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A b s t r a c t 

The Extended Logical Sensor Architecture (ELSA) for multisensor integration has been developed 

for industrial applications, particularly, the on-line grading and classification of non-uniform food 

products. It addresses a number of issues specific to industrial inspection. The system must be 

modular and scalable to accommodate new processes and changing customer demands. It must be 

easy to understand so that non-expert users can construct, modify, and maintain the system. 

The object model used by E L S A is particularly suited to the representation of non-uniform 

products, which do not conform to an easily specified template. Objects are represented by a con­

nected graph structure; object nodes represent salient features of the object. Object classifications 

are defined by linking to primary features, each primary feature may be composed of a number of 

lower-level subfeatures. 

Sensors and processing algorithms are encapsulated by a logical sensor model, providing robust­

ness and flexibility. This is achieved by separating sensors from their functional use within a system. 

The hierarchical structure of the architecture allows for modification with minimal disturbance to 

other components. 

The construction methodology enables domain experts, who often lack signal processing knowl­

edge, to design and understand a sensor system for their particular application. This is achieved 

through a formal design process that addresses functional requirements in a systematic way. Each 

stage involves the extraction and utilization of the user's expert knowledge about the process and 

desired outcomes. Specification of the requirements leads to the identification of primary features 

and object classifications. Primary features are expanded into subfeatures. Logical sensors are then 

chosen to provide each of the features defined by the object model; this in turn determines what 

physical sensors are required by the system. The object classifications determine the rulebase used 

by the inference engine to infer process decisions. 

i i 
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Chapter 1 

I n t r o d u c t i o n 

1.1 Traditional Industrial Inspection and Grading 

The ability to consistently produce high-quality products is important to the success of manufactur­

ing and processing operations. Traditional quality assurance methods have often relied on human 

operators who use visual cues in order to determine product quality. Such methods are tedious, 

time-consuming, and inconsistent. 

For example, for many food products, grading is performed by seasonal workers. The shifts are 

often long, the working conditions difficult, and there are often time constraints imposed to ensure 

product freshness. Grading is often a dull, repetitive task that requires long periods of concentration. 

Performance, and hence product quality, often degrades over the period of a shift. Furthermore, 

value-conscious consumers are demanding an increasing number of product classifications of high-

consistency. Unfortunately, grading consistency is inversely proportional to the number of grades 

— as the number of grades increase, consistency decreases. 

Most human multi-factor grading decisions are based on the subjective interpretation of visual 

information and cues from other senses (e.g. smell, firmness, weight). Thus, the characterization 

of grading classifications is often difficult and the ability to make repeatable decisions is hampered. 

This problem is compounded by the nature of natural and biologically formed products which 

generally do not have crisp, ideal templates [1], but rather, exhibit non-standard and non-uniform 

characteristics. For example, products such as fish, apples, potatoes, chicken, tomatoes, and other 

1 



1.2 Automated Inspection 2 

types of produce may, even within a single classification or grade, vary widely in appearance. The 

problem is further compounded by variations in the product characteristics within a species, region, 

or industry. Recent trends are reducing the tolerances for acceptable products while the number of 

varieties and overall demand for products continue to increase. Industry has reacted by turning to 

automation to address these grading and quality assurance needs. 

1.2 Automated Inspection 

The majority of inspection and grading tasks require the acquisition and processing of visual infor­

mation. In the context of industrial automation, this is handled using a machine vision system. If 

required, visual information may also be augmented with data from other sensors to properly assess 

product quality. 

Machine vision systems offer a number of potential benefits to industries which rely on manual 

quality assurance. Since most production facilities run continuously, defects may go undetected if 

an inspector looks away or experiences a lapse in concentration. On the other hand, a machine 

vision system can guarantee that 100% of the objects leaving the system are inspected. The rate of 

defect detection may fall below 100% but, by increasing the inspection rate, it may achieve higher 

defect detection rates than a human inspector. 

In addition to the reliability and repeatability of the grading system, industrial users require the 

ability to modify the grading scheme to meet changing market demands and customer criteria. A n 

automated system has a consistent internal representation of product and quality classifications. 

This representation may be redefined by adding or removing information which governs the decision 

making process. Such 'global' changes offer increased consistency and flexibility over trained workers 

who each maintain slightly different interpretations of quality [2]. 

A n automated system has the ability to collect on-line data about the process. This data may be 

used to close the control loop of the system. For example, the process parameters could be adjusted 

in response to fluctuations in the defect rate. This information may also be useful to marketing and 

sales departments who could tie the value of the product to documented quality levels. 

Finally, by reducing or eliminating the need for manual inspection, labour costs would be re­

duced. Automation may reduce burden of maintaining a trained workforce for seasonal industries 
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— either in retaining skilled workers or providing training for new-hires at the start of the season. 

A n automated system may also provide the potential for increased production speeds. 

The choice to adopt an automated solution must be balanced against the inherent disadvantages. 

Industrial systems require a capital expenditure for initial acquisition and installation that can be 

significant. For some tasks, manual labour or a combination of mixed automation and labour may be 

more cost effective. Humans are easily trained and can adapt to new conditions and criteria quickly. 

This contrasts with the setup and 'training' of an automated system which may be time-consuming, 

complex, and difficult to adapt. Also, while automation typically surpasses human capabilities for 

product throughput, humans are better able to handle unexpected events and tasks which involve 

a combination of inspection and handling operations, such as the patching of salmon cans [3]. 

1.3 The Need for Multiple Sensors 

Systems which have attempted to make multi-factored grading decisions on the basis of information 

from a single sensor have met with limited success. Despite the richness of information available 

from a colour camera, such a device can only produce a two-dimensional array of intensities from 

a single viewpoint. Features that may have a significant influence on the assigned grade may be 

occluded from view or require depth information for detection. Often, it is desirable to combine 

visual information with data from other sensors to improve the outcome. Possibilities include the 

combination of vision with simpler sensors, such as load cells and thermocouples, or the use of 

multiple cameras to eliminate occlusion or produce depth maps (through stereo vision algorithms). 

In addition to the advantages of using complementary information as mentioned above, multiple 

sensors may also provide redundant information to improve the accuracy and robustness of a system. 

1.4 The Industrial Problem 

The role of machine vision and multisensor integration is becoming widely accepted in the food 

processing industry [4,5]. Intelligent multisensor systems are intended to provide complementary 

qualities to the industrial user; namely, the repeatability and reliability of automation together with 

the feature discrimination, classification capability, and adaptability of humans. However, there are 
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two main problems with current industrial multisensor systems. 

First, in an effort to use multiple sensors to improve process performance, many systems have 

been constructed in an ad-hoc fashion. Pieces are added as new technology is acquired, often with 

the need to redesign significant portions of the existing system to facilitate the integration of the new 

sensors. Such systems lack a formal architecture and are typically designed by experts in machine 

vision and/or systems integration. This is a general problem for systems that have been designed 

and constructed for a specific task or operation. For industries competing in dynamic markets that 

require systems which can adapt to changing needs for speed, feature recognition, accuracy, and 

product differentiation, this approach is problematic. 

Second, much of the success of machine vision and multisensor systems is dependent upon the 

ease of use of these systems for industrial users. Such users may understand the process but not 

the details of the sensor technology. In order to achieve full acceptance, the associated sensor and 

artificial intelligence technologies must become transparent to the end user, so that process experts 

in the food industry do not have to understand the technical details. A completely transparent 

system is likely many years away. As a result, opportunities exist to develop systems which work 

towards this goal, while achieving the proper balance between utility and ease of use. Such systems 

should be orderly, comprehensible, and simple. 

1.5 Potential Benefits of a New Approach 

There is currently no accepted formal approach for the design and construction of a multisensor 

integration system for industrial inspection. A n open and scalable architecture wil l enable indus­

trial users to design systems which inherently reduce the risk of obsolescence. Systems may be 

reconfigured, modified, and adapted to respond to changing requirements and advances in sensor 

technology. 

By organizing the system in a manner that industrial users can understand, these same people 

can specify, configure, and maintain their own systems, without the need to retain outside experts. 

This places the power to define and modify the process with those that understand it best, reducing 

the need to transfer process knowledge to automation experts. 
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1.6 Project Scope and Objectives 

This work represents the first stage of an initiative to develop both a methodology to construct 

multisensor integration systems in a systematic way and to provide the tools required to do so. 

This thesis focuses on the development of the Extended Logical Sensor Architecture (ELSA) to 

allow for the systematic construction of a multisensor integration system for industrial tasks. In 

doing so, the underlying structure, the major components dealing with sensing and inference issues, 

the object representation, and the construction methodology are presented. It should be noted that 

while inspection is the focus of this work, it is intended to be applicable to a variety of automation 

tasks which may benefit from a multiple sensor perception system. Other potential applications 

include material handling, assembly, and machining operations. 

To address the industrial needs outlined in the sections above, E L S A is presented as new, open 

architecture approach for intelligent multisensor integration in an industrial environment. The 

specific objectives of this thesis are detailed below: 

1. To provide a modular and scalable architecture which serves as a robust platform for intelligent 

industrial sensing applications. 

2. To specify an encapsulation of physical devices and processing algorithms. 

3. To specify a data representation scheme which allows for the quantification of deviations from 

an ideal model. 

4. To ensure that the data representation scheme provides the user with insight as to how the 

system is structured and how the sensor information is used to make decisions. 

5. To provide a robust exception handling mechanism to ensure the reliability of an implemen­

tation of this architecture. 

6. To ensure that the architecture is applicable to a broad range of industrial applications, 

especially those involving non-uniform product grading. 
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1.7 Thesis Outline 

The structure of this thesis is summarized in the outline below: 

Chapter 1 Introduction: This introductory chapter. 

Chapter 2 Literature Review: Introduces literature from a variety of topics related to the problem 

of industrial multisensor integration. Topics include: visual inspection, multisensor 

integration, integration architectures, and object representation. 

Chapter 3 Object Modelling: Describes how objects are represented using an object model which 

also provides a basis for sensor selection and inference engine implementation. 

Chapter 4 System Architecture: Presents the overall structure of the Extended Logical Sensor 

Architecture (ELSA). Each of the major components, particularly those for sensing 

and inference, are detailed. 

Chapter 5 Construction Methodology: Discussion of the E L S A approach to the design of, and 

selection of components for, a multisensor integration system for industrial tasks. 

Chapter 6 Application Examples: Presents two illustrative example applications taken from in­

dustry. These serve to demonstrate how a system is implemented within the E L S A 

architecture. 

Chapter 7 Conclusions and Recommendations: Concludes the thesis with a summary which high­

lights the contributions of this work. Suggestions for future improvements to E L S A 

and related systems are also given. 



Chapter 2 

L i t e r a t u r e R e v i e w 

Herein, the relevant literature dealing with multisensor integration, visual inspection, and object 

modelling is presented. The majority of the work in the area of multisensor integration has focused 

on issues specific to mobile robotics and target tracking applications; however, many aspects of 

these systems are applicable to visual inspection. The object modelling literature, on the other 

hand, is closely tied to the image processing and machine vision research. This work is therefore 

a synthesis of the ideas from these different fields, applied to the problem of sensor integration for 

industrial inspection. 

2.1 Multisensor Integration vs. Multisensor Fusion 

Multisensor integration and multisensor fusion are closely related. The role of each in the operation 

of intelligent machines and systems is best understood with reference to the type of information 

that the integrated multiple sensors can uniquely provide to the system. Multisensor integration 

refers to the synergistic use of the information provided by multiple sensory devices to assist in the 

accomplishment of a task by a system [6]. The somewhat more restricted notion of multisensor fusion 

refers to any stage in the integration process where there is an actual combination (or fusion) of 

different sources of sensory information into one representational format. Fusion may occur at a low-

level (signal), mid-level (pixel), or high-level (feature or symbol) of representation. These definitions 

serve to distinguish the system-level issues relating to integration of multiple sensory devices at the 

architecture and control level from the more specific mathematical and statistical issues presented 

7 
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by the actual fusion of sensory information. In this work, the focus is on integration. 

2.2 Advantages of Multisensor Integration 
\ 

Automated systems which attempt to make multi-factored decisions about non-uniform products 

on the basis of information from a single sensor have had limited success. Often, there is simply 

inadequate data for a proper product assessment. The transition to multiple sensors can extend the 

capabilities and improve the robustness of existing systems. 

A system which employs multiple sensors may enjoy several advantages over single sensor sys­

tems [6]. The primary advantages are: information can be obtained more accurately and features 

undetectable with individual sensors may be perceived in less time and with less cost. Of these, 

redundant and complementary information are the most certain. 

Redundant information is acquired by a group of sensors (or a single sensor over time); each sen­

sor perceiving the same features in the environment. By integrating and/or fusing this information, 

the accuracy of the system can be increased by reducing the overall uncertainty. Redundant sensors 

also serve to increase the robustness of the system in the event of sensor failure. Complementary 

sensor groups, on the other hand, perceive features in the environment that are imperceptible to 

individual sensors. Each sensor provides a subset of the required feature space; these feature subsets 

are combined to obtain the intact feature. 

Little published work has been done in the area of non-specialized, sensor integration architec­

tures for industrial applications. Section 2.3 provides a brief review of general sensor integration 

architectures. 

2.3 Multisensor Integration Architectures 

A system architecture provides a framework upon which individualized systems can be built and 

adapted. For complex systems, an architecture is essential to ensure that the system is comprehen­

sible, robust, and that it is easily extensible. A n architecture for sensor integration systems must 

provide the following components: 
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• Data structure and communication protocols. 

• Resolution of information from sensors. 

• Data fusion/integration engine. 

• Exception handling. 

• Decision making (inference from sensory information). 

• Control mechanism or method of utilizing system output. 

A number of different architectures have been developed for the purpose of multisensor inte­

gration, each for a specific application such as mobile robot navigation and control, autonomous 

guided vehicles, military target tracking, and industrial control systems. While, on the whole, these 

architectures are not directly applicable to the task of industrial inspection and classification, each 

of the following examples presents some aspects which are potentially useful to this problem. 

Architectures developed for mobile robot navigation and control are primarily concerned with 

prioritizing objectives and ensuring that high priority (real-time) objectives are met. Brooks' sub-

sumption architecture [7] utilizes a number of different layers to ensure that while performing a 

high-level task, low-level operations continue to perform. For example, the task of chasing a mouse 

around a room is overridden by the goal of avoiding obstacles and this, in turn, is overridden by the 

need to maintain balance. Sensory information may be used differently by each layer; only those 

sensors which perception processing identifies as extremely reliable are used to maintain a central 

representation. 

A n action-oriented perception paradigm is utilized by the S F X architecture developed by Murphy 

[8,9]. Robot actions are decomposed into a motor behaviour and the perception of some object 

or event which drives the behaviour. Perception considers both the percept being sensed and a 

measure of certainty in the sensing. A cognitive science model proposed by Bower [10] is used as 

the basis for discordance-based sensor fusion to combine information from multiple sensors. There 

are four fusion modes as follows: 
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1. Complete sensor unity (fusion of sensor data). In this mode, sensor data is fused without 

a mechanism for detecting discordances. Sensory information is tightly coupled such that 

discordances do not arise. 

2. Awareness of discordance where recalibration is possible (integration of sensor data). Here, 

the discordance between sensors is reconciled by recalibration of the offending sensors. 

3. Awareness of discordance where recalibration is not possible (comparison of sensor data). In 

this case, sensors providing erroneous data are temporarily suppressed. 

4. No unity at all (independent use of sensor data). Sensors observe attributes without any 

spatial correspondence. Here, sensor data is used independently. 

In Murphy's architecture, sensing failures are handled by error classification and error recovery 

modules. Classification of the error type and source is attempted using a modified generate-and-

test procedure. Once the error source is identified, the error recovery module selects a predefined 

recovery scheme to either repair or replace the current sensing configuration. 

Lee [11,12] has developed the Perception Action Network (PAN) architecture which provides 

a mechanism for dealing with uncertainty in the process of data fusion. Feature Transformation 

Modules (FTM) , Data Fusion Modules (DFM), and Constraint Satisfaction Modules (CSM) are 

placed along the connections between logical sensors (to be defined shortly). These modules de­

fine relationships which allow the perception net to reduce uncertainties through data fusion and 

constraint satisfaction, in addition to identifying possible biases. 

Architectures developed for Autonomous Guided Vehicles (AGVs), are concerned with issues 

similar to those of mobile robotics. The approach taken by Draper et al. [13] in the development 

of the sensor integration system for the Mobile Perception Laboratory (MPL) was to focus on the 

types of information required to perform a task and the representations needed to express them. 

This shifts the use of data from multiple sensors from low-level fusion to higher-level integration. 

Another approach to an architecture for A G V s is presented by Shafer, Stentz, and Thorpe [14]. 

Sensor integration research within the military has focused on target tracking applications. The 

major issues here are proper synchronization, communication, and routing between sensor systems 

that are widely distributed. Architectures which have been developed include those by Iyengar et 
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al. [15,16] based on a multilevel binary de Bruijn network (MBD), Klein [17], and the object-oriented 

approach taken by Queeney and Woods [18]. 

The industrial operating environment is often quite different from the operating environments 

of mobile robots, A G V s , and target tracking systems. For these, the environment is assumed to 

be unstructured and largely unknown. A priori knowledge of lighting conditions, expected objects, 

obstacles, and failure modes is often unknown or unavailable. In an industrial context, many of these 

factors may be controlled. Additionally, industrial systems do not have to address the behaviour 

issues of mobile robotics. 

There are few integration architectures that have been developed to address problems specific 

to the industrial environment. One exception is the HINT architecture developed by Alarcon et al. 

This is a generic architecture for plant-wide industrial control [19]. It aims to support the integration 

of different artificial intelligence techniques to provide solutions to process control problems that 

currently require human expertise. While not directly applicable to industrial inspection and grading 

tasks, it presents some interesting ideas. In particular, the proposed methodological approach and 

hierarchical structure of the framework are useful starting points for the design of a new architecture. 

2.3.1 Logical Sensor-Based Architectures 

Sensors are one of the principal building blocks of a multisensor integration architecture. The data 

provided by sensors may be used as input to processing algorithms which combine and convert the 

data into higher level representations of the information. One approach that is well suited to the 

incorporation of sensors into a multisensor integration architecture is the logical sensor model. 

A logical sensor (LS) is an abstract definition for a sensor. Logical sensors were first defined 

by Henderson and Shilcrat [20] and later broadened to include a control mechanism by Henderson, 

Hanson, and Bhanu [21], Figure 2.1. This definition provides a uniform framework for multisensor 

integration by separating physical sensors from their functional use within a system. Logical sen­

sors are used to encapsulate both physical sensors and processing algorithms. This encapsulation 

defines a common interface for all sensor types allowing the straightforward addition, removal, and 

replacement of sensors within the architecture. 

Using this definition, physical sensors such as load cells, thermocouples, cameras, and laser 
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Figure 2.1: Basic components of a logical sensor as proposed by Henderson 
et al. [21]. 

range-finders may be represented. The data from these sensors may also be combined and processed 

using a variety of available algorithms. In this way, logical sensors, such as a line detector, which 

do not physically exist, may be made available to the user. Output from a variety of logical sensors 

may be combined to extract complex features. Physical sensors may be replaced or added without 

disturbing the entire system — only the associated logical sensor need change. 

The logical sensor model provides a control structure which allows for the selection of a dif­

ferent program (which may rely on different sensor inputs) should the sensor performance prove 

unacceptable. Control commands are generated from higher-level logical sensors. 

The original Logical Sensor Specification (LSS) handles error conditions in a simple manner. 

A n 'acceptance test' is used to judge each input. Inputs which pass the test are accepted and used; 

those that fail are rejected. Rejection results in the system attempting to obtain input from one of 

a number of alternate inputs. When all alternatives are exhausted, the sensor fails. The source of 

the error is not determined. Replacement rather than recovery is the only method of error handling. 

Weiler, Groen, and Hertzberger adopted the logical sensor concept and developed an architecture 

which uses a hierarchy of sensor modules [22]. Before replacing sensor modules in an effort to 

obtain correct input, an attempt is made to locate the cause of the error. If found, recovery is 

attempted through the adjustment of sensor parameters and/or input to the sensor. This approach 
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requires that the sensor itself contain expert knowledge for both the detection and isolation of error 

conditions, and the rules upon which the recovery strategy is based. This concept was further 

refined by Groen, Antonissen, and Weiler when applied to a model-based robot vision system [23]. 

Dekhil and Henderson extended the concepts introduced by Weiler et al. and introduced Instru­

mented Logical Sensor Systems (ILSS) [24-27]. The application was again mobile robot navigation. 

The ILSS, as shown in Figure 2.2, is an extension of the LSS. The primary difference between 

ILSS and LSS is the addition of components which provide mechanisms for on-line monitoring and 

debugging. These mechanisms are designed to increase the robustness of the sensor. For example, 

monitors use a set of rules to validate the output of the ILSS. The user is alerted to any undesired 

results. Local embedded testing is used for on-line checking and debugging purposes. These tests 

operate by generating input data designed to check different aspects of the module. The data may 

also be directed at other sensors to enable the testing of a group of modules. A set of rules and 

constraints is used to examine the resulting sensor output. 
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Figure 2.2: Instrumented Logical Sensor [27]. 

Using the ILSS, data from physical sensors may be combined and processed using a variety of al­

gorithms to create sensors which do not physically exist. A sensor system may be constructed which 

can extract complex high-level features. These features form the basis of the object representation 

for recognition and classification. 
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2.4 Sensor Technologies 

Sensors are most often classified in accordance with the type of physical phenomenon that is detected 

and the subject of measurement. Often sensors are developed to satisfy particular objectives. A 

large number of sensors exist for an ever increasing number of applications which utilize sensor 

technologies [28]. Table 2.1 presents examples of sensors which are particularly suited to industrial 

inspection tasks. 

Table 2.1: Examples of sensors for industrial inspection classified by type. 

Sensor Type Detection Data Detector 

Visual 

Position 

Distance 

Form 

Features 

Cameras, position sensors, range 
finders, line image sensors, area 
image sensors. 

Proximity 
Proximity 

Spacing 

Inclination 

Photoelectric switches, L E D 
lasers, phototransistors, 
photodiodes, ultrasound sensors. 

Tactile 
Contact 

Force 
Pressure 

Limit switch, metal detectors, 
strain gauges, conductive rubber, 
pressure sensors. 

Aural Sound Ultrasound sensors. 

Chemical 
Gas 
Odour 

pH 

Emission spectroscopy, 
chromatographs, densitometers, 
gravimeters, X-rays. 

Dynamic 
Weight 

Speed 

Load cells, accelerometers, 
anemometers, L I D A R . 

Typically, the sensor output signal is in the form of an electrical signal such as a voltage. The 

output could be in either analog or digital form. Since most current applications process sensor 

information using a computer, sensors which provide digital output are preferable. Analog signals 

are converted into a digital representation using an analog-to-digital (A /D) converter. 

Device drivers are required to interface between the hardware of the sensor and the processing 

system. These programs serve to package data and commands in a format that may be understood 

by both sides. Unfortunately, there is little standardization of sensor hardware — even for devices 
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that perform the same task. As a result, each sensor typically requires a unique driver. This reduces 

the interoperability of sensor technologies. 

2.5 Sensor Standards 

There is currently a major effort to develop a standard for the integration of sensor technologies. 

This effort, led by the the National Institute of Standards and Technology (NIST) and the Institute 

of Electrical and Electronics Engineers (IEEE), is working toward the development of the I E E E -

P1451 Standard for a Smart Transducer Interface for Sensors and Actuators. The goals of this 

standard are to: 

• Enable plug and play at the transducer level by providing a common communication interface 

for transducers. 

• Enable and simplify the creation of networked smart transducers. 

• Facilitate the support of multiple networks. 

The standard consists of four subsections: P1451.1 — Network Capable Application Processor 

(NCAP) Information Model, P1451.2 — Transducer to Microprocessor Communication Protocols 

and Transducer Electronic Data Sheet (TEDS) Formats, P1451.3 — Digital Communication and 

Transducer Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems, and P1451.4 

— Mixed-mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. 

Currently, draft versions exist for P1451.1 [29] and P1451.2 [30]. 

P 1451.1 specifies networking support for a transducer. The objective is to develop standardized 

connection methods for smart transducers to control networks. Little or no changes should be 

required to use different methods of A / D conversion, different microprocessors, or different network 

protocols. This objective is achieved through the use of a common object model, together with 

interface specifications to these components. There are two key views of the networked smart 

transducer, as shown in Figure 2.3. 

The Smart Transducer Object Model provides two key interfaces. The first, to the Transducer 

Block, encapsulates the details of the transducer hardware implementation within a simple pro-
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( N E T W O R K B L O C K ) (P1451.1) ( T R A N S D U C E R B L O C K ) 

Figure 2.3: Networked smart transducer model [29]. Physical components 
are shown by solid lines; dotted lines indicate logical compo­
nents. 

gramming model. This results in the sensor or actuator hardware appearing like an I/O-driver. 

The second is the interface to the Network Block. This interface encapsulates the details of the 

different network protocol implementations behind a small set of communication methods. These 

logical models and interfaces are used in defining a data model for the smart transducer that is 

supported by the network. 

P1451.2 provides an interface specification to allow the interoperability of transducers. It allows 

for self-identification and configuration of sensors and actuators while allowing extensibility so that 

vendors may provide for growth and product differentiation. The Transducer Electronics Data 

Sheet (TEDS) provides a mechanism to specify a combination of transducer, signal conditioning, 

and signal conversion to the rest of the system; it does not specify the actual signal conditioning or 

data conversion methodologies. T E D S contains fields that fully describe the type, operation, and 

attributes of one or more transducers. The T E D S is physically associated with each transducer, 

encapsulating the measurement aspects of a Smart Transducer Interface Module. 

The interfaces specified in P1451.1 and P1451.2 are optional in that an implementation may 

adopt one without the other. For example, if a transducer is networked but support for interop­

erability is not required, the P1451.1 Object Model may be used without the P1451.2 Interface 
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Specification. Similarly, if networking is not supported, or the network implementation is closed, 

P1451.1 does not have to be used to get the benefits of interoperability provided by P1451.2. 

These standards have been developed to support a wide variety of transducers as well as a digital 

interface to access the T E D S , read sensors, and set actuators. This allows transducer manufacturers 

to differentiate themselves not by the supported interface(s), but by cost, feature set, and quality. 

Manufacturers design to a common interface which can be used by a variety of applications. 

By providing a standard low-level interface, these smart transducers may be easily integrated 

into a sensor system. This model extends to the device level the concepts of modularity and 

flexibility that are desirable in a multisensor integration system. A truly encapsulated system may 

then be constructed — from high-level integration and processing algorithms to the low-level sensing 

devices. 

2.6 Industrial Applications 

In the area of quality assessment and assurance, machine vision is often used to gather the bulk 

of the required information, especially for the grading or classification of non-uniform (biological) 

products. Other sensors, such as scales, mechanical measurement devices, and ultrasound are 

employed to gather information that is used to enhance the machine vision data. Industrial systems 

which employ machine vision perform one or more of the following activities [4]: 

Gauging: Performing precise dimensional measurements. 

Verification: Ensuring that one or more desired features are present and/or undesired fea­

tures are absent. 

Flaw detection: Location and segmentation of undesired features which may be of unknown 

size, location, and shape. 

Identification: Use of symbols, including alphanumeric characters, to determine the identity 

of an object. 

Recognition: Use of observed features to determine the identity of an object. 

Locating: Determination of object location and orientation. 
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The controlled environment of an industrial plant greatly simplifies the generic recognition prob­

lems considered by many machine vision researchers. Segmentation is simplified by knowledge about 

both the objects and the background against which objects must be segmented. Typical production 

arrangements involve the use of conveyor belts which serve to provide physical separation between 

the objects being transported. This separation eliminates the need for algorithms which perform 

well when objects are occluded; such algorithms are typically computationally expensive. In addi­

tion, structured and predictable lighting is possible, further simplifying the object recognition task 

by ensuring that objects appear under the same intensity of light and shadow field. This improves 

feature discrimination, reduces processing time, and reduces processing hardware requirements [4]. 

There have been a number of vision-based multisensor systems developed for quality assurance 

and assessment over the past decade. In most of these applications, ad-hoc methods are used to 

develop a sensor integration system to monitor the process. Such systems lack a formal architecture 

and are typically designed by experts in machine vision and/or systems integration. This can result 

in difficulties with the use and maintenance of the system for the everyday user. Additionally, 

upgrading the system to change or add additional sensors and/or requirements often requires the 

system to be redesigned. This is a problem for industrial users whose requirements in terms of 

speed, feature recognition, accuracy, and other process monitoring parameters invariably change 

over time. A number of examples of recent industrial systems follow. 

Luzuriaga, Balaban, and Yeralan [31] have developed a system for the machine vision inspection 

of white shrimp. The back-lit shrimp are inspected by a single colour C C D array camera for colour 

and 2D shape features. Colour changes and melanosis development of the stored shrimp are used as 

a basis of evaluation. Additionally, the weight of each shrimp is estimated from the 2D view area. 

While designed for and tested in an industrial environment, this system relies on manual placement 

and turning of each shrimp. 

A similar system for catfish feature identification was developed by Jia, Evans, and Ghate [32], 

though it was concerned primarily with the detection of the head, tail, and fins. These features 

were then used to determine appropriate cutting lines for processing. 

Daley et al. [33] are working towards the automation of poultry grading and inspection. This 

system uses a colour C C D camera to obtain information regarding the HSI colour, size, and shape 
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of each bird. Global defects are identified with a 96% success rate; local defects are identified only 

about 60% of the time. This is due to the increased difficulty in extracting the local features. To 

properly address the problem, additional sensors are required to allow for the measurement of the 

surface texture and structure. 

A low-cost system for fruit and vegetable grading was developed by Calpe et al. [34] as an 

alternative to expensive commercial systems. This open platform may handle up to 12 lanes simul­

taneously at a speed of 10 items per second. Classification is based on R G B colour information. 

Conveyor rollers mechanically separate and rotate the fruit. The captured image contains two lanes 

with four pieces of fruit in each lane. A colour index is computed for all eight pieces as the con­

veyor moves forward and another image is taken. In this way, four images of each piece of fruit are 

acquired; the rollers ensuring that the majority of surface area is considered. Currently, a grading 

decision is made by averaging the colour information. 

Recent work in the Industrial Automation Laboratory at the University of British Columbia 

has involved the grading of herring roe skeins [35-38]. Images obtained with a C C D camera are 

processed to extract colour, contour, and curvature information. Skein weight is estimated from 

the 2D area using a multiple-regression estimator. Firmness is estimated from the brightness of 

ultrasonic echo images. A l l of this information is combined to determine a classification for each 

roe. Grading accuracy ranges from 72%-95%. Classification accuracy between Grade 1 and Grade 2 

roe is about 95%; however, the system is less successful at subclassifying the Grade 2 roe into various 

sub-grades. Additional sensors are required to improve the overall performance of the system. 

Other applications which make use of sensory information for grading and classification include 

potato grading [39], shrimp inspection [31], material surface inspection [40], printed circuit board 

inspection [41], and visual inspection of unsealed canned salmon [42]. 

A number of proprietary industrial systems exist for product inspection and classification. These 

include the QualiVision system from Dipix Technologies Inc. for the quality control of bakery and 

snack food products. This system uses 3D imaging to assess product consistency to 10 microns [43]. 

Lumetech A / S has developed the Fisheye Waterjet Portion Cutter for trimming and portioning fish 

fillets [44]. Lullebelle Foods Ltd . utilizes a cell-based vision system to eject unripe blueberries from 

the processing line [45]. Key Technologies Inc. offers the Tegra system for grading agricultural 
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products according to size and colour [46]. Typically, such systems sort products based on 1-2 

discrete thresholds. 

2.7 Uncertainty and Accuracy 

There are a number of standard terms [47] which may be used to describe the validity of sensor 

data and the analysis of uncertainty. As the use of this terminology has not been consistent in the 

literature [48], a brief review follows: 

Error is defined as the difference between the measured value and the true value of the measur-

and, as illustrated by Equation (2.1). 

There are two general categories of error which may be present: bias errors (systematic or fixed 

errors) and precision errors (random errors) [49]. Both degrade the validity of the sensed data, 

though the causes of each are different and each is minimized in a different manner. 

Bias errors are consistent, repeatable errors; however, they are often not obvious and considerable 

effort is usually required to minimize their effects. There are three forms of bias error. The first, 

calibration error, is the result of error in the calibration process, often due to linearization of 

the calibration process for devices exhibiting non-linear characteristics. The second source of bias 

error is loading error. This is due to an intrusive sensor which, through its operation, alters the 

measurand. Loading error may be avoided through the use of nonintrusive sensors. Lastly, a bias 

error may result from the sensor being affected by variables other than the measurand. Bias errors 

are defined by Equation (2.2). 

error = measured value — true value (2-1) 

bias error = average of readings — true value (2-2) 

Precision errors are caused by a lack of repeatability in the output of the sensor. These are 



2.7 Uncertainty and Accuracy 21 

denned by Equation (2.3). Bias errors and precision errors are contrasted in Figure 2.4. 

precision error = reading — average of readings (2.3) 

TRUE VALUE RANGE OF 
PRECISION ERROR 

X X X — • ^ - X - X — X -

BIAS ERROR 
MEASURAND 

AVERAGE OF 
MEASURED VALUES 

Figure 2.4: Distinction between bias error and precision error. 

Precision errors can originate from the sensor itself, the industrial system, or from the environ­

ment. They are usually caused by uncontrolled variables in the sensing process. 

Uncertainty is an estimate (with some level of confidence) of the limits of error in the mea­

surement. The degree of uncertainty may be reduced through the use of calibrated, high-quality 

sensors. Accuracy is a term commonly used to specify uncertainty. It is a measure of how closely a 

measured value agrees with the true value. Precision is used to characterize the precision error of a 

sensor. In general, the accuracy of a sensor cannot be any better than the measurement constraints 

provided by the sensor precision, and often, is much worse. 

Accuracy is often degraded by hysteresis errors (bias), resolution errors (precision), repeatability 

errors (precision), linearity errors (bias), zero errors (bias), sensitivity errors (bias), and drift and 

thermal stability errors (precision), among others. 

Digital signal processing requires the conversion of analog sensor signals into digital form. A / D 

converters are used for this purpose; however, they are prone to three bias errors: linearity, zero, 

and sensitivity (or gain) errors. Since the output of an A / D converter changes in discrete steps, 

there is also a resolution error (uncertainty) known as a quantizing error, which is a type of precision 

error. Together, these errors are known as elemental error sources. 

To facilitate the identification and comparison of sensing errors, A S M E / A N S I suggests grouping 

elemental errors into three categories: calibration errors, data acquisition errors, and data reduction 

errors [47]. Calibration errors originate in the calibration process and may be caused by uncertainty 
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in standards, uncertainty in the calibration process, and randomness in the calibration process. 

Hysteresis and non-linearities are usually included here. Data acquisition errors are introduced 

into the measurement when the sensor is making a specific measurement. These include random 

variation in the measurand, loading errors and A / D conversion errors. Data reduction errors are 

caused by a variety of errors and approximations used in the data reduction process. 

Grading and inspection tasks rely upon various sensors to obtain information about the objects 

under consideration. Accurate decisions require that the sensed information be valid and robust. 

Validation of data through sensor integration provides one mechanism by which uncertainty may 

be represented and collaboratively reduced. A multisensor integration system must check for errors 

which are the result of unexpected events, such as sensor malfunctions or environmental changes, 

which cause a device to fail to perform within specifications. If found, an attempt must be made 

to correct the cause of the error. This is usually handled through an exception and error handling 

mechanism. 

2.8 Object Modelling 

To utilize a multisensor architecture for object grading, a model of the object is required. A n object 

model is necessary for a computer system to perform object recognition. The model provides a gen­

eralized description of each object to be recognized. The model is used for tasks such as accurately 

determining object boundaries in an image and choosing an object's best class membership from 

among many possibilities. For industrial grading applications, the object model must represent the 

important features which designate the 'grade' or value of a particular object. Ideally, the model is 

simple to construct. 

Methodologies for object recognition and representation abound; however, much of the research 

in the field has focused on the recognition of generic objects, categorizing objects into broad group­

ings [50]. Many of these are further limited by requiring geometric representations of the ob­

jects [51,52]. Wi th the exception of facial and handwriting recognition [53-55], little work has been 

done to develop systems capable of detecting subtle differences. This is the requirement of an in­

dustrial inspection and grading system where objects are classified on the basis of subtle differences. 

The problem is not one of differentiating an apple from an orange, but rather one of discriminating 
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the quality of a particular apple based on such cues as colour, size, weight, surface texture, and 

shape. Despite this, there are a number of object models which have been developed which are 

applicable, at least in part, to the product classification problem. 

Studies into how humans perform object recognition have yielded some interesting results. Bie-

derman [56] has suggested that objects are recognized, and may therefore be represented, by a small 

number of simple components and the relations between them. These simple geometric components 

are called geons (for geometrical ions). Objects are typically segmented at regions of sharp concav­

ity. Geons and relations among them are identified through the principle of non-accidentalness. In 

other words, critical information is usually represented by nonaccidental properties — an accident 

in viewpoint should not affect the interpretation. These basic phenomena of object recognition 

indicate the following: 

1. The representation of an object should not be dependent on absolute judgments of quantitative 

detail. 

2. Information which forms the basis of recognition should be relatively invariant with respect 

to orientation and modest degradation. 

3. A match should be achievable for occluded, partial, or new exemplars of a category. 

These ideas form the basis for the theory of recognition-by-components (RBC) . The associated 

stages of processing are presented in Figure 2.5. This indicates that for feature-based recognition 

distinguishing features are used to recognize and differentiate objects. This method is efficient, as 

it is not necessary to discriminate every feature of every object. By closely modelling the object 

representation to the human methodology, this scheme may also have the advantage of being more 

intuitive to the user. 

A n interesting parallel may be drawn from this to the series of steps that a typical vision-based 

grading system follows in recognizing and classifying the objects in a given image, as illustrated by 

Figure 2.6. 

Havaldar, Medioni, and Stein [57] have developed a system for generic recognition based on 

Biederman's ideas. Images are processed to extract edge sets from which features of parallelism, 

symmetry, and closure are identified. These features are then grouped and represented within 
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Figure 2.5: Presumed processing stages in human object recognition [56]. 
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Figure 2.6: Four steps in object grading. 

an adjacency matrix. This is a robust system, able to recognize objects which deviate from the 

exemplar; however, it is not designed to recognize the deviations themselves — a requirement for 

object classification. 
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A feature-based object model was developed by Tomita and Tsuji [58] for object recognition from 

texture features. Their primary application was a system designed to recognize various structures 

of the human brain visible in computed tomography (CT) images. 

Objects are represented by a connected graph structure as shown in Figure 2.7. Each node 

represents a kind of object to be recognized in the image; the root node represents a category of 

image. The node contains slots for the name, the type of unit in the image, and the properties of 

the unit. Nodes which are white indicate that the object is always recognized; black nodes signify 

that the object may not always be present, as in the case of abnormalities. Solid links are used to 

represent a parent-child relationship between nodes. Dotted links represent an OR relationship — 

only one of the linked objects will be recognized. This relationship may be used to represent an 

object which, due to possible variations, cannot be defined by a single node. 

- O FH1 

- O FH2 

HEAD 

Figure 2.7: Model used to recognize cranial C T images [58]. White nodes 
indicate brain features that are always present; black nodes rep­
resent abnormal features. 

Models are built in an interactive manner. Programs are selected and applied to input images 

to extract the desired features. Parameters are adjusted until the desired results are obtained. 

Successfully extracted units are identified to the system. Each unit generates a new node in the 

graph; each unit may be further subdivided into smaller units. Once the initial model has been 

constructed, the model may be refined by adjusting the program parameters, adjusting the object 
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properties and/or relations, declaring an OR relationship between objects, or by specifying that an 

object may not always be present. 

Other feature-based systems include the work of Han, Yoon, and Kang [40] who identify a 

number of features for automatic surface inspection. Lang and Seitz [59] represent and recognize 

objects through the use of a number of hierarchical feature templates. 

Fuzzy logic has been used by a number of researchers to describe varying relationships between 

features. Cho and Bae [60] describe objects in terms of functional primitives which are constructed 

from extracted shape primitives. A n object is represented by a collection of these primitives related 

by fuzzy memberships. Luo and Wu [54] and Lee and Huang [55] have developed methodologies 

for handwritten Chinese character recognition. In these systems, each stroke is extracted from 

the character as a feature. Features are then classified as particular stroke types, each with an 

associated degree of fuzziness. The classified features are then combined based on connectedness 

and regularity to arrive at a predefined character classification. 

While none of these approaches are directly applicable to representation of non-uniform products 

for the purpose of classification, each presents some interesting ideas for the basis of such an object 

model.; A feature-based system will allow for the efficient representation of the distinguishing 

characteristics of objects to be classified. Fuzzy logic provides a mechanism by which human 

expertise may be applied in a form very close to our natural language [61]. Relating object features 

with fuzzy membership functions should enable the system to incorporate human expertise for the 

determination of object classifications. 



Chapter 3 

Object Modelling 

3.1 Introduction 

A n intelligent system which attempts to perform object recognition must have a facility for percep­

tion. Machine perception consists of converting raw sensor information into a form which may be 

utilized within the system to accomplish a task. To facilitate this conversion, an object model is 

used as the interface between the real environment and the internal processes which are dependent 

on the external information. The object of interest is represented by the object model through char­

acteristic properties and relationships between features, with a particular focus on those features 

which are most relevant to the application. Therefore, an object model is a generalized description 

of each object to be recognized. 

As discussed in Section 2.6, demand for improved automated quality assurance systems has led 

to the development of a number of vision-based multisensor systems. Typically, these systems are 

unstructured, complex, and difficult to maintain and modify. To enable industrial users to better 

react to changing market conditions and improved technology, a formal approach to system design 

is needed to replace these ad-hoc systems. 

In this work, the Extended Logical Sensor Architecture (ELSA) has been developed to address 

a number of these limitations in current industrial practice. The purpose of this architecture is to 

3.2 Rationale 

27 
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provide a structured, yet flexible methodology for building robust sensor systems aimed at product 

inspection. A well-defined, structured object model is the starting point of this organized approach 

to the design and construction of a multisensor integration system. 

There are two objectives that determine the structure of the object model used within E L S A . 

The first objective is to provide a representation for objects which exhibit deviations from an ideal 

template or model, or an object for which an ideal cannot even be concretely established. The 

model should allow for the representation of both quantitative and qualitative information. This 

addresses a problem of particular relevance to non-uniform product inspection and grading. The 

structure of the model should provide users with an intuitive understanding of how to construct 

and represent real-world objects. 

The second objective is to develop the object model as a guide for the selection of components 

and construction of an E L S A system. The features represented in the object model should guide 

the selection of the sensing devices and/or processing algorithms required to extract them. The 

high-level representations of the object and its classifications should provide a basis for inferring 

the proper identity of the object from the extracted features. 

The object model then serves two purposes: (i), In the completed system, the object model is 

used to recognize and represent objects that are presented to the system sensors; (ii), once defined, 

it may be used to specify the components that are necessary for the system to identify and classify 

objects. 

3.3 Approach to Modelling 

There are two approaches which may be taken towards object modelling for classification and 

grading. They differ in the how the object is represented and therefore how it is identified. 

The traditional approach to object recognition attempts to identify an entire object based upon 

the features contained within the object model [50,62]. Once an object has been identified, extracted 

object properties may then be used for further evaluation based on attributes such as size, colour, 

and mass. Recognition proceeds in a top down manner from the root nodes of the model graph, 

which represent the different objects or object classifications. The selection of a particular parent 

is contingent on the successful identification of all descendant objects. Should the system fail to 
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find an expected object at a particular level, the system returns to the previous level and attempts 

to follow another branch. If a proper match cannot be found, the system issues an error message 

requiring the user to improve the object model. 

The second approach defines object models somewhat differently. Instead of attempting to 

identify an object based on the discrimination of every feature of the object, only distinguishing or 

characteristic features are extracted. These features are then combined to produce object classifi­

cations. The presence or absence of particular features and the associated object properties may 

then be used to classify the object into a particular grade. This idea is supported by the theory of 

recognition-by-components (RBC) [56], which suggests that objects may be represented by a small 

number of simple components. 

It is this feature-based approach that is adopted herein. Unlike the first approach which is 

best suited to simple objects, it is applicable to both simple and complex models. Objects that 

demonstrate deviation from an ideal model may be represented using appropriate features combined 

into classifications. Additionally, by identifying only those features necessary for object recognition 

and/or classification, the storage requirements for object representation are reduced. Concentration 

on distinguishing features also reduces the processing requirements for the extraction of features 

from the environment. 

3.4 Model Structure 

In the E L S A object model, objects are represented by a connected graph structure similar to that 

proposed by Tomita and Tsuji [58]. The components of the structure are shown in Figure 3.1. This 

is a top-down representation of an object, consisting of a number of layers of abstraction. Object 

nodes are used to represent salient features of an object. The object itself is represented at the 

highest level of abstraction within the classification layer. Below this lie nodes representing the 

high-level features upon which classifications are made. Traversing down the graph, further into the 

feature layer, other nodes represent the mid and low-level features of the object. Each subsequent 

level becomes more and more detailed. This enables compact and efficient object models. Only the 

level of detail required for identification or classification need be specified. 

This approach allows for scalable complexity of the object model. By adding nodes and layers 
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Figure 3.1: Graph structure for object representation. 



3.4 Model Structure 31 

to the graph, models may be made as simple or complex as required to properly model the objects 

considered by the system. The hierarchical structure minimizes the disturbance to the model should 

a feature used for classification require modification. Thus, refinement may focus on specific features 

and classifications without disturbing other classifications. 

3.4.1 Classification Layer 

The classification layer represents the kind (grade, grouping, category) of the object. Different 

object classifications may be grouped within the classification layer because they each share similar 

features or qualities. This is the principle advantage of feature-based object recognition. The 

features common to each object need not be specified. Rather, the features that distinguish one 

object from another are used. For example, a classification layer could represent apples; different 

classifications could include ripe, bruised, large, and small. The common features describing the 

general characteristics of all apples: stem, skin, shape, etc., need not be articulated. 

Each classification is defined by associating it with the appropriate primary features. Associa­

tions are made using fuzzy links, which are described in Section 3.6.3. A n object whose relevant 

features are invariant or which does not require classification may be defined with a single node in 

the classification layer. 

3.4.2 Feature Layer 

A feature is defined as a distinct quality, detail, characteristic, or part of an object. A n object may 

be described and recognized as a collection of features. The E L S A object model categorizes features 

based on the level of abstraction. The highest-level features are termed primary features. These 

features are linked directly to the classification layer and serve to define each classification. 

Most primary features are themselves composed of one or more subfeatures. Subfeatures repre­

sent lower-level, less abstract features. As the graph is traversed downward, features become more 

specific and detailed. At the extreme, the lowest-level subfeatures are called atomic features. These 

represent features that are indivisible. The unprocessed data from a sensor is often represented as 

an atomic feature. The nodes of the feature layer are connected with unconditional links. 
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3.5 Properties of Objects 

Within the data representation, objects may have two different types of properties, namely: physical 

object properties and relational properties. Relational properties are dependent upon the extraction 

of a pair of physical properties which are then related in some way. Due to this increased complexity, 

objects are modelled using only physical object properties whenever possible. 

3.5.1 Physical Properties 

Physical object properties are used to describe intrinsic qualities of an object. Each property is 

characterized such that it may be considered independently from any others. Examples of physical 

object properties include position, mass, temperature, shape, colour, intensity, and texture. 

These properties are represented within the model structure with the appropriate data structure. 

For example, colour may be represented at a low level with a data structure containing the R G B 

(red, green, blue) or HSI (hue, saturation, intensity) channel values. Abstractions may occur such 

that the degree of a particular colour value is interpreted from the HSI data. Such a data structure 

could indicate the hue, e.g. RED, and a value that specifies the 'redness' of the object. This value 

could be a measure in the range [0-1]: 0 representing no presence of red; 1 complete red saturation. 

Similar structures would be defined for other types of physical properties. 

3.5.2 Relational Properties 

Relational properties describe an object in relation to other objects. Unlike physical object prop­

erties, each relational property is dependent upon at least one other object. Symmetry, adjacency, 

relative position, and relative orientation are examples of relational properties. 

Whereas physical properties are computed for each feature extracted, it is unlikely that all of 

the possible relations between each pair of objects can be computed, even for a small number of 

objects. This is due to the large number of relations which may be defined. Therefore, only those 

relations which are specifically identified by the user are computed. A relation between objects is 

defined only when the system in unable to recognize objects based on the physical properties of the 

objects themselves. 

Relational properties are represented within the structure of the object model using a data 
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structure which contains a field for each object, a field to identify the type of relation, and a field 

for parameters which specify exactly how the objects are related. 

3.6 Model Components 

The object model is comprised of a number of different components. Object nodes are used to 

represent object features. Subfeature dependencies are represented using unconditional links; object 

classifications are specified using fuzzy links. The following subsections provide details about each 

component. Implementation issues are discussed in Appendix A . 

3.6.1 Object Nodes 

Each node of the graph represents a recognizable object or feature. A n object may refer to the 

representation of any signal, attribute, or thing which may be recognized by the system. These 

may be complex features extracted from information provided by one or more sensors. Each node 

may be a parent node, that is, it is associated with one or more child nodes which further detail 

features of the parent node. In other words, the child nodes are representative of the subfeatures 

of the parent node. For example, a parent node may be the size of an apple, while child nodes may 

include the volume, area, and height of the apple. Alternatively, a node may contain simple crisp 

measurements provided by a single sensor, for example, mass and temperature. Primary features 

are represented by root nodes that, by definition, do not have a parent. The components which 

comprise the object node are outlined in Table 3.1. 

Table 3.1: Components of object node for feature representation. 

Component Description 

Object 
Name Uniquely identifies the object or feature. 

Object Type Indicates the type information that this particular node represents. 
Physical 
Properties 

Data structure for the physical properties of the feature. 

Relational 
Properties 

Data structure for the relational properties of the feature, if 
required. 

Free Tag If set, it indicates that this feature may not always be present. 
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The node structure contains the name of the object, the type of object, and the object properties. 

Nodes that represent features which are not always present are marked by a free node tag. This 

usually applies to features that correspond to object classifications that are defective or otherwise 

deviate from the ideal. Links to parent and child nodes are maintained within the structure. This 

is illustrated in Figure 3.2. 

PARENT NODE 
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OBJECT 
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Figure 3.2: Object node for feature representation. 

Classification nodes, Figure 3.3, may be considered as a special case of an object node. They do 

not have parents, do not maintain object properties, and do not have free node tags. Instead, the 

primary features upon which the classification is dependent are stored along with the corresponding 

fuzzy feature descriptions. 

CLASSIFICATION 
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Figure 3.3: Classification node. 
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3.6.2 Unconditional Links 

Unconditional links are used to represent parent-child relationships between features. They are 

unconditional in that the relationship between the nodes (which correspond to features) is constant 

and is not modified in any way. Unconditional links are stored within the nodes as pointers. 

Graphically, they are represented as a solid line. 

3.6.3 Fuzzy Links 

Similar to unconditional links, fuzzy links represent a relationship between object classifications and 

primary features (root object nodes). They differ by attaching additional information in the form 

of a fuzzy descriptor. The fuzzy descriptors are used by the classification nodes to help assess how 

the primary features contribute to the representation of the object. Fuzzy descriptors are realized 

using fuzzy logic membership functions. 

Fuzzy logic provides a mechanism by which human expertise may be applied in a form very 

close to our natural language [61]. This enables the system to incorporate human expertise relating 

features to the determination of object classifications. This is especially useful for applications such 

as non-uniform product grading that tend to use subjective interpretations of product quality. For 

example, the ripeness of an apple may be described using linguistic variables such as not very red, 

sort of green, and slightly red as opposed to some quantification of apple colour in R G B or HSI 

colour space. Such descriptors may be constructed from a number of atomic terms as discussed by 

Zadeh [63]. 

3.6.3.1 L ingu i s t i c variables 

Linguistic variables are in the form of natural language phrases. They are used to label fuzzy subsets 

from the universe of discourse, U. A linguistic variable x, over the universe U = [1,100] of weight, 

may have values such as: light, not light, very light, not very light, heavy, not very heavy, not light 

and not heavy, etc. 

In general, the value of a linguistic variable is a composite term x = x\X2 • • • xn. In other words, 

a: is a concatenation of atomic terms x\,- • • , xn. There are four categories of atomic terms: 
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1. Primary terms, are labels of specified fuzzy subsets of the universe of discourse, (e.g. light 

and heavy). 

2. The negation not and the connectives and and or. 

3. Hedges, such as very, much, slightly, more or less, etc. 

4. Markers such as parentheses. 

Hedges are used to generate a larger set of values for a linguistic variable from a small collection 

of primary terms. Hedges allow definition of subsets while maintaining a minimum set of primary 

terms. They are particularly useful for translating human descriptions into mathematical notation. 

The hedge h may be regarded as an operator, h transforms fuzzy set M(u) into the fuzzy set 

M(hu). These form the foundation for information granulation and computing with words. 

For example, consider the hedge definitely which acts as an intensifier. This hedge may be 

implemented as a concentration operation. Like all hedges, it generates a subset of the set upon 

which it operates. Therefore, definitely x, where a: is a term, may be defined as: 

definitely x = x2 (3.1) 

or, more explicitly: 

(3.2) 

This is further illustrated by the following equations, plotted in Figure 3.4. 

x = heavy object 
(3.3) 
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x2 = definitely heavy object 

-2 (3.4) 
lv 

1 + 

HEAVY DEFINITELY 
HEAVY 

0 

Figure 3.4: Effect of hedge definitely. 

Linguistic variables constructed from these atomic terms are used to describe how primary fea­

tures relate to object classifications. A minimum set of primary terms is chosen for a given feature 

or classification. In most cases, this will be a pair of descriptors such as: cold/hot, young/old, 

light/dark, small/large. Additional classifications are achieved through the use of negation, connec­

tives, and hedges. 

3.6.3.2 M e m b e r s h i p functions 

Linguistic variables are associated with fuzzy membership functions. These membership functions, 

referred to by the linguistic variable, are used to define the fuzzy descriptors used to construct 

object classifications. 

Many features, such as shape and texture, are not easily quantified. To enable the classification 

of such features, the membership functions no, low, and high are used to express the confidence in 

the detection of the feature. These may also be thought of as describing a feature as does not belong 

to the class, could belong to the class, and (definitely) does belong to the class. As shown in Figure 

3.5, these functions span the universe 0 to 1. This is intended to provide users with an intuitive feel 

for the specification of classifications. The user does not consider values or fuzzy membership, but 

rather the linguistic variables no, low, and high. 
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CONFIDENCE 
IN FEATURE 
DETECTION 

Figure 3.5: Membership function used to represent confidence in the detec­
tion of a particular feature. 

For features that are easily quantified, such as length and mass, the universe of discourse (range 

of expected values) is specified along with linguistic variables for the classifications in this universe. 

Triangular or trapezoidal membership functions centred at the mean values of each variable are 

used, since with sufficient representation the membership function shape is not critical [64]. The 

choice to use trapezoidal membership functions is based on the need to encompass a broad range of 

values by a single fuzzy label. Most often this is at the limits of the universe of discourse, but may 

also be used to specify narrow overlapping regions between labels while using a minimum number 

of labels to cover the universe of discourse. 

3.7 Model Definition 

The object model is defined by first identifying the primary features. Each is associated with 

an object node which occupies the top of the feature layer. If necessary, each primary feature is 

decomposed into subfeatures — each represented by an object node. These are linked together 

using unconditional links. 

The definition of the classification layer follows. Object classifications are associated with classi­

fication nodes. These are then linked to appropriate primary feature nodes using fuzzy links. Each 

fuzzy link is assigned a fuzzy descriptor which describes how the feature is used to represent the 

classification. The detailed algorithm used for the construction and refinement of the object model 

is presented in Chapter 5. 
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3.8 Summary 

In this chapter, the object model used by the architecture has been presented. This structure 

satisfies two objectives. The first is to provide a representation for features and objects which 

allows for the quantification of deviations from an ideal model. Secondly, it provides a structure 

by which the user may easily understand how objects are modelled while guiding the selection of 

sensing devices and the development of the inference engine. These components are presented as 

part of E L S A in the following chapter. 



Chapter 4 

System Architecture 

4.1 Introduction 

This chapter presents the basic structure and functions of the Extended Logical Sensor Architecture 

for multisensor integration. A system designed using the principles of E L S A is composed of a 

number of different modules. The primary modules are the logical sensors and inference engine. 

Other modules — such as those for integration, validation, and diagnostics — provide vital, though 

secondary, support to the operation of the system. 

The definition and construction of an ELSA-based multisensor system is based on the object 

model outlined in Chapter 3. The feature layer guides the selection and interaction of sensor 

components. The classification layer is used to construct a rulebase which defines how the sensor 

information is used and what the system can infer from it. 

The relationship between the object model and the system architecture allows the system to be 

designed with inherent modularity and scalability. Additionally, by utilizing a standard approach, 

components may be shared and reused by applications with differing object models and logical 

sensor hierarchies. Examples of the construction of an E L S A system are given in Chapter 6. 

The E L S A architecture may be decomposed into three groups, according to the following tasks: 

1. Sensing: The acquisition of information from the environment which is used as the basis for 

inference and decision making. 

2. Inference: The combination of the sensory information with information contained in a 

40 
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knowledge base to infer decisions. 

3. Action: The conversion of decisions into commands and signals which control process ma­

chinery. 

The structure of E L S A is illustrated in Figure 4.1. A n object-oriented approach to the system 

configuration has been adopted. The encapsulation of the primary components leads to a scalable 

and flexible system which is particularly suited to industrial grading tasks. The system may be 

easily reconfigured to adapt to advances in sensor and processing technologies or changing market 

demands. Due to the nature of industrial inspection and grading, the primary focus of this work is 

on the sensing and inference groups. 

Sensing is performed by the coordinated actions of the sensors, the Integration Controller, and 

the Validation and Diagnostic modules. Sensors are encapsulated by a logical sensor model. The 

Integration Controller is capable of coordinating the reconfiguration of the sensor hierarchy to meet 

process goals. This is assisted knowledge by contained in the Knowledge Base which is shared with 

the Inference Engine. 

Process decisions are made by the Inference Engine. The validated sensor information from the 

sensing group provides the required input to the Rulebase. The action group includes the Post 

Processor, drivers, and process machinery. Control systems for grading systems typically range 

from very simple to extremely complex. Herein, the details of the control issues associated with the 

action group are not considered and are open problems for future work. 

4.2 Logical Sensors 

The logical sensor hierarchy structures data in a bottom-up manner. The raw data collected by 

the physical sensors is processed through different levels of logical sensors to produce high-level 

representations of sensed objects and features. This approach offers considerable flexibility. High-

level tasks may be implemented without regard to the specific sensing devices. The low-level physical 

sensors and low-level data processing routines are invisible to the higher levels. That is, to higher-

level sensors, each antecedent logical sensor appears as a single entity with a single output, regardless 

of the scope of its antecedents. Using the logical sensor model, a hierarchy of subordinate and 



4.2 Logical Sensors 42 

LOGICAL 
SENSOR 

LOGICAL 
SENSOR 

LOGICAL 
SENSOR 

LOGICAL 
SENSOR 

LOGICAL 
SENSOR 

EXCEPTION 
HANDLING 

MECHANISM 

DIAGNOSTICS 

VALIDATION 

INTEGRATION 
CONTROLLER 

INFERENCE ENGINE 
o FUZZY LOGIC 
o NEURAL NETWORKS 
o OTHER USER DEFINED 

METHOD 

LOGICAL 
SENSOR 

KNOWLEDGE 
BASE 

RULEBASE 

C D 
Z 

co z 
LU 
CO 

UJ 
o 
LU 
DC 
LU 

POST PROCESSOR 
(DECISION TO CONTROL CONVERSION) 

DRIVER DRIVER 

O 
I— 
o 
< 

PROCESS 
MACHINERY 

PROCESS 
MACHINERY 

PROCESS 
MACHINERY 

Figure 4.1: Overview of Extended Logical Sensor Architecture. 
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controlling sensors can be built, ultimately providing sensor input to the Integration Controller. 

The logical sensor model outlined in Section 2.3.1 has been extended herein for a model-driven 

open architecture. As shown in Figure 4.2, the proposed Extended Logical Sensor (ELS) is com­

prised of a number of different components. The components are object-oriented by design; each 

component is responsible for a single task within the sensor. A list of these components and tasks is 

given in Table 4.1. As indicated in the table, a few components are unchanged (U) from the original 

logical sensor specification [20]; others are based on extensions (E) to the specification [21,26,27]; 

and the balance are novel (N) in this work. The ELS strongly encapsulates the internal workings of 

each logical sensor while allowing the modification of the sensor's operating characteristics. Most 

of the components of this revised model are outlined in greater detail in the sections referred to in 

the final column of Table 4.1. 

The control command mechanism is flexible enough to allow active sensors; for example, a 

camera in an active vision system may be repositioned to bring an object of interest into (better) 

view. However, since the target applications are industrial in nature, namely, inspection and grading 

tasks, herein the sensors are assumed to be passive. 
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Figure 4.2: Basic components of an Extended Logical Sensor. 

As will become apparent, the implementation of an E L S requires an understanding of signal 

processing. This is knowledge that most industrial users will not possess. They will understand 

what they would like the ELS to do, but not necessarily how to accomplish it. This limitation is 
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Table 4.1: Summary of Extended Logical Sensor components. 

Component 
Group Component Description Origin a Reference 

Logical Sensor 
Name 

Uniquely identifies a particular logical sensor 
to the system. By definition, a name may not 
be duplicated within the hierarchy. Similar 
sensors are numbered consecutively. 

U Henderson and 
Shilcrat [20], 

Sensor 
Characteristics 

Characteristic 
Output Vector 

A vector of types which serves to define the 
output vectors that will be produced by the 
logical sensor. 

u Henderson and 
Shilcrat [20]. 

Sensor Function 
A description of the functionality that this 
sensor provides. Provided in human readable 
form. 

N Section 4.2.1 

Sensor 
Dependency 
List 

A list of dependencies for the logical sensor, 
accounting for each logical sensor that serves 
as input to the contained programs. 

N Section 4.2.1 

I/O Controller 
Monitors, redirects, and packages data and 
control commands for inter-sensor communi­
cation. 

E 
Section 4.2.2.1; 
and, Henderson 
et al. [21] 

Data Input Consists of signals from transducers and data 
from logical sensors. N Section 4.2.2.2. 

I/O Data Output Output in the form of the characteristic out­
put vector, error messages, or polling results. N Section 4.2.2.3. 

Control Input 
Interprets the control structure used for com­
manding and adjusting sensors for changing 
conditions and goals. 

E 
Section 4.2.2.4; 
and, Dekhil and 
Henderson [27]. 

Control Output 
Control commands to subordinate sensors. 
May be generated by sensor or passed 
through from higher level sensors. 

U Section 4.2.2.4. 

Logical Sensor 
Controller 

Acts as a "micro" expert system to ensure the 
optimal performance of the logical sensor. E 

Section 4.2.3.1; 
and, Henderson 
and 
Shilcrat [20]. 

Controller Local 
Exception 
Handling 

Internal diagnostics and error handling. 
Works in conjunction with logical sensor con­
troller. Attempts to classify the error and 
then rectify the problem using a predefined 
recovery scheme. 

E 

Section 4.2.3.2; 
and, Dekhil and 
Henderson 
[26,27]. 

Local 
Knowledge 
Base 

Contains information on interpretation of 
control commands for adjustment of param­
eters and selection of programs. Also stores 
default parameters used during initialization 
and reset. 

N Section 4.2.3.3. 

Programs 
Device Drivers Used to interpret raw signals from physical 

sensory devices. E Section 4.2.4.1. 
Programs 

Processing 
Algorithms 

Signal processing routines used to extract fea­
tures and information from sensor data. U Henderson and 

Shilcrat [20]. 
a U - unchanged, E - extended, N - novel. 
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overcome to some degree by the development and provision of an E L S library which contains a 

variety logical sensors for many common signal processing operations. When a required E L S in not 

available in the library, it will be necessary to have others implement the E L S . 

For these developers, an ELS base class is provided which serves as a template for the design 

of Extended Logical Sensors. The ELS model is implemented as a C++ class library following the 

principles of object-oriented software design. Individual sensors inherit the basic structure and 

common functionality. Customizations are achieved either by overriding base classes and functions 

or proving new ones where necessary. 

The subsections that follow outline the major components of an E L S . The E L S base class is 

outlined in Appendix B . 

4.2.1 Logical Sensor Characteristics 

The logical sensor characteristics refer to a set of properties specific to each logical sensor (LS). 

This information is publicly accessible, enabling other logical sensors, or the Integration Controller, 

to poll the sensor and determine the sensor's identity and capabilities. The components which 

comprise the logical sensor characteristics are: the Logical Sensor Name, the Characteristic Output 

Vector, the Sensor Function, and the Sensor Dependency List. The first two characteristics were 

defined by Henderson and Shilcrat [20]; the other characteristics are new, and are described below. 

The Sensor Function provides a description of functionality of the logical sensor. This description 

is in human readable form so that a user may effectively browse through a library of logical sensors. 

As an example, a Canny edge detection ELS [65], would have a description indicating that it was 

capable of identifying sets of edge pixels from a two-dimensional array of pixel intensity values. In 

addition, comments on accuracy and computational complexity (speed and memory requirements) 

would assist the user and the system in comparing this edge detector with others which may be 

available. This information may then be used to select the most appropriate edge detector for a 

given task. 

The Sensor Dependency List provides a list of the logical sensors subordinate to the E L S being 

polled. Each E L S which provides input to one of the logical sensor programs is considered as a 

subordinate. A n E L S is identified by its Logical Sensor Name. This list is automatically generated 
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as the E L S hierarchy is constructed. 

4.2.2 I/O 

4.2.2.1 I / O Con t ro l l e r 

The I /O Controller is an extension of the Control Command Interpreter [21], that provides a 

specification for control to the original logical sensor specification [20]. The I /O Controller oversees 

all inputs and outputs from the LS and monitors, redirects, and packages data and control commands 

for inter-sensor communication. For control commands, the controller works as a pass-through 

buffer. The destination logical sensor name of each control object received by the I /O Controller is 

first checked to determine if the command is intended for the particular sensor. If so, the control 

command is interpreted and sent to the LS Controller for processing; if not, it is passed through to 

lower-level (subordinate) sensors. 

One can note that, higher-level sensors may only be aware of the function of each subordinate 

E L S . The details of the actual algorithms — and in the case of sensors with multiple programs, the 

currently selected algorithm — is hidden from higher-level sensors by encapsulation. As a result, 

commands (and associated parameters) generally request a desired effect. For example, a command 

to increase the number of edges extracted from an array of pixel intensities would be of the form 

INCREASE EDGES. The specific algorithm used need not be known. This command would be passed 

down through the hierarchy to the edge detecting E L S . At this sensor, the controller, Section 4.2.3.1, 

would interpret this command and, drawing upon information contained in the Local Knowledge 

Base, adjust specific algorithm parameters accordingly (such as reducing mask size or threshold 

values). 

A number of control commands are defined for all logical sensors, namely, commands used for 

sensor initialization, calibration, requests for sensing, testing, and reconfiguration. A complete list 

of standard commands is provided in Table 4.2. For example, the polling command is used to 

query lower-level sensors about the logical sensor characteristics described in Section 4.2.1. The 

applications of other standard commands are outlined in Section 4.2.3.1. 
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4.2.2.2 Data Input 

The data sources for an ELS may take two forms: 

1. Raw signals from (physical) transducers: Signals from digital devices are input directly 

to a software driver. Analog signals are first converted into a digital form using an A / D 

converter. 

2. Data from logical sensors: As will be discussed in Section 4.2.2.3, logical sensor data is 

packaged in the form of the Characteristic Output Vector (COV). These output vectors serve 

as the sensor inputs for higher-level sensors. This data is then used as input to the processing 

algorithm(s) of the logical sensor. 

To properly interpret data from subordinate sensors, the I /O Controller must have-an internal 

copy of the characteristic output vector for each connected lower-level E L S . This internal copy 

is obtained through sensor polling. 

4.2.2.3 Data Output 

The data output module serves to package the ELS output into one of three forms, as outlined 

below: 

1. Output vector: The data output module serves to package the data from a logical sensor 

program into the form of the C O V . This enables the sensor to pass a data package, without 

identifying each component. 

2. Error message: Failure of an E L S may occur due to the failure of a lower-level LS or an in­

adequacy of a contained algorithm. In either case, the confidence measure which accompanies 

each E L S output will fall below a specified tolerance. A n error message will then be passed 

in place of the output vector. 

The confidence measure is generated by the E L S . In the case of an encapsulated physical 

sensor, the uncertainty measure is based upon the specifications and/or known operational 

characteristics of the device. Algorithms within the E L S must provide routines which calculate 

the uncertainty associated with each output value. Confidence is represented as a real-valued 
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number in the range: 0 < c < 1. A measure near 0 indicates little confidence in the result; 

while a measure near 1 indicates a high level of confidence in the sensor output. 

3. Polling result: This consists of information obtained from the logical sensor characteristics 

in response to a query from the Integration Controller or a high-level logical sensor. 

4.2.2.4 Control Input 

The logical sensor model provides a control structure which allows for the adjustment of logical 

sensors in response to changing conditions. Possible adjustments include the selection of an alter­

nate program, the modification of program parameters, or the recalibration of a sensor. Control 

commands may be passed from higher-level logical sensors or from the Integration Controller. Each 

command is packaged as a control object, which has the following format: 

1. Destination logical sensor name: Identifies the ELS for which the command is intended. 

If a command is intended for all subordinate logical sensors, then the destination name is ALL. 

2. Control command: This is the actual command to be executed. It is expressed as an 

enumeration of a keyword string which is interpreted by the I /O Controller. The command 

may be one of a set of generic, system-wide commands, or may be specifically defined to work 

only with a particular logical sensor. 

3. Associated parameters: A place is provided within the control object for parameters as­

sociated with each command. 

4.2.2.5 Control Output 

Control output from an E L S consists of control commands to lower-level logical sensors. These may 

be generated by the issuing sensor, or may be passed through from an E L S at a higher level. 

4.2.3 Controller 

The controller is comprised of three components which work together to supervise the internal oper­

ation of the E L S . These components, the Logical Sensor Controller, the Local Exception Handling 

mechanism, and the Local Knowledge Base are detailed in the following sections. 
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4.2.3.1 Logical Sensor Controller 

The internal operation of the logical sensor is supervised by the LS Controller. The controller serves 

two main purposes: response to external commands, and internal monitoring and optimization of 

logical sensor performance through error detection and recovery. It is an extension of the Selector of 

the original logical sensor specification [20], which increases the functionality and robustness of the 

E L S through the use of a local knowledge base and exception handling mechanism. By internalizing 

specific operational knowledge, the E L S encapsulates the sensor operation. 

The LS Controller provides the logical sensor with a mechanism to respond to commands passed 

from the I /O Controller. A number of standard control commands are defined for all logical sensors, 

as listed in Table 4.2. These, in addition to user commands, are stored locally for each E L S . A 

copy of user commands is also maintained by the Integration Controller. This provides controlling 

sensors with information about the capabilities of subordinate sensors. 

Table 4.2: Standard logical sensor control commands. 

Command Description 

INITIALIZE Initializes the logical sensor upon creation. 

CALIBRATE Calls a predefined calibration routine for the logical sensor. 

POLL Provides a response to queries about the logical sensor properties. 
Returns the information stored as the logical sensor characteristics. 

SENSE 
Provides output in the form of the characteristic output vector. 
This output is dependent on both the state of the sensor inputs and 
the currently selected program. 

RESET 
Causes all of the logical sensor parameters to be reset to their 
initial values. 

TEST 
Calls one or more of the predefined embedded tests contained 
within the logical sensor. 

SELECT 
Causes an alternate program within the logical sensor to be 
selected, should one be available. The program is chosen by the 
Logical Sensor Controller - a specific program cannot be requested. 

MONITOR 
Validates the data contained within the Characteristic Output 
Vector through comparison with a predefined criterion. 

USER 
Allows user to send commands which are specific to a particular 
sensor or group of sensors. 

Local knowledge of the operating characteristics of the E L S is used for program parameter 
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adjustment. For example, a request such as INCREASE EDGES to an edge detection E L S may be 

mapped to an appropriate change in mask size or adjustment of thresholds. This contrasts to a 

request such as set mask_size = 3 which requires that the requesting program have knowledge of 

the specific algorithm in use and the effect of parameter changes. 

The performance of the E L S is affected by the selected program and the adjustment of the 

program parameters. A n alternate program may be selected in response to a sensor failure or in 

response to a command passed from a controlling sensor. In the case of a sensor failure, the alternate 

program selected typically relies on an alternate set of logical sensors for input. This redundancy 

provides a measure of robustness to the sensor system. 

4.2.3.2 L o c a l E x c e p t i o n H a n d l i n g 

The Local Exception Handling module is responsible for internal diagnostics, local error detection, 

and recovery. The testing and recovery schemes are limited to the domain of the E L S , using the 

methodology outlined in Section 4.3.4 with a relatively small set of tests and recovery schemes. 

Errors which cannot be handled locally result in the sensor issuing an error message. 

The standard error messages are listed in Table 4.3. Typically, these errors are passed to the 

Integration Controller, which attempts to rectify the problem from a global, rather than local, 

perspective. 

Table 4.3: Standard logical sensor error conditions. 

Error Description 

TIME OUT Unable to complete operation in allotted time. 

OUT OF RANGE Computed value outside of specified range. 

OUT OF MEMORY Operation requires more memory than is available from the 
system. 

HARDWARE FAULT Problem with hardware device. 

NOTHING FOUND Insufficient data to compute desired result. 

GENERAL FAILURE Category for all errors not explicitly defined. 

USER DEFINED 
Allows user to expand standard error types for a particular 
sensor. 
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4.2.3.3 L o c a l Knowledge Base 

The Knowledge Base is constructed as a logical sensor is created. Contained within each logical 

sensor, it contains a variety of information which is essential to the operation of the logical sensor. 

Among the information contained in the Knowledge Base are default parameters used during ini­

tialization and reset; command definitions, both local and standard; criteria for monitoring sensor 

performance; tests to determine error causes; local error definitions for sensor specific problems; 

and error mappings which are used to assist in error recovery. In general, this information is not 

available to other sensors or modules in the system. 

4.2.4 P r o g r a m s 

Each E L S must contain at least one program to process the input data; however, when possible, 

each logical sensor may contain a number of alternate programs. There are two main reasons that 

multiple programs may be desirable within a logical sensor: 

1. Multiple programs enable the use of different input sources and combinations thereof. 

2. Different algorithms may be used to process the input data at different rates or with different 

degrees of precision. This provides a mechanism for sensor granularity. For example, a high­

speed, coarse interpretation may be used in place of a low-speed, high-resolution interpretation 

in time-critical situations. 

While the method of data generation may be different for each program within the E L S , each 

must be capable of providing data in the format specified by the C O V . Programs may be either 

device drivers or processing algorithms, depending on the type of input handled. These are described 

in Sections 4.2.4.1 and 4.2.4.2 that follow. 

4.2.4.1 Dev ice Dr ive r s 

In the context of the E L S , device drivers are used only for direct interaction with physical sensors. 

The raw output signals from transducers are usually not in a form that may be used directly by a 

computer system. A device driver is used to interpret the raw signals from physical sensory devices. 

Output from digital transducers is obtained directly through a digital input device such as a data 
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acquisition board or frame grabber. Signals from analog transducers must first be digitized using 

an analog to digital converter. 

Each physical device has an associated driver which, in addition to signal interpretation, manages 

the actual data transfer and control operations. This may include starting and completing I /O 

operations, handling interrupts, and performing any error processing required by the device. Further 

information on device drivers is provided by Baker [66]. 

I E E E P1451 compliant devices are treated in a similar manner. The major difference is that 

the driver is onboard the transducer. By interfacing using the Smart Transducer Object Model, the 

signal-level details are hidden. A n ELS designed to work with a smart transducer wil l not require 

any modification if the transducer is exchanged for another designed for the same purpose. 

4.2.4.2 Process ing A l g o r i t h m s 

Processing algorithms are used to encapsulate signal processing routines. The encapsulation of signal 

processing routines is at the core of the logical sensor model. 'Vir tual ' devices may be constructed 

for sensors as diverse as line detectors, 'red' finders, and weight estimators by combining different 

sets of lower-level logical sensors in order to perform the task at hand. 

Should sensor fusion be desirable for a particular application, it is performed by an E L S that is 

selected or designed for this task. Any fusion mechanism may be employed, though the discordance-

based sensor fusion method presented by Murphy [9] is used herein for its robustness. For example, 

images of an object provided by multiple cameras positioned at different viewpoints may be fused 

and integrated in different ways. One algorithm may fuse images from the 'compass points' around 

an object to produce a continuous 360° view of the object. Another may integrate this fused 

image with an overhead view from another camera to validate the information from both sources 

in addition to detecting features that may otherwise be imperceivable. The use of such algorithms 

is considered by the first example in Chapter 6. 

4.3 Integration 

Integration involves the packaging of the sensory information provided by the logical sensors into 

a form suitable for the Inference Engine. Extracted information and features from top-level logical 
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sensors are used to provide high-level representations of the objects of interest. As this is the final 

stage before decisions are made based on the sensor data, particular attention is paid to ensure data 

integrity. 

The specification and components for integration are given herein. However, the focus of this 

work is on the design of the object model, ELS , and Inference Engine. The implementation of the 

other components is left for future work. 

4.3.1 Integration Controller 

A l l top-level logical sensor outputs pass through the Integration Controller before entering the 

Inference Engine. The Integration Controller oversees the operation of the system, acting as an 

interface between the sensors and the Inference Engine. Here, the concept of what the system is 

trying to accomplish is maintained. It serves to coordinate sensor integration, in addition to data 

validation and exception handling activities which cannot be handled at the logical sensor level. 

Sensor uncertainty is used throughout the integration process. Confidence measures are used 

for the identification of sensing errors and for the integration of sensor data. Sensor performance 

criteria are maintained in the system Knowledge Base. These criteria are used to determine whether 

the data provided by the sensors lies within acceptable ranges or is of an expected form. A l l data 

which is successfully validated is passed to the Inference Engine; problematic data is passed to the 

Diagnostics module. 

As problems are encountered at the E L S level, this information is passed to the Integration 

Controller. The controller uses the Diagnostics module and information contained in the Knowledge 

Base to determine the appropriate corrective action. This may involve sending out commands to 

adjust logical sensor parameters, recalibrate logical sensors, or reconfigure the sensor hierarchy. 

The removal of malfunctioning sensors from the hierarchy or a reordering of sensors are among 

reconfiguration possibilities. 

4.3.2 Validation 

The Validation module is used to perform high-level verification and validation of the sensor infor­

mation provided by the logical sensors. While this may be as simple as determining if the sensor 



4.3 Integration 54 

data lies within acceptable ranges or is of an expected form, such tests are usually performed at 

the logical sensor level. Instead, the Validation module attempts to detect disparities between the 

information being provided by multiple sensors. 

Most systems tend to use a small set of sensors. There may be some redundant sensing capability; 

however, the majority of sensors are likely to be complementary. This makes the validation of 

information difficult because there may not always be an alternative sensor that can corroborate a 

suspect sensor. This is handled by making inferences from the behaviours of other sensors. Sensor 

performance criteria and other expert knowledge for sensor validation is maintained in the system 

Knowledge Base. 

If an error or disparity is detected, the problem is passed to the Diagnostics module which then 

attempts to determine the cause of the failure and provide a solution. A l l data which is successfully 

validated is passed to the Inference Engine. 

4.3.3 Diagnostics 

Should a problem be identified during data validation or an exception cannot be resolved at the 

logical sensor level, the Diagnostics module coordinates with the Exception Handling Mechanism 

to determine the exact nature of the problem and implement possible solutions. 

The Diagnostics module may be viewed as an exception controller. It interfaces with the Integra­

tion Controller and Validation modules which identify error conditions and the Exception Handling 

Mechanism which contains information for error classification and recovery. 

When a sensor fails, the Diagnostics module queries the Exception Handling Mechanism for a 

list of possible hypotheses which may explain the cause of the sensor failure. It then carries out the 

specified tests until a particular hypothesis can be confirmed. 

Upon determining the cause of the error, the Exception Handling Mechanism provides a recovery 

method. This method is then implemented by the Diagnostics module to rectify the problem. 

4.3.4 Exception Handling 

Exception handling provides support for the Diagnostics module which aims to maintain the suc­

cessful operation of the system in the event of sensor failure. Exception handling routines are 
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invoked when data fails to satisfy a predetermined constraint or is in conflict with data from an­

other sensor. Sensing failures must be handled expeditiously to allow the system to continue to 

operate effectively. In automated inspection applications, it is generally unacceptable for products 

to pass by unevaluated or to slow/stop the line in order to resolve sensing failures. 

As stated above, exceptions are handled by first classifying the nature of the error, as discussed 

in Section 4.3.4.1. Once classified, an attempt is made to rectify the cause of the error using the 

recovery scheme outlined in Section 4.3.4.2. 

It is worth noting that the system does not assume that any sensors used for error classification 

and recovery are themselves operational. Before each is used it must be functionally validated in 

advance. 

4.3.4.1 E r r o r Class i f icat ion 

Without the availability of a complete causal model, detected errors must be classified so that the 

appropriate corrective action may be taken. To simplify classification, it is assumed that there is 

only one sensing failure at a time. Sensor failures are classified into three types as follows: 

1. Sensor malfunctions: This occurs when one or more sensors are malfunctioning. Examples 

include power failure, impact damage, miscalibration, etc. 

2. Environmental change: One or more sensors are not performing properly because the environ­

mental conditions have changed since sensor configuration and calibration. This often leads 

to precision errors. 

3. Errant expectation: Sensor performance is poor because the sought object is occluded or lies 

outside of the sensor's 'field of view.' 

Error classification is accomplished by a generate and test algorithm [67, 68]. The suspect 

sensors are first identified. A n ordered list of possible hypotheses explaining the sensor failure is 

then generated. Each hypothesis is associated with a test which may be used for verification. These 

tests are performed in an effort to confirm or deny the proposed hypotheses. This process is repeated 

until a hypothesis is confirmed. 
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The generate and test method does not require formal operators for the generation of hypotheses. 

This allows the system to use a rule-based method to select from a list of candidate hypotheses. Un­

fortunately, this method can be time consuming if there is a large problem space and all hypotheses 

must be generated. This disadvantage may be overcome by constraining the problem space, thereby 

limiting the number of hypotheses and reducing processing time. Testing is conducted until all tests 

have been performed or an environmental change has been detected. When the classifier is unable 

to resolve the cause of the error, the cause is assumed to be an errant expectation. 

4.3.4.2 E r r o r Recovery 

For each error cause, there would ideally be a number of different recovery schemes. From these, 

the most appropriate would be selected by the exception handling mechanism. To limit the scope 

of the problem and reduce the overall recovery time, a direct one-to-one mapping of error causes 

to recovery schemes is utilized. A library of cases allows for the instant mapping of error cause to 

recovery scheme based on the error classification. 

Functions are used to repair individual sensors or reconfigure the sensor hierarchy. The sensor 

parameters are adjusted first — recalibration is accomplished by invoking a predefined sensor cali­

bration routine. If the sensing configuration cannot be repaired through parameter adjustment or 

recalibration, the sensor hierarchy is altered. The alteration may suppress a particular sensor or 

remove sensors from the hierarchy. 

4.4 Inference Engine 

Once the sensory information collected by the logical sensors has been validated, it is passed to the 

Inference Engine. Here, based upon the examination of the extracted objects and features, decisions 

are made regarding the actions to be taken with each object. 

The sensor inputs are used to form the antecedents of the control decisions to be made in the 

Inference Engine. The consequents of these rules are the actual decisions. These are passed from 

the Inference Engine to the Post Processor for conversion into action. 

As shown in Figure 4.3, the Inference Engine divides the inference task into two parts. First, the 

information available from the various sensing devices is fed to the Inference Engine as the primary 
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input. This sensor information is used by the first module to determine a measure of certainty that 

the object is of each classification. These classifications with corresponding certainties are then 

passed to the second module. 
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C O N T R O L L E R 
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D E C I S I O N 
B A S E D O N 

C L A S S I F I C A T I O N 
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I N F E R R E D 
D E C I S I O N 

Figure 4.3: The Inference Engine used by ELSA. Inferences using fuzzy logic 
draw upon information contained in the Rulebase. The neu­
ral network-based inference mechanism (shown inactive) utilizes 
weights stored in the Knowledge Base. 

The second module uses these classifications to infer a decision. If an object classification is 

certain, the decision is unambiguous. The advantage of this approach is evident when dealing with 

borderline cases. By considering the certainty measure for each object classification, an appropriate 

decision may be made under uncertain conditions. 

In this work, the Inference Engine is cognitive-based, using fuzzy logic [64] to make decisions. 

The advantage of this approach is that it allows the incorporation of expert domain knowledge. 

This expert knowledge may be formulated into a rulebase to serve as the basis for fuzzy inference. 

The base class which serves as a template for the development of the Inference Engine is outlined 

in Appendix D. 
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While fuzzy logic is the inference method currently used, other knowledge based systems could 

be employed. For applications where expert knowledge is less concrete, a feature-based inference 

technique such as artificial neural networks [69-72] could be used to interpret the sensor information 

and produce control decisions. Applications for neural networks include the analysis of infrared 

spectral data to determine the composition and moisture content of a product, and the chemical 

analysis of samples to determine quality or taste [5]. For these applications, the network must be 

interactively trained to produce the desired results. Other possibilities for feature-based inference 

techniques include Bayesian reasoning and the Dempster-Shafer theory of evidence. 

4.4.1 Rule/Knowledge Base 

Fuzzy logic and knowledge based inference rely upon expert domain knowledge supplied by the 

user. For grading and inspection tasks in particular, the expert knowledge available from human 

inspectors is available to the system designers. The Rulebase stores this repository of domain 

knowledge in the form of antecedent/consequent rules. For example, a fruit classification system 

may include the following simple rulebase: 

IF Shape IS round AND Colour is red THEN Fruit = apple 

IF Shape IS round AND Colour is orange THEN Fruit = orange 

IF Shape IS elongated AND Colour is yellow THEN Fruit = banana 

In the case of fuzzy logic, linguistic variables, such as round and red are associated with mem­

bership functions that describe a fuzzy subset of the universe of discourse. These fuzzy sets are 

also stored in the Rulebase. Each set defines the universe of discourse and membership functions 

for each subset that corresponds to a linguistic variable. Membership functions may be triangular, 

trapezoidal, Gaussian, etc. 

The Knowledge Base contains a diverse set of information that is used by the Integration Con­

troller and, depending on the inference mechanism, the Inference Engine. In the case where a neural 

networks Inference Engine would be implemented, the network topology and the trained weights 

between the hidden layer(s) and output layer would be stored here. Other information contained in 
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the Knowledge Base consists of the object model, control commands, error conditions, E L S charac­

teristics, and sensor performance criteria. This information is used by the Integration Controller to 

oversee the operation of the logical sensors. Performance criteria are used to validate sensor data 

and reconfigure the hierarchy in the event of a sensor malfunction. 

4.5 Post Processing 

Once the inference engine has processed the sensory information and interpreted it, any decisions 

made must be converted into actions. This involves the conversion of a directive into a plan of 

action for execution. For example, the decision to place a bruised apple into the 'bruised apple bin' 

must be translated such that the appropriate actuators affect this action at the appropriate time. 

The Post Processor acts as an interface between the Inference Engine and the drivers which are used 

to control the process machinery. Drivers are then used to convert control actions from the Post 

Processor into the specific format required by each device. The possibilities for devices which may 

act as process machinery are countless. Devices may range from simple actuators such as solenoids 

and electromagnets, to complex systems such as multiple degree of freedom robotic manipulators. 

However, the issues involved with post processing are beyond the scope of this work and wil l not 

be addressed further. 

4.6 Summary 

In this chapter, the organization of the Extended Logical Sensor Architecture (ELSA) was presented. 

Each component was introduced and its role within the architecture was described. Together these 

components comprise a modular, scalable, and robust system. Sensory information is encapsulated 

by Extended Logical Sensors. The integrity of the sensor data is ensured by the Integration Con­

troller working in concert with the Validation and Diagnostics modules. Process decisions are made 

by the Inference Engine on the basis of the validated sensor information. The following chapter wil l 

discuss the construction of a system based on E L S A . 



Chapter 5 

Construction Methodology 

To maximize system robustness and usability, the construction of an industrial sensing and process­

ing system using E L S A follows a set procedure. A n overview of this methodology is presented in 

Figure 5.1. The sections that follow detail the various phases of the process. The methodology will 

be further illustrated by the example applications provided in Chapter 6. 

5.1 Problem Definition/Requirements Specification 

The first phase of the design process involves the recognition of the needs of the particular industry 

or process. These needs often arise from dissatisfaction with the existing situation. They may be 

to reduce costs, increase reliability or performance, or to adapt to customer expectations. 

From the needs, a clear statement of the problem to be solved may be formulated. This problem 

definition is more specific than the general needs; it must include all of the specifications for what 

is to be designed. Hence, the designer must consider what the capabilities of the system should 

be. Following the general principles for system design outlined in [73], a set of minimum functional 

requirements is specified. By definition, these requirements should focus on the functions of the 

design without overspecifying property values and performance parameters. This ensures that the 

design process is not forced to follow a predetermined path. 

Often the requirements of the system may be considered in four categories [74]: 

1. Musts: Requirements which must be met. 

60 
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Figure 5.1: Overview of construction methodology. 

2. Must nots: Constraints on what the system must not do. 

3. Wants: Requirements that are desirable but not essential. 

4. Don't wants: Specifies what, ideally, the system will not do. 

These requirements would typically include performance (speed, accuracy, etc.), cost, maintain­

ability, size, weight, complexity, standards and regulatory requirements, customer preferences, and 

market constraints, among others. The articulation of these requirements is used as a guide for 

subsequent phases. If any of the requirements are left unsatisfied, the design is inadequate. The 

requirements also serve to keep the design focused on what is necessary for the task at hand. 
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5.2 Object Model Development 

Object model development for E L S A is a two-stage process. First, based upon the requirements of 

the system from the previous phase, the primary features or characteristics upon which classifications 

are to be made are identified. As discussed in Chapter 3, it is advantageous to keep the size of this 

set to a minimum. Typically, the features in this set are at a high level of abstraction. They occupy 

the top of the feature layer of the model (right side of Figure 3.1). From this set, each feature 

which is not atomic is decomposed into a set of subfeatures. This decomposition continues until all 

features are atomic. A feature is considered to be atomic if it cannot be subdivided further. This 

process is illustrated in the upper-half of the flowchart in Figure 5.2. 

Once high-level features are represented by atomic features in the lower section of the object 

model, the high-level information is used to define the object classifications following the steps in 

the lower-half of Figure 5.2. The classifications occupy the upper level of the model topology (left 

side of Figure 3.1). Each object classification is defined by first specifying the relevant primary 

features with fuzzy links. The fuzzy links to each classification are then associated with a fuzzy 

descriptor. These descriptors specify to what degree of confidence the particular primary features 

must be identified to be confident in the object classification. The complete algorithm used to 

construct an object model is as follows: 

1. Select an object to model. 

2. Determine the primary features of the object. 

3. Select a primary feature. 

4. If feature is atomic, goto 9. 

5. Determine subfeatures. 

6. Select a subfeature. 

7. If feature is not atomic, goto 5. 

8. If there are additional subfeatures, goto 6. 
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Figure 5.2: Object model development methodology. 
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9. If there are additional primary features, goto 3. 

10. Determine desired classifications of object. 

11. Link primary features to object classifications with fuzzy links. 

12. Associate fuzzy descriptors with each fuzzy link. 

13. If the defined primary features do not support the object classifications, goto 2. 

14. If the defined object classifications are not sufficient for the application, goto 10. 

15. If there are additional objects to model, goto 1. 

16. Done. 

The classification layer of the object model (relevant features in combination with relative 

weights) serves as a template for the Inference Engine which, in practice, makes the classifica­

tion decisions based on the feature information extracted by the logical sensors. The development 

of the Rulebase is described in Section 5.4. 

5.3 Logical/Physical Sensor Selection 

The selection of logical sensors is driven by the primary, intermediate, and atomic features that 

have been identified as necessary for the object model. Sensor selection starts with the primary 

features. Each feature has a corresponding E L S which packages the information from lower-level 

sensors (logical or physical) into the representations used for object classification. Many of the 

low-level logical sensors are selected from a reusable E L S library. The logical sensors contained 

within the library perform standard image and signal processing operations. The algorithm for 

constructing the E L S hierarchy, Figure 5.3, is as follows: 

1. Select a primary feature from the object model. 

2. Define a LS to provide primary feature. 

3. If feature is atomic, goto 7; else, continue. 
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4. Select a subfeature. 

5. Select or define a LS to extract feature. 

6. If feature is atomic, goto 7; else, goto 4. 

7. Does LS receive input directly from a physical sensor? If so, goto 9; else, continue. 

8. Select or define logical sensors required to supply information to LS that provides atomic 

feature. Goto 7. 

9. Select required physical sensor. 

10. If there are additional subfeatures, goto 4. 

11. If there are additional primary features, goto 1. 

12. Done. 

Physical sensors are selected to satisfy the input requirements of the LS associated with each 

atomic feature. This requires a consideration of both the input requirements and the capabilities 

of available transducers. A feature that is beyond the range or capabilities of a single sensor may 

be accommodated by the fusion of data from multiple sensors which cover the feature space. A LS 

is then defined which provides the feature, fusing the data from each of the physical sensor inputs. 

Other considerations include whether the system should attempt to utilize a single sensor for 

multiple tasks or whether specialized sensors will be used. For example, a camera can provide size, 

colour, arid shape information. Clearly, separate cameras a not required to extract each of these 

features. Using visual information and a correlation between length, area, and mass, a weight LS 

may be defined to estimate the weight of an object. Depending on the application, this may be 

used to replace or augment the information from a load cell. 
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Figure 5.3: Methodology for the development of the E L S hierarchy. 
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5.4 Rulebase Definition 

The Rulebase defines both rules for object classification and rules to infer the appropriate system 

output from these classifications. It is generated directly from the object classifications contained 

in the object model. 

The classification rules use the fuzzy descriptions of each classification as the basis for descrip­

tion. The confidence in the detection of each primary feature may then be used as input to the 

classification rules. Each rule expresses a degree of confidence in the classification of the object 

based on the detection of the primary features. The rules for each classification are combined using 

the compositional rule of inference, e.g. using a sup-min operation [63], to produce a measure of 

confidence that the object is of each classification. 

Conversion of the representation in the classification layer of the object model into a rulebase 

which may be used by the Inference Engine is accomplished using the following algorithm, Figure 

5.4: 

1. Select an object classification. 

2. Use fuzzy links to identify the primary features that this classification depends on. 

3. Determine the interdependencies of primary features. Each rule is defined using the minimum 

number of features. For example, consider a classification which is dependent on three primary 

features. If one of these will result in object being classified as belonging to the given classi­

fication, regardless of the other two, rules are defined that contain only this feature. Other 

rules will contain both of the other features, provided that the presence of each is required for 

proper classification. Primary features may be combined with AND and OR operators. 

4. Specify rules which correspond to the fuzzy descriptors used to describe the object classi­

fication. These describe conditions necessary for a high confidence in the detection of the 

particular classification. These are mandatory. 

5. Specify rules which are opposite to the fuzzy descriptors used to describe the object classifica­

tion. These describe conditions which indicate that the classification is not applicable to the 

object. These are mandatory except for the case of a default classification — in other words, 
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a classification for those objects that do not satisfy the criteria of the other, more specific, 

classifications. 

6. If classifications with lower confidence should be considered to increase the robustness of the 

system, continue; else, goto 8. 

7. Specify rules having fuzzy descriptors which correspond to a low degree of confidence in the 

detection of one or more primary features. 

8. If there are additional classifications, goto 1. 

9. Done. 

Decision rules are defined to inform the system what the should be done according to how 

each object is classified. Decisions are defined using the confidence in each object classification as 

the antecedent(s); the appropriate decision(s) forms the consequent. For industrial systems, the 

decision often corresponds to an action to be taken. A grading system may decide to place objects 

into particular bins, based on how they are classified. If an object classification is certain, the 

appropriate decision is straightforward. By evaluating the confidence of each object classification, 

borderline cases may be handled in the most appropriate manner. 

The decision rules are defined in a manner similar to the classification rules, though they are 

based on the object classifications rather than the primary features. Figure 5.5 illustrates the 

algorithm that follows: 

1. Determine decisions which may be made based on object classifications. Ensure that there is 

a decision that corresponds to each classification. 

2. Select a decision. 

3. Identify the classifications upon which decision depends. 

4. Specify rules for each classification that, when identified with a high degree of confidence, 

result in the decision. 

5. If classifications with lower confidence should be considered to increase the robustness of the 

system, continue; else, goto 7. 
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Figure 5.4: Methodology for the definition of the rulebase for object classi­
fication using the object model. 

6. Specify rules that define a decision based on a classification or classifications that have been 

identified with a low degree of confidence. This may be used to eliminate false positives by 

rejecting borderline cases. Depending on the application, low confidence in a single classifi­

cation may be sufficiently serious; for others, an ambiguity (low confidence) in two or more 

classifications may be required. 

7. If there are additional decisions, goto 2. 

8. Done. 

Inferring a decision from the object classifications uses a methodology similar to that used for 
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Figure 5.5: Methodology for the definition of the decision rulebase based on 
object classifications. 

determining the confidence in the detection of primary features, as discussed in Section 3.6.3.2. As 

shown in Figure 5.6, membership functions no, low, and high specify the degree of confidence in the 

classification of an object. 

5.5 System Implementation 

Having completed the functional requirements analysis, defined the object model, chosen the logical 

sensors and physical sensors, and defined the rulebase, the next stage is to realize and integrate 

these components to produce a working system. The following steps indicate the various stages in 

this process: 



5.5 System Implementation 71 

NO LOW HIGH 

CONFIDENCE 
IN OBJECT 

CLASSIFICATION 

Figure 5.6: Membership function used to represent confidence that an object 
is of a particular classification. 

1. Construct the physical system. This includes the arrangement of physical sensors as well as 

product delivery and handling systems. 

2. Select the required ELSs that are available from the library. 

3. For ELSs that are required but are unavailable from the library, these must be constructed. 

The E L S base class, used as a template for E L S construction, is presented in Appendix B . 

4. Implement the rulebase and associated membership functions using the classes described in 

Appendix D. 

5. Implement the object model using the object class described in Appendix A . This is stored 

in the Knowledge Base. 

6. Define the Validation module providing parameters by which the sensor information may be 

evaluated. 

7. Define the Exception Handling Module, providing tests used for error classification and error 

recovery schemes (mappings). 

8. Implement the Integration Controller to coordinate sensor integration and drive the system 

operation. 

9. Select the inference mechanism(s) used by the Inference Engine. Define these if necessary. 

10. Implement post processing and control as required by the application. 
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As is apparent, further work needs to be done towards the automation of these steps. This would 

improve the ease with which a system may be constructed using the E L S A methodology. While 

the system construction is not currently automated, each component has been designed with this 

goal in mind. Future automation efforts should not require any significant redesign of the various 

modules and components that comprise E L S A . 

5.6 Modification and Refinement 

Once the system has been constructed, it may be necessary to modify or refine some of the compo­

nents. Typical changes include the following: 

• Rulebase alteration. 

• Membership function tuning. 

• Addition or change of classification. 

• Addition or change of primary features. 

• Addition, change, or removal of physical/logical sensors. 

One or all of these may be necessitated to improve the performance of the system, to account 

for deficiencies in the original design, to adapt to changing specifications or customer requirements, 

to incorporate different or new sensor technologies, to modify the system for a different application, 

or some other unforeseen need. The hierarchical structure of the object model and sensors ensures 

that changes remain local — the structure as a whole is unaffected. 

The simplest changes involve the adjustment, addition, or removal of rules from the rulebase. 

These changes are made to fine-tune the system or to infer different decisions from the sensor 

information. These changes do not affect any other part of the system. New rules may require 

additional membership functions to be defined. 

If it is found that the granularity of a membership function is insufficient, or shape (range, 

mean, function) does not properly reflect the linguistic variable(s), the membership functions may 

be tuned. Tuning will affect all rules which use the membership function. If the changes are 
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substantial, such as the addition or removal of linguistic variables to modify the granularity, each 

dependent rule may have to be reevaluated. Rules that do not make use of the membership function 

are unaffected. 

The object model may be adjusted by adding new object classifications. A n additional classifi­

cation wil l not affect any others; it is simply linked to the appropriate primary features. Additional 

rules wil l have to be defined for the new classification. Modification of existing classifications may 

be achieved by creating links to unused primary features or by adjusting the fuzzy descriptors. Each 

will require the rules that correspond to the classification to be updated. Such modifications may 

be necessary if objects are being improperly classified. 

If after tuning, or adding new classifications, objects are still improperly classified, it may be 

necessary to define an additional primary feature. Additional features should be chosen such that 

objects can be differentiated on the basis of characteristic features. The definition of a new primary 

feature will follow the same procedure outlined in Section 5.2. New subfeatures and physical sensors 

may be required. The existing sensor hierarchy is not affected. 

Problems with feature extraction are handled through the adjustment of the ELS(s) associated 

with the feature. Adjustments may include refinement of properties and relations or alteration of 

parameters. Should these prove unsuccessful, the ELS may be replaced by another providing the 

same function or the sensor hierarchy may be redefined. Such a redefinition would only affect those 

sensors associated with the feature. If it is low-level feature, higher-level features are oblivious to 

any changes. 

Finally, a new physical sensor may be added to the system. This could be to replace an existing 

sensor or to augment the system capabilities. Sensor replacement will only require a new E L S 

to encapsulate the sensor. A n additional sensor will require, at minimum, a new E L S but may 

require the sensor hierarchy, object model, and rulebase to be redefined to take advantage of the 

new information. 
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5.7 Summary 

This chapter has outlined the basic steps in the design of an ELSA-based multisensor integration 

system for a particular industrial application. These steps include: 

1. Identification of the problem. 

2. Specification of the functional requirements. 

3. Development of the object model. 

4. Selection of appropriate Extended Logical Sensors and physical sensors. 

5. Definition of the classification and action rules from which to infer process decisions. 

6. Implementation of the system. 

Once the requirements of the system have been determined, the object model is defined to 

represent the features and classifications of the objects that the system must deal with. The 

selection of sensors and the specification of the rules used by the Inference Engine follow directly 

from the object model. This process serves to isolate the user from the technical details of the 

system design and construction. This process is further illustrated by the examples in the following 

chapter. 



Chapter 6 

Application Examples 

This chapter provides examples of the construction of multisensor integration systems for industrial 

inspection. Two examples, drawn from industry, are considered. These examples are not attempts 

to create fully automated industrial working prototypes, but rather to illustrate how the E L S A 

methodology could be used to construct a sensor integration system for product inspection. 

The first example, metal can inspection, is an illustrative example which deals with the inspec­

tion of a uniform object. The second example is herring roe grading. The non-uniform nature of 

this product introduces a number of interesting automation challenges. These examples are selected 

to contrast each other: the first example is simple to model but utilizes a relatively large number 

of sensors; the second model is more complex to develop but requires fewer sensors. For each, the 

object model, the E L S hierarchy, and the Inference Engine are developed using the E L S A approach. 

6.1 Can Defect Detection 

6.1.1 Background 

A wide variety of food products are packaged in sealed rigid metal cans. The majority of cans 

are sealed using a machine called a double seamer. This machine interlocks the can lid and body 

forming a double seam. Seaming compound is used between the layers of interlocking metal to 

complete a hermetic seal. Most cans are sealed under a vacuum. The integrity of these cans may 

be compromised by a wide variety of defects. Improperly sealed cans can lead to botulism. Defects 

75 
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may arise at any one of the stages of can manufacture; namely, filling, closing, processing, and 

handling, before the can reaches the customer. 

Defects are classified as serious if there is visual evidence that there is microbial growth in the 

container or the hermetic seal of the container has been lost or seriously compromised [75]. There 

are a number of possible serious defect classifications. Most of these are related to the proper 

formation of the double seam. Examples include: seam inclusions, knocked-down flange (KDF) , 

knocked-down end (KDE) , knock-down curl (KDC) , pleats, vees, puckers, side seam droop, cut-

down flange, and dents. The majority of these are visible from a side view of the can, Figure 6.1; 

others from a top view, Figure 6.2. 

6.1.2 Problem Definition/Requirements Specification 

The current system for the automated inspection of metal cans uses equipment to measure the weight 

of each can and a double-dud detector which mechanically measures the amount of deflection of the 

can lid. The deflection is used as a measure of the amount of vacuum in the can. A well-sealed 

can will maintain a vacuum internally — the lid is deflected inwards (concave) by the vacuum. 

Improperly sealed cans exhibit less concavity. Cans which exhibit vacuum or weight values outside 

of statistically determined limits are ejected for manual inspection. 

Unfortunately, a number of potentially serious defects may go undetected as vacuum may be 

lost at a later time during shipping, handling, or storage. To address this issue, it is proposed to 

augment the current configuration with a vision system capable of detecting many of the double 

seam defects. 

Ideally, such a system would be used as part of a company's Hazard Assessment at Critical 

Control Point (HACCP) strategy. Cans passing through this system would have to pass each of the 

individual tests (weight and vacuum) already outlined and established through industry guidelines. 

This integrated system would then provide a secondary quality assurance check to identify those 

cans which slip through the individual tests. 

The target application is the inspection of half-pound (227 g) salmon cans. These are typically 

two piece cans: a bottom and sides drawn from a single piece of metal with a separate stamped lid. 

The two are sealed together using a double seaming machine just after filling. 
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(a) Good can — no defect (b) Knocked-down curl (KDC) 

(c) Dent (d) Knocked-down curl (KDC) 

(e) Side Seam Droop (f) Knocked-down end (KDE) 

Figure 6.1: Examples of canner's double seam defects — side view. 

(a) Good can — no defect (b) Dent 

Figure 6.2: Examples of canner's double seam defects — top view. 
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The general sensing requirements of the multisensor system for the inspection of sealed metal 

salmon cans are as follows: 

1. Detection of cans which exhibit insufficient vacuum (top lid deflection < 1 mm). 

2. Detection of cans which are under weight (< 227 g). 

3. Detection of cans which are over weight (> 235 g). 

4. Detect double seam defects of top lid visible from either above and/or the sides of the can. 

5. The occurrence of false positives should be minimized as much as possible. Cans ejected from 

the system would still be hand inspected. A n overload of false positives would negate the 

benefits of the system. 

For the purpose of this example, these shall be considered as the minimum functional require­

ments of the system. Other requirements, such as the speed, cost, and reliability of the system are 

also important; however, they will not be addressed directly. 

6.1.3 Object Model Development 

From the developed functional requirements, three primary features may be defined. These are 

weight, vacuum, and seam defects. Of these, weight is atomic and not dependent on other features. 

Vacuum cannot be measured directly (to do so would compromise the seal integrity) and a subor­

dinate feature must be defined. The top lid deflection is used as an indirect measure of the amount 

of vacuum in the can. 

Seam defects vary widely in manifestation; however, all are characterized by deviations in the 

expected profile of the seam. Deviations may occur over the entire seam length (too thick or too 

thin), or may be local. Thus, the features are simply deviations (defects) in the seam as viewed 

from the top of the can and from the side. As shown in Figure 6.3, the seam defects may be broken 

down into features visible from the top and those visible from the side. These may be further broken 

down into the atomic components which permit the detection of these defects. 

The primary features are combined to produce four object classifications: good, improper seal, 

underweight, and overweight. The good classification depends on all of the primary features. It 
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Figure 6.3: Object model for metal can inspection. 

is denned as a can having average weight, average to high vacuum, and a low confidence in the 

presence of a seam defect. Similarly, an improper seal may be identified using a combination of the 

can weight, l id vacuum, and the detection of seam defects. This classification includes cans which 

exhibit seam defects as well as those cans that are normal to low in weight and have a low vacuum. 

Underweight cans have low weight and average to high vacuum; overweight cans have high weight 

and low to average vacuum. Vacuum is included in the underweight and overweight classifications 

as a measure of redundancy. A n underfilled (and thus underweight) can exhibits a greater degree 

of vacuum; an overfilled may not allow the lid to deflect — affecting the vacuum measure. 

6.1.4 Logical/Physical Sensor Selection 

From the object model, a logical sensor hierarchy is constructed, Figure 6.4. The selection of 

sensors for the measurement of weight and vacuum is straightforward. A checkweigher automatic 

scale is used to measure the can weight. This is encapsulated by the weight E L S . Vacuum is 

determined indirectly by a double-dud detector. The lid deflection E L S , encapsulating the double-

dud detector, passes the measured deflection to the vacuum E L S . This sensor then correlates the 

measured deflection to the amount of vacuum present. 
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Figure 6.4: Logical sensor hierarchy for metal can inspection. Sensors which 
provide primary features are outlined in bold and tagged PF. 

The seam defect ELS combines information from the side seam defect detector E L S and the 

lid seam defect detector E L S . This integration not only ensures that defects visible from only one 

viewpoint are detected, but apparently marginal defects which appear at the same location (around 

the circumference) in both views may be properly classified as serious. The logical sensors used 

to extract the lid and side seam profiles are based on image processing algorithms developed by 

Lee [76] for the purpose of metal can inspection. 

Integration of complementary sensor information is performed by the side profile E L S to produce 

a view of the complete 360° circumference of the can. The results of this operation are shown in 

Figure 6.5. The seam defect detector E L S combines defect location information (expressed in polar 

coordinates about the can centre) from the lid seam defect detector LS and the side seam defect 

detector to better isolate borderline cases. 

The logical sensors defined to extract seam defects require a total of five C C D cameras. A single 
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(a) Good can — no defect 

Jf ' 

(b) Knocked-down curl (KDC) 

Figure 6.5: Full view of can sides reconstructed from four viewpoints. 

camera is used to image the top view of the can, while four cameras are used to fully cover the 

circumference of the can when viewed from the side. J V C T K 1 0 7 0 U colour C C D cameras were 

used. The top camera utilized a 12.5 mm f 1:1.3 lens; the side cameras were equipped with 75 mm 

f 1:1.8 lenses with a 5 mm extension. 

6.1.5 Rulebase Definition 

The rulebase generation follows from the object model. The object classifications outlined in Section 

6.1.3 are used as the basis for the classification rules, Figure 6.6. 

The decision rules, Figure 6.7, are denned by simply rejecting all cans which, based on their 

classification, are clearly defective or are borderline cases. The consequent is the fuzzy singleton 

reject. The fuzzy membership functions associated with these rules are shown in Figure 6.8. 
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IF Weight IS very low THEN Underweight = high 
IF Vacuum IS high AND Weight IS low THEN Underweight = high 
IF Weight IS low THEN Underweight = low 
IF Weight IS high THEN Underweight = no 
IF Weight IS very high THEN Overweight = high 
IF Vacuum IS low AND Weight IS high THEN OverWeight = high 
IF Weight IS high THEN OverWeight = low 
IF Weight IS low THEN OverWeight = no 
IF Seam Defect IS high THEN ImproperSeal = high 
IF Vacuum IS low AND Weight IS low THEN ImproperSeal = high 
IF Vacuum IS low AND Weight IS normal THEN ImproperSeal = high 
IF Vacuum IS normal AND Seam Defect IS /oiv THEN ImproperSeal = low 
IF Vacuum IS high AND Weight is normal THEN ImproperSeal = no 
IF Seam Defect IS no AND Weight IS normal AND Vacuum is normal THEN Good = high 
IF Seam Defect IS /oiv OR Vacuum IS low THEN Good = low 
IF Seam Defect IS high THEN Good = no 
IF Weight IS NOT normal THEN Good = no 

Figure 6.6: Rules used to identify the classification of metal cans from pri­
mary features. 

IF Underweight IS high THEN Decision = reject 
IF OverWeight IS high THEN Decision = reject 
IF ImproperSeal IS high THEN Decision = reject 
IF Good IS low AND ImproperSeal IS low THEN Decision = reject 
IF Good IS low AND Underweight IS low THEN Decision = reject 
IF ImproperSeal IS low AND Underweight IS low THEN Decision = reject 

Figure 6.7: Rules used to decide whether to reject cans based on object 
classifications. 
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Figure 6.8: Membership functions used for classification of metal can de­
fects. 
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6.1.6 Summary 

To construct an industrial system, the procedure outlined in Section 5.5 is followed. In this work the 

object model, sensor hierarchy, and rulebase are given as examples that provide a simple introduction 

to the specification and construction of a multisensor system using the E L S A approach. 

The can inspection problem, while simple from a modelling perspective, required the use of 

multiple physical cameras in combination with an E L S that fuses this information to provide a 

continuous image of the can side. This approach was chosen both to illustrate how such fusion would 

be accomplished within E L S A , but also as a practical solution to the problem. Other solutions which 

would minimize the number of required cameras may require the can to be rotated for a series of 

images — a complex and time-consuming procedure. 

6.2 Herring Roe Grading 

6.2.1 Background 

Herring roe is an important part of the B . C . economy, with an annual value of $200 million dollars. 

A herring roe skein is a sac of tiny herring eggs. Two skeins are produced by each female herring. 

These skeins are extracted and processed for human consumption. The value of herring roe is largely 

influenced by the Japanese market, where it is a considered a delicacy. 

Being a natural product, it exhibits many non-uniform characteristics. Roe is a particularly 

challenging product due the large number of classifications. Each classification is dependent on the 

presence or absence of a number of features. Appearance and texture of the salted herring roe are 

the primary factors influencing price. Proper classification allows processors to offer improved value 

to their customers. 

. Currently, the process of grade classification is done manually. Herring roe is assigned a subjec­

tive grade according to aesthetic properties including colour, texture, size, and shape. Of these, all 

but texture are assessed visually; texture is assessed by tactile examination. The highest quality roe 

are light yellow in colour, stain-free, firm, over 75 mm in length, and fully formed without twists, 

cracks, and breaks. Heavy roe command a disproportionately higher market value. The various 

classifications of herring roe are presented in Table 6.1. 
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The roe grades are subject to change each season, due to the customer driven nature of the 

industry. Currently, there is no standardization of the various grade specifications. Distortions of 

the roe are commonly described using linguistic terms — the interpretation of which varies among 

expert graders. This inconsistency makes the quantification of product quality difficult. 

Table 6.1: Summary of herring roe grades. 

Grade No. Grade Name Mass (g) Length (mm) Description Example 

3L No. 1 Toku Toku Dai > 41 

2L No. 1 Toku Dai 31-40 
Fully formed mature 
roe. Minor twists may 
be allowed. 

Large No. 1 Dai 21-30 > 76 
Fully formed mature 
roe. Minor twists may 
be allowed. Medium No. 1 Chu 16-20 

> 76 
Fully formed mature 
roe. Minor twists may 
be allowed. 

Small No. 1 Sho 10-15 

N / A Sho Sho 
(pencil roe) < 10 

2 Grade 2 N / A > 51 
Broken parts at either 
end. 

2-H Light Henkei N / A > 76 

Mature roe. Moderate 
to severe distortions 
due to air bladder, 
feed-sac, mishandling, 
etc. 

2-C Cauliflower N / A N / A 

Mature roe. A piece of 
roe that has a part 
extruded out from the 
skien, caused by a split 
belly or other types of 
damage. 

2-2 Daruma 
(plug roe) 

N / A N / A Two skeins that 
cannot be separated. 

N / A 

3 Grade 3 N / A 13-51 Mature roe. Broken 
pieces. 

N / A 

3-3 Fragile roe N / A N / A 
Mature roe. Soft 
texture — crumbles 
when pressed. 

4 Triangle roe 
(free roe) 

N / A N / A 
Pieces of roe that are 
no longer contained 
within the skien. 

r* % ) 

: 

5-5 Immature roe N / A N / A N / A N / A 

6 Grade 6 N / A < 13 
Mature roe. Crumbs, 
bit, and pieces. N / A 
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6.2.2 Problem Definition/Requirements Specification 

The growth of the herring roe industry has increased competition. Fisheries from other countries, 

particularly from Alaskan-based American companies, have begun vying for market share. This, 

in combination with the development of imitations made from capelin roe, have negatively affected 

the demand for B . C . produced herring roe. As a result of the increased competition, the consumers 

have begun demanding higher quality at lower prices. This places considerable pressure on the 

B . C . processors to improve the quality of the product through better grading, while reducing costs 

through increased efficiency. Wi th the viability of current practices in question, processors have 

started to reassess the process and are looking towards automation as a way to realize both improved 

consistency and increased speed. 

The Industrial Automation Laboratory at the University of British Columbia has, through a 

number of research projects, attempted to develop systems for the automated grading of herring roe. 

Since manual grading of herring roe skeins is based mainly on visual information, optical imaging 

has been considered as the primary sensing means for automated machine grading. A prototype 

herring roe grader, Figure 6.9, has been developed by Kurnianto [38,77]. 

Figure 6.9: Prototype herring roe grading system. 
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Herring roe is a somewhat more complicated application than the previous example since each 

piece of roe must be assigned a grade rather than simply identified as defective. From the classi­

fications presented in Table 6.1, the ones of primary interest for automated grading are those in 

the various subclassifications of Grade 1 and Grade 2 roe. The prototype system makes grading 

decisions based on binarized 2D profile information provided by a single C C D camera. Roe are 

ejected into bins at one of six gates: 3L, 2L, and Large No. 1 into the first; Medium No. 1 into the 

second; Small No. 1 into the third; No. 2 into the fourth; No. 2-H into the fifth; and, No. 2-C into 

the sixth. The other classifications are not differentiated and are allowed to fall off the end of the 

belt into a seventh bin. 

The shape of the roe has been the most difficult to access using machine vision [35]. Human 

graders look for roe to be 'well formed,' or free from defects, as shown in the first row of Table 6.1. 

The current prototype, limited to the use of a single image without intensity information, is unable 

to consistently classify roe with various defects. The original system was designed as a two-classifier 

— separating good roe from bad — and while Grade 1 roe are identified consistently, attempts to 

subclassify the defective roe have met with limited success. To address these limitations, additional 

information is required. Three dimensional and texture information would provide the system with 

features that are essential to proper classification. 

The design of a second generation prototype, which can integrate the additional sensor infor­

mation to better distinguish roe classifications, is the aim of a new effort. The requirements of the 

multisensor system for the grading of herring roe skeins are as follows: 

1. Accurate determination of skein length (±1 mm). 

2. Estimation of skein weight (5-50 g ± 0.5 g). 

3. Estimation of roe thickness as ratio of width. 

4. Detection of parasite bites. 

5. Detection of broken skeins (broken head or broken tail). 

6. Detection of depressions (> 12 mm 2 ) . 

7. Detection of twists (> 12 mm 2 ) . 
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8. Detection of proper yellow colour. 

9. Detection of proper firmness of roe as an indicator of maturity. 

10. Detection of bumps and curvature characteristics representative of cauliflower deformation. 

11. Detection of cracks in the roe skein (> 1 mm). 

6.2.3 Object Model Development 

From the requirements, there are eleven salient features that can be identified as necessary for 

classification. These include weight, length, thickness, firmness, presence/absence of parasite bite(s), 

breaks, cracks, twists, depressions, cauliflower, and proper colour. Many of these can be assessed 

on the basis of 2D visual information. Length, breaks, cracks, cauliflower bumps, parasite bites, 

and proper colour are all visible from an overhead view of the roe. 

Thickness, twists, and depressions require information about the three dimensional profile of 

the roe skien. The 3D profile is usually represented as a surface map. Due to the variability of roe, 

thickness is represented as a ratio between the depth of the roe (as estimated by the 3D profile) 

and the width of the roe at the minor axis. 

Weight cannot be measured directly. There are a number of systems which can measure mass as 

the product moves along the conveyor; however, they tend to suffer from two problems: one is the 

cost of such systems, and the other, more important, is inaccurate measurement of skeins with low 

weight (< 10 g). As an alternative, the weight may be estimated using a linear regression model 

based on the peripheral length, area, and thickness of the roe [77]. 

Firmness is the only feature that does not lend itself to direct visual inspection. Traditionally, 

firmness has been assessed by handling the roe; however, this approach is not practical for an 

automated system. [37]. Another method, investigated in the I A L , is the use of ultrasonic echo 

imaging. The strength of the echo signal is directly dependent on the structure, uniformity, and 

firmness of the object region which generates the echo. Therefore, the echo image contains features 

correlated with the firmness of the roe. These features may be extracted and used as an indirect 

measure. 
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None of the primary features are atomic. Each is broken down into the various atomic compo­

nents which permit the detection of the feature. The primary features and corresponding subfeatures 

are shown in Figure 6.10. 

The primary features are combined to produce eleven different classifications. These are outlined 

in Table 6.2. Grade 1 roe is subclassified into six grades, according to weight. Each of these 

subclasses must be free of defect features, such as breaks and cracks. Additionally, Grade 1 roe 

must be firm, of the proper colour, and of sufficient size. If all of these criteria are satisfied, the roe 

is Grade 1; it is assigned to one of the subclassifications on the basis of weight. 

For other grades, classification is dependent on the detection of certain distinguishing features. 

For example, the detection of a break will classify a piece of roe as Grade 2 provided the roe is also 

firm and of sufficient length. 

6.2.4 Logical/Physical Sensor Selection 

A logical sensor hierarchy is constructed from the object model starting with the primary features. 

Each of the features identified during the development of the object model is associated with an 

E L S which can extract the required feature. Because many of the primary features share common 

subfeatures, the logical sensor hierarchy, Figure 6.11, is considerably less complex than the object 

model. There are three physical sensors required: two C C D cameras and an ultrasonic probe; the 

details of each follow: 

The low-level subfeatures R G B Image and 2D Profile, from which a number of other subfeatures 

are derived, may be provided by a single colour camera with evenly distributed, diffuse lighting. 

Images obtained under such conditions are presented in Figure 6.12. A J V C TK1070U colour C C D 

camera with a 16mm f l : 1.4 lens was used. 

The Echo Image subfeature is provided by a 10 MHz mechanical sector ultrasound probe. This 

provides input to the ELSs responsible for estimating of the firmness of a roe skein. Upon extracting 

the relevant image features, these are passed to the Fi rm ELS which uses fuzzy logic to estimate 

firmness. 

The 3D Profile Extractor E L S utilizes a second C C D camera in combination with a structured 

laser light. A brief explanation of the operation of this E L S follows. The structured light was 
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Figure 6.10: Object model for herring roe grading. 
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Figure 6.11: Logical sensor hierarchy for herring roe grading. Sensors which 
provide primary features are outlined in bold and tagged PF. 
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(c) Grade 2-H: twist, cracks (d) Grade 2-H: bites from belly 

(e) Grade 2-H: flat, twist (f) Grade 2: broken tail 

Figure 6.12: Examples of herring roe classification grades imaged on-line 
under diffuse light conditions. 



6.2 Herring Roe Grading 94 

mounted over the conveyor such that the band containing the eleven brightest lines was centred in 

the field of view of the camera. No other light source was used. Images were acquired using the red 

channel to maximize the brightness of the lines and minimize noise from other spectra. This setup 

is illustrated by Figure 6.13. The exact spacing between the rays, and the resultant projected lines, 

is detailed in Table 6.3. Wi th this arrangement, one pixel is 0.392 mm square and A.0ray = 1.5316°, 

where A9ray is the angle between the rays cast from the structured light. 

Figure 6.13: Geometry of structured light used for acquisition of 3D fea­
tures. 

A 3D Profile Extractor E L S reconstructs the 3D profile using this knowledge about the pixel 

size and the fixed spacing of the light rays. For each pixel corresponding to a projected light ray, 

the height of an object may be reconstructed using Equation (6.1). 

hpixel = fipixel ' tan 9ray [pixels] 

= 0.392 • 5pixei • tan 9ray [mm] 

where, hpixei is the height of the object at the given pixel location. For a given ray, 6pixei is the 

number of pixels the projected line has displaced on the object with respect to the undisplaced 

(straight line) projection on the conveyor and 9ray is the ray angle as in Table 6.3. The relationship 

between these variables is shown in Figure 6.14. 

Examples of roe skeins imaged under the structured light are presented in Figure 6.15. 
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Table 6.3: Calculation of structured light geometry. Based on h = 160mm. 

Ray Number kase (mm) dray ( ) 

1 155.0 45.91 
2 163.5 44.38 

3 172.8 42.80 
4 182.3 41.27 

5 192.5 39.73 

6 203.0 38.24 

7 214.5 36.72 

8 227.0 35.18 

9 240.0 33.69 

10 254.5 32.16 
11 270.5 30.60 
12 287.8 29.07 

13 307.0 27.53 

Figure 6.14: Basic geometry for reconstruction of 3D profile information us­
ing structured light. 
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(a) Grade 1 (b) Grade 1 

(e) Grade 2-H: flat, twist (f) Grade 2: broken tail 

Figure 6.15: Example of herring roe classification grades imaged on-line un­
der structured light conditions. 
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6.2.5 Rulebase Definition 

The rulebase generation follows from the object model. The object classifications outlined in 6.2.3 

are used as the basis for the classification rules, Figure 6.16. The confidence membership function 

is used to express the confidence in the detection of the proper firmness, proper colour, breaks, 

cauliflower deformities, parasite bites, depressions, and cracks. The other features: length, weight, 

thickness, and twist, utilize specific membership functions. 

IF Firm IS high AND Length IS normal AND ProperColour IS high AND Weight IS very very large AND ParasiteBite IS 
no AND Break IS no AND Depression IS no AND Twist IS no AND Crack IS no AND Cauliflower IS no AND Thickness 
IS normal THEN 3L-No1 = high 
IF Firm IS high AND Length IS normal AND ProperColour IS high AND Weight IS very very large AND ParasiteBite IS 
no AND Break IS no AND Depression IS no AND Twist IS no AND Crack IS no AND Cauliflower IS low AND Thickness 
IS normal THEN 3L-No1 = high 
IF Firm IS low OR ProperColour IS low OR ParasiteBite IS low OR Break IS low OR Depression IS low OR Twist IS 
medium OR Crack IS low OR Cauliflower IS low AND Weight IS very very large THEN 3L-No1 = low 
IF Firm IS no OR ProperColour IS no OR ParasiteBite IS high OR Break IS high OR Depression IS high OR Twist IS 
high OR Crack IS high OR Cauliflower IS high AND Weight IS very very large THEN 3L-No1 = no 

IF Firm IS high AND Length IS small AND Break IS high THEN No2 = high 
IF Firm IS high AND Length IS normal AND Break IS high THEN No2 = high 
IF Firm IS high AND Length IS small AND Break IS average THEN No2 = low 
IF Firm IS high AND Length IS normal AND Break IS average THEN No2 = low 
IF Break IS average THEN No2 = no 
IF Firm IS high AND Length IS normal AND ParasiteBite IS high THEN No2-H = high 
IF Firm IS average AND Length IS normal AND ParasiteBite IS high THEN No2-H = high 
IF Firm IS high AND Length IS normal AND ParasiteBite IS average THEN No2-H = low 
IF Firm IS high AND Length IS normal AND Depression IS high THEN No2-H = high 
IF Firm IS average AND Length IS normal AND Depression IS high THEN No2-H = high 
IF Firm IS high AND Length IS normal AND Depression IS average THEN No2-H = tow 
IF Firm IS high AND Length IS norma/ AND Twist IS high THEN No2-H = high 
IF Firm IS average AND Length IS normal AND Twist IS n/g/i THEN No2-H = high 
IF Firm IS high AND Length IS normal AND Twist IS medium THEN No2-H = h/g/i 
IF Firm IS high AND Length IS normal AND Twist IS low THEN No2-H = no 
IF ParasiteBite IS tow AND Depression IS low AND Twist IS low THEN No2-H = no 
IF Firm IS high AND Crack IS /i/g7i THEN No2-C = high 
IF Firm IS high AND Crack IS average THEN No2-C = low 
IF Firm IS h/gn AND Cauliflower IS high THEN No2-C = high 
IF Firm IS high AND Cauliflower IS average THEN No2-C = tow 
IF Crack IS average AND Cauliflower IS average THEN No2-C = low 
IF Crack IS low AND Cauliflower IS tow THEN No2-C = no 
IF Firm IS low THEN Unclassified = high 
IF Firm IS average THEN Unclassified = tow 
IF Length IS very small THEN Unclassified = high 
IF Length IS very very small THEN Unclassified = high 
IF Length IS very small AND Weight IS small THEN Unclassified = high 
IF Length IS very very small AND Weight IS very small THEN Unclassified = h/g/i 
IF Length IS small AND Weight IS small THEN Unclassified = low 

Figure 6.16: Rules used to identify herring roe grades from primary features. 
For clarity, a number a rules used for classifying Grade 1 roe 
have been removed. 



6.2 Herring Roe Grading 98 

Once the roe have been classified, a decision is made about which bin it should be ejected into. 

The classifications are segregated using the same apparatus used by the prototype grading system. 

B i n 1 accepts Grade 1 Large, 2L, and 3L; B in 2 accepts Grade 1 Medium; B i n 3 accepts Grade 1 

Small; B i n 4 accepts Grade 2; Bin 5 accepts Grade 2-H; B i n 6 accepts Grade 2-C; and B i n 7 accepts 

all other grades and unclassified roe which fall off the end of the conveyor. Figure 6.17 presents the 

rules which are used to infer this decision. The fuzzy membership functions associated with these 

rules are shown in Figure 6.18. 

IF Grade1-3L IS high THEN Decision = bin1 
IF Grade1-2L IS high THEN Decision = bin1 
IF Gradel-Large IS high THEN Decision = bin1 
IF Gradel-Medium IS high THEN Decision = bin2 
IF Gradel-Small IS high THEN Decision = bin3 
IF Gradel-Pencil IS Ai/gftTHEN Decision = bin7 
IF Grade2 IS high THEN Decision = bin4 
IF Grade2 IS low THEN Decision = bin4 
IF Grade2-C IS high THEN Decision = bin5 
IF Grade2-C IS low THEN Decision = bin5 
IF Grade2-H IS high THEN Decision = bin6 
IF Grade2-H IS low THEN Decision = bin6 
IF Unclassified IS high THEN Decision = bin7 
IF Unclassified IS low THEN Decision = bin7 

Figure 6.17: Rules used to determine decisions about how roe should be 
handled based on object classifications. 

6.2.6 Summary 

The herring roe grading application is considerably more complex than the previous example, metal 

can inspection. The non-uniform nature of the product and subjective classification criteria sig­

nificantly increase the complexity of the object model. Despite this, the E L S A approach serves to 

guide the user through the development process in a systematic manner. This ensures that the final 

design satisfies the functional requirements, but may also be augmented or modified with a minimal 

amount of disturbance to the system as a whole. 

It is interesting to note that despite the increased number of classifications and features, the 

required number of physical sensors is less than half of what was required by the previous example. 

By building the E L S hierarchy from the object model, the redundancy in sensing requirements 

becomes obvious. Again, the system would be implemented following the procedure outlined in 
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VERY VERY 

LENGTH (mm) 

(a) Weight (b) Length 

DEGREE 
OF TWIST 

(c) Thickness (d) Degree of twist 

CONFIDENCE 
IN OBJECT 

CLASSIFICATION 

(e) Proper colour, firm, break, cauliflower, (f) Confidence in classification 
crack, depression, parasite bite 

Figure 6.18: Membership functions used for classification of herring roe 
grades. 

Section 5.5. 

6.3 Discussion 

Through these applications, the advantages of the E L S A approach to system design are demon­

strated. By formalizing the design process, a system can be designed to meet the specified func­

tional requirements in a systematic and comprehensible way. Each stage involves the extraction and 

utilization of the user's (e.g. a quality assurance engineer's) expert knowledge about the process and 

desired outcomes. Specification of the requirements leads to the identification of primary features 
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and object classifications. These are expanded into subfeatures. The features themselves determine 

the algorithms (encapsulated logical sensors) and physical sensors that are required by the system. 

Decisions are inferred directly from the object classifications. 

Perhaps the most challenging aspect of E L S A is the construction of logical sensors that are 

not available from the library. This requires some knowledge of signal processing and the internal 

workings of the E L S model that the industrial user may not possess. In these instances, the user 

would be advised to define the specification of the sensor using their expert knowledge and then 

contract the construction of the sensor to a technical expert. The specification process effectively 

separates the expert domain knowledge from the technical programming knowledge required to 

develop an E L S . Once such sensors are defined (and consequently available from the library), the 

construction, modification, and comprehension of the ELSA-based system is more tractable for a 

non-technical domain expert. 

The object models and sensor hierarchies presented herein should not be considered as the 

solution. The selection of different features and sensor combinations may yield systems with similar 

or better performance. Systems may be designed to take advantage of certain equipment or in-house 

expertise. The design of the herring roe system, for example, is in part dependent on the familiarity 

with, and the availability of, machine vision systems and software in the I A L . 

Nor are these systems static. Should needs dictate, the object model and/or sensor hierarchies 

may be modified to meet new conditions. For example, should a cost-effective system be developed 

for physically measuring the skein weight, this may replace the vision-based weight estimation E L S 

to result in an E L S hierarchy for weight much like that presented for can inspection. 

The structure of the architecture ensures that should additional capabilities be desired (e.g. for 

can inspection: the inspection of stamp codes, l id ring profiles, or detection of pin holes in the 

can body), they may be added without affecting the existing components. The object model is 

expanded to include the additional features and/or classifications. Any required logical sensors are 

added to the E L S hierarchy. This is accomplished without disturbing the remainder of the system. 



Chapter 7 

Concluding Remarks 

This work presented a methodology for the design and construction of multisensor integration 

systems for industrial applications, with particular emphasis on non-uniform product inspection 

and grading. Specifically, the following research objectives were considered: 

1. To specify a data representation that can represent non-uniform objects in a simple, flexible, 

and understandable way. 

2. To design the data representation such that it can be used to guide the construction of the 

system. 

3. To provide a modular and scalable architecture for intelligent industrial sensing applications. 

4. To specify an encapsulation of physical devices and processing algorithms. 

5. To provide a robust exception handling mechanism to ensure the reliability of the system. 

6. To ensure that the architecture is applicable to a broad range of industrial applications. 

Each of these objectives was considered and developed to some degree. As specified, the E L S A 

object model provides both a guide for system construction and represents deviations of non-uniform 

objects. A n Extended Logical Sensor model encapsulates sensing devices and algorithms. The 

E L S and the object model together provide a basis for a modular and scalable architecture that 

is particularly applicable to a variety of industrial grading applications. A n exception handling 

101 
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mechanism has been proposed. However, a substantial amount of work still remains to develop a 

complete industrial version of E L S A . 

7.1 Summary and Conclusions 

E L S A is a multisensor integration architecture for industrial tasks. It is also, based upon the object 

model, a methodology for the construction of such a system. E L S A was developed to provide an 

organized approach to the development of industrial-based sensor systems. It addresses the need 

for scalable, modular, and structured sensor systems, replacing current ad hoc approaches. The 

construction methodology enables domain experts, who lack signal processing knowledge, to design 

and understand a sensor system for their particular application. 

To achieve this, E L S A is comprised of a number of different components. Extended Logical Sen­

sors are presented as an improvement to the existing LS and ILS specifications. This improvement 

is realized by strongly encapsulating the E L S . The ELS may be polled by other sensors to deter­

mine its capabilities and request changes in the performance of the E L S , but its internal operation 

is hidden. Replacement sensors need only provide the same form of output. Other components, 

such as the Exception Handling Mechanism and the Integration Controller, serve to enhance the 

robustness and functionality of the architecture. 

The object model used by E L S A is particularly suited to the representation of non-uniform 

products, or any object for which classification is desired. Objects are described in terms of their 

primary or distinguishing features. Primary features may be a composite of subfeatures. Objects 

are classified by using fuzzy membership functions to express how the primary features combine 

for each classification. The organization of the sensor system and the definition of the rulebase is 

driven by the object model. 

Logical sensors are chosen to provide each of the features defined by the object model; this in turn 

determines what physical sensors are required by the system. The classification layer of the object 

model directly specifies how primary features are combined to determine object classifications. To 

demonstrate these concepts, E L S A was applied to the problems of metal can inspection and herring 

roe grading. 

The design and implementation of an E L S requires signal processing and programming knowl-
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edge that an industrial user may not possess. Although this limits the ability of such a user to 

fully construct a system, it may be completely specified. This is because E L S A effectively separates 

the domain knowledge from the detailed sensor knowledge. If necessary, a technical expert may be 

consulted to develop the required ELS(s). Once a library of standard logical sensors is established 

for a set of applications, a system may be constructed without an in-depth understanding of the 

internal workings of each E L S . This makes E L S A particularly suitable for industrial users who wish 

to construct, modify, and maintain industrial multisensor systems. 

7.2 Recommendations 

This thesis provides the groundwork for a much larger and more complete system. It is now necessary 

to further develop the ideas presented herein — completing the implementation of what has been 

specified, and extending this specification to include new capabilities. 

A library of Extended Logical Sensors should be constructed that is suitable for a variety of 

inspection and grading tasks. This will assist in the development of ELSA-based systems for appli­

cations such as the grading of herring roe, potatoes, blueberries, and other produce. 

There are many extensions that could increase the user friendliness and automation of the system 

specification and construction. These would serve to further remove the industrial user from the 

technical details of system design, promoting better understanding and allowing the user to focus 

on the process. 

Most of the components of E L S A have been designed with the automation of the system con­

struction in mind. This includes the object model development, rulebase generation, logical/physical 

sensor selection, the Integration Controller, Validation and Diagnostics modules (exception han­

dling) . This should enable a variety of extensions to be implemented with ease. 

One such extension is the implementation of an expert system that could be used to further 

guide the selection of physical sensors and ELSs. This could work towards an optimal selection 

of sensor components based on user-defined constraints such as system cost, speed, accuracy, etc. 

This would be particularly useful for ensuring that the designed system can operate at line speeds 

and for selecting appropriate sensor combinations to provide robustness through redundancy. The 

expert system could also serve to ensure the completeness and uniqueness of a particular system 
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configuration. 

The membership functions contained in the rulebase could be automatically generated from 

the object model. For unquantifiable features, use of a confidence membership would be used; for 

others, the user would be prompted for the universe of discourse (range of expected values) and 

linguistic variables describing classifications over the universe. Once generated, the system could 

automatically tune and refine the membership functions for optimum performance. This would 

reduce the need for users to have an in-depth understanding of fuzzy logic. Expert users should 

be still able to by-pass the system, enabling direct definition and fine-tuning of the membership 

functions. 

For very complex objects, it may be useful to allow a variation of the object model presented 

herein. The approach would be similar except that the object model would be hierarchical, further 

increasing the compactness and efficiency of the feature-based object model. It would work by 

placing defective classifications on the first level and 'good' classifications on another. If the object 

does not present any of the features that would classify it as defective (each classification represented 

by a minimal set of features), then the object could then be classified as good. Subclassification of 

the good category, based on features such as size, weight, and colour could then proceed without 

the need to determine if a defect is present. The inference mechanism could also be further refined 

by allowing rules to be weighted. This would allow rules, and the corresponding features, to be 

given different emphasis. 

Further work is required to extend E L S A to control applications. One approach to this may be 

the concept of a Logical Actuator (LA). Control decisions made by the Inference Engine would be 

passed to a L A hierarchy where directives are converted into actions. The logical actuators thus serve 

as an interface between the high-level decision making system and the low-level process machinery. 

In this sense, a L A is an analogue to a LS. A similar idea, a combined Logical Sensor/Actuator 

(LSA) presented by Budenske and Gini [78]. By encapsulating the physical actuators, drivers, and 

planning algorithms, they may be altered without affecting the Inference Engine. 

This concept could be extended by combining the logical sensor and logical actuator into a 

common model — a logical device. The use of intelligent software agents could further encapsulate 

this concept. As an extension of the object-oriented nature of the E L S and logical actuator hier-
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archies, agents may further increase the openness and flexibility of the system. Through the use 

of software agents, each sensor, algorithm, controller, actuator, etc. becomes a separate module 

which may interact with other modules through a specified protocol. Dependencies on particular 

hardware configurations and software algorithms are further reduced, if not eliminated. Of course, 

any serious effort to implement better control will also have to consider the problems and issues 

that arise when dealing with real-time control systems. 
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Appendix A 

Object Model Class 

A . l Introduction 

This chapter categorizes and describes the object model classes which are used to represent objects 

within E L S A . 

A.2 Class Summary 

This section briefly summarizes the object model classes. For each derived class, the inheritance 

tree is provided in the corresponding section 

CNode 

Base class for nodes in the object model structure. 

CObjectNode 

Derived class which represents object nodes. 

CCIassificationNode 

Derived class which represents classification nodes. 

CObjectProperties 

Class derived from CElement to allow list representation of object properties. 

CPhysicalProperties 

Derived class for physical object properties. 

CRelationalProperties 

Derived class for relational object properties. 
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A.3 The Classes 

class CNode 

A CNode object represents a generic node of the object model hierarchy. It provides basic func­

tionality: a name and links to child node(s). To allow an arbitrary number of child nodes, links are 

maintained in a CList structure. CNode serves as a base class for derivation of more specialized 

node types. 

Construction/Destruction — Public Members 

CNode Constructs a CNode object. 

~CNode Destroys a CNode object. 

Attributes — Public Members 

GetName 

GetNumChildren 

Operations — Public Members 

AddChild 

DeleteChild 

Member Functions 

CNode: .CNode 

CNode(char * strName = NULL); 

strName Name of the node. 

Constructs a CNode object. 

Returns the name of the node. 

Returns the number of child nodes. 

Adds a pointer to a child node. 

Removes a child node. 
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CNode: :~CNode 

virtual ~ C N o d e ( ); 

Destroys a C N o d e object. 

CNode::GetName 

char * G e t N a m e ( ) const; 

Returns the name of the C N o d e object. 

CNode: :GetNumChildren 

int G e t N u m C h i l d r e n ( ) const; 

Returns the number of children this C N o d e object is the parent for. 

CNode::AddChild 

virtual A d d C h i l d ( C N o d e * pNode); 

Adds a child node to the C N o d e object. This function is declared as a pure virtual function. 

It must be redefined by derived classes. 

CNode::DeleteChild 

virtual D e l e t e C h i l d ( C N o d e * pNode); 

Removes the pointer to the specified child node from the C N o d e object. This function is 

declared as a pure virtual function. It must be redefined by derived classes. 
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class CObjectNode : public CNode 

A CObjectNode object represents a specialization of the a CN­

ode object. CObjectNodes are used to represent the objects and 

features which comprise the feature layer of the object model. 

Construction/Destruction — Public Members 

CNode 

CObjectNode 

CObjectNode 

-CObjectNode 

Attributes — Public Members 

IsFree 

GetObjectType 

GetProperties 

Operations— Public Members 

AddChild 

DeleteChild 

AddProperty 

DeleteProperty 

Constructs a CObjectNode object. 

Destroys a CObjectNode object. 

Returns nonzero if the node is marked by a free tag. 

Returns the type of object represented by node. 

Returns a pointer to the list of object properties. 

Adds a pointer to a child node. 

Removes a child node. 

Adds a physical or relational property to node. 

Removes a physical or relational property from node. 

Member Functions 

CObjectNode ::CObjectNode 

CObjectNode(char * strName, ObjectType eType, bool bFree = FALSE); 

strName Name of the object node. 

eType The type of object that this node represents. 
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bFree Nonzero if the object should be marked by a free node tag. 

Constructs a CObjectNode object. eType is an enumeration which represents the object 

types that are recognized by the system. These types are outlined in Table A . l . Additional types 

may be added by expanding the enumeration. 

Table A . l : Enumeration of object types. 

Value Meaning 

0 Generic 
1 Linear dimension 
2 Position 
3 Distance 
4 Line 
5 Corner 
6 Boundary curve 
7 Boundary feature 
8 Area 
9 Conic 
10 Regular polygon 
11 Irregular polygon 
12 Character 
13 Volume 

14 Colour 
15 3D surface 
16 Regular polyhedron 
17 Irregular polyhedron 
18 Surface feature 
19 Texture 
20 Force 
21 Pressure 
22 Sound 
23 Odour 
24 Mass 
25 Speed 

26 Temperature 
27-255 Reserved for future expansion 
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CObjectNode::-CObjectNode 

virtual ~CObjectNode( ); 

Destroys a CObjectNode object. 

CObjectNode: :lsFree() 

bool IsFree( ); 

Returns T R U E if this CObjectNode represents a free node of the object model. 

CObjectNode ::GetObjectType 

ObjectType GetObjectType( ) const; 

Returns an enumerated value representing the type of object that this CObjectNode repre­

sents. The types recognized by the system are outlined in Table A . l . 

CObjectNode::GetObjectProperties 

ObjectType GetObjectProperties( ) const; 

Returns a pointer to a CList containing CPhysicalProperties and CRelationalProperties 

for the CObjectNode 

CObjectNode::AddChild 

AddChild(CObjectNode * pNode); 

pNode Pointer to the child node to be added. 

Adds a pointer to a child node from the CObjectNode object. 

CObjectNode::DeleteChild 

DeleteChild(CObjectNode * pNode); 

pNode Pointer to the child node to be removed. 
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Removes the pointer to the specified child node from the CObjectNode object. 

CObjectNode: :AddProperty 

AddProperty(CObjectProperty * pProperty); 

pProperty Pointer to the property to be added. 

Adds a physical or relational property to the list of object properties maintained by the COb­

jectNode. 

CObjectNode::DeleteProperty 

DeleteProperty(CObjectProperty * pProperty); 

pProperty Pointer to the property to be removed. 

Deletes a physical or relational property to the from of object properties maintained by the 

CObjectNode. 
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CNode 

CCIassificationNode 

class CCIassificationNode : public CNode 

A CCIassificationNode object represents a specialization of the a 

CNode object. CClassificationNodes are used to represent the 

classifications of an object. These correspond to the classification 

layer of the object model. 

Data Members — Public Members 

CFuzzyLink Represents a pointer to a CObjectNode with a corresponding 

fuzzy descriptor of type C Fuzzy Variable.* 

Construction/Destruction — Public Members 

CCIassificationNode Constructs a CCIassificationNode object. 

-CCIassificationNode Destroys a CCIassificationNode object. 

Operations — Public Members 

AddChild Adds a pointer to a child node representing a primary feature 

for classification. 

DeleteChild Removes a child node. 

Member Functions 

CCIassificationNode::CCIassificationNode 

CClassificationNode(char * strName); 

strName Name of the classification node. 

Creates a CClassifiationNode object. 

"The CFuzzyVariable class is described in Appendix C 
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CCIassificationNode::~CCIassificationNode 

virtual ~CClassificationNode( ); 

Destroys a CCIassificationNode object. 

CCIassificationNode::AddChild 

AddChild(CObjectNode * pNode, CFuzzyValue fvDescriptor); 

pNode Pointer to object node to add as child. 

fvDescriptor Fuzzy descriptor which defines how the feature represented by the object node 

relates to the classification. 

Adds a pointer to a child node from the CCIassificationNode object. This pointer and the 

corresponding fuzzy descriptor are maintained within a list of CFuzzyLink objects. 

CCIassificationNode::DeleteChild 

DeleteChild(CObjectNode * pNode); 

pNode Pointer to the object node to remove. 

Removes the pointer to the specified child node from the CCIassificationNode object. 

Data Members 

CCIassificationNode::CFuzzyl_ink 

This structure represents the combination of a pointer to a CObjectNode with a corresponding 

fuzzy descriptor of type CFuzzy Value. 
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CEIement 

class CObjectProperties : public CEIement 

A CObjectProperties object represents properties of an object in 

a generic manner. This class is derived from CEIement to enable 

object properties to be included in a generic list. CObjectProp­

erties serves as a base class for derivation of more specialized property types. 

Construction/Destruction — Public Members 

CObjectProperties Constructs a CObjectProperties object. 

-CObjectProperties Destroys a CObjectProperties object. 

Member Functions 

CObjectProperties "CObjectProperties 

CObjectProperties( ); 

CObjectProperties(char * strName); 

strName Name of the property element. 

Creates a CObjectPropreties object. 

CObjectProperties 

CObjectProperties::~CObjectProperties 

virtual ~CObjectProperties( ); 

Destroys a CObjectProperties object. 
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class CPhysicalProperties : public CObjectProperties 

A CPhysicalProperties object represents a specialization of 
CEIement 

CObjectProperties 

CPhysicalProperties 

the CObjectProperties object. CPhysicalProperties ob­

jects are used to represent physical properties of an object. 

These include shape, mass, position, colour, etc. 

Construction/Destruction — Public Members 

CPhysicalProperties Constructs a CPhysicalProperties object. 

-CPhysicalProperties Destroys a CPhysicalProperties object. 

Attributes — Public Members 

GetValue If applicable, returns a value representing the property. 

GetType Returns the type of property being represented. 

Operations — Public Members 

SetValue Sets the value of the property. 

SetType Sets the type of property being represented. 

Member Functions 

CPhysicalProperties::CPhysicalProperties 

CPhysicalProperties( ); 

CPhysicalProperties(char * strName); 

strName Name of the property element. 

Creates a CPhysicalProperties object. 
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CPhysicalProperties::~CPhysicalProperties 

virtual ~CPhysicalProperties( ); 

Destroys a CPhysicalProperties object. 

CPhysical Properties: :GetValue 

int Get Value ( ) const; 

double GetValue( ); 

Returns the value associated with the physical property, if one exists. 

CPhysicalProperties: :GetType 

PropertyType GetType( ) const; 

Returns the type of physical property represented as an enumeration. These types are outlined 

in Table A.2. Additional types may be added by expanding the enumeration. 

CPhysicalProperties: :SetValue 

SetValue(int iVal); 

SetValue(double dVal); 

Sets the value associated with the physical property, if one exists. 

CPhysicalProperties: :SetType 

SetType(PropertyType eType); 

. eType The type of property that is represented by CPhysicalProperties object. 

Sets the type of physical property that is represented by the CPhysicalProperties object. 

Available types are listed in Table A.2 



Table A.2: Enumeration of property types. 

Value Meaning 

0 Generic 
1 Length 
2 Width 
3 Height 
4 Position 
5 Angle 
6 Area 
7 Volume 
8 Colour 
9 Mass 
10 Texture 
11 Temperature 
12 Symmetry 

13 Adjacency 
14 Relative position 
15 Relative orientation 
16 Tangent 
17-255 Reserved for future expansion 
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class CRelationalProperties : public CObjectProperties 

A CRelationalProperties object represents a specialization 

of the CObjectProperties object. CRelationalProperties 

objects are used to represent properties of an object in rela­

tion to another. These include symmetry, adjacency, relative 

position, etc. 

CEIement 

CObjectProperties 

CRelationalProperties 

Construction/Destruction— Public Members 

CRelationalProperties Constructs a CRelationalProperties object. 

-CRelationalProperties Destroys a CRelationalProperties object. 

Attributes — Public Members 

To 

GetValue 

GetType 

Returns the object that is related to the current object by the 

relational properties. 

If applicable, returns a value representing the property. 

Returns the type of property being represented. 

Operations — Public Members 

SetRelation 

SetValue 

SetType 

Declares the object that is related to the current object by the 

relational properties. 

Sets the value of the property. 

Sets the type of property being represented. 
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Member Functions 

CRelationalProperties::CRelationalProperties 

CRelationalProperties( ); 

CRelationalProperties(char * strName); 

strName Name of the property element. 

Creates a CRelationalProperties object. 

CRelationalProperties::~CRelationalProperties 

virtual ~CRelationalProperties( ); 

Destroys a CRelationalProperties object. 

CRelationalProperties: :To 

CObjectNode * To( ) const; 

Returns the object that is related to the current object by the relational properties. 

CRelationalProperties: :GetValue 

int Get Value ( ) const; 

double Get Value ( ); 

Returns the value associated with the relational property, if one exists. 

CRelationalProperties: :GetType 

PropertyType GetType( ) const; 

Returns the type of relational property represented as an enumeration. These types are outlined 

in Table A.2. Additional types may be added by expanding the enumeration. 
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CRelationalProperties::SetRelation 

SetRelation(CObjectNode * pObject); 

pObject Address of the object that this property is relative to. 

Defines the object that is related to the current object by the relational properties. 

CRelationalProperties::SetValue 

SetValue(int iVal); 

SetValue(double dVal); 

Sets the value associated with the relational property, if one exists. 

CRelationalProperties::SetType 

SetType(PropertyType eType); 

eType The type of property that is represented by CRelationalProperties object. 

Sets the type of relational property that is represented by the CRelationalProperties object. 

Available types are listed in Table A.2 



Appendix B 

Extended Logical Sensor Class 

B . l Introduction 

This chapter outlines and describes the class that serves as the basis for all Extended Logical Sensor 

(ELS) implementations. This is an abstract base class; derived classes must provide much of the 

functionality of the E L S . The purpose of this class then is to provide a common structure from 

which logical sensors are implemented. This ensures that ELSs can interact with one another. 

B.2 The Class 

class CELSBase 

A CELSBase object is a base class. From this object, specialized E L S objects may be derived. 

The derived classes must then provide the complete implementation of the E L S . Thus, this class 

serves as a template for the construction of E L S objects for specific purposes. 

Construction/Destruction — Public Members 

CELSBase Constructs a CELSBase object. 

-CELSBase Destroys a CELSBase object. 
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Attributes — Protected Members 

GetName Returns name of ELS . 

GetCOV Returns the format of the C O V . 

GetFu notion Returns a description of E L S functionality. 

GetDeps Returns ELS dependencies. 

Operations — Public Members 

ReadData Reads sensor data from external sources. 

SendData Sends sensor data to external sources. 

ReadCommand Reads commands from external sources. 

SendCommand Sends commands to external sources. 

Operations — Protected Members 

SetCOV Sets the format of the C O V . 

BuildDeps Determines dependencies on other ELSs. 

Initialize Initializes the ELS . 

Calibrate Performs calibration of the E L S . 

Poll Provides a response to queries. 

Sense Prompts E L S to provide output. 

Reset Resets all E L S parameters to initial values. 

Test Calls tests embedded in the E L S . 

Select Requests that an alternate program be chosen, if available. 

Monitor Validates E L S data. 
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Member Functions 

CELSBase::CELSBase 

CELSBase(char * strName); 

strName Name of the E L S class. 

Constructs a CELSBase object. 

CELSBase: :~CELSBase 

virtual ~CELSBase( ); 

Destroys a CELSBase object. 

CELSBase: :GetName 

char * GetName( ); 

Returns the name of the E L S . 

CELSBase: :GetCOV 

COV * GetCOV( ); 

Returns the Characteristic Output Vector (COV) for the E L S . The C O V is a vector of types. 

It maintained as a private data member. Supported types are listed in Table B . l . 

CELSBase: :GetFunction 

char * GetFunction( ); 

Returns a description of the functionality that this sensor provides. The description is in human 

readable form. This is intended to provide a mechanism by which a user may browse through an 

E L S library and determine the capabilities and/or suitability of a particular E L S for an application. 
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Table B . l : Abstract and derived types. 

Keyword Data type Bits and range 

A N Y Generic data type Unspecified 
A R R A Y Array Sequence of elements, indexed from 0 
B O O L Bit or Boolean T R U E or F A L S E 
B Y T E Byte Bit string of 8 bits 
D O U B L E Double Real value represented by 64 bits 
E N U M Enumeration Value of type restricted to enumeration 
F L O A T Float Real value represented by 32 bits 
INT Integer -32768 through +32767 
L O N G D O U B L E Long Double Real value represented by 128 bits 
O B J E C T R E F Handle for an object Unspecified 
S T R I N G Text string A n array of characters 
T I M E Duration Implementation dependent 
T I M E S T A M P U T C U T C 
UINT Unsigned Integer 0 through 65534 
U N I C O D E Unicode A n array of characters 1-2 bytes per character 
USINT Unsigned Short Integer 0 through 255 

CELSBase::GetDeps 

D e p L i s t * Ge tDeps ( ); 

Returns a list of each sensor that provides input to the programs contained in the E L S . 

CE LSBase:: Read Data 

R e a d D a t a ( C O V * data); 

data Input sensor data in form of C O V . 

This the first of four functions that comprise the public interface of an C E L S B a s e object. 

It serves to extract data from various input sources — transducers and logical sensors. Data is 

expected in the form of a C O V . For transducers, this function must be overloaded to accept the 

output of the transducer. 
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CELSBase::SendData 

COV * SendData( ); 

The second E L S public interface function, SendData sends sensor data generated by the E L S 

to external sources. Data is in the form of the C O V for the E L S . 

CELSBase::ReadCommand 

ReadCommand(CommandID eCommand); 

eCommand Input command. 

The third E L S public interface function. It serves to extract commands that may be sent from 

other ELSs or other system modules. These commands are of an enumerated type CommandID, 

as listed in Table B.2. 

Table B.2: Enumeration of E L S control commands: CommandID. 

Value Meaning 

0 Initialize 
1 Calibrate 
2 PolhName 
3 PolhCOV 
4 PolLFunction 
5 PolLDeps 
6 Sense 
7 Reset 
8 Test 
9 Select 
10 Monitor 
11-255 Reserved for future expansion 

CELSBase::SendCommand 

CommandID eCommand SendCommand( ); 



B.2 The Class 133 

The fourth E L S public interface function, S e n d C o m m a n d sends commands of the enumerated 

type C o m m a n d I D to external sources. 

CELSBase::SetCOV 

S e t C O V ( C O V * p C O V ) ; 

pCOV Address of C O V . 

This function is used to define the format of the C O V . 

CELSBase: :BuildDeps 

virtual Bui ldDeps( ); 

Determines dependencies on other logical sensors by identifying sources of input for the programs 

utilized within the E L S . 

CELSBase: initialize 

virtual Initialize( ); 

Initializes an E L S upon creation. 

CELSBase: Calibrate 

virtual Calibrate( ); 

Performs calibration of the logical sensor using built-in private member functions. 

CELSBase::Poll 

char * P o l l ( C o m m a n d I D eCommand); 

C O V * P o l l ( C o m m a n d I D eCommand); 

DepLis t * P o l l ( C o m m a n d I D eCommand) ; 

eCommand Polling command. 
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Responds to polling requests by obtaining and returning the queried information. This func­

tion is overloaded to enable the return of each type of data maintained within the Logical Sensor 

Characteristics. 

CELSBase::Sense 

virtual Sense( ); 

Prompts the E L S to provide output. This command may be used for temporal synchronization 

of sensing events. 

CELSBase::Reset 

virtual Reset ( ); 

Resets, to their original values, all logical sensor parameters which may have been modified. 

CELSBase::Test 

virtual Test( ); 

Tests the functionality of the E L S by invoking one or more embedded tests. 

CELSBase::Select 

virtual Select( ); 

Prompts the E L S to select an alternate program, if one is available. There are no arguments 

to the function because the user does not have the ability to select the most appropriate replace­

ment. Providing knowledge of the program (s) operation to enable direct user intervention would 

compromise the encapsulation. 

CELSBase:: Monitor 

virtual Monitor( ); 
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Used to validate the data obtained by the E L S . Typically, monitoring simply involves checking 

the data value against an expected range. If the data is in range, it is accepted; if not, an exception 

is thrown. 
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Fuzzy Variable Class 

C . l Introduction 

This chapter categorizes and describes the fuzzy variable classes. These are general purpose classes, 

written as class templates, to ensure applicability to many applications. With in E L S A , these classes 

are used to represent the fuzzy links of the object model and the Rulebase for the Inference Engine. 

These classes include: 

• Classes for representing fuzzy values and degree of membership. 

• Classes for representing fuzzy sets. 

C.2 Class Summary 

This section briefly summarizes the fuzzy variable classes. For each derived class, the inheritance 

tree is provided in the corresponding section. 

CFuzzyDegree 

Represents the degree of membership of a value within a fuzzy set. 

CFuzzy Variable 

Provides a representation of fuzzy variables and linguistic variables. 

CFuzzyMember 

Base class for fuzzy sets (membership functions). 
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CFuzzyGeomMember 

Derived class which represents features common to geometrical membership functions. This 

class is intended to be used as a base for further derivation. 

CFuzzyTriMember 

Represents fuzzy membership functions which are triangular in shape. 

CFuzzyTrapMember 

Represents fuzzy membership functions which are of a trapezoidal shape. 

CFuzzyArrayMember 

Represents fuzzy membership functions which are constructed from an array of points. 
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C.3 The Classes 

template class C class CFuzzyDegree 

A CFuzzyDegree object represents the degree to which an input value is a member of a given 

fuzzy set. For example, consider membership in the set HIGH, and a variable temp. The degree 

to which temp is a member of the set HIGH is represented by a CFuzzyDegree object. The 

degree of membership is expressed as a value in the range [0-1]. 

Construction/Destruction — Public Members 

CFuzzyDegree Constructs a CFuzzyDegree object. 

-CFuzzyDegree Destroys a CFuzzyDegree object. 

Operators 

operator && Performs the intersection of two CFuzzyDegree values. 

operator Performs the union of two CFuzzyDegree values. 

operator! Negates a CFuzzyDegree value. 

Member Functions 

CFuzzyDegree: :CFuzzy Degree 

CFuzzyDegree( ); 

CFuzzyDegree (C cDeg); 

cDeg Degree of membership in range [0-1]. For integer values, the degree of membership is 

expressed as a scaled integer in range [0-255]; otherwise, expressed as a decimal number, e.g. 

0.56. 
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Constructs a CFuzzyDegree object. Currently, int and float values are supported. 

CFuzzyDegree: :~CFuzzy Degree 

virtual -CFuzzyDegree( ); 

Destroys a CFuzzyDegree object. 

CFuzzyDegree::operator && 

CFuzzyDegree CFuzzyDegree::operator &:& (CFuzzyDegree &); 

Allows CFuzzyDegree objects to be combined through a union or AND operation. The 

minimum of the two CFuzzyDegree values is returned. 

CFuzzyDegree::operator || 

CFuzzyDegree CFuzzyDegree::operator || (CFuzzyDegree &); 

Allows CFuzzyDegree objects to be combined through an intersection or OR operation. The 

maximum of the two CFuzzyDegree values is returned. 

CFuzzyDegree::operator! 

CFuzzyDegree CFuzzyDegree::operator ! ( ); 

Negates a CFuzzyDegree object. This is a NOT operation. 
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template class C class CFuzzyVariabie 

A CFuzzyVariabie object represents a fuzzy variable and its corresponding linguistic variable. 

For example, the linguistic variable Temperature might be programmed as follows: 

CFuzzyVariable<int> temp("Temperature", 0, 100); 
enum {COLD, WARM, HOT}; 
temp.AddValueSet(COLD, new CFuzzyTrapMember("cold", 0, 0, 10, 20, 1)); 
temp.AddValueSet(WARM, new CFuzzyTrapMember("warm", 10, 20, 25, 35, 1)); 
temp.AddValueSet(HOT, new CFuzzyTrapMember("hot", 25, 35, 100, 100, 1)); 

In this case, trapezoidal membership functions have been used, but any other kind of function 

which has been implemented may also be used. 

Construction/Destruction — Public Members 

CFuzzyVariabie Constructs a CFuzzyVariabie object. 

Attributes — Public Members 

GetName 

GetValue 

GetFuzzyValue 

GetMin 

GetMax 

GetValueSet 

Is 

If named, returns the name of the value. 

Returns the non-fuzzy value. 

Returns the fuzzy value (fuzzy set). 

Returns the lower extent of the variable's universe of discourse. 

Returns the upper extent of the variable's universe of discourse. 

Returns the fuzzy set at the given position. 

Returns the membership value of the fuzzy set at the given array 

position. 

Operations — Public Members 

SetValue 

SetFuzzyValue 

Sets the non-fuzzy variable value and returns the old. 

Sets the fuzzy variable value (fuzzy set) and returns the old 

value. 
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AddValueSet Adds the fuzzy set to the array of affiliated sets. 

Operators 

operator C Allow extracting of fuzzy variable through casting or its use in 

some clear context. 

operator = Allow direct assignment to fuzzy variable. 

Member Functions 

CFuzzy Variable ::CFuzzy Variable 

C F u z z y V a r i a b l e ( C m i n = 0, C max = 1) 

CFuzzyVariable(const * char & s t r N a m e , C min = 0, C max = 1) 

strName Name of fuzzy variable. 

min Lower extent of universe of discourse for variable. 

max Upper extent of universe of discourse for variable. 

Constructs a CFuzzyVar iable object. The universe of discourse for the fuzzy variable (and 

associated fuzzy sets) is defined by the range [min-max]. 

CFuzzyVariable ::GetName 

char * G e t N a m e ( ) const; 

Returns the name of the CFuzzyVar iable object. 

CFuzzyVariable ::GetValue 

C Get Value ( ) const; 

Returns the non-fuzzy value of the CFuzzyVar iable object. 
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CFuzzyVariable::GetFuzzyValue 

CFuzzyMember * GetFuzzyValue( ) const; 

Returns the fuzzy value (fuzzy set) of the CFuzzyVariabie object. 

CFuzzyVariabie: :GetMin 

C GetMin( ) const; 

Returns the lower extent (minimum) of the universe of discourse for the CFuzzyVariabie 

object. 

CFuzzyVariabie ::GetMax 

C GetMax( ) const; 

Returns the upper extent (maximum) of the universe of discourse for the CFuzzyVariabie 

object. 

CFuzzyVariabie: :GetValueSet 

CFuzzyMember * GetValueSet(int i) const; 

i Index to array position. 

Returns the fuzzy set at array position i. 

CFuzzyVariabie: :ls 

double Is(int i); 

i Index to array position. 

Gets the membership value of the fuzzy set at array position i. 
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CFuzzy Variable: :SetValue 

C SetValue(C cVal); 

cVal The value to set the CFuzzyVariabie object to. 

Sets the non-fuzzy value of the CFuzzyVariabie object to cVal and returns the old value. 

CFuzzy Variable: :SetFuzzy Value 

CFuzzyMember * SetFuzzyValue(CFuzzyMember * frnVal); 

fmVal The fuzzy value to set the CFuzzyVariabie object to. 

Sets the fuzzy value of the CFuzzyVariabie object to cVal and returns the old value. 

CFuzzyVariabie:: AddValueSet 

AddValueSet(CFuzzyMember & fmSet); 

AddValueSet(CFuzzyMember * fmSet); 

AddValueSet (int i, CFuzzyMember & fmSet); 

AddValueSet(int i, CFuzzyMember & fmSet); 

i Index to where new set will be added. 

fmSet Address of the set to add to the CFuzzyVariabie. 

Adds the fuzzy set fmSet to the array of affiliated sets. If i is specified, the set is added at that 

location, overwriting the set that was there. In the case that i is unspecified, the set is added to 

the end, extending the array. 

CFuzzyVariabie: :operator C 

template<class C> CFuzzyVariable<C>::operator C ( ); 

Allows a CFuzzyVariabie object to be casted. 
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CFuzzyVariable: :operator = 

template<class C> C & CFuzzyVariable<C>::operator = (const CPuzzyMember<C> &) 

const; 

Allows direct assignment of a CFuzzyVariable object. 
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template class C class CFuzzyMember 

A CFuzzyMember object serves as a base class for the representation of a fuzzy set. 

Construction/Destruction — Public Members 

CFuzzyMember Constructs a CFuzzyMember object. 

-CFuzzyMember Destroys a CFuzzyMember object. 

Attributes — Public Members 

GetName Returns the name of the fuzzy set. 

Is Returns the degree of membership. 

Member Functions 

CFuzzyMember: :CFuzzy Member 

CFuzzyMember (const C xmin, const C xmax); 

CFuzzyMember (char * strName, const C xmin, const C xmax); 

strName Name of the set. 

xmin x coordinate for lower extent of set base. 

xmax x coordinate for upper extent of set base. 

Constructs a CFuzzyMember object. The variables xmin and xmax define the base of the 

fuzzy set. Derived classes provide the representation for height and shape. 

CFuzzyMember: :~CFuzzy Member 

virtual -CFuzzyMember( ); 

Destroys CFuzzyMember object. Deallocates space occupied by strName. 
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CFuzzyMember: :GetName 

char * G e t N a m e ( ) const; 

Returns the name of the the C F u z z y M e m b e r object. 

CFuzzyMember: :ls 

virtual CFuzzyDegree Is(const C cValue) const; 

cValue Input value for which to determine membership. 

Returns the degree of membership of cValue within the C F u z z y M e m b e r object. This function 

is declared as a pure virtual function. The function must be redefined by derived classes. 
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template class C 
class CFuzzyGeomMember: public CFuzzyMember C 

A C F u z z y G e o m M e m b e r object serves as a base class for the 

representation of a fuzzy value within a fuzzy set. 

Construction/Destruction — Public Members 

CFuzzyMember 

CFuzzyGeomMember 

CFuzzyGeomMember 

-CFuzzyGeomMember 

Constructs a C F u z z y G e o m M e m b e r object. 

Destroys a C F u z z y G e o m M e m b e r object. 

Attributes — Public Members 

Is 

GetArea 

GetCentroid 

GetMoment 

Scale 

Clip 

Returns the degree of membership. 

Area of membership function. 

Centroid of membership function. 

Moment of area of membership function. 

Scales the membership function to a given degree. 

Clips the membership function at a given degree. 

Member Functions 

CFuzzyGeomMember: :CFuzzyGeomMember 

C G e o m F u z z y M e m b e r ( c o n s t C xmin , const C X m a x ) ; 

C G e o m F u z z y M e m b e r ( c h a r * strName, const C X m i n , const C xmax); 

strName Name of the set. 

xmin x coordinate for lower extent of set base. 

xmax x coordinate for upper extent of set base. 
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Constructs a C G e o m F u z z y M e m b e r object. On construction, the area, centroid, and moment 

of area are computed. The variables x m i n and xmax define the base of the fuzzy set. Derived 

classes provide the representation for height and shape. 

CFuzzyGeomMember::~CFuzzyGeomMember 

- C F u z z y G e o m M e m b e r ( ); 

Destroys a C F u z z y M e m b e r object. 

CFuzzyGeomMember::ls 

virtual CFuzzyDegree Is(const C cValue) const; 

cValue Input value for which to determine membership. 

Returns the degree of membership of cValue within the C F u z z y G e o m M e m b e r object. This 

function is declared as a pure virtual function. The function must be redefined by derived classes. 

CFuzzyGeomMember::GetArea 

virtual C GetArea ( ) const; 

Returns a value which represents the area of the membership function. This function is declared 

as a pure virtual function. The function must be redefined by derived classes. 

CFuzzyGeomMember: :GetCentroid 

virtual C GetCentro id( ) const; 

Returns a value which represents the centroid of the membership function. This function is 

declared as a pure virtual function. The function must be redefined by derived classes. 

CFuzzyGeomMember: :GetMoment 

virtual C G e t M o m e n t ( ) const; 



C.3 The Classes 149 

Returns a value which represents the moment of area for the membership function. This function 

is declared as a pure virtual function. The function must be redefined by derived classes. 

CFuzzyGeomMember::Scale 

virtual C F u z z y G e o m M e m b e r < C > * Scale(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to scale membership function. 

This function scales the current membership function to a given degree. Returns the new scaled 

membership function. This function is declared as a pure virtual function. The function must be 

redefined by derived classes. 

CFuzzyGeomMember::Clip 

virtual C F u z z y G e o m M e m b e r < C > * Clip(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to clip membership function. 

This function clips the current membership function to a given degree. Returns the new clipped 

membership function. This function is declared as a pure virtual function. The function must be 

redefined by derived classes. 
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template class C 
class CFuzzyTriMember: public CFuzzyGeomMember C 

A CFuzzyTriMember object implements a triangular 

fuzzy set. 

Construction/Destruction — Public Members 

CFuzzyMember 

CFuzzyGeomMember 

CFuzzyTriMember 

-CFuzzyTriMember 

CFuzzyTriMember 

Constructs a CFuzzyTriMem­

ber object. 

Destroys a CFuzzyTriMember object. 

Attributes — Public Members 

Is 

GetArea 

GetCentroid 

GetMoment 

Scale 

Clip 

Returns the degree of membership. 

Area of membership function. 

Centroid of membership function. 

Moment of area of membership function. 

Scales the membership function to a given degree. 

Clips the membership function at a given degree. 

Member Functions 

CFuzzyTriMember::CFuzzyTriMember 

CFuzzyTriMember(C xl, C xl, C xl, C h); 

CFuzzyTriMember (char * strName, C xl, C xl, C xl, C h); 

strName Name of the fuzzy set. 

xl x coordinate of left side (lower extent) of triangle base. 

x2 x coordinate of peak of triangle. 
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xS x coordinate of right side (upper extent) of triangle base. 

h Height of triangle. This is typically 1.0. 

This class provides a template for the creation of fuzzy membership functions with a triangular 

shape. The corner coordinates and height of the function must be specified. These are illustrated 

in Figure C l 

1 + 

0 
x1 x2 x3 

Figure C l : Triangular membership function. 

The area, centroid, and moment of area for the triangle are computed on initialization. Cur­

rently, int, float, and double types are supported by the template. For other data types, the 

appropriate member functions must be written. 

CFuzzyTriMember::~CFuzzyTriMember 

- C F u z z y T r i M e m b e r ( ); 

Destroys a C F u z z y T r i M e m b e r object. 

CFuzzyTri Mem ber:: Is 

CFuzzyDegree Is(const C cValue) const; 

c Value Input value for which to determine membership. 

Returns the degree of membership of cValue within the C F u z z y T r i M e m b e r object. 
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CFuzzyTriMember::GetArea 

C G e t A r e a ( ) const; 

Returns a value which represents the area of the membership function. 

CFuzzy TriMember::GetCentroid 

C GetCentro id( ) const; 

Returns a value which represents the centroid of the membership function. 

CFuzzy TriMember::GetMoment 

C G e t M o m e n t ( ) const; 

Returns a value which represents the moment of area for the membership function. 

CFuzzyTriMember::Scale 

C F u z z y G e o m M e m b e r < C > * Scale(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to scale membership function. 

This function scales the current membership function to a given degree. Returns the new scaled 

membership function. 

CFuzzyTriMember::Clip 

C F u z z y G e o m M e m b e r < C > * Clip(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to clip membership function. 

This function clips the current membership function to a given degree. Returns the new clipped 

membership function. 
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template class C 
class CFuzzyTrapMember: public CFuzzyGeomMember C 

A C F u z z y T r a p M e m b e r object implements a trapezoidal 

fuzzy set. 

Construction/Destruction — Public Members 

CFuzzyMember 

CFuzzyGeomMember 

CFuzzyTrapMember 

-CFuzzyTrapMember 

CFuzzyTrapMember 

Constructs a C F u z z y T r a p ­

M e m b e r object. 

Destroys a C F u z z y T r a p M e m b e r object. 

Attributes — Public Members 

Is 

GetArea 

GetCentroid 

GetMoment 

Scale 

Clip 

Returns the degree of membership. 

Area of membership function. 

Centroid of membership function. 

Moment of area of membership function. 

Scales the membership function to a given degree. 

Clips the membership function at a given degree. 

Member Functions 

CFuzzyTrapMember::CFuzzyTrapMember 

C F u z z y T r a p M e m b e r ( C x l , C x2, C x3, C x4, C h); 

C F u z z y T r a p M e m b e r ( c h a r * s trName, C x l , C x2, C x3, C x4, C h); 

strName Name of the fuzzy set. 

xl x coordinate of left side of trapezoid base. 

x2 x coordinate of left side of trapezoid 'plateau.' 
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x4 x coordinate of right side of trapezoid 'plateau.' 

x4 x coordinate of right side of trapezoid base. 

h Height of trapezoid. This is typically 1.0. 

This class provides a template for the creation of fuzzy membership functions with a trapezoid 

shape. The corner coordinates and height of the function must be specified. These are illustrated 

in Figure C.2 

x1 x2 x3 x4 

Figure C.2: Trapezoidal membership function. 

The area, centroid, and moment of area for the trapezoid are computed on initialization. Cur­

rently, int, float, and double types are supported by the template. For other data types, the 

appropriate member functions must be written. 

CFuzzyTrapMember: :~CFuzzyTrapMember 

-CFuzzyTrapMember( ); 

Destroys a CFuzzyTrapMember object. 

CFuzzyTrapMember: :ls 

CFuzzyDegree Is(const C cValue) const; 

cValue Input value for which to determine membership. 
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Returns the degree of membership of value within the CFuzzyTrapMember object. 

CFuzzyTrapMember: :Get Area 

C GetArea( ) const; 

Returns a value which represents the area of the membership function. 

CFuzzyTrapMember:-.GetCentroid 

C GetCentroid( ) const; 

Returns a value which represents the centroid of the membership function. 

CFuzzyTrapMember: :GetMoment 

C GetMoment( ) const; 

Returns a value which represents the moment of area for the membership function. 

CFuzzyTrapMember: :Scale 

CFuzzyGeomMember<C> * Scale(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to scale membership function. 

This function scales the current membership function to a given degree. Returns the new scaled 

membership function. 

CFuzzyTrapMember: :Clip 

CFuzzyGeomMember<C> * Clip(const CFuzzyDegree fdDegree) const; 

fdDegree Degree at which to clip membership function. 

This function clips the current membership function to a given degree. Returns the new clipped 

membership function. 
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CF :uzzyMember 
CFuzzyArrayMember 

template class C> class CFuzzyArrayMember : public CFuzzyMem­

ber 

A CFuzzyArrayMember object implements a fuzzy set as an 

array of points. The number of elements in the array corresponds 

to the number of points including and between the limits of the set. 

Points are distributed evenly. Each value represents the height of the function at a given horizontal 

location. 

Construction/Destruction — Public Members 

CFuzzyArrayMember Constructs a CFuzzyArrayMember object. 

-CFuzzyArrayMember Destroys a CFuzzyArrayMember object. 

Attributes — Public Members 

Is 

GetNumVals 

GetVal 

GetMoment 

Returns the degree of membership. 

Returns the size of the array. 

Get value from array. 

Returns moment of area of the membership function. 

Attributes — Public Members 

PutVal Put value into array 

Operators 

operator [] Access array via []. 
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Member Functions 

CFuzzyArrayMember: :CFuzzyArrayMember 

CFuzzy MemberQ; 

CFuzzyMember(int iSize, C xmin, C xmax); 

CFuzzy Member (char * strName, int iSize, C xmin, C xmax); 

strName Name of the set. 

iSize Number of points used for representation. 

xmin x coordinate for lower extent of set base. 

xmax x coordinate for upper extent of set base. 

Constructs a CFuzzyArrayMember object. The variables xmin and xmax define the base 

of the fuzzy set; iSize defines the resolution of the representation. 

CFuzzyArrayMember::~CFuzzyArrayMember 

virtual ~CFuzzyMember( ); 

Destroys CFuzzyArrayMember object. Deallocates space occupied by strName. 

CFuzzyMember:: Is 

CFuzzyDegree Is(const C cValue) const; 

cValue Input value for which to determine membership. 

Returns the degree of membership of cValue within the CFuzzyArrayMember object. 

CFuzzyMember: :GetNumVals 

int GetNumVals( ) const; 

Returns the number of elements in the array. 
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CFuzzyMember: :GetVal 

C GetVal( int i) const; 

i Index to array position. 

Gets a value from the array at the position specified by i. 

CFuzzyMember: :GetMoment 

C G e t M o m e n t ( C min , C max) const; 

min Minimum of range. 

max Maximum of range. 

Returns the moment of area for the fuzzy set. 

CFuzzyMember: :PutVal 

PutVal ( int i , C cVal); 

i Index to array position. 

cVal The value to place into array. 

Puts a value into the array at the position specified by i. 

CFuzzyArrayMember::operator [] 

C & CFuzzyArrayMember: :opera tor [] (int i); 

i Index to array position. 

Allows the array of C F u z z y A r r a y M e m b e r objects via []. Returns the value of the array at 

the position specified by i. 



Appendix D 

Rulebase Classes 

D . l Introduction 

This chapter categorizes and describes a number of classes used to represent fuzzy rules, rulebases, 

and provide an inference mechanism. Fuzzy rulebases are built up from fuzzy rules together with 

fuzzy inputs and outputs. Input variables may be applied to the rulebase and using the built in 

inference and denazification functions, an inference may be made. 

D.2 Class Summary 

This section briefly summarizes the rulebase classes. 

CFuzzyClause 

Defines a structure which pairs a fuzzy variable and a fuzzy value. 

CFuzzyRule 

Represents an antecedent/consequent rule for fuzzy inference. 

CFuzzyRulebase 

Builds a rulebase of CFuzzyRule objects from which decisions may be inferred. 
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D.3 The Classes 

class CFuzzyClause 

A C F u z z y C l a u s e object represents a structure containing a fuzzy variable and fuzzy value. This 

pair is used build antecedents and consequents for C F u z z y R u l e objects. 

Data Members — Public Members 

pVar Pointer to linguistic variable of clause. 

pValue Pointer to linguistic value of clause. 

Construction/Destruction — Public Members 

CFuzzyClause Constructs a CFuzzyClause object. 

Member Functions 

CFuzzyClause: :CFuzzyClause 

CFuzzyClause ( ); 

CFuzzyClause (CFuzzyValue * fvVar, C F u z z y M e m b e r * fmSet); 

C F u z z y C l a u s e (CFuzzy Value & fvVar, C F u z z y M e m b e r & fmSet); 

fv Var Address of linguistic variable. 

fmSet Address of linguistic value. 

Constructs a CFuzzyClause object. Initializes a CFuzzyVar iab ie and a C F u z z y M e m b e r 

during creation. 
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Member Functions 

CFuzzyClause::pVar 

Pointer to a CFuzzyVariable object which represents a linguistic variable. 

CFuzzyClause::pValue 

Pointer to a CFuzzySet object which represents a linguistic value. 
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class CFuzzyRule 

A C F u z z y R u l e object represents an antecedent/consequent type rule. There may be an arbitrary 

number of antecedents and consequents. The following example illustrates how rules are constructed: 

CFuzzyRule rO; 
rO.AddLHS(new CFuzzyClause(Error , P o s i t i v e H i g h ) ) ; 
rO.AddLHS(new CFuzzyClause(del taError , Zero) ) ; 
rO.AddRHS(new CFuzzyClause(Torque, Negat iveHigh)) ; 
rO.Weight (0 .9) ; 

Here, Er ror , de l t aEr ro r , and Torque are linguistic variables represented as CFuzzyVar iab le 

objects. Pos i t i veHigh , Zero, and NegativeHigh are linguistic values represented as C F u z z y M e m ­

ber objects. This rule is equivalent to: 

IF Error IS positive-high AND deltaError is zero THEN Torque = negative-high, weight = 0.9 

Construction/Destruction — Public Members 

CFuzzyRule Constructs a C F u z z y R u l e object. 

Attributes — Public Members 

GetNumLHS 

GetNumRHS 

GetLHS 

GetRHS 

GetWeight 

GetAggregate Value 

Returns the total number of antecedent clauses. 

Returns the total number of consequent clauses. 

Returns the antecedent clause from the specified position. 

Returns the consequent clause from the specified position. 

Returns the rule weight. 

Returns the current value of the aggregation of the antecedent 

rule inputs. 

Operations — Public Members 

AddLHS Adds an antecedent to the rule. 
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AddRHS Adds a consequent to the rule. 

SetWeight Sets the rule weight. 

Aggregate Aggregates the antecedent rule inputs and returns the result. 

Member Functions 

CFuzzyRule::CFuzzyRule 

C F u z z y R u l e ( ); 

Constructs a C F u z z y R u l e object. 

CFuzzyRule: :GetNumLHS 

int G e t N u m L H S ( ) const; 

Returns the total number of antecedent clauses for the C F u z z y R u l e object. 

CFuzzyRule::GetNumRHS 

int G e t N u m R H S ( ) const; 

Returns the total number of consequent clauses for the C F u z z y R u l e object. 

CFuzzyRule::GetLHS 

C F u z z y C l a u s e * G e t L H S ( i n t i) const; 

i Index to array position. 

Returns the antecedent clause from the position indicated by i. 

CFuzzyRule::GetRHS 

C F u z z y C l a u s e * G e t R H S ( i n t i) const; 

% Inclex to array position. 
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Returns the consequent clause from the position indicated by i. 

CFuzzyRule: :GetWeight 

double Get Weight ( ) const; 

Returns the rule weight. 

CFuzzyRule::GetAggregateValue 

double GetAggregateValue( ) const; 

Returns the current value of the aggregation of the antecedent rules. 

CFuzzyRule::Addl_HS 

A d d L H S ( C F u z z y C l a u s e * cfClause); 

A d d L H S ( C F u z z y C l a u s e & cfClause); 

cfClause Address of CFuzzyClause object to add to rule. 

Adds an antecedent, in the form of a CFuzzyClause object, to the rule. 

CFuzzyRule::AddRHS 

A d d R H S ( C F u z z y C l a u s e * cfClause); 

A d d R H S ( C F u z z y C l a u s e & cfClause); 

cfClause CFuzzyClause object to add to rule. 

Adds a consequent, in the form of a CFuzzyClause object, to the rule. 

CFuzzyRule::SetWeight 

double Set Weight (double dWeight); 

dWeight The rule weight expressed as a value in the range [0-1]. 
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Sets the weight to dWeight and returns the old weight. The default weight is 1.0. 

CFuzzyRule:: Aggregate 

double Aggregate( ); 

Aggregates the antecedent rule inputs and returns the result. 
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class CFuzzyRuleBase 

A C F u z z y R u l e B a s e object represents a collection of C F u z z y R u l e objects. The class provides a 

number of member functions which allow input and output variables to be assigned to the rulebase 

and inferences to be made. The inferences may also be defuzzified. 

Construction/Destruction — Public Members 

CFuzzyRuleBase Constructs a C F u z z y R u l e object. 

Attributes — Public Members 

GetNumRules 

GetNumlnputVars 

GetNumOutputVars 

Returns the total number of rules in rulebase. 

Returns the total number of input variables. 

Returns the total number of output variables. 

Operations — Public Members 

AddRule 

AddlnputVar 

AddOututVar 

Resolution 

Inference 

Evaluate 

AggregateAII 

EvaluateAII 

DefuzzifyAII 

Adds a rule to the rulebase. 

Adds an input variable to the rulebase. 

Adds an output variable to the rulebase. 

Returns the output fuzzy set resolution. 

Computes the inference for a given fuzzy variable and fuzzy 

value. 

Computes the output set for a given variable, combining the 

inference results of all rules. 

Aggregates all rules. 

Evaluates all rules. 

Defuzzifies all output variables. 
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Member Functions 

CFuzzyRuleBase::CFuzzyRuleBase 

CFuzzyRuleBase ( ); 

CFuzzyRuleBase(const char * strName); 

strName Name of rulebase. 

Constructs a CFuzzyRuleBase object. 

CFuzzyRuleBase::GetNumRules 

int G e t N u m R u l e s ( ); 

Returns the total number of rules contained within the CFuzzyRuleBase object. 

CFuzzyRuleBase::GetNumlnputVars 

int G e t N u m I n p u t V a r s ( ); 

Returns the total number of input variables to the CFuzzyRuleBase object. 

CFuzzyRuleBase::GetNumOutputVars 

int G e t N u m O u t p u t V a r s ( ); 

Returns the total number of output variables from the CFuzzyRuleBase object. 

CFuzzyRuleBase: :AddRule 

A d d R u l e ( C F u z z y R u l e * pRule); 

A d d R u l e ( C F u z z y R u l e & pRule); 
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pRule Address of rule. 

Adds a rule of form C F u z z y R u l e to the rulebase. 

CFuzzyRuleBase::AddlnputVar 

A d d l n p u t V a r (CFuzzyVariable * pVar); 

A d d I n p u t V a r ( C F u z z y V a r i a b l e &; pVar) ; 

p Var Address of fuzzy variable. 

Adds an input variable of the form C F u z z y V a r to the rulebase. 

CFuzzyRuleBase: :AddOutputVar 

A d d O u t p u t V a r ( C F u z z y V a r i a b l e * pVar) ; 

A d d O u t p u t V a r ( C F u z z y V a r i a b l e & pVar); 

p Var Address of fuzzy variable. 

Adds an output variable of the form C F u z z y V a r to the rulebase. 

CFuzzyRuleBase::Resolution 

int Resolution( ) const; 
» 

Returns the resolution of the output fuzzy set. 

CFuzzyRuleBase::lnference 

Inference(CFuzzyVariable * pVar , C F u z z y M e m b e r * pSet, double d M a t c h , C F u z z ­

y A r r a y M e m b e r & pResult); 

pVar Address of fuzzy variable. 

pSet Address of fuzzy value. 
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dMatch Result of antecedent aggregation. 

pResult Address of resultant fuzzy set. 

Computes the inference set for a variable, p V a r of type CFuzzyVar iab ie , and value, pSet of 

type C F u z z y M e m b e r , using value d M a t c h which is the result of aggregation of the antecedents. 

The result, pResult , is stored in a C F u z z y A r r a y M e m b e r object. 

CFuzzyRuleBase: :Evaluate 

Evaluate(CFuzzyVariable * pVar , C F u z z y A r r a y M e m b e r &: pResult); 

p Var Address of fuzzy variable. 

pResult Address of resultant fuzzy set. 

Computes the output set for the variable pVar , combining the Inference( ) results of all rules. 

The result, pResult , is stored in a C F u z z y A r r a y M e m b e r object. 

CFuzzyRuleBase: :AggregateAII 

AggregateAl l ( ); 

Computes the aggregate of all rules in the CFuzzyRuleBase object. 

CFuzzyRuleBase::EvaluateAII 

EvaluateAl l ( ); 

Evaluates all variables in the CFuzzyRuleBase object. 

CFuzzyRuleBase: :DefuzzifyAII 

DefuzzifyAll( ); 

Defuzzifies all output variables in the CFuzzyRuleBase object. 



Appendix E 

S u p p o r t Classes 

E . l Introduction 

This chapter categorizes and describes a number of classes which are used to support the other 

classes described in Appendices A - D . 

E.2 Class Summary 

This section briefly summarizes the support classes. 

Max 

Returns the maximum of two supplied values. 

Min 

Returns the minimum of two supplied values. 

CEIement 

A standard element to be linked into lists. 
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E . 3 T h e C l a s s e s 

template class T> T Max 

Max is used to compute the maximum of two values. These values may be of any defined type. 

Max 

T Max(T x, T y) 

x First object. 

y Second object. 

Compares x and y. Returns whichever is larger. 

template class T> T Min 

M i n is used to compute the minimum of two values. These values may be of any defined type. 

Min 

T Min(T x, T y) 

x First object. 

y Second object. 

Compares x and y. Returns whichever is smaller. 
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template class T> class CEIement 

A CEIement object represents an element of a list. It may be used in singly or doubly linked lists. 

Data Members — Public Members 

pSuc Forward pointer (to successor). 

pPre Backward pointer (to predecessor). 

tData Element data. 

Construction/Destruction — Public Members 

CEIement Constructs a CEIement object. 

Member Functions 

C Element ::C Element 

CElement ( ) CEIement (CEIement *s, CEIement *p, T d) 

s Successor element. 

p Predecessor element. 

d Element data. 

Constructs a CEIement object. Initializes data members. 

Data Members 

CEIement: :pSuc 

This is a pointer to an successor CEIement. 
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CEIement::pPre 

This is a pointer to an predecessor CElement. 

CEIement::tData 

This data member represents data of type T, as specified by the class template. 


