
F A C T O R Y W I D E A U T O M A T I O N

by

E . A l l an Mert in

B . S c . (M . E .) , The University of Manitoba, 1986

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

I N

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

Department of Mechanical Engineering

We accept this thesis as conforming
to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

August 1996

© E . Allan Mertin, 1996

In presenting this thesis in partial fulfillment o f the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for reference

and study. I further agree that permission for extensive copying o f this thesis for scholarly

purposes may be granted by the head o f my department or by his or her representatives. It is

understood that copying or publication o f this thesis for financial gain shall not be allowed without

written permission.

Department o f Mechanical Engineering

The University o f British Columbia
Vancouver, Canada

D E - 6 (2/88)

Abstract

The objective of this thesis is to develop and test the ability of a simple,

distributed control architecture to synchronize multiple machine processes. The work

reported in this thesis is based on the extension of the UBC control architecture to a

distributed system.

The resulting network has been both simulated and tested using an NC lathe

and process control element. The results are encouraging, it is believed that the

system developed has significant practical promise.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

Nomenclature xi

Acknowledgments xiii

1. Introduction to Distributed Process Control 1

1.1 Introduction 1

1.2 Historical Development of Distributed Control 2

1.3 CNC Machines 8

1.4 Computer Integrated Manufacturing (CIM) 10

1.5 Conclusions and Discussion 13

2. UBC Controller 15

2.1 Introduction 15

2.2 Control Architecture 15

2.3 Previous Research 19

2.4 Application to a Distributed Network 19

2.5 Process Control 22

2.6 Flexible Manufacturing System (FMS) 24

iii

2.6.1 Factory Automation 24

2.6.2 FMS 25

2.6.3 FMS Architecture 26

2.6.4 Cell / FMS Control 27

2.6.5 Significance of Distributed Network Control. 29

2.7 Computer Aided Process Planning (CAPP) 32

2.7.1 CAPP Application to a UBC Controller Based
Distributed Network 33

2.8 Conclusions and Discussion 34

3. Networking Solutions 36

3.1 Introduction 36

3.2 Real-Time Control 37

3.3 Networking Physical Interfaces 38

3.3.1 Token Ring 40

3.3.2 Field Bus 42

3.3.3 Ethernet 44

3.4 Networking Software 45

3.4.1 Software Compatibility 45

3.4.2 Transmission Control Protocol / Internet

Protocol (TCP/IP) 46

3.4.3 Network Basic Input / Output System (NetBios) 47

3.4.4 Operating System (O/S) 48

3.4.5 Network Management Systems 48

iv

3.4.6 Application Programs 49

3.5 Conclusions and Discussion 50

4. System Selection and Design 51

4.1 Introduction 51

4.2 Networking the Lower Level Control Network 51

4.3 Distributed State Line and Synchronization Line Design 56

4.4 Higher Level CIM Support Network 62

4.5 Conclusions and Discussion 66

5. Simulation and Experimental Results 68

5.1 Introduction 68

5.2 Experimental Apparatus 68

5.3 Simulated Results 76

5.4 Experimental results 80

5.5 Comparison of Simulated and Experimental Results 88

5.6 Conclusions and Discussion 89

6. Conclusions and Recommendations For Future

Research 90

6.1 Conclusions 90

6.2 Recommendations For Future Research 90

Bibliography 92

v

Appendix 1: STD Computer and Lathe 95

Appendix 2: Parallel Port Distributed Interface Board (DIB) 97

Appendix 3: State Line Interface Board (SIB) 100

Appendix 4: Dynamometer A/D Source Code 103

Appendix 5: Simulation Source Code 111

Appendix 6: Calculations 118

vi

List of Tables

2.1 FMS Functional Architecture 27

3.1 Primary Characteristics of Ethernet 45

3.2 LAN Network Management Systems 48

4.1 Lower Level Network Implementation Tradeoffs 53

5.1 Z-axis Position Control Loop Constants 70

5.2 Cutting Tool Characteristics and Pressure Constants 73

5.3 Network Tests 73

vii

List of Figures

1.1 Hybrid System Architecture 6

1.2 Central Computer System Architecture 7

1.3 Generalized Distributed Control System Architecture 8

1.4 CIM Communication Model 11

2.1 UBC Controller High Level Architecture 17

2.2 Block Diagram of a Slave Control 18

2.3 Block diagram of a PLC Board 18

2.4 Distributed System Schematic 20

2.5 Schematic of Distributed Experimental System 21

2.6 Hierarchical Control System 31

3.1 Token Ring Network 41

3.2 Field Bus Network 43

4.1. Schematic of Distributed Experimental System 52

4.2 Field Bus Based DSL Control System 55

4.3 Zero Crossing Capture of the Timing Pulse 58

4.4 SIB Triggering of the DSL 60

4.5 Servo Motor Response 61

4.6 Experimental Integrated Higher and Lower Level Networks 65

4.7 Schematic Experimental System 66

5.1 Apparatus Block Diagram 69

5.2 Bar Turning Tool Force Geometry 71

5.3 Tool Workpiece Interface Geometry 71

viii

5.4. Material Cutting 74

5.5 Response Time 75

5.6 Test 001 Simulation 77

5.7 Test 002 Simulation 77

5.8 Test 003 Simulation 78

5.9 Test 004 Simulation 78

5.10 Test 005 Simulation 79

5.11 Test 001 Experimental Results 81

5.12 Test 001 Experimental Oscilloscope Plot 81

5.13 Test 002 Experimental Results 82

5.14 Test 002 Experimental Oscilloscope Plot 82

5.15 Test 003 Experimental Results 83

5.16 Test 003 Experimental Oscilloscope Plot 83

5.17 Test 004 Experimental Results 84

5.18 Test 004 Experimental Oscilloscope Plot 84

5.19 Test 005 Experimental Results 85

5.20 Test 005 Experimental Oscilloscope Plot. . > 85

5.21 Test 006 Experimental Results 86

5.22 Test 006 Experimental Oscilloscope Plot 86

A1.1 Picture of STD Computer 95

A1.2 Picture of Lathe 95

A2.1 Circuit Drawing of DIB 97

A2.2 Schematic of DIB 98

A2.3 Picture of DIB 99

ix

A3.1 Circuit Drawing of SIB 100

A3.2 Picture of SIB 101

x

Nomenclature

A: Filter Lead Constant in the Z-Domain

A: Area of Cut [mm2]

a: Depth of Cut [mm]

B: Filter Lag Constant in the Z-Domain

Fa: Axial Thrust Force [N]

Fr: Radial Thrust Force [N]

Ft: Total Thrust Force [N]

f: Frequency

G1: Digital Filter Parameters
G2:
G3:

He: Equivalent Chip Thickness

Jeq: Equivalent Motor Inertia [N.m.s2]

Ka: Servo Amp Current Gain [AA/]

Ke: Encoder Gain [pulses/rad]

Kda: D/A Converter Gain [V/Level]

Kp: Filter Gain

Kt: Motor Torque Constant [Nm/A]

Le: Engaged Cutting Edge [mm]

s: Feed Rate [mm/rev]

T: Slave Sampling Time

tm: Motor Mechanical Time Constant [sec]

xi

te: Motor Electrical Time Constant [sec]

V: Voltage [Volts]

x¥: Tool Approach Angle [rad]

^e: Effective Angle [rad]

s: Angle of Obliquity [rad]

xii

Acknowledgments

The author wishes to express sincere gratitude to Dr. Ian Yellowley. His

guidance and experience was crucial during the research; the encouragement and his

idea for this thesis have been inspirational. The author would also like to recognize

and thank Mr. Rudi Seethaler for his assistance with laboratory equipment and Mr.

Gord Wright for his assistance with the development and fabrication of circuits. The

assistance and friendship of the authors colleagues is also appreciated. The author as

a member of the Canadian Forces acknowledges the support provided by the Canadian

Forces Post Graduate Training Plan.

Finally, the author would like to thank his family for their unyielding support and

wishes to dedicate this work to the memory of AB and VM.

xiii

Chapter 1

Distributed Process Control

1.1 Introduction

Distributed process control is the technique of using a master computer to direct

overall control of a large process through subordinate computers. The advantages of

distributed control are the division of processing resources and improved reliability and

system failure tolerance. The application of distributed process control to a

manufacturing environment has resulted in improved performance, but has primarily

been used by larger production facilities. This is due to the economies of scale which

are required for the significant investment in equipment and personnel. Thus, there

appears to be a necessity to provide the ability for economical distributed control in the

manufacturing environment.

Computer aided manufacturing (CAM) has resulted in significant progress in the

automation of machine tools, which have progressed from manual control to digital

computer control, commonly known as Computer Numerical Control (CNC). This

advance from manual to digital control has resulted in improved quality, speed, and

reliability, and the ability to control more complex operations.

The next logical step in automating manufacturing is to provide the CNC

machine tools or other intelligent devices in a process the opportunity to further improve

1

their performance. This can be achieved by increasing individual computing capability

and improving planning through the use of a distributed system. Past efforts to provide

distributed control in the manufacturing environment have been based on integrating all

of the functions in an enterprise. The cost of implementing and supporting such a

system has proven prohibitive.

In this chapter distributed control is introduced. Then, the application of

computers to manufacturing is discussed and the integration of distributed control to an

automated manufacturing environment is presented. Finally, the application of a

distributed control system using a U B C designed controller is proposed.

1.2 Historical Development of Distributed Control

Control system development has been the result of industrial demand and

technological advances. The industrial demand stems from an ever increasing

complexity in the processes which are to be controlled and the increasing costs, such

as material, labour and energy. This has driven the desire to have a totally integrated

plant management system.

The implementation of device control really began with governors and

mechanical controllers which were installed on the equipment to be controlled. This

level of control provided local information such as set points, readouts and output to the

operator. Coordination of the process was the responsibility of the operators who relied

2

on trip switches and calling over to their colleagues for a verbal confirmation of the

system's performance. This level of control worked until the complexity and size of the

process to be managed grew beyond the ability of the operators to optimize it [21].

The next improvement was the development of centralized control based on

pneumatics. A pneumatic system can be broadly defined as a grouping of pressure

regulators which react to temperature, relative humidity or another pressure. A simple

example of such a system is temperature control using a pneumatic thermostat. As the

temperature changes, a regulator in the thermostat varies the signal which is piped to a

control device. The changing pneumatic signal is measured by the control device which

reports, and i f necessary, causes corrective action; for example turning on or off a

heater or an air conditioner. For larger applications involving numerous measurements,

the pneumatic signals would be transmitted to a control room. At the control room, as

in the example above, all of the information would be processed and i f required an

instruction returned to the source, or elsewhere. This improvement of a centralized

system allowed all of the operators to be co-located. Thus, it allowed improved

coordination and control which lead to higher productivity, reduced losses and improved

safety [11,15,21].

With the advancement of electronics and computers the architecture of

centralized control systems shifted from pneumatics to electronics. The desire to shift

from pneumatic to digital control was driven by the increasing complexity of systems,

which computers could better control, and the reduced distributed line cost, since wire

3

is cheaper than pneumatic tubes. Use of electronic systems also eliminated the lag

inherent with pneumatic systems.

This review of the application of computer based control systems wi l l begin with

a closer look at the devices which are to be controlled. The majority of naturally

occurring phenomena which require control are continuous and analog. Their inputs

and outputs vary over a continuous range. This is exemplified by a sink faucet which

can be either off or on to a varying degree, from a slight trickle to fully open. The other

type of device to be controlled is binary. Binary devices have two distinct states, on or

off, such as a motor governed to operate at a set speed.

The application of computer control to analog and binary devices required an

interface to allow communication between a computer and the devices to be controlled.

Communication with analog devices became possible with the advent of Digital - to -

Analog (D /A) and Analog - to - Digital (A/D) converters. These devices allow

conversion between a computer's binary digital word and an analog device's unique

Direct Current (dc) voltage. B y calibrating this system, it is possible to bi-directionaly

communicate a digital instruction or a dc voltage through a converter, which can

produce an interpretable instruction, such as a motor speed setting. Similarly,

communication with binary devices became possible with the advent of the

Programmable Logic Controller (P L C) . This device is a computer based programmable

switch which allows on and off instructions to be actioned [16,21].

4

As computers, P L C ' s , A / D and D / A converters became economically available,

they were employed to acquire data, optimize processes and display status for

supervisory purposes. There was little or no communication between the controllers.

Later these computers were connected together, providing distributed control. The

architecture of the distributed computer control systems evolved in two different types,

commonly known as the hybrid control system and the central control computer system

[15,21].

The hybrid control system used discrete hardware and a central supervisory

computer, which provided the control function. The challenge in this system was to

interface the numerous different types of hardware which made up the system. The

architecture of a hybrid control system is shown in Figure 1.1.

In contrast, the central computer control system provided all functions from a

high performance central computer. This system, due to the high cost of its central

computer, was only accepted by the electrical utility industry; the hybrid system became

the norm elsewhere. The architecture of the central computer control system, which

normally has a primary and backup computer providing central computing, is shown in

Figure 1.2.

5

Video
Display

Mass
Storage Printer

t i

Supervisory
Computer

Panel board Interfacing
Instrumentation Hardware

i i i i

,
Analog Data
Control Acquisition
System Subsystem

m t t t

Figure 1.1. Hybrid Control System Architecture

6

Video
Display

Mass
Storage Printer

t i i t

Primary
Computer

t

Peripheral
Interfacing

Switch

Process
Interfacing

TTT

Backup
Computer

Figure 1.2. Central Computer Control System Architecture

B y the 1970's, due to the limitations of both systems, a new architecture known

as the generalized distributed control system became the norm. This architecture

divided the functions of the control system into an interface to the controllers source, a

human interface, and a computing function. This architecture is shown in Figure 1.3

[15,21,30].

7

High Level
Computing

Providing Plant
Management

Communications Facility

Local
Interface
Providing

Monitoring and
Setting

Local
Control Unit

Data
Input/Output

I
Process Transducers, Actuators and Data Acquisition

General
Purpose

Computer

Computer
Interface

Local
Interface
Providing

Monitoring and
Setting

Figure 1.3. Generalized Distributed Control System Architecture

1.3 CNC Machines

The availability of economical electronic components and computers as

discussed above lead to their application in controlling machine tools and in the

management of manufacturing. Concurrent with the distributed control advances,

machine tools became automated in the mid 1950's when M I T developed the first

8

Numerical Control (NC) machine in 1952. The official Electronic Industrial Association

definition for an N C machine is "a system in which actions are controlled by direct

insertion of numerical data at some point. The system must automatically interpret at

least some of portion of the data" [1].

A n N C machine consists of three distinct parts: data input, control unit and a

machine tool. The data input is a set of instructions which tell the machine what to do.

This includes axis movement, spindle speed, tool change, feed rate, coolant start, start

and stop. The data input is in the form of a tape, floppy disk or other similar means

which offers portability. The option also exists for manual input by the operator known

as Manual Data Input (MDI) . The control unit is a processor on the machine which

converts the instructions of the data input to a set of interactions for the machine. The

machine tool is the controlled equipment, whose servo motors action the instructions

received from the control unit.

A major improvement in machine tool control was achieved in the early 1970's

with the addition of a microcomputer to the control system. The microcomputer

provided enhanced programming, memory and built-in diagnostics. This lead to the

name change to Computer Numerical Control (C N C) machine. A further improvement

upon a stand-alone C N C machine was to include a main computer which can control

and support several machines simultaneously. The support provided by the main

computer includes an available data base of data input for various tasks, queuing, and

monitoring of status. The machine tool, while busy on a job, can provide the task's

9

status to the servicing computer, or service requests for additional data from the

supporting computer. This system of supervisor computer data support to C N C

machines is known as Direct Numerical Control (D N C) . The addition of D N C allows for

the improved efficiency of electronic support and the elimination of tapes or other

portable data input. The expansion of D N C to include further distributed interaction

leads to the topic of Computer Integrated Manufacturing [1,29].

1.4 Computer Integrated Manufacturing (CEVI)

C I M is the integration of manufacturing and business activities in a distributed

system. This is accomplished by allowing full communication between all manufacturing

functions: marketing, engineering design, research and development (R & D) ,

manufacturing, financial planning and personnel. It must be emphasized that a C I M

system should allow Computer Aided design (C A D) and Computer Aided

Manufacturing (C A M) information to be communicated in order to fully capitalize on the

intent of C I M . C I M w i l l then allow decision makers access to all data available to allow

the best decisions to be made and provide the ability to effectively communicate those

decisions. The C I M communication model is shown in Figure 1.4. Note that the arrows

in the figure represent the ability to communicate and share data; they do not represent

the lines of responsibility, which can be included as an additional feature in the system

[1,15,25,29].

10

CIM uses controllers, sensors, computers and computer networks to completely

control the manufacturing process. Its architecture is based on a communication

system which provides for the interfacing of all computer systems. Management

functions, which tend to be based on standardized systems, must be interfaced with

proprietary systems prevalent in a manufacturing environment. This is normally

accomplished by having a Local Area Network (LAN) service a given function. Each of

these functional LANs are networked to the central system to allow sharing of

information.

Personnel Marketing

Management

Engineering

£
Production

Management

t

t t

Dealers

Corporate
Computing Services

Communication
Hub

Cell Operator
or Production

Shop Floor

Financial
Services

Production
Planning

Figure 1.4. CIM Communication Model

11

Commercial C I M systems are generally based on the Open System

Interconnection (OSI) communication model. The OSI model is not a standard but

rather an architectural model, upon which various standards are based. The OSI model

has seven layers; layers one through four are responsible for how the data is

transmitted and layers five through seven are responsible for how the data is

interpreted. The difficulty in implementing C I M is that the low level communication

standards used by automation hardware are varied and often proprietary [15,25,30].

In 1980, in an effort to standardize communication requirements of equipment

which operate on lower level communication standards, General Motors developed the

Manufacturing Automation Protocol (M A P) . M A P is based on the ISO seven layer

communication model with the added functionality of the Manufacturing Message

Formatted Standard (M M F S) . M M F S defines the interaction between programmable

controllers and C N C machines or robots. Specifically it provides a protocol for

production information such as device status, program load, and job queuing. It also

enhances reliability by detecting missing or duplicate data and initiating re-transmission

to provide guaranteed message delivery. By the mid 1980's M A P had become a

standard which was accepted both in North America and Europe as a method of

extending C I M toward the production functions of an enterprise. In 1985 in an effort to

build upon M A P , Boeing Aerospace developed a subset of M A P to enable office

computers to communicate with the M A P . This protocol was called Technical Office

Protocol (TOP). The combination of M A P and T O P provided for the integration of a C I M

system as suggested by Figure 1.4 [1,21,25, 30].

12

M A P and T O P are actually separate protocols, and are based on different

standards. M A P is based on I E E E 802.5 which provides the token passing standard, a

deterministic protocol providing known maximum and minimum message passing times.

Known message passing times are required for control of a manufacturing process. In

contrast, T O P is based on the I E E E 802.3 standard, or Ethernet, which provides for

equal opportunity non-deterministic access to the network by all users. Conflict caused

by concurrent network use in T O P is managed by a Carrier Sense Multiple Access

Col l i s ion Detection (C S M A / C D) algorithm. This algorithm manages the network by not

allowing transmission unless the network is idle. The communication between systems

using M A P and those using T O P is normally based on applications that use the

services defined by M A P and T O P protocols [15,21,30].

1.5 Conclusions and Discussion

The manufacturing industry is progressing towards the use of C I M . It offers the

efficiency of information availability throughout the manufacturing process. There has

been significant effort to development of both M A P and T O P ; however, they have not

yet been fully developed. Thus, an industrial communication standard has not yet

emerged. The access to information provided by T O P , save for access to lower level

communication, has now become the norm. In contrast the distributed communication

of manufacturing process data as provided by M A P , especially in smaller companies, is

not common. C I M based on the combined use of M A P and T O P is presently in use,

but does require significant investment in both equipment and technical personnel.

13

In the next section the Open Architecture Controller (O A C) is proposed as a

model upon which distributed manufacturing process control, and information similar to

that provided by M A P and T O P , can be based. Specifically, the U B C Controller, an

O A C , is introduced and proposed as a control system which can provide a C I M

capability similar to M A P and T O P , but with reduced investment requirements.

14

Chapter 2

The UBC Controller

2.1 Introduction

A n open architecture controller is a well documented system which allows users

an ease of extension and reconfiguration which is not possible with current C N C

systems. In general terms such systems comprise distinct modules for the operator

interface, the motion control tasks and the P L C tasks.

The U B C controller is an O A C C N C controller which has recently progressed

from research to being licensed for commercial use. It is a multi-axis controller which

has been specifically designed to coordinate a large number of axes, and to allow

integration of process control with position and velocity control. The U B C controller's

initial success is based on O A C ' s acceptance as a desirable alternative to embedded

purpose-built controllers which may have proprietary restrictions.

2.2 Control Architecture

The U B C controller utilizes an S T D 32 Bus computer (see Appendix 1). The

controller consists of three component types: a master computer, a P L C , and a slave

controller for each axis. This high level architecture of the U B C controller is shown in

Figure 2.1 [24]. The master computer is a 486 I B M P C compatible processor which is

capable of controlling up to 15 slave Input / Output (I/O) axis controllers. The slave

15

controllers are I/O control processors. The master updates the position of each slave

processor every 32 ms. The slave controllers are digital lead-lag controllers with a

sampling time of 1.0 ms. They interpolate 32 times between every master position

instruction. Thus, the architecture transfers the majority of the computational work load

from the master to the slave controllers where both loop closing and second stage

interpolation is performed. The P L C provides an interface for connection of the U B C

controller to operator push buttons such as stop, start, etc. [32,35].

Each slave controller is connected to a state line. The state line is an open

collector line which allows equal opportunity for all slave controllers to influence its

state. A n y slave controller can pull the state line low in response to an error or other

criteria. When the state is high each slave controller proceeds as an ordinary lead-lag

controller. However, when the state line is low, the slave controllers w i l l not increment

their position, but w i l l continue with their closed loop position. Manipulation of the

sequence of the state line's condition can also vary velocity, as per a binary signal such

as 010101 (50%). This allows each slave controller to slow down or stop the system

when it can not follow the programmed path at the set velocity [32,35].

In addition to the state line, each slave processor is also connected to a

Synchronization Line , known as a sync line. The signal on the sync line is provided by

one of the slave controllers, normally the x-axis. A l l of the slave controllers use the

sync line for timing purposes.

16

S T D B U S

Slave
Controller

Axis #1

. Slave
Controller
Axis # N

Sync Line

State Line

Figure 2.1. U B C Controller High Level Architecture

The slave controllers receive position increments at every sampling of the master

computer. These position increments come from the master computer in the form of a

first stage interpolation. The slave controllers perform a second stage interpolation.

This procedure reduces the sampling time to 0.5 ms and allows velocity shaping in

order to reduce acceleration levels between position increments. A further operation is

performed to modulate velocity with the state line, to reduce acceleration levels below

the saturation levels of the amplifiers. This modulated signal is fed into the lead-lag

servo controller. A block diagram of a slave controller is shown in Figure 2.2 and of the

P L C board in Figure 2.3 [32,35].

17

Bus Back Plane T
Axis

Slave
Controller

Encoder Signal

Control Signal

Sync Line

State Line

Figure 2.2. Block Diagram of a Slave Controller

Bus Back Plane

Encoder Signal

Sync Line_

State Line

Tach Feed Back

Control Signal

Figure 2.3. Block Diagram of P L C Board

18

2.3 Previous Research

Development of the U B C controller began at the University of British Columbia in

1988 by D r . I. Yellowley at the Manufacturing Engineering Laboratory in the Mechanical

Engineering Department. The development of this controller has progressed from initial

research to license for commercial use by CimProvisor High Tech Industries in 1994.

Previous contributions to the development of the U B C controller are as follows:

i) Late 1980's P .R . Pottier, researched the development of slave I/O
controllers.

ii) In 1992 R. Adekani implemented force control and investigated the
integration of C A M using AutoCad and N C Polaris.

iii) In 1993 R. Seethaler developed a high speed contouring algorithm. This
algorithm also addressed real time error control by looking at position
error in relation to a reference velocity.

iv) Currently Dr . L . Yang is researching multiple state lines to expand upon
the communication available with a single state line.

This thesis w i l l contribute to the development of the U B C controller by

researching the application of its control technique over a distributed system. This

concept is introduced in the next section.

2.4 Application to Distributed Network

The application of the U B C controller to a distributed system is based upon the

extended use of the state line. The expansion of the state line influence to an external

19

source which could simultaneously influence a number of independent U B C controllers

is considered a distributed system. Such a system could function with a lower level

control network connected to the Local State Line (LSL) and is shown in Figure 2.4.

Sync Line

L S L

Lower
Level
Network

U B C
Controller

1

Sync Line

LSJJ

U B C
Controller

Distributed
Influence

Figure 2.4. Distributed System Schematic

For the purposes of this thesis the distributed system to be tested is a C N C lathe

equipped with a U B C controller. The lathe's controller is connected to a lower level

control network and a higher level communication network. The distributed system is to

be controlled on the basis of forces read from a dynamometer. The dynamometer

readings are processed by an independent computer which is capable of triggering the

lower level control network when forces read exceed set limits. There is also an

additional master computer which can monitor the lower level control network and

20

provide higher level support via the higher level communication network, such as an

NC program data base. This higher level network is interfaced to the UBC controller by

a network adapter which can be installed into the STD computer. In this way the lathe

can demonstrate CIM consisting of control on the lower level network and CIM support

on the higher level communication network. The larger system encompassing several

individual machine tools to be controlled as referred to in Figure 2.4 has, due to limited

experimental resources, been reduced to one machine tool with one external influence.

This experimental system although not as large, will demonstrate the concept of

distributed control. The distributed experimental system is shown in Figure 2.5.

UBC
Controller

A A

CNC
Lathe

Local System

Cutting Tool and Dynamometer

Distributed Dyno Master
System — • Computer Computer

i L J Lower Level
Network

Higher Level
Network

Figure 2.5. Schematic of Distributed Experimental System

21

The next section introduces the method of process control used by the U B C

controller, the basic idea of the distributed state line at the lower level network derived

directly from this idea.

2.5 Process Control

This section presents the control process upon which the lower level distributed

network is based. Adaptive control applications to machining are also discussed in the

light of the rather different approach is used here.

The manipulation of the L S L by the lower level network is used to demonstrate

network control. In this case a machine tool is being manipulated. This manipulation of

the lower level network on the machine tool is based on a simple robust approach. In

contrast adaptive control is a method of control which continually monitors parameters

of the system being controlled, and adjusts the control of the parameters to maintain

performance.

Literature on classical control defines adaptive control as a system which adapts

the controller's parameters as well as the controlled parameters to changes in the

process conditions. Literature on the adaptive control of machining defines adaptive

machining as a system which adjusts machining conditions based on feedback [34].

22

Adaptive machining is further classified as Adaptive Control Constraint (A C C)

and Adaptive Control Optimization (A C O) . A C C attempts to maximize metal removal

rate while observing a practical parameter such as spindle torque or cutting force. A C O

attempts to optimize performance based on an economical model relating the rate of

metal cutting to the cost of machining.

A C C systems typically maximize the metal removal rate by increasing the feed

until a parameter limit is reached. The development of these A C C systems is

challenged by the need to provide stability over a wide range of cutting conditions. The

problem is that controlled parameters vary with changes in the process, such as depth

of cut. This can result in the controller's performance degrading to the point of

instability. T o maintain stability, parameter adaptive systems were developed. These

systems vary the controller's parameters, normally gain, based on feedback

information. This, maintains the closed loop control performance during process

variations [7,23,20].

A C O systems attempt to optimize an economic performance index, such as

equivalent chip thickness, while maintaining system constrains (force). This method

models information about a number of parameters. Thus, it has the potential to provide

greater optimization than A C C , which is based on one constraint such as force or

spindle torque. However, due to the difficulty in including tool wear in the optimization

model, A C C systems have remained the preferred method of adaptive controlling

machining [22].

23

Adaptive control is presented as background to how control of machining is

normally done. The simulation and experimental evaluation presented in chapter 5 do

not use adaptive control; rather a simple robust approach is used.

The next section introduces flexible manufacturing systems and how the U B C

controller fits into flexible manufacturing.

2.6 Flexible Manufacturing System (FMS)

Manufacturing is the process of making goods. The methods of manufacturing

evolved from manufacturing a single item by hand to automated manufacturing. This

section introduces factory automation, F M S and its control.

2.6.1 Factory Automation

Fixed automation is a manufacturing system in which the sequence of operations

is fixed by the equipment configuration. A n example of this type system is a conveyor

based production line.

Programmable automation is a manufacturing system designed with the

capability to change the sequence of operations to accommodate different product

configurations. A n example of this type of manufacturing system is a process which

utilizes C N C machines whose actions are programmable.

24

Flexible automation is a manufacturing system which is capable of producing a

variety of parts with no time lost to change over. It is known as F M S . F M S involves the

automation of a manufacturing process, material handling, and warehousing. It is

further reviewed in the next sub-section.

2.6.2 FMS

In an effort to build upon the manufacturing savings realized by mass production,

F M S was pursued to further automate the manufacturing process. F M S can be defined

as a system of machines in which parts are automatically transported under computer

control from one machine to another. The system should also be able to produce a

wide variety of parts. F M S is best suited to low volume and high variety systems. It fills

the gap between high production transfer-lines and low production N C machines [17,

19].

F M S emerged from machining and the traditional machine tool industry. It has

since expanded to include other manufacturing activities such as assembly, testing,

welding, etc. A manufacturing cell is the smallest building block of an F M S . A

manufacturing cell is a grouping of equipment which works together to produce a

finished product or a product which is finished to a level where it can progress to

another cell within the system [29].

25

In 1975, the first manufacturing cell was developed. It was a machining center

capable of unmanned operation. It consisted of a C N C machine, an automatic tool

changer and an automatic pallet changing system, which automated both stock and

completed part movement [29].

2.6.3 FMS Architecture

F M S is based on automating the manufacturing process which has been broken

down into manufacturing cells. To achieve F M S criteria of flexible and preferably

unmanned automation, the system architecture should be capable of achieving the

following [29]:

i) Be highly automated and programmable.

ii) Provide direct accessing (robot) or random material handling (automatic
guided vehicles), rather than serial access (conveyor).

iii) Provide automated part, tool and storage facilities.

iv) Provide high level computer control based on distributed processing, data
base and links to other C I M activities such as C A D , C A M etc.

v) Provide the ability to re-route manufacturing activities in the event of a
manufacturing cell's planned or unplanned stoppage.

Table 2.1 shows the hierarchy of the different levels in an F M S architecture [29].

The control of manufacturing cells and F M S is presented in the next sub-section.

26

Table 2.1 F M S Functional Architecture

Level Function

Company
(main frame)

- order processing
- scheduling

Plant
(super mini
computer)

- decision support
- C A D / C A M
- production/process
planning

Department
(mini-computer)

- work order scheduling
- inventory/material
handling
- tool control
- performance reporting

Cel l Controller - F M S control
- work piece routing
- pallet/tool loading
- diagnostics

2.6.4 Cell / FMS Control

Cel l or F M S control has normally been based on having a cel l , or module of an

F M S , centrally controlled by a computer. This central computer maintains a task queue

which is executed on a first-in-first-out and / or priority basis. A n example is a C N C

machining cell , equipped with a robot. There wi l l be a set order of tasks the cell

controller w i l l initiate in order to move stock material through the machining process,

until the finished product is sent to an inventory system. This type of cell controller is

27

only concerned with an order of instructions which can be prioritized and executed from

a queue. This type of cell is not usually concerned with synchronizing tasks.

Synchronization of control has in the past been of academic interest only.

However, interest in synchronizing real-time control is growing, especially in the areas

of data transmission and production management.

Synchronization of data transmission within a communication network is

concerned with the operation of data bases in a high demand environment where

availability of the network or the data base is a concern. In such networks when the

requirement of getting the information from the data base is of time critical importance,

access to the network and the information becomes important. Access to the network

can be controlled by clocked timing. This wi l l ensure guaranteed network access at

known intervals. To achieve synchronization of time critical data the information within

the data base can be provided with a time stamp. This w i l l allow the data to be related

to the temporal characteristics of the process under control, and allow it to be

synchronized to a related process [18].

Another application where synchronization of data transfer is of importance is

within a multi-processor computer network, where there are multiple masters. In such a

system, data transmission is normally controlled by a self-timed bus arbitrator. A

master processor on the bus transmits to a slave processor based on timing provided

by the arbitrator. The slave must synchronize with the bus timing by either receiving a

28

clock signal or deriving it from the master. Once the transmission is complete the data

bus is released by the master for use by the next master [4].

Production management systems are concerned with monitoring the

performance and providing instruction to the managed process. With respect to

manufacturing cells or F M S the instructions from the management system are to allow

for flexibility in the process. A n example is an automobile production line where each

vehicle on the line is identified by a bar code. The management system would allow

each vehicle on the line to be individually controlled to unique specifications. The

flexibility of the differing specification instructions is required to allow continuous line

production [17].

Depending on the type of manufacturing tasks in a given production line, they

may require synchronization. If synchronization is required, control would have to be

distributed along the concerned section of the production line. The U B C controller

could be used to distribute these synchronized instructions. The next section presents

how control is distributed and how the U B C controller could be used within a distributed

system.

2.6.5 Significance of Distributed Network Control

Distributed control has traditionally been hierarchical. For example when

controlling machine tools, they are normally organized into manufacturing cells.

29

Cellular manufacturing is an arrangement of one or more machine tools or processes

which collectively produce one or more parts. The cell is often organized in a " U " shape

or loop which allows efficient movement in and out of the cell . Hierarchical control of

these manufacturing cells is based on having functional levels controlled by a

supervisory or individual computer. Such a system is presented in Table 2 .1 , and is

normally composed of three primary levels, often with a higher corporate level as shown

in Figure 2.6 [28].

In Figure 2.6 at the corporate management level, objectives are input and

production of the lower levels may be monitored. A t the central coordination level all

cells are coordinated, support is provided, timing and progress are monitored and

controlled. Each cell controller coordinates a grouping of processes which make up a

cell . Within the cell are C N C machine tools or other processes which are individually

controlled. These processes and manufacturing cells are linked to their higher levels of

control, to allow specified control of each level within the hierarchical system [12].

A n alternative to the hierarchical system is a network system based on the U B C

controller. A s previously discussed this network would be capable of monitoring and

controlling a number of U B C controllers connected to a lower level network. The value

of such a network system is the saving resulting from the elimination of a level of

supervision. Instead monitoring could be done by sensors, similar to the hierarchical

system; but, the input from these sensors could directly influence the lower level control

30

network. This type of system could be tailored to provide synchronizing within an F M S

as discussed in the previous section.

Corporate
Management

4

Other
Corporate
Functions

Cell
Controller

1

£

Process
#1

Central
Coordinator

t
Cell

Controller
#2

£
Process Process Process

#1 #1 #1

£ i.
Process Process

#1

Cell
Controller

N

£
t

Process Process Process
#1 #1 #1

Figure 2 .6. Hierarchical Control System

31

2.7 Computer Aided Process Planning (CAPP)

Process planning can be defined as a set of instructions which create the

detailed work interactions required to produce a component. This planning process

began as a manual exercise based on experience. The advent of computers and their

development lead to Computer Aided Design (C A D) and C A P P to assist in design and

manufacturing.

C A D systems were originally developed to assist draftsmen and designers in

producing drawings and in maintaining a library of drawings. Later C A D was expanded

to assist in the design by providing modeling, such as solid modeling and finite element

modeling. Thus, modern C A D systems are able to provide information such as

geometric data, surface finish, tolerances, etc. to assist in design and manufacturing.

C A P P systems use the information available from a C A D system to produce the

manufactured goods. C A P P is the link between the design and manufacturing

functions within a manufacturing enterprise. It translates the information from C A D

drawing into technical manufacturing information such as material, equipment, tooling,

sequencing of operations, etc. The role of C A P P is to provide effective inventory

control, production scheduling, performance control, etc.

The development of C A P P systems is based on two different approaches:

variant and generative. The variant approach uses coded information on a part to

32

identify similar parts which have an existing plan. The existing plan is modified to the

requirements of the new part, to produce its plan. The generative approach uses logic

to integrate data available at higher levels, to generate an acceptable lower level plan.

This approach uses a computer to find the optimal plan which considers all options,

including those which would have normally been discarded by human planners. Thus,

a plan based on all available information and options is developed [39].

In reviewing C A P P approaches it appears that the greatest opportunity to

automate and optimize the planning process exists with the generative approach. The

variant approach does offer a viable alternative; however, it is limited by the effort

required to establish a data base and by part compatibility, and it offers minimal

opportunity for theoretical optimization. Limitations acknowledged, the variant

approach is still the most popular type of commercial C A P P system available, due to its

ease of development. However, due to the potential to automate the generative

approach, which could allow mathematical modeling and higher level input to determine

the best process plan, it w i l l likely be direction of future C A P P development [39,13].

2.7.1 CAPP Application to a UBC Controller Based
Distributed Network

The unique architecture of the U B C controller should allow the interfacing of a

lower level network which provides the control, and a higher level communication

network. The logic of the lower level network should have the ability to control all

equipment connected to its network. This logic line could for C A P P purposes be

33

monitored. Monitoring this lower level network could provide a connected process or

individual machine with the ability to confirm that network's status before proceeding

with an instruction. Higher level monitoring could also determine status, such a speed of

operation, to reroute tasks within the process plan. Information could also be requested

from an operator using the higher level communication network.

Thus, the U B C controller based network could be used to acquire real-time

information for C A P P purposes. The information available by monitoring the lower level

network could be used for go / no go confirmation by an individual machine or process,

and for initial planning and amending an existing process plan in operation.

2.8 Conclusions and Discussion

Presently, the method of providing distributed control in a manufacturing

environment has been hierarchical. Its implementation has usually been based on

M A P and T O P . However due to the continuous changes to M A P and T O P , cost, and

the limitations of their interopertability, an industrial communication standard has not

emerged.

Given the unique architecture of the U B C controller, it should be possible to

distribute its state line control feature over a network. The control provided by a

distributed state line could be used to provide a synchronous one bit logic instruction.

The major advantage of such a system would be the possibility to synchronize

34

technological monitoring tasks, generated by the C A P P system, with motion generated

by the interpolator. The distributed nature of the system would allow the tasks to be

carried out on separate computer platforms

35

Chapter 3

Networking Solutions

3.1 Introduction

In this section real-time control and the issues surrounding networking hardware

and software are presented.

The U B C controller is a basis for providing a C N C machining cell with C I M . As

previously discussed, C I M is the complete integration of all information and automation

within a networked computer system. The integration of C I M with a U B C controller

based system can be accomplished by providing the automated control with a lower

level network, and providing C I M support, such as D N C , file transfer, etc., with a higher

level network.

For the lower level network, which is concerned with real-time automation

control, there are two options, either direct port interface manipulation or standard

protocol software. A review of both of these options and the requirement for

deterministic real-time control is presented, along with a review of the interconnection

concerns which result from the use of different computers, e.g. P C , Macintosh (Mac)

and U N I X systems.

36

The higher level network is concerned with providing support such as D N C (file

transfer), a data base and basic communication by an email system. The physical

networks and their software options are reviewed.

3.2 Real Time Control

Whenever a computer system is required to acquire data, emit data or interact

with its environment at a precise time, the system is known as a real-time computer

system. For control purposes a real-time system is a system whose performance is of

critical importance to the industrial system or process to which it is connected. The

sequence of the instructions provided by the system must be predictable to provide

positive control. Real-time systems must be deterministic. A n example of a system

requiring real-time control is a safety monitor on a pressure vessel. Pressure sampling

must occur at known intervals to ensure that the vessel remains within safety limits.

The alternative is a non-deterministic system such as a time-shared computer system.

For example, this type of system could be used in a library to provide access to a data

base by multiple users. Use of the system would be random, with possible priority

given to key tasks. Obviously a shared system would be inappropriate for controlling

industrial processes [19].

)

37

3.3 Networking Physical Interfaces

Networking computers and other devices is done by utilizing interface ports. The

network either provides desired information or is influenced by the computer, which

reads and writes to the network via the interface port. This can be done by either using

software that implements standard protocols or by proprietary lower level direct

manipulation of the lines on the port interface. This latter method of control can be

easily accomplished using common programming techniques and has the advantage of

reducing computing overhead. However, the communication facilities provided by a

port are limited to number of pins or lines which are available at the port interface being

used. The software protocols are described later in this section.

The port interfacing options available on computers are normally limited to

parallel, serial and Small Computer System Interface (SCSI, pronounced "scuzzy").

Serial and parallel ports are usually available on P C computers. U N I X workstations

normally have serial ports, and parallel ports that can be requested as an option. Mac 's

have a SCSI port and an Apple Computer printer port similar to the parallel port. These

are the normal port configurations for the above computers; however, any of the these

computers can be customized to include the desired port interface. Computers can

usually also be equipped with other network adapters such as Ethernet; these are

discussed later in this section.

38

Computers transfer data in two ways: parallel and serial. Parallel data transfer is

in eight bit bytes. The parallel interface uses a thick 25 line cable, of which eight lines

are used for data transfer, and the remaining lines are used for status signaling and

grounding. Although the parallel port is normally used for interfacing a computer to a

printer, it can be used to interface with other parallel devices. The limitation of parallel

communication is its maximum cable length of a few meters, which greatly limits its

applications [19,24].

In serial communication, data is transmitted one bit at a time. Thus, it may be

slower than parallel communication, but it has the advantage of not being limited by

cable length and can be transmitted over telephone lines. The maximum speed is

determined by both the physical interface and the protocol used. As internal

communication on a computer bus is not by bit, but rather by byte (8 bits) or another

data transfer standard, the data must be converted to and from serial data, for example

by using a shift register at the adapter interface [19,24].

SCSI is a disk drive to disk controller interface standard, used by Mac ' s , but

available for use by other computers. SCSI is a high performance interface which can

be connected to any SCSI type device, not just hard drives. SCSI devices can be daisy

chained up to a maximum of seven devices and have data transfer rates up to 80

Mbits/sec. Given the limit of seven devices in a SCSI network and the wide acceptance

of P C based systems, use of SCSI interfacing is not the norm for control systems [24].

39

There are numerous physical networks available; however there are only two

types of communication, deterministic and non-deterministic. Deterministic networks

normally use the token passing method of communication. Non-deterministic networks

normally use the C S M A / C D method of communication, which detects i f the network is

available. Two of the most common communication networks, one of each type , Token

Ring and Ethernet w i l l be reviewed. In addition the Field Bus, an automation network

wi l l also be reviewed.

3.3.1 Token Ring Networks

I B M ' s P C Local Area Network (L A N) is Token Ring. Token Ring is a closed loop

system, as shown in Figure 3.1, which is capable of transmitting at 4 or 16 Mbits/sec.

The system of communication is based on circulating a "token". The token circulates

the ring, sequentially, making itself available to each of the stations. If a station wishes

to transmit, it must wait until it receives the token, and then send its data (known as a

"frame") within the token. Once the frame arrives at its destination, it is copied and

processed. The destination station then returns the frame to the ring, with an

acknowledgment that it has been received and processed. The frame continues

around the ring until it arrives its originating station, which on reading the

acknowledgment in the token, removes it from the ring. Usually, only one frame can

circulate the ring at a time. The circulation of the token in the ring network is controlled

by a token holding timer located with the system manager. System management is

provided by a computer on the network, and backup management can be provided by

40

any other computer on the network. When the frame or token is circulating on the ring,

each station acts as a repeater, transmitting the data to the next station on the ring. In

this way the token ring network is not limited by distances or speed as are other bus

based systems. Although token use is sequential there is also the opportunity to

designate differing priorities to stations, allowing the transmission order to be

customized [10].

Since the token ring network provides sequential timed transmission, it could be

considered as a network capable of providing real-time communication. Interfacing the

token ring network to other computers or digital devices is dependent on use of a Token

Ring adapter.

Computer

Figure 3.1. Token Ring Network

41

3.3.2 Field Bus

Field Buses are a type of L A N used for data acquisition and control of sensors

and actuators on machines or in a factory. There are numerous emerging standards

such as Bitbus (Intel), FIP (France), C A N bus (Germany) and Profibus (Germany) which

are all registering their standard in an attempt to become the "Field Bus" standard.

Although different, they are all based on a Field Bus adapter, I/O controllers and high

speed serial communication, as shown in Figure 3.2. Cabling is by low cost twisted

pair and transmission is based on the RS-485 standard. The field bus standards differ

in hardware and transmission protocol. The hardware differences are in the field bus

adapter and the I/O cards. Interconnection between the Field Bus I/O card and a

networked computer is based on standard connections. The differing transmission

protocol consists of a message which includes an address, data and administrative

features. For example, the Bitbus message protocol consists of a 20 byte message,

which includes a 7 byte header and 0 to 13 information bytes [5,7].

42

I/O
card

Master Computer

Field Bus
Adapter

Parallel
Port

t—f

Reporting to
Central Computer

System

I/O I/O
card card

I/O
Card

Machine Machine Machine Machine
1 #2 #3 #n

Figure 3.2 Field Bus Network

As can be seen from Figure 3.2, Field Bus has a hierarchical architecture,

operating in a master / slave relationship. A Field Bus can operate in either

synchronous mode, where each I/O card is polled sequentially, or self clocked mode,

which uses an internal clock in the Field Bus adapter, to guarantee fixed interval

computing for real-time application. The number of stations which can be operated is

dependent on the field bus standard used. Repeaters are normally used to extend

transmission length, but they also reduce transmission speed. The various Fie ld Bus

standards are capable of transmitting 31.5 Kbits/sec to 2.5 Mbits/sec, dependent on the

mode of operation and number of stations. Figure 3.2 also shows a parallel link to a

43

central computer system to show that process information could be relayed to a higher

level for management purposes [5,9].

Field bus interfaces are supported by firmware utilities, which eases

programming in high level languages such as " C " . This allows qualified users to

customize a field bus system to their requirements. Field bus is an evolving standard

which provides an efficient and economical real-time automation network.

3.3.3 Ethernet

Ethernet is a network interface which provides economical communication

between computers and other digital equipment. Its communication is based on

synchronous bit sequences called frames. A frame is a series of bits which represents

various fields of information including addresses (source and destination of the frame),

data and other administrative instructions. A l l stations on an Ethernet can transmit and

receive simultaneously; a frame is processed by the station whose address matches

the frame's destination address. Transmission conflict caused by concurrent network

use is managed by the C S M A / C D algorithm, which checks the network, allowing

transmission only when the network is idle. Ethernet was intended to be used for

automation, data processing and access to other terminals. However, due to its non-

deterministic nature, Ethernet was not intended to accommodate real-time computing.

Use of Ethernet is dependent on all stations within the network using an Ethernet

adapter. Table 3.1 provides the characteristics of Ethernet [14,31].

44

Table 3.1. Primary Characteristics of Ethernet

Data Transmission Rate 10 M b its / sec

Maximum Station Separation 2.5 K m

Maximum Number of Stations 1024

Medium Shielded Coaxial Cable, Twisted Pair,

Fiber Optics and Others

3.4 Networking Software

The networking software options are numerous but are limited by

system compatibility and the required computational ability of a computer to efficiently

use the networking software. Software compatibility, protocols, operating systems and

the programs required to manage and use the networking software are presented in

this section.

3.4.1 Software Compatibility

Software compatibility is normally addressed by the vendor who provides

software options to operate their equipment in various computer environments. Usually

software for P C computers is provided. Depending on the software and its intended

application, U N I X systems (workstations) may be included; however, it is less likely that

Macs would be accommodated. Workstations are not usually used within the

45

manufacturing environment of C I M due to their cost; rather, they are utilized for

engineering and design work, where their computation power is needed. Macs are

normally used for their word-processing features, and have not become accepted as a

computer to be used for industrial applications. Thus, P C computers have emerged as

a standard for industrial applications.

Networking software, like most other software, normally has specific computing

environment requirements. Usually these parameters include processor type, minimum

memory and minimum hard disk space. Although documentation on these minimum

requirements are readily available, information on the precise type of computer that a

vendor recommends operating their software on should be sought to avoid

disappointing performance.

3.4.2 Transmission Control Protocol / Internet Protocol (TCP/IP)

The defacto networking software standard has become the T C P / I P protocol

suite. It is non-proprietary and provides high speed communication. T C P is a software

protocol which allows communication between end station computers or other digital

equipment. Data travels between stations in a T C P segment composed of seven, eight

bit bytes. The T C P segments travel across the network in IP datagrams of variable

length; IP defines how the datagrams are routed. T C P / I P protocols operate

independent of most network data link level protocols, enabling the T C P / I P protocol to

operate on virtually any network. Thus, T C P / I P may be used within a L A N or a wider

46

network such as the global Internet. Due to this wide scope of use and its use as the

Internet network software standard, T C P / I P has emerged as the software networking

standard for all applications [14,31].

3.4.3 Network Basic Input / Output System (NetBios)

Although there are many other existing protocols available for communication,

the only other one considered here due to its wide acceptance is the NetBios protocol.

NetBios is a low overhead software interface developed by I B M ; it allows P C computers

to communicate. NetBios can be used within the P C , but is intended to be used on a

network. It is the network software on which I B M has based their Token Ring network.

NetBios consists of functions and return codes. The functions are called to provide

various utilities such as "send message", "receive message" etc. Return codes are

provided to advise of a called function's status, such as "interface busy", "check

adapter", etc. A l l I B M P C computers have NetBios installed; P C compatibles may or

may not be provide with NetBios. Regretfully NetBios has been developed to varying

standards; thus, in general it is not possible to mix NetBios protocols from different

vendors. As NetBios is I B M ' s P C networking software standard, it has been widely

accepted and is used as the software communication interface in many programs. As a

result, T C P / I P includes guidelines that describe how to map NetBios operations into

equivalent T C P / I P operations. NetBios has been introduced here as it is widely

accepted and because it could be considered as a communication interface which may

provide low overhead communication [8,33].

47

3.4.4 Operating Systems (O/S)

O/S's which primarily include D O S , M A C , OS/2, and U N I X do influence the

network protocol selection. However, this thesis w i l l only be concerned with the D O S

operating system. Thus, computer operating systems wi l l not be discussed further.

3.4.5 Network Management Systems

The L A N network management system is the software which provides the central

management of the L A N . The functions of this system include monitoring and tracking

network performance and activity, security, fault analysis and configuration. There are

numerous systems available. Table 3.2 provides a listing of the major L A N network

management systems available for the physical networks previously presented [10].

Table 3.2 L A N Network Management Systems

Network
manager

Core O/S Client O/S Protocols
Supported

Physical Networks
Supported

I B M LAN Network
Manager *

OS/2 OS/2, DOS NetBios Token Ring,
Ethernet and others

Novel NetWare** NetWare OS/2, DOS NetBios, T C P / I P
I P X

Token Ring,
Ethernet and others

Requires NetView, the primary manager located in the main frame. NetView is
compatible with T C P / I P .
Includes NetView entry point module. Internet Packet Exchange (IPX) is Novel 's
network layer protocol.

48

3.4.6 Application Programs

Application programs provide access to the software programs which are

available on a computer. These programs normally have a graphical interface to ease

in the use of different programs on a computer. Normally utilities which provide file

transfer, email, security and other network support are or can be included. The

application programs fall into two categories: independent and X/windows application

programs. Independent application programs allow singular use by a computer of its

programs and processor, which may be in a single task or multi-tasking environment.

The X/windows application programs allow independent operation as well as terminal

operation. Terminal operation allows a computer (host) to gain access to another

computer (client) as a terminal, running its programs or the client's on either the client

computer or the host computer.

T w o standards for independent applications programs are Microsoft 's Windows

for Working Groups and I B M ' s OS/2 W A R P Connect. For X/windows network

application programs there are numerous products available, all of which claim

compatibility with most programs and interoperability with other X/windows network

Application Programs.

49

3.5 Conclusions and Discussion

Real-time control, network physical interfaces and network software have been

presented. The over-riding requirement for the C I M application of this thesis is that the

network system provide both real-time machine tool control and higher level

communication.

A n important consideration in selecting a network system is interoperability.

Machine tools and other manufacturing control systems often have unique protocols to

provide for specific requirements such as job queuing and progress reporting etc.,

previously discussed. These features are usually proprietary and specific to the control

system of the process being controlled. This posses no difficulty so long equipment

from the same vendor is used and no attempt to network information beyond the

controlled process is attempted. If networking of control information is desired then a

network which has an expanded capability must be used.

The U B C controller with its unique method of control based on its L S L and sync

line can be controlled by a distributed real-time control system and receive higher level

C I M support without use of the expensive M A P / T O P protocol suite. The selection and

design of the network system which wi l l be used to implement C I M in a U B C controller

based environment is presented in the next chapter.

50

Chapter 4

System Selection and Design

4.1 Introduction

This chapter describes the process of the selection and design of a networked

arrangement based upon the U B C controller. The network consists of two separate

levels. A lower level automatic control network provides real time control to a machine

tool equipped with a U B C controller. This lower level control of the U B C controllers is

based on the manipulation of the L S L by the lower level automatic control network.

The higher level network provides C I M support such as file transfer which a

machine tool or operator in a machining cell can access as a resource. This network is

not subject to the constraints of real-time computing, but rather is based on information

access and privileges.

The chapter concludes with a discussion on how the two systems are integrated

to provide a complete C I M capability to a U B C controller based machining cell .

4.2 Networking the Lower Level Control Network

The lower level control of the U B C controller system is provided by the

connection of the lower level automatic control network from the master computer and

51

autonomous within the UBC controller. The lower level automatic control network is

triggered high or low as dictated by the distributed influence, which for this application

is the dynamometer force readings.

Axis Controllers
Master Processor

- PLC

CNC
Lathe

Local System Tested

Cutting Tool and Dynamometer

Distributed
1—System

Dyno
Computer

Master
Computer

.Lower Level
Network

Higher Level
Network

UBC Controller

n
Local State Line

Local Sync Line

r

Any number of "n" UBC
Controller based systems can be
connected to the lower level and
higher level networks. Note that
all connected stations will be
simultaneously influenced by the
lower level control network.

n th Local System

Figure 4 .1 . Schematic of Distributed Experimental System

52

Since the L S L is an open collector type circuit, the lower level automatic control

network hardware must also be an open collector type circuit, in order to allow the lower

level network to influence the U B C controller's L S L . As discussed in section 3.3, control

of the lower level automatic control network can be either by using software that

implements standard protocols or by proprietary lower level direct manipulation of the

lines on the computer interface ports. The advantages and disadvantages of both

options are shown in Table 4.1 [31].

Table 4.1. Lower Level Network Implementation Tradeoffs

Advantages Disadvantages

Direct Port
Interface

Manipulation

- Very fast and reliable

- Frees computer from
routine

operations

- Difficult to change

- Longer development time

Standard
Protocol
Software

- Easy to modify; flexible

- Reliable

- Due to software overhead,
can be slow

- Ties the computer down to
routine tasks

- Expensive to purchase and
develop

Both options are capable of providing the control link between the lower level

automatic control network and L S L . The key design considerations are that the system

be as quick as possible and be deterministic.

53

Using a standard software protocol introduces additional processing overhead,

resulting in delayed network response. Even the smaller overhead introduced by

NetBios is considered too much for this application. The standard protocol software

packages are typically available only for standard network interfaces such as Ethernet

or Token Ring. These interfaces have their own processing requirements, further

adding to the overhead on the network. For these reasons, the standard protocol

software solution is not considered ideal.

A n alternative implementation of the state line system control using a Field Bus

is possible, and would be as shown in Figure 4.2. Commercially available Field Bus

systems described in section 3.3.2 include all necessary hardware and software and

can be made to meet the criteria of being real-time. However, interfacing the Field Bus

with the U B C controller, the selected controller for this system, would require a

hardware interface compatible with the U B C controller's open collector state line. As

shown in Figure 4.2 a Field Bus system would require a Field Bus network as well as a

lower level network. The lower level network would provide the distributed control from

the Field Bus network to the L S L of the U B C controller on each of the individual

machines. This would allow simultaneous control of all networked equipment.

Unfortunately, this system would also be subject to an overhead delay resulting

from the processing of the Field Bus by the master computer. Thus, it is also not

considered ideal.

54

I Field Bus
Interface

I
I/O

Card

Machine
1

LSL

Master
Computer
Bus Parallel

Adapter Port

i t

I/O
Card

Machine
#2

LSI

Reporting to
Central Computer

System

1
I/O

Card

Machine
#3

LSI

I/O
Card

Machine
#n

-LSL

Lower Level
Network

Figure 4.2. Field Bus Based Lower Level Network System

Another alternative is to simply interface the external influence (in this case the

dynamometer) and the individual machine controllers directly to the distributed lower

level network. This interface method wi l l be referred to as direct port manipulation.

This solution requires that this interface to the lower level network be intelligent, for

example a computer reading the dynamometer output via an A / D converter to

determine i f the lower level network should be triggered. This concept is similar to the

55

Field Bus, which receives its input via a Field Bus I/O card connected to a computer.

However, central processing of the input by the Field Bus computer is omitted. Instead

a device directly affects the lower level network, resulting in a quicker response at the

networked machines from the influencing device. The only concern regarding this

system is the software in the influencing devices. Although it is similar to the Field Bus

software interface, it would not be centralized; therefore, setup and debugging the

network would be more complex.

The direct port manipulation solution offers fast and deterministic communication

between the open collector lines of the L S L and lower level network. A limitation of this

solution is in its inflexibility compared to standard software protocols. However, given

that the system is not complex, the advantage of flexibility provided by software

protocols in this experimental application is not considered significant. The direct port

manipulation solution meets the criteria of being quick and can be deterministic; thus,

this solution was pursued and is presented in the next section.

4.3 Distributed State Line and Synchronization Line Design

The requirement for a faster response, dictated by the functions of a machining

cell , and the opportunity to control the lower level network without the additional

investment in the field bus, lead to the pursuit of a new network based on an interface

of the external influence network with the L S L .

56

As with the U B C controller this distributed network would require both a state line

and its own synchronization line. A s previously acknowledged the lower level network

wi l l connect to the L S L to provide the distributed control of the state line system. The

distributed synchronization line is required to provide the lower level network's control

with a timing pulse, which wi l l make it deterministic. Thus, the lower level network wi l l

consist of a distributed synchronization line and a Distributed State Line (DSL) .

For experimental purposes the D S L selected for the system is a 12 volt Direct

Current (dc) line, which is readily available from the power supply of a computer. It is

acknowledged that for the D S L to function over a larger area, as would be expected for

a commercial application, a higher voltage may be required to avoid degradation of the

D S L signal.

The distributed synchronization line requires a clock whose timing pulse is

distributed to all equipment connected to the system. Instead of adding an separate

clock and line, nominal alternating current (ac) (115 volt, 60 Hz) that is readily available

is utilized. Timing is obtained from the nominal ac signal by using a zero crossing

detector which converts the signal's sine wave to a pulse which can be read. The

graphical representation of this conversion is shown in Figure 4.3.

57

1 period

Figure 4.3. Zero Crossing Capture of the Timing Pulse

As one period of the nominal ac signal is 1/60 th of a second, the time between

zero crossing detection can be calculated as shown:

T = 1 / f ' (4

T = (1/2) x (1/60) = 0.00833 sec

T = 8 ms

The interfacing of the D S L and distributed synchronization line to the computers

is accomplished by a circuit board which was designed to operate from the parallel port

of a P C computer. This parallel port Distributed Interface Board (DIB) has been

58

designed to allow the computer to read the distributed synchronization line and trigger

the D S L high or low. Complete details of the DIB is provided in Appendix 2.

The interface of the D S L and distributed synchronization line to the U B C

controller is provided by the State Line Interface Board (SIB) shown in Appendix 3. The

purpose of the SIB is to interface the local U B C controller to the lower level network (the

D S L and distributed synchronization line), and to isolate the two systems from each

other.

The SIB has been designed to include a delayed response. This delay has been

included to smooth the response of the servo motor and to demonstrate the ability of

the SIB to control the influence of the lower level network on a U B C controller.

Smoothing of the servo motor response in this situation is required due to the similarity

in the response time of the servo motor and distributed synchronization line. The

distributed synchronization line has a clock timing of 8 ms. The high performance servo

motors have a mechanical time constant (velocity loop) of 12 ms. Due to the motor

time constants and distributed synchronization line timing being of the same magnitude

it is possible that i f the D S L is rapidly triggered, the response of the servo motor would

result in large velocity variations of the feed rate. This would be caused by the

response at the motor being almost equal to the marginally quicker distributed

synchronization line. B y providing the circuit delay on the D S L ' s influence of the L S L

the resulting response at the servo is an averaged reflection, rather than a choppy

59

The delayed response is caused by cycling the state line system high and low is

graphically shown in Figure 4.4. The delay is provided by a feature in the SIB's circuit

which produces the high / low cycling for a short period based on a delayed "one shot".

The SIB was designed to provide a 50 percent feed rate for an 8.7 ms interval on

triggering the DSL from low to high, and for a 5 ms interval on triggering the DSL from

high to low. Further details of this feature are provided in Appendix 2.

DSL

high

low

-50 % for 8.7 ms, D S L changes from low to high

p50 % for 5 ms, D S L changes from high to low

Feed rate (%)

100

50

Time (ms)

Figure 4.4. SIB Triggering of the DSL

Figure 4.5 graphically shows the smoothing effect of the SID. Rapid DSL state

changes are displayed along the x-axis. The servo motor response is super-imposed

on the DSL state changes which does not show the triggering delays as shown in

Figure 4.4.

60

Figure 4.5 graphically shows the smoothing effect of the SID. Rapid D S L state

changes are displayed along the x-axis. The servo motor response is super-imposed

on the D S L state changes which does not show the triggering delays as shown in

Figure 4.4.

/
Unsmoothed Feed Rate

Time

Smoothed Feed Rate

Time

Figure 4.5. Servo Motor Response

For this application a program, listed in Appendix 4, processes the dynamometer

force readings which have been read through the A / D converter. If the force read

exceeds a limit then the D S L is triggered low; conversely, i f the force read is within

limits, the D S L is trigged high. A l l program actions are based on the 8 ms timing

provided by the distributed synchronization line, which the program obtains from the

D I B .

61

Details of how this distributed network performs in simulated and experimental

conditions are provided in the next chapter.

4.4 Higher Leve l C I M Support Network

The high level network C I M support is intended to provide D N C , file transfer,

data base and email capability. This network is a communication link and is not

required to adhere to the real-time constraints of the lower level network. The

implementation of this network and the application program which supports these

capabilities are presented in this section.

The physical networks previously presented were Field Bus, I B M ' s Token Ring,

and Ethernet. Field Bus does not support higher level communication such as file

transfer; thus, it was not considered. Given that there is no intention to use this network

for any real-time application, the deterministic token passing feature of Token Ring is

not an advantage. Ethernet is an economical network which has wider acceptance in

industry. T C P / I P is a non-proprietary open system protocol and Internet standard which

has wider acceptance than NetBios. Given the flexibility that Ethernet and T C P / I P

offer, this network and protocol are selected as the network system for the higher level

C I M support.

The application program selection is based on considering an independent

program such as Microsoft 's "Windows" or an X/windows program. The independent

62

application program does meet all of the criteria of the higher level network; however, it

does not offer the greater flexibility provided by X/windows. For example X/windows

provides the ability for a computer to act as a terminal allowing access to other

computers on the network. This allows the user of a slower computer to run programs

on a faster computer which may be idle or have the ability to accept the additional load,

and it w i l l allow access, to workstations which also run X/windows. This latter feature

wi l l allows on-line access to workstation data such as a blue print data base, very

helpful information which may not normally be available on a P C . Thus X/windows

application programs are considered the preferable option.

There are numerous X/windows applications programs available, offering similar

features. For this experimental system Quarterdeck's D E S Q v i e w / X was selected. It is

an X/windows application program which provides multitasking, D O S and Microsoft

Windows compatibility, and data transfer, remote computing and compatibility with other

X/windows systems. D E S Q v i e w / X has its own L A N network manager which is

compatible with those discussed in Section 3.4.5 as well as others. D E S Q v i e w / X also

comes with Novel 's T C P / I P kernel. The file transfer and remote computing facilities are

dependent on access list security, which each computer must individually set. The

remote computing facility allows complete host / client use of computers. It also

includes a remote shell command, which allows a command to be sent to a remote

computer; the remote computer w i l l execute the command as if it were entered locally.

For example, although slow due to software overhead, this facility, would allow

operation of a cell by remote commands. Given the lower level control network, a

63

supervisor with access could monitor the cell 's D S L and also send an instruction to the

cell master computer to affect the D S L control of the cell . This is not a real-time link,

but does allow higher level influence on a manufacturing cell . Source code for a remote

shell command from the cell master computer to influence the D S L is provided in

Appendix 4.

Email on the system would allow both local mail as well as wider access given

that the T C P / I P protocol is used. Numerous email programs are available; however,

the email facility w i l l not be pursued at this time and wi l l not be included in the

experiments and system evaluation in the next chapter, due to the limited added value

it would provide to the experiment.

Figure 4.6 shows the configuration of the higher level C I M support network and

its integration with the lower level control network in the experimental system

architecture.

64

Machine
#2

L S L

Machine
#n

L S L

Cell Master
Computer

D S L

Cel l
Ethernet

Cel l System

Supervisory
Computer

Plant
Ethernet

Figure 4.6. Integrated Higher and Lower Level Networks

Figure 4.7 shows the configuration of the experimental system.

65

U B C Contro l ler

Ethernet

L S L

L o c a l S y n c L i n e

SIB

C N C
Lathe Local System

Cutting Tool and Dynamometer

t Distributed
System

Dyno
Computer

Master
Computer

D I B

A A

28 Volt
Transformer 1 Nominal

110 Vol tac l

D I B

A A
DSL!

Distributed
Synchronization |

Line i

Ethernet

Figure 4.7 Detailed Schematic of Experimental System

4.5 Conclusions and discussion

The C I M system proposed in this chapter consists of a lower level control

network and a higher level C I M support network.

66

The lower level control network selected consists of a hardware interface (DIB)

from an external influence (dynamometer) to the D S L . The DIB is interfaced to the

parallel port of the computer. The computer samples the dynamometer with an A / D

converter. A program monitors both the forces read on the A / D converter and the

distributed synchronization line, via the DIB interface. If the forces read are beyond set

limits then the program writes to the parallel port, instructing the DIB to influence the

D S L . This network was extensively tested by simulating its performance and by

experimentation; the results are presented in the next chapter.

The higher level network consists of commercial products; the physical network

is Ethernet, the protocol is T C P / I P and the network manager and application program

are Quarterdeck's D E S Q v i e w / X . These products were installed in the U B C controller

(STD computer) and the master computer shown in Figure 4.7. The ability for the

master computer to monitor the D S L and communicate with the U B C controller via the

Ethernet was confirmed. However, further analyses of this higher level network was not

conducted as it does not easily lend itself to simulation nor experimental testing. The

higher level network's performance wi l l not be examined. Specifications and further

information on performance is available from the vendor.

67

Chapter 5

Simulation and Experimental Results

5.1 Introduction

In this chapter the evaluation of the lower level network begins with a review and

definition of the tests apparatus, as shown in Figure 4.6. Then the model used for the

simulation of the lower level network is presented. The chapter concludes with the

presentation and comparison of the simulated and experimental results.

5.2 Experimental Apparatus

As shown in Figure 4.6 the apparatus is a CNC Hitachi Seiki lathe controlled by

a UBC controller. The UBC controller is interfaced with both the lower level network

and the higher level network. This discussion is concerned exclusively with the lower

level network. The UBC controller interface to the lower level network is via the SIB.

The SIB is driven by the local synchronization line and provides the interconnection of

the DSL and LSL. The DSL can only be influenced by the distributed influence which

in this case is a dynamometer reading of the cutting forces from the lathe. This

external influence is interpreted by a computer, which on analyzing the forces from the

dynamometer decides if the DSL should be pulled low or not. The analysis of the force

reading by the computer is based on the distributed synchronization line timing of 8 ms.

The interfacing of the force analyzing computer with the lower level network is via the

6 8

DIB. The DIB is polled to obtain the distributed synchronization timing, and provides an

interface to the DSL.

The Z axis position loop of this system is presented in block diagram form in

Figure 5.1. This is a second order system.

CNC Controller Amplifier Actuator Encoder

R i Ea v
Kp z - A

z + B Kda 1 - e Ts

la

Ka Kt

co

Js

0 i BLU
Ke

Figure 5.1. Z-Axis Block Diagram

The constant values for the lathe's Z axis servo motor are listed in Table 5.1.

69

Table 5.1 Z-axis Position Control Loop Constants

Z-axis Control Loop Constants Symbol Value

Digital Filter Parameters Kp 90.00
A 0.985
B 0.25

Encoder Gain Ke 1273 [pulses/rad]

D/A Converter Gain Kda 0.0049 [V/Level]

Servo Amp Current Gain Ka 13 [AA/]

Motor Torque Constant Kt 0.1 [Nm/A]

Motor Mechanical Time Constant tm 0.012 [sec]

Motor Electrical Time Constant « te 0.010 [sec]

Equivalent Motor Inertia Jeq 0.0013 [N.m.s2]

The motor constants were obtained from the motor's vendor. The 12 bit D/A

converter has a range of + 10 volts. The servo amplifier gain was obtained by

measuring the current tap of the amplifier, in response to a known input voltage. The z-

axis motor has encoder feedback; a tachometer generator was not included.

The simulation uses the information in Table 5.1 to model the feed drive

mechanics and tool motion. The cutting force Fv is based on the force model and

cutting edge forces as shown in Figures 5.2 and 5.3.

70

71

Figure 5.2 shows the total thrust force (Ft) is composed of the axial (Fa) and radial (Fr)

forces. Chip sections from the turning may be represented by the equivalent chip

thickness model. This model is a mean value of the chip thickness averaged over the

engaged cutting length [6,26,37]. The following equations are used to model the

equivalent chip thickness (He):

He= Area = _ A _ (5.3)
engaged cutting edge length Le

Area = depth of cut x feed per revolution = a x s (5.4)

Le = (a - R(1-sin u/)) + R(TI - y) + _s_ (5.5)
cos \]i 2 2

where: R: tool nose radius
v|/: tool approach angle [rad]

The equivalent chip thickness combines the effects of the approach angle and

tool nose radius on the cutting forces and temperature [6]. Nakayama et. al. [26]

showed that at constant cutting velocity the cutting forces and temperature are a linear

function of the equivalent chip thickness. The orthogonal cutting equations is:

Fv = Kx xHe+A ' j (5.6)

Le

Equation 5.6 is used to calculate the main cutting force Fv. The cutting pressure

constants K1 and K2 were previously determined by experimentation [2]. They were

72

obtained by taking three straight passes with the same tool at a constant depth at

different feed rates; this allowed simultaneous solving for the constants. The pressure

constants and tool characteristics are listed in Table 5.2.

Table 5.2 Cutting Tool Characteristics and Pressure Constants

Symbol Value
Tool Nose Radius R 0.8 [mm]
Tool Approach Angle -3 [deg]
Rake Angle (effective angle) ¥ e -6 [deg]
Cutting Pressures * i 836

K2
55

The evaluation, by both simulation and experimentation, of the performance of

this lower level control network is done for the conditions, listed in Table 5.3.

Table 5.3 Network Tests

Test # Depth of Cut (mm) Derivative Max Force (N)

0001 2 0.00 800

0002 2 0.00 350

0003 2 0.10 350

0004 2 0.20 350

0005 2 0.40 350

0006 taper
4 - 0 mm depth

over 20 mm length

0.40 350

73

The taper and normal cutting passes are shown in Figure 5.4

10 mm

direction ion of cut \ \

4 2 mm

Normal Cut

20 mm

ft

4 mm

direction of cut

Tapered Cut (Test 006)

Figure 5.4. Material Cutting

All testing is done with the lathe operating at 600 Rotations Per Minute (RPM)

and a z-axis feed rate of 0.25 mm per revolutions. The cutting length is approximately

10 mm and the depth of cut is 2 mm. Test 0001, which has a high force constraint,

shows the resulting force with no constraining effect by the system. The remaining

74

tests have a force constraint of 350 N which allows the lower level network to control

the z-axis feed rate influenced by the processed force readings. In Test 001 the

controller does limit the force without a derivative; however, as the test results show,

force levels oscillate about the set force constraint. Thus, a derivative action is added

to reduce the oscillating force. The derivative action progressively increases from 0.0 to

0.40 in Tests 002 through 005, clearly demonstrating its effect on reducing oscillations.

The distributed timing is 8 ms which results in a maximum of 9 ms delay in

response by the system. This delay is a result of sampling at 8 ms by the distributed

synchronization line on the DSL, and a response time of 1 ms by the UBC controller

from the LSL. The UBC controller's synchronization line provides a 1 ms sampling time

which results in 1 ms response time from pulling the DSL low to the low being read by

the UBC controller through the SIB and actioning on the LSL. This response time is

graphically shown in Figure 5.5.

Distributed time
Pulse # a

Distributed time
Pulse # b

Local Time
Pulse

Distributed time
Pulse # c

t t

Local Time
Pulse

8 9 16 17
Time (ms)

Figure 5.5. Response Time

75

The simulated and experimental evaluations are presented in the next two

sections.

5.3 Simulated Results

The simulated evaluation is conducted using the simulation source code listed in

Appendix 4. The force simulation is based on equation 5.6. To calculate the

instantaneous force required by the simulation, the force was held below a set

maximum force limit. This is achieved by reducing the feed rate when the main cutting

force and predicted change in the cutting force exceed the maximum force limit. This

calculation is based in equation 5.7.

K + K d ^ < F v m t x (5.7)
at

The simulation program also assumes that the entire active cutting edge remains

in full contact. In reality, tool deflection and possible inconsistency of material result in

contact which may be less than simulated and difficult to model. The simulated results

for Tests 001 through 005 listed in Table 5.3 are presented in the following figures.

76

Simulation of Force & Feed vs Time
Based on Max Force of 800 N

Delay of 9 ms Force & Derivative = 0 ms

d d d d d d r i - r r r r ^ M N N N N M M r i r i r i r i r i r i r i
Time (sec)

Feed Rate
(mm/rev)

0.8

0.7

- 0.6

- 0.5

0.4

0.3

0.2

0.1

0

-0.1

• Force -Feed

Figure 5.6 Test 001 Simulation

Force (N)

500 -I

450 -

400 -

350 -

300 -

250 -

200 -

150 - A
100 - n
50 -

0 -

i
-50 -

Simulation of Force & Feed vs Time
Based on Max Force of 350 N

Delay of 9 ms Force & Derivative = 0 ms Feed Rate
(mm/rev)

T 0.8

O O O O O T -

fc fS " 5
N N N (N (N co eo co eo ri eo co

Time (sec)
- Force • Feed

Figure 5.7 Test 002 Simulation

77

Force (N)

500 i
450 -

400 -

350 -

300 -

250 -

200 -

150 - A
100 - A
50 -

0 -

i

-50 -

Simulation of Force & Feed vs Time
Based on Max Force of 350 N

Delay of 9 ms Force & Derivative = 10 ms
Feed Rate
(mm/rev)

0.8

Figure 5.8 Test 003 Simulation

Force (N)

450 -j

400 -

350 -

300 -

250 -

200 -

150

100

50 -

0 -

-50 - 0
1

4 I

18

Simulation of Force & Feed vs Time
Based on Max Force of 350 N

Delay of 9 ms Force & Derivative = 20 ms

o o o o o o
fe ? « 8 2 8 8 a 8 H S B S f 2 3 8 5 8 $ 5 l S

Feed Rate
(mm/rev)

r 0.8

0.7

0.6

- 0.5

- 0.4

0.3

0.2

0.1

- 0

- -0.1
T - T - V - C N I C N I C M C N C N C N CO CO CO CO CO CO CO

Time (sec)
• Force • Feed

Figure 5.9 Test 004 Simulation

78

Force (N)

400 -I

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 -

-50 -
T—

- ci

Simulation of Force & Feed vs Time
Based on Max Force of 350 N

Delay of 9 ms Force & Derivative = 40 ms
Feed Rate
(mm/rev)

o o o o o o
ci. s H a s fs ̂ P s CN CM CM CM CM CM co co co co co co co

Time (sec)
• Force -Feed

Figure 5.10 Test 005 Simulation

Figure 5.5 shows Test 001, the system operating without the constraining

influence of distributed force monitoring. A constant force of approximately 550 N at a

constant feed rate of 0.25 N is produced. In Test 002 a constraining maximum force of

350 N was added. This resulted in the system attempting to hold the force below 350

N. The resulted as shown in Figure 5.7 is that the force varying from 450 to 250 N and

the feed rate varied from 0.25 to 0 mm/rev. In Tests 003 through 005 derivative action

was added. The derivative provides a prediction of expected forces, which is used to

control the feed rate to keep the force below the maximum force limit. As the derivative

increase, its prediction also increased, resulting in progressively less overshoot from

the maximum force limit of 350 N. The sampling frequency for tests 002 through 005

varied from 5 to 9 Hz, progressively increasing as the derivative increased.

79

5.4 Experimental Results

The experiments listed in Table 5.3 were conducted on the previously described

test apparatus which consists of a Hitachi Seiki lathe equipped with a UBC controller

and the distributed system. The experimental results are presented in Figures 5.11

through 5.22. For each test (001 through 006) a plot of the Force and Feed Rate

versus Time and a graphical representation from an oscilloscope monitoring the

experimental system are shown.

Figure 4.6 shows the experimental apparatus. The Dyno Computer which

monitors the dynamometer readings, has an AID board. The AID board results are

used by the program listed in Appendix 4 to trigger the DSL. The AID dynamometer

results are also retained in an array, which has been plotted as shown in the following

Figures. The oscilloscope is connected to the experimental system to provide a

graphical representation of the status of the system. The DSL and LSL readings are

obtained by connecting to those lines. The feed rate is obtained from a tach generator

which is connected to the z-axis motor. The force readings are obtained from

connecting to the dynamometer signal.

80

Force & Feed vs Time
Based on Force (Fmax = 800 N)

Delay of 9 ms Force to Feed & Derivative = 0 ms F e e d R a t e
[m m / r e v]

T i m e (s e c)
-zval -vel

Figure 5.11. Test 001 Experimental Results

T e k kuwim 5 0 0 s / s 1 A c q s
K j

; _ ; ~ — , _
BSrtglT 1 .dd V' ' ' "Cl - i2 ' ' 2 . 0 0 ' \> c n 3 I O . O v I O . O v

Feed Rate

Force

LSL

DSL
r v l 1 O O i n s C l " i "i -A ' ' 2 O r i i " V 1 2 J u n I () Q 6

1 0:48:43

Figure 5.12. Test 001 Experimental Oscilloscope Plot

81

Force (N)

Force & Feed vs Time
Based on Force (Fmax = 350 N)

Delay of 9 ms Force to Feed & Derivative = 0 ms Feed Rate
[mm/rev]

GO oo co
v " csi

8 1 8 5 8 8 8 0
C N C O Q ^ r c O C N C O O

Time (sec)
I zvai - v e l

Figure 5.13. Test 002 Experimental Results

- T a k e l a W . l L H 5 0 0 S / s 1 A c q s

E - » * 3

Figure 5.14. Test 002 Experimental Oscilloscope Plot

82

Force & Feed vs Time
Based on Force (Fmax = 350 N)

Delay of 9 ms Force to Feed & Derivative = 10 ms Feed Rate
[mm/rev]

Time (sec) «
-zval -vel

Figure 5.15. Test 003 Experimental Results

i O O S / s 1 A c q s
E T-~

83

Figure 5.17. Test 004 Experimental Results

Figure 5.18. Test 004 Experimental Oscilloscope Plot

84

Figure 5.19. Test 005 Experimental Results

Figure 5.20. Test 005 Experimental Oscilloscope Plot

85

Force (tapered) & Feed vs Time
Based on Force (Fmax = 350 N)

Delay of 9 ms Force to Feed & Derivative = 40 ms Feed Rate
[mm/rev]

-r 1.00
- 0.90

- : 0.80
- : 0.70
- : 0.60
-- 0.50

CM
ID

oo

w
Time (sec) -zval -vel

Figure 5.21. Test 006 Experimental Results

8 6

Figure 5.11 shows Test 001, the system in this case is operating without the

constraining influence of distributed force monitoring. A constant force of approximately

520 N at a constant feed rate of 0.25 mm/rev is produced. In Test 002 a maximum

force constraint of 350 N was added. This resulted in the system attempting to hold the

force below 350 N; however there is significant overshoot to approximately 520 N, as

seen in Figure 5.13. In Tests 003 through 005 derivative action was added. The

derivative provides a prediction of expected forces, this is expected to improve the

response of the system.

Some of the plotted results show high force reading as the cutting tool end its

cut, this is due to the tool running into a higher depth of cut during the last few

revolutions of the spindle. The cutting passes were conducted as shown in Figure 5.4.

Since the results of the tests were not completely convincing. A new test was

carried out which was expected to lead to much larger nominal force values. The test

cut (tapered) was as shown below Table 5.3, the maximum depth was 4 mm. At this

depth based on the results of the unrestricted cut shown in Figure 5.11, a force of

approximately 1000 N would have been expected. However, Figure 5.21 shows that

the system responds well. It is not able to hold the 350 N force limit, but does succeed

in decreasing the force to approximately 500 N, half the expected force. Clearly in

practice a safety factor would be included to prevent damage.

87

5.4 Comparison of Simulated and Experimental Results

There are differences in the simulation and experimental results as described in

the above discussion. These differences can be attributed primarily to backlash,

friction and the simulation force model used. The lathe tested, being a mechanical

drive system, experiences backlash. The backlash of the system is estimated to be

0.001 to 0.002 inches. The amplitude of displacement about the mean is calculated to

be 0.0012 inches, in a typical situation (see Figure 5.13 and Appendix 6). Thus, the

backlash and simulation are of the same magnitude. The requirement for a larger

amplitude of motor oscillation will, likely, reduce the bandwidth of the system.

In the same manner, the friction forces will add to the torque measured at the

motor. Since the required frequency is close to the bandwidth then such an opposing

force will have the influence of reducing the response frequency.

The cutting force model is a good approximation of the system, however, it does

not produce the exact forces as are measured experimentally. The major approximation

is the assumption of a constant edge force component. This causes some errors

during the transients.

The response frequency measured from the simulations (5 - 9 Hz) are higher

than the experimental (3-4 Hz) results. This is a result of the above influences, as

well as the remaining error sources which include the feed rate modulation (Figure 4.3),

and the electrical time constant for the motor.

88

It should perhaps be pointed out that, in order to suppress cutting force

variation, then the cutting response frequency must be a multiple of the spindle

frequency (10 Hz).

When this frequency is maintained, depth of cut is maintained as the path of the cut

repeated. The proof is provided in Appendix 6.

5.5 Conclusions and Discussion

The simulated and experimental results confirm the ability of the lower level

network to use the distributed force influence (force limit) to control the system

connected to it. The difference between the simulated and experimental results are

due primarily to the effects of backlash and friction.

The next chapter presents the conclusions of this thesis and recommends future

work.

89

Chapter 6

Conclusions and Recommendations For Future Research

6.1 Conclusions

This thesis has shown that the U B C controller can be effectively used as a basis

for a distributed control system. The experimental system consisted of a lower level

control network and a higher level communication network. Various options for the

software and hardware of both networks were examined. The lower level control

network extends the U B C controller's state line to a distributed network, to provide

synchronized real-time control. This network was evaluated by testing and simulation

to prove its effectiveness. The higher level communication network consisted of an

Ethernet network using T C P / I P protocol. This network was installed and confirmed

effective.

The advantage of this system is that it offers the ability to provide synchronized

real-time control.

6.2 Recommendations For Future Research

The lower level network's control is based on the logic of a single state line. In

order to fully utilize the potential of this network, a multiple state line network should be

90

investigated. This would allow better control, as a central computer could communicate

with individual processes connected to their own state line.

The higher level network offers the opportunity to monitor the lower level system,

to obtain real-time synchronous information. The use of this information for process

planning should be investigated. This would allow real-time process planning, which

could amend existing plans based on current process information.

91

Bibliography

[1] Amirouche, F . M . , "Computer-Aided Design and Manufacturing", Prentice-Hall
Inc., New Jersey, 1993, pp. 257 - 274, 469 - 489.

[2] Ardekani, R . , "Integration of Manufacturing Process Control and Optimization
with a General Purpose Multi-Processor Controller", Master of Applied Science in
Mechanical Engineering Thesis, University of British Columbia, Vancouver,
British Columbia, Canada, 1992.

[3] As kin, R. G . , Stradridge, C . R . , "Modeling and Analysis of Manufacturing
Systems", John-Wiley Inc., U S A , 1993, pp. 125 - 148.

[4] Best, W . David , "Method and Apparatus for Self-Timed Digital Transfer and Bus
Arbitration", United States Patent 5,140,680, August 18, 1992.

[5] Blome, W . , " W h y Employ an Open Field Bus System", Industrial Computing,
September / October, 1989.

[6] Bus, C , et a l , On the Significance of Equivalent Chip Thickness", Annals of the
C I R P , V o l X V I V , 1971, pp. 121-124.

[7] Chen, B . and Chang, Y. ,"Robust PI Controller Design of a Constant Turning
Force System", International Journal of Machine Tools and Manufacture, V o l . 31,
No . 3, 1991, pp. 2 5 7 - 2 7 2 .

[8] Comer, Douglas, E.,"Internetworking With T C P / I P " , Prentice - H a l l , U S A , 1995,
pp. 577.

[9] Costello, S. and Finster, K. ,"Distr ibuted System uses B I T B U S Industrial Network
for Real Time Control of Battery Chargers", M i c r o / Sys Inc. Sales Publication,
Glendale, California, U S A .

[10] Davidson, R . , P . and Mul ler , N . , J . , " Inter networking L A N s : Operation, Design,
and Management", Artech House Inc., U S A , 1992, pp. 52 - 56, 333 - 358.

[11] Edwards, Harry, J . / 'Automatic Controls for Heating and A i r Conditioning:
Pneumatic - Electric Control Systems", McGraw - H i l l Inc., U S A , 1980, pp. 25 -
52.

[12] Eversheim, Walter, et al. ,"Production Engineering The Competitive Edge",
Redwood Press L td , U K , 1991, pp. 343 - 375.

92

[13] Fisher, Andrew, D . , "The Development of a Generative Computer-Aided Process
Planning Package for the Peripheral M i l l i n g Process", Master of Engineering
(Mechanical)Thesis, McMaster University, Hamilton, Ontario, Canada, 1988.

[14] Fortier, Paul. J.,"Handbook of L A N Technology", M c G r a w - H i l l Inc., U S A , 1992,
pp. 663 - 669, 287 - 288.

[15] Hordeski, M . F . , " C A D / C A M Techniques", Reston Publishing Company Inc.,
Vi rg in ia , 1986, pp. 522 - 5 3 1 .

[16] Hunter, Ronald, P.,"Automated Process Control Systems: Concepts and
Hardware", Prentice - Ha l l , New Jersey, 1978, pp. 226 - 249.

[17] Imai, S., et al , "Production Management System and Method of Transmitting
Date", United States Patent 5,150,288, September 22,1992.

[18] Izikowitz, I. and Rodd, M . G. ,"Networking for the Year 2001 - A n Irrelevant
Issue", Proceedings of the Factory 2001 - Integrating Information and Material
F low Conference, Cambridge, U K , July, 1990, pp. 76 - 80.

[19] Lawrence, Peter, D . and Mauch, Konrad. "Real-Time Microcomputer System
' Design: A n Introduction", McGraw - H i l l Inc., U S A , 1987, pp. 3 - 2 5 .

[20] L i n , B . , S. and Masory, O . / 'Op t ima l , Variable Gain Adaptive Control System for
Turning", Transactions of S M E : Proceedings of the 15th N A M R C , V o l . 2, 1987,
p. 578.

[21] Lukas, M . P . , "Distributed Control Systems", Van Norstrand Reinhold Company
Inc., New York , 1986, pp. 1 - 16.

[22] Koren, Y. ,"Computer Control of Manufacturing Systems", M c G r a w H i l l , New
Y o r k , 1983.

[23] Koren, Y . and Masory, O.,"Stability Analysis of a Constant Force Adaptive
Control System for Turning", Journal of Engineering for Industry, V o l . 107, 1985,
pp. 295 - 300.

[24] Maz id i , J . G . and Maz id i , M . A . , " T h e 80x86 I B M P C & Compatible Computers",
Prentice - H a l l , New Jersey, 1995, pp. 291, 252, 320.

[25] Meyer, W . , "Expert Systems in Factory Management Knowledge-Based C I M " ,
E l l i s Horwood, England, 1990, pp. 105 - 113.

[26] Nakayama, K . , A r a i , M . , Takei , K. ,"Semi-Emperical Equation for Three
Components of Resultant Cutting Force", Annals of the C I R P , V o l 32, N o . 1,
1983, pp. 33-35.

93

[27] Nand, K . , Jha,"Handbook of Flexible Manufacturing Systems", Academic Press
Inc., U S A , 1991, pp. 4 9 - 5 9 .

[28] Pressman, Rodger, s. and Wil l iams, John, E. ,"Numerical Control and
Computeraided Manufacturing", John Wiley and Sons, U S A , 1977, pp. 281 -
302.

[29] Ranky, P . G . , "Computer Integrated Manufacturing", Prentice-Hall International
L t d . , U K , 1986, pp. 167 - 185, 305 - 376.

[30] Reardon, Ray. "Future Networks", Blenheim Online Publications, London, U K ,
1989, pp. 205 - 222.

[31] Rembold, U . , et al,"Interface Technology for Computer-Controlled Manufacturing
Processes", Maecel Dekker Inc., U S A , 1983, pp. 235 - 277.

[32] Seethaler, R . , " A New Contouring Algori thm for the U B C Controller", Master of
Applied Science in Mechanical Engineering Thesis, University of British
Columbia, Vancouver, British Columbia, Canada,1993.

[33] Schwader, David , W . , " C Programmer's Guide to NetBios, I P X , and S P X " , Sams
Publishing, Indiana, U S A , 1992, pp. 3 - 38.

[34] Ulsoy, A . G . , et al ,"Principal Developments in the Adaptive Control of Machine
Tools" , Journal of Dynamic Systems, Measurement, and Control , Vo l .105 , 1983,
pp. 107 - 112.

[35] Yel lowely, I., et al ,"The U B C Open Architecture Controller", Internal Document -
Department of Mechanical Engineering, University of British Columbia,
Vancouver, British Columbia, 1993.

[36] Yel lowley, I., et a l ,"Mult iple Slave Control" , United States Patent 5,519,602, M a y
21,1996.

[37] Yel lowley, I and Ardekani, R . , "The control of Multiple constraints With in an Open
Architecture Machine Tool Controller", A S M E : Journal of Manufacturing Science
and Engineering, V o l 118, M a y 1996.

[38] Yel lowley, I and Pottier, P . , R . , "The Integration of Process and Geometry Within
an Open Architecture Machine Tool Controller", International Journal of Machine
Tools and Manufacture, Vol .34 , No . 2, pp. 277-293.

[39] Yel lowley, I and Kusiak, A.,"Observations on the use of computers in the process
planning of Machine components", Transactions of the C S M E , V o l . 9, N o . 2,
1986, pp. 70-74.

9 4

Appendix 1 STD Computer and Lathe

Appendix 1

STD Computer and Lathe

Figure A 1 . 1 . Picture of the STD Computer

Figure A 1 . 2 . Picture of the Lathe

95

Appendix 1 STD Computer and Lathe

Figure A1.1 is a picture of the STD computer used for the UBC controller.

It is a commercially available STD type computer. The computer shown above is

a ZT 210 STD32 (9 slot) STD computer, manufactured by Ziatech Corporation.

The computer shown above holds the UBC controller which is used to provide

the CNC control to the lathe shown in Figure A1.2.

Figure A1.2 is a picture of the spindle of the lathe, showing the work piece

and the dynamometer which holds the cutting tool. The lathe used is a Hitachi

Seiki Hiturn 1000.

96

Appendix 2 Parallel Port Distributed Interface Board

Appendix 2

Parallel Port Distributed Interface Board (DIB)

HEX 379 HEX 378

3.9K IV
AC Line l yy i ,—2J

+5V

+5V 1/2 7474

Set
D 0

Or

Figure A 2 . 1 . Circuit Drawing of DIB

97

Appendix 2 Parallel Port Distributed Interface Board

Figure A2.2. Schematic of DIB

Figures A2.1 and A2.2 show the circuit drawing and schematic of the DIB. The

function of the DIB is to obtain a timing pulse from the nominal ac signal and set the

DSL active (high) or inactive (low).

The nominal ac signal is input to a zero crossing detector which determines

when the signal crosses the zero axis. From the zero crossing detector the signal is

optically isolated. The isolated signal is then latched with an interrupt request latch

which allows the zero crossing to be read by the parallel port. Once the parallel port

98

Appendix 2 Parallel Port Distributed Interface Board

has read the latched signal, the latch is cleared to enable the next zero crossing to be

read.

The DSL is also connected to the DIB which allows the parallel port to both read

the status of the DSL and write it active or inactive.

The DSL is powered by 5 volts obtained f rom the power supply of the computer it

is connected to. As a safety measure the nominal ac signal (distributed synchronization

line) has been stepped down from 110 volts to 28 volts. For the experimental

apparatus this 28 volt ac signal has distributed centrally, which allows shared use of a

single transformer.

Figure A2.3 shows a picture of the DIB.

Figure A2.3. Picture of DIB

99

Appendix 3 State Line Interface Board (SIB)

Appendix 3

State Line Interface Board (SIB)

D i s t r i b u t e d S t a t e Line in -

D i s t r i b u t e d S t a t e Line o u t -

Loca l Sync Line

+5V +5V

10K "jjlOK

I *
:) I > T ^) I >

T

J

- o < -

. L o c a l S t a t e Line

Figure A 3 . 1 . Circuit Drawing of SIB

100

Appendix 3 State Line Interface Board (SIB)

Figure A3.2. Picture of the SIB

Figure A3.1 shows a circuit drawing of the SIB and Figure A3.2 is a picture of the

SIB. The function of the SIB is to interface the LSL and DSL. It allows the

synchronization line system to maintain its open line characteristics, the DSL being able

to pull the LSL inactive. Only one SIB circuit board was required for the experimental

apparatus; thus, as shown in Figure A3.2 it was assembled on a bread board.

The DSL is input to the SIB though an optical isolator to isolate it from the LSL.

An edge trigger one shot pulse conversion sets an RC time constant. An RC time

constant is a circuit which configures a resistor and capacitor to produce a given time in

101

Appendix 3 State Line Interface Board (SIB)

seconds. The SIB's RC time constant is 8.7 ms on triggering the state line system

inactive to active and 5 ms on triggering the state line system active to inactive. The

difference in the RC timing is due to the input threshold voltage of the exclusive OR

gate. The timing provided by the RC time constant is used by an inverter on the LSL.

This inverter, inverts the LSL every sync pulse on the local UBC controller, producing a

010101010 signal. This alternating 01010101 signal provides the delayed 50

percent feed rate when the LSL is triggered. Beyond the RC time constant the circuit is

latched to the state line of the DSL. As previously discussed this inverter feature was

included in the SIB to smooth the servo motor response and show it's ability to control

and influence the state line system and see its experimental effect.

102

Appendix 4 Dynamometer A/D Source Code

Appendix 4

Dynamometer A/D Source Code

/* PROGRAM TITLE: Dyno A/D Program

Author: E. Allan Mertin Dated: May 3, 1996

This is a C Program for use with Keithley Metrabytethe A/D board, type DAS_20.
The "C" libraries used by this program are available from the vendor with the
board. Compiler used is Borland C++ v3.1.

The program processes Dyno force data which if above limits will effect
the state line. The data can be plotted using Excell.

The program must be used in a project with a DAS20xx.LIB. The xx in DAS20xx.LIB
is for the memory model size selcected, the large memory model was used when
running this code. The following software switches are to be set in options: set the
memory model as per the "lib" selected[in options/compiler/code gen], no case sensitive
link[in options/linker/settings] and add lib directoryc:\borlandc\tvision\lib[in
options/directories]

NOTE THIS PROGRAM TRIGGERS THE DISTRIBUTED STATE LINE AS
FOLLOWS:

1 - IF THE FORCE IS TOO HIGH THEN THE STATE LINE IS SET INACTIVE
2 - IF THE FORCE DROPS THEN THE STATE LINE IS SET ACTIVE 7

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <conio.h>
#include <stdarg.h>
#include <float.h>
#include <signal.h>
#include <string.h>

103

Appendix 4 Dynamometer A/D Source Code

/* global Variables */

#definekd 0.050
#define fjimit 650.0
#definec limit 1000.0

/* derivative gain */
/* force (N) limit for the machine tool */
/* force above results in corrections */

FILE *outfile; /* output file pointer */

/* Function Prototypes */

int initialize(void);
void time_p(void);
int scan(float xval[], float yval[], float zval[], float vel[], int j);
void prn(float xval[], float yval[], float zval[], float vel[], int j);
void print(float xval[], float yval[], float zval[], float vel[], int j);

das20(int,int *); /* prototype for the das20 library */

/* START OF MAIN() 7

void main(void)
{

int j , quit, flag_s, count, out;
char name[20];
char xx[5];
float xval[10000], yval[10000], zval[10000], vel[10000];

int end = 100; /* TBD data array size based on time */

j=1; /* main() loop */
quit = 0; /* main() quit Flag */
out = 1; /* print control every out-th value printed */
count = 1; /* print looper */

outportb (0x378,1); /* set state line active */

clrscr();
printf("\n\n\n\n\n\n\n\n\n\n\n\n\nEnsure that all equipment is ready then key\n");
printf("\n\n'return' to start\n");
gets(xx);
sscanf (xx, "%s", &xx);

quit = initialize();
if (quit == 1)

{
printf("\nPROGRAM STOPPED DUE TO A STATE LINE ERROR IN

INITIALIZE()\n");
104

file:///n/n/n/n/n/n/n/n/n/n/n/n/nEnsure

Appendix 4 Dynamometer A/D Source Code

gets(xx);
sscanf(xx,"%s",&xx);
}

if ((outfile=fopen("fout","w")) == NULL) /* output file opened 7
{

printf ("cannot open output file\n");
exit(1);

}

fprintf(outfile,"%s\n"," j vel zval");

strcpy("fout",outfile);

while Q < end)
{

flag_s = scan(xval, yval, zval, vel, j);

if (flag_s== 11)
{
printf("\nFEED RATE ZERO DUE TO CORRECTED FORCE

REDUCTION\nOVERRIDE STOP REQUITED\n");
gets(xx);
sscanf(xx,"%s",&xx);

}

if (count == out) /* control loop for output 7
{

print(xval, yval, zval, vel, j); /* put output into output file 7
count = 0;

}

count += 1;

j = j + 1;
}

fclose(outfile); /* closes output file 7
}
/* END OF MAINQ 7

/* LISTING OF FUNCTIONS 7

/* Print(): prints the output gathered from scan() into an output file 7

void print(float xval[], float yval[], float zval[], float vel[], int j)
105

Appendix 4 Dynamometer A/D Source Code

{
fprintf(outfile," %d %e %e\n"J, velij], zval[j]);
return;

}

/* INITIALIZE(): initializes the DAS 20 board and the I/O ports */

int initialize(void)
{

int mode, data[5], error, state;
int base = 0x300; /* base address (hex) */

mode = 0; /* initialization mode */
data[0] = base; /* base address */
data[1] = 7; /* input gain */
data[2] = 1; /* DMA channel */

if((error = das20(mode,data)) != 0)
{
printf("\nMODE 0 ERROR = %d\n",error);
return 1;

}

else
{
printf("\nDAS 20 INITIALIZED AT PORT: %3x (hex)\n",base);
outport(base+0,0); /* clears the A/D port */
outport (0x379,0); /* clears the read parallel port */
clrscr(); /* clears the screen */
outport(0X378,(inport(0x378) I 1)); /* activates the state line */

printf("\ A/D AND READ PORTS FOR INPUT AND ACTIVATED THE
STATE LINE \n");

}

state = (inport(0x379) & 32); /* bit 5 (decimal 32) mask 7

if(state == 32)
{
printf("\nSTATELINE IS HIGH - NOT ACTIVE\n");
return 1;

}

if(state == 0) printf("\nSTATELINE IS LOW - ACTIVE\n");

106

Appendix 4 Dynamometer A/D Source Code

return 0;
}

/* time_p(): gets time from the A/C pulse using a zero crossing detector, */
/* which reads if the neutral axis has been crossed */

void time_p(void)
{

int quit, readt, j ;
J = 0;
outportb(0x378,(inport(0x378) & 1)); /* D7(9) clears E(15) in prep for E(15) read

with a bit 0 (decimal 1) mask */
outportb(0x378,(inport(0x378) I 128)); /* D7(9) activates E(15) in prep for E(15)

read
with a bit 7 & bit 0 (decimal 128)

/* note: bit 0 is masked high to enable the state line bit 0 high */

while(j == 0)
{
readt = inport(0x379) & 8;
if (readt == 8)
{
outportb(0x378,(inport(0x378) & 1)); /* D7(9) clears E(15) in prep for E(15)

read with a bit 0 (decimal 1) mask */
outportb(0x378,(inport(0x378) I 128)); /* D7(9) activates E(15) in prep for E(15)

read with a bit 7 & bit 0 (decimal 128) mask */

/* note: bit 0 is masked high to enable the state line bit 0 high */

return;
}

}
}

/* SCAN(): gets the looped digital readings from "i" which is */
/* incrementing for each channel. */

int scan (float xval[], float yval[], float zval[], float vel[],int j)
{
int x, i, data[5], mode, flag, error;
float r_data, mval, mval_o, cval, volt;

i=1; /* loop through x(1), y(2) z(3) & vel(4) */

107

Appendix 4 Dynamometer A/D Source Code

while (i < 5)
{
mode = 3;
if(i==4) data[0]= 5; /* VEL gain range bipolar +/- 0.5v */

else data[0] = 1; /* FORCE gain range bipolar +/-10v */

data[1] = i; /* channel # */

if((error = das20(mode,data)) != 0)
{
printf("\nMODE 3 ERROR = %d on channel # %d\n",error,i);
return 1;

}

r_data = data[0]; /* reads the data */

/* printf("\nTHE INPUTED A/D R_DATA = %.3f\nREAD FROM CHANNEL:
%d\nTHE VOLTAGE = %.3f\n",r_data,i,volt); */

/* A/D board set for 200 mech units per volt */

if(i == 1) xvairj] = (r_data - 1.000021) * 0.977;

else if(i == 2) yval[j] = (r_data - 2.8) * 0.977;

else if(i == 3) zval[j] = (r_data -1) * 0.977;

else if(i == 4) vel[j] = abs(r_data - 62) * 0.01062 * 1.2;

else printf("\n LOOP ERROR SCAN() DATA CORRUPTED, i = %d\n",i);

i = i + 1 ;
}

if(j == 1) mval_o = 0.0;
else

{
mval_o = max(xval[j-1],yval|]-1]);
mval_o = max(mval_o,zval[j-1]);

}
mval = max(xval[j],yval[j]); /* determines the max force for */
mval = max(mval,zval[j]); /* check against limit 7

cval = mval + kd * (mval - mval_o)/(0.008); /* derivative: 0.008 is the dt based on AC
period 7

if(abs(mval) < fjimit)
108

Appendix 4 Dynamometer A/D Source Code

{
if(abs(cval) > cjimit)
{
printf("\nMAX FORCE READ IS ABOVE THE LIMIT PROGRAM STOPPEDVnTHE

MAX FORCE READ = %.3f\nTHE MAX LIMIT = %.3f\nTHE
CORRECTABLE LIMIT = %.3f\n")mval,f_limit,c_limit);

outport(0X378,0); /* setting the state line low */
}
else outport(0X378,1); /* activates the stateline */

}
else
{

outport(0X378,0); /* de-activates the state line */
printf("\nFORCE BEYOND CORRECTABLE LIMITVn");
return 11;

}
}

/* END OF FUNCTION LIST

/* THE FOLLOWING DOCUMENTATION PROVIDES THE ERROR CODES FOR
KEITHLEY METRABYTE'S DAS 20 A/D BOARD.

mode 0 0 : no error
1 : base address out of range <512 or >1008

. 2 : interrupt level <2 or >7
-2 : mode number is not equal to zero (0)
3 : MDA level not 1 or 3

-3 : board not present or I/O address wrong

mode 1 0 : no error
1 : mode out of the range, <0 or >29

-2 : driver not initialized
11 : illegal channel
12 : illegal gain
13 : illegal queue command

mode 3 0 : no error
-3 : hardware error

109

Appendix 4 Dynamometer A/D Source Code

-1 : mode out of the range, <0 or >29
31 : gain /input range out of range
32 : channel # out of range, for diff 0 - 7

110

Appendix 5 Simulation Source Code

Appendix 5

Simulation Source Code

/* This code provides for sim of force triggering with a 9 ms delay */

I*
to run in dos execute a command line:

sim 1 0.25 600 fmax 20 0.001 0/0.04 0/.040 3 1

Borland 3.01 c/c++ used to run this program

to get output look in c:\borlandc\bin\out1
to plot output use excel 7

/* Note: This code is modification of Mr. Ramin Ardekani's code, his thesis is
referenced in the bibliography

#include "stdio.h"
#include "string.h"
#include "math.h"

y**
/* Force Monitor Simulation program. 7 *̂***

#define g1 .7031
#defineg2 .6925
#define g3 .25

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Kv N/A
Ke 1273
Kda 0.0049
Ka 13
Jeq 0.0013
Kt 1
taum .012
B Jeq/taum
Hg N/A
Tmax lmax*Kt

/* Digital filter constants:
0(k)=g1 *e(k)-g2*e(k-1)-g3*0(k-1)

g1 = Kp/2**g4
g3 = (1-dtB)

g2 = Kp(1 -dtA)/2**g4
g4 = ceil(ln(Kp)/ln(2)) 7

/* velocity loop gain [WV] 7
/* encoder gain [pulse/rad] 636.6 2506.377 7
/* D/A gain [V/level] 7
/* Servo Amp Current gain [A/V] 7
/* equivalent inertia of system [N.m.sA2] 7
/* Motor Torque constant [N.m/A] 7
/* Motor mechanical time constant [sec] 7
/* Motor friction torque 7
/* Tachometer gain [V/rad/s] 7
/* Current limit [A] (lmax*Kt/Jeq) 7

111

file://c:/borlandc/bin/out1

Appendix 5 Simulation Source Code

#defi
#defi
#defi
#def
#defi
#def
#def
#def
#def
#def
#defi

ne Vcmax 10 /* D/A voltage output limit 7
ne I 0.01 /* ball screw pitch [m] 7
ne Mub 0.01 /* ball screw guide coeff of friction 7
ne dm 0.033 /* mean diameter of the ball screw [m]'
ne lambda -6.0 /* rake angle deg 7
ne psi -3.0 /* approach angle deg 7
ne Mu 0.6+0.005*(lambda) /* effective coeff of friction 7
ne R 0.8 /* tool nose radius [mm] 7
ne r (Mu-tan(lambda))/(1+Mu*tan(lambda)) /* force ration Ft/Fv
ne K1 836 /* Cutting Pressures [N/mmA2] 7
ne K2 55 I* [N/mm] 7

#definePul 1049.8685 /* 1574.803 [Pulses/mm] 7
#define i_1 rev floor(60./(RPM*0.001)) /* i/rev dt = 0.001 7
#define Lprev floor(60000./RPM) /* i - for previous spindle revolution 7
#define Size 4000 /* Array size required 7
#definePI 3.141592654

float Tf,T; /*

float Fmax; /*

float Imax; 1*
float dPv;
float Step = 0.0; /*

float DOC = 2.0; /*

float I; /*

float Vc[2]; 1*
float Vo[2], dVo[2]; 1*
float Pc[3], Po[Size]; /*

7
float F[2]; 1*
float dF; 1*
float dF8; /*

float Pstep; /*

int Tstp; 1*
float Kd_pos, Kd_neg; 1*
float RPM; /*

float s; 1*
float dt; /*

float Fa; 1*
int output; /*

int Out; /*

FILE *outfile;

Friction and total torque [N.m]
Force constraint [N] 7
Current limit [A] 7

[BLU]

Force array [N] 7
rate of change of force 7
8th rate of change of force 7
location of step change in DOC '
Time of step change in DOC [S]
gain of derivative control [S] 7
spindle speed [RPM] 7
feed [mm/rev] 7
sampling time [S] 7
axial force [N] 7
data output interval pts/sec 7
data output interval ms/pt 7

/

112

Appendix 5 Simulation Source Code

Print (i)
int i;
{

fprintf(outfile,"\n %.4f %e %e",(i*dt),Pc[2],Po[i]);
fprintf(outfile," %e %e %e %e

%d",F[1],Vc[1]*(Ke/Pul)/(RPM/60),Vo[1]*(Ke/Pui)/(RPM/60),l,i);
}

^**

Initialize arrays with initial conditions
- no motion for the first revolution of the spindle

eg 75 ms for 800 RPM
**J
Init ()
{

int i;
int count=0;
for (i=0; i<2; i++) {

F[i]=Vc[i]=Vo[i]=dVo[i]=Pc[i]=l=0.0;
}
Pc[3] = 0;
for (i=0; ki_1 rev; i++) {

Po[i]= 0.0;
if (count == Out) {

Print(i);
count = 0;

}
count += 1;

}
}

I***

Finds the torque
**/

float Torque ()
{

float T;
T= Ka*Kt*(Vc[1]); /* - Vo[1]*Kv*Hg);V
if (abs(T) > Tmax) { /* current limit */

if (T < 0) T = -Tmax;
else T = Tmax;

}
return T;

}

113

Appendix 5 Simulation Source Code

j***

Routine to implement current limit

Chk_Curr ()
{

float I;
l = Ka*(Vc[1]); /* - Vo[1]*Kv*Hg);7
/*if (abs(l)>lmax) {

if (l<0) Vo[1] = ((-lmax/Ka)-Vc[1])/(-Kv*Hg);
else Vo[1] = ((lmax/Ka)-Vc[1])/(-Kv*Hg);7

if (abs(l)>lmax) {
if (l<0) Vo[1] = Vo[0]+lmax*Kt/Jeq*dt;
else Vo[1] = Vo[0]-lmax*Kt/Jeq*dt;

}
}

^***

Routine to calculate the main cutting force at current
depth of cut and feed.

***^

float Force (depth,feed)
float depth, feed;
{

float Fv; /* main cutting force [N] 7
float Le; /* active cutting edge length [mm] 7

if(feed <=0) Le = 0;
else Le = depth-R+R*PI/2+feed/2;

Fv = K1*depth*feed+K2*Le;
return Fv;

}

^**

Routine to simulate i-th interval in a turning process
with force constraint

**^
Simulate (i,j)
int i,j;
{

char xx[5];

float Fvarl, Fvar2; /* forces encountered during a transient 7
float Perri, Perri_1; /* position error in BLU 7
float Fss; /* force during steady cutting 7
float Kd; /* derivative control gain 7

114

Appendix 5 Simulation Source Code

if (j == Tstp) Pstep = Po[i-1]; /* start of the step change in DOC */

if ((i >= Tstp) && (i <= (Tstp+i_1rev))) {
Fss = Force (DOC,Po[i-1]-Po[i-i_1rev]);
Fvarl = Force (DOC+Step,Po[i-1]-Pstep);
Fvar2 = Force(DOC+Step, Po[i-1]-Pstep);
F[1] = Fss+Fvar2-Fvar1;
if (j == Tstp+i_1 rev) DOC += Step; /* adjust DOC after 1 rev. */

}
else {

F[1] = Force(DOC,Po[i-1]-Po[i-i_1rev]);
}
Fa = r*F[1]*cos(psi); /* axial force [N] */

Tf = Fa*(dm/2)*((l+PI*Mub*dm)/(PI*dm-Mub*l)); /* Friction torque [N.m] 7

if (j == 7) dF8 = (F[1] - F[0])/dt; /* check sign of slope */

if(j == o){ dF = dF8;
j = -16;}

if (dF < 0) Kd = Kd_neg; /* adjust gain based on sign */
else Kd = Kd_pos;

F[0] = F[1];

if ((Kd*dF) <= (Fmax-F[1]))
Pc[2] = Pc[1]+dPv; /* Command Position [mm] */

else
Pc[2] = Pc[1]; /*Pc[i] = Pc[i-1]7

j=j+1;

Perri = (Pc[1] - Po[i-1])*Pul; /* Position error in pulses (BLU's) */
Perri_1 = (Pc[0] - Po[i-2])*Pul; /* Position error in pulses (BLU's) */
Vc[1] = (g1*Perri-g2*Perri_1-g3*Vc[0])*Kda; /* [V] */

/* extrapolated acceleration */
if (abs(Vc[1]) > Vcmax) { /* D/A output limit 7

if (Vc[1]<0) Vc[1] =-Vcmax;
else Vc[1] = Vcmax;

}

dVo[0] = Torque()/Jeq;
Vo[1] = Vo[0] + dVo[0]*dt; /* predicted velocity 7
Chk_Curr(); /* check current limit 7

dVo[1] = (Torque()/Jeq)*(Vc[1]); /* - Vo[1]*Kv*Hg); /* actual accel. 7
dVo[0] = (dVo[0] + dVo[1])/2; /* mean value 7

115

Appendix 5 Simulation Source Code

Vo[1] = Vo[0] + dVo[0]*dt; /* actual value 7
Chk_Curr(); /* check current limit 7
Vo[0] =(Vo[0] + Vo[1])/2; /* mean value 7
Po[i] = Po[i-1] + Vo[0]*dt*Ke/Pul; /* actual value 7
I = Ka*(Vc[1]); /* - Vo[1]*Kv*Hg);7

Vc[0] = Vc[1]/Kda; /* check simulations with this change 7
Vo[0] = Vo[1]; /* otherwise Vc[0] = Vc[1]! 7
dVo[0] = dVo[1];
Pc[0] = Pc[1];
Pc[1] = Pc[2];

main(argc.argv) /* outfile, RPM, Tstp, Gain 7
int argc;
char *argv[];
{

int i, j , count;
char name[20];

count = 0;
j = 0;

if (argc != 11) {
printf ("input: outfile, RPM, Tstp, GaindAn");
exit(0);

}

RPM = atof(argv[3]);
s = atof(argv[2]);
dt = atof(argv[6]);
Kd_pos = atof(argv[7]);
Kd_neg = atof(argv[8]);
Tstp = floor(atof(argv[9])/dt);
Out = atoi(argv[10]);
Fmax = atof(argv[4]);
I max = atof(argv[5]);
dPv = (s*RPM*dt)/60.;

/* Spindle speed [RPM] 7
/* feed [mm/rev] 7
/* sampling time [S] 7
/* derivative gains [S] 7
/* derivative gains [S] 7
/* i corresponding to start time of step 7
/* data loging interval 7
/* force limit 7
/* current limit [A] 7
/* Position ramp [mm/i] 7

strcpy (name, "out");
strcat (name,argv[1]);

if ((outfile=fopen(name,"w")) == NULL) {
printf ("cannot open output file\n");
exit(1);

}

fprintf(outfile,"%s"," Time Pc Po");
116

Appendix 5 Simulation Source Code

fprintfCoutfile^/osNn"," Force Vc Feed I i");

output = (RPM/60)*3; /* 3 times highest observed frequency */
output = floor(output/(dt*1000)); /* adjust for sampling rate */
Init ();

for (i=i_1 rev; kSize; i++) { /* start simulation at */
Simulate(i,j);
if (count == Out) {

Print(i);
count = 0;

}
count += 1;

}

fclose(outfile);
exit(0);

}

117

Appendix 6 Calculations

Appendix 6

Calculations

Calculation of Amplitude of Displacement

V = Vo + Vn x sin(wt) where:

V: velocity
Vo: initial velocity (assumed zero)
Vn: current Velocity (0.1 mm/rev)
w: frequency

V = 0 + 0.1 x 600 x sin(5 x 2TC x t)
60

V = 1 x sin(31.4 x t)

X = j sin (31.4t) dt
0.001

X = cos(31.4t)
31.4 0

the amplitude of displacement = _J = 0.0318 mm
31.4

= 0.0012 inches

118

Appendix 6 Calculations

Calculation of Spindle Frequency Influence on Feed Velocity

V = Vo + Vn x sin (wt) where:

V: velocity
Vo: initial velocity
Vn: current Velocity
w: frequency

The objective is to find a likely value of frequency (w) so that force variation is zero.

Assume:

F = k (X / current chip thickness) = spindle feed (rad/sec)

nt
Xn = J (Vo + Vn x sin(wt))dt

(n-1)t

= Vo x t - Vn x cos(wr)
w

where: t = 271

(n-1)t

Vo x t - Vn (cos(nwt) - cos w(n-1)t)
w

tVo + 2Vn (sin (2n-1) tw sin (wt))
w 2 2

the requirement is:

(2 (n-P) tw = 0, it, 2n nit or wt = 0, n, 2K n%
2 2

119

Appendix 6 Calculations

w = [F/jc][1/2n-1][0, %,2K mi]

n>= 1 f 0. F, 2F nF] (A6.1)
(2n-1)

or

w = F (0 ,1 ,2 n) (A6.2)

(A6.1) is a special case which will occur for specific values of w,

(A6.2) is the general solution.

120

