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Abstract

This thesis presents a new trajectory planning algorithm for planning safe and smooth tra

jectories of a robot tool moving along a specified curve subject to application constraints.

The application constraints include geometric constraints (allowable orientation and po

sition of the tool) and motion constraints (joint limits, robot configuration inversions and

collision avoidance). The algorithm, which is based on a configuration space approach for

robot motion planning, addresses the problem of motion planning along a curve rather

than point-to-point motion associated with pick and place operation. Configuration

spaces are searched to assess the locations of the obstacles in the vicinity of the curve

and the curvature of the curve in the work space. The trajectory is planned by searching

between path segments connecting successive curve points, generating the path along

a curve linking the path segments, and selecting the optimal configurations along the

path to construct the final trajectory. If more than one paths exist, an A* search is em

ployed to optimize the path. The selected path specifies a sequence of tool configuration

ranges, and each configuration produces several inverse kinematic solutions. A second

A* search is used to select inverse kinematic solutions, which avoid major changes of

robot configuration (i.e. joint inversion). Since the algorithm searches the allowable tool

orientation range, the optimal trajectory which maximizes process quality is obtained.

The trajectory allows the tool to translate and rotate simultaneously without collision,

and the tool remains within the allowable orientation range and tracks the desired curve

within a given tolerance. Since the step size between curve points is varied dynamically

as the search proceeds, the path is planned based on a minimum number of curve points,

resulting in fast path planning. A smaller step size is used if the curvature of the curve
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or the likelihood of collision is high. The primary advantage of the algorithm is not only

in finding a collision free path but in planning a trajectory which satisfies application

constraints. It is felt that this algorithm provides a high quality process which is difficult

to achieve with manual robot programming.

An off-line simulation program, TRAJPLAN, has been developed based on this al

gorithm. After the user inputs the application specifications, selects the curves to be

processed and the environment objects of interest, TRAJPLAN automatically plans the

trajectory of robot tool and generates the required set of sequential robot joint angles.

TRAJPLAN plans the motion with different precision depending on the requirements of

the application.

This algorithm has been demonstrated for robotic fish butchering and welding, and

the issues related to these applications are discussed in this thesis. As an example of a

typical problem, the system automatically plans the trajectory of a robot tool moving

along a 3-D curve with 31 points and surrounded by 5 obstacles in 1’20”. The algorithm

is suitable for a variety of robot applications which require the robot tool to move along

a curve, keep a certain orientation and position relative to the curve, and avoid collision

with the environment.
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Chapter 1

Introduction

1.1 Motivation

When using a teach pendant to program robots for contour following applications such as

welding, cutting or painting, the operator must manually manipulate a robot tool along

a desired curve. It is generally agreed that this process is slow and demanding on the

user, and an automatic process to aid in motion planning is necessary. A typical welding

robot workcell is illustrated in Figure 1.1. Safe and smooth motion of the robot and the

tool is expected, and good process quality is significant in such applications. Using a

robot instead of a human arm to handle the tool presents a significant planning problem.

An intelligent agent is required to plan and control the motion of the robot and the tool

in order to achieve good process quality. The primary contribution of this thesis is the

development of a planning strategy that considers the following requirements:

1. The tip of the robot tool must move along the curve and within a certain distance

from the curve.

2. The optimal orientation, as specified by the process, is relative to the tangent of

the curve and the normals of two surfaces at the each side of the curve as shown in

Figure 1.2. This orientation v&ies with the changes to the curve ud the supporting

surfaces. The robot tool has to maintain the optimal orientation within a given

tolerance.
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seam
tool PUMA 560 robot

obstacle

Figure 1.1: The robot welding workcell



Chapter 1. Introduction 3

normal of surface 2 optimal orientation

Figure 1.2: The optimal orientation of robot tool

3. The robot tool must avoid collisions with the curve and the obstacles around the

curve.

4. The position and orientation of robot tool result in a set of robot joint angles which

do not violate the joint limits.

5. A significant change of robot configuration (i.e. arm inversion) must be avoided.

6. Smooth motion of the robot and tool is expected.

In the above requirements, the tool tip must trace the curve within a given tolerance,

and the tool must maintain an orientation close to the optimal one within a given toler

ance. These tolerances are specified by the application in order to maintain acceptable

process quality.

Collision avoidance is a basic requirement for tool motion. Within the allowable and

collision free orientation range, some tool orientations may lead to invalid robot inverse

kinematics solution (the joint angles in the solution violate the joint limits). It is difficult

for a human operator to select orientations which lead to valid solutions.

The motion planner must maintain a path history in order to provide smooth motion

of the tool. Changes of robot configuration will also reduce process quality because of

surface 1 tangent

surface 2
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discontinuous robot motion. The robot configuration, however, may have to change as

the tool travels a curve. It is difficult for the human programmer to pre-judge such

changes and prevent them by selecting alternate robot configuration at the beginning of

process.

It is impossible for the human programmer to consider all of these constraints simul

taneously while using the teach pendant to program the robot. Programming the robot

motion becomes difficult and the process quality is compromised.

The subject of this research is to to plan the motion of the robot tool automatically

and meet the above requirements.

1.2 Midpoint Algorithm: a Novel Approach to Motion Planning

A more intelligent robot tool trajectory planner is required and this thesis proposes such

an algorithm, the Midpoint Algorithm, to plan the trajectory of robot tool tracing a curve

subject to process constraints. A safe and smooth robot tool trajectory is selected by

the algorithm, which is based on the configuration space approach [Loza 83], to provide

high process quality. Since a curve is represented by discrete points, the motion of the

tool along the curve links the motion between successive curve points. By studying

the configuration spaces at successive curve points and the relationship between the

configuration spaces, the algorithm assesses the locations of obstacles in the vicinity of

the curve and the curvature of the curve in work space, finds the collision free path and

plans an optimal trajectory for the tool. If more than one paths exists, an A* search

optimizes the path. A polyline approximating the curve is used as a reference for the

tool tip and the algorithm varies the step size between points on the polyline according

to the condition of the curve and the environment. A large step size is used to speed up

the path planning if the curvature of the curve or the likelihood of collision is low, and
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a small step size is used for more intricate robot motion if the curvature of the curve or

the likelihood of collision is high. In order to assure that the orientation of the robot tool

is within the allowable orientation range as it moves along the curve, exploration of the

space around the optimal orientation at each curve point is necessary. The configuration

space represents the interaction of the robot and environment at each curve point. A

path is found through the configuration space using an A* search for possible solutions.

An off-line simulation program, TRAJPLAN, implements the algorithm in order to

demonstrate the application potential of the work. Examples based on the PUMA 560

and CRS A460 robots have been developed and tested on an real robot.

1.3 Outline of Thesis Content

The remainder of this thesis is arranged as follows. Chapter 2 reviews previous related

work in the areas of robot motion planning based on the configuration space, path plan

ning for robotic tools, curve representation, and search techniques. Chapter 3 details the

basic concepts behind the Midpoint Algorithm, while Chapter 4 provides details of the

Midpoint Algorithm. Chapter 5 describes the simulation program TRAJPLAN and its

application to typical planning problems. Finally, Chapter 6 presents conclusions for this

work and suggestions for future work.



Chapter 2

Literature Review

Two general path planning problems are involved in the motion planning of a robot tool

tracing the specified curves: collision avoidance and the motion along the curve.

2.1 A Basic Motion Planning Problem: Collision Avoidance

Robot motion planning has been extensively studied and good survey articles include

[Cann 88] [Lato 91] [Shar 89]. One of the basic problems in robot motion planning is to

find a collision free path for the robot. This problem is to search for a path from an initial

position and orientation to a goal position and orientation of robot. The path specifies a

continuous sequence of positions and orientations of the robot avoiding contact with the

obstacles.

If the obstacles are static and the locations of obstacles in the work space are avail

able, a popular robot path planning method is the configuration space approach. This

approach is initialized by Udupa [Udup 77] who proposed the motion planning amidst

obstacles and described the idea of using an appropriate space and shrinking the robot to

a point in the space. This idea is exploited by Lozano-Pérez and Wesley [Loza 79]. They

proposed a path planning algorithm for polygonal and polyhedral robots and obstacles

without rotation. Lozano-Pérez [Loza 81] extended the algorithm proposed in [Loza 79]

and used the notion of configuration spa Ce. Some methods based on this approach, such

as roadmap, cell decomposition and potential field, are discussed in Section 2.2.

Dynamic motion planning [Cann 88] [Lato 91] [Reif 85] deals with moving obstacles

6



Chapter 2. Literature Review 7

in work space. A continuous function of time is used to specify the robot configuration

at each instant. In effect, a dimension representing time is added to the conventional

configuration space. In this configuration-time space, the robot is shrunk to a point

moving among stationary obstacles. Since no object can move back in time, the path

found is monatomic in time. Constraints on robot velocity and acceleration have to be

considered.

In the presence of multiple robots in the work space, one of the motion constraints

is that the robots cannot occupy the same space at the same time. Centralized planning

[Schw 83] and [Tour 86] generates the composite configuration space of the robots and

plans the coordinated paths in the space. Some general path planning methods such as

cell decomposition and potential field can be used to plan a path in the composite configu

ration space. Another approach to this problem is the decoupled planning method which

plans the motion of each robot independently of the other robots and then considers the

interactions among the paths. There are two decoupled planning approaches: prioritized

planning and path coordination. Prioritized planning [Buck 89] considers the motions of

all robots, one robot at a time. The path of a robot is generated in a configuration-time

space of the robot at each iteration, avoiding the collisions with both the obstacles and

the other robots. The motion of the robot is planned as if the robot was moving among

stationary obstacles and some moving obstacles (other robots). To arrange the order of

robots to be planned, a priority is assigned to each robot. Buckley [Buck 89] assigned

priorities to the robots which move in straight line from their initial configurations to

their goal configurations. Path coordination [Odon 89] is applicable when the planning

problem involves only two robots. A free path for each of the two robots is generated

independently of the other robot. The two free paths are coordinated in order to avoid

the collision between the robots.

Another general approach to solving path planning is to search the free space directly
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without first transforming the problem to configuration space. Kambhampati and Davis

[Kamb 86] proposed a path planning approach based on a Quadtree representation. They

described the hierarchical path-searching methods which make use of multiresolution rep

resentation to speed up the path planning process considerably. Canny and Lin [Cann 90]

presented a planning algorithm which traces out curves of maximal clearance from obsta

cles and creates a one-dimensional roadmap of the free space of a robot. Their method

takes advantage of the fact that the closest features (vertex, edge, or face) change only

infrequently as the objects move along finely discreted paths. Gupta [Gupt 90] described

a method of planning the motion of each link of a manipulator successively, initializing

from the base link. The n-D problem for an n-link manipulator arm transforms to one

1-D and n — 1 2-D planning problems. This 2-D motion planning problem is to plan the

motion of a single link which has one end moving along a fixed path determined by the

motion of the previous links. An interesting collision avoidance algorithm is reported by

Shaffer and Herb [Shaf 92]. They described a data structure and data structure update

algorithm for a real-time collision avoidance safety system. The N-objects octree is used

to index a collection of 3-D primitive solids which make up the robots and obstacles

in work space. As robots move, the octree is updated and the octree nodes recursively

decompose 3-D space into eight equal cubic octants until each octant contains less than

a predetermined number N of primitives. Since a given primitive does not change which

octree nodes it is in during most update cycles, the octree is rarely modified. The system

provides the information about possible collision.

2.2 Path Planning Methods Based on the Configuration Space Approach

The configuration space method [Udup 77] [Loza 79] [Loza 81] [Loza 83] [Loza 87] shrinks

the robot as a point in robot configuration space and maps the obstacles in this space.
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The motion planning of a point instead of a dimensioned object is more explicit. The

configuration space represents the robot and obstacles in a coordinate system defined by

the joints of the robot. There exists a large number of methods of solving the motion

planning problem based on the concept of configuration space. Three general approaches

are roadmap, cell decomposition, and potential field [Lato 91].

The roadmap approach represents the free space in the form of a network of one-

dimensional curves, called roadmap, which is used as a set of standardized paths. Path

planning becomes a search for three path segments: the path segment connecting the

initial configuration to the roadmap, the path segment contained in the roadmap, and

the path segment connecting the roadmap to the goal configuration. The visibility graph

method, Voronoi diagram method and freeway method are all based on this idea. The

visibility graph method [Nils 69] is suitable to a two-dimensional configuration space with

polygon configuration obstacles. The nodes of the graph are the initial and goal config

urations and the vertices of the configuration obstacles. Two nodes are connected by a

straight line segment if the line does not intersect the interior of the configuration ob

stacles. The path is found by searching for the shortest path in the graph. The Voronoi

diagram method [Taka 89] generates the Voronoi diagram which is in the free regions of

configuration space. The Voronoi diagram is the locus of points which are equidistant

from two or more obstacle boundaries including the work space boundary. The advan

tage of this diagram is that it produces free paths which tend to maximize the clearance

between the robot and the obstacles. The freeway method [Broo 83(a)] plans the path

for a polygonal object (robot) translating and rotating in a two-dimensional space. A

is straight 1ineor gicriied cylinder. The straight a.is of the cylinder called

the spine, is the path of the reference point of the robot. A free space is represented by a

freeway net. In a freeway net, if two spines intersect, the robot can transfer from one free

way to the other if the ranges of free orientations of the robot along both splines have a
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non-empty intersection at the intersection point. The freeway net is a representation of

the possible motion of a robot along spines and between spines.

The cell decomposition method decomposes the robot free space into some simple

regions, called cells. A graph representing the adjacency relation between the cells is

constructed by extracting the cells from the free space and connecting two graph nodes

if these cells are adjacent. The outcome of the graph search is a sequence of cells and a

path is extracted from this sequence. There are two approaches in this area: exact cell

decomposition and approximate cell decomposition. The exact cell decomposition method

Chaz 87] decomposes the free space into trapezoidal and triangular cells, represents

the adjacency relation between the cells by constructing the connectivity graph, and

searches for a path in this graph. The cells used in the exact cell decomposition method

are required to have a simple pre-specified shape, e.g. a rectangle. Such cells do not

provide an exact representation of free space. The approximate cell decomposition method

[Loza 81] [Broo 83(b)] uses Quadtree decomposition to divide a cell into four subcells. A

cell is recursively decomposed until a predetermined resolution is attained, or the cell lies

completely in free space or in the configuration obstacle. The path is searched through

the cells lying in free space. Since the shape of a cell is relatively insensitive to numerically

approximate computations, this method is usually much easier to implement than the

exact cell decomposition method.

In the potential field method [Khat 86], the robot is represented as a particle in

configuration space. The goal configuration generates an “attractive potential” which

pulls the robot toward the goal, and the configuration obstacles produce a “repulsive

potential” which pushes the robot away from them. Robot moves under the influence of

an artificial potential produced by the goal configuration and the configuration obstacles.

Based on the configuration space approach, most studies about collision avoidance

focus on the trajectory of manipulators [Sing 91] [Warr 89] aild mobile robots [Kamb 86]
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[Taka 89] in point-to-point motion problems. There is little reported, however, on the

problem of planning the robot tool motion along a 3-D curve subject to physical (obstacle)

and process constraints.

2.3 Path Planning for Robot Tool Along a Continuous Curve

The principles and techniques of a high-speed spatial seam tracking system are described

in [Boll 71]. A five degree of freedom seam tracer is developed, which positions a welding

gun to maintain a fixed relationship to a weld line. The proper angular relationships are

achieved by utilizing velocity information from three tachometers mounted on the three

rectangular coordinate drives. Collision avoidance is not considered in the system, and

the seam discussed in the paper is constrained to lie on a cylindrical surface.

Tomizuka, Dornfeld and Purcell [Tomi 80] discussed the characteristics of the gas

metal arc welding process and the relationship between welding parameters, the desired

output of the welding process, and the automation of the process. A strategy for two-axis

welding torch positioning and velocity control is developed. The torch positioning and

velocity control is achieved by keeping the relative position error between the seam and

torch small and maintaining uniform tracking speed. In this approach, the algorithm

constrains the seam to a plane and only two-axis control is available. Collision avoidance

is not considered.

An algorithm for tracing a seam in real time is developed in [Khos 85]. The seam

tracking control traces a curve in 3-D space and maintains proper tool orientation with

respect to the surface that contains the curve. The curve lies on a surface and is dis

cretized lengthwise. The discretization provides a piece-wise linear approximation of the

curve between two adjacent sample points. The tool orientation is obtained by discretiz

ing the surface in the vicinity of the two sample points, and this is held constant when
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the tool travels between the two points. The position of the torch is specified by the

coordinates of the sample points. Three unit vectors are used to describe the tool orien

tation relative to the base frame but the rotation about tool axis is not discussed. This

may be suitable for the CYRO robot, a special robot with three revolute joints and three

prismatic joints, but is not suitable for robots like the PUMA, CRS or GMF with which

the rotation about the tool axis changes the position of the robot end-effector if the tool

handle is held by the robot. The allowable tool orientation range and the optimal tool

orientation subject to process constraints are not discussed in the paper. The sample

points are used directly in seam tracking regardless of the condition of the curve and the

environment around the points. This reduces the accuracy along complex curve segments

and wastes time along simple curve segments.

A trajectory planner and a method for interference detection between objects in a

robot welding workstation are presented in [Buch 89]. The trajectory planner searches

for a kinetically feasible, interference-free robot trajectory in order to follow a specified

weld path in 3-D space. The algorithm provides rapid interference detection between

convex polyhedras using a steepest descent graph search. If desired, exact separating

distances and directions can be found. Interference-free trajectories that do not violate

kinematics constraints are found by searching possible inverse kinematic solutions for the

desired welding torch trajectory. This approach only deals with tool rotation about its

axis, but not the allowable tool orientation range. This paper and the associated work

form the starting point for the application of the work described in this thesis.

Angeles, Rojas and Lopez-Cajun [Ange 88] discussed the angle velocity and angle

acceleration of the end effector which holds a robot tool and travels along a continuous

path. The technique proposed allows the trajectory-planning engineer to specify the

orientation of the end effector via the orientation of the path at a given point. The latter

is defined as that of the orthonormal triad of vectors associated with the curve, namely,
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its tangent, normal, and binomial vectors. The angular acceleration of the end effector

requires the computation of the derivatives of the curvature and torsion with respect to

the arc length. Thus the coordinate frame defined by the triad of unit tangent, normal,

and binormal vector defines not only the orientation, but also the angular velocity and

acceleration of a body tracking the curve with a given speed, whose relative orientation

with respect to the curve remains constant, or a given function of time.

2.4 The Spline of Curve

Curve representation is an important aspect of this research, and many algorithms for

curve splines have been reported. A good survey of the algorithms is found in [Fole 91].

Cubic polynomials are most often used since lower-degree polynomials give too little

flexibility in controlling the shape of the curve, and higher-degree polynomials can in

troduce unwanted wiggles and also require more computation. The spline is a piece-wise

continuous curve made up of cubic polynomials. The famous B-splines method [Bars 80]

[Bart 87] consists of curve segments whose polynomial coefficients depend on just a few

control points and movement of a control point affects only a small part of a curve. This

is called local control. B-splines, however, do not interpolate the control vertices. In

this research, a curve representation based on some sample points must be reconstructed

and the reconstructed curve has to pass through the sample points. The B-spline is not

suitable in this case.

One member of the Catmull-Rom Spline [Catm 74] [Barr 89] family interpolates the

points P1 to Pm1 from the sequence of points Po to Fm. In addition, the tangent vector

at point P is parallel to the line connecting point P_1 and F+i, as shown in Figure

2.1. The Catmull-Rom Spline interpolates control points, shares many properties such

as global smoothness and local control with B-spline curves, and has continuity of the
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. P9

Figure 2.1: A Catmull-Rom spline

first derivative, which is required by the proposed algorithm. Given a series of points,

the Catmull-Rom Spline method generates a curve smoothly to pass through them. The

Catmull-Rom Spline method is suitable in this research.

2.5 Searching Path Through a Net

A further requirement of the research is an algorithm for evaluating potential tool paths

and for guiding the search through path options. Procedures for finding the shortest

path through a net are surveyed in [Wins 84]. The British Museum Procedure finds all

possible paths and select the best from them. Since this method looks everywhere and is

inefficient, it is not suitable for our path planning where search time is of concern. The

Branch-and-Bound search extends the search tree in the direction of the “best” partial

path. The A* search improves the Branch-and-Bound search by including an estimate of

remaining distance, combined with the dynamic-programming principle. If the estimate

of remaining distance is a lower bound on the actual distance, then the A* search achieves

the optimal solution. The A* search is used in the proposed algorithm to search multiple

paths along the curve and to select the optimal trajectory from the tool configurations

in the path.

P1
p0

p2
p5

p4

p6
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2.6 Conclusion Based on Literature Review

In view of this literature survey, it is concluded that little work has been done on the

problem of robot tool planning along a desired trajectory of the tip of the tool. Further

more, conventional planning techniques have been largely concerned with point-to-point

problems and did not consider application constraints associated with the required mo

tion of the tool. The configuration space method appears promising in terms of a general

approach, however, the proposed method studies the relationship between configuration

spaces rather than searching for paths inside a single configuration space. For the ancil

lary functions, such as for effective curve representation and search procedures, existing

techniques will be employed directly in this thesis.



Chapter 3

Configuration Space of Robot Tool

3.1 Configuration of Robot Tool

In this section the representation of the position and orientation of the robot tool is

discussed. The foundation for this representation is a 3-D coordinate system, and Figure

3.1 illustrates the tool representation, in this case for a welding torch, at the origin of

the 3-D coordinate system. Note that all objects in the environment are described with

respect to this 3-D reference frame. As illustrated in Figure 3.2, the tool has six degrees

of freedom, x, y, z, a, /3 and y, where x, y and z are the position coordinates of the tool

tip, a is the angle of rotation about the Y axis, /3 is the angle of rotation about the Z

axis, and ‘y is the angle of rotation about the tool axis. The tool axis passes though the

tool tip and represents the critical orientation of the tool, as shown in Figure 3.1. The

configuration of the tool in the base coordinate system is determined by rotating the

tool to an orientation (a,/3,7) and translating the tool from the origin to (x,y,z) while

maintaining this orientation. As mentioned in Chapter 1, the six requirements as the tool

travels a curve include (1) the distance between the tool tip and the curve, (2) the optimal

orientation, (3) collision avoidance, (4) robot joint constraint, (5) robot arm inversion

avoidance and (6) smooth motion. The distance between the tool tip and the curve point

can be adjusted easily by changing the tool tip position (x,y,z). The tool orientation

requirement specifies the tool orientation in the direction of the optimal orientation. The

critical tool orientation is determined by the a and /3 angles. The initial position of tool

16
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V

in Figure 3.2 (a) shows the tool orientation where a, and y are all equal to 00. The

reference orientation of the 7 angle is along the negative Y axis. Although it does not

constitute a tool orientation constraint, the ‘y angle is very important in the calculation

of the robot inverse kinematic solutions since a small change in 7 can result in a large

difference of the position and orientation of the robot end effector and the associated

joint values for the robot as illustrated in Figure 3.2 (b). As discussed in Chapter 4, the

angle is critical in the collision-free path search.

3.2 Configuration Space of Robot Tool

An alternative representation of tool orientation is the configuration space (C-space), and

here two new concepts, Entire C-space and Local C-space, are introduced. The Entire

C-space is the configuration space with its origin at a, /3 and equal to 00. The ranges of

the a, /3 and 7 angles in Entire C-space are [0°,180°j, [0°,360°] and [0°,360°] respectively.

The Entire C-space represents the complete set of tool orientations at any curve point

in the work space. The a and 3 ranges of Entire C-space correspond to the sphere in

z

tool axis

tool head

Figure 3.1: Robot tool
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robot tool
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robot tool
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V

4— robot end effector

z

robot tool
Initial position

(a)

z

V

(x,y,z)

Figure 3.2: Definition of robot tool configuration
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Figure 3.3: The a and /3 ranges of Entire C-space and the allowable orientation range at
different curve points. (a) Entire C-space. (b) Allowable orientation range.
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180

Local Cspace
at point 1

work space as shown in Figure 3.3 (a). Using the Entire C-space directly in trajectory

planning is not practical since a high resolution Entire C-space would require a large

data structure, which would waste time and space as a result of creating, searching and

storing much useless information in the data structure. Due to process constraints, such

as allowable deviation in tool orientation from a user-specified ideal orientation, only part

of the Entire C-space is required. To address the problem of the large Entire C-space,

the concept of Local C-space is introduced.

At each curve point the optimal tool orientation depends on the process. For example,

the optimal welding torch orientation may be selected by an expert welder. Similarly

there will be optimal cutter orientations for an automatic butching operation. The ac

ceptable orientations covers only a subset of the Entire C-space, as illustrated in Figure

3.3 (b), and only the configurations within this subset need to be considered. The and

/3 ranges of the Local C-space represent the allowable deviation from the optimal orien

tation for a particular application. Since the acceptable range of deviation is generally

Entire Cspace13

360

Local

Y

local
0 region

360

Figure 3.4: Entire C-space and Local C-space
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much smaller than the range in Entire C-space, the Local C-space requires a condensed

data structure in order to represent the configuration space with the same resolution as

the Entire C-space.

With reference to Figure 3.4, the Entire C-spaces at different curve points have the

same a and 3 ranges, i.e. [0,180] and [0,360] respectively. The a and /9 ranges of Local

C-space are different and correspond to the different regions in the a — 3 plane. The

projections of Local C-space on the a — /3 plane and the axis are called the local 0 region

and the local range respectively.

In order to visualize the approximate shape of the local 0 region, the bounding box

of the region is studied. In Figure 3.5 (a), the maximum allowable deviation of tool

orientation from the optimal orientation is 00 and the optimal orientation is (a0, /3).

The amin, amax, /3min and /3maa, angles in Figure 3.5 (b) (c) (d) are the minimum and

maximum a and /3 angles in the local 0 region respectively. In Figure 3.5 (a), points 1,

2, 3 and 4 are at the boundary of the cone centered at (a0, Figure 3.5 (b) illustrates

the viewing direction in the negative optimal orientation. The line connecting point 2 to

point 4 is perpendicular to the line connecting point 1 to point 3. Figure 3.5 (c) and (d)

illustrate that /3mim and /3max are not the /3 angles at point 2 and point 4, while amin and

amar correspond to the a angles at point 1 and point 3 respectively. Note that amjn and

amax are equal to a0 — 0 and a0 + 00 respectively. The a angles at point 2 and point 4

are equal but they are not equal to a0. The corresponding local 0 region has an irregular

shape as shown in Figure 3.5 (e).

From the above discussion, it is clear that the local 0 region is hard to represent

using a simple geometric model, such as a rectangle, circle or ellipse. With reference to

Figure 3.6, equations defining the local 0 region are derived. In the figure, the sphere

represents an Entire C-space, which has origin or and radius p. The cone represents the

local 0 region of Local C-space. The intersection of optimal orientation and the sphere is
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Figure 3.5: The shape of local 0 region
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Local C-space range

V

x

denoted as o, p is a random point within the Local C-space and located on the sphere,

and 0 is the angle between 0r0 and orp, where 0 0 0. The projections of o and p

into X-Y plane are denoted as o’ and p’ respectively, while r’ is the line connecting o’

and p’, and pq is a line parallel to p’o’. Given the optimal orientation (cv0, ,6) and the

maximum allowable orientation deviation 00, the calculation of the corresponding local 0

region is now described.

Using the cosine law in triangle OrOP

2p2 — 2p2cos0 = r2 (3.1)

Using the cosine law in triangle oro’p’

p2sin2a + p2sin2a0 —2p2sinasina0cos(/3
—

= r’2 (3.2)

Since pq is parallel to p’o’ and oo’ is perpendicular to p’o’, the triangle opq is a right

triangle, and

optimal orientation

Figure 3.6: The calculation of local 0 region of Local C-space

r’2 + (pcosa0 — pcosa)2 = r2 (3.3)



Chapter 3. Configuration Space of Robot Tool 24

Combining Equations (3.1), (3.2) and (3.3),

2p2 — 2p2cosO = p2sin2a + p2sin2a0 —2p2sinasina0cos(/3— i3) + (pcosa0— pcoscx)2 (3.4)

which may be reduced to

cosO = cos(a + a0) + [cos(/3 — /3) + ljsinasina0 (3.5)

by the following steps,

from Equation (3.4),

2 — 2cosO = sin2a + sin2a0 — 2sinasina0cos(/3
— /3c,) + (cosa0 — cosa)2

2 — 2cosO sin2a + sin2a0 — 2sincrsina0cos(/3 — /3) + cos2a0 — 2cosa0cosa + cos2a

2 — 2cosO = 2 — 2sinasincr0cos(/3 — i3) — 2cosa0cosa

cosO = sinasina0cos(/3 — i3) + cosa,cosa

cos(O) = sinasina0co.s(f3 — 3) + cosa0cosa + sinasina0— sinasina0

= —sinasina0+ coscr0cosa + sinasina0(cos(i3 — /3) + 1)

= cos(a + at,) + [cos(/3
—

/3,) + 1]sincrsina,

Since 0 0 0,

1 cosO cos00

and from Equation (3.5), we can write,

1 cos(a + a0) + [cos(3 — i3) + llsinasina0 cos(00)

1 — cos(a + a0) [cos(/3 — f3) + ljsinasincx0> cos(00)— cos(a + a0) (3.6)

Next, consider the left hand side of Equation (3.6). Since 1 cos(/3
—

2 cos(/3
—

/3,) + 1
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Since both c and cr are in the range [0, 180], and

sinasincr0 0

we can write,

2sincsinc0 [cos(/3 — j9) + 1]sincvsincx (3.7)

Since 1 cos(c — c), we know

1—cos(a—o0) 0

and

1 — (coscco.sa0+ sinasina0)+ 2sinasino0 2sinasino

or

1 — cos(c + cr0) 2sinasinac, (3.8)

Combine Equation (3.7) and Equation (3.8)

1 — cos(a + c,) 2sinasinc0 [cos(f3 — 3) + 1]sincsinc0

The left hand side of Equation (3.6) is always satisfied. Now, consider the right hand

side of Equation (3.6).

Since both a and a0 are in the range of [0, 180],

sinusina0 0

and

[cos(3
—

3) + 1]sinasirta0 0 (3.9)

First consider the case when

cos(00)— cos(a + a0) 0
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We can write,

[cos(/3 — /3) + 1]sinc.sina0 cos(00)— cos(a + a0)

The right hand side of Equation (3.6) is always satisfied, and fF3 can be any value in the

range [0, 360].

The condition

cos(00)—cos(a+a0) 0

requires

0> a+a

or

a 00—

Since a is defined as positive,

a0 Oo

and if a0 0 and a is in the range [0°, a 00 — a0], /3 can be any value in range [0°,

360°].

Next consider the case when

cos(00)— cos(a + a0) > 0

We get

00<a+a0 (3.10)

Since a is defined as positive, from Equation (3.10),

00—a0<0

a0 > 00
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With reference to Figure (3.5) (a),

amin = a0 — 90> 0

Since both a0 and a are greater than 00, from the right hand side of Equation (3.6) we

write,

[cos(/3
—

j3) + 1]sinasina0 cos(00)— cos(a + a0)

Since both a0 and a are greater than 00,

.sinasina0> 0

cos(/3 — /3) >
cos(90)— cos(a + a0)

— 1
— sinasina0

cosO0 — cosa0cosa
cos(f3—i3)

sznaszna0
cosO0 — cosa0cosa

Ii — /I <arccos( . ) (3.11)
sznaszna0

where
cos90— co.sa0cosa

(3.12)
.sznaszna0

Equation (3.12) can be rewritten as,

—sina.sina0 cos90 — cosa0cosa sinasina0

cosa0cosa — .sinasina0 cosO0 < coscr0cosa + sinasina0

co.s(a + a0) <cosO0 <cos(a — a0) (3.13)

Since angle 9 is the maximum a deviation from a0,

Oo a
— a01

and the right hand side of Equation (3.13) is always satisfied. The left hand side of

Equation (3.13) requires

a+a0 Oo
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which is satisfied by the condition (3.10), and condition (3.12) is always true.

Summarizing this discussion,

1. If a, > 00, Equation (3.11) represents the relationships between a, /3, a,, and O.

Each a angle is associated with two /3 angles, which correspond to two /3 boundaries

corresponding to the a angle on the local 0 region. The local 0 region is obtained

by calculate the /3 range for every a value as a increases from (a,, - O) to (a0 +

O) with step size 10.

2. If a0 0, the orientation where a equals 00 is included in the local 0 region.

(a) If a is in the range [0, cr0-00], the 3 is the full range [0, 360].

(b) If a is in the range [ao-00,a0+00], the /3 range is calculated with Equation

(3.11).

In Equation (3.11), the 3 range of the local 0 region depends on a0, /30 and 0. The

geometric representation of a local 0 region is given in Figure 3.7. Figure 3.7 (a) illustrates

the local 0 regions for different a0 and /30 angles. Figure 3.7 (b) illustrates that the /30

angle sequence is: /34 < /3o2, j3 </3,s, and different /9 angles correspond to different

/3 range in local 0 region. Figure 3.7 (c) illustrates that the a0 angle is in the order of:

a01 <a02 <a03 < a0 <a05. The a range is 20 and does not vary with a0 for different

local 0 regions. With reference to Figure 3.7 (d), the closer the a0 to 90°, the smaller the

/3 range. A smaller a0 angle, however, does not change the a range. Different a0 angles,

therefore, produce different position, size and shape of local 0 region, while different

angles only change the position of the local 0 regions.

If a local 0 region crosses the boundary of the Entire C-space region, the local 0 region

has different shape from those discussed above. In Figure 3.8 (a) cone a is divided by

the plane where 3 is equal to 00, and the corresponding 0 region is divided into two parts
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denoted by region a in Figure 3.8 (b). Cone b includes the orientation with both a and

3 equal to 00. Tn this case, a0 is less than 00 as discussed above. With reference to

Figure 3.8 (c), The corresponding local 0 region consists of two parts: (1) the a range is

[0, a0-00] and 3 range is [0,360], and (2) the a range is [a0-00,a0+00]and the /3 range is

calculated with Equation (3.11). The special case of a0 equal to 00 is illustrated in cone

c, and the corresponding local 0 region is rectangular, where a is in the range [0, 0] and

/3 is in the range [0, 360], as illustrated in Figure 3.8 (d).

Since the 00 position of the -y angle is defined at the negative Y axis when both a

and /3 are at 00 position, refer to Section 3.1, the 00 position of 7 angle always represents

the tangent of a circle on the sphere. The circle is determined by the a angle, as shown

in Figure 3.8 (a).



Chapter 4

Description of the Midpoint Algorithm

4.1 Overview of the Midpoint Algorithm

The trajectory for a robot tool tracing a pre-defined curve is planned in three stages.

First, an extensive search along path segments between successive points is carried out.

Each path segment contains two parts: the track of the tool tip and the acceptable orien

tation range of the tool head. Robot constraints (joint limits), motion constraints (simul

taneous translation and rotation which provides for smooth motion), collision avoidance,

and the allowable distance between the tool tip and the curve are also considered within

this search. Second, the path segments between successive points are linked together

using an A* search to generate a continuous path along the curve. Third, tool con

figurations along the path are selected using a second A* search in order to build the

optimal trajectory which avoids robot configuration changes. Acceptable process quality

is maintained along this trajectory.

4.2 The Description of the Midpoint Algorithm

Given a curve with sufficient curve points to represent the curve shape, the trajectory is

planned as follows,

STEP 1.0 Reconstruct the curve using a Catmull-Rom spline in order to get curve point

information at any curve position. Details of this step are presented in Section 4.2.1.

32
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STEP 2.0 Use the Point Check procedure to identify collision free regions at the first

curve point. Store the free regions in a cost-ordered linked list (called path list), and

use each free region as the beginning of a potential path along the curve. Details of

this step are discussed in Section 4.2.2, and the cost function is described in Section

4.2.7.

STEP 3.0 Extend the lowest cost path in the path list along the curve by exploring the

path segment between successive points in the following steps,

STEP 3.1 Curvature Check: Check if successive points are close enough to repre

sent the curve segment. Details of this step are discussed in Section 4.2.3.

STEP 3.2 Overlap Check: Check the overlap between the Local C-spaces at suc

cessive points. This ensures that the trajectory remains within the allowable

deviation in tool orientation. Details of this step are discussed in Section 4.2.4.

If this check fails, add a midpoint between the points and return to STEP 3.1.

STEP 3.3 Translation and Rotation Check: Ensure that the tool can translate

and rotate along the path segment without collision. The details of this step

are discussed in Section 4.2.5. If this check fails and the step size between

current two points is larger than the minimum step size1, add a midpoint and

return to STEP 3.1. Otherwise, the failure in finding a path is reported to

user and trajectory planning stops.

STEP 3.4 Inverse Kinematics Check: Check the validity2 of robot inverse kine

matic solutions corresponding to the robot tool configurations at the point.

The details of this step are discussed in Section 4.2.6. If this check fails, delete

the current path from the path list. If the path list is empty, the trajectory

1The minimum step size is predetermined in order to avoid the infinite exploration of a path segment.
2A valid inverse kinematic solution does not violate robot joint limits.
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planning stops. Otherwise, resume search at STEP 3.0.

STEP 3.5 Repeat STEP 3.0 until the final curve point is included in a path in

the path list or no possible path remains in the path list.

STEP 4.0 The resulting path contains different a, /3 and -y ranges between successive

curve points. Each combination of a, 3 and -y is the tool configuration that may be

included in the final trajectory. An A* search is used to select the configurations

in the path in order to obtain the optimal trajectory along the curve. The details

of this step are discussed in Section 4.2.8.

A fundamental component of this algorithm is the addition of midpoints between

successive curve points as the search progresses. The reason for adding midpoints is that

if successive points are close enough, the straight line motion of the tool tip between

these two points will match the curve segment within a given tolerance. In this case,

the optimal orientations at the points will be “close”, and some tool configurations at

successive points will share collision-free space. As a result, there will be translation and

rotation collision-free path segments between successive points. The concept of “close”

depends on the curvature of the curve and environment in the vicinity of the points.

The more complex the curve or the environment, the closer the successive points. For

example, in Figure 4.1 (a), the curve, the optimal orientation and the environment do

not change significantly, and the points pi and Pi+i are considered as close enough for the

process. In Figure 4.1 (b), the environment and the optimal orientations do not change

significantly but the curve changes sharply. In Figure 4.1 (c), the environment does not

change but the optimal orientations and the curve changes sharply between points pj and

In Figure 4.1(d), the curve and the optimal orientations do not change much but

the environment changes sharply. In case (b), (c) and (d), the two curve points p. and

are not close enough for the motion planning process. A smaller step size is required
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_

pi pi+1

(d)

Figure 4.1: The relation between step size and the condition of environment and curve

to explore the path in Figure 4.1 (b), (c) and (d). A larger step size, however, tends to

speed up motion planning in Figure 4.1 (a). The insertion of midpoints between p and

Pi+1 controls the step size.

A midpoint is added in the way that the location of the midpoint is on the curve

midway between two curve points. The optimal orientation at the midpoint is determined

as described in Section 1.1 for determining the optimal orientation at the original curve

points.

4.2.1 Reconstruct the Curve by Catmull-Rom spline

A Catmull-Rom spline [Catm 74] is used to reconstruct a curve based on the sample

points which lie on the desired curve. The sample points are used as the control vertices,

and the Catmull-Rom splines interpolate the control vertices. These splines share many

properties with B-splines, such as global smoothness and local control. One member of

optimal orientation

P curve P+i

(a) (b)

pI+1

Cc)



Figure 4.2: A Catmull-Rom spline

Catmull-Rom spline family is able to interpolate the points P1 to Fm1 from the sequence

of points Po to Pm. The tangent vector at point F: is parallel to the line connecting point

P_1 and P:+i, as shown in Figure 4.2.

Catmull-Rom spline uses parametric representation of curves. Here a curve is ap

proximated by a piece-wise polynomial curve. Each segment Q(t) of the overall curve is

given by three functions, x y = y(t), z = z(t), which are cubic polynomials in the

parameter t, (0 <t < 1). Given points j, Pi+1 and new point Pnew between pj and Pi+i,

t is the ratio of the distance between pj and Pnew and the distance between p and Pi+1•

Designating MCR as the Catmull-Rom basis matrix, G3 as the geometry matrix, and T

as the matrix of parameter t. With T [t3t2t’l], the representation is

11
Q(t) T . MCR• G3 = [t3t2tll j

—1 3 —3 1

2 —5 4 —1

—1 0 1 0

02 0 0

Where Pj3,P_2,P_1 and F: can be any of x, y, or z coordinates of the point

Pi—3,Pi—2,Pi—1 and p, and Q(t) is the corresponding function for x, y or z along the

curve.

p0
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Figure 4.3: The definitions of cell, 0 region and range

Using a Catmull-Rom Spline, the first and last points are not included in the curve.

The problem can be solved as follows,

1. If the curve is closed, the last and first points are used again as the first and last

points.

2. If the curve is open, the first and last points are used twice.

4.2.2 Point Check for the First Point

Point Check

The goal of the Point Check is to explore the collision-free space around a curve point.

Converting the problem into the configuration space, this check becomes to search for

free cells in the Local C-space. With reference to Figure 4.3, a cell is defined as the space

in Local C-space which projects as the 0 region on the c — /3 plane. The cell also projects

360
Entire Cspace

cell

1
360

I range

Local Cspace
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as 7 range on the axis. If the corresponding swept volume of a cell is placed at the curve

point corresponding to the Local C-space, and it does not collide with the environment,

the cell is called a free cell. The swept volumes of the robot tool are the bridges between

the configuration space and the work space. Each curve point is associated with a Local

C-space and each cell in the Local C-space is associated with a swept volume of the robot

tool. The shape of the swept volume is defined by the o, /3 and ranges of the cell.

Although the Local C-spaces with different c and j3 angles have different shapes and

sizes as discussed in Chapter 3, the shapes of the corresponding swept volumes are the

same. As a result, only one set of swept volumes and its subdivision parts are required,

and this feature makes the Midpoint Algorithm practical for implementation on existing

PC hardware.

Two kinds of swept volumes are used in the check: the 9 swept volume and the

swept volume which correspond to the 9 region and the 7 range respectively, i.e. the 8

swept volume and the swept volume represent the space occupied by the tool head and

the tool handle respectively. In Figure 4.4 (a), placing the tool with the critical tool

orientation parallel to the Z axis and rotating the tool ±9 angle (0 < 9 < 8) about X

axis generate the region swept by the tool. The regions swept by the tool head and the

tool handle are called the 9 swept region and the 7 swept region respectively. The 0 swept

volume and the 7 swept volume are generated by rotating the 0 swept region and the 7

swept region 1800 about Z axis as shown in Figure 4.4 (b). Figure 4.4 (c) and (d) provide

cross-sectional views of the 0 swept volume and the 7 swept volume. A set of 0 swept

volumes with different 0 angles are generated as shown in Figure 4.5 (a). For each 0 swept

volume, there is a set of corresponding 7 swept volumes associated with. With reference

to Figure 4.5 (b), the set of 7 swept volumes are generated by dividing the full range 7

swept volume with two planes which are the tangent planes of the 0 swept volume. The

angle b between these planes is equal to where n = 1, 2, ..., and a binary tree data
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cross-section of o swept volume cross-section of y swept volume

(C)

Figure 4.4: The swept volumes used in the Point Check. (a) The 0 swept region and the
swept region. (b) The 0 swept volume and the 7 swept volume. (c) The cross-section

of 0 swept volume. (d) The cross-section of y swept volume.

z
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Oswept volume
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structure is generated. Note that the full range 7 swept volume corresponds to n = 0.

The cases of n = 1 and n = 2 is shown in Figure 4.5 (c). If the 0 swept volume contains Z

axis, i.e. c <00, the corresponding 7 swept volume and its decomposed swept volumes

are always the full range 7 swept volume. The combination of a 0 swept volume and a

swept volume is shown in Figure 4.5 (d).

At a curve point, the corresponding 0 region of a 0 swept volume at a curve point

is computed based on the optimal orientation at the point and the 0 angle of the swept

volume. The details of this computation are discussed in Chapter 3.

The Point Check searches the free cell in a Local C-space in two steps: (1) shrink the

0 region in order to search for the collision-free region (free 0 region), and (2) search the

binary tree for collision-free ranges in 7 range for collision-free ranges (free 7 ranges).

The combination of a free 0 region and a free 7 range corresponds to a free cell.

Search the First Curve Point

The Point Check is applied at the first curve point in order to search for a free cell in the

corresponding Local C-space. Each free cell is the beginning of a potential path along

the curve. The free cells are stored in the path list and sorted by the Path Cost of the free

cell. The details of the Path Cost calculation are discussed in Section 4.2.7.

If no free cell is found, trajectory planning fails since the robot tool cannot be placed

at the first curve point without collision. A high resolution representation of the Local

C-space is required to find small free cells. A high resolution Local C-space, however,

requires a huge tree structure, which takes much time to store and search the data, and

can lead to implementation problems. This detail is discussed in Chapter 5.
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o swept volumes
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Figure 4.5: Swept volumes used in Point Check (a) The division of 0 swept volume (b)
The division of swept volume (c) The binary tree structure of 7 swept volume (d) The
combination of a 0 swept volume and a 7 swept volume
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4.2.3 Curvature Check

Since a curve is represented by a set of discrete curve points, the motion of the tool along

the curve is decomposed into the motion between successive curve points. Using a fixed

step size between the curve points may not be practical depending on the complexity of

the environment in the vicinity of the curve and the degree of curvature. For instance,

using a very small step size along the curve may waste search time along the curve

segments where the curvature is low and the surrounding environment is simple. Using

a step size which is large, however, may result in the tool tip deviating from the required

curve along curve segments where the curvature is high. This will result in poor process

quality, or damage to the tool. It is difficult to predetermine a suitable fixed step size,

and a mechanism for automatically adjusting the step size based on the nature of the

curve and the environment is necessary.

One of the advantages of the Midpoint Algorithm is that the step size is varied

automatically along the curve. If the curvature along a segment is low, a large step size

is used to speed up the trajectory planning along the segment. Otherwise, a small step

size is used to ensure acceptable translation of the tool along the curve. In general, the

more complex the curve, the smaller the step size.

Adjustment of the step size based on curvature is discussed in this section, while

adjustment based on the complexity of the environment is discussed in Section 4.2.5.

The Curvature Check not only varies the step size along different curve segments, it also

searches a polyline which matches the shape of curve within a given tolerance and is used

as a reference for the tool tip. The polyline is generated by detecting if the straight line

connecting successive points can represent the curve segment within the tolerance. Some

points may be added or deleted based on the curvature of a curve,

1. If the curvature of a curve segment between successive points is high, the curve
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optimal orientation

• intermediate track points between track point ti and t2

K intermediate line points between curve point p1 and p2

Figure 4.6: Intermediate points selected from curve segment and line segment

segment cannot be represented by the straight line between the points. Further

midpoints are added until the curvature of the new curve segments are within an

acceptable tolerance of the original curve.

2. If there are several points on a flat section of the curve, some points are deleted in

order to speed up the search process.

The tolerance discussed above corresponds to the two parameters, dmax and dmin, the

maximum and minimum distances between the tool tip and the curve. Both of these

distances are specified by the application. In most of the cases, dmin is greater than

o to ensure that the tool does not collide with the workpiece. For each curve point, a

track point is generated that is positioned a distance dmax in the direction of optimal

tool orientation. These track points correspond to the reference position for the tool tip.

With reference to Figure 4.6, a number of intermediate points, called intermediate curve

points, are selected from the curve segment between successive curve points Pi and P2,

and the same number of points, called intermediate line points, are selected from the

line segment connecting the corresponding track points ti and t2. The number is called

the intermediate number. The optimal orientations at the intermediate curve points are

specified as described in Section 1.1 for the original curve points. The following two

tests examine if the line segment connecting successive track points is an acceptable
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representation of the required tool path.

1. Vector Test: for each intermediate line point, if the angle between the optimal

orientation at the corresponding intermediate curve point and the vector from this

intermediate line point to the corresponding intermediate curve point is greater

than 90°, the Vector Test succeeds.

2. Distance Test: for each intermediate line point, if the distance between the inter

mediate line point and its corresponding intermediate curve point are greater than

dmin and less than dmax, the Distance Test succeeds.

If one of the above tests fails, midpoints and corresponding track points must be

added until both tests succeed. The addition of midpoints is illustrated in Figure 4.7 and

summarized as follows,

1. Since the Vector Test fails between intermediate line point l and intermediate curve

point c1 in Figure 4.7 (a), midpoint m1 is added between curve points P1 and P2 in

Figure 4.7 (b).

2. Since the Distance Test fails between intermediate line point 12 and intermediate

curve point c2 in Figure 4.7 (c), midpoint m2 is added between curve points P1 and

m1 as illustrated in Figure 4.7 (d)

3. In Figure 4.7 (d), no midpoint is required between curve points P1 and m2, and

between m2 and in1 since both the Vector Test and the Distance Test succeed in

these curve segments.

4. Since the Vector Test fails between intermediate line point 13 and intermediate curve

point c3 in Figure 4.7 (e), midpoint rn3 is added between curve points m1 and P2

In Figure 4.7 (f)
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Vector Test fails
(a)

p1

(b)

p2

track of tool tip

p1 p2

Distance Test foiis

Cc)

track of tool tip

Vector Test and Distance Test succeed

Cd)

p2

Vector Test foils

Ce)
Vector Test and Distance Test succeed

(g)

Figure 4.7: Adding midpoints using Curvature Check
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p1

p7

(C)

Figure 4.8: Deleting curve points using Curvature Check

5. In Figure 4.7 (f), no midpoint is required between curve points m1 and m3 or

between m3 and P2 since both the Vector Test and the Distance Test succeed in

these curve segments.

6. The final track of the tool tip redefined by the Curvature Check is shown in Figure

4.7(g).

The Curvature Check is also used to delete curve points which are not necessary in

the curve segment where the curvature is row. If the Curvature Gheck between pj nd

Pi--i succeeds, the curvature between p and Pi+2 is checked. The number of intermediate

line points and intermediate curve points selected must have the same density as the

points specified by the intermediate number. For instance, if the intermediate number is

(a)

(b)

p1
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Figure 4.9: The relationship between track and constraints: dma and dmin

3, three intermediate curve points and three intermediate line points are selected between

p and Pi+i and their corresponding track points, and six intermediate curve points and

six intermediate line points are selected between pj and Pi+2 and their corresponding track

points, and so on. If the Curvature Check between p and Pi+2 fails, the Curvature Check

between pj and Pi+i finishes, and no curve point is deleted from the curve. Otherwise, the

curvature between p and Pi+3 is checked, and so on, until the Curvature Check between

p and Pi+k fails. All the curve points between p and p+k1 are then deleted from the

curve and the path segment between pj and Pi+k—1 is planned directly. The deletion of

curve points is illustrated in Figure 4.8 and summarized as follows,

1. In Figure 4.8 (a), since the Vector Test and the Distance Test succeed between P1

and P2, between Pi and p, between P1 and p4, between p and p, but fail between

Pi and P6, the curve points P2, p3 and p4 and the corresponding track points are

deleted.

2. In Figure 4.8 (b), since the Vector Test and the Distance Test succeed between p

and P6, between p5 and p, and p7 is the last curve point, the curve point P6 and

its corresponding track point are deleted.

3. The final track of the tool tip searched by Curvature Check is shown in Figure 4.8

(c).

dmax - drrin

p1

The precision of the Curvature Check is determined by the parameter dma, dmin and
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p15

intermediate number s 2
(a)

intermediate number is 5
(b)

Figure 4.10: The intermediate number and the precision of Curvature Check

intermediate number. Since the upper and lower boundaries of the track of the tool tip are

specified by dmax and dmjm respectively as shown in Figure 4.9, a small dma and a large

dmin result in a highly precise track of the tool tip. This will slow down the path planning,

however, by adding more midpoints and searching more path segments between successive

track points. Since the curvature change may not be detected by a small intermediate

number, as shown in Figure 4.10 (a), and a large intermediate number as shown in Figure

4.10 (b) is necessary. Since the distance calculations are computationally inexpensive, a

large intermediate number ( e.g. 10) is recommended.

4.2.4 Overlap Check

Since the 7 ranges in the Local C-spaces are identical, the overlap discussed here is the

overlap between the 0 regions. The intersection of two 0 regions is determined through

a search for the overlapping ranges and the /3 range at every overlapping a value,

as illustrated in Figure 4.11 (a). If no overlapping a range or overlapping 3 range at

overlapping a value is found, such as regions 1 and 3, and regions 1 and 2 in Figure
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Figure 4.11: The search for overlapping region

4,11 (b), the two 0 regions do not overlap. The intersection points of the boundary of

two 0 regions are obtained by searching the a value which has the same /3 value at the

boundary in both regions.

If the 0 regions at successive points overlap, the curve segment between these points

can be searched. As illustrated in Figure 4.12 (a) (b), a valid path cannot be found within

the allowable orientation range between p1 and P2. If the points on a continuous curve are

very close, the optimal orientations should also be very close. Since the position of the

0 region is determined by the optimal orientation, the addition of midpoints eventually

makes the 0 regions at successive points overlap as illustrated in Figure 4.12 (c). If the

step size between two points is less than the minimum step size, a user defined parameter,

and the 0 regions do not overlap, the curve is assumed to be discontinuous between the

two points. In this case, the optimal orientation and the position of the midpoint are

defined as the bisection of the orientations and the positions at the two points, and

midpoints are added until the 0 regions overlap. This process, which is illustrated in

360 360

0 0

overappingx range a overiappingcx range

(a) (b)

a
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(b) (C)

Figure 4.12: The effect of adding midpoint

Figure 4.13, improves the robot motion passing a corner or a discontinuous curve point.

The addition of a midpoint may not lead to smooth changing orientations since the

optimal orientation at the midpoint of two curve points may not be between the optimal

orientations at the curve points. With reference to Figure 4.12 (a) and (c), the optimal

orientation at midpoint m1 is not between the optimal orientations at P1 and P2 If m1 is

not added, the robot tool will move between pi and P2 with the orientation interpolated

between the optimal orientations at Pi and P2, which results in an incorrect trajectory.

The addition of m1 detects the change of curvature and avoids this error. The optimal

orientation at midpoint m2 is between the optimal orientations at Pr and m1, and the

optimal orientation at midpoint m3 is between the optimal orientations at p and m2.

The additions of m2 and m3 make the optimal orientations at curve points close enough

31n Figure 4.13, the curve is on the Y-Z plane and the optimal orientation is defined as the normal
of the curve, which maintains an acute angle with the Z axis.

P1 Ml

(a)

360 —

P2

a
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midpoint 1

since their 0 regions overlap. The additions of m4 and m5 are necessary since the 0

regions of ni1 and rn2, and the 0 regions of m1 and P2 do not overlap respectively4. If

the curve is not continuous, the addition of midpoints provides for a smooth change of

trajectory as illustrated in Figure 4.13.

It is important to consider the relationship between the shape and size of the U region

which depends on the a angle. In the a0 range [0, 90], the smaller the a0 angle, the larger

the 3 range. In Figure 4.14 (a), orientations 1 and 4 are far apart, while orientations 2

and 3 are close together. Each orientation in the pair have the same c angle while /3,

is 00 for orientations 1 and 2 and is 180° for orientations 3 and 4. The corresponding

0 regions of 2 and 3 overlap, while the 0 regions of 1 and 4 do not overlap due to the

different 3 ranges shown in Figure 4.14 (b).

4.2.5 Translation and Rotation Check

Configuration Space Search

midpoint 2

point I

midpoint 3

point i+1

Figure 4.13: Adding midpoints in a discontinuous curve

4The 0 regions of m2 and P2, and the 0 regions of m1 and m5 happen to overlap in this example.
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x

360

180

0

Figure 4.14: The overlap of 0 regions which have small angles

pan of
and free-cell 1+1

i+1

z

(a) cx
(b)

free-cell

Figure 4.15: The path found though pj, p2 and Pt+i
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This check detects the environment between two track points and searches for a path

within the allowable orientation range. The path that is found allows the tool to trans

late and rotate simultaneously between the points without collision. To meet these

requirements, only the overlapping space between two Local C-spaces are considered.

The overlapping space between the Local C-spaces at track points p and P1+15 is termed

overlap-cell1,116• If the robot tool maintains the configurations within part of overlap

cel4,+i and translates between pj and P1+1 without collision, this part of overlap-cel4,+i

is called free-cell,+i . If free-cellj,1+i overlaps free-cel4_j ,, free-cel4_j ,, free-cel4,1+i and

their overlapping space compose of a safe path through curve points Pj—i, p and P1+1.

This is illustrated in Figure 4.15.

The projections of overlap-cel4,1 and free-cel4..1,1on the c — ,8 plane are called

overlap-region,i and free-region_i,1respectively, and the projection of free-cellj_1,1on

the y axis is called free-range1_i,1. The overlap between free-cell1_1,1and free-cell1,1+i

are projected as the overlap between free-region1_i,1and free-region1,1±iand the overlap

between free-range_i,1and free-rangej,ji. The overlap between free-range1_i,1and free

rangej,ji is quite straight forward. We mainly discuss the overlap between free-region1_1,1

and free-region,÷i. With reference to Figure 4.16 (a), the free-region1_i,1does not overlap

with the overlap-region,11,a midpoint m1 should be added between p. and Pi+1. If free

regionj_l,j still does not overlap the overlap-regionj,m1as shown in Figure 4.16 (b), further

midpoints are added between p and m until free-region1_i,1overlaps with the overlap

regionj,m where mk is the closest midpoint to pj, as illustrated in Figure 4.16 (c). A

small free-region1_i,1requires the addition of more midpoints, and a smaller step size is

automatically achieved and more careful motion of the robot is obtained as the path

5Because of the addition and deletion of curve points, the indices of curve points may not be sequential,
and be expressed by integers. In the following text, P1+1 represents the next point to pj and P11
represents the previous point to p.

61n the following text, “1,1+1” and mean “between p and the next point to pt” and “between
P1 and the previous point to P1” respectively.
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Figure 4.16: The overlap between free-region_1,and overlap-regiori,÷1
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becomes narrow.

After free-region1_i,1overlaps with the overlap-region,i where P1+1 is the next point

to p ‘. The free-cel4,+i is found by searching for (1) the free-region1,1÷i in the over

lapping region between free-region1_i, and overlap-region1,1÷i,and (2) the free-range1,1i

associated with the free-region1,÷1.The tool head can rotate in free-region1,1i,and the

tool handle can be placed in any position in free-range1,1±i as it moves between p1 and

P1+1.

The concepts of shrink step, shrink region and minimum shrink region are illustrated

in Figure 4.17. In Figure 4.17 (a), the overlap-region,1shifts in the direction from

the center of overlap-region,i to the center of free-region1_i,1.The overlapping region

between the shifted overlap-region1,1±1and the original overlap-region1,1i8is called the

shrink region. The shift distance of overlap-region,11 is called the shrink step. The

overlap-region1,1ishifts by the shrink step each time until the shifted overlap-region1,j+l

does not overlap the original overlap-region1,1.In Figure 4.17 (a) (b) and (c), three

shrink regions are generated. If free-region1_i,1is not totally included in the original

overlap-region,1+i, the minimum shrink region is the shrink region with minimum area

as shown in Figure 4.17 (c). If free-region1_1,1is totally included in the original overlap

regioni,il, the minimum shrink region is the minimum shrink region which overlaps

free-region1_i,1.In Figure 4.17 (d), the overlap-region1,11 overlaps with free-region1_i,1.

In Figure 4.17 (e), the shifted overlap-region1,1idoes not overlap with free-region1_i,1.

The shrink region in Figure 4.17 (d) is the minimum shrink region.

The free-region1,1iis found by shrinking overlap-region1,1toward free-region1_i,1if

the corresponding swept volume of overlap-region1,11 collides with objects in the envi

ronment, as illustrated in Figure 4.18 (a). In Figure 4.18 (b), the corresponding swept

71n the above example, we redefined mk as pi-i-i.
8The original overlap-regionj,1is the over1ap-region,1iwithout shift.
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volume of the shrink region again collides with objects in the environment. In Figure

4.18 (c), the corresponding swept volume of the shrink region is collision-free and this

shrink region corresponds to free-region,i. If free-region,i is not found when mini

mum shrink region has been checked, a midpoint is added between p and Pi+1• Adding a

midpoint changes the overlapping region between local 0 regions at successive points and

allows some new configurations to be considered. A minimum step size is specified, and

if free-region,i is not found and the step size between successive points is smaller than

the minimum step size, the current path is deleted from the path list and other paths in

the path list are planned. If the path list is empty, the trajectory planning stops.

If free-region1,+j is found, a search for the corresponding free-range,1÷iis carried out.

The 7 range is decomposed as a binary tree structure, and free-rangej,j÷i is searched using

a breadth-first search. Only the 7 ranges that has a common range with free-rangej_i, are

searched. The free-range_i,, free-range,i and their common range contribute to the

path of the tool handle. If no free-rangez,ji is found, the corresponding free-region,i is

invalid and must be shrunk by one shrink step, and the free-rangej,ji is searched again

for the new free-region,i.

The Swept Volumes Used in Translation and Rotation Check

Three kinds of swept volume between curve points p and Pi+1 are used in Translation and

Rotation Check, the 0-trans swept volume, the 7-trans swept volume and the shrink swept

volume which correspond to overlap-region,i, the range and shrink region respectively.

The 0-trans swept volume is generated by extruding the intersection of two full range 0

swept volumes in the direction of tool motion, i.e. the direction from p to P1+1, as

illustrated in Figure 4.19 (a). With reference to Figure 4.19 (a) (b), the size of the

intersection volume depends on the angles 4 and c2 between the optimal orientations of

the full range 0 swept volumes at the points i and Pi+i. The length of the 9-trans swept
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volume corresponds to the distance between successive track points. With reference to

Figure 4.19 (c) (d), the intersection orientations are defined as the orientations at the

intersection points of the two 0 regions. The minimum angle w between the direction of

tool motion and the plane defined by the two intersection orientations can assume any

value, as illustrated in Figure 4.19 (d). The angle w determines the shape of the 0-trans

swept volume. Two 0-trans swept volumes with the same size but different w angles are

shown in Figure 4.19 (e) and (f). The 0-trans swept volumes corresponding to different

sizes, lengths and angles are generated in advance. During the check, a 0-trans swept

volume is selected based on the overlapping size, distance between successive track points

and the angle w with respect to the direction of tool motion.

The 7-trans swept volume corresponding to a 0-trans swept volume is approximated

by using two vertical 0 swept volumes shown in Figure 4.20 (b) to displace the 0 swept

volumes used to generate the 0-trans swept volume, as shown in Figure 4.20 (a). The

length L, the angle and the allowable angle range 0 of the 0-trans swept volume are

known. In Figure 4.20 (a), line segment oa and line segment ob are on the boundary of

the intersection of 0 swept volumes and are also on the plane defined by the axes of 0

swept volumes. The distance between o and a, and the distance between o and b are L.

The distance between a and b is D, and the angle between oa and ob is .

Using the cosine law in triangle oab

= 2L2 — 2L2cos (4.2)

Since

= 40 — 2

we get

(4.3)
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Figure 4.19: The 0-trans swept volumes used in Translation and Rotation Check
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From Equation (4.2) and (4.3), we get

D = \/L/1 — cos(200
—

(4.4)

In Figure 4.20 (b), d is the distance between the tips of the 0 swept volumes.

d = 2LsinO0— D (4.5)

From Equation (4.4) and (4.5), we get

d = 2Lsin00
— v’L1 — cos(200

— ) (4.6)

Given a 0-trans swept volume, the distance d between the two 0 swept volumes can be

calculated using Equation (4.6), and the intersection of two corresponding full range 7

swept volumes is obtained as illustrated in Figure 4.20 (c). The corresponding full range

7-trans swept volume is generated by extruding the intersection along the direction of

tool motion, as illustrated in Figure 4.20 (d). The length of the extrusion and the angle

are the same as those of the 0-trans swept volume. The full range 7-trans swept volume

is decomposed into the binary tree structure illustrated in Figure 4.20 (e). Each 7-trans

swept volume binary tree associates with the corresponding 0-trans Swept volume.

Since the shrink region between pj and Pi+1 is the overlapping region between the

shifted overlap-region,i and the original overlap-region1,11,the shrink swept volume is

generated by taking the copy of the intersection of two 0 swept volumes, called the inter

volume, refer to Figure 4.21 (a), and rotating the inter volume angle about the line

which is in the plane defined by the two intersection orientations and is perpendicular

to the line from the tip of the intersection to the center of the intersection, as shown in

Figure 4.21 (b), and then extruding the intersection of the two inter volumes along the

direction of tool motion, as illustrated in Figure 4.21 (c). Here is the angle between

the center of shifted overlap-region,1and the center of original overlap-region,11.

9w is the minimum angle between the direction of tool motion and the plane defined by the two
intersection orientations as shown in Figure 4.19 (c).
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Figure 4.20: The 7-trans swept volume used in Translation and Rotation Check
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Figure 4.21: The shrink swept volume used in Translation and Rotation Check
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The parameters in Translate and Rotate Check are minimum step size and shrink

step. A large minimum step size results in a coarse search for a trajectory, while a small

minimum step size increases the search resolution between successive track points. The

shrink step determines shrinking resolution.

4.2.6 Inverse Kinematics Check

The motion of the robot tool is also limited by the robot joint constraints. Computation of

the robot inverse kinematics solution requires the configuration and position of the robot

wrist to be calculated from the position of the track point and the selected configuration

of the robot tool. With reference to Figure 4.22, the following homogeneous coordinate

frames are used in the computation:

1. Robot Base Frame Fr: the frame with origin at the robot base.

2. Track Point Frame F: the frame located at the track point having the same ori

entation as Fr.

3. Selected Configuration Frame F3: the frame with an origin coincident with F but

rotated by a8 about ‘, and j3 about Zr,.

4. Tool Frame F: the frame with an origin coincident with F8 but rotated by -y about

z8.

5. End Effector Frame Fe (, ñ, : and i1 are in the plane determined by the tool

axis and the tool handle, and points to the track point.

The homogeneous transformations [Wolo 91] H,.,, H,8, H81 and 11t,e defining the robot

position and orientation can be obtained from the frame definitions listed above. The

robot base to tool configuration coordinate transformation H is calculated as,

= l:Ir,pIIp,8.l:Ig,t Ht,e (4.7)
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The right hand side of Equation (4.7) corresponds to the homogeneous transformations

in the sequence of the robot base, tool tip, tool head, tool handle, and end effector. Given

a tool configuration ( cv, /3, y, X, y, z ), the right hand side of Equation (4.7) is known.

The left hand side of Equation (4.7) represents the homogeneous transformations in the

sequence of the robot base, linki, link2,..., end effector. For a given robot, the final

overall (base to tool) configuration coordinate transformation 11r,e which contains the

required joint angles, is fixed [Wolo 91]. So the robot joint angles can be calculated in

Equation (4.7). The details are discussed in Appendix C.

The configurations in the path comprising free-region_i, and free-region1,1are de

termined as follows:

1. The configurations in free-region_i, are the configurations of the robot tool at the

midpoint between Pi-1 and pj.

2. The configurations in the overlapping region between free-region_i, and free-region,i

are the configurations of the robot tool at p.

3. The configurations in free-region,j+i are the configurations of the robot tool at the

midpoint between pj and Pi+1.

Multiple inverse kinematics solutions can be computed based on one position/orientation

of the robot tool. For instance, eight solutions are obtained for the PUMA 560 robot. If

all joint angles in an inverse kinematics solution fall within the robot joint constraints,

the inverse kinematics solution is valid.

In each region, only the configurations which are near the center of a region are used

to compute the inverse kinematics solutions. This provides a degree of safety in the

trajectory since there is a collision-free region between the selected configuration and the

environment. If none of the configurations produce a valid inverse kinematics solution,
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this check fails and other paths in the path list are explored. If valid inverse kinematics

solutions are computed, these solutions and the corresponding configurations are stored

at a subsequent stage in the planning. A cost function is used to select the inverse

kinematics solutions and their corresponding configurations at each point to generate

the optimal trajectory. Details of this search are discussed in Section 4.2.8.

The number of configurations selected for the inverse kinematics computation is very

important. If just a few configurations are selected, the check may fail although there

may be unexplored configurations that correspond to valid inverse kinematics solutions.

Increasing the number of configurations results in a better chance of finding valid inverse

kinematics solutions, and a better trajectory will be planned since more configurations

and inverse kinematics solutions can be used by the cost function. This, however, takes

more computation time and requires more memory to store the data.

4.2.7 Control the Path Planning Using A* Search Algorithm

The path consists of a list of free-regions at the curve points which have been included in

the path. If there is more than one path in the path list, an A* search algorithm [Wins 84]

is used to control the path planning for multiple paths. This search is summarized as

follows,

Until the path list is empty, determine if the first path in the path list includes the

final point on the curve,

1. If the first path includes the final curve point, do nothing.

2. If the first path does not include the final curve point,

(a) Remove the first path from the path list.

(b) Form new paths from the removed path by extending one step.
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(c) Add the new paths to the path list.

(d) Sort the path list in the order of increasing cost, where the cost is the accu

mulated Path Cost so far plus a lower-bound estimate of the cost remaining.

(e) If two or more paths reach a common curve point, delete all those paths except

for the path that reaches the common curve point with the minimum cost.

The Path Cost is calculated as

PathCost = WvCv + W0C0 — WpCp (4.8)

Where Wv, Wo and Wp are the weights of cost Cv, C0 and Cp respectively.

Cv, the cost measuring the average area of the path, is calculated as

(4.9)

where V is the volume of free-cel4,+i and n is the number of current track points. This

cost is used to select a wider path.

Go, the cost measuring the average departure of the path segment away from the

optimal orientation, is calculated as

= /(a — cr)2 + (/3di —

/3)2

(4.10)

where a is the average of crmjn and crmax in the free-region1,i, f3 is the average ofI3mim
and /3max in the free-region1,÷1,and crj and !3di are the averages of cr and ,8 angles in

the optimal orientations at pj and pf1 respectively. This cost is used to select the path

which is closer to the optimal orientation.

Cp, the cost measuring the percent of the curve that has been travelled, is calculated

as

Cp (4.11)
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where n is the current point number and n is the number of track points travelled. This

cost is used to select the path which is close to the end of the curve.

The parameters in this check are the weights in the cost function. By changing the

weights, the trajectory is planned in different ways. For example, a large value of Wv

means a wider path is preferred, a large value of Wo means that the application constraint

is important, and a large value of Wp means the speed of finding a path is important.

The selection of the weights is discussed in 5.4.

4.2.8 Optimize Trajectory

In each path segment, the inverse kinematics solutions of a number of tool configurations

are calculated as described in Section 4.2.6. After finding the path along the curve, the

optimal trajectory along the curve is obtained using a second A* search to select both

the robot inverse kinematics solutions and corresponding tool configurations from the

path. The A* search is discussed in Section 4.2.7. The cost used in the second search is

calculated as

k k k

TrajCostk = Wj C1 + WD CDi + WH
1=1.0 11.O

J k k

+ (WR C1)+ W — WC (4.12)
j=1 1=1.0 1=1.0

Where 1.0 k n, k is current track point number, n is the final track point number

in the track, and J is the number of robot joints. Since some midpoints are added in the

track, the track point index (k) is not an integer.

In Equation (4.12), W and C represent weights and costs respectively. is the

cost measuring the joint angle displacement from the midpoint of the valid joint angle.

If several joint angles are available, the joint angle closest to the midpoint of joint range

is preferred. This avoids joint boundaries as the tool travels the curve. The cost C1 is
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calculated as
j (6—6m3)2

=
Ofj (4.13)

j=1

where O and Ornj are the jth joint angle and the midpoint of jth joint range, and is

the full range of the jth joint.

CD, the cost measuring deviation of the tool orientation from the optimal orientation,

is calculated as
(‘2 +_‘ Li / I3Li /

Di— 2

where aj and /3 are the a and /3 values of the optimal orientation at the ith track point,

a and

/3j

are the a and /3 values of the selected orientation at the ith track point, and

aL and /3Li are the a and 3 ranges of the Local C-space at the ith track point.

CH, the cost measuring the difference between the selected configurations at the ith

and i — ith track points is calculated as

(ai—ap2 + + (‘YiYip2
\ / “ I3Li / “ 7Li / (4 15

3

where a1, /3 and are the a, /3 and y values of selected tool configuration at the ith

track point, ,B,, and are the a, /3 and y values of the selected tool configuration

at the i — ith track point, and a,j, I3Li and 7Li are the a, /3 and 7 ranges of the Local

C-space at the ith track point.

CR1, the cost measuring the difference between the robot joint angles at the ith and

i — ith track points, is calculated as

1 i I.._iL.

C —

•L / Vj2 \2
Rij— )

1=1 v3,f

where n, is the joint number, and are the jth joint angles at the ith and i — ith

track point respectively, and is the full range of the jth joint angle.
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Cci, the cost measuring the change of robot configuration at the ith and i — ith track

points, is calculated as

= (1 — 1)2 (4.17)

where T and are the robot configuration indices at the ith track point and i + ith

track point respectively.

Cp, the cost measuring the percent of the curve that has been travelled, is defined by

Equation (4.11).

The cost function weights are used to bias the trajectory as shown in following table,

Weights Effect on trajectory planning

Wj safe robot motion

WD maintaining optimal tool orientation

WH and WR3 smooth motion

Wa robot configuration avoidance

Wp speed of search optimal trajectory

Normally, a large value of Wc is applied to keep the same robot configuration along

the curve. If the robot configuration changes from “elbow up” to “elbow down”, or

changes from “right” to “left”, as illustrated in Figure 4.23, discontinuous motion of

robot disrupts the smooth motion of the tool. If a robot configuration selected at the

beginning of search changes in the middle of the curve, all proposed trajectories using

this configuration will have a very high cost. Details of the selection of weights for an

example application of this algorithm are given in Chapter 5.
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Figure 4.23: Different robot configurations

4.3 Summary of the Midpoint Algorithm

The Midpoint Algorithm includes the following steps:

1. Reconstruct the curve with Catmull-Rom splines.

2. Predetermine the optimal orientation at each curve point according to the geometric

criterion of the robot tool specified by the application.

3. Predetermine the parameters in trajectory planning according to the requirements

of applications.

4. Store the curve point information into a linked list.

5. Initialize the path list by using the Point Check procedure at the first point. If the

path list is empty, the path planner stops.

6. Use the A* search algorithm to explore multiple paths in the path list. The minimum

cost path is extended to the next point. The extension of a path between successive

(a) (b)
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points is subject to the following checks: Curvature Check, Overlap Check, Trans

lation and Rotation Check, Inverse Kinematics Check and Path Cost Check. The

track of tool tip is built and points may added or deleted along the track.

7. If no path though the track can be found after trying all the path in the path list,

the path planner stops.

8. If the minimum cost path in the path list is found, an A* search selects the tool

configurations and robot joint values in the final path.

The flowchart of the Midpoint Algorithm is illustrated in Figure 4.24.
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Figure 4.24: Flowchart for the Midpoint Algorithm



Chapter 5

Computer Implementation and Examples

5.1 Overview

An off-line simulation program, TRAJPLAN, has been developed in order to test the

Midpoint Algorithm. Using TRAJPLAN, the user only needs to input the application

specification, to select the curves to be processed and to indicate the environment objects

that may collide with a robot tool during the process. A trajectory for the robot tool will

then be automatically planned. The output of TRAJPLAN is a set of sequential joint

angles which can be downloaded to the robot.

TRAJPLAN has been developed using Zortech C++ release 3.0, AutoCAD release 12,

AutoCAD Advanced Modeling Extension (AutoCAD AME) release 2.1, and AutoCAD

Development System (AutoCAD ADS). As a solid (3-D) and region (2-D) modeling pro

gram, AutoCAD AME is used to generate the swept volumes of the robot tool. AutoCAD

ADS is a C language programming environment for developing AutoCAD applications.

In TRAJPLAN, the AutoCAD ADS is used to move the swept volumes of tool and to

check for interference between swept volumes and the environment.

Since TRAJPLAN only deals with two adjacent points on a curve, the complexity

of the curve and environment does not have any effect in the algorithm. A practical

limitation to TRAJPLAN is that the amoiant of data to be stored may exceed the system

memory model if many curve points are used. This has not been a problem in the trials of

the system to date where there are typically 100 points have been selected. TRAJPLAN

75
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is compiled using the Zortech C++ 3.0 compiler using the P memory model (Phar Lap

386—DOS Extender, a full 32 bit 386 DOS Extender) to allow the program to operate

in 32 bit protected mode with a linear address space of 4 Gbytes.

While PUMA 560 and CRS A460 inverse kinematics modules have been developed

to work with TRAJPLAN, kinematic modules for other robots can be easily linked with

TRAJPLAN. TRAJPLAN has successfully demonstrated automatical programming of a

robot welding system and a fish butchering system.

5.2 The Simulation Program TRAJPLAN

The simulation program TRAJPLAN is initiated by identifying the curves to be processed

and the environment objects which may collide with the robot tool. The user still needs

to select the desired way to plan the trajectory (refer to Section 5.4), precision level of

trajectory (refer to Section 5.5), and the optimal orientation (refer to Section 5.6). If no

selection is given, default settings are used.

After the user initiates the TRAJPLAN, the path planning starts by reconstructing

the identified curve based on sample curve points using the Catmull-Rom Spline method.

A linked list is used to store the reconstructed curve. The advantage of the linked list

is that a node can be easily inserted and deleted. The path planning procedure builds

and updates the path list, a linked list which records all of the potential paths. Each

path in the path list is also a linked list which links the path segments between successive

points. Since different paths may pass through different environments and add different

midpoints into the curve, each path must record its points. The path list is updated with

following steps:

STEP 1 Use check loop, including Curvature Check, Overlap Check, Translation and

Rotation Check, Inverse Kinematics Check and Path Cost Check, to extend the top
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Figure 5.1: PathList data structure

path in the path list. If the check ioop fails, add a midpoint and repeat STEP 1.

STEP 2 Substitute top path by extended path and sort the path list by the PathCost,

placing the path with minimum cost at the top of the path list. Finish the path

planning if the last curve point is reached. Otherwise, return to STEP 1.

One of the basic tasks of planning is to place swept volumes of the tool at a track point

or between successive track points and to check for the interference between the swept

volumes and environment in order to find a free cell or free-cell,+i. At the first point, free

cells are found by shrinking the 0 swept volumes in order to obtain collision free 0 swept

volumes, and then using breadth-first search to find the collision free swept volumes in

corresponding y swept volume binary tree. If no collision free y swept volume is found,

the 0 swept volume is shrunk again and the corresponding 7 swept volume binary tree

is searched. Between subsequent curve points, the search for free-cellj,+i is very similar

to the search for free cell, i.e. search 9-trans swept volumes first and then search 7-trans

swept volumes corresponding to the collision free 9-trans swept volume. The procedure
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is illustrated in Figure 5.2. In order to access the swept volumes efficiently during path

planning, the swept volumes are down loaded into memory. This detail is discussed in

Section 5.3.

For the PUMA 560 and CRS A460 robots, each robot tool configuration can be used

to calculate eight robot inverse kinematics solutions. The trajectory of the robot tool

has two parts: the configurations and positions of the tool, and the corresponding inverse

kinematics solutions. If TRAJPLAN cannot find a path, or the final trajectory based

on the selected path contains a change of robot configuration, TRAJPLAN reports the

error or warning message to the user.

5.3 Down Load the Swept Volume Into Memory

Loading the swept volume into memory provides efficient access to the swept volumes

during the interference check, which speeds up the trajectory planning. Loading all of

the swept volumes into memory, however, results in a simple tree structure to be used,

which cannot represent a configuration space with high resolution, even for Local C

space. It is impossible to load a huge data structure into memory due to the limitations

on memory space and the restrictions of MS DOS. The 0 swept volumes are stored in a

one dimensional array and 0-trans swept volumes are stored in a three dimensional array

based on the size, length and angle of the swept volume. Each 0 swept volume has a full

range 7 swept volume associated with it. The
,‘

swept volume is decomposed into a binary

tree. If each dimension in the 0 swept volume array or the 0-trans swept volume array

contains three elements, and a five level 7 swept volume binary tree 1 is associated with

each array element, the total number of swept volumes is 930 (3 x 31+3 x 3 x 3 x 31). MS

DOS, however, only allows 250 files to be opened simultaneously. To solve this problem,

1A five level binary tree contains 31 nodes.



Chapter 5. Computer Implementation and Examples 79

Figure 5.2: The procedure for searching for collision free swept volume (a) The 0 swept
volume collides with environment, (b) Shrinking 0 swept volume for the collision free 0
swept volume, (c) The swept volume collides with environment, (d) Search swept
volumes for the collision free 7 swept volume.

(a)
(b)

(C) (d)
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oniy the swept volumes with different shapes are loaded into memory. The remaining

swept volumes can be obtained by rotating the loaded swept volume having the same

shape. The rotation angle , /3 and ‘y are determined by the difference in the , /3 and

angles between two corresponding swept volumes. In this way, 120 (3 x 4 +3 x 3 x 3 x 4)

swept volumes instead of 930 swept volumes are loaded into memory, and the exploration

of a high resolution configuration space is possible.

5.4 Plan the Trajectory as Desired

Several options for planning the trajectory can be selected by the user:

1. Select a trajectory which meets the application requirements as quickly as possible.

2. Select the optimal trajectory from all of the potential trajectories.

3. Select a trajectory which maintains the orientation close to the user specified ori

entation.

4. Select a trajectory which avoids a change of robot configuration.

5. Select a trajectory which provides for smooth motion of the tool.

If time is not of great concern, the user may require TRAJPLAN to provide the

optimal trajectory. Or, if the user has limited time, he can require TRAJPLAN find a

path as quickly as possible.

The weights in cost functions (Equation (4.8) and Equation (4.12)) determine the

options of TRAJPL..N The default values of the weights to calculate Path Cost are
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shown in following table,

Weight Effect on trajectory planning Value Comments

Wp speed of planning path 0.6 the most important

Wo path close to optimal orientations 0.3 important

Wv width of path 0.1 not very important

The default values of the weights to calculate TrajCost are shown in following table2,

weight effect aspect in trajectory value comments

Wj joint angle is close to the center of joint angle range 0.01 not very important

WD trajectory is close to optimal orientation 0.15 important

WH trajectory keeps its history 0.2 important

Wp speed of planning path 0.15 important

WR1 the first joint angle keeps its history 0.15 important

WR2 the second joint angle keeps its history 0.15 important

WR3 the third joint angle keeps its history 0.1 important

WR4 the fourth joint angle keeps its history 0.03 not very important

WR5 the fifth joint angle keeps its history 0.03 not very important

WR6 the sixth joint angle keeps its history 0.03 not very important

Wc the change of robot configuration 100 very important

A large value is assigned to Wc in order to avoid the robot arm inversion. The values

of WR1, WR2, W1, WR4, W5 and WRG indicate that the motion of the robot wrist is

2A large value is assigned to Wc in order to avoid robot arm inversion.
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more flexible than the motions of upper arms.

5.5 The Precision of Trajectory

The precision of trajectory is very important since it affects the quality of process. Differ

ent applications have different precision requirements. For example, a welding application

may require the tool tip to follow the curve more strictly than a painting application.

The higher the required precision, the more careful the motion, although the precision

should be determined by the user according to the requirement of application. Otherwise

the following default values are assumed,

dmin 0.4 inch

dma2, 0.8 inch

number of intermediate points 8

minimum step size 0.02 inch

number of configurations picked up from path segment 24

For the convenience of inexperienced users, the values of parameters have been set

at different accuracy levels. If the default accuracy level is not suitable for the applica

tion, the user can simply select the accuracy level to alter the speed or precision of the

trajectory planning algorithm.

5.6 The Specification of Optimal Tool Orientation

To use TRAJPLAN, user need to input the application specification including the op

timal orientation of robot tool relative to the curve, the allowable deviation of the tool

orientation away from the optimal orientation, and the allowable deviation in the dis

tance between the tool tip and the curve. Without the input, TRAJPLAN will plan
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Figure 5.3: The optimal orientation of robot tool

a trajectory based on the default specifications. With reference to Figure 5.3 (a), the

default geometric criterion of the tool optimal orientation at a curve point is defined as

follows,

1. The tool optimal orientation is perpendicular to the tangent of curve at the point.

2. The tool optimal orientation corresponds to the vector that bisects the normals of

the two planes on each side of the curve.

3. The tolerance of the orientation deviation 9 from the tool optimal orientation is

300 as shown in Figure 5.3 (b).

5.7 Examples: Automatic Welding and Fish Butchering Processing

5.7.1 Automatic Robot Welding Process

An automatic robot welding system is shown in Figure 5.4. The process constraints

include the distance between the welding head and the seam, the optimal welding ori

entation, collision avoidance, valid robot inverse kinematic solutions, and robot arm

inversion avoidance. Complete knowledge of the system including the position of objects

tangent

curve

plane 2

(a)

curve
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seam
tod PUMA 560 robot

obstacle

Figure 5.4: The automatic robot welding workcell
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in the workcell and the seams is provided by a computer-aided design system, AutoCAD.

In the workcell shown in Figure 5.4, TRAJPLAN finds a collision free path subject to

process constraints in 1’20”. Most of this time is taken by the AutoCAD interference

checks. An example procedure for searching for collision free paths by placing various

swept volumes on the seam is illustrated in Figure 5•53 and described as follows,

(a) Place the full range 0 swept volume at the first seam point. The 0 swept volume

collides with obstacles.

(b) Shrink the 0 swept volume until it does not collide with obstacles.

(c) Place the full range 7 swept volume corresponding to the selected 8 swept volume at

the first seam point. The swept volume collides with obstacles.

(d) Search the 7 swept volumes at lower levels in the swept volume binary tree. The

first 7 swept volume selected collides with obstacles.

(e) Select another 7 swept volume. This 7 swept volume is collision free.

(f) Test the 0-trans swept volume corresponding to the selected collision free 0 swept

volume. The swept volume is collision free.

(g) Place the full range 7-trans swept volume corresponding to the selected 0-trans swept

volume on the seam. The 7-trans swept volume collides with obstacles.

(h) Search the 7-trans swept volumes at lower levels in the 7-trans swept volume binary

tree. The selected 7-trans swept volume collides with obstacles.

(1) Select another 7-trans swept volume. This 7-trans swept volume also collides with

obstacles.

3The dash line is the seam and the cylinder and the plate are the obstacles.
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(j) Search the 7-trans swept volumes one level down in the 7-trans swept volume binary

tree. The selected 7-trans swept volume collides with obstacles.

(k) Select another 7-trans swept volume. The selected 7-trans swept volume is collision

free.

(1) Select another 7-trans swept volume. The selected 7-trans swept volume collides with

obstacles.

(m) Select another 7-trans swept volume. The selected 7-trans swept volume is collision

free. Up to now, there are two possible paths found in (k) and (m) respectively.

5.7.2 Automatic Fish Butchering Process

The Industrial Automation Laboratory at UBC has developed a system for automatically

selecting cutting contours for a fish butchering process [Gama 93]. The fish butchering

workcell is shown in Figure 5.7. When fish passes along the convey or the position and

the shape of fish contour is calculated by a knowledge-based computer image process

ing system. The process constraints include the distance between fish and a water-jet

cutter, the optimal cutter orientation, collision avoidance, valid robot inverse kinematic

solutions, and robot arm inversion avoidance. Using the workcell shown in Figure 5.7,

TRAJPLAN finds a collision free path subject to process constraints in 15 seconds. An

example procedure for searching for collision free paths by placing various swept volumes

on the fish contours is illustrated in Figure 5.6 and described as follows,

(a) Place the full range 0 swept volume at the first contour point. The 0 swept volume

does not collide with obstacles.

4The dash line is the fish contour.
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Ci) (I)
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Figure 5.5: Procedure for searching for collision free paths.
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(b) Place the full range 7 swept volume corresponding to the selected 0 swept volume at

the first contour point. The 7 swept volume collides with obstacles.

(c) Search the y swept volumes at lower levels in the 7 swept volume binary tree. The

first swept volume selected collides with obstacles.

(d) Select another 7 swept volume. This 7 swept volume is collision free.

(e) Test the 0-trans swept volume corresponding to the selected collision free 0 swept

volume. The swept volume is collision free.

(f) Place the full range 7-trans swept volume corresponding to the selected 0-trans swept

volume on the contour. The 7-trans swept volume collides with obstacles.

(g) Search the 7-trans swept volumes at lower levels in the 7-trans swept volume binary

tree. The selected 7-trans swept volume collides with obstacles.

(h) Select another 7-trans swept volume. This 7-trans swept volume also collides with

obstacles.

(i) Search the 7-trans swept volumes one level down in the 7-trans swept volume binary

tree. The selected 7-trans swept volume collides with obstacles.

(j) Select another 7-trans swept volume. The selected 7-trans swept volume is collision

free.

(k) Select another 7-trans swept volume. The selected 7-trans swept volume collides

with obtcles.

(1) Select another 7-trans swept volume. The selected 7-trans swept volume is collision

free. Up to now, there are two possible paths found in (i) and (1) respectively.
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PUMA 560 robot
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Figure 5.7: The automatic fish butchering workcell



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis a new trajectory planning algorithm, the Midpoint Algorithm, has been de

veloped. The algorithm plans smooth trajectories for a robot tool moving along specified

curves subject to application constraints. Geometric constraints ( allowable orientation

and position of tool) and motion constraints (joint limits, robot configuration change

avoidance and collision avoidance) are also integrated into the algorithm. The trajectory

is planned by searching for path segments between successive curve points, linking valid

path segments to generate a path along the curve and selecting the optimal configurations

inside the path to specify the final trajectory.

The configuration space of a robot tool forms a critical component of the algorithm.

The configuration of robot tool has three degrees of freedom, o, /3 and 7. This config

uration gives a general description of robot tool, which includes the tool axis derived

from optimal orientation within an allowable tolerance and the tool itself rotating about

the tool axis. The concepts of Entire C-space and Local C-space were introduced as a

convenient representation of the tool configuration for planning purposes. Since the Local

C-space only covers useful parts of the Entire C-space, a condensed data structure is used

to represent the configuration space with high resolution. The Local C-space is the com

bination of the 0 region and the range, which correspond to the constraints of allowable

tool orientation and robot inverse kinematics respectively. Different Local C-spaces have

91
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different shapes, sizes and positions of the corresponding 0 regions. A mathematical ex

pression for Local C-space has been derived, and given the optimal orientation (cr0, 3) of

the Local C-space and the maximum allowable orientation 0, the corresponding 0 region

can be calculated.

The trajectory planning is initiated using a Point Check procedure to search the Local

C-space at the first curve point and initializes a path list of potential paths. A Translation

and Rotation Check identifies collision free path segments by searching overlapping 0

regions at successive points, shrinking the overlapping regions in order to find collision

free regions. If no collision free 7 ranges are found even though the minimum 0 region

has been tested, a midpoint is added if the step size is greater than the minimum step

size, while the current path cannot be extended if the step size is less than the minimum

step size

Corresponding to the 9 regions and y ranges, swept volumes of the tool are gen

erated and used to detect collision between the tool and the environment. Since only

swept volumes which have different shapes are loaded into memory, the system mem

ory requirements are reduced and exploration of high resolution configuration space is

possible.

To address the problem of how to guarantee that the track of the tool tip matches

the curve, a method of automatically varying the step size between curve points was

developed. The step size is examined to determine: (1) if the straight line connecting

successive curve point can approximate the shape of this curve segment, (2) if the optimal

orientation at the points are close enough, and (3) if the environment between the two

points is simple enough. After adjusting the step size, a minimum number of curve points

are used to search for the path, which results in fast path planning. The small step size

used in complex situations leads to safer paths. A polyline models the track of tool tip,

which ensure that the tool does not collide with the workpieces.
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An A* search optimizes the path planning for multiple paths. Since the planner

searches configurations along the entire curve, robot configuration changes can be avoided,

which provides smooth motion of the tool. The planner also allows the tool to translate

and rotate simultaneously without collision, which provides for a smooth motion of tool.

An off-line simulation program, TRAJPLAN, based on the Midpoint Algorithm has

been developed. After the user inputs the application specifications, selects the curve to

be processed, and identifies the environmental objects, TRAJPLAN automatically plans

the trajectory of robot tool and generates a set of sequential joint angles corresponding

to a particular robot. Currently the system supports the PUMA 560 and CRS A460

robots.

The Midpoint Algorithm has been demonstrated in software simulation of fish butcher

ing and robotic welding. The algorithm is suitable to a variety of robot applications which

require collision free motion subject to process constraints. By changing the accuracy

levels of the parameters, the user specifies the precision of the trajectory or the kind of

trajectory preferred in order to meet the different requirements of robot applications.

6.2 Recommendations for Future Work

This approach only considers the collision free motion of the robot tool, but not that

of robot manipulator. Also dynamic constraints are not considered. An immediate

extension to this algorithm includes the consideration of the entire robot and the inclusion

of dynamic constraints in the planning process. Also more extensive testing on industrial

applications needs to be done.

TRAJPLAN is a general algorithm for CAD environments which provide functions

for building solids, moving solids and checking for interference between solids. To date

TRAJPLAN has only been implemented for use with AutoCAD.
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TRAJPLAN can also be used without a graphics interface after creating the data

structures for storing solids and the interference check tool. Most of the time in path

planning is spent on the interference check by AutoCAD and the display of graphics on

the screen. Without the graphics interface, TRAJPLAN can plan the trajectory much

faster and it may be possible to use it as a real-time software. There are three steps to

build such a system:

1. Use sensors to obtain the information of environment and the curves to be pro

cessed.

2. Build a data structure to hold the information of the robot, tool and environment.

3. Create an interference check function using the above data structure.



Appendix A

Data Structure

Some data structures used in TRAJPLAN are described in this section.

1. The structures about curve and track,

Config = record

alpha, beta, gamma: double;

end;

Point = record

x, y, z: double;

end;

CurvePoint = record

num: double;

curve_point : Point;

track_point : Point

optimal: Config

end;

Curve = record

data: CurvePoint;
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‘
next : Curve

end;

Here is the descriptions of above structures:

alpha, beta, gamma the angle of tool configuration.

num the number of curve point.

optimal the optimal orientation of robot tool at the point.

curve_point point in the curve.

track_point point in the track of robot tool tip.

x, y, z the coordinates of point.

2. The structures used to represent region and range in Local C-space and the corre

sponding swept volumes,

Region = record

boundary : array [0. .20] [0. .2] of double;

j next : Region

end;

Thnode = record

i, j, color : integer

region : Region

Id: apObjid;

t fname : char

end;
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Range = record

MinG, MaxG : double;

end;

Gnode = record

i, j, color : integer

range : Range

id: ap...Objid;

I fname: char

end;

Here is the descriptions of above structures:

boundary the boundary of 0 region calculated as discussed in Chapter 3.

MinG, MaxG the boundary of ‘y range.

i, j the index of a Gnode in binary tree.

color the color of the node.

region the 0 region in Thnode.

range the corresponding ‘y range of the node.

id the swept volume object ID used for moving the swept volume

and checking the interference.

fname the swept volume file name used for loading the swept

volume into memory.

3. The structures about robot inverse kinematic solution,
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InvKinSol = record

angle : array [0. .6] of double;

end;

InvKinSols = record

config: Config;

solution : array [0. .8] of InvKinSol;

vali&num: double;

end;

Here is the descriptions of above structures:

angle the array storing six robot joint angles.

config the robot tool configuration.

solution the array storing eight robot inverse kinematics solutions based

on one tool orientation.

valicL.num the number of valid robot inverse kinematics solutions.

4. The structures about path list,

Part = record

poinLnum: double;

point : CurvePoint

region : Region

range: Range;

Tsolutions : InvKinSols;
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end;

Path = record

data: Part

Inext: Path;

end;

PathList = record

t path : Path

PathCost : double;

next : PathList

end;

Here is the descriptions of above structures:

poinLnum the number of the track point.

point the information of track point.

region the 0 region of the free-cell,+i.

range the 7 range of the free-cel4,1+i.

solutions the inverse kinematics solutions.

data the information of a region.

path the list of free-cell1,i.

PathCost the cost of the path.

5. The structure of robot tool trajectory composed of two parts: the configuration

and position of tool, and the corresponding robot inverse kinematic solutions.
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Trajectory = record

poinLnum: double;

point : Point

select : Config

solution : InvKinSol

next : Trajectory

end;

Here is the descriptions of Trajectory structures:

poinLnum the number of the curve point.

point the track point.

optimal the optimal orientation at the point.

select the selected configuration.

solution the robot inverse kinematics solution.



Appendix B

TRAJPLAN

The pseudo-code of the main procedure in TRAJPLAN is listed as follow:

var

addmid, finish: integer;

obstaclelD : ap_objid;

Cspacel, Cspace2 : Part;

program Trajplan()

{ main procedure for trajectory planning }
var

curve: Curve;

I paths : PathList;

I point, I last_point : Curve;

I trajectory : Trajectory;

begin

addmid := 0; finish := 0;

SpecificationQ;

curve := SelectCurveQ;

obstaclelD : = SelectEnvironmentQ;

LoadSweptVolumeQ;

paths := PointCheck(point);
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if paths = NULL then exit; {No path found}

while (finish not 1)or (finish not -1) begin

1astpoint := NULL;

last_point : = SearchLastPoint (pathspathtdata.point_num, curve);

if last_point = NULL then exit;

else if lastpointnext = NULL then

finish := 1; {trajectory planing finish.}

else begin

paths : = CheckLoop(paths, last_point, lastpointnext);

if addmid = 0 then begin

pathstPathCost := PathCost(pathspath);

paths := SortPathList(paths);

finish := 0;

end

end

end

if finish = -1 then exit; {No path found}

trajectory : = OptimizeTrajectory(pathstpath);

end

function CheckLoop( paths:PathList, 1ast_point:Curve, nextpoint:Curve): PathList;

{ Check loop is applied to successive points to search the path segment between

them. The Overlap Check and Inverse Kinematics Check are included in

TranslateRotateCheck. }
var
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retval : integer;

begin

addmid 0;

Cspacel = BuildCspace( 1ast_pointdata.optima1);

Cspace2 = BuildCspace( nextpointdata.optima1);

if not CurvatureCheck(1astpointdata, nextpointdata) then begin

addmid := 1;

curve := AddMidpiont(curve, 1astpoint, next_point);

return paths;

end

retval : = TranslateRotateCheck(paths, 1ast_pointdata, next_point Idata)

if retval = 0 then begin { fres-part do not overlap.}

addmid 1;

curve : = AddMidpiont (curve, lasLpoint, next_point);

return paths;

end

else if retval = -1 then begin {no path segment found.}

if PointCheck = NULL then begin

finish := -1;

exit;

end

else begin

paths := DeletePath(paths);

return paths;

end
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else begin {the minimum cost path is extended}

addmid := 0;

pathspathdata.poinLnum: next..pointldata.num;

return paths;

end

end

function TranslateRotateCheck( Ipaths:PathList, last: CurvePoint, next:CurvePoint) : integer;

{ This function searches the free-region between last and next points.}

var

length : double;

shrink_center: Config;

1’ ov_region, free_region, ov_free_region: Region;

I free_range: Range;

I free_part : Part;

I solutions : InvKinSols;

begin

length : = Distance(last .data.track_point, next .data.track_point);

if length < minimun...step_size then return -1;{avoid infinitive adding midpoint.}

ov_region : = OverlapCheck(Cspacel .region, Cspace2.region);

if ov_region = NULL then return 0

free_region := ShrinkOvRegion(ov_region, length, last, next);

if free_region = NULL then return -1;

free_range := FreeRange(free_region, length, last, next);

if free_range = NULL then
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free_region : = SmallRegion(free_region);

if free_region NULL then finish := 0; return -1;

ov_free_region = OverlapCheck(pathspath data.region, free_region);

curve := AddMidpiont(curve, last_point, next_point);

solutions : = InverseKinematicCheck(ov_free_region, last_pointlnext);

if solutions = NULL then return -1;

pathspathdata.region.solutions :=

InverseKinematicCheck (ov_free_region, last_point tnext);

if solutions = NULL then return -1;

{If the inverse kinematic solution available, add midpoint region between last and next points.}

pathstpath: = AddPart (ov_trans_free_region, last_point tnext);

pathspathdata. region. solutions : = InverseKinematicCheck(trans_free_region, next_point);

if solutions = NULL then return -1;

pathspath: = AddPart (trans_free_region, next_point); { add region at next point.)

return 1;;

end

{ The following primitive routines are needed to perform above procedures}

procedure Specification;

{ Input the specification of robot application. }
function SelectCurve() Curve;

{ Read the curve point information of the selected curve and reconstruct curve. }
function SelectEnvironment() : ap_objid;;

{ Union the selected environment objects and return the objectlD.}

procedure LoadSweptVolumeQ;
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{ Load the swept volumes into memory. }
function SearchFirstPoint (point) : RegionList;

{ Search white part in the Local C-space at the first point and store

the parts into path list. }
function SortPathList( paths) : PathList

{ Sort the paths in the path list according to the PathCost and put the

minimum cost path at the front of the list. }
function SearchLastPoint( path ) : Curve;

{ Search the last point to be traveled by current path.}

function BuildCspace( optimal) : Part;

{ Calculate the 0 region based on optimal orientation (c0,j30) and 0.}

function DeletePath( paths ) : PathList;

{ Delete the top path from the path list and return the path list.}

function ShrinkOvRegion( ov_region, length, last, next ) : Region;

{ Shrink the overlapping 0 region to search the region of free-cel4,+i

and return the region}

function Distance( pointi, point2 ) : double;

{ Calculate the distance between two track points and return the distance. }
function AddPart( part, path ) : Path;

{ Add free part into path and return the path. }
function FreeRange( free_region, length, last, next ) : Range;

{ Search collision free 7 range of free_region and return the range. }
function BuildPart( free_region, free_range ) : Part;

{ Build free_part based on free_region and free_range and return the part. }
function AddMidPoint( point, next_point ) : Curve;
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{ Add midpoint between lasLpoint and nexLpoint and return the curve. }
function CurvatureCheck( lasLpoint, nextpoint ) : boolean;

{ Return True if two points can pass curvature check.}

function OverlapCheck(regionl, region2 ) : Region;

{ Check the overlap between two regions and return the overlapping region. }
function PathCost(path) : double;

{ Calculate the PathCost of a path.}

function InverseKinematicCheck(region, point) : ISolutions;

{ Compute the robot inverse kinematics solutions. There are 24 configurations

in the region to be selected and 8 inverse kinematics solutions can be obtained

from each configuration. }
function OptimizeTrajectory(point) : Trajectory;

{ Use cost function to optimize the trajectory. }



Appendix C

Inverse Kinematic Modules for PUMA 560 and CRS A460

With reference to [Wolo 91] and Figure (C.1), the six Homogeneous transformation ma

trices of PUMA 560 robot are as follows:

cosO1 —sinO1 0 0

.sinO1 cosO1 0 0
H= (C.1)

0 0 1k

0 0 01

cosO2 —sinO2 0 0

0 0 10
H= (C.2)

—sinO2 —cosO2 0 0

0 0 01

cosO3 —sinO3 0 e

sin93 cosO3 0 0
H= (C.3)

0 0 lg

0 0 01

cosO4 —sin04 0 0

0 0 if
H= (C.4)

—sinO4 —cosO4 0 0

0 0 01
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Figure C.1: The PUMA 560 robot and robot tool
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cosO5 —sinO5 0 0

0 0 10
H= (C.5)

—sinO5 —c0805 0 0

0 0 01

cosO6 —sinO6 0 0

0 0 —1 —d
(C.6)

sinO6 COSO6 0 0

0 0 01

The only difference between CRS A460 robot and PUMA 560 robot is the different

values of parameters: d, e, f, g, and h. The Homogeneous transformation matrices (C.1),

(C.2), (C.3), (C.4), (C.5), and (C.6) can also be used to describe CRS A460 robot. The

computation subsequently discussed is for both the PUMA 560 robot and the CRS A460

robot.

Equation (4.7)

Hr,e = Hr,pHp,sHs,tHt,e

is used in inverse kinematics computation. The Hr,e can be rewritten as H and is

calculated as

= (C.7)

From Equation (C.1) (C.2) (C.3) (C.4) (C.5) and (C.6), we know that Equation (C.7)

only has variables: Oi, 02, 03, 04, 05, 06, d, e, f, g, and h. The PUMA 560 geometry

parameters, d, e, f, g, and h are known. The right hand side of Equation 4.7 represents

the Homogeneous transformations from robot base to seam point and then end-effector.

The End Effector Frame Fe (, i, .‘) and end-effector position p are attained, as shown

in Figure C.1. The desired wrist position used in later computation is
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calculated as

(P—da

I pyw J =

P,—da, I
Pz_daz)

The calculations for the robot joint angles are as follows [Wolo 91],

—
-

r ± + P — g2
= Atan2 [ j

+ Atan2 L g ] (C.9)

r e2+f2+g2—P—P2—1F —h)2yw ZW
03 = Atan2 I

__________________________________________

±4e2f2_[e2+f2+g2_P yw zw / ] (C.1O)
2 _p2 ( —h’212

2
I—(-Pcos0i + Psin0i)fcos03— (Pzw — h)(e — fsin03)1

(C.11)02 = Man L (Pcos0i + Psin0i)(e — fsin03)— (P — h)fcos03j

asinOi — acos01
04 = Atan2 [ acos0icos(02+ 03) + aysinOlcos(02+ 03) — asin(02+ 03)]

(C.12)

and—05±180°

05 = Atan2
[V(axsin0i +a2cos91)2+ (acos0icos(02+ 03) + asin0icos(02+ 03) — asin(02+ 03))2

—acos0isin(02+ 03) —a2sinOisin(02+ 03) — acos(02+ 03)

(C.13)

and — 05

I—scos01sin(02+ 03) — .ssin0isin(02+ 03) — scos(02+ 03)1
06 = Atan2 [ ncos0isin(02+ 03) + nysinOlsin(02+ 03) + ncos(02+ 03) j

(C.14)

and—06±180°
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