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Abstract

This thesis presents a method of calculating the vertical force on the coupling between a

pusher mg-barge unit where the tug is able to pitch relative to the barge. Alternate methods

assume that the hydrodynamic forces on each hull have no effect on the other hull. The method

presented here assumes that there is a hydrodynamic interaction between the two hulls. A

numerically-fast three-dimensional solution method (unified slender body theory) is used to develop

this interaction between the two hulls in coupled modes of motion at zero speed. Only the heave

and pitch modes are considered.

Experimental work was done on a coupled tug-barge model. The model was instrumented

to determine the barge heave and trim, the relative pivot angle between the tug and barge and the

vertical and horizontal pin forces. The experiments were run in head and stern sea conditions with

two separate pivot locations. Only the horizontal forces are found to be non-linear. The peak

vertical force occurs at wavelengths of 1.21Barge in head seas and /Barge in stern seas. The

amplitude of the hull motions increases with the wavelength except for the pivot angle which

steadies at about 1.51Barge. The pin force is more sensitive to the pivot location than the barge

motions. The pivot angle is also sensitive to the pivot location.

Two numerical models of the tug-barge unit are compared to the experimental results.

One model (Case 1) evaluates the two hulls separately while the second (Case 2) evaluates the

hydrodynamic cross-coupling terms. Results show that both models underestimate the hull

motions. The Case 1 model over-predicts the pin forces while the Case 2 model under-predicts

them. The hydrodynamic cross-coupling terms are found to be significant. The Case 2 model is

considered successful but needs to be refined numerically to improve on the solution.
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Chapter 1

Introduction

1.1 General

Tug-barge systems are generally composed of a tug pulling one or more barges.

However, recently an increasing number of these systems have been adopting pusher tugs

due to the great economic advantages they offer. This is principally due to the lower

drag (the barge is no longer in the propeller wash) with a resultant increase in operating

speed and better fuel economy. A number of general references on tug-barge systems are

included in section 1.2.3 and several others are included in the bibliography.

Originally the coupling between tug and barge was made using a push-knee fitted

to the front of the tug and a set of lines to hold the tug against the stern of the barge and

allow the barge to be manoeuvered. This method worked well with the barge trains used

on the rivers in the southern U.S. and in Europe but was unable to handle open water

conditions. Despite the development of notched barges and improved rope couplings

these systems were still unusable in even moderately rough seas.

Better and stronger connections were needed to solve this problem. Initially most

solutions consisted of a rigid connection between the tug and barge. This created a ship

from the tug-barge combination while allowing it to be crewed as a tug and unmanned

barge unit. Although these units were capable of withstanding much heavier seas than

the earlier rope-connected systems the forces in the couplings were extremely large. In

order to reduce the forces the couplings had to be allowed some relative freedom to

move. The problem then became one of complexity and cost; the more degrees of

1



Chapter 1: Introduction

freedom were allowed the more difficult and expensive it became to control the relative

motions. Most systems appear to have reached a compromise by allowing only relative

pitching to occur. This is a simple engineering problem and moderately inexpensive.

This solution also maintains a high degree of crew comfort.

Engineering problems are solved by assuming a maximum load on the coupling

and designing the system to withstand this load. In the case of the pin-connected tug-

barge a prediction of the loads on the coupling is extremely complex. The loading is

sensitive to the masses and inertias of the tug and barge, the buoyancy forces on the

hulls, the wave excitation forces (and their direction) and resultant movement of the hulls

(providing a hydrodynamic added mass and damping) and the depth of the notch and

subsequent pin location. As a result the prediction of the maximum force at the coupling

requires a full evaluation of the fluid forces on the hulls. Robinson (1975) evaluated the

coupling force by assuming that each hull had no effect on the other and as a result the

hydrodynamic coupling terms between the tug and barge could be ignored. This thesis

contends that these coupling terms are important and that an improved solution can be

achieved by including them. It is assumed that in heavy seas where the maximum loads

are expected to occur the tug and barge would keep station (corresponding to a zero

speed condition) and that only heave and pitch modes need be considered.

A three-dimensional potential flow method was selected with the objective of

achieving a numerically-fast solution. Newman's Unified Theory has shown good results

for slender bodies and is very efficient. This theory combines the two-dimensional flow

around a hull section with the three-dimensional flow around a slender body in a

matching region where both are valid. The full three-dimensional solution is then

2



Chapter 1: Introduction

realized as a two-dimensional potential with an interaction coefficient to account for the

radiation of waves from the full hull.

12 Literature Review

The literature search revealed a number of general articles on pusher tug-barge

systems but a very limited amount of theoretical and experimental work. The search

encompassed the COMPENDEX database as well as the older indices of engineering and

scientific journals. In addition two local naval architecture firms, Polar Design and

Robert Allan Ltd., were consulted for further information.

1.2.1 Experimental Work

Experimental work has been carried out at the David W. Taylor Naval Ship

Research and Development Center in Bethesda, Maryland. One report "Experimental

Research Relative to Improving the Hydrodynamic Performance of Ocean-Going

Tug/Barge Systems" was published in four parts. Only parts 1, 2 and 4 were located. In

part 1 Rossignol (1974) describes the selection and design of three types of pusher tugs;

one with a rigidly connected tug/barge system and two with pin-jointed connections (one

single screw and one twin-screw). In part 2 Rossignol (1975a) details the propulsion

tests which were carried out using the models. In part 4 Robinson (1976) summarizes the

results of the previous reports. Most seakeeping results presented in this report were for

speeds of 16 - 18 knots although a zero speed case is mentioned. At 16 knots the rigidly

connected system behaved similarly to a conventional ship and achieved its highest

connection forces in the vertical direction. Testing at the same speed showed that the

3



Chapter 1: Introduction

pinned cases relieved the vertical forces but accentuated the longitudinal forces.

Robinson also used a computer program to predict the vertical force and motion response

in the pinned case. This program evaluated the hydrodynamic and hydrostatic forces of

each model separately with the only coupling being the vertical forces and corresponding

moments at the pin connection.

Rossignol (1975b) also conducted experiments with four flexibly connected

barges (1/10 scale models of 200 ft. barges). Each pair of barges was joined by

connectors permitting nearly complete relative pitch freedom and some relative heave but

virtually no relative yaw, sway or roll freedom. The model tests were conducted for both

the zero speed case in regular waves and for the forward speed problem in calm water.

The most severe condition was observed at a 1200 heading. All other headings showed

very little barge motion or connector bending.

Donald Brown of Barge Train Inc. (1977) developed a computer program to

define the dynamic response of a flexibly connected barge train. He expanded the

hydrodynamic strip theory work of Salvessen, Tuck and Faltinsen (1970) to include

elastically and kinematically coupled dynamic elements. The results include the pitch,

heave, surge, sway, yaw and roll displacements and the forces in the connectors.

G. Van Oortsmerssen (1979), "Hydrodynamic Interaction between Two

Structures, Floating in Waves", used experimental and computational results to analyze

the hydrodynamic effects of two structures floating close to each other. The

experimental results showed that the interaction effects on the hydrodynamic reaction

forces become more significant as the structures were moved closer together. This could

be shown as an oscillation of the added mass and damping coefficients about the single

4



Chapter 1: Introduction

structure results. The interaction effects were present throughout the frequency range

and were more pronounced for horizontal than for vertical motions. These results were

verified computationally.

1.2.2 Theoretical Work

The only closely related theoretical work found was by J. Bougis and P. Valier

(1981). They computed the forces and moments in the rigid connections of an ocean

going tug-barge system by using a three-dimensional hydrodynamic theory. These

results were then successfully compared to the experimental results of Rossignol (1975).

The solution of the coupling forces between the tug and barge requires a fast and

efficient three-dimensional solution method which will yield the hydrodynamic coupling

terms between the two hulls. Unified slender body theory, first proposed by Newman

(1978) in "The Theory of Ship Motions", derives the three-dimensional potential flow

solution for a slender hull by using a matching function. The matching function provides

a three-dimensional interaction between the two-dimensional solutions along the hull to

give a full three-dimensional solution. "Strip theory" is used to find a near-field potential

solution for the body while the slender body method gives the far-field potential. In

"The Unified Theory of Ship Motions" (1980) Newman and Sclavounos expand this

method for the heave and pitch motions of a slender ship moving with forward velocity

in calm water. Newman and Sclavounos develop the matching function using a Fourier

transformation of a "translating-pulsating" source. They include results for a Series 60

hull and a prolate spheroid with no forward velocity along with some forward speed

5



Chapter 1: Introduction

cases. Most results show excellent agreement with experimental and other three-

dimensional solutions.

J.H. Mays' Ph.D. Thesis "Wave Radiation and Diffraction by a Floating Slender

Body" (1978) deals specifically with the zero-speed case of unified slender body theory

and includes results for non-symmetrical bodies. Mays compares results for several

prolate spheroids of varying length to beam ratios with the three-dimensional results of

other researchers as well as with the results for both strip and "ordinary" slender body

theory.

The zero-speed case is also covered by P.D. Sclavounos; "The Interaction of an

Incident Wave Field with a Floating Slender Body at Zero Speed" (1981). Sclavounos

extends Newman's unified slender body theory to solve the diffraction potential as well

as the heave and pitch conditions. He provides results for the vertical hydrodynamic

force distribution and the heave and pitch added mass and damping coefficients for a

Series 60 hull. The exciting forces and moments are also calculated using both the

diffraction potential (to obtain the pressure on the hull) and Hasldnd's relations.

Haskind's relations agree well with the pressure force integration around the hull surface.

Many papers relating to potential flow theory were also reviewed. Newman has

published many articles leading up to the development of unified slender body theory.

Other papers of interest included those by Salvessen et al (1970) and Sclavounos.

1.2.3 General Work

Yamaguchi (1985) discusses the installation of the Articouple system on pusher

tug-barges in Japan. This system allows relative pitch between the tug and barge and at
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the time of the article had been in use for twelve years with great success. The couplers

for the tug-barges have been built in two forms: one for harbour work with a design wave

height of 3 to 3.5 metres and one for open ocean work with a design wave height of 7.5

metres. Yamaguchi also includes a summary of the load analysis formulae.

Many books are available on the history of tugs; Brady (1967) provides a very

general history including the development of the early pusher tugs. A general history of

large tug/barge systems is provided by C. Wright (1973). He includes a list of ocean

going unmanned tug/barge units. The International Tug Conventions yielded several

related articles on pusher tug systems. Dr. H. H. Heuser (1970, 1976,1982) covers push-

towing on German inland waterways, while L. R. Glosten (1967, 1972) details his SEA-

LINK design. Boutan and Colin (1979) discuss coastal and ocean-going tug/barges;

Stockdale (1970, 1972) examines hinged and articulated ships and Teasdale (1976)

examines a probabilistic approach to designing a push-tow linkage.

Other sources of general information on push-tow systems included the National

Ocean-Going Tug-Barge Planning Conference (1979) which provided both a summary of

linkage systems for pusher tugs and a list of related articles on push-towing. Several

other articles are also listed in the bibliography.

7



Chapter 2

Theoretical Derivation

2.1 General

Potential flow theory has been used for many years to describe the motions and

loads on slender bodies such as ships. The theoretical work in this section builds on

previous work by extending Newman's unified slender body theory for a ship at zero

forward speed to a hinged ship (the tug-barge system). The objective is to produce an

efficient and accurate method for predicting the vertical forces on the coupling between

tug and barge. These forces are dependent on three motions; the heave, pitch and roll.

Heave and pitch are the primary motions and are easily modeled using potential flow. It

is anticipated that in heavy seas the tug-barge system will be stationary and hence the

assumption of zero speed is acceptable. Implicit in this assumption is that the maximum

forces will occur in heavy seas.

The hull motions can be solved by applying a set of differential equations to

define the motion of the vessel. In the case of the coupled tug-barge the heave and pitch

motions of each vessel are combined to define the relative pitch between the tug and

barge. Initially the two-dimensional heave solution for each section is found; in unified

slender body theory this forms the inner solution. The three-dimensional solution for a

slender body is then found thus defining the outer solution. A matching region is

developed between the inner and outer solutions using Struve and Bessel functions. The

hydrodynamic pressure forces and moments are calculated from the three-dimensional

flow solution while the hydrostatic forces and moments are derived from the hull

8



Chapter 2: Theoretical Derivation

profiles. Balancing the forces and moments on each hull gives the vertical shear force

and moment about the hinge. By constraining the motion of the tug and barge to be

equal at this point the pin force can be calculated.

The following sections summarize the theoretical derivation of unified slender

body theory as described by Newman (1978), Newman & Sclavounos (1980), Mays

(1978) and Sclavounos (1981).

2.2 Unified Slender Body Theory

Physically unified slender body theory (or unified theory) solves the radiation

problem by matching the solution for the inner region with the solution for the outer

region. In the inner region the longitudinal flow gradients are much smaller than the

transverse flow gradients and the solution can be reduced to the two-dimensional (strip

theory) solution. This solution meets all the boundary conditions except the radiation

condition and is valid for transverse distances small compared with the ship length. The

solution in the outer region is valid for distances large compared with the beam where the

flow gradients are of comparable magnitude in all directions. This solution meets all the

boundary conditions except for the hull boundary condition. By combining the far-field

expansion of the inner (strip) problem with the inner expansion of the outer problem in

this matching region a complete solution can be found that is accurate at all wavelengths.

This full solution can be described as the two-dimensional solution combined with an

interaction coefficient.

Newman (1978) and Newman and Sclavounos (1980) both solve the radiation

problem with the latter article supplying comparisons to experimental results, ordinary

9



Chapter 2: Theoretical Derivation

slender body theory and strip theory. Sclavounos (1981) extended this work to the

diffraction problem. Results have shown the unified theory to be accurate for slender

hulls (Series 60 hulls and prolate spheroids).

Figure 2.1: Coordinate System and six modes of motion

2.2.1 Boundary Conditions

The model orientation within a Cartesian coordinate system is shown in Figure

2.1. The free surface in the undisturbed condition is taken at y = 0 and the hull is

assumed to be symmetric about the centre-plane at z = 0. The following assumptions are

made:

1. Small harmonic motions allow the theory to be linearized. i.e.

10



Chapter 2: Theoretical Derivation

(13(x, y, z; t) = 4)(x, y, z)e'r
^

(2.1)

2. Viscous effects are ignored.

3. Flow is assumed to be incompressible and irrotational.

4. Each mode is independent of the other modes such that

(2.2)

These independent potentials are defined as :

4)0^Potential due to incident waves (i.e. no ship present)

4)1^Radiation potential associated with motion in surge (in calm water)

4D2^Radiation potential associated with motion in heave

• • •

4)6^Radiation potential associated with motion in pitch

Diffracted potential (Newman uses 4)7)

The deep water incident wave potential is given by

igA ky—ik(xcos0+zsine)
00 =^e (2.3)

where A is the wave amplitude and 0 is the angle of incidence. 8 is measured from the x-

axis with 0=1800 representing the head sea condition.

The radiated potentials are used to solve for the motion in the respective modes

while the diffracted potential does not need to be solved. Sclavounos (1981) provides a

solution for this potential.

The fluid boundaries can be derived from the original assumptions.

1.^The three-dimensional Laplace equation defines the fluid motion:

11



Chapter 2: Theoretical Derivation

a20 a2e, a20
v20.•+—+—=oax2 ay2 az2 (2.4)

2. The free surface condition can be reduced from Bernoulli's equation to

yield:

2^a 4)—0)- + g — = u^(on y = 0)^ (2.5)
az

This equation can be rewritten as:

a 4)k4—= 0
a z

where: k =
()2

k is the wave number (or deep-water dispersion relationship). The

wavelength is X where:

2nX =^ (2.8)

3. The velocity of the incident and diffracted waves is equal and opposite on

the surface of the body.

(0,1+_1,1 )1 =0^ (2.9)

4.^The body boundary condition is defined as

ni =^= koniri^ (2.10)

where ni is the normal vector pointing out of the fluid domain and ri is the

motion in mode j.

(2.6)

(2.7)

12
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5.^The above boundary conditions require that the velocity potentials 4)i

represent outgoing waves far from the body with the fluid velocities (Vc1))

vanishing as y --oo. The radiation condition takes the form

1
4:0oce^as r —>

r
(2.11)

2.2.2 Two-Dimensional Solution

The assumptions and boundary conditions (other than the radiation condition)

remain valid for the two-dimensional solution when the longitudinal flow effects are

ignored. By reducing 4)(x, y, z) to 4)(y, z) the local hull cross-section can represent the

boundary surface in the inner region of flow (close to the body). The inner region can be

defined as transverse distances small compared to the ship length.

The two-dimensional potential solution should yield a potential 4)i for each mode.

Since only heave (j=2) and pitch (1=6) are being considered and 4)6 can be represented by

4)6 = x4)2 in the three-dimensional solution only the potential for 4)2 needs to be

calculated. This potential will be described as 4)2D• The following section describes a

method of determining 4)2D; the numerical solution is contained in Appendix A.

2.2.2.1 Solution for Two-Dimensional Potential

The potential 4)2D can be described as the integration of a line of two-dimensional

pulsating sources located on the hull surface. Figure 2.2 represents the two-dimensional

hull segment in the y-z plane with sources on half the hull. The source potentials are

solved using mirror terms above the free surface to create the correct boundary condition.

The potential of the source terms 4)s is

13



Chapter 2: Theoretical Derivation

Figure 2.2^Two-Dimensional Section

IOs = I- ln^(z — 
)
2 + (y — 11)2^+ 27tie4Y+71-2h)-ikfrl

2^(z-4)2 4-(y-1-1- 2yf)2

+2 p cos( p(y + i — 2y f)) + k sin (Ay +n— 2yf ))^dp
p2 +k2 (2.11)

This represents a direct source term, a propagating wave term and an integral over

the free surface respectively. The derivation of Os is in Appendix A.

To obtain Of for the full hull Os must be integrated around the hull section using

the source strength distribution Ai (c) . The parameter c refers to the arc length around

the hull section as defined in Appendix A.

(y , z) = A i(c)4) s(y , z ,i(c),t(c))dc^ (2.12)

The numerical solution for the A. (c) is described in Appendix A.

14
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The outer expansion of the two-dimensional solution yields

1:1)i (y, z) -1- ia jekY-iklzi^ (2.13)

where ai is the two-dimensional source strength. The source strength is related to the

far-field wave amplitude; the solution is presented in Appendix A.

2.2.3 Three-Dimensional Solution

Slender body theory is used to provide an outer solution for the body while an

inner solution is derived from the strip theory results above. The outer solution meets all

the boundary conditions except for the hull itself. The asymptotic behaviour of the inner

solution in the far field and the outer solution close to the ship can be used to find a

unique solution by requiring that the two solutions be compatible in a suitably defined

overlap region. Figure 2.3 illustrates the inner, outer and matching regions for the

complete solution.

2.2.3.1 Outer Region

The outer region is the area far from the hull (at radial distances greater than the

beam) where the flow can be considered independently of the hull geometry details. In

this region the velocity potential can be approximated by a line distribution of three-

dimensional sources along the centre-line of the ship.

This line distribution can be described by :

cp .1q1()G(x-4, y, z)c14^ (2.14)

where pi is the three-dimensional potential.

15



Chapter 2: Theoretical Derivation

Figure 2.3^Regions of Validity

Here qi is the source strength distribution and G is the velocity potential of a

"translating-pulsating" source on the x-axis at the point^In order to match the outer

expansion of the inner solution equation (2.14) must be expanded for small kr, where
r =.677—Ez2 Newman and Sclavounos (1980 : equations 15 to 19) use a Fourier
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transform on both sides of this equation to solve the inner expansion of the outer solution

for the source strengths. By taking the inverse transform of this equation a linear

operator L(q) is obtained such that :

L(q1) = [y + Tt^(x) + if sgn(x - ln (2klx -^qj (04
(2.15)

—Eki[170(kIX -^Ho (1c1X - 41) + 2 i Jo(kix -^(04
4 L

This corresponds to equation (2.13) in Sclavounos (1981) and can also be derived

from Newman and Sclavounos (1980 : equation 43). The inner expansion of the outer

solution transforms to :

p i(x,y,z)= q i(x)R2D— 1 (1+ kz)L(qi)
^

(2.16)

in the physical x-space. R2D is the two-dimensional source potential for the outgoing far-

field waves.

2.2.3.2 Inner Region

In the inner region the two-dimensional Laplace equation (2.4), the free-surface

equation (2.5) and the body boundary condition (2.10) must all hold for pi. The general

solution of these conditions can be obtained in the form

yi=4:0,p+C;(x)4/,^ (2.17)

where OR is the particular solution and Oj is the homogeneous solution. The coefficient

C1(x) is an "interaction" coefficient which will be solved by matching with the outer

solution.
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Newman (1978) shows that the homogeneous solution is of the form Of +Of

where Of is the complex conjugate of Of.

(pf = Of +Cf(x)(Of +4-f7)^ (2.18)

In the overlap region where y and z are larger than the beam of the hull but less

than the hull length the potentials can be written in terms of their effective source

strengths :

4); = aiR2D(Y, z)^ (2.19)

Combining equations (2.18) and (2.19) gives

(pf = {of +Cf(x)(crf +C)}R2D - 2iCf(x)Itn(R2D)^(2.20)

1By setting Irn(R2D)= -(1+ kz) in the overlap region (at small kr) the outer expansion of
2

the inner solution is

(pf = 1a1 + C (x)(cs + .37)} R 2D - C ( x);z7(1+ kz)^ (2.21)

Matching the inner expansion of the outer solution (2.14) and the outer expansion

of the inner solution above gives

q = taf +Cf(x)(cri +c-ip/R2D^ (2.22)

1 ) = iC .(x)u
"

.
27r 

(2.23)

The outer source strength qf can be determined by eliminating C1(x) and solving

the following equation

(cr•+a•
qi(x)^L(qf)= af

27ciai

The matching function C(x) is determined from

(2.24)
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Ci(x). 
q —a.
CT• -1-0.J^J

(2.25)

2.2.4 Hydrodynamic Terms

The hydrodynamic force is found by integrating the hydrodynamic pressure

around the surface of the hull. The pressure can be found from the total potential flow

around the hull. This consists of the motion terms (j=2, 6 for heave and pitch) which

define the added mass and damping and the incident and diffracted wave pressures which

define the excitation force.

2.2.4.1 Added Mass and Damping

The three dimensional added mass and damping is calculated by integrating the

three-dimensional potential in equation (2.18) around the hull surface. This equates to

integrating the pressure on the hull surface for a ship experiencing steady-state small

amplitude heave and pitch motions in a calm sea. The full hydrodynamic term can be

written as:

—co2m4 + ioc = —icop n,n/1)2D + n,niC •(x)( 4)2D+ 4)2D)dS
^

(2.26)

where the potential 4 = niO2D. The first integral equates to the two-dimensional

added mass and damping and can be written

_onzr icoc,42.D =—iovininjO2Ddc^ (2.27)

Therefore equation (2.28) reduces to
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2D • 2D^(2k0c2D)cbc

^

—(02m4,^= n.n.(-0) 2 m.22 +1(0c22 )+ n.0 (x)nI^ 1

where equation (2.25) can be written as

11--^= R,^2D

a2D+ G2D

Equation (2.26) can then be simplified to

(2.28)

(2.29)

q —

^

2^ 'inf ;„,2D ^nia2D  (,, • 2D \—^it')2m.. +^= n.n.(-0)^sun..22 1-r ri,^kziCOC22 )(LA.^(2.30)9^I J^ a2D +a2D

2.2.4.2 Excitation Force

The excitation force is the hydrodynamic force caused by the interaction of the

hull with the incident and diffracted waves. This force can be expressed as
Fi = AXi^ (2.31)

where A is the amplitude of the incident wave and

x; = —iapjfn1(00+)ds
^

(2.32)

This equation requires the evaluation of the diffracted potential which Sclavounos

(1981) solves. Alternately it can be simplified by using the Hasldnd relations

(reciprocity between the far-field waves and the excitation force). By using the body-

act)
boundary condition^= kon and applying Green's theorem equation (2.32) can bean
reduced to:

a00 )dsx; = p55(iconA0 'To (2.33)
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Including the matching terms the excitation force can be written as:

pff (konfo^ a17.0a00 )ds_^Ci (X)(0i +) Q-cisCISo — 4); (2.34)

Sclavounos (1981) shows that this method of evaluating the excitation force

produces results very similar to those found after evaluating the diffracted potential.

Figure 2.4: Force Diagram for Coupled Tug/Barge

2.3 Determination of Coupling Force

The coupling force on the hinge between the tug and barge is determined by

summing the forces on each hull and then constraining the motions of each vessel to be

equal at the hinge. Figure 2.4 represents the forces on the coupled tug-barge unit. The

lengths l and 12 are the distances from the centres of gravity of the tug and barge
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respectively to the pivot point. The motions of the two hulls are described by the vector

{x) where i=1 is the tug heave, i=2 is the tug pitch, i=3 is the barge heave and i=4 is the

barge pitch.

The force associated with each motion can be calculated by starting from the

standard assumption that:

[M]{1}+ [C]til+[11{x} = {F}^ (2.35)

The damping [C] and stiffness [K] matrices reduce to 0 for rigid body modes and

the force {F) can be split into the pressure integration around the hulls and a vector of

the pin forces and moments. Equation (2.35) thus reduces to:

[AI]{i} ={.1. pnj dS}+ {B}Fmn
(2.36)

where:

[M) for the four modes required can be written as:

0^0^0
0^p(x2+y2)dV 0^0

[Ai=
vwe

0^0^/Name^0
0^0^0^fp(x2+y2)dV

vbft. (2.37)

and
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–1}

–11
1

–12^ (2.38)

The mass matrix is composed of the mass and moment of inertia for each hull

while the {B) vector represents the direction and moment arm of the force at the pivot

location. The pressure integration term can be further reduced to

ao{fpni dS}= {— f 4,g(y — yft.)+--)n. clsa t (2.39)

The gravity term in this equation represents the hydrostatic force on the hull

aci)
while the — term gives the hydrodynamic forces. Substituting the hydrodynamic forcesat
described in sections 2.1.4.1 and 2.1.4.2 into equation (2.39) yields

{f pn, dS}= –{i pg(y — yfs)n, dS}^m4 + i cocd{x} – {– icop 1(00 + 0_4)n1 dS}

(2.40a)

or:

{Ss pn, dS}= –[1-1Slix} – [HD]fx} – {F}^ (2.40b)

{B}
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The coupling between the tug and barge means that the vertical motion of the

barge stern is equal to the vertical motion of the tug bow. This provides a constraint on

the vector {x} which can be used to solve for Fpin and the hull motions.

± X211 = X3 — X412^ (2.41a)

or:

(2.4 lb)

For harmonic motion the {i} term can be written as -w2(x) and equation (2.36)

can be written as:

(—co2[M]+ [HD]+ [HS]){x} = [-F}+ {B}Fpin

{x} = (-0)2[M] + [HD] + [HS]) 1{{-F1+ {B}Fpin }

Pre-multiplying by {BIT:

fAR}T (--(02[Mii-[HD]+[11S]r it-F} fri}Fpinl= 0

(2.42)

(2.43)

(2.44)
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This can be solved for the force Fpth at the pivot such that

F
{B}T (-0)2 [M]+[HD]+[HSD-1 {F}

=
Pm {B}T (-0)2[M]+[}11)]+[}10-1 {B}

(2.45)

The application of the constraint differs from the method used by Robinson

(1976) to obtain the shear force. Robinson assumed that the hulls did not affect each

other except for the connecting pin. He solved the heave and pitch for each unconnected

hull and then repeated this computation for a unit force oscillating each unconnected hull

at the pin location. The pin force and hull motions were found by equating the motion

and force at the pin location.
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Experimental Work

3.1^General

The model testing was carried out in the towing tank at the Ocean Engineering

Centre of B.C. Research. The experiments were performed in head and following seas

with two different pivot locations in regular sinusoidal waves. The only previous work

found on pusher tug and barge units was by Rossignol (1974, 1975a) and Robinson

(1977); a brief summary is included in Chapter 1. This work was performed on purpose-

built models moving at different velocities. Although part of the report was missing no

results for the zero speed case were found.

31 Experimental Objectives

1. To find the loads on the coupling of the tug-barge model,

2. to find the motions of the barge and relative motions of the tug,

3. to investigate the effect on the pin forces of moving the coupling location,

4. to examine the effect of head and following seas on the tug-barge model, and

5. to provide a comparison for the results of the numerical simulation.
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3.3 Experimental Apparatus

1. Tug-barge model coupled together

2. Four Omega load cells - effective range 0- 200 lb. force,

3. Three potentiometers - barge heave and trim and pivoting of the tug,

4. Capacitance wave probe,

5. ST41B signal conditioner,

6. Two DT 2801 data acquisition systems (8 Channel),

7. Data acquisition program (ASYSTANT PLUS),

8. Two IBM-compatible Computers,

9. Wave maker with a regular wave generator,

10.Towing tank : Width = 12 feet, Depth = 8 feet

3.4 Model Set-Up

The tug and barge models were generously lent by Robert Allan Ltd., a

Vancouver naval architecture firm. The lines plans for each model are shown in Figures

3.1 and 3.2. The waterline length of the barge model is 2.70 metres while the tug is 0.91

metres in length. The total length when coupled is 3.35 metres. The barge beam

measures 0.64 metres giving a length to beam ratio of 5.234 for the coupled system.

Although a higher ratio would be preferable no other models were available.
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Figure 3.3 Bearing Design

A bearing system was designed (Figure 3.3) to join the tug and barge. This

system consisted of a shaft with a bearing at each end. The shaft was attached to the tug

by two brackets and locked in place using set screws. A horizontal and a vertical load

cell were mounted to the bearing at each end and these were attached to the barge. A

potentiometer was inset into the starboard side of the shaft to measure the relative

pivoting of the tug.
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Figure 3.4 Tow Tank Set Up

The remaining instrumentation consisted of the wave probe and the heave and

pitch potentiometers for the barge. The latter two were attached at the centre of the

barge on the heave post. The wave probe was set in the water ahead and to one side of

the model to avoid reflection off the bow. Figure 3.4 is a schematic of the tow tank set

up.
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3.5 Procedure

1. The barge and tug models were individually weighted and balanced.

2. The load cells, potentiometers and the wave probe were all calibrated

individually.

3. The fully ballasted tug and barge models were set up in the tow tank. The gap

between the shaft on the barge and the foredeck of the tug was measured in

calm water conditions. Wood blocks were then cut to match this gap and the

shaft was fixed to the tug.

4. The tug-barge unit was positioned midway up the towing tank and a

sinusoidal series of regular waves was sent down the tank by the wave maker.

In order to minimize the effects of reflection data was recorded as soon as the

waves became regular; 1400 points were recorded at 50 Hz for each run. The

incident wave amplitude was kept as large as possible without sinking the

model. The frequency range was determined from the barge length - the

model was tested at wavelengths between 0.51Barge and 2.51Barge. This

corresponded to a range of 0.45 Hz to 1.05 Hz.

5. The model was tested in head and following seas.

6. The shaft mounting was moved forward on the tug and barge changing the

pivot location by 95 mm Approximate locations are illustrated in Figure 3.4.

Steps 3 to 5 were repeated for this configuration.
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3.6 Results

The final ballasted mass of the barge was 186.82 kg (including the heave post and

bearing system). The tug mass was 10.68 kg. Both were ballasted to float with no trim.

The procedure of section 3.4 was followed for setting up the models in the tank. A small

amount of room was left around the bow of the tug and the notch to ensure that no

interference would occur. The tug beam was approximately 3/4 of the width of the notch

at the stern of the barge.

As described in section 3.4 two separate cases were considered; one with the

pivot shaft mounted as far back as possible and one with the shaft as close to the bow of

the tug as practicable. Both shaft locations are marked on the line drawings of the tug

and barge in Figures 3.1 and 3.2 respectively. The distance between the shafts is 95 mm

(slightly greater than 10% of the tug length).

The two hulls were connected and tested in both head and stern seas before the

pivot was moved forward and the tests repeated. The width of the B.C. Research towing

tank meant that certain results fell close to the natural frequencies of the tank. These

were calculated as: co. = 0.653 Hz and co. = 0.924 Hz (Appendix C). These

corresponded to wavelengths of X„ =1.355/Bur and X. = 0.677l. The effect of these

frequencies was observed as an increased oscillation of the model. This effect was

reduced primarily by using wooden beaches to damp the wave motion, recording results

as soon as the generated waves became uniform and allowing the tank to settle between

runs. Some evidence of the effect of the natural frequencies was present in the slight

variations in the results.
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3.6.1 Calibration

The barge heave and the wave probe were calibrated in metres, the barge pitch

and the tug pivot in degrees and the load cells in Newtons. The loads were expected to

be small so the load cells were calibrated from 0.49 Newtons (50 grams) up to 22.3

Newtons with the emphasis on data below 5 Newtons. The measurement of the tug pivot

angle was difficult and proved to have the largest error. A regression analysis of each

curve proved that all gauges were linear. A sample calibration plot is included in

Appendix C.

3.6.2 Loads and Motions

Data analysis for the loads and motions consisted of examining every wave for

each run. ASYSTANT PLUS, a data acquisition program used by BC Research, allows

the user to examine the data within the program or to convert the files to ASCII format.

The tug-barge data was converted and examined in both the time and frequency domains.

The ASCII format data was first run through a computer program which

converted the data from volts to the correct units based on the calibration data. The

program then determined the mean g, the standard deviation a and the frequencies of

each wave. The mean was subtracted from each point to give a wave oscillating about

zero. The mean was also checked against the results of a steady state run.

The converted data was examined in the time domain by importing each wave

into a spreadsheet and plotting it. The waves were checked in detail to confirm whether

they were regular sinusoids and to ensure that the program had correctly predicted the

frequencies and standard deviations. Standard deviations were checked by comparing the
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observed wave peaks with 1270. Some reflection effects were evident at about 0.65 Hz

and 0.9 Hz (close to the natural frequencies of the tank noted earlier) but the results for

the motions and the vertical loads were regular sine waves in most cases. The horizontal

motions produced generally poor results; the waves were primarily irregular indicating

higher order harmonics. The horizontal measurement would represent the drag on the

hull plus the force component of the moment due to surge between the vertical centre of

gravity and the hinge point. These effects are not linear. Graphs 3.1 and 3.2 illustrate a

regular and an irregular sinusoidal response respectively.

The converted data was then examined in the frequency domain by using Fast

Fourier Transforms. The actual transform method was taken from "Numerical Recipes in

C" and used 2n points; n = 10 was chosen to give 1024 points.

The FFT results gave both the magnitude and the phase angle for each wave. In

order to compare the tug-barge motions effectively the phase angle of the wave probe

was shifted to correspond to the centre of gravity (and the centre of buoyancy) of the

barge. The phase shift was determined using the following equation:

where X, = 21r—% and 7 is the phase angle in radians.

As noted earlier the waves were regular sinusoids in most cases; producing a

single peak in the FFT analysis. Some waves showed higher order harmonics, especially

the horizontal forces. Graphs 3.3 and 3.4 illustrate a regular and an irregular FFT

response respectively.
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A summary of the experimental results is in Appendix C. These numbers

represent the amplitudes of each wave. They were determined using the results from

both the time and frequency domain analyses. The wave probe results were very

consistent in both amplitude and frequency; the standard deviation of the wave probe was

used to find the amplitude (Nrfa ). The amplitudes of the other seven channels were

determined using the following formula:

where Ai is the area under the 1-4.1 peak of channel 1, A; is the area under the 1-41-41 from

the wave probe and is the amplitude of the wave probe (from the standard deviation).

The phase angles of the barge heave and trim are relative to the wave probe (at the centre

of gravity of the barge) while the phase angles of the pivot angle and load cells are

measured at the pivot location. Each wave amplitude is non-dimensionalized using the

following equations from Robinson (1977).

Barge heave:

Angular displacements:

Forces:

ZBarge

Wave

0 

360  Wave 

A•Wave

Flrt.g. 

.6■ Bine
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where:

ZBarge : Barge heave amplitude

Wave : Wave amplitude

0^: Angular rotation (degrees)

/Wave : Wave length

: Force

'Barge : Length of barge

Barge : Displacement of bargeA

These non-dimensionalized values are plotted for each motion and force against

A' Way,/ for each sea condition. The two pivot locations are compared on each graph
1Barge

with the shaft location closest to the tug bow designated the front shaft. The phase

difference to the wave probe (at the centre of gravity of the barge) is also graphed.
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3.6.2.1 Heave

Graphs 3.5 and 3.6 show that the magnitude of the barge heave is almost

unaffected by the small change in the pivot location due to the large mass of the barge

versus the tug. The results are also very similar regardless of wave direction. The barge

heave at shorter wave lengths (higher frequencies) is close to the first transverse natural

frequency of the tank itself (3.7/Barge) and the results proved less stable. The barge

displacement increases with the wavelength (i.e. as frequency decreases) and the heave

motion moves into phase with the wave.

The phase angles are shown in graphs 3.7 and 3.8 for each sea direction. The

barge heave and the exciting wave are in phase for wavelengths above 1•51Barge. This

corresponds to the barge rising and falling with the wave as it passes; intuitively this

would require a wavelength greater than the barge length. When the wave length is

approximately 0.51Barge the barge heave and the exciting wave are out of phase; the

barge motion is fairly steady as more than two wave peaks are under the model at this

frequency. Between these wavelengths the phase angle relationship is transformed from

out of phase to in phase. The effect of the natural frequency of the tank can be seen as an

out of phase motion for the front shaft model at a wavelength of 1•351Barge• Phase

results are similar for both head and stern seas.
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3.622 Barge Trim

The barge trim magnitude is plotted in Graphs 3.9 and 3.10 for head and

following seas respectively. The rear shaft position gives a slightly larger trim angle than

the forward mounting at wavelengths greater than 1.5/Barge for both head and following

seas. This may be due to moving the bearing unit mass towards the barge stern when the

shaft is moved back. The trim angle magnitudes are very similar for both headings. The

trim angle increases steeply between wavelengths of 0•51Baize and 1•51Barge before leveling

off at the longer wavelengths as the barge trim becomes a constant 90° out of phase.

Graphs 3.11 (head seas) and 3.12 (stern seas) indicate that the phase angle is

unaffected by the change in shaft position. The barge trim is approximately 180° out of

phase at wavelengths close to 0.51Barge. In head seas this phase difference changes

rapidly to a 90° phase lag before XWave reaches 0.751Barge (in stern seas the phase

difference becomes a 90° phase lead). This phase difference remains constant as the

wavelength increases. Physically this lag (or lead) can be described as the barge rising

up the slope of the wave- the maximum slope of a cosine wave is reached at 90° or -90°.
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3.6.2.3 Pivoting

The magnitude of the pivot angle in head seas (graph 3.13) and stern seas (graph

3.14) is affected by both the wave direction and the pivot location. Moving the shaft

back results in a larger pivot angle between the tug and barge for both sea directions at

wavelengths longer than the barge length. The pivot location appears to have little effect

on the pivot angle for wavelengths shorter than this.

The head sea condition produces very small pivot angles at short wavelengths.

The pivot angle reaches a minimum in both sea directions at a wavelength of 0.61Barge but

the angle magnitude in stern seas is approximately 4 times larger than in head seas. The

pivot angle in stem seas reaches a maximum at a wavelength of approximately 1.1/Barge

while the head sea condition reaches its peak at approximately 1.51Barge. At higher

wavelengths the two sea conditions produce similar pivot angles. One possible reason is

that in stern seas the bluff stem of the barge is directly affected by the incident waves at

shorter wavelengths as well as the direct effect of the waves on the tug. In head seas the

barge bow presents a smoother hydrodynamic profile to the incident waves while the tug

is sheltered by the greater beam of the barge.

The phase angles in graphs 3.15 and 3.16 are measured at the pivot location

relative to the wave phase at the centre of gravity of the barge. The phase difference of

the pivot angles in both sea conditions is unaffected by the change in pivot location. The

head sea case increases from a 90° phase lead to a 1500 phase lag. The stern sea results

reflect this by decreasing from a 90° phase lag to a 150° phase lead. These phase

differences can be physically described as the position of the tug on the incident wave

when the centre of gravity of the barge is at the incident wave peak.
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3.6.2.4 Horizontal Force

The horizontal forces could not be analyzed as a linear response to the wave

excitation. The force measurement showed second and higher order harmonics caused

by the surge of the tug and barge relative to each other. The total force would be the sum

of the drag force on the aft hull (i.e. the tug in head seas) and the force due to the non-

sinusoidal surging of the hulls about the pivot axis.
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3.6.2.5 Vertical Pin Force

Graphs 3.17 and 3.18 indicate that the force on the coupling is much higher when

the pivot location is moved back. The rearward mounting produces higher forces at all

wavelengths except those shorter than the barge length in head seas where the force is the

same for both pivot locations.

The wave direction is also important with stem seas producing much higher peak

forces than the head sea case. As in the pivot angle discussion the possible cause is that

in the stern sea direction the barge stem is directly affected by the wave action. The peak
force occurs at Xwr. 1.2/ane (equivalent to the total model length) in head seas and at

Wave /B„g, in s tern seas. A minimum force occurs at 0.64 for both wave

directions and pivot locations. The force in stem seas at this wavelength is

approximately 4 times larger than the force in head seas (at the rear shaft position).

These results are similar to the pivot angle results in section 3.6.2.4. At wavelengths

longer than 21Barge the stem and head seas both produce similar forces.

The phase angles are measured at the pivot with respect to the incident wave at

the centre of gravity of the barge. The rear shaft position has a lower phase difference

than the forward shaft location at all tested frequencies. This difference is expected due

to the distances between the shafts. It is about cy in magnitude where d is the distance

between the pivot locations.
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3.7 Conclusions

The vertical loads on the coupling between the tug and barge are affected by both

the pivot location and the wave direction; if the pivot point is moved back on the tug the

forces increase. The pivot angle also increases as the pivot location is moved rearwards

but the barge heave and trim are almost unaffected. This can be attributed to the much

larger displacement of the barge than the tug.

The pin forces are highest in stern seas at wavelengths slightly greater than the

length of the barge. The head sea case produces a maximum pin force at wavelengths

close to the barge length. This force may be lower than the stern sea result because of

the sheltering effect of the barge beam on the much smaller tug in head seas. The pin

forces are proportional to the pivot angle between the tug and barge with the pin forces

increasing with this angle. The pivot angle in the stern sea condition is much larger than

in head seas at wavelengths less than 1.5/Barge. The barge heave and trim are similar in

both sea conditions.

The phase angles describe the relative position of the barge and tug to the incident

wave at the centre of gravity of the barge. The phase angles of the pin forces reflect a

slight change when the shaft is moved rearward (as expected) but no effect is seen on the

phase of the pivot angles.

The principal aim of these experiments was to provide a basis for comparison of

the theoretical work in Chapter 2. Chapter 4 describes a numerical application of the

work in Chapter 2 and compares it to these experimental results.
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Numerical Solution

4.1 General

The numerical solution of the potential flow theory was written in the language

C++ on a personal computer. C++ is an Object-Oriented Programming language which

allows the user to write compact code which can be easily modified. The numerical

solution follows the theoretical derivation in Chapter 2.

The full solution for a single vessel involves discretizing the hull into several

two-dimensional sections. The potential and velocity flow are found around each section

allowing the far-field source siren gth cr2D to be determined. These far-field source

strengths are then used to determine the three-dimensional source strengths qi and an

interaction function C1(x) thus defining the unified solution. The three-dimensional

hydrodynamic and excitation forces are calculated with this interaction function.

Results show that both the two and the three-dimensional solutions for the

hydrodynamic forces agree with experimental and previous results. These forces are

combined with the hydrostatic forces and masses for the tug-barge system to solve for the

vertical force on the coupling. Two cases are considered; the first assuming no

interaction between the two hulls, and the second assuming an interaction effect between

the two hulls. The first case follows the previous work of Robinson by solving the

hydrodynamic terms for each hull separately. The second case combines the two hulls as

a single hinged unit and solves the hydrodynamic terms by including the interaction

between the two hulls.
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4.2 Two-Dimensional Results

The numerical solution of a symmetric two-dimensional hull section uses

pulsating sources located on a line segment describing the hull profile. Integrating the

potentials of these sources around the hull solves the two-dimensional potential (for the

heave mode). This determines the far-field source strength a2D and the added mass and

damping for each section where

02D =^$2o)e-4eikz
^

(4.1)

and

+ koc, =^niniOzodS
^

(4.2)

The numerical solution for these terms is derived in Appendix A.
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The far-field wave amplitude A ^related to the source strength a2D by

A2D = 2 I- a2D . Graph 4.1 compares the calculated results for A ^those of Vugts

(1968).

The added mass and damping predictions of the code are compared with the

corresponding charts by Bhattacharya (1978). Graph 4.2 and Graph 4.3 show the non-

dimensionalized added mass and damping respectively plotted against non-

dimensionalized frequency for a beam to draft ratio of 2.0 and a section coefficient of

r3. = 0.8. The factors for non-dimensionalizing the added mass and damping are

2D
C = 

171.22

pfB2

= 1104D
pg 2

A further comparison of these results was made to the strip theory results

obtained by Newman for the same hull. In his paper on Unified Slender Body Theory

(1979) Newman compares strip theory and unified slender body theory with

experimental results obtained by Gerritsma (1966). The strip theory results are

integrated around the hull and compare very accurately with those of Newman. The

heave, pitch and coupled added mass and damping are shown in graphs 4.4 to 4.9.

(4.3)

(4.4)
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4.3^Three-Dimensional Results

The numerical model for a single vessel uses Simpson's method to integrate an

odd number of equally spaced two-dimensional hull profiles along the hull. Appendix B

details this integration using equation (2.22) combined with the sectional far-field source

strength a2D to find the three-dimensional source strengths qi. Equation (2.22) is

repeated here

q1(x)^ ic
i
—
of 

L(qi) = CY j

where :

gqi)=[y + 7t i]qj (X) +f Sg11(X - 4)1n(2klx-^ (4)4

--Ekf[y0(klx-41)+H0(klx-41)+ 2 i J0(kix -^(4)4
4 L

Due to the slender body assumption the two end terms are assumed to have source

strength values of 0. The interaction function C(x) is determined from equation (2.29)

c. = n, — (32D 

j^CY2D -I- a2D
(4.7)

This allows the calculation of the hydrodynamic and wave excitation forces using a form

of equation (2.18)

n 14)2D + niC i(x)(4)2D+4)2D)^ (4.8)

The hydrodynamic force equation (2.30) is

2^(11 — 11,a2D^•
C 2D2 2D • 2D^ Z1OC22 )dx^(4.9)mv. + coc.. = f n n (—o) m22 + goc22)+ ^

02D + 02D

(4.5)

(4.6)
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and the excitation force comes from equation (2.34)

a4:00 dsao0 lds _ p niCi (X)(02D + 02D 1 anX i = p (konAo — 0; —a72-) (4.10)

where Xi is the excitation force due to a unit amplitude wave. The excitation force is the

only force that is dependent on the incident wave angle.

The results for this application of unified slender body theory match the three-

dimensional results of both Newman and Mays (as well as the experimental results of

Gerritsma included by Newman). Graphs 4.4 to 4.9 plot the added mass and damping

results for the heave, pitch and coupled heave-pitch modes of a Series 60 hull with a

block coefficient of 0.70. Graphs 4.10 and 4.11 plot the excitation force and moment

respectively on the same hull in head seas against the experimental values found by

Vugts (1971). Graphs 4.12 and 4.13 show the excitation force and moment in bow seas.

The results of Sclavounos (1981) for the Hasldnd relations are identical.

The coupled heave-pitch terms must be symmetric by definition. Both of these

terms were evaluated to determine the numerical error. The following equation was

used:

it4 
error =I^ x100%

4t,,t;
)

This error proved to be negligible for all cases.

(4.11)
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4.4 Coupled Tug-Barge

The vertical pin force and the corresponding motions of the tug and barge are

obtained by solving equation (2.45).

where

F =
{B}T (—e[M]+[HD]+[HS]ri {F}

Fin {B}T (--c)2[M]+[HD]+[HS1)-1 {B}
(4.12)

{B} =

(4.13)

The mass and hydrostatic matrices are independent of the coupling between the

tug and barge. The hydrodynamic terms consist of the added mass and damping and the

excitation force which all depend on the interaction between the two hulls. Two cases

can be considered for calculating these hydrodynamic forces :

Case 1: The forces can be calculated independently for each hull assuming no

interaction with the other hull

Case 2: The forces can be calculated for a hinged system assuming some

interaction between the two hulls.

The former case has been solved by Robinson (1977) for models moving at a

scale speed of 16 knots. No literature has been found on the latter case.

4.4.1 Case 1 : Separate Solution

For Case 1 the hydrodynamic forces are calculated exactly as for a single hull so

that a (2x2) hydrodynamic matrix and a (1x2) excitation force vector are found for both
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the tug and barge. When the two hulls are combined in equation (4.12) the

hydrodynamic matrix is of the form

-- (02M .212.41 +/(OCT22pg —(02M.2r6lIg -FiC0C26Tug 0 0

--(02/71.6r2u4 + iC0C6r2tig —(02ME6Tug -FiCOCZI 0 0
[HD] =

0 0 2^Bap^•^Barge—CO M22^+10X22 2^Barge^•^Barp—CO M26^+ICOC26

0 0 2^Barge^•^Barge—CO M62^+1C0062
2^Barge^•^Barge—CO M66^+10X66^_

(4.14)

where the added mass and damping are solved by equation (4.9) for each hull. The

excitation forces are solved using equation (4.10) for each mode.

Numerically the stem of the barge is difficult to model using slender body theory

due to the transom stern and notch. The numerical application of unified theory assumes

that the source strength at each end of the hull is zero but the wide stem profile would

obviously produce a non-zero source term. The stem of the barge is treated as rounded

with the last station forced to a zero source strength. This simplification is not expected

to affect the results greatly.

4.4.2 Case 2: Combined Solution

For Case 2 the mode shapes used to calculate the three-dimensional sources in

equation (4.5) are set up as

Mode 1 = 11
0

if =1"-ri- < x^i.e. on tug
ff x >^i.e. on barge

Mode 2 =
fx if^x 5^i.e. on tug
10^if x > -13L i.e. on barge
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Mode 3 = 10
1

if x <-71÷-' i.e. on tug
if^- x^i.e. on barge

Mode 4 = if x < =I-4' i.e. on tug
1X if^< x Llis-8 i.e. on barge

These four modes are the same as for the Case 1 model except that the coupling

terms between the tug and barge can be calculated using the interaction coefficient C;(x).

Equation (4.9) is used for the three-dimensional added mass and damping for the Case 2

model with one modification. The coupling terms between tug and barge (i.e.

–co2
/7113 i(OCI 3 - tug heave coupled with barge heave) are determined from the

ql_^ (2iorn2D)dx term.^This produces a complete (4x4) symmetric
L^2D -

hydrodynamic matrix. The interaction terms for the excitation force in equation (4.10)

are also evaluated in this manner.

4.4.2.1 Numerical Model

The combined tug-barge model uses 41 equally spaced sections to allow a

Simpson's integration along the hull. Figure 4.1 illustrates the complete model (not to

scale) with the individual sections marked. Sections 0 and 40 are modeled as sections

having no beam - the source strengths are assumed to be zero at each end. Section 8 is

the intersection between the tug and barge and is built as a tug section while section 9 is

built as a barge section.

The actual hinge between the tug and barge allows the tug to pivot inside a notch

at the rear of the barge. The computer model of this hinge was achieved by breaking the
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model at station 8. The tug mode shapes are then defined from station 0 to station 8 and

the barge mode shapes from section 9 to section 40. Although this results in the loss of

the bow of the tug a comparison of the hydrodynamic matrices and of the excitation force

vectors for the two separate models proves this to be a reasonable assumption.

Figure 4.1^Overview of Tug-Barge Sections

4.5 Coupled Tug-Barge Results

The results for the tug-barge system consist of the vertical shear force at the pin,

the barge heave and pitch and the tug heave and pitch. As all results are complex

numbers the phase angles can also be determined. The experimental results of Chapter 3

replace the tug heave and pitch with the pivot angle between the tug and barge while the

phase angles are determined from either the wave or the FFT analysis. In addition the

experimental results are evaluated with the incident wave at the centre of gravity of the

barge. This is replicated in both numerical models within a global coordinate system.
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4.5.1 Barge Heave

The numerical results for the barge heave are presented in Graphs 4.14 and 4.15.

These graphs compare the results for the Case 1 and Case 2 tug-barge models with the

experimental results of Chapter 3. The magnitude of the heave predicted by both

numerical models is very similar. The experimental results in this range are not ideal due

to the proximity of the natural frequency of the tank at X. = 0.677/ . Both models

correctly predict that the change in pivot location will have little effect on the heave in

either head or stern seas. The calculated heave motion in both sea conditions is less than

expected.

Graphs 4.16 and 4.17 show the phase difference The results for the two models

are very accurate in both head and stern seas. As expected the change in pivot location

does not affect the phase angles.
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Graph 4.17 : Barge Heave Phase in Stern Seas
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4.5.2 Barge Trim

The barge trim in head and stern seas is plotted in Graphs 4.18 and 4.19

respectively. Both numerical models are virtually unaffected by the change in pivot

position for either head or stern seas. As suggested in Chapter 3 the experimental

variance in the barge trim may be due to moving the bearing assembly.

The numerical models both underpredict the magnitude of the barge trim in head

and stem seas. The uncoupled (Case 1) model calculates a slightly larger trim magnitude

in both sea conditions.

The phase angles are accurately determined by both the Case 1 and Case 2

models. These results are plotted in graphs 4.18 for head seas and 4.19 for stem seas.
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4.5.3 Pivot Angle

The numerical pivot angle is obtained by subtracting the complex trim of the tug

from the complex trim of the barge. The results for head seas are plotted in Graph 4.22

and for stern seas on graph 4.23. Both graphs reflect the increase in the pivot angle

which occurs when the pivot location is moved rearward.

In head seas (Graph 4.22) the short wavelength results agree very well up to

A. /13.... At longer wavelengths both models underpredict the pivot angle with the

coupled model (Case 1) producing a larger angle. Comparing the pivot angle to the

barge trim in Section 4.4.3.2 suggests that the tug trim is considerably underpredicted in

the Case 2 model. The numerical simplification of splitting the tug and barge at the

barge stern adds the tug bow to the barge. This reduces the added mass and damping of

the tug which reduces the calculated trim at longer wavelengths (due to the higher added

mass at long wavelengths; see graph 4.4).

In stern seas (Graph 4.23) the Case 1 model again calculates a higher pivot angle

than the Case 2 model although both still underpredict this angle. Neither model predicts
the saddle point at A. 0. TheThe numerical models do show a steeper rise to the

maximum pivot angle in stern seas but not as steep as the experimental results. The

models do predict a slightly larger pivot angle in stern seas than in head seas in

agreement with the experimental trend.

Both the Case 1 and Case 2 models predict the phase angles correctly. The results

are plotted in graphs 4.24 for head seas and 4.25 for stern seas.
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4.5.4 Pin Force

The vertical force at the pivot location is plotted in Graph 4.26 for the head sea

condition and Graph 4.27 for the stern sea condition. The effect of the change in pivot

location is well represented by both numerical models in both sea conditions with the

Case 2 model showing an improvement at shorter wavelengths. At the saddle point

(X = 0.6/Bne) the coupled model illustrates that the pivot location has less effect on the

force calculation.

4.5.4.1 Head Seas

In head seas the Case 2 (coupled) model predicts the pin force well at

wavelengths shorter than /Barge and at wavelengths greater than 21Barge• The saddle point at

X =0. 6/Bne is well defined. The Case 2 model does not predict the magnitude of the

peak force although the rear shaft location does peak close to the correct wavelength.

The front shaft location shows almost no peak for the Case 2 model. The trend of the

numerical pin force is similar to the experimental results; the lower pin force is

reasonable since the hull motions are underpredicted in this wavelength regime.

The Case 1 model overpredicts the force at short wavelengths with the saddle

point at X = 0.6/13.8. occurring at a lower wavelength and a much higher force. As the

wavelength increases the pin force decays more quickly for the Case 1 model than for the

experimental results. As a result the Case 1 model underpredicts the force at longer

wavelengths. The magnitude of the peak pin force is slightly larger than the

experimental magnitude.
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4.5.42 Stern Seas

The stern sea condition for the Case 2 model produces very similar results to the
head sea condition. The saddle point at X 0. 6/Baige is again predicted; the Case 2 model

calculates a slightly higher force than in head seas - this force is very close to the

experimental force. The forces at short and long wavelengths are similar to the

experimental results but the peak force is much lower than the experimental force. The

peak force predicted by the Case 2 model in stern seas is slightly higher than in head

seas. As in the head sea section these results are reasonable due to the underprediction of

the hull motions.

The Case 1 model appears to predict the magnitude and trend of the force more

accurately than the Case 2 model in stern seas. The front shaft results match the

experimental forces at all wavelengths except close to 0•613arge where the saddle point is

not predicted. The pin forces calculated for the rear pivot location miss the saddle point

and are lower than the experimental forces at longer wavelengths.

4.5.4.3 Phase Angles

The phase difference is plotted in Graphs 4.28 and 4.29 (head and stern seas

respectively). The Case 1 model reproduces the phase difference between the front and

rear shaft locations as the wavelength increases. The Case 2 model does not predict this

phase difference at longer wavelengths. At longer wavelengths the Case 1 model leads

the experimental results slightly while the Case 2 model lags these results.
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4.6 Coupled Hydrodynamic Terms

The coupling terms for the added mass and damping predicted by the fully

coupled (Case 2) model are contained in graphs 4.30 and 4.31 respectively. All terms are

normalized using a, =.1/rY7 where t represents either the added mass or damping. The17

term 'cross-coupling' will be used to denote the terms referenced by the subscripts '13',

'14', '23' and '24'. In the Case 1 model these are assumed to be zero. The '12' and '34'

coupling terms represent the coupled heave-pitch terms for the tug and barge

respectively. The Case 1 and Case 2 models produce similar results for these coupling

terms with some minor differences due to the removal of the tug bow for the Case 2

model.

4.6.1 Added Mass

The added mass terms are shown in graph 4.30. The '12' terms and '34' terms are

shown as solid lines while the terms coupling the tug and barge are shown as broken

lines. The normalized tug-barge cross-coupling terms are of the same order of

magnitude as the '12' and '34' terms. As the wavelength increases the tug heave-barge

pitch (m14) term becomes larger while the other three tug-barge coupling terms decrease

towards the magnitude of the barge heave-pitch term. At short wavelengths the tug

pitch-barge pitch (m24) term is the most dominant of the cross-coupling terms. The barge

heave-pitch terms do not vary much with the wavelength and are consistently small. The

tug heave-pitch term (m12) is also fairly constant with the wavelength. It is the largest

coupling term; almost twice as large as the m14 term at long wavelengths.
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4.6.2 Damping

The damping terms are plotted in graph 4.31. The tug heave-pitch term (c12) is

the largest coupling term while the barge heave-pitch term (cu) is the smallest. Both of

these terms remain relatively constant at all wavelengths. All four cross-coupling terms

increase with the wavelength. At longer wavelengths the tug pitch-barge pitch (c24) and

tug heave-barge pitch terms (c14) become the dominant terms approaching the magnitude

of the c12 term.
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4.7 Discussion

The results of the two numerical models indicate that the motions of each hull are

underestimated. This suggests that the unified slender body theory is not calculating the

motions of the hulls accurately. The assumption of slenderness is inaccurate for both

hulls; the length/beam ratios are 3.86 for the tug and 4.22 for the barge. The Case 2 hull

is marginally better with a ratio of 5.2. The slenderness ratio for the unified theory

should be greater than 10. Additionally the unified theory assumes a deep water

approach to the problem while the experimental results may be slightly amplified by the

tow tank walls.

Both the Case 1 (uncoupled) and Case 2 models produce similar results for the

barge heave while the Case 1 model predicts a slightly larger barge trim than the Case 2

model. Numerically the two barge models are very similar. The numerical solution of

the barge stern in Case 1 requires that the last section have a source strength of zero

corresponding to a rounded stern; in Case 2 this last section is assigned to the tug.

Additionally the barge has a much larger mass than the tug and dominates the motions.

The smaller barge trim in Case 2 is probably due to the presence of the m14 and m2A

cross-coupling terms.

The pivot angles are also underestimated by the numerical models. These angles

represent the difference in the pitch of the tug and the pitch of the barge. The unified

theory therefore appears to underpredict the tug motions as well. The smaller angles

calculated by the Case 2 model result from the numerical simplification of the

intersection between the tug and barge. The bow of the tug is removed and included as

part of the barge. The resultant tug model is reduced by 20% in length (0.91 metres to
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0.73 metres) due to the inclusion of its bow with the barge. This reduces the added mass

and damping which has a direct effect on the tug motions.

In head seas the vertical pin forces are overestimated by the Case 1 model and

underestimated by the Case 2 model. In stern seas the Case 1 model appears to be

accurate at wavelengths greater than 0.6/Buge while the Case 2 model is still too low. As

the unified theory is calculating smaller motions than expected the pin force should also

be correspondingly lower. This suggests that the coupled model is more accurate and

that the cross-coupling terms are important. This is confirmed by graphs 4.30 and 4.31.

The cross-coupling terms may even be overpredicted at the longer wavelengths as the

Case 2 model overpredicts the forces in this region while the Case 1 model underpredicts

the forces. The larger experimental forces in stern seas may be due to the bluff stern of

the barge and the hydrodynamic excitation of the tug in direct seas. The Case 2 model is

unable to predict the rapid section change at the intersection of the tug and barge and

models this area as a smooth slope due to the use of Simpson's method to integrate along

the hull. This discontinuity in the hull combined with the bluff face presented to the

waves in stern seas means that the unified theory will be unable to accurately predict the

pin forces in stern seas. The hydrodynamic forces at this junction appear to outweigh the

advantages of including the coupling terms in stem seas.
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4.8 Summary

The numerical solution to the full three-dimensional flow problem was encoded

and tested successfully against known results. The hydrodynamic terms (added mass,

damping and the excitation force) all agreed with the results of Newman and Sclavounos.

The tug-barge unit was built numerically using two different cases. Case 1

assumed no hydrodynamic interaction between the hulls while Case 2 assumed the two

hulls affected the hydrodynamics of each other. These two cases were compared to the

experimental results in Chapter 3.

The effect of altering the pivot locations posed no problem for either the Case 1

or the Case 2 models. Both models underestimated the vessel motions in head and stern

sea conditions. The Case 2 model predicted even smaller motions for the tug due to the

missing bow section. The peak pin forces were underestimated by the Case 2 model and

overpredicted by the Case 1 model. The underpredicted pin force is more reasonable as

the motions are underpredicted. The cross-coupling terms can therefore be considered as

significant.
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Conclusions and Recommendations

5.1 Conclusions

5.1.1 Theoretical Results

A new approach was derived to calculate the pin forces on a pusher tug-barge unit

where the tug and barge are free to pitch relative to each other. This method relied on

either a separate solution for the hydrodynamic forces on each of the two hulls or a full

solution for the tug-barge unit treated as one hull. Unified slender body theory, a three-

dimensional solution method derived by Newman, was chosen for its speed and

applicability to the numerical problem.

The main advantage of the unified theory is the interaction coefficient :

17.1._er
C.= 
^ (2.29)

02D^ 2D

where C1 links the two and three-dimensional solutions. This coefficient allows the

calculation of the off-diagonal terms in the hydrodynamic matrix. The off-diagonal

added mass and damping term can thus be determined from the term

^_(2icocf)dx while the excitation force term includes a similar factor for the
+6L^2D^2D

force on the other hull.
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The vertical forces on the connecting pin are determined by balancing the forces

on each hull and then applying the constraint that the motion of the two hulls at the pin

must be the same. The resulting formula for the pin force is

F = {B}T (—C°2[M]+[1-1D1+[HSD –1 {F} 
Pin 

fB}T(-0)2[Al]+[HDJ+[Hs])-1{B}
(2.45)

where (B) is the constraint vector on the hull motion, [M] is the mass and inertia matrix,

[HI)] is the hydrodynamic matrix, [HS] is the hydrostatic matrix and (F) is the excitation

force vector. The vector elements represent the linearized tug and barge motions. This

formula is valid for the pin force regardless of the theory used to determine the

hydrodynamic terms.

5.1.2 Experimental Results

The tug-barge model was tested in head and stern seas in the towing tank at B.C.

Research. The barge heave and pitch motions and the relative angle of the tug were

measured as well as the vertical and horizontal forces at the pivot locations. Two

different pivot locations were used to determine the effect of shifting the connecting pin.

The effect of altering the pivot location can be summarized as:

1. Moving the pivot location back towards the centre of gravity of the tug

increases the relative pivot angle and the vertical pin forces.

2. The barge heave is unaffected by the location of the pivot. This can be

attributed to the much greater mass of the barge.

3. The barge trim increases slightly at longer wavelengths when the pivot

location is moved rearwards. This may be the combined effect of moving the
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bearing system mass rearward and the altered moment of inertia due to the

new axis of relative pitch for the tug.

4. The phase angle difference between the rear and front pivot locations for the

vertical force corresponds approximately to the distance the pivot was moved.

The results in head and stem seas lead to the following conclusions:

1. The horizontal pin forces are non-linear. They are a combination of the drag

on the aft hull (the tug in head seas) and the moment created by the surge of

the hulls about the pivot.

2. The pivot angle peaks at a lower wavelength in stern seas than in head seas.

The barge trim is virtually unaffected by the heading so the tug trim must be

greater in stern seas. This is probably caused by the direct effect of the waves

on the tug in stem seas as well as the wave action against the bluff stern of the

barge. When the model is in a head sea condition the tug is sheltered by the

greater beam of the barge.

3. The vertical pin force is affected more by the pivot angle than the heave and

trim of the barge regardless of sea direction. Although the tug heave is not

measured the tug motions are expected to affect the pin forces much more

than the barge motions. This is due to the greater weight of the barge.

4. The peak vertical pin force occurs at X ^1.2l ^head seas and at

X wr„. ^in stern seas. The peak forces are also larger in the stern sea

condition. This agrees with conclusions 2 and 3.

5. The phase angles are unaffected by the change in sea direction as expected.
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5.1.3 Numerical Results

Two models were compared with the experimental data; one model (Case 1)

evaluated the two hulls separately (following previous work) while the other (Case 2)

combined them as a single hinged hull. The numerical models replicate the experimental

model as closely as possible.

1. The assumptions of linearity and of the independence of each mode are

reasonable for both models.

2. The assumption of slenderness is not met by either the separate models or the

combined hull model.

3. The numerical models both under-estimate the motions of the hulls. This may

be due to the deep water assumption of the unified theory. Reflection off the

tow tank walls may have increased the experimental motions of the models.

Additionally the lack of slenderness of the hulls may also reduce the motion

prediction. The relatively small size of the models suggests that viscous

forces may have a minor effect.

4. The calculated magnitudes of the barge heave and trim are very similar for

each model because the numerical barge models are very similar in each case.

5. The pivot angle is calculated more accurately by the Case 1 model at longer

wavelengths. The Case 2 model is very poor in this wavelength regime

indicating a poor prediction of tug pitch. This is caused by the missing bow

section on the Case 2 tug model which thus decreases the added mass and

damping as well as the excitation force.

6. The excitation force is similar in magnitude for the Case 1 and Case 2 models.

91



Chapter 5: Conclusions and Recommendations

7. Both models predict the effect of altering the pivot location.

8. The peak pin force is under-predicted in both head and stern seas by the Case

2 (coupled hull) model. The lower forces are related to the lower motions

calculated for the Case 2 model. At longer wavelengths the cross-coupling

terms may be over-estimated resulting in the prediction of a higher pin force.

9. The pin force calculated by the Case 1 model is too high in head seas and

close to the experimental results in stern seas. The Case 1 model does not

predict well at short wavelengths. The small motions predicted by the Case 1

model should produce a lower pin force than the experimental results.

10. The cross-coupling terms are significant in magnitude especially at longer

wavelengths. The pin forces at longer wavelengths are over-predicted by the

Case 2 model and under-predicted by the Case 1 model. Therefore at long

wavelengths the cross-coupling terms may be over-predicted.

11. The phase angles agree very well with the experimental results for the vessel

motions. The pivot angle phase for the Case 2 model is inconsistent at longer

wavelengths in head seas but is otherwise acceptable. The Case 1 model is

consistently accurate.

The results suggest that the inclusion of the cross-coupling hydrodynamic terms

in the Case 2 model is an improvement. The model suffers from certain simplifications

due to the inclusion of the tug bow as part of the barge and to the smooth transition

between tug and barge at the notch. The low pin forces predicted are acceptable when

the low amplitudes of motion for each hull are considered.
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5.2 Recommendations

1. Experimental results should be obtained for sea directions other than head or

stern seas. These could be used to verify the numerical model in Chapter 4

which is able to accept different headings. The only term dependent on the

incident wave direction is the excitation force and Sclavounos has shown that

this can be accurately determined by unified slender body theory.

Experimentally this would require a wave tank and a more sophisticated setup

than was utilized for the towing tank experiments.

2. Experimental results should be obtained for different tug-barge mass ratios

and for different length/beam ratios for further comparison of the hull

motions and pin forces.

3. An improved numerical model of the coupling between the tug and barge

needs to be developed. At present the program is unable to model the notch

where the tug and barge are connected. The current method assigns the bow

of the tug to the stern of the barge. This reduces the total hydrodynamic force

on the tug which particularly affects the pin force and the tug motions. One

possible improvement would be to develop factors which adjust the

hydrodynamic forces on the tug and barge.

4. The discontinuity where the two hulls meet can be improved. This could be

done by adding many more equally spaced stations to more closely define this

area or by revising the numerical solution to the three-dimensional problem so

that it uses a variable step size for the integration along the hull. The former
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method will increase execution time considerably (as well as preparation time

for the model) while the latter method will increase the coding complexity.

5. The existing model can be extended to work on the forward speed problem as

the unified theory is capable of handling this.
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Appendix A

Solution of Two-Dimensional Potential Flow

A.1 General

The potential flow problem around a two-dimensional body section is solved by

locating two-dimensional pulsating sources around the hull. The numerical solution for a

two-dimensional body section can be obtained by using numerous methods such as

panelling or the Frank close-fit method. The method used here is to fit a continuous line

of two-dimensional pulsating sources Os around the hull section and then determine the

potential 2D by integrating Os over the hull section using some source strength

distribution Ai. The source strength distribution is found by using least squares to

minimize the error on the hull boundary condition.

A.2 Definition of Hull Shape

The two-dimensional hull section must be defined as a continuous curve so that a

line of pulsating sources can be distributed on it. By using Gauss-Legendre integration

around the hull section a set of N non-equally spaced points can be selected which

adequately define the section. This also scales the range of integration from (x1,x2) down

to (-1,1). For most hulls the shape is symmetrical about the centre-line; by choosing

suitable boundary conditions only half the hull need be solved. This gives a full scale

range of integration from x1 =0 to x2 = beam.
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Figure A.1^Hull Shape

The hull shape can be defined by the end-points of the curve, the slope at each

end and a weighting factor. Combining these with shape functions (to interpolate

between points). the (x,y) values can be defined from t = -1 to t = 1. i.e. x(t) = EXiFi

and y(t)= YiFi . The X, and Yi terms can be defined as:

=0 and Yi = T where T is the draft (negative).

X2 = V( 1 Rise 2) and Y2 = (M1 Rise) where M1 is the rise weighting factor.

X3 = BA and Y3 =0 where B is the beam.

X4 = M2 • Flare) and Y4 = M2 1/(1— Flare2) where M2 is the flare weighting factor

The shape functions can be defined as:

(t) = 0.5 — O. 75t +0.25t3
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f f(c)dc = f(t)--dc dt
dt-1

F2 = 0.25— 0.25t —0.25t2+0.25t3

F3 = 0.5+ O. 75t — 0.25?

F4(r) = —0.25 —0.25t +0.25t2+ 0.25?

There are N elements on t so that the interpolation matrix [F(t)] is a 4xN matrix

and the x(t) and y(t) vectors have N elements each. The curve from t = -1 to t = 1 is

defined as c. Figure A.1 details the parametrization of the hull section.

The second step in setting up the hull shape involves the definition of the normals

and derivatives around the hull. Integration of a function of the hull f(c) requires:

and

i.e.

(A.1)

(A.2)

(A.3)

(A.2a)

dx^dY
—dt = XiFi (t),(t)dt

dc 11( f^

—dt= XiFi (t))^(t))
2

where d –^x )2
dt^dt^dt

+ (d–Y–)2

Therefore using the Gauss-Legendre weighting functions for the integration gives

‘2^‘2
f(c)dc = WiAti )11(X,Fif )) VsF, (t,))

Finally the normals can be defined by :

Nx =^) and N y =
%^dc/di

(A.4)

(A.5)

With the hull shape fully defined the potential solution around the hull can be

formulated.
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A.3 Pulsating 2-D Source Derivation

The free surface boundary condition equates the pressure on the surface.

_.(020 + a^= 0,6 ay^1Y-Yt

—co2ln r+ g d4) dr = Oly y
dr dy^f

—0.)21nr+g1 ^(Y-1) 
r 11(x—X)2 ±(Y —11)2

OD

4)=1nr—lnr* + A(k)elklY eik` dk
OD

where r* =1,1(x —x)2 +(y +TI-2yf)2

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

1 ((x x)2 (y 7,02)^((x x)2 + (y + _2yf )•■2 + I A (k)elkiY-jh dk
2^ 2

(A.11)

This form of the potential satisfies Laplace and the free surface condition.

ao = ^Cy - ^+ 2yf 2 f A(k)lklelklY-lladk
aY (x )62 +(y—)2 (x --x)2 +6' +11-2Yf) —

On y = y.

= A(k)elklYt-ikx dk
■■0111

ao^2(y f ^+ f^pcleikly, dkand
aY (x — X)2 (yf r1)2 2.6^I

Using the free surface boundary condition (A.6) gives :

(A.12)
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dcto
(A.19)=

dn

2(Yf —1) ;If -g2-1k1)A(k)el"-'4 dk = 
(x — x)2 +(yf —1)2

(A.15)

By applying a Fourier transform to equation (A.15) A(k) can be solved so that the

potential 4)s at each source is :

1 (  (x—X)2 +6' — ^eikKy+i-2yo-igx-x)

=^ ,^dk
2^(x —x)2+ (y +11 —2Yf)2)

(A.16)

This can then be reduced using the method of residues for the integration of the

complex analytic function. The final form of 4)s is therefore:

1 (X. -2)2 +67-11)2  ) + 2ie^2Y- -=^ 1tk(Y"-diklxxl
2 ((x — X)2+ +n — 2Yf )2

° p cos(p(y +11— 2yf))+ k sin (p(y + 1— 2y f)) 
+2 f dp

p2 + k2

(A.17)

A.4 Forced Motion of Hull Section
The two-dimensional potential 4)i is solved by integrating the pulsating source

terms around the hull with a suitable source strength distribution A j(c). The source

strength distribution is found using a least squares solution.

J(x,Y) = A,(00 s(x X(c),1(c))dc
^

(A.18)

The hull boundary condition is :
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icon =nil A,(04)s,;(x,Y,X(c),i(c))dc^ (A.20)

Define the error as the difference between these terms; i.e.

error(c) = nif Au(c),I)sj(x,y,x(c),i(c))dc — ic.o)^ (A.21)

The best possible solution is the one with the smallest (error)(error)* where

•̂ 1(error)(error) =— iferror(c)• error (c)}dc
c

The solution of the forced motion problem reduces to :

1. defining a set of potential Ai (c) solutions and

2. selecting the best member from that set.

The source strength distribution Ai (c) can be described in terms of amplitudes Ak

and the shape functions Fk(c) defined in section A.1.1 : Ai (c) = AkFk(c) . The potential is

therefore :

(1 (x,y) = AkJ Fk(C)(1)s(X, y, x(c), ri(c))dc^ (A.22)

The boundary condition on the normal velocity (equation A.19) applies

everywhere on the hull surface. For some location (x(g),y(g)) the error is:

error(g) = rtilAk f Fk(c)0s,,(x(g),y(g),x(c), ri(c))dc — ico)^(A.23)

Therefore :

error(g) = AkG k(g) — H(g)^ (A.24)

where :
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Gk(g)= ni(g)f Fk(C)0S,j(X(g),Y(g),X(C).11(C))CIC

H(g) = imi(g)

The mean square error is :

(error)(error)* = {error(g)- error* (g)jdg

(error)(error). = f (AkGk(g)- H(g))(204; (g)- 1-1* (g))dg

(A.25)

(A.26)

(A.27)

(A.28)

 

(error)(error)* = AkA;f G(g)G(g)dg - Ak f Gk(g)H* (g)dg

f G*; (g)H(g)dg + f H(g)11` (g)dg
(A.29)

The minimum mean square error exists when :

  

a(error2)^a(error2)

a{Re[Ai]} 
= 

aflm[Ai]}
(A.30)

This reduces to :

  

2 Re{Ak f Gk (g)G1*(g)dg} - 2 Re{f GI* (g)H(g)dg}= 0 and

2 Im{Ak Gk(g)G;‘(g)dg} — 2 Im{f G;(g)H(g)dg} = 0
^

(A.31)

i.e. Ak f Gk(g)G.; (g)dg = f (g)H(g)dg^ (A.32)
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-1

Ak^Gk(g)G: (g)dg) G, * (g)H(g)dg^ (A.33)

Using symmetry and equation (A.18) the potential in mode j is :

ldc
4);(x,y) = Ak Fk(t){0s (x, y, X(r),11(t)) + 4 (x,Y,–X(0,11(r))1-- dt^(A.34)

dt

There is an integrable discontinuity in the natural log term in Os. This presents a

numerical integration problem which can be avoided in the following way :

1 dc
4, ^Ak f Fk(t)POS(x y, X(t),71(t)) + s (x, y,–X(t),11(0).17-ft dt

1^,dc^dc^Ndc–Ak Fkkti^ln^it – ijcit + AkFk )—
dt^dt^dtt;^t,

The last integral is evaluated directly as :

(A.35)

L
h 

dt t;

i(
fil

k–t.1}1t

 

((l+ti)ln(cic (1+0)-1-(1-014-d–cl (1-0)-2}^(A.36)
dt „^dt „

dcAkFk(t )—
dt

 

With this potential solved the two-dimensional added mass and damping terms

can be easily obtained by integrating the pressure around the hull section.

-^-CO 2My.. -1- iCOC^f ni (x(c),y(c))dc^ (A.37)

Numerically integrating this term follows the form of equation (A.4).
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A.5 Far-Field Wave Amplitude

The far-field amplitude represents the wave amplitude far from the hull and can

be derived in terms of 4)i.

AekYe-ikg
^

(A.38)
x-).• •^(.0

The potential4,1 was derived in equation (A.34) as a function of the source

strength distribution and 4,„. The potential Os is defined in equation (A.17) and consists

of a direct source term, a propagating wave term and an integral over the free surface.

The direct source term and integral reduce to 0 for large x and 4,,

can be determined from the propagating wave term:

for the far-field waves

01, = 272.ekcy+i)(e-eg.-11)^e-igx+x)) (A.39)

where x is much larger than x . This can be written as:

= 2riek"(e`kx +^)e'' e' (A.40)

Therefore:

1=1
=^AkW iFk (t

t=-1

and:

(elk( + e-ik)]ekY^dc
dt

(A.41)

soAi =
g

(A.42)

For large x:

Ai = 27c= E AkWiFk(ti)ekl(ec + e • )_dc•^)

dt
(A.43)

Note that Fk are the shape functions defined in section A.1 while wi are the

weighting functions for the Gauss-Legenthe integration around the hull.
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The three-dimensional solution uses the two-dimensional source strength ai.

Newman (1978) relates this source strength to the far-field wave amplitude Aj by:

ai =2g/oAi

The ai values are computed for each hull station.
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Appendix B

Numerical Solution of Three-Dimensional Potential Flow

B.1 Governing Equation

The governing equation for the three-dimensional solution is derived in Chapter 4

as:

q1(x) j cr. (B.1))4Q).
2nia;

where:

L(qi)= [y+iri]q j(x) + sgn(x -^ln(2klx -41)14-q)(04

kf[Yo (Ick -
4^L

(B.2)
+ Ho (klx -^+ 2 i Jo (lcix -

The q(x) terms are the unknown three-dimensional source strengths which are

distributed along the centreline of the hull. The numerical solution for the q1(x) terms

assumes that there are an odd number (/V) of equally spaced source strengths allowing a

Simpson's integration along the hull. The integration of the three-dimensional source

strength velocity in the first integral of (B.2) requires that one additional assumption be

made: each end of the hull is assumed to be slender and therefore have a source strength

of 0.

Equation (B.1) can be solved by putting it in the form [A(x,)]{q1(x)} = {0.,(x)}

where q(x) and c(x) can be reduced to (N-2)xl vectors and A(x,) to a (N-2)x(N-2)

matrix because of the zero end source terms. The only unknowns are the three-
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dimensional source strengths q1(x) which can be solved using any matrix solver or

inversion routine.

B2 Solving Matrix Terms

By envisioning each term in equations (B.1) and (B.2) as matrices the overall

6•+CF•
matrix A(x,^Th^4) can be developed.^e initial q^(i(x) and ' _2 terms can be treated as

2K icri

diagonal matrices but the L(qj(x)) term is more complex. The y term is the Euler

constant (0.5772...). The Struve function 1/0 and Bessel functions J0 and Yo are described

by Abramowitz and Stegun (1964); the Bessel functions are solved in "Numerical

Recipes in C". The first integral along the hull, if sgn (x - ln (2 klx - 41) q ,(4)(14,

involves an integrable singularity at x = This singularity evaluates to 0 so the integral

can be calculated directly. The Bessel function Yo in the second integral also contains an

integrable singularity at x = 4. This must be evaluated in the following way

^(klx — 41)qi (04 =^Yo(kix — Oqi
4

q; (x)Pln (V) +

-(L2 —4141(4-4)-E
+

2
-1 q.(x) (x-4)1n(1(X-4))÷

^(y-1)(L2 —ii)^ (B.3)
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where the integrals are evaluated everywhere except at x =

The numerical form of each integral is obtained by multiplying the terms in each

one by a second matrix containing the Simpson's weighting factors. The matrix in this

form is NxN in size.

142  — 2 4 1
[S]= 1-x

1 4 2 — 2 4 1

The thc term represents the step size between stations. As the end terms are zero this

matrix can be reduced to a (N-2)x(N-2) matrix by deleting the border columns and rows.

The derivative term in the first integral is solved by using central differencing.

The derivative of the source at each end of the hull is non-zero and is evaluated by

assuming an extra term is extended beyond the hull limits. The central differencing term

in general form is

_d f (x) f (x + h)- f (x h) 
dx^2h

(B.5)

where h is any step size. In matrix form for the first integral this can be written as:

q4Cs 2 0 0 0 00

1
-1 0 1 • • 0 0 0 q2

• = [D]
2 dx

0 0 0 - 1 0 1 qn-2 qn-2

0 0 0 0 0 -2 qn-1 qn-1 (B.6)
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where the end diagonal terms account for the source velocity at the bow and stern of the

hull. This matrix is Nx(N-2) in size and is multiplied by the matrix for the first integral

which is (N-2)xN in size.

By combining the matrices for each term a single matrix [A(x4)] can be

determined. Solving [A(x,)]{qi(x)} = {cri(x)} thus defines the three-dimensional

source strengths qi(x).
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Appendix C

Experimental Results

C.1 Head Seas
Experimental Data from Tug/Barge

Front Shaft Model. FFT Analysis combined with Std. Dev.

Model Leal 3.35 m lbs N
Barge Lens 2.7 m Barge Weight a 411 1831.939
(at waterline) Tug Weight a 23.5 104.746

Heading al 0 Deg
Port Starboard

Barge^Barge l'ug^Wave Hoc. Ver. Hot. Ver.
Frequency Trim^Heave Trim^Probe Force Force Force Force

(Deg)^(m) (Deg)^(n) (N) (N) (N) (N)
0.44959 0.58951 0.01221 1.34578 0.01530 0.61182 0.77291 1.06275 0.67849
0.49932 0.72575 0.01170 1.97960 0.01624 1.21058 122096 0.40306 0.79408
034912 0.81461 0.00991 2.66455 0.01696 0.99656 1.41498 0.80710 1.14557
039895 1.01803 0.00787 3.44352 0.01763 1.35874 1.76614 0.64094 1.49788
0.64897 1.08626 0.00410 3.77498 0.01984 1.49989 1.93079 0.84243 1.81417
0.69883 0.94774 0.00682 3.88938 0.02016 1.23356 1.99997 1.16761 1.88108
0.74931 0.88345 0.00432 3.71984 0.01895 1.05623 1.89945 1.03673 1.69442
0.80073 0.64120 0.00391 2.39506 0.01692 0.98191 1.52429 0.89779 1.35391
0.85044 0.42650 0.00281 2.07846 0.01829 1.65540 1.69148 1.40980 1.28515
0.89843 0.34363 0.00847 0.84171 0.01655 1.32782 0.47905 1.06628 0.81723
0.95043 0.52794 0.00417 034038 0.02122 0.77533 0.69562 032292 0.60865
1.00082 0.47417 0.00248 1.67276 0.02780 0.92270 0.80666 0.73348 0.78554
1.04885 0.44385 0.00177 1.84980 0.02550 0.98306 1.19631 1.17135 1.15413

Wavelen

LamW

Bien

Heave

Probe

Non-Dim
Angles
Barge Tug

Forces
Hot Vet

7.72 2.85966 0.79803 0.82643 1.88663 0.13982
6.26 2.31842 0.72048 0.77725 2.12008 0.18292
5.18 1.91694 0.58400 0.69051 2.25862 0.22250
4.35 1.61128 0.44667 0.69793 2.36078 0.27291
3.71 1.37245 0.20642 036346 1.95814 0.17397 0.27814
3.20 1.18359 0.33826 0.41738 1.71285 0.17557 0.28378
2.78 1.02949 0.22811 0.35990 131540 0.16276 0.27947
2.43 0.90153 0.23090 0.25625 0.95716 0.25073
2.16 0.79920 0.15369 0.13978 0.68119 0.23988
1.93 0.71612 0.11154 0.27321 0.11546
1.73 0.63990 0.19665 0.11942 0.12224 0.09061
1.56 037708 0.08913 0.07382 0.26043 0.08441
1.42 032544 0.06950 0.06858 0.28583 0.12450 0.13583
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Phase angles :

Frequency
(Hz)

Relative to Wave Probe at LCB

Barge^Barge^Tug
Trim^Heave^Trim
(Dog)^(Deg)^(Dell)

Wave
Probe
(Deg)

Port
Hor.

Force
(Def.)

Relative to Ch. 4
Starboard

Ver.^for.
Force^Force
(Deg)^(Dog)

Ver.
Force
(Dog)

Avg.
Ver.

Force
(Def.)

0.450 108.15 -1.72 160.13 0.00 154.45 -167.50 -136.31 -150.65 200.9261
0.499 94.81 -128.42 29.96 0.00 59.99 65.16 78.74 76.72 70.93654
0.549 -96.62 3.48 212.33 0.00 -145.78 178.17 167.94 159.93 169.0493
0.599 91.38 -5.55 134.65 0.00 127.32 173.95 167.47 192.37 183.1588
0.649 84.34 20.81 128.48 0.00 88.00 171.49 167.12 191.49 181.4918
0.699 90.12 66.16 133.13 0.00 73.78 177.21 129.64 191.98 1843927
0.749 95.64 70.53 116.09 0.00 70.49 173.90 90.89 187.45 180.6724
0.801 101.64 91.18 122.40 0.00 3039 183.49 82.39 196.45 189.9682
0.850 100.19 142.36 119.20 0.00 84.42 153.85 -30.08 183.51 168.6819
0.898 170.19 128.11 199.21 0.00 -6.65 152.84 162.28 168.47 160.6572
0.950 127.98 118.89 -30.34 0.00 -68.60 32.07 37.01 55.29 43.67876
1.001 176.00 144.50 -88.31 0.00 -156.79 4.16 -176.23 27.84 16.001
1.049 214.20 -138.90 -78.55 0.00 -144.13 17.86 -124.38 37.89 27.87302

Averaged Forces and Percentage Difference

Horizontal Force:^ Vertical Force:

Ave. % Diff Ave. % Diff

0.83728 26.92777 0.72570 -6.50572 Y
0.80682 -50.04326 1.00752 -21.18479
0.90183 -10.50423 Y 1.28027 -10.52152 Y
0.99984 -35.89583 1.63201 -8.21877 Y
1.17116 -28.06914 1.87248 -3.11416 Y
1.20058 -2.74655 Y 1.94052 -3.06330 Y
1.04648 -0.93146 Y 1.79694 -5.70502 Y
0.93985 -4.47474 Y 1.43910 -5.91979 Y
1.53260 -8.01227 Y 1.48832 -13.65099
1.19705 -10.92443 Y 0.64814 26.08797
0.64912 -19.44215 0.65213 -6.66762 Y
0.82809 -11.42511 0.79610 -1.32655 Y
1.07721 8.73955 Y 1.17522 -1.79446 Y
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Experimental Data from Tug/Barge

Rear Shaft Model - Standard Deviations
lb. N

Model Lenge^3.35 m Barge Weight 411 1831.9391
Barge Length^2.7 in
(at waterline)

Tug Weight 23.5 104.74591

Heading n 0 Deg

Frequency
Barge
Trim
(Dell)

Barge
Heave

(m)

Tug
Trim
(Def.)

Wave
Probe

(m)

Port
Hor.

Force
(N)

Ver.

Force
(N)

Starboard
Nor.

Force
(N)

Ver.
Force
(N)

0.50055 0.9634393 0.0124134 2.5017676 0.017833 1.1460518 2.1841999 0.46132 1.5015454
0.551065 1.1205567 0.0111352 3.4048765 0.018692 1.1612117 2.7430385 0.6634673 2.0964981

0.60273 1.2681009 0.0084983 4.2817745 0.019065 1.4879799 3.2005723 0.7089543 2.5278843
0.65197 1.1897948 0.0046616 4.0790521 0.02221 1.3690079 3.2182091 0.4746214 2.8546247

0.699768 0.9727347 0.0058829 4.5246 0.021482 1.2898264 3.6300526 0.7792975 2.8850235
0.750727 0.8994304 0.0039126 4.3902239 0.018986 1.156645 3.1853214 0.8817956 2.6173696
0.802315 0.671475 0.0047369 2.8046411 0.018502 0.8812542 2.1657039 0.9646652 1.7326321
0.852546 0.3919808 0.0032006 2.0999949 0.020359 0.8648872 2.385347 1.7208509 1.5662699
0.900529 0.3583107 0.0072482 0.9834454 0.01724 0.6141872 0.8369881 0.352493 0.9291639
0.953852 0.5260528 0.0031281 0.9262272 0.026621 0.5082501 0.7200457 0.6384236 0.6440401
1.010107 0.4763185 0.0033113 2.1784287 0.030679 0.8776332 1.2127665 0.4750715 0.9931303

Wavelen

LamW
-
Bien

Heave
-
Probe

Non-Dim
Angles
Barge Tug

Forces
Hot Vet

6.23 2.3070304 0.69609 0.934791 2.4273765 0.1328448 0.3046167
5.14 1.9034549 0.59572 0.855819 2.6004557 0.1438744 0.3815933
430 1.5911189 0.44575 0.7937448 2.6800993 0.1698373 0.4428468
3.67 13598563
3.19 1.1804296 0.27385 0.4008862 1.8646909 0.1419595 0.4469897
2.77 1.0256146 0.20608 0.364401 1.7786834 0.1582404 0.4504522
2.42 0.897963 0.25602 0.2444167 1.0208885 0.1470438 0.310537
2.15 0.7952664 0.15721 0.1148371 0.6152274 0.1871892 0.2860692
1.92 0.7127756 0.1111058 0.3049489 0.1509884
1.72 0.6353108 0.11751 0.094157 0.1657833 0.0755214
1.53 0.5665177 0.10793 0.0659677 03017011 0.1059734



Phase angles

Frequency
(Hz)

Relative to Wave Probe at LCB

Barge^Barge^Tug
Trim^Heave^Trim
(NO^(NO^(Dee

Wave
Probe
(Deg)

Port
Hor.

Force
(Deg)

Relative to Ch. 4
Starboard

Ver.^Hor.
Force^Force
(Deg)^Peri

Ver.
Force
(Deg)

0301 84.84 -3.87 150.80 0.00 -176.17 177.41 -169.61 182.78 180.09319
0351 8331 -5.21 144.48 0.00 159.15 170.37 179.28 179.17 174.77444
0.603 79.82 -630 132.00 0.00 110.99 159.48 -174.61 173.39 166.43288
0.652 -97.08 173.04 -41.46 0.00 108.81 167.20 163.74 176.13 171.66499
0.700 85.40 58.78 135.60 0.00 105.91 165.50 82.33 174.62 170.06312
0.751 91.77 6032 117.01 0.00 74.24 156.63 67.97 164.47 16035099
0.802 95.12 89.85 99.64 0.00 18.71 161.16 60.79 165.80 163.47818
0.853 102.93 145.91 115.38 0.00 114.24 155.12 3.65 163.92 159.52266
0.901 166.07 109.36 181.22 0.00 -9.51 146.71 90.95 151.60 149.15503
0.954 137.95 117.76 17.73 0.00 -189.30 61.47 -3.62 23.34 42.405615
1.010 201.99 161.08 -70.82 0.00 -139.79 1.81 -12630 14.21 8.0110478

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.^% Diff

Vertical Force:

Ave.^% Diff

0.8036859 -42.599467 1.8428726 -18.521479
0.9123395 -27.278464 2.4197683 -13.359551
1.0984671 -35.459666 2.8642283 -11.742919
0.9218147 -48.512271 3.0364169 -5.9870636
1.0345619 -24.673677 3.257538 -11.435463
1.0192203 -13.483318 2.9013455 -9.787732
0.9229597 4.5186738 1.949168 -11.109146
1.2928691 33.103266 1.9758084 -20.727644
0.4833401 -27.071434 0.883076 5.2190161
03733369 11.352269 0.6820429 -5.5719086
0.6763524 -29.759761 1.1029484 -9.9567741
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C2 Stern Seas

Experimental Data from Tug/Barge

Front Shaft Model - FFT Analysis combined with Std. Dev.

Model Length^3.35 m^ lb.^ N
Barge Length^2.7 m^Barge Weight a^411^1831.9391
(at waterline)^ Tug Weight ..a-^23.5^104.74591

Heading a

Frequency

180 Deg

Barge^Barge
Trim^Heave
(Deg)^(m)

Tug
Trim
(Deg)

Wave
Probe

(m)

Port
Nor.

Force
(N)

Ver.
Force

(N)

Starboard
Nor.

Force
(N)

Ver.
Force

(N)
0.449616 0.4626102 0.0111391 1.2118729 0.012099 0.3887102 0.5148362 0.7374031 0.5604195
0.499736 0.6224974 0.009713 1.6956236 0.013679 0.8948832 0.6885107 1.3251402 0.8309378

0.54933 0.7400409 0.0084929 2.3618037 0.014099 0.4241951 0.9642795 0.846004 1.0072295
0.599178 0.8378198 0.0068051 3.0322662 0.015315 1.6017512 1.3348131 0.6196792 1.1715608
0.650324 0.9251729 0.0025841 3.622702 0.015906 0.7333953 1.4967657 0.8315234 13955406

0.70054 0.7932563 0.0041811 4.1731182 0.013758 1.0532956 1.7547596 0.9931911 1.5883301
0.750594 0.692746 0.0027262 4.2366928 0.013886 0.8708075 1.8610593 1.2263853 1.7720412
0.801088 0.6111854 0.0025691 4.6648649 0.015891 1.2445541 2.1573609 0.8281826 2.0170784
0.850892 0.3624833 0.0019147 3.1904798 0.016495 1.6025706 2.2486703 0.4329898 2.0541874
0.900124 0.3148736 0.0071031 3.5726169 0.014714 1.1493906 1.9558351 1.306027 1.957846
0.949627 0.4636435 0.0026125 4.0271164 0.021393 0.8453171 1.5996498 0.8341152 1.428723
0.993704 0.3372434 0.0025553 4.2077815 0.017584 1.4762332 2.1888946 0.8173483 2.0442408
1.049316 0.4312366 0.001655 4.1424337 0.012363 1.5352732 2.3416667 1.6659119 2.1318116

Wavelat

LsznW
-
Bien

Heave
-
Probe

Non-Dim
Angles
Barge Tug

Forces
Nor Vet

7.72 2.859333 0.92066 0.8199583 2.1479966 0.130983
6.25 2.3145522 0.71006 0.7899716 2.1518071 0.1637135
5.17 1.9154976 0.60238 0.7540676 2.4065694 0.206093
4.35 1.6100395 0.44434 0.6605891 2.3908269 0.2412024
3.69 1.3667488 0.16246 0.5962274 2.334649 0.1450052 0.2680008
3.18 1.1778294 0.30390 0.509333 2.6794708 0.2192332 0.3581339
2.77 1.0259781 0.19633 0.3838806 2.3477355 03856142
2.43 0.9007158 0.16167 0.2598189 1.9830648 0.3871682
2.16 0.7983611 0.11608 0.1315819 1.1581487 0.3844655
1.93 0.7134172 0.1145013 1.2991537 0.2459503 0.3920193
1.73 0.6409766 0.12212 0.1041876 0.9049527 0.2086365
1.58 0.585375 0.14532 0.0842018 1.0505844 03548111
1.42 0.5249714 0.13387 0.1373373 1.3192546 03816275 0.5333032



Phase angles :

Relative to Wave Probe at LCB
Relative to O. 4

Port Starboard
Barge Barge Tug Wave Hor. Ver. Hot. Ver.

Frequency Trim Heave Trim Probe Force Force Force Force
(Hz) (Deg) (Deg) (Deg) (Deg) (Deg) (13e8) (Deg) (Deg)

0.450 -62.003 -0.046 -155.533 0.000 -163.383 176.047 142.609 161.732
0.500 -77.909 -8.580 -152.837 0.000 57.174 153.393 -155.999 174.962
0.549 -75.460 -0.195 -138.251 0.000 -147.796 177.724 -158.761 179.294
0.599 -83.039 -0.644 -130.806 0.000 -125.505 -171.026 96.139 -184.755
0.650 -82.012 21.272 -112.922 0.000 -98.896 -161.423 -89.068 -159.132
0.701 -86.561 52.182 -100.439 0.000 -85.107 -142.139 -65.470 -137.813
0.751 -88.789 46.891 -97.136 0.000 -58.182 -139.329 -64.819 -133.021
0.801 -85.992 91.753 -81.990 0.000 -52.036 -117320 -47.660 -111.812
0.851 -80.080 180.811 -68.201 0.000 5.066 -96.111 -159.517 -99.200
0.900 19.835 142.579 -5.845 0.000 96.089 -61.899 85.040 -52.640
0.950 -12.962 163363 8.946 0.000 64312 -48.048 113.182 -43.784
0.994 45.758 194.093 55.982 0.000 129.854 22.545 -141.716 24.153
1.049 27.147 -70.880 48.515 0.000 -114.954 16.664 164.032 39.483

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.^% Diff

Vertical Force:

Ave. % Diff

03630566 30.96428 03376279 4.2393028
1.1100117 19.380739 0.7597243 9.3736079
0.6350995 33.208101 0.9857545 2.1785327
1.1107152 -44.208992 1.2531869 -6.5134859
0.7824594 6.2704956 1.4461532 -3.4998062
1.0232433 -2.93696 1.6715448 -4.9783138
1.0485964 16.954941 1.8165503 -2.4501965
1.0363683 -20.0881009 2.0872196 -3.3605117
1.0177802 -57.457439 2.1514289 -4.5198543
1.2277088 6.3792161 1.9568405 0.0513806
0.8397161 -0.6670058 1.5141864 -5.6441782
1.1467907 -28.727335 2.1165677 -3.4171785
1.6005925 4.0809459 2.2367391 -4.6910939



Experimental Data from Tug/Barge

Rear Shaft Model - Standard Deviations

Model Length
^

3.35 m^ lb:^ N
Barge Length
^

2.7 m^Barge Weight =^411^1831.9391
(at waterline)
^

Tug Weight =^233^104.74591

Frequency

Headings

Barge
Trim
(Deg)

180 Deg

Barge^Tug
Heave^Trim

(m)^(Deg)

Wave
Probe

(m)

Pon
Hot.

Force
(N)

Ver.
Force
(N)

Stuboard
Hot.

Force
(N)

Ver.
Force

(N)
0.452809 0.4638454 0.0093503 1.2251013 0.009555 02795857 0.9100883 0.9558203 0.9233558
0.499824 0.5712191 0.0078847 13624223 0.010939 0.5949157 1.1698848 0.8354185 1.1053667
0.550661 0.6382316 0.006404 1.9986744 0.011036 0.5129112 1.4636289 0.5931719 1.2437071
0398638 0.697287 0.0050086 2.5928778 0.011258 0.9624569 1.7771752 0.8921744 1.6054872
0.650333 0.7396844 0.0023452 3.071852 0.012554 1.009707 2.1690608 0.148421 1.6611009
0.698746 0.542904 0.0052757 3.4269167 0.011405 1.1157106 2.3736099 0.4576474 1.8712624
0.750993 0.5168169 0.0042893 3.7004456 0.01133 0.821578 23237991 0.7138695 2.1549223
0.799099 0.4622669 0.0025977 4.2447395 0.012046 1.1715972 2.8657808 0.455776 2.4008124
0.850146 0.202223 0.0018886 2.5777012 0.013003 1.1030857 2.4654907 02701078 2.0889012
0.901127 0.2956158 0.0055677 3299572 0.012046 1.1923669 2.2933301 0.3269703 2.1289358

0.95081 0.3943181 0.0027711 3.7034829 0.016972 0.8275693 2.0902678 0.7173988 1.6264238
0.997911 0.2564683 0.0016785 33917902 0.015923 0.9131255 2.3817961 03732007 2.0767584
1.045919 0.3022121 0.0013182 3.2501621 0.010528 1.0716305 2.4978122 0.8801282 22054084

LamW^Heave^Non-Dim
-^Angles^Forces

Wavel en^Bien^Probe^Barge^Tug^Hot^Ver

7.61 2.8191498 0.97858 1.0264127 2.7109451 02828067
6.25 2.3137373 0.72078 0.9061507 2.4785411 0.1927137 0.3065523
5.15 1.906249 038028 0.8268134 2.5892337 0.1477164 0.3615624
4.35 1.6129455 0.44489 0.7492578 2.7861325 0.2428002 0.4428434
3.69 1.3667109 0.18681 0.6039518 2308165 0.4496636
320 1.1838852 0.46257 0.4226673 2.6679587 03485574
2.77 1.0248882 0.37858 0.3506263 23105094 0.1997367 0.6086253
2.44 0.9052053 021565 0.2605303 2.3923049
2.16 0.7997628 0.14525 0.0932845 1.1890812 0.5162256
1.92 0.7118299 0.1310154 1.4623532 0.1858934
1.73 0.6393825 0.111413 1.0464039 0.134165 0.3227574
1.57 0.5804498 0.0701188 0.9820011 0.1375758 0.4126881
1.43 0328387 0.1137573 12234115 0.2732329



Phase angles :

Relative to Wave Probe at LCB

Frequency
(Hz)

Barge
Trim

(Def.)

Barge
Heave
(Deg)

Tug
Trim

(Deg)

Wave
Probe

(Deg)

Port
For.

Force
(Deg)

Relative to Ch. 4

Ver.
Force

(Deg)

Starboard
Hor.

Force
(Deg)

Ver.
Force

(Deg)

Avg.
Ver.

Force
(Deg)

0.453 -103377 -1.053 -155.298 0.000 -54.313 -163.591 151.315 -181.446 -172.519
0.500 -95.397 -6.716 -149.408 0.000 68.448 -174.465 -168.705 -171.296 -172.880
0351 -90.089 -1.331 -136.815 0.000 -147.543 -162.246 169.038 -164.698 -163.472
0399 -96.486 -7.332 -134.575 0.000 -98.318 -157.328 150.190 -169.610 -163.469
0.650 -85.778 -15.188 -111322 0.000 -114.795 -143.902 -62.871 -141.258 -142.580
0.699 -92.893 -4.423 -101.803 0.000 -89.277 -130361 -54.197 -126.891 -128.726
0.751 -80.715 62.598 -88.960 0.000 -62.059 -121.265 -51.098 -113.062 -117.164
0.799 -73.915 99.014 -74.909 0.000 -51.029 -102.640 -28.001 -95.691 -99.166
0.850 -51.961 160.865 -55.539 0.000 1309 -87383 139.281 -85.840 -86.711
0.901 40362 152.481 7.022 0.000 69.499 -39.631 73.199 -34.941 -37.286
0.951 -14.008 168.193 10.617 0.000 35.951 -31.447 117.899 -21.315 -26.381
0.998 59.211 189.454 62.627 0.000 132.864 28.078 -158.075 35.231 31.654
1.046 84.298 186330 103.433 0.000 -136.167 58315 -149.459 74325 66320

Averaged Forces and Percentage Difference

Horizontal Force:

Ave.^% Dill

Vertical Force:

Ave. % Dill

0.617703 54.737847 0.916722 0.7236387
0.7151671 16.81445 1.1376257 -2.8356479
03530416 7.256297 1.353668 -8.12318
0.9273156 -3.7895698 1.6913312 -5.0755289

0379064 -74.368815 1.9150808 -13.2621
0.786679 -41.825393 2.1224362 -11.834219

0.7677238 -7.0147893 2.3393607 -7.8841376
0.8136866 -43.986298 2.6332966 -8.8286369
0.6865968 -60.659905 2.277196 -8.26871
0.7596686 -56.958827 2.2111329 -3.7174223
0.7724841 -7.1309217 1.8583458 -12.480024
0.7431631 -22.870133 2.2292772 -6.8416261
0.9758794 -9.8117811 2.3516103 -6.2170985
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C3 Calculation of Tank Natural Frequencies

The tow tank is 12 feet or 3.6576 metres wide. The natural frequency

of the tank can be calculated by using this width as a transverse wavelength.

The wavelength is defined by

x =27r/k = 2%2^ (C.1)

The natural frequency can then be written as

(0 2 Itg/=^x

Equation (C.2) produces the following natural frequencies:

X = 3.6576 co = 4.104 rads/sec co = 0.653 Hz

X = 1.8288 co = 5.804 rads/sec co = 0.924 Hz
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