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Abstract
This thesis presents a method of calculating the vertical force on the coupling between a
pusher tug-barge unit where the tug is able to pitch relative to the barge. Alternate methods
assume that the hydrodynamic forces on each hull have no effect on the other hull. The method
presented here assumes that there is a hydmdynamic interaction between the two hulls. A
numerically-fast three-dimensional solution method (unified slender body theory) is used to develop
this interaction between the two hulls in coupled modes of motion at zero speed. Only the heave
and pitch modes are considered.
~ Experimental work was done on a coupled tug-barge model. The model was instrumented
to determine the barge heave and trim, the relative pivot angle between the tug and barge and the
vertical and horizontal pin forces. The experiments were run in head and stem sea conditions with
two separate pivot locations. Only the horizontal forces are found to be non-linear. The peak
vertical force occurs at wavelengths of 1.2/garge in head seas and /garge in stem seas. The
amplitude of the hull motions increases with the wavelength except for the pivot angle which
steadies at about 1.5/garge. The pin force is more sensitive to the pivot location than the barge
motions. The pivot angle is also sensitive to the pivot location.
Two numerical models of the tug-barge unit are compared to the experimental results.
One model (Case 1) evaluates the two hulls separatély while the second (Case 2) evaluates the
h&drodynamic cross-coupling terms. Results show that both models underestimate the hull
motions. The Case 1 model over-predicts the pin forces while the Case 2 model under-predicts
| them. The hydrodynamic cross-coupling terms are found to be significant. The Case 2 model is

considered successful but needs to be refined numerically to improve on the solution.
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Chapter 1

Introduction

1.1 General

Tug-barge systems are generally composed of a tug pulling one or more barges.
However, recently an increasing number of these systems' have been adopting pusher tugs
due to the great economic advantages they offer. This is principally due to the lower
drag (the barge is no longer in the propeller wash) with a resultant increase in operating
speed and better fuel economy. A number of general references on tug-barge systems are
included in section1.2.3 and several others are included in the bibliography.

Originally the coupling between tug and barge was made using a push-knee fitted
to the front of the tug and a set of lines to hold the tug against the stern of the barge and
allow the barge to be manoeuvered. This method worked well with the barge trains used
on the rivers in the southern U.S. and in Europe but was unable to handle open water
conditions. Despite the development of notched barges and improved rope couplings
these systems were still unusable in even moderately rough seas.

Better and stronger connections were needed to solve this problem. Initially most
solutions consisted of a rigid connection between the tug and barge. This created a ship
from the tug-barge combination while allowing it to be crewed as a tug and unmanned
barge unit. Although these units were capable of withstanding much heavier seas than
the earlier rope-connected systems the forces in the couplings were extremely large. In
order to reduce the forces the couplings had to be allowed some relative freedom to

move. The problem then became one of complexity and cost; the more degrees of
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freedom were allowed the more difficult and expensive it became to control the relative
motions. Most systems appear to have reached a compromise by allowing only relative
pitching to occur. This is a simple engineering problem and moderately inexpensive.
This solution also maintains a high degree of crew comfort.

Engineering problems are solved by assuming a maximum load on the coupling
and designing the system to withstand this load. In the case of the pin-connected tug-
barge a prediction of the loads on the coupling is extremely complex. The loading is
sensitive to the masses and inertias of the tug and barge, the buoyancy forces on the
hulls, the wave excitation forces (and their direction) and resultant movement of the hulls
(providing a hydrodynamic added mass and damping) and the depth of the notch and
subsequent pin location. As a result the prediction of the maximum force at the coupling
requires a full evaluation of the fluid forces on the hulls. Robinson (1975) evaluated the
coupling force by assuming that each hull had no effect on the other and as a result the
hydrodynamic coupling terms between the tug and barge could be ignored. This thesis
contends that these coupling terms are important and that an improved solution can be
achieved by including them. It is assumed that in heavy seas where the xhaximum loads
are expected to occur the tug and barge would keep station (corresponding to a zero
speed condition) and that only heave and pitch modes need be considered. |

A three-dimensional potential flow method was selected with the objective of
achieving a numerically-fast solution. Newman's Unified Theory has shown good results
for slender bodies and is very efficient. This theory combines the two-dimensional flow
around a hull section with the three-dimensional flow around a slender body in a

matching region where both are valid. The full three-dimensional solution is then
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realized as a two-dimensional potential with an interaction coefficient to account for the

radiation of waves from the full hull.

1.2 Literature Review

The literature search revealed a number of general articles on pusher tug-barge
systems but a very limited amount of theoretical and experimental work. The search
encompassed the COMPENDEX database as well as the older indices of engineering and
scientific journals. In addition two local naval architecture firms, Polar Design and

Robert Allan Ltd., were consulted for further information.

1.2.1 Experimental Work

Experimental work has been carried out at the David W. Taylor Naval Ship
Research and Development Center in Bethesda, Maryland. One report "Experimental
Research Relative to Improving the Hydrodynamic Performance of Ocean-Going
Tug/Barge Systems" was published in four parts. Only parts 1, 2 and 4 were located. In
part 1 Rossignol (1974) describes the selection and design of three types of pusher tugs;
one with a rigidly connected tug/barge system and two with pin-jointed connections (one
single screw and one twin-screw). In part 2 Rossignol (1975a) details the propulsion
tests which were carried out using the models. In part 4 Robinson (1976) summarizes the
results of the previous reports. Most seakeeping results presented in this report were for
speeds of 16 - 18 knots although a zero speed case is mentioned. At 16 knots the rigidly
connected system behaved similarly to a conventional ship and achieved its highest

connection forces in the vertical direction. Testing at the same speed showed that the
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pinned cases relieved the vertical forces but accentuated the longitudinal forces.
Robinson also used a computer program to predict the vertical force and motion response
in the pinned case. This program evaluated the hydrodynamic and hydrostatic forces of
each model separately with the only coupling being the vertical forces and corresponding
moments at the pin connection.

Rossignol (1975b) also conducted experiments with four flexibly connected
barges (1/10 scale models of 200 ft. barges). Each pair of barges was joined by
connectors permitting nearly complete relative pitch freedom and some relative heave but
virtually no relative yaw, sway or roll freedom. The model tests were conducted for both
the zero speed case in regular waves and for the forward speed problem in calm water.
The most severe condition was observed at a 120° heading. All other headings showed
very little barge motion or connector bending.

Donald Brown of Barge Train Inc. (1977) developed a computer program to
define the dynamic response of a flexibly connected barge train. He expanded the
hydrodynamic strip theory work of Salvessen, Tuck and Faltinsen (1970) to include
elastically and kinematically coupled dynamic elements. The results include the pitch,
heave, surge, sway, yaw and roll displacements and the forces in the connectors.

G. Van Oortsmerssen (1979), "Hydrodynamic Interaction between Two
Structures, Floating in Waves", used experimental and computational results to analyze
the hydrodynamic effects of two structures floating close to each other. The
experimental results showed that the interaction effects on the hydrodynamic reaction
forces become more significant as the structures were moved closer together. This could

be shown as an oscillation of the added mass and damping coefficients about the single



Chapter 1: Introduction

structure results. The interaction effects were present throughout the frequency range
and were more pronounced for horizontal than for vertical motions. These results were

verified computationally.

1.2.2 Theoretical Work

The only closely related theoretical work found was by J. Bougis and P. Valier
(1981). They computed the forces and moments in the rigid connections of an ocean
going tug-barge system by using a three-dimensional hydrodynamic theory. These
results were then successfully compared to the experimental results of Rossignol (1975).

The solution of the coupling forces between the tug and barge requires a fast and
efficient three-dimensional solution method which will yield the hydrodynamic coupling
terms between the two hulls. Unified slender body theory, first proposed by Newman
(1978) in "The Theory of Ship Motions", derives the three-dimensional potential flow
solution for a slender hull by using a matching function. The matching function provides
a three-dimensional interaction between the two-dimensional solutions along the hull to
give a full three-dimensional solution. "Strip theory" is used to find a near-field potential
solution for the body while the slender body method gives the far-field potential. In
"The Unified Theory of Ship Motions" (1980) Newman and Sclavounos expand this
method for the heave and pitch motions of a slender ship moving with forward velocity
in calm water. Newman and Sclavounos develop the matching function using a Fourier
transformation of a "translating-pulsating” source. They include results for a Series 60

hull and a prolate spheroid with no forward velocity along with some forward speed
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cases. Most results show excellent agreement with experimental and other three-
dimensional solutions.

J.H. Mays' Ph.D. Thesis "Wave Radiation and Diffraction by a Floating Slender
Body" (1978) deals specifically with the zero-speed case of unified slender body theory
and includes results for non-symmetrical bodies. Mays compares results for several
prolate spheroids of varying length to beam ratios with the three-dimensional results of
other researchers as well as with the results for both strip and "ordinary" slender body
theory.

The zero-speed case is also covered by P.D. Sclavounos; "The Interaction of an
Incident Wave Field with a Floating Slender Body at Zero Speed” (1981). Sclavounos
extends Newman's unified slender body theory to solve the diffraction potential as well
as the heave and pitch conditions. He provides results for the vertical hydrodynamic
force distribution and the heave and pitch added mass and damping coefficients for a
Series 60 hull. The exciting forces and moments are also calculated using both the
diffraction potential (to obtain the pressure on the hull) and Haskind's relations.
Haskind's relations agree well with the pressure force integration around the hull surface.

Many papers relating to potential flow theory were also reviewed. Newman has
published many articles leading up to the development of unified slender body theory.

Other papers of interest included those by Salvessen et al (1970) and Sclavounos.

1.2.3 General Work
Yamaguchi (1985) discusses the installation of the Articouple system on pusher

tug-barges in Japan. This system allows relative pitch between the tug and barge and at
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the time of the article had been in use for twelve years with great success. The couplers
for the tug-barges have been built in two forms: one for harbour work with a design wave
height of 3 to 3.5 metres and one for open ocean work with a design wave height of 7.5
metres. Yamaguchi also includes a summary of the load analysis formulae.

Many books are available on the history of tugs; Brady (1967) provides a very
general history including the development of the early pusher tugs. A general history of
large tug/barge systems is provided by C. Wright (1973). He includes a list of ocean
going unmanned tug/barge units. The International Tug Conventions yielded several
related articles on pusher tug systems. Dr. H. H. Heuser (1970, 1976,1982) covers push-
towing on German inland waterways, while L. R. Glosten (1967, 1972) details his SEA-
LINK design. Boutan and Colin (1979) discuss coastal and ocean-going tug/barges;
Stockdale (1970, 1972) examines hinged and articulated ships and Teasdale (1976)
examines a probabilistic approach to designing a push-tow linkage.

Other sources of general information on push-tow systems included the National
Ocean-Going Tug-Barge Planning Conference (1979) which provided both a summary of
linkage systems for pusher tugs and a list of related articles on push-towing. Several

other articles are also listed in the bibliography.
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Theoretical Derivation

2.1 General

Potential flow theory has been used for many years to describe the motions and
loads on slender bodies such as ships. The theoretical work in this section builds on
previous work by extending Newman's unified slender body theory for a ship at zero
forward speed to a hinged ship (the tug-barge system). The objective is to produce an
efficient and accurate method for predicting the vertical forces on the coupling between
tug and barge. These forces are dependent on three motions; the heave, pitch and roll.
Heave and pitch are the primary motions and are easily modeled using potential flow. It
is anticipated that in heavy seas the tug-barge system will be stationary and hence the
assumption of zero speed is acceptable. Implicit in this assumption is that the maximum
forces will occur in heavy seas.

The hull motions can be solved by applying a set of differential equations to
define the motion of the vessel. In the case of the coupled tug-barge the heave and pitch
motions of each vessel are combined to define the relative pitch between the tug and
barge. Initially the two-dimensional heave solution for each section is found; in unified
slender body theory this forms the inner solution. The three-dimensional solution for a
slender body is then found thus defining the outer solution. A matching region is
developed between the inner and outer solutions using Struve and Bessel functions. The
hydrodynamic pressure forces and moments are calculated from the three-dimensional

flow solution while the hydrostatic forces and moments are derived from the hull
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profiles. Balancing the forces and moments on each hull gives the vertical shear force
and moment about the hinge. By constraining the motion of the tug and barge to be
equal at this point the pin force can be calculated.

The following sections summarize the theoretical derivation of unified slender
body theory as described by Newman (1978), Newman & Sclavounos (1980), Mays
(1978) and Sclavounos (1981).

2.2 Unified Slender Body Theory

Physically unified slender body théory (or unified theory) solves the radiation
problem by matching the solution for the inner region with the solution for the outer
region. In the inner region the longitudinal flow gradients are much smaller than the
transverse flow gradients and the solution can be reduced to the two-dimensional (strip
theory) solution. This solution meets all the boundary conditions except the radiation
condition and is valid for transverse distances small compared with the ship length. The
solution in the outer region is valid for distances large compared with the beam where the
flow gradients are of comparable magnitude in all directions. This solution meets all the
boundary conditions except for the hull boundary condition. By combining the far-field
expansion of the inner (strip) problem with the inner expansion of the outer problem in
this matching region a complete solution can be found that is accurate at all wavelengths.
This full solution can be described as the two-dimensional solution combined with an
interaction coefficient.

Newman (1978) and Newman and Sclavounos (1980) both solve the radiation

problem with the latter article supplying comparisons to experimental results, ordinary
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slender body theory and strip theory. Sclavounos (1981) extended this work to the
diffraction problem. Results have shown the unified theory to be accurate for slender

hulls (Series 60 hulls and prolate spheroids).

K ? ny(Heave)

ans (Yaw)

(Bow)
itch) n, (Roll)
2 ng (Pitc *

A/ X
n, (Sway) ~A

1, (Surge)

Figure 2.1: Coordinate System and six modes of motion

2.2.1 Boundary Conditions

The model orientation within a Cartesian coordinate system is shown in Figure
2.1. The free surface in the undisturbed condition is taken at y = 0 and the hull is
assumed to be symmetric about the centre-plane at z = 0. The following assumptions are
made:

1. Small harmonic motions allow the theory to be linearized. i.e.

10
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D(x,y,2;0) = ¢(x,y,2)e™" @2.1)
Viscous effects are ignored.

Flow is assumed to be incompressible and irrotational.

Each mode is independent of the other modes such that

o= i"q;‘. 2.2)

i=-1

These independent potentials are defined as :

do
¢,
o,

s
0.4

Potential due to incident waves (i.e. no ship present)
Radiation potential associated with motion in surge (in calm water)

Radiation potential associated with motion in heave

Radiation potential associated with motion in pitch

Diffracted potential (Newman uses ¢,)

The deep water incident wave potential is given by

,

— E&éeky—ik(xeme-nsin 6) (23)

®

where A is the wave amplitude and O is the angle of incidence. O is measured from the x-

axis with 8 =180° representing the head sea condition.

The radiated potentials are used to solve for the motion in the respective modes

while the diffracted potential does not need to be solved. Sclavounos (1981) provides a

solution for this potential.

The fluid boundaries can be derived from the original assumptions.

1.

The three-dimensional Laplace equation defines the fluid motion:

11
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0’®  I’d  ’D _

ox? +ay2 * 0z* =0 4

Vi =

The free surface condition can be reduced from Bernoulli's equation to
yield:

-0+ g—g—q) =0 (ony=0) (2.5)

z

This equation can be rewritten as:

k __g;i’:o 2.6)
mZ

where: k =— Q.7
g

k is the wave number (or deep-water dispersion relationship). The

wavelength is A where:

2%
A== 2.8
E (2.8)

The velocity of the incident and diffracted waves is equal and opposite on

the surface of the body.

(q)o i H0 ’j)”,' =0 2.9)
The body boundary condition is defined as

o, n; =n;7, =ionr; (2.10)

where n; is the normal vector pointing out of the fluid domain and 7, is the

motion in mode j.

12
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5. The above boundary conditions require that the velocity potentials ¢;
represent outgoing waves far from the body with the fluid velocities (V®)

vanishing as y — —eo. The radiation condition takes the form

q)oc—j—;-e“"" as r — oo .11

2.2.2 Two-Dimensional Solution

The assumptions and boundary conditions (other than the radiation condition)
remain valid for the two-dimensional solution when the longitudinal flow effects are
ignored. By reducing ¢(x,y,z) to ¢(y,z) the local hull cross-section can represent the
boundary surface in the inner region of flow (close to the body). The inner region can be

defined as transverse distances small compared to the ship length.

The two-dimensional potential solution should yield a potential ¢; for each mode.
Since only heave (j=2) and pitch (j=6) are being considered and ¢, can be represented by
¢, =x¢, in the three-dimensional solution only the potential for ¢, needs to be
calculated. This potential will be described as ¢,,. The following section describes a

method of determining ¢, ; the numerical solution is contained in Appendix A.

2.2.2.1 Solution for Two-Dimensional Potential

The potential ¢,;, can be described as the integration of a line of two-dimensional
pulsating sources located on the hull surface. Figure 2.2 represents the two-dimensional
hull segment in the y-z plane with sources on half the hull. The source potentials are

solved using mirror terms above the free surface to create the correct boundary condition.

The potential of the source terms ¢y is

13
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A Free Surface

Sources

Figure 2.2 Two-Dimensional Section

¢s=lln( (z—2§)2+()’—'ﬂ)2 2)+2niek(y+r|-2y.)‘”‘|“§|
2 (-8 +(y+n-2y,)

+2j’»pCOS(p(y+n—2yf))+ksin(p(y+n—2yf)) o g
< p+E @.11)

This represents a direct source term, a propagating wave term and an integral over
the free surface respectively. The derivation of ¢ is in Appendix A.

To obtain ¢; for the full hull ¢; must be integrated around the hull section using

the source strength distribution A4; (c). The parameter c refers to the arc length around

the hull section as defined in Appendix A.
6,(:2) = [ 4,(0)05(y,2,1(c). &(c))de (2.12)
C
The numerical solution for the A,(c) is described in Appendix A.

14
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The outer expansion of the two-dimensional solution yields
0;(3.2) = }ic ;g7 (2.13)
where ©; is the two-dimensional source strength. The source strength is related to the

far-field wave amplitude; the solution is presented in Appendix A.

2.2.3 Three-Dimensional Solution

Slender body theory is used to provide an outer solution for the body while an
inner solution is derived from the strip theory results above. The outer solution meets all
the boundary conditions except for the hull itself. The asymptotic behaviour of the inner
solution in the far field and the outer solution close to the ship can be used to find a
unique solution by requiring that the two solutions be compatible in a suitably defined
overlap region. Figure 2.3 illustrates the inner, outer and matching regions for the

complete solution.

2.2.83.1 Outer Region

The outer region is the area far from the hull (at radial distances greater than the
beam) where the flow can be considered independently of the hull geometry details. In
this region the velocity potential can be approximated by a line distribution of three-
dimensional sources along the centre-line of the ship.

This line distribution can be described by :
9,=[q,(6)G(x-& y.2)dt 2.14)
L

where @, is the three-dimensional potential.

15
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Figure 2.3  Regions of Validity
Here g; is the source strength distribution and G is the velocity potential of a
"translating-pulsating" source on the x-axis at the point £, In order to match the outer

expansion of the inner solution equation (2.14) must be expanded for small kr, where

r=,/y2+zz. Newman and Sclavounos (1980 : equations 15 to 19) use a Fourier

16
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transform on both sides of this equation to solve the inner expansion of the outer solution
for the source strengths. By taking the inverse transform of this equation a linear

operator L(g;) is obtained such that :

. d

L(g;) =[Y+ﬂt]q,-(x)+%fsgn(x-i)ln(%lx-El)d—g-q,(i)d&
L

n (2.15)

— 7k [Yolklx- &)+ Ho (k-] + 24 70kl -E]) g, (E)aE

L
This corresponds to equation (2.13) in Sclavounos (1981) and can also be derived

from Newman and Sclavounos (1980 : equation 43). The inner expansion of the outer

solution transforms to :
1
(Pj(x,yaz)=qj(x)R2D_z—n"(l'*'kz)L(q/') (2.16)

in the physical x-space. R, is the two-dimensional source potential for the outgoing far-

field waves.

2.2.3.2 Inner Region

In the inner region the two-dimensional Laplace equation (2.4), the free-surface
equation (2.5) and the body boundary condition (2.10) must all hold for ¢, The general
solution of these conditions can be obtained in the form

¢;=0p+C)(x)0 5 2.17)
where @p is the particular solution and ¢; is the homogeneous solution. The coefficient

C;(x) is an "interaction” coefficient which will be solved by matching with the outer

solution.

17
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Newman (1978) shows that the homogeneous solution is of the form ¢, +¢_j
where E is the complex conjugate of ¢,.

9, =0;+C;(x)¢,+9;) 2.18)

In the overlap region where y and z are larger than the beam of the hull but less
than the hull length the potentials can be written in terms of their effective source

strengths :
¢, =0;R)p(3,2) (2.19)

Combining equations (2.18) and (2.19) gives
9,={0,+C,(x)(0, +5;)} Ry - 2iC,(x)5; Im(R,) 2.20)
By setting Im(RZD) = %(1 +kz) in the overlap region (at small k) the outer expansion of
the inner solution is _
¢;= {o 1+C,(x)o; +E;)}R2D ~iC,(x)o (1+kz) (2.21)
Matching the inner expansion of the outer solution (2.14) and the outer expansion
of the inner solution above gives
q;= {Gf +C;(x)(o; +E,7)}Rzo (2.22)
E%L(qj) =iC,(x)o; (2.23)
The outer source strength g; can be determined by eliminating C;(x) and solving

the following equation

q,-<x>—[°f*°" )L(qj)=cj (224)

21t10'j

The matching function C,(x) is determined from

18
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C (x)=1"2s 2.25)
G, +0;
2.2.4 Hydrodynamic Terms

The hydrodynamic force is found by integrating the hydrodynamic pressure
around the surface of the hull. The pressure can be found from the total potential flow
around the hull. This consists 6f the motion terms (j=2, 6 for heave and pitch) which
define the added mass and damping and the incident and diffracted wave pressures which

define the excitation force.

2.2.4.1 Added Mass and Damping

The three dimensional added mass and damping is calculated by integrating the
three-dimensional potential in equation (2.18) around the hull surface. This equates to
integrating the pressure on the hull surface for a ship experiencing steady-state small
amplitude heave and pitch motions in a calm sea. The full hydrodynamic term can be

written as:
_mzmy + i(ocg. = —imp_” nn jq)m +n;n jC ,.(x)(q)m +&72;)ds (2.26)
)

where the potential ¢, =n,0,,,. The first integral equates to the two-dimensional

added mass and damping and can be written
—~w'm® +iocl® = —iop [ nn,6,,dc 2.27)

Therefore equation (2.28) reduces to

19
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—0*my +itc; = In,.n (~0*m2 +iocP)+nC,(x)n,(2iocy )dx (2.28)
L

where equation (2.25) can be written as

L-o
Cc.=_%n (2.29)

= —
O,p +0p

Equation (2.26) can then be simplified to

—-n.c )
-0’m; +ioc; = In,.n (~0?mZ +ioc®) +n, &—’._2%(210)@” )dx (2.30)
L G+ 02

2.2.4.2 Excitation Force
The excitation force is the hydrodynamic force caused by the interaction of the

hull with the incident and diffracted waves. This force can be expressed as
F, = AX; (2.31)

where A is the amplitude of the incident wave and
X, =—iap[[n,(0,+6.,)ds (2.32)
N

This equation requires the evaluation of the diffracted potential which Sclavounos
(1981) solves. Alternately it can be simplified by using the Haskind relations

(reciprocity between the far-field waves and the excitation force). By using the body-
T : :
boundary condition 3-’—=zmnj and applying Green's theorem equation (2.32) can be
n

reduced to:
. d
X;=p] (won 00— 0, —;:zl)ds (2.33)
§

20
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Including the matching terms the excitation force can be written as:

xj=p”(imn,¢o ¢J . )dS pHC (x)(9; +¢)a¢°dS (2.34)

Sclavounos (1981) shows that this method of evaluating the excitation force

produces results very similar to those found after evaluating the diffracted potential.

F, F, F, F,

cave

Fr /1L\ A 1‘
\_ S

mBargexs mTug X
Baxze 4 ITug "2

Figure 2.4:  Force Diagram for Coupled Tug/Barge

2.3 Determination of Coupling Force

The coupling force on the hinge between the tug and barge is determined by
summing the forces on each hull and then constraining the motions of each vessel to be
equal at the hinge. Figure 2.4 represents the forces on the coupled tug-barge unit. The
lengths 1, and I, are the distances from the centres of gravity of the tug and barge

21
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respectively to the pivot point. The motions of the two hulls are described by the vector
{x)} where i=1 is the tug heave, i=2 is the tug pitch, i=3 is the barge heave and i=4 is the
barge pitch.

The force associated with each motion can be calculated by starting from the
standard assumption that:

[MYi}+[CHat+ [k Ha}={F} (2.35)

The damping [C] and stiffness [K] matrices reduce to 0 for rigid body modes and
the force {F} can be split into the pressure integration around the hulls and a vector of

the pin forces and moments. Equation (2.35) thus reduces to:

[M]{%}= { [pn, dS} +{B}F,,

(2.36)
where:
[M] for the four modes required can be written as:
[, 0 0 0 ]
0 Jplx+y?)av 0 0
V;
M=l o ™ o Pl 0
0 0 0 I p(x* +y*)av
L Vouge ) 2.37)
and
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=1 (2.38)

The mass matrix is composed of the mass and moment of inertia for each hull
while the {B} vector represents the direction and moment arm of the force at the pivot

location. The pressure integration term can be further reduced to

d
{ [pn, dS}:{_f p(g(y—yfs)+—a%)nj dS} (2.39)
N N
The gravity term in this equation represents the hydrostatic force on the hull

while the %? term gives the hydrodynamic forces. Substituting the hydrodynamic forces

described in sections 2.1.4.1 and 2.1.4.2 into equation (2.39) yields

{! pn dS} = —{!pg(y—yﬁ )n; dS}—[-mzmy +iwcg]{x}—{—imp!(¢o +0_)n, dS}

(2.40a)

or.

{I pn; ds} =—{HSKx}-[HD]{x}-{F} (2.40b)
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The coupling between the tug and barge means that the vertical motion of the
barge stern is equal to the vertical motion of the tug bow. This provides a constraint on

the vector {x} which can be used to solve for Fp,, and the hull motions.

X +xlL =x,—-x,1, (2.41a)
or:
X
x
{BY'{*t=0 (2.41b)
3
X4

For harmonic motion the {x#} term can be written as -@?{x} and equation (2.36)

can be written as:

(~w*[M]+[HD]+[HS)}{x} = {-F}+{B}F,, , (2.42)
{x}=(~w[M]+[HD]+[HS])" {{-F}+{B}F, } (2.43)

Pre-multiplying by {B}T:

{BY (~w*[M]+[HD]+[HS])" {{-F} +{B}F> } =0 (2.44)
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This can be solved for the force Fp,, at the pivot such that

_ {BY(~w’[M]+[HD]+[HS])" {F}

Pin — T 5 (2.45)
{BY' (~0*[M]+[HD]+[HS])" {B}

The application of the constraint differs from the method used by Robinson
(1976) to obtain the shear force. Robinson assumed that the hulls did not affect each
other except for the connecting pin. He solved the heave and pitch for each unconnected
hull and then repeated this computation for a unit force oscillating each unconnected hull
at the pin location. The pin force and hull motions were found by equating the motion

and force at the pin location.
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Experimental Work

3.1  General

The model testing was carried out in the towing tank at the Ocean Engineering
Centre of B.C. Research. The experiments were performed in head and following seas
with two different pivot locations in regular sinusoidal waves. The only previous work
found on pusher tug and barge units was by Rossignol (1974, 1975a) and Robinson
(1977); a brief summary is included in Chapter 1. This work was performed on purpose-
built models moving at different velocities. Although part of the report was missing no

results for the zero speed case were found.

3.2 Experimental Objectives
1. To find the loads on the coupling of the tug-barge model,
2. to find the motions of the barge and relative motions of the tug,
3. toinvestigate the effect on the pin forces of moving the coupling location,
4. to examine the effect of head and following seas on the tug-barge model, and

5. to provide a comparison for the results of the numerical simulation.
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3.3  Experimental Apparatus
1. Tug-barge model coupled together
Four Omega load cells - effective range 0 - 200 Ib. force,
Three potentiometers - barge heave and trim and pivoting of the tug,
Capacitance wave probe,
ST41B signal conditioner,
Two DT 2801 data acquisition systems (8 Channel),
Data acquisition program (ASYSTANT PLUS),

Two IBM-compatible Computers,

¥ 2 N o v o~ wN

Wave maker with a regular wave generator,

10. Towing tank : Width = 12 feet, Depth = 8 feet

34  Model Set-Up

The tug and barge models were generously lent by Robert Allan Ltd., a
Vancouver naval architecture firm. The lines plans for each model are shown in Figures
3.1 and 3.2. The waterline length of the barge model is 2.70 metres while the tug is 0.91
metres in length. The total length when coupled is 3.35 metres. The barge beam
measures (.64 metres giving a length to beam ratio of 5.234 for the coupled system.

Although a higher ratio would be preferable no other models were available.
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Figure 3.2 : Barge Lines
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Load Cell
Tug
o
Load Cell
7 .
/
\ Potentiometer Barge

Figure 3.3  Bearing Design
A bearing system was designed (Figure 3.3) to join the tug and barge. This
system consisted of a shaft with a bearing at each end. The shaft was attached to the tug
by two brackets and locked in place using set screws. A horizontal and a vertical load
cell were mounted to the bearing at each end and these were attached to the barge. A
potentiometer was inset into the starboard side of the shaft to measure the relative

pivoting of the tug.
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Wave Probe
Barge Heave
Barge Trim

Tug Trim

Port Hor. Force
Port Ver. Force
Stbd Hor. Force
Stbd Ver. Force

Pivot
Locations

ONONPAWN =

Figure 3.4 Tow Tank Set Up
The remaining instrumentation consisted of the wave probe and the heave and
pitch potentiometers for the barge. The latter two were attached at the centre of the
barge on the heave post. The wave probe was set in the water ahead and to one side of

the model to avoid reflection off the bow. Figure 3.4 is a schematic of the tow tank set

up.
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Procedure

1. The barge and tug models were individually weighted and balanced.

2. The load cells, potentiometers and the wave probe were all calibrated
individually.

3. The fully ballasted tug and barge models were set up in the tow tank. The gap
between the shaft on the barge and the foredeck of the tug was measured in
calm water conditions. Wood blocks were then cut to match this gap and the
shaft was fixed to the tug.

4. The tug-barge unit was positioned midway up the towing tank and a
sinusoidal series of regular waves was sent down the tank by the wave maker.
In order to minimize the effects of reflection data was recorded as soon as the
waves became regular; 1400 points were recorded at 50 Hz for each run. The
incident wave amplitude was kept as large as possible without sinking the
model. The frequency range was determined from the barge length - the
model was tested at wavelengths between 0.5lgsrge and 2.5/gyge.  This
corresponded to a range of 0.45 Hz to 1.05 Hz.

5. The model was tested in head and following seas.

6. The shaft mounting was moved forward on the tug and barge changing the
pivot location by 95 mm. Approximate locations are illustrated in Figure 3.4.

Steps 3 to 5 were repeated for this configuration.
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3.6  Results

The final ballasted mass of the barge was 186.82 kg (including the heave post and
bearing system). The tug mass was 10.68 kg. Both were ballasted to float with no trim.
The procedure of section 3.4 was followed for setting up the models in the tank. A small
amount of room was left around the bow of the tug and the notch to ensure that no
interference would occur. The tug beam was approximately 3/4 of the width of the notch
at the stern of the barge.

As described in section 3.4 two separate cases were considered; one with the
pivot shaft mounted as far back as possible and one with the shaft as close to the bow of
the tug as practicable. Both shaft locations are marked on the line drawings of the tug
and barge in Figures 3.1 and 3.2 respectively. The distance between the shafts is 95 mm
(slightly greater than 10% of the tug length).

The two hulls were connected and tested in both head and stern seas before the
pivot was moved forward and the tests repeated. The width of the B.C. Research towing

tank meant that certain results fell close to the natural frequencies of the tank. These
were calculated as: ®,=0.653Hz and ®,=0.924 Hz (Appendix C). These

corresponded to wavelengths of A, =1.355,.. and A, =0.677ly, .. The effect of these
frequencies was observed as an increased oscillation of the model. This effect was
reduced primarily by using wooden beaches to damp the wave motion, recording results
as soon as the generated waves became uniform and allowing the tank to settle between
runs. Some evidence of the effect of the natural frequencies was present in the slight

variations in the results.
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3.6.1 Calibration

The barge heave and the wave probe were calibrated in metres, the barge pitch
and the tug pivot in degrees and the load cells in Newtons. The loads were expected to
be small so the load cells were calibrated from 0.49 Newtons (50 grams) up to 22.3
Newtons with the emphasis on data below 5 Newtons. The measurement of the tug pivot
angle was difficult and proved to have the largest error. A regression analysis of each
curve proved that all gauges were linear. A sample calibration plot is included in

Appendix C.

3.6.2 Loads and Motions
| Data analysis for the loads and motions consisted of examining every wave for
each run. ASYSTANT PLUS, a data acquisition program used by BC Research, allows
the user to examine the data within the program or to convert the files to ASCII format.
The tug-barge data was converted and examined in both the time and frequency domains.

The ASCII format data was first run through a computer program which
converted the data from volts to the correct units based on the calibration data. The
program then determined the mean p, the standard deviation ¢ and the frequencies of
each wave. The mean was subtracted from each point to give-a wave oscillating about
zero. The mean was also checked against the results of a steady state run.

The converted data was examined in the time domain by importing each wave
into a spreadsheet and plotting it. The waves were checked in detail to confirm whether
they were regular sinusoids and to ensure that the program had correctly predicted the

frequencies and standard deviations. Standard deviations were checked by comparing the
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observed wave peaks with ¥26. Some reflection effects were evident at about 0.65 Hz
and 0.9 Hz (close to the natural frequencies of the tank noted earlier) but the results for
the motions and the vertical loads were regular sine waves in most cases. The horizontal
motions produced generally poor results; the waves were primarily irregular indicating
higher order harmonics. The horizontal measurement would represent the drag on the
hull plus the force component of the moment due to surge between the vertical centre of
gravity and the hinge point. These effects are not linear. Graphs 3.1 and 3.2 illustrate a
regular and an irregular sinusoidal response respectively.

The converted data was then examined in the frequency domain by using Fast
Fourier Transforms. The actual transform method was taken from "Numerical Recipes in
C" and used 2" points; n = 10 was chosen to give 1024 points.

The FFT results gave both the magnitude and the phase angle for each wave. In
order to compare the tug-barge motions effectively the phase angle of the wave probe
was shifted to correspond to the centre of gravity (and the centre of buoyancy) of the

barge. The phase shift was determined using the following equation:

'Y=5C

where A = 2n§ and 7y is the phase angle in radians.

As noted earlier the waves were regular sinusoids in most cases; producing a
single peak in the FFT analysis. Some waves showed higher order harmonics, especially
the horizontal forces. Graphs 3.3 and 3.4 illustrate a regular and an irregular FFT

response respectively.
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A summary of the experimental results is in Appendix C. These numbers
represent the amplitudes of each wave. They were determined using the results from
both the time and frequency domain analyses. The wave probe results were very
consistent in both amplitude and frequency; the standard deviation of the wave probe was
used to find the amplitude (+v26). The amplitudes of the other seven channels were
determined using the following formula:

A

A

where A, is the area under the FFT peak of channel i, A, is the area under the FFT from
the wave probe and  is the amplitude of the wave probe (from the standard deviation).
The phase angles of the barge heave and trim are relative to the wave probe (at the centre
of gravity of the barge) while the phase angles of the pivot angle and load cells are
measured at the pivot location. Each wave amplitude is non-dimensionalized using the
following equations from Robinson (1977).

Zpame

Barge heave:
Clee

-9 __
360 Clee

x Wave

Angular displacements:

Flg..

Forces: Cweve

Apese
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where:
Zpuge - Barge heave amplitude
Cwave : Wave amplitude

6 : Angular rotation (degrees)
Awwe : Wave length

F : Force

Ig.ge :Length of barge

Ap,ye :Displacement of barge

These non-dimensionalized values are plotted for each motion and force against

M e (- for each sea condition. The two pivot locations are compared on each graph

with the shaft location closest to the tug bow designated the front shaft. The phase

difference to the wave probe (at the centre of gravity of the barge) is also graphed.
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3.6.2.1 Heave

Graphs 3.5 and 3.6 show that the magnitude of the barge heave is almost
unaffected by the small change in the pivot location due to the large mass of the barge
versus the tug. The results are also very similar regardless of wave direction. The barge
heave at shorter wave lengths (higher frequencies) is close to the first transverse natural
frequency of the tank itself (=0.7/,,,.) and the results proved less stable. The bargg
displacement increases with the wavelength (i.e. as frequency decreases) and the heave
motion moves into phase with the wave.

The phase angles are shown in graphs 3.7 and 3.8 for each sea direction. The
barge heave and the exciting wave are in phase for wavelengths above 1.5/gage. This
corresponds to the barge rising and falling with the wave as it passes; intuitively this
would require a wavelength greater than the barge length. When the wave length is
approximately 0.5/gage the barge heave and the exciting wave are out of phase; the
barge motion is fairly steady as more than two wave peaks are under the model at this
frequency. Between these wavelengths the phase angle relationship is transformed from
out of phase to in phase. The effect of the natural frequency of the tank can be seen as an
out of phase motion for the front shaft model at a wavelength of 1.35/g,ee. Phase

results are similar for both head and stern seas.

40



Chapter 3: Experimental Work

NON-DIM BARGE HEAVE
Head Seas
17 O Pront Shaft
09 1 + Rear Shaft
E‘ 08 + [u]
<074 ?
: 0.6 &
s 0.6+ +
2 05
3 +
2 04 -
T (]
ge 0.3 - +
Mo2+4 o 5 g o
1l 4+ + *
0.1 5 &
0 + —t + + 4
0.5 1 1.5 2 2.5 3
A'Wave/ IBuge
Graph 3.5 : Non-Dimensionalized Barge Heave - Head Seas
NON-DIM BARGE HEAVE
Stern Seas
11 +
0.9 1 o
G 08 O Pront Shaft
g7 % * Rear Shah
[}
g 06 1 0
2 0.5 1 +
+
:§ 04 +
g» 031 o
= 0.2 3 + a +
a o u
oaf %0 &
0 —+ ~ ¢ + !
0.5 1 1.5 2 2.5 3

A'\VIVC / I (]

Graph 3.6 : Non-Dimensionalized Barge Heave - Stern Seas

41



Phase Angle (Deg)

Phase Angle (Deg)

200 1

150 -+

lm -+

50 1

150 T

100 1

50 1

Chapter 3: Experimental Work

BARGE HEAVE PHASE
Head Seas

+0
+3

1 1.5 2 25

A’the / lBlrge
Graph 3.7 : Barge Heave Phase - Head Seas

BARGE HEAVE PHASE
Stern Seas

C+

lWIVC / I {4

Graph 3.8 : Barge Heave Phase - Stern Seas

42

O Prou: Shaft

+ Rear Shaft

O Pront Shaft

+ Rear Shaft




Chapter 3: Experimental Work

3.6.2.2 BargeTrim

The barge trim magnitude is plotted in Graphs 3.9 and 3.10 for head and
following seas respectively. The rear shaft position gives a slightly larger trim angle than
the forward mounting at wavelengths greater than 1.5/, for both head and following
seas. This may be due to moving the bearing unit mass towards the barge stern when the
shaft is moved back. The trim angle magnitudes are very similar for both headings. The
trim angle increases steeply between wavelengths of 0.5/g,,,. and 1.5/, . before leveling
off at the longer wavelengths as the barge trim becomes a constant 90° out of phase.

Graphs 3.11 (head seas) and 3.12 (stern seas) indicate that the phase angle is
unaffected by the change in shaft position. The barge trim is approximately 180° out of
phase at wavelengths close to 0.5/gyge. In head seas this phase difference changes
rapidly to a 90° phase lag before Ay,,, reaches 0.75/gyre (in stern seas the phase
difference becomes a 90° phase lead). This phase difference remains constant as the
wavelength increases. Physically this lag (or lead) can be described as the barge rising

up the slope of the wave- the maximum slope of a cosine wave is reached at 90° or -90°.
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3.6.2.3 Pivoting

The magnitude of the pivot angle in head seas (graph 3.13) and stern seas (graph
3.14) is affected by both the wave direction and the pivot location. Moving the shaft
back results in a larger pivot angle between the tug and barge for both sea directions at
wavelengths longer than the barge length. The pivot location appears to have little effect
on the pivot angle for wavelengths shorter than this.

The head sea condition produces very small pivot angles at short wavelengths.
The pivot angle reaches a minimum in both sea directions at a wavelength of 0.6/, but
the angle magnitude in stern seas is approximately 4 times larger than in head seas. The
pivot angle in stern seas reaches a maximum at a wavelength of approximately 1.1/,,,.
while the head sea condition reaches its peak at approximately 1.5/g,,.. At higher
wavelengths the two sea conditions produce similar pivot angles. One possible reason is
that in stern seas the bluff stern of the barge is directly affected by the incident waves at
shorter wavelengths as well as the direct effect of the waves on the tug. In head seas the
barge bow presents a smoother hydrodynamic profile to the incident waves while the tug
is sheltered by the greater beam of the barge.

The phase angles in graphs 3.15 and 3.16 are measured at the pivot location
relative to the wave phase at the centre of gravity of the barge. The phase difference of
the pivot angles in both sea conditions is unaffected by the change in pivot location. The
head sea case increases from a 90° phase lead to a 150° phase lag. The stern sea results
reflect this by decreasing from a 90° phase lag to a 150° phase lead. These phase
differences can be physically described as the position of the tug on the incident wave

when the centre of gravity of the barge is at the incident wave peak.
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3.6.2.4 Horizontal Force

The horizontal forces could not be analyzed as a linear response to the wave
excitation. The force measurement showed second and higher order harmonics caused
by the surge of the tug and barge relative to each other. The total force would be the sum
of the drag force on the aft hull (i.e. the tug in head seas) and the force due to the non-

sinusoidal surging of the hulls about the pivot axis.
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3.6.2.5 Vertical Pin Force

Graphs 3.17 and 3.18 indicate that the force on the coupling is much higher when
the pivot location is moved back. The rearward mounting produces higher forces at all
wavelengths except those shorter than the barge length in head seas where the force is the
same for both pivot locations.

The wave direction is also important with stern seas producing much higher peak
forces than the head sea case. As in the pivot angle discussion the possible cause is that

in the stern sea direction the barge stern is directly affected by the wave action. The peak

force occurs at Ay, =1.2/,.. (equivalent to the total model length) in head seas and at

A

wave = lpage iN stern seas. A minimum force occurs at Aere = 0.6/, for both wave
directions and pivot locations. The force in stern seas at this wavelength is
approximately 4 times larger than the force in head seas (at the rear shaft position).
These results are similar to the pivot angle results in section 3.6.2.4. At wavelengths
longer than 2/, .. the stern and head seas both produce similar forces.

The phase angles are measured at the pivot with respect to the incident wave at
the centre of gravity of the barge. The rear shaft position has a lower phase difference

than the forward shaft location at all tested frequencies. This difference is expected due

to the distances between the shafts. It is about % in magnitude where d is the distanée

between the pivot locations.
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3.7  Conclusions

The vertical loads on the coupling between the tug and barge are affected by both
the pivot location and the wave direction; if the pivot point is moved back on the tug the
forces increase. The pivot angle also increases as the pivot location is moved rearwards
but the barge heave and trim are almost unaffected. This can be attributed to the much
larger displacement of the barge than the tug.

The pin forces are highest in stern seas at wavelengths slightly greater than the
length of the barge. The head sea case produces a maximum pin force at wavelengths
close to the barge length. This force may be lower than the stern sea result because of
the sheltering effect of the barge beam on the much smaller tug in head seas. The pin
forces are proportional to the pivot angle between the tug and barge with the pin forces
increasing with this angle. The pivot angle in the stern sea condition is much larger than
in head seas at wavelengths less than 1.5/g,pe. The barge heave and trim are similar in
both sea conditions.

The phase angles describe the relative position of the barge and tug to the incident
wave at the centre of gravity of the barge. The phase angles of the pin forces reflect a
slight change when the shaft is moved rearward (as expected) but no effect is seen on the
phase of the pivot angles.

The principal aim of these experiments was to provide a basis for comparison of
the theoretical work in Chapter 2. Chapter 4 describes a numerical application of the

work in Chapter 2 and compares it to these experimental results.

53



Chapter 4

Numerical Solution

4.1 General

The numerical solution of the potential flow theory was written in the language
C++ on a personal computer. C++ is an Object-Oriented Prograrﬁxning language which
allows the user to write compact code which can be easily modified. The numerical
solution follows the theoretical derivation in Chapter 2.

The full solution for a single vessel involves discretizing the hull into several
two-dimensional sections. The potential and velocity flow are found around each section
allowing the far-field source strength o, to be determined. These far-field source
strengths are then used to determine the three-dimensional source strengths g; and an
interaction function Cj(x) thus defining the unified solution. The three-dimensional
hydrodynamic and excitation forces are calculated with this interactibn function.

Results show that both the two and the three-dimensional solutions for the
hydrodynamic forces agree with experimental and previous results. These forces are
combined with the hydrostatic forces and masses for the tug-barge system to solve for the
vertical force on the coupling. Two cases are considered; the first assuming no
interaction between the two hulls, and the second assuming an interaction effect between
the two hulls. The first case follows the previous work of Robinson by solving the
hydrodynamic terms for each hull separately. The second case combines the two hulls as
a single hinged unit and solves the hydrodynamic terms by including the interaction

between the two hulls.
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4.2 Two-Dimensional Results

The numerical solution of a symmetric two-dimensional hull section uses
pulsating sources located on a line segment describing the hull profile. Integrating the
potentials of these sources around the hull solves the two-dimensional potential (for the

heave mode). This determines the far-field source strength G, and the added mass and

damping for each section where
63 ==i2{lim ¢, )e¥e™ @.1)
and
—my +iwc, = —iop[[ nn6,ds 4.2)
s
The numerical solution for these terms is derived in Appendix A.
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Graph 4.1 : Far-Field Wave Amplitude A,
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The far-field wave amplitude A, is related to the source strength G,, by
Ap =2%02D. Graph 4.1 compares the calculated results for A, to those of Vugts

(1968).

The added mass and damping predictions of the code are compared with the
corresponding charts by Bhattacharya (1978). Graph 4.2 and Graph 4.3 show the non-
dimensionalized added ﬁlass and damping respectively plotted against non-

dimensionalized frequency for a beam to draft ratio of 2.0 and a section coefficient of

B, =0.8. The factors for non-dimensionalizing the added mass and damping are

2b

my
c= 43
p§B° @
3.2D
a= |2z (4.4)
Pg

A further comparison of these results was made to the strip theory results
obtained by Newman for the same hull. In his paper on Unified Slender Body Theory
(1979) Newman compares strip theory and unified slender body theory with
experimental results obtained by Gerritsma (1966). The strip theory results are
integrated around the hull and compare very accurately with those of Newman. The

heave, pitch and coupled added mass and damping are shown in graphs 4.4 to 4.9.
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4.3  Three-Dimensional Results

The numerical model for a single vessel uses Simpson's method to integrate an
odd number of equally spaced two-dimensional hull profiles along the hull. Appendix B
details this integration using equation (2.22) combined with the sectional far-field sburce

strength G,;, to find the three-dimensional source strengths ¢, Equation (2.22) is

repeated here

q,<x)_(<;t & )L(qj)ﬂ, @3

where :

L(g,) =[x +milg,(x)+4 [ sgn(x-E)n(2kx-E) S q, (E)
. ¢ % (4.6)

= kJ Yokl -] + Ho(klx-€)) + 2.7, (klx-E)) ], (E)a
Due to the slender body assumption the two end terms are assumed to have source

strength values of 0. The interaction function Cj(x) is determined from equation (2.29)

q,
C.= » ~ O

j D —~—————
O;p+0;p

4.7

This allows the calculation of the hydrodynamic and wave excitation forces using a form
of equation (2. 18)
Q;=nd,p+ "1Cj(x)(¢2n +E) (4.8)

The hydrodynamic force equation (2.30) is

~o?m, +ioe, = [nn (~02m +i0cR) + 1, LT (2i0ck) dx 4.9)
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and the excitation force comes from equation (2.34)

X;= pj] (imnjq)o ¢, an )dS P_” (x) d:p +¢2D) a% das 4.10)

where Xj is the excitation force due to a unit amplitude wave. The excitation force is the
only force that is dependent on the incident wave angle.

The results for this application of unified slender body theory match the three-
dimensional results of both Newman and Mays (as well as the experimental results of
Gerritsma included by Newman). Graphs 4.4 to 4.9 plot the added mass and damping
results for the heave, pitch and coupled heave-pitch modes of a Series 60 hull with a
block coefficient of 0.70. Graphs 4.10 and 4.11 plot the excitation force and moment
respectively on the same hull in head seas against the experimental values found by
Vugts (1971). Graphs 4.12 and 4.13 show ihe excitation force and moment in bow seas.
The results of Sclavounos (1981) for the Haskind relations are identical.

The coupled heave-pitch terms must be symmetric by definition. Both of these
terms were evaluated to determine the numerical error. The following equation was

used:

tt;

t. —t\s
error =] +—— |x100% 4.11)

This error proved to be negligible for all cases.
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44  Coupled Tug-Barge
The vertical pin force and the corresponding motions of the tug and barge are

obtained by solving equation (2.45).

_ {BY (-e?[M]+[HD]+([HS)" {F}

o = 7 —~ 4.12)
{B}' (-w*[M]+[HD]+[Hs])" {B}
where
-1
._Il
{B}= )
-1 (4.13)

The mass and hydrostatic matrices are independent of the coupling between the
tug and barge. The hydrodynamic terms consist of the added mass and damping and the
excitation force which all depend on the interaction between the two hulls. Two cases
can be considered for calculating these hydrodynamic forces :

Case 1: The forces can be calculated independently for each hull assuming no

interaction with the other hull

Case 2: The forces can be calculated for a hinged system assuming some

interaction between the two hulls.

The former case has been solved by Robinson (1977) for models moving at a

scale speed of 16 knots. No literature has been found on the latter case.

4.4.1 Case 1: Separate Solution
For Case 1 the hydrodynamic forces are calculated exactly as for a single hull so

that a (2x2) hydrodynamic matrix and a (1x2) excitation force vector are found for both
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the tug and barge. When the two hulls are combined in equation (4.12) the

hydrodynamic matrix is of the form

-0’ my® +icy®d -0 my® +incy® 0 0

[HD] = —-0’mg® +iwch® —0*my® +incy® 0 0
0 0 -0’mE™ +incE™  —-0’mp™ +incy™
0 0 -2 My +incy™  -0’mp™ +incg™

4.14)
where the added mass and damping are solved by equation (4.9) for each hull. The
excitation forces are solved using equation (4.10) for each mode.

Numerically the stern of the barge is difficult to model using slender body theory
due to the transom stern and notch. The numerical application of unified theory assumes
that the source strength at each end of the hull is zero but the wide stern profile would
obviously produce a non-zero source term. The stern of the barge i; treated as rounded
with the last station forced to a zero source strength. This simplification is not expected

to affect the results greatly.

4.4.2 Case2: Combined Solution
For Case 2 the mode shapes used to calculate the three-dimensional sources in

equation (4.5) are set up as

1 if Z<x<d® je ontug
Mode 1 =

0 if x>3% j.e. onbarge

x if -:%"—st%’- i.e. ontug
Mode 2 = ) Lne

0  if x>3* i.e. onbarge
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0 . —Lyege .
Mode3={ - -1f X<—¥ i.e. ontug
1 if B=cx<™ je. onbarge
M
Mode4={ -Llix<—i-;'xc on tug
X if 5= <x<-3* i.e. onbarge

These four modes are the same as for the Case 1 model except that the coupling
terms between the tug and barge can be calculated using the interaction coefficient Cj(x).
Equation (4.9) is used for the three-dimensional added mass and damping for the Case 2

model with one modification. The coupling terms between tug and barge (i.e.

-w’m, +itc,, - tug heave coupled with barge heave) are determined from the

n‘.—i:—(Zimc;D)dx term.  This produces a complete (4x4) symmetric
7 O,ptO0Ow

hydrodynamic matrix. The interaction terms for the excitation force in equation (4.10)

are also evaluated in this manner.

4.4.2.1 Numerical Model

The combined tug-barge model uses 41 equally spaced sections to allow a
Simpson's integration along the hull. Figure 4.1 illustrates the complete model (not to
scale) with the individual sections marked. Sections 0 and 40 are modeled as sections
having no beam - the source strengths are assumed to be zero at each end. Section 8 is
the intersection between the tug and barge and is built as a tug section while section 9 is
built as a barge section.

The actual hinge between the tug and barge allows the tug to pivot inside a notch

at the rear of the barge. The computer model of this hinge was achieved by breaking the
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model at station 8. The tug mode shapes are then defined from station O to station 8 and
the barge mode shapes from section 9 to section 40. Although this results in the loss of
the bow of the tug a comparison of the hydrodynamic matrices and of the excitation force

vectors for the two separate models proves this to be a reasonable assumption.

\
? )

01 89 40

Figure 4.1 Overview of Tug-Barge Sections

4.5 Coupled Tug-Barge Results

The results for the tug-barge system consist of the vertical shear force at the pin,
the barge heave and pitch and the tug heave and pitch. As all results are complex
numbers the phase angles can also be determined. The experimental results of Chapter 3
replace the tug heave and pitch with the pivot angle between the tug and barge while the
phase angles are determined from either the wave or the FFT analysis. In addition the
experimental results are evaluated with the incident wave at the centre of gravity of the

barge. This is replicated in both numerical models within a global coordinate system.
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4.5.1 Barge Heave

The numerical results for the barge heave are presented in Graphs 4.14 and 4.15.
These graphs compare the results for the Case 1 and Case 2 tug-barge models with the
experimental results of Chapter 3. The magnitude of the heave predicted by both
numerical models is very similar. The experimental results in this range are not ideal due
to the proximity of the natural frequency of the tank at A, =0.677f,.,. Both models
correctly predict that the change in pivot location will have little effect on the heave in
either head or stern seas. The calculated heave motion in both sea conditions is less than
expected.

Graphs 4.16 and 4.17 show the phase difference The results for the two models
are very accurate in both head and stern seas. As expected the change in pivot location

does not affect the phase angles.
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4.5.2 Barge Trim

The barge trim in head and stern seas is plotted in Graphs 4.18 and 4.19
respectively. Both numerical models are virtually unaffected by the change in pivot
position for either head or stern seas. As suggested in Chapter 3 the experimental
variance in the barge trim may be due to moving the bearing assembly.

The numerical models both underpredict the magnitude of the barge trim in head
and stern seas. The uncoupled (Case 1) model calculates a slightly larger trim magnitude
in both sea conditions.

The phase anglés are accurately determined by both the Case 1 and Case 2

models. These results are plotted in graphs 4.18 for head seas and 4.19 for stern seas.

72



Non-Dim Barge Pitch

Non-Dim Barge Pitch
o
(-}

Chapter 4: Numerical Solution

NON-DIM BARGE PITCH
Head Seas

127

—
+
T

=)

o0
+

o

N
IS

e
&

0.5 1 1.5 2 25 3
A'Wuve / lBuge
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4.5.3 Pivot Angle

The numerical pivot angle is obtained by subtracting the complex trim of the tug
from the complex trim of the barge. The results for head seas are plotted in Graph 4.22
and for stern seas on graph 4.23. Both graphs reflect the increase in the pivot angle
which occurs when the pivot location is moved rearward.

In head seas (Graph 4.22) the short wavelength results agree very well up to
lzlsm. At longer wavelengths both models underpredict the pivot angle with the
coupled model (Case 1) producing a larger angle. Comparing the pivot angle to the
barge trim in Section 4.4.3.2 suggests that the tug trini is considerably underpredicted in
the Case 2 model. The numerical simplification of splitting the tug and barge at the
barge stern adds the tug bow to the barge. This reduces the added mass and damping of
the tug which reduces the calculated trim at longer wavelengths (due to the higher added
mass at long wavelengths; see graph 4.4).

In stern seas (Graph 4.23) the Case 1 model again calculates a higher pivot angle
than the Case 2 model although both still underpredict this angle. Neither model predicts
the saddle point at A =0.6/;,_.. The numerical models do show a steeper rise to the
maximum pivot angle in stern seas but not as steep as the experimental results. The
models do predict a slightly larger pivot angle in stern seas than in head seas in
agreement with the experimental trend.

Both the Case 1 and Case 2 models predict the phase angles correctly. The results

are plotted in graphs 4.24 for head seas and 4.25 for stern seas.
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4.54 Pin Force

The vertical force at the pivot location is plotted in Graph 4.26 for the head sea
condition and Graph 4.27 for the stern sea condition. The effect of the change in pivot
location is well represented by both numerical models in both sea conditions with the
Case 2 model showing an improvement at shorter wavelengths. At the saddle point

(A =0.6ly_.) the coupled model illustrates that the pivot location has less effect on the

force calculation.

4.54.1 Head Seas

In head seas the Case 2 (coupled) model predicts the pin force well at
wavelengths shorter than /;, . and at wavelengths greater than 2/,,... The saddle point at
A=0. 61,3“3e is well defined. The Case 2 model does not predict the magnitude of the
peak force although the rear shaft location does peak close to the correct wavelength.
The front shaft location shows almost no peak for the Case 2 model. The trend of the
numerical pin force is similar to the experimental results; the lower pin force is
reasonable since the hull motions are underpredicted in this wavelength regime.

The Case 1 model overpredicts the force at short wavelengths with the saddle
point at A = 0.6/;__ occurring at a lower wavelength and a much higher force. As the
wavelength increases the pin force decays more quickly for the Case 1 model than for the
experimental results. As a result the Case 1 model underpredicts the force at longer

wavelengths. The magnitude of the peak pin force is slightly larger than the

experimental magnitude.
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4.54.2 Stern Seas

The stern sea condition for the Case 2 model produces very similar results to the
head sea condition. The saddle point at A = 0.6/, is again predicted; the Case 2 model
calculates a slightly higher force than in head seas - this force is very close to the
experimental force. The forces at short and long wavelengths are similar to the
experimental results but the peak force is much lower than the experimental force. The
peak force predicted by the Case 2 model in stern seas is slightly higher than in head
seas. As in the head sea section these results are reasonable due to the underprediction of
the hull motions.

The Case 1 model appears to predict the magnitude and trend of the force more
accurately than the Case 2 model in stern seas. The front shaft results match the
experimental forces at all wavelengths except close to 0.6/5,,,. where the saddle point is
not predicted. The pin forces calculated for the rear pivot location miss the saddle point

and are lower than the experimental forces at longer wavelengths.

4.5.4.3 Phase Angles

The phase difference is plotted in Graphs 4.28 and 4.29 (head and stern seas
respectively). The Case 1 model reproduces the phase difference between the front and
rear shaft locations as the wavelength increases. The Case 2 model does not predict this
phase difference at longer wavelengths. At longer wavelengths the Case 1 model leads
the experimental results slightly while the Case 2 model lags these results.
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4.6  Coupled Hydrodynamic Terms
The coupling terms for the added mass and damping predicted by the fully
coupled (Case 2) model are contained in graphs 4.30 and 4.31 respectively. All terms are

normalized using g; = fi where ¢ represents either the added mass or damping. The

term ‘cross-coupling' will be used to denote the terms referenced by the subscripts '13',
'14', '23" and 24'. In the Case 1 model these are assumed to be zero. The '12' and '34'
coupling terms represent the coupled heave-pitch terms for the tug and barge
respectively. The Case 1 and Case 2 models produce similar results for these coupling
terms with some minor differences due to the removal of the tug bow for the Case 2

model.

4.6.1 Added Mass

The added mass terms are shown in graph 4.30. The '12' terms and '34' terms are
shown as solid lines while the terms coupling the tug and barge are shown as broken
lines. The normalized tug-barge cross-coupling terms are of the same order of
magnitude as the '12' and '34' terms. As the wavelength increases the tug heave-barge
pitch (m,,) term becomes larger while the other three tug-barge coupling terms decrease
towards the magnitude of the barge heave-pitch term. At short wavelengths the tug
pitch-barge pitch (m,,) term is the most dominant of the cross-coupling terms. The barge
heave-pitch terms do not vary much with the wavelength and are consistently small. The
tug heave-pitch term (m,,) is also fairly constant with the wavelength. It is the largest

coupling term; almost twice as large as the m,, term at long wavelengths.
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4.6.2 Damping

The damping terms are plotted in graph 4.31. The tug heave-pitch term (c,,) is
the largest coupling term while the barge heave-pitch term (c,,) is the smallest. Both of
these terms remain relatively constant at all wavelengths. All four cross-coupling terms
increase with the wavelength. At longer wavelengths the tug pitch-barge pitch (c,,) and
tug heave-barge pitch terms (c,,) become the dominant terms approaching the magnitude

of the c,, term.

&3



Chapter 4: Numerical Solution

ADDED MASS COEFFICIENTS

0.2 T
01-'-----.-----'""""--------...... -----
2] ...-.. ...-...‘-. e " ;. _ee=mwe®"" et : ..—- —._ —
g o i = —
- s — -
g -0.1 4 ,’— \\\ - -
< — - S
E -0.2 T, - = \N\\
a O \s\\
3 -
& S ————
2 03 - -
-04 --/\
-0.5 -+
0.5 1 1.5 2 25

)\'Wave / IBu‘ge

Graph 4.30 : Non-Dimensionalized Added Mass Terms

NON-DIM DAMPING

......
aw

----

-ee"

-—— e gy

- w e =

A'ane / IBuge

Graph 4.31 : Non-Dimensionalized Damping Terms

84

-—— -y

- = o =gy

— —




Chapter 4: Numerical Solution

4.7  Discussion

The results of the two numerical models indicate that the motions of each hull are
underestimated. This suggests that the unified slender body theory is not calculating the
motions of the hulls accurately. The assumption of slenderness is inaccurate for both
hulls; the length/beam ratios are 3.86 for the tug and 4.22 for the barge. The Case 2 hull
is marginally better with a ratio of 5.2. The slenderness ratio for the unified theory
should be greater than 10. Additionally the unified theory assumes a deep water
approach to the problem while the experimental results may be slightly amplified by the
tow tank walls.

Both the Case 1 (uncoupled) and Case 2 models produce similar results for the
barge heave while the Case 1 model predicts a slightly larger barge trim than the Case 2
model. Numerically the two barge models are very similar. The numerical solution of
the barge stern in Case 1 requires that the last section have a source strength of zero
corresponding to a rounded stern; in Case 2 this last section is assigned to the tug.
Additionally the barge has a much larger mass than the tug and dominates the motions.
The smaller barge trim in Case 2 is probably due to the presence of the m,, and m,,
cross-couplin$ terms.

The pivot angles are also underestimated by the numerical models. These angles
represent the difference in the pitch of the tug and the pitch of the barge. The unified
theory therefore appears to underpredict the tug motions as well. The smaller angles
calculated by the Case 2 model result from the numerical simplification of the
intersection between the tug and barge. The bow of the tug is removed and included as

part of the barge. The resultant tug model is reduced by 20% in length (0.91 metres to
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0.73 metres) due to the inclusion of its bow with the barge. This reduces the added mass
and damping which has a direct effect on the tug motions.

In head seas the vertical pin forces are overestimated by the Case 1 model and
underestimated by the Case 2 model. In stern seas the Case 1 model appears to be
accurate at wavelengths greater than 0.6/, while the Case 2 model is still too low. As
the unified theory is calculating smaller motions than expected the pin force should also
be correspondingly lower. This suggests that the coupled model is more accurate and
that the cross-coupling terms are important. This is confirmed by graphs 4.30 and 4.31.
The cross-coupling terms may even be overpredicted at the longer wavelengths as the
Case 2 model overpredicts the forces in this region while the Case 1 model underpredicts
the forces. The larger experimental forces in stern seas may be due to the bluff stern of
the barge and the hydrodynamic excitation of the tug in direct seas. The Case 2 model is
unable to predict the rapid section change at the intersection of the tug and barge and
models this area as a smooth slope due to the use of Simpson's method to integrate along
the hull. This discontinuity in the hull combined with the bluff face presented to the
waves in stern seas means that the unified theory will be unable to accurately predict the
pin forces in stern seas. The hydrodynamic forces at this junction appear to outweigh the

advantages of including the coupling terms in stern seas.
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4.8  Summary

The numerical solution to the full three-dimensional flow problem was encoded
and tested successfully against known results. The hydrodynamic terms (added mass,
damping and the excitation force) all agreed with the results of Newman and Sclavounos.

The tug-barge unit was built numerically using two different cases. Case 1
assumed no hydrodynamic interaction between the hulls while Case 2 assumed the two
hulls affected the hydrodynamics of each other. These two cases were compared to the
experimental results in Chapter 3.

The effect of altering the pivot locations posed no problem for either the Case 1
or the Case 2 models. Both models underestimated the vessel motions in head and stern
sea conditions. The Case 2 model predicted even smaller motions for the tug due to the
missing bow section. The peak pin forces were underestimated by the Case 2 model and
overpredicted by the Case 1 model. The underpredicted pin force is more reasonable as
the motions are underpredicted. The cross-coupling terms can therefore be considered as

significant.
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Conclusions and Recommendations

5.1 Conclusions

5.1.1 Theoretiéal Results

A new approach was derived to calculate the pin forces on a pusher tug-barge unit
where the tug and barge are free to pitch relative to each other. This method relied on
either a separate solution for the hydrodynamic forces on each of the two hulls or a full
solution for the tug-barge unit treated as one hull. Unified slender body theory, a three-
dimensional solution method derived by Newman, was chosen for its speed and
applicability to the numerical problem.

The main advantage of the unified theory is the interaction coefficient :

L-oy,
O;p+0,p

where C; links the two and three-dimensional solutions. This coefficient allows the
calculation of the off-diagonal terms in the hydrodynamic matrix. The off-diagonal
added mass and damping term can thus be determined from the term
I"“ -—qi—-_=(2iwc§2D)dx while the excitation force term includes a similar factor for the
1 ' O, +0y

force on the other hull.
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The vertical forces on the connecting pin are determined by balancing the forces
on each hull and then applying the constraint that the motion of the two hulls at the pin

must be the same. The resulting formula for the pin force is

_ {BY(~*[M)+[HD]+[HS)) " {F}

o =~ - (2.45)
{BY (-0*[M]+[HD]+[HS])" {B}

where {B} is the constraint vector on the hull motion, [M] is the mass and inertia matrix,
[HD)] is the hydrodynamic matrix, [HS] is the hydrostatic matrix and {F} is the excitation
force vector. The vector elements représent the linearized tug and barge motions. This
formula is valid for the pin force regardless of the theory used to determine the

hydrodynamic terms.

5.1.2 [Experimental Results
The tug-barge model was tested in head and stern seas in the towing tank at B.C.
Research. The barge heave and pitch motions and the relative angle of the tug were
measured as well as the vertical and horizontal forces at the pivot locations. Two
different pivot locations were used to determine the effect of shifting the connecting pin.
The effect of altering the pivot location can be summarized as:
1. Moving the pivot location back towards the centre of gravity of the tug
increases the relative pivot angle and the vertical pin forces.
2. The barge heave is unaffected by the location of the pivot. This can be
attributed to the much greater mass of the barge.
3. The barge trim increases slightly at longer wavelengths when the pivot

location is moved rearwards. This may be the combined effect of moving the

89



Chapter 5: Conclusions and Recommendations

bearing system mass rearward and the altered moment of inertia due to the
new axis of relative pitch for the tug. ‘
The phase angle difference between the rear and front pivot locations for the

vertical force corresponds approximately to the distance the pivot was moved.

The results in head and stem seas lead to the following conclusions:

1.

The horizontal pin forces are non-linear. They are a combination of the drag
on the aft hull (the tug in head seas) and the moment created by the surge of
the hulls about the pivot.

The pivot angle peaks at a lower wavelength in stern seas than in head seas.
The barge trim is virtually unaffected by the heading so the tug trim must be
greater in stern seas. This is probably caused by the direct effect of the waves
on the tug in stern seas as well as the wave action against the bluff stern of the
barge. When the model is in a head sea condition the tug is sheltered by the
greater beam of the barge.

The vertical pin force is affected more by the pivot angle than the heave and
trim of the barge regardless of sea direction. Although the tug heave is not
measured the tug motions are expected to affect the pin forces much more

than the barge motions. This is due to the greater weight of the barge.

The peak vertical pin force occurs at Ay, =1.2/,,. in head seas and at

A

Wave

=y 1D stern seas. The peak forces are also larger in the stern sea

condition. This agrees with conclusions 2 and 3.

The phase angles are unaffected by the change in sea direction as expected.
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5.1.3 Numerical Results

Two models were compared with the experimental data; one model (Case 1)

evaluated the two hulls separately (following previous work) while the other (Case 2)

combined them as a single hinged hull. The numerical models replicate the experimental

model as closely as possible.

1.

The assumptions of linearity and of the independence of each mode are
reasonable for both models.

The assumption of slenderness is not met by either the separate models or the
combined hull model.

The numerical models both under-estimate the motions of the hulls. This may
be due to the deep water assumption of the unified theory. Reflection off the
tow tank walls may have increased the experimental motions of the models.
Additionally the lack of slenderness of the hulls may also reduce the motion
prediction. The relatively small size of the models suggests that viscous
forces may have a minor effect.

The calculated magnitudes of the barge heave and trim are very similar for
each model because the numerical barge models are very similar in each case.
The pivot angle is calculated more accurately by the Case 1 model at longer
wavelengths. The Case 2 model is very poor in this wavelength regime
indicating a poor prediction of tug pitch. This is caused by the missing bow
section on the Case 2 tug model which thus decreases the added mass and
damping as well as the excitation force.

The excitation force is similar in magnitude for the Case 1 and Case 2 models.
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7. Both models predict the effect of altering the pivot location.

8. The peak pin force is under-predicted in both head and stern seas by the Case
2 (coupled hull) model. The lower forces are related to the lower motions
calculated for the Case 2 model. At longer wavelengths the cross-coupling
terms may be over-estimated resulting in the prediction of a higher pin force.

9. The pin force calculated by the Case 1 model is too high in head seas and
close to the experimental results in stern seas. The Case 1 model does not
predict well at short wavelengths. The small motions predicted by the Case 1
model should produce a lower pin force than the experimental results.

10. The cross-coupling terms are significant in magnitude especially at longer
wavelengths. The pin forces at longer wavelengths are over-predicted by the
Case 2 model and under-predicted by the Case 1 model. Therefore at long
wavelengths the cross-coupling terms may be over-predicted.

11. The phase angles agree very well with the experimental results for the vessel
motions. The pivot angle phase for the Case 2 model is inconsistent at longer
wavelengths in head seas but is otherwise acceptable. The Case 1 model is
consistently accurate.

The results suggest that the inclusion of the cross-coupling hydrodynamic terms
in the Case 2 model is an improvement. The model suffers from certain simplifications
due to the inclusion of the tug bow as part of the barge and to the smooth transition
between tug and barge at the notch. The low pin forces predicted are acceptable when

the low amplitudes of motion for each hull are considered.
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5.2 Recommendations

1. Experimental results should be obtained for sea directions other than head or
stern seas. These could be used to verify the numerical model in Chapter 4
which is able to accept different headings. The only term dependent on the
incident wave direction is the excitation force and Sclavounos has shown that
this can be accurately determined by unified slender body theory.
Experimentally this would require a wave tank and a more sophisticated setup
than was utilized for the towing tank experiments.

2. Experimental results should be obtained for different tug-barge mass ratios
and for different length/beam ratios for further comparison of the hull
motions and pin forces.

3. An improved numerical model of the coupling between the tug and barge
needs to be developed. At present the program is unable to model the notch
where the tug and barge are connected. The current method assigns the bow
of the tug to the stern of the barge. This reduces the total hydrodynamic force
on the tug which particularly affects the pin force and the tug motions. One
possible improvement would be to develop factors which adjust the
hydrodynamic forces on the tug and barge.

4. The discontinuity where the two hulls meet can be improved. This could be
done by adding many more equally spaced stations to more closely define this
area or by revising the numerical solution to the three-dimensional problem so

that it uses a variable step size for the integration along the hull. The former
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method will increase execution time considerably (as well as preparation time
for the model) while the latter method will increase the coding complexity.
. The existing model can be extended to work on the forward speed problem as

the unified theory is capable of handling this.
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Appendix A

Solution of Two-Dimensional Potential Flow

A.l  General

The potential flow problem around a two-dimensional body section is solved by
locating two-dimensional pulsating sources around the hull. The numerical solution for a
two-dimensional body section can be obtained by using numerous methods such as

panelling or the Frank close-fit method. The method used here is to fit a continuous line

of two-dimensional pulsating sources ¢g around the hull section and then determine the
potential ¢,,, by integrating ¢ over the hull section using some source strength
distribution A;. The source strength distribution is found by using least squares to

minimize the error on the hull boundary condition.

A.2  Definition of Hull Shape

The two-dimensional hull section must be defined as a continuous curve so that a
line of pulsating sources can be distributed on it. By using Gauss-Legendre integration
around the hull section a set of N non-equally spaced points can be selected which
adequately define the section. This also scales the range of integration from (x,,x,) down
to (-1,1). For most hulls the shape is symmetrical about the centre-line; by choosing
suitable boundary conditions only half the hull need be solved. This gives a full scale

range of integration from x; = 0 to x, = beam.
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Rise

Figure A.1  Hull Shape
The hull shape can be defined by the end-points of the curve, the slope at each

end and a weighting factor. Combining these with shape functions (to interpolate

between points). the (x,y) values can be defined from t=-1tot=1. ie. x(f)= ZX,.F}

and y(f)= ) YF,. The X;and ¥, terms can be defined as:

X, =0and Y, =T where T is the draft (negative).

X, =M, (1— Risez) and ¥, = (Ml .Rise) where M, is the rise weighting factor.
X, =5/ and ¥, =0 where B is the beam.

X, =(M, -Flare) and ¥, = M,/(1- Flare?) where M, is the flare weighting factor

The shape functions can be defined as:

F(t)=0.5-0.75¢+0.25¢
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F,(t)=0.25-0.25:-0.25:* +0.25¢°

E(r)=0.5+0.75:-0.25¢

F,(t)=-0.25-0.25t+0.25¢* +0.25¢

There are N elements on ¢ so that the interpolation matrix [F(#)] is a 4xN matrix
and the x(r) and y(¢) vectors have N elements each. The curve fromz=-1tor=1is
defined as ¢. Figure A.1 details the parametrization of the hull section.

The second step in setting up the hull shape involves the definition of the normals

and derivatives around the hull. Integration of a function of the hull f(c) requires:

_c[ f(c)dc=:l[ f(z)%j-d: (A.1)
dC _ ix_ 2 —dl 2

where FI_J( dt) +(dt) 4.2
dx dy _ |

and E:—XF.() ” =YF, (1) (A3)

ie. %:J( 0) +(xE @) (A.22)

Therefore using the Gauss-Legendre weighting functions for the integration gives

[ stexe= 3 w6 (x5 ) +(4£ ) ad
C i

Finally the normals can be defined by :

N, = (é) and N, ( d;ié‘) (A.5)

With the hull shape fully defined the potential solution around the hull can be

formulated.
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A.3 Pulsating 2-D Source Derivation
The free surface boundary condition equates the pressure on the surface.

9%
—wo+2 =0 (A6
¢ g ay I)—)’r )
-0’lnr+ gi;%% =0, (A7)
1 (y-m)
-0’lnr+g— 20],.,, (A.8)
rlx-*+-nt
¢=Inr-Inr"+ IA(k)e"‘"e“"“ dk (A9)
where 7° =‘[(x—x)2+(y+'r]—2yf)2 (A.10)

0= 2in((x=20" + (=) -1 (-7 + (4125, )+ fawrtax

(A.11)

This form of the potential satisfies Laplace and the free surface condition.

dd _ (y-m) (y+m-2y,) - o
Fa ey e vy A Ll
Ony=y;:
o= [Ate= e (A13)
99 Z(Yf_n) t [klyg —ike
d <= ARkl dk A.l4
Y (x-x)2+(yf—n)2+_[. (E)kle (A.14)

Using the free surface boundary condition (A.6) gives :
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Tt (_Di_k) )M g — 2(2yf—n) , Al
I( ;7 e (x=%)" +(y~7) (419

By applying a Fourier transform to equation (A.15) A(k) can be solved so that the

potential ¢4 at each source is :

2 2 — ik{ x—
1 x=%) +(y— o IH(y+n=2y)-ik(x-2)
0 ==In ( 2") (y=m) -1~ ¢ ——dk (A.16)
2 \(x=x)"+0+n-2y)" ) L W%

This can then be reduced using the method of residues for the integration of the

complex analytic function. The final form of ¢y is therefore:

2 2
1 [ (x B X) + (y — T]) }_'_ 2niek(y+n—2y,)—iklx—x|
(A.17)

s =—In
® (x=0)* +(y+n-2y,)

2
“ } peos(p(y+n-2y, )2) + kzsin (p(y+n-2y,)) ot g
s D +k

A.4 Forced Motion of Hull Section
The two-dimensional potential ¢; is solved by integrating the pulsating source

terms around the hull with a suitable source strength distribution A(c). The source

strength distribution is found using a least squares solution.

¢;(x.3) = [ 4,()0s(x.y.x(c),n(c))de (A.18)
(o)
The hull boundary condition is :
do; .
7;=lmnj|mc (A.19)

99



ion; =n j!Aj(c)d)s, (xy.x(c), n(c))dc (A.20)

Define the error as the difference between these terms; i.e.

error(c) =, ( [ 4005, (x. x(c),n(c))dc—ico) (a2
c
The best possible solution is the one with the smallest (error)(error)’ where :
(error)(error)” =%I{error(c)- error. (c)}dc
C
The solution of the forced motion problem reduces to :

1. defining a set of potential A;(c) solutions and

2. selecting the best member from that set.
The source strength distribution Aj(c) can be described in terms of amplitudes A,

and the shape functions F(c) defined in section A.1.1 : A;(c) = A,F,(c). The potential is

therefore :
0,(x.7) = A4 J F, ()05 (x,3 x(c) n(c))de (A22)
Cc

The boundary condition on the normal velocity (equation A.19) applies

everywhere on the hull surface. For some location (x(g),y(g)) the error is:

error(g)=n{AkIﬂ(c)%,,-(x(g),y(g),x(c), n(c))dc—im) (A.23)
Therefore :
error(g) = A,G,(g) - H(g) (A.24)

where :
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Gy(8) = n,(8) [ Fu(c)0s (x(8). ¥(g): x(c).n(c))de

H(g)=iwn,(g)

The mean square error is :

(error)(error)” = I {error(g)- error’ (g)}dg

(error)(error)” = [ (4,G,(2) - H(2))(A4'G} (8)- H' (g))dg

g

(error)(error)” = 4,47 [ G,(8)G; (g)dg - A, [ G, (g)H " (g)dg
8 [
~4; [ G} (9)H(g)dg + [ H(g)H " (g)dg
8 g
The minimum meén square error exists when :

3(error’) _ 3(error’) 0
ofRre[4 ]} ofim[4]}

This reduces to :

2 RC{AJGk (g)G,'(g)dg} -2 Re{f Gf(g)H(g)dg} =0 and

2Im{Ak [ (g)dg} —2kn{fG,'(g)H(g)dg} =0

ie. A, [G.(8)G] (g)dg = [ G} (g)H(g)dg
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(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)



A= [ | G,(g)Gf(g)dg) [Gi(@)H(g)dg (A.33)

Using symmetry and equation (A.18) the potential in mode j is :

6;(x.7) = 4, [ F, (1) (x. 3. x(2), n(t))+¢s(x,y,—x(t),n(t))]% dt (A34)

There is an integrable discontinuity in the natural log term in ¢¢. This presents a

numerical integration problem which can be avoided in the following way :

0,(x,) = A [ R ([0 0., %(0) (1) + 6 (x,)’,—X(I),n(I))]%j_dt

1
J'ln(dc |t—t,.|)dt
4 -1 dr L

(A.35)

N FT0h =  PRY.
4 d, \del" “dt

The last integral is evaluated directly as :

dc

&t i(l +t‘-)1n[£1d§|’i(l+t,-))+(1—t‘.)ln(%"i (1-:,))-2). (A.36)

AkF;z (t.' ]

With this potential solved the two-dimensional added mass and damping terms

can be easily obtained by integrating the pressure around the hull section.
~w?m; +iwc; = —iop [ no,(x(c), y(c))dc (A.37)
C

Numerically integrating this term follows the form of equation (A.4).
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A.5 Far-Field Wave Amplitude

The far-field amplitude represents the wave amplitude far from the hull and can

be derived in terms of ¢;.

(A.38)

The potential¢; was derived in equation (A.34) as a function of the source

strength distribution and ¢,. The potential ¢, is defined in equation (A.17) and consists

of a direct source term, a propagating wave term and an integral over the free surface.

The direct source term and integral reduce to 0 for large x and ¢, for the far-field waves

can be determined from the propagating wave term:

A R —ik(x-y) , ~ik(xey)
0, =2me e +e

where x is much larger than y . This can be written as:

0, =2mie" (™ + e )ete

Therefore:
=]

¢j = z AwF (1, )[2751'8'“‘ (eikx +e )]ekye-.h %ﬁ;_
t=-1

and:

A = —l—cg(hm q)j)e""e”"
8

J Y —son

For large x:

=1 . . d
A= 21:-(;—)(2A,‘w,.15; (t‘.)e’m(e*x +e :kx)_;i;)

t=-1

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

Note that F, are the shape functions defined in section A.1 while w; are the

weighting functions for the Gauss-Legendre integration around the hull.
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The three-dimensional solution uses the two-dimensional source strength o;.

Newman (1978) relates this source strength to the far-field wave amplitude A; by:

0,=2%A,.

The o; values are computed for each hull station.
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Appendix B

Numerical Solution of Three-Dimensional Potential Flow

B.1  Governing Equation

The governing equation for the three-dimensional solution is derived in Chapter 4

as:

2nio;

q,-(x)—(o’ b ]L(q,-)=c,- (B.1)

where:

L(q,-)=[v+m]q,.<x>+%j sgn(x-&)In(24]x- al) Z %
(B.2)

~kl[rohe -8+ Holod-E) + 2 ke8] (E)e

The gi(x) terms are the unknown three-dimensional source strengths which are
distributed along the centreline of the hull. The numerical solution for the qj(x) terms
assumes that there are an odd number (N) of equally spaced source strengths allowing a
Simpson's integration along the hull. The integration of the three-dimensional source
strength velocity in the first integral of (B.2) requires that one additional assumption be
made: each end of the hull is assumed to be slender and therefore have a source strength
of 0.

Equation (B.1) can be solved by putting it in the form [A(x, é)]{qj (x)}= {6 f (x)}
where g(x) and o,(x) can be reduced to (N-2)x1 vectors and A(x,§) to a (NV-2)x(N-2)

matrix because of the zero end source terms. The only unknowns are the three-
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dimensional source strengths g(x) which can be solved using any matrix solver or

inversion routine.

B2  Solving Matrix Terms

By envisioning each term in equations (B.1) and (B.2) as matrices the overall

C,+0,;
matrix A(x,§) can be developed. The initial ¢,(x) and (2—’7:—-_4) terms can be treated as

j
diagonal matrices but the L(g/(x)) term is more complex. The y term is the Euler
constant (0.5772...). The Struve function H, and Bessel functions J,, and Y, are described

by Abramowitz and Stegun (1964); the Bessel functions are solved in "Numerical

Recipes in C". The first integral along the hull, + I sgn(x- (2k|x &l) E)dE,

L

Z6
involves an integrable singularity at x = £&. This singularity evaluates to 0 so the integral

can be calculated directly. The Bessel function Y, in the second integral also contains an

integrable singularity at x = £. This must be evaluated in the following way

%IYO(ka ~&))q (&)dt = %TYo(klx - éD‘b(g)d&

—-—q, (x)T 4)+y)at

(Lz—x)ln(%(zz—x))+
+24,)| (x~L)n(3(x-L))+

(y-1(L,-L) B3)

106



where the integrals are evaluated everywhere except at x = &.
The numerical form of each integral is obtained by multiplying the terms in each
one by a second matrix containing the Simpson's weighting factors. The matrix in this

form is NxN in size.

1 42 .2 41
[s]=%"-z SRR (B.4)
142 .- 2 41
The dx term represents the step size between stations. As the end terms are zero this
matrix can be reduced to a (N-2)x(N-2) matrix by deleting the border columns and rows.
The derivative term in the first integral is solved by using central differencing.
The derivative of the source at each end of the hull is non-zero and is evaluated by

assuming an extra term is extended beyond the hull limits. The central differencing term

in general form is

_Jx+h)—=f(x=h) |
)= Y (B.5)

%f(x

where & is any step size. In matrix form for the first integral this can be written as:

r q(; 3 5 2 O O ces O O O ) ( ql ) ( ql ]
qll 1 _1 O 1 ) O O 0 qz q2
s - S 5 E '-. E : f 2 E ={D E
e =[oh f
g 0 0 0 --- -1 0 1 4.2 qn2
\ q: J ] 0 0 O con O 0 "2_J \q,,_lj an—lJ (B.6)
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where the end diagonal terms account for the source velocity at the bow and stern of the
hull. This matrix is Mx(N-2) in size and is multiplied by the matrix for the first integral
which is (N-2)xN in size.

By combining the matrices for each term a single matrix [A(x,£)] can be

determined. Solving [A(x,&)]{qj(x)}z{c j(x)} thus defines the three-dimensional

source strengths g,(x).
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C.1  Head Seas

Model Leng
Barge Leng
(at waterline)

Heading =

Frequency

0.44959
049932
054912
0.59895
0.64897
0.69883
0.74931
0.80073
0.85044
0.89843
0.95043
1.00082
1.04885

Wavelen

172
6.26
5.18
435
N
320
2.78
243
2.16
193
1.73
1.56
142

335
27

0

Barge
Trim
(Deg)
0.58951
0.72575
0.81461
1.01803
1.08626
0.94774
0.88345
0.64120
0.42650
034363
0.52794
0.47417
044385

LamW

————

Blen

2.85966
231842
1.91694
1.61128
137245
1.18359
1.02949
0.90153
0.79920
0.71612
0.63990
0.57708
0.52544

Appendix C

Experimental Results

Experimental Data from Tug/Barge

Front Shaft Model - FFT Analysis combined with Sid. Dev.

m
m

Deg

Barge
Heave
(m)

0.01221
0.01170
0.00991
0.00787
0.00410
0.00682
0.00432
0.00391
0.00281
0.00847
0.00417
0.00248
0.00177

Heave

Probe

0.79803
0.72048
0.58400
0.44667
0.20642
0.33826
0.22811
0.23090
0.15369

0.19665
0.08913
0.06950

Barge Weight =
'I\xg Weighz =

Tug Wave
Trim Probe
(Deg) (m)
1.34578  0.01530
197960 0.01624
2.66455  0.01696
3.44352  0.01763
3.77498  0.01984
3.88938  0.02016
3.71984  0.01895
239506 0.01692
2.07846  0.01829
0.84171  0.01655
0.54038  0.02122
1.67276  0.02780
1.84980  0.02550

Non-Dim

Angles

Barge Tug
0.82643  1.88663
077725 2.12008
0.69051  2.25862
0.69793  2.36078
056346  1.95814
041738 1.71285
035990  1.51540
025625  0.95716
0.13978  0.68119
0.11154  0.27321
0.11942  0.12224
0.07382  0.26043
0.06858  0.28583
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lbe
411
235

Pont

Hor.
Force

™)
0.61182
1.21058
0.99656
1.35874
1.49989
1.23356
1.05623
0.98191
1.65540
132782
0.77533
0.92270
0.98306

Forces

0.17397
0.17557
0.16276

0.12450

Force
™)
0.77291
1.22096
1.41498
1.76614
1.93079
1.99997
1.89945
1.52429
1.69148
047905
0.69562
0.80666
1.19631

Ver

0.13982
0.18292
0.22250
0.27291
027814
0.28378
0.27947
0.25073
0.23988
0.11546
0.09061
0.08441
0.13583

N
1831.939
104.746

Starboard
Hor.
Force
™
1.06275
0.40306
0.80710
0.64094
0.84243
1.16761
1.03673
0.89779
1.40980
1.06628
0.52292
0.73348
1.17135

Ver.
Force

™)
0.67849
0.79408
1.14557
1.49788
1.81417
1.88108
1.69442
1.35391
1.28515
0.81723
0.60865
0.78554
1.15413



Phase angles :

Frequency
(Hz)
0450

0.499
0.549
0599

0.699
0.749
0.801
0.850
0.898
0.950
1.001
1.049

Relative to Wave Probe at LCB
Barge Barge Tug
Trim Heave Trim
(Deg) (Deg) (Deg)
108.15 -1.72 160.13
94.81  -128.42 29.96
-96.62 348 212.33
91.38 -5.55 134.65
84.34 20.81 12848
90.12 66.16 133.13
95.64 70.53 116.09
10164 91.18 12240
100.19 142.36 119.20
170.19 128.11 199.21
127.98 118.89 -30.34
176.00 144.50 -88.31
21420 -138.90 ~78.55

Wave

Probe

(Deg)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.

0.83728
0.80682
0.90183
0.99984
117116
1.20058
1.04648
0.93985
1.53260
1.19705
0.64912
0.82809
1.07721

% Diff

26.92777
-50.04326
-10.50423
-35.89583
-28.06914

-2.74655

-0.93146

-4.47474

-8.01227
-10.92443
-19.44215
-11.42511

8.73955

g g

Relative to Ch. 4
Pont Starboard
Hor. Ver. Hor.
Force Force Force
(Deg) (Deg) (Deg)
15445  -16750  -136.31
59.99 65.16 78.74
-145.78 178.17 167.94
127.32 173.95 16747
88.00 17149 167.12
73.78 177.21 129.64
70.49 173.90 90.89
30.59 18349 82.39
84.42 153.85 -30.08
-6.65 152.84 162.28
-68.60 32.07 37.01
-156.79 4.16 -176.23
-144.13 17.86  -124.38
Vertical Force:
Ave. % Diff
0.72570 -6.50572 Y
1.00752 -21.18479
1.28027 -10.52152 Y
1.63201 -8.21877 Y
1.87248 -3.11416 Y
1.94052 -3.06330 Y
1.79694 .5.70502 Y
143910 -5.91979 Y
1.48832 -13.65099
0.64814 26.08797
0.65213 -6.66762 Y
0.79610 -1.32655 Y
117522 -1.79446 Y
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Ver.
Force
(Deg)
-150.65

76.72

159.93

192.37

191.49

191.98

187.45

196.45

183.51

168.47

55.29
27.84
37.89

Avg.
Ver.
Force
(Deg)
200.9261
70.93654
169.0493
183.1588
181.4918
184.5927
180.6724
189.9682
168.6819
160.6572
43.67876

16.001
27.87302



Experimental Data from Tug/Barge

Rear Shaft Model - Standard Deviations

Ibe
Model Lengtt 335 m Barge Weight 411
Barge Length 27 m Tug Weight 235
(at waterline)
Heading = 0 Deg
Barge Barge Tug Wave
Frequency Trim Heave Trim Probe
(Deg) (m) (Deg) (m)
050055 0.9634393 0.0124134 25017676  0.017833
0.551065 1.1205567 0.0111352 3.4048765  0.018692
0.60273 1.2681009 0.0084983 4.2817745  0.019065
0.65197 1.1897948 0.0046616 4.0790521 0.02221
0.699768 0.9727347 0.0058829 4.5246  0.021482
0.750727 0.8994304 0.0039126 4.3902239  0.018986
0.802315  0.671475 0.0047369 2.8046411  0.018502
0.852546 0.3919808 0.0032006 2.0999949  0.020359
0.900529 0.3583107 0.0072482 0.9834454 0.01724
0.953852 0.5260528 0.0031281 0.9262272  0.026621
1.010107 04763185 0.0033113 2.1784287  0.030679
LamW Heave Noa-Dim
—— —— Angles
Wavelen Blen Probe Barge Tug
623 23070304 0.69609  0.934791  2.4273765
5.14  1.9034549 0.59572  0.855819 2.6004557
430 1.5911189 0.44575 0.7937448 2.6800993
3.67 1.3598563
3.19 1.1804296 0.27385 0.4008862 1.8646909
2.77 10256146 020608  0.364401 1.7786834
242 0.897963 025602 0.2444167  1.0208885
215 0.7952664 0.15721 0.1148371 0.6152274
1.92 0.7127756 0.1111058 0.3049489
1.72  0.6353108 0.11751  0.094157 0.1657833
153 0.5665177 0.10793  0.0659677

0.3017011

Port
Hor.
Force

™)
1.1460518
1.1612117
1.4879799
1.3690079
1.2898264
1.156645
0.8812542
0.8648872
0.6141872
0.5082501
0.8776332

Forces
Hor

0.1328448
0.1438744
0.1698373

0.1419595
0.1582404
0.1470438
0.1871892
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N
1831.9391
104.74591

Ver.
Force
™
2.1841999
2.7430385
3.2005723
3.2182091
3.6300526
3.1853214
2.1657039

2.385347
0.8369881
0.7200457
1.2127665

0.3046167
0.3815933
0.4428468

0.4469897
0.4504522

0.310537
0.2860692
0.1509884
0.0755214
0.1059734

Starboard
Hor.
Force
™)

0.46132
0.6634673
0.7089543
0.4746214
0.7792975
0.8817956
0.9646652
1.7208509

0.352493
0.6384236
0.4750715

Ver,
Force

™
1.5015454
2.0964981
2.5278843
2.8546247
2.8850235
2.6173696
1.7326321
1.5662699
0.9291639
0.6440401
0.9931303



Phase angles :

Frequency
(Hz)
0.501
0551
0.603
0.652
0.700
0.751
0.802
0.853
0.901
0.954
1.010

Relative to Wave Probe at LCB
Barge Barge Tug
Trim Heave Trim
(Deg) (Deg) (Deg)
84.84 -3.87 150.80
83.51 <521 144.48
79.82 -6.50 132.00
-97.08 173.04 -41.46
85.40 58.78 135.60
91.77 60.52 117.01
95.12 89.85 99.64
10293 14591 11538
166.07 109.36 181.22
137.95 11776 17.73

201.99 161.08 -70.82

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.

0.8036859
0.9123395
1.0984671
0.9218147
1.0345619
1.0192203
0.9229597
1.2928691
04833401
0.5733369
0.6763524

% Diff

-42.599467
-27.278464
-35.459666
-48.512271
~24.673677
-13.483318

45186738

33.103266
-27.071434

11.352269
-29.759761

Wave
Probe
(Deg)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Port

Hor.
Force
(Deg)
-176.17
159.15
110.99
108.81
10591
74.24
18.71
114.24
-9.51
-189.30
-139.79

Vertical Force:

Ave.

1.8428726
2.4197683
2.8642283
3.0364169

3.257538
2.9013455

1.949168
1.9758084

0.883076
0.6820429
1.1029484
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Relativeto Ch. 4
Starboard
Ver. Hor.
Force Force
Oy (Dep)
17741 -169.61
170.37 179.28
159.48 -174.61
167.20 163.74
165.50 82.33
156.63 67.97
161.16 60.79
155.12 3.65
146.71 90.95
6147 -3.62
1.81 -126.50
% Diff
-18.521479
-13.359551
-11.742919
-5.9870636
-11.435463
-9.787732
-11.109146
-20.727644
5.2190161
-5.5719086
-9.9567741

182.78
179.17
173.39
176.13
174.62
164.47
165.80
163.92
151.60

2334

14.21

180.09319
174.77444
166.43288
171.66499
170.06312
160.55099
163.47818
159.52266
149.15503
42405615
8.0110478



C2

Stern Seas

Model Length
Barge Length
(at waterline)

Heading =

Frequency

0.449616
0.499736

0.54933
0.599178
0.650324

0.70054
0.750594
0.301088
0.850892
0.900124
0.949627
0.993704
1.049316

Wavelen

172
625
517
435
369
3.18
2.7
243
2.16
193
173
158
142

Experimental Data from Tug/Barge

Front Shaft Model - FFT Analysis combined with Sid. Dev..

335 m lbe
27 m Barge Weight = 411
Tug Weight = 235
180 Deg
Port
Barge Barge Tug Wave Hor. Ver,
Trim Heave Trim Probe Force Force
(Deg) (m) (Deg) (m) ™) ™)

04626102 00111391 12118729  0.012099 0.3887102 0.5148362
0.6224974  0.009713 1.6956236  0.013679 0.8948832 0.6885107
0.7400409  0.0084929 23618037  0.014099 0.4241951 0.9642795
0.8378198 0.0068051 3.0322662  0.015315 16017512 1.3348131
0.9251729 0.0025841  3.622702  0.015906 0.7333953  1.4967657
0.7932563 0.0041811 4.1731182  0.013758 1.0532956 1.7547596

0692746 0.0027262 4.2366928  0.013886 0.8708075 1.8610593
06111854 0.0025691 4.6648649  0.015891 12445541 2.1573609
03624833 0.0019147 3.1904798  0.016495 1.6025706 22486703
03148736 0.0071031 3.5726169  0.014714 1.1493906 1.9558351
04636435 0.0026125 4.0271164  0.021393 0.8453171  1.5996498
03372434  0.0025553 42077815  0.017584 14762332 2.1888946
04312366  0.001655 4.1424337  0.012363 1.5352732 2.3416667

LamW Heave Non-Dim
— —— Angles Forces
Blen Probe Barge Tug Hor Ver
2.859333 092066 0.8199583  2.1479966 0.130983
2.3145522 0.71006 0.7899716 2.1518071 0.1637135
1.9154976 0.60238 0.7540676 2.40656%4 0.206093
1.6100395 0.44434  0.6605891  2.3908269 0.2412024

1.3667488 0.16246  0.5962274  2.334649 0.1450052 0.2630008
1.1778294 030390 0509333 26794708 02192332 0.3581339

1.0259781 0.19633  0.3838806 2.3477355 0.3856142
0.9007158 0.16167 0.2598189  1.9830648 0.3871682
0.7983611 0.11608 0.1315819  1.1581487 0.3844655
0.7134172 0.1145013 12991537 0.2459503  0.3920193
0.6409766 0.12212  0.1041876  0.9049527 0.2086365
0.585375 0.14532  0.0842018 1.0505844 0.3548111

0.5249714 0.13387 0.1373373 13192546 0.3816275 05333032
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N
1831.9391
104.74591

Starboard
Hor.
Force
™
0.7374031
1.3251402
0.846004
0.6196792

1 0.8315234

0.9931911
1.2263853
0.8281826
0.4329898

1.306027
0.8341152
0.8173483
1.6659119

Ver.
Force
™
0.5604195
0.8309378
1.0072295
1.1715608
13955406
1.5883301
1.7720412
2.0170784
2.0541874

1.957846
1428723
2.0442408
2.1318116



Phase angles :

Frequency
(Hz)
0.450
0.500
0.549
0.599
0.650
0.701
0.751
0.801
0.851
0.900
0.950
0.994
1.049

Relative to Wave Probe at LCB
Barge Barge Tug
Trim Heave Trim
(Deg) (Deg) (Deg)
-62.003 -0.046 -155.533
-77.909 -8.580 -152.837
-75.460 -0.195 -138.251
-83.039 -0.644 -130.806
-82.012 21272 2112922
-86.561 52.182 -100.439
-88.789 46.891 -97.136
-85.992 91.753 -81.990
-80.080 180.811 -68.201
19.835 142579 -5.845
-12.962 163.563 8.946
45.758 194.093 55.982
27.147 -70.880 48.515

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.

0.5630566
1.1100117
0.6350995
11107152
0.7824594
10232433
1.0485964
1.0363683
1.0177802
1.2277088
0.8397161
1.1467907
1.6005925

% Diff

30.96428
19.380739
33.208101

-44.208992
6.2704956

-2.93696

16.954941
-20.083009
-57.457439

6.3792161
-0.6670058
-28.727335

4.0809459

Wave

Probe
(Deg)
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Relative to Ch. 4

Pont

Hor. Ver.

Force Force

(Deg) (Deg)

-163.383 176.047

57.174 153393
-147.796 177.724
-125.505 -171.026

-98.896 -161.423

-85.107 -142.139

-58.182 -139.329

-52.036 -117.520

5.066 -96.111
96.089 -61.899
64.512 -48.048

129.854 22.545

-114.954 16.664
Vertical Force:

Ave. % Diff
0.5376279  4.2393028
0.7597243  9.3736079
0.9857545  2.1785327
1.2531869 -6.5134859
14461532  -3.4998062
1.6715448 -4.9783138
1.8165503 -2.4501965
2.0872196 -3.3605117
2.1514289 -4.5198543
1.9568405 0.0513806
15141864 -5.6441782
2.1165677 -3.4171785
22367391 -4.6910939
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Starboard
Hor.
Force
(Dep)
142.609
-155.999
-158.761
96.139
-89.068
-65.470
-64.819
-47.660
-159.517
85.040
113.182
-141.716
164.032

Ver.

Force

(Deg)
161.732
174.962
179.294
-184.755
-159.132
-137.813
-133.021
-111.812
-99.200
-52.640
-43.784
24.153
39.483



Model Length
Barge Length
(at waterline)
Hcading =
Barge
Frequency Trim
(Deg)

0452809 0.4638454
0.499824  0.5712191
0.550661 0.6382316
0598638  0.697287
0.650333  0.7396844
0.698746  0.542904
0.750993  0.5168169
0.799099  0.4622669
0.850146  0.202223
0.901127 02956158

0.95081 0.3943181
0.997911  0.2564683
1.045919 03022121

LamW

Wavelen Blen

761 28191498
625 23137373
515 1.906249
435 16129455
369 13667109
320 1.1838852
277 1.0248882
244 09052053
216 0.7997628
192 07118299
173  0.6393825
1.57 05804498
143 0.528387

Experimental Data from Tug/Barge

Rear Shaft Model - Standard Deviations

335
27

180

Barge
Heave
(m)
0.0093503
0.0078847

0.006404
0.0050086
0.0023452
0.0052757
0.0042893
0.0025977
0.0018886
0.0055677
0.0027711
0.0016785
0.0013182

Heave

Probe

0.97858
0.72078
0.58028
0.44489
0.18681
0.46257
0.37858
0.21565
0.14525

Deg

Tug
Trim
(Deg)

1.2251013
1.5624223
1.9986744
2.5928778

3.071852
3.4269167
3.7004456
4.2447395
2.5777012

3299572
3.7034829
3.5917902
3.2501621

Non-Dim
Angles
Barge

1.0264127
0.9061507
0.8268134
0.7492578
0.6039518
0.4226673
0.3506263
0.2605303
0.0932845
0.1310154

0.111413
0.0701188
0.1137573

Barge Weight =
Tug Weight =
Pont
Wave Hor.
Probe Force
(m) (0]
0.009555 02795857
0.010939  0.5949157
0.011036 0.5129112
0.011258 0.9624569
0.012554¢  1.009707
0.011405 1.1157106
0.01133  0.821578
0.012046 1.1715972
0.013003 1.1030857
0.012046  1.1923669
0.016972  0.8275693
0.015923 0.9131255
0.010528 1.0716305
Forces
Tug Hor
2.7109451
24785411  0.1927137
2.5892337 0.1477164
2.7861325  0.2428002
2.508165
2.6679587
2.5105094  0.1997367
2.3923049
1.1890812
14623532  0.1858934
1.0464039  0.134165
0.9820011  0.1375758
1.2234115  0.2732329
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411
235

Ver.
Force
™
0.9100883
1.1698848
1.4636289
1.7771752
2.1690608
2.3736099
2.5237991
2.8657808
2.4654907
2.2933301
2.0902678
2.3817961
24978122

Ver

0.2828067
0.3065523
0.3615624
0.4428434
0.4496636
0.5485574
0.6086253

0.5162256

0.3227574
0.4126881

Starboard
Hor.
Force
™
0.9558203
0.8354185
0.5931719
0.8921744

0.148421
0.4576474
0.7138695

0.455776
0.2701078
03269703
0.7173988
0.5732007
0.8801282

N
1831.9391
104.74591

Ver.
Force
™)
09233558
1.1053667
1.2437071
1.6054872
1.6611009
1.8712624
2.1549223
2.4008124
2.0889012
2.1289358
1.6264238
2.0767584
2.2054084



Phase angles :

Frequency
(Hz)
0.453
0.500
0.551
0.599
0.650
0.699
0.751
0.799
0.850
0.901
0.951
0.998
1.046

Relative 10 Wave Probe st LCB

Barge Barge Tug

Trim Heave Trim

(Deg) (Deg) (Deg)
-103.377 -1.053 -155.298
-95.397 -6.716 -149.408
-90.089 -1.331 -136.815
-96.486 -7.332 -134.575
-85.778 -15.188 -111.522
-92.893 -4.423 -101.803
-80.715 62.598 -88.960
-73.915 99.014 -74.909
-51.961 160.865 -55.539
40.562 152.481 7.022
-14.008 168.193 10.617
59.211 189.454 62.627
84.298 186.530 103.433

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.

0.617703
0.7151671
0.5530416
0.9273156

0.579064

0.786679
0.7677238
0.8136866
0.6865968
0.7596686
0.7724841
0.7431631
0.9758794

% Diff

54.737847
16.81445
7.256297

-3.7895698
-74.368815
-41.825393
-7.0147893
-43.986298
-60.659905
-56.958827
-7.1309217
-22.870133
-9.8117811

Wave

Probe

(Deg)
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Pont
Hor.
Force
(Deg)
-54.313

68.448
-147.543
98318
-114.795
-89.277
-62.059
-51.029
1.509
69.499
35.951
132.864
-136.167

Relative 1o Ch. 4

Ver.
Force
(Deg)
-163.591
-174.465
-162.246
-157.328
-143.902
-130.561
-121.265
-102.640
-87.583
-39.631
-31.447
28.078
58.515

Vertical Force:

Ave.

0916722
1.1376257

1.353668
1.6913312
1.9150808
2.1224362
2.3393607
2.6332966

2.277196
22111329
1.8583458
22292772
23516103

116

% Diff

0.7236387
-2.8356479
-8.12318
-5.0755289
-13.2621
-11.834219
-7.8841376
-8.8286369
-8.26871
-3.7174223
-12.480024
-6.8416261
-6.2170985

Starboard
Hor.
Force

(Deg)
151315

-168.705
169.038
150.190
-62.871
-54.197
-51.098
-28.001
139.281
73.199
117.899
-158.075

-149.459

Ver.
Force

(Deg)
-181.446

-171.296
-164.698
-169.610
-141.258
-126.891
-113.062
-95.691
-85.840
-34.941
-21.315
35.231
74.525

Avg.
Ver.
Force
(Deg)
-172.519
-172.880
-163.472
-163.469
-142.580
-128.726
-117.164
-99.166
-86.711
-37.286
-26.381
31.654
66.520



C.3  Calculation of Tank Natural Frequencies

The tow tank is 12 feet or 3.6576 metres wide. The natural frequency
of the tank can be calculated by using this width as a transverse wavelength.
The wavelength is defined by

X=2%=2”%2 (C.1)

The natural frequency can then be written as

o= Zn%

Equation (C.2) produces the following natural frequencies:
A=3.6576 o =4.104 rads/sec o =0.653 Hz
A=1.8288 =5.804 rads/sec w=0.924 Hz
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