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Abstract

The applicability and accuracy of existing finite element formulation methods for finite
strain deformation and metal forming problems are investigated. It is shown that the existing
formulation methods, both Lagrangian and Eulerian type, are not suitable nor efficient for
large deformation problems especially when boundary conditions change during deformation,
as is the case in most metal forming problems. This creates a need for a more general and
efficient type of formulation. An Arbitrary Lagrangian-Eulerian (ALE) method is presented
for the general application in solid mechanics and large deformation problems. A consistent
ALE formulation is developed from the virtual work equation transformed to an arbitrary
computational reference configuration. The formulation presents a general approach to ALE
method in solid mechanics applications. It includes load correction terms and it is suitable
for both rate-dependent as well as rate-independent material constitutive laws. The proposed
formulation reduces to both updated Lagrangian and Eulerian formulations as special cases.
The formulation is presented in a form that makes the programming an extension to existing
Lagrangian and Eulerian type programs.

An efficient mesh motion scheme for ALE formulation is developed with a procedure for
handling boundary motion within the scheme, which can ensure homogeneous mesh results. A
practical and more efficient numerical method is presented to handle supplementary constraint
equations on element level rather than on the global level. Different numerical algorithms for
the integration of the rate type constitutive equation are investigated and coupled with the return
mapping algorithm to provide plastic incremental consistency. A numerical procedure for stress
integration is developed based on the physical meaning of stress. Jaumann and Truesdell rates

are taken as the objective stress rates in the constitutive equation. An alternative numerical
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treatment for rate of deformation tensor *D;; is presented to maintain incremental objectivity
of the tensor. It is shown by numerical examples that the use of Truesdell stress rate with a
developed numerical integration procedure gives consistently more accurate results than other
procedures presented. An algorithm for updating material associated properties is presented
and applied in simulation of various metal forming problems.

A 2D finite element program, ALEFE, based on the presented formulation is developed and
tested. The program may reduce to an updated Lagrangian or Eulerian methods as special cases.
The mesh motion for the whole domain is controlled by the motion of the boundary nodes.
The program can handle unsymmetric stiffness matrices and coupled displacements/velocity
boundary conditions. The input data is designed to be similar to available commercial finite
element codes, so that the data generation phase may be directly imported from these programs.
The output data format is designed to be compatible with general graphic simulation and data
processing commercial softwares, so that contour, x-y and deformed mesh plots may be easily
created from the output data of ALEFE.

Various benchmark and practical problems are simulated by the developed program. Practi-
cal simulation cases include flat punch forging process, sheet metal extrusion process, necking
bifurcation of a bar in tension, a steady strip rolling and compression between wedge-shaped
dies. Numerical results are compared with analytical solutions or experimental results available

in literature.
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Chapter 1

INTRODUCTION

1.1 NONLINEAR FINITE ELEMENT METHODS

Although the application of finite element methods to many nonlinear problems has been
successfully carried out, there are numerous areas of concern and investigation in that regard.
One such area, which we consider here, deals with the solution of large strain plasticity and
metal forming problems with pseudo type boundary nonlinearities. A number of critical
difficulties arise in the finite element analysis of such problems. Among these difficulties
are; proper formulation, mesh distortion, proper modelling of the contact boundary conditions,
incorporation of the plastic incompressibility condition and accounting for plastic anisotropy.

Foundations of large strain analysis of elastic-plastic solids may be traced back to the early
work of Hill [1]. It took some time, however, until Hibbitt, Marcal and Rice [2] introduced the
first finite element formulation for large strain problems. In their approach they used a total
Lagrangian formulation (TLF). Later on, McMeeking and Rice [3] pioneered the use of updated
Lagrangian formulation (ULF) in the same area of applications. The two formulation methods
have been widely used for both steady and non steady static large plastic strain problems.
On the other hand, Eulerian formulation (EF) has been initially introduced for finite element
applications in the fluid mechanics area. Several trials aiming at adapting this formulation to
large strain and metal forming problems were attempted [4, 5, 6, 7]. Owing to the difficulties in

obtaining material time derivatives in spatial reference frame, no generally accepted Eulerian

formulation is available for such problems. Also, since the mesh is spatially fixed in EF, it is
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not easy to simulate non-steady static or dynamic behavior. Trials have been made to relate the
moving material points (in terms of FE Gauss points) to the fixed spatial mesh [6, 7]. Much
work is still required, however, to refine and establish this approach.

This chapter investigates the applicability and accuracy of existing formulation methods to
the finite strain deformation problems. The objective is to examine some of the above aspects
through the use of available FE commercial programs. The programs used in the analysis
are DEFORM2 [8], ANSYS [9] and NISA [10]. It is required to provide an assessment for
the existing formulation of such problems in order to propose required modifications or new
formulation. The applications considered in this regard are flat punch indentation, plane strain

extrusion and forging problems.

1.2 LAGRANGIAN FORMULATIONS

1.2.1 Sample Examples

(i) Flat Punch Indentation

Flat punch indentation into a slab is mathematically the same as the compression of a
specimen between two flat parallel punches[11]. In the axisymmetric compression model, w
and W are the diameters of a circular punch and solid circular specimen, respectively and A is
the height of the specimen. The ratios W/w = 2.7 and h/w = 1.7 are used in the simulation.
The material properties are Young’s modulus E = 6.9 x 10* M Pa, Poisson’s ratio » = 0.33,
hardening modulus H = 138 M Pqa with initial yield Stress oyietdo = 90 M Pa. Axi-symmetric
8-node isoparametric elements together with 2-node (node-to-node) gap elements are used
in the model. Assuming a smooth punch, an indentation is made up to a punch displacement
d, = 0.15w. The simulation was carried out using bbth NISA and ANSYS programs. The mesh

topology before and after deformation is presented in Figure 1.1. The radial displacement U,

the second principle stress o3, and the equivalent plastic strain €%, are used for comparison of the
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results. The results obtained from the two programs showed close agreement in displacement
and strains but revealed noticeable discrepancies when comparing stress values. Also, there is
noticeable disagreement between the results from both programs and similar ones reported in

the literature [11].

w/2 Punch Size Increasement

o r—
ma

h
s
\
\
\

W2

e

Figure 1.1: The meshes before and after deformation

(i1) Metal Extrusion

Another problem analyzed with NISA and ANSYS is the steady state deformation process of
plane-strain metal extrusion. Metal is forced into a symmetric die after sliding between smooth
rigid plates. The die is approximated with a straight line and produces a 25% thickness reduction
over a distance 1.2a, where a is half the thickness of the original sheet, as shown by grey lines in
Figure 1.2. The material properties are Young’s modulus E = 6.9 x 10* M Pa, Poisson’s ratio

v = 0.3, strain hardening H = 1.1 x 10* M Pa and initial yield stress o;eiq0 = 4.0 X 102 M Pa.

The metal extrusion problem is modelled by plane strain 8-node isoparametric elements and
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12a O X

Figure 1.2: Not updated boundary condition

2-node gap elements. The nodal and deformed shape after the piston moves 0.3a are shown
in Figure 1.2 by grey and black lines, respectively. The distributions of displacement U, and
stress o, both in the extrusion direction, are examined. The distributions of U, and o, from
NISA and ANSYS are very similar and the values of U, are close to each other with a difference
of less than 0.4%. The values of o, are, however, quite different; and show a difference of up
to 25%. Once again, the results obtained here are quite different from those reported in the
literature [12].

For frictionless die-workpiece interface, the results with and without gap elements, in both
NISA and ANSYS, are significantly different. As an example, distribution of ¢, on the outer
surface of the work-piece is shown in Figure 1.3. It is not expected that the introduction of

node-to-node gap elements should influence the frictionless die case. The obtained results

show, however, a noticeable effect of adding gap elements to the frictionless die case.
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Ox(MPa)

3.5E2

0.0E0
4
-3.5E2
|
-7.0E2

-10.5e2 |-

402 Lot ) g

Ox(MPa) No Gap Element
Ox(MPa) Gap Element

MR |
10 X/a

Figure 1.3: Distribution

of stress o, on outer surface
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In simulation of the punch indentation, once the material point under the punch corner
moves out of the corner, it should be allowed to move up. However, the Lagrangian formula-
tion can not update the boundary condition automatically. This is an important feature needed
in handling most of metal forming problems. Also, it may not be feasible to manually update
boundary conditions after each incremental step. This deficiency has the effect of increasing the
punch size during the deformation, as shown in Figure 1.1. For metal extrusion, the situation is
worse. Figure 1.2 shows a typical deformed mesh (superimposed on the original one) obtained
from such programs. The reduction in thickness depicted by the program does not agree with
the specified value because of the absence of geometric boundary updating in the program.

Thus the predicted deformation is unacceptable.

(iii) Plane Strain Forging ;

Plane strain forging is also simulated by NISA and ANSYS. The material model is chosen
to be an elasto-plastic one with Young’s modulus £ = 200.0 GPa, Poisson’s.ratio v = 0.30,
initial yield stress oyieiq0 = 250.0 M Pa and plastic modulus H = 1.0 GPa. The body is
deformed by a rigid frictionless tool with a prescribed vertical velocity. Only a quarter of
the domain is studied because of symmetry, and plane strain condition is assumed. The finite
element model used in NISA and ANSYS is shown in Figure 1.4. The analysis is performed for
up to 60% reduction in the height of the original piece to show the effect of large deformation.

Figure 1.5 shows the results from ANSYS [9] and NISA [10]. Because the boundary
conditions are not updated automatically, the tool or punch width will be actually increasing
with the deformation process as in the indentation example. It is also noted that elements at
the punch corner are highly distorted because of large deformation. Increasing the deformation
level causes more severe element distortions and the program terminates the analysis. The use of

more advanced capabilities such as the point-to-surface gap element in ANSYS may eliminate

some of the above problems such as the punch size one. These elements have their own
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Figure 1.4: The finite element model

problems, however, such as convergence difficulties, user definition of stiffness parameters and
violation of local equilibrium at the punch corner. For this particular example, contact elements
were used on the tool work-piece interface and several trial cases with different reduction ratios,
different tolerance limits and different stiffness parameters were performed. All cases tried
ceased to give successful convergence beyond a reduction of 30%.

The same process is simulated by DEFORM2 [8] program, which is one of the most
widely used metal forming programs because of its capability of automatic remeshing and
updating contact boundary conditions. The finite element model used in DEFORM?2 is shown in
Figure 1.6. A much denser mesh was required to achieve convergence for the same deformation
level obtained in NISA and ANSYS. Figure 1.7 shows the deformed shapé from DEFORM?2.

Although the punch size increment is eliminated by remeshing, it may be seen that the mesh

around the punch is highly distorted and the punch corner is "cut off". More importantly,
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the predicted deformed boundary of the free surface near the punch corner is unusual and not
rational. Another shortcoming is the fluctuations in loads predicted by Lagrangian method.
Figure 1.8 shows a plot for the reduction of the specimen height versus the applied load,
from DEFORM2. The result shows noticeable load fluctuation that is pertinent to the updated
Lagrangian formulation. Similar fluctuation is observed in the plane strain metal extrusion
example. The extrusion pressure increases steadily up to the state when the billet fills the
die. As the billet exits the die, the interface nodes that are constrained to move on the die are
released. This causes a drop in the strain energy of the billet which in turn causes a drop in the
extrusion pressure. The studies performed by Lee [12] and Voyiadjis [13] confirm the existence

of these fluctuations.
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Figure 1.7: Deformed mesh from DEFORM2
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1.2.2 Limitation of Lagrangian Type Formulation

Most of the available commercial FE programs are based on Lagrangian type of formulation.
Such formulations are efficient and quite suitable for handling nonlinear problems in which
small strains prevail, boundary condition nonlinearities do not change with the course of
deformation and where mesh distortion is not a critical factor in the analysis. Unfortunately,
all of the above restrictions are violated in any metal forming process.

The above examples reveal some of the main shortcomings in the application of Lagrangian
type of formulations to metal forming problems. It is shown that large plastic strains with contact
boundary conditions are not suitable to be analyzed by such formulations. Contact boundary
conditions with sharp edges or corners can not be applied precisely and load fluctuations are
evident with large strains. The problem of mesh distortions and element entanglement pose
a serious drawback on the use of such formulation. It is not always feasible to update the
mesh manually, and even if it is possible to do so, it will involve major interaction and time
involvement by the user of such schemes.

On the other hand, some automatic mesh rezoning methods are developed for Lagrangian
finite element analyses of metal forming problems [14, 15, 16]. However, these methods are not
so robust or efficient to remedy the mesh distortions. Furthermore, they do not eliminate load
fluctuations. These remeshing methods are based on rediscretizing the deformed configuration
after certain special deformation. Obviously, the determination of the special deformation is
very important and can only be based on user’s experience. The remesh has to be applied on the
whole domain, which is actually not necessary. In general, these methods can not change the
mesh topologies, so they may not improve the overall accuracy of the finite element calculations.
The locations of nodes in the new mesh are calculated by algebraic interpolation method or

by solving differential equations. The algebraic interpolation will introduce curve-fitting error,

especially when the boundary shape is complicated. Solving differential equation can generate
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higher quality finite element meshes, but it is time consuming and, more significantly, may still
produce poorly shaped meshes near boundaries in some cases [17].

The problems of contact and friction boundary conditions pose another serious concern
in the solution of metal forming applications. Contact condition, which is defined from the
geometrical compatibility on the contact surface or the impenetrability condition, has been
introduced by the direct method, elements with special mechanical properties, the Lagrangian
multiplier method and the penalty function method [18]. Since the contact area is a prior
unknown, the boundary conditions of the contact problems are determined as part of the
solution.

Although the contact surfaces obtained by the Lagrangian multiplier method satisfy the
contact condition in the integral sense, additional unknowns are required and the total number
of unknowns in the system equations increases. In addition, the associated tangent matrix
may be indefinite and has zero diagonal entries that pose some difficulties in the solution steps
[19]. For the penalty function method, the solution results satisfy the contact conditions only
approximately. The accuracy of the approximate solution depends strongly on the penalty.
parameter, so the correct choice for these parameters is the essence of the algorithm. When
the penalty parameter is chosen to be too large, it leads to numerical problems in the form of
loss of accuracy in the solution. On the other hand, a too sme}ll choice, results in unacceptable
penetration of one body into the other.

The node to node or node to surface gap or contact elements have been recently introduced
in commercial FE packages [9, 10]. Such an approach is quite natural to the formulation
of the FE method because the overall stiffness assembly process is unchanged; the contact
elements can be treated as a separate material property group such as plasticity, creep, etc.
In spite of their various advantages, these contact or gap elements exhibit several important

shortcomings [20]. They undergo anomalous response behavior when employed in situations

where large deformation kinematics are needed to generate closure, that is reflected in improper
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stiffness characterizations, i.e., poorly conditioned Jacobians. They are also awkward to
apply in situations requiring friction effects and they require significant amount of equilibrium
iterations. Furthermore, parameters of the contact element have to be chosen by the user, and
the convergence speed and the accuracy of the solution are quite dependent on the choice of
these parameters. Sometimes, especially when friction effect is incorporated, convergence may
be difficult to achieve, as indicated by the experience from solving the plane strain forging

problem.

1.3 EULERIAN FORMULATION

The main difference between the Eulerian formulation and Lagrangian ones is that the
deformation of the material moving through a fixed region in space is determined as é function
- of the current position and the time ¢ instead of determining the deformation of the material
element by following its motion in space [6]. The independent variables in the Eulerian
description are current position x of the body-point X and time t. For the material motion,
x itself becomes dependent on the time t, which complicates material time derivatives and
other relations when approached strictly by Eulerian, or spatial formulation. Although many
authors have treated the Lagrangian and the updated Lagrangian formulation, there has been
little effort concerning the development of a consistent Eulerian formulation in solid mechanics
applications. Some developments, e.g. Gadala et al. [6], give the proper material time
derivative in spatial description but original geometric parameters are included in the final
equilibrium equation. Therefore, such approach may not be strictly considered as purely
Eulerian formulation.

In the Eulerian method, it is necessary to properly determine the state of the material-

associated properties (e.g., strain, stress) of the material points momentarily occupying the
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integration points at the beginning of each step. The method of updating such material-
associated properties is not well developed and further investigations need to be considered.
Abo-Elkhier [21] utilized an imaginary finite element mesh for updating, but no discussion nor
proper assessment of the accuracy of the method is given. Derbalian [22] discussed a conjugate
scheme for interpolation of the stress and applied the procedure to simulate steady state static
metal extrusion. By constructing a set of conjugate shape functions (bi-orthogonal), a consistent
approximation for the stress field may be obtained which is continuous across inter-element
boundaries and involves less mean error. However, this method introduces a large system of
equations which may be solved iteratively during each incremental step. Also, the conjugate
method is originally proposed for improving the accuracy of incremental stress fields, rather
than the total stress [23].

Eulerian formulation is generally more suitable for the study of flow problems in a fixed
region of known shape. Therefore, the analysis of steady state metal forming processes may
be achieved by Eulerian formulation. Because it introduces other difficulties like appropriate
representation of free body, it is less suited for domains whose boundaries or interfaces move
substantially and it is not easy to simulate non-steady static or dynamic behavior within the

frame work of this formulation.

1.4 ARBITRARY LAGRANGIAN-EULERIAN METHOD

From the above discussion, it is believed that a new formulation type which combines the
advantages of the Lagrangian and Eulerian methods is essential for the accurate simulation
of metal forming processes [24, 25, 26]. This new type of formulation is called Arbitrary
Lagrangian Eulerian (ALE) fofmulation. The key point in differentiating the ALE formulation

from Lagrangian or Eulerian type formulation is that in ALE a reference computation domain

that can move arbitrarily and independently from the material is introduced. The movement
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of the reference domain is represented by a set of grid points, which may be interpreted as
the movement of a finite element mesh. Therefore, in an ALE formulation, the finite element
mesh need not adhere to the material or be fixed in space but may be moved arbitrarily relative
to the material. A proper ALE formulation should reduce to Lagrangian formulation if we
choose to use the same motion for the computational and material meshes. On the other hand,
if we choose to fix the computational mesh, an ALE formulation should reduce to Eulerian
formulation.

Combining the merits of both Lagrangian and Eulerian formulation, ALE is more suitable
to handle mesh distortion and entanglement and special boundary condition changes in metal
forming problems. If the nodes on tool-workpiece interface are specified as Eulerian points
in tangential direction, it may eliminate load fluctuations, may describe précisely any contact
boundary conditions and make boundary condition updating no longer necessary after each

incremental step.

1.5 OBJECTIVES AND SCOPE

ALE method has the potential to eliminate problems caused by Lagrangian or Eulerian
methods in simulation of general finite deformation problems. Although the concept of the ALE
method was first proposed in mid-seventies [27], its use in solid mechanics problems has been
restricted mainly because of the additidnal effort required in satisfying the deformation history-
dependent stress-strain relationship and updating complexities. Relatively little attempts have
been made to generalize and present ALE formulation in a general way and to provide a clear
connection between ALE and Lagrangian as well as Eulerian approach. New aspects pertinent
to the arbitrary mesh motion in ALE have not been investigated intensively.

The objective and steps of this research may be summarized in the following:

- Survey of existing ALE schemes with emphasis on their pertinent characteristics, reason
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for differences and their applicability to large deformation metal forming problems.

- Develop a complete ALE formulation that may be applied to general finite deformation
cases and degenerate to either updated Lagrangian or Eulerian formulation as extreme
cases [28]. Emphasise on the generality of the developed formulation to use various

material laws, stress rates and on its special application to metal forming problems.

- Investigate an efficient motion scheme for the ALE method and a numerical algorithm to
process the supplementary equations arising from mesh motion. Existing schemes tend
to introduce higher degree of complexity in the implementation and require more CPU

processing time.

- Study the effect of various stress integration methods on objectivity and plastic consis-
tency of results and improve the numerical algorithms. Investigate the combination of
stress updating algorithms with the usual return mapping schemes for small deformation.
Also investigate approximate numerical integration procedures to ensure objectivity of

stress rates and special tensors used in the formulation.

- Investigate a practical and more efficient method to update material associated properties
for ALE approach. This is a key point in the formulation because of the arbitrary mesh
motion in ALE. The scheme should be based on proper continuum mechanics equations

rather than on numerical interpolation and approximation.

- Implement the developed formulation and methods to develop a general 2D finite element
program and to simulate bench mark problems and metal forming processes to show the

features of ALE method. : .
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ARBITRARY LAGRANGIAN EULERIAN (ALE) FORMULATION

2.1 SURVEY OF ALE METHODS

The concept of ALE was first proposed in the mid-seventies [27] under the name of "coupled
Eulerian-Lagrangian”, and used in conjunction with a finite difference scheme to solve twb—
dimensional hydrodynamics problems with moving fluid boundaries. Later, the ALE method
was introduced into the finite element method [29] from fluid mechanics for modelling the solid-
fluid interaction and free-surface problems, and introduced in [30] to solve nonlinear analysis
of nuclear safety. Since then, ALE method has mainly been used in fluid and linear-path
independent solids, where stress states are solely determined by the instantaneous displacement
or velocity fields [31, 32]. Only recently the ALE method has been applied to finite strain
deformation problems in solid mechanics [24, 25, 28].

Huetink [33, 34] introduced a finite element method to simulate metal forming process under
the name of "combined Eulerian-Lagrangian formulation". In his formulation, the material rate
of change of the equation of virtual power, with changing integration area, was used to derive
the final equation. However, in the final discretized equilibrium equations, only material
velocities w.ere included. As in the updated Lagrangian method, the material velocities have
to be calculated from the final equations, then the new finite element mesh can be updated
by arbitrarily moving the old finite element mesh in the material domain. On the boundaries,
however, the mesh can only move in the tangential direction of the material domain. Following

this, is the updating of the material-associated properties. In this process, material motion and

18
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mesh mbtion do not occur at the same time and the discretized equilibrium equations do not
include simultaneously mesh velocities and material velocities as unknowns. In this regard,
Huetink formulation may be considered as an updated Lagrangian formulation (ULF) coupled
with remeshing after each incremental step.

Benson [35] described a method called simple ALE. It seems that the method was
developed mainly for fluid mechanics. The method was introduced to reduce the computer
time of large scale anaiyses involving finite deformation through the use of explicit finite
element schemes. The time step size of the explicit program is, therefore, limited by element
mesh dimensions. In order to modify the mesh, the ALE method was implemented and the
equations were derived by substituting the relationship between the material time derivative
and reference configuration time derivative into the governing equations for a continuum in a
Lagrangian coordinate system. An operator split was advocated to decouple the equations so
that for every increment, two steps were needed. First, a Lagrangian step was performed, in
which the mesh moved with the material during the step. The solution was then mapped from
the Lagrangian mesh to the reference one in order to complete the ALE step. This method
may be also considered as an updated Lagrangian formulation coupled with remeshing after
increment.

An improved version of ALE formulation was presented by Haber [36]. In Haber’s work
two displacement variables were considered to be primary unknowns, i.e., the Lagrangian and
Eulerian type of displacements. This allowed some distinction between the material and the
computational motion. The new technique was applied to large-deformation frictional contact
and fracture mechanics. It was demonstrated that the mixed Eulerian-Lagrangian description
(i.e., ALE) may be used to vary the crack length in a continuous way and may easily handle
contact boundary condition. The paper does not, however, clearly indicate which displacement

stands for mesh motion and there is no discussion about how to move the computational finite

element mesh. Furthermore, one of the most demanding aspects in ALE, the updating of
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material-associated properties was not addressed. It is also assumed that the formulation is
limited to linear elastic material and the load is independent of displacement, therefore, the final
formulation may not be directly applicable to non-linear material and deformation-dependent
loads.

Similar to the above work, Yamada introduced two types of displacements_called the material
and spatial incremental displacements and derived an ALE formulation for plane deformation
of hyperelastic material [37]. For such kind of materials, the stress can be uniquely determined
from the strain energy density and it is independent of strain histories. Thus, no state quantity
of the particles needs to be introduced except the deformation gradient tensor. The application
of formulation to only path-independént hyperelastic material models eliminated the need for
rigorously addressing the problem of calculating and updating material associated properties,
and makes fhe formulation not applicable to the general solid mechanics deformation problems.

An ALE formulation specifically derived for solid mechanics was described by Schreurs
[38, 39]. In [39], the difference between the CRS (Computational Reference System) derivative
and the MRS (Material Reference System) derivative of a physical quantity was clearly stated.
Starting from the equilibrium equation in material domain, the weak form was set up by the
principle of weighted residuals. The final discretized equilibrium equations were obtained by
transforming integration over material domain to a reference domain. However, the physical
meaning of the reference domain was not clearly addressed. A computational mesh moving
method was created by assuming the grid point as a material point of a linear isotropic fictitious
body. Assuming one shape of a stress-free element being optimal, linear set of algebraic
equations were set up to have the deformed mesh elements recover to the optimal shape. By
solving the equations, the grid nodal displacements were determined. This method is time
consuming and does not guarantee an optimal mesh because the real material is generally

elastic-plastic. Follower points or cells are used to represent the material associated properties

and deformation history. These properties at new integration points decided by CRS points
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were updated by extrapolation and interpolations from the follower points.

Hughes [40] elaborated on some basic concepts related to ALE. An important one is the
relationship between the material time derivative *f* and referential time derivative * frofa
physical quantity *f. These should satisfy the following relation:

Bt f

tf. — tf/\ + at_mi(tvi _t 'Uf) (2.1)

where z; is material coordinate, ‘v; and *v{ are material and mesh velocities individually.

Liu [41] applied Equation (2.1) to the momentum equation and obtained an equation with
respect to arbitrary reference volume. Petrov-Galerkin formulation was then utilized to set
up the final discretized equilibrium equation. A stress updating procedure was developed to
calculate the stress values at the quadrature and nodal points. The constitutive law was refor-
mulated by introducing a stress-velocity product; the Petrov-Galerkin finite element method
was used to set up the equivalent weak form equations of the constitutive law. These equations
were solved simultaneously with the final equilibrium equations to get the solution. With this
scheme, some wave propagation problems and elastic-plastic dynamic deformation processes
have been simulated. In the same paper, Liu also transformed the integration extending over
the material domain to referential domain and derived the referential time derivative of internal
virtual work. In a later development [42], Liu considered the frictional interface of plane de-
formation problems and derived equilibrium equations for such case. The Laplace differential
equation and fourth order differential equation were proposed as mesh generator to manage
mesh movement. The application of proposed ALE algorithm to metal rolling simulation was
presented. It was shown that for small rollers, both Lagrangian and ALE meshes are feasible
and the agreement between the two is quite good. For realistic roller size, a Lagrangian mesh
failed to complete the simulation whereas the ALE mesh performed quite well.

Extended from fluid mechanics, an ALE formulation for solid mechanics was reported by

Ghosh et al. [24, 43, 44]. Different from the methods discussed previously, the Reynolds
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transport theorem widely used in fluid mechanics was applied to an arbitrary moving control
volume to obtain the field equations of mechanics with respect to an arbitrarily moving grid
point. The weak form of the differential equations were obtained by using appropriate weighting
functions and integrating over the current grid volume. In Ghosh’s work it was assumed that
the motion of the material with respect to the grid is quasi-static, i.e., %;ﬁ s 0. In the opinion
of the author, this assumption is not warranted. In quasi-static problems, it is the material point
acceleration, as expressed by Equation (2.2), that may be neglected instead of the motion of
the material with respect to the grid points, because the term contributes only partially to the
material point acceleration.
Otv;
ot

atv,-
ot

L0 (2.2)

tx tx

On the other hand, the exclusive characteristics of the ALE, that the grid points can move
arbitrarily, is restricted so much by this assumption. Using implicit time integration scheme,
Ghosh integrated the weak form equation over the current control volume. This makes the
calculation laborious because, unlike transient field problems, the integration volume here
is changing with time. In [43] Ghosh described a way to update variables to nodal points
of arbitrary motion. Pseudo-material elements were constructed first and material-associated
variables were evaluated by interpolation. Local algebraic and elliptic mesh generator was
implemented to perform mesh management in highly local deformation areas [44]. Although
Ghosh indicated that the specific cases of ALE formulation should be either updated Lagrangian
or Eulerian formulation, no verification is presented in his work showing that the formulation
may reduce to these special cases.

A particular ALE implementation; ALE3D, in metal forming simulations is recently in-

troduced by Cough et al. [25]. The basic computational cycle consists of a Lagrangian step

followed by an advection step. At the end of Lagrangian phase of the cycle the velocities

and nodal positions are updated. At this point, the user has several options. If the user opts
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to run a pure Lagrangian mode, no further action is taken and the code proceeds to the next
time step. If a pure Eulerian calculation is desired, the nodes are placed back in their original
positions. The user has options available to tailor the evolution of the mesh in order to maximize
either efficiency or accuracy. The mesh updating scheme implemented in ALE3D is a finite

v element-based equipotential method. For the constitutive law, the Jaumann rate is used for the
stress tensor and von Mises yield condition is applied. In the paper [25], only program features
are described and no formulation or rigorous algorithm is given.

An overall description of ALE is presented in [45] by Huerta and Casadei. It is clearly
indicated that the most important challenge for the ALE technique lies in its extension to solid
mechanics prbblems in general, and, in particular, to non-linear solid mechanics where path
dependent material behavior is fairly common. It is pointed out that the best choice for the
mesh motion or velocities and a low cost algorithm for updating the material-related properties
constitute the major problems. However, no particular schemes are given or presented. Some
primary governing issues, e.g., the conservation laws, constitutive equations and boundary
conditions, are presented, but no complete formulation is given. The applications considered in
the paper are some elasto-plastic problems, with concentration on fast-transient solid dynamics
showing.the effectiveness of ALE to impact problems when the explicit integration scheme is
used.

Although several forms of ALE schemes have been discussed in the literature, it is noted,
however, that these formulations always concentrate on certain aspects of the problem which
makes the outcome formulation incomplete and suitable only for specific applications. Crucial
points in the formulation, e.g., the final expression of equilibrium equations in ALE frame, the

relation between computational and material points, evaluation of material related data, are not

clearly addressed in the literature and need further investigation.
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2.2 CONSISTENT ALE FORMULATION

2.2.1 Geometric and Kinematic Description

t te  TTmm— Boundary of Computational Domain
Xz;‘ %2, Boundary of Material Domain
P('x1, !xo, tx3) Q(1vatyy Wy, trityy)
C /t t t c
P ('x1,'x2 '3 ) Q (“mm,tha, teaty g )
txq 1,
txa lxg

Figure 2.1: Schematic diagram for domains and mapping in ALE description

Assuming a material particle P(*z;,! 5! z3) in a material reference system (MRS) at time
t has velocity v;(s = 1,2,3). The particle moves to Q(*+2tz;,"tA% 2, 4% z3) at time ¢ + At.
Similarly, a grid point P*(*x1,! x2," x3) in the corresponding computational reference system
(CRS) at time t has velocity v(i = 1,2,3) and moves to Q°(*+2%x 1,/ 2% x5,/ 8% x3) at time
t + At, as shown in Figure 2.1. In ALE description, the motion of the finite element grid

need not adhere to the material particle and may be controlled by the finite element user in

accordance with users judgement. However, we should ensure a one-to-one mapping between
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the material domain and computational domain at any time ¢, i.e., for each:

tz; = z:(*x1,' X2, X3) (1 =1,2,3) (2.3)

we have only one:

i = xi(tza,fza,t ) (i =1,2,3)

The necessary and sufficient condition for the inverse relation to exist, is that the determinant
of the Jacobian transformation,

6%&',‘

th —
9%

(2.4)

is non-vanishing. A chosen mesh motion scheme should satisfy the above requirement. In
addition, at every stage of motion, the boundary of the deformed configuration of the material
body (solid line in Figure 2.1) must coincide with the boundary of the configuration of the

computational reference domain (dashed line in Figure 2.1), i.e., on boundary:

(*v; =t v§)’n; = 0 (2.5)

7

where 'n; is the component of the unit vector normal to the boundary. The physical interpretation
of Equation (2.5) is that no normal convective velocity occurs across the boundary if the surface
particles remain on the surface.

It is fhen possible to derive the governing equations with respeét to the referential domain.
Since *x; is our computational reference coordinate system, it is necessary to express the
material time derivative of a function f in terms of the time derivative with respect to *x;.
Assume that the material time derivative and the computational reference time derivative are

"o

denoted by a superscripted dot "-" and acap "A", respectively. The relationship between the two

derivatives is given by Equation (2.1) (See Appendix A for details). Equation (2.1) is important

since it makes it possible to track the material deformation history when ALE is used.
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2.2.2 ALE Formulation

Many problems in solid mechanics may be treated as quasi-static, so that the continuity
equation can be satisfied automatically. Starting from the principle of virtual work at time

t+ Ai, the equilibrium equation may be expressed as:

/‘+A L S acessdHAY = t+Atff5uidt+AtV+/ AL S 5 dHHALS (2.6)
t+AtYy ‘

t+ALY +atg

Notation similar to those used by Bathe [46, 47] are adopted. Referring to a general motion of a
body in a fixed Cartesian coordinate system, as shown in Figure 2.1, the left superscripts indicate
the configuration at which the quantity occurs, and the left subscripts indicate the configuration
with respect to which the quantity is measured. The left subscript may not be used if the quantity
under consideration occurs in the same configuration in which it is measured. A quantity with
no left superscript or subscript indicates an increment from time ¢ to ¢ + At. Therefore, **2t0;;

in Equation 2.6 is the Cartesian component of Cauchy stress referred to the configuration at

time ¢t + At. The deformation tensor ;4 a:e;; is defined by:

t+atCiy = % (atfz;j + atfzjwi) (2.7)
where u; are admissible incremental displacement vector anci d in Equation (2.6) means a
variation. The body force and the surface traction at time ¢ + At are given by **2tfB and
t+At £5 in Equation (2.6), respectively. *+4tV is the volume of deformed body and *+4S is the
surface of deformed body at time ¢ 4+ At on which surface tractions are prescribed.

Utilizing the following relations:

1 Ou; Ou;
t+AL 8 L JtHAt / t+AL t J dtHALtY
o e V = o +
/t.+AtV oA t+ALy Y2\ ottatg; | pttatg,

Ou;
t+AL P Aty
/ W Ht+At
t+AtYy 6 z;

t+Atf$ — tHAt o AL,
i = ij i)

t+Atnjdt+AtS — dt+AtAj
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where d*+4¢A; is the projection of d*+4tS on the coordinate plane having axis z; or t+2tz;

t+At

‘ as normal direction, *+%*n; are the direction cosines of area element d**2tS with axis tz; or

t+4ty ., the Equation (2.6) may be written in the following form:
B’U,' B
t+AL i +Atys t+At ¢B o tiAt t+AL ¢ mAAEt 4
‘/:+AtV ' 0-1"7 at-l-Atwjdt V - ,l+AtV f‘L (Suldt V + t+AtAj O'z_',(suzdt A:) (28)

In order to solve Equation (2.8), all quantities are transformed into the known computational
reference configuration at time ¢, which is particularly chosen as the material reference domain
at time ¢, i.e., making P° and P in Figure 2.1 be the same point. This transformation is only

due to the change in or motion of the computational reference domain. We have,

0du; Héu; Ot

t+A1: = tu t ftk (2'9)
8 :Bj 6 T 8 + :l:j

A = o4 u (2.10)

where u§, is the mesh point or CRS displacement from time ¢ to ¢ + A¢. Substituting in

Equation (2.9) and reordering,

Odu; Obu; Odu; Ouj,

iy, Bt By, DAty

dividing the above equation by At and let At — 0, we obtain,

06w\~ Bdu; 8
B‘wj N 8twk atwj
which gives,
B6u; déu; 86u;\"
—_— t
gt+aty, ote, o + (6%,-) A
O0du; 9éu; 8*vj
= — 2.11
Bt:cj tx Btzk Btmj ( )

The volume element d*+4*V is related to d*V|,, through:

dHAY = dtV‘tx + (dV) At (2.12)
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The computational reference time rate of volume is [48]:

t
@vy = gy

8t:l?k

and it follows that:

t
0*vg

o Atd'V (2.13)

_+_

The stress cbmponent in Equation (2.8) may be expressed by:

t A t t . i e ot atO'ij
il + (o) At =toy| 4 oy + (vp =t o) At (2.14)

where, (t0;;)" = ( oi; + (*vg — vk)'zt ) denotes the computational reference time rate of
‘o;;. Since the computation reference domain is chosen to be the material reference domain at

time ¢, i.e., *z; =* x;, the following relations may be obtained:

0du; _ 0du; _ Odu;
6t.’13j tx N Btwj tx B Bt:cj
&v|, = = dV

X x
oy, = ‘oij|, =" oy

Substituting Equations (2.11), (2.13), (2.14) and the above equations into the left hand side

of Equation (2.8), the following linearized form of the internal virtual work may be obtained:

Obu;

i at+At

: Oto; Odu;  Odu; Otve
— t .. to t c i3 7 1 k
- [V(U,J+ o3y Ot + (‘v = vy) = A) (%J e e A)

d*+AtV

LHS = / tHAL
t+Aty

Otvf
8'*:1:1
Obu;

X (dfv + AtdtV)

du; 0'v§ Déu; Otof

~ t ~toy— Loy Atd
[V 7 Bt Ote; dt /V ( 74 Bty Otz e Ote; atwl) 4

. to.. ,
[ (t -..—__‘9‘5“’ () 28 65“’) AtdV
ty

p

0-1.1 ath

P Btzp 6‘:c]~
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0du; Obu; R
= /:V a',Jat d&v / ( 8t“alk+a)Atd”V

N ty Btmj
Odu; . Ota;; 0§
[V 7. ((tvk ty )at ity %iige )AtdtV (2.15)

All terms with order higher than linear term of At are ignored. Considering the right hand side

of Equation (2.8), we have:

+t fENAL (2.16)

t+At tB _ t¢B
P =1

2

From Equation (2.1),
8 f2

t fBA _t pB- t. e t
f'/\—fi +(vp_v1’)atmp

Where £ £ is the material time rate of f? at time ¢. Substituting into Equation (2.16) and

considering ‘z; =¢ x;

8B
A (tff‘+(*vz —" ve) = )At - (217)

Similarly, the area element d*+2t A; may be described as:

A4 = dAj, + dApAL
tx

The computational reference time rate of the area is [48]:

a4 = Thga Ty

6t:ck ’ Btm]

so that:

&A= dA, + (8”’°de - at”kdek) At (2.18)

Using Equations (2.13), (2.14), (2.17) and (2.18) and considering the relations *z; = %y, the

right hand side of Equation (2.8) may be written as:

t+At0‘5j($uidt+AtAj

RHS = [ o8 sud ety 4
t+Aty t+AtAJ.
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Il
T~

otfB O

[t¢B teB- | (toc ¢ i k

VJu, ( i+ (f, + (*vp —* vp) 6'53:,,) At) (dtv+ atkatdtV>
Oo;

4; bus (t% * (t% - )Bta J) At)

+
—

Otvg Otv
x (th,+( 6%’;th % kd*Ak) At)
t c t B
~ / m(f +1 f,B‘9 ’°At+(f + (*v c—tv,,)af )At)d*V
ty Otz,
t
—+ /"A 5u,(a’,jthj —}-t O'ij(avkdt vkthk>

+ [A du; (tazij + (fvg —* ’vk)(9 aij) Atd'A;

= [VJufffdtV—l—[A‘(Su:a'ijthj

t,.c t B
+ xv J’U,i (tsz —|—t fZB% + (tvz —t vk) f ) AtdtV
0§ otv¢ . Oto;;
+ [A,- ou; ( oy +t oy By —t Jik—:ci + (*vf =t o) =2 i Atd'A;

where all higher order terms of At are neglected. Since d*A; =* n;d'S and *ojin; =* f7 is
the traction (or load) rate with the displacements and gradients held fixed, corresponding to the

AjoaaT? in [2], we have:

RHS = ﬁvéuﬁffdthL [A Sutos;dt A;

&tve th
|teB- t ¢B k te t
+ ﬂvéu,(fl +* fi 6tcck+(vk Vk) )Atdtv

6t.’llk
8 at c
+ / (fs + f,satvk - watv )Atd*S
+ [ duilty gta”thAtdtS (2.19)

Finally, using LHS Equation (2.15) and RHS Equation (2.19), and applying the relation:

Ou; + B
t .. ke ‘/ — t . . ‘/ t .. . .
1 o'wat jdt - [ Ti 5“1dt [ ; 0’135uzthJ
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We obtain the final ALE formulation in the form:

Su; Btye tyc t
/ O6u (toz'-j — o i + ta"—a Yk =+ (tv,i —t vk)a 0.”) A
t T T

14 8%:,- 6t lJ Bt Bt:ck
at,vc at B
_ | tfB k t,e t i
KV Ous ( i Otzxy, (o ") Btmk) &V
0t 0§ . Oto;:
— [s du; (t ,-S—-ath — taiktnj_at:ci + (*vf =t vk )tn; 8%:) d's
— / SulfB AV + / SutfSd's (2.20)
ty tg

The abo.ve formulation is a complete and-general one in the sense that it may be applied to
various types of finite deformation problems with generalized types of loadings and boundary
conditions. The formulation is also suitable for implementing various types of rate dependent
and rate-independent material constitutive relations. Another unique feature in the formulation,
is the existence of generalized load correction terms that facilitates handling of deformation-

dependent loads, e.g., follower loads. These features are discussed in the following subsection.

2.3 DISCUSSION AND CHARACTERISTICS OF PROPOSED FORMU-
LATION

The above formulation has special features and may differ from similar ones in the literature in
the following main aspects:

- No specific assumptions were introduced after the principle of virtual work. Also,
velocities, instead of displacements, are used as primary variables. This makes it more

straight forward to implement rate-dependent material laws.
- Consistent load correction term to handle deformation-dependent loads are introduced.

- The integral volume and surface have clear physical meanings which are the material

domain after the last incremental step. This is arrived at by choosing the arbitrary

reference domain coincident with the material domain after each incremental step.
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- The formulation represents a strict ALE method because the mesh motion and deformation

can occur independently at the same time, i.e., both material velocity and mesh velocity

are included in Equation (2.20).

- Different objective stress rates can be applied to the formulation. If Jaumann stress rate

[47],
1 (8, Oty 1 ({ 0tv; Ouy
tod =t o —tou | = I —toa | = L — 21

is introduced, the formulation (2.20) takes the following particular form:
/‘ 0du; ta'z'-‘-] N Lok afvj _ vy, N to-jk Otv; B vy, &V
ty Btwj J 2 atwk 8tw,- 2 6t:lik 6t:lfi
Obu; (., O , O, . ., O
~ | —toi ij P = 'V
t [V 8t.’8j ( Uk(?ta:k T Jat.’ck t ( Yk vk)

t,.c t £B
— /:V(sui(tfp_(?_v_’i+(tvz—tvk)afi )dtV

* c'?t:ck at:l!k

at c at,vq (9tcri'
_ [S Su; (tfis Yk taiktnjatwi + (tvi ot 'Uk)t .‘I) &S

Bt:ck i Btwk
_ / SutfE Qv + / SulfSdts (2.22)
ty ts
If Truesdell stress rate [49],
Otv; Otv; Oty
oy =t - takjat—:ck ~'oa Otzy, e Ot (2:23)

is applied, Equation (2.20) takes the form:

: to- ty. ¢
[ O0u: (tai;"r +* o o +* O'ik% — M) d'v

lof
|4 8twj 8t€13k Bt:ck 7 Bt:z:k

) Htvc t,c ..
N / Odu; (_ta'ik V5 Lo 0*v§ 4 (to vk)a crw) 2V

vV aticj Bfmk Y Btwk

t,.c t £B
— / Su; (tfp—avk—{-(tvz ——tvk)afz )dtV
tyv T

Btzk

= / augfiB'dtVJr/ Suiffd'S (2.24)
tv ts .
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- The formulation reduces to updated Lagrangian one when the material velocity is chosen

equal to mesh velocity, i.e., when v; = v{. Equation (2.22) takes the form:
85ui t T tO'ik 8tvj Btvk tUjk Btv- Btvk ¢ 6tvk
e - si— | dt
[V Ote; (0” 2 \ Otz + Otz; * 2 \ Oz, Otz; + Ujat:ck v
Otvy, g0 ot
_ [v (gui ( le 5 ) dtV / Juz ( z at k 130-”;71,.7 5 ) dtS

[ ouisFav 4 [ suiffds (2.25)
ty tg

which is the same as the updated Lagrangian formulation given by McMeeking [3], as

verified in Appendix B, except for the load correction terms:

8 Vi
|(teB
[v dus ( : 5twk) 4V

and

ot Ot
/ ( i atvk bowin; —~ poe ) ds

- On the other hand, if mesh velocity is chosen to be equal to zero ie., v§ = 0, the

formulation (2.20) reduces to a general Eulerian formulation, as shown in the following

equation: ,
bu; [, . U,J L otfP
[V 8t:13j (0’ ’Uk )dtV / ( vkatwk dtV
+ / S ( 5 —ty, nggt"”) s (2.26)

- The problem of mesh distortion is easier to handle in ALE method. The ALE method can
not only handle the mesh distortion but also improve the calculation accuracy. Because
the motion of the mesh is arbitrary, the new mesh is always chosen to give an optimal

results.

- In the application of Equation (2.20), various domains in the structure may be specified as

Lagrangian, Eulerian or ALE ones. A practical example for the importance of this point
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may be seen when we consider the interface between the tool and work-piece in a metal
forming problem. In this case, two specific directions are considered, perpendicular and
parallel to the tool interface. In the direction perpendicular to the tool interface, the nodes
will be kept as Lagrangian points, i.e., nodes will be moving with the tool at same speed.
In the other direction, however, nodes will be kept as Eulerian points, i.e., nodes will
be fixed parallel to the tool interface. Contact boundary condition may be accurately
described, therefore, in any general form of tool workpiece interface. The updating of
boundary condition is no longer necessary. The "punch size increasement”, and load

fluctuations discussed in Chapter 1, should generally not occur. This will undoubtedly

increase the efficiency and accuracy of the simulation of metal forming problems.




Chapter 3

NUMERICAL IMPLEMENTATION OF ALE

3.1 INTRODUCTION AND BRIEF SURVEY

3.1.1 Mesh Motion and Stiffness Matrix Processing

In general, the stiffness matrix in ALE formulation may be rectangular and nonsymmetric.
The rectangular nature of the matrix results from the fact that there are two unknowns for
each degree of freedom, one related to the material and the another related to the mesh, while
only one equation may be derived from the equilibrium for each degree of freedom. There are
generally two ways to get a solvable set of equations in an ALE formulation. One is to specify
the mesh displacements or velocities before solving the linearized equilibrium equations. In
each incremental step, the mesh motion is decided by certain algorithms and data from previous
increments. It is generally independent of the deformation in the current step. This method is
straight forward and has been applied by many researchers [24, 39, 44]. The method, however,
is not a general one and may not be capable of considering the effect of the current material
motion. Another method is to set up supplementary constraint equations, i.e., relations between
material displacements or velocities and mesh displacements or velocities. In this method, the
mesh motion is coupled with the material motion in the current step by the constraint equations.
This method is a more general one and has the potential of producing higher quality mesh, but
it will generally double the number of unknowns and increase the calculation time significantly.

The mesh motion algorithm is an important and critical aspect in ALE formulation and

it affects the computation efficiency and accuracy. Schreurs [39] introduced a mesh motion

35
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technique for an ALE formulation that requires the solution of a simultaneous set of equa-
tions. Other researchers applied regular finite element mesh generation techniques to move the
computational mesh in ALE. For example, Benson [35] used relaxation stencil method derived
from Laplace’s equation and Ghosh [44] employed local elliptic and algebraic mesh generation
methods. Generating mesh by solving differential equations may create a high quality mesh,
especially when applying Poisson’s equation [50] or biharmonic equation [51, 52], but it is
time consuming and may introduce other types of errors in the process. Other techniques uti-
lize algebraic interpolation and introduce a set of algebraic equations. Algebraic interpolation
methods are generally simpler to apply, but they introduce curve fitting errors in the description
of regions whose boundary may not be exactly described by polynomials of the same order as
those appearing in the interpolation functions [53].

In this chapter, a new method is introduced to handle the supplementary constraint equations
that are produced in a mesh motion algorithm [54]. In this method, the equations are processed
and incorporated in the stiffness matrix on an element rather than global level. The element
equations are then reduced before assembly so that the number of L'mknowns on the global
level are kept same as updated Lagrangian method. This reduces the need for larger computer
space and CPU time significantly. A mesh motion algorithm [55] is developed based on
transfinite mapping method [53]. This technique provides a homogeneous mesh and matches
the boundary of a given region at an infinite number of points, so that no curve fitting errors may
be introduced. The new mesh location is directly determined by an explicit formula without
solving any equation, which also expedites the calculation speed. Another distinct advantage
of the transfinite mapping technique is that it allows the discrete representation of boundary
curves and discontinuity of slope of boundary curves. This makes the method convenient and
efficient since in ALE, the region boundaries would be normally expressed as discrete curves

formed by nodes. Unlike the regular transfinite mapping scheme, the new procedure may take

account of the motion of the boundary and may also adjust the nodes on boundaries to obtain a
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higher quality mesh..

3.1.2 Stress Integration

In finite deformation analysis, due to the continuous change in material configuration, the
constitutive equation is usually expressed as a relation between some objective rates of stress
and the rate of deformation tensor. The stress integration algorithms have to keep incremental
objectivity, 1.e., it has to be invariant with respect to superimposed rigid body motions within a
given increment. For small deformation problems, the standard time-discretization procedures
may be applied to rate constitutive equations without causing too much error, which makes the
integration simple and straight forward. For finite deformation analysis, however, the standard
time-discretization only achieves objectivity in the limit of vanishingly small time steps [3].
This may lead to excessive error accumulation in practice when a finite time increment is
used. An algorithm for integrating rate constitutive equation where Jaumann rate is used is
presented in [56] and later employed in ABAQUS [57]. One of the weak-points of the method
is the requirement of additional computation of rotation tensor :*2*R. from ¢ to ¢ + At. A
more general discussion about the requirements that should be satisfied by an algorithm for the
integration of rate constitutive iequation is given by Pinsky [58]. A theoretical derivation of a
general implicit integration algorithm is also presented in [58] by pure mathematical mapping
between deformed and undeformed configuration. The consistency and incremental objectivity
of the integration algorithms are clearly verified. Details of the numerical implementations are
not, however, discussed.

Another aspect of the integration of rate constitutive equations is to satisfy the material
plastic constitutive relations (e.g. Prandtl-Reuss equations) and the incremental plastic con-

sistency, i.e., to keep the state of stress within the elastic domain or on the yield surface. In

small deformation analysis, this may be achieved by a general return mapping method [59, 60].
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For large deformation analysis, the return mapping methods should, however, be applied con-
sistently with the integration algorithm. Numerical investigation of this point and consistent
procedures for applying these algorithms are discussed in this chapter. The presented algo-
rithms are combined consistently with the general return mapping method to satisfy the above
mentioned requirements. |

The incremental objectivity of stress integration algorithms needs the rate of deformation
tensor *D;; to be zero when only rigid body motion occurs [58]. It is generally achieved in
implicit integration algorithms by using a central difference integration scheme, i.e., a« = 0.5
[56, 58], where a is the coefficient applied in the implicit integration schemes. In an explicit
integration algorithm, a numerical treatment based on forward difference method (a0 = 0) is
necessary to-keep the incremental objectivity. In this chapter, two explicit numerical integration
algorithm for stress rate equation are derived based on the physical definition of stress instead
of the purely mathematical tensor transformation presented in [58]. It is verified that the
developed algorithms are equivalent to integration of Truesdell stress rate equation. One
algorithm is exactly the same as the equivalent algorithm in [58], and another one is slightly
 different. Practically, however, it is shown that the two algorithms give almost exactly the same

results [61].

3.1.3. Updating Material Associated Properties

In ALE simulation, the material associated properties, such as strains, stresses have to be
updated after each incremental step because the mesh motion is independent of the material
motion. Such updating is necessary in Eulerian method and updated Lagrangian method if
re-meshing is applied. One method of achieving this in Eulerian formulation is to create an

imaginary finite element mesh through the material points at time ¢ + At and use this mesh

to calculate properties at integration or nodal points by interpolation [7]. This process is very
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time consuming and requires different interpolation logic every step and certain simplifications
may be applied to the procedure [21, 22].

In updated Lagrangian formulation with remeshing capabilities, the updating of material
associated properties is done through three steps [16]. First, properties at the old mesh nodal
points are obtained from the old mesh integration points by extrapolation. This step is not
consistent when integration points undergo material nonlinearity. A weighted nodal averaging
may then be obtained. Normally, a direct relation between old and new meshes is not known.
Therefore, in the second step, the old mesh element to which a new mesh node belongs is
found. This is done by checking iteratively for the normalized local coordinates of the new
mesh node in old mesh elements. If the absolute magnitudes of all the normalized coordinates
are less than or equal to 1, then the old mesh element in which a new mesh node belongs may
be deciphered. After that, the values of variables at the new mesh nodes may be defined by
simple interpolation within the old mesh element. In the third step, the values at the integration
points of the new mesh elements are determined by interpolation from the new nodal values.

In ALE formulation, researchers use an updating algorithm called “follower point " or
“pseudo-material element " [39, 43]. In this method, all integration point variables are extrap-
olated to the nodal points of the “pseudo material elements" and a weighted averaging may be
used. After that, iterations are used to find the “pseudo material element" to which mesh points
will be related. The new nodal and integration point values are then calculated by interpolation
within the “pseudo material element”. The main disadvantage of this method is the use of
one interpolation plus one extrapolation schemes. This may greatly degrade the accuracy of
simulation and the calculated parameteré. This procedures is basically similar to the one used
after re-meshing in updated Lagrangian method.

Interpolation is necessary for various methods of updating. It is usually done by interpolation

functions similar to those used for displacement or velocity in the finite element discretization

[62]. A slightly different scheme is to create a continuous field for all variables by a method
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called “local smoothing with triangulation” [16], then, interpolate the variables linearly within
one triangle. A different procedure for interpolation is developed by Derbalian [22] using
conjugate approximation method [63]. By constructing a set of conjugate shape functions
(bi-orthogonal) to those used to represent the displacement or velocity field, a consistent
approximation for the stress field may be obtained which is continuous across inter-element
boundaries and which involves less mean error. Because this method introduces a large system
of equations, it is usually applicable to Eulerian formulation since the large system of equation
need to be computed only once. For other cases, the inter];;oiated elements are different in each
step and the large system of equations must be solved iteratively during each incremental step.

In.this research, an updating scheme based on continuum mechanics equations is used to
update material associated properties. The relation between mesh motion and material motion
is employed to avoid iterations required in previous schemes. The procedure is described in
Appendix A. The method is more accurate, simpler to implement and eliminates the necessity

of interpolations and extrapolations mentioned above.

3.2 STIFFNESS MATRIX PROCESSING

Using the standard finite element procedure to discretize the ALE Equation (2.20), we get,
Kiv + K = p’ (3.1)

where, v is the vector of material velocities at nodal points, *v® is the vector of mesh velocities
at nodal points, tK is the stiffness matrix related to v, *K¢is the stiffness matrix related to v,
tp’ is the external loading rate vector. In Equation (3.1), the total number of unknowns is twice
the total number of D.O.F. and the equation number is only half of the number of unknowns.
In order to solve the equations by conventional methods, supplementary equations equal to

number of total D.O.F. are needed. These equations are supplied by the relations between *v

and *v°, i.e., an explicit mesh motion scheme in ALE.
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The basic idea is to avoid setting up the supplementary constraint equations to solve
Equation (3.1) on a global level. Instead, we set up the constraint on the element level and
reduce the equations by condensing out the mesh motion variables before assembly. This will
reduce the global D.O.F. to be only the material velocities. On element level, Equation (3.1)

may be written as:
*krstvg + Tk v = p; (I=1,2,....n) (3.2)

where, n is the number of D.O.F. in the element. We use a transfinite mapping for mesh

velocities, tv§ in the following general form:
t'U_c] =ajy+ b(])t'v('_]) (J =1,2,...... n) (33)

where, no summation on “J" is observed.

It should be noted that the mesh motion scheme of Equation (3.3) guarantees one-to-one
mapping between material domain and computational reference domain, as verified in Appendix
C and that the choice of the coefficients ay and by will identify the type of formulation as follow:

If ay = by = 0, the formulation reduces to Eulerian one, »

If a; = 0 and by = 1, the formulation reduces to Lagrangian, and

Othefwise, the formulation will be a general ALE one.

The above three cases may be mixed in a given problem so that certain regions of the model may
have different formulation. It is also important to realize that at each node, different D.O.F.s
are allowed to have different formulation type. This property makes handling contact boundary
condition much easier. The only apparent constraint here is that the boundary points should be
always kept as Lagrangian type in the direction normal to the boundary so that the mesh and
material points will always represent the same boundary.

Substituting Equation (3.3) into Equation (3.2), we get:

(*krs + *kynybwy)tvs = 'pr — tk} 0z (3.4)
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where there is no summation on (J) in tk;( 5b(7)- In matrix form, the equation may be written

as:
Rty = tp (3.5)

where 'K is equivalent stiffness matrix and *p- is equivalent load rate vector. In Equation (3.4),
the only unknowns are the material velocities *v;. Thus, by introducing the supplementary
constraint equations on the element level and modifying the elemental stiffness matrices, the
mesh velocities may be condensed out of the element equilibrium equations, so that the number
of unknowns will be finally the same as in the traditional finite element formulation.

In Equation (3.4), the equivalent stiffness matrix is tkyy -+ ‘k_c,( 1b(s) and equivalent element
load is tf; — *k7;as. The conventional finite element assembly and elimination method may
now be applied directly to solve for material velocities *v;. This procedure is more efficient and
the usual finite element solution routines may be used with minor changes. The only limitation
to the procedure is that the mesh velocities may be coupled with the material velocities only
at the same D.O.F.. In practice, such limitation is trivial, because more complicated relations
between material and mesh velocities may not guarantee a better mesh quality, but will generally
increase the computation time significantly. If for some particular reason, the mesh velocity
tv¢ has to be coupled with the D.O.F. in other elements, the above method is still applicable.
Only difference is that processing would create “fictitious" nodes whose D.O.F. is coupled by

the mesh velocity equations and which are not connected with the element physically.

3.3 MESH MOTION SCHEME IN ALE

3.3.1 Transfinite Mapping Method

To complete the mesh motion procedure and finalize the supplementary constraint equations,

it is essential to decide the values of the coefficient a; and by in Equation (3.3). As discussed
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above, on boundaries of a deformation domain, the nodes have to be Lagrangian type in the
normal direction in order to keep a one-to-one mapping between the material and computational
reference domain, i.e., a;f = 0,b; = 1. These boundary points may move, however, in the
tangential direction with a velocity different from the mesh velocity. All the internal nodes are
assumed as general ALE points moving at speed ‘v§ = ay, which is specified by transfinite
mapping method, and the coefficients by are set to zero for these general points.

The transfinite mapping method is employed to decide the internal nodal speed [55].
Originally, transfinite mapping is applied to create a mesh on a geometric domain when the
boundaries are specified [53]. Assuming a region with four boundary curves specified as
#i(r,0), di(r,1), :(0, s) and ¢;(1, s) as shown schematically in Figure 3.1, the mesh coordinate

¢; 1s given by:

ci(rys) = (1 —38)¢i(r,0) + s¢;(r,1) + (1 — r):(0,8) + rehi(1, 5)
= (=)L - $)4i(0,0) — (1 = r)si(0, 1) — rsg(1, 1)

0<r<1 0<s<1

where r, s are normalized coordinates, : = z,y, i.e., ¢(r,0) and ¢,(r,0) etc., represent the
z,y coordinates of boundary curves, and c,(r, s), ¢,(r, s) are nodal z and y coordinates of a

point, respectively.

The transfinite mapping Equation (3.6) will create a homogeneous mesh when the nodes on
the boundaries are distributed homogeneously, and it will allow the boundaries to be represented
in a discrete form, e.g., with nodal coordinates on the boundaries. This is a characteristic that is
quite convenient and useful in ALE formulation because at each step of simulation, the deformed

boundaries are actually described by discrete nodes. The only requirement of the discrete
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(&i(r,1)) (0,1)

(0,1) 0,(r,1) (1.1) o,(r,1) (1,1)
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Original Region Modified Region

Figure 3.1: Transfinite mapping

representations in the transfinite method is to have normalized parametrié coordinates assigned
to each node on boundary curves. This process is automated by assigning the coordinate %
to the ¢th point on a curve containing (k + 1) points. The location of internal nodal points
are completely determined by the position of boundary nodes. The boundary curves may be
described by as many nodes as needed, so that curve fitting error in parametric mapping can
be minimized or avoided. In general, we assume that at a given incremental step, at time ¢, the
finite element mesh is distorted. In the next incremental step from time ¢ to ¢ + At, the mesh
will be automatically moved by the program to get a homogeneous one. The new internal nodal
coordinates are calculated by Equation (3.6). If the old (distorted) coordinates are ¢?(r, s), then

the mesh velocity is given by:

. ci(rys) — 2(r,s

ct

ar = % (3.8)
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Figure 3.2 gives an example for distorted and automatically modified mesh obtained by applying
the above method. It should be noted that, even when the boundaries have discontinuous slopes,

for example at A, B and C in Figure 3.2, the method produced a homogeneous mesh.

1. 0

Distorted Mesh at Time t Modified Mesh at Time t+At

D

Figure 3.2: Mesh modification

3.3.2 Consideration of Boundary Motion

The above mesh motion scheme will guarantee a homogeneous mesh when boundaries do
not move. In a general ALE formulation, however, mesh motion and loading increment occur
simultaneously and the boundaries should be allowed to move. In such case, in order to achieve

a higher quality mesh, Equation (3.8), has to be modified. First we assume that the boundary

velocities are expressed by &;(r,0),&(r,1),£&(0,s) and &;(1,s) corresponding to boundaries
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¢i(r,0), ¢i(r,1), $:(0,s) and ¢;(1, s) individually, as shown in Figure 3.1. We use the same
function as in Equation (3.6) to interpolate the boundary velocities and find the modification

term to be used in Equation (3.8);

tv;b = (1 - 8)&(r,0) + s&(r,1) + (1 —7)&(0,s) + r&i(1,s)
(1= )1 = $E(0,0) — (1= r)s(0,1) — rati(1,1)
(1 9)E(1,0) (39)

0<r<1 0<s<1

To ensure that the boundary nodes have to be Lagrangian type in the normal direction, the
mesh velocities &;(r,0),&:(r,1),£:(0,s) and (1, s) have to be equal to the material velocities
tvi(7r, 0),f vi(r, 1),F v;(0, s), and *v;(1, s); or at least their normal components have to be equal
to each other. These material velocities at time ¢ , however, may be unknown, for example
as on free surfaces. In order to avoid solving implicit equations and to calculate the normal
components, we apply the material velocities at time (¢ — At) to approximate the values at time
t during the mesh motion. It should be indicated that such assumption is only for mesh motion
and does not have any direct effect on the accuracy of solution. Therefore, for Lagrangian

boundary points;

&(r,0) =""%vi(r,0) &(r,1) =" vi(r, 1)
£(0,s) = %;(0,s) &i(1,8) = 8%4(1, ) (3.10)
(t==,y 0<r<1 0<s<1)

If higher quality mesh is required, some iterations may be introduced, i.e., using the new material
velocities to replace the velocities at time (¢ — At) in Equation (3.10) until the difference between

the material velocities from the two iterations is less than a given tolerance value. In practical

applications, this iteration was found to be not necessary since the mesh quality created by
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Equation (3.10) is good enough for most of practical problems. Finally the mesh motion for

the nodes in the interior of the domains is given by:

te =t + tvj-b =ar (3.11)

For the example shown in Figure 3.2, if the distorted mesh at time ¢ has boundaries DE and BE
moving at some inhomogeneous speed, using the above mesh motion scheme, we get the mesh
at time ¢t 4 At as shown in Figure 3.3. So, even when boundaries move at inhomogeneous
speeds, which is the usual case in finite element large deformation problems, the scheme may

still give homogeneous meshes.

IT D E

D E

Distorted Mesh at Time t Modified Mesh at Time t+At

Figure 3.3: The mesh motion in ALE
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3.3.3 The Motion of Nodes on Boundaries

The boundaries of deformation domain may be classified as one of two categories. The first
kind posses no change in boundary shape during the deformation and the shape is known a prior.
An example to this type is a boundary with prescribed velocity or displacement conditions,
e.g., the tool work-piece interface in indentation or punch forging problems. In the second
kind, the deformed boundary shape is unknown in advance and changes during deformation.
The boundaries with applied traction forces often lie in this category. Motion of nodes on
the first type of boundaries is easy to decide. Because the normal direction of boundaries is
known, the mesh velocity in the normal direction should be equal to material velocity, i.e.,
ar = 0,br = 1 in Equation (3.3). In the tangential direction, the node may be moved arbitrarily
in order to achieve calculation efficiency. Without losing generality, b; is set to zero and a;
may be determined in a way specified by the user, or usually in such a way that the nodes are
evenly distributed along the boundaries.

On the second type of boundaries, alternative methods have to be employed due to unknown
velocity in the direction normal to the boundary. One way of handling this is to transform the
second type of boundaries into first type by assuming the normal direction. The disadvantage
here is that iterations have to be introduced to make the difference between the assumed normal
direction and the calculated one from equilibrium equation less than the preset tolerance.
Another method specifies the nodes on the second type of boundaries as Lagrangian points
in all directions, i.e., ay = 0 and by = 1 in Equation (3.3). This may result in unexpected
or inhomogeneous spacing because of the deformation. In order to have homogeneous mesh
pattern, the boundary nodes have to be adjusted in the tangential direction of the boundary.
This kind of adjustment can not be done during the incremental step and has to be done after the

deformed boundary shape is determined. In this work, the nodes are relocated on the boundaries

according to nodal spacing specified by user or are positioned to get an equal distance between
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each node.

3.3.4 Implementation and Discussion

The procedures of mesh motion for an incremental step from time ¢ to time ¢ + At may be

summarized in the following points:
- Get mesh coordinates at time ¢ and the boundary velocities at time ¢ — At,

- From the input data, identify the Lagrangian and Eulerian direction for each boundary

node and decide the coefficients “a;" and “b;" for each D.O.F.,

- Calculate the value “ar" for each internal node according to the boundary coordinates

and velocities, using Equations (3.6)-(3.11),
- Create the element stiffness matrices, *kr; and k¢,

- Perform the transformation given by Equation (3.4) to get the equivalent stiffness matrix

and load vector,

- Assemble the equivalent element stiffness matrices and load vector and solve the assem-

bled equations to obtain material velocities, displacements, stresses, etc.,
- Adjust the position of nodes on the second type boundaries,
- Update the material associated properties and mesh coordinates.

The application of transfinite mapping method in ALE for mesh motion has many advan-
tages. In comparison with other methods discussed above, the transfinite mapping is efficient,
simpler to implement and does not introduce curve fitting errors beyond the discretization

error that is inherent to the finite element method. The method allows the boundary curves to

be represented in discrete form and to have discontinuous slopes. These properties make the
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method directly applicable to domain with irregular polygon boundaries. In transfinite mapping
method, the interior node locations are calculated from boundary nodes. The curvatures of the
boundary curves and spacing of boundafy nodes are accurately reflected in the mesh, as may
be shown in Figure 3.3. Furthermore, the boundary curves do not need to be simple functions.
Cusps and inflection points provide no special problems.

The node motion scheme used in the research for the second type of boundary is simple and
more accurate than assuming a normal direction. It is not limited by boundary curve types and
it may be combined with transfinite mapping method to handle the mesh motion in the whole
deformation domain. Node adjustment in tangential direction on the second kind boundaries is
necessary to keep a higher quality mesh.

Stiffness matrix processing discussed above is a general method. That may be used with

various material models, i.e., rate dependent or independent.

3.4 INTEGRATION OF STRESS RATE

3.4.1 The Integration Algorithm

In large deformation analysis, because of the fact that the configuration of the body is
changing continuously, the Cauchy stress can not be integrated simply by adding the stresses
and their increments due to deformation directly [47]. The consideration of configuration
changing can be incorporated by purely mathematical tensor transformation as given in [58], or
alternatively by utilizing the physical definition of Cauchy stress as presented in the following.

Assume the material configuration at time ¢ is *C and the corresponding Cauchy stress is

to;. Attime (¢ + At), the configuration is +4*C and the Cauchy stress is **45;;. As shown in

Figure 3.4, the 2nd Piola-Kirchhoff stress at (¢ + At) with respect to the configuration at time
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t,iTALS;;, is related to Cauchy stress t72%q,;, at time t + At by [47]:

t+AL t+At
0 0

trae 1 Tityat ) (3.12)
13 — t *
l:+AtF1 Ote,, mn Stg,
t+AE t4+AL, . . . . .
where i* F,; = %,—m—?—t is the deformation gradient tensor or the Jacoban matrix.
7

X

23
P (;)
Configurattion Configuration at
attimet 'C time t+At HAtC

s
3

Figure 3.4: The material configurations-

Consider the deformation to be decomposed of two steps; first one is only a rigid body
motion and the second one is only straining. Then after the first step, the stress relation may be
written as:

trAL,, YN
trae _(I) 1 9 Liti At 10 Lj

3 t
] G oo,

(3.13)

and since this step is only a rigid body motion, then,

tratold) ¢ ot
£ S = t9mn = Oma

mn




Chapter 3. NUMERICAL IMPLEMENTATION OF ALE 52

where t+Ata§f ) and fg"’“Sfﬁl are Cauchy and 2nd Piolar-Kirchhoff stress at an imaginary

intermediate state between ¢t and ¢ + At, respectively, so that Equation (3.13) may be written

in the form:

t+AL, t+AL,
trar (D) 1 4 T;, 0 T;

= Trn
]
‘:JFA*F’ Otz Oz,

1e., this Step only considers the effect of configuration change on Cauchy stress tensor.

In the second step, due to straining, the Cauchy stress would have an increment of
AO’iJ’ = CijkltDklAt (314)
and the stress at time (¢ + At) would be:

t+At . _t+At _(I)

ie.,
1 at+Atm, Bt‘*‘Ata: .
t+AL it J .
A I e PR (319
or,
1 t4At ; at+At .
Aty . — 0" ai, Y 4 Ciju' Dult (3.16)

= 7 g
7 ‘§+AtF| B‘mm mn Bt:cn

where, C; ;i is the element constitutive tensor,
At is the time increment,
. . t t
t Dy, is the rate of deformation tensor, tDy; = % (%—fi’j + ;—;’:).

In decomposion of the deformation, if the first step and the second step are switched, i.e.,

if the first step is only straining and the second one is only rigid body motion, we get another

integration scheme as shown in Appendix D.
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3.4.2 Consistency of the Integration Algorithm"

Integration algorithms have to be consistent with the constitutive equations. It may be shown
that the integration algorithm developed in Equation (3.16) is equivalent to using Truesdell stress

rate in the rate constitutive equation.

We consider the determinant of the deformation gradient tensor as:

8
4 (| a7 = [F]+ [P
where, |LF| = 1 and up = 8%z, — *z, is the displacements from time ¢ to ¢ 4- At, so that;
1 1 . 1-— ,;"Z;k ~1 Oug,
Ouy, Bum Oun
|:+AtF‘ 1 + _IL 1—- Otz Otay, atwk

with the higher orders of u; being ignored. Substituting the above equation into Equation (3.16),
gives:

+ Ciju* DAt

t+At (1 . Ouy, ) a(twi + u;), 0 (twj + u;)
1] — _

a-m’n
Otzy, Oz, otz,

Rearranging the above equation and neglecting all the higher order terms of u;; we obtain:

trar Oz;, Oz N Ou;, , Oz N oz; , Ou;

o = o o Omn
4 Ote,, Oz, Otw, | Otz, Otz Oz,

O'z;,  O'z; Oug
. mn Oi y tD At
Otz 7 Otz,, Otz + Cigt D

8u,~ : au
= Jimto'mné‘nj + bT—to-mné‘nj + 6imtamnﬁ
Ouy
sz a-mn(snj at + Cz]kl DklAt

or,

thAL .ty 1 [ Ou: Ou; Ouy
15 i 1t . t J t
T = - (atmm Umg + Oin Btwn ‘tJ 6t ) + Olﬂkl Dkl

which, upon taking the limit when At — 0, gives:

tay .
& vzt o Yit & vktdw + O,Jk[ Dy (317)
k

t .

%ii = Big, T T Btg, T T Bt
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where ‘v; is the velocity component in the th direction of the coordinates. By definition, the
Truesdell rate of Cauchy stress may be given by Equation (2.23). Therefore, we may write

Equation (3.17) in the following form:

tUT' = ijkltDkl (318)

7

The above simple development indicates that the stress integration algorithm derived from
the physical definition of the Cauchy stress is actually the same as the integration of Truesdell

stress rate equation.

3.4.3 Alternative Bases for Integration Schemes

(i) Integration of Truesdell Stress Rate

The material configuration at time ¢ is denoted by !C and at time ¢ + At by *+4tC.
A material point in both configuration may be given by the position vectors P(‘z;, z,, @s)
and Q(*+2tzy, T8z, A%,), as shown in Figure 3.4, respectively. Tensor quantities in both
configurations *C' and *+2*C may be related to each other by proper transformation. Starting
from this point, Pinsky et al. [58] derived the implicit integration algorithms for Truesdell
stress rate, Jaumann rate and Green-Naghdi rate. The derivation is purely mathematical and
according to their development for Truesdell rate, the algorithm is generally implicit and may

be expressed as follow:

t+-AL t+-AE
AL 1 8 T, 0 z;

0i; = Omn
J §+AtF‘ Otz,, Oz,
t+At,,. t+ AL, .
b A 0T G ilen bane D (3.19)
t+At pf Gttty mnklltradt t+adtk orrant,, .
t+aAt m n

where,

t+aAtmi _ at+Atwi + (1 . a)t:ci
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tLAL

S Latini)
i =

t+aAtT 1] 6t+aAt$j

1 Otv; Otv,;
t _ : J
t+aAtDij = 5 (6t+atmj + at+atwi)

when a = 0, it will be explicit and may be expressed as:

. LAt 1 at+Atwit at+Atwj N 1 at—]-AtmiA 8t+At.’1:j
0;; = Tmn Omn—F(0;
I:"'AtF} Ot Ote, ’:+AtF‘ Ote,, Ote,

(3.20)

where, Ao, is defined as in Equation (3.14). Upon comparing Equation (3.20) to Equa-
tion (3.15), we find that the only difference is in the second term of the right hand side and if the
higher order term of u; is neglected, the difference will vanish. Numerical experiments show,
however, that both equations give almost identical results. In addition, it is necessary to indicate
that by assuming that the first step in the deformation is straining and the second is a rigid body
motion, as shown in Appendix D, we would get the exact same result as Equation (3.20).
(i1) Integration of Jaumann Stress Rate

An integration algorithm for Jaumann rate is proposed by Hughes [56]. The purpose of

the development in Hughes’s work is to keep the "objectivity" of the integration. The derivation

is based on purely geometrical concepts and the result may be expressed by :

t+ At t+At t t+ At
Oi; = t+ R-m Tmny Rjn + Acr,-j i (321)

?

where, YAt R.. is the rotation tensor for the increment from time ¢ to ¢ + At;
t %]

Auc;; is the stress increment given by:
— .. t
Aci; = CijuigyosacD At

The }, ¢ 52D is calculated by central difference method:

1 (9t'vk at’vz
t _
t+0.5AtDkl - 5 (6t+0.5Atwl + Ht+0.5ALy, (3'22)
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and

t+0.5Atmi — 0.5t+At$i + 0-5twi

— t+ AL t+40.5t

If displacement u; z; — ‘z; and the gradient of displacement with respect to x; 1s:
Ou;
Gij = 6t+0.5;t
Zj

AR can be expressed in matrix form as [56]:

G-GT G-GT\*
t+AtR: I Dl I— —— —
rem= 1+ 655) (1- S5

where, I is unit matrix and G has components of G;;.

Upon comparing Equation (3.21) and Equation (3.15), it is important to note that in Equa-
tion (3.21) the stress at time ¢ is transformed by a rotation tensor §+AtRij whereas in Equa-
tion (3.15), it is transformed by deformation gradient tensor, §+AtFij. For a pure rigid body
motion, the Truesdell rate is the same as Jaumann rate, the deformation gradient tensor reduces
to the rotation tensor and determinant of deformation gradient tensor is equal to unity, so that

Equation (3.15) and Equation (3.21) lead to the same results. The objectivity of the algorithms
have already been verified in [56] and [58].

3.5 INCREMENTAL OBJECTIVITY AND NUMERICAL TREATMENT
OF 'Dj;

3.5.1 General Considerations

The rate of deformation tensor is not only used in integration of rate type constitutive
equations as in Equations (3.15, 3.20 and 3.21), but it is also used in other applications, such

as visco-elasticity and creep involving large strains and rotations. The incremental objectivity

of *D;; means that under finite incremental step, its components will be independent of any
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rigid body rotation. For large deformation analysis, this is shown to be achieved when the
integration scheme is used with a value o = 0.5 ( central difference method ) in implicit stress
integration algorithms [58]. In many applications, however, D;; is employed separately, not
with‘stress integration, or is used with an explicit stress integration, e.g., Equation (3.16). In
this section it is shown that using the conventional forward difference method in such analyses
may only achieve objectivity when the time steps are very small and it may lead to excessive
error accumulation in practice. A forward difference method with a correction term is presented

to keep the incremental objectivity in situations where rigid body rotation is presented.

=] t+At (t+Atx1 , t+At X2)

WAt

Figure 3.5: Rigid body rotation of point P?

It may be instructive to show first that analytically, the components of the rate of

deformation tensor do identically vanish in the case of rigid body rotation. This may be
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achieved by considering a general two-dimensional rigid body rotation with an angular velocity
w. If the rotation center O is chosen as the origin of a fixed Cartesian coordinate system, a
material particle located at P*(*z,,"z,) at time ¢ moves to anew position PtHAt(t+Aty, t+Aty,)
at time ¢ + At, as shown in Figure 3.5. The new position may be expressed in the following

relations:

tHaty — tz1cos(wAt) — tzysin(wAt)

HAtp, =tz sin(wAt) + tzycos(wAt) (3.23)
so that, the displacements are given by:

u; = ‘z1(cos(wAt) — 1) — ‘zysin(wAt)

Uy = ‘zysin(wAt) + *za(cos(wAt) — 1) (3.24)

Taking derivatives with respect to At and calculating the limit values when At — 0, gives the

velocities at time ¢ as:

t t
t’U]_ = —W T2 t’Ug =W

From the definition of *D;;, the components of the rate of deformation tensor *D at time ¢ is

given by:
at'Ul
‘D =
T b 0
(9*1)2
t —
Dzz - ath - 0 (325)

This verifies that the analytical values of the rate of deformation tensor are identically zero for

the case of rigid body rotation, i.e., the tensor *D is objective with respect to rigid body rotation.
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3.5.2 Forward Difference Algorithm to Calculate *Dj;

In numerical and finite element analysis, it may not be possible to get the analytical values
as indicated above and, in general, a time-discretization procedure is applied to calculate *D;;.
- The conventional method in finite element analysis is to use the average velocity from time ¢ to
time ¢ + At as velocity at time ¢, and employ this to calculate *D;; as the rate of deformation
tensor at time ¢. The calculated value of D;; is also used as the average value of the tensor
fromtime ¢ to time ¢ + A¢t. Mathematically, this is equivalent to a forward difference method.

Thus, the velocities are given by;

. uy  ‘tzi(cos(wAt) — 1) — trpsin(wAt)

AT At
t N t
. Uz z1sin(wAt) + tzy(cos(wAt) — 1)
== = 3.26
Y At (3.26)

the *D;; components are then obtained by taking derivatives with respect to *z; and *z, as

follow;
: cos(wAt) — 1
D, = —————~ —
11 AL
At)—1
D, — cos(w
22 At
tDlz = 0 . (327)

which shows that *D;; and ?D,, are not equal to zero except when the time step is very small.
A finite time increment may cause errors in the calculation of the components of the tensor ‘D,
especially when the numerical values of these components are of the same order as the right

hand side of Equation (3.27).

3.5.3 Forward Difference with a Modification Term

In order to remedy the above problem, a modification term is needed [61]. From Equa-

tion (3.27), it may be seen that the modification term should be a function of the rigid body
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rotation wAt or, in general, be a function of the components of the spin tensor *“W. In general

large deformation , the skew-symmetric spin tensor is defined by;

T 1 at’vi _ at’vj
Wi = 2 (at:c,- Ote; (3.28)

and the modification term for :D;; components for general 2D large deformation process may

be considered as:

V1- (WAt)? -1
At

The above modification guarantees the objectivity of *D;; in the case of rigid body rotation.

With the modification term, numerical calculation of the *D;; components are given by:

t t,
'D;; = % (6 o + 0 v,) — &ii'm (3.29)

where,

(3.30)

and 4;; is the Kronecker delta.
For the general rigid body rotation case given above, the spin tensor *W;; is calculated in a

way similar to Equation (3.27) and the components are given by:

th - 0
thg =0
; o __sin(wAt)
Wia = —"Wan = At

Substituting the above values in Equation (3.30) and (3.29), we have:

‘Diy =0

*Dyr =0

t.Dlz = 0




Chapter 3. NUMERICAL IMPLEMENTATION OF ALE : 61

Therefore, the explicit integration algorithm, Equation (3.16), will satisfy incremental
objectivity if *D;; is modified as shown above. The *D;; modification presented above may be
considered as an alternative way to keep the incremental objectivity of integration algorithms
developed by Pinsky [58] and Hughes [56]. The above modification is practically useful
when explicit integration algorithms are utilized. More detailed numerical examples on"the

effectiveness of the above procedures is given in Chapter 5.

3.6 STRESS TRANSFORMATION AND RETURN MAPPING

3.6.1 General Considerations

It may be seen from the above development that in order to keep objectivity of the integration
algorithms, the stress at a given time may be first transformed with an appropriate transformation
tensor and then it should be added to the stress increment due to pure straining. For integrating
the constitutive equation, the algorithm also has to satisfy the material constitutive relations
(e.g., Prandtl-Reuss equations) and the incremental plastic consistency.

The return mapping algorithm [59, 60] is a numerical method used mostly in small deforma-
tion problems to satisfy the material constitutive relations and incremental plastic consistency.
The method is generally based on two steps. The first one is to calculate an elastic predictor,
which obtains the stresses at the end of the increment from the use of the elastic stress-strain
relations. The second step is to subsequently map the obtained stresses onto a suitably updated
yield surface and restore plastic consistency. This mapping step may be further divided into two
steps; one explicit by projecting along the initial plastic flow direction and the other implicit by
projecting along the updated plastic flow direction. Although some research has been done on
objectivity of stress integration algorithms under finite deformation cases and the algorithms

to keep incremental plastic consistency in small deformation cases are well developed, not

too much effort has been made to satisfy incremental plastic consistency in finite deformation
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conditions.

In the case of large deformation, although the constitutive relation is not the same as for
small deformation, the elastic predictor may still be calculated by assuming that the deformation
in the current increment is completely elastic. Then the predictor is mapped onto a suitably
updated yield surface using the appropriate large strain constitutive relation, thus restoring

plastic consistency. For von-Mises material the equivalent stress at time ¢ is defined by:

1
3t/t’

2
i
Oeq = (5 a‘LJ a’LJ) (3.31)
where, tcr; ;= toii— %Jijto'kk is the deviatoric stress and 4;; is Kronecker delta. The accumulated
equivalent plastic strain is calculated by [64]:

t /9 i
o= (57p5py) " dr (3.32)

K3

where; ¢, is the initial time, ¢ is the current time of the deformation and TD’-’J-is the plastic part
of the rate of deformation tensor.

For rate-independent materials, the time t is trivial. An important point to be discussed in
large deformation analysis is whether the return mapping should be performed before or after the
stress transformation. If the return mapping is to be performed before the stress transformation,
we should maintain the plastic consistency after the transformation. To investigate this, two

different numerical schemes are presented and compared.

3.6.2 Scheme A: Transformation after Return Mapping

If at time ¢, the converged stress is ‘o;; and material velocity is *v;, with other quantities as
shown in Figure 3.4, the procedure may be summarized as follow:
(i) input data for integration: ta;;, tv;, At, tz;;

ii) update material coordinate:**2tz; = tz; + tv;At; then, calculate C;;;; by assuming the
p ki DY g

increment to be completely elastic;
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(iii) calculate the elastic stress increments Ag;; by the use of Equation (3.14);

(iv) use stress quantities ‘o;; and Ag;; as input to the return mapping algorithm and calculate an

intermediate stress state tag)

;; that satisfies the incremental plastic consistency; then, calculate

deformation history-dependent parameters, such as the current yield surface o4 and plastic

.
strain €2 ;

(v) calculate the stress increments by Ag;; = Atag) — toy;, use Equations (3.15), (3.20)

or (3.21) to update stresses and obtain a second intermediate stress state t+Ata§;I) and its
corresponding equivalent stress ‘*4*o{ID) by Equation (3.31);

(vi) scale down the equivalent stress point ta{ o the yield surface by using the relation

ij
t+At . _ _ Oyield  t+At (1)
Oij = (D 935
t+A:o.eq L)

In the procedure above, it may be seen that step (vi) is necessary to keep the final stress

t+ At

point o;; plastically consistent, i.e., on the yield surface.

3.6.3 Scheme B: Transformation Before Return Mapping

The second procedure may be summarized as follow:
(i) input data for stress integration: a;;, ‘v;, At, 'z;;
(il) update material coordinates:**2tz; = tz; + tv;At; then, calculate Cjji; by assuming the
increment to be completely elastic;

(iii) calculate the intermediate stress state tcrg ) by the use of Equations (3.15), (3.20) or (3.21);
(1)

(iv) calculate the "elastic" stress increments by Ao;; = t+Ataij —tois
(v) use to;; and Aoy; as the input stress components to regular return mapping algorithm and

obtain the mapped stress t+4¢

Tij5
(vi) calculate the deformation history-dependent parameters, such as current yield stress oy;eiq

. . p
and plastic strain 2,

Although this method projects the final stress point on the yield surface, the "elastic" stress
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increments include the incremental stress due to proper transformation, i.e. taking into account
of the change in configuration. The return mapping procedure has to start with ‘;; instead of
tag ) , because all history dependent parameters such as the current yield stress and the plastic
strain are only updated to the state at time £.

The above numerical algorithms for keeping plastic incremental consistency, have been
combined with the integration algorithms presented in Section 3.4.1. It is found that the

combination of integration of Truesdell rate with Scheme A generally gives better results than

other cases. Details of this development and calculation are given in Chapter 5.

3.7 UPDATING OF MATERIAL ASSOCIATED PROPERTIES

3.7.1 Basic Updating Scheme

In an ALE formulation, the relation between mesh motion and material motion at each point

is given by:
u = a; + b(i)um (333)

where, u; is material displacement in ¢ direction, «{ is mesh displacement in ¢ direction, and
no summation on ¢ is observed. Therefore, location of new mesh points and integration points
may be easily traced if isoparametric elements are used.

For any physical quantity f, the change due to material motion A, f and the change due to

mesh motion A, f may be related to each other by (see Appendix A for details):
at+Atf

6t+At.’Bi

[+

Axf = Axf+ - ui) (3.34)

(u

where t*Atf = f(*+Ax, ¢ + At) is the value of f at material point at time ¢ + At. The material
increment Ay f may be obtained as in the regular finite element calculations. If a material

particle *x at time ¢ moves to **4tx at time ¢ + At, then:

AL tf L Af (3.35)
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Similarly, when mesh point *x at time ¢ moves to “*%¢y at time ¢ + At, at *tA%y, we have:
HAtfe =t Ay f (3.36)

But at time ¢, *x = *x, so that *f = *f = f(*x,t). Therefore, Equations (3.34)-(3.36) may

have the form:

t+At t at+At
+ fc = fC+Axf+ 8t+Atw~(u:_Ui)
at+At
= tHAtg at+Atwf. (uf — u;) (3.37)

Equation (3.37) effectively updates any physical quantity f from a material point to-a mesh
point. The feature that the relation betWeen mesh motion and material motion is known prior is
utilized. This procedures effectively eliminates iterations and interpolations or extrapolations
used by other researchers [39, 43].

It is important to indicate that the above method may be utilized in updating for Lagrangian
and Eulerian method. In updated Lagrangian method, the iteration to detect the relation between
new mesh point and old mesh point may still be necessary. However, the updating may be done
by Equation (3.37) if the old mesh points are treated as material point in ALE and new mesh
points are treat