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Abstract 

Peripheral milling of aerospace parts takes a considerable amount of manufacturing time on 

production floors. Recently, due to fatigue constraints and advances in high speed machin

ing, aircraft components are machined as monolithic parts from solid blanks. This thesis 

focuses on the mathematical modeling of peripheral milling of aerospace parts with thin 

walls. 

The varying dynamics along the contact length of both the part and the cutter are considered. 

The structural dynamics of a flexible thin web and of the end mill are modelled as discrete 

models, whose modal parameters are identified experimentally. The kinematics of periph

eral milling is modelled in the time domain. The chip removed at any point along the work-

piece/cutter contact length is predicted, including the influence of structural dynamic 

displacements of both the cutter and the workpiece at present and previous tooth passing 

intervals. The cutting forces are predicted as being proportional to the time varying dynamic 

chip loads. The time domain model of the process includes various non-linearities in the 

process such as the separation of the tool from the workpiece due to excessive vibrations. 

The time domain algorithm can predict the cutting load distribution on both cutter and thin 

web structures, dimensional surface finish of the part, vibrations, torque, power and bending 

load experienced by the lower spindle bearing of the machine tool. The predictions are ver

ified experimentally by conducting numerous cutting tests. 

The accurate time domain simulations of dynamic milling have shown that large feed rates 

affect the chatter stability at low cutting speeds. This phenomenon has not been previously 

reported in the literature. An analytical model of the dynamic milling system with the influ

ence of feed on the regenerative phase shift has been developed, and the stability of the sys

tem is solved analytically in the frequency domain. The developed time domain simulations 

of the process support the linear analytical solution. 

The mathematical models and algorithms developed in this thesis have been experimentally 

verified and have been used in peripheral milling of aircraft wing components in industry. 
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CHAPTER 1 Introduction 

Peripheral milling, being one of the most versatile manufacturing processes, is a very com

mon operation in manufacturing aircraft components. The geometrical complexity and high 

quality requirements of structures such as wings, fuselage sections, and jet engine compo

nents often requires that parts be machined from a single workpiece, resulting in large 

amounts of excess material removal. Many of these structures have deep pockets and flexi

ble webs which must be machined with long slender endmills. Furthermore, these compo

nents usually have tight dimensional tolerances which must be met during machining. 

These factors have motivated research in milling for decades, in order to optimize metal 

removal rates, while maintaining strict dimensional tolerances. 

This thesis outlines the theory and mathematical models used in the development of a com

puter algorithm which can be a useful tool in determining optimum milling conditions. In 

industry, power restrictions, cutting force limits, and strict surface tolerances often lead to 

machining using very conservative metal removal rates. With the milling models developed 

in this thesis, cutting forces, finished surface profiles, spindle power requirements, bending 

moment on spindle bearings, and axial depth of cut limits can be predicted to help select the 

cutting conditions which result in highest productivity, while keeping within required toler

ances and within physical limitations of the machine tool. More specifically, this thesis 
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focuses on milling of flexible workpiece structures with flexible helical endmills, emphasiz

ing on cuts with large depths of cut and small widths of cut. Under these conditions, the 

modelling of exact milling kinematics and of varying dynamics along the axial depth of cut 

become of increasing importance. 

First, a review of existing research in the milling of flexible structures is given in Chapter 2. 

An overview of milling kinematics, modelling of cutting forces, chatter stability limits, and 

time domain simulations are discussed, which provide the basis for some of the approaches 

used in the milling model used in this thesis. 

In Chapter 3, the dynamic model used to simulate the vibratory motion of the cutting tool 

and of the flexible workpiece is discussed. Many existing simulations use simplified 

lumped dynamics, which may not provide accurate enough results when machining at large 

depths of cut with flexible workpieces and/or flexible cutters. Alternatively, more compli

cated models have usually been derived from finite element methods, which can often 

require a significant effort for more complex workpieces. The more practical approach 

taken in this thesis relies on experimental transfer function measurements at multiple points 

on the workpiece and on the cutter. A modal analysis model and computer program are 

developed to efficiently identify dynamic parameters of the workpiece and cutting tool for 

use in the milling simulation. 

Milling mechanics are described in Chapter 4. Material removal, uncut chip thickness cal

culations, and predicted cutting forces are discussed. Most existing models use approxima

tions for uncut chip thickness. This thesis uses a discretized cutter and workpiece model to 

more accurately simulate the milling process. This is particularly significant under condi

tions of large forced and self-excited vibrations. This digitized model also allows prediction 

of surface error profile and surface roughness. Experimental cutting tests verify the validity 

of the model. 

In machining, self-excited vibrations can cause poor surface finish and excessively large 

cutting forces which can damage the workpiece, the cutting tool, and in extreme cases, the 

machine spindle. This unstable condition, known as chatter, is discussed in Chapter 5. 



Chatter stability is often presented in the form of stability lobes. Two approaches to calcu

lating stability lobes are described here. The first uses time domain simulations to predict 

cutting forces. Maximum predicted dynamic chip thickness is used for determining stabil

ity. The simulations are repeated for various cutting conditions until the stability limit is 

found. 

In practice, there is a general trend for stability to increase with decreasing spindle speed. 

Traditionally, this trend has been attributed to process damping, which is caused by flank 

edge contact with the workpiece. Modelling of process damping is not in the scope of this 

thesis since it typically requires extensive experimentation and sophisticated equipment. 

However, even without including process damping effects, similar trends were noticed in the 

stability lobes from time domain simulations. This motivated the development of a second, 

frequency domain model, to support the findings. This newly reported phenomenon results 

from including the effect of feed rate in the regeneration effect which causes chatter. This 

claim is supported by results showing close agreement between the time domain and fre

quency domain chatter stability lobe models. 

In Chapter 6, the results of some experimental cutting tests are presented and discussed. 

Cutting forces, workpiece vibrations, and stability limit models described in this thesis are 

well verified. Some predicted trends, such as the increased stability at low spindle speeds 

due to feed were difficult to support with experimental cutting tests due to the absence of 

process damping in the simulation model. Generally, there was excellent agreement 

between predicted and measured results. 

The thesis is concluded with a brief summary of contributions and of recommendations for 

future research. 



CHAPTER 2 Literature Review 

2.1 Overview 
In this chapter, a literature review is presented of research in milling which pertains to this 

thesis. Kinematics of milling is first discussed, which includes models of cutter motion and 

chip thickness. Next, a brief summary of milling force models is given, followed by the 

development of chatter theory and chatter stability borders in milling. Finally, previous 

milling simulation research is presented which focused on milling of flexible structures. 

2.2 Kinematics of Milling 

Unlike the steady state turning operation in which chip thickness is constant, milling is an 

intermittent multi-point cutting operation which involves feeding the workpiece into a rotat

ing cutter. The milling operation can generally be divided into two categories: peripheral 

and face milling. In peripheral milling, which is the focus of this thesis, the cut surface is 

parallel to the axis of the cutting tool. In face milling, the working surface is perpendicular 

to the cutting tool. 

Milling can also be categorized into two main orientations, shown in Figure (2-1). Milling 

in which the cutter rotates in a direction against the feed of the workpiece is known as con-

4 



Kinematics of Milling 

ventional or up-milling. The orientation in which the workpiece is fed in the direction of the 

cutter rotation is known as climb milling or down milling. Mathematical and practical differ

ences between these two orientations are discussed by Martellotti in [1]. 

FIGURE 2-1: Upmilling and Downmilling 

The milling cutter can consist of multiple either integrated or inserted teeth, uniformly or 

non-uniformly distributed, with various geometries and configurations. The complex motion 

of the rotating cutting tooth relative to a translating workpiece is well described by Martel

lotti [2]. He gives precise mathematical formulations of the tooth path, described as trochoi-

dal, instantaneous chip thickness, and feed marks left on the finished surface. Martellotti 

also confirms that in most practical applications, in which the radius of the cutter is much 

greater that the feed per tooth, instantaneous chip thickness, h(§) can be approximated as 

the traditionally used relation: 

Downmilling Upmilling 

h(§) = s,sin<|) (2-1) 

where (j) is the immersion angle of the tooth and st is the feed per tooth. 



Modelling of Milling Forces 

This sinusoidal approximation of chip load is almost exclusively used in the literature in the 

calculation of cutting forces. Montgomery, Altintas, and Lee [3] [4] use computer simula

tions which digitize the cutter edge and workpiece surface to trace the exact trochoidal 

motion of each discretized cutting point. Under many practical conditions, exact chip thick

ness calculations offer little improvement over the sinusoidal approximation in predicting 

static cutting forces. The advantages of the digitized surface approach lies in the prediction 

of chatter during vibratory milling, discussed in later sections. 

2.3 Modelling of Milling Forces 

Due to the complexity of milling mechanics and the large number of variables involved in 

modelling the milling process, numerous force models have been developed. These models 

can be classified into two categories: mechanistic and mechanics of milling. In mechanistic 

models, force coefficients are experimentally estimated for a specific cutter geometry and 

workpiece material, relating force to uncut chip thickness, chip width, and other variables. 

In the mechanics of milling approach, the milling coefficients are calculated as a function of 

shear stress, shear angle, friction angle, and cutter geometry from orthogonal cutting tests. 

The mechanistic model is presented below, while the mechanics of milling force model is 

not used in this thesis and will not be discussed. 

The most primitive, yet still popular models are based on the relationship between metal 

removal rate and average consumed power, through which average tangential force may be 

estimated [5]. Expressions for the pulsating cutting forces in milling were first developed by 

Sawin [6] and Salomon [7]. Through purely geometrical considerations, a relationship is 

formed between work done with a straight tooth cutter, based on an assumption that specific 

cutting pressure varies as an exponential function of chip thickness. Tangential force is cal

culated as: 

Ft = Ksah (2-2) 

where a is the chip width, h is the instantaneous chip thickness, and Ks is the cutting pres

sure as a function of chip thickness and two experimentally determined coefficients C and x: 



Chatter and Stability Analysis 

Ks = Chx (2-3) 

Sabberwal [8] and Koenigsberger [9] extend this model to predict cutting forces with non

zero helix cutters. 

Another approach, which has become widely used, involves use of an average cutting pres

sure coefficient and a constant edge force coefficient [10]. With further contributions from 

Tlusty and McNeil [11], Kline et al. [12] [13], Sutherland and DeVor [14], and Montgomery 

and Altintas [3], this model is fully developed into a practical formulation by Budak et al. 

[15] to model tangential, radial, and axial forces, Ft,Fr, and Fa in the form: 

Ft = K t e a + K t c a h 

Fr = Krea + Krcah 

Fa = Kaea+Kacah (2-4) 

where Kte, Ktc, Kre, Krc, Kae, and Kac are force coefficients determined from measured 

average cutting forces in X , Y, and Z directions at varying feed rates. This model is used in 

this thesis for evaluation of cutting forces due to the minimal measurements required and 

proven accuracy. It is discussed in detail in Chapter 4. 

2.4 Chatter and Stability Analysis 
Due to the periodic nature of cutting forces in milling, vibrations in the machine tool and 

workpiece structures are unavoidable. If some of the harmonic components of cutting forces 

are in resonance with natural frequencies of the cutterrworkpiece system, forced vibrations 

can become significant in determining the quality of surface finish. In most circumstances, 

however, it is not the forced vibrations which are most significant. Rather, it is an unstable 

condition, known as chatter, that frequently arises in metal cutting, which dominates cutting 

forces and vibrations. Under these self-excited conditions, energy builds in the system with 

vibrations and cutting forces growing to unacceptable levels, until the tool separates from 

the workpiece. 



Chatter and Stability Analysis 

Many factors contribute to determining whether or not chatter will occur, including the 

structural characteristics of the machine and cutter, structural characteristics of the work-

piece, workpiece material properties, feed rate (chip thickness), cutting speed (spindle 

speed), axial depth of cut (chip width), radial width of cut (immersion), and cutter geometry. 

With the dynamic characteristics of the machine and workpiece often fixed, the depth of cut, 

or chip width, has the most significant influence. At sufficiently small chip width, there is 

no chatter, while there is a sufficiently large chip width at which chatter will always occur. 

The chip width limit where chatter begins to occur is often plotted against spindle speed to 

give the chatter stability lobes, a well known representation of the boundary between stable 

and unstable cutting. Models for determining this stability limit are discussed in a later sec

tion. 

2.4.1 Theory of Self-Excited Chatter Vibrations 

2.4.1.1 Regeneration of Waviness 

The theory of chatter in metal cutting was well developed through the 1950's and 1960's. 

Tobias [16] and Tlusty [17] were among the few early researchers in the area of dynamic 

cutting. It is well documented that the primary cause of chatter under most machining con

ditions is a phenomenon known as the regeneration effect [18] [19]. Even when forced 

vibrations are extremely small, the slightest waviness left on the cutting surface cause peri

odic variations in chip thickness for following teeth. Pass after pass, the vibrations may be 

sustained through this "regeneration of waviness" on the surface. In a "stable" case, initial 

vibrations diminish in subsequent passes, in an "unstable" case (chatter), vibrations increase, 

and in the critically stable case, the magnitude of vibration remains constant. 

Consider the milling operation in Figure (2-2). The combination of the waviness on the sur

face left by the previous tooth and the vibration of the currently cutting tooth create the per-

odically changing chip thickness. Figure (2-3) shows how the severity of variation in the 

chip thickness depends on the phase shift e between the undulations of successive tooth 

paths. Figure (2-3a) shows that a zero phase shift produces a constant chip thickness despite 

any disturbances in the system. Figures (2-3b) and (2-3c) demonstrate the varying chip load 



Chatter and Stability Analysis 

FIGURE 2 - 2 : Regeneration of Waviness in Milling 

with a phase shift TC /2 and the extreme case of a re phase shift, both of which can lead to 

unstable conditions. This oscillating chip thickness causes varying forces, which in turn 

adds more vibrations into the system. This feedback in the process is the regeneration effect 

which may cause instability. 

The phase shift, e in radians, can be calculated as a function of tooth period, T, and chatter 

frequency, coc: 

2nk + £ = T(£>c (2 -5) 

£ 

where k is the number of complete wave marks on the surface during each tooth period. — 

is the remaining fraction of a cycle between subsequent tooth passes. 



Chatter and Stability Analysis 

FIGURE 2-3: Chip regeneration with various phase shifts 

It can be seen that the most stable conditions, insofar as the regenerative effect is concerned, 

are when the tooth passing frequency is at an integer fraction of the chatter frequency, which 

results in a zero phase shift. This corresponds to spindle speeds, n [ R P M ] , of: 

60fccoc 

n = ——, k = 1, 2, 3, . . . (2-6) 
In 

The non-linearity which occurs when the tool separates from the workpiece is described in 

[20], and Yoshitaka et al. [21]. 

The regeneration effect can be reduced significantly by using cutters with non-uniform 

pitch, which causes the phase shift, e , to change successively for each tooth. The increased 

stability in mill ing with variable pitch cutters was first explained by Slavicek, [22]. Shortly 

following, Opitz et al. [23] and Vanherck [24] used computer simulations to predict the 

increased chatter stability with these cutters. 

2.4.1.2 Other Effects Contributing to Self-Excited Vibrations 

Two other principles causing self-excited vibrations are mode-coupling, introduced by Gur-

ney [25], and the possible existence of a phase shift between the change in chip thickness 
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and the change in force. The latter has been ignored in most literature due to the lack of reli

able quantitative data on the phase shift values, and on the questionable significance of the 

phase shift in practical calculations of chatter stability [26]. 

The theory of mode coupling is well detailed in [16] and [17]. Consider a hypothetical cut

ting process in which the regeneration effect could be excluded. Further, assume that the 

system contains a minimum of two modes in different directions and of different stiffnesses. 

The oscillating chip thickness from vibrations in the direction of one of the modes can cause 

a changing cutting force component in the direction of the other mode(s). It is possible 

under certain circumstances based on the orientation, natural frequency, and phase of the 

modes, and on the cutting conditions, that energy can accumulate in the system. If this sur

plus of energy is able to overcome damping losses in the system, the process may become 

unstable. 

Investigations to decrease the effect of mode coupling in milling operations were done by 

Ismail et al. [27] [28] by using cutters with an increased flexibility in one direction. By opti

mizing the orientation and the flexibility of the more compliant mode, the decreased mode 

coupling effect was found to increase the chatter stability limit slightly under certain condi

tions. 

2.4.1.3 Increased Stability Against Chatter at Lower Spindle Speeds 

The causes of chatter discussed above make no mention to the increased stability consist

ently noticed at lower spindle speeds in practice and in carefully controlled cutting tests. 

There have been several proposed mechanisms responsible for this stability increase. 

Tobias [16] attributed this to the velocity principle caused by the so called penetration rate. 

A penetration rate represented the damping supposedly contributed by the feed velocity and 

the oscillating velocity component perpendicular to the cutting direction due to vibrations. 

Penetration coefficients were determined experimentally for each mode of vibration and 

were used to model the increasing stability with decreasing cutting speed. 
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A more comprehensive explanation for this damping effect was provided by Sisson and 

Kegg [29], who describe the process damping in terms of physical quantities such as tool 

edge roundness, tool clearance angles, and chatter frequency. Due to the sharpness rounding 

of the cutting tool, part of the chip is forced under the tool and causes interference on the 

tool clearance flank. Sisson estimates an effective viscous damping coefficient based on 

elastic deformation of the workpiece material and friction at the flank face in terms of yield 

strength of the material, tool sharpness radius, clearance angle, cutting velocity, and coeffi

cient of friction. 

Later works [30] [31] [32] describe process damping as being primarily caused by the vary

ing relief angle of the cutting tool due to vibrations. In Figure (2-4), a cutting tool is shown 

as it moves from left to right at the cutting speed and vibrates up and down. Moving over 

the crest from A to B, the actual relief angle, y, closes down. Going through the trough 

from B to D, y opens up. The cutting force consists of a steady component, F a v e , and a com

ponent, labelled Fj , which is proportional to the chip thickness and is 180° out of phase with 

the cutter vibration. There is an additional force component, labelled F 2 , which depends on 

the relief angle, increasing as y decreases sometimes to a negative value, when an interfer

ence and rubbing on the flank occurs. This component is maximum at point B and minimum 

at point D. Hence, there is a 90° degree phase shift between the vibrations and the resulting 

force component which creates a positive damping effect. 

Sisson [29] is one of the few to attempt to predict the effective damping coefficients analyti

cally. Typically, Dynamic Cutting Force Coefficients (DCFC's) are determined experimen

tally through a series of controlled dynamic cutting tests over a range of vibration 

amplitudes and frequencies, cutting speeds, and tool geometries [33] [34] [35]. The DCFC 

was expressed as a complex quantity such that the real part would determine the cutting 

force component in phase with the chip thickness, while the imaginary part would account 

for the process damping. Methods used for measuring the DCFC's are summarized by 

Tlusty in [30], who also presented the effect of tool wear on the DCFC's. Other work in 

process damping is presented in [36] and [37] 
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FIGURE 2-4: Origin of Process Damping 

The process damping effect is not included in the time domain milling model used in this 

thesis. The majority of the focus will be on at cutting speeds above those affected by proc

ess damping. However, a newly reported phenomenon is discussed which was found to also 

contribute to low speed stability in milling. This phenomenon is based on an apparent 

decrease in the wave regeneration effect with increasing feed rate. 
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2.4.2 Chatter Stability Models 

Chatter stability has been most commonly expressed by stability lobe diagrams, which plot 

the boundary that separates stable and unstable machining in the form of axial depth of cut 

limit versus spindle speed for a specific radial width of cut and workpiece-cutting tool com

bination. Referring to Figure (2-5), three borderlines of stability can be identified, called 

lobed, tangent, and asymptotic. The lobed borderline of stability is the exact borderline. 

The asymptotic borderline represents the principal borderline defining the maximum depth 

of cut for all spindle speeds. The tangential borderline follows the profile of the lobe tips, 

which for lower cutting speeds accounts for the increased stability due to process damping 

and other speed dependant effects. 

FIGURE 2-5: Chatter stability borders: asymptotic, tangential, and lobed 
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Predicting these stability borders has been the focus of much machining research since the 

1950s. Tlusty and Polacek [38] [26] predicted the asymptotic borderline by considering 

positional mode coupling and regeneration effects, modelling the machine tool as a multi 

degree-of-freedom structure. The critical axial depth of cut limit, a/;m, was expressed by the 

classical equation: 

_ 1 
alim = 2Ks*[G]min

 (2"7) 

where Ks is the specific cutting force coefficient, and ^[G]min is the minimum value of the 

real component of the machine tool's transfer function, oriented with respect to the cutting 

surface and to the cutting force. Research by Tobias and Fishwick [39] and Merrit [40] pro

vided methods of predicting the lobing effect of the stability limit. Merrit predicts the stabil

ity lobes by using feedback control theory to model the self-excited chatter effect. Tobias 

used the proposed "penetration effect" to account for increased stability at lower cutting 

speeds. However, alternate explanations for this effect, as discussed above, were later pro

posed [29] which gained more general acceptance. Process damping is often not included in 

predicting stability lobes due to the difficulty in accurately modelling its effects. The result

ing stability diagram, in which the asymptotic borderline is coincident to the tangential bor

derline, becomes applicable only at higher spindle speeds. 

These early works were developed using orthogonal cutting models in turning processes. In 

milling, prediction of chatter stability is further complicated by the rotating cutter, time var

ying cutting forces, direction of chip load, and multi degree-of-freedom structural dynamics. 

Sridhar et al. provided a comprehensive theoretical analysis of the milling process [41]. 

First, a model for a straight tooth cutter was derived with three basic assumptions: (a) the 

cutting force is represented as being proportional to the chip thickness, (b) the angle of the 

cutting force relative to the radial direction is constant, and (c) regeneration of waviness is 

limited to the surface left only by the tooth immediately preceding the current one. In [42] 

and [43] this was eventually extended to a generalized model for evaluating stability lobes in 

milling. The process is described by a linear differential-difference equation with periodic 

coefficients. Stability is determined by a numerical algorithm based on the mapping tech-
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niques similar to the one used in the established Nyquist criterion. Opitz and Bernardi [44] 

simplified this model by taking average values of the time varying coefficients and the 

reduced stability equation is solved to give the stability lobes. Methods of stability analysis 

in milling are also discussed in [16] and [17]. 

Opitz et al. [23] and Vanherck [24] evaluated stability lobes for milling with variable pitch 

cutters. A stability gain of over 400% has been reported by using milling cutters with non

uniform pitch. 

Due to the rapid development of computer processing power over the past twenty years, 

many proposed methods for determining stability limits in milling, following those just 

mentioned, rely on time domain simulations. In [20] Tlusty presented stability lobes evalu

ated by a series of time domain simulations in which the non-linearity of the cutting tool-

workpiece separation during chatter is considered. Numerous models for time domain sta

bility lobes have since been proposed. In [31], [18], and [19], Tlusty applied his model to 

high speed machining where process damping effects are negligible. In [45], Smith and 

Tlusty used time domain simulations to present dynamic cutting limits in the form of con

stant peak-to-peak force plots. This considers forced vibrations in addition to the vibrations 

caused by self-excitation mechanisms. Week and Altintas [46] incorporated the simulated 

stability lobes to a C A D / C A M system for chatter free process planning. 

Altintas and Montgomery [3] used a time domain simulation featuring a digitized workpiece 

and cutting tool model. The effect of process damping is included by considering cutting 

forces in five distinct regions where the cutting edge travels during dynamic cutting. Lee [4] 

extended the simulation to milling with ballend cutters. He used a peak-to-peak vibration 

amplitude criterion to determine the stability border through multiple time domain simula

tions. 

Despite the heavy focus on time domain simulations for determining chatter stability limits, 

there have recently been significant contributions to analytical frequency domain prediction 

of stability lobes. Minis and Yanushevsky [47] [48] presented an analytical method for solv

ing the dynamic nulling model proposed by Sridhar et al. [43]. The dynamics of the milling 
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process were described by a set of differential-difference equations with time varying peri

odic coefficients. The stability of the system was examined using Fourier analysis and basic 

properties of the parametric transfer functions of linear periodic systems. Altintas and 

Budak [49] [50] solved the chatter stability lobes by an alternate method, relying on a stabil

ity model similar to those detailed by Tlusty [17] and Tobias [16]. The dynamic milling 

process was modelled by considering the Fourier series expansion of the time varying mill

ing coefficients. Using the eigenvalue solution to the dynamic milling expression, analytical 

expressions were formulated for chatter-free axial depth of cut limits and spindle speeds as a 

function of the machine structure's transfer function at the tool-workpiece contact zone, 

static cutting force coefficients, number of flutes, and the radial width of cut. This analytical 

solution provides the same results as other frequency and time domain solutions, but by a 

more practical and direct method. In [51] a more generalized formulation was derived 

which accounts for varying cutter and workpiece dynamics along the axial depth of cut. 

The stability model of Altintas and Budak [49] is expanded in this thesis to include the 

effects of feed rate. It will be shown that even without the effect of process damping, the 

tangential borderline of stability increases at lower spindle speeds due to the feed rate. The 

tangential stability borderline may follow a second lobing pattern with varying spindle 

speed, depending on the cutting conditions. 

2.4.3 Time Domain Simulation of Milling Flexible Structures 

The time domain simulations discussed above are mainly for the purpose of determining the 

stability border of dynamic milling. Other useful predictions can be obtained by the use of 

time domain simulations, such as cutting forces and bending moment acting on the machine 

tool, machining torque and power requirements, surface error profile from static and 

dynamic deflection and surface roughness due to chatter. Furthermore, time domain simula

tions are extremely useful for detailed examination of non-linear effects such as tool-work-

piece separation during chatter, cutting tool runout, exact kinematics of milling which 

considers workpiece feed, and complex cutting tool geometries. The simulations of concern 

in this study are those modelling the milling process which consider a flexible workpiece 

and flexible machine tool/cutter. 
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Kline, DeVor, and Shareef [52] developed a computer simulation to predict the surface finish 

as a result of static deflection of the cutting tool and of the workpiece during milling. The 

endmill cutter was modelled using the equation of a slender cantilever beam, while the 

workpiece was modelled by finite elements as a plate clamped at three edges with one edge 

free to deflect. The machined surface profile along the axial depth of cut was determined by 

tracing the relative static cutter-workpiece deflection as the point of contact move upwards 

along the cutting tool during cutting due to the helix angle. In [53] Kline and DeVor studied 

in detail the effects of runout on milling forces using time domain simulations. However, 

Kline did not include the regeneration effect of chatter, validating the model only for the 

case of static milling. 

Montgomery and Altintas [3] [32] provided an improved time domain milling model of thin 

plates in which the cutter and workpiece were represented by digitized surfaces. A compu

ter program maintained a cutting surface array which allows the exact kinematics of milling 

to be modelled, including the trochoidal tooth path, regeneration of waviness, changing tool 

immersion due to static and dynamic deflection. The model predicted dynamic cutting 

forces, surface finish including the effects of chatter, and workpiece vibrations. The plate 

was modelled using an off-line finite element package, while the cutter was assumed to be 

rigid. 

Lee [4] used a model similar to that of Montgomery and Altintas for prediction of cutting 

forces, surface finish, and chatter stability limits for ballend milling. The model is restricted 

to half and full immersion cutting. 

Sagherian and Elbestawi [54] [55] improved on Kline's simulation by adding the regenera

tion effect, a dynamic cutter deflection model, and a dynamic workpiece deflection model. 

The cutter was modelled by a measured transfer functions in the X and Y directions at the 

cutter tip. The identified modal parameters at the tip were extrapolated using cantilever the

ory to obtain mass and stiffness at points along the axial length of the cutter. The workpiece 

was modelled using the finite element method. The dynamics of the workpiece was updated 

throughout the simulation as material was removed during milling. Sinusoidal approxima

tion of static chip thickness was used and the changing radial immersion with cutter and 
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workpiece deflection was not considered. The axial surface profile was predicted, but sur

face roughness in the feed direction due to vibrations was not obtained. 

The comprehensive milling model proposed in this thesis combines methods used by several 

of the above works. Dynamic structural characteristics of the machine tool, cutter, and 

workpiece will be determined through experimental modal analysis. The cutting surface is 

modelled using an algorithm combining that used by Montgomery and that used by Lee. 

Exact milling kinematics are used, uniform or non-uniform pitch cutter geometry, and cutter 

runout are all included in the model. Dynamic cutting forces, cutter and workpiece vibra

tions, surface finish, bending moment on the spindle, power, and chatter stability borders 

are all predicted. The stability lobes predicted by time domain simulations are explained 

and supported by an improved analytical model based on that of Budak and Altintas [49]. 

Where possible, experimental cutting tests are performed to validate results. 



C H A P T E R 3 Dynamic Modelling of 
the Workpiece and 
Machine Tool 

3.1 Introduction 
Many different models and numerical techniques may be used for simulating structural 

dynamics of a machine tool and workpiece. Simplified models consisting of a single domi

nant mode in each direction are very commonly used, which can lead to accurate enough 

results for smaller depths of cut, provided other modes are relatively stiff. For larger depths 

of cut, where the dynamics may change at different points along the length of the cutter, 

multiple degrees of freedom must be considered in each direction. In the past, some authors 

have used the finite element method to derive mode shapes and other dynamic parameters 

for modelling dynamics of the workpiece when machining flexible plates [3] [54]. For more 

complicated geometry workpieces, however, the initial work involved in modelling the 

structure for the finite element method may be impractical. Modal analysis provides a more 

practical alternative, which relies on experimentally measured transfer functions at various 

points on a structure. In this chapter, the procedures for acquiring and processing measured 

transfer functions to identify structural dynamic parameters are discussed. 

The workpiece and machine/cutting tool structural dynamics are modelled as two independ

ent entities. Each structure is divided into N fixed number of measurement points, or 

degrees-of-freedom, as shown in Figure (3-1). 

20 
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FIGURE 3-1: Discretized dynamic model of cutting tool and workpiece 

Workpiece 

3.2 Dynamic Model of Workpiece and Machine Tool 

The most general second order linear dynamic model is one which uses the elements of 
mass, damping, and stiffness matrices [M], [C], and [K] in the differential equation shown 
below in time, frequency, and Laplace domains. 
Time Domain: 

[M]{x(t)} + [C]{x(t)} + [K]{x(t)} = {fit)} (3-D 

Frequency Domain: 
-a2[M]{X(m)}+j(£>[C]{X(ioi)} + [K]{X(iG>)} = { F ( I G > ) } (3-2) 
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Laplace Domain: 

sHM]{X(S)} + s[C]{X(s)} + [K]{X(s)} = {F(s)} (3-3) 

In analytical methods of solving the differential equation, the matrices are estimated from 

material properties, geometry, and/or measured forces and responses. The modal parameters 

of N modes with N degrees-of-freedom are then found by the solution of the classic eigen

value-eigenvector problem, and the differential equation is solved in modal coordinates. 

The alternative approach is to directly fit modal parameters of M modes to experimental data 

in the form of input-output relationships at N measurement points on the structure. In the fre

quency domain, for general viscous damping, a common form of the frequency response 

function is the pole/residue or rational fraction expansion form: 

M 
(3-4) 

where, 

k is the mode number, 

p is the response measured degree-of-freedom, 

q is the input or reference measured degree-of-freedom, 

Apqk is the complex residue for input q, response p, and mode k, 

Xk is the system pole for mode k: Xk = - £,k(Onlc + j(Hdlc, 

L\k is known as the damping ratio for mode k, 

(tink is the natural frequency of mode k in [rad], 

and the operator * indicates complex conjugate. 

This model assumes linearity and diagonalizability, which implies the modes are orthogonal 

and can be decoupled [56]. Further assumptions of reciprocity and proportional damping 

are also made, which greatly simplify modal analysis. 
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Proportional damping is a simplification which assumes that the viscous damping matrix, [C], is 

a linear combination of the mass, [M], and stiffness matrix, [K]\ i.e.: [C] = a[M] + $[K]. 

This leads to real component of the residue equalling zero [56]. The frequency response function 

for mode k can now be written in a simplified matrix polynomial form in which the contribution 

of complex conjugate poles are combined. 

iuLk}Ti URlc} 

- a > 2 + 2C(O l l f c/Q) + Q)2jt 

where {uLkj and {uRk} are the response and reference mode shape vectors, also known as the 

left and right mode shape vectors, which, for the case of proportional damping, are real. 

Models with the reciprocity property can be written in symmetrical form where the system 

matrices [M], [C], and [K] are symmetrical and the left and right mode shape vectors, {ujjj 

and {uR/J, are equal. It follows from Maxwell's reciprocity theorem that the transfer func

tion at response p and reference q equals the transfer function at response q and reference p. 

The parameters defining the dynamic model are now N mode shape coefficients, a damping 

ratio and a natural frequency for each mode. The M(N + 2) parameters are fit to experi

mental measurements as discussed in the next section. The validity of the above assump

tions are ultimately verified if an acceptable fit is achieved using the estimated parameters. 

3.3 Identification of Structural Dynamic Parameters 

Having defined a dynamic model for the workpiece and cutting tool motion, it is necessary 

to experimentally evaluate the modal parameters co„, C, and fuf for each mode. These 

parameters may be fit to measured transfer function data in various ways. 

Although there are numerous commercial modal analysis packages already available, new 

software was created which could be tailored specifically for more efficient and more flexi

ble parameter fitting of simple cutter and workpiece structures. Furthermore, since the 
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modal analysis software uses the same dynamic model as in the milling simulation, the esti

mated parameters are directly useable by the milling analysis software. 

3.3.1 Transfer Function Measurements 

Transfer function measurements of the cutting tool and of the workpiece structures can be 

obtained using a Fourier analyzer from hammer impact testing. A total of N2 frequency 

response functions could be measured taking each ./V response degrees of freedom with ./V 

reference degrees of freedom. From the reciprocity assumption, theoretically only N meas

urements are required to fully define the modal matrix. Either the reference measurement or 

the response measurement may be kept at any fixed point. The following discussion 

assumes a fixed response point p and N reference points denoted by subscript q. 

With an accelerometer measuring motion at point p on the structure, a measured impact force is 

applied at point q of the structure to excite its natural frequencies. The Fourier analyzer provides 

the frequency response function: 

in [acceleration]/[force] units for discrete values of co. The frequency response function is 

converted to [displacement]/[force] units by dividing the transfer function at each frequency 

by -co 2 . 

- f — = H__(CO) = — ^ (3-7) 
^(CO) Pq CO2 

With the accelerometer fixed at point p on the structure, frequency response functions are 

measured from impact loads at all Appoints on the structure. 

3.3.2 Modal Parameter Estimation Model 

The generalized model used for parameter estimation, from equation (3-4), is: 
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M * 

k= 1 J k 

although it will be used in various forms throughout different stages of the estimation algo

rithm. A polynomial form of the model will be used for linear least squares fitting, while the 

non-linear optimization and synthesis will be in terms of variables most meaningful and 

most workable for the user (natural frequency, (£>nk, damping ratio, r

k , and residues, Apqk). 

Although the real component of the residue can be ignored from the proportional damping 

assumption made above, it is included in parts of the estimation model for completeness. 

The main purpose of this assumption was to simplify modal analysis of multiple reference or 

multiple response measurements. In the case where the parameters of only one transfer 

function need to be estimated, the more general model of equation (3-8) should be used. 

Different parameter estimation methods are well summarized in [57], [58], [59], and [60]. 

Since the combined response function of multiple modes being fitted is non-linear, the 

parameters are typically fit in multiple stages. One approach is to break up the problem into 

multiple linear problems, first estimating the system poles, then estimating modal coeffi

cients in a second stage. Alternatively, an iterative solution procedure may be used allowing 

all modal parameters to vary until an error criterion reaches an acceptable level. In this case, 

a set of starting values must be selected, which can greatly influence the final solution. 

The method adopted below is one which first uses a two stage linear least squares solution 

for initial estimation of the parameters of each mode individually. Next, a non-linear steep

est descent search algorithm with a least squares error function is used to optimize the 

parameters in a global sense. 

3.3.3 Residual Modes 

When estimating the parameters of a single mode, a limited frequency range of the measured 

data, R, must be selected which contains the mode. However, since the measured frequency 

response function within R may consist of multiple superimposed modes, modes outside the 
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range, termed residual modes, need to be considered. Two additional terms are required to 

include the effect of residual modes below the frequency range, often called residual inertia, 

and the effect of residual modes above the frequency range, termed residual flexibility. 

* 

Hr(G» = Hlowm + — Y + +Hhim 0-9) 

where, 

Hlow(0d) is the residual effect of lower frequency modes 

Hhi((o) is the residual effect of higher frequency modes 

In this thesis, the residual modes are modelled as undamped second order linear systems of 

two arbitrarily selected frequencies, (Hn l o w to account for lower frequency modes and 

(£>n h i to account for higher frequency modes. The frequency response function within fre

quency range R can be written in polynomial form as: 

HR((H) = + — —— — + (3-10) 

3.3.4 Linear Least Squares Estimation of Natural Frequency and Damping Ratio 

The first stage of the fitting algorithm is to estimate the poles (in the form of natural frequen

cies and damping ratios) of a single mode. A user selected range, R, of the frequency 

response spectrum is used for each fit. For the purpose of fitting the unknown a and P 

parameters, equation (3-10) becomes non-linear. 

By multiplying both sides of the equation by ( - CO2 + 2t,kG)n tU®) + ffln ft) ignoring 

higher order terms of the residual modes, the model may be approximated as: 

C C 
^ ( c o ) ( - c o 2 + 2C J tcon)k(7CO) + co 2

) i t ) = exa + (/co)p f c+ 1 — + „ 2 * 2 <3"11> 
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where Cx, and C 2 are complex residual constants. As long as the residual terms account for 

the effects of out-of-band modes, they can take on any convenient mathematical model [57]. 

The lack of physical significance of these terms should be noted, however. The estimated 

residual terms are meaningless, but provide a model sufficient for estimating the natural fre

quency and damping coefficients of the mode of interest. 

Equation (3-11) may be divided into real and imaginary components and written as: 

\l2 

- co 2 + co 2 + 
low 

^3 
- C O 2 + C O 2 

low - W 2 + < A / 

9? -co 2 5R [ / / s (co) ] +d3i[HR((o)]-ajcS[HR(a>)] = ak + 

wc9U/ / s ( ra) ] -co 2 3[# s (co) ]+r f3 [ / / f l (co) ] = « P i l + 

where, 

C = 2 ^ n , k 

d = <»lk 

^ = 

H 2 = <R[C2] 

u.3 = 3 [C, ] 

J i 4 = 3 [ C 2 ] 

Equation (3-12) can be written in the matrix form [A(u))]{P} = {Z?(m)} as: 

(3-12) 

-0)3 [ / /^((O)] X[HR(W)) -1 0 r - ^ - r 1 

co9?[tfR(co)] 3 [ / / r ( C O ) ] 0 - C O 0 0 
low "n, hi 

c 
d 

a k 

h 

*\ 
^2 

^3 

^4 

C029?[f//j(tO)X.| 

co 23[// /j(co)] 
(3-13) 
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With multiple data samples at different frequencies C 0 j , c o 2 C 0 „ , equation (3-13) may be writ

ten in the form [A]{P} = {B}: 

A(Q>,) 5(0 ) ! ) ' 

A ( c o 2 ) {P} = • Z?(co 2) 

A ( t o „ ) . « ( « > » ) . 

In this linear matrix form, the unknowns, {P}, may easily be estimated using the linear least 

squares solution: 

{P} = ([A]T[A])~l[A]T{B} (3-15) 

The natural frequency and damping ratio, con k , and L\k, are retained here, while the remain

ing residue variables are discarded. 

Only data from a single measurement needs to be used here to estimate the system poles. 

Although, it should be noted that the poles are treated as global parameters. A later stage 

will ensure that the parameters provide the best fit for all measured transfer functions. 

3 . 3 . 5 Linear Least Squares Estimation of Residues 

Having estimated unknowns c and d, the original form of the SDOF model with residual 

modes (equation (3-10)) can be written as a real and imaginary pair of linear equations in 

terms of the six remaining unknowns o^, $k, alow, P / o v v , OLhi, $hi. 

*[HR(a)]DxD2DA - 3 [ ^ ( © ) ] D 1 D 3 D 4 

= UlowD2D4 ~ $low®D3D4 + ^ k D \ D 4 + <*hiDlD2 " foi®DlD3 

9?[//^(co)]D 1 D 3 D 4 + 3 [HR((a)]DlD2D4 (3-16) 
= <*lowD3D4 + p / o v v c o D 2 D 4 + p > D , D 4 + ahiDxD3 + p ^ c o D ^ 

or, in matrix form: 
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D,D 4 0 D 2D 4-coD 3D 4 D,D 2-coD^j 
0 coD,D4D3D4 (oD2D4 D,D 3 coD,D2 

where, 

a k 

h 

"•low 

aki 

hi 

•3ilHRW]DlD2D4-Z[HR((0)]DlD3D4 

^[HR(w)]DlDiD4 + ZlHR(Oi)]DlD2D4 

(3-17) 

D l = - £ 0 2 + < W 

D2 = -0)2 + 0 3 ^ 

D 3 = 2 C * < i k G > 

As in the case for estimating (£>n k and ̂ , (3-17) can be written in the form of equation (3-

14) and solved using the linear least squares solution of equation (3-15). The residual terms 

are discarded and the complex residue for mode k, Akpq is estimated as: 

, (V .(Uk-h<»n,l&k 
Akpq ~ ? +/ -2 m d,k 

(3-18) 

A single mode of a measurement frequency response function has now been identified with 

the parameters a>n k , r

k , and Akpq. While the poles of the system, (in terms of con k and r

k ) 

are global parameters, the residue must be estimated for each measurement. The values of 

con k and Ck, as estimated by a single measurement, may be used in (3-17) to repeat the esti

mation of residues for all measurements. The global parameter estimation stage in the next 

section will ensure all parameters achieve a best fit for all measured response functions. 

Alternatively, there are other identification methods in which Q ) n k and Lk may be estimated 

globally. Some of these are detailed in [62]. 
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In the case of proportional damping, the real part of the residue is zero. From equation (3-

18), this translates to $k = 0. Terms corresponding to $ k can be dropped from equation (3-

17), and the residue is estimated as: 

(3-19) 

Figures (3-2) through (3-4) show the measured transfer function at the tool tip of a 3/4 inch 

diameter carbide helical endmill mounted on a Fadal vertical machining center with a 

hydraulic chuck. The identified parameters are listed in Table (3-1). Figure (3-2) shows 

mode 2 synthesized with the effect of residual modes, for the frequency range which was 

used during identification. Figure (3-3) shows the mode without the effects of residual 

modes for the entire frequency spectrum. When all identified modes are superimposed, the 

residual modes are left out. Figure (3-4) shows the complete transfer function of all modes 

identified with the procedure above 

TABLE 3-1: Identified Modal Parameters with Complex Residues 

Mode # Nat. Freq. [Hz] Damping Ratio Residue (9?) Residue (3 ) 

1 497.156 9.47E-02 6.47E-06 -1.99E-05 

2 661.45 5.04E-02 2.00E-05 -2.90E-05 

3 887.04 6.39E-02 9.88E-07 -5.50E-05 

4 1642.10 2.54E-02 8.98E-07 -3.19E-06 

5 2199.50 1.61E-02 -3.56E-06 -4.76E-05 

6 2796.94 2.86E-02 -2.33E-05 -9.41E-05 

7 3837.84 7.24E-03 -6.78E-06 -6.21E-05 

8 4924.14 1.78E-02 -9.44E-06 -5.71E-05 

9 6038.96 1.61E-02 2.08E-06 -1.24E-05 

10 7899.67 5.46E-03 -9.48E-07 -1.47E-06 

3.3.6 Global Non-Linear Optimization of Parameter Identification 

Often the estimations of each mode individually, accounting for the effects of residual 

modes, provides sufficiently accurate results. For systems with heavy modal coupling, how

ever, it is desired to further optimize the fit of the parameters globally, considering all modes 



Identification of Structural Dynamic Parameters 

FIGURE 3-2: Single complex mode identification with residual modes 
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FIGURE 3 - 3 : Single complex mode synthesized without residual modes 
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FIGURE 3-4: Multiple complex mode identification 
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and all measured frequency response functions simultaneously. For this stage of the fitting 

algorithm, a non-linear least squares steepest descent search algorithm [61] is adopted in 

which all parameters are varied until a specified error criteria is reached. 

Another alternative for global parameter estimation, as detailed in [56], is to use a similar 

iterative algorithm just for the pole parameters and evaluate the residues using the linear 

least squares solution above at each iteration step. 

The model of each measurement using the superposition of all modes is: 

[ H ( 0 ) ] = y 2 ( C i m „ t 9 i [ A T E A ] - m j t 3 [ A T E A ] ) + 2 9 t [ A t o . ] ( / « . ) ^ 

k = 1 

For this stage, the model is written in terms of natural frequency, co,^, damping ratio, Ck, 

and complex and real components of the residues, Apqk, since these parameters are most 

commonly understood by the user. The user interface designed for this estimation algorithm 

allows setting parameters to user defined values and also allows the algorithm to fix terms 

during the optimization stage. 

The M(2N + 2) estimation parameters (£>nk, r

k , 3i[Akpq], and 3[Akpq] are represented as 

Pj, where j = 1,2,..., M(2N +2). The measured response function is denoted as Hpq(a>) 

and the estimated function as Hpq{(£>, p). 

The cost function used to evaluate the fit, J, is the summed magnitudes of AHpq((a, p) ,the 

difference between the measured and the estimated functions Hpq(cd) and Hpq(id,p), for 

all n data points and all Af measurements: 

N n 

m,P)= ^^m&H^pw+siAH^p)]2) (3-2D 
q = 1 i = 1 
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For the steepest descent approach, the parameters are updated in the direction of the negative 

gradient - V 7 . The partial fractions are individually evaluated by numerical approximating 

the slope over a small interval of the parameter, Ap: 

dJ.= J(<o,p)-J(®,p') ( 3 2 2 ) 

dpj Ap 

where p' are the parameters p with pj incremented by Ap. For each iteration, the parame

ters are then updated as: 

P j = Pj-S^ j = 1, 2, . . . , M(2N + 2) (3-23) 

where S is the step size, which is selected for optimum decrease of the cost function J. The 

cost function is first evaluated with a step size of S = 1.0. If the cost function decreased, S 

is incremented by a factor y (y> 1.0), as Snew = ySprev until a minimum J is found in the 

direction - V / . Alternatively, if the cost function increased, S is decremented as 

Snew = p™v until a step size is found causing J to decrease. Note that while moving in the 

direction - V 7 , the cost function will always decrease given a small enough interval. 

The algorithm continues until the relative change in J between iterations reaches an accepta

bly small value, e. The condition for completion is: 

Jfiew 3old 
^new 

< £ (3-24) 

Figure (3-5) shows the optimized fit of the transfer function identified above from Figure (3-

4). 

3.3.7 Evaluating Mode Shape Vectors 

After identifying the modal parameters of all M D O F measurements, the evaluation of mode 

shapes becomes trivial with the assumption of proportional damping. In equation (3-19), oĉ . 
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FIGURE 3-5: Optimized multiple complex mode identification 
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corresponds to the product of the mode shape coefficients of the response degree-of-free

dom, p, and the reference degree-of-freedom q, uk puk . Assuming a fixed response point, 

p, the mode shape coefficients are defined as: 

uk,p ~ J~2AkpqG>d,k 

-2Ak cod k 

k - £ 3 - j L 1 0 = 1,2, (3-25) 

where 3i[Akpq] = 0. Note that for the mode shape coefficient for measurementp, the resi

due must be negative for uk to be a real value. This enforces that the structure will always 

move in the direction of the applied force at the point of impact. 

Figure (3-6) shows measured and fitted transfer functions measured at four points along the 

axial depth of cut of a thin plate workpiece. The modes are identified in the form of real 

modes. The natural frequencies, damping ratios, and mode shapes are listed in Table (3-2). 

TABLE 3-2: Identified Modal Parameters with Real Mode Shapes 

Measurement Point 
(measured from top of 
plate) 

Mode Shape for Mode 1: 
C0„ =1540 Hz 

C, =0.035 

Mode Shape for Mode 2: 
C0n =3769 Hz 

£ =0.041 

Point 1: Omm 3.871572 3.471743 
Point 2: 10mm 2.461387 2.810272 

Point 3: 20mm 2.106084 1.921418 

Point 4: 30mm 1.524942 0.9160874 

3.4 Simulating the Dynamic Response of the Cutter and 
Workpiece 

3.4.1 Time Domain Dynamic Model 

Once the modal parameters of the machine tool and workpiece are identified, the reaction of 

each structure to cutting forces can be simulated in the time domain. 
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FIGURE 3-6: Multiple mode, multiple degree-of-freedom identification 
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Consider a structure described by the dynamic model defined above. In the Laplace domain, for 

each mode, k, the response at point p, from an applied force at reference, q, can be expressed in 

polynomial form as: 

where, 

™ * sz + a, s + a* 
(3-26) 

b0 = 

— rA2 O o = CO nk 

This is expressed in continuous state space observable canonical form [63] as the single 

input,/, and single output, x, system: 

0 -a2 + 
h 1 - f l j 0 

/ 

• [ o i ] + 0 (3-27) 

where v/ and y>2 are state variables. 

Since the response at a point to all applied forces is simply the superposition of N transfer 

functions with only bo varying between the reference points, the total response of each point 

for each mode may be expanded into the following multiple input, {fj, single output, x^, 

system: 
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h,kP y\,kP 

h,kP_ .1 - 2 ^ „ , _V2, kp_ 

+ uktP{uk}T{f} 

xkP='yi,pk <3-28> 

This response function is integrated through time using Runge-Kutta 4 order integration 

algorithm and the displacement of each mode is superposed to obtain the instantaneous posi

tion at each point on the structure. 

M 
x

P= lLy\,Pk 
* = i 

3.4.2 Runge-Kutta 4th Order Integration Algorithm 

The Runge-Kutta fourth order formula is by far the most common and most preferred 

numerical integration algorithm. The algorithm along with computer source code is well 

described in [64] and [65]. 

Consider the first part of Equation (3-28) which evaluates the derivatives of yj and y2 for 

each point and each mode on a structure. The force {/} in the milling process is a function 

of the cutting conditions, which are constant, and the relative position between the cutter and 

the workpiece, which is a function of the position state variables y} and y2 and of time, t. If 

these parameters are generalized, letting v,- (i = 1,2,3,...) represent the state variables for all 

points and all modes on the structures, the time derivative of a state v(- is written as a function 

of the states and as a function of time: 

V ; = f(t, V j , v2,...) / = 1,2,3,... (3-30) 

The states at time step n + 1 are evaluated based on the states at the previous time step n 

with the following four stage set of equations: 

khi = &tf(tn,vnVvn2, ...) 



Summary 

Atf(tn + At/2, vnX+kxxll, vn2 + kh2/2,...) 

k Atf(tn + At/2, v n > j + k2t XI2, v„f 2 + k2t2I2,...) 

k, Atf(tn + At, v B i j + * 3 i , , v f l i 2 + * 3 , 2 , • • •) 

n + 1, i n , i 
( 3 - 3 1 ) 

where / = 1, 2, 3, ... The last equation above is a weighted sum of the four stages of eval

uation. It is important to note that evaluating the function / during the simulation actually 

requires several steps. The states must first be converted to position by summing the modes 

with equation (3-29). Based the relative workpiece and cutting tool position, the cutting 

conditions, and rotation of the cutter through time, the chip thickness is determined at points 

along the cutting edge. From the chip load, cutting forces are estimated. The time deriva

tive of the states are then calculated with Equation (3-28). The workpiece-cutting tool inter

action described here is discussed in detail in the next chapter. 

3.5 Summary 
In this chapter, the dynamic model used to describe the cutting tool and the workpiece is 

defined. An algorithm is outlined which is used to efficiently identify dynamic modal 

parameters given experimental transfer function measurements at multiple points on the 

structures. Finally, equations are given to simulate dynamic response from the dynamic 

model in state space using Runge-Kutta 4th order integration algorithm. These dynamic 

parameters will be used throughout this thesis in both time domain and frequency domain 

milling models to predict structural vibrations. 



CHAPTER 4 Modelling of Milling 
Forces 

4.1 Overview 
This chapter outlines the theory and equations used for modelling milling forces. The cut

ting force model used is the average linear-edge force model by Budak et al. [15]. For chip 

thickness evaluation, an improved discretized cutter-workpiece model is presented which 

provides a more exact kinematics of milling solution. The model features a combination of 

two algorithms for maintaining the discretized workpiece surface points during the simula

tion. This will ensure accurate chip thickness calculations even with very small widths of 

cut and can also provide a 3-D mesh plot of the finished surface. A practical runout model is 

also included in the simulation. Some experimental results are given of several cutting con

ditions to support the predicted cutting forces. 

4.2 Forces in Milling 
The force model used in this thesis is the average-edge force mechanistic model, as detailed 

in [15]. The geometry and coordinate system is shown in Figure (4-1). The axial (Z) axis is 

taken from the tip of the cutter with the positive direction towards the spindle. Elemental 

tangential, radial, and axial forces for tooth j, dFtp dFrj, and dFaj, along the cutting edge are 

given by: 

42 
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FIGURE 4-1: Coordinate system and notation for milling force model 

Path of 

dFtJ = [Kte + Ktchj]dz 

dFrj = [Kre + Krchj]dz 

dFaj = [Kae + Kachj]dz (4-1) 

where AL- is the instantaneous uncut chip thickness, and dz is the chip width. For ideal rigid 

cutter-rigid workpiece and no runout condition, the chip thickness / l i s approximated by 

5,sin (ty), where st is the feed per tooth, and <(> • is the immersion angle of flute/ in radians at 

axial location z. The immersion angle of flute j at a differential chip element is a function of 
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cutter orientation, 0 = Qt, the flutes' angular position relative to a selected reference tooth 

0, \|/ , the helix lag in terms of the helix angle, P, and cutter radius, R, given as: 

Q is the angular velocity of the cutter in radians per second. For uniform pitch cutters, the 

The forces are modelled in terms of two fundamental phenomena: an edge force component 

due to rubbing or ploughing at the cutting edge, represented by Kte, Kre, and Kae on a unit 

width of cut basis, and a cutting component due to shearing at the shear zone and friction at 

the rake face, represented by cutting pressure coefficients Ktc, Krc, and Kac. 

The parameters Kte, Kre, Kae, Ktc, Krc, and Kac are referred to as milling force coefficients 

and are determined for a specific cutter geometry and workpiece material combination 

experimentally through cutting tests. A set of slotting experiments are conducted at differ

ent feed rates and the average force components are measured in the feed (X), normal (Y), 

and axial (Z) directions. By developing an analytical expressions for average force per 

tooth, the force coefficients can be estimated by a linear regression of the experimental data. 

To derive average force per tooth equations, the elemental forces of equation (4-1) are first 

transformed into X , Y, and Z components and integrated along the immersed portion of each 

flute;', giving: 

relative flute position, \\tj, is fixed as V|/;- = -rj-, where N is the number of teeth. 

Ktesin<bj- Krecos$j + j(Krc(2§j - sml^) -Ktcco&2^) 

R r Kresm^ - Kteco%^ + Sj(Ktc(2$j - sin2^) + Krccos2^) 
tanpL 
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F « = t a f p [ ^ ^ - ^ C ° ^ ] l ^ ( 4 " 2 ) 

, i 

where z • j and Zy 2 ^ t n e lower and upper engagement limits of the in cut portion of flute 

j. The total force on the cutter at position 0 is obtained by summing the contributing forces 

of each flute. 

N- 1 

F* = I F*j 
0 

N - \ 

Fy = 1 Fyj 
o 

N- 1 

Fz = S Fzj ™ 

0 

The average forces, Fx,Fy, and Fz are determined by integrating equation (4-2) over one 

complete rotation of the cutter as: 

sf 

Fx = -KteS + KreT-i{-KtcP + KrcQ) 

s. 

In 

where values P, Q, S, and T are defined as 

F=-KteT-KreS + j(KtcQ + KrcP) 

Fz = - ^Kae(^ex-^t) + stKacT (4-4) 

n aNr . . . . i , 
P = ^™Wk, 

Q = | f [2(0-sin2ct»3|^ 
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_ aNr . ,(|>„ 

T = 2 i [ C ° ^ ] k , ( 4" 5 ) 

§ s t and (J)̂  are the start and end angles of the cut and a is the axial depth of cut. Since 

immersion angles and axial depth of cut are kept constant during the cutting tests, the param

eters P, Q, S, and T are constants and the average force components can be expressed as a 

linear function of feed per tooth, st, with an offset edge force component as: 

F q = Fqe + StFqc = *> *) <4"6> 

From measured cutting forces at different feed rates, the edge and cutting force components, 

Fqe and Fqc, are estimated by linear regression. From equations (4-4) and (4-5), taking the 

entry and exit angles as §st = 0 and §ex = 7t for slotting, the force coefficients are evalu

ated from the following relations: 

FxeS + FyeT 
t e S2 + T2 

Kre ~ 

K„„ = -

KleS + Fxe 

T 

2n F

z e 

FxcP + FO 

P2 + Q2 

Krc ~ Q 

T 
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Using Equation (4-1), elemental tangential, radial, and axial forces are reconstructed at any 

point on the cutter where chip width, dz, and chip thickness, h, are known. By breaking the 

cutter into discrete levels, the force distribution along the submersed portions of the cutting 

edges may be predicted, as shown in Figure (4-2) 

FIGURE 4-2: Predicted tangential and radial forces along the cutting edges 

4.3 Surface Generation and Instantaneous Chip Thickness 

Since the chip model used in the previous section for estimation of force coefficients is only 

valid for a rigid cutter-rigid workpiece configuration, an improved model is required in 

order to simulate milling under conditions in which forces could be dominated by vibrations. 

Rather than the closed form sinusoidal approximation for chip thickness commonly used, 

this thesis adopts a model in which instantaneous chip thickness is calculated at discrete time 

intervals from completely digitized workpiece and cutter surfaces. The exact trochoidal 

motion of the cutter described by Martellotti [2] is represented. More importantly, this 

model allows the effect of a flexible workpiece and flexible cutter to be easily considered. 
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This includes dynamically oscillating chip thickness and changing radial immersion due to 

deflection and vibrations. 

FIGURE 4-3: Digitized cutter and workpiece surface model 

Arc Cutting Surface S 

Upmilling 
Surface S„ 

Downmilling 
Surface S d 

1) The workpice and cutter are 
divided into thin layers 

2) For each layer, the workpiece 
surface is discretized into three 
arrays of points, Sc, S u , and S d . 

3 ) The endmill is discretized with a 
point for each layer along the 
cutting edge of each flute 

4) The workpiece and cutting edge 
surfaces are updated through time 
as material is removed 

The workpiece surface is first divided into a number of levels. At each level the surface is 

tracked with up to three arrays of X - Y coordinates. As shown in Figure (4-3), one array, Sa, 

contains points along the cutting arc of the workpiece. When applicable, the upmilling and 
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downmilling finished surfaces are tracked using separate arrays Su and Sd. The points on 

the surfaces are updated during cutting, and chip thickness is calculated as the difference 

between the current surface position and the surface left by the previous tooth. A l l surface 

arrays are also shifted in the negative X direction at each time interval to account for feed. 

Two methods of tracking the surface array can be used. Montgomery [3] used a method in 

which surface array is updated with the instantaneous angular position of the tooth at each 

time interval. The radial position of each point is taken as either the radius of the cutter i f 

the tooth is submerged in the workpiece, or as the radial position of the surface left by the 

previous tooth. This method is shown in Figure (4-4) and will be referred to as Method 1. 

FIGURE 4-4: Surface tracking Method 1 (Montgomery & Altintas) 

Another method, which will be referred to as Method 2, is one which uses an evenly distrib

uted array of points on the surface which are updated by moving them radially outwards as 

the tooth cuts into the workpiece, as shown in Figure (4-5). This method, used by Lee [4] is 

best applicable to more complex geometry cutters such as ballend mills, where radius of the 

cutter approaches zero at the tip of the cutter. Method 2, however, is not well applicable to 
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FIGURE 4-5: Surface tracking Method 2 (Lee) 

small radial widths of cut or long simulation runs. The radial motion of the points as they 

are updated by the cutting edge, in combination with the feed in the X direction, caused the 

points to drift and accumulate, and immersion angles change through time. 

The algorithm adopted in this thesis uses a combination of Method 1 for the arc surface, Sa, 

and Method 2 for best maintaining the history of the finished surfaces, Su and Sj. 

4.3.1 Coordinate Systems 

Since the center of the cutter is constantly moving, the points are all stored in Cartesian 

coordinates with the origin at the non-deflected stationary cutter center, while most calcula

tions are performed in polar coordinates with the origin at the instantaneous center of the 

cutter. The two coordinate systems are shown in Figure (4-6). For any given point in Carte

sian coordinates, (x, y), the following equations are used for converting to a point in the cut

ter polar coordinate system (r, <()): 
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FIGURE 4-6: Coordinate systems and variable definitions for cutter model 

r = J(x-dx)2 + (y-dy)2 

^ = f - a t a n (^ f ) (4-8) 

The atan function is carried out with the a tan2 C function, which ensures the correct quad

rant of angle 0. dx and dy are the relative displacement components of the cutter with 

respect to the workpiece due to vibrations and static deflections, calculated as: 
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dx = dx. cutter - dx, workpiece 

dy = d>'cutter -dyWorkPL ece (4-9) 

4.3.2 Instantaneous Position of the Cutting Edge 

At each level of the cutter and workpiece, the position of each tooth is initially defined in the 

X - Y coordinate system as: 

where R is the radius of the cutter and is the angular position of the flute as shown in Fig

ure (4-1) and as described in previous sections. 

Depending on the type of tool holder being used, runout can become a significant factor 

influencing peak forces, surface finish, and in extreme cases stability against chatter. The 

most common form of runout is a parallel axial offset of the cutter center from the rotation 

axis of the spindle. As a result, the flutes on the offset side of the tool holder have a larger 

effective radius than those on the opposite side. The effects of axial offset runout on force 

and geometry is investigated in detail by Kline and DeVor [53]. As shown in Figure (4-7), 

runout can be modelled with an offset parameter, p , and an angular orientation angle, X, 

relative to the position of the flutes. Two additional parameters, x and 8, are also shown, 

which may be included to model the magnitude and orientation of any axis tilt of the cutter 

with respect to the spindle. 

The model described above is ideal for studying the effects of various runout parameters. 

However, when simulating an actual existing cutter-spindle setup, these parameters can be 

difficult to measure. The main purpose of including runout in this thesis is for better com

parison of simulation results to measured cutting data. A more practical approach to model

ling runout is taken here, which focuses on ease of runout measurement for existing 

equipment. The effect of runout is modelled with an additional correction term, rr added to 

the radius of the cutter. Multiple radial offset measurements are taken along the axial length 

X: = /?sin<f>-

y- = Rcostyj (4-10) 
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FIGURE 4-7: Parallel axis and axis tilt runout models 

for each flute using a dial gauge, as shown in Figure (4-8). The dial gauge zero position is 

set to the average radius measurement taken at the cutter shank near the tool holder. Runout 

between these measurements are obtained by linear interpolation of radius offsets, giving a 

continuous runout value rr for each flute as a function of axial position, z. The tooth posi

tion with the added runout may be expressed as: 

x = (R + r r) sing

ly = (R + rjcosfy (4-11) 
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By using measured flute offset positions along the length of the cutter, any possible source 

of runout will be accounted for. 

FIGURE 4-8: Apparatus for measuring cutter runout 

4.3.3 Arc Cutting Surface 

The array of points on the arc of the cutting surface is maintained by a procedure similar to 

that used my Montgomery [3]. Two surface arrays are stored, one of the surface left by the 

previous tooth and one being created by the current tooth. Figure (4-9) shows how the sur

face array is updated. At each time interval, a new point (xt, y,-) is added to the current sur

face at the angular position of the tooth, ()),•. If the tooth is cutting, the instantaneous position 

of the tooth tip is used, otherwise a point is found on the previous surface at the tooth angle 

«>/• 
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FIGURE 4-9: Updating current arc surface array 

Tooth Submersed in Workpiece 

Tooth Separated from Workpiece 
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In order to determine if the tooth is submersed in the workpiece, the intersection point of the 

tooth and the previous surface is calculated. The point on the previous surface, (JC'^., y'k), is 

found which has an angular position, § k , immediately preceding the angular position of the 

tooth, <))•. The intersection point (x't, y\) is then found by linear interpolation of the radial 

distance between points k and k+1 on the previous surface. In polar coordinates, the inter

section point, ((|)'(, fj) is given as: 

, r'k + 1 ~ r'k , 
r i = * 1 * - * / ( 4 " 1 2 ) 

Wk+\ Vk 

If the effective radius of the cutter is greater than r't then the tooth is cutting and the chip 

thickness is calculated as: 

h = R + rr- r't (4-13) 

where R is the radius of the cutter and rr is the cutter runout. In this case, the new point 

(JC-, y() is taken as the instantaneous position of the tooth tip, (Xj(t), y ;(?)). Otherwise, if 

r'i is less than the effective cutter radius, the tooth has separated from the workpiece. The 

chip thickness is set to 0 and the new point (xt, y () is assigned the value of (x'(-, y'{) on the 

surface left by the previous tooth pass. 

4.3.4 Upmilling and Downmilling Finished Surfaces 

The upmilling and downmilling surface arrays are maintained in a different way than the arc 

surface for two main reasons. First, since the finished surface is flat, as points feed away 

from the cutter, the density of points would decrease if they were distributed according to 

the angular position of the tooth at each time interval. Secondly, the finished surface is 

affected by a tooth only at the instant it passes through (|> = 0 or <|> = %. Feed or chatter 

marks left on the surface could be extremely small and must be tracked using a much denser 

array of points than that used for the arc surface. 
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FIGURE 4-10: Updating finished surface array 

Tooth Submersed in Workpiece 

(XI_2*I-2> 

Tooth Leaving Workpiece 
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Figure (4-10) shows how the upmilling and downmilling finished surfaces are maintained in 

the simulation. As the tooth passes from its previous position, all points which lie between 

the angles <|> •(*) (current tooth position) and <)>•(* - At) (previous tooth position) are updated 

if the tooth is cutting. 

Consider point i on the surface left by the previous tooth which is being passed by the cur

rent tooth during time interval At. If it's radial position, r't is smaller than the effective cut

ter radius, the tooth is cutting and the point is moved radially outward as rt = R + rr to 

form the new current surface. The angular position of each point, (j),-, is kept fixed. A point 

is not added on the new surface at the tip of the tooth as with the arc surface. The only cal

culations done at the tip of the tooth are for the purpose of determining the chip thickness. 

To calculate the instantaneous chip thickness, the intersection point of the tooth with the pre

vious surface is calculated. As with the arc surface, the point on the previous surface, 

(x'k, y'k), is found which has an angular position, § ' k , immediately preceding the angular 

position of tooth j , §j(t). The intersection point (Xj'(t),yj'(t)) is then found by linear 

interpolation of the radial distance between points k and k+1 on the previous surface: 

'/« • £^>> 
If the effective radius of the cutter is greater than r-'(f), the tooth is cutting and the chip 

thickness is calculated as: 

h = R + r r - r-'(f) (4-15) 

where R is the radius of the cutter and rr is the cutter runout. Otherwise, the tooth is not 

submersed in the workpiece and a chip thickness of h = 0 is taken. 
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Using this algorithm, a relatively constant density of points can be maintained. Further

more, the distribution of the points is not dictated by the time interval, so a much denser 

array of points can be used if required. 

4.3.5 Special Cases 

When applying the two algorithms above, there are a few special cases which must be con

sidered when the tooth is just entering or exiting some of the surface arrays. 

The first of these cases is when entering or exiting the arc surface. If entering or exiting the 

surface at an angle other than <j) = 0 or <(> = 7C, then a point is added to the new surface 

array to mark the boundary of the workpiece. Consider the time step shown in Figure (4-11) 

for down milling. The first point in the new surface array is the intersection point between 

the line y = y e n t e r and the tooth path. The second point is that at the tip of the tooth. The 

chip thickness is found as usual with Equation (4-13). 

A second issue must be addressed in the case when downmilling at small radial immersions 

and large feed rates. There is no upmilling surface and the tooth enters the arc surface 

directly at such an angle that the tooth first strikes the upper uncut workpiece surface before 

cutting the surface cut by previous teeth. The chip thickness is found using Equation (4-13), 

with the point (x't, y'-) found as intersection between the tooth edge and the line 

y = y e n t e r , as shown in Figure (4-12). 

When entering or exiting the surface a t ( j ) = 0 o r ( j ) = 7r,apoint must be added on the new 

surface to mark the boundary of the arc surface, where the upmilling or downmilling surface 

begins. The procedure is analogous to that described above for Figure (4-11), except that the 

intersection point between the tooth and the line x = 0 is used. 
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FIGURE 4-11: Updating arc cutting surface array with tooth completely entering the cut 

Tooth Entering A r c Sur face 

4.3.6 Feeding The Workpiece 

The workpiece is fed into the cutter at the rate st [mm/tooth]. With a spindle speed, n, a 

time interval of At, and N number of teeth, the motion of the workpiece along the X-axis 

during a single time step is: 

A x = -s.N-^-At 
60 

(4-16) 
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FIGURE 4-12: Updating arc cutting surface array with tooth partially entering cut 

• - Current Surface 

o - Previous Surface 

Tooth Entering A r c Sur face 

The X component of all points in all surface arrays are incremented by Ax at each time step 

before the surface is updated due to the teeth cutting. The new intersection points of the arc 

surface with the x = 0 border must be calculated. Points are added to the upmilling and 

downmilling surface at this intersection point at a time interval based on the desired density 

of the points. 
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4.4 Experimental Verification of Cutting Force and Chip Model 
In order to verify the cutting force model and the chip thickness algorithms used in the sim

ulation, some static cutting tests are performed. The axial depth of cut is kept well below the 

chatter limit and measured forces are compared to simulation results using a rigid work-

piece-rigid cutter model. 

The cutting coefficients are obtained as described in Section 4.2. Cutting forces in the X and 

Y directions are measured using a Kistler force dynamometer. Slot milling tests are con

ducted at 1.5 mm axial depth of cut in aluminum alloy A17075-T651. The cutting tool is a 3/ 

4 inch diameter carbide helical endmill with a 30 degree helix. The forces are measured for 

feed a spindle speed of 2000 R P M and feed rates from 0.0125 to 0.125 mm/tooth (100 mm/ 

min to 1000 mm/min) The average forces are calculated and plotted in Figure (4-13). The 

corresponding cutting force coefficients, are shown in Table (4-1). Runout was also meas

ured at several points along the axial length of the cutter for each flute and the results are 

listed in Table (4-2). Using a dial gauge, measurements were taken with a one micron accu

racy, which is sufficient for the tests conducted here. 

TABLE 4-1: Cutting Force Coefficients from Slotting Tests 

Kte 
12.508356 N/mm 

Kfc 947.86792 N/mm2 

Kre 
13.679662 N/mm 

Krc 288.665009 N/mm2 

Kae 1.810814 N/mm 

Kac 223.586685 N/mm2 

TABLE 4-2: Runout Measurements 

Flute 1 Flute 2 Flute 3 Flute 4 
z [ m m ] ( f r o m tip o f cutter) [|iml [um] [ j i m ] [|im] 

1.5 2 10 0 -9 

5.0 2 10 1 -7 
10.0 0 10 4 -7 

15.0 0 9 5 -7 

20.0 -2 9 6 -4 
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FIGURE 4-13: Measured Cutting Forces in X, Y, and Z directions for Slotting Tests 
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TABLE 4-2: Runout Measurements 

Z [mm] (from tip of cutter) 
Flute 1 
[|im] 

Flute 2 
[um] 

Flute 3 
[jim] 

Flute 4 
[um] 

25.0 -2 8 7 -1 

30.0 -3 6 7 -1 

The force and chip models have been implemented into a working PC based simulation soft

ware. The predicted X and Y forces for several cutting conditions are shown below. First, 

Figure (4-14) compares measured versus simulated forces for a slotting tests above. Since 

the force coefficients are determined from a linear least squares fit of these experimental 

tests, the very close agreement is expected. Note, however, that while runout is included in 

the simulation, it was not included for evaluating the force coefficients. The results below 

show how runout can significantly affect the cutting forces. 

Figures (4-15) and (4-16) show good agreement of measured versus simulated results while 

milling with smaller widths of cut (as low as 0.5mm), and larger depths of cut (as large as 
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30.0mm). It is evident that most of the discrepancy between experimental and simulated 

forces is due to inaccurate runout measurements. In general, the cutting force and kinematic 

models provide acceptable accuracy in predicting milling forces. 
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FIGURE 4-14: Simulated and Measured X/Y forces - slotting, a=1.5mm, feed=0.1mm/tooth, 
n=2000RPM 
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FIGURE 4-15: Simulated and Measured X7Y forces - downmilling width of cut=0.5mm, a=25.0mm, 
feed rate=0.2mm/tooth, n=2000RPM 
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FIGURE 4-16: Simulated and Measured X/Y forces - downmilling width of cut=1.0mm, a=30.0mm, 
feed rate = 0.05mm/tooth, n=2000RPM 



C H A P T E R 5 Chatter Stability in Milling 

5.1 Introduction 
Avoidance of chatter in machining is critical to ensure proper tolerances, and to prevent 

excessive vibrations, which lead to poor surface finish, and could damage the cutter, the 

machine tool, or the workpiece. Often in practice, chatter is avoided by using cutting condi

tions which typically result in more conservative metal removal rates and lower productiv

ity. Knowing the precise limits of cutting conditions before chatter occurs has been the 

efforts of many machining researchers. 

The most common form of displaying chatter stability limit has been the chatter stability 

lobes. For a given cutting condition, axial depth of cut limit is plotted versus spindle speed. 

In this chapter, stability lobes are predicted by two methods: from time domain simulations 

and from a frequency domain model. While stability lobes from the time domain model pro

vide more realistic results, the long simulation time makes this method impractical. A new 

frequency domain stability lobe model is discussed here which accounts for the main source 

of chatter (wave regeneration). The previously unreported effect of feed rate on the regener

ation effect is also investigated and included in the model. 

68 
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5.2 Determining Chatter Stability Lobes from Time Domain 
Simulations 

The time domain simulation outlined in the preceding chapters includes all the necessary 

effects to model chatter, with the exception of process damping at lower spindle speeds. 

Wave regeneration and mode coupling are both included, which are the two main mecha

nisms causing chatter. The exact kinematics of milling is used, which includes the effects of 

feed and the non-linearity of the cutter separating from the workpiece. 

For a single time domain simulation, it is usually quite obvious whether or not the conditions 

are unstable by visually inspecting the program output for excessively large vibrations and 

forces. However, in order for the program to automatically scan through a range of spindle 

speeds and search for the axial depths of cut limit, a reliable mathematical algorithm must be 

developed for this procedure. 

The chatter stability criteria used in this thesis for time domain simulations relies on pre

dicted dynamic chip thickness at all cutting points on the cutter. Under chatter conditions, 

vibrations become unstable, but the magnitude of the vibrations are eventually limited by the 

cutting tool jumping out of the workpiece. The maximum dynamic chip thickness is found 

during this steady-state chatter condition. This value is normalized by dividing by the max

imum uncut chip thickness during a static milling simulation, giving a non-dimensional 

chatter parameter, T | . Until this parameter exceeds a pre-defined limit, the process is con

sidered chatter-free. 

Using the following steps, the stability lobes are evaluated by finding the axial depth of cut 

limit through a range of spindle speeds: 

1. Machine dynamics, workpiece dynamics, cutting tool geometry, feed rate, cutter orienta

tion and immersion, workpiece material, and a starting axial depth of cut, a, are speci

fied. 

2. A range of spindle speeds and a spindle speed step size are specified. 
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3. For a given spindle speed, a static time domain simulation is run (suppressing any work-

piece and cutter vibrations) and the maximum static uncut chip thickness, hs m a x , is 

stored. For uniform pitch endmill cutters with no runout, this is equal to the feed per 

tooth, st. 

4. A second time domain simulation is run using a flexible workpiece-flexible cutter model 

until a steady-state chatter condition is reached. The largest dynamic chip thickness of all 

cutting points on the cutter, hd m a x , is stored for the last few revolutions of the simula

tion. 

5 . The non-dimensional chatter parameter, rj , is evaluated as: 

TI = ( 5 . 1 } 

s, max 

6. If T | is greater than a pre-determined limit (1.1 is used in this thesis), the process is unsta

ble, otherwise the process is chatter-free. Note that excessive forced vibrations may also 

trigger a "chatter" condition. 

7. If the process is stable, amin is set to the current value of a. a is doubled and steps 3-6 

are repeated until chatter occurs. Then amax is set to the value of a when chatter 

occurred. 

If the process is not stable, amax is set to the current value of a. a is halved and steps 3-

6 are repeated until the process is stable. Then amin is set to the stable depth of cut, a. 

8. Once the range amin to amax is found between which the axial depth of cut limit lies, a 

bisection search is performed with amin > a > amax, repeating steps 3-6 until the axial 

depth of cut limit, aUm, is found within a given tolerance, £ . 

Predicted stability lobes using this algorithm for a half-immersion downmilling case is 

shown in Figure (5-1). A four fluted endmill is used with dynamic parameters: cô  = 500 
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FIGURE 5-1: Stability lobes evaluated from time domain simulations 

Stability Lobes from Time Domain Simulations 
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Hz, cay = 700 Hz, ^ = £ = 1 6 6 N/m, ^ = C y = 0.05. The material is Aluminum A17075. 

Examining several points around the stability limit, demonstrates the algorithm's effective

ness. Figures (5-2) and (5-4) show the forces and vibrations just at the stability limit, while 

Figures (5-3) and (5-5) show the unstable condition just above the stability limit. At stable 

conditions, the FFT of the vibrations show that dominant frequencies are at the harmonics of 

the tooth frequency, 300 Hz. When chatter develops, the natural frequencies (500 Hz in the 

X direction and 700 Hz in the Y direction) become more dominant. The forces and vibra

tions grow to a higher steady-state level where the system stabilizes only due to the cutter 

separating from the workpiece. 

An alternate stability criteria for determining stability in time domain simulations, such as 

the one used by Lee [4], is to use predicted peak-to-peak cutting forces or peak-to-peak cut-
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FIGURE 5-2: X / Y forces for conditions at point A: a = 4.5 mm, n = 4000 RPM 
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FIGURE 5-3: X / Y forces for conditions at point B: a = 5.0 mm, n = 4000 RPM 
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FIGURE 5-4: X and Y vibrations for conditions at point A: a - 4.5 mm, n = 4000 R P M 
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FIGURE 5-5: X and Y vibrations for conditions at point B: a = 5.0 mm, n = 4000 RPM 
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ter and workpiece vibrations. However, the A C component of predicted X and Y forces may 

not accurately detect chatter in conditions such as slotting, when radial and tangential forces 

may cancel in the transformation from polar to Cartesian coordinates. Also, tangential 

forces may have a smaller A C component during slotting with a multiple tooth cutter, when 

vibrations can cause an increasing chip thickness for one tooth, while decreasing chip thick

ness for another. Using vibrations to detect chatter can lead to difficulties in separating chat

ter from large forced vibrations and static deflections. These conditions may result in an 

artificially large or artificially small chatter parameter, r | , giving inaccurate stability lobes. 

The chatter parameter calculated above from maximum uncut dynamic and static chip thick

nesses, offers a more consistent measurement. This criteria best reflects chip thickness vari

ations caused by chatter, while filtering out most effects of forced vibrations and static 

deflection. 

5.3 Increased Stability Against Chatter at Lower Spindle Speeds 

At lower spindle speeds with relatively higher frequency vibration modes, an increased sta

bility has been noted in practice. This stability increase in most works to date is attributed 

solely to process damping. A comprehensive explanation of this effect was provided by Sis

son and Kegg [29], who describe the process damping in turning in terms of physical quanti

ties such as tool edge roundness, tool clearance angles, and chatter frequency. Later works 

[30][31][32] describe process damping as being primarily caused by the varying relief angle 

of the cutting tool due to vibrations. In general, the theory behind process damping is very 

qualitative and most attempts to model this effect have relied heavily on experimentally 

determined coefficients, in which case the predictions are restricted to limited cutting condi

tions. 

This increased stability at low spindle speeds has also been noticed in the time domain sim

ulation used in this thesis, which does not include the effect of process damping. In Figure 

(5-6), for example, the stability lobes are predicted from time domain simulations for down 

milling a flexible plate with a natural frequency of 1000 Hz with a rigid cutter with a feed 
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rate of 0.5 mm per tooth. There is an increasing stability at lower spindle speeds. This 

effect becomes greater with increasing feed rate. 

Hence, another mechanism must exist which affects stability in this range. In the next sec

tion, a frequency domain model for evaluating stability lobes is discussed. A newly reported 

phenomenon is explained and simulated, which can have an extremely important role in 

increasing stability at lower spindle speeds. This phenomenon is based on the effect of feed 

rate on wave regeneration. This does not replace process damping, which undoubtedly 

exists, from noted trends in turning. Rather it is a contributing effect to the increase in sta

bility at lower spindle speeds. Its neglect in past works can be a critical factor explaining the 

limited success achieved in modelling this effect in milling. 

5.4 Evaluating Stability Lobes from Frequency Domain Model 

Time domain simulations can very accurately determine chatter stability limits, taking into 

account many non-linear effects which are difficult to model in any closed form mathemati

cal model. However, the calculations involved can be computationally expensive. The time 

domain simulations for calculating the stability lobes in Figure (5-6), for example, took sev

eral days of computation on a Pentium II 266 MHz processor. Furthermore, time domain 

simulations offer little theoretical explanation for the resulting predictions. 

Chatter theory is explained here in detail and a frequency domain mathematical model is 

derived for evaluating stability lobes. The chatter model developed by Budak and Altintas 

[49] [50] [51] is extended to include the effect of feed rate. 

5.4.1 Dynamic Milling Model 

5.4.1.1 Milling Mechanics 

Consider the cutting model illustrated in Figure (5-7) with the following cutting conditions: 

• spindle speed n [RPM] 

• start and exit immersion angles, § s t and § e x [rad] 
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• feed rate st [mm/tooth] 

• N number of teeth - zero helix angle is assumed 

• transfer functions [G(to/)] describing the relative motion of the cutting tool and the 

workpiece 

• cutting force coefficients in the radial and tangential directions, Kt and Kr 

FIGURE 5-7: Dynamic milling model 

Cutting forces excite the structure in the X (feed) direction and in the Y (normal) direction 

causing dynamic displacements x and y . Since chip thickness is measured in the radial 

direction, the displacement can be expressed as: 

r- = -xsin<))-ycos(|> (5-2) 
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where <|> • is the instantaneous angular position of the tooth , measured clockwise from the 

positive Y axis as: 

(t> ; (r) = Clt + \\fj (5-3) 

where Q is the rotational velocity of the spindle in radians: Q = ^ 7 . The tooth location 
60 

angle, , is taken as the angular position of tooth j with respect to the cutter. The angles \|/;-

may represent non-uniform pitch or uniform pitch, in which case = J-j^-. 

The resulting chip thickness consists of a static term, approximated as 5 ;sin(j)y, and a 

dynamic component, which is evaluated as the difference between the present radial dis

placement, r • , and the radial displacement of the surface which would have been left by 

the previous tooth, r}; 0 . A constant feed per tooth, st , is assumed here, which would 

vary from tooth to tooth when modelling a non-uniform pitch cutter. The total chip thick

ness can be expressed as: 

h(fy) = [s^m^ + irj-rj 0)]g(^) (5-4) 

where gCfy) is a unit step function which incorporates the immersion angle limits § s t and 

§ e x , giving a zero chip thickness when the tooth is not submersed in the workpiece: 

sty) = 1 * - 4>„ * *j * <bex 

g(fy) = 0 <- fy<$st or fy>$ex (5-5) 

Since the static component of the chip thickness does not contribute to the wave regenera

tion mechanism, it may be left out for the purpose of determining the limit of stability. The 

dynamic chip thickness component is transformed to the X - Y coordinate system as: 

hty) = [Ajcsin^. + A y c o s ^ . ] ^ ) (5-6) 
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where Ax = x-x0 and Ay = y - y 0 . (x0, y0) represents the displacement at the previous 

tooth pass. 

The tangential and radial cutting force components for tooth j, Ftj and Frj, are evaluated 

as: 

FtJ = Ktah(Q>j) 

Fr,j = KrhFtJ 
(5-7) 

where a is the axial depth of cut. Note that a more simplified force model is used here than 

in the time domain simulation. Kt is the cutting pressure, and Kr is a ratio between tangen

tial and radial cutting pressures. The forces are transformed to X and Y directions as: 

Fxj = -FtjCos$j-Frjsm$j 

FyJ = F t j ^ r F r j ^ j <5"8> 

The forces contributed by each tooth are summed to get the total force acting on the cutter. 

N 

Fx ~ 2i Fx,j 

j= 1 

N 

Fy = S FyJ <"> 

Combining equations (5-6) to (5-9) and rearranging into matrix form gives: 

-. 

Fy 

axx 

ayx 

axy 

ayy_ 
Ax 
Ay 

(5-10) 

where the time dependent dynamic milling force coefficients are given as: 
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N 

axx = X Sj[Sin2^J + Kr(l~ COS2<|>;.)] 

j= 1 

N 

axy = X 1 + C 0 S 2 ^ ) + * r

s i n 2 < M 

;= i 

N 

"yx = £ * , • [ ( 1 " C ° s 2 < t > / ) - ^ S U ^ . ] 

; = i 

N 

axx = X 8fi S i n 2 < l ) ; + Kr(1 + COS2(|);.)] (5-11) 

j= 1 

In simplified form, equation (5-10) can be expressed as: 

{F(t)} = ±aKt[A<t)]{A(t)} (5-12) 

5.4.1.2 Dynamic Chip Regeneration 

Assume a chatter frequency u)c. The current displacement and the displacement at the pre

vious tooth pass (x, y) and (xQ, y 0 ) can be expressed as sinusoidal functions. 

Traditionally, (x0,y0) is taken as the displacement at time t-T, where T is the tooth 

period. For non-uniform pitch cutters, the period will vary from tooth to tooth. The number 

£ 

of vibration marks left on the surface during one tooth period is k + —, 

e ®cT 

k + te=to ( 5 " 1 3 ) 

where k is the number of complete vibration marks and e is the remaining fraction of a 

wave, as shown in Figure (5-8). e also represents the phase shift between a tooth's vibration 

and the wavy surface left by the previous tooth. Each lobe of the stability border corre-
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sponds to each integer value of k, with the bottom of the lobe typically representing a phase 

shift, e, of about 180° when the regeneration has most influence. 

FIGURE 5-8: Number of vibration marks in a single tooth period 

For small feed rates, using a delay of T between the tooth path of successive teeth is a valid 

approximation. However, when the feed per tooth is significant compared to the length of 

the wave mark left on the cutting surface, an additional delay term is required to account for 

feed. 

Consider Figure (5-9), which shows an exaggerated feed rate. The actual instantaneous chip 

thickness is the distance between point c, the current location of Tooth j, and point b, the 

point on the surface at Tooth j's current position. The approximation above which assumes 

this corresponds to a time delay of T, actually gives point a on the surface, a distance st in 

the negative X direction from the current tooth position. A more exact representation of 

chip thickness is given by taking an additional time delay, -Ts cosfy, whereTs corresponds 

to the time a tooth takes to travel the feed per tooth distance, s,: 
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FIGURE 5-9: Chip thickness evaluation considering additional time delay caused by feed rate 

(5-14) 

When considering vibration marks left on the surface, this additional time delay corresponds 

to Ts (£>c/2n wave cycles. At any tooth position, <|> •, the additional phase shift between cur

rent tooth path and surface left by the previous tooth in cycles is given as -7* cosfyo^. 

Considering the start and exit immersion angles, the number of cycles the phase shift 

changes while the tooth is cutting is: 
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-Ts&c[co&$st-co&$ex] 

2% 
(5-15) 

where ks is the integer number of wave marks and es is the remaining fraction of a vibra

tion wavelength. 

When the effect of feed rate is added to equation (5-13), the total number of vibration waves 

separating the path of the current tooth with the vibration marks left by the previous tooth 

may be expressed as: 

The additional delay, J cosfy, causes phase shift, e , to decrease by Ts(Oc from <|> = 0 to 

0 = rc/2 and to increase by Tstoc from § = JC/2 to <|> = %. As Tsoac increases, the time 

varying phase shift can increase stability. 

Figure (5-10),shows a example of wave paths of two consecutive teeth from vibrations in the 

Y direction, with a significant feed rate relative to the radius of the cutter and to the wave 

length of vibrations. As the cutter rotates, the phase shift changes as a function of the angu

lar position of the tooth. The additional phase shift due to the feed rate causes the phase shift 

to change from point A through to point E, where (J) = TC and the current tooth lags the pre

vious tooth path by T , or by the length st on the cutting surface. 

Regeneration of vibrations in the X direction will be less impacted by feed since the greatest 

effect of feed is at ( j ) = 0 and at <)> = it, where chip thickness is taken in the normal (Y) 

direction. The directional coefficients will take this into consideration. 

The dynamics of the system are described by the transfer function matrix, [G(ico)]: 

( T - ^ c o s ^ O c o , 
(5-16) 

[ G ( / C O ) ] = 
Gxx(ia>) Gxy(m) 

Gvx(i'a>) Gvv(i'a>) 
(5-17) 
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FIGURE 5-10: Wave regeneration with a large feed rate relative to vibration wave length and to the 
cutter radius; phase shift changes at different angular positions of the cutter 

Tooth Position <)>j [rad] 
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If two orthogonal degrees of freedom are considered in the X ,and Y directions, the cross 

transfer functions Gxy(i(a) and G (ico) are omitted. With an assumed constant chatter fre

quency, co c, the vibrations may be expressed in the frequency domain as: 

x(ia>) I = \ 
y(i©) J 

Gxx(m)F_ 
x \e

1^ 
Gyy(i®)Fy 

y0(ia>) 1 y(ico) 
(5-18) 

where (ac(T-Ts cosfy) is the phase delay between the vibrations at successive tooth passes 

in both the X and Y directions. A more condensed form is expressed as dynamic chip thick

ness vector { A(/coc)} : 

{A(/a>c)} = b[G(mc)]{F}e (5-19) 

where the time dependent regeneration coefficient, b(t, i(Oc), is given as: 

b(t, m ) = 1 -e ' (5-20) 

{A(/co c)} from (5-19) is substituted into the dynamic milling force equation (5-12) and 

written in the frequency domain as: 

{ F } e m c t = LKt[A(t))[Ht,i(Oc)][G(iaic)]{F}e -iwJ (5-21) 

Since [A(0] and b(t, /coc) are time dependent, they may be approximated by the average 

of their combined values over one tooth period. This time constant oriented regeneration 

matrix is evaluated as: 
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[C(l(Bc)] = 
cxx cxy 

Cyx Cyy 
= U[A(t)]b(t, mc)dt (5-22) 

5.4.1.3 Evaluating Chatter Frequency and Stability Limit 

The simplified dynamic mil l ing equation is now given as: 

{F}ei(a<' = ±aKt[C'i(Oc)][G'i<iic)]{F}e-i(0<t 

which has a non-trivial solution i f its determinant is zero: 

(5-23) 

det [I]-^aKt[C(iac)][G(iG>c)] = 0 

The eigenvalue of the characteristic equation above is defined as: 

A = -L

2aKt 

The resulting characteristic equation becomes: 

def[[/]+A[C(ia>)][G(ia>)]] 

(5-24) 

(5-25) 

(5-26) 

With [G(ico)] being a diagonal matrix from the assumption of two orthogonal degrees-of-

freedom, the solution to the eigenvalue problem becomes a simple quadratic equation: 

a 0 A 2 + ajA+ 1 = 0 

where, 

a0 = G^Gyy^^yy ~ C y ^ 

a i = ^G^+CyyGyy 

The complex eigenvalue is obtained as: 

(5-27) 

(5-28) 

A = - ^ K ± V a i - 4 « o ) (5-29) 
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The axial depth of cut limit alim is found from equation (5-25) as: 

2A 
alim = ~ Y (5"3°) 

For an arbitrary spindle speed and an assumed chatter frequency, co c, alim is a complex 

value. Since the depth of cut must be a real positive value, the chatter frequency must fall 

where the imaginary component of alim is zero. For a given spindle speed, a range of chat

ter frequencies around the natural frequencies of the system are scanned for all real and pos

itive values of a l i m . The system is most susceptible to chatter at the frequency where the 

axial depth of cut limit is smallest. The axial depth of cut limit for the given conditions is 

the minimum value of alim, which satisfies the condition 3 [fl/,m] = 0. The corresponding 

frequency is that at which the system will chatter. 

5.4.1.4 Stability Lobes 

The steps in calculating the stability lobes are summarized below: 

1 . Machine dynamics, cutting tool geometry, feed rate, cutter orientation and immersion, 

and force coefficients are specified. 

2. A range of spindle speeds and a spindle speed step size is specified. 

3 . A range of chatter frequencies around the natural frequencies of the system and a chatter 

frequency step size are specified. 

4. For a given spindle speed and each chatter frequency, the oriented regeneration matrix 

[C] is found by numerically evaluating the integral of equation (5-22). 

5. For each chatter frequency, the eigenvalue A is solved using equation (5-29) and the 

complex axial depth of cut limit is found from equation (5-30). 

6. By scanning through the values of alim for the range of chatter frequencies, the chatter 

frequencies and real alim values are interpolated for at each point where 3 [a / i m ] crosses 
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zero. The smallest positive depth of cut limit is selected from these real alim values, and 

the corresponding frequency is the chatter frequency, co c. 

7. Steps 4 through 6 are repeated for each spindle speed. 

5.4.2 Simplified Case of Mil l ing a Flexible SDOF Workpiece 

Consider the dynamic milling model in Figure (5-11). In this simplified system, the cutter is 

considered rigid relative to the flexible workpiece, which is allowed to deflect only in the Y 

(normal) direction. This is commonly encountered in the machining of very flexible plates. 

FIGURE 5-11: Milling a Flexible SDOF Workpiece 

///////////////// 

For a SDOF system, equation (5-24) reduces to: 

1 -^aKtcyy(mc)Gyy(mc) = 0 (5-31) 

which has a single solution for alim in the form: 

2 
Ktc (i<o)G (jco) 

(5-32) 
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Note that when modelling the dynamics in the form of a transfer function, Gyy, the motion 

in the degree of freedom Y may contain multiple modes. 

The same seven steps above are followed to evaluate the stability lobes except equation (5-

32) is used in step (5) to evaluate alim. 

5.4.3 Example 1: Milling a SDOF workpiece 

The cutting conditions are defined as follows: 

• Workpiece dynamics: co^ = 3800 Hz, Ly = 0.04, ky = lei m/N 

• The machine and cutter are assumed to be rigid 

• Force coefficients: Kt = 796 MPa, Kr =0.21 

• Cutter geometry: 0° helix, uniform 4 flute, R = 10.0 mm 

The transfer function G (ico) is evaluated as: 

CO2 /k 
G(i(D) = — ^ 

- 0 3 + 2 C y © B y ( l G > ) + < D ^ 

The imaginary and real components and the magnitude/phase shift plots for G (JO)) are 

shown in Figure (5-12). 

A range of spindle speeds is selected from 500 to 5000 R P M . For each spindle speed, cyy is 

evaluated over a range of chatter frequencies and alim is found from equation (5-32). 

For half immersion downmilling and a spindle speed of n = 1000 R P M , alim versus coc is 

shown in Figure (5-13) with all valid aUm values located where its imaginary component 

crosses zero. For these cutting conditions at n = 1000 R P M , the limiting depth of cut is 

aUm = 2-95 mm and the corresponding chatter frequency is coc = 3966 Hz. 
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FIGURE 5-12: Relative tool-workpiece transfer function in Y direction 
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The resulting stability for the entire range of spindle speeds is shown in Figure (5-14). Fig

ure (5-15) shows the stability lobes for an increased feed rate of st = 0.5 rnm/tooth. In 

addition to the lobes created for each integer value of k, a second larger set of lobes are now 

present as ks changes through multiple integer values. These feed lobes can become more 

pronounced depending on the directional coefficient matrix [A]. In Figures (5-16) through 

(5-18) stability lobes are plotted for half immersion upmilling and downmilling, and slotting 

for various feed rates. For slotting, note that the stability border actually decreases slightly 

for a range of spindle speeds. The borderline then eventually shifts upwards at lower spindle 

speeds. This pattern will be explained in a later section. 
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FIGURE 5-14: Stability lobes - downmilling, half immersion, feed = 0.1 mm/tooth 
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FIGURE 5-15: Stability lobes - downmilling, half immersion, feed = 0.5 mm/tooth 
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5.4.4 Example 2: M i l l i n g with Two D O F Dynamics 

This example uses dynamics both in the X and in the Y directions. The same dynamic 

parameters are used in both directions, as would be the case then milling with a flexible cut

ter and rigid workpiece. The cutting conditions for the simulation are as follows: 

• Cutter dynamics in X direction: con = 3800 Hz, L\x = 0.04, kx = le7 m/N 

• Cutter dynamics in Y direction: co„ = 3800 Hz, C v = 0.04, k = le7 m/N 

• The workpiece is assumed to be rigid 

• Force coefficients: Kt = 796 MPa, Kr =0.21 

• Cutter geometry: 0° helix, uniform 4 flute, R = 10.0 mm 

• Feed rate st = 0.0 to 0.5 mm/tooth 

Figures (5-19) to (5-21) show the predicted stability lobes for downmilling and upmilling 

half immersion and slotting cases with and without the effect of feed rate. The trends are 

similar to the single degree of freedom case in Example 1, with one key difference. The 

larger lobes caused by the feed are deeper and do not show as much of an increase in stabil

ity at lower spindle speeds as in Example 1. This may be attributed to the fact that regenera

tion of vibrations in the X direction are not as affected by the feed rate as vibrations in the Y 

direction, as explained above. At lower spindle speeds the stability border becomes limited 

by the influence of modes in the X direction. 
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5 . 4 . 5 Example 3 : Mil l ing at Smaller Radial Widths of Cut 

Here, Example 1 is repeated for one quarter and one eighth immersion upmilling and down-

milling to observe the effects of feed rate at smaller radial widths of cut. Figures (5-22) to 

(5-25) show the stability lobes for feed rates up to 0.5 mm/tooth. Note that for smaller radial 

widths of cut, the maximum chip thickness becomes smaller, allowing larger feed rates. For 

example, for one eighth immersion, the width of cut for a 10.0 mm cutter is 0.76 mm. For a 

0.5 mm/tooth feed rate, this corresponds to a maximum static uncut chip thickness of 0.19 

mm. 

The results show that radial immersion and orientation have a large impact on the way feed 

affects the stability border. As the immersion angle decreases, the feed lobes shift to lower 

spindle speeds. This is expected from equation (5-15), in which the number of wave cycles, 

ks , decreases with smaller immersion angles. Also, for the one eighth immersion upmilling 

case, note that the feed lobes drop significantly rather than increase. Here the difference 

between upmilling and downmilling becomes more evident. This can be explained by two 

main factors. First, from equation (5-16), the feed rate causes the regeneration phase shift, 

e, to decrease for upmilling and to increase for downmilling. Secondly, the directional 

coefficients vary considerably at different angular positions of the cutter, causing the matrix 

[A] to differ between upmilling and downmilling. 

The resulting directional regeneration matrix, [ C ] , can cause the overall stiffness of the sys

tem to increase or decrease. In most cases above, the shift is away from the natural fre

quency of the system, causing an increased stability. In certain conditions, the effect of feed 

rate on regeneration may cause the chatter frequency to shift towards the natural frequency 

for a range of spindle speeds, decreasing stability. This explains the downward shift in the 

feed lobes for the one eighth immersion upmilling case, and for the slotting case in Example 

1. 



Evaluating Stability Lobes from Frequency Domain Model 102 

CN 
in 
iu 
IE 
3 

a 
ML. 



Evaluating Stability Lobes from Frequency Domain Model 



Evaluating Stability Lobes from Frequency Domain Model 104 

o 
o 

E E 
to d 

I 

o 
li 
</T 
co 
C D JD 
O 

CO 

CO 

[LUUJ] '""B 



Evaluating Stability Lobes from Frequency Domain Model 



Stability Lobes from Time Domain Versus from Frequency Domain 

5.5 Stability Lobes from Time Domain Versus from Frequency 
Domain 
In this section, predicted stability lobes from time domain and from frequency domain mod

els are compared for machining a flexible plate with a natural frequency of 1000 Hz. The 

cutter is assumed rigid. 

The computation time of the time domain simulations is greatly affected by depth of cut, 

spindle speed, and frequency of vibrations. At lower spindle speeds and higher frequency 

vibrations, the density of points required to accurately maintain the cutting surface is much 

higher, requiring more computations. Larger depths of cut lead to more layers of points in 

the axial direction, also increasing computation time. In order to keep simulation times to a 

feasible range, the axial depth of cut is kept small with a workpiece stiffness of 1.0e6 N/m. 

The spindle speed is limited to no lower than 1000 R P M for the workpiece natural frequency 

of 1000 Hz. Under these conditions, a large feed rate of 1.0 mm per tooth had to be used to 

demonstrate the effect of feed on stability. Although such a large feed rate is typically 

impractical for a 3/4 inch cutter, the limited computational power of today's computers limit 

the cutting conditions which may be simulated. 

Figures (5-26) and (5-27) show the predicted stability lobes with a very small feed rate and 

with a feed rate of 1.0 mm per tooth. The two models show the same increase in stability 

and lobing effect at lower spindle speeds. An offset does exist between the two predictions, 

which is most likely attributed to the difference in criteria used to determine the stability 

limit, as discussed in above. Further more, stability becomes difficult to predict in regions 

where values of ks are greater than 0. The phase shift of wave regeneration changes signif

icantly throughout a single tooth period. This can cause chatter to build up during a portion 

of the tooth period, creating large vibrations, but stabilizing during a different portion of the 

tooth period. The stability algorithm may trigger a chatter condition due to these intermit

tent vibrations for a process which is, in fact, stable. Generally, the two stability lobe mod

els do support the existence of the phenomenon which alters the stability border at lower 

spindle speeds and larger feed rates. 
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Summary 

5.6 Summary 
In this chapter, two models were presented for evaluating stability lobes in milling. The 

time domain model offers more realistic predictions, considering more variables such as dif

ferent dynamics along the axial depth of cut, while the frequency domain model is more 

practical, given its computational speed. 

The good agreement in results from the two models suggests that the increase in stability 

and secondary lobing effect of the stability border noted at lower spindle speeds is, in fact, 

due to the effect of feed rate on the regeneration effect. At higher feed rates and lower spin

dle speeds, when the most flexible mode is relatively high, the feed rate has been shown to 

greatly affect the stability limit. 

To the author's best knowledge, these stability lobe models demonstrate a phenomenon pre

viously undocumented. However, as mentioned above, the conditions in which the effect of 

feed is most significant are those where process damping also has a stabilizing affect. A 

more complete model should also include process damping in the prediction of stability 

lobes. 



CHAPTER 6 Experimental Results 

6.1 Introduction 
In this chapter, some milling experiments are conducted to support some results predicted by 

the milling simulation described in the preceding chapters. The experimental procedures are 

given for measuring transfer functions, measuring vibrations, and detecting chatter. The 

collected measurements are compared to simulation predictions. 

The following cutting tests are conducted: 

• Chatter stability border is found by cutting at various axial depths of cut for a range of 

spindle speeds. Chatter was detected by measuring sound frequency spectrum. A flexi

ble machine tool and cutter is used with a rigid workpiece. 

• Vibrations are measured when milling a flexible workpiece with a relatively rigid cutter 

and machine tool. Tests are conducted with both stable and unstable cutting conditions. 

• Vibrations are measured at several axial positions of a flexible workpiece while milling 

to demonstrate the importance of multiple level dynamics when milling flexible struc

tures. 

Cutting tests which could not be conducted include machining very flexible workpieces at 

large depths of cut, and tests to demonstrate the effect of feed rate on stability limit at large 

110 
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feed rates. The tests were limited primarily due to the availability of equipment at our facil

ities. The flexibility of the spindle greatly limited stable cutting conditions. 

6.2 Experimental Setup 

6.2.1 Equipment 

A l l cutting experiments are conducted on a Fadal vertical three axis machining center. A 

more flexible collet chuck is used for experiments demonstrating chatter from the machine 

and cutting tool structure, while a stiffer hydraulic chuck is used in cases where a flexible 

workpiece is the focus. 

The cutting tool is a 3/4 inch diameter carbide four fluted helical endmill measuring 52mm 

from the chuck. The helix angle is 30 degrees. The workpiece material is Aluminum 

A17075T651. The cutting parameters for this cutter and workpiece material combination 

were identified in Chapter 4. 

To measure the transfer function of the two structures at various points, an impact force 

hammer is used in combination with a laser position sensor. A fourier analyzer reads the 

force and displacement inputs, and provides the response function in a useable form. The 

transfer functions are also verified using an accelerometer to measure the vibrations, and the 

force hammer calibration is verified using a force dynamometer. The modal analysis pro

gram developed as part of this thesis is used to identify the modal parameters for input to the 

milling simulations. 

Vibrations are also measured of the workpiece during machining. The laser sensor provides 

workpiece displacement with a resolution of 0.2 u.m at a frequency of up to 100 KHz, which 

is sufficient to measure static deflection and chatter vibrations when machining the flexible 

workpieces used in the cutting tests below. 

While vibrations of the cutting tool cannot be measured during machining, sound pressure 

levels acquired with a microphone can give an acceptable representation of the vibration fre-
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quency spectrum for the purpose of detecting chatter conditions. The microphone is 

mounted on the machine's spindle casing. 

The workpiece vibration and sound pressure level data is acquired using an in-house devel

oped data acquisition system. 

During all machining tests, exact spindle speeds are verified using a digital tachometer since 

the machine sometimes seemed to deviate from its indicated spindle speed by up to 15 per

cent. The feed rate was verified by timing the motion of the X - Y table over a known dis

tance. 

6.2.2 Measuring Machine Tool and Cutter Dynamics 

The machine and cutting tool dynamics are measures in the X (feed) and Y (normal) direc

tions with both the collet chuck and the hydraulic chuck at various axial positions measured 

from the tip of the cutter. The measured and identified transfer functions are shown in Fig

ures (6-1) to (6-4), with the modal parameters listed in Tables (6-1) to (6-4). 

From the measurements, it seems that the highest frequency modes originate from the cut

ting tool, judging from the mode shapes diminishing rapidly as the measurement is taken 

closer to the chuck. A l l other modes originate either from the spindle or from the chuck. 

With either chuck, the dominant natural frequency of the entire structure is below 1000 Hz. 
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FIGURE 6-1: Transfer Function of Machine Tool with Collet Chuck in X Direction 
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FIGURE 6-2: Transfer Function of Machine Tool with Collet Chuck in Y Direction 
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TABLE 6-1: Identified Modal Parameters of Tool with Collet Chuck in X Direction 

G)„ [Hz] 

Mode Shape Coefficients Up 

" m l 

G)„ [Hz] 

Mode Shape Coefficients Up _Nrad 2 J 
G)„ [Hz] 1mm from tip 15mm from tip 30mm from tip 

Mode 1 448.55 0.04439 0.5763567 0.5447158 0.5614634 
Mode 2 543.05 0.03964 0.5637977 0.4439832 0.4152877 

Mode 3 1938.61 0.02125 0.9324049 0.7136577 0.5595399 

Mode 4 2587.06 0.00894 0.8712094 0.6256292 0.4226089 
Mode 5 3706.60 0.00786 1.61243 1.084459 0.7606145 

mode 6 4400.72 0.01054 2.393511 1.41792 0.9025841 

TABLE 6-2: Identified Modal Parameters of Tool with Collet Chuck in Y Direction 

a>„ [Hz] c 
Mode Shape Coefficients Up 

m 1 

a>„ [Hz] c 
Mode Shape Coefficients Up _Nrad 2 J 

a>„ [Hz] c 1mm from tip 15mm from tip 30mm from tip 

Mode 1 504.77 0.03749 0.8653921 0.8682728 0.7869819 
Mode 2 3723.44 0.00444 1.378824 1.112611 0.7391905 

Mode 3 4401.18 0.00827 2.436991 1.679445 0.888594 
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FIGURE 6-3: Transfer Function of Machine Tool with Hydraulic Chuck in X Direction 
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FIGURE 6-4: Transfer Function of Machine Tool with Hydraulic Chuck in Y Direction 
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TABLE 6-3: Identified Modal Parameters of Tool with Hydraulic Chuck in X Direction 

Mode C0„ [Hz] c 

r m I 
Mode Shape Coefficients U„ „ 

p LNrad 2J 

Mode C0„ [Hz] c lmm 
from tip 

10mm 
from tip 

20mm 
from tip 

30mm 
from tip 

40mm 
from tip 

1 489.35 0.15417 0.6155902 0.5934756 0.5925653 0.569762 0.5642318 

2 674.93 0.07542 1.082521 0.9891729 0.948205 0.8434781 0.7240363 

3 940.45 0.05555 1.287716 1.01607 0.9630499 0.7088588 0.5036081 

4 2166.84 0.02153 1.499191 1.06317 0.9812605 0.7027502 0.4173261 

5 2702.33 0.01767 1.935752 1.46074 1.026994 0.6539803 0.3144709 

6 3830.16 0.01028 0.3505993 0.3550908 0.3523078 0.322933 0.3188513 

TABLE 6-4: Identified Modal Parameters of Tool with Hydraulic Chuck in Y Direction 

Mode 0)„ [Hz] 

r m ~| 
Mode Shape Coefficients U„ „ 

p LNrad2J 

Mode 0)„ [Hz] lmm 
from tip 

10mm 
from tip 

20mm 
from tip 

30mm 
from tip 

40mm 
from tip 

1 870.33 0.07176 0.5533035 0.6653421 0.3883336 0.3959651 0.2966715 

2 781.31 0.09098 1.183442 1.116723 0.9792922 0.9897918 0.9288155 

3 2018.54 0.02420 0.775986 0.7922623 0.6057444 0.5151184 0.3687343 

4 2243.02 0.01379 0.8060596 0.812733 0.5746959 0.4503108 0.2942135 

5 2697.00 0.02023 1.388321 1.311003 0.9376124 0.6888171 0.4167447 

6 3829.42 0.00831 1.71497 1.603707 1.003849 0.610735 0.3272502 

6.2.3 Detecting Chatter 

Some of the most practical results of milling simulations are those which determine the bor

derlines between stable conditions and those dominated by chatter vibrations. To evaluate 

the simulated results, it is important to be able to systematically categorize each cutting 

experiment as stable or unstable. When machining a flexible workpiece, it is possible to 

measure the vibrations and static deflections of the workpiece with a displacement sensor. 
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The frequency spectrum of the vibration data can indicate whether or not the condition is 

stable. A more practical method is to use sound pressure level to approximate this data. The 

frequency spectrum of sound pressure level should, in most cases, offer an accurate enough 

representation of vibrations for the purpose of detecting chatter conditions. Furthermore, 

vibrations from both the machine tool and the workpiece are captured. 

As with the simulation results, assessing measured vibration data requires a systematic 

approach which can greatly affect the end result. For simulations, the predicted maximum 

dynamic chip thickness is compared to the maximum static uncut chip thickness to deter

mine whether or not chatter exists. Since this is not possible with experimental tests, an 

alternate approach is required. 

After cutting at several different cutting conditions with and without chatter, many observa

ble signs offered obvious indications of chatter, including large wave patterns on the fin

ished surface and existence of distinctly loud audible vibrations. When analyzing the 

frequency spectrum of the sound pressure level, chatter conditions are characterized by large 

amplitudes at one or more natural frequencies of the machine or workpiece in comparison to 

the tooth frequency and its harmonics. For chatter tests in this thesis, stability of a cutting 

test is categorized into stable, light chatter and chatter. The criteria for determining stability 

is as follows: 

• Stable: the sound pressure level amplitudes at the tooth frequency and/or its harmonics 

are clearly dominant in comparison to the amplitudes at the system's natural frequencies 

• Light Chatter: the sound pressure level amplitudes at one or more of the system's natural 

frequencies are from 1 to 2 times in magnitude in comparison to the amplitudes at the 

tooth frequency and/or its harmonics 

• Chatter, the sound pressure level amplitudes at one or more of the system's natural fre

quencies are over 2 times in magnitude compared to the amplitudes at the tooth frequency 

and/or its harmonics 

The sound pressure level frequency spectrum of three sample cutting tests are shown in Fig

ures (6-6) through (6-7) for stable, light chatter, and chatter cases. 
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FIGURE 6-5: Sound Pressure Level Frequency Spectrum (Stable) 
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FIGURE 6-6: Sound Pressure Level Frequency Spectrum (light chatter) 
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FIGURE 6-7: Sound Pressure Level Frequency Spectrum: (chatter) 
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6.3 Chatter Stability Lobes 
This section compares several predicted stability lobes with experimental cutting tests. 

Three predictions are included: 1) stability lobes from time domain simulations, which 

includes varying dynamics along the axial depth, effect of feed rate, forced vibrations, helix 

angle, among other effects, 2) frequency domain stability lobes, which includes the effect of 

feed rate, and 3) stability lobes using the method of Altintas and Budak [49], which does not 

include the effect of feed rate. The simulation results in Figure (6-8) show good agreement 

between the different predictions. Since chatter is caused by the spindle and chuck modes, 

the varying dynamics along the axial depth does have a significant impact. Furthermore, 

since the chatter vibrations are at a relatively low frequency, kSi is well below 1 for the spin

dle speed range shown. Hence, the effect of feed rate in under these conditions are also neg

ligible, shown by the close agreement between the frequency domain solution described in 

this thesis and the lobes by Budak and Altintas. 
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Figure (6-9) shows good agreement between the predicted stability limit and experimental 

cutting tests. The experimental results show lobes shifted slightly to the left relative to the 

predicted lobes. Some measurement error may exist in acquiring natural frequency of the 

machine tool. Generally, some discrepancy between simulated and experimental stability 

lobes is expected. Some sources of error are listed below: 

• Different criteria for determining stability: A different stability criterion was used for 

detecting chatter from cutting tests than from simulated results. This involved a com

pletely different approach with different data; sound pressure level versus oscillating 

force amplitudes. This most likely accounts for most of the error between predicted and 

experimental stability lobes. 

• Transfer function accuracy: The transfer functions are critical in determining the location, 

shape, and height of the lobes. There are many data acquisition and numerical FFT 

processing variables involved which can alter the results. Furthermore, dynamic charac

teristics are approximated by a linear model which can cause significant error when mod

elling a complex structure such as a spindle. 

• Forced vibrations may trigger a chatter condition: When the tooth frequency and its har

monics are close to a natural frequency of the system, it can be difficult to distinguish 

between forced vibrations and chatter vibrations. The different criteria used to detect 

chatter will handle such circumstances differently. 

• Cutting force coefficients used in the simulation were conducted at a spindle speed of 

2000 R P M , which corresponds to a cutting speed of 120 m/min. As the spindle speed 

changes, the cutting forces may vary with changing cutting speed. Ideally, the simulation 

program would interpolate from a database of cutting force coefficients at several differ

ent cutting speeds. 
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FIGURE 6-8: Predicted Chatter Stability Lobes: Collet Chuck and Rigid Workpiece 
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6.4 Milling a Flexible Workpiece 
The next set of cutting tests focus on milling in which the most flexible mode originates 

from the workpiece. The more rigid hydraulic chuck is used and the workpiece is a rectan

gular flexible aluminum plate, fixed at one edge and left free to move at the remaining three 

edges. A laser position sensor is mounted to measure displacement at the center tip of the 

plate during machining. 

The cutting tests are compared with simulation results. The dynamic characteristics of the 

machine tool and cutter were identified above. The workpiece material is A17075T6 with 

cutting coefficients determined from Chapter 4. Runout is neglected in these simulations. 

The workpiece dimensions are chosen such that its most flexible mode is in the Y direction 

and flexibility in the X (feed) direction is negligible. The workpiece dimensions are 104mm 

high (Z) by 93mm (X) wide by 26mm thick (Y). Since the depth of cut will be small com

pared to the height of the plate, a single transfer function measurement is sufficient at the tip 

of the plate. A feed rate of 0.5 mm/tooth is used. The measured and identified transfer func

tions are shown in Figure (6-10). The identified parameters are listed in Table (6-5). 

TABLE 6-5: Identified Modal Parameters of Workpiece in Y Direction 

Mode C0„ [Hz] c 

r m "I 
Mode Shape Coefficients U„ 

p LNrad 2J 

Mode C0„ [Hz] c lmm 
from tip 

1 1047.82 0.03852 1.739939 

The predicted chatter stability lobes are shown in Figure (6-11). Since the dynamics of the 

workpiece change with the removal of material, the number of tests on the workpiece for 

which the above dynamics are valid, are limited. Three points are selected, labelled A , B, 

and C on the stability chart, showing stable and unstable milling conditions at two depths of 

cut and two spindle speeds. Vibrations at the tip of the flexible plate are measured during 
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FIGURE 6-10: Measured and Identified Transfer Function of Workpiece in Y Direction 
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the milling tests. The measured and predicted plate displacement is plotted in time and fre

quency domains in Figures (6-12) through (6-17). 

The results show excellent agreement between experimental and simulated workpiece vibra

tions, particularly in cases A and B. In case A , the tooth frequency and its harmonics are 

highest, with small amplitudes at the principal natural frequency of the workpiece. In case 

B , the conditions are unstable and vibrations grow in a similar pattern between predicted and 

experimental plots, until a steady state amplitude is reached at a chatter frequency very near 

the natural frequency of the workpiece. There is some difference in the predicted and meas

ured steady state vibrations, but under such unstable conditions, accurately predicted steady 

state amplitude of vibrations should not be expected. In case C, it seems that a torsional 

mode at approximately 1500 Hz was excited in the experiment, which was not accounted for 

in the simulation. In this case, the second harmonic of the tooth frequency is at 1000 Hz, 

which is very close to the natural frequency of the plate. Despite the large amplitude at 1000 

Hz, both the cutting test and the simulation showed clear signs stable conditions. 
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FIGURE 6-11: Predicted Stability Lobes (Freq. Domain Model) - Machining Flexible Plate 
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FIGURE 6-12: Workpiece Vibrations at Tip of Plate for Cutting Conditions at Point A 
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FIGURE 6-13: Frequency Spectrum of Workpiece Vibrations at Tip of Plate for Cutting Conditions at 
Point A 

5 

4.5 

4 

| 3.5 

"tO 3 
C 
CU I 2.5 

2. 2 
X 

LU 

1.5 

1 

0.5 

0 

X 10 
FFT Workpiece Vibrations Test A 

~i 1 1 1 1 r 

- A ». - J V . . I-.-A L »A_ J L 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

x 10 

400 600 800 1000 1200 1400 1600 1800 2000 
Frequency [Hz] 



Milling a Flexible Workpiece 

FIGURE 6-14: Workpiece Vibrations at Tip of Plate for Cutting Conditions at Point B 
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FIGURE 6-15: Frequency Spectrum of Workpiece Vibrations at Tip of Plate for Cutting Conditions at 
Point B 
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FIGURE 6-16: Workpiece Vibrations at Tip of Plate for Cutting Conditions at Point C 
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FIGURE 6-17: Frequency Spectrum of Workpiece Vibrations at Tip of Plate for Cutting Conditions at 
Point C 
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6.5 Importance of Multiple Level Dynamics with Large Depths of 
Cut 

6.5.1 Overview 

One of the advantages of the milling model used in this thesis over most other milling simu

lations, is the use of varying dynamics along the axial depth of cut. It is common to model 

the cutting tool and the workpiece with lumped dynamic parameters at the structure's most 

flexible point. Consider the case when machining at large depths of cut with a long slender 

flexible endmill, or when machining a workpiece in which the flexibility varies along the 

axial depth of cut, such as a flexible plate. Modelling the dynamics of these structures using 

a single lumped transfer function can give misleading results. The increased stiffness near 

the base of the plate and of the cutter near the chuck remains unaccounted for. Simulation 

results would give less stable conditions and erroneous finished surface profiles. Under 

these conditions, it becomes very important that varying dynamics are considered at differ

ent axial positions. 

Ideally, the significance of using multiple level dynamics could be well illustrated by con

ducting cutting tests and comparing the results with those from the simulation using multiple 

point dynamics and from the simulation using single point dynamics. Unfortunately, given 

the limited available machinery at our facilities, the axial depth of cut was limited by the 

flexibility of the spindle. A cutter and workpiece geometry combination was not found 

which would create the conditions necessary to properly demonstrate the importance of this 

feature. In most cases, the vibrations were dominated by a mode originating from the flexi

bility of the spindle. This pivoting motion about the spindle bearing offered no significant 

variation in dynamics along the axial depth of cut. More flexible workpieces and cutters 

resulted in too small an allowable depth of cut before chatter occurred. 

The difference in single versus multiple level dynamics are better presented with simulation 

results of some hypothetical cutting conditions. Chatter stability lobes are shown for both 

cases. Experimental verification of the model is provided by measuring vibrations at differ

ent points along a flexible workpiece. For this test, however, the depth of cut had to be kept 
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small relative to the height of the plate. The measured vibrations are compared to simulation 

results. 

6.5.2 Measured Transfer Functions of Flexible Workpiece 

The flexible workpiece used for tests in this section is the stepped plate shown in Figure (6-

18). The workpiece is tapered at the clamped end to increase flexibility and so the torsional 

and higher frequency modes become less significant. The top of the plate is much thicker so 

the metal removed during the cutting tests does not significantly alter the structure's natural 

frequency. 

FIGURE 6-18: Workpiece geometry 

Z (axial) 

Y (normal) 

X (feed) 

3 
3 

Transfer Function 
Measurement Points 

The transfer function is measured at five points along the height of the plate. The transfer 

functions and identified parameters are shown in Figure (6-19) and Table (6-6). 
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TABLE 6-6: Identified Multiple Level Dynamic Parameters of Flexible Workpiece 

C 0 „ = 1494 Hz, £ = 0.0205 

Location [mm] from tip 

[ m l 
Mode Shape Coefficients U„ 

p LNrad 2J 
5 1.735151 

15 1.349193 

25 1.214139 

35 0.9484854 

45 0.5650185 

6.5.3 Simulated Chatter Stability Lobes 

In the following simulations, the chatter stability limit is predicted for several cases using 

the flexible workpiece dynamics identified above and the cutter/machine tool dynamics with 

the hydraulic chuck. First, stability lobes are predicted considering both workpiece and cut

ter dynamics. Next, in order to better demonstrate the effect of using multiple level dynam

ics, the machine tool and cutter are assumed to be rigid relative to the flexibility of the 

workpiece. 

A radial width of cut of 1.0 mm is used with a feed rate of 0.1 mm per tooth. The cutter 

geometry and force coefficients are the same as those used in previous simulations and 

experiments. 

Figure (6-20) shows the predicted stability lobes using both workpiece and machine tool 

dynamics. The predictions are made using time domain simulations since the frequency 

domain model developed in this thesis only considers lumped workpiece and machine tool 

dynamics. In this particular case, there is not a great difference between the two simula

tions. At larger depths of cut, when the use of multiple point dynamics should be more sig

nificant, the allowable depth of cut is most likely limited by spindle vibrations, which are 

relatively constant along the length of the cutter. 
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FIGURE 6-19: Measured Transfer Functions of Flexible Workpiece at Multiple Axial Positions 
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Notice that in this case, the stability limit is actually slightly higher when using a lumped 

dynamic model. Careful examination of the workpiece and cutter transfer functions would 

show that at the natural frequency of the spindle, the vibrations of the plate are in phase with 

the vibrations of the cutter. Hence, at spindle speeds where stability is limited by the spindle 

modes, the workpiece and cutter vibrate together, reducing their relative motion and 

decreasing dynamic chip thickness. 

The effect of using multiple level dynamics rather than lumped dynamics becomes more evi

dent when the machine tool is assumed to be rigid. The predicted stability lobes of this 

hypothetical case is shown in Figure (6-21). The increased stability at larger depths of cut is 

now more noticeable. The simulation limited the axial depth of cut to the length of the cutter 

of 52.0 mm since the workpiece dynamics are invalid beyond this depth. 

6.5.4 Measured and Simulated Vibrations at Multiple Levels 

In these cutting tests, the flexible stepped plate workpiece, hydraulic chuck, and endmill cut

ter described above are used. Since the clamped end of the workpiece is tapered, machining 

was done along the top-middle of the workpiece to prevent axial forces from create a bend

ing moment not considered in the simulations. Half immersion, downmilling cuts at an axial 

depth of 1.0 mm were conducted. The feed rate was 0.2mm per tooth. Three separate cuts 

were performed, moving the laser for each test to measure workpiece vibrations at 5mm, 

15mm, and 25mm from the top of the workpiece. 

The results of measured and simulated workpiece vibrations are shown in Figures (6-22) 

through (6-24). The results show fairly good agreement between predicted and experimen

tal vibrations. There is about a 15 percent difference at 5mm and at 15mm from the top of 

the workpiece. This, again, may be attributed a different cutting speed than that used to cal

culate cutting force coefficients, and to some measurement errors. 

The measurements also shows a large amount of noise, particularly when measuring stiffer 

points on the workpiece where the resolution of the laser displacement sensor becomes more 

significant. 
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These set of tests are an example of how varying dynamics along the axial depth of cut can 

be quite significant. Both simulated and experimental results show vibrations decreasing 

between 30 and 40 percent from 5mm to 15mm from the tip of the workpiece. 
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FIGURE 6-22: Measured and Simulated Workpiece Vibrations at 5mm from Top of Workpiece 
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FIGURE 6-23: Measured and Simulated Workpiece Vibrations at 15mm from Top of Workpiece 
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FIGURE 6-24: Measured and Simulated Workpiece Vibrations at 25mm from Top of Workpiece 
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6.6 Summary of results 
The experimental cutting tests shown in this chapter demonstrate that the time domain simu

lation developed in this thesis can be used to predict cutting forces, chatter stability limits, 

and vibrations with an acceptable degree of accuracy. 

Generally, there was good agreement between predicted and measured results. Some dis

crepancies were noticed, which were most likely due to the force model which was cali

brated at only one cutting speed, and difficulty in obtaining accurate measurements during 

milling, particularly when using sound pressure level to represent vibrations. 



CHAPTER 7 Concluding Remarks 

The mechanics and dynamics of peripheral milling flexible structures has been studied in 

this thesis. An improved time domain simulation has been developed to predict cutting 

forces, vibrations, surface finish, and chatter stability. In creating the model, the main focus 

was to allow simulation of large depths of cut and consequently very small widths of cut, as 

commonly encountered in milling flexible plates. Where possible, simulation results have 

been supported by experimental cutting tests, while other simulation output was verified 

through a new frequency domain stability lobe model. 

The discretized chip thickness model used in the time domain simulation provides improved 

accuracy, particularly with very small widths of cut and near the workpiece boundaries. The 

model can also provide a detailed surface finish profile. This exact kinematics of milling 

approach to modelling chip thickness has allowed accurate prediction of chatter. Further

more, the resulting stability lobes have demonstrated the affect of feed rate on chatter stabil

ity at lower spindle speeds, which has previously been unreported. 

To accurately determine stability borders in milling, time domain and frequency domain sta

bility algorithms were created. The new stability criteria used in the time domain simulation 

relies on uncut dynamic chip thickness. This best reflects chatter conditions, while filtering 

out most effects of forced vibrations and static deflection. The frequency domain model is 
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147 

extended from the analytical model used by Budak and Altintas [50]. The newly developed 

influence of feed rate is added, which has been shown to significantly affect stability at 

lower spindle speeds in conditions of large feed rate and high frequency chatter vibrations. 

The stability lobes predicted from time domain simulations support this phenomenon. The 

time domain stability lobes are also verified through numerous cutting tests, using measured 

sound pressure level to detect chatter. 

A more practical approach was used to model the structural dynamics of the machine tool 

and of the workpiece, which uses measured transfer functions at various points on the struc

tures. The modal analysis algorithm developed in this thesis uses a two stage lineal least 

squares identification for each measurement, followed by a global non-linear steepest 

descent algorithm for optimizing the fit over all measurements. The algorithm has shown to 

be very effective in accurately identifying modal parameters of cutters and workpieces of 

arbitrary geometry. The significance of using multiple degrees of freedom along the axial 

direction when milling at large depths of cut has also been demonstrated. The model can 

properly model vibrations of long, slender endmills cutters, and very flexible workpieces. 

Other results simulated in time domain, such as cutting forces, workpiece and spindle vibra

tions were also verified through experimental cutting tests. A laser displacement sensor, 

accelerometers, a force dynamometer, a force impact hammer, and an acoustic microphone 

were used to measure input and output variables of the milling simulation. Under these 

carefully controlled conditions, generally, there was good agreement between simulated and 

measured results. Hence, the simulation can be an extremely useful tool to identifying the 

optimum cutting conditions for improved productivity, meeting surface error tolerances, and 

to ensure physical limitations of the machine tool and cutter are not exceeded. 

Continued research in this area is recommended in several areas. More complicated cutter 

geometries should be modelled, such as inserted cutters, which are becoming more common 

in industry. Vibrations only in the X and Y directions were considered in this thesis. For 

more than three axis machines, dynamics in the Z direction should also be considered, as 

well all cross transfer functions. The force model may be improved by including thermal 

effects, which alter cutting coefficients with changing cutting speed and immersion. The 
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simulation models can also be integrated to C A D / C A M software for optimizing cutter path. 

With some modifications, the time domain simulation can be used to test real time chatter 

detection methods and adaptive control algorithms. 
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