given in Table 4.1. As indicated in the table, a few components are unchanged (U) from the original
logical sensor specification [20]; others are based on extensions (E) to the specification [21, 26, 27];
and the balance are novel (N) in this work. The ELS strongly encapsulates the internal workings of
each logical sensor while allowing the modification of the sensor’s operating characteristics. Most
of the components of this revised model are outlined in greater detail in the sections referred to in
the final column of Table 4.1.

The control command mechanism is flexible enough to allow active sensors; for example, a
camera in an active vision system may be repositioned to bring an object of interest into (better)
view. However, since the target applications are industrial in nature, namely, inspection and grading

tasks, herein the sensors are assumed to be passive.

SENSOR SENSOR
OUTPUTS COMMANDS

SENSOR
CHARACTERISTICS

DATA CONTROL/

KNOWLEDGE OUTPUT POLLING IN
BASE |

LOGICAL SENSOR 1/O CONTROLLER
CONTROLLER

AL
Exlé%gﬂon 1 7 DATA CONTROL/
HANDLING POLLING OUT

RAWSIGNALS sENSOR
N
SENSOR INPUTS ~ COMMANDS

Figure 4.2: Basic components of an Extended Logical Sensor.

As will become apparent, the implementation of an ELS requires an understanding of signal
processing. This is knowledge that most industrial users will not possess. They will understand

what they would like the ELS to do, but not necessarily how to accomplish it. This limitation is

4.2 Logical Sensors

Table 4.1: Summary of Extended Logical Sensor components.

Component Component Description Origin® | Reference
Group
Uniquely identifies a particular logical sensor
Logical Sensor to the system. By definition, a name may not U Henderson and
Name be duplicated within the hierarchy. Similar Shilcrat [20].
sensors are numbered consecutively.
Sensor Characteristic A vector of types wh1§h serves to define the Henderson and
0 Vi output vectors that will be produced by the U Shil 20
Characteristics utput Vector logical sensor. ilcrat [20].
A description of the functionality that this
Sensor Function | sensor provides. Provided in human readable N Section 4.2.1
form.
Sensor A list of dependencies for the logical sensor,
Dependency accounting for each logical sensor that serves N Section 4.2.1
List as input to the contained programs.
Monitors, redirects, and packages data and Section 4.2.2.1;
I/O Controller control commands for inter-sensor communi- E and, Henderson
cation. et al. [21]
Data Input Con51sts.of signals from transducers and data N Section 4.2.2.2.
from logical sensors.
in the f isti - .
I/0 Data Output Output in the form of the charactfanstlc out N Section 4.2.2.3.
put vector, error messages, or polling results.
Interprets the control structure used for com- Section 4.2.2.4;
Control Input manding and adjusting sensors for changing E and, Dekhil and
conditions and goals. Henderson [27].
Control commands to subordinate sensors.
Control Output | May be generated by sensor or passed U Section 4.2.2.4.
through from higher level sensors.
Section 4.2.3.1;
Logical Sensor Acts as a “micro”expert system to ensure the E and, Henderson
Controller optimal performance of the logical sensor. and
Shilcrat [20].
: Internal diagnostics and error handling. .
ontroller . : . . . Section 4.2.3.2;
j .
C Local Works in conjunction with logical sensor con-
. . and, Dekhil and
Exception troller. Attempts to classify the error and E
. . : Henderson
Handling then rectify the problem using a predefined [26,27]
recovery scheme. et
Contains information on interpretation of
Local control commands for adjustment of param-
Knowledge eters and selection of programs. Also stores N Section 4.2.3.3.
Base - default parameters used during initialization
and reset.)
Device Drivers Used to mt.erpret raw signals from physical E Section 4.2.4.1.
sensory devices.
Programs - - - -
Processing Signal processing routines used to extract fea- U Henderson and
Algorithms tures and information from sensor data. Shilerat [20].

#U — unchanged, E — extended, N — novel.

4.2 Logical Sensors ' 45

overcome to some degree by the development and provision of an ELS library which contains a
variety logical sensors for many common signal processing operations. When a required ELS in not
available in the library, it will be necessary to have others implement the ELS.

For these developers, an ELS base class is provided which serves as a template for the design
of Extended Logical Sensors. The ELS model is implemented as a C++ class library following the
pfinciples of object-oriented software design. Individual sensors inherit the basic structure and
common functionality. Customizations are achieved either by overriding base classes and functions
or proving new ones where necessary.

The subsections that follow outline the major components of an ELS. The ELS base class is

outlined in Appendix B.

4.2.1 ngical Sensor Characteristics

The logical sensor characteristics refer to a set of properties specific to each logical sensor (LS).
This information is publicly accessible, enabling other logical sensors, or the Integration Controller,
to poll the sensor and determine the sensor’s identity and capabilities. The components which
comprise the logical sensor characteristics are: the Logical Sensor Name, the Characteristic Output
Vector, the Sensor Function, and the Sensor Dependency List. The first two characteristics were
defined by Henderson and Shilcrat [20]; the other characteristics are new, and are described below.

The Sensor Function provides a description of functionality of the logical sensor. This description
is in human readable form so that a user may effectively browse through a library of logical sensors.
As an _example,. a Canny edge detection ELS [65], would have a description indicating that it was
capable of identifying sets of edge pixels from a two-dimensional array of pixel intensity values. In
addition, comments on accuracy and computational complexity (speed and memory requirements)
would assist the user and the system in comparing this edge detector with others which may be
available. - This information may then be used to select the most appropriate edge detector for a
given task.’

The Sensor Dependeﬁcy List provides a list of the logical sensors subordinate to the ELS being
polled. ‘Each ELS which provides input to one of the logical sensor programs is considered as a

subordinate. An ELS is identified by its Logical Sensor Name. This list is automatically generated

4.2 Logical Sensors 46

as the ELS hierarchy is constructed.

4.2.2 I/0
4.2.2.1 I/0 Controller

The I/O Controller is an extension of the Control Command Interpreter [21], that provides a
specification for control to the original logical sensor specification [20]. The I/O Controller oversees
all inputs and outputs from the LS and monitors, redirects, and packages data and control commands
for inter-sensor communication. For control commands, the controlier works as a pass-through
buffer. The destination logical sensor name of each control object received by the I/O Controller is
first checked to determine if the command is intended for the partiéular sensor. If so, the control
command is interpreted and sent to the LS Controller for processing; if not, it is passed through to
lower-level (subordinate) sensors.

One can note that, higher-level sensors may only be aware of the function of each subordinate
ELS. The details of the actual algorithms — and in the case of sensors with multiple programs, the
currently selected algorithm — is hidden from higher-level sensors by encapsulation. As a result,
commands (and associated parameters) generally request a desired effect. For example, a command
to increase the number of edges extracted from an array of pixel intensities would be of the form
INCREASE EDGES. The specific algorithm used need not be known. This command would be passed
down through the hierarchy to the edge detecting ELS. At this sensor, the controller, Section 4.2.3.1,

| would interpret this command and, drawing upon information contained in the Local Knowledge
Base, adjust specific algorithm parameters accordingly (such as réducing mask size or threshold
values).

A number of control commands are defined for all logical sensors, namely, commands used for
sensor initialization, calibration, requests for sensing, testing, and reconfiguration. A complete list
of standard commands is provided in Table 4.2. For example, the polling command is used to

query lower-level sensors about the logical sensor characteristics described in Section 4.2.1. The

applications of other standard commands are outlined in Section 4.2.3.1.

4.2 Logical Sensors 47

4.2.2.2 Data In'put _

The data sources for an ELS may take two forms:

1. Raw signals from (physical) transducers: Signals from digital devices are input directly
to a software driver. Analog signals are first converted into a digital form using an A/D

converter.

2. Data from logical sensors: As will be discussed in Section 4.2.2.3, logical sensor data is
packaged in the form of the Characteristic Output Vector (COV). These output vectors serve
as the sensor inputs for higher-level sensors. This data is then used as input to the processing

algorithm(s) of the logical sensor.

To properly interpret data from subordinate sensors, the I/O Controller must have an internal
copy of the characteristic output vector for each connected lower-level ELS. This internal copy

is obtained through sensor polling.

4.2.2.3 Data Output

The data output module serves to package the ELS output into one of three forms, as outlined

below:

1. Output vector: The data output module serves to package the data from a logical sensor
program into the form of the COV. This enables the sensor to pass a data package, without

identifying each component.

2. Errdr message: Failure of an ELS may occur due to the failure of a lower-level LS or an in-
adequacy of a contained algorithm. In either case, the confidence measure which accompanies
each ELS output will fall below a specified tolerance. An error message will then be passed

in place of the output vector.

The confidence measure is generated by the ELS. In the case of an encapsulated physical
sensor, the uncertainty measure is based upon the specifications and/or known operational

characteristics of the device. Algorithms within the ELS must provide routines which calculate

the uncertainty associated with each output value. Confidence is represented as a real-valued

4.2 Logical Sensors 48

number in the range: 0 < ¢ < 1. A measure near 0 indicates little confidence in the result;

while a measure near 1 indicates a high level of confidence in the sensor output.

3. Polling result: This consists of information obtained from the logical sensor characteristics

in response to a query from the Integration Controller or a high-level logical sensor.

4.2.2.4 Control Input

The logical sensor model provides a control structure which allows for the adjustment of logical
sensors in response to changing conditions. Possible adjustments include the selection of an alter-
nate program, the modification of program parameters, or the recalibration of a sensor. Control
commands may be passed from higher-level logical sensors or from the Integration Controller. Each

command is packaged as a control object, which has the following format:

1. Destination logical sensor name: Identifies the ELS for which the command is intended.

If a command is intended for all subordinate logical sensors, then the destination name is ALL.

2. Control command: This is the actual command to be executed. It is expressed as an
enumeration of a keyword string which is interpreted by the I/O Controller. The command
may be one of a set of generic, system-wide commands, or may be specifically defined to work

only with a particular logical sensor.

3. Associated parameters: A place is provided within the control object for parameters as-

sociated with each command.

4.2.2,5 Control Output

Control output from an ELS consists of control commands to lower-level logical sensors. These may

be generated by the issuing sensor, or may be passed through from an ELS at a higher level.

4.2.3 Controller

The controller is comprised of three components which work together to supervise the internal oper-

ation of the ELS. These components, the Logical Sensor Controller, the Local Exception Handling

mechanism, and the Local Knowledge Base are detailed in the following sections.

4.2 Logical Sensors : 49

4.2.3.1 Logical Sensor Controller

The internal -opera,tion of the logical sensor is supervised by the LS Controller. The controller serves
two main purposes: response to external commands, and internal monitoring and optimization of
logical sensor performance through error detection and recovery. It is an extension of the Selector of
the original logical sensor specification [20], which increases the functionality and robustness of the
ELS through the use of a local knowledge base and exception handling mechanism. By internalizing
specific operational knowledge, thé ELS encapsulates the sensor operation.

The LS Controller provides the logical sensor with a mechanism to respond to commands passed
from the I/O Controller. A number of standard control commands are defined for all logical sensors,
as listed in Table 4.2. These, in addition to user commands, are stored locally for each ELS. A
copy of user commands is also maintained by the Integration Controller. This provides controlling

sensors with information about the capabilities of subordinate sensors.

Table 4.2: Standard logical sensor control commands.

Command Description

INITIALIZE | Initializes the logical sensor upon creation.

CALIBRATE Calls a predefined calibration routine for the logical sensor.

Provides a response to queries about the logical sensor properties.

POLL
' Returns the information stored as the logical sensor characteristics.

Provides output in the form of the characteristic output vector:
SENSE This output is dependent on both the state of the sensor inputs and
the currently selected program.

Causes all of the logical sensor parameters to be reset to their

RESET initial values.

Calls one or more of the predefined embedded tests contained

TEST S .
within the logical sensor.

Causes an alternate program within the logical sensor to be
SELECT selected, should one be available. The program is chosen by the
Logical Sensor Controller — a specific program cannot be requested.

Validates the data contained within the Characteristic OQutput

MONITOR Vector through comparison with a predefined criterion.

USER Allows user to send commands which are specific to a particular

sensor or group of sensors.

Local knowledge of the operating characteristics of the ELS is used for program parameter

4.2 Logical Sensors 50

adjustment. For example, a request such as INCREASE EDGES to an edge detection ELS may be
mapped to an appropriate change in mask size or adjustment of thresholds. This contrasts to a
request Such as set mask.size = 3 which requires that the requesting program have knowledge of
the specific algorithm in use and the effect of parameter changes.

The performance of the ELS is affected by the selected program and the adjustment of the
program parameters. An alternate program may be selected in response to a sensor failure or in
response to a command passed from a controlling sensor. In the case of a sensor failure, the altern.ate
program selected typically relies on an alternate set of logical sensors for input. This redundancy

provides a measure of robustness to the sensor system.

4.2.3.2 Local Exception Handling

The Local Exception Handling module is responsible for internal diagnostics, local error detection,
and recovery. The testing and recovery schemes are limited to the domain of the ELS, using the
methodology outlined in Section 4.3.4 with a relatively small set of tests and recovery schemes.
Errors which éannot Be handled locally result in the sensor issuing an error message.

The standard error messages are listed in Table 4.3. Typically, these errors are passed to the

Integration Controller, which attempts to rectify the problem from a global, rather than local,

perspective.
. Table 4.3: Standard logical sensor error conditions.
Error ' Description
TIME OUT Unable to complete operation in allotted time.
OUT OF RANGE Computed value outside of specified range.
.DUT oF VEMORY s)y[;‘:zfion requires more memory than is available from the

HARDWARE FAULT | Problem with hardware device.
NOTHING FOUND Insufficient data to compute desired result.
GENERAL FAILURE | Category for all errors not explicitly defined.

Allows user to expand standard error types for a particular
Sensor.

USER DEFINED

4.2 Logical Sensors 51

4.2.3.3 Local Knowledge Base

The Knowledge Base is constructed as a logical sensor is created. Contained within each logical
sensor, it contains a vai'iety of informatioﬁ which is essential to the operation of the logical sensor.
Among the information contained in the Knowledge Base are default parameters used during ini-
tialization and reset; command definitions, both local and standard; cfiteria for monitoring sensor
performance; tests to determine error causes; local error definitions for sensor specific problems;
and error mappings which are used to assist in error recovery. In general, this information is not

available to other sensors or modules in the system.

 4.2.4 Programs

Each ELS must contain at least one program to process the input data; however, when possible,
each logical sensor may contain a number of alternate programs. There are two main reasons that

multiple programs may be desirable within a logical sensor:

1. Multiple programs enable the use of different input sources and combinations thereof.

2. Different algorithms may be used to process the input data at different rates or with different
degrees of precision. This provides a mechanism for sensor granularity. For example, a high-
speed, coarse interpretation may be used in place of a low-speed, high-resolution interpretation

in time-critical situations.

While the method of data generation may be different for each program within the ELS, each
must be capable of providing data in the format specified by the COV. Programs may be either
device drivers or processing algorithms, depending on the type of input handled. These are described

in Sections 4.2.4.1 and 4.2.4.2 that follow.

4.2.4.1 Device Drivers

In the context of the ELS, device drivers are used only for direct interaction with physical sensors.
The raw output signals from transducers are usually not in a form that may be used directly by a

computer system. A device driver is used to interpret the raw signals from physical sensory devices.

Output from digital transducers is obtained directly through a digital input device such as a data

4.3 Integration ' 52

acquisition board or frame grabber. Signals from analog transducers must first be digitized using
an analog to digital converter.

Each physical device has an associated driver which, in addition to signal interpretation, manages
the actual data transfer and control operations. This may include starting and completing I/0
operations, handling interrupts, and performing any error processing required by the device. Further
information on device drivers is provided by Baker [66].

IEEE P1451 compliant devices are treated in a similar manner. The major difference is that
the driver is onboard the transducer. By interfacing using the Smart Transducer Object Model, the
signal-level details are hidden. An ELS designed to work with a smart tranéducer will not require

any modification if the transducer is exchanged for another designed for the same purpose.

4.2.4.2 Processing Algorithms

Processing algorithms are used to encapsulate signal processing routines. The encapsulation of signal
~ processing routines is at the core of the logical sensor model. ‘Virtual’ devices may be constructed
" for sensors as diverse as line detectors, ‘red’ finders, and weight estimators by combining different
sets of lower—le&el logical sensors in order to perform the task at hand.

Should sensor fusion be desirable for a particular application, it is performed by an ELS that is
selected or designed for this task. Any fusion mechanism may be employed, though the discordance-
based sensor fusion method presented by Murphy [9] is used herein for its robustness. For example,
| images of an object provided by multiple cameras positioned at different viewpoints may be fused
| and integrated in different ways. AOne algorithm may fuse images from the ‘compass points’ around
an bbject to produce a continuous 360° view of the object. Another Iﬁay integrate this fused
image with an overhead view from another camera to validate the information from both sources
. in addition to detecting features that may otherwise be imperceivable. The use of such algorithms

is considered by the first example in Chapter 6.

4.3 Integration |

Integration involves the packaging of the sensory information provided by the logical sensors into

‘a form suitable for the Inference Engine. Extracted information and features from top-level logical

4.3 Integration 93

sénsors are used totprox.fide high-level representation.s of the objects of interest. As this is the final
stage before decisions are made based on the sensor data, particular attention is paid to ensure data
integrity.

The specification and components for integration are given herein. However, the focus of this
work is on the design of the dbject model, ELS, and Inference Engine. The implementation of the

other components is left for future work.

4.3.1 Integration Controller

All top-level logical sensor outputs pass through the Integration Controller before entering the
Infefenc"e Engine. The Integration Controller oversees the operation of the system, acting as an
interface between the sensors and the Inference Engine. Here, the concept of what the system is
trying to accomplish is maintained. It serves to coordinate sensor integration, in addition to data
validation and exception handling activities which cannot be handled at the logical sensor level.

Sensor uncertainty is used throughout the integration process. Confidence measures are used
for the identification of sensing errors and for the integration of sensor data. Sensor performance
criteria are maintained in the system Knowledge Base. These criteria are used to determine whether
the data provided by the sensors lies within acceptable ranges or is of an expected form. All data
which is successfully validated is passed to the Inference Engine; problematic data is passed to the
Diagnostics module.

As problems are encountered at the ELS level, this information is passed to the Integration
Controller. The controller uses the Diagnostics module and information contained in the Knowledge
Base to determine the appropriate corrective action. This may involve sending out commands to
adjust logical sensor parameters, recalibrate logical sensors, or reconfigure the sensor hierarchy.
The removal of malfunctioning sensors from the hierarchy or a reordering of sensors are among

reconfiguration possibilities.

4.3.2 Validation

The Validation module is used to perform high-level verification and validation of the sensor infor-

mation provided by the lbgical sensors. While this may be as simple as determining if the sensor

4.3 Integration . 54

data lies within acceptable ranges or is of an expected form, such tests are usually performed at
the logical sensor level. Instead, the Validation module attempts to detect disparities between the
information being provided by multiple sensors.

Most systems tend to use a small set of sensors. There may be some redundant sensing capability;
however, the major.ity of sensors are likely to be complementary. This makes the validation of
information diﬂicﬁlt because there may not always be an alternative sensor that can corroborate a
suspect sensor. This is handled by making inferences from the behaviours of other sensors. Sensor
performance criteria and other expert knowledge for sensor validation is maintained in the system
Knowledge Base.
 Ifanerror or disparity is detected, the problem is passed to the Diagnostics module which then
attempts to determine the cause of the failure and provide a solution. All data which is successfully

validated is passed to the Inference Engine.

4.3.3 Diagnostics

Should a problem be identified during data validation or an exceptioh cannot be resolved at the
logical sensor level, the Diagnostics module coordinates with the Exception Handling Mechanism
to determine the exact nature of the problem and implement possible solutions.

* The Diagnostics module may be viewed as an exception controller. It interfaces with the Integra-
tion Controller and Validation modules which identify error conditions and the Exception Handling
Mechanism which contains information for error classification and recdvery.

When a sensor fails, the Diagnostics module queries the Exception Handli_ng Mechanism for a
list of possible hypotheses which may explain the cause of the sensor failure. It then carries out the
specified tests until a particular hypothesis can be confirmed.

Upon determining the cause of the error, the Exception Handling Mechanism provides a recovery

method. This method is then implemented by the Diagnostics modulev to rectify the problem.

+ 4.3.4 .vExceptioAn Handling

Exception handling provides support for the Diagnostics module which aims to maintain the suc-

cessful operation of the system in the event of sensor failure. Exception handling routines are

4.3 Integration 35

invoked when data fails to satisfy a predetermined constraint or is in conflict with data from an-
other sensor. Sensing failures must be handled expeditiously to allow the system to continue to
operate effectively. In automated inspection applications, it is generally unacceptable for products
to pass by unevaluated or to slow/stop the line in order to resolve sensing failures.

As stated above, e){ceptions are handled by first classifying the nature of the error, as discussed
in Section 4.3.4.1. Once classified, an attempt is made to rectify the cause of the error using the
recovery scheme outlined in Section 4.3.4.2.

It is worth noting that the system does not assume that any sensors used for error classification
and recovery are themselves operational. Before each is used it must be functionally validated in

advance.

4.3.4.1 | Error Classification

Without the availability of a complete causal model, detected errors must be classified so that the
appropriate corrective action may be taken. To simplify classification, it is assumed that there is

only one sensing failure at a time. Sensor failures are classified into three types as follows:

1. Sensor malfunctions: This occurs when one or more sensors are malfunctioning. Examples

include power failure, impact damage, miscalibration, etc.

2. Environmental change: One or more sensors are not performing properly because the environ-
mental conditions have changed since sensor configuration and calibration. This often leads

to precision errors.

3. Errant expectation: Sensor performance is poor because the sought object is occluded or lies

. outside of the sensor’s ‘field of view.’

Error classification is accomplished by a generate and test algorithm [67,68]. The suspect
sensors are first identified. 'An ordered list of possible hypotheses explaining the sensor failure is
then gen_érated. Each hypothesis is associated with a test which may be used for verification. These

tests are performed in an effort to confirm or deny the prdposed hypotheses. This process is repeated

until a hypothesis is 'conﬁrmed.

4.4 Inference Engine 56

The generate and test method does not require fogmal operators for the generation of hypotheses.
This allows the system to use a rule-based method to select from a list of candidate hypotheses. Un-
fortunately, this mefhod can be time consuming if there is a large problem space and all hypotheses
must be generated. This disadvantage méy be overcome by constraining the problem space, thereby
limiting the number of hypotheses and reducing processing time. Testing is conducted until all tests
have been performed or an environmental change has been detected. When the classifier is unable

to resolve the cause of the error, the cause is assumed to be an errant expectation.

4.3.4.2 Error Recovery

For each error cause, there would ideally be a number of different recovery schemes. From these,
the most appropriate would be selected by the exception handling mechanism. To limit the scope
“of the problem and reduce the overall recovery time, a direct one-to-one mapping of error causes
to recovery schemes is utilized. A library of cases allows for the instant mapping of error cause to
recovery scheme based on the error classification.

Functions are used to repair individual sensors or reconfigure the sensor hierarchy. The sensor
parameters are adjusted first — recalibration is accomplished by invoking a predefined sensor cali-
bration routine. If the sensing configuration cannot be repaired through parameter adjustment or

" recalibration, the sensor hierarchy is altered. The alteration may suppress a particular sensor or

remove sensors from the hierarchy.

4.4 Inference Engine

Once the sensory information collected by the logical sensors has been validated, it is passed to the
Inference Engine. Here, based upon the examination of the extracted objects and features, decisions
are made regarding the actions to be taken with each object.

The sensor inputs are used to form the antecedents of the control decisions to be made in the
Inference Engine. The consequents of these rules are the actual decisions. These are passed from
the Inference Engine to the Post Processor for conversion into action.

As shdwn in Figure 4.3, the Inference Engine divides the inference task into two parts. First, the

information available from the various sensing devices is fed to the Inference Engine as the primary

4.4 Inference Engine o7

input. This sensor information is used by the first module to determine a measure of certainty that
the object is of each classification. These classifications with corresponding certainties are then

passed to the second module.

SENSOR INPUT
FROM

INTEGRATION
CONTROLLER

 CLASSIFICATION A | 5 !
" OFINPUT ~
. e 4 . KNOWLEDGE
o) BASE
. \
- RULEBASE

. DECISION |
. BASEDON
 CLASSIFICATION |

FUZZY LOGIC

INFERRED
DECISION

Figure 4.3: The Inference Engine used by ELSA. Inferences using fuzzy logic
draw upon information contained in the Rulebase. The neu-
ral network-based inference mechanism (shown inactive) utilizes
weights stored in the Knowledge Base.

The second module uses these classifications to infer a decision. If an object classification is
certain, the decision is unambiguous. The advantage of this approach is evident when dealing with
borderline cases. By considering the certainty measure for each object classification, an appropriate
decision may be made under uncertain conditions.

In this work, the Inference Engine is cognitive-based, using fuzzy 1ogic [64] to make decisions.
The advantage of this approach is that it allows the incorporation of expert domain knowledge.
This expert knowledge may be formulated into a rulebase to serve as the basis for fuzzy inference.

The base class which serves as a template for the development of the Inference Engine is outlined

in Appendix D.

4.4 Inference Engine : A _ 58

Wﬁile fuzzy logic is the inference method currenﬂy used, other knowledge based systems could
be employed. For applications where expert knowledge is less concrete, a feature-based inference
technique such as artiﬁcial neural networks [69-72] could be used to interpret the sensor information
. and produce control (iecisions. Applications for neural networks include the analysis of infrared
spectral data to deterrhine the composition and moisture content of a product, and the chemical
analysis of samples to determine quality or taste [5]. For these applications, the network must be
interactively trained to produce the desired results. Other possibilities for feature-based inference

techniques include Bayesian ieasoning and the Dempster-Shafer theory of evidence.

4.4.1 Rule/Knowledge Base

Fuzzy klogic and knowlédge based inference rely upon expert domain knowledge supplied by the
user. For grading and inspection tasks in particular, the expert knowledge available from human
inspectors is available to the system designers. The Rulebase stores this repository of domain
knowledge in the form of antecedent/consequent rules. For example, a fruit classification system

may include the following simple rulebase:

IF Shape IS round AND Colour is red THEN Fruit = apple
IF Shape IS round AND Colour is orange THEN Fruit = orange
IF Shape IS elongated AND Colour is yellow THEN Fruit = banana

In the case of fuzzy logic, linguistic variables, such as round and red are associated with mem-
bership functions that describe a fuzzy subset of the universe of discourse. These fuzzy sets are
also stored in the Rulebase. Each set defines the universe of discourse and membership functions
for each subset that corresponds to a linguistic variable. Membership functions may be triangular,

_trapezoidal, Gaussian, etc.
~The Kno_wledge Base contains a diverse set of information that is used by the Integration Con-
troller and, depending on the inference mechanism, the Inference Engine. In thé case where a neural

networks Inference Engine would be implemented, the network topology and the trained weights

between the hidden layer(s) and output layer would be stored here. Other information contained in

4.5 Post Processing 59

the Knowledge Base consists of the object model, control commands, error conditions, ELS charac-
teristics, and sensor performance criteria. This information is used by the Integration Controller to
oversee the operation of the logical sensors. Performance criteria are used to validate sensor data

and reconﬁgure the hierarchy in the event of a sensor malfunction.

4.5 Post Processing

Once the inference engine has processed the sensory information and interpreted it, any decisions
made must be converted into actions. This involves the conversion of a directive into a plan of
action for execution. For example, the decision to place a bruised apple into the ‘bruised apple bin’
must be translated such that the appropriate actuators affect this action at the appropriate time.
The Post Processor acts as an interface between the Inference Engine and the drivers which are used
to control the process machinery. Drivers are then used to convert control actions from the Post
Processor into the specific format required by each device. The possibilities for devices which may
act as process machinery are countless. Devices may range from simple actuators such as solenoids
and electrorﬁagnets, to complex systems such as multiple degree of freedom robotic manipulators.
However, thé issues involved with post processing are beyond the scope of this work and will not

be addressed further.

4.6 Summary

In this chapter, the organization of the Extended Logical Sensor Architecture (ELSA) was presented.
Each éomponent was introduced and its role within the architecture was described. Together these
components comprise a modular, scalable, and robust system. Sensory information is encapsulated
by Extended Logical Sensors. The integrity of the sensor data is ensured by the Integration Con-
troller Working in concert with the Validation and Diagnostics modules. Process decisions are made
by the Inference Engine»on the basis of the validated sensor information. The following chapter will

discuss the construction of a system based on ELSA.

‘Chapter 5

Construction Methodology

To maximize system robustness and usability, the construction of an industrial sensing and process-
ing system using ELSA follows a set procedure. An overview of this methodology is presented in
Figure 5.1. The sections that follow detail the various phases of the process. The methodology will

be further illustrated by the example applications provided in Chapter 6.

5.1 Problem Definition/Requirements Specification

The first phase of the design process involves the recognition of the needs of the particular industry
Or process. These needs often arise from dissatisfaction with the existing situation. They may be
to reduce costs, increase reliability or performance, or to adapt to customer expectations.

From the needs, a clear statement of the problem to be solved may Be formulated. This problem
definition is more specific than the general needs; it must include all of the specifications for what
is to be designed. Hence, the designer must consider what the capabilities of the system should
be. Following the general principles for system design outlined in [73], a set of minimum functional
requirements is specified. By definition, these requirements should focus on the functions of the
design without overspecifying property values and performance paraméters. This ensures that the
‘design process is not forced to follow a predetermined path.

Often the requirements of the system may be considered in four categories [74]:

1. Musts: Requirements which must be met.

60

5.1 Problem Definition/Requirements Specification V 61

RSOGO
PHYSICALSENS!

Figure 5.1: Overview of construction methodology.

9. Must nots: Constraints on what the system must not do.
3. Wants: Reqﬁirements that are desirable but not essential.
4. Don’t wants: Specifies what, ideally, the system will not do.

These requirements would typically include performance (speed, accuracy, etc.), cost, maintain-
ability, size, weight, complexity, standards and regulatory réquirements, customer preferences, and
market constraints, among others. The articulation of these requirements is used as a guide for

subsequent phases. If any of the requirements are left unsatisfied, the design is inadequate. The

requirements also serve to keep the design focused on what is necessary for the task at hand.

5.2 Object Model Development 62

5.2 Object Model Development

Objéct model development for ELSA is a two-stage process. First, based upon the requirements of
the system from the previous phase, the primary features or characteristics upon which classifications
are to be made are identified. As discussed in Chapter 3, it is advantageous to keep the size of this
set to a minimum. Typically, the features in this set are at a high level of abstraction. They occupy
the top of the feature layer of the model (right side of Figure 3.1). From this set, each feature
which is not atomic is decomposed into a set of subfeatures. This decomposition continues until all
features are atomic. A feature is considered to be atomic if it cannot be subdivided further. This
process is illustrated in the upper-half of the flowchart in Figure 5.2.

Once high-level features are represented by atomic features in the lower section of the object
model, the high-level information is used to define the object classifications following the steps in
the 1ower;half of Figure 5.2. The élassiﬁcations occupy the upper level of the model topology (left
side of Figure 3.1). Each object classification is defined by first specifying the relevant primary
features with fuzzy links. The fuzzy links to each classification are then associated with a fuzzy
descriptor. These descriptors specify to what degree of confidence the particular primary features
must be identified to be confident in the object classification. The complete algorithm used to

construct an object model is as follows:

1. Select an obﬁect to model.

2. Determine the primary features of the object.
3. Select a primary feaﬁure.

4. If featur¢ is atomic, goto 9.

5. Determine subfeatures.

6. Select a subfeature.

7. If feature is not atomic, goto 5.-

- 8. If there are additional subfeatures, goto 6.

5.2 Object Model Development 63

" Figure 5.2: Object model developmént methodology.

5.3 Logical/Physical Sensor Selection , 64

9. If there are additional primary features, goto 3
10. Determine desired classifications of object.
11. Link primary features to object classifications with fuzzy links.
12. Associate fuzzy descriptors with each fuzzy link.
13. If the defined primary features do not support the object classifications, goto 2.
14. If the deﬁned.object classifications are not sufficient for the application, goto 10.
15. If there are additional objects to model, goto 1.

16. Done.

The classification layer of the object model (relevant features in combination with relative
~ weights) serves as a template for the Inference Engine which, in practice, makes the classifica-
tion decisions based on the feature information extracted by the logical sensors. The development

of the Rulebese is described in Section 5.4.

5.3 Logical/Physical Sensor Selection

The seleetion of logical sensors is driven by the primary, intermediate, and atomic features that
have been identified as necessary for the object model. Sensor selection starts with the primary
features. Each feature has a corresponding ELS which packages the information from lower-level
sensors (logical or physical) into the representations used for object classification. Many of the
low-level logical sensors are selected from a reusable ELS library. The logical sensors contained
within the library perform standard image and signal processing operations. The algorithm for

constructing the ELS hierarchy, Figure 5.3, is as follows:

1. Select a primary feature from the object model.

2. Define a LS to provide primary feature.

- 3. If feature is atomic, goto 7; else, continue.

5.3 Logical /Physical Sensor Selection 65

4. Select a subfeature.

5. Select or define a LS to extract feature.

6. If feature is atomic, goto 7; else, goto 4.

7. Does LS receive input directly from a physical sensor? If so, goto 9; else, continue.

8. Select or define logical sensors required to supply information to LS that provides atomic

feature. Goto 7.
9. Select required physical sensor.
10. If there are additional subfeatures, goto 4.
11. If there are additional primary features, goto 1.

12. Done.

.Physical sensors are selected to éatisfy the input requirements of the LS associated with each
atomic feature. This requires a consideration of both the input requirements and the capabilities
of available transducers. A feature that is beyond the range or capabilities of a single sensor may
be accommodated by the fusion of data from multiple sensors which cover the feature space. A LS
is then defined which provides the feature, fusing the data from each of the physical sensor inputs.

Other considerations include whether the system should attempt to utilize a single sensor for
multiple tasks or whether specialized sensors will be used. For example, a camera can provide size,
colour, and shape information. Clearly, separate cameras a not required to extract each of these
features. Using visual information and a correlation between length, é,rea, and mass, a weight LS

may be defined to estimate the weight of an object. Depending on the application, this may be

used to replace or augment the information from a load cell.

5.3 Logical /Physical Sensor Selection 66

M PHYSICAL
P

NO

12

Figure 5.3: Methodology for the development of the ELS hierarchy.

5.4 Rulebase Definition _ 67

5.4 Rulebase Definition

The Rulebase defines both rules for object classification and rules to infer the appropriate system
output from these classifications. It is g.enerated directly from the object classifications contained
in the object model.

The classification rules use the fuzzy descriptions of each classification as the basis for descrip-
tion. The confidence in the detection of each primary feature may then be used as input to the
classification rules. Each rule expresses a degree of confidence in the classification of the object
based on the detection of the primary features. The rules for each classification are combined using
thé compositional rule of inference, e.g. using a sup-min operation [63], to produce a measure of
confidence that the object is of each classification.

Coﬁversion of the representation in the classification layer of the object model into a rulebase
which may be used by the Inference Engine is accomplished using the following algorithm, Figure

5.4:

1. Select an object classification.
2. Use fuzzy links to identify the primary features that this classification depends on.

3. Determine the interdependencies of primary features. Each rule is defined using the minimum
number of features. For example, consider a classification which is dependent on three primary
features. If one of these will result in object being classified as*bélonging to the given classi-
fication, regardless of the other two, rules are defined that contain only this feature. Other
rules will contain both of the other features, provided that the presence of each is required for

proper classification. Primary features may be combined with AND and OR operators.

4. Specify rules which correspond to the fuzzy descripfors used to describe the object classi-
fication. These describe conditions necessary for a high confidence in the detection of the

particular classification. These are mandatory.

5. Specify rules which are opposite to the fuzzy descriptors used to describe the object classifica-

tion. These describe conditions which indicate that the classification is not applicable to the

object. These are mandatory except for the case of a default classification — in other words,

5.4 Rulebase Definition . 68

- a classification for those objects that do not Satisfy the criteria of the other, more specific,

classifications.

6. If classifications with lower confidence should be considered to increase the robustness of the

system, continue; else, goto 8.

7. Specify rules having fuzzy descriptors which correspond to a low degree of confidence in the

detection of one or more primary features.
8. If there are additional classifications, goto 1.
9. Done.

Decision rules are defined to inform the system what the should be done according to how
each object is ciassiﬁed. Decisions are defined using the confidence in each object classification as
the aintecedent(s)i the appropriate decision(s) forms the consequent. . For industrial systems, the
decision often corresponds to an action to be taken. A grading system may decide to place objects
into particular bins, based on how they are classified. If an object classification is certain, the
appropriate decision is straightforward. By evaluating the confidence of each object classification,
borderline cases may be handled in the most appropriate manner.

The decision rules ére defined in a manner similér to the classification rules, though they are
based on the object classifications rather than the primary features. Figure 5.5 illustrates the

algorithm that follows:

1. Determine decisions which may be made based on object classifications. Ensure that there is

a decision that corresponds to each classification.
2. Select a decision.:
3. Identify the classifications upon which decision depends.

4. Specify rules for each classification that, when identified with a high degree of confidence,

result in the decision.

5. If classifications with lower confidence should be considered to increase the robustness of the

system, continue; else, goto 7.

5.4 Rulebase Definition 69

SIEY-RUCESTFOR”
O.CONFEIDENCE

" SPECIFY. RULESEOR
{LOW:CONFIDENCE
HIN.CLASSIEICATION:

6,7

% 'ADDITIONA
~GLASSIEICATI

Figure 5.4: Methodology for the definition of the rulebase for object classi-
fication using the object model.

6. Specify rules that define a decision based on a classification or c_lassiﬁcations that have been
identified with a low degree of confidence. This may be used to eliminate false positives by
rej‘ecting borderline cases. Depending on the application, low confidence in a single classifi-
cation may be sufficiently serious; for others, an ambiguity (low confidence) in two or more

classifications may be required.
7. If there are additional decisions, goto 2.

8. Done. -

Inferring a decision from the object classifications uses a methodology similar to that used for

5.5 System Implementation _ 70

CIFY:RULES FOR:
‘CONFIDENCE .

SHOULD -y
'CONFIDENGE

36 {DERED?

Figure 5.5: Methodology for the definition of the decision rulebase based on
object classifications.

determining the confidence in the detection of primary features, as discussed in Section 3.6.3.2. As
shown in Figure 5.6, membership functions no, low, and high specify the degree of confidence in the

classification of an object.

5.5 System Implementation

Haviﬁg completed the functional requirements analysis, defined the object model, chosen the logical
sensors and physical sensors, and defined the rulebase, the next stage is to realize and integrate
these components to produce a working system. The following steps indicate the various stages in

this process:

5.5 System Implemehtation 71

10.

NO LOW HIGH

CONFIDENCE
IN OBJECT
0 0.5 1 CLASSIFICATION

0

Figure 5.6: Membership function used to represent confidence that an object
is of a particular classification. '

. Construct the physical system. This includes the arrangement of physical sensors as well as

product delivery and handling systems.

. Select the required ELSs that are available from the library.

. For ELSs that are required but are unavailable from the library, these must be constructed.

The ELS base class, used as a template for ELS construction, is presented in Appendix B.

. Implement the rulebase and associated membership functions using the classes described in

Appendix D.

. Implement the object model using the object class described in Appendix A. This is stored

in the Knowledge Base.

. Define the Validation module providing parameters by which the sensor information may be

evaluated.

Define the Exception Handling Module, providing tests used for error classification and error

recovery schemes (mappings).

. Implement the Integration Controller to coordinate sensor integration and drive the system

operation.

. Select the inference mechanism(s) used by the Inference Engine. Define these if necessary.

Implement post processing and control as required by the application.

5.6 Modiﬁcation and Refinement 72

As is apparent, further work needs to be done towards the automation of these steps. This would
improve the ease with which a system may be constructed using thevELSA methodology. While
the system construction is not currently automated, each component has been designed with this
goal in mind. Fu_ture automation efforts should not require any significant redesign of the various

modules and components that comprise ELSA.

5.6 Modification and Refinement

Once the system has been constructed, it may be necessary to modify or refine some of the compo-

nents. Typical changes include the following:

Rulebase alteration.

Membership function tuning.

Addition or change of classification.

Addition or change of primary features.

Addition, change, or removal of physical/logical sensors.

One or all of these may be necessitated to improve the performance of the system, to account
for deficiencies in the original design, to adapt to changing specifications or customer requirements,
to incofporate different or new sensor technologies, to modify the system for a different application,
or some other unforeseen need. The hierarchical structure of the object model and sensors ensures
that changes remain local — the structure as a whole is unaffected.

The simplest changes involve the adjustment, addition, or removal of rules from the rulebase.
Th