
ELSA: An Intelligent Multisensor Integration
Architecture for Industrial Grading Tasks

by

Michae l D a v i d Naish

B . E . S c , Universi ty of Western Ontario, 1996

B . S c , Universi ty of Western Ontario, 1996

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

i n

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Mechanical Engineering)

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

November 1998

© Michae l D a v i d Naish , 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of l A e Q V W M W^flrTLkV^
The University of British Columbia
Vancouver, Canada

Date D£LaW£ 0)

DE-6 (2/88)

A b s t r a c t

The Extended Logical Sensor Architecture (ELSA) for multisensor integration has been developed

for industrial applications, particularly, the on-line grading and classification of non-uniform food

products. It addresses a number of issues specific to industrial inspection. The system must be

modular and scalable to accommodate new processes and changing customer demands. It must be

easy to understand so that non-expert users can construct, modify, and maintain the system.

The object model used by E L S A is particularly suited to the representation of non-uniform

products, which do not conform to an easily specified template. Objects are represented by a con­

nected graph structure; object nodes represent salient features of the object. Object classifications

are defined by linking to primary features, each primary feature may be composed of a number of

lower-level subfeatures.

Sensors and processing algorithms are encapsulated by a logical sensor model, providing robust­

ness and flexibility. This is achieved by separating sensors from their functional use within a system.

The hierarchical structure of the architecture allows for modification with minimal disturbance to

other components.

The construction methodology enables domain experts, who often lack signal processing knowl­

edge, to design and understand a sensor system for their particular application. This is achieved

through a formal design process that addresses functional requirements in a systematic way. Each

stage involves the extraction and utilization of the user's expert knowledge about the process and

desired outcomes. Specification of the requirements leads to the identification of primary features

and object classifications. Primary features are expanded into subfeatures. Logical sensors are then

chosen to provide each of the features defined by the object model; this in turn determines what

physical sensors are required by the system. The object classifications determine the rulebase used

by the inference engine to infer process decisions.

i i

C o n t e n t s

Abstract ii

Table of Contents iii

List of Tables ix

List of Figures x

Acknowledgements xii

1 Introduction 1

1.1 Traditional Industrial Inspection and Grading 1

1.2 Automated Inspection 2

1.3 The Need for Multiple Sensors 3

1.4 The Industrial Problem 3

1.5 Potential Benefits of a New Approach ; 4

1.6 Project Scope and Objectives 5

1.7 Thesis Outline 6

2 Literature Review 7

2.1 Multisensor Integration vs. Multisensor Fusion 7

2.2 Advantages of Multisensor Integration 8

2.3 Multisensor Integration Architectures 8

2.3.1 Logical Sensor-Based Architectures 11

i i i

CONTENTS iv

2.4 Sensor Technologies 14

2.5 Sensor Standards 15

2.6 Industr ia l Appl ica t ions 17

2.7 Uncertainty and Accuracy 20

2.8 Object Mode l l ing 22

3 Objec t M o d e l l i n g 27

3.1 Introduct ion 27

3.2 Rat ionale 27

3.3 Approach to Mode l l ing 28

3.4 M o d e l Structure 29

3.4.1 Classification Layer 31

3.4.2 Feature Layer 31

3.5 Properties of Objects 32

3.5.1 Phys ica l Properties 32

3.5.2 Rela t ional Properties 32

3.6 M o d e l Components 33

3.6.1 Object Nodes 33

3.6.2 Uncondi t iona l L inks 35

3.6.3 Fuzzy L i n k s 35

3.6.3.1 Linguis t ic variables 35

3.6.3.2 Membership functions 37

3.7 M o d e l Defini t ion 38

3.8 Summary 39

4 Sys tem Arch i t ec tu re 40

4.1 Introduct ion 40

4.2 Logica l Sensors 41

4.2.1 Logica l Sensor Characteristics • 45

4.2.2 I / O 46

CONTENTS v

4.2.2.1 I /O Controller 46

4.2.2.2 Data Input 47

4.2.2.3 Data Output 47

4.2.2.4 Control Input 48

4.2.2.5 Control Output 48

4.2.3 Controller 48

4.2.3.1 Logical Sensor Controller 49

4.2.3.2 Local Exception Handling 50

4.2.3.3 Local Knowledge Base 51

4.2.4 Programs 51

4.2.4.1 Device Drivers 51

4.2.4.2 Processing Algorithms 52

4.3 Integration 52

4.3.1 Integration Controller 53

4.3.2 Validation 53

4.3.3 Diagnostics 54

4.3.4 Exception Handling 54

4.3.4.1 Error Classification 55

4.3.4.2 Error Recovery 56

4.4 Inference Engine 56

4.4.1 Rule/Knowledge Base 58

4.5 Post Processing 59

4.6 Summary 59

5 Construction Methodology 60

5.1 Problem Definition/Requirements Specification 60

5.2 Object Model Development 62

5.3 Logical/Physical Sensor Selection 64

5.4 Rulebase Definition 67

5.5 System Implementation 70

CONTENTS vi

5.6 Modi f ica t ion and Refinement 72

5.7 Summary 74

6 Application Examples 75

6.1 C a n Defect Detect ion 75

6.1.1 Background 75

6.1.2 P rob lem Defini t ion/Requirements Specification 76

6.1.3 Object M o d e l Development 78

6.1.4 Log ica l /Phys i ca l Sensor Selection 79

6.1.5 Rulebase Defini t ion 81

6.1.6 Summary 84

6.2 Herr ing Roe Grad ing 84

6.2.1 Background 84

6.2.2 P rob lem Defini t ion/Requirements Specification 86

6.2.3 Object M o d e l Development 88

6.2.4 Log ica l /Phys i ca l Sensor Selection 89

6.2.5 Rulebase Defini t ion 97

6.2.6 Summary 98

6.3 Discussion 99

7 Concluding Remarks 101

7.1 Summary and Conclusions 102

7.2 Recommendations 103

References 106

Appendices 112

A Object Model Class 112

A . l Introduct ion 112

A . 2 Class Summary 112

A . 3 The Classes 113

CONTENTS v i i

C N o d e 113

CObjec tNode 115

CClass i f icat ionNode 119

CObjectProper t ies 121

CPhysica lProper t ies 122

CRela t ionalProper t ies 125

B Extended Logical Sensor Class 128

B . l Introduct ion 128

B . 2 T h e Class 128

C E L S B a s e 128

C Fuzzy Variable Class I 3 6

C l Introduct ion 136

C 2 Class Summary 136

C . 3 The Classes 138

CFuzzyDegree 138

CFuzzyVar iab le 140

C F u z z y M e m b e r 145

C F u z z y G e o m M e m b e r 147

C F u z z y T r i M e m b e r 150

CFuzzyTrapMember 153

C F u z z y A r r a y M e m b e r 156

D Rulebase Classes 159

D . l Introduct ion 159

D.2 Class Summary 159

D.3 T h e Classes 16°

CFuzzyClause 16°

C F u z z y R u l e i 6 2

CFuzzyRuleBase I 6 6

CONTENTS viii

E Suppor t Classes 1 7 0

E . l Introduction 1 7 0

E .2 Class Summary 1 7 0

E.3 The Classes 1 7 1

Max 1 7 1

Min 1 7 1

CElement 1 7 2

L i s t o f T a b l e s

2.1 Examples of sensors for industrial inspection classified by type 14

3.1 Components of object node for feature representation 33

4.1 Summary of Extended Logical Sensor components 44

4.2 Standard logical sensor control commands 49

4.3 Standard logical sensor error conditions 50

6.1 Summary of herring roe grades 85

6.2 Dependencies of roe classifications on primary features 91

6.3 Calculation of structured light geometry 95

A . l Enumeration of object types 116

A . 2 Enumeration of property types 124

B. l Abstract and derived types 131

B.2 Enumeration of ELS control commands: CommandID 132

ix

L i s t o f F i g u r e s

2.1 Basic components of a logical sensor 12

2.2 Instrumented Logical Sensor 13

2.3 Networked smart transducer model 16

2.4 Distinction between bias error and precision error 21

2.5 Presumed processing stages in human object recognition. . 24

2.6 Four steps in object grading 24

2.7 Model used to recognize cranial C T images 25

3.1 Graph structure for object representation 30

3.2 Object node for feature representation 34

3.3 Classification node 34

3.4 Effect of hedge definitely 37

3.5 Membership function used to represent confidence in the detection of a particular

feature 38

4.1 Overview of Extended Logical Sensor Architecture 42

4.2 Basic components of an Extended Logical Sensor 43

4.3 The Inference Engine used by E L S A 57

5.1 Overview of construction methodology 61

5.2 Object model development methodology 63

5.3 Methodology for the development of the E L S hierarchy 66

x

LIST OF FIGURES x i

5.4 Methodology for the definition of the rulebase for object classification using the object

model 69

5.5 Methodology for the definition of the decision rulebase based on object classifications. 70

5.6 Membership function used to represent confidence that an object is of a particular

classification 71

6.1 Examples of canner's double seam defects — side view 77

6.2 Examples of canner's double seam defects — top view 77

6.3 Object model for metal can inspection 79

6.4 Logical sensor hierarchy for metal can inspection 80

6.5 Full view of can sides reconstructed from four viewpoints 81

6.6 Rules used to identify the classification of metal cans from primary features 82

6.7 Rules used to decide whether to reject cans based on object classifications 82

6.8 Membership functions used for classification of metal can defects 83

6.9 Prototype herring roe grading system 86

6.10 Object model for herring roe grading 90

6.11 Logical sensor hierarchy for herring roe grading 92

6.12 Examples of herring roe classification grades imaged on-line under diffuse light con­

ditions 93

6.13 Geometry of structured light used for acquisition of 3D features 94

6.14 Basic geometry for reconstruction of 3D profile information using structured light. . 95

6.15 Example of herring roe classification grades imaged on-line under structured light

conditions 96

6.16 Rules used to identify herring roe grades from primary features 97

6.17 Rules used to determine decisions about how roe should be handled based on object

classifications 98

6.18 Membership functions used for classification of herring roe grades 99

C . l Triangular membership function 151

C.2 Trapezoidal membership function 154

A c k n o w l e d g e m e n t s

This thesis is a reality due to the help, guidance, and support of many people. Foremost, I would

like to extend thanks to Dr. Elizabeth Croft for providing me with an opportunity to study at U B C .

Her door always open, red pen ever ready, I thank her for supervision and guidance. Together with

Dr. Clarence de Silva, I also thank her for providing me with an excellent working environment in

the Industrial Automation Laboratory.

I am grateful to Dr. Beno Benhabib of the University of Toronto for providing insightful, helpful,

and always interesting comments on my work during his sabbatical on the West Coast. Offering a

critical outside perspective, he contributed greatly to the improvement and validation of this work.

The financial support provided by the Natural Sciences and Engineering Research Council of

Canada and the Gordon M . MacNabb Scholarship Foundation is gratefully acknowledged. Addi­

tional support was provided by the Garfield Weston Foundation.

Thanks to my friends and colleagues in the Industrial Automation Laboratory and the Neuro­

motor Control Laboratory who, despite extending my stay in Vancouver, made my time here much

more rewarding and enjoyable.

I thank my family: M y parents, David and Sharon Naish, who have been unfailing in their love,

support, encouragement, and assistance throughout my life. I am eternally indebted to them. Also,

my sisters Jennifer and Victoria who provide me with a refreshingly unscientific view of the world.

I am a better person for them.

Finally, I must thank Ana Luisa Trejos Murillo whose love, understanding, and encouragement

has helped immensely through the final months of this thesis. Thank you for your patience.

xi i

Chapter 1

I n t r o d u c t i o n

1.1 Traditional Industrial Inspection and Grading

The ability to consistently produce high-quality products is important to the success of manufactur­

ing and processing operations. Traditional quality assurance methods have often relied on human

operators who use visual cues in order to determine product quality. Such methods are tedious,

time-consuming, and inconsistent.

For example, for many food products, grading is performed by seasonal workers. The shifts are

often long, the working conditions difficult, and there are often time constraints imposed to ensure

product freshness. Grading is often a dull, repetitive task that requires long periods of concentration.

Performance, and hence product quality, often degrades over the period of a shift. Furthermore,

value-conscious consumers are demanding an increasing number of product classifications of high-

consistency. Unfortunately, grading consistency is inversely proportional to the number of grades

— as the number of grades increase, consistency decreases.

Most human multi-factor grading decisions are based on the subjective interpretation of visual

information and cues from other senses (e.g. smell, firmness, weight). Thus, the characterization

of grading classifications is often difficult and the ability to make repeatable decisions is hampered.

This problem is compounded by the nature of natural and biologically formed products which

generally do not have crisp, ideal templates [1], but rather, exhibit non-standard and non-uniform

characteristics. For example, products such as fish, apples, potatoes, chicken, tomatoes, and other

1

1.2 Automated Inspection 2

types of produce may, even within a single classification or grade, vary widely in appearance. The

problem is further compounded by variations in the product characteristics within a species, region,

or industry. Recent trends are reducing the tolerances for acceptable products while the number of

varieties and overall demand for products continue to increase. Industry has reacted by turning to

automation to address these grading and quality assurance needs.

1.2 Automated Inspection

The majority of inspection and grading tasks require the acquisition and processing of visual infor­

mation. In the context of industrial automation, this is handled using a machine vision system. If

required, visual information may also be augmented with data from other sensors to properly assess

product quality.

Machine vision systems offer a number of potential benefits to industries which rely on manual

quality assurance. Since most production facilities run continuously, defects may go undetected if

an inspector looks away or experiences a lapse in concentration. On the other hand, a machine

vision system can guarantee that 100% of the objects leaving the system are inspected. The rate of

defect detection may fall below 100% but, by increasing the inspection rate, it may achieve higher

defect detection rates than a human inspector.

In addition to the reliability and repeatability of the grading system, industrial users require the

ability to modify the grading scheme to meet changing market demands and customer criteria. A n

automated system has a consistent internal representation of product and quality classifications.

This representation may be redefined by adding or removing information which governs the decision

making process. Such 'global' changes offer increased consistency and flexibility over trained workers

who each maintain slightly different interpretations of quality [2].

A n automated system has the ability to collect on-line data about the process. This data may be

used to close the control loop of the system. For example, the process parameters could be adjusted

in response to fluctuations in the defect rate. This information may also be useful to marketing and

sales departments who could tie the value of the product to documented quality levels.

Finally, by reducing or eliminating the need for manual inspection, labour costs would be re­

duced. Automation may reduce burden of maintaining a trained workforce for seasonal industries

1.3 The Need for Multiple Sensors 3

— either in retaining skilled workers or providing training for new-hires at the start of the season.

A n automated system may also provide the potential for increased production speeds.

The choice to adopt an automated solution must be balanced against the inherent disadvantages.

Industrial systems require a capital expenditure for initial acquisition and installation that can be

significant. For some tasks, manual labour or a combination of mixed automation and labour may be

more cost effective. Humans are easily trained and can adapt to new conditions and criteria quickly.

This contrasts with the setup and 'training' of an automated system which may be time-consuming,

complex, and difficult to adapt. Also, while automation typically surpasses human capabilities for

product throughput, humans are better able to handle unexpected events and tasks which involve

a combination of inspection and handling operations, such as the patching of salmon cans [3].

1.3 The Need for Multiple Sensors

Systems which have attempted to make multi-factored grading decisions on the basis of information

from a single sensor have met with limited success. Despite the richness of information available

from a colour camera, such a device can only produce a two-dimensional array of intensities from

a single viewpoint. Features that may have a significant influence on the assigned grade may be

occluded from view or require depth information for detection. Often, it is desirable to combine

visual information with data from other sensors to improve the outcome. Possibilities include the

combination of vision with simpler sensors, such as load cells and thermocouples, or the use of

multiple cameras to eliminate occlusion or produce depth maps (through stereo vision algorithms).

In addition to the advantages of using complementary information as mentioned above, multiple

sensors may also provide redundant information to improve the accuracy and robustness of a system.

1.4 The Industrial Problem

The role of machine vision and multisensor integration is becoming widely accepted in the food

processing industry [4,5]. Intelligent multisensor systems are intended to provide complementary

qualities to the industrial user; namely, the repeatability and reliability of automation together with

the feature discrimination, classification capability, and adaptability of humans. However, there are

1.5 Potential Benefits of a New Approach 4

two main problems with current industrial multisensor systems.

First, in an effort to use multiple sensors to improve process performance, many systems have

been constructed in an ad-hoc fashion. Pieces are added as new technology is acquired, often with

the need to redesign significant portions of the existing system to facilitate the integration of the new

sensors. Such systems lack a formal architecture and are typically designed by experts in machine

vision and/or systems integration. This is a general problem for systems that have been designed

and constructed for a specific task or operation. For industries competing in dynamic markets that

require systems which can adapt to changing needs for speed, feature recognition, accuracy, and

product differentiation, this approach is problematic.

Second, much of the success of machine vision and multisensor systems is dependent upon the

ease of use of these systems for industrial users. Such users may understand the process but not

the details of the sensor technology. In order to achieve full acceptance, the associated sensor and

artificial intelligence technologies must become transparent to the end user, so that process experts

in the food industry do not have to understand the technical details. A completely transparent

system is likely many years away. As a result, opportunities exist to develop systems which work

towards this goal, while achieving the proper balance between utility and ease of use. Such systems

should be orderly, comprehensible, and simple.

1.5 Potential Benefits of a New Approach

There is currently no accepted formal approach for the design and construction of a multisensor

integration system for industrial inspection. A n open and scalable architecture wil l enable indus­

trial users to design systems which inherently reduce the risk of obsolescence. Systems may be

reconfigured, modified, and adapted to respond to changing requirements and advances in sensor

technology.

By organizing the system in a manner that industrial users can understand, these same people

can specify, configure, and maintain their own systems, without the need to retain outside experts.

This places the power to define and modify the process with those that understand it best, reducing

the need to transfer process knowledge to automation experts.

1.6 Project Scope and Objectives 5

1.6 Project Scope and Objectives

This work represents the first stage of an initiative to develop both a methodology to construct

multisensor integration systems in a systematic way and to provide the tools required to do so.

This thesis focuses on the development of the Extended Logical Sensor Architecture (ELSA) to

allow for the systematic construction of a multisensor integration system for industrial tasks. In

doing so, the underlying structure, the major components dealing with sensing and inference issues,

the object representation, and the construction methodology are presented. It should be noted that

while inspection is the focus of this work, it is intended to be applicable to a variety of automation

tasks which may benefit from a multiple sensor perception system. Other potential applications

include material handling, assembly, and machining operations.

To address the industrial needs outlined in the sections above, E L S A is presented as new, open

architecture approach for intelligent multisensor integration in an industrial environment. The

specific objectives of this thesis are detailed below:

1. To provide a modular and scalable architecture which serves as a robust platform for intelligent

industrial sensing applications.

2. To specify an encapsulation of physical devices and processing algorithms.

3. To specify a data representation scheme which allows for the quantification of deviations from

an ideal model.

4. To ensure that the data representation scheme provides the user with insight as to how the

system is structured and how the sensor information is used to make decisions.

5. To provide a robust exception handling mechanism to ensure the reliability of an implemen­

tation of this architecture.

6. To ensure that the architecture is applicable to a broad range of industrial applications,

especially those involving non-uniform product grading.

1.7 Thesis Outline 6

1.7 Thesis Outline

The structure of this thesis is summarized in the outline below:

Chapter 1 Introduction: This introductory chapter.

Chapter 2 Literature Review: Introduces literature from a variety of topics related to the problem

of industrial multisensor integration. Topics include: visual inspection, multisensor

integration, integration architectures, and object representation.

Chapter 3 Object Modelling: Describes how objects are represented using an object model which

also provides a basis for sensor selection and inference engine implementation.

Chapter 4 System Architecture: Presents the overall structure of the Extended Logical Sensor

Architecture (ELSA). Each of the major components, particularly those for sensing

and inference, are detailed.

Chapter 5 Construction Methodology: Discussion of the E L S A approach to the design of, and

selection of components for, a multisensor integration system for industrial tasks.

Chapter 6 Application Examples: Presents two illustrative example applications taken from in­

dustry. These serve to demonstrate how a system is implemented within the E L S A

architecture.

Chapter 7 Conclusions and Recommendations: Concludes the thesis with a summary which high­

lights the contributions of this work. Suggestions for future improvements to E L S A

and related systems are also given.

Chapter 2

L i t e r a t u r e R e v i e w

Herein, the relevant literature dealing with multisensor integration, visual inspection, and object

modelling is presented. The majority of the work in the area of multisensor integration has focused

on issues specific to mobile robotics and target tracking applications; however, many aspects of

these systems are applicable to visual inspection. The object modelling literature, on the other

hand, is closely tied to the image processing and machine vision research. This work is therefore

a synthesis of the ideas from these different fields, applied to the problem of sensor integration for

industrial inspection.

2.1 Multisensor Integration vs. Multisensor Fusion

Multisensor integration and multisensor fusion are closely related. The role of each in the operation

of intelligent machines and systems is best understood with reference to the type of information

that the integrated multiple sensors can uniquely provide to the system. Multisensor integration

refers to the synergistic use of the information provided by multiple sensory devices to assist in the

accomplishment of a task by a system [6]. The somewhat more restricted notion of multisensor fusion

refers to any stage in the integration process where there is an actual combination (or fusion) of

different sources of sensory information into one representational format. Fusion may occur at a low-

level (signal), mid-level (pixel), or high-level (feature or symbol) of representation. These definitions

serve to distinguish the system-level issues relating to integration of multiple sensory devices at the

architecture and control level from the more specific mathematical and statistical issues presented

7

2.2 Advantages of Multisensor Integration 8

by the actual fusion of sensory information. In this work, the focus is on integration.

2.2 Advantages of Multisensor Integration
\

Automated systems which attempt to make multi-factored decisions about non-uniform products

on the basis of information from a single sensor have had limited success. Often, there is simply

inadequate data for a proper product assessment. The transition to multiple sensors can extend the

capabilities and improve the robustness of existing systems.

A system which employs multiple sensors may enjoy several advantages over single sensor sys­

tems [6]. The primary advantages are: information can be obtained more accurately and features

undetectable with individual sensors may be perceived in less time and with less cost. Of these,

redundant and complementary information are the most certain.

Redundant information is acquired by a group of sensors (or a single sensor over time); each sen­

sor perceiving the same features in the environment. By integrating and/or fusing this information,

the accuracy of the system can be increased by reducing the overall uncertainty. Redundant sensors

also serve to increase the robustness of the system in the event of sensor failure. Complementary

sensor groups, on the other hand, perceive features in the environment that are imperceptible to

individual sensors. Each sensor provides a subset of the required feature space; these feature subsets

are combined to obtain the intact feature.

Little published work has been done in the area of non-specialized, sensor integration architec­

tures for industrial applications. Section 2.3 provides a brief review of general sensor integration

architectures.

2.3 Multisensor Integration Architectures

A system architecture provides a framework upon which individualized systems can be built and

adapted. For complex systems, an architecture is essential to ensure that the system is comprehen­

sible, robust, and that it is easily extensible. A n architecture for sensor integration systems must

provide the following components:

2.3 Multisensor Integration Architectures 9

• Data structure and communication protocols.

• Resolution of information from sensors.

• Data fusion/integration engine.

• Exception handling.

• Decision making (inference from sensory information).

• Control mechanism or method of utilizing system output.

A number of different architectures have been developed for the purpose of multisensor inte­

gration, each for a specific application such as mobile robot navigation and control, autonomous

guided vehicles, military target tracking, and industrial control systems. While, on the whole, these

architectures are not directly applicable to the task of industrial inspection and classification, each

of the following examples presents some aspects which are potentially useful to this problem.

Architectures developed for mobile robot navigation and control are primarily concerned with

prioritizing objectives and ensuring that high priority (real-time) objectives are met. Brooks' sub-

sumption architecture [7] utilizes a number of different layers to ensure that while performing a

high-level task, low-level operations continue to perform. For example, the task of chasing a mouse

around a room is overridden by the goal of avoiding obstacles and this, in turn, is overridden by the

need to maintain balance. Sensory information may be used differently by each layer; only those

sensors which perception processing identifies as extremely reliable are used to maintain a central

representation.

A n action-oriented perception paradigm is utilized by the S F X architecture developed by Murphy

[8,9]. Robot actions are decomposed into a motor behaviour and the perception of some object

or event which drives the behaviour. Perception considers both the percept being sensed and a

measure of certainty in the sensing. A cognitive science model proposed by Bower [10] is used as

the basis for discordance-based sensor fusion to combine information from multiple sensors. There

are four fusion modes as follows:

2.3 Multisensor Integration Architectures 10

1. Complete sensor unity (fusion of sensor data). In this mode, sensor data is fused without

a mechanism for detecting discordances. Sensory information is tightly coupled such that

discordances do not arise.

2. Awareness of discordance where recalibration is possible (integration of sensor data). Here,

the discordance between sensors is reconciled by recalibration of the offending sensors.

3. Awareness of discordance where recalibration is not possible (comparison of sensor data). In

this case, sensors providing erroneous data are temporarily suppressed.

4. No unity at all (independent use of sensor data). Sensors observe attributes without any

spatial correspondence. Here, sensor data is used independently.

In Murphy's architecture, sensing failures are handled by error classification and error recovery

modules. Classification of the error type and source is attempted using a modified generate-and-

test procedure. Once the error source is identified, the error recovery module selects a predefined

recovery scheme to either repair or replace the current sensing configuration.

Lee [11,12] has developed the Perception Action Network (PAN) architecture which provides

a mechanism for dealing with uncertainty in the process of data fusion. Feature Transformation

Modules (FTM) , Data Fusion Modules (DFM), and Constraint Satisfaction Modules (CSM) are

placed along the connections between logical sensors (to be defined shortly). These modules de­

fine relationships which allow the perception net to reduce uncertainties through data fusion and

constraint satisfaction, in addition to identifying possible biases.

Architectures developed for Autonomous Guided Vehicles (AGVs), are concerned with issues

similar to those of mobile robotics. The approach taken by Draper et al. [13] in the development

of the sensor integration system for the Mobile Perception Laboratory (MPL) was to focus on the

types of information required to perform a task and the representations needed to express them.

This shifts the use of data from multiple sensors from low-level fusion to higher-level integration.

Another approach to an architecture for A G V s is presented by Shafer, Stentz, and Thorpe [14].

Sensor integration research within the military has focused on target tracking applications. The

major issues here are proper synchronization, communication, and routing between sensor systems

that are widely distributed. Architectures which have been developed include those by Iyengar et

2.3 Multisensor Integration Architectures 11

al. [15,16] based on a multilevel binary de Bruijn network (MBD), Klein [17], and the object-oriented

approach taken by Queeney and Woods [18].

The industrial operating environment is often quite different from the operating environments

of mobile robots, A G V s , and target tracking systems. For these, the environment is assumed to

be unstructured and largely unknown. A priori knowledge of lighting conditions, expected objects,

obstacles, and failure modes is often unknown or unavailable. In an industrial context, many of these

factors may be controlled. Additionally, industrial systems do not have to address the behaviour

issues of mobile robotics.

There are few integration architectures that have been developed to address problems specific

to the industrial environment. One exception is the HINT architecture developed by Alarcon et al.

This is a generic architecture for plant-wide industrial control [19]. It aims to support the integration

of different artificial intelligence techniques to provide solutions to process control problems that

currently require human expertise. While not directly applicable to industrial inspection and grading

tasks, it presents some interesting ideas. In particular, the proposed methodological approach and

hierarchical structure of the framework are useful starting points for the design of a new architecture.

2.3.1 Logical Sensor-Based Architectures

Sensors are one of the principal building blocks of a multisensor integration architecture. The data

provided by sensors may be used as input to processing algorithms which combine and convert the

data into higher level representations of the information. One approach that is well suited to the

incorporation of sensors into a multisensor integration architecture is the logical sensor model.

A logical sensor (LS) is an abstract definition for a sensor. Logical sensors were first defined

by Henderson and Shilcrat [20] and later broadened to include a control mechanism by Henderson,

Hanson, and Bhanu [21], Figure 2.1. This definition provides a uniform framework for multisensor

integration by separating physical sensors from their functional use within a system. Logical sen­

sors are used to encapsulate both physical sensors and processing algorithms. This encapsulation

defines a common interface for all sensor types allowing the straightforward addition, removal, and

replacement of sensors within the architecture.

Using this definition, physical sensors such as load cells, thermocouples, cameras, and laser

2.3 Multisensor Integration Architectures 12

~ LOGICAL
SENSOR NAME

LOGICAL SENSOR
OUTPUT

CONTROL
COMMANDS

' PROGRAM SELECTION LOGIC

CONTROL
COMMAND '

INTERPRETER •
PROGRAM 1 ' § | p § | i g ! PROGRAM n

CONTROL
COMMAND '

INTERPRETER •

LOGICAL SENSOR LOGICAL SENSOR COMMANDS TO
INPUTS INPUTS LOGICAL SENSORS

Figure 2.1: Basic components of a logical sensor as proposed by Henderson
et al. [21].

range-finders may be represented. The data from these sensors may also be combined and processed

using a variety of available algorithms. In this way, logical sensors, such as a line detector, which

do not physically exist, may be made available to the user. Output from a variety of logical sensors

may be combined to extract complex features. Physical sensors may be replaced or added without

disturbing the entire system — only the associated logical sensor need change.

The logical sensor model provides a control structure which allows for the selection of a dif­

ferent program (which may rely on different sensor inputs) should the sensor performance prove

unacceptable. Control commands are generated from higher-level logical sensors.

The original Logical Sensor Specification (LSS) handles error conditions in a simple manner.

A n 'acceptance test' is used to judge each input. Inputs which pass the test are accepted and used;

those that fail are rejected. Rejection results in the system attempting to obtain input from one of

a number of alternate inputs. When all alternatives are exhausted, the sensor fails. The source of

the error is not determined. Replacement rather than recovery is the only method of error handling.

Weiler, Groen, and Hertzberger adopted the logical sensor concept and developed an architecture

which uses a hierarchy of sensor modules [22]. Before replacing sensor modules in an effort to

obtain correct input, an attempt is made to locate the cause of the error. If found, recovery is

attempted through the adjustment of sensor parameters and/or input to the sensor. This approach

2.3 Multisensor Integration Architectures 13

requires that the sensor itself contain expert knowledge for both the detection and isolation of error

conditions, and the rules upon which the recovery strategy is based. This concept was further

refined by Groen, Antonissen, and Weiler when applied to a model-based robot vision system [23].

Dekhil and Henderson extended the concepts introduced by Weiler et al. and introduced Instru­

mented Logical Sensor Systems (ILSS) [24-27]. The application was again mobile robot navigation.

The ILSS, as shown in Figure 2.2, is an extension of the LSS. The primary difference between

ILSS and LSS is the addition of components which provide mechanisms for on-line monitoring and

debugging. These mechanisms are designed to increase the robustness of the sensor. For example,

monitors use a set of rules to validate the output of the ILSS. The user is alerted to any undesired

results. Local embedded testing is used for on-line checking and debugging purposes. These tests

operate by generating input data designed to check different aspects of the module. The data may

also be directed at other sensors to enable the testing of a group of modules. A set of rules and

constraints is used to examine the resulting sensor output.

COMMANDS „ COV„

ILSS NAME

co
O

COMMAND CONTROL INTERPRETER (CCI)

SELECT FUNCTION

•• CM •CO
h- ' f— h- H
UJ Ul Ul Ul

2 z z
CD CD

\
CO ca

\ z> z> CO CO CO CO

Q t O

COMMANDS 0 U T C0V|N

Figure 2.2: Instrumented Logical Sensor [27].

Using the ILSS, data from physical sensors may be combined and processed using a variety of al­

gorithms to create sensors which do not physically exist. A sensor system may be constructed which

can extract complex high-level features. These features form the basis of the object representation

for recognition and classification.

2.4 Sensor Technologies 14

2.4 Sensor Technologies

Sensors are most often classified in accordance with the type of physical phenomenon that is detected

and the subject of measurement. Often sensors are developed to satisfy particular objectives. A

large number of sensors exist for an ever increasing number of applications which utilize sensor

technologies [28]. Table 2.1 presents examples of sensors which are particularly suited to industrial

inspection tasks.

Table 2.1: Examples of sensors for industrial inspection classified by type.

Sensor Type Detection Data Detector

Visual

Position

Distance

Form

Features

Cameras, position sensors, range
finders, line image sensors, area
image sensors.

Proximity
Proximity

Spacing

Inclination

Photoelectric switches, L E D
lasers, phototransistors,
photodiodes, ultrasound sensors.

Tactile
Contact

Force
Pressure

Limit switch, metal detectors,
strain gauges, conductive rubber,
pressure sensors.

Aural Sound Ultrasound sensors.

Chemical
Gas
Odour

pH

Emission spectroscopy,
chromatographs, densitometers,
gravimeters, X-rays.

Dynamic
Weight

Speed

Load cells, accelerometers,
anemometers, L I D A R .

Typically, the sensor output signal is in the form of an electrical signal such as a voltage. The

output could be in either analog or digital form. Since most current applications process sensor

information using a computer, sensors which provide digital output are preferable. Analog signals

are converted into a digital representation using an analog-to-digital (A /D) converter.

Device drivers are required to interface between the hardware of the sensor and the processing

system. These programs serve to package data and commands in a format that may be understood

by both sides. Unfortunately, there is little standardization of sensor hardware — even for devices

2.5 Sensor Standards 15

that perform the same task. As a result, each sensor typically requires a unique driver. This reduces

the interoperability of sensor technologies.

2.5 Sensor Standards

There is currently a major effort to develop a standard for the integration of sensor technologies.

This effort, led by the the National Institute of Standards and Technology (NIST) and the Institute

of Electrical and Electronics Engineers (IEEE), is working toward the development of the I E E E -

P1451 Standard for a Smart Transducer Interface for Sensors and Actuators. The goals of this

standard are to:

• Enable plug and play at the transducer level by providing a common communication interface

for transducers.

• Enable and simplify the creation of networked smart transducers.

• Facilitate the support of multiple networks.

The standard consists of four subsections: P1451.1 — Network Capable Application Processor

(NCAP) Information Model, P1451.2 — Transducer to Microprocessor Communication Protocols

and Transducer Electronic Data Sheet (TEDS) Formats, P1451.3 — Digital Communication and

Transducer Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems, and P1451.4

— Mixed-mode Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats.

Currently, draft versions exist for P1451.1 [29] and P1451.2 [30].

P 1451.1 specifies networking support for a transducer. The objective is to develop standardized

connection methods for smart transducers to control networks. Little or no changes should be

required to use different methods of A / D conversion, different microprocessors, or different network

protocols. This objective is achieved through the use of a common object model, together with

interface specifications to these components. There are two key views of the networked smart

transducer, as shown in Figure 2.3.

The Smart Transducer Object Model provides two key interfaces. The first, to the Transducer

Block, encapsulates the details of the transducer hardware implementation within a simple pro-

2.5 Sensor Standards 16

(N E T W O R K B L O C K) (P1451.1) (T R A N S D U C E R B L O C K)

Figure 2.3: Networked smart transducer model [29]. Physical components
are shown by solid lines; dotted lines indicate logical compo­
nents.

gramming model. This results in the sensor or actuator hardware appearing like an I/O-driver.

The second is the interface to the Network Block. This interface encapsulates the details of the

different network protocol implementations behind a small set of communication methods. These

logical models and interfaces are used in defining a data model for the smart transducer that is

supported by the network.

P1451.2 provides an interface specification to allow the interoperability of transducers. It allows

for self-identification and configuration of sensors and actuators while allowing extensibility so that

vendors may provide for growth and product differentiation. The Transducer Electronics Data

Sheet (TEDS) provides a mechanism to specify a combination of transducer, signal conditioning,

and signal conversion to the rest of the system; it does not specify the actual signal conditioning or

data conversion methodologies. T E D S contains fields that fully describe the type, operation, and

attributes of one or more transducers. The T E D S is physically associated with each transducer,

encapsulating the measurement aspects of a Smart Transducer Interface Module.

The interfaces specified in P1451.1 and P1451.2 are optional in that an implementation may

adopt one without the other. For example, if a transducer is networked but support for interop­

erability is not required, the P1451.1 Object Model may be used without the P1451.2 Interface

2.6 Industrial Applications 17

Specification. Similarly, if networking is not supported, or the network implementation is closed,

P1451.1 does not have to be used to get the benefits of interoperability provided by P1451.2.

These standards have been developed to support a wide variety of transducers as well as a digital

interface to access the T E D S , read sensors, and set actuators. This allows transducer manufacturers

to differentiate themselves not by the supported interface(s), but by cost, feature set, and quality.

Manufacturers design to a common interface which can be used by a variety of applications.

By providing a standard low-level interface, these smart transducers may be easily integrated

into a sensor system. This model extends to the device level the concepts of modularity and

flexibility that are desirable in a multisensor integration system. A truly encapsulated system may

then be constructed — from high-level integration and processing algorithms to the low-level sensing

devices.

2.6 Industrial Applications

In the area of quality assessment and assurance, machine vision is often used to gather the bulk

of the required information, especially for the grading or classification of non-uniform (biological)

products. Other sensors, such as scales, mechanical measurement devices, and ultrasound are

employed to gather information that is used to enhance the machine vision data. Industrial systems

which employ machine vision perform one or more of the following activities [4]:

Gauging: Performing precise dimensional measurements.

Verification: Ensuring that one or more desired features are present and/or undesired fea­

tures are absent.

Flaw detection: Location and segmentation of undesired features which may be of unknown

size, location, and shape.

Identification: Use of symbols, including alphanumeric characters, to determine the identity

of an object.

Recognition: Use of observed features to determine the identity of an object.

Locating: Determination of object location and orientation.

2.6 Industrial Applications 18

The controlled environment of an industrial plant greatly simplifies the generic recognition prob­

lems considered by many machine vision researchers. Segmentation is simplified by knowledge about

both the objects and the background against which objects must be segmented. Typical production

arrangements involve the use of conveyor belts which serve to provide physical separation between

the objects being transported. This separation eliminates the need for algorithms which perform

well when objects are occluded; such algorithms are typically computationally expensive. In addi­

tion, structured and predictable lighting is possible, further simplifying the object recognition task

by ensuring that objects appear under the same intensity of light and shadow field. This improves

feature discrimination, reduces processing time, and reduces processing hardware requirements [4].

There have been a number of vision-based multisensor systems developed for quality assurance

and assessment over the past decade. In most of these applications, ad-hoc methods are used to

develop a sensor integration system to monitor the process. Such systems lack a formal architecture

and are typically designed by experts in machine vision and/or systems integration. This can result

in difficulties with the use and maintenance of the system for the everyday user. Additionally,

upgrading the system to change or add additional sensors and/or requirements often requires the

system to be redesigned. This is a problem for industrial users whose requirements in terms of

speed, feature recognition, accuracy, and other process monitoring parameters invariably change

over time. A number of examples of recent industrial systems follow.

Luzuriaga, Balaban, and Yeralan [31] have developed a system for the machine vision inspection

of white shrimp. The back-lit shrimp are inspected by a single colour C C D array camera for colour

and 2D shape features. Colour changes and melanosis development of the stored shrimp are used as

a basis of evaluation. Additionally, the weight of each shrimp is estimated from the 2D view area.

While designed for and tested in an industrial environment, this system relies on manual placement

and turning of each shrimp.

A similar system for catfish feature identification was developed by Jia, Evans, and Ghate [32],

though it was concerned primarily with the detection of the head, tail, and fins. These features

were then used to determine appropriate cutting lines for processing.

Daley et al. [33] are working towards the automation of poultry grading and inspection. This

system uses a colour C C D camera to obtain information regarding the HSI colour, size, and shape

2.6 Industrial Applications 19

of each bird. Global defects are identified with a 96% success rate; local defects are identified only

about 60% of the time. This is due to the increased difficulty in extracting the local features. To

properly address the problem, additional sensors are required to allow for the measurement of the

surface texture and structure.

A low-cost system for fruit and vegetable grading was developed by Calpe et al. [34] as an

alternative to expensive commercial systems. This open platform may handle up to 12 lanes simul­

taneously at a speed of 10 items per second. Classification is based on R G B colour information.

Conveyor rollers mechanically separate and rotate the fruit. The captured image contains two lanes

with four pieces of fruit in each lane. A colour index is computed for all eight pieces as the con­

veyor moves forward and another image is taken. In this way, four images of each piece of fruit are

acquired; the rollers ensuring that the majority of surface area is considered. Currently, a grading

decision is made by averaging the colour information.

Recent work in the Industrial Automation Laboratory at the University of British Columbia

has involved the grading of herring roe skeins [35-38]. Images obtained with a C C D camera are

processed to extract colour, contour, and curvature information. Skein weight is estimated from

the 2D area using a multiple-regression estimator. Firmness is estimated from the brightness of

ultrasonic echo images. A l l of this information is combined to determine a classification for each

roe. Grading accuracy ranges from 72%-95%. Classification accuracy between Grade 1 and Grade 2

roe is about 95%; however, the system is less successful at subclassifying the Grade 2 roe into various

sub-grades. Additional sensors are required to improve the overall performance of the system.

Other applications which make use of sensory information for grading and classification include

potato grading [39], shrimp inspection [31], material surface inspection [40], printed circuit board

inspection [41], and visual inspection of unsealed canned salmon [42].

A number of proprietary industrial systems exist for product inspection and classification. These

include the QualiVision system from Dipix Technologies Inc. for the quality control of bakery and

snack food products. This system uses 3D imaging to assess product consistency to 10 microns [43].

Lumetech A / S has developed the Fisheye Waterjet Portion Cutter for trimming and portioning fish

fillets [44]. Lullebelle Foods Ltd . utilizes a cell-based vision system to eject unripe blueberries from

the processing line [45]. Key Technologies Inc. offers the Tegra system for grading agricultural

2.7 Uncertainty and Accuracy 20

products according to size and colour [46]. Typically, such systems sort products based on 1-2

discrete thresholds.

2.7 Uncertainty and Accuracy

There are a number of standard terms [47] which may be used to describe the validity of sensor

data and the analysis of uncertainty. As the use of this terminology has not been consistent in the

literature [48], a brief review follows:

Error is defined as the difference between the measured value and the true value of the measur-

and, as illustrated by Equation (2.1).

There are two general categories of error which may be present: bias errors (systematic or fixed

errors) and precision errors (random errors) [49]. Both degrade the validity of the sensed data,

though the causes of each are different and each is minimized in a different manner.

Bias errors are consistent, repeatable errors; however, they are often not obvious and considerable

effort is usually required to minimize their effects. There are three forms of bias error. The first,

calibration error, is the result of error in the calibration process, often due to linearization of

the calibration process for devices exhibiting non-linear characteristics. The second source of bias

error is loading error. This is due to an intrusive sensor which, through its operation, alters the

measurand. Loading error may be avoided through the use of nonintrusive sensors. Lastly, a bias

error may result from the sensor being affected by variables other than the measurand. Bias errors

are defined by Equation (2.2).

error = measured value — true value (2-1)

bias error = average of readings — true value (2-2)

Precision errors are caused by a lack of repeatability in the output of the sensor. These are

2.7 Uncertainty and Accuracy 21

denned by Equation (2.3). Bias errors and precision errors are contrasted in Figure 2.4.

precision error = reading — average of readings (2.3)

TRUE VALUE RANGE OF
PRECISION ERROR

X X X — • ^ - X - X — X -

BIAS ERROR
MEASURAND

AVERAGE OF
MEASURED VALUES

Figure 2.4: Distinction between bias error and precision error.

Precision errors can originate from the sensor itself, the industrial system, or from the environ­

ment. They are usually caused by uncontrolled variables in the sensing process.

Uncertainty is an estimate (with some level of confidence) of the limits of error in the mea­

surement. The degree of uncertainty may be reduced through the use of calibrated, high-quality

sensors. Accuracy is a term commonly used to specify uncertainty. It is a measure of how closely a

measured value agrees with the true value. Precision is used to characterize the precision error of a

sensor. In general, the accuracy of a sensor cannot be any better than the measurement constraints

provided by the sensor precision, and often, is much worse.

Accuracy is often degraded by hysteresis errors (bias), resolution errors (precision), repeatability

errors (precision), linearity errors (bias), zero errors (bias), sensitivity errors (bias), and drift and

thermal stability errors (precision), among others.

Digital signal processing requires the conversion of analog sensor signals into digital form. A / D

converters are used for this purpose; however, they are prone to three bias errors: linearity, zero,

and sensitivity (or gain) errors. Since the output of an A / D converter changes in discrete steps,

there is also a resolution error (uncertainty) known as a quantizing error, which is a type of precision

error. Together, these errors are known as elemental error sources.

To facilitate the identification and comparison of sensing errors, A S M E / A N S I suggests grouping

elemental errors into three categories: calibration errors, data acquisition errors, and data reduction

errors [47]. Calibration errors originate in the calibration process and may be caused by uncertainty

2.8 Object Modelling 22

in standards, uncertainty in the calibration process, and randomness in the calibration process.

Hysteresis and non-linearities are usually included here. Data acquisition errors are introduced

into the measurement when the sensor is making a specific measurement. These include random

variation in the measurand, loading errors and A / D conversion errors. Data reduction errors are

caused by a variety of errors and approximations used in the data reduction process.

Grading and inspection tasks rely upon various sensors to obtain information about the objects

under consideration. Accurate decisions require that the sensed information be valid and robust.

Validation of data through sensor integration provides one mechanism by which uncertainty may

be represented and collaboratively reduced. A multisensor integration system must check for errors

which are the result of unexpected events, such as sensor malfunctions or environmental changes,

which cause a device to fail to perform within specifications. If found, an attempt must be made

to correct the cause of the error. This is usually handled through an exception and error handling

mechanism.

2.8 Object Modelling

To utilize a multisensor architecture for object grading, a model of the object is required. A n object

model is necessary for a computer system to perform object recognition. The model provides a gen­

eralized description of each object to be recognized. The model is used for tasks such as accurately

determining object boundaries in an image and choosing an object's best class membership from

among many possibilities. For industrial grading applications, the object model must represent the

important features which designate the 'grade' or value of a particular object. Ideally, the model is

simple to construct.

Methodologies for object recognition and representation abound; however, much of the research

in the field has focused on the recognition of generic objects, categorizing objects into broad group­

ings [50]. Many of these are further limited by requiring geometric representations of the ob­

jects [51,52]. Wi th the exception of facial and handwriting recognition [53-55], little work has been

done to develop systems capable of detecting subtle differences. This is the requirement of an in­

dustrial inspection and grading system where objects are classified on the basis of subtle differences.

The problem is not one of differentiating an apple from an orange, but rather one of discriminating

2.8 Object Modelling 23

the quality of a particular apple based on such cues as colour, size, weight, surface texture, and

shape. Despite this, there are a number of object models which have been developed which are

applicable, at least in part, to the product classification problem.

Studies into how humans perform object recognition have yielded some interesting results. Bie-

derman [56] has suggested that objects are recognized, and may therefore be represented, by a small

number of simple components and the relations between them. These simple geometric components

are called geons (for geometrical ions). Objects are typically segmented at regions of sharp concav­

ity. Geons and relations among them are identified through the principle of non-accidentalness. In

other words, critical information is usually represented by nonaccidental properties — an accident

in viewpoint should not affect the interpretation. These basic phenomena of object recognition

indicate the following:

1. The representation of an object should not be dependent on absolute judgments of quantitative

detail.

2. Information which forms the basis of recognition should be relatively invariant with respect

to orientation and modest degradation.

3. A match should be achievable for occluded, partial, or new exemplars of a category.

These ideas form the basis for the theory of recognition-by-components (RBC) . The associated

stages of processing are presented in Figure 2.5. This indicates that for feature-based recognition

distinguishing features are used to recognize and differentiate objects. This method is efficient, as

it is not necessary to discriminate every feature of every object. By closely modelling the object

representation to the human methodology, this scheme may also have the advantage of being more

intuitive to the user.

A n interesting parallel may be drawn from this to the series of steps that a typical vision-based

grading system follows in recognizing and classifying the objects in a given image, as illustrated by

Figure 2.6.

Havaldar, Medioni, and Stein [57] have developed a system for generic recognition based on

Biederman's ideas. Images are processed to extract edge sets from which features of parallelism,

symmetry, and closure are identified. These features are then grouped and represented within

2.8 Object Modelling 24

DETECTION OF
NONACCIDENTAL

PROPERTIES
PARSING AT REGIONS

-OF CONCAVITY

DETERMINATION OF
COMPONENTS

MATCHING OF
COMPONENTS TO OBJECT

REPRESENTATIONS

OBJECT
IDENTIFICATION

Figure 2.5: Presumed processing stages in human object recognition [56].

INPUT DATA AND
IMAGEiSi

EXTRA
OFU

CTION .
NITS

IDENTIFICATION
OF UNITS

CLASSIFICATION
OF.UNITS

INFEREN
CLASSIF

CE FROM
ICATION

GRADING DECISION,

Figure 2.6: Four steps in object grading.

an adjacency matrix. This is a robust system, able to recognize objects which deviate from the

exemplar; however, it is not designed to recognize the deviations themselves — a requirement for

object classification.

2.8 Object Modelling 25

A feature-based object model was developed by Tomita and Tsuji [58] for object recognition from

texture features. Their primary application was a system designed to recognize various structures

of the human brain visible in computed tomography (CT) images.

Objects are represented by a connected graph structure as shown in Figure 2.7. Each node

represents a kind of object to be recognized in the image; the root node represents a category of

image. The node contains slots for the name, the type of unit in the image, and the properties of

the unit. Nodes which are white indicate that the object is always recognized; black nodes signify

that the object may not always be present, as in the case of abnormalities. Solid links are used to

represent a parent-child relationship between nodes. Dotted links represent an OR relationship —

only one of the linked objects will be recognized. This relationship may be used to represent an

object which, due to possible variations, cannot be defined by a single node.

- O FH1

- O FH2

HEAD

Figure 2.7: Model used to recognize cranial C T images [58]. White nodes
indicate brain features that are always present; black nodes rep­
resent abnormal features.

Models are built in an interactive manner. Programs are selected and applied to input images

to extract the desired features. Parameters are adjusted until the desired results are obtained.

Successfully extracted units are identified to the system. Each unit generates a new node in the

graph; each unit may be further subdivided into smaller units. Once the initial model has been

constructed, the model may be refined by adjusting the program parameters, adjusting the object

2.8 Object Modelling 26

properties and/or relations, declaring an OR relationship between objects, or by specifying that an

object may not always be present.

Other feature-based systems include the work of Han, Yoon, and Kang [40] who identify a

number of features for automatic surface inspection. Lang and Seitz [59] represent and recognize

objects through the use of a number of hierarchical feature templates.

Fuzzy logic has been used by a number of researchers to describe varying relationships between

features. Cho and Bae [60] describe objects in terms of functional primitives which are constructed

from extracted shape primitives. A n object is represented by a collection of these primitives related

by fuzzy memberships. Luo and Wu [54] and Lee and Huang [55] have developed methodologies

for handwritten Chinese character recognition. In these systems, each stroke is extracted from

the character as a feature. Features are then classified as particular stroke types, each with an

associated degree of fuzziness. The classified features are then combined based on connectedness

and regularity to arrive at a predefined character classification.

While none of these approaches are directly applicable to representation of non-uniform products

for the purpose of classification, each presents some interesting ideas for the basis of such an object

model.; A feature-based system will allow for the efficient representation of the distinguishing

characteristics of objects to be classified. Fuzzy logic provides a mechanism by which human

expertise may be applied in a form very close to our natural language [61]. Relating object features

with fuzzy membership functions should enable the system to incorporate human expertise for the

determination of object classifications.

Chapter 3

Object Modelling

3.1 Introduction

A n intelligent system which attempts to perform object recognition must have a facility for percep­

tion. Machine perception consists of converting raw sensor information into a form which may be

utilized within the system to accomplish a task. To facilitate this conversion, an object model is

used as the interface between the real environment and the internal processes which are dependent

on the external information. The object of interest is represented by the object model through char­

acteristic properties and relationships between features, with a particular focus on those features

which are most relevant to the application. Therefore, an object model is a generalized description

of each object to be recognized.

As discussed in Section 2.6, demand for improved automated quality assurance systems has led

to the development of a number of vision-based multisensor systems. Typically, these systems are

unstructured, complex, and difficult to maintain and modify. To enable industrial users to better

react to changing market conditions and improved technology, a formal approach to system design

is needed to replace these ad-hoc systems.

In this work, the Extended Logical Sensor Architecture (ELSA) has been developed to address

a number of these limitations in current industrial practice. The purpose of this architecture is to

3.2 Rationale

27

3.3 Approach to Modelling 28

provide a structured, yet flexible methodology for building robust sensor systems aimed at product

inspection. A well-defined, structured object model is the starting point of this organized approach

to the design and construction of a multisensor integration system.

There are two objectives that determine the structure of the object model used within E L S A .

The first objective is to provide a representation for objects which exhibit deviations from an ideal

template or model, or an object for which an ideal cannot even be concretely established. The

model should allow for the representation of both quantitative and qualitative information. This

addresses a problem of particular relevance to non-uniform product inspection and grading. The

structure of the model should provide users with an intuitive understanding of how to construct

and represent real-world objects.

The second objective is to develop the object model as a guide for the selection of components

and construction of an E L S A system. The features represented in the object model should guide

the selection of the sensing devices and/or processing algorithms required to extract them. The

high-level representations of the object and its classifications should provide a basis for inferring

the proper identity of the object from the extracted features.

The object model then serves two purposes: (i), In the completed system, the object model is

used to recognize and represent objects that are presented to the system sensors; (ii), once defined,

it may be used to specify the components that are necessary for the system to identify and classify

objects.

3.3 Approach to Modelling

There are two approaches which may be taken towards object modelling for classification and

grading. They differ in the how the object is represented and therefore how it is identified.

The traditional approach to object recognition attempts to identify an entire object based upon

the features contained within the object model [50,62]. Once an object has been identified, extracted

object properties may then be used for further evaluation based on attributes such as size, colour,

and mass. Recognition proceeds in a top down manner from the root nodes of the model graph,

which represent the different objects or object classifications. The selection of a particular parent

is contingent on the successful identification of all descendant objects. Should the system fail to

3.4 Model Structure 29

find an expected object at a particular level, the system returns to the previous level and attempts

to follow another branch. If a proper match cannot be found, the system issues an error message

requiring the user to improve the object model.

The second approach defines object models somewhat differently. Instead of attempting to

identify an object based on the discrimination of every feature of the object, only distinguishing or

characteristic features are extracted. These features are then combined to produce object classifi­

cations. The presence or absence of particular features and the associated object properties may

then be used to classify the object into a particular grade. This idea is supported by the theory of

recognition-by-components (RBC) [56], which suggests that objects may be represented by a small

number of simple components.

It is this feature-based approach that is adopted herein. Unlike the first approach which is

best suited to simple objects, it is applicable to both simple and complex models. Objects that

demonstrate deviation from an ideal model may be represented using appropriate features combined

into classifications. Additionally, by identifying only those features necessary for object recognition

and/or classification, the storage requirements for object representation are reduced. Concentration

on distinguishing features also reduces the processing requirements for the extraction of features

from the environment.

3.4 Model Structure

In the E L S A object model, objects are represented by a connected graph structure similar to that

proposed by Tomita and Tsuji [58]. The components of the structure are shown in Figure 3.1. This

is a top-down representation of an object, consisting of a number of layers of abstraction. Object

nodes are used to represent salient features of an object. The object itself is represented at the

highest level of abstraction within the classification layer. Below this lie nodes representing the

high-level features upon which classifications are made. Traversing down the graph, further into the

feature layer, other nodes represent the mid and low-level features of the object. Each subsequent

level becomes more and more detailed. This enables compact and efficient object models. Only the

level of detail required for identification or classification need be specified.

This approach allows for scalable complexity of the object model. By adding nodes and layers

3.4 Model Structure 30

Figure 3.1: Graph structure for object representation.

3.4 Model Structure 31

to the graph, models may be made as simple or complex as required to properly model the objects

considered by the system. The hierarchical structure minimizes the disturbance to the model should

a feature used for classification require modification. Thus, refinement may focus on specific features

and classifications without disturbing other classifications.

3.4.1 Classification Layer

The classification layer represents the kind (grade, grouping, category) of the object. Different

object classifications may be grouped within the classification layer because they each share similar

features or qualities. This is the principle advantage of feature-based object recognition. The

features common to each object need not be specified. Rather, the features that distinguish one

object from another are used. For example, a classification layer could represent apples; different

classifications could include ripe, bruised, large, and small. The common features describing the

general characteristics of all apples: stem, skin, shape, etc., need not be articulated.

Each classification is defined by associating it with the appropriate primary features. Associa­

tions are made using fuzzy links, which are described in Section 3.6.3. A n object whose relevant

features are invariant or which does not require classification may be defined with a single node in

the classification layer.

3.4.2 Feature Layer

A feature is defined as a distinct quality, detail, characteristic, or part of an object. A n object may

be described and recognized as a collection of features. The E L S A object model categorizes features

based on the level of abstraction. The highest-level features are termed primary features. These

features are linked directly to the classification layer and serve to define each classification.

Most primary features are themselves composed of one or more subfeatures. Subfeatures repre­

sent lower-level, less abstract features. As the graph is traversed downward, features become more

specific and detailed. At the extreme, the lowest-level subfeatures are called atomic features. These

represent features that are indivisible. The unprocessed data from a sensor is often represented as

an atomic feature. The nodes of the feature layer are connected with unconditional links.

3.5 Properties of Objects 32

3.5 Properties of Objects

Within the data representation, objects may have two different types of properties, namely: physical

object properties and relational properties. Relational properties are dependent upon the extraction

of a pair of physical properties which are then related in some way. Due to this increased complexity,

objects are modelled using only physical object properties whenever possible.

3.5.1 Physical Properties

Physical object properties are used to describe intrinsic qualities of an object. Each property is

characterized such that it may be considered independently from any others. Examples of physical

object properties include position, mass, temperature, shape, colour, intensity, and texture.

These properties are represented within the model structure with the appropriate data structure.

For example, colour may be represented at a low level with a data structure containing the R G B

(red, green, blue) or HSI (hue, saturation, intensity) channel values. Abstractions may occur such

that the degree of a particular colour value is interpreted from the HSI data. Such a data structure

could indicate the hue, e.g. RED, and a value that specifies the 'redness' of the object. This value

could be a measure in the range [0-1]: 0 representing no presence of red; 1 complete red saturation.

Similar structures would be defined for other types of physical properties.

3.5.2 Relational Properties

Relational properties describe an object in relation to other objects. Unlike physical object prop­

erties, each relational property is dependent upon at least one other object. Symmetry, adjacency,

relative position, and relative orientation are examples of relational properties.

Whereas physical properties are computed for each feature extracted, it is unlikely that all of

the possible relations between each pair of objects can be computed, even for a small number of

objects. This is due to the large number of relations which may be defined. Therefore, only those

relations which are specifically identified by the user are computed. A relation between objects is

defined only when the system in unable to recognize objects based on the physical properties of the

objects themselves.

Relational properties are represented within the structure of the object model using a data

3.6 Model Components 33

structure which contains a field for each object, a field to identify the type of relation, and a field

for parameters which specify exactly how the objects are related.

3.6 Model Components

The object model is comprised of a number of different components. Object nodes are used to

represent object features. Subfeature dependencies are represented using unconditional links; object

classifications are specified using fuzzy links. The following subsections provide details about each

component. Implementation issues are discussed in Appendix A .

3.6.1 Object Nodes

Each node of the graph represents a recognizable object or feature. A n object may refer to the

representation of any signal, attribute, or thing which may be recognized by the system. These

may be complex features extracted from information provided by one or more sensors. Each node

may be a parent node, that is, it is associated with one or more child nodes which further detail

features of the parent node. In other words, the child nodes are representative of the subfeatures

of the parent node. For example, a parent node may be the size of an apple, while child nodes may

include the volume, area, and height of the apple. Alternatively, a node may contain simple crisp

measurements provided by a single sensor, for example, mass and temperature. Primary features

are represented by root nodes that, by definition, do not have a parent. The components which

comprise the object node are outlined in Table 3.1.

Table 3.1: Components of object node for feature representation.

Component Description

Object
Name Uniquely identifies the object or feature.

Object Type Indicates the type information that this particular node represents.
Physical
Properties

Data structure for the physical properties of the feature.

Relational
Properties

Data structure for the relational properties of the feature, if
required.

Free Tag If set, it indicates that this feature may not always be present.

3.6 Model Components 34

The node structure contains the name of the object, the type of object, and the object properties.

Nodes that represent features which are not always present are marked by a free node tag. This

usually applies to features that correspond to object classifications that are defective or otherwise

deviate from the ideal. Links to parent and child nodes are maintained within the structure. This

is illustrated in Figure 3.2.

PARENT NODE

OBJECT NAME

r

OBJECT
TYPE

\ ; ;•:;: :: «i.;K; , . : .

PHYSICAL PROPERTIES
r

OBJECT
TYPE

. RELATIONAL PROPERTIES

CHILD NODE • • • CHILD NODE

Figure 3.2: Object node for feature representation.

Classification nodes, Figure 3.3, may be considered as a special case of an object node. They do

not have parents, do not maintain object properties, and do not have free node tags. Instead, the

primary features upon which the classification is dependent are stored along with the corresponding

fuzzy feature descriptions.

CLASSIFICATION

FEATURE
DEPENDENCIES

V.

:Ti =•:• :•: H:- = ::-:-:::: =•= • ri : : •. :.;.•:>•: . . : :: V

, FUZZY FEATURE
DESCRIPTIONS

PRIMARY
FEATURE

PRIMARY
FEATURE

Figure 3.3: Classification node.

3.6 Model Components 35

3.6.2 Unconditional Links

Unconditional links are used to represent parent-child relationships between features. They are

unconditional in that the relationship between the nodes (which correspond to features) is constant

and is not modified in any way. Unconditional links are stored within the nodes as pointers.

Graphically, they are represented as a solid line.

3.6.3 Fuzzy Links

Similar to unconditional links, fuzzy links represent a relationship between object classifications and

primary features (root object nodes). They differ by attaching additional information in the form

of a fuzzy descriptor. The fuzzy descriptors are used by the classification nodes to help assess how

the primary features contribute to the representation of the object. Fuzzy descriptors are realized

using fuzzy logic membership functions.

Fuzzy logic provides a mechanism by which human expertise may be applied in a form very

close to our natural language [61]. This enables the system to incorporate human expertise relating

features to the determination of object classifications. This is especially useful for applications such

as non-uniform product grading that tend to use subjective interpretations of product quality. For

example, the ripeness of an apple may be described using linguistic variables such as not very red,

sort of green, and slightly red as opposed to some quantification of apple colour in R G B or HSI

colour space. Such descriptors may be constructed from a number of atomic terms as discussed by

Zadeh [63].

3.6.3.1 L ingu i s t i c variables

Linguistic variables are in the form of natural language phrases. They are used to label fuzzy subsets

from the universe of discourse, U. A linguistic variable x, over the universe U = [1,100] of weight,

may have values such as: light, not light, very light, not very light, heavy, not very heavy, not light

and not heavy, etc.

In general, the value of a linguistic variable is a composite term x = x\X2 • • • xn. In other words,

a: is a concatenation of atomic terms x\,- • • , xn. There are four categories of atomic terms:

3.6 Model Components 36

1. Primary terms, are labels of specified fuzzy subsets of the universe of discourse, (e.g. light

and heavy).

2. The negation not and the connectives and and or.

3. Hedges, such as very, much, slightly, more or less, etc.

4. Markers such as parentheses.

Hedges are used to generate a larger set of values for a linguistic variable from a small collection

of primary terms. Hedges allow definition of subsets while maintaining a minimum set of primary

terms. They are particularly useful for translating human descriptions into mathematical notation.

The hedge h may be regarded as an operator, h transforms fuzzy set M(u) into the fuzzy set

M(hu). These form the foundation for information granulation and computing with words.

For example, consider the hedge definitely which acts as an intensifier. This hedge may be

implemented as a concentration operation. Like all hedges, it generates a subset of the set upon

which it operates. Therefore, definitely x, where a: is a term, may be defined as:

definitely x = x2 (3.1)

or, more explicitly:

(3.2)

This is further illustrated by the following equations, plotted in Figure 3.4.

x = heavy object
(3.3)

3.6 Model Components 37

x2 = definitely heavy object

-2 (3.4)
lv

1 +

HEAVY DEFINITELY
HEAVY

0

Figure 3.4: Effect of hedge definitely.

Linguistic variables constructed from these atomic terms are used to describe how primary fea­

tures relate to object classifications. A minimum set of primary terms is chosen for a given feature

or classification. In most cases, this will be a pair of descriptors such as: cold/hot, young/old,

light/dark, small/large. Additional classifications are achieved through the use of negation, connec­

tives, and hedges.

3.6.3.2 M e m b e r s h i p functions

Linguistic variables are associated with fuzzy membership functions. These membership functions,

referred to by the linguistic variable, are used to define the fuzzy descriptors used to construct

object classifications.

Many features, such as shape and texture, are not easily quantified. To enable the classification

of such features, the membership functions no, low, and high are used to express the confidence in

the detection of the feature. These may also be thought of as describing a feature as does not belong

to the class, could belong to the class, and (definitely) does belong to the class. As shown in Figure

3.5, these functions span the universe 0 to 1. This is intended to provide users with an intuitive feel

for the specification of classifications. The user does not consider values or fuzzy membership, but

rather the linguistic variables no, low, and high.

3.7Model Definition 38

t NO LOW HIGH

CONFIDENCE
IN FEATURE
DETECTION

Figure 3.5: Membership function used to represent confidence in the detec­
tion of a particular feature.

For features that are easily quantified, such as length and mass, the universe of discourse (range

of expected values) is specified along with linguistic variables for the classifications in this universe.

Triangular or trapezoidal membership functions centred at the mean values of each variable are

used, since with sufficient representation the membership function shape is not critical [64]. The

choice to use trapezoidal membership functions is based on the need to encompass a broad range of

values by a single fuzzy label. Most often this is at the limits of the universe of discourse, but may

also be used to specify narrow overlapping regions between labels while using a minimum number

of labels to cover the universe of discourse.

3.7 Model Definition

The object model is defined by first identifying the primary features. Each is associated with

an object node which occupies the top of the feature layer. If necessary, each primary feature is

decomposed into subfeatures — each represented by an object node. These are linked together

using unconditional links.

The definition of the classification layer follows. Object classifications are associated with classi­

fication nodes. These are then linked to appropriate primary feature nodes using fuzzy links. Each

fuzzy link is assigned a fuzzy descriptor which describes how the feature is used to represent the

classification. The detailed algorithm used for the construction and refinement of the object model

is presented in Chapter 5.

3.8 Summary 39

3.8 Summary

In this chapter, the object model used by the architecture has been presented. This structure

satisfies two objectives. The first is to provide a representation for features and objects which

allows for the quantification of deviations from an ideal model. Secondly, it provides a structure

by which the user may easily understand how objects are modelled while guiding the selection of

sensing devices and the development of the inference engine. These components are presented as

part of E L S A in the following chapter.

Chapter 4

System Architecture

4.1 Introduction

This chapter presents the basic structure and functions of the Extended Logical Sensor Architecture

for multisensor integration. A system designed using the principles of E L S A is composed of a

number of different modules. The primary modules are the logical sensors and inference engine.

Other modules — such as those for integration, validation, and diagnostics — provide vital, though

secondary, support to the operation of the system.

The definition and construction of an ELSA-based multisensor system is based on the object

model outlined in Chapter 3. The feature layer guides the selection and interaction of sensor

components. The classification layer is used to construct a rulebase which defines how the sensor

information is used and what the system can infer from it.

The relationship between the object model and the system architecture allows the system to be

designed with inherent modularity and scalability. Additionally, by utilizing a standard approach,

components may be shared and reused by applications with differing object models and logical

sensor hierarchies. Examples of the construction of an E L S A system are given in Chapter 6.

The E L S A architecture may be decomposed into three groups, according to the following tasks:

1. Sensing: The acquisition of information from the environment which is used as the basis for

inference and decision making.

2. Inference: The combination of the sensory information with information contained in a

40

4.2 Logical Sensors 41

knowledge base to infer decisions.

3. Action: The conversion of decisions into commands and signals which control process ma­

chinery.

The structure of E L S A is illustrated in Figure 4.1. A n object-oriented approach to the system

configuration has been adopted. The encapsulation of the primary components leads to a scalable

and flexible system which is particularly suited to industrial grading tasks. The system may be

easily reconfigured to adapt to advances in sensor and processing technologies or changing market

demands. Due to the nature of industrial inspection and grading, the primary focus of this work is

on the sensing and inference groups.

Sensing is performed by the coordinated actions of the sensors, the Integration Controller, and

the Validation and Diagnostic modules. Sensors are encapsulated by a logical sensor model. The

Integration Controller is capable of coordinating the reconfiguration of the sensor hierarchy to meet

process goals. This is assisted knowledge by contained in the Knowledge Base which is shared with

the Inference Engine.

Process decisions are made by the Inference Engine. The validated sensor information from the

sensing group provides the required input to the Rulebase. The action group includes the Post

Processor, drivers, and process machinery. Control systems for grading systems typically range

from very simple to extremely complex. Herein, the details of the control issues associated with the

action group are not considered and are open problems for future work.

4.2 Logical Sensors

The logical sensor hierarchy structures data in a bottom-up manner. The raw data collected by

the physical sensors is processed through different levels of logical sensors to produce high-level

representations of sensed objects and features. This approach offers considerable flexibility. High-

level tasks may be implemented without regard to the specific sensing devices. The low-level physical

sensors and low-level data processing routines are invisible to the higher levels. That is, to higher-

level sensors, each antecedent logical sensor appears as a single entity with a single output, regardless

of the scope of its antecedents. Using the logical sensor model, a hierarchy of subordinate and

4.2 Logical Sensors 42

LOGICAL
SENSOR

LOGICAL
SENSOR

LOGICAL
SENSOR

LOGICAL
SENSOR

LOGICAL
SENSOR

EXCEPTION
HANDLING

MECHANISM

DIAGNOSTICS

VALIDATION

INTEGRATION
CONTROLLER

INFERENCE ENGINE
o FUZZY LOGIC
o NEURAL NETWORKS
o OTHER USER DEFINED

METHOD

LOGICAL
SENSOR

KNOWLEDGE
BASE

RULEBASE

C D
Z

co z
LU
CO

UJ
o
LU
DC
LU

POST PROCESSOR
(DECISION TO CONTROL CONVERSION)

DRIVER DRIVER

O
I—
o
<

PROCESS
MACHINERY

PROCESS
MACHINERY

PROCESS
MACHINERY

Figure 4.1: Overview of Extended Logical Sensor Architecture.

4.2 Logical Sensors 43

controlling sensors can be built, ultimately providing sensor input to the Integration Controller.

The logical sensor model outlined in Section 2.3.1 has been extended herein for a model-driven

open architecture. As shown in Figure 4.2, the proposed Extended Logical Sensor (ELS) is com­

prised of a number of different components. The components are object-oriented by design; each

component is responsible for a single task within the sensor. A list of these components and tasks is

given in Table 4.1. As indicated in the table, a few components are unchanged (U) from the original

logical sensor specification [20]; others are based on extensions (E) to the specification [21,26,27];

and the balance are novel (N) in this work. The ELS strongly encapsulates the internal workings of

each logical sensor while allowing the modification of the sensor's operating characteristics. Most

of the components of this revised model are outlined in greater detail in the sections referred to in

the final column of Table 4.1.

The control command mechanism is flexible enough to allow active sensors; for example, a

camera in an active vision system may be repositioned to bring an object of interest into (better)

view. However, since the target applications are industrial in nature, namely, inspection and grading

tasks, herein the sensors are assumed to be passive.

S E N S O R S E N S O R
O U T P U T S C O M M A N D S

•

S E N S O R
C H A R A C T E R I S T I C S

K N O W L E D G E
B A S E

L O C A L
E X C E P T I O N

H A N D L I N G

L O G I C A L S E N S O R
C O N T R O L L E R

P R O G R A M

D A T A
O U T P U T

C O N T R O L /
P O L L I N G I N

I / O C O N T R O L L E R

D A T A
I N P U T

C O N T R O L /
P O L L I N G O U T

R A W S I G N A L S
A N D

S E N S O R I N P U T S

S E N S O R
C O M M A N D S

Figure 4.2: Basic components of an Extended Logical Sensor.

As will become apparent, the implementation of an E L S requires an understanding of signal

processing. This is knowledge that most industrial users will not possess. They will understand

what they would like the ELS to do, but not necessarily how to accomplish it. This limitation is

4.2 Logical Sensors 44

Table 4.1: Summary of Extended Logical Sensor components.

Component
Group Component Description Origin a Reference

Logical Sensor
Name

Uniquely identifies a particular logical sensor
to the system. By definition, a name may not
be duplicated within the hierarchy. Similar
sensors are numbered consecutively.

U Henderson and
Shilcrat [20],

Sensor
Characteristics

Characteristic
Output Vector

A vector of types which serves to define the
output vectors that will be produced by the
logical sensor.

u Henderson and
Shilcrat [20].

Sensor Function
A description of the functionality that this
sensor provides. Provided in human readable
form.

N Section 4.2.1

Sensor
Dependency
List

A list of dependencies for the logical sensor,
accounting for each logical sensor that serves
as input to the contained programs.

N Section 4.2.1

I/O Controller
Monitors, redirects, and packages data and
control commands for inter-sensor communi­
cation.

E
Section 4.2.2.1;
and, Henderson
et al. [21]

Data Input Consists of signals from transducers and data
from logical sensors. N Section 4.2.2.2.

I/O Data Output Output in the form of the characteristic out­
put vector, error messages, or polling results. N Section 4.2.2.3.

Control Input
Interprets the control structure used for com­
manding and adjusting sensors for changing
conditions and goals.

E
Section 4.2.2.4;
and, Dekhil and
Henderson [27].

Control Output
Control commands to subordinate sensors.
May be generated by sensor or passed
through from higher level sensors.

U Section 4.2.2.4.

Logical Sensor
Controller

Acts as a "micro" expert system to ensure the
optimal performance of the logical sensor. E

Section 4.2.3.1;
and, Henderson
and
Shilcrat [20].

Controller Local
Exception
Handling

Internal diagnostics and error handling.
Works in conjunction with logical sensor con­
troller. Attempts to classify the error and
then rectify the problem using a predefined
recovery scheme.

E

Section 4.2.3.2;
and, Dekhil and
Henderson
[26,27].

Local
Knowledge
Base

Contains information on interpretation of
control commands for adjustment of param­
eters and selection of programs. Also stores
default parameters used during initialization
and reset.

N Section 4.2.3.3.

Programs
Device Drivers Used to interpret raw signals from physical

sensory devices. E Section 4.2.4.1.
Programs

Processing
Algorithms

Signal processing routines used to extract fea­
tures and information from sensor data. U Henderson and

Shilcrat [20].
a U - unchanged, E - extended, N - novel.

4.2 Logical Sensors 45

overcome to some degree by the development and provision of an E L S library which contains a

variety logical sensors for many common signal processing operations. When a required E L S in not

available in the library, it will be necessary to have others implement the E L S .

For these developers, an ELS base class is provided which serves as a template for the design

of Extended Logical Sensors. The ELS model is implemented as a C++ class library following the

principles of object-oriented software design. Individual sensors inherit the basic structure and

common functionality. Customizations are achieved either by overriding base classes and functions

or proving new ones where necessary.

The subsections that follow outline the major components of an E L S . The E L S base class is

outlined in Appendix B .

4.2.1 Logical Sensor Characteristics

The logical sensor characteristics refer to a set of properties specific to each logical sensor (LS).

This information is publicly accessible, enabling other logical sensors, or the Integration Controller,

to poll the sensor and determine the sensor's identity and capabilities. The components which

comprise the logical sensor characteristics are: the Logical Sensor Name, the Characteristic Output

Vector, the Sensor Function, and the Sensor Dependency List. The first two characteristics were

defined by Henderson and Shilcrat [20]; the other characteristics are new, and are described below.

The Sensor Function provides a description of functionality of the logical sensor. This description

is in human readable form so that a user may effectively browse through a library of logical sensors.

As an example, a Canny edge detection ELS [65], would have a description indicating that it was

capable of identifying sets of edge pixels from a two-dimensional array of pixel intensity values. In

addition, comments on accuracy and computational complexity (speed and memory requirements)

would assist the user and the system in comparing this edge detector with others which may be

available. This information may then be used to select the most appropriate edge detector for a

given task.

The Sensor Dependency List provides a list of the logical sensors subordinate to the E L S being

polled. Each E L S which provides input to one of the logical sensor programs is considered as a

subordinate. A n E L S is identified by its Logical Sensor Name. This list is automatically generated

4.2 Logical Sensors 46

as the E L S hierarchy is constructed.

4.2.2 I/O

4.2.2.1 I / O Con t ro l l e r

The I /O Controller is an extension of the Control Command Interpreter [21], that provides a

specification for control to the original logical sensor specification [20]. The I /O Controller oversees

all inputs and outputs from the LS and monitors, redirects, and packages data and control commands

for inter-sensor communication. For control commands, the controller works as a pass-through

buffer. The destination logical sensor name of each control object received by the I /O Controller is

first checked to determine if the command is intended for the particular sensor. If so, the control

command is interpreted and sent to the LS Controller for processing; if not, it is passed through to

lower-level (subordinate) sensors.

One can note that, higher-level sensors may only be aware of the function of each subordinate

E L S . The details of the actual algorithms — and in the case of sensors with multiple programs, the

currently selected algorithm — is hidden from higher-level sensors by encapsulation. As a result,

commands (and associated parameters) generally request a desired effect. For example, a command

to increase the number of edges extracted from an array of pixel intensities would be of the form

INCREASE EDGES. The specific algorithm used need not be known. This command would be passed

down through the hierarchy to the edge detecting E L S . At this sensor, the controller, Section 4.2.3.1,

would interpret this command and, drawing upon information contained in the Local Knowledge

Base, adjust specific algorithm parameters accordingly (such as reducing mask size or threshold

values).

A number of control commands are defined for all logical sensors, namely, commands used for

sensor initialization, calibration, requests for sensing, testing, and reconfiguration. A complete list

of standard commands is provided in Table 4.2. For example, the polling command is used to

query lower-level sensors about the logical sensor characteristics described in Section 4.2.1. The

applications of other standard commands are outlined in Section 4.2.3.1.

4.2 Logical Sensors 47

4.2.2.2 Data Input

The data sources for an ELS may take two forms:

1. Raw signals from (physical) transducers: Signals from digital devices are input directly

to a software driver. Analog signals are first converted into a digital form using an A / D

converter.

2. Data from logical sensors: As will be discussed in Section 4.2.2.3, logical sensor data is

packaged in the form of the Characteristic Output Vector (COV). These output vectors serve

as the sensor inputs for higher-level sensors. This data is then used as input to the processing

algorithm(s) of the logical sensor.

To properly interpret data from subordinate sensors, the I /O Controller must have-an internal

copy of the characteristic output vector for each connected lower-level E L S . This internal copy

is obtained through sensor polling.

4.2.2.3 Data Output

The data output module serves to package the ELS output into one of three forms, as outlined

below:

1. Output vector: The data output module serves to package the data from a logical sensor

program into the form of the C O V . This enables the sensor to pass a data package, without

identifying each component.

2. Error message: Failure of an E L S may occur due to the failure of a lower-level LS or an in­

adequacy of a contained algorithm. In either case, the confidence measure which accompanies

each E L S output will fall below a specified tolerance. A n error message will then be passed

in place of the output vector.

The confidence measure is generated by the E L S . In the case of an encapsulated physical

sensor, the uncertainty measure is based upon the specifications and/or known operational

characteristics of the device. Algorithms within the E L S must provide routines which calculate

the uncertainty associated with each output value. Confidence is represented as a real-valued

4.2 Logical Sensors 48

number in the range: 0 < c < 1. A measure near 0 indicates little confidence in the result;

while a measure near 1 indicates a high level of confidence in the sensor output.

3. Polling result: This consists of information obtained from the logical sensor characteristics

in response to a query from the Integration Controller or a high-level logical sensor.

4.2.2.4 Control Input

The logical sensor model provides a control structure which allows for the adjustment of logical

sensors in response to changing conditions. Possible adjustments include the selection of an alter­

nate program, the modification of program parameters, or the recalibration of a sensor. Control

commands may be passed from higher-level logical sensors or from the Integration Controller. Each

command is packaged as a control object, which has the following format:

1. Destination logical sensor name: Identifies the ELS for which the command is intended.

If a command is intended for all subordinate logical sensors, then the destination name is ALL.

2. Control command: This is the actual command to be executed. It is expressed as an

enumeration of a keyword string which is interpreted by the I /O Controller. The command

may be one of a set of generic, system-wide commands, or may be specifically defined to work

only with a particular logical sensor.

3. Associated parameters: A place is provided within the control object for parameters as­

sociated with each command.

4.2.2.5 Control Output

Control output from an E L S consists of control commands to lower-level logical sensors. These may

be generated by the issuing sensor, or may be passed through from an E L S at a higher level.

4.2.3 Controller

The controller is comprised of three components which work together to supervise the internal oper­

ation of the E L S . These components, the Logical Sensor Controller, the Local Exception Handling

mechanism, and the Local Knowledge Base are detailed in the following sections.

4.2 Logical Sensors 49

4.2.3.1 Logical Sensor Controller

The internal operation of the logical sensor is supervised by the LS Controller. The controller serves

two main purposes: response to external commands, and internal monitoring and optimization of

logical sensor performance through error detection and recovery. It is an extension of the Selector of

the original logical sensor specification [20], which increases the functionality and robustness of the

E L S through the use of a local knowledge base and exception handling mechanism. By internalizing

specific operational knowledge, the E L S encapsulates the sensor operation.

The LS Controller provides the logical sensor with a mechanism to respond to commands passed

from the I /O Controller. A number of standard control commands are defined for all logical sensors,

as listed in Table 4.2. These, in addition to user commands, are stored locally for each E L S . A

copy of user commands is also maintained by the Integration Controller. This provides controlling

sensors with information about the capabilities of subordinate sensors.

Table 4.2: Standard logical sensor control commands.

Command Description

INITIALIZE Initializes the logical sensor upon creation.

CALIBRATE Calls a predefined calibration routine for the logical sensor.

POLL Provides a response to queries about the logical sensor properties.
Returns the information stored as the logical sensor characteristics.

SENSE
Provides output in the form of the characteristic output vector.
This output is dependent on both the state of the sensor inputs and
the currently selected program.

RESET
Causes all of the logical sensor parameters to be reset to their
initial values.

TEST
Calls one or more of the predefined embedded tests contained
within the logical sensor.

SELECT
Causes an alternate program within the logical sensor to be
selected, should one be available. The program is chosen by the
Logical Sensor Controller - a specific program cannot be requested.

MONITOR
Validates the data contained within the Characteristic Output
Vector through comparison with a predefined criterion.

USER
Allows user to send commands which are specific to a particular
sensor or group of sensors.

Local knowledge of the operating characteristics of the E L S is used for program parameter

4.2 Logical Sensors 50

adjustment. For example, a request such as INCREASE EDGES to an edge detection E L S may be

mapped to an appropriate change in mask size or adjustment of thresholds. This contrasts to a

request such as set mask_size = 3 which requires that the requesting program have knowledge of

the specific algorithm in use and the effect of parameter changes.

The performance of the E L S is affected by the selected program and the adjustment of the

program parameters. A n alternate program may be selected in response to a sensor failure or in

response to a command passed from a controlling sensor. In the case of a sensor failure, the alternate

program selected typically relies on an alternate set of logical sensors for input. This redundancy

provides a measure of robustness to the sensor system.

4.2.3.2 L o c a l E x c e p t i o n H a n d l i n g

The Local Exception Handling module is responsible for internal diagnostics, local error detection,

and recovery. The testing and recovery schemes are limited to the domain of the E L S , using the

methodology outlined in Section 4.3.4 with a relatively small set of tests and recovery schemes.

Errors which cannot be handled locally result in the sensor issuing an error message.

The standard error messages are listed in Table 4.3. Typically, these errors are passed to the

Integration Controller, which attempts to rectify the problem from a global, rather than local,

perspective.

Table 4.3: Standard logical sensor error conditions.

Error Description

TIME OUT Unable to complete operation in allotted time.

OUT OF RANGE Computed value outside of specified range.

OUT OF MEMORY Operation requires more memory than is available from the
system.

HARDWARE FAULT Problem with hardware device.

NOTHING FOUND Insufficient data to compute desired result.

GENERAL FAILURE Category for all errors not explicitly defined.

USER DEFINED
Allows user to expand standard error types for a particular
sensor.

4.2 Logical Sensors 51

4.2.3.3 L o c a l Knowledge Base

The Knowledge Base is constructed as a logical sensor is created. Contained within each logical

sensor, it contains a variety of information which is essential to the operation of the logical sensor.

Among the information contained in the Knowledge Base are default parameters used during ini­

tialization and reset; command definitions, both local and standard; criteria for monitoring sensor

performance; tests to determine error causes; local error definitions for sensor specific problems;

and error mappings which are used to assist in error recovery. In general, this information is not

available to other sensors or modules in the system.

4.2.4 P r o g r a m s

Each E L S must contain at least one program to process the input data; however, when possible,

each logical sensor may contain a number of alternate programs. There are two main reasons that

multiple programs may be desirable within a logical sensor:

1. Multiple programs enable the use of different input sources and combinations thereof.

2. Different algorithms may be used to process the input data at different rates or with different

degrees of precision. This provides a mechanism for sensor granularity. For example, a high­

speed, coarse interpretation may be used in place of a low-speed, high-resolution interpretation

in time-critical situations.

While the method of data generation may be different for each program within the E L S , each

must be capable of providing data in the format specified by the C O V . Programs may be either

device drivers or processing algorithms, depending on the type of input handled. These are described

in Sections 4.2.4.1 and 4.2.4.2 that follow.

4.2.4.1 Dev ice Dr ive r s

In the context of the E L S , device drivers are used only for direct interaction with physical sensors.

The raw output signals from transducers are usually not in a form that may be used directly by a

computer system. A device driver is used to interpret the raw signals from physical sensory devices.

Output from digital transducers is obtained directly through a digital input device such as a data

4.3 Integration 52

acquisition board or frame grabber. Signals from analog transducers must first be digitized using

an analog to digital converter.

Each physical device has an associated driver which, in addition to signal interpretation, manages

the actual data transfer and control operations. This may include starting and completing I /O

operations, handling interrupts, and performing any error processing required by the device. Further

information on device drivers is provided by Baker [66].

I E E E P1451 compliant devices are treated in a similar manner. The major difference is that

the driver is onboard the transducer. By interfacing using the Smart Transducer Object Model, the

signal-level details are hidden. A n ELS designed to work with a smart transducer wil l not require

any modification if the transducer is exchanged for another designed for the same purpose.

4.2.4.2 Process ing A l g o r i t h m s

Processing algorithms are used to encapsulate signal processing routines. The encapsulation of signal

processing routines is at the core of the logical sensor model. 'Vir tual ' devices may be constructed

for sensors as diverse as line detectors, 'red' finders, and weight estimators by combining different

sets of lower-level logical sensors in order to perform the task at hand.

Should sensor fusion be desirable for a particular application, it is performed by an E L S that is

selected or designed for this task. Any fusion mechanism may be employed, though the discordance-

based sensor fusion method presented by Murphy [9] is used herein for its robustness. For example,

images of an object provided by multiple cameras positioned at different viewpoints may be fused

and integrated in different ways. One algorithm may fuse images from the 'compass points' around

an object to produce a continuous 360° view of the object. Another may integrate this fused

image with an overhead view from another camera to validate the information from both sources

in addition to detecting features that may otherwise be imperceivable. The use of such algorithms

is considered by the first example in Chapter 6.

4.3 Integration

Integration involves the packaging of the sensory information provided by the logical sensors into

a form suitable for the Inference Engine. Extracted information and features from top-level logical

4.3 Integration 53

sensors are used to provide high-level representations of the objects of interest. As this is the final

stage before decisions are made based on the sensor data, particular attention is paid to ensure data

integrity.

The specification and components for integration are given herein. However, the focus of this

work is on the design of the object model, ELS , and Inference Engine. The implementation of the

other components is left for future work.

4.3.1 Integration Controller

A l l top-level logical sensor outputs pass through the Integration Controller before entering the

Inference Engine. The Integration Controller oversees the operation of the system, acting as an

interface between the sensors and the Inference Engine. Here, the concept of what the system is

trying to accomplish is maintained. It serves to coordinate sensor integration, in addition to data

validation and exception handling activities which cannot be handled at the logical sensor level.

Sensor uncertainty is used throughout the integration process. Confidence measures are used

for the identification of sensing errors and for the integration of sensor data. Sensor performance

criteria are maintained in the system Knowledge Base. These criteria are used to determine whether

the data provided by the sensors lies within acceptable ranges or is of an expected form. A l l data

which is successfully validated is passed to the Inference Engine; problematic data is passed to the

Diagnostics module.

As problems are encountered at the E L S level, this information is passed to the Integration

Controller. The controller uses the Diagnostics module and information contained in the Knowledge

Base to determine the appropriate corrective action. This may involve sending out commands to

adjust logical sensor parameters, recalibrate logical sensors, or reconfigure the sensor hierarchy.

The removal of malfunctioning sensors from the hierarchy or a reordering of sensors are among

reconfiguration possibilities.

4.3.2 Validation

The Validation module is used to perform high-level verification and validation of the sensor infor­

mation provided by the logical sensors. While this may be as simple as determining if the sensor

4.3 Integration 54

data lies within acceptable ranges or is of an expected form, such tests are usually performed at

the logical sensor level. Instead, the Validation module attempts to detect disparities between the

information being provided by multiple sensors.

Most systems tend to use a small set of sensors. There may be some redundant sensing capability;

however, the majority of sensors are likely to be complementary. This makes the validation of

information difficult because there may not always be an alternative sensor that can corroborate a

suspect sensor. This is handled by making inferences from the behaviours of other sensors. Sensor

performance criteria and other expert knowledge for sensor validation is maintained in the system

Knowledge Base.

If an error or disparity is detected, the problem is passed to the Diagnostics module which then

attempts to determine the cause of the failure and provide a solution. A l l data which is successfully

validated is passed to the Inference Engine.

4.3.3 Diagnostics

Should a problem be identified during data validation or an exception cannot be resolved at the

logical sensor level, the Diagnostics module coordinates with the Exception Handling Mechanism

to determine the exact nature of the problem and implement possible solutions.

The Diagnostics module may be viewed as an exception controller. It interfaces with the Integra­

tion Controller and Validation modules which identify error conditions and the Exception Handling

Mechanism which contains information for error classification and recovery.

When a sensor fails, the Diagnostics module queries the Exception Handling Mechanism for a

list of possible hypotheses which may explain the cause of the sensor failure. It then carries out the

specified tests until a particular hypothesis can be confirmed.

Upon determining the cause of the error, the Exception Handling Mechanism provides a recovery

method. This method is then implemented by the Diagnostics module to rectify the problem.

4.3.4 Exception Handling

Exception handling provides support for the Diagnostics module which aims to maintain the suc­

cessful operation of the system in the event of sensor failure. Exception handling routines are

4.3 Integration 55

invoked when data fails to satisfy a predetermined constraint or is in conflict with data from an­

other sensor. Sensing failures must be handled expeditiously to allow the system to continue to

operate effectively. In automated inspection applications, it is generally unacceptable for products

to pass by unevaluated or to slow/stop the line in order to resolve sensing failures.

As stated above, exceptions are handled by first classifying the nature of the error, as discussed

in Section 4.3.4.1. Once classified, an attempt is made to rectify the cause of the error using the

recovery scheme outlined in Section 4.3.4.2.

It is worth noting that the system does not assume that any sensors used for error classification

and recovery are themselves operational. Before each is used it must be functionally validated in

advance.

4.3.4.1 E r r o r Class i f icat ion

Without the availability of a complete causal model, detected errors must be classified so that the

appropriate corrective action may be taken. To simplify classification, it is assumed that there is

only one sensing failure at a time. Sensor failures are classified into three types as follows:

1. Sensor malfunctions: This occurs when one or more sensors are malfunctioning. Examples

include power failure, impact damage, miscalibration, etc.

2. Environmental change: One or more sensors are not performing properly because the environ­

mental conditions have changed since sensor configuration and calibration. This often leads

to precision errors.

3. Errant expectation: Sensor performance is poor because the sought object is occluded or lies

outside of the sensor's 'field of view.'

Error classification is accomplished by a generate and test algorithm [67, 68]. The suspect

sensors are first identified. A n ordered list of possible hypotheses explaining the sensor failure is

then generated. Each hypothesis is associated with a test which may be used for verification. These

tests are performed in an effort to confirm or deny the proposed hypotheses. This process is repeated

until a hypothesis is confirmed.

4.4 Inference Engine 56

The generate and test method does not require formal operators for the generation of hypotheses.

This allows the system to use a rule-based method to select from a list of candidate hypotheses. Un­

fortunately, this method can be time consuming if there is a large problem space and all hypotheses

must be generated. This disadvantage may be overcome by constraining the problem space, thereby

limiting the number of hypotheses and reducing processing time. Testing is conducted until all tests

have been performed or an environmental change has been detected. When the classifier is unable

to resolve the cause of the error, the cause is assumed to be an errant expectation.

4.3.4.2 E r r o r Recovery

For each error cause, there would ideally be a number of different recovery schemes. From these,

the most appropriate would be selected by the exception handling mechanism. To limit the scope

of the problem and reduce the overall recovery time, a direct one-to-one mapping of error causes

to recovery schemes is utilized. A library of cases allows for the instant mapping of error cause to

recovery scheme based on the error classification.

Functions are used to repair individual sensors or reconfigure the sensor hierarchy. The sensor

parameters are adjusted first — recalibration is accomplished by invoking a predefined sensor cali­

bration routine. If the sensing configuration cannot be repaired through parameter adjustment or

recalibration, the sensor hierarchy is altered. The alteration may suppress a particular sensor or

remove sensors from the hierarchy.

4.4 Inference Engine

Once the sensory information collected by the logical sensors has been validated, it is passed to the

Inference Engine. Here, based upon the examination of the extracted objects and features, decisions

are made regarding the actions to be taken with each object.

The sensor inputs are used to form the antecedents of the control decisions to be made in the

Inference Engine. The consequents of these rules are the actual decisions. These are passed from

the Inference Engine to the Post Processor for conversion into action.

As shown in Figure 4.3, the Inference Engine divides the inference task into two parts. First, the

information available from the various sensing devices is fed to the Inference Engine as the primary

4.4 Inference Engine 57
input. This sensor information is used by the first module to determine a measure of certainty that

the object is of each classification. These classifications with corresponding certainties are then

passed to the second module.

S E N S O R I N P U T
F R O M

I N T E G R A T I O N
C O N T R O L L E R

C L A S S I F I C A T I O N
O F I N P U T

F U Z Z Y L O G I C

C L A S S I F I C A T I O N S

D E C I S I O N
B A S E D O N

C L A S S I F I C A T I O N

K N O W L E D G E
B A S E

R U L E B A S E

I N F E R R E D
D E C I S I O N

Figure 4.3: The Inference Engine used by ELSA. Inferences using fuzzy logic
draw upon information contained in the Rulebase. The neu­
ral network-based inference mechanism (shown inactive) utilizes
weights stored in the Knowledge Base.

The second module uses these classifications to infer a decision. If an object classification is

certain, the decision is unambiguous. The advantage of this approach is evident when dealing with

borderline cases. By considering the certainty measure for each object classification, an appropriate

decision may be made under uncertain conditions.

In this work, the Inference Engine is cognitive-based, using fuzzy logic [64] to make decisions.

The advantage of this approach is that it allows the incorporation of expert domain knowledge.

This expert knowledge may be formulated into a rulebase to serve as the basis for fuzzy inference.

The base class which serves as a template for the development of the Inference Engine is outlined

in Appendix D.

4.4 Inference Engine 58

While fuzzy logic is the inference method currently used, other knowledge based systems could

be employed. For applications where expert knowledge is less concrete, a feature-based inference

technique such as artificial neural networks [69-72] could be used to interpret the sensor information

and produce control decisions. Applications for neural networks include the analysis of infrared

spectral data to determine the composition and moisture content of a product, and the chemical

analysis of samples to determine quality or taste [5]. For these applications, the network must be

interactively trained to produce the desired results. Other possibilities for feature-based inference

techniques include Bayesian reasoning and the Dempster-Shafer theory of evidence.

4.4.1 Rule/Knowledge Base

Fuzzy logic and knowledge based inference rely upon expert domain knowledge supplied by the

user. For grading and inspection tasks in particular, the expert knowledge available from human

inspectors is available to the system designers. The Rulebase stores this repository of domain

knowledge in the form of antecedent/consequent rules. For example, a fruit classification system

may include the following simple rulebase:

IF Shape IS round AND Colour is red THEN Fruit = apple

IF Shape IS round AND Colour is orange THEN Fruit = orange

IF Shape IS elongated AND Colour is yellow THEN Fruit = banana

In the case of fuzzy logic, linguistic variables, such as round and red are associated with mem­

bership functions that describe a fuzzy subset of the universe of discourse. These fuzzy sets are

also stored in the Rulebase. Each set defines the universe of discourse and membership functions

for each subset that corresponds to a linguistic variable. Membership functions may be triangular,

trapezoidal, Gaussian, etc.

The Knowledge Base contains a diverse set of information that is used by the Integration Con­

troller and, depending on the inference mechanism, the Inference Engine. In the case where a neural

networks Inference Engine would be implemented, the network topology and the trained weights

between the hidden layer(s) and output layer would be stored here. Other information contained in

4.5 Post Processing 59

the Knowledge Base consists of the object model, control commands, error conditions, E L S charac­

teristics, and sensor performance criteria. This information is used by the Integration Controller to

oversee the operation of the logical sensors. Performance criteria are used to validate sensor data

and reconfigure the hierarchy in the event of a sensor malfunction.

4.5 Post Processing

Once the inference engine has processed the sensory information and interpreted it, any decisions

made must be converted into actions. This involves the conversion of a directive into a plan of

action for execution. For example, the decision to place a bruised apple into the 'bruised apple bin'

must be translated such that the appropriate actuators affect this action at the appropriate time.

The Post Processor acts as an interface between the Inference Engine and the drivers which are used

to control the process machinery. Drivers are then used to convert control actions from the Post

Processor into the specific format required by each device. The possibilities for devices which may

act as process machinery are countless. Devices may range from simple actuators such as solenoids

and electromagnets, to complex systems such as multiple degree of freedom robotic manipulators.

However, the issues involved with post processing are beyond the scope of this work and wil l not

be addressed further.

4.6 Summary

In this chapter, the organization of the Extended Logical Sensor Architecture (ELSA) was presented.

Each component was introduced and its role within the architecture was described. Together these

components comprise a modular, scalable, and robust system. Sensory information is encapsulated

by Extended Logical Sensors. The integrity of the sensor data is ensured by the Integration Con­

troller working in concert with the Validation and Diagnostics modules. Process decisions are made

by the Inference Engine on the basis of the validated sensor information. The following chapter wil l

discuss the construction of a system based on E L S A .

Chapter 5

Construction Methodology

To maximize system robustness and usability, the construction of an industrial sensing and process­

ing system using E L S A follows a set procedure. A n overview of this methodology is presented in

Figure 5.1. The sections that follow detail the various phases of the process. The methodology will

be further illustrated by the example applications provided in Chapter 6.

5.1 Problem Definition/Requirements Specification

The first phase of the design process involves the recognition of the needs of the particular industry

or process. These needs often arise from dissatisfaction with the existing situation. They may be

to reduce costs, increase reliability or performance, or to adapt to customer expectations.

From the needs, a clear statement of the problem to be solved may be formulated. This problem

definition is more specific than the general needs; it must include all of the specifications for what

is to be designed. Hence, the designer must consider what the capabilities of the system should

be. Following the general principles for system design outlined in [73], a set of minimum functional

requirements is specified. By definition, these requirements should focus on the functions of the

design without overspecifying property values and performance parameters. This ensures that the

design process is not forced to follow a predetermined path.

Often the requirements of the system may be considered in four categories [74]:

1. Musts: Requirements which must be met.

60

5.1 Problem Definition/Requirements Specification 61

P R O B L E M
DEFINIT ION

R E Q U I R E M E N T S • .
S P E C I F I C A T I O N

O B J E C T M O D E L
D E V E L O P M E N T

L O G I C A L S E N S O R
S E L E C T I O N

N O

• P H Y S I C A L S E N S O R
S E L E C T I O N

A D D / M O D I F Y
P H Y S I C A L S E N S O R S

• P H Y S I C A L S E N S O R
S E L E C T I O N

A D D / M O D I F Y
P H Y S I C A L S E N S O R S

R E Q U I R E M E N T S \ >
S A T I S F I E D ' N O

Y E S

R U L E B A S E
DEFINIT ION

S Y S T E M
I M P L E M E N T A T I O N

Figure 5.1: Overview of construction methodology.

2. Must nots: Constraints on what the system must not do.

3. Wants: Requirements that are desirable but not essential.

4. Don't wants: Specifies what, ideally, the system will not do.

These requirements would typically include performance (speed, accuracy, etc.), cost, maintain­

ability, size, weight, complexity, standards and regulatory requirements, customer preferences, and

market constraints, among others. The articulation of these requirements is used as a guide for

subsequent phases. If any of the requirements are left unsatisfied, the design is inadequate. The

requirements also serve to keep the design focused on what is necessary for the task at hand.

5.2 Object Model Development 62

5.2 Object Model Development

Object model development for E L S A is a two-stage process. First, based upon the requirements of

the system from the previous phase, the primary features or characteristics upon which classifications

are to be made are identified. As discussed in Chapter 3, it is advantageous to keep the size of this

set to a minimum. Typically, the features in this set are at a high level of abstraction. They occupy

the top of the feature layer of the model (right side of Figure 3.1). From this set, each feature

which is not atomic is decomposed into a set of subfeatures. This decomposition continues until all

features are atomic. A feature is considered to be atomic if it cannot be subdivided further. This

process is illustrated in the upper-half of the flowchart in Figure 5.2.

Once high-level features are represented by atomic features in the lower section of the object

model, the high-level information is used to define the object classifications following the steps in

the lower-half of Figure 5.2. The classifications occupy the upper level of the model topology (left

side of Figure 3.1). Each object classification is defined by first specifying the relevant primary

features with fuzzy links. The fuzzy links to each classification are then associated with a fuzzy

descriptor. These descriptors specify to what degree of confidence the particular primary features

must be identified to be confident in the object classification. The complete algorithm used to

construct an object model is as follows:

1. Select an object to model.

2. Determine the primary features of the object.

3. Select a primary feature.

4. If feature is atomic, goto 9.

5. Determine subfeatures.

6. Select a subfeature.

7. If feature is not atomic, goto 5.

8. If there are additional subfeatures, goto 6.

5.2 Object Model Development 63

SELECT OBJECT
i-TOBE MODELLED:

DETERMINE
PRIMARY FEATURES

SELECTsPRIMARYs
FEATUI

I

DETERMINE
SUBFEATURES

SELECT - ,
SUBFEATURE .,;

I

DETERMINE OBJECT-
CLASSIFICATIONS

LINK PRIMARY ^
11 FEATURES TO

CLASSIFICATIONS.

16 [DONE]

Figure 5.2: Object model development methodology.

5.3 Logical/Physical Sensor Selection 64

9. If there are additional primary features, goto 3.

10. Determine desired classifications of object.

11. Link primary features to object classifications with fuzzy links.

12. Associate fuzzy descriptors with each fuzzy link.

13. If the defined primary features do not support the object classifications, goto 2.

14. If the defined object classifications are not sufficient for the application, goto 10.

15. If there are additional objects to model, goto 1.

16. Done.

The classification layer of the object model (relevant features in combination with relative

weights) serves as a template for the Inference Engine which, in practice, makes the classifica­

tion decisions based on the feature information extracted by the logical sensors. The development

of the Rulebase is described in Section 5.4.

5.3 Logical/Physical Sensor Selection

The selection of logical sensors is driven by the primary, intermediate, and atomic features that

have been identified as necessary for the object model. Sensor selection starts with the primary

features. Each feature has a corresponding E L S which packages the information from lower-level

sensors (logical or physical) into the representations used for object classification. Many of the

low-level logical sensors are selected from a reusable E L S library. The logical sensors contained

within the library perform standard image and signal processing operations. The algorithm for

constructing the E L S hierarchy, Figure 5.3, is as follows:

1. Select a primary feature from the object model.

2. Define a LS to provide primary feature.

3. If feature is atomic, goto 7; else, continue.

5.3 Logical/Physical Sensor Selection 65

4. Select a subfeature.

5. Select or define a LS to extract feature.

6. If feature is atomic, goto 7; else, goto 4.

7. Does LS receive input directly from a physical sensor? If so, goto 9; else, continue.

8. Select or define logical sensors required to supply information to LS that provides atomic

feature. Goto 7.

9. Select required physical sensor.

10. If there are additional subfeatures, goto 4.

11. If there are additional primary features, goto 1.

12. Done.

Physical sensors are selected to satisfy the input requirements of the LS associated with each

atomic feature. This requires a consideration of both the input requirements and the capabilities

of available transducers. A feature that is beyond the range or capabilities of a single sensor may

be accommodated by the fusion of data from multiple sensors which cover the feature space. A LS

is then defined which provides the feature, fusing the data from each of the physical sensor inputs.

Other considerations include whether the system should attempt to utilize a single sensor for

multiple tasks or whether specialized sensors will be used. For example, a camera can provide size,

colour, arid shape information. Clearly, separate cameras a not required to extract each of these

features. Using visual information and a correlation between length, area, and mass, a weight LS

may be defined to estimate the weight of an object. Depending on the application, this may be

used to replace or augment the information from a load cell.

5.3 Logical/Physical Sensor Selection 66

SELECT, PRIMARY
FEATURE

• DEFINE LS TO
" PROVIDE

PRIMARY FEATURE

NO

••SELECT
'SUBFEATURE

SELECT/DEFINE .' '.
LSTO

EXTRACT FEATURE

I
^ IS FEATURE

YES

INPUT DIRECTLY
FROM PHYSICAL

SENSOR?

NO

SELECT/DEFINE
LS TO SUPPLY

'ATOMIC LS

9 _ SELECT REQUIRED
"* PHYSICAL SENSOR

12 [DONE]

Figure 5.3: Methodology for the development of the E L S hierarchy.

5.4 Rulebase Definition 67

5.4 Rulebase Definition

The Rulebase defines both rules for object classification and rules to infer the appropriate system

output from these classifications. It is generated directly from the object classifications contained

in the object model.

The classification rules use the fuzzy descriptions of each classification as the basis for descrip­

tion. The confidence in the detection of each primary feature may then be used as input to the

classification rules. Each rule expresses a degree of confidence in the classification of the object

based on the detection of the primary features. The rules for each classification are combined using

the compositional rule of inference, e.g. using a sup-min operation [63], to produce a measure of

confidence that the object is of each classification.

Conversion of the representation in the classification layer of the object model into a rulebase

which may be used by the Inference Engine is accomplished using the following algorithm, Figure

5.4:

1. Select an object classification.

2. Use fuzzy links to identify the primary features that this classification depends on.

3. Determine the interdependencies of primary features. Each rule is defined using the minimum

number of features. For example, consider a classification which is dependent on three primary

features. If one of these will result in object being classified as belonging to the given classi­

fication, regardless of the other two, rules are defined that contain only this feature. Other

rules will contain both of the other features, provided that the presence of each is required for

proper classification. Primary features may be combined with AND and OR operators.

4. Specify rules which correspond to the fuzzy descriptors used to describe the object classi­

fication. These describe conditions necessary for a high confidence in the detection of the

particular classification. These are mandatory.

5. Specify rules which are opposite to the fuzzy descriptors used to describe the object classifica­

tion. These describe conditions which indicate that the classification is not applicable to the

object. These are mandatory except for the case of a default classification — in other words,

5.4 Rulebase Definition 68

a classification for those objects that do not satisfy the criteria of the other, more specific,

classifications.

6. If classifications with lower confidence should be considered to increase the robustness of the

system, continue; else, goto 8.

7. Specify rules having fuzzy descriptors which correspond to a low degree of confidence in the

detection of one or more primary features.

8. If there are additional classifications, goto 1.

9. Done.

Decision rules are defined to inform the system what the should be done according to how

each object is classified. Decisions are defined using the confidence in each object classification as

the antecedent(s); the appropriate decision(s) forms the consequent. For industrial systems, the

decision often corresponds to an action to be taken. A grading system may decide to place objects

into particular bins, based on how they are classified. If an object classification is certain, the

appropriate decision is straightforward. By evaluating the confidence of each object classification,

borderline cases may be handled in the most appropriate manner.

The decision rules are defined in a manner similar to the classification rules, though they are

based on the object classifications rather than the primary features. Figure 5.5 illustrates the

algorithm that follows:

1. Determine decisions which may be made based on object classifications. Ensure that there is

a decision that corresponds to each classification.

2. Select a decision.

3. Identify the classifications upon which decision depends.

4. Specify rules for each classification that, when identified with a high degree of confidence,

result in the decision.

5. If classifications with lower confidence should be considered to increase the robustness of the

system, continue; else, goto 7.

5.4 Rulebase Definition 69

6,7

SELECT
CLASSIFICATION

. IDENTIFY PRIMARY ,
•" FEATURE
DEPENDENCIES

DETERMINE FEATURE
INTERDEPENDENCIES

SPECIFY RULES FOR
HIGH CONFIDENCE
IN CLASSIFICATION

SPECIFY RULES FOR
NO CONFIDENCE

IN CLASSIFICATION

SHOULD
'LOWER CONFIDENCE"

BE CONSIDERED? / Y E S

YES

SPECIFY RULES FOR
LOW CONFIDENCE
IN CLASSIFICATION

(DONE ,)

Figure 5.4: Methodology for the definition of the rulebase for object classi­
fication using the object model.

6. Specify rules that define a decision based on a classification or classifications that have been

identified with a low degree of confidence. This may be used to eliminate false positives by

rejecting borderline cases. Depending on the application, low confidence in a single classifi­

cation may be sufficiently serious; for others, an ambiguity (low confidence) in two or more

classifications may be required.

7. If there are additional decisions, goto 2.

8. Done.

Inferring a decision from the object classifications uses a methodology similar to that used for

5.5 System Implementation 70

5,6

• DETERMINE
DECISIONS

•SELECT
DECISION

. IDENTIFY
CLASSIFICATION
.DEPENDENCIES

SPECIFY RULES FOR
HIGH CONFIDENCE
IN CLASSIFICATION

YES

YES

SPECIFY RULES FOR
LOW CONFIDENCE
IN CLASSIFICATION

(DONE)

Figure 5.5: Methodology for the definition of the decision rulebase based on
object classifications.

determining the confidence in the detection of primary features, as discussed in Section 3.6.3.2. As

shown in Figure 5.6, membership functions no, low, and high specify the degree of confidence in the

classification of an object.

5.5 System Implementation

Having completed the functional requirements analysis, defined the object model, chosen the logical

sensors and physical sensors, and defined the rulebase, the next stage is to realize and integrate

these components to produce a working system. The following steps indicate the various stages in

this process:

5.5 System Implementation 71

NO LOW HIGH

CONFIDENCE
IN OBJECT

CLASSIFICATION

Figure 5.6: Membership function used to represent confidence that an object
is of a particular classification.

1. Construct the physical system. This includes the arrangement of physical sensors as well as

product delivery and handling systems.

2. Select the required ELSs that are available from the library.

3. For ELSs that are required but are unavailable from the library, these must be constructed.

The E L S base class, used as a template for E L S construction, is presented in Appendix B .

4. Implement the rulebase and associated membership functions using the classes described in

Appendix D.

5. Implement the object model using the object class described in Appendix A . This is stored

in the Knowledge Base.

6. Define the Validation module providing parameters by which the sensor information may be

evaluated.

7. Define the Exception Handling Module, providing tests used for error classification and error

recovery schemes (mappings).

8. Implement the Integration Controller to coordinate sensor integration and drive the system

operation.

9. Select the inference mechanism(s) used by the Inference Engine. Define these if necessary.

10. Implement post processing and control as required by the application.

5.6 Modification and Refinement 72

As is apparent, further work needs to be done towards the automation of these steps. This would

improve the ease with which a system may be constructed using the E L S A methodology. While

the system construction is not currently automated, each component has been designed with this

goal in mind. Future automation efforts should not require any significant redesign of the various

modules and components that comprise E L S A .

5.6 Modification and Refinement

Once the system has been constructed, it may be necessary to modify or refine some of the compo­

nents. Typical changes include the following:

• Rulebase alteration.

• Membership function tuning.

• Addition or change of classification.

• Addition or change of primary features.

• Addition, change, or removal of physical/logical sensors.

One or all of these may be necessitated to improve the performance of the system, to account

for deficiencies in the original design, to adapt to changing specifications or customer requirements,

to incorporate different or new sensor technologies, to modify the system for a different application,

or some other unforeseen need. The hierarchical structure of the object model and sensors ensures

that changes remain local — the structure as a whole is unaffected.

The simplest changes involve the adjustment, addition, or removal of rules from the rulebase.

These changes are made to fine-tune the system or to infer different decisions from the sensor

information. These changes do not affect any other part of the system. New rules may require

additional membership functions to be defined.

If it is found that the granularity of a membership function is insufficient, or shape (range,

mean, function) does not properly reflect the linguistic variable(s), the membership functions may

be tuned. Tuning will affect all rules which use the membership function. If the changes are

5.6 Modification and Refinement 73

substantial, such as the addition or removal of linguistic variables to modify the granularity, each

dependent rule may have to be reevaluated. Rules that do not make use of the membership function

are unaffected.

The object model may be adjusted by adding new object classifications. A n additional classifi­

cation wil l not affect any others; it is simply linked to the appropriate primary features. Additional

rules wil l have to be defined for the new classification. Modification of existing classifications may

be achieved by creating links to unused primary features or by adjusting the fuzzy descriptors. Each

will require the rules that correspond to the classification to be updated. Such modifications may

be necessary if objects are being improperly classified.

If after tuning, or adding new classifications, objects are still improperly classified, it may be

necessary to define an additional primary feature. Additional features should be chosen such that

objects can be differentiated on the basis of characteristic features. The definition of a new primary

feature will follow the same procedure outlined in Section 5.2. New subfeatures and physical sensors

may be required. The existing sensor hierarchy is not affected.

Problems with feature extraction are handled through the adjustment of the ELS(s) associated

with the feature. Adjustments may include refinement of properties and relations or alteration of

parameters. Should these prove unsuccessful, the ELS may be replaced by another providing the

same function or the sensor hierarchy may be redefined. Such a redefinition would only affect those

sensors associated with the feature. If it is low-level feature, higher-level features are oblivious to

any changes.

Finally, a new physical sensor may be added to the system. This could be to replace an existing

sensor or to augment the system capabilities. Sensor replacement will only require a new E L S

to encapsulate the sensor. A n additional sensor will require, at minimum, a new E L S but may

require the sensor hierarchy, object model, and rulebase to be redefined to take advantage of the

new information.

5.7 Summary 74

5.7 Summary

This chapter has outlined the basic steps in the design of an ELSA-based multisensor integration

system for a particular industrial application. These steps include:

1. Identification of the problem.

2. Specification of the functional requirements.

3. Development of the object model.

4. Selection of appropriate Extended Logical Sensors and physical sensors.

5. Definition of the classification and action rules from which to infer process decisions.

6. Implementation of the system.

Once the requirements of the system have been determined, the object model is defined to

represent the features and classifications of the objects that the system must deal with. The

selection of sensors and the specification of the rules used by the Inference Engine follow directly

from the object model. This process serves to isolate the user from the technical details of the

system design and construction. This process is further illustrated by the examples in the following

chapter.

Chapter 6

Application Examples

This chapter provides examples of the construction of multisensor integration systems for industrial

inspection. Two examples, drawn from industry, are considered. These examples are not attempts

to create fully automated industrial working prototypes, but rather to illustrate how the E L S A

methodology could be used to construct a sensor integration system for product inspection.

The first example, metal can inspection, is an illustrative example which deals with the inspec­

tion of a uniform object. The second example is herring roe grading. The non-uniform nature of

this product introduces a number of interesting automation challenges. These examples are selected

to contrast each other: the first example is simple to model but utilizes a relatively large number

of sensors; the second model is more complex to develop but requires fewer sensors. For each, the

object model, the E L S hierarchy, and the Inference Engine are developed using the E L S A approach.

6.1 Can Defect Detection

6.1.1 Background

A wide variety of food products are packaged in sealed rigid metal cans. The majority of cans

are sealed using a machine called a double seamer. This machine interlocks the can lid and body

forming a double seam. Seaming compound is used between the layers of interlocking metal to

complete a hermetic seal. Most cans are sealed under a vacuum. The integrity of these cans may

be compromised by a wide variety of defects. Improperly sealed cans can lead to botulism. Defects

75

6.1 Can Defect Detection 76

may arise at any one of the stages of can manufacture; namely, filling, closing, processing, and

handling, before the can reaches the customer.

Defects are classified as serious if there is visual evidence that there is microbial growth in the

container or the hermetic seal of the container has been lost or seriously compromised [75]. There

are a number of possible serious defect classifications. Most of these are related to the proper

formation of the double seam. Examples include: seam inclusions, knocked-down flange (KDF) ,

knocked-down end (KDE) , knock-down curl (KDC) , pleats, vees, puckers, side seam droop, cut-

down flange, and dents. The majority of these are visible from a side view of the can, Figure 6.1;

others from a top view, Figure 6.2.

6.1.2 Problem Definition/Requirements Specification

The current system for the automated inspection of metal cans uses equipment to measure the weight

of each can and a double-dud detector which mechanically measures the amount of deflection of the

can lid. The deflection is used as a measure of the amount of vacuum in the can. A well-sealed

can will maintain a vacuum internally — the lid is deflected inwards (concave) by the vacuum.

Improperly sealed cans exhibit less concavity. Cans which exhibit vacuum or weight values outside

of statistically determined limits are ejected for manual inspection.

Unfortunately, a number of potentially serious defects may go undetected as vacuum may be

lost at a later time during shipping, handling, or storage. To address this issue, it is proposed to

augment the current configuration with a vision system capable of detecting many of the double

seam defects.

Ideally, such a system would be used as part of a company's Hazard Assessment at Critical

Control Point (HACCP) strategy. Cans passing through this system would have to pass each of the

individual tests (weight and vacuum) already outlined and established through industry guidelines.

This integrated system would then provide a secondary quality assurance check to identify those

cans which slip through the individual tests.

The target application is the inspection of half-pound (227 g) salmon cans. These are typically

two piece cans: a bottom and sides drawn from a single piece of metal with a separate stamped lid.

The two are sealed together using a double seaming machine just after filling.

6.1 Can Defect Detection 77

(a) Good can — no defect (b) Knocked-down curl (KDC)

(c) Dent (d) Knocked-down curl (KDC)

(e) Side Seam Droop (f) Knocked-down end (KDE)

Figure 6.1: Examples of canner's double seam defects — side view.

(a) Good can — no defect (b) Dent

Figure 6.2: Examples of canner's double seam defects — top view.

6.1 Can Defect Detection 78

The general sensing requirements of the multisensor system for the inspection of sealed metal

salmon cans are as follows:

1. Detection of cans which exhibit insufficient vacuum (top lid deflection < 1 mm).

2. Detection of cans which are under weight (< 227 g).

3. Detection of cans which are over weight (> 235 g).

4. Detect double seam defects of top lid visible from either above and/or the sides of the can.

5. The occurrence of false positives should be minimized as much as possible. Cans ejected from

the system would still be hand inspected. A n overload of false positives would negate the

benefits of the system.

For the purpose of this example, these shall be considered as the minimum functional require­

ments of the system. Other requirements, such as the speed, cost, and reliability of the system are

also important; however, they will not be addressed directly.

6.1.3 Object Model Development

From the developed functional requirements, three primary features may be defined. These are

weight, vacuum, and seam defects. Of these, weight is atomic and not dependent on other features.

Vacuum cannot be measured directly (to do so would compromise the seal integrity) and a subor­

dinate feature must be defined. The top lid deflection is used as an indirect measure of the amount

of vacuum in the can.

Seam defects vary widely in manifestation; however, all are characterized by deviations in the

expected profile of the seam. Deviations may occur over the entire seam length (too thick or too

thin), or may be local. Thus, the features are simply deviations (defects) in the seam as viewed

from the top of the can and from the side. As shown in Figure 6.3, the seam defects may be broken

down into features visible from the top and those visible from the side. These may be further broken

down into the atomic components which permit the detection of these defects.

The primary features are combined to produce four object classifications: good, improper seal,

underweight, and overweight. The good classification depends on all of the primary features. It

6.1 Can Defect Detection 79

CLASSIFICATION
LAYER FEATURE LAYER

BUNDER.'??
HWEKSHTf:;;

OVER
WEIGHT

IMPROPER
SEAL •

PRIMARY F E A T U R E S (P F)
(HIGH LEVEL)

S U B F E A T U R E S
(MID TO LOW LEVEL)

1 1 (-] i—1 n VACUUM LID
DEFLECTION

VACUUM LID
DEFLECTION

1 1 IE
I 1 1

SEAM DEFECT
(SIDE VIEW)

' r
HEIGHT

SEAM DEFECT
(SIDE VIEW)

' r
HEIGHT

i i m |
SEAMiDEFECT

(TOP VIEW)
SEAM

RADIUS
SEAMiDEFECT

(TOP VIEW)
SEAM

RADIUS

Figure 6.3: Object model for metal can inspection.

is denned as a can having average weight, average to high vacuum, and a low confidence in the

presence of a seam defect. Similarly, an improper seal may be identified using a combination of the

can weight, l id vacuum, and the detection of seam defects. This classification includes cans which

exhibit seam defects as well as those cans that are normal to low in weight and have a low vacuum.

Underweight cans have low weight and average to high vacuum; overweight cans have high weight

and low to average vacuum. Vacuum is included in the underweight and overweight classifications

as a measure of redundancy. A n underfilled (and thus underweight) can exhibits a greater degree

of vacuum; an overfilled may not allow the lid to deflect — affecting the vacuum measure.

6.1.4 Logical/Physical Sensor Selection

From the object model, a logical sensor hierarchy is constructed, Figure 6.4. The selection of

sensors for the measurement of weight and vacuum is straightforward. A checkweigher automatic

scale is used to measure the can weight. This is encapsulated by the weight E L S . Vacuum is

determined indirectly by a double-dud detector. The lid deflection E L S , encapsulating the double-

dud detector, passes the measured deflection to the vacuum E L S . This sensor then correlates the

measured deflection to the amount of vacuum present.

6.1 Can Defect Detection 80

DOUBLE DUD,
DETECTOR ..

[LID VACUUM)

LID
DEFLECTION

; LID VACUUM
DETECTOR

CAN TOP SEAM
, . ., CENTRE - EDGE

^LOCATOR DETECTOR

SEAM DEFECT.
DETECTOR ^
(TOP VIEW)

Figure 6.4: Logical sensor hierarchy for metal can inspection. Sensors which
provide primary features are outlined in bold and tagged PF.

The seam defect ELS combines information from the side seam defect detector E L S and the

lid seam defect detector E L S . This integration not only ensures that defects visible from only one

viewpoint are detected, but apparently marginal defects which appear at the same location (around

the circumference) in both views may be properly classified as serious. The logical sensors used

to extract the lid and side seam profiles are based on image processing algorithms developed by

Lee [76] for the purpose of metal can inspection.

Integration of complementary sensor information is performed by the side profile E L S to produce

a view of the complete 360° circumference of the can. The results of this operation are shown in

Figure 6.5. The seam defect detector E L S combines defect location information (expressed in polar

coordinates about the can centre) from the lid seam defect detector LS and the side seam defect

detector to better isolate borderline cases.

The logical sensors defined to extract seam defects require a total of five C C D cameras. A single

6.1 Can Defect Detection 81

(a) Good can — no defect

Jf '

(b) Knocked-down curl (KDC)

Figure 6.5: Full view of can sides reconstructed from four viewpoints.

camera is used to image the top view of the can, while four cameras are used to fully cover the

circumference of the can when viewed from the side. J V C T K 1 0 7 0 U colour C C D cameras were

used. The top camera utilized a 12.5 mm f 1:1.3 lens; the side cameras were equipped with 75 mm

f 1:1.8 lenses with a 5 mm extension.

6.1.5 Rulebase Definition

The rulebase generation follows from the object model. The object classifications outlined in Section

6.1.3 are used as the basis for the classification rules, Figure 6.6.

The decision rules, Figure 6.7, are denned by simply rejecting all cans which, based on their

classification, are clearly defective or are borderline cases. The consequent is the fuzzy singleton

reject. The fuzzy membership functions associated with these rules are shown in Figure 6.8.

6.1 Can Defect Detection 82

IF Weight IS very low THEN Underweight = high
IF Vacuum IS high AND Weight IS low THEN Underweight = high
IF Weight IS low THEN Underweight = low
IF Weight IS high THEN Underweight = no
IF Weight IS very high THEN Overweight = high
IF Vacuum IS low AND Weight IS high THEN OverWeight = high
IF Weight IS high THEN OverWeight = low
IF Weight IS low THEN OverWeight = no
IF Seam Defect IS high THEN ImproperSeal = high
IF Vacuum IS low AND Weight IS low THEN ImproperSeal = high
IF Vacuum IS low AND Weight IS normal THEN ImproperSeal = high
IF Vacuum IS normal AND Seam Defect IS /oiv THEN ImproperSeal = low
IF Vacuum IS high AND Weight is normal THEN ImproperSeal = no
IF Seam Defect IS no AND Weight IS normal AND Vacuum is normal THEN Good = high
IF Seam Defect IS /oiv OR Vacuum IS low THEN Good = low
IF Seam Defect IS high THEN Good = no
IF Weight IS NOT normal THEN Good = no

Figure 6.6: Rules used to identify the classification of metal cans from pri­
mary features.

IF Underweight IS high THEN Decision = reject
IF OverWeight IS high THEN Decision = reject
IF ImproperSeal IS high THEN Decision = reject
IF Good IS low AND ImproperSeal IS low THEN Decision = reject
IF Good IS low AND Underweight IS low THEN Decision = reject
IF ImproperSeal IS low AND Underweight IS low THEN Decision = reject

Figure 6.7: Rules used to decide whether to reject cans based on object
classifications.

6.1 Can Defect Detection 83

NORMAL
VERY
LOW LOW 1 HIGH

VERY
HIGH

1 t H 1
220 225 230 235 240

(a) Weight

MASS (g)
245

H - DEFLECTION (mm)
0 1 2 3

(b) Deflection (vacuum)

NORMAL

0 1

(c) Side seam thickness

A SIDE SEAM
THICKNESS (mm)

NORMAL

0 1

(d) Seam radius

0.5

(e) Improper seal

CONFIDENCE
1 - IN FEATURE
! DETECTION

CONFIDENCE
IN OBJECT

CLASSIFICATION

(f) Confidence in classification

Figure 6.8: Membership functions used for classification of metal can de­
fects.

6.2 Herring Roe Grading 8 4

6.1.6 Summary

To construct an industrial system, the procedure outlined in Section 5.5 is followed. In this work the

object model, sensor hierarchy, and rulebase are given as examples that provide a simple introduction

to the specification and construction of a multisensor system using the E L S A approach.

The can inspection problem, while simple from a modelling perspective, required the use of

multiple physical cameras in combination with an E L S that fuses this information to provide a

continuous image of the can side. This approach was chosen both to illustrate how such fusion would

be accomplished within E L S A , but also as a practical solution to the problem. Other solutions which

would minimize the number of required cameras may require the can to be rotated for a series of

images — a complex and time-consuming procedure.

6.2 Herring Roe Grading

6.2.1 Background

Herring roe is an important part of the B . C . economy, with an annual value of $200 million dollars.

A herring roe skein is a sac of tiny herring eggs. Two skeins are produced by each female herring.

These skeins are extracted and processed for human consumption. The value of herring roe is largely

influenced by the Japanese market, where it is a considered a delicacy.

Being a natural product, it exhibits many non-uniform characteristics. Roe is a particularly

challenging product due the large number of classifications. Each classification is dependent on the

presence or absence of a number of features. Appearance and texture of the salted herring roe are

the primary factors influencing price. Proper classification allows processors to offer improved value

to their customers.

. Currently, the process of grade classification is done manually. Herring roe is assigned a subjec­

tive grade according to aesthetic properties including colour, texture, size, and shape. Of these, all

but texture are assessed visually; texture is assessed by tactile examination. The highest quality roe

are light yellow in colour, stain-free, firm, over 75 mm in length, and fully formed without twists,

cracks, and breaks. Heavy roe command a disproportionately higher market value. The various

classifications of herring roe are presented in Table 6.1.

6.2 Herring Roe Grading 85

The roe grades are subject to change each season, due to the customer driven nature of the

industry. Currently, there is no standardization of the various grade specifications. Distortions of

the roe are commonly described using linguistic terms — the interpretation of which varies among

expert graders. This inconsistency makes the quantification of product quality difficult.

Table 6.1: Summary of herring roe grades.

Grade No. Grade Name Mass (g) Length (mm) Description Example

3L No. 1 Toku Toku Dai > 41

2L No. 1 Toku Dai 31-40
Fully formed mature
roe. Minor twists may
be allowed.

Large No. 1 Dai 21-30 > 76
Fully formed mature
roe. Minor twists may
be allowed. Medium No. 1 Chu 16-20

> 76
Fully formed mature
roe. Minor twists may
be allowed.

Small No. 1 Sho 10-15

N / A Sho Sho
(pencil roe) < 10

2 Grade 2 N / A > 51
Broken parts at either
end.

2-H Light Henkei N / A > 76

Mature roe. Moderate
to severe distortions
due to air bladder,
feed-sac, mishandling,
etc.

2-C Cauliflower N / A N / A

Mature roe. A piece of
roe that has a part
extruded out from the
skien, caused by a split
belly or other types of
damage.

2-2 Daruma
(plug roe)

N / A N / A Two skeins that
cannot be separated.

N / A

3 Grade 3 N / A 13-51 Mature roe. Broken
pieces.

N / A

3-3 Fragile roe N / A N / A
Mature roe. Soft
texture — crumbles
when pressed.

4 Triangle roe
(free roe)

N / A N / A
Pieces of roe that are
no longer contained
within the skien.

r* %)

:

5-5 Immature roe N / A N / A N / A N / A

6 Grade 6 N / A < 13
Mature roe. Crumbs,
bit, and pieces. N / A

6.2 Herring Roe Grading 86

6.2.2 Problem Definition/Requirements Specification

The growth of the herring roe industry has increased competition. Fisheries from other countries,

particularly from Alaskan-based American companies, have begun vying for market share. This,

in combination with the development of imitations made from capelin roe, have negatively affected

the demand for B . C . produced herring roe. As a result of the increased competition, the consumers

have begun demanding higher quality at lower prices. This places considerable pressure on the

B . C . processors to improve the quality of the product through better grading, while reducing costs

through increased efficiency. Wi th the viability of current practices in question, processors have

started to reassess the process and are looking towards automation as a way to realize both improved

consistency and increased speed.

The Industrial Automation Laboratory at the University of British Columbia has, through a

number of research projects, attempted to develop systems for the automated grading of herring roe.

Since manual grading of herring roe skeins is based mainly on visual information, optical imaging

has been considered as the primary sensing means for automated machine grading. A prototype

herring roe grader, Figure 6.9, has been developed by Kurnianto [38,77].

Figure 6.9: Prototype herring roe grading system.

6.2 Herring Roe Grading 87

Herring roe is a somewhat more complicated application than the previous example since each

piece of roe must be assigned a grade rather than simply identified as defective. From the classi­

fications presented in Table 6.1, the ones of primary interest for automated grading are those in

the various subclassifications of Grade 1 and Grade 2 roe. The prototype system makes grading

decisions based on binarized 2D profile information provided by a single C C D camera. Roe are

ejected into bins at one of six gates: 3L, 2L, and Large No. 1 into the first; Medium No. 1 into the

second; Small No. 1 into the third; No. 2 into the fourth; No. 2-H into the fifth; and, No. 2-C into

the sixth. The other classifications are not differentiated and are allowed to fall off the end of the

belt into a seventh bin.

The shape of the roe has been the most difficult to access using machine vision [35]. Human

graders look for roe to be 'well formed,' or free from defects, as shown in the first row of Table 6.1.

The current prototype, limited to the use of a single image without intensity information, is unable

to consistently classify roe with various defects. The original system was designed as a two-classifier

— separating good roe from bad — and while Grade 1 roe are identified consistently, attempts to

subclassify the defective roe have met with limited success. To address these limitations, additional

information is required. Three dimensional and texture information would provide the system with

features that are essential to proper classification.

The design of a second generation prototype, which can integrate the additional sensor infor­

mation to better distinguish roe classifications, is the aim of a new effort. The requirements of the

multisensor system for the grading of herring roe skeins are as follows:

1. Accurate determination of skein length (±1 mm).

2. Estimation of skein weight (5-50 g ± 0.5 g).

3. Estimation of roe thickness as ratio of width.

4. Detection of parasite bites.

5. Detection of broken skeins (broken head or broken tail).

6. Detection of depressions (> 12 mm 2) .

7. Detection of twists (> 12 mm 2) .

6.2 Herring Roe Grading 88

8. Detection of proper yellow colour.

9. Detection of proper firmness of roe as an indicator of maturity.

10. Detection of bumps and curvature characteristics representative of cauliflower deformation.

11. Detection of cracks in the roe skein (> 1 mm).

6.2.3 Object Model Development

From the requirements, there are eleven salient features that can be identified as necessary for

classification. These include weight, length, thickness, firmness, presence/absence of parasite bite(s),

breaks, cracks, twists, depressions, cauliflower, and proper colour. Many of these can be assessed

on the basis of 2D visual information. Length, breaks, cracks, cauliflower bumps, parasite bites,

and proper colour are all visible from an overhead view of the roe.

Thickness, twists, and depressions require information about the three dimensional profile of

the roe skien. The 3D profile is usually represented as a surface map. Due to the variability of roe,

thickness is represented as a ratio between the depth of the roe (as estimated by the 3D profile)

and the width of the roe at the minor axis.

Weight cannot be measured directly. There are a number of systems which can measure mass as

the product moves along the conveyor; however, they tend to suffer from two problems: one is the

cost of such systems, and the other, more important, is inaccurate measurement of skeins with low

weight (< 10 g). As an alternative, the weight may be estimated using a linear regression model

based on the peripheral length, area, and thickness of the roe [77].

Firmness is the only feature that does not lend itself to direct visual inspection. Traditionally,

firmness has been assessed by handling the roe; however, this approach is not practical for an

automated system. [37]. Another method, investigated in the I A L , is the use of ultrasonic echo

imaging. The strength of the echo signal is directly dependent on the structure, uniformity, and

firmness of the object region which generates the echo. Therefore, the echo image contains features

correlated with the firmness of the roe. These features may be extracted and used as an indirect

measure.

6.2 Herring Roe Grading 89

None of the primary features are atomic. Each is broken down into the various atomic compo­

nents which permit the detection of the feature. The primary features and corresponding subfeatures

are shown in Figure 6.10.

The primary features are combined to produce eleven different classifications. These are outlined

in Table 6.2. Grade 1 roe is subclassified into six grades, according to weight. Each of these

subclasses must be free of defect features, such as breaks and cracks. Additionally, Grade 1 roe

must be firm, of the proper colour, and of sufficient size. If all of these criteria are satisfied, the roe

is Grade 1; it is assigned to one of the subclassifications on the basis of weight.

For other grades, classification is dependent on the detection of certain distinguishing features.

For example, the detection of a break will classify a piece of roe as Grade 2 provided the roe is also

firm and of sufficient length.

6.2.4 Logical/Physical Sensor Selection

A logical sensor hierarchy is constructed from the object model starting with the primary features.

Each of the features identified during the development of the object model is associated with an

E L S which can extract the required feature. Because many of the primary features share common

subfeatures, the logical sensor hierarchy, Figure 6.11, is considerably less complex than the object

model. There are three physical sensors required: two C C D cameras and an ultrasonic probe; the

details of each follow:

The low-level subfeatures R G B Image and 2D Profile, from which a number of other subfeatures

are derived, may be provided by a single colour camera with evenly distributed, diffuse lighting.

Images obtained under such conditions are presented in Figure 6.12. A J V C TK1070U colour C C D

camera with a 16mm f l : 1.4 lens was used.

The Echo Image subfeature is provided by a 10 MHz mechanical sector ultrasound probe. This

provides input to the ELSs responsible for estimating of the firmness of a roe skein. Upon extracting

the relevant image features, these are passed to the Fi rm ELS which uses fuzzy logic to estimate

firmness.

The 3D Profile Extractor E L S utilizes a second C C D camera in combination with a structured

laser light. A brief explanation of the operation of this E L S follows. The structured light was

6.2 Herring Roe Grading 90

Figure 6.10: Object model for herring roe grading.

6.2 Herring Roe Grading 91

(6 JS

o3
O

13

S3

JS d
m .2

. 03
CO CJ

g 1
CO

CO CO
fl QJ

o m

3 13 T d
CP

CP CO
O S

CP

a
CP

a
' CP

,a
CM

CO

T
hi

ck
ne

ss

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

A

ve
ra

ge

A
ve

ra
ge

A
ve

ra
ge

H
ig

h

C
au

lif
lo

w
er

N
on

e

N
on

e

N
on

e
N

on
e

N
on

e

N
on

e

Y
es

C
ra

ck

N
on

e

N
on

e

N
on

e
N

on
e

N
on

e

N
on

e

Y
es

T
w

is
t

Lo
w

Lo
w

Lo
w

Lo

w

Lo
w

Lo
w

M
ed

iu
m

-
H

ig
h

D
ep

re
ss

io
n

N
on

e

N
on

e

N
on

e
N

on
e

N
on

e

N
on

e

Y
es

B
re

ak

N
on

e

N
on

e

N
on

e
N

on
e

N
on

e

N
on

e

Y
es

Pa
ra

si
te

B

ite

N
on

e

N
on

e

N
on

e
N

on
e

N
on

e

N
on

e

Y
es

W
ei

gh
t

V
er

y
V

er
y

La
rg

e
V

er
y

La
rg

e
La

rg
e

M
ed

iu
m

Sm

al
l

V
er

y
Sm

al
l

>
V

er
y

La
rg

e

<
Sm

al
l

Le
ng

th

N
or

m
al

N
or

m
al

N
or

m
al

N

or
m

al

N
or

m
al

N
or

m
al

Sm
al

l-
N

or
m

al

N
or

m
al

N
or

m
al

<
V

er
y

Sm
al

l

Pr
op

er

C
ol

ou
r

Y
es

Y
es

Y
es

Y

es

Y
es

Y
es

Fi
rm

Y
es

Y
es

Y
es

Y

es

Y
es

Y
es

Y
es

Y
es

Y
es

Lo
w

-
A

ve
ra

ge

C
la

ss
ifi

ca
tio

n

3L
-N

ol

2L
-N

ol

L
ar

ge
-N

ol

M
ed

iu
m

-N
ol

Sm

al
l-N

o 1

Pe
nc

il

CM

o N
o2

-H

N
o2

-C

N
o2

-2

O
th

er

6.2 Herring Roe Grading 92

Figure 6.11: Logical sensor hierarchy for herring roe grading. Sensors which
provide primary features are outlined in bold and tagged PF.

6.2 Herring Roe Grading 93

(c) Grade 2-H: twist, cracks (d) Grade 2-H: bites from belly

(e) Grade 2-H: flat, twist (f) Grade 2: broken tail

Figure 6.12: Examples of herring roe classification grades imaged on-line
under diffuse light conditions.

6.2 Herring Roe Grading 94

mounted over the conveyor such that the band containing the eleven brightest lines was centred in

the field of view of the camera. No other light source was used. Images were acquired using the red

channel to maximize the brightness of the lines and minimize noise from other spectra. This setup

is illustrated by Figure 6.13. The exact spacing between the rays, and the resultant projected lines,

is detailed in Table 6.3. Wi th this arrangement, one pixel is 0.392 mm square and A.0ray = 1.5316°,

where A9ray is the angle between the rays cast from the structured light.

Figure 6.13: Geometry of structured light used for acquisition of 3D fea­
tures.

A 3D Profile Extractor E L S reconstructs the 3D profile using this knowledge about the pixel

size and the fixed spacing of the light rays. For each pixel corresponding to a projected light ray,

the height of an object may be reconstructed using Equation (6.1).

hpixel = fipixel ' tan 9ray [pixels]

= 0.392 • 5pixei • tan 9ray [mm]

where, hpixei is the height of the object at the given pixel location. For a given ray, 6pixei is the

number of pixels the projected line has displaced on the object with respect to the undisplaced

(straight line) projection on the conveyor and 9ray is the ray angle as in Table 6.3. The relationship

between these variables is shown in Figure 6.14.

Examples of roe skeins imaged under the structured light are presented in Figure 6.15.

6.2 Herring Roe Grading 95

Table 6.3: Calculation of structured light geometry. Based on h = 160mm.

Ray Number kase (mm) dray ()

1 155.0 45.91
2 163.5 44.38

3 172.8 42.80
4 182.3 41.27

5 192.5 39.73

6 203.0 38.24

7 214.5 36.72

8 227.0 35.18

9 240.0 33.69

10 254.5 32.16
11 270.5 30.60
12 287.8 29.07

13 307.0 27.53

Figure 6.14: Basic geometry for reconstruction of 3D profile information us­
ing structured light.

6.2 Herring Roe Grading 96

(a) Grade 1 (b) Grade 1

(e) Grade 2-H: flat, twist (f) Grade 2: broken tail

Figure 6.15: Example of herring roe classification grades imaged on-line un­
der structured light conditions.

6.2 Herring Roe Grading 97

6.2.5 Rulebase Definition

The rulebase generation follows from the object model. The object classifications outlined in 6.2.3

are used as the basis for the classification rules, Figure 6.16. The confidence membership function

is used to express the confidence in the detection of the proper firmness, proper colour, breaks,

cauliflower deformities, parasite bites, depressions, and cracks. The other features: length, weight,

thickness, and twist, utilize specific membership functions.

IF Firm IS high AND Length IS normal AND ProperColour IS high AND Weight IS very very large AND ParasiteBite IS
no AND Break IS no AND Depression IS no AND Twist IS no AND Crack IS no AND Cauliflower IS no AND Thickness
IS normal THEN 3L-No1 = high
IF Firm IS high AND Length IS normal AND ProperColour IS high AND Weight IS very very large AND ParasiteBite IS
no AND Break IS no AND Depression IS no AND Twist IS no AND Crack IS no AND Cauliflower IS low AND Thickness
IS normal THEN 3L-No1 = high
IF Firm IS low OR ProperColour IS low OR ParasiteBite IS low OR Break IS low OR Depression IS low OR Twist IS
medium OR Crack IS low OR Cauliflower IS low AND Weight IS very very large THEN 3L-No1 = low
IF Firm IS no OR ProperColour IS no OR ParasiteBite IS high OR Break IS high OR Depression IS high OR Twist IS
high OR Crack IS high OR Cauliflower IS high AND Weight IS very very large THEN 3L-No1 = no

IF Firm IS high AND Length IS small AND Break IS high THEN No2 = high
IF Firm IS high AND Length IS normal AND Break IS high THEN No2 = high
IF Firm IS high AND Length IS small AND Break IS average THEN No2 = low
IF Firm IS high AND Length IS normal AND Break IS average THEN No2 = low
IF Break IS average THEN No2 = no
IF Firm IS high AND Length IS normal AND ParasiteBite IS high THEN No2-H = high
IF Firm IS average AND Length IS normal AND ParasiteBite IS high THEN No2-H = high
IF Firm IS high AND Length IS normal AND ParasiteBite IS average THEN No2-H = low
IF Firm IS high AND Length IS normal AND Depression IS high THEN No2-H = high
IF Firm IS average AND Length IS normal AND Depression IS high THEN No2-H = high
IF Firm IS high AND Length IS normal AND Depression IS average THEN No2-H = tow
IF Firm IS high AND Length IS norma/ AND Twist IS high THEN No2-H = high
IF Firm IS average AND Length IS normal AND Twist IS n/g/i THEN No2-H = high
IF Firm IS high AND Length IS normal AND Twist IS medium THEN No2-H = h/g/i
IF Firm IS high AND Length IS normal AND Twist IS low THEN No2-H = no
IF ParasiteBite IS tow AND Depression IS low AND Twist IS low THEN No2-H = no
IF Firm IS high AND Crack IS /i/g7i THEN No2-C = high
IF Firm IS high AND Crack IS average THEN No2-C = low
IF Firm IS h/gn AND Cauliflower IS high THEN No2-C = high
IF Firm IS high AND Cauliflower IS average THEN No2-C = tow
IF Crack IS average AND Cauliflower IS average THEN No2-C = low
IF Crack IS low AND Cauliflower IS tow THEN No2-C = no
IF Firm IS low THEN Unclassified = high
IF Firm IS average THEN Unclassified = tow
IF Length IS very small THEN Unclassified = high
IF Length IS very very small THEN Unclassified = high
IF Length IS very small AND Weight IS small THEN Unclassified = high
IF Length IS very very small AND Weight IS very small THEN Unclassified = h/g/i
IF Length IS small AND Weight IS small THEN Unclassified = low

Figure 6.16: Rules used to identify herring roe grades from primary features.
For clarity, a number a rules used for classifying Grade 1 roe
have been removed.

6.2 Herring Roe Grading 98

Once the roe have been classified, a decision is made about which bin it should be ejected into.

The classifications are segregated using the same apparatus used by the prototype grading system.

B i n 1 accepts Grade 1 Large, 2L, and 3L; B in 2 accepts Grade 1 Medium; B i n 3 accepts Grade 1

Small; B i n 4 accepts Grade 2; Bin 5 accepts Grade 2-H; B i n 6 accepts Grade 2-C; and B i n 7 accepts

all other grades and unclassified roe which fall off the end of the conveyor. Figure 6.17 presents the

rules which are used to infer this decision. The fuzzy membership functions associated with these

rules are shown in Figure 6.18.

IF Grade1-3L IS high THEN Decision = bin1
IF Grade1-2L IS high THEN Decision = bin1
IF Gradel-Large IS high THEN Decision = bin1
IF Gradel-Medium IS high THEN Decision = bin2
IF Gradel-Small IS high THEN Decision = bin3
IF Gradel-Pencil IS Ai/gftTHEN Decision = bin7
IF Grade2 IS high THEN Decision = bin4
IF Grade2 IS low THEN Decision = bin4
IF Grade2-C IS high THEN Decision = bin5
IF Grade2-C IS low THEN Decision = bin5
IF Grade2-H IS high THEN Decision = bin6
IF Grade2-H IS low THEN Decision = bin6
IF Unclassified IS high THEN Decision = bin7
IF Unclassified IS low THEN Decision = bin7

Figure 6.17: Rules used to determine decisions about how roe should be
handled based on object classifications.

6.2.6 Summary

The herring roe grading application is considerably more complex than the previous example, metal

can inspection. The non-uniform nature of the product and subjective classification criteria sig­

nificantly increase the complexity of the object model. Despite this, the E L S A approach serves to

guide the user through the development process in a systematic manner. This ensures that the final

design satisfies the functional requirements, but may also be augmented or modified with a minimal

amount of disturbance to the system as a whole.

It is interesting to note that despite the increased number of classifications and features, the

required number of physical sensors is less than half of what was required by the previous example.

By building the E L S hierarchy from the object model, the redundancy in sensing requirements

becomes obvious. Again, the system would be implemented following the procedure outlined in

6.3 Discussion 99

VERY VERY

LENGTH (mm)

(a) Weight (b) Length

DEGREE
OF TWIST

(c) Thickness (d) Degree of twist

CONFIDENCE
IN OBJECT

CLASSIFICATION

(e) Proper colour, firm, break, cauliflower, (f) Confidence in classification
crack, depression, parasite bite

Figure 6.18: Membership functions used for classification of herring roe
grades.

Section 5.5.

6.3 Discussion

Through these applications, the advantages of the E L S A approach to system design are demon­

strated. By formalizing the design process, a system can be designed to meet the specified func­

tional requirements in a systematic and comprehensible way. Each stage involves the extraction and

utilization of the user's (e.g. a quality assurance engineer's) expert knowledge about the process and

desired outcomes. Specification of the requirements leads to the identification of primary features

6.3 Discussion 100

and object classifications. These are expanded into subfeatures. The features themselves determine

the algorithms (encapsulated logical sensors) and physical sensors that are required by the system.

Decisions are inferred directly from the object classifications.

Perhaps the most challenging aspect of E L S A is the construction of logical sensors that are

not available from the library. This requires some knowledge of signal processing and the internal

workings of the E L S model that the industrial user may not possess. In these instances, the user

would be advised to define the specification of the sensor using their expert knowledge and then

contract the construction of the sensor to a technical expert. The specification process effectively

separates the expert domain knowledge from the technical programming knowledge required to

develop an E L S . Once such sensors are defined (and consequently available from the library), the

construction, modification, and comprehension of the ELSA-based system is more tractable for a

non-technical domain expert.

The object models and sensor hierarchies presented herein should not be considered as the

solution. The selection of different features and sensor combinations may yield systems with similar

or better performance. Systems may be designed to take advantage of certain equipment or in-house

expertise. The design of the herring roe system, for example, is in part dependent on the familiarity

with, and the availability of, machine vision systems and software in the I A L .

Nor are these systems static. Should needs dictate, the object model and/or sensor hierarchies

may be modified to meet new conditions. For example, should a cost-effective system be developed

for physically measuring the skein weight, this may replace the vision-based weight estimation E L S

to result in an E L S hierarchy for weight much like that presented for can inspection.

The structure of the architecture ensures that should additional capabilities be desired (e.g. for

can inspection: the inspection of stamp codes, l id ring profiles, or detection of pin holes in the

can body), they may be added without affecting the existing components. The object model is

expanded to include the additional features and/or classifications. Any required logical sensors are

added to the E L S hierarchy. This is accomplished without disturbing the remainder of the system.

Chapter 7

Concluding Remarks

This work presented a methodology for the design and construction of multisensor integration

systems for industrial applications, with particular emphasis on non-uniform product inspection

and grading. Specifically, the following research objectives were considered:

1. To specify a data representation that can represent non-uniform objects in a simple, flexible,

and understandable way.

2. To design the data representation such that it can be used to guide the construction of the

system.

3. To provide a modular and scalable architecture for intelligent industrial sensing applications.

4. To specify an encapsulation of physical devices and processing algorithms.

5. To provide a robust exception handling mechanism to ensure the reliability of the system.

6. To ensure that the architecture is applicable to a broad range of industrial applications.

Each of these objectives was considered and developed to some degree. As specified, the E L S A

object model provides both a guide for system construction and represents deviations of non-uniform

objects. A n Extended Logical Sensor model encapsulates sensing devices and algorithms. The

E L S and the object model together provide a basis for a modular and scalable architecture that

is particularly applicable to a variety of industrial grading applications. A n exception handling

101

7.1 Summary and Conclusions 102

mechanism has been proposed. However, a substantial amount of work still remains to develop a

complete industrial version of E L S A .

7.1 Summary and Conclusions

E L S A is a multisensor integration architecture for industrial tasks. It is also, based upon the object

model, a methodology for the construction of such a system. E L S A was developed to provide an

organized approach to the development of industrial-based sensor systems. It addresses the need

for scalable, modular, and structured sensor systems, replacing current ad hoc approaches. The

construction methodology enables domain experts, who lack signal processing knowledge, to design

and understand a sensor system for their particular application.

To achieve this, E L S A is comprised of a number of different components. Extended Logical Sen­

sors are presented as an improvement to the existing LS and ILS specifications. This improvement

is realized by strongly encapsulating the E L S . The ELS may be polled by other sensors to deter­

mine its capabilities and request changes in the performance of the E L S , but its internal operation

is hidden. Replacement sensors need only provide the same form of output. Other components,

such as the Exception Handling Mechanism and the Integration Controller, serve to enhance the

robustness and functionality of the architecture.

The object model used by E L S A is particularly suited to the representation of non-uniform

products, or any object for which classification is desired. Objects are described in terms of their

primary or distinguishing features. Primary features may be a composite of subfeatures. Objects

are classified by using fuzzy membership functions to express how the primary features combine

for each classification. The organization of the sensor system and the definition of the rulebase is

driven by the object model.

Logical sensors are chosen to provide each of the features defined by the object model; this in turn

determines what physical sensors are required by the system. The classification layer of the object

model directly specifies how primary features are combined to determine object classifications. To

demonstrate these concepts, E L S A was applied to the problems of metal can inspection and herring

roe grading.

The design and implementation of an E L S requires signal processing and programming knowl-

7.2 Recommendations 103

edge that an industrial user may not possess. Although this limits the ability of such a user to

fully construct a system, it may be completely specified. This is because E L S A effectively separates

the domain knowledge from the detailed sensor knowledge. If necessary, a technical expert may be

consulted to develop the required ELS(s). Once a library of standard logical sensors is established

for a set of applications, a system may be constructed without an in-depth understanding of the

internal workings of each E L S . This makes E L S A particularly suitable for industrial users who wish

to construct, modify, and maintain industrial multisensor systems.

7.2 Recommendations

This thesis provides the groundwork for a much larger and more complete system. It is now necessary

to further develop the ideas presented herein — completing the implementation of what has been

specified, and extending this specification to include new capabilities.

A library of Extended Logical Sensors should be constructed that is suitable for a variety of

inspection and grading tasks. This will assist in the development of ELSA-based systems for appli­

cations such as the grading of herring roe, potatoes, blueberries, and other produce.

There are many extensions that could increase the user friendliness and automation of the system

specification and construction. These would serve to further remove the industrial user from the

technical details of system design, promoting better understanding and allowing the user to focus

on the process.

Most of the components of E L S A have been designed with the automation of the system con­

struction in mind. This includes the object model development, rulebase generation, logical/physical

sensor selection, the Integration Controller, Validation and Diagnostics modules (exception han­

dling) . This should enable a variety of extensions to be implemented with ease.

One such extension is the implementation of an expert system that could be used to further

guide the selection of physical sensors and ELSs. This could work towards an optimal selection

of sensor components based on user-defined constraints such as system cost, speed, accuracy, etc.

This would be particularly useful for ensuring that the designed system can operate at line speeds

and for selecting appropriate sensor combinations to provide robustness through redundancy. The

expert system could also serve to ensure the completeness and uniqueness of a particular system

7.2 Recommendations 104

configuration.

The membership functions contained in the rulebase could be automatically generated from

the object model. For unquantifiable features, use of a confidence membership would be used; for

others, the user would be prompted for the universe of discourse (range of expected values) and

linguistic variables describing classifications over the universe. Once generated, the system could

automatically tune and refine the membership functions for optimum performance. This would

reduce the need for users to have an in-depth understanding of fuzzy logic. Expert users should

be still able to by-pass the system, enabling direct definition and fine-tuning of the membership

functions.

For very complex objects, it may be useful to allow a variation of the object model presented

herein. The approach would be similar except that the object model would be hierarchical, further

increasing the compactness and efficiency of the feature-based object model. It would work by

placing defective classifications on the first level and 'good' classifications on another. If the object

does not present any of the features that would classify it as defective (each classification represented

by a minimal set of features), then the object could then be classified as good. Subclassification of

the good category, based on features such as size, weight, and colour could then proceed without

the need to determine if a defect is present. The inference mechanism could also be further refined

by allowing rules to be weighted. This would allow rules, and the corresponding features, to be

given different emphasis.

Further work is required to extend E L S A to control applications. One approach to this may be

the concept of a Logical Actuator (LA). Control decisions made by the Inference Engine would be

passed to a L A hierarchy where directives are converted into actions. The logical actuators thus serve

as an interface between the high-level decision making system and the low-level process machinery.

In this sense, a L A is an analogue to a LS. A similar idea, a combined Logical Sensor/Actuator

(LSA) presented by Budenske and Gini [78]. By encapsulating the physical actuators, drivers, and

planning algorithms, they may be altered without affecting the Inference Engine.

This concept could be extended by combining the logical sensor and logical actuator into a

common model — a logical device. The use of intelligent software agents could further encapsulate

this concept. As an extension of the object-oriented nature of the E L S and logical actuator hier-

7.2 Recommendations 105

archies, agents may further increase the openness and flexibility of the system. Through the use

of software agents, each sensor, algorithm, controller, actuator, etc. becomes a separate module

which may interact with other modules through a specified protocol. Dependencies on particular

hardware configurations and software algorithms are further reduced, if not eliminated. Of course,

any serious effort to implement better control will also have to consider the problems and issues

that arise when dealing with real-time control systems.

References

[1] E . R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Signal Processing and its
Applications, San Diego, C A : Academic Press, 2nd ed., 1997.

[2] D. A . Beatty, "2D contour shape analysis for automated herring roe quality grading by
computer vision," Master's thesis, Department of Computer Science, University of British
Columbia, Vancouver, B . C . V 6 T 1Z4, Dec. 1993.

[3] B . D. Al l in , "Analysis of the industrial automation of a food processing quality assurance work-
cell," Master's thesis, Department of Mechanical Engineering, University of British Columbia,
Vancouver, B . C . V 6 T 1Z4, Apr. 1998.

[4] S. Gunasekaran, "Computer vision technology for food quality assurance," Trends in Food
Science & Technology, vol. 7, pp. 245-256, 1996.

[5] J . M . Fildes and A . Cinar, "Sensor fusion and intelligent control for food processing," in Food
Processing Automation IP. Proceedings of the 1992 Conference, (Lexington, K Y) , pp. 65-72,
F P E I , May 4-6 1992.

[6] R. C. Luo and M . G. Kay, "Data fusion and sensor integration: State-of-the-art 1990s," in
Data Fusion in Robotics and Machine Intelligence (M. A . Abidi and R. C. Gonzalez, eds.),
pp. 7-135, San Diego, C A : Academic Press, 1992.

[7] R. A . Brooks, " A layered intelligent control system for a mobile robot," in The Third Inter­
national Symposium on Robotics Research (O. D. Faugeras and G. Giralt, eds.), (Gouvieux,
France), pp. 365-372, 1986.

[8] R. R. Murphy and R. C. Arkin, "SFX: an architecture for action-oriented sensor fusion," in
Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 2, (Raleigh, NC) , pp. 1079-1086, I E E E / R S J , July 7-10 1992.

[9] R. R. Murphy, "Biological and cognitive foundations of intelligent sensor fusion," IEEE Trans­
actions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 26, pp. 42-51,
Jan. 1996.

[10] T. G. R. Bower, "The evolution of sensory systems," in Perception: Essays in Honor of James
J. Gibson (R. B . MacLeod and H . L . Pick Jr., eds.), pp. 141-153, Ithaca, N Y : Cornell University
Press, 1974.

[11] S. Lee, "Sensor fusion and planning with perception-action network," in Proceedings of the
1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for
Intelligent Systems, (Washington, D . C) , pp. 687-696, I E E E / S I C E / R S J , Dec. 8-11 1996.

106

REFERENCES 107

[12] S. Lee and S. Ro, "Uncertainty self-management with perception net based geometric data
fusion," in Proceedings of the 1997 IEEE International Conference on Robotics and Automation,
(Albuquerque, N M) , pp. 2075-2081, I E E E , 1997.

[13] B . A . Draper, A . R. Hanson, S. Buluswar, and E. M . Riseman, "Information acquisition and
fusion in the mobile perception laboratory," in Proceedings of the SPIE - Signal Processing,
Sensor Fusion, and Target Recognition VI, vol. 2059, pp. 175-187, SPIE, 1993.

[14] S. A . Shafer, A . Stentz, and C. C. Thorpe, " A n architecture for sensor fusion in a mobile
robot," in Proceedings of the IEEE International Conference on Robotics and Automation,
(San Francisco, C A) , pp. 2002-2011, I E E E , 1986.

[15] S. S. Iyengar, D. N . Jayasimha, and D. S. Nadig, "A versatile architecture for the distributed
sensor integration problem," IEEE Transactions on Computers, vol. 43, pp. 175-185, Feb. 1994.

[16] S. S. Iyengar, L . Prasad, and M . Min , Advances in Distributed Sensor Technology. Environ­
mental and Intelligent Manufacturing Systems Series, Upper Saddle River, N J : Prentice Hall
P T R , 1995.

[17] L . A . Klein, Sensor and Data Fusion Concepts and Applications, vol. T T 14 of Tutorial Texts
in Optical Engineering. Bellingham, Washington: SPIE Optical Engineering Press, 1993.

[18] T. Queeney and E . Woods, "A generic architecture for real-time multisensor fusion tracking
algorithm development and evaluation," in Proceedings of the SPIE - Signal Processing, Sensor
Fusion, and Target Recognition VII, vol. 2355, pp. 33-42, SPIE, 1994.

[19] I. Alarcon, P. Rodriguez-Marin, L. B . Almeida, R. Sanz, L . Fontaine, P. Gomez, X . Alaman,
P. Nordin, H . Bejder, and E . de Pablo, "Heterogeneous integration architecture for intelligent
control systems," Intelligent Systems Engineering Journal, vol. 3, pp. 138-152, Autumn 1994.

[20] T. C. Henderson and E . Shilcrat, "Logical sensor systems," Journal of Robotic Systems, vol. 1,
no. 2, pp. 169-193, 1984.

[21] T. C. Henderson, C. Hansen, and B. Bhanu, "The specification of distributed sensing and
control," Journal of Robotic Systems, vol. 2, no. 4, pp. 387-396, 1985.

[22] G. A . Weiler, F . C. A . Groen, and L. O. Hertzberger, "A sensor processing model incorporat­
ing error detection and recovery," in Traditional and Non-Traditional Robotic Sensors (T. C.
Henderson, ed.), vol. F 63, pp. 351-363, Berlin: Springer-Verlag, 1990.

[23] F . Groen, P. Antonissen, and G. Weiler, "Model based robot vision by extending the logi­
cal sensor concept," in 1993 IEEE Instrumentation and Measurement Technology Conference,
(Irvine, C A) , pp. 584-588, I E E E , 1993.

[24] M . Dekhil, T. M . Sobh, and A . A . Efros, "Commanding sensors and controlling indoor au­
tonomous mobile robots," in Proceedings of the 1996 IEEE International Conference on Control
Applications, (Dearborn, MI), pp. 199-204, I E E E , Sept. 15-18 1996.

[25] M . Dekhil and T. C. Henderson, "Instrumented sensor systems," in Proceedings of the 1996
IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelli­
gent Systems, (Washington, D.C.) , pp. 193-200, I E E E / S I C E / R S J , Dec. 8-11 1996.

REFERENCES 108

M . Dekhil and T. C. Henderson, "Instrumented sensor system - practice," Tech. Rep. U U C S -
97-014, University of Utah, Salt Lake City, U T 84112, Mar. 1997.

M . Dekhil and T. C. Henderson, "Instrumented sensor system architecture," The International
Journal of Robotics Research, vol. 17, no. 4, pp. 402-417, 1998.

R. Ohba, ed., Intelligent Sensor Technology. Chichester, England: John Wiley & Sons, 1992.

I E E E , P 1451.1 Draft Standard for a Smart Transducer Interface for Sensors and Actuators —
Network Capable Application Processor (NCAP) Information Model, D1.83 ed., Dec. 1996.

I E E E , P1451.2 Draft Standard for a Smart Transducer Interface for Sensors and Actuators —
Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet
(TEDS) Formats, D3.05 ed., Aug. 1997.

D. A . Luzuriaga, M . O. Balaban, and S. Yeralan, "Analysis of visual quality attributes of white
shrimp by machine vision," Journal of Food Science, vol. 62, no. 1, pp. 113-118, 1997.

P. Jia, M . D. Evans, and S. R. Ghate, "Catfish feature identification via computer vision,"
Transactions of the ASAE, vol. 39, pp. 1923-1931, Sep./Oct. 1996.

W . Daley, R. Carey, and C. Thompson, "Poultry grading/inspection using color imaging,"
in Proceedings of the SPIE - Machine Vision Applications in Industrial Inspection, vol. 1907,
pp. 124-132, SPIE, 1993.

J . Calpe, F . Pla, J . Monfort, P. Diaz, and J . C. Boada, "Robust low-cost vision system for
fruit grading," in Proceedings of the 1996 8th Mediterranean Electrotechnical Conference, vol. 3,
(Bari, Italy), pp. 1710-1713, I E E E , 1996.

L . X . Cao, C. W. de Silva, and R. G. Gosine, " A knowledge-based fuzzy classification system
for herring roe grading," in Proceedings of the Winter Annual Meeting on Intelligent Control
Systems, vol. DSC-48, (New York), pp. 47-56, A S M E , 1993.

A . Beatty, R. G. Gosine, and C. W. de Silva, "Recent developments in the application of
computer vision for automated herring roe assessment," in Proceedings of the IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, vol. 2, (Victoria, Canada),
pp. 698-701, I E E E , May 19-21 1993.

C. W. de Silva, L . B . Gamage, and R. G. Gosine, " A n intelligent firmness sensor for an auto­
mated herring roe grader," International Journal of Intelligent Automation and Soft Comput­
ing, vol. 1, no. 1, pp. 99-114, 1995.

E . A . Croft, C. W. de Silva, and S. Kurnianto, "Sensor technology integration in an intelligent
machine for herring roe grading," IEEE/ASME Transactions on Mechatronics, vol. 1, pp. 204-
215, Sept. 1996.

P. H . Heinemann, N . P. Pathare, and C. T. Morrow, " A n automated inspection station for
machine-vision grading of potatoes," Machine Vision and Applications, vol. 9, pp. 14-19, 1996.

J . H . Dan, D. M . Yoon, and M . K . Kang, "Features for automatic surface inspection," in
Proceedings of the SPIE - Machine Vision Applications in Industrial Inspection, vol. 1907,
pp. 114-123, SPIE, 1993.

REFERENCES 109

G. Brown, P. Forte, R. Malyan, and P. Barnwell, "Object oriented recognition for automatic
inspection," in Proceedings of the SPIE - Machine Vision Applications in Industrial Inspection
II, vol. 2183, (San Jose, C A) , pp. 68-80, SPIE, 1994.

M . A . O'Dor, "Identification of salmon can-filling defects using machine vision," Master's thesis,
Department of Mechanical Engineering, University of British Columbia, Vancouver, B . C . V 6 T
1Z4, Mar. 1998.

Dip ix Technologies Inc., "QualiVision product information," 1998. h t tp : / /www.d ip ix . com-
/ v i s s y s / v i s s s e t . h t m .

"Flexible systems for trimming and portioning," World Fishing, pp. 13-14, June 1997.

E . A . Croft, "Personal communication and plant tour of Lullebelle Foods Ltd. ," June 1996.

Key Technology, Inc., "Product catalog," 1995.

A N S I / A S M E , Measurement Uncertainty, Part I, P T C 19.1 ed., 1986.

H . W . Coleman and W. G. Steele Jr., Experimentation and Uncertainty Analysis for Engineers.
New York: John Wiley & Sons, 1989.

A . J . Wheeler and A . R. Ganji, Introduction to Engineering Experimentation. Englewood Cliffs,
N J : Prentice Hall, 1996.

P. Suetens, P. Fua, and A . J . Hanson, "Computational strategies for object recognition," ACM
Computing Surveys, vol. 24, pp. 5-61, Mar. 1992.

S. C. Zhu and A . L . Yuille, "Forms: a flexible object recognition and modelling system," in
Proceedings of the 5th IEEE International Conference on Computer Vision, (Cambridge, M A) ,
pp. 465-472, I E E E , 1995.

L . Stark, K . Bowyer, A . Hoover, and D. B . Goldgof, "Recognizing object function through
reasoning about partial shape descriptions and dynamic physical properties," Proceedings of
the IEEE, vol. 84, pp. 1640-1656, Nov. 1996.

A . Z. Kouzani, F . He, and K . Sammut, "Constructing a fuzzy grammar for syntactic face
detection," in Proceedings of the 1996 IEEE International Conference on Systems, Man, and
Cybernetics, vol. 2, (Beijing, China), pp. 1156-1161, I E E E , 1996.

Z. Luo and C. -H. Wu, "A unit decomposition technique using fuzzy logic for real-time handwrit­
ten character recognition," IEEE Transactions on Industrial Electronics, vol. 44, pp. 840-847,
Dec. 1997.

H . - M . Lee and C.-W. Huang, "Fuzzy feature extraction on handwritten Chinese characters,"
in Proceedings of the 1994 IEEE International Conference on Fuzzy Systems, vol. 3, (Orlando,
F L) , pp. 1809-1814, I E E E , 1994.

I. Biederman, "Recognition-by-components: A theory of human image understanding," Psy­
chological Review, vol. 94, no. 2, pp. 115-147, 1987.

P. Havaldar, G. Medioni, and F. Stein, "Perceptual grouping for generic recognition," Interna­
tional Journal of Computer Vision, vol. 20, no. 1/2, pp. 59-80, 1996.

http://www.dipix.com-

REFERENCES 110

[58] F . Tomita and S. Tsuji, Computer Analysis of Visual Textures. Norwell, Massachusetts: Kluwer
Academic Publishers, 1990.

[59] G. K . Lang and P. Seitz, "Robust classification of arbitrary object classes based on hierarchical
spatial feature-matching," Machine Vision and Applications, vol. 10, pp. 123-135, 1997.

[60] D. Cho and Y . J . Bae, "Fuzzy-set based feature extraction for objects of various shapes and
appearances," in Proceedings of the 1996 IEEE International Conference on Image Processing,
vol. 2, (Los Alamitos, C A) , pp. 983-986, I E E E , 1996.

[61] L . A . Zadeh, "Fuzzy logic = computing with words," IEEE Transactions on Fuzzy Systems,
vol. 4, pp. 103-111, May 1996.

[62] J . H . Connell and M . Brady, "Generating and generalizing models of visual objects," Artificial
Intelligence, vol. 31, pp. 159-183, 1987.

[63] L . A . Zadeh, "Outline of a new approach to the analysis of complex systems and decision
processes," IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, pp. 28-44, Jan.
1973.

[64] C. W. de Silva, Intelligent Control: Fuzzy Logic Applications. Boca Raton, Florida: C R C
Press, 1995.

[65] J . Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Anal­
ysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.

[66] A . H . Baker, The Windows NT Device Driver Book: A Guide for Programmers. Upper Saddle
River, N J : Prentice Hall P T R , 1997.

[67] G. T. Chavez and R. R. Murphy, "Exception handling for sensor fusion," in Proceedings of the
SPIE - Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 2059, pp. 142-153,
SPIE, 1993.

[68] R. R. Murphy and D. Hershberger, "Classifying and recovering from sensing failures in au­
tonomous mobile robots," in Proceedings of the Thirteenth National Conference on Artificial
Intelligence: AAAI-96, vol. 2, (Portland, Oregon), pp. 922-929, A A A I / I A A I , Aug. 1996.

[69] R. P. Lippmann, "An introduction to computing with neural nets," IEEE ASSP Magazine,
pp. 4-22, 1987.

[70] S.-R. Lay and J . -N. Hwang, "Robust construction of radial basis function networks for clas­
sification," in Proceedings of the IEEE International Conference on Neural Networks, (San
Francisco, C A) , pp. 2037-2044, I E E E , Mar. 28-Apr. 1, 1993.

[71] Y . - F . Wong, "How gaussian radial basis functions work," in Proceedings of the IEEE Interna­
tional Joint Conference on Neural Networks, pp. 302-309, I E E E , 1991.

[72] D. R. Hush and B. G. Home, "Progress in supervised neural networks," IEEE Signal Processing
Magazine, pp. 8-39, Jan. 1993.

[73] J . E . Shigley and C. R. Mischke, Mechanical Engineering Design. New York: McGraw-Hil l ,
5th ed., 1989.

REFERENCES 111

[74] G. E . Dieter, Engineering Design: A Materials and Processing Approach. New York: McGraw-
Hi l l , 2nd ed., 1991.

[75] Fisheries and Oceans — Canada. Inspection Services, Metal Can Defects: Identification and
Classification, Jan. 1994.

[76] M . - F . Lee, C. W. de Silva, E . A . Croft, and H . J . Park, "Automated screening of metal
can defects using machine vision," in Proceedings of the Second International Symposium on
Intelligent Automation and Control, (Anchorage, Alaska), pp. 175.1-175.6, W A C , May 9-14
1998.

[77] S. Kurnianto, "Design, development, and integration of an automated herring roe grading sys­
tem," Master's thesis, Department of Mechanical Engineering, University of British Columbia,
Vancouver, B . C . V 6 T 1Z4, June 1997.

[78] J . Budenske and M . Gini , "Sensor explication: Knowledge-based robotic plan execution through
logical objects," IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,
vol. 27, pp. 611-625, Aug. 1997.

Appendix A

Object Model Class

A . l Introduction

This chapter categorizes and describes the object model classes which are used to represent objects

within E L S A .

A.2 Class Summary

This section briefly summarizes the object model classes. For each derived class, the inheritance

tree is provided in the corresponding section

CNode

Base class for nodes in the object model structure.

CObjectNode

Derived class which represents object nodes.

CCIassificationNode

Derived class which represents classification nodes.

CObjectProperties

Class derived from CElement to allow list representation of object properties.

CPhysicalProperties

Derived class for physical object properties.

CRelationalProperties

Derived class for relational object properties.

112

A. 3 The Classes 113

A.3 The Classes

class CNode

A CNode object represents a generic node of the object model hierarchy. It provides basic func­

tionality: a name and links to child node(s). To allow an arbitrary number of child nodes, links are

maintained in a CList structure. CNode serves as a base class for derivation of more specialized

node types.

Construction/Destruction — Public Members

CNode Constructs a CNode object.

~CNode Destroys a CNode object.

Attributes — Public Members

GetName

GetNumChildren

Operations — Public Members

AddChild

DeleteChild

Member Functions

CNode: .CNode

CNode(char * strName = NULL);

strName Name of the node.

Constructs a CNode object.

Returns the name of the node.

Returns the number of child nodes.

Adds a pointer to a child node.

Removes a child node.

A.3 The Classes 114

CNode: :~CNode

virtual ~ C N o d e ();

Destroys a C N o d e object.

CNode::GetName

char * G e t N a m e () const;

Returns the name of the C N o d e object.

CNode: :GetNumChildren

int G e t N u m C h i l d r e n () const;

Returns the number of children this C N o d e object is the parent for.

CNode::AddChild

virtual A d d C h i l d (C N o d e * pNode);

Adds a child node to the C N o d e object. This function is declared as a pure virtual function.

It must be redefined by derived classes.

CNode::DeleteChild

virtual D e l e t e C h i l d (C N o d e * pNode);

Removes the pointer to the specified child node from the C N o d e object. This function is

declared as a pure virtual function. It must be redefined by derived classes.

A.3 The Classes 115

class CObjectNode : public CNode

A CObjectNode object represents a specialization of the a CN­

ode object. CObjectNodes are used to represent the objects and

features which comprise the feature layer of the object model.

Construction/Destruction — Public Members

CNode

CObjectNode

CObjectNode

-CObjectNode

Attributes — Public Members

IsFree

GetObjectType

GetProperties

Operations— Public Members

AddChild

DeleteChild

AddProperty

DeleteProperty

Constructs a CObjectNode object.

Destroys a CObjectNode object.

Returns nonzero if the node is marked by a free tag.

Returns the type of object represented by node.

Returns a pointer to the list of object properties.

Adds a pointer to a child node.

Removes a child node.

Adds a physical or relational property to node.

Removes a physical or relational property from node.

Member Functions

CObjectNode ::CObjectNode

CObjectNode(char * strName, ObjectType eType, bool bFree = FALSE);

strName Name of the object node.

eType The type of object that this node represents.

A.3 The Classes 116

bFree Nonzero if the object should be marked by a free node tag.

Constructs a CObjectNode object. eType is an enumeration which represents the object

types that are recognized by the system. These types are outlined in Table A . l . Additional types

may be added by expanding the enumeration.

Table A . l : Enumeration of object types.

Value Meaning

0 Generic
1 Linear dimension
2 Position
3 Distance
4 Line
5 Corner
6 Boundary curve
7 Boundary feature
8 Area
9 Conic
10 Regular polygon
11 Irregular polygon
12 Character
13 Volume

14 Colour
15 3D surface
16 Regular polyhedron
17 Irregular polyhedron
18 Surface feature
19 Texture
20 Force
21 Pressure
22 Sound
23 Odour
24 Mass
25 Speed

26 Temperature
27-255 Reserved for future expansion

A.3 The Classes 117

CObjectNode::-CObjectNode

virtual ~CObjectNode();

Destroys a CObjectNode object.

CObjectNode: :lsFree()

bool IsFree();

Returns T R U E if this CObjectNode represents a free node of the object model.

CObjectNode ::GetObjectType

ObjectType GetObjectType() const;

Returns an enumerated value representing the type of object that this CObjectNode repre­

sents. The types recognized by the system are outlined in Table A . l .

CObjectNode::GetObjectProperties

ObjectType GetObjectProperties() const;

Returns a pointer to a CList containing CPhysicalProperties and CRelationalProperties

for the CObjectNode

CObjectNode::AddChild

AddChild(CObjectNode * pNode);

pNode Pointer to the child node to be added.

Adds a pointer to a child node from the CObjectNode object.

CObjectNode::DeleteChild

DeleteChild(CObjectNode * pNode);

pNode Pointer to the child node to be removed.

A.3 The Classes 118

Removes the pointer to the specified child node from the CObjectNode object.

CObjectNode: :AddProperty

AddProperty(CObjectProperty * pProperty);

pProperty Pointer to the property to be added.

Adds a physical or relational property to the list of object properties maintained by the COb­

jectNode.

CObjectNode::DeleteProperty

DeleteProperty(CObjectProperty * pProperty);

pProperty Pointer to the property to be removed.

Deletes a physical or relational property to the from of object properties maintained by the

CObjectNode.

A.3 The Classes 119

CNode

CCIassificationNode

class CCIassificationNode : public CNode

A CCIassificationNode object represents a specialization of the a

CNode object. CClassificationNodes are used to represent the

classifications of an object. These correspond to the classification

layer of the object model.

Data Members — Public Members

CFuzzyLink Represents a pointer to a CObjectNode with a corresponding

fuzzy descriptor of type C Fuzzy Variable.*

Construction/Destruction — Public Members

CCIassificationNode Constructs a CCIassificationNode object.

-CCIassificationNode Destroys a CCIassificationNode object.

Operations — Public Members

AddChild Adds a pointer to a child node representing a primary feature

for classification.

DeleteChild Removes a child node.

Member Functions

CCIassificationNode::CCIassificationNode

CClassificationNode(char * strName);

strName Name of the classification node.

Creates a CClassifiationNode object.

"The CFuzzyVariable class is described in Appendix C

A.3 The Classes 120

CCIassificationNode::~CCIassificationNode

virtual ~CClassificationNode();

Destroys a CCIassificationNode object.

CCIassificationNode::AddChild

AddChild(CObjectNode * pNode, CFuzzyValue fvDescriptor);

pNode Pointer to object node to add as child.

fvDescriptor Fuzzy descriptor which defines how the feature represented by the object node

relates to the classification.

Adds a pointer to a child node from the CCIassificationNode object. This pointer and the

corresponding fuzzy descriptor are maintained within a list of CFuzzyLink objects.

CCIassificationNode::DeleteChild

DeleteChild(CObjectNode * pNode);

pNode Pointer to the object node to remove.

Removes the pointer to the specified child node from the CCIassificationNode object.

Data Members

CCIassificationNode::CFuzzyl_ink

This structure represents the combination of a pointer to a CObjectNode with a corresponding

fuzzy descriptor of type CFuzzy Value.

A.3 The Classes 121

CEIement

class CObjectProperties : public CEIement

A CObjectProperties object represents properties of an object in

a generic manner. This class is derived from CEIement to enable

object properties to be included in a generic list. CObjectProp­

erties serves as a base class for derivation of more specialized property types.

Construction/Destruction — Public Members

CObjectProperties Constructs a CObjectProperties object.

-CObjectProperties Destroys a CObjectProperties object.

Member Functions

CObjectProperties "CObjectProperties

CObjectProperties();

CObjectProperties(char * strName);

strName Name of the property element.

Creates a CObjectPropreties object.

CObjectProperties

CObjectProperties::~CObjectProperties

virtual ~CObjectProperties();

Destroys a CObjectProperties object.

A.3 The Classes 1 2 2

class CPhysicalProperties : public CObjectProperties

A CPhysicalProperties object represents a specialization of
CEIement

CObjectProperties

CPhysicalProperties

the CObjectProperties object. CPhysicalProperties ob­

jects are used to represent physical properties of an object.

These include shape, mass, position, colour, etc.

Construction/Destruction — Public Members

CPhysicalProperties Constructs a CPhysicalProperties object.

-CPhysicalProperties Destroys a CPhysicalProperties object.

Attributes — Public Members

GetValue If applicable, returns a value representing the property.

GetType Returns the type of property being represented.

Operations — Public Members

SetValue Sets the value of the property.

SetType Sets the type of property being represented.

Member Functions

CPhysicalProperties::CPhysicalProperties

CPhysicalProperties();

CPhysicalProperties(char * strName);

strName Name of the property element.

Creates a CPhysicalProperties object.

A.3 The Classes 123

CPhysicalProperties::~CPhysicalProperties

virtual ~CPhysicalProperties();

Destroys a CPhysicalProperties object.

CPhysical Properties: :GetValue

int Get Value () const;

double GetValue();

Returns the value associated with the physical property, if one exists.

CPhysicalProperties: :GetType

PropertyType GetType() const;

Returns the type of physical property represented as an enumeration. These types are outlined

in Table A.2. Additional types may be added by expanding the enumeration.

CPhysicalProperties: :SetValue

SetValue(int iVal);

SetValue(double dVal);

Sets the value associated with the physical property, if one exists.

CPhysicalProperties: :SetType

SetType(PropertyType eType);

. eType The type of property that is represented by CPhysicalProperties object.

Sets the type of physical property that is represented by the CPhysicalProperties object.

Available types are listed in Table A.2

Table A.2: Enumeration of property types.

Value Meaning

0 Generic
1 Length
2 Width
3 Height
4 Position
5 Angle
6 Area
7 Volume
8 Colour
9 Mass
10 Texture
11 Temperature
12 Symmetry

13 Adjacency
14 Relative position
15 Relative orientation
16 Tangent
17-255 Reserved for future expansion

A.3 The Classes 125

class CRelationalProperties : public CObjectProperties

A CRelationalProperties object represents a specialization

of the CObjectProperties object. CRelationalProperties

objects are used to represent properties of an object in rela­

tion to another. These include symmetry, adjacency, relative

position, etc.

CEIement

CObjectProperties

CRelationalProperties

Construction/Destruction— Public Members

CRelationalProperties Constructs a CRelationalProperties object.

-CRelationalProperties Destroys a CRelationalProperties object.

Attributes — Public Members

To

GetValue

GetType

Returns the object that is related to the current object by the

relational properties.

If applicable, returns a value representing the property.

Returns the type of property being represented.

Operations — Public Members

SetRelation

SetValue

SetType

Declares the object that is related to the current object by the

relational properties.

Sets the value of the property.

Sets the type of property being represented.

A.3 The Classes 126

Member Functions

CRelationalProperties::CRelationalProperties

CRelationalProperties();

CRelationalProperties(char * strName);

strName Name of the property element.

Creates a CRelationalProperties object.

CRelationalProperties::~CRelationalProperties

virtual ~CRelationalProperties();

Destroys a CRelationalProperties object.

CRelationalProperties: :To

CObjectNode * To() const;

Returns the object that is related to the current object by the relational properties.

CRelationalProperties: :GetValue

int Get Value () const;

double Get Value ();

Returns the value associated with the relational property, if one exists.

CRelationalProperties: :GetType

PropertyType GetType() const;

Returns the type of relational property represented as an enumeration. These types are outlined

in Table A.2. Additional types may be added by expanding the enumeration.

A.3 The Classes 127

CRelationalProperties::SetRelation

SetRelation(CObjectNode * pObject);

pObject Address of the object that this property is relative to.

Defines the object that is related to the current object by the relational properties.

CRelationalProperties::SetValue

SetValue(int iVal);

SetValue(double dVal);

Sets the value associated with the relational property, if one exists.

CRelationalProperties::SetType

SetType(PropertyType eType);

eType The type of property that is represented by CRelationalProperties object.

Sets the type of relational property that is represented by the CRelationalProperties object.

Available types are listed in Table A.2

Appendix B

Extended Logical Sensor Class

B . l Introduction

This chapter outlines and describes the class that serves as the basis for all Extended Logical Sensor

(ELS) implementations. This is an abstract base class; derived classes must provide much of the

functionality of the E L S . The purpose of this class then is to provide a common structure from

which logical sensors are implemented. This ensures that ELSs can interact with one another.

B.2 The Class

class CELSBase

A CELSBase object is a base class. From this object, specialized E L S objects may be derived.

The derived classes must then provide the complete implementation of the E L S . Thus, this class

serves as a template for the construction of E L S objects for specific purposes.

Construction/Destruction — Public Members

CELSBase Constructs a CELSBase object.

-CELSBase Destroys a CELSBase object.

128

B.2 The Class 129

Attributes — Protected Members

GetName Returns name of ELS .

GetCOV Returns the format of the C O V .

GetFu notion Returns a description of E L S functionality.

GetDeps Returns ELS dependencies.

Operations — Public Members

ReadData Reads sensor data from external sources.

SendData Sends sensor data to external sources.

ReadCommand Reads commands from external sources.

SendCommand Sends commands to external sources.

Operations — Protected Members

SetCOV Sets the format of the C O V .

BuildDeps Determines dependencies on other ELSs.

Initialize Initializes the ELS .

Calibrate Performs calibration of the E L S .

Poll Provides a response to queries.

Sense Prompts E L S to provide output.

Reset Resets all E L S parameters to initial values.

Test Calls tests embedded in the E L S .

Select Requests that an alternate program be chosen, if available.

Monitor Validates E L S data.

B.2 The Class 130

Member Functions

CELSBase::CELSBase

CELSBase(char * strName);

strName Name of the E L S class.

Constructs a CELSBase object.

CELSBase: :~CELSBase

virtual ~CELSBase();

Destroys a CELSBase object.

CELSBase: :GetName

char * GetName();

Returns the name of the E L S .

CELSBase: :GetCOV

COV * GetCOV();

Returns the Characteristic Output Vector (COV) for the E L S . The C O V is a vector of types.

It maintained as a private data member. Supported types are listed in Table B . l .

CELSBase: :GetFunction

char * GetFunction();

Returns a description of the functionality that this sensor provides. The description is in human

readable form. This is intended to provide a mechanism by which a user may browse through an

E L S library and determine the capabilities and/or suitability of a particular E L S for an application.

B.2 The Class 131

Table B . l : Abstract and derived types.

Keyword Data type Bits and range

A N Y Generic data type Unspecified
A R R A Y Array Sequence of elements, indexed from 0
B O O L Bit or Boolean T R U E or F A L S E
B Y T E Byte Bit string of 8 bits
D O U B L E Double Real value represented by 64 bits
E N U M Enumeration Value of type restricted to enumeration
F L O A T Float Real value represented by 32 bits
INT Integer -32768 through +32767
L O N G D O U B L E Long Double Real value represented by 128 bits
O B J E C T R E F Handle for an object Unspecified
S T R I N G Text string A n array of characters
T I M E Duration Implementation dependent
T I M E S T A M P U T C U T C
UINT Unsigned Integer 0 through 65534
U N I C O D E Unicode A n array of characters 1-2 bytes per character
USINT Unsigned Short Integer 0 through 255

CELSBase::GetDeps

D e p L i s t * Ge tDeps ();

Returns a list of each sensor that provides input to the programs contained in the E L S .

CE LSBase:: Read Data

R e a d D a t a (C O V * data);

data Input sensor data in form of C O V .

This the first of four functions that comprise the public interface of an C E L S B a s e object.

It serves to extract data from various input sources — transducers and logical sensors. Data is

expected in the form of a C O V . For transducers, this function must be overloaded to accept the

output of the transducer.

B.2 The Class 132

CELSBase::SendData

COV * SendData();

The second E L S public interface function, SendData sends sensor data generated by the E L S

to external sources. Data is in the form of the C O V for the E L S .

CELSBase::ReadCommand

ReadCommand(CommandID eCommand);

eCommand Input command.

The third E L S public interface function. It serves to extract commands that may be sent from

other ELSs or other system modules. These commands are of an enumerated type CommandID,

as listed in Table B.2.

Table B.2: Enumeration of E L S control commands: CommandID.

Value Meaning

0 Initialize
1 Calibrate
2 PolhName
3 PolhCOV
4 PolLFunction
5 PolLDeps
6 Sense
7 Reset
8 Test
9 Select
10 Monitor
11-255 Reserved for future expansion

CELSBase::SendCommand

CommandID eCommand SendCommand();

B.2 The Class 133

The fourth E L S public interface function, S e n d C o m m a n d sends commands of the enumerated

type C o m m a n d I D to external sources.

CELSBase::SetCOV

S e t C O V (C O V * p C O V) ;

pCOV Address of C O V .

This function is used to define the format of the C O V .

CELSBase: :BuildDeps

virtual Bui ldDeps();

Determines dependencies on other logical sensors by identifying sources of input for the programs

utilized within the E L S .

CELSBase: initialize

virtual Initialize();

Initializes an E L S upon creation.

CELSBase: Calibrate

virtual Calibrate();

Performs calibration of the logical sensor using built-in private member functions.

CELSBase::Poll

char * P o l l (C o m m a n d I D eCommand);

C O V * P o l l (C o m m a n d I D eCommand);

DepLis t * P o l l (C o m m a n d I D eCommand) ;

eCommand Polling command.

B.2 The Class 134

Responds to polling requests by obtaining and returning the queried information. This func­

tion is overloaded to enable the return of each type of data maintained within the Logical Sensor

Characteristics.

CELSBase::Sense

virtual Sense();

Prompts the E L S to provide output. This command may be used for temporal synchronization

of sensing events.

CELSBase::Reset

virtual Reset ();

Resets, to their original values, all logical sensor parameters which may have been modified.

CELSBase::Test

virtual Test();

Tests the functionality of the E L S by invoking one or more embedded tests.

CELSBase::Select

virtual Select();

Prompts the E L S to select an alternate program, if one is available. There are no arguments

to the function because the user does not have the ability to select the most appropriate replace­

ment. Providing knowledge of the program (s) operation to enable direct user intervention would

compromise the encapsulation.

CELSBase:: Monitor

virtual Monitor();

B.2 The Class 135

Used to validate the data obtained by the E L S . Typically, monitoring simply involves checking

the data value against an expected range. If the data is in range, it is accepted; if not, an exception

is thrown.

Appendix C

Fuzzy Variable Class

C . l Introduction

This chapter categorizes and describes the fuzzy variable classes. These are general purpose classes,

written as class templates, to ensure applicability to many applications. With in E L S A , these classes

are used to represent the fuzzy links of the object model and the Rulebase for the Inference Engine.

These classes include:

• Classes for representing fuzzy values and degree of membership.

• Classes for representing fuzzy sets.

C.2 Class Summary

This section briefly summarizes the fuzzy variable classes. For each derived class, the inheritance

tree is provided in the corresponding section.

CFuzzyDegree

Represents the degree of membership of a value within a fuzzy set.

CFuzzy Variable

Provides a representation of fuzzy variables and linguistic variables.

CFuzzyMember

Base class for fuzzy sets (membership functions).

136

C.2 Class Summary 137

CFuzzyGeomMember

Derived class which represents features common to geometrical membership functions. This

class is intended to be used as a base for further derivation.

CFuzzyTriMember

Represents fuzzy membership functions which are triangular in shape.

CFuzzyTrapMember

Represents fuzzy membership functions which are of a trapezoidal shape.

CFuzzyArrayMember

Represents fuzzy membership functions which are constructed from an array of points.

C.3 The Classes 138

C.3 The Classes

template class C class CFuzzyDegree

A CFuzzyDegree object represents the degree to which an input value is a member of a given

fuzzy set. For example, consider membership in the set HIGH, and a variable temp. The degree

to which temp is a member of the set HIGH is represented by a CFuzzyDegree object. The

degree of membership is expressed as a value in the range [0-1].

Construction/Destruction — Public Members

CFuzzyDegree Constructs a CFuzzyDegree object.

-CFuzzyDegree Destroys a CFuzzyDegree object.

Operators

operator && Performs the intersection of two CFuzzyDegree values.

operator Performs the union of two CFuzzyDegree values.

operator! Negates a CFuzzyDegree value.

Member Functions

CFuzzyDegree: :CFuzzy Degree

CFuzzyDegree();

CFuzzyDegree (C cDeg);

cDeg Degree of membership in range [0-1]. For integer values, the degree of membership is

expressed as a scaled integer in range [0-255]; otherwise, expressed as a decimal number, e.g.

0.56.

C.3 The Classes 139

Constructs a CFuzzyDegree object. Currently, int and float values are supported.

CFuzzyDegree: :~CFuzzy Degree

virtual -CFuzzyDegree();

Destroys a CFuzzyDegree object.

CFuzzyDegree::operator &&

CFuzzyDegree CFuzzyDegree::operator &:& (CFuzzyDegree &);

Allows CFuzzyDegree objects to be combined through a union or AND operation. The

minimum of the two CFuzzyDegree values is returned.

CFuzzyDegree::operator ||

CFuzzyDegree CFuzzyDegree::operator || (CFuzzyDegree &);

Allows CFuzzyDegree objects to be combined through an intersection or OR operation. The

maximum of the two CFuzzyDegree values is returned.

CFuzzyDegree::operator!

CFuzzyDegree CFuzzyDegree::operator ! ();

Negates a CFuzzyDegree object. This is a NOT operation.

C.3 The Classes 140

template class C class CFuzzyVariabie

A CFuzzyVariabie object represents a fuzzy variable and its corresponding linguistic variable.

For example, the linguistic variable Temperature might be programmed as follows:

CFuzzyVariable<int> temp("Temperature", 0, 100);
enum {COLD, WARM, HOT};
temp.AddValueSet(COLD, new CFuzzyTrapMember("cold", 0, 0, 10, 20, 1));
temp.AddValueSet(WARM, new CFuzzyTrapMember("warm", 10, 20, 25, 35, 1));
temp.AddValueSet(HOT, new CFuzzyTrapMember("hot", 25, 35, 100, 100, 1));

In this case, trapezoidal membership functions have been used, but any other kind of function

which has been implemented may also be used.

Construction/Destruction — Public Members

CFuzzyVariabie Constructs a CFuzzyVariabie object.

Attributes — Public Members

GetName

GetValue

GetFuzzyValue

GetMin

GetMax

GetValueSet

Is

If named, returns the name of the value.

Returns the non-fuzzy value.

Returns the fuzzy value (fuzzy set).

Returns the lower extent of the variable's universe of discourse.

Returns the upper extent of the variable's universe of discourse.

Returns the fuzzy set at the given position.

Returns the membership value of the fuzzy set at the given array

position.

Operations — Public Members

SetValue

SetFuzzyValue

Sets the non-fuzzy variable value and returns the old.

Sets the fuzzy variable value (fuzzy set) and returns the old

value.

C.3 The Classes 141

AddValueSet Adds the fuzzy set to the array of affiliated sets.

Operators

operator C Allow extracting of fuzzy variable through casting or its use in

some clear context.

operator = Allow direct assignment to fuzzy variable.

Member Functions

CFuzzy Variable ::CFuzzy Variable

C F u z z y V a r i a b l e (C m i n = 0, C max = 1)

CFuzzyVariable(const * char & s t r N a m e , C min = 0, C max = 1)

strName Name of fuzzy variable.

min Lower extent of universe of discourse for variable.

max Upper extent of universe of discourse for variable.

Constructs a CFuzzyVar iable object. The universe of discourse for the fuzzy variable (and

associated fuzzy sets) is defined by the range [min-max].

CFuzzyVariable ::GetName

char * G e t N a m e () const;

Returns the name of the CFuzzyVar iable object.

CFuzzyVariable ::GetValue

C Get Value () const;

Returns the non-fuzzy value of the CFuzzyVar iable object.

C.3 The Classes 142

CFuzzyVariable::GetFuzzyValue

CFuzzyMember * GetFuzzyValue() const;

Returns the fuzzy value (fuzzy set) of the CFuzzyVariabie object.

CFuzzyVariabie: :GetMin

C GetMin() const;

Returns the lower extent (minimum) of the universe of discourse for the CFuzzyVariabie

object.

CFuzzyVariabie ::GetMax

C GetMax() const;

Returns the upper extent (maximum) of the universe of discourse for the CFuzzyVariabie

object.

CFuzzyVariabie: :GetValueSet

CFuzzyMember * GetValueSet(int i) const;

i Index to array position.

Returns the fuzzy set at array position i.

CFuzzyVariabie: :ls

double Is(int i);

i Index to array position.

Gets the membership value of the fuzzy set at array position i.

C.3 The Classes 143

CFuzzy Variable: :SetValue

C SetValue(C cVal);

cVal The value to set the CFuzzyVariabie object to.

Sets the non-fuzzy value of the CFuzzyVariabie object to cVal and returns the old value.

CFuzzy Variable: :SetFuzzy Value

CFuzzyMember * SetFuzzyValue(CFuzzyMember * frnVal);

fmVal The fuzzy value to set the CFuzzyVariabie object to.

Sets the fuzzy value of the CFuzzyVariabie object to cVal and returns the old value.

CFuzzyVariabie:: AddValueSet

AddValueSet(CFuzzyMember & fmSet);

AddValueSet(CFuzzyMember * fmSet);

AddValueSet (int i, CFuzzyMember & fmSet);

AddValueSet(int i, CFuzzyMember & fmSet);

i Index to where new set will be added.

fmSet Address of the set to add to the CFuzzyVariabie.

Adds the fuzzy set fmSet to the array of affiliated sets. If i is specified, the set is added at that

location, overwriting the set that was there. In the case that i is unspecified, the set is added to

the end, extending the array.

CFuzzyVariabie: :operator C

template<class C> CFuzzyVariable<C>::operator C ();

Allows a CFuzzyVariabie object to be casted.

C.3 The Classes 144

CFuzzyVariable: :operator =

template<class C> C & CFuzzyVariable<C>::operator = (const CPuzzyMember<C> &)

const;

Allows direct assignment of a CFuzzyVariable object.

C.3 The Classes 145

template class C class CFuzzyMember

A CFuzzyMember object serves as a base class for the representation of a fuzzy set.

Construction/Destruction — Public Members

CFuzzyMember Constructs a CFuzzyMember object.

-CFuzzyMember Destroys a CFuzzyMember object.

Attributes — Public Members

GetName Returns the name of the fuzzy set.

Is Returns the degree of membership.

Member Functions

CFuzzyMember: :CFuzzy Member

CFuzzyMember (const C xmin, const C xmax);

CFuzzyMember (char * strName, const C xmin, const C xmax);

strName Name of the set.

xmin x coordinate for lower extent of set base.

xmax x coordinate for upper extent of set base.

Constructs a CFuzzyMember object. The variables xmin and xmax define the base of the

fuzzy set. Derived classes provide the representation for height and shape.

CFuzzyMember: :~CFuzzy Member

virtual -CFuzzyMember();

Destroys CFuzzyMember object. Deallocates space occupied by strName.

C.3 The Classes 146

CFuzzyMember: :GetName

char * G e t N a m e () const;

Returns the name of the the C F u z z y M e m b e r object.

CFuzzyMember: :ls

virtual CFuzzyDegree Is(const C cValue) const;

cValue Input value for which to determine membership.

Returns the degree of membership of cValue within the C F u z z y M e m b e r object. This function

is declared as a pure virtual function. The function must be redefined by derived classes.

C.3 The Classes 147

template class C
class CFuzzyGeomMember: public CFuzzyMember C

A C F u z z y G e o m M e m b e r object serves as a base class for the

representation of a fuzzy value within a fuzzy set.

Construction/Destruction — Public Members

CFuzzyMember

CFuzzyGeomMember

CFuzzyGeomMember

-CFuzzyGeomMember

Constructs a C F u z z y G e o m M e m b e r object.

Destroys a C F u z z y G e o m M e m b e r object.

Attributes — Public Members

Is

GetArea

GetCentroid

GetMoment

Scale

Clip

Returns the degree of membership.

Area of membership function.

Centroid of membership function.

Moment of area of membership function.

Scales the membership function to a given degree.

Clips the membership function at a given degree.

Member Functions

CFuzzyGeomMember: :CFuzzyGeomMember

C G e o m F u z z y M e m b e r (c o n s t C xmin , const C X m a x) ;

C G e o m F u z z y M e m b e r (c h a r * strName, const C X m i n , const C xmax);

strName Name of the set.

xmin x coordinate for lower extent of set base.

xmax x coordinate for upper extent of set base.

C.3 The Classes 148

Constructs a C G e o m F u z z y M e m b e r object. On construction, the area, centroid, and moment

of area are computed. The variables x m i n and xmax define the base of the fuzzy set. Derived

classes provide the representation for height and shape.

CFuzzyGeomMember::~CFuzzyGeomMember

- C F u z z y G e o m M e m b e r ();

Destroys a C F u z z y M e m b e r object.

CFuzzyGeomMember::ls

virtual CFuzzyDegree Is(const C cValue) const;

cValue Input value for which to determine membership.

Returns the degree of membership of cValue within the C F u z z y G e o m M e m b e r object. This

function is declared as a pure virtual function. The function must be redefined by derived classes.

CFuzzyGeomMember::GetArea

virtual C GetArea () const;

Returns a value which represents the area of the membership function. This function is declared

as a pure virtual function. The function must be redefined by derived classes.

CFuzzyGeomMember: :GetCentroid

virtual C GetCentro id() const;

Returns a value which represents the centroid of the membership function. This function is

declared as a pure virtual function. The function must be redefined by derived classes.

CFuzzyGeomMember: :GetMoment

virtual C G e t M o m e n t () const;

C.3 The Classes 149

Returns a value which represents the moment of area for the membership function. This function

is declared as a pure virtual function. The function must be redefined by derived classes.

CFuzzyGeomMember::Scale

virtual C F u z z y G e o m M e m b e r < C > * Scale(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to scale membership function.

This function scales the current membership function to a given degree. Returns the new scaled

membership function. This function is declared as a pure virtual function. The function must be

redefined by derived classes.

CFuzzyGeomMember::Clip

virtual C F u z z y G e o m M e m b e r < C > * Clip(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to clip membership function.

This function clips the current membership function to a given degree. Returns the new clipped

membership function. This function is declared as a pure virtual function. The function must be

redefined by derived classes.

C.3 The Classes 150

template class C
class CFuzzyTriMember: public CFuzzyGeomMember C

A CFuzzyTriMember object implements a triangular

fuzzy set.

Construction/Destruction — Public Members

CFuzzyMember

CFuzzyGeomMember

CFuzzyTriMember

-CFuzzyTriMember

CFuzzyTriMember

Constructs a CFuzzyTriMem­

ber object.

Destroys a CFuzzyTriMember object.

Attributes — Public Members

Is

GetArea

GetCentroid

GetMoment

Scale

Clip

Returns the degree of membership.

Area of membership function.

Centroid of membership function.

Moment of area of membership function.

Scales the membership function to a given degree.

Clips the membership function at a given degree.

Member Functions

CFuzzyTriMember::CFuzzyTriMember

CFuzzyTriMember(C xl, C xl, C xl, C h);

CFuzzyTriMember (char * strName, C xl, C xl, C xl, C h);

strName Name of the fuzzy set.

xl x coordinate of left side (lower extent) of triangle base.

x2 x coordinate of peak of triangle.

C.3 The Classes 151

xS x coordinate of right side (upper extent) of triangle base.

h Height of triangle. This is typically 1.0.

This class provides a template for the creation of fuzzy membership functions with a triangular

shape. The corner coordinates and height of the function must be specified. These are illustrated

in Figure C l

1 +

0
x1 x2 x3

Figure C l : Triangular membership function.

The area, centroid, and moment of area for the triangle are computed on initialization. Cur­

rently, int, float, and double types are supported by the template. For other data types, the

appropriate member functions must be written.

CFuzzyTriMember::~CFuzzyTriMember

- C F u z z y T r i M e m b e r ();

Destroys a C F u z z y T r i M e m b e r object.

CFuzzyTri Mem ber:: Is

CFuzzyDegree Is(const C cValue) const;

c Value Input value for which to determine membership.

Returns the degree of membership of cValue within the C F u z z y T r i M e m b e r object.

C.3 The Classes 152

CFuzzyTriMember::GetArea

C G e t A r e a () const;

Returns a value which represents the area of the membership function.

CFuzzy TriMember::GetCentroid

C GetCentro id() const;

Returns a value which represents the centroid of the membership function.

CFuzzy TriMember::GetMoment

C G e t M o m e n t () const;

Returns a value which represents the moment of area for the membership function.

CFuzzyTriMember::Scale

C F u z z y G e o m M e m b e r < C > * Scale(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to scale membership function.

This function scales the current membership function to a given degree. Returns the new scaled

membership function.

CFuzzyTriMember::Clip

C F u z z y G e o m M e m b e r < C > * Clip(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to clip membership function.

This function clips the current membership function to a given degree. Returns the new clipped

membership function.

C.3 The Classes 153

template class C
class CFuzzyTrapMember: public CFuzzyGeomMember C

A C F u z z y T r a p M e m b e r object implements a trapezoidal

fuzzy set.

Construction/Destruction — Public Members

CFuzzyMember

CFuzzyGeomMember

CFuzzyTrapMember

-CFuzzyTrapMember

CFuzzyTrapMember

Constructs a C F u z z y T r a p ­

M e m b e r object.

Destroys a C F u z z y T r a p M e m b e r object.

Attributes — Public Members

Is

GetArea

GetCentroid

GetMoment

Scale

Clip

Returns the degree of membership.

Area of membership function.

Centroid of membership function.

Moment of area of membership function.

Scales the membership function to a given degree.

Clips the membership function at a given degree.

Member Functions

CFuzzyTrapMember::CFuzzyTrapMember

C F u z z y T r a p M e m b e r (C x l , C x2, C x3, C x4, C h);

C F u z z y T r a p M e m b e r (c h a r * s trName, C x l , C x2, C x3, C x4, C h);

strName Name of the fuzzy set.

xl x coordinate of left side of trapezoid base.

x2 x coordinate of left side of trapezoid 'plateau.'

C.3 The Classes 154

x4 x coordinate of right side of trapezoid 'plateau.'

x4 x coordinate of right side of trapezoid base.

h Height of trapezoid. This is typically 1.0.

This class provides a template for the creation of fuzzy membership functions with a trapezoid

shape. The corner coordinates and height of the function must be specified. These are illustrated

in Figure C.2

x1 x2 x3 x4

Figure C.2: Trapezoidal membership function.

The area, centroid, and moment of area for the trapezoid are computed on initialization. Cur­

rently, int, float, and double types are supported by the template. For other data types, the

appropriate member functions must be written.

CFuzzyTrapMember: :~CFuzzyTrapMember

-CFuzzyTrapMember();

Destroys a CFuzzyTrapMember object.

CFuzzyTrapMember: :ls

CFuzzyDegree Is(const C cValue) const;

cValue Input value for which to determine membership.

C.3 The Classes 1 5 5

Returns the degree of membership of value within the CFuzzyTrapMember object.

CFuzzyTrapMember: :Get Area

C GetArea() const;

Returns a value which represents the area of the membership function.

CFuzzyTrapMember:-.GetCentroid

C GetCentroid() const;

Returns a value which represents the centroid of the membership function.

CFuzzyTrapMember: :GetMoment

C GetMoment() const;

Returns a value which represents the moment of area for the membership function.

CFuzzyTrapMember: :Scale

CFuzzyGeomMember<C> * Scale(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to scale membership function.

This function scales the current membership function to a given degree. Returns the new scaled

membership function.

CFuzzyTrapMember: :Clip

CFuzzyGeomMember<C> * Clip(const CFuzzyDegree fdDegree) const;

fdDegree Degree at which to clip membership function.

This function clips the current membership function to a given degree. Returns the new clipped

membership function.

C.3 The Classes 156

CF :uzzyMember
CFuzzyArrayMember

template class C> class CFuzzyArrayMember : public CFuzzyMem­

ber

A CFuzzyArrayMember object implements a fuzzy set as an

array of points. The number of elements in the array corresponds

to the number of points including and between the limits of the set.

Points are distributed evenly. Each value represents the height of the function at a given horizontal

location.

Construction/Destruction — Public Members

CFuzzyArrayMember Constructs a CFuzzyArrayMember object.

-CFuzzyArrayMember Destroys a CFuzzyArrayMember object.

Attributes — Public Members

Is

GetNumVals

GetVal

GetMoment

Returns the degree of membership.

Returns the size of the array.

Get value from array.

Returns moment of area of the membership function.

Attributes — Public Members

PutVal Put value into array

Operators

operator [] Access array via [].

C.3 The Classes 157

Member Functions

CFuzzyArrayMember: :CFuzzyArrayMember

CFuzzy MemberQ;

CFuzzyMember(int iSize, C xmin, C xmax);

CFuzzy Member (char * strName, int iSize, C xmin, C xmax);

strName Name of the set.

iSize Number of points used for representation.

xmin x coordinate for lower extent of set base.

xmax x coordinate for upper extent of set base.

Constructs a CFuzzyArrayMember object. The variables xmin and xmax define the base

of the fuzzy set; iSize defines the resolution of the representation.

CFuzzyArrayMember::~CFuzzyArrayMember

virtual ~CFuzzyMember();

Destroys CFuzzyArrayMember object. Deallocates space occupied by strName.

CFuzzyMember:: Is

CFuzzyDegree Is(const C cValue) const;

cValue Input value for which to determine membership.

Returns the degree of membership of cValue within the CFuzzyArrayMember object.

CFuzzyMember: :GetNumVals

int GetNumVals() const;

Returns the number of elements in the array.

C.3 The Classes 158

CFuzzyMember: :GetVal

C GetVal(int i) const;

i Index to array position.

Gets a value from the array at the position specified by i.

CFuzzyMember: :GetMoment

C G e t M o m e n t (C min , C max) const;

min Minimum of range.

max Maximum of range.

Returns the moment of area for the fuzzy set.

CFuzzyMember: :PutVal

PutVal (int i , C cVal);

i Index to array position.

cVal The value to place into array.

Puts a value into the array at the position specified by i.

CFuzzyArrayMember::operator []

C & CFuzzyArrayMember: :opera tor [] (int i);

i Index to array position.

Allows the array of C F u z z y A r r a y M e m b e r objects via []. Returns the value of the array at

the position specified by i.

Appendix D

Rulebase Classes

D . l Introduction

This chapter categorizes and describes a number of classes used to represent fuzzy rules, rulebases,

and provide an inference mechanism. Fuzzy rulebases are built up from fuzzy rules together with

fuzzy inputs and outputs. Input variables may be applied to the rulebase and using the built in

inference and denazification functions, an inference may be made.

D.2 Class Summary

This section briefly summarizes the rulebase classes.

CFuzzyClause

Defines a structure which pairs a fuzzy variable and a fuzzy value.

CFuzzyRule

Represents an antecedent/consequent rule for fuzzy inference.

CFuzzyRulebase

Builds a rulebase of CFuzzyRule objects from which decisions may be inferred.

159

D.3 The Classes 160

D.3 The Classes

class CFuzzyClause

A C F u z z y C l a u s e object represents a structure containing a fuzzy variable and fuzzy value. This

pair is used build antecedents and consequents for C F u z z y R u l e objects.

Data Members — Public Members

pVar Pointer to linguistic variable of clause.

pValue Pointer to linguistic value of clause.

Construction/Destruction — Public Members

CFuzzyClause Constructs a CFuzzyClause object.

Member Functions

CFuzzyClause: :CFuzzyClause

CFuzzyClause ();

CFuzzyClause (CFuzzyValue * fvVar, C F u z z y M e m b e r * fmSet);

C F u z z y C l a u s e (CFuzzy Value & fvVar, C F u z z y M e m b e r & fmSet);

fv Var Address of linguistic variable.

fmSet Address of linguistic value.

Constructs a CFuzzyClause object. Initializes a CFuzzyVar iab ie and a C F u z z y M e m b e r

during creation.

D.3 The Classes 161

Member Functions

CFuzzyClause::pVar

Pointer to a CFuzzyVariable object which represents a linguistic variable.

CFuzzyClause::pValue

Pointer to a CFuzzySet object which represents a linguistic value.

D.3 The Classes 162

class CFuzzyRule

A C F u z z y R u l e object represents an antecedent/consequent type rule. There may be an arbitrary

number of antecedents and consequents. The following example illustrates how rules are constructed:

CFuzzyRule rO;
rO.AddLHS(new CFuzzyClause(Error , P o s i t i v e H i g h)) ;
rO.AddLHS(new CFuzzyClause(del taError , Zero)) ;
rO.AddRHS(new CFuzzyClause(Torque, Negat iveHigh)) ;
rO.Weight (0 .9) ;

Here, Er ror , de l t aEr ro r , and Torque are linguistic variables represented as CFuzzyVar iab le

objects. Pos i t i veHigh , Zero, and NegativeHigh are linguistic values represented as C F u z z y M e m ­

ber objects. This rule is equivalent to:

IF Error IS positive-high AND deltaError is zero THEN Torque = negative-high, weight = 0.9

Construction/Destruction — Public Members

CFuzzyRule Constructs a C F u z z y R u l e object.

Attributes — Public Members

GetNumLHS

GetNumRHS

GetLHS

GetRHS

GetWeight

GetAggregate Value

Returns the total number of antecedent clauses.

Returns the total number of consequent clauses.

Returns the antecedent clause from the specified position.

Returns the consequent clause from the specified position.

Returns the rule weight.

Returns the current value of the aggregation of the antecedent

rule inputs.

Operations — Public Members

AddLHS Adds an antecedent to the rule.

D.3 The Classes 163

AddRHS Adds a consequent to the rule.

SetWeight Sets the rule weight.

Aggregate Aggregates the antecedent rule inputs and returns the result.

Member Functions

CFuzzyRule::CFuzzyRule

C F u z z y R u l e ();

Constructs a C F u z z y R u l e object.

CFuzzyRule: :GetNumLHS

int G e t N u m L H S () const;

Returns the total number of antecedent clauses for the C F u z z y R u l e object.

CFuzzyRule::GetNumRHS

int G e t N u m R H S () const;

Returns the total number of consequent clauses for the C F u z z y R u l e object.

CFuzzyRule::GetLHS

C F u z z y C l a u s e * G e t L H S (i n t i) const;

i Index to array position.

Returns the antecedent clause from the position indicated by i.

CFuzzyRule::GetRHS

C F u z z y C l a u s e * G e t R H S (i n t i) const;

% Inclex to array position.

D.3 The Classes 164

Returns the consequent clause from the position indicated by i.

CFuzzyRule: :GetWeight

double Get Weight () const;

Returns the rule weight.

CFuzzyRule::GetAggregateValue

double GetAggregateValue() const;

Returns the current value of the aggregation of the antecedent rules.

CFuzzyRule::Addl_HS

A d d L H S (C F u z z y C l a u s e * cfClause);

A d d L H S (C F u z z y C l a u s e & cfClause);

cfClause Address of CFuzzyClause object to add to rule.

Adds an antecedent, in the form of a CFuzzyClause object, to the rule.

CFuzzyRule::AddRHS

A d d R H S (C F u z z y C l a u s e * cfClause);

A d d R H S (C F u z z y C l a u s e & cfClause);

cfClause CFuzzyClause object to add to rule.

Adds a consequent, in the form of a CFuzzyClause object, to the rule.

CFuzzyRule::SetWeight

double Set Weight (double dWeight);

dWeight The rule weight expressed as a value in the range [0-1].

D.3 The Classes 165

Sets the weight to dWeight and returns the old weight. The default weight is 1.0.

CFuzzyRule:: Aggregate

double Aggregate();

Aggregates the antecedent rule inputs and returns the result.

D.3 The Classes 166

class CFuzzyRuleBase

A C F u z z y R u l e B a s e object represents a collection of C F u z z y R u l e objects. The class provides a

number of member functions which allow input and output variables to be assigned to the rulebase

and inferences to be made. The inferences may also be defuzzified.

Construction/Destruction — Public Members

CFuzzyRuleBase Constructs a C F u z z y R u l e object.

Attributes — Public Members

GetNumRules

GetNumlnputVars

GetNumOutputVars

Returns the total number of rules in rulebase.

Returns the total number of input variables.

Returns the total number of output variables.

Operations — Public Members

AddRule

AddlnputVar

AddOututVar

Resolution

Inference

Evaluate

AggregateAII

EvaluateAII

DefuzzifyAII

Adds a rule to the rulebase.

Adds an input variable to the rulebase.

Adds an output variable to the rulebase.

Returns the output fuzzy set resolution.

Computes the inference for a given fuzzy variable and fuzzy

value.

Computes the output set for a given variable, combining the

inference results of all rules.

Aggregates all rules.

Evaluates all rules.

Defuzzifies all output variables.

D.3 The Classes 167

Member Functions

CFuzzyRuleBase::CFuzzyRuleBase

CFuzzyRuleBase ();

CFuzzyRuleBase(const char * strName);

strName Name of rulebase.

Constructs a CFuzzyRuleBase object.

CFuzzyRuleBase::GetNumRules

int G e t N u m R u l e s ();

Returns the total number of rules contained within the CFuzzyRuleBase object.

CFuzzyRuleBase::GetNumlnputVars

int G e t N u m I n p u t V a r s ();

Returns the total number of input variables to the CFuzzyRuleBase object.

CFuzzyRuleBase::GetNumOutputVars

int G e t N u m O u t p u t V a r s ();

Returns the total number of output variables from the CFuzzyRuleBase object.

CFuzzyRuleBase: :AddRule

A d d R u l e (C F u z z y R u l e * pRule);

A d d R u l e (C F u z z y R u l e & pRule);

D.3 The Classes 168

pRule Address of rule.

Adds a rule of form C F u z z y R u l e to the rulebase.

CFuzzyRuleBase::AddlnputVar

A d d l n p u t V a r (CFuzzyVariable * pVar);

A d d I n p u t V a r (C F u z z y V a r i a b l e &; pVar) ;

p Var Address of fuzzy variable.

Adds an input variable of the form C F u z z y V a r to the rulebase.

CFuzzyRuleBase: :AddOutputVar

A d d O u t p u t V a r (C F u z z y V a r i a b l e * pVar) ;

A d d O u t p u t V a r (C F u z z y V a r i a b l e & pVar);

p Var Address of fuzzy variable.

Adds an output variable of the form C F u z z y V a r to the rulebase.

CFuzzyRuleBase::Resolution

int Resolution() const;
»

Returns the resolution of the output fuzzy set.

CFuzzyRuleBase::lnference

Inference(CFuzzyVariable * pVar , C F u z z y M e m b e r * pSet, double d M a t c h , C F u z z ­

y A r r a y M e m b e r & pResult);

pVar Address of fuzzy variable.

pSet Address of fuzzy value.

D.3 The Classes 169

dMatch Result of antecedent aggregation.

pResult Address of resultant fuzzy set.

Computes the inference set for a variable, p V a r of type CFuzzyVar iab ie , and value, pSet of

type C F u z z y M e m b e r , using value d M a t c h which is the result of aggregation of the antecedents.

The result, pResult , is stored in a C F u z z y A r r a y M e m b e r object.

CFuzzyRuleBase: :Evaluate

Evaluate(CFuzzyVariable * pVar , C F u z z y A r r a y M e m b e r &: pResult);

p Var Address of fuzzy variable.

pResult Address of resultant fuzzy set.

Computes the output set for the variable pVar , combining the Inference() results of all rules.

The result, pResult , is stored in a C F u z z y A r r a y M e m b e r object.

CFuzzyRuleBase: :AggregateAII

AggregateAl l ();

Computes the aggregate of all rules in the CFuzzyRuleBase object.

CFuzzyRuleBase::EvaluateAII

EvaluateAl l ();

Evaluates all variables in the CFuzzyRuleBase object.

CFuzzyRuleBase: :DefuzzifyAII

DefuzzifyAll();

Defuzzifies all output variables in the CFuzzyRuleBase object.

Appendix E

S u p p o r t Classes

E . l Introduction

This chapter categorizes and describes a number of classes which are used to support the other

classes described in Appendices A - D .

E.2 Class Summary

This section briefly summarizes the support classes.

Max

Returns the maximum of two supplied values.

Min

Returns the minimum of two supplied values.

CEIement

A standard element to be linked into lists.

170

E.3 The Classes 171

E . 3 T h e C l a s s e s

template class T> T Max

Max is used to compute the maximum of two values. These values may be of any defined type.

Max

T Max(T x, T y)

x First object.

y Second object.

Compares x and y. Returns whichever is larger.

template class T> T Min

M i n is used to compute the minimum of two values. These values may be of any defined type.

Min

T Min(T x, T y)

x First object.

y Second object.

Compares x and y. Returns whichever is smaller.

E.3 The Classes 172

template class T> class CEIement

A CEIement object represents an element of a list. It may be used in singly or doubly linked lists.

Data Members — Public Members

pSuc Forward pointer (to successor).

pPre Backward pointer (to predecessor).

tData Element data.

Construction/Destruction — Public Members

CEIement Constructs a CEIement object.

Member Functions

C Element ::C Element

CElement () CEIement (CEIement *s, CEIement *p, T d)

s Successor element.

p Predecessor element.

d Element data.

Constructs a CEIement object. Initializes data members.

Data Members

CEIement: :pSuc

This is a pointer to an successor CEIement.

E.3 The Classes 173

CEIement::pPre

This is a pointer to an predecessor CElement.

CEIement::tData

This data member represents data of type T, as specified by the class template.

