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ABSTRACT

This research deals with automated, knowledge-based tuning of servo motors. Con-

ventional adaptive techniques can perform unsatisfactorily when the controlled system is

complex and incompeletly known. Furthermore, they cannot directly capture and utilize

the knowledge of experienced human operators, in tuning a servo system. The tuning

technique developed and implemented in this work can overcome these shortcomings.

To integrate the controller of a high speed servo-motor with the tuning knowledge

of experienced system operators, a hierarchical control structure is developed in this

research. Specifically, the programmable hard controller of a servo-motor is tuned auto-

matically in the lowest level. In the highest level, tuning knowledge expressed as a set of

linguistic rules is generated and mathematically formulated using fuzzy set theory and

fuzzy logic. This leads to the development of an off-line decision table in which tuning

actions are matched with the servo-motor performance. A computer implementation of a

servo expert is used in the intermediate level to update the controller parameters so that

the actual response would meet a set of predefined performance specifications expressed

in terms of the performance of a reference model.

Learning and self-organization, as well as automated specification updating, if neces-

sary, are used to improve the performance accuracy and system robustness.

The intelligent tuner is implemented on a commercially available servo-motor system,

and experiments are carried out to demonstrate its performance when implemented on the

physical system. Furthermore, simulation results are used to evaluate the performance

of the intelligent tuner when implemented on an ill-defined process.
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Nomenclature

Most of the symbols used in the text are defined in the sections in which they occur.

Math italic type style is used for the servo-motor parameters and variables.

In the servo-expert level calligraphic letters are used for the performance parameters

and Greek letters for the tuning actions.

Fuzzy performance parameters and tuning actions as well as performance and tuning

quantities in the fuzzy tuner level are denoted by capital text letters and are arranged in

fuzzy arrays indicated by the tilde math accent -.

T^Sampling time interval of controller[s]

AT,^Communication time interval of servo-motor tuner [s]

t^ time [s]

Po^motor position [rad]

K^torque constant [N • m I amp]

V,^supply voltage to the stator in voltage source amplifier [volt]

J moment of inertia of the rotor [kg m2 ]

L inductance of the field winding [mH]

R^resistance of the field winding [ohm]

B motor mechanical damping [kg I s]

Ti^ external load [N • m]

Laplace variable

'1^supply current to the stator in current source amplifier [amp]

A^effective gain of the current source amplifier [amp I volt]



Vmax^maximum voltage input to the amplifier [volt]

Imam^maximum current output of the amplifier [amp]

Y^measured position of the motor (encoder output) [counts]

N number of pulses per revolution of encoder

Ge^transfer function of the encoder

G transfer function of the controller

Gcl^ transfer function of the lead-lag branch of controller

Gcs^transfer function of the integrator branch of controller

Gp^transfer function of the system, excluding the controller

C^controller output [volt]

Y;^required motor position [counts]

K1^lead-lag compensation net gain

K integrator compensation net gain

Zr^frequency of the lead-lag zero [rad/s]

P1^frequency of the lead-lag pole [radl s]

z^ Z'-transform

Gm^transfer function of the reference model

Ym^position response of the reference model [counts]

Wn^ undamped natural frequency of the reference model [rad/s]

damping ratio of reference model

deterministic error (offset) of reference model

nondeterministic error of reference model

amplitude of response peaks

timing of response peaks [s]

P^number of response peaks
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Chapter 1

INTRODUCTION

1.1 Overview of the Thesis

This thesis presents a study of the analysis and practical implementation of an in-

tellegent tuner for a servo-motor. A method to automate the tuning actions taken by

an experienced process operator in a complicated (complex) system that is found to be

beyond the capability of conventional adaptive techniques, is considered. While a num-

ber of studies have considered the use of fuzzy logic in control applications, the majority

were employed in low level direct control rather than high level controller tuning. Also,

fuzzy tuning has been implemented in simulated systems only.

An experimental system has been developed to explore, evaluate, implement and

illustrate the tuner performance.

It has three hierarchal levels:

• Simulated servo-motor system consisting of a programmable controller, D.0 motor

and encoder has been developed in the lowest level of the hierarchical structure.

• In an intermediate level, called the servo expert level, an intelligent evaluator eval-

uates performance index using the responses of the actual and reference models.

A design mechanism updates the controller parameters using tuning actions which

were provided from a decision table, using a preformance index as a contex.

• In the highest level of the hierarchy, knowledge of the effect of each tuning action

on the performance parameters is generated and mathematically formulated using

1



Chapter 1. INTRODUCTION^ 2

fuzzy sets theory and fuzzy logic operations to calculate a decision-table. Here

the performance indices are matched with the tuning actions. Learning and self-

organization is also used in this level to modify the decision table automatically.

The tuner has been implemented on a commercially available servo-motor and its

performance has been examined. Further experiments have been conducted by gradually

spoiling the simulated servo-motor far below the simple system model.

The thesis is divided into seven chapters. Chapter 1 presents the basic concepts,

background, objectives, motivation, relevance of the work and literature review. Chapter

2 gives a brief review of fuzzy sets and fuzzy logic theory as this is necessary to understand

the mathematical representation of human knowledge. Chapter 3 describes the system

structure and development. Description of the experimental strategy and procedure is

in Chapter 4. Experiments on simulated and physical systems are described in Chapter

5. Chapter 6 lays the foundation for future work by introducing a learning and self-

organizing tuner system. The work is concluded in chapter 7.

1.2 Background

In this section the key terms that are used throughout this work are briefly explained.

In particular servomechanism and servo-motor, various adaptive control methods, expert

systems and expert control, knowledge base, fuzzy knowledge, fuzzy logic, fuzzy control

and fuzzy tuning are explained.

1.2.1 Servomechanism and Servo-Motor

Servomechanisms are widely used to drive processes in industrial, transportation, aero-

nautical and space systems as well as domestic applications. The term "servo-mechanism"
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has been used in the literature with a variety of meanings. We shall call a device a ser-

vomechanism if it satisfies the following description:

The device controls some physical quantity by comparing its actual response with its

desired values and uses the difference (or error) to drive the actual response into corre-

spondence with the desired value.

Electrical (stepper, DC, AC or synchronous) motors, pneumatic or hydraulic actuators

[24]might be used to drive the process. Digital or analog controllers are used to control

it. In both cases the parameters of the controller are chosen such as to meet some

predefined performance specifications. The actuator of a digital D.C. servomotor is an

electrical direct current motor and it has a digital controller. In this work the term

"servo-motor" stands for DC brushless motor having a digital servo controller.

1.2.2 Adaptive Control

In everyday language, to "adapt" means to change a behaviour to conform to new

circumstances. Intuitively, an adaptive controller is a controller that can modify its

behaviour in response to changes in the dynamics of the process and the disturbances.

Adaptive control is a special type of nonlinear feedback control in which the states

of the process can be separated into two categories, which change at different rates. The

slowly changing states are viewed as parameters. This introduces the idea of two time

scales: a fast time scale for the ordinary feedback and a slower one for updating the

controller parameters.

A Brief History

In early 1950's there was extensive research on adaptive control, in connection with the

design of autopilots for high performance aircraft, which operate over a wide range of

speed and altitude. It was found that a constant parameter controller would work well
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in one operating condition but a change in operating conditions led to difficulties, and a

more sophisticated controller was therefore needed [4].

Theories for state space modeling, stability analysis and stochastic control, and tech-

niques of system identification, parameter estimation and dynamic programming were

developed in the 1960's and this also contributed to the understanding of adaptive pro-

cesses. Many applications were reported in the 1970's when different estimation schemes

were combined with various design methods.

In the early 1980's rapid and revolutionary progress in microprocessors has made it

possible to implement adaptive methods simply and cheaply. Several commercial adap-

tive controllers based on different ideas are appearing on the market, and the industrial

use of adaptive control is growing slowly but surely.

Adaptive Schemes

There are many schemes of adaptive control. Most of them are based on either prior

knowledge of a system model or identification/estimation of a model of the process to be

controlled. These methods can be classified as direct and indirect methods [4]:

• Direct methods:

In direct methods the adjustment rules tell directly how the controller parameters

should be updated.

• Indirect methods:

An indirect scheme is obtained if a process model is identified, its parameters are

estimated and the controller parameters are updated through the solution of a

design problem.
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Control

Operating
condition

Command
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Process

Regulator
parameters

Regulator
Output

y

Figure 1.1: Block Diagram of Gain Scheduling

Gain Scheduling

In gain scheduling the parameters of a closed loop feedback controller are adjusted in a

feed-forward manner, in an open loop with known operating conditions. A block diagram

of system with gain scheduling is presented in Figure 1.1 [4]:

Self-Oscillating Adaptive System

A self-oscillating Adaptive system(SOAS) has high loop gain and its bandwidth is

automatically adjusted to be as high as possible by introducing a relay in the feedback

loop. This results in a robust system over a wide bandwidth. A limit cycle oscillation

is presented and the system is always excited. A block diagram of a SOAS is shown in

Figure 1.2[4]:

Model Reference Adaptive Systems

Model Reference Adaptive Systems (MRAS) consist of two loops: an inner loop, which

is the ordinary feedback loop and an outer loop to adjust the controller parameters in such

a way that the error between the output of the process and a reference model becomes

small.A block diagram of MRAS is shown in Figure 1.3[4]
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Process parameters

Figure 1.4: Block Diagram of Self-Tuning Regulator

Self-Tuning Regulator

The Self-Tuning Regulators (STR) are a family of methods based on the idea of sep-

arating the on-line estimation of unknown parameters from the design of the controller.

These methods differ either by the design or estimation algorithm.

The following belong to this family :

• Linear Quadratic Self-Tuning Regulator (LQS).

This make use of an optimal feedback law that minimizes a quadratic function

(positive semidefine) error between the actual and model responses and also the

control effort.

• Adaptive Predictive Control (APC).

This algorithm is based on an assumed model of the process and on assumed sce-

nario for the future control signals. This gives a sequence of control signals. Only

the first one is applied to the process, and a new sequence of control signals is

calculated when a new measurement is obtained.

A block diagram of a typical STR is shown in Figure 1.4[4]
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Auto Tuning

Auto tuning is based on an experimental phase in which test signals are injected

into the system. The controller parameters can be determined from the experiments

using standard rules for tuning if these rules exist (for example Ziegler-Nichols rules for

PID controllers). The main advantages of an auto tuner are that it requires little prior

information on the process, is very robust and can generate good parameters for a simple

control law.[79][18][54]

1.2.3 Expert Systems

An expert system attempts to model the knowledge and procedures used by a human

expert in solving problems within a well-defined domain. An expert system consists of a

knowledge base, inference engine and one or more data bases which may be linked to a

user interface. [38]

Knowledge Base

The knowledge base consists of data and rules. The data are facts and goals. Data

is introduced into the database by the user or via the real time knowledge acquisition

system. A rule base contains production rules of the type:

" If premise then conclusion do action".

The premise represents fact or condition from database. The conclusion can result

in a new fact being added to the database or modification of an existing facts. The

action activates control, estimation or tuning algorithms. The rules are introduced by

the knowledge engineer via the knowledge acquisition system, which assists in writing

and testing rules. In control applications the rules represent knowledge about the control

and estimation problem that is built into the system.
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Inference Engine

The inference engine processes the rules to arrive at conclusions or satisfy goals. It

scans the rules according to a strategy which is decided from the context (current database

of facts and goals) and decides which production rules are to be selected next. This can

be done according to different strategies:

In forward chaining it is attempted to find all conclusions from a given set of premises.

In backward chaining the rules are traced backward from a given goal to see if it can be

supported by the current premise. f

User Interface

The user interface can be divided into two parts. The first part is the development

support that the system gives, such as rules editor and rules browser for development

of the system knowledge base. The other part is the run time user interface. This

contains the explanation facilities that make it possible to question how a certain fact

was concluded, why a certain estimation is executed, etc. The user interface can also

contain facilities to deal with a natural language.

1.2.4 Expert Control

The idea of expert control is to have a collection of algorithms for control, supervision

and adaptation that are orchestrated by an expert system. A block diagram of such

system is shown in Figure 1.5[4] . A comparison with Figure 1.4 on page 7 shows that

the system is a natural extension of a self-tuning controller. Instead of having one control

algorithm and one estimation algorithm, the system has several algorithms. It also has

algorithms for excitation and for diagnosis, as well as tables for storing data.

Apart from this it also has an expert system which decides when a particular algorithm
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should be used. The expert system contains knowledge about particular algorithms and

conditions in which they can be used.
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1.2.5 Generality, Uncertainty, Vagueness, Ambiguity and Imprecision of

Knowledge

Generality, Uncertainty, Vagueness, Ambiguity and Imprecision are terms which are

often used in the contents of fuzziness but strictly speaking these terms have meanings

which differ from the formal definition of fuzziness [23][25]. Generality can be associated

with the use of a single symbol to represent more than one element. Ambiguity is at-

tributed deals with the presence of more than one interpretation for a particular situation

or quantity. Uncertainty is associated with probability. Precision is defined in terms of

tolerance.

In developing facts and rules for expert systems, it becomes clear that data and rules

obtained from experienced specialists are somewhat uncertain. They may describe some

rules in linguistic terms like "maybe", "sometimes", or "often". Some method is needed

to handle these types of possibilistic statements. Furthermore, expert systems, like hu-

man experts, may need to draw inference based on unavailable, unknown or uncertain

data. These data are expressed in linguistic form like "tall", "fast", "beautiful", etc.
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1.2.6 Fuzzy Logic

Fuzzy logic deals with fuzzy sets. A fuzzy set has no sharp boundaries and the

possibility of an element to belong to the set is given by a membership function. Fuzzy

logic uses logical operations like AND, OR, NOT which operate on the membership func-

tions of fuzzy sets. Fuzzy sets weres found to be useful in uncertain data representation

and fuzzy logic in uncertain rule representation.[77][78][29][52]

The relevant concepts of fuzzy logic, particulary those useful in fuzzy control are

outlined in Chapter 2.

1.2.7 Fuzzy Control

In fuzzy control, linguistic descriptions of human expertise in controlling a process

are represented as a fuzzy rules or relations, and this knowledge base is used, in con-

junction with some knowledge of the state of the process (say, measurement response of

variables), by an inference mechanism to determine control actions at a sufficiently fast

rate. [12] [19] [70] [46] [53] [41][3]

A formal procedure in fuzzy control can be summarised in the following steps [23]:

I. Knowledge Base Development

1. Develop a set of linguistic control rules (protocols).

2. Develop a set of membership functions for process output variables and control

input variables.

3. Using fuzzy implication on each rule in 1 and using 2, obtain the multi-dimensional

array of membership values for that rule.
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4. Combine the array using fuzzy operations to obtain the overall fuzzy rule base.

II. Real Time Control Action

1. Fuzzify the measured process variables, as fuzzy singletons.

2. Match the fuzzy measurements obtained in 1 with the membership array of the

fuzzy rule base (obtained in the previous Step 4), using the appropriate fuzzy logic

operations.

3. Defuzzify the control inference obtained in Step 2.

There are several variations. For example, a much faster approach would be to develop

a crisp decision table by combining the four steps of fuzzy algorithm development and

the first two steps of control, and using this table in a table look-up mode to determine

a crisp control action during operation.

1.2.8 Fuzzy Tuning

To combine the advantages of low level control for nonlinear, high-order coupled dy-

namic with the knowledge of an experienced process operator, a high level fuzzy tuner

is used to tune the parameters of a low level controller . This structure results in a

conventional, high bandwidth inner control loop and a slow outer closed loop soft tuning

algorithm.

1.2.9 Learning Systems

In their most ambitious form, learning systems attempt to describe or mimic human

learning abilty. This goal is still far away. The learning systems that have actually been
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implemented are simple systems that have strong relations to adaptive control. Such

systems are neural nets, connectionist models, parallel distributed processing models,

et c. [4]

1.3 Objective of the Research

The objective of this research is to use fuzzy logic to develop implement and evalu-

ate a knowledge-based auto-tuning mechanism to automate the tuning actions taken by

experienced operators in complex and partially known servo-motor systems.

1.4 Motivation

What is the motivation for trying "nonconventional" tuning approaches? Why use

fuzzy logic? Why tune controller parameters rather than generate the control actions

directly?

• Motivation for Trying another Tuning Approach

To design a controller in a "conventional" adaptive technique we have to have

either a prior known model or estimate/identify a suitable process model and pa-

rameters (see Figure 1.4 on page 7). Furthermore if the structure of the process is

unknown it should be identified as well. Identification and estimation algorithms

become unfeasible when applied to very complicated, manually tuned, real systems.

In practical applications the knowledge of an experienced operator is concerning

the effects of each tuning action on the performance rather than the knowledge of

the model of the process. In this work the approach followed is to take advantage of

this knowledge to automate these tuning actions directly without using estimation

or identification algorithms.
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• Motivation for using Fuzzy Logic

An existing knowledge of an expert process operator is expressed in terms of

linguistic rules of the form "if the performance is such and such then the tuning

action is such and such", where the condition and actions are inaccurate, vague

or fuzzy quantities that can be formulated mathematically using fuzzy sets and

processed using fuzzy logic.

• Motivation for Tuning rather than Direct Control

Difficulties in the implementation of direct fuzzy control on a low level of a high-

bandwidth system motivate tuning rather then direct control. One drawback of

direct fuzzy control is that human observation, interpretation, decision making and

action are not fast enough for real time, closed-loop direct control in high band-

width systems. Another drawback is that using fuzzy inference in closed control

loop introduces errors directly into the control signals. Another argument against

the conventional, low-level implementation of fuzzy control is that in high speed

processes, human experience is gained not through manual, on line generation of

control signal in response to process output, but typically through performing pa-

rameter adjustments and tuning (manual adaptive control) operations. [23]

1.5 Relevance of this Research

• Conserving and Spreading Knowledge of Expert Process Operator

Since human experts are hard to come by, it is not economical to dedicate a human

expert for every same process. Automating the tuning actions of an expert operator

provides a means for the conservation and distribution of knowledge.
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• Evaluation and Comparison with other Technique

This work provides means for performance evaluation and comparison with other

adaptive techniques.

• Implementation on Real Systems

Implementation of the tuner on a commercially available servo-motor demonstrates

the feasibility of the proposed tuner in the presence of physical factors and effects

of a real environment like noise, friction, backlash and so on.

1.6 Literature Review

1.6.1 Adaptive Control

Many papers, books, and reports have been written on adaptive control. Some of

the earlier developments are summarized in Gregory (1959) [35] and Mishkin and Braun

(1961)[58] in flight control applications. Reprints of 44 fundamental papers in adaptive

control are found in Gupta (1986)[37].

A good introduction to modern adaptive control is found in Astrom and Wittenmark

[4]. Later developments in adaptive control are also treated by the same authors[8] in

1983 and [9] in 1987.

The following are some fundamental references on the different adaptive schemes:

Gain scheduling is described in NASA report(1977)[60], by Stein(1980) [68] and

by Whatley and Pott (1984) [73] . Self-oscillating adaptive systems are discussed by

Gregory(1959)[35] and Mishkin and Braun (1961)[58]. The model-reference adaptive

control based on the MIT rule is given by Osburn, Whitaker and Kezer (1961) [61]

Another book dedicated to MRAS is by Landau (1979)[49].

Stability problems in MRAS are treated by Parks(1966)[63]. Narendra and Lin

(1980)[59] discussed different generic error model for MRAS.
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Further details on MRAS can be found in Kornblugh(1984) [48]

The self-tuning idea and its asymptotic properties were first derived by Clark and

Astrom(1973)[7]. Gawthrop(1986) [33] used a unified approach to continuous-time self-

tuning regulators.

Linear Quadratic Self Tuning Regulators which combined least square estimation

and minimum variance control was presented by Peterka(1970) [64], Wieslander and

Wittenmark (1971)[74] and Grimble(1984)[36]. Application to robotic manipulators can

be found in de Silva and Van Winssen (1987) [25]

Adaptive predictive control is discussed by:

Clarke and Gawthrop (1975)[15] Clarke, Mohtady and Tuffs (1987)[16] [17], Ydstie

(1984)[76], De Keyser, and Van Cauwenberghe (1985) [28]

1.6.2 Expert Systems and Expert Control

A good source for knowledge about expert systems is the Handbook of Artificial In-

telligence by Barr and Feigenbaum (1982)[11]. Another source is Hayes, Watermann and

Lenat (1983)[38].

Expert systems research is done by many workers including Duda and Shortliffe

(1983)[30] and by Rich (1983)[65].

Knowledge Representation in artificial intelligence is found in Brachman and Smith(1980)[13]

and Davis and Lenat (1982)[21].

The notation "Expert Control" was introduced by Astrom, Anton and Arzen (1986)

[6] and elaborate by dArzen (1987) [2] and Francisand Leitch (1986)[31].

Artificial intelligence in process control can be found in Goff (1985) [34].
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1.6.3 Fuzzy Sets and Fuzzy Logic

Fuzzy sets were first discussed in 1965 by Zadeh [77]and in 1973 [78] for the purpose

of defining a fuzzy relation between elements and their sets. Further discussion may

be found in Dubois and Prade (1980) ,[29], Hirota (1979)[40] and Kaufmann (1975)[42],

Braae and Rutherford (1979)[12].

1.6.4 Control Application of Fuzzy Logic

Fuzzy control as a new approach to the analysis and implementation of a control

strategy of a human beings has been analysed by many researches. Kloeden (1982)[45],

Kiszka Kochanska and Sliwinska (1985)[47] and Tong(1980)[70] are examples. Fuzzy

process identification was investigated by Czogala and Pedrycz (1981)[19] and also in

1982[19]

A partial list of researches in the field of fuzzy control is given below:

Assiian and Mamdani(1974)[3], Holmblad and Ostergaard (1981)[41], Kickert and

Nauta (1976)[43], Mamdani and Gaines (1981)[52], Mamdani (1974)[56] and (1983)[53],

Tong (1976)[69].

Industrial application of fuzzy logic reported by Larsen (1980)[50] and Mamdani,

Ostergaard and Lembessis (1984)[55] and King and Mamdani (1975)[44].

Application of fuzzy control in mining can be found in Carter and Rutherford (1976)[14]

for a sinter plant.

Kickert and Nauta (1976)[43] report the use of fuzzy controller to a warm water plant

and Ostergaard (1976)[62] to a Heat Exchanger Process.

Tong, Beck and Latter 1980[71] in activated sludge wastewater treatment process and

Van Amerongen, Van Nauta Lemke and Van der Veen[72] in application on an autopilot

for ships.
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Many applications on robotic manipulators were reported: de Silva and MacFaralen

(1989)[23], Mandic, Scharf and Mamdani (1985)[57] , Scharf and Mandic (1984[67] are

examples.

Tuning of a PID controller in servo-motor systems has been done by de Silva (1989)[26]

and de Silva and Barley 1992[27].

Learning and self organizing systems can be found in Hiraim, Asai and Kitajima

(1968)[39] , Procyk and Mamdani (1979)[66], Scharf and Mandic (1984)[67], Yamazaki

and Mamdani (1982)[75] and many others.



Chapter 2

FUZZY LOGIC

2.1 Introduction

Formalisation of the concept of fuzzy sets and associated fuzzy reasoning (approximate

reasoning) is due to Zadeh (1965,1973)[77][78].

In this chapter fuzzy logic is reviewed, as this is necessary to understand the mathe-

matical representation of human knowledge , used in the next chapter. First the concept

of fuzzy set and membership function, which represents the uncertainty in the human

knowledge, is introduced as well as the fuzzy logic operations which operate on these

membership functions. Next the relations of fuzzy sets are discussed and finally the

ideas of composition and inference of fuzzy relations are explained.

What is presented here is the interpretation and geometrical illustration of de-Silva

and MacFarlane (1989)[23] to the theoretical considerations described by Dubios and

Prade (1980)[29].

2.2 Fuzzy Sets

Fuzzy logic deals with fuzzy sets. A fuzzy set does not have a sharp boundary. Consider

a universe of discourse X whose elements are denoted by x and a subset A in X. A is a

fuzzy subset in X if there is vagueness associated with the membership of x in A.

20
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2.3 Membership Functions

In universe X, the possibility of each element x belonging to the fuzzy subset A is

represented by a membership function IL,. This assigns a number ii,(x) in the interval

[0,1]. If pA (x) = 0 then the element x definitely does not belong to the subset A. If

AA (x) = 1 then the element x definitely belongs to the subset A (or: x E A). A grade

of membership greater than 0 and less than 1 corresponds to an element which falls on

the fuzzy boundary of the set A. In other words, the membership function maps the

elements of the universe X to numerical value [0,1].

X 144) [0,1]

A fuzzy set is demonstrated in Figure 2.1 [23]. A Venn Diagram of the subset A in

X is shown in Figure 2.1 (a) and a typical membership function p A (x) is demonstrated

in Figure 2.1 (b).

Fuzzy set may be specified using a convenient form of notation due to Zadeh, in which

each element is paired with its grades of membership in the form of:

A = E^izA(xi)
V X^Xi

for discrete universe, or:

A =-
VX
^x

for continuous universe.

Equations 2.1 and 2.2 are symbolic shorthand forms of notion only .

(2.1)

(2.2)
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(a)

Universe
X

Figure 2.1: A Fuzzy Set
(a) Venn diagram
(b) Typical Membership Function
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2.4 Logical Operations

It is well known that "complement" ,"union" ,"intersection" and "implication" of sets

correspond to the logical operations NOT, OR, AND and IF - THEN respectively. These

logical operations of fuzzy sets are used in fuzzy knowledge representation. In fuzzy logic

these connectives have to be expressed in terms of membership functions of the sets which

are operated on.

Complement (NOT) A'

Consider a fuzzy set A in a universe X. Its complement A' is a fuzzy set whose

membership function is given by:

IL A,(s) = 1 — I A ( )

^

Vs E X^ (2 .3)

Union (OR) A U B

Consider two fuzzy sets A and B in the same universe X. Their union is a fuzzy set

A U B . It membership function is given by:

Au
„ 

B
(x) max[p.A (x),^Vs E X^(2.4)

The rationale for the use of "max" is that since the element x may be in one set or

the other, the larger of the two membership function grades should apply.

Intersection (AND)^An B

Again consider two fuzzy sets A and B in the same universe X. Their intersection is

a fuzzy set A l B. Its membership function is given by:

L^(x) = min[pA (x),
A n B Vs E X^(2.5)
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The rationale for the use of "min" is that since the element x may belong to both

sets simultaneously, the smaller of the two membership function grades should apply.

Implication (IF - THEN) A —> B

Consider a fuzzy set A in a universe X and a second fuzzy set B in another universe

Y. The fuzzy implication A —> B is a fuzzy relation in the cartesian product space

X x Y and the membership function of the fuzzy implication is given by:

ILA–B(m,Y)= min[11A( 1),ILB(Y)] Vx E X, try E Y (2.6)

2.5 Fuzzy Relations

Consider two universes X 1 = x 1 and X2 = x2 . A crisp set R consisting of a subset

of ordered pairs (x 1 , x 2 ) is a crisp relation in the cartesian product space X 1 x X2.

Analogously, a fuzzy set R which consists of a subset of ordered pairs (x 1 , x 2 ) is a fuzzy

relation in the cartesian product space X 1 x X2 and the relation R will be represented

by the membership function x2).

This concept can be extended in a straightforward manner to fuzzy relations in the

n-dimensional cartesian space. An example of a fuzzy relation is shown in Figure 2.2[23}
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X2

Crisp R
f(x1 ,x2). 0

xi W

pR(xi ,x2)

Figure 2.2: Relations in Two Dimensional Space (plane)
(a) A Crisp Relation
(b) A Fuzzy Relation

(a)

(b)
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Cartesian Product of fuzzy Sets

Consider a fuzzy set A l in the universe X1 and a second fuzzy set A2 in the universe

X2. The cartesian product A l x A2 is then a fuzzy subset of the cartesian product space

X1 x X2 and its membership function is given by:

/14 1 x42 (si, x 2 ) = min[AA, (xi ), AA2(x2)] VX1 E X1, VX2 E X2 (2.7)

Note that the "min" combination applies here because each element (x i , x 2 ) in a

cartesian product is formed by taking both elements x i and x 2 and not just one or the

other. This concept can be directly extended to more than two fuzzy sets. An example

of a cartesian product of two fuzzy sets is shown in Figure 2.3[23]
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(a) Crisp Set
A2

It̂ >i^x2

Crisp Set
A l

Y

Crisp
Ai xA2

x1

(b)

 

x i

Figure 2.3: Cartesian Product of A l x A2 (relation)
(a) Of Two Crisp Sets
(b) Of Two Fuzzy Sets
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Extension Principle

The extension principle was introduce by Zadeh to give a method for extending stan-

dard (non-fuzzy) mathematical concepts to their fuzzy counterparts. Consider the crisp

relation:

y .F(x i , X2, --)xr) (2.8)

where y are elements in the fuzzy set B and x, are elements in the universe X,. Let

A s be fuzzy subsets in X. According to the extension principle, the fuzzy set B to which

the element y belongs has a membership function given by:

Na (y) = sup„ ...„ {minDIA , (xi ),I1 A2 (x2)) • •• AA,.(X*)1} (2.9)

Note that the "min" operation applies first because the relation among A s is the

cartesian product. The "supremum" is applied over the mapping on to B, because more

then one combination of (x 1 , x 2 , ..., Xr) in the fuzzy space A l x A2 x ... x A. will be mapped

to the same element y in the fuzzy subset B and the most possible mapping is the one

with the highest membership grade. An example of a mapping from a two-dimensional

crisp and fuzzy space A l x A2 on to a one dimensional fuzzy set B is shown in Figure

2.4 (a) and 2.4[23] (b) respectively.
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(a)
^

Crisp

A2
^>I

1^2

(b)^Fuzzy A2

^> x2

Fuzzy
A

Fuzzy B

rr
I I^I I

y (x1 -1)2 + (x2-1)2

Figure 2.4: A Mapping from a Product Space to a Line
(a) An Example of Crisp Sets
(b) An example of Fuzzy sets

(Extension Principle)
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2.6 Composition and Inference

Approximate reasoning is used in fuzzy inference and control. In particular, the com-

positional rule of inference is utilised. We have already introduced the concept of fuzzy

implication. We shall start the present section by introducing the terms projection,

cylindrical extension, and join, which will lead to the concept of composition. Finally the

compositional rule of inference will be discussed, incorporating all these ideas.

Projection

Consider a fuzzy relation R in the cartesian product space X 1 x X2 x ... x Xn . Suppose

that the n indices are arranged as follows:

1,2,...,n^22) •••jr).i1).i2)•••)im
^ (2.1 0)

Note that n = r m and that i and j denote the newly ordered set of n indices. The

projection of R on the subspace X„ x Xi2 x x Xi,. is denoted by:

Pr oj [R : X,„ X „, ..., X ir ]

This is a fuzzy set P and its membership function is given by:

ip(xii xis, • • • , xir) =^sup^R(Xi X2) • • • Xn)

6 :71' °32 ' ••. 'Xjni

The rationale for using the "supermum" operation on the membership function of

R should be clear in view of the fact that we have a many-to-one mapping from n

dimensional to r dimensional space, with r < n .

Cylindrical Extension

Consider the cartesian product space X1 x X2 x ... x Xn and, suppose that n indices

are arranged as follows:
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1,2,...,n —> 21 2 2) •••) 2r271)..i2) --)jm

Again note that r -Fm = n and that i and j denote the newly ordered set of n indices.

Now consider a fuzzy relation R in the subspace Xt1 x X. 2 x x X„. .

Its cylindrical extension is denoted by:

C R^Ex], X S2 X ... X xn
FR(Xil)Xi2) •••) Xir)

Xi, X2, ..., Xn

(See definition in equation 2.1 )

Note that a cylindrical extension is a fuzzy set in the n-dimensional space and is the

converse of projection. An example is given in Figure 2.5 [23] Here a fuzzy set R in the

universe X1 has been cylindrically extended to a fuzzy set in the cartesian space X1 x X2
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k̂ >I
Fuzzy R

gc(F) (xi ,x2)

C(R)

Figure 2.5: The Cylindrical Extension
(a) A Fuzzy Relation (Set)
(b) Its Cylindrical Extension

(a)

(b)
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Join

Consider a fuzzy relation R in the subspace X 1 x X2 x ... x Xr and a second fuzzy

relation S in the subspace Xn, x Xm+i x ... x Xn such that m < r + 2

Note that the union of these two subspaces gives the space X 1 x X2 x ... x Xn . The

join of the fuzzy sets R and S is a fuzzy set in the Xi x X2 x ... x Xn and is given by

the intersection of their cylindrical extensions; thus:

Join(R, S) = C(R)nc(s)^in^Xi x X2 X ... X Xn^(2.11)

AJoin(X1 X X2 X ... X Xn ) = Min[tie R) (Xi X X2 X ... X Xn ) , tIC(5. ) (X1 X X2 X ... X Xn )1 (2.12)

Note that "min" applies here because the intersection of two fuzzy sets is considered.

Composition

consider a fuzzy relation (fuzzy set) R in the subspace X1 x X2 x ... x Xr

and a second fuzzy relation (fuzzy set) S in the subspace Xn, x X7n+i x ... x Xn

such that m < r + 1 . Note that unlike the previous case of Join, the two subspaces

are never disjoint and hence their intersection is never null. But, as before, the union of

the two subspaces gives X 1 x X2 x ... x Xn

The composition of R and S is denoted to by R o S and is given by:

S o R = Proj[J oin(R, S) ; Xi , ..., X,n _ i , Xr+i , ..., Xn]^(2.13)

Here we take the join of the two sets, as given by equation 2.11 and then project the

resulting fuzzy set on the subspace formed by the disjoint parts of the two subspace in

which the fuzzy sets R and S are defined.
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The membership function of the resulting fuzzy set is obtained from the membership

functions of R and S, while noting that "min" applies for Join and "supermum" applies

for projection. Specifically,

SoR^SUPxm,^[min(yR ,^ (2.14)

Composional Rule of Inference

Rules of the form:

"If output Y1 is y i then if output Y2 is y2 then control C is c" are linguistic statements

of expert process operators knowledge in which y i y 2 and c are fuzzy quantities. These

rules are fuzzy relations that employ the fuzzy implication If-then.

If we denote the fuzzy relation form of such rules as a fuzzy set R, the output data

by a fuzzy set D and the control action by the fuzzy set C, then the composition rule of

inference states that:

C=DoR^ (2.15)

Given the membership functions of the data and of the rule base we can determine

the membership function of the control action:

= suPy[min(,aD, AR)]
^

(2.16)

This result follows directly from equation 2.14. Note that Y denotes the space in

which the data D are defined. Furthermore, since R consists of fuzzy implications, its

membership function can be formed by the constituent membership functions using the

"min" operation.
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SYSTEM DEVELOPMETNT

3.1 Introduction

To implement and evaluate the tuner performance, an experimental system was de-

veloped for tuning a commercially available servo-motor system. A computer simulation

was developed as well.

First, the general hierarchical structure of the system is described in Section 3.2 .

Next, the servomotor level is described in Section 3.3 . The hardware of the servomotor

is introduced, and the simulated servomotor is developed. Section 3.4 describes the

performance evaluation and the controller parameter updating in the servo expert level.

Finally, the fuzzy tuner level is described in section 3.5 .

Servo-motor simulation, input/output considerations, graphics and file management

are programmed in ACSL (Advanced Continuous Simulation Language)[1]. Subprograms

of the servo expert level are written in FORTRAN. A separate program for the fuzzy

tuner was developed in FORTRAN and executed run off line to generate the decision

table. Subprograms for the communication between the controller and the servo expert

level are written in C.

The same program is used for tuning both the physical and the simulated servo

systems This enables us to switch the servo response and the tuning action from one

system to the other in the same execution.

The system software was developed and executed on a PC 386 33[MHZ] equipped

35
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with a mathcoprocessor. The PC 386 serves as an interface between the user and the

physical servomotor system.

The description of the experimental system is based on Figure 3.1
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Figure 3.1: The Experimental System
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The lefthand block in this figure represents the hardware of the system. Particularly

the motor, encoder, amplifier, power supply, controller and the controller.

The righthand block represents the software of the system. It is arranged in three

levels as will be described in the next section.

Communication programs interface these two blocks. Particularly, the measured po-

sition of the servo-motor is transfered to the servo-expert level subroutines, and the

updated controller parameters are returned from that level to the hard controller.

3.2 General Hierarchical Structure

To combine the advantages of the high bandwidth, crisp characteristics of a hard

controller in the servomotor system with the merits of a soft knowledge-based tuning a

hierarchical structure was developed.

The lowest level is a closed-loop servo-motor system consisting of a D.C. motor to be

controlled, and a digital controller which can be programmed to compensate for strong

nonlinearities, dynamic decoupling, high-order dynamics and unknown disturbances, as

in the case of a robot [23]. A test signal is injected into the controller and the motor

response to this signal is entered into the higher level.

In the intermediate level, servo-expert algorithm evaluates time domain performance

indices out of the difference between the servo-motor response attributes and a set of

pre-defined specifications. These indices trigger tuning actions from a decision (look-

up) table. In the same level well-known frequency-domain attributes of a controller are

updated and the new parameters of the controller in the lowest level are designed using

these updated attributes.

In the top level, knowledge expressed in terms of fuzzy rules is formulated mathe-

matically using fuzzy theory and fuzzy logic operations to generate a decision table in
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which the actual performance indices are matched with tuning actions in the interme-

diate level. A learning and self-organization algorithm may replace or modify the fuzzy

logic operation in the generation of the decision table.

A block diagram of the hierarchical tuning structure is shown in Figure 3.2

Notice the conventional inner loop of the low level, hard controller and the outer loop

which contain the high level, soft tuner algorithm.
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The Hierarchial Tuning Structure
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Figure 3.2: Hierarchical Structure of the System
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3.3 Servo-Motor Level

In the following subsections physical (commercially available) and simulated servo

systems are described and developed.

3.3.1 Physical Servo System

The servo-motor system supplied by "GALIL" consists of the following components:

• Motor

• Amplifier

• Encoder

• Controller

• Power supply

• Interconnected board

• Communication Software

A picture of the GALIL servo-motor hardware is shown in Figure 3.3
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Figure 3.3: The Hardware of the Physical Servo-Motor System
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The general specification of the servo-motor system is given in appendix A-1.

Motor 

A DC motor, type PITMAN 50/1000 , of torque ranging 50[oz-in] is used. It has a

permanent-magnet stator and 3-poles rotor. Its specifications and mechanicl drawing are

listed in Appendix A-2.

Amplifier

A linear amplifier is used to drive the motor at constant gain of 0.2[A/11 with a

dynamic range of +10[11.

Encoder

Incremental optical encoder is used. It generates 4000[pu/ses/rev] to measure the

motor position.

Controller

The digital controller is a general-purpose, programinable controller of type GALIL

DMC-400. It consists of parallel, forward route lead, and integral compensation nets.

The controller operates in numerous modes, including point-to-point positioning and

jogging. Several commands are provided, including instructions for specifying the motor

position, velocity and acceleration.

The controller specifications are listed in Appendix A-3
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Interconnection board 

A GAUL ICB-933 is used. It connects the DMC-400 controller to other system

elements (motor, encoder, amplifier). The interconnection board specifications are listed

in Appendix A-4.

Communication Software

The communication programs provide an interface between the servo expert software

and the servo-motor hardware . They translate and send the controller parameters

that are computed at the servo expert level, to the DMC-400 controller, and returns

the actual actuator position to the main program. In addition they enable the user to

interrogate and send commands using the computer keyboard. Two linked sub-programs

were developed for communication:

• Sub-program written in FORTRAN, to interface with the FORTRAN coded tuner.

• Sub-program written in C to interface with the C coded GALIL system.

Both programs are listed in Appendix A-5.
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Figure 3.4: Block Diagram of the Simulated Servo-Motor

3.3.2 Simulated Servo-Motor

The simulated servo block diagram is shown in Figure 3.4

It consist of the following modules:

• Motor

• Amplifier

• Encoder

• Controller

• Digital to Analog Converter and Zero Order Hold.
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Amplifier and Motor

The mathematical model of the motor-amplifier unit depends on the type of the am-

plifier. The two types are represented by different transfer functions. Both of them are

exmined in the experimental work.

(1)^Voltage source amplifier

For a voltage source amplifier the position Po is given by [24]:

Po =
s • KL • s + R) • (J • s + B) -I- K 2 ]^s - (J - s + B)

where:

K - Motor torque constant[N* 771/ amp]

V - Supply voltage to the stator[volt]

J - The actuator moment of inertia[Kg • m 2 ]

L - Armature inductance[mH]

R - Armature resistance[ohm]

B - Motor mechanical damping[Kg/s]

Ti - External Load[N • m]

s - Laplace variable

(2) Current source, Current feedback amplifier

A current source, current feedback amplifier results in a different transfer function

[32] for the actuator/amplifier, as given below:

K • V^ T1 (3.1)

(A • K • li — TO
Po = ĵ . s2

(3.2)
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here Ii is the input current to the motor. A, the effective gain of the current source

amplifier is:

/max
A = v?7, —,.. [amp/volt]^ (3.3)

in which Vmas is the maximum available input voltage to the amplifier and 'm  is

the maximum output current to the actuator:

Encoder

The encoder generates N pulses per revolution, with two signals in quadrature giving

4N pulses per revolution. For N = 1000 the effective gain, given by the ratio of the

encoder output in pulses to the actual motor rotation in radians (P) is:

Ge = Integer (--
Y

) = Integer 
(4 • 1000N)

P^2ir^)

Controller

The digital controller consists of a lead compensator with a single zero, single pole

and an integrator in parallel route.

Its transfer function Gc(z) in the discrete time domain is given by:

CK1z • (z — Zr2 )^Kiz
Gc(z)= 

(Yr —
 y) = ^(z

 — P12 )1 )^+ (z — 1)
(3.5)

where:

C - Position command to the amplifier[counts]

Yr - required position[counts]

K12 - Lead compensator gain.

Kiz - Integrator gain.

(3.4)
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Zr,, - Zero location in z domain.

Pl - Pole location in z domain.

z - Z transform variable.

Using bi-linear transformation s = 21-L-1) the equivalent continuous transfer functionTs (z+1)

in s domain becomes:

(s Zr,) Ki sGc.( , ) = Kl, (a + ^s

where:

Kli, = Klz
(i+Zrz)
(i+Plz )

Zr =a^
2 (1—Zr z )

Ts (1+Zr.)

pi
a = 

2 fl — Plz ) 
 Ts (1+Pl 2 )

Ki =a^Ts

and Ts is the sampling time.

Digital to Analog Converter (DAC) 

This is 8-bit DAC quantizes the full range output (20[V])of the controller to 256[bit].

The quantization is 1-[vo/t/bit].

(3.6)

(3.7)
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3.4 Servo Expert Level

The servo-expert level interfaces the hard controller of the servo-motor in the lowest

level and the soft, knowledge-based tuner in the top level. An adjustment mechanism

automatically tunes the parameters of the programable controller using measured re-

sponse of the actual servo-motor and the decision table, so as to meet a set of desired

performance parameters within a set of acceptable pre-defined tolerances.

This level consists of eight functions as shown in Figure 3.5:
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• Test signal generator.

• Performance specification.

• Response preprocessing.

• Performance evaluation.

• Performance classification.

• Controller attribute tuning.

• Controller-parameter mapping.

• Specification updating.

Test signal is injected simultaneously to both the servo-motor and the reference

model. The servo response to this signal is preprocssed to obtain time domain perfor-

mance parameters. These parameters are compared with those of the reference model

performance parameters and the error between them is classified to form performance

index which triggers a tuning action by means of the decision table. The developement

of the decision table is described in the next section.

The tuning actions update the frequency-domain controller attributes from which the

updated controller parameters are calculated using crisp, conventional mapping. The

reference model may be modified automatically, if necessary, when the limits of the

controller attributes are reached and the tuning process terminated unsuccessfully.

3.4.1 Performance Specification

Several time domain parameters are useful for performance specification. These de-

sired time domain performance parameters are represented in terms of a reference model

with a set of acceptable tolerances.



Chapter 3. SYSTEM DEVELOPMETNT^ 52

Even though the user specifications can be expressed directly in terms of time do-

main performance parameters, a reference model is used to determine these parameters

indirectly for the following reasons:

Since the tuning knowledge base is determined through response observation, it is

found visually more convenient to evaluate the response of the actual system relative to

that of a reference model rather than evaluate an "absolute" performance of the system.

Furthermore the model provides some buffer against unreasonable requirements. Finally

using reference model make the tuning process similar in a way to the Model Reference

Adaptive System (MRAS) technique.

It is important to realize that this model represents the desired performance only,

and it is not a the model of the system. Furthermore, unlike MRAS technique,

the goal of the tuning process is to bring the performance parameters and not the

response itself close to those of the model.

The order, structure and parameters of the model can be chosen and adjusted either

analytically or by trial and error so as to meet the performance parameters specification

in the time domain, and can be updated automatically, if necessary, during the tuning

action.

To save real time computation either closed form analytical expressions or off-line

numerical solution should be used to calculate the time domain parameters of the model.

Reference Model

The dynamics of the reference model in this research is represented by a second order

transfer function, specified by the undamped natural frequency (cen ) and the damping

ratio (C). The static behavior of the model is represented by a deterministic steady-state

error (8) and can represent the undeterministic error as well.

The model transfer function is:
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Ym^w2
GM( g) = Yr = ŝ2 2cwn • scvn2 ° (3.8)

The solution to step input Yr is:

Yrn = Yr [1 — a• e-b.t • sin (c • t d)+ 9+ E]^(3.9)

where:

a=^

b = • wn

c = wn • N/1 — C2

d = cos -1 (C)

The subroutine MODEL is listed in Appendix. B.2.1

Time Domain Performance Specifications

The following time domain parameters of the model are used to define the desired

servo-motor performance.

• Rise time

• Damped natural frequency

• Average damping ratio

• Overshoot

• Offset

These parameters are calculated analytically from equation 3.9 and compared with

those of the servo-motor to form performance parameter error.
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1. Rise-Time - R.7",„

The time taken to pass 0.95 of the steady-state response value for the first time.

2. Model Damped Natural Frequency - D.F77,

D.F„, = con • 1/1 — (2^(3.10)

3. Model Average Damping Ratio - D'Tem

DR,. = 1 • EP lfm(p+i)  "Ym(p)
P p=1

7m(P) - 'Ym(P-1)^

(3.11)

where the p'th peak level -ym(p) of under-dumped model (( < 1) is calculated ana-

lytically using:

-y„,,(p) = Yr • [(1 — a • e -bi 
m(P) • sin (c • T

m(P) 
+ d)]
^

(3.12)

in which the time T
,,,(P) 

of the p'th peak is:

P •T
m(p) 

=^ for^p = 1, 2, ...., P^(3.13)
wy, - V(1 

r 

— C2 )

and a, b, c and d are as defined in equation 3.9

Peaks smaller than a predefined value are neglected.

4. Model Overshoot - OS„,

The level of the first peak

-7r • C
— exp 0 _ c2OSm = -Ymo) (3. 14 )
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5. Model Steady State Error (Offset) -

The difference between the desired and the actual response at steady state.

OF„, = 0^ (3.15)

These desired performance are arranged in vector Pm( i ):

3.4.2 Response Preprocessor

Pm(,) = RTM

Pm (i) = Dim

Pm(i) = DR,„

Pm(,) = OS„,

Pm( i) = Oim

(3. 16 )

The preprocessor calculates the time domain performance parameters of the servo-

motor measured response.

Peak detector observes the response to find P peak level -ys(p) and timing 
T$(p)

 using

the sign change between any two consecutive pairs Y( t+i ) — Y( t )^and^17(t) —

where Y( t ) is the servo-motor response at the communication time interval.

Peak levels which are found to be less than a predefined value are ignored, and the

sign changing is checked for continuity.

Time domain performance parameters are evaluated out of the servo-motor response,

the peak levels and peak times. These parameters are compared later with those of the

reference model to form the error of the performance parameters. Furthermore, these

parameters may be compared with those used in other tuning techniques.

Time domain performance parameters of the Servo-motor are calculated as follows:
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1. Rise-Time - RT,

The time taken to pass the 95 % of the steady-state response value for the first

time. A high 'RT, indicates slow response.

2. Average Damped Natural Frequency - D.F„

The average damped natural frequency is calculated using consecutive peak times:

1^r
D.F = —EP ^P p=1 T — T

a(P)^s(P-1)

(3.17)

for all:

-yam > 0.02 • Yr

where P is the number of peaks having magnitude greater than a predefined value.

A high average damped natural frequency indicates a fast response.

3. Average Damping Ratio - DR,

The average ratio of each consecutive pair of response peaks gives:

DR. , 1 vi I" l'a(P+ 1 ) — l'8(P)^(3.18)
P -̀'1:7=1

'Ya(P) — "ra(p-i)

Average damping ratio less then 1 indicates oscillatory convergence. Average

damped ratio over 1 indicates unstable, oscillatory response.

4. Overshoot - OS,

The level of the first peak:

OS, = -y,(i)^(3.19)

Small overshoot indicates less oscillatory response.
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5. Steady state error - 01;

The normalized, systematic (deterministic) deviation of the steady-state value

from the desired value:

= ^1^Et' (Ys( t ) — Yr) • At
(3.20)tf — Tuy) 70')^Yr

were ti is the duration of the input test signal and At is the communication time

interval.

These actual performance are arranged in vector Ps( ; ):

3.4.3 Performance Evaluation

Ps( i ) = 7ZT,

Ps(2) = D.F,

Ps(3) =

Ps(4) = OS,

PS(5)=0.P,

(3.21)

The time domain performance parameters of the servo-motor are now compared with

those of the model and normalized to form a set of nondimensional performance param-

eter errors which takes values in the interval [—co,1]:

Negative error indicates a servo performance better than that of the model.

Zero error indicates a servo performance equal to that of the model.

Positive error indicates a servo performance less than that of the model.

The following normalized, nondimensional errors are calculated using the actual servo-

motor and model performance parameters:



DR,
DR,

DR., -= 1 (3.24)
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1. Rise Time - RT,

Rre = 1 R.7",„
RT,

Error approching 1 indicates non responding system (RT,^co)

(3.22)

2. Damped Natural Frequency Error - Die

Die = 1
Di,

(3.23)

 

Error approaching 1 (7).F,^0) indicates critically, over-damped, non-oscillating

system.

3. Damping Ratio Error - DR e

Error approaching 1 (DR.,^oo) indicates unstable, oscillatory system.

4. Overshoot - OS,

OSe = 1 OS„,
OS,

5. Steady State Error (offset) - Oie

(3.25)

Oie =1  
^

(3.26 )

These normalized, nondimensional errors of the performance parameter are arranged

in a vector ERR.(,):
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E'TZT?..0) = R.Te

ERR( 2 ) = D.Fe

ERR(3 ) = TYRe

ETZ1Z( 4)= OSe

eiZR.( 5) OFe

Rise Time Error

Damped Natural Frequency Error

Average Damping Ratio Error

Overshoot Error

Offset Error

(3.27)

3.4.4 Performance Index Classification

Since in the present application the knowledge on the response behaviour is expressed

in terms of discrete and finite number of performance quantities, the input to the decision

table should be discrete with a finite cardinality. Therefore the performance parameter

errors are now assigned discrete performance indices. Let us define an /-dimensional

universe of performance, in which each dimension i represents a performance index stored

as vector K(,).

We obtain these indices by classifying each of the i performance parameter errors into

j subsets, separated by j — 1 predefined thresholds stored in vector Tli(3) , and assigning

an integer number (index) to each subset.

Given the performance parameter error at every communication time, as calculated

in the previous subsection, a performance index is computed for every condition variable.

Notice that since the performance parameter errors are computed accurately the resulting

performance indices are crisp and not fuzzy variables (or fuzzy variables having unity

membership grade).
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Figure 3.6: Mapping from Performance to performance Index

5

4^0 <

kti)^3^TH(1) <

2^TH(2) <

1^TH(3) <

ERR.(,)

ERR( ;)

ERR(; )

ERR(,)

ERR(,)

< 0.

< TH( 1 )

< TH( 2 )

< TH( 3 )

< 1.

(3.28)

In this way, as a part of the performance specification, TH( 1) can be defined as the
acceptable tolerance of a performance index. Notice that the first set are semi-bounded

since over-specification performance are unlimited.

The process of evaluatation and classification of the response is demonstrated schemat-

ically in Figure 3.6
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These performance indices are the entries to the pre-calculated decision table. The

output of this look-up table is a tuning action used to update the controller attributes

as will be explained in the next subsection.

Following the outer tuning loop we proceed with the description on the updating

of the controller parameters, leaving the development of the decision table to the next

section.

3.4.5 Tuning of the Controller Attributes

Keeping in mind that the off-line computed decsion table is already avaliable, the

frequency domain attributes of the controller are now updated using tuning actions that

are fired from the decision table, triggered by the performance indices.

We begin with the meaning of the frequency domain attributes controller. Usually

controller attributes are chosen so as to meet a predefined set of speed, stability and ac-

curacy specifications. Let Gco„,) and Gp(3w ) be the transfer functions of the controller

and the plant (motor, amplifier and encoder) respectively in the frequency domain. De-

fine Cross-Over Gain Frequency ((.0,09 ) as the frequency at which the magnitude of the

controlled, open-loop gain equals 1. ( O[db] ):

1Gc(3wc..) • Gpu, ‘ ..)1 = 1

As a rule of thumb, in many control systems the frequency bandwidth w bu, which is a

measure for the speed of the system is related to the cross-over gain frequency by:

Wbtv^1.5 — 2.0 of wcog

Controller design procedure based on this rule is as follows:

First, as a first guess, choose the cross-over frequency co cog to be 0.7 of the desired

bandwidth cobt„. Next, from the frequency response of the plant, design a controller such
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that its phase lead angle arg(Gc(3, ) ) would reach its maximum value at wcog to meet the

stability requirement Phase Margin.

Finally select the controller gain such that

1Gpciwco, = 1

or:

Gc(i..0 9) = Gpo,,c09 I

If the closed-loop gain is too low in the very low frequency (results in steady state

errors), an integrator may be added to the controller. In this case we define a low

frequency cross over gain cv/cog at which the controller gain is the same as the cross-over

gain:

IGi(mice9)1 = Pc(jw.09)1

where Gi is the transfer function of the integrator branch. The lower is w/cog the

slower is the decaying of the steady state error to zero.

We now use this design procedure to define four controller attributes to be tuned,

arranged as vector (:)(/):

0(1) — &of Phase lead angle at cross-over gain freqency

0(2) = Wcog Frequency at cross-over gain

0(3) = 7/) co f Gain at cross-over frequency
^ ( 3.29)

0(4) = wlcog
 Low frequency at cross-over gain

1

These attributes that shape the frequency response of the system demonstrated in

Figure 3.7
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When a tuning action is taken the controller attributes are updated and translated

to updated parameters of the controller. The relation used for updating the controller

attribute is:

0(one. = + A 0 -(0(t). — 0(1),n) 0(1)nenold 
(3.30)

where the subscript "new" denotes updated value and "old" denotes previous value.

The incremental tuning action A 0 is the output of the decision table and the parameter

0,C1 is a sensitivity parameter. The subscripts "max" and "min" denote the upper and

lower bounds of the controller attributes.

Since more than one incremental tuning action value might be triggered by different

performance parameters through the decision table for each controller attribute, the

strategy of firing the performance parameter with the lowest performance index

is adopted, even though another strategy would suggest some other priority.

The mapping of this updated attributes to the parameters of the controller is described

in the next subsection.

3.4.6 Mapping the Attributes of the Controller to its Parameters

Using the updated controller attributes, its parameters are calculated now in Laplace

domain, transformed to the discrete Z domain using bi-linear transformation and, finally,

translated to the DMC400 controller format. This mapping process is described now.

Transfer function of a simple lead compensation network can be written in the fre-

quency domain as:

1 + A • jW GCC7w) =^1 +A•a•iw
0 < a < 1^(3.31)
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where the transfer function "zero" is located at a and the transfer function "pole" at

on the frequency axis.

The phase lead angle O( i,,) of this circuit is:

arg[Gcm] = (1)(,,) = tan -1 (A • u.)) — tan -1 (A • a • w)
^

(3.32)

To find the maximum phase lead angle 0„,„x and the frequency comas in which this

angle occurs as a function of a andA, set the derivative of Om in equation 3.32 to 0.

(3.33)

Then tom= is obtained as:

Win  =
^ (3.34)

and the corresponding 0„, ax is:

Omar = tan -1 ( 1 — tan-1 ( N/5) = sin -1 (1=2 )1+a (3.35)

Given Omar and (4.)„,ax , a and A can be calculated from equations 3.34 and 3.35:

1 — sin (Omax )
a= ^

1 + sin (Omax )
(3.36)

and the "Zero" and the "Pole" location from equations 3.31
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The lead network gain:

Ki = Nici • Pc(jwm ..)1^ (3.38)

We see that the parameters of the lead net Ki , a and A depend on the controller

attributes 0,„„s , comax and 1Gc( jw„.,. ) 1

Designing the controller such that the maximum phase lead angle occurs at the cross-

over gain frequency we obtain:

Wcog WmasOcof = Omarlk cof = IGC(jco.)I
^

(3.39)

Given the updated controller attributes, the lead branch of the controller can be

computed using equations 3.36 and 3.37 .

Let the transfer function of the integrator branch be:

.^Ki
u•ct( a)= (3.40)

We can compute Ki , given the controller attribute: low frequency at cross-over gain,

w/,,,g , and the controller gain at cross-over frequency IC(3,c09) 1

K, =^Wlcog
^ (3.41 )

This completes the mapping of the attributes of the controller to its parameters.
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3.5 Fuzzy Tuner Level

In the top level of the heirarchical structure an expert tuning knowledge is mathe-

matically formulated using fuzzy set theory and fuzzy logic operations and a decision

table is calculated off-line to match the performance indices with tuning actions in the

servo-expert level. First, an expert knowledge on the tuning procedure is expressed as

a set of linguistic fuzzy statements. Next, membership functions are assigned for each

performance and tuning variable and, by applying the compositional rule of inference,

fuzzy composite relation tables are established to express the relations between each

performance and tuning variable. Finally, this fuzzy composite relation is defuzzified to

obtain a crisp value for the tuning actions to be used in the servo expert level.

To save real time computation this program is computed off-line.

There are five subprograms in this level:

• SUB-RULSET - Generates array of condensed form for the linguistic rules which

relate the performance variables and quantities to tuning variables and quantities.

• SUB-MEMBERSHIP - Generates the membership function array for the perfor-

mance variables, to indicate the possibility of each performance index to belong

to performance fuzzy subset, and membership function array for the tuning vari-

ables to indicate the possibility of each tuning action to belong to the tuning fuzzy

subset.

• SUB-RELATION - Establish fuzzy relation array between fuzzy performance and

tuning variables, according to the ruleset array, by applying the cartesian product

space of the two-variable membership functions.

• SUB-DECISION - Generates a decision array by applying the compositional rules

of inference.
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• SUB-DEFUZIFIED - Compute the crisp value of the tuning action using the centre

of gravity method.

Block diagram of the fuzzy tuner is shown in Figure 3.8
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3.5.1 Fuzzy Ruleset

Experts in system tuning usually learn and gain tuning knowledge by performing

tuning actions and observing the response of the system to these actions. Often the

tuning actions are expressed in linguistic fuzzy terms like "Turn the knob a little bit to

the left" or "Raise the lever slightly".

In a similar way, the system performance is expressed in linguistic fuzzy terms as

"The speed is too slow" or "High offset is existing in the system".

Suppose that actions like "Turn the knob" and "Raise the lever" are fuzzy tuning

variables of the system, and "A little bit to the left" or "Slightly" are their fuzzy tuning

quantities. Furthermore, let performance variables like "Speed" and "Offset" be the fuzzy

performance variables and "slow" and "High" be their fuzzy performance quantities.

To formulate this knowledge mathematically we define an /-dimensional universe

of fuzzy performance variables denoted by P, in which the i'th dimension represents

performance parameter variable PV (;) . Let the elements of this universe be the actual

performance indices, as calculated in the servo-expert level. Divide each performance

parameter PV(i ) to j fuzzy subsets in which the j'th subset represents fuzzy performance

quantity PQ ( , ) .

In the same manner we define L dimensional universe of tuning actions T, in which

the Pth dimension represents a tuning variable TV (/) , each of which is divided into m

fuzzy subsets TQ (n., ) , representing m fuzzy tuning quantities.

Now define the performance variables and quntities as well as the tuning variables

and quantities in the fuzzy form of crisp variables and quantites, as has been defined

for the servo-expert level (see equation 3.27 on page 3.27.
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Fuzzy performance variables

PV( i ) = RISTM for the fuzzy form of Rise Time error (RTe )

PV(2) = DMPFR for the fuzzy form of Damped Natural Frequency error (D.Fe)

PV(3) = DMPRT for the fuzzy form of Damping Ratio error (DR.,)^(3.42)

PV(4) = OVSHT for the fuzzy form of Overshoot error (OVe )
PV( s) = OFFST for the fuzzy form of Offset (0.Fe )

Each condition variable is assigned one of the following fuzzy quantities and stored

in the vector PQ (3) :

PQ(1) = OVRSP (Over specification)

PQ(2) = IN-SP^(In-specification)

PQ(3) = MODRT (Moderate)

PQ(4) = POOR (Poor)

PQ (5) = UNSTF (Unsatisfactory)

For analytical convenience assign a numerical integer to each quantity:

( 3.43 )

PQ(1)=
PQ(2) -

PQ(3) -

PQ(4)-

PQ ( 5 )

1

2

3

4

5

(3 .44)

Similarly define vector TV (l) of the fuzzy tuning variables as the fuzzy form of the

incremental changes of the controller attributes (see equation 3.39:



(3.47)

Knowledge is gained by observing the effect of each tuning action on the performance

and expressing these effects as a set of rules of the form:

TQ(2) = —1

TQ(3) 0

TQ (4) = +1

TQ (5) = +2
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TV( i ) = PHCOF

TV(2) = FRCOG

TV(3) = GNCOG

TV(4 ) = LFCOG

Each tuning variable is assigned one

in the vector TQ (m) :

the fuzzy form of &of

the fuzzy form of w cog

the fuzzy form of T cof

the fuzzy form of C21 cog

(3.45)

of the following fuzzy quantities which are stored

TQ(1) = NEGHI

TQ(2) = NEGLO

TQ(3) = NOCNG

TQ(4) = POSLO

TQ (5) POSHI

for high, negative increment

for low, negative increment

for no change

for low, positive increment

for high positive increment

(3.46)

For analytical convenience each subset is assigned an integer value:

TQ (1) — —2

If P V ( i )^is^P Q (1)^then^TV( /)^is^TC2 („, )
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Using these definitions the condensed form of the rules are stored in a three dimen-

sional array as:

= m^ (3.48)

For example: RU(4,3,2) = 1^is the condensed form of the rule:

If OVSHT is MODRT then FRCOG is NEGHI

The default value is RU(,,3 ,0 = 3 (Tuning quantity is unchanged for all combinations

of performance variable, performance quantity and tuning variable). Modification of the

table is done by typing the three indices i, j, 1 and the value of the desired tuning quantity

(m index). The effect of each tuning variable on each performance variable, and the rule

generation based on these effects are described in the next chapter.

3.5.2 Membership Functions for Performance and Tuning Variables

Subroutine SUB-PRFMSF

Subprogram SUB-PRFMSF generates the three dimensional array PM(,,,, k) member-

ship function for the performance quantity in which i stands for the performance fuzzy

variable, j stands for the performance fuzzy quantity and k is the performance index.

For example, P M- (1,2,3) = 1 means that PQ (1) (Rise time) with performance index equal

3 is definitely in the fuzzy quantity subset IN-SPC (see definitions in equations 3.42 ,

3.44 , 3.45 , and 3.47 .

Currently subprogram SUB-PRFMSF assigns 1 to the representative value and uni-

formly decreasing membership grade to the other performance indices. The membership

functions of the performance variables are shown schematically in Figure 3.9
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Figure 3.9: Membership Functions for the Fertormance variables

Modification of the table is done by assigning values to the i, j, k indices and a mem-

bership grade to the desired element.

Subprogram SUB-PRFMSF is listed in appendix B-3-3.

Subroutine SUB-TUNMSF

Subprogram SUB-TUNMSF generates three dimensional array TM( / ,„,,„) of member-

ship functions for the tuning quantity in which 1 stands for the fuzzy tuning variable,

m stands for the tuning fuzzy quantity and n is the tuning action index. For example,

TM(,,2,3) = 0 means that PHCOF (fuzzy phase lead angle at cross-over frequency) with

quantity index 3 is definitely not in the fuzzy quantity subset NOCNG (no change)

(See equations 3.45 ,3.46 and 3.47 ).

Currently subprogram SUB-TUNMSF assigns 1 to the representative value and uni-

formly decreasing membership grade to the other performance indices. The membership
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I

Figure 3.10: Membership Functions for the Tuning Variables

functions of the tuning variables are shown schematically in Figure 3.10

Modification of the table is done by assigning values to the 1, m, n indices and a

membership grade to the desired element.

Subprogram SUB-TUNMSF is listed in appendix B-3-4.

3.5.3 Fuzzy Relation between Condition and Action Variables

Subprogram SUB-RELATION computes a four dimensioned array RL (0 ,k ,n). This

matrix is a condensed form of the fuzzy relation between each fuzzy performance variable

(PVC ;)) and each fuzzy tuning variable (TV( l)). The i,l,k and n indices are as defined

previously.

First, using the rules in RU(,,,,i) (equation 3.48 on page 73) an INTERSECTION

operation (see equation 2.5 on page 23) is applied by taking the minimum of the mem-

bership function grade PM ( ,,,,k) of each element k in the performance quantity subspace
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PQ (3) belonging to the fuzzy performance variable PV(,) and the membership function

TM( / ,,„ 0.,) of each element n in the fuzzy tuning subspace TQ (,„ ) , that belongs to the

fuzzy tuning variable TV( / ), for every i, j and 1 in RU(,,,, / ).

This results in a temporary five dimensional matrix BARLEV(0 ,3 , k ,n) , which stands

for the fuzzy relation:

If PV(,) = PQ (3) then TV(z) = TQ („, )

For example a typical fuzzy relation table relating the fuzzy performance variable

RISTM and the fuzzy tuning variable PHCOF is demonstrated in Table 3.1
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Table 3.1: Development of a

IF

Fuzzy Relation Table^RISTM^PHCOF)

2

(for^---+

RISTM = UNSATF Then PHCOF = NEGHI
-2^-1^0^1

11 1.0^.8^.6^.4 .2
21 .8^.8^.6^.4 .2
31 .6^.6^.6^.4 .2
41 .4^.4^.4^.4 .2
51 .2^.2^.2^.2 .2

IF RISTM = POOR^Then PHCOF = NEGLO
-2^-1^0^1 2

11 .8^.8^.8^.6 .4
21 .8^1.0^.8^.6 .4
31 .8^.8^.8^.6 .4
41 .6^.6^.6^.6 .4
51 .4^.4^.4^.4 .4

IF RISTM = MODRAT Then PHCOF = NEGLO
-2^-1^0^1 2

11 .6^.6^.6^.6 .4
21 .8^.8^.8^.6 .4
31 .8^1.0^.8^.6 .4
41 .8^.8^.8^.6 .4
51 .6^.6^.6^.6 .4

IF RISTM = IN-SPC Then PHCOF = NOCHG
-2^-1^0^1 2

11 .4^.4^.4^.4 .4
21 .6^.6^.6^.6 .6
31 .6^.8^.8^.8 .6
41 .6^.8^1.0^.8 .6
51 .6^.8^.8^.8 .6

IF RISTM = OVRSPC Then PHCOF = POSLO
-2^-1^0^1 2

11 .2^.2^.2^.2 .2
21 .4^.4^.4^.4 .4
31 .4^.6^.6^.6 .6
41 .4^.6^.8^.8 .8
51 .4^.6^.8^1.0 .8
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Table 3.2: Fuzzy Composite Relation Table for RISTM and PHCOV

-2 -1 0 1 2

11 1.0 .8 .8 .6 .4
21 .8 1.0 .8 .6 .6
31 .8 1.0 .8 .8 .6
41 .8 .8 1.0 .8 .8
51 .6 .8 .8 1.0 .8

Next, UNION operation (see equation 3.4 on page 47) is applied by taking the maxi-

mum membership grade of BARLEIii,/,3 ,k,n) over index j for every i, 1, m, k and n. This

operation results in a four dimensional Matrix RL(0 ,k ,,i) which is the Composite Fuzzy

Relation between the fuzzy performance variable PV(i) and the fuzzy tuning variable

TV( / ).

For example a typical composite fuzzy relation table relating the fuzzy performance

variable RISTM and the fuzzy tuning variable PHCOF is demonstrated in Table 3.2

Subprogram SUB-RELATION is listed in appendix B-3-5.

3.5.4 Decision Table

The subroutine SUB-DECISION generates a three dimensional matrix DT(0 ,3) by

matching the composite relation matrix RL(, , i ,k ,,,) with the membership function matrix

PM(so ,k) of the performance quantity matrix PQ ( ,,j ,k) that belongs to the performance

variable subset PV(,,,,k ).

First, INTERSECTION operation (see equation 2.5 on page 23) is applied to PM(,,,, k)

and ITL(0,k,n), to form the temporary matrix SHAKY,- to,,,k,n)•

Next, UNION operation (see equation 3.4 on page 47 ) on SHANY is applied to form
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the temporary matrix YAEL (0 ,3 ,„ ) , the membership function matrix of the action 1 due

to the performance variable i with fuzzy quantity j.

Finally, subprogram SUB-DEFUZZY is called to compute the crisp value of the tuning

quantity, using the Centre of Gravity Method, In order to obtain a crisp value for the

tuning action. Specifically, we weight the elements in the universe of the tuning action

using the membership grades of the action, and then take the average. This value is the

entry for the tuning action in the decision table, and stored now in the decision table

array DT(,,,j), to be used on-line in the servo expert level.

For example, in:

DT(1,2,3) = 0.6

the Rise Rime (TZTe ) having a performance index equal to 2 is the entry point to the

decision table and it triggers the gain increment at cross-over frequency 0 (3) to be 0.6

as can be seen in Table 3.3

A typical crisp decision table is shown in Table 3.3
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Table 3.3: Decision Table for the Servo-Motor

Table for Performance Parameter: 'RE e
0 co f Wcog lb co f W 1 cog

11 -1.0 1.0 1.0 .0
21 -.6 .6 .6 .0
31 -.2 .2 .2 .0
41 .0 .0 .0 .0
51 .2 -.2 -.2 .0

Table for Performance Parameter: D.Fe

&o f Wcog 11) co f W 1 cog

11 .0 .0 1.0 .0
21 .0 .0 .6 .0
31 .0 .0 .2 .0
41 .0 .0 .0 .0
51 .0 .0 -.2 .0

Table for Performance Parameter: DiZe

&o f Wcog 711 co f W 1 cog

11 -1.0 1.0 1.0 .0
21 -.6 .6 .6 .0
31 -.2 .2 .2 .0
41 .0 .0 .0 .0
51 .2 -.2 -.2 .0

Table for Performance Parameter: OS,
&o f^Wcog^VI co f Ci) 1 cog

11 1.0 -1.0 1.0 .0
21 .6 -.6 .6 .0
31 .2 -.2 .2 .0
41 .0 .0 .0 .0
51 -.2 .2 -.2 .0

Table for Performance Parameter: 01e
&o f Wcog Ow f CV lcog

11 .0 .0 1.0 1.0
21 .0 .0 1.0 .6
31 .0 .0 .6 .2
41 .0 .0 .6 .0
51 .0 .0 .4 -.2
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EXPERIMENTAL STRATEGY AND PROCEDURE

4.1 Introduction

This chapter describes the experimental testing strategy and procedure both in the sim-

ulated and the physical servo-motor system.

The experiments were designed for three purposes. Firstly, it is desired to study

the performance of the tuning mechanism with regard to its parameters. Secondly, it

is desirable to evaluate the performance in comparison with those of other conventional

techniques. Finally, and most importantly, it is important to determine if a fuzzy tuner

algorithm is a practical means of automating the tuning the actions taken by an expert

operator, by implementing it on a commercially available servo-motor system.

The results of these tests are shown graphically in the next chapter.

4.2 Experimental Strategy

Given a commercially available servo-motor system the starting point of the experi-

mental work is the designing of a controller for a simulated, well-defined and simplified

linear servo-motor system at the lowest level, using well known "classical" design tools to

meet a set of frequency and time domain specifications. This step results in a well-tuned

base-line system.

Next, the algorithms of the servo-expert and the fuzzy tuner in the higher levels are

integrated with the simulated servo-motor system, and the knowledge-based ruleset is

81
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established by observing the effect of each tuning action on each performance parameter,

thereby simulating the knowledge of an expert operator. Then the system is tested when

the simulated base-line servo-motor is gradually spoilt toward an ill-defined servo-motor

system, leaving the two upper levels unchanged. Finally, the tuning algorithm is

implemented and tested on the commercially available servo-motor system.

4.3 Performance Requirements

The required time domain performance parameters are derived from the actual appli-

cation of the servo-motor system, considering several limitation factors such as as mini-

mum available sampling time of the controller, maximum execution speed, or maximum

available acceleration of the servo-motor system.

Often a compromise among these requirements is needed. Such an /settle/ example,

between the speed (typically represented by the rise time) requirement and the oscillation

(typically represented by the overshoot) requirement.

4.3.1 Model Parameters

Considering the given system limitations (of the motor, amplifier, controller and com-

puter) the dynamic performance parameters are chosen (see definitions in Section 3.3.1):

1. Rise time (R.Tm) 33[rnsec]

2. Average damping ratio (DR,,,) = 0.095

3. Average damped natural frequency (D.T„,) 75[hz]

4. Overshoot (OV m ) = 10[%]

and the static performance parameters:
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5. Offset (O.F,n ) = 2[%]

A reference model that satisfies these requirements (see equation 3.8 on page 53) is:

• Cm = 0.55 (Model damping ratio)

• Wm = 75 (Model undamped natural frequency)

• B = 0.02 (Model offset)

4.3.2 Acceptable tolerance

The following acceptable tolerances are used for the dynamic performance parameters.

1. Rise time tolerance = 0.1

2. Overshoot tolerance = 0.1

3. Average Damping Ratio tolerance 0.1

4. Average Damped natural response = 0.1

and for the static performance parameters.:

5. Offset tolerance = 0[%[

4.3.3 Test Signal

The magnitude of the square wave test signal should be far above the noise and the

quantization levels of the servo-motor system. The frequency of the square wave should

by small enough to let the system response settle down. Amplitude of 200[counts] and

frequency 2[hz] is used.
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4.4 Base-Line Servo-Motor System

Denote Base-Line servo-motor system as a simulated, well-defined, well-tuned system.

Well-defined system reflects accurate and complete knowledge of the mathematical model

of the system. Well-tuned system reflects a controller design procedure based on well-

defined system, and results in "in specifications" performance.

The values of specific motor parameters (see equation 3.1 on page 46 are:

K = 0.076[N • [M -m/A]- torque constant

R = 1.59[ohm] - resistance of the field winding

L = 2.5[mH] - inductance of the field winding

J = 2.6 * 10 -5 [Kgm2 ] - moment of inerta of the rotor

B = 0.0037[Nm • sec] - motor mechanical dampling

and for current supplay amplifier (see equation 3.2 on page 46:

A = 0.2[amp/volt] - effective gain of the current source amplifier

Vmax = 10[volt] - maximum voltage input to the amplifier

'max = 2[amp] - maximum current output of the amplifier

The well-tuned controller attributes (see equation 3.39 and equation 3.40 on page 66)

of the base-line system are designed to be:

1. Phase lead Angle at cross-over frequency: 0(cof )^1 [rad]

2. Cross-over gain frequency: w( cog ) = 200[rad/sec]

3. Cross-over gain: V.)(cof ) = 12[db]

4. Low frequency gain :wt (cog) = 0.

Time domain response of the reference model as well as that of the base-line servo-

motor system to a squared wave input is shown in Figure 4.1 . Notice that all the actual

resopnse parameters are in or over specification.
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Figure 4.1: Time Domain Response of the Base-Line Servo-Motor System
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4.5 Generation and Evaluation of Tuning Rules

To simulate an expert knowledge in tuning a servo-motor system, the effect of each con-

troller attribute on each performance parameter is examined by applying the servo-expert

level algorithm on the simulated servo-motor system. These effects are demonstrated in

the following figures:

The effect of the cross-over phase lead angle 0 (cof) is demonstrated in Figure 4.2.

The effect of the cross-over gain frequency co (cog) is demonstrated in Figure 4.3.

The effect of the cross-over gain ihcof) is shown in Figure 4.4.

The effect of the cross-over gain (0 (cof) ) when an external load is applied is shown in

Figure 4.5.

The effect of the low-frequency gain (w/(c09) ) when an external load is applied is demon-

strated in Figure 4.6.

Observations of these effects are now expressed as linguistic fuzzy rules to form the

ruleset of the high level fuzzy tuner. Notice that since the knowledge on tuning actions are

gained by looking at these graphs rather than actually measuring (crisp) performance

parameters they become fuzzy variables. Furthermore, we can "pretend" that the tuning

actions that have been taken are not known accurately, to simulate tuning actions taken

by an experienced operator, and therefore they become fuzzy variables as well.
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Figure 4.2: Effect of Phase Lead Angle at Cross-over Gain Frequency
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Figure 4.6: Effect of Low-frequency at Cross-over Gain when External Load is Applied
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Rules for Tuning the Phase at Cross-over Frequency

Based on Figure 4.2 the following rules are established for tuning PHCOF.

RISTM dependence on PHCOF

If RISTM is UNSTF then PHCOF be NEGHI

else if RISTM is POOR then PHCOF be NEGLO

else if RISTM is MODRT then PHCOF be NEGLO

else If RISTM is INSPC then PHCOF be NOCNG

else If RISTM is OVRPC then PHCOF be POSLO

end if

DMPRT dependence on PHCOF

If DMPRT is UNSTF then PHCOF be POSHI

else if DMPRT is POOR then PHCOF be POSLO

else if DMPRT is MODRT then PHCOF be POSLO

else If DMPRT is INSPC then PHCOF be NOCNG

else If DMPRT is OVRPC then PHCOF be NEGLO

end if

OVSHT dependence on PHCOF

If OVSHT is UNSTF then PHCOF be POSHI

else if OVSHT is POOR then PHCOF be POSLO

else if OVSHT is MODRT then PHCOF be POSLO

else If OVSHT is INSPC then PHCOF be NOCNG

else If OVSHT is OVRPC then PHCOF be NEGLO

end if
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Rules for Tuning the Frequency at Cross-over Gain

Based on Figure 4.3 the following rules are established for FRCOG.

DMPRT dependence on FRCOG

If DMPRT is UNSTF then FRCOG be NEGHI

else if DMPRT is POOR then FRCOG be NEGLO

else if DMPRT is MODRT then FRCOG be NEGLO

else If DMPRT is INSPC then FRCOG be NOCNG

else If DMPRT is OVRPC then FRCOG be POSLO

end if

DMPRT dependence on FRCOG

If OVSHT is UNSTF then FRCOG be NEGHI

else if OVSHT is POOR then FRCOG be NEGLO

else if OVSHT is MODRT then FRCOG be NEGLO

else If OVSHT is INSPC then FRCOG be NOCNG

else If OVSHT is OVRPC then FRCOG be POSLO

end if

DMPFR dependence on FRCOG

If DMPFR is UNSTF then FRCOG be NEGHI

else if DMPFR is POOR then FRCOG be NEGLO

else if DMPFR is MODRT then FRCOG be NEGLO

else If DMPFR is INSPC then FRCOG be NOCNG

else If DMPFR is OVRPC then FRCOG be POSLO

end if
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Rules for Tuning the Gain at Cross-over Frequency

Based on Figure 4.4 the following rules are established for GNCOF.

RISTM dependence on GNCOF

If RISTM is UNSTF then GNCOF be POSHI

else if RISTM is POOR then GNCOF be POSLO

else if RISTM is MODRT then GNCOF be POSLO

else If RISTM is INSPC then GNCOF be NOCNG

else If RISTM is OVRPC then GNCOF be NEGLO

end if

DMPRT dependence on GNCOF

If DMPRT is UNSTF then GNCOF be POSHI

else if DMPRT is POOR then GNCOF be POSLO

else if DMPRT is MODRT then GNCOF be POSLO

else If DMPRT is INSPC then GNCOF be NOCNG

else If DMPRT is OVRPC then GNCOF be NEGLO

end if

DMPFR dependence on GNCOF

If DMPFR is UNSTF then GNCOF be POSHI

else if DMPFR is POOR then GNCOF be POSLO

else if DMPFR is MODRT then GNCOF be POSLO

else If DMPFR is INSPC then GNCOF be NOCNG

else If DMPFR is OVRPC then GNCOF be NEGLO

end if



Chapter 4. EXPERIMENTAL STRATEGY AND PROCEDURE^93

Rules for Tuning the Gain at Cross-over Frequency when External Load is

Applied

Based on Figure 4.5 the following rules are established for tuning the GNCOF.

OFFST dependence on GNCOF

If OFFST is UNSTF

else if OFFST is POOR

else if OFFST is MODRT

else If OFFST is INSPC

else If OFFST is OVRPC

then GNCOF be NOCNG

then GNCOF be NOCNG

then GNCOF be POSLO

then GNCOF be NOCNG

then GNCOF be NOCNG

end if

Rules for Low-Frequency at Gross-over Gain

Based on Figure 4.6 the following rules are established for LFCOG.

OFFST dependence on GNCOF

If OFFST is UNSTF then LFCOG be POSHI

else if OFFST is POOR then LFCOG be POSLO

else if OFFST is MODRT then LFCOG be POSLO

else If OFFST is INSPC then LFCOG be NOCNG

else If OFFST is OVRPC then LFCOG be NEGLO

end if

These tables may be rewritten in condensed form as in table 4.1:
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Table 4.1: Condensed Form of the Ruleset

Rules for Condition Variable:OFFST
PHCOF FRCOG GNCOF LFCOG

UNSATFI NOCHG NOCHG POSHI POSHI
POOR^I NOCHG NOCHG POSHI POSLO
MODRATI NOCHG NOCHG POSLO POSLO
IN_SPCI NOCHG NOCHG POSLO NOCHG
OVRSPCI NOCHG NOCHG NOCHG NEGLO

Rules for Condition Variable:DMPRT
PHCOF FRCOG GNCOF LFCOG

UNSATFI POSHI NEGHI POSHI NOCHG
POOR^I POSLO NEGLO POSLO NOCHG
MODRATI POSLO NEGLO POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI NEGLO POSLO NEGLO NOCHG

Rules for Condition Variable:RISTM
PHCOF FRCOG GNCOF LFCOG

UNSATFI NEGHI NEGHI POSHI NOCHG
POOR^I NEGLO NEGLO POSLO NOCHG
MODRATI NEGLO NEGLO POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI POSLO POSLO NEGLO NOCHG

Rules for Condition Variable:OVSHT
PHCOF FRCOG GNCOF LFCOG

UNSATFI POSHI NEGHI POSHI NOCHG
POOR^I POSLO NEGLO POSLO NOCHG
MODRATI POSLO NEGLO POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI NEGLO POSLO NEGLO NOCHG

Rules for Condition Variable:DMPFR
PHCOF FRCOG GNCOF LFCOG

UNSATFI NOCHG NOCHG POSHI NOCHG
POOR^I NOCHG NOCHG POSLO NOCHG
MODRATI NOCHG NOCHG POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI NOCHG NOCHG NEGLO NOCHG
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4.6 Experimental Procedure

The off-line tuner level program is executed to compute the decision table to be used

by the servo-expert level algorithm. To examine the tuner performance degradation when

applied on a more realistic system, the simulated base-line servo-motor is now changed,

leaving the servo expert level algoritms and the decision table unchanged.

Two types of changes are made:

• Initially ill-tuned controller controls a well-defined system.

• Initially "base-line" controller controls an ill-defined system.

In the first type of changes tuning of an initially ill-tuned controller is demonstrated

on slow and on oscillatory servo-motor system. In both cases the controller initial at-

tributes were chosen intentionally to bring the well-tuned system response to an under

specification performance.

In the second type of changes the performance of the tuner is examined when the

servo-motor differs from the well defined system which was used to generate the knowl-

edge base, leaving the initial controller attributes as those of the "base-line" servo-motor.

In other words the system is tested when the base-line system is spoilt gradually toward

an ill-defined system. The tuner was tested when applied on both simulated and com-

mercially available servo-motor systems.

4.6.1 Tuning of the Simulated Servo-Motor System

The following cases were tested in the simulated servo-motor system.

Tuning for ill-tuned controller

• Tuning for initially ill-tuned controller that has a slow response.
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• Tuning for initially ill-tuned controller that has a oscillatory response.

Tuning for system parameter changing

• Tuning for increased motor inertia.

• Tuning for external torque - without the integrator branch.

• Tuning for external torque - with the integrator branch.

Tuning for additional dynamices

• Tuning for external spring.

• Tuning an initially slow servo-motor with voltage source amplifier.

• Tuning an initially oscillatory servo-motor with voltage source amplifier.

4.6.2 Tuning of a Commercially Available Servo-Motor System

In a similar way to the experimentation with the simulated servo-motor system, exper-

iments were carried out on a commercially available servo-motor system to demonstrate

the implementation of the tuner on a physical system. The commercially available servo-

motors are generally ill-defined systems, since accurate mathematical models are not

available when the system is developed.

As in the simulated system, the system is tested when the controller is initially ill-

tuned, and when the process is changed.

The following cases have been tested with the phyisical servo-motor system.

• Tuning for an initially slow system.

• Tuning for an initially oscillatory system.

• Tuning for increased motor inertia.

The results of these tests are shown graphically in the next chapter.



Chapter 5

SIMULATION AND EXPERIMENTAL RESULTS

In this chapter the experimental results are shown graphically, to demonstrate the

performance of the fuzzy tuner when applied to simulated and physical systems. Each

experiment is described briefly followed by two pages showing the results:

The responses of the servo-motor as well as the reference model to a square wave are

shown in the first page using three frames. The uppermost frame shows the response

before tuning, the middle frame shows the response while tuning, and the response after

the tuning process is shown in the bottom frame.

Different time scales have been used in the three frames.

The second page shows how the controller attributes are changed while tuning.
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5.1 Simulation Experiments

5.1.1 Slow Servo-Motor System

The use of excessive phase lead & of as well as low cross-over gain frequency at wc09

results in slow, over-damped response.
The response before, while and after tuning are shown in Figure 5.1 and the controller
attributes while tuning are shown in Figure 5.2
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Figure 5.1: Tuning of initially Slow Servo-Motor: Time Response
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Figure 5.2: Tuning of an Initially Slow Servo-Motor: Controller Attributes
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5.1.2 Oscillatory System

Insufficient phase lead Ocof as well as too high cross over gain frequency w cog results
in an oscillatory response. The time response is shown in Figure 5.3 and the controller
attributes in Figure 5.4
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Figure 5.3: Tuning of an Initially Oscillatory Servo-Motor: Time Response
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5.1.3 Increased Motor Inertia

Adding inertia to the motor leads to sluggish and oscillatory response. The response
before, while and after tuning is shown in Figure 5.5. The controller attributes are shown
in Figure 5.6
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Figure 5.5: Tuning a Motor with Increased Inertia: Time Response
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Figure 5.6: Tuning a Motor with Increased Inertia: Controller Attributes
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5.1.4 External Torque without Integral Compensation

Without using the integrator compensation of the controller, a constant external
torque in the system results in a steady, deterministic error (offset). The time response
is shown in Figure 5.7 and the controller attributes in Figure 5.8
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Figure 5.7: Tuning for External Torque without Integral Compensation: Time Response



L

Ocof^8
[bit/counts] L6

oI=
0
E
CN:I

wcog x 102 8
[rad/s]

d

Ocof
[rad]

1 0.00 2.70 5.40
TIME (SEC]

8.10 10.8 15.5

Chapter 5. SIMULATION AND EXPERIMENTAL RESULTS^ 105

Figure 5.8: Tuning for External Torque without Integral Compensation: Controller At-
tributes
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5.1.5 External Torque with Integral Compensation

In the presence of integral compensation, the steady state error in the response to
a constant load will approach zero. How fast the error decays will depend on the D.0
gain. The error decay toward an acceptable error within the test signal duration is
demonstrated in Figure 5.9 and the controller attributes in Figure 5.10
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Figure 5.9: Tuning for External Torque, using Integral Compensation: Time Response
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CONTROLLER^AMP. D.0 MOTOR

Figure 5.11: Motor Block Diagram for External Spring

5.1.6 External Spring

We can further complicate the servo-motor system by relating the external load to the

actual response. For example let the external torque be a function of the motor position:

Tl(t) = —Kp * Po( t )^ (5.1)

where Kp is a "spring" constant and Po is the actual motor position. A simple block

diagram of this configuration is shown in Figure 5.7 . It can be seen that the plant

dynamics now become a simple oscillator:

A • K/J
Po =^

s 2 K • Kp

which should be compared with equation 3.3 on 47.

The response before, while and after tuning is shown in Figure 5.12 and the controller

attributes are shown in Figure 5.12
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Figure 5.12: Tuning in the presence of an External Spring: Simulated System Response
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5.1.7 Voltage Source Amplifier Model

As described in Chapter 3, the motor-amplifier transfer function depends on the type
of the amplifier. Figures 5.14 to 5.9 demonstrate the tuning process when applied to
plant with higher dynamics and initially ill-tuned controller.
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Figure 5.14: Tuning of a Slow Servo-Motor with Voltage Source Amplifier: Time Re-
sponse
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Figure 5.15: Tuning of a Slow Servo-Motor with Voltage Source Amplifier: Controller
Attributes
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Figure 5.17: Tuning of an Oscillatory Servo-Motor with Voltage Source Amplifier: Con-
troller Attributes
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5.2 Experiments using a Commercial Servo-Motor

The same first three experiments in the simulated system are replaced using the com-

mercially available servo-motor system.
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5.2.1 Slow Physical Servo-Motor System

The response before, while and after tuning an initially ill-tuned physical controller is
shown in Figure 5.18. The controller attributes are shown in Figure 5.19
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Figure 5.18: Tuning of a Slow Servo-Motor: Time Response of the Physical System
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Figure 5.19: Tuning of a Slow Servo-Motor: Controller Attributes of the Physical System
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5.2.2 Physical Oscillatory Servo-Motor

The response before, while and after tuning an initially ill-tuned physical controller
are shown in Figure 5.20. The controller attributes are shown in Figure 5.21 .
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Figure 5.20: Tuning of an Oscillatory Servo-Motor: Response of the Physical System
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5.2.3 Motor with Increased Inertia

Additional inertia to the physical motor leads to sluggish and oscillatory response. The
response before, while and after tuning are shown in Figure 5.22 (a) . The controller
attributes are shown in Figure 5.23
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Chapter 6

RULE GENERATING BY SELF LEARNING

6.1 Introduction

The knowledge presented in the previous chapters simulates tuning actions taken by

an expert operator and are expressed as a set of linguistic rules. This knowledge might

be replaced or modified by a set of rules generated automatically in a preliminary phase

of the learning process to be used later in the the fuzzy tuner level.

The learning process might be useful in the following scenarios :

• Compensating for total lack of tuning knowledge ( for example when implemented

in a new process.)

• Adding to an incomplete tuning knowledge base.

• Modifying incorrect rules.

• Deleting unnecessary or irrelevant rules.

A learning process is demonstrated in this chapter by replacing the knowledge- based

ruleset that was introduced in the previous chapters.
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6.2 Self Generated Rulset Development

6.2.1 Approach

Learning process results either in tuning rules similar to those generated by a human

operator, or directly in a decision table. The first approach is adopted in this research

since it enables us to integrate an already existing knowledge with new automatically

generated rules. Furthermore, when the new and self-generated ruleset is available, we

can use an already developed algorithm to calculate the decision table, leaving the fuzzy

tuner unchanged in the highest level, by just switching from tuning to learning mode.

In both the learning and tuning modes, the servo-motor and the reference model

are excited by test signal. The measured response is evaluated to perform the same

normalized performance parameters as described in Chapter 3.

First, the controller attributes are preset corresponding to a set of reference perfor-

mance parameters. Next the system is perturbated by changing the controller attributes

(one at a time), and the difference between the performance parameters of the preset and

perturbed systems is calculated and classified to form a sensitivity index. This index

is used to trigger a rule out of a predefined rule patterns.

A complete mathematical treatment includes the computation of the sensitivity of

each performance parameter to each tuning action in the entire working space (all the

combinations of the components of the controller attributes). This treatment is beyond

the scope of this research. However, a much simpler algorithm is obtained if we assume

that each performance parameter is changed monotonously when the system is pertur-

bated. This assumption is justified over a wide range (see Figure 4.2 throgh Figure 4.6)

for the particular system.

Based on this assumption, the sensitivity is computed when the system is perturbated

from a single, representative working point. Further simplification is obtained if we
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define a finite number of patterns for the rules, and then trigger an appropriate pattern

according to the sensitivity index.

The learning system is based on the same servo-expert algorithm used in the tuning

mode as described on Chapter 3.4. Here, however, a sensitivity index triggers rules out

of the rule generator while in the previous case a performance index triggers a tuning

action out of the decision table. Once the new, and self-generated rules are avialable, the

same fuzzy tuner algorithm, as described in Chapter 3.5, is used to calculate the decision

table.

A block diagram of the system in the learning mode is shown in Figure 6.1

The code of the subprogram LEARN is listed in Appendix B-3-8

6.2.2 Controller Presetting

The presetting of the controller attribute can enrich the system response with informa-

tion. For example, the system should be oscillated if we want to generate rules relating

any tuning action to the damped natural frequency, or a steady error will be present if

we generate rules relating offset to any tuning action.

Even though an automated presetting process might be applied by systematically

scanning the controller attributes and using the performance parameters as a feedback,

a manual, trial and error process is used in this research for the sake of simplification.

6.2.3 System Perturbation

As in the presetting process, for simplicity, a trial and error process was adopted rather

than an automated one, to perturb the preset system. Each of the controller attributes is

changed, one at a time, leaving all the remaining attributes unchanged (having the preset

values). This process results in L sets of response parameters, each of them representing
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the change in the response due to change in one controller attribute near the preset

values.

6.2.4 Response Sensitivity Index

The performance parameters, for both the preset and the perturbed systems, are

computed using the response preprocessor and evaluator as described in section 3.4, and

the difference between them are classified to form the sensitivity index.

The preset system is denoted the superscript °. Let 0 ° be a vector containing the

controller attribute of the preset system, (see equation 3.29 on page 62) and the vector

P° be its response (see equation 3.21 on page 57).

Let Q be the perturbed attribute vector. We define the normalized l'th perturbed

attribute:

(3)

and the normalized change in the performance parameter i:

P(t)^P(i) 
^61)(,)^P(t)(i)

The performance sensitivity Sit  is computed as follows:

so _ 8130)  _ P(t) P(i) 0(1)
^(11) — 80(1)^— C41) P(i)

for all i and all 1.

The superscript ° was added to the performance sensitivity to emphasise that it is

calculated near the preset attribute.

Rearrange equation 6.3 as:

- (3) 
6.0(t) = (6. 1)

(6.2)

(6.3)
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P(1) — Pei) d(t)
0 ( 1 )^0 (1) +^

So ./9(c)i)
(6.4)

Scanning over all of the components of 0° in the range from 0 (/)__ to 0 (1)ma. ( see

equation 3.30 on page 63 ) we can map the sensitivity for all i and 1 and generate rules

which are based on this performance sensitivity array.

However, as mentioned earlier, an automated scanning process, using appropriate res-

olution is beyond the goals of this research. For simplicity we compute this performance

sensitivity at one point only (the preset values of the controller attributes).

Recall that a smaller P(2) value indicates better performance. We see that negative

Ski  indicates improvements of the i th response parameter due to the 1 th controller

attribute, while positive sto , indicates decreasing in performance relative to the preset

system.

S(o ) = 0 indicates that the performance parameter i is not sensitive to the controller

attribute 1.

6.2.5 Response Sensitivity Classification

The response sensitivity is classified now according to J predefined thresholds TH(3) ,

resulting in J +1 subsets. Each of these are assigned an integer value /.9 (, ) and will be

served as a sensitivity index. For simplicity two threshold values are used in this research

to form three subsets:

/s (i) =

—1

0

+1

if

if

if

TH(1) <

TH(2) <

< TH( 1 )

S?i , 1) < TH( 2 )

Sto

(6.5)
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6.2.6 Rule Pattern

Tuning rules are arranged in predefined patterns, each of them containing 5 rules

arranged in an array form RU(to ,i) = m as defined in equation 3.48 on page 73, and

triggered by the performance sensitivity index.

An example for a pattern triggered by negative /(,) is shown in equation 6.6.

RU(0,0 = —2^(I f PV(„0 = UNSTF then TA (t) = NEGHI)
RU(,,2 ,0 = —1^(I f PV(0) = POOR^then TA( i) = NEGLO)
RU(„3 ,0^—1^(I f PV(0) MODRT then TA(1) NEGLO)^(6.6)
RU(,4,t)^0^(I f PV(0) , INSPC^then TA(t) = NOCNG)
RU( i , 5 ,0^1^(I f PV(0) = OVRSP^then TA( t) = POSLO)

Example for a pattern triggered by positive /so) is shown in equation 6.7 :

RU(0,1) =

RU(i,2,t) =
RU(y , 3 ,1) =

RU(,4 ,t)

RU(0 ,0 =

^2^(If PV(o) = UNSTF ̂then TAB() = POSHI)

^

1^(I f PV(0) = POOR^then TA( i) = POSLO)
^1^(I f PV(o) = MODRT then Tito) . POSLO)^(6.7)

^

0^(If PV(0)= INSPC^then TA( t) NOCNG)

^

—1^(I f PV(o) = OVRSP^then TA( t) = NEGLO)

and the pattern triggered by Is = 0 is:

RU(,,,,o= 0^(I f PV(0 ) , INS PC then T Au) NOCNG)
^

(6 .8)
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6.3 Experimental Procedure and Results

6.3.1 Procedure

First the Servo expert level, as described in chapter 3.4 is applied to the simulated

servo-motor described in section 3.3, and the controller attributes are preset to bring the

system into oscillation. In addition an external load is presented. Next the servo expert

level is executed in the learning mode. The system is preset and perturbated and the

sensitivity index is calculated to trigger the appropriate rule pattern.

Then the fuzzy tuner algorithm is executed as described in Section 3.5, using the

self-learning ruleset instead of the knowledge-based ruleset (see Section 3.5.1) and the

same membership functions to calculate the decision table.

Finally the servo-expert algorithm is applied to the simulated, ill-define servo-motor

in the usual way, using the self-learning ruleset-based decision table.

6.3.2 Results

The controller attributes were preset as follows:

%) = wcog = 250[rad/ s]

0(2)= Ocof = 40[deg]

%) = ,bcof = 4[bit/ count]

OcA)= wleog = 0

The system was then perturbated by the following changes:

80 (1) = 200[radis]

(5 0(2) = —20[deg]

8 0(3)= —2[bit/count]

60(4)= 5 [bit/ count]
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E 0 (4) = 5[bit/ count]

Figure 6.2 shows the response of a, typical preset (a) and perturbed ( (b) through (e)

) system.
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(a)^(b)^(c)^(d)^(e)

INO...■••■■••..■••••••■■■■

1.00
^2.00^3.^4.

TIME r5EC]

Figure 6.2: The Response of Preset and Perturbed Systems

(a) The response of the preset system
(b) Response of system perturbed by Ocof

(c) Response of system perturbed by wcog
(d) Response of system perturbed by O cof

(e) Response of system perturbed by wicof

. 0
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Typical self-generated ruleset given in Table 6.1, for a symmetrical pair of thresholds:

TH(1) = —0.25

TH(2) = +0.25

These thresholds play an important role in the ruleset generation. For example if they

are zero or even too small, then no tuning action (NOCNG) will be presented, which will

result in a very sensitive system. On the other hand, large thresholds might lead to

deficient ruleset.

For convenience, the linguistic form of the self-generated ruleset is presented:
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Table 6.1: Self Generated Ruleset

Rules for Condition Variable:OFFST
PHCOF FRCOG GNCOF LFCOG

UNSATFI NEGHI NOCHG POSHI POSHI
POOR^I NEGLO NOCHG POSLO POSLO
MODRATI NEGLO NOCHG POSLO POSLO
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI POSLO NOCHG NEGLO NEGLO

Rules for Condition Variable:DMPRT
PHCOF FRCOG GNCOF LFCOG

UNSATFI POSHI NEGHI POSHI NOCHG
POOR^I POSLO NEGLO POSLO NOCHG
MODRATI POSLO NEGLO POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI NEGLO POSLO NEGLO NOCHG

Rules for Condition Variable:RISTM
PHCOF FRCOG GNCOF LFCOG

UNSATFI NEGHI NOCHG POSHI NOCHG
POOR^I NEGLO NOCHG POSLO NOCHG
MODRATI NEGLO NOCHG POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI POSLO NOCHG NEGLO NOCHG

Rules for Condition Variable:OVSHT
PHCOF FRCOG GNCOF LFCOG

UNSATFI POSHI NEGHI POSHI NOCHG
POOR^I POSLO NEGLO POSLO NOCHG
MODRATI POSLO NEGLO POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI NEGLO POSLO NEGLO NOCHG

Rules for Condition Variable:DMPFR
PHCOF FRCOG GNCOF LFCOG

UNSATFI NEGHI NOCHG POSHI NOCHG
POOR^I NEGLO NOCHG POSLO NOCHG
MODRATI NEGLO NOCHG POSLO NOCHG
IN_SPCI NOCHG NOCHG NOCHG NOCHG
OVRSPCI POSLO NOCHG NEGLO NOCHG
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Comparing with the knowledge based ruleset in table 4.1 on page 94 we see that

the rules relating the controller attributes to the rise time and to the average damped

natural frequency are the same, while the rules relating some of the controller attributes

to the remaining performance parameters have changed (for example, see the rules relates

PHCOF to OFFST )

A typical system response when the self-generated ruleset is applied to an initially

slow and oscillatory system is demonstrated in Figure 6.3 and Figure 6.4

Comparing these figures with Figure 5.1 on page 98 and Figure 5.3 on page 100 even

though the tuning process results in a different final controller setting and a different

final response, all the performance parameters are in specification.

6.4 Summary

In this chapter a self-generated ruleset was presented. A preset and a perturbed system

were introduced and the difference between their response was used to express sensitivity

index. The response of an ill-defined system was demonstrated when the tuning actions

were triggered using a decision table that was calculated based on a self generated-ruleset
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Chapter 7

CONCLUSIONS and RECOMMENDATIONS

7.1 Introduction

In the privious chapters the background, the motivations and the approach to fuzzy

tuning were introduced. The experimental system, that consists of three hierarchical

levels, was developed and used to evaluate the performance of the tuner. In the prelim-

inary phase, knowledge on tuning actions was gained to simulate the exists knowledge

of a human operator. This knowledge, expressed in terms of fuzzy rules of the form

If...Then, was used to calculate dthe ecision table by applying fuzzy logic operations on

the membership functions of the condition and action variables. Tuning actions were

matched with the actual performance in this decision table.

Furthermore, self-learning can be used to improve the knowledge base of the tuner.

This concluding chapter outlines the accomplishments and the main contributions

of this thesis, review the advantages and limitations of the fuzzy tuning approach, and

suggests some directions for future work.

7.2 Summary of Accomplishments

7.2.1 The Development of the Experimental System

A three level hierarchical system was developed:

• Simulated servo-motor in the lower level.

137
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• Servo-expert algorithm, to evaluate the response and update the controller, was

developed in the intermediate level.

• Knowledge based tuner, in the highest level, was developed to generate a decision

table using fuzzy logic operations.

This hierarchical structure combined the advantages of both hard algorithmic control

and the knowledge-based soft tuning. In particular, both the simulated hard controller

and the physical one are used for lineraization and decoupling the nonlinear and coupled

dynamics of the high bandwidth servo in the low level. In the top level, fuzzy tuner takes

the advantage of experienced human operator's knowledge to tune the parameters of the

controller.

Servo expert in the intermediate level interfaces between the servo and the tuner.

A test signal was applied simultaneously to both the servo and the reference model.

Performance parameters were calculated and performance indicators were generated using

the deviation of the actual from the desired performance parameters. In the same level,

tuning actions were used to update the attributes of the controller by using standard

control design techniques. These updated attributes were mapped into the parameters

of the controller that are to be used in the lowest level. .

7.2.2 Rule Base for Tuning

Tuning knowledge was simulated, gained and expressed mathematically as a set of

fuzzy rules. Triangular membership functions were assigned to the fuzzy variables. This

knowledge is based either on the relationships between the tuning actions and the cor-

responding performance as observed by the operator, or by a self learning algorithm.

Knowledge on tuning process replaces the knowledge on the mathematical model of the

system that is used in the conventional tuning techniques.
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7.2.3 Tuning the Simulated System

Recalling that the knowledge generation process was based on extremely simplified

model, the simulated servo-motor system was able to be tuned successfully even when the

system was spoiled far beyond the one that was used to generate the tuning knowledge

toward a complicated system. This demonstrates the independence of the performance

on the a priory knowledge of the mathematical model of the system.

7.2.4 Implementation on a Physical System

The tuner was implemented and demonstrated successfully on a physical commercially

available servo-motor system. Also this demonstrate the effectiveness of this tuning ap-

proach in the practice environment where effects like friction, disturbances and limitation

of real-time computation are present.

7.2.5 Self Learning

Simple self-generating ruleset algorithm was developed and demonstrated successfully.

This may open doors to further investigations in order to make the system more intelli-

gence.

7.3 Main Contributions of the Research

The implementation of the fuzzy tuner algorithm to a physical system is the main

contribution of this work[10]. This demonstrates the feasibility and the potential to

achieve the goal of automating the tuning actions that are taken by an experienced

operator in order to conserve and spread this knowledge in a cost effective way.

Two features, firstly used in this research, can help in the fuzzy ruleset generating:
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Using the controller attributes rather than its parameters as the action variables of

the tuning process is found to be much more efficient and results in simpler If..Then

rules especially when the controller structure is more complex than simple PID.

In addition, using a reference model for performance specification guarantees the

feasibility of the specifications, at least with respect to the particular reference model.

This will provide some buffer against unrealistic specification. Furthermore, response

evaluation should be simplified if it is carried out in a "relative sense" with respect to

the response of the reference model response and not in an "absolute sense" when tuning

knowledge is gained [27].

Demonstration of a simple self-generated rule mechanism based on the already devel-

oped inference and tuning will open doors to further research.

7.4 Advantages and Limitations

The main advantage of the approach that was presented in this research over the

conventional tuning techniques is the independence on the a priory knowledge of the

mathematical model of the system. This was achieved by using the prior knowledge on

the tuning procedure rather than knowledge of the mathematical model of the system.

Even though other knowledge-based approachs may be applied (like neural network) to

match performance with tuning actions, the fuzzy logic approach has the advantage that

it utilizing directly the linguistic rules that are obtained by a human operator..

Some limitations of this approach need further investigation and research. Currantly,

there is no mathematical method to deal with the stability problem. The design of the

controller is carried out on in the time domain and there is no direct information on the

stability margin (phase and gain).

In addition, there are too many degrees of freedom to play with. The selection of
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the optimal cardinality (or resolution) of the fuzzy condition and action variables, the

tuning sensitivity parameter, and the performance threshold to be chosen are currantly

open questions.

The best way to assign the membership function grad to the system variable is another

field that needs further investigation.

The tuning process of the controller in this research is based on a preliminary experi-

mental phase and assumed (unknown) time-invariant system. Is this approach applicable

in on-line, time varying system ?.

7.5 Future Developments

The logical next step of this study is the implementation of the tuning structure on

servo-motor based machines, particularly in robot applications.

Learning and self-generated rules deserve further investigation in modifying the hu-

man tuning knowledge.

Study of an on-line adaptation mechanism for automated controller rather than a

separate, experimental phase is also an interesting field.
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Appendix A

The Physical Servo-Motor

A.1 General Specification of the Servo-Motor System

System Requirements
—DOS 2.0 or higher on IBM' PC/XT/AT or compatible
—Hercules, CGA or EGA Graphics Adaptor
—512K Bytes memory
—DMC-400 or DMC-600 Series controller must be

installed

'IBM is a mastered trodernork of InterrChonol Business Machines

Ordering Information
System Specifications^Software

Motor Type
Feature^Linda^Motor-5-500^Motor-50-1000

Resolution^Count/rev^2000^4000

speed with
standard
Mcodmum^rpm^3000^t200

12V supply'
Continuous^co-in^6^15
standard
torque with^Nm^0.04^0.1
12v suoot►
Controller
frequenc

400 series^ms^0.5^0.5
sampling

y

600 series^ms^1^1
Servo System^It^100^too
sand"''
Dimension
!motor a
encoder)

length^inch^3"^4.5"
OD^inch^1.68"^2125"
diameter
Shaft^inch^0.1567^025"
Shaft length^inch^0567^1.00"

SDK-400 Software^Must be purchased with
DMC-400 series controller

SDK-600 Software^Must be purchased with
DMC-600 series controller

SDK-Demo Software Demonstration Software.
Does not require controller
installation.

Complete Systems
SDK-400-1^DMC-400-10, ICB-930,

MOTOR-5-500, PS-12,
SDK-400 Software

SDK-400-2^DMC-400-10, ICB-930,
MOTOR-50-1000, PS-12,
SDK-400 Software

Examples of SDK Systems
DMC-620^DMC-430
ICB-960^ICB-933
MOTOR-5-500 (x2)^MOTOR-50-1000 (x3)
PS-12^PS-12
SDK-600 Software^SDK-400 Software

SDK software may be used with single or multi-axis versions of
the DMC-400 or DMC-600 controllers. SDK software is program-
mable for either Gatti hardware or other motors, encoders, and
drivers. Consult factory for options.
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Encoder Pinout
1 Phase A
3 Ground
5 Ground
7 + 5V
9 + 5V

2 + 5V
4 Ground
6 Ground
8 Phase B

10 Index

10 pin ribbon, mating connector Berg 65-692-001
or equivalent
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A.2 Motor

A.2.1 Specifications of the 50/1000 DC Motor

Motor 50/1000 Specifications
Motor Parameter English Units Metric Units

7,^Continuous stall torque oz-in 30 Nm 0,21

Tr,^Peak torque oz-in 205 Nm 1.45

Kt^Torque constant oz-in/A 10.8 Nm/A 0.076

IC^Back EMF constant Volt/Krpm 7.9 Volt/(rad/s) 0.076

Jm Motor moment of inertia oz-in-s2 3.7.10 3 kg-m2 2.6-10

R^Armature resistance n 1.59

L^Armature inductance mH 2.5

TB,^Electromechanical time constant ms 7

Rth Thermal resistance °C/VV 7.7

r^Encoder resolution Degree 0.09 counts/rev 4000

V,^Recommended supply Volts 35

wo Maximum speed with V, rpm 3750

5

Features 
200 oz-in peak torque

3750 RPM maximum speed

Includes 1000 pulses per revolution TTL-level
incremental encoder

Low cost

Operating Guidelines
For continuous operation, limit torque to 30 oz-in
and limit current to 2.8 A.

For intermittent operation, limit RMS current to
Irms <2.8 A
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A.2.2 Mechanical Drawing of the 50/1000 DC Motor



Features
IBM' PC/XT/AT compatible

For servo motors with incremental encoder
feedback

Controls motion of up to 3 independent axes

Position and velocity control

Programmable velocity profiling 

Change position, velocity, acceleration "on-the-fir

Incremental position mode for continuous path

Position learn mode"

2 KHz sample and update

250,000 counts/sec maximum speed

Programmable digital filter with gain, damping and
integration—eliminates Tach

±Overtravel limits, home inputs, emergency stop

Programmable torque and error limits

PWM or Analog output

PC communication software available

-r 7.T^• • • "M^f 7, • •

--11111111111111111111M111111

AMP X DC MOTOR/
ENCODER X

DMC -430-10
MOON

CONTROLLER
1RM PC
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A.3 Specification of the DMC400 Controller

General Description
The DMC-400-10 Series are general purpose
motion control cards for servo motors with encoder
feedback. The DMC-400-10 controls one motor, the
DMC-420-10 controls two motors, and the DMC-
430-10 controls three motors. Each controller plugs
into the IBM PC/XT/AT or compatible bus.

For each axis, the controller contains a micro-
processor dedicated to the time-intensive motion
control tasks. The controller functions include
quadrature decoding of the encoder, generating
the velocity profile and position trajectory, digital fil-
tering of the control signal and generation of a 10
volt analog motor command signal. In addition, the
controller provides overtravel, homing, emergency
stop, and error handling functions.

The DMC-400-10 is programmable, accepting
ASCII commands from the IBM PC host. Each sepa-
rately addressable axis responds to over 40 instruc-
tions for specifying system parameters and motion
profiles. Controller status and motor position can
also be interrogated at anytime.

Three-Axis Motion Control System



IF•L I A • • OO OOO O ja • •It • •

TO AMPLIFIER Y^I TO ENCODER Y

UNCOMMITTED INPUTS
AND LIMIT SWITCHES

TO DMC-430
CONTROLLER

0:B-933

e

TO ENCODER

TO MOTOR Z

TO AMPLIFIER Z

UNCOMMITTED
SWITCHES

TO ENCODER X

TO MOTOR X

TO AMPLIFIER S

POWER
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A.4 Specification of the Interconnection Board

Features
Interfaces directly to DMC-100, -200, -300, -400
controllers

Convenient connection points for controller,
encoder, motor and external amplifier

Contains up to 3 on-board 20 Watt amplifiers

Convenient test points and jumpers

Eight uncommitted input points

Two uncommitted pushbutton switches

Breodboarding area

INTERNAL
AMPLIFIER

AuXILLARY
AMPLIFIER
POWER

TO MOTOR

UNCOMMITTED INPUTS TO EXTERNAL
AND LIMIT SWITCHES^AMPLIFIER

TO MOTOR Y

General Description
The ICB-930 is o compact circuit card that
connects the DMC-100, DMC-200, DMC-300,
DMC-400 controllers with other system elements
such as motor, encoder, amplifier, power supply
and external switches. The card includes ribbon
conectors, test pins, two uncommitted pushbutton
switches, screw type terminals and breadboarding
area, allowing system components to be easily
connected with maximum flexibility. The ICB-930
also contains o 1 Amp, 30 volt linear amplifier
suitable for driving small motors.

The ICB-933 connects the DMC-420 and
DMC-430 motion controllers with other system
elements such as motors, encoders, amplifiers,
power supply and external switches. The ICB-933
contains three 1 Amp, 30 volt linear amplifiers
suitable for driving small motors.

IIM PC s cussiMANAccarrark of MornallordluireshNairrsCorp

On-Board Amplifiers
The ICB-930 contains a single 20 Watt linear
amplifier and the ICB-933 contains three 20 Watt
linear amplifiers with current feedback. An external
supply of ± 10 to ± 35 Volts is required for the ICB-
933. The external supply should be connected to
the JAS connector and not to the ± 12V outputs. For
the ICB-930, the ± 12 Volt source can come directly
from the Gaul Controller. Care should be taken to
insure the average power dissipated across each
amplifier is less than 20 Watts. The gain of each
amplifier is 2 AmpsNolt.

Dimensions
ICB-933: 8.2" x 4", Ye" diameter x 4 mounting holes at

corners. Each mounting hole 1/4" from sides.
ICB-930: 4.5 x 3.5", 1/2" diameter x 4 mounting holes

at corners. Each mounting hole 1/4" from
sides.
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A.5 Interface and Communication Software

A.5.1 Inerface to C

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

char comm(in, val)

char far in[13];

long far *val;

{

char res;

int i, j, k, n, b, c;

int tl, t;

long t2, total, d;

k = 0;

n = 1006;

t2 = 0;

total = 0;

d = 1;

res = inp(n);

/*labl: b = inp(n+1)/4;*/

/*^if (b/2 == b/2.0)*/
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/*^goto labl;*/

lab2: b = inp(n+1);

c = b/2;

if (c/2 == c/2.0)

goto lab2;

j = 12;

for (i=0; i<j; i++) {

if (in[i] != ") {

lab3: b = inp(n+1);

c = b/2;

if (c/2 == c/2.0)

goto lab3;

res = in[i];

outp(n, toascii(res));

}

else

goto lab4;

1

lab4: b = inp(n+1);

c = b/2;

if (c != b/2.0)

goto lab4;

t1 = inp(n);

res = toascii(t1);

if ((res != ':') && (res != '?')) {

if ((tl >= 65) && (tl <= 70)) {
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t2 = (t1-55) * 1048576 / d;

total = total + t2;

}

else if ((t1 >= 48) && (t1 <= 57)) {

t2 = (t1-48) * 1048576 / d;

total = total + t2;

}

k = k + 1;

d = 16 * d;

goto lab4;

}

if (total >= 8388608)

*val = total - 16777216;

else

*val = total;

return(res);

}

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

int brk(dum)

int far dum;

{

int 1;
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1 = kbhit();

printf("the keboard is hit = %d\n", 1);

return(1);

}

\end{verbatin}

\newpage

\subsection{Inteface to FORTRAN}

\begin{verbatim}

SUBROUTINE DMC

C^BLOCK TO BE MOVED AFTER TRANSLAT STAGE

ONONOONOONONOWNOONONOWNONONNONONOOONON

interface to character function comm[c] (send,valu)

CHARACTER*13,send [far, reference]

INTEGER*4,valu [far, reference]

end

C^0000000000000000000000000000000000000000000000000000000

DIMENSION CNTRLD(5)

C%^CHARACTER comm

CHARACTER*13,CC,PP

CHARACTER po

CHARACTER*7,parval

CHARACTER*4,TP

CHARACTER*2,GN,GI,PL,ZR,DB,PA

CHARACTER*13,send

INTEGER*4,valu
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LOGICAL BG

LOGICAL EX

INTEGER CNTRLD,YRO

INTEGER*4,dd,ee,pos

ENTRY DMCINIT

GN='GN'

GI='KI'

PL='PL'

ZR='ZR'

DB='DB'

TP='TP; '

PA='PA'

PP='PA200;'

CC =^'RS;

po = comm(CC,dd)

CC =^'MO;

po = comm(CC,dd)

CC =^'TL127;

po = comm(CC,dd)

CC =^'0E1;

po = comm(CC,dd)

CC =^'AC130000000;

po = comm(CC,dd)

CC =^'SP250000;
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po = comm(CC,dd)

RETURN

ENTRY DMCPRINT

PRINT *,'^--- NOW IN DMC MODE ---'

PRINT *,'^***********************,

PRINT *,'^Type DMC command (Capital letters followed by ";")'

PRINT*,'^or PA to change step amplitude

PRINT : *,'^or BG to start run

PRINT *,'^or EX to Exit without run

RETURN

ENTRY , DMCREAD(BG,EX,YRO)

READ 10,CC

10 FORMAT(13A)

IF^(CC.EQ.'PA' )^THEN

PRINT *,'STEP AMPLITUDE=?'

READ 12,YRO

12^FORMAT(I7)

CALL DMCBARLEV (PA,YRO,PP)

po = comm(PP,ee)

print *,po,PP,dd

RETURN

ELSEIF(CC.EQ.'EX' )^THEN
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EX=.TRUE.

RETURN

ELSEIF(CC.EQ.'BG' )^THEN

BG=.TRUE.

RETURN

ELSE

po =; comm(CC,dd)

print *,po,CC,dd

ENDIF

RETUBN

ENTRY DMCSTART

CC='SH;

po= comm(CC,dd)

CC='SV;

po= comm(CC,dd)

CC='PRO;

po= comm(CC,dd)

CC='BQ;

po= comm(CC,dd)

RETURN

ENTRY DMCP

CC='AB;

po= comm (CC,dd)

CC= PP
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po= comm (CC,dd)

CC='BG;

po= comm (CC,dd)

RETURN

ENTRY DMCM

CC='AB;

po = comm (CC,dd)

CC='PAO;

po = comm (CC,dd)

CC='BG;

po = comm (CC,dd)

RETURN

ENTRY DMCTUNING (CNTRLD)

CALL DMCBARLEV (GN,CNTRLD(1),parval)

po = comm(parval,ee)

CALL DMCBARLEV (GI,CNTRLD(2),parval)

po = comm(parval,ee)

CALL DMCBARLEV (ZR,CNTRLD(3),parval)

po = comm(parval,ee)
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CALL DMCBARLEV (PL,CNTRLD(4),parval)

po = comm(parval,ee)

CALL DMCBARLEV (DB,CNTRLD(5),parval)

po = comm(parval,ee)

return

entry position(pos)

po = comm(TP,pos)

RETURN

ENTRY DMCSTOP(t,r1tm)

C^STOP MOTION AT END OF RUN

CC='ST;

po = comm (CC,dd)

CC='MO;

po = comm (CC,dd)

CC='TP;

po = comm (CC,dd)

C

C^print *,'T = ',T,'RLTM = ',RLTM,'End position = ',dd
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RETURN

END

SUBROUTINE DMCBARLEV(PAR,VAL,parval)

integer val

character*2,par

character digit1

character digit2

character digit3

character*7,parval

character bl

character sc

bl='

sc=';'

if (val.lt.100) go to 1299

i3=int(val/100)

call chract (i3,digit3)

i3100=i3*100

i2=int((val-i3100)/10)

call chract (i2,digit2)

i1=int(val-i3100-i2*10)

call chract (i1,digitl)
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parval=par//digit3//digit2//digit1//sc//b1

C^print *,parval

return

c

1299 if (val.lt.10) go to 129

i2=int(val/10)

call chract (i2,digit2)

c

il=int(val-i2*10)

call chract(il,digitl)

parval=par//digit2//digit1//sc//b1

C^print *,parval

return

c

129 i1=val

call chract(i1,digitl)

parval=par//digit1//sc//b1

C^print *,parval

c

return

end

c

c

c

subroutine chract(ii,ch)

character ch
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if (ii.eq.0) go to 10

go to

return

(1,2,3,4,5,6,7,8,9) ii

1 ch='1'

return

2 ch='2'

return

3 ch='3'

return

4 ch='4'

return

5 ch='5'

return

6 ch='6'

return

7 ch='7'

return

8 ch='8'

return

9 ch='9'

return

10 ch='01

return

end
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SUBROUTINE TIM

integer*2 ihr,imin,isec,i100th

c

ENTRY INIT1TIME(CINT2)

RETURN

ENTRY INITTIME

C^II=-1

isec=0

ilOOth=0

C^RLTM=0.

CALL SETTIM(ihr,imin,isec,i100th)

RETURN

C

ENTRY REALTIME(RLTM)

C^II=II+1

C^J=0

1 CALL GETTIM(ihr,imin,isec,i100th)

C^J=J+1

sec=isec

th=i100th

RLTM=SEC+TH/100.

C^CINTI=II*CINT

IF (RLTM.LT.CINT2) go to 1

return

end
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FUNCTION COMM (CC , dd)

c%^FUNCTION COMMDUMMY (CC , dd)

int eger*4 , dd

CHARACTER* 13 , CC

return

end



Appendix B

Programs Listing

B.1 Main Program coded in ACSL

PROGRAM FUZZY
"TYPE DECLARATION"

ARRAY^CNDQNT(5),DECTBL(5,5,5),CNTRLC(5),CNTRLZ(5),CNTRLD(5)
PIK0(20),PIKU(20),TPIK0(20),TPIKU(20),...
CNGATR(5),ATRNET(5),PRFORM(5),...
THOSC(3),THSPD(3),THOFS(3),THOVS(3),THDFR(3),...
CNVAR(5),CNQNT(5),ACVAR(5),ACQNT(5)

INTEGER EY,EP,CNDQNT,CNTRLD,PIKO,PIKU,Y,YDMC,EDMCL,YM,YR,YRO,
K,LO,LU,IPHMAX,IFRMAX,IHFRGN,ILFRGN

LOGICAL DMC,BEGIN,EXIT,STP,LGD,DEMO
"CONTROLLER ATTRIBUTES INITIALIZATION"11

CONSTANT PHMAXO = 57. 29 $"PHase at Cross-Over frequency"
CONSTANT FRMAXO = 314.^$"Cross-OVer Frequency"
CONSTANT HFRGNO = 1.^$"HIgh Frequency Gain"
CONSTANT LFRGNO = O.^$"LO Frequency Gain"

"TUNER INITIALIZATION"

CONSTANT DPHMAX = O.
CONSTANT DFRMAX = 0
CONSTANT DHFRGN = O.
CONSTANT DLFRGN = O.
CONSTANT THOFS = 0.1,0. 2,0.3
CONSTANT THOSC = 0.1,0. 2,0.3
CONSTANT THSPD = 0.1,0. 2,0.3
CONSTANT THOVS = 0.1,0. 2,0.3
CONSTANT THDFR = 0.1,0. 2,0.3
CONSTANT PIKMIN=0.04

"PROCESS PARAMETERS"11^
CONSTANT Ktm= 0.076 $ "Torque constant [Nm/A]"
CONSTANT Ka = 0.2 $ "Amplifier gain [Amp/Volt]"
CONSTANT R^= 2. $ "Armature resistence [Ohm]"
CONSTANT L^= 0.004 $ "Armature inductance [H]"
CONSTANT Jm = 2.6E-5 $ "Motor inertia [Kg*m - 2]"
CONSTANT Ti = O. $ "External Load [Nm] "
CONSTANT Ks = O. $ "Spring constant [Nm/rad]"
CONSTANT Kd = O.
CONSTANT ENCDR = 636.62 $ "Encoder gain: 4N/2Pi=4*1000/2Pi"
CONSTANT V2B = 0.078125^$"Volt to Bit gain"

"Reference signal"

170
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CONSTANT TSTEP = 0.05
CONSTANT YRO =100

"MODEL INITIALIZATION"

CONSTANT ZETAM = 0.7^$"Model dumping"
CONSTANT WNM^= 200^$"Model B.W "
CONSTANT OFFSTM = 0.02
CONSTANT ACCURM = O.
CONSTANT YMDLY0=0.1
CONSTANT YMRIS0=0.95

"SIMULATION CONTROL"

CONSTANT TF^= 0.25^$ "Teminated Time"
CONSTANT DTSMP = 0.0005^$ "# Samplin time"
CONSTANT KSTEP=3
CONSTANT CINT=0.005
CONSTANT DLY=100
CONSTANT DMC =.FALSE.
CONSTANT LGD =.FALSE.
CONSTANT DEMO=.FALSE.
NSTEPS NSTP = 1 $ "# Of integration steps in CINT"

"INITIAL SECTION"
***************"

INITIAL
BEGIN =.FALSE.
EXIT =.FALSE.
STP^=.FALSE.
ATRNET(1) = PHMAXO/57.29
ATRNET(2) = FRMAXO
ATRNET(3) = HFRGNO
ATRNET(4) = LFRGNO
CNGATR(1) = DPHMAX/57.29
CNGATR(2) = DFRMAX
CNGATR(3) = DHFRGN
CNGATR(4) = DLFRGN
Tcm = R*Jm/Ktm/Ktm
Tce = L/R
CINT2=2.*CINT
YHI=YRO+DLY
YLO=-DLY
CALL INIT1TIME(CINT2)"
CALL INIT1EVAL (^=CINT,PIKMIN,YRO)
CALL INITLINGU
CALL DECISION (DECTBL=)
CALL DESIGN^(CNTRLC=ATRNET)
CALL ZTRANS^(CNTRLZ=DTSMP,CNTRLC)

"DMC-400 SERVO SYSTEM INITALIZATION"

CALL DMCINIT
IF (.NOT.DMC) GO TO Li
CALL DMCPRINT
LO..CALL DMCREAD^(=BEGIN,EXIT,YRO) $"INITIALIZION"
IF(^EXIT ) GO TO L5^$"EXIT RUN"
IF(.NOT.BEGIN) GO TO LO^$"CONTINUE RUN"
CALL DMCCONTROL (CNTRLD=CNTRLZ)
CALL DMCTUNING (=CNTRLD)
CALL DMCSTART
Ll..CONTINUE
K=0 $ TMODL=0.$ YR=0 $ YDMC=0
CALL INITPRNT(ATRNET)
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L100..CONTINUE $ "Step loop
IF(DMC)EDMCL=YR-YDMC
EY=0^$ Ep= 0^$
YM=YR^$ Y=YR^$
WD=0.^$ YMI=0.^$
LO=1^$ LU=1^$
DMPFRS=0. $ DMPRTS=0. $
TLO=TL*(-1)**K
YROR2=YRO/ENCDR/2
DO L50 JJ=1,20
PIKO(JJ)=0
PIKU(JJ)=0
TPIKO(JJ)=0.
TPIKU(JJ)=0.

L50.. CONTINUE

initialization"

U=0.^$ U1p=0.^$ U2=0.^$ U2p=0.
TM=0.
RISINM=0.$ RISINS=0.$OFSINS=0.
OSCDMP=0.$ PIOWDM = 0.
STLTMS=0.$ OVSHTS=0.

CALL MODELPARMT(DMPFRM,DMPRTM,STLTMM,OVSHTM,PIOWDM,TMDLY,TMRIS, .
YMDLYO,YMRISO = YRO,YR,WNM,ZETAM,CINT,PIKMIN,TSTEP)

CALL TNIT2EVAL(=K,YR,PIOWDM)
K=K+1

"Reference signal"

YQ=YR/ENCDR
YR=-YR0*((-1)**K-1)/2

IF (.NOT.DMC) GO TO L15
IF (YR.EQ.0) GO TO LZ

GO TO LP
LZ..CALL DMCM

GO TO L15
LP..CALL DMCP

L15..CONTINUE
END $ "OF INITIAL"
DYNAMIC $ "DYNAMIC SECTION"

TIME=T+(K-1)*TSTEP
"PROCESS DYNAMICS"11

IF(DMC) GO TO L13
IF (TIME.EQ.0) CALL INITTIME(=CINT)"
CALL REALTIME(REALTM=)"

"SIMULATED SERVO"

DERIVATIVE
CINTERVAL CINT = 0.005^$

"PROCESS DYNAMIC"

M^= Ka*U+T1O+TLSP+TLDP $
DYY = Ktm*INTEG(M/Jm,0.)^$
TLDP = -Kd*DYY
YY^= INTEG(DYY,Y0)^$
TLSP = -Ks*(YY-YROR2)
DYY = REALPL(TCM,M)"
YYE = REALPL(TCE,DYY)/Ktm"
YY^= INTEG(YYE,Y0)"

"ENCODER DYNAMIC"

Y^= INT(ENCDR*YY)
END $ "Of derivative"

CONSTANT NOISE=1.

"Communication time

"Total load
"Motor speed

"Motor position

$ "Motor position

interval"

[Nm]"
[rad/sec]"

[rad]"

[rad]"
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YN = Y+NOISE*GAUSS(0.0,1)
"DISCRETE CONTROLLER DYNAMIC"* 11

DISCRETE CNTRLR
PROCEDURAL

INTERVAL DTSAMP = 0.0005^$ "Sampling time"
EY^= YR-Y^ $"Error [counts]"
U1^= CNTRLZ(4)*Ulp+CNTRLZ(1)*EY-CNTRLZ(1)*CNTRLZ(3)*Ep
IF(ABS(U1).LT.1.E-10) U1=0.
U2^= U2p+EY*DTSMP^$"Integral part"
U^= BOUND(-10.,10.,V2B*QNTZR(1.,U1+CNTRLZ(2)*U2))...

$"Command [Volt]"
Ep^= EY^ $"E time shifting"
U1p = U1^ $"U1 time shifting"
U2p = U2^ $"U time shifting"

END
END $"Of discrete controller"

GO TO L16
L13..^CALL POSITION(YDMC=)

Y=YDMC+EDMCL
L16..^CALL MODEL^(YM=T)t•^CALL LOGD(LGD)"

CALL PIKDETEC (LO,LU,PIKO,PIKU,TPIKO,TPIKU,STP=T,Y,TMRIS)
CALL INTEGRAL (RISINM,RISINS,OFSINS=T,Y,YM,TMDLY,TMRIS)

TERMT(T.GT.TSTEP)^$ "Teminated Time"
IF(STP) GO TO L5

END $"OF DYNAMIC"
TERMINAL

CALL PEAKCHECK(LO,LU)
CALL SDMPFR (DMPFRS=LO,LU,TPIKO,TPIKU)
CALL SDMPRT (DMPRTS=LO,LU,PIKO,PIKU,TPIKO,TPIKU)
CALL SSTLTM (STLTMS=LO,LU,TPIKO,TPIKU)
CALL SOVSHT (OVSHTS=PIKO,YR,YRO)
YROT=(TSTEP-2.*PIOWDM)*YRO
OFSINM=YROT*OFFSTM
OFSINS=ABS(ABS(OFSINS)-YROT)
RISINS=ABS(RISINS)
RISINM=ABS(RISINM)
CALL FOFFST(CNDQNT,PRFORM=OFSINS,OFSINM,THOFS)
CALL FDMPRT(CNDQNT,PRFORM=DMPRTS,DMPRTM,THOSC)
CALL FRISIN(CNDQNT,PRFORM=RISINS,RISINM,THSPD)
CALL FDMPFR(CNDQNT,PRFORM=DMPFRS,DMPFRM,THDFR)
CALL FOVSHT(CNDQNT,PRFORM=OVSHTS,OVSHTM,THOVS)
IF(CNDQNT(1).GE.4.AND.CNDQNT(2).GE.4.AND.CNDQNT(3).GE.4.AND. .

CNDQNT(4).GE.4.AND.CNDQNT(5).GE.4.AND..NOT.DEMO)^GO TO i5
CALL TUNEPHMAX (IPHMAX,ATRNET=CNDQNT,CNGATR)
CALL TUNEFRMAX (IFRMAX,ATRNET=CNDQNT,CNGATR)
CALL TUNEHIFGN (IHFRGN,ATRNET=CNDQNT,CNGATR)
CALL TUNELOFGN (ILFRGN,ATRNET=CNDQNT,CNGATR)
CALL PRNT(CNDQNT,PRFORM,DECTBL,ATRNET..

,IPHMAX,IFRMAX,IHFRGN,ILFRGN,K)
CALL DESIGN^(CNTRLC=ATRNET)
CALL ZTRANS^(CNTRLZ=DTSMP,CNTRLC)
IF(.NOT.DMC) GO TO L14
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CALL DMCCONTROL (CNTRLD=CNTRLZ)
CALL DMCTUNING (=CNTRLD)

L14..CONTINUE
IF (K.LT.KSTEP)G0 TO L100

L5..CONTINUE
CALL FINALPRNT(CNDQNT)
IF (DMC) CALL DMCSTOP(=T,REALTM)
LSTSTP = K*TSTEP-TSTEP
TF^= K*TSTEP

END $ "OF TERMINAL"
END $"OF PROGRAM"
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B.2 Servo-Expert sub-programs listing

B.2.1 Sub-Program MODEL

SUBROUTINE MODEL1

INTEGER YRO,YR,YM,YMDRO,YMDR1
LOGICAL YMDLY,YMRIS

ENTRY MODELPARMT(YRO,YR,WNM,ZETAM,CINT,PIKMIN,TSTEP,

DMPFRM,DMPRTM,STLTMM,OVSHTM,PIOWD,TMDLY,TMRIS,

YMDLYO,YMRISO)
PI=3.1416

TMRIS=O.

TMDLY=O.

DMPRTM=O.

YMDR1=0.

TM=O.

IF(YR.NE.YRO)YMDR1=YRO
YMDLY=.FALSE.

YMRIS=.FALSE.

YMDLAY=YMDLYO*YRO

YMRISE=YMRISO*YRO

SQTDMP=SORT(1.-ZETAM*ZETAM)
PHI=ACOS(ZETAM)

ZETAWN=ZETAM*WNM

DMPFRM=WNM*SQTDMP

OVSHTM=EXP(-PI*ZETAM/SQTDMP)

PIOWD=PI/DMPFRM

YMP2=1.-EXP(-ZETAWN *PIOWD)*SIN(DMPFRM *PIOWD+PHI)/SQTDMP

YMP1=1.-EXP(-ZETAWN*2.*PIOWD)*SIN(DMPFRM*2.*PIOWD+PHI)/SQTDMP

TJ=3.

1 CONTINUE
YMPO=1.-EXP(-ZETAWN*TJ*PIOWD)*SIN(DMPFRM*TJ*PIOWD+PHI)/SQTDMP

DMPRTM=DMPRTM+ABS((YMPO-YMP1)/(YMP1-YMP2))
IF(ABS((YMPO-YMP1)).LT.PIKMIN) GO TO 2

YMP2=YMP1

YMP1=YMPO

TJ=TJ+1.
GO TO 1
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2 CONTINUE

STLTMM=(TJ-1.)*PIOWD

DMPRTM=DMPRTM/(TJ-2.)

3 YM=YRO*EXP(-ZETAWN*TM)/SQTDMP*SIN(DMPFRM*TM+PHI)
IF(YR.EQ.YRO) YM=YRO-YM

YMDRO=YRO-ABS(YR-YM)

IF(YMDRO.GE.YMDLAY)THEN
IF(.NOT.YMDLY)THEN
TMDLY=TM
YMDLY=.TRUE.

ELSEIF(YMDRO.GE.YMRISE)THEN

IF(.NOT.YMRIS)THEN

TMRIS=TM

YMRIS=.TRUE.

ENDIF

ENDIF

ENDIF

TM=TM+CINT

IF (TM.LE.TSTEP) GO TO 3
RETURN

ENTRY MODEL(T,YM)

YM=YRO*EXP(-ZETAWN*T)/SQTDMP*SIN(DMPFRM*T+PHI)

IF(YR.EQ.YRO) YM=YRO-YM
RETURN

END

B.2.2 Sub -Program PREPROCESS

SUBROUTINE PREPROCESS

DIMENSION PIK0(20),PIKU(20),TPIK0(20),TPIKU(20)

LOGICAL STP

INTEGER Y,YM,YR,YRO,Y1,Y2,DY1,DY2,DYYY,DYYYM1,LO,LU,

# PIKO,PIKU

c^ PEAKS DETECTION

ENTRY PIKDETEC(T,Y,TMRIS,LO,LU,PIKO,PIKU,TPIKO,TPIKU,STP)
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IF(T.LE.TMRIS) GO TO 10
DY1=Y-Y1
DY2=Y1-Y2
IF (DY1*DY2)20,15,10

15 IF (DY1.EQ.O.AND.DY2.EQ.0) GO TO 10

IF(DY1.NE.0)THEN
DYYY=DY1
ELSE
DYYY=DY2
ENDIF

IF(DYYY*DYYYMLLT.0)G0 TO 21
DYYYM1=DYYY
GO TO 10

20 CONTINUE
DYYY=DY1

21 PEAKM1=PEAKS
PEAKS=FLOAT(Y2-YR)/FLOAT(YRO)
DYYYM1=DY1

IF (ABS(PEAKS-PEAKM1).LT.PIKMIN) GO TO 10
IF(DYYY.GT.0)GO TO 25
IF(YR.EQ.YRO)THEN
LO=L0+1
PIKO(LO)=Y1
TPIKO(L0)=T
ELSE
LU=LU+1
PIKU(LU)=Y1
TPIKU(LU)=T
ENDIF
GO TO 10

25 IF (ABS(1.-PEAKS/PEAKM1).LT.PIKMIN) GO TO 10
IF(YR.EQ.YRO)THEN
LU=LU+1
PIKU(LU)=Y1
TPIKU(LU)=T
ELSE



Appendix B. Programs Listing^ 178

LO=L0+1
PIKO(LO)=Y1
TPIKO(LO)=T
ENDIF

10 CONTINUE

IF(LO.GT.20.OR.LU.GT .20)THEN
PRINT *,'LO>20 OR LU>20 !!',LO,LU
STP=.TRUE.

ENDIF
Y2 = Y1
Y1 = Y
RETURN

ENTRY INTEGRAL (T,Y,YM,TMDLY,TMRIS,RISINM,RISINS,OFSINS)
YRMYRO=YR-YRO
YSN=FLOAT(Y +YRMYRO)
YMN=FLOAT(YM+YRMYRO)

IF(T.LT.TMRIS)THEN
RISINS=YSN
RISINM=YMN

ELSEIF(T.GT.PI2OWM)THEN
OFSINS=OFSINS+(YSN+YSO)*CINT2

ENDIF
YSO=YSN
YMO=YMN
RETURN
END

B.2.3 Sub-Program EVALUATION

SUBROUTINE EVALUATION
DIMENSION PIK0(20),PIKU(20),TPIK0(20),TPIKU(20)
LOGICAL STP
INTEGER Y,YM,YR,YRO,Y1,Y2,DY1,DY2,DYYY,DYYYM1,LO,LU,

# PIKO,PIKU
C

ENTRY INIT1EVAL(CINT,PIKMIN,YRO)
STP=.FALSE.
CINT2=CINT/2.
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RETURN

ENTRY INIT2EVAL(K,YR,PIOWDM)
Y1 7 YR
Y2 = YR
DYYY = -YR0*(-1)**K
DYYYM1= (-1)**K
LO^= 1
LU^= 1
PEAKS = 1.
MM=O
YS0=0
YM0=0
RISINS=O.
RISINM=O.
OFSINS=O.
PI2OWM=2.*PIOWDM
RETURN

ENTRY PEAKCHECK(LO,LU)

1 IF(LU.GT .LO)THEN
LU=LU-1
GO TO 1
ENDIF

2 IF((LO-LU).GT.1)THEN
LO=L0-1
GO TO 2
ENDIF
RETURN

ENTRY SDMPFR(LO,LU,TPIKO,TPIKU,DMPFRS)
IF(LU.EQ.1) THEN
DMPFRS=O.
RETURN
ELSEIF(LU.EQ.2.AND.LO.EQ.2) THEN
DMPFRS=3.14/(TPIKU(2)-TPIK0(2))
RETURN
ENDIF

C
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IF(LO.EQ.(LU+1))THEN

DMPFRS=6.28*(L0-2)/(TPIKO(L0)-TPIK0(2))
ELSE

ENDIF

RETURN

DMPFRS=3.14*(2*L0-3)/(TPIKU(LU)-TPIK0(2))

ENTRY SDMPRT(LO,LU,PIKO,PIKU,TPIKO,TPIKU,DMPRTS)
IF (LO.LT.3)THEN

DMPRTS=0.
RETURN
ENDIF

JJJ=3

N=0 ,

PIKD=FLOAT(PIKU(2)-PIKO(2))
40 CONTINUE

IF (JJJ.GT.L0) GO TO 41

JJ1=JJJ-1

PIKN=FLOAT(PIKO(JJJ)-PIKU(JJ1))
IF(PIKD.EQ.0.)PRINT*,'PIKD=0.!!!'

DMPRTS=DMPRTS+ABS(PIKN/PIKD)
N=N+1

IF (JJJ.GT.LU) GO TO 41
PIKD=PIKN

PIKN=FLOAT(PIKU(JJJ)-PIKO(JJJ))
IF(PIKD.EQ.0.)PRINT*,'PIKD=0.!!!'

DMPRTS=DMPRTS+ABS(PIKN/PIKD)

N=N+1

PIKD=PIKN

JJJ=JJJ+1

GO TO 40

41 IF(N.EQ.0)PRINT *,'N=0!!!'

DMPRTS=DMPRTSIN

ENTRY SSTLTM(LO,LU,TPIKO,TPIKU,STLTMS)

IF (LU.LT.2)THEN

STLTMS=0.

RETURN

ELSE
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IF (LO.EQ.LU) THEN
STLTMS=TPIKU(LU)
RETURN
ELSE
IF (LO.EQ.(LU+1)) STLTMS=TPIKO(LO)
ENDIF
ENDIF
RETURN

ENTRY SOVSHT(PIKO,YR,YRO,OVSHTS)
IF(PIK0(2).NE.0) OVSHTS=ABS(FLOAT(PIKO(2)-YR))/YRO
RETURN
END

B.2.4 Sub-Program CLASSIFICATION

SUBROUTINE CLASSIFICATION
DIMENSION THSPD(3),THOSC(3),THOFS(3),THOVS(3),THDFR(3)
#,PIK0(20),PIKU(20),TPIK0(20),TPIKU(20),PRFORM(5)
INTEGER CNDQNT(5),PIKO,PIKU,Y,YRO,YR

ENTRY FOFFST(OFSINS,OFSINM,THOFS,CNDQNT,PRFORM)
PRFORM(1) = -(OFSINM - OFSINS)/OFSINM
IF(PRFORM(1).LE.O.^ ) GO TO 15
IF(PRFORM(1).LE.THOFS(1)^ ) GO TO 14
IF(PRFORM(1).LE.THOFS(2).AND.PRFORM(1).GT.THOFS(1)) GO TO 13
IF(PRFORM(1).LE.THOFS(3).AND.PRFORM(1).GT.THOFS(2)) GO TO 12
IF(PRFORM(1).GT.THOFS(3) ) GO TO 11

15 CNDQNT(1)=5
RETURN

14 CNDQNT(1)=4
RETURN

13 CNDQNT(1)=3
RETURN

12 CNDQNT(1)=2
RETURN

11 CNDQNT(1)=1
RETURN
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ENTRY FDMPRT(DMPRTS,DMPRTM,THOSC,CNDQNT,PRFORM)
PRFORM(2) =-(DMPRTM - DMPRTS)
IF (DMPRTS.EQ.O.) GO TO 24
IF(^ PRFORM(2).LT.O.^) GO TO 25
IF(PRFORM(2).GE.O. AND.PRFORM(2).LE.THOSC(1)) GO TO 24
IF(PRFORM(2).GE.THOSC(1).AND.PRFORM(2).LE.THOSC(2)) GO TO 23
IF(PRFORM(2).GE.THOSC(2).AND.PRFORM(2).LE.THOSC(3)) GO TO 22
IF(PRFORM(2).GE.THOSC(3) ) GO TO 21

25 CNDQNT(2)=5
RETURN

24 CNDQNT(2)=4
RETURN

23 CNDQNT(2)=3
RETUR$

22 CNDQNT(2)=2
RETURN

21 CNDQNT(2)=1
RETURN

ENTRY FRISIN(RISINS,RISINM,THSPD,CNDQNT,PRFORM)
PRFORM(3) = (RISINM - RISINS)/RISINM
ARISIN=ABS(PRFORM(3))
IF( PRFORM(3).LT.O.^ ) GO TO 35
IF(ARISIN.LE.THSPD(1) ) GO TO 34
IF(ARISIN.LE.THSPD(2).AND.ARISIN.GE.THSPD(1)) GO TO 33
IF(ARISIN.LE.THSPD(3).AND.ARISIN.GE.THSPD(2)) GO TO 32
IF(ARISIN.GE.THSPD(3) ) GO TO 31

35 CNDQNT(3)=5
RETURN

34 CNDQNT(B)=4
RETURN

33 CNDQNT(3)=3
RETURN

32 CNDQNT(3)=2
RETURN

31 CNDQNT(3)=1
RETURN

ENTRY FOVSHT(OVSHTS,OVSHTM,THOVS,CNDQNT,PRFORM)
PRFORM(4) = -(OVSHTM - OVSHTS)/OVSHTM
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IF(OVSHTS.EQ.0) GO TO 45
IF(PRFORM(4).LE.O.^ ) GO TO 45
IF(PRFORM(4).LE.THOVS(1)^ ) GO TO 44
IF(PRFORM(4).LE.THOVS(2).AND.PRFORM(4).GE.THOVS(1)) GO TO 43
IF(PRFORM(4).LE.THOVS(3).AND.PRFORM(4).GE.THOVS(2)) GO TO 42
IF(PRFORM(4).GE.THOVS(3) ) GO TO 41

45 CNDQNT(4)=5
RETURN

44 CNDQNT(4)=4
RETURN

43 CNDQNT(4)=3
RETURN

42 CNDQNT(4)=2
RETURN

41 CNDQNT(4)=1
RETURN,

ENTRY FDMPFR(DMPFRS,DMPFRM,THDFR,CNDQNT,PRFORM)
PRFORM(5) = (DMPFRM - DMPFRS)/DMPFRM
IF(DMPFRS.EQ.0) GO TO 55
IF(PRFORM(5).LE.O.^ ) GO TO 55
IF(PRFORM(5).LE.THDFR(1)^ ) GO TO 54
IF(PRFORM(5).LE.THDFR(2).AND.PRFORM(5).GE.THDFR(1)) GO TO 53
IF(PRFORM(5).LE.THDFR(3).AND.PRFORM(5).GE.THDFR(2)) GO TO 52
IF(PRFORM(5).GT.THDFR(3) ) GO TO 51

55 CNDQNT(5)=5
RETURN

54 CNDQNT(5)=4
RETURN

53 CNDQNT(5)=3
RETURN

52 CNDQNT(5)=2
RETURN

51 CNDQNT(5)=1
RETURN
END

B.2.5 Sub -Program TUNING

SUBROUTINE TUNER
DIMENSION CNDQNT(5),ATRNET(5),CNGATR(5),DECTBL(5,5,5),PRFORM(5)
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CHARACTER*5,CNVAR(5)
CHARACTER*6,CNQNT(5)
CHARACTER*5,ACVAR(5)
CHARACTER*5,ACQNT(5)
INTEGER CNDQNT

ENTRY DECISION (DECTBL)
OPEN(UNIT=64,FILE='DECISION.TBL')
do 5 i = 1,5
DO 5 j = 1,5
READ (64,14) (DECTBL(i,1,j),1=1,5)

14 FORMAT(5F10.2)
5 CONTINUE
CLOSE(64)
RETURN

C^ MAXIMUM PHASE
C

ENTRY TUNEPHMAX (CNDQNT,CNGATR,IPHMAX,ATRNET)
C^IF(CNDQNT(2).EQ.1)THEN
C^ IPHMAX=2
C^ELSE
C^ IPHMAX=3
C^ENDIF

C^IF(CNDQNT(3).LE.CNDQNT(2).AND.CNDQNT(2).NE.4)THEN
IF(CNDQNT(2).LT.CNDQNT(3))THEN

IPHMAX=2
CNDM=CNDQNT(2)
ELSE

IPHMAX=3
CNDM=CNDQNT(3)
ENDIF

C^IF(CNDQNT(4).LT.CNDM.AND.CNDQNT(4).NE.4)
IF(CNDQNT(4).LT.CNDM)^IPHMAX=4

IPHMAX=4

ATRNET(1)=ATRNET(1)+CNGATR(1)*DECTBL(IPHMAX,CNDQNT(IPHMAX),1)

IF (ATRNET(1).LE.0.5 )THEN
ATRNET(1)=0.5
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ELSEIF(ATRNET(1).GE.1.5 )THEN
IF(ATRNET(1).GE.1.5 )THEN
ATRNET(1)=1.5
ENDIF
RETURN

C^ FREQUENCY AT MAXIMUM PHASE
C

ENTRY TUNEFRMAX (CNDQNT,CNGATR,IFRMAX,ATRNET)

C^IF(CNDQNT(2).LT.4) THEN
C^ IFRMAX=2
C^ELSE
C^ IFRMAX=5
C^ENDIF

C^IF(CNDQNT(2).LE.CNDQNT(5).AND.CNDQNT(2).NE.4)THEN
IF(CNDQNT(2).LE.CNDQNT(4))THEN

IFRMAX=2
C^CNDM=CNDQNT(2)

ELSE
IFRMAX=5

CNDM=CNDQNT(5)
ENDIF
IF(CNDQNT(4).LT.CNDM) IFRMAX=4

ATRNET(2)=ATRNET(2)+CNGATR(2)*DECTBL(IFRMAX,CNDQNT(IFRMAX),2)

IF(ATRNET(2).LE.20.)THEN
ATRNET(2)=20.
ELSEIF(ATRNET(2).GE.600.)THEN
ATRNET(2)=600.
ENDIF
RETURN

C^ HIGH FREQUENCY GAIN
C

ENTRY TUNEHIFGN (CNDQNT,CNGATR,IHFRGN,ATRNET)

c^IF(CNDQNT(2).EQ.1)^THEN
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IHFRGN=2
c^ELSEIF(CNDQNT(5).NE.4)THEN

IHFRGN=5
c^ELSE

IHFRGN=4
ENDIF

C^IF(CNDQNT(2).LE.CNDQNT(4).AND.CNDQNT(2).NE.4)THEN
IF(CNDQNT(5).LE.CNDQNT(4))THEN

IHFRGN=5
CNDM=CNDQNT(5)
ELSE

IHFRGN=4
CNDM=CNDQNT(4)

ENDIF

IF(CNDQNT(3).LT.CNDM) THEN
IHFRGN=3

CNDM=CNDQNT(3)
ENDIF
IF(CNDQNT(1).LT.CNDM)IHFRGN=1

ATRNET(3)=ATRNET(3)+CNGATR(3)*DECTBL(IHFRGN,CNDQNT(IHFRGN),3)

c!^IF(ATRNET(3).LE.0.1)THEN
c!^ATRNET(3)=0.1
c!^ELSEIF(ATRNET(3).GE.10.)THEN
c!^ATRNET(3)=10.
c!^ENDIF

RETURN

C^ LOW FREQUENCY GAIN
C

ENTRY TUNELOFGN (CNDQNT,CNGATR,ILFRGN,ATRNET)

ATRNET(4)=ATRNET(4)+CNGATR(4)*DECTBL(1,CNDQNT(1),4)
IF (ATRNET(4).LT.0) ATRNET(4)=0.

RETURN
END
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B.2.6 Sub-Program DESIGN

SUBROUTINE DESIGN(ATRNET,CNTRLC)
DIMENSION CNTRLC(5),ATRNET(4)
SPHMAX=SIN(ATRNET(1))
ALFA=(1.-SPHMAX)/(1.+SPHMAX)
SQRALF=SQRT(ALFA)
CNTRLC(3)=ATRNET(2)*SQRALF
CNTRLC(4)=ATRNET(2)/SQRALF
CNTRLC(1)=1/ALFA*ATRNET(3)
CNTRLC(2)=ATRNET(4)
CNTRLC(5)=0.

C^PRINT 100,CNTRLC(1),CNTRLC(2),CNTRLC(3),CNTRLC(4)
C 100 FORMAT(1X,'GNC=',F5.0,5X,'GIC=',F5.0,'ZRC=',F5.0,5X,'PLC=',F5.0)

RETURN
END

SUBROUTINE ZTRANS(DTSMP,CNTRLC,CNTRLZ)
DIMENSION CNTRLC(5),CNTRLZ(5)
POZ = CNTRLC(4)/CNTRLC(3)
EXDTPZ=EXP(-DTSMP*(CNTRLC(4)-CNTRLC(3)))
CNTRLZ(1)^= CNTRLC(1)*EXDTPZ
CNTRLZ(2)^= CNTRLC(2)/7.8
EXSPL = EXP(-DTSMP*CNTRLC(4))
CNTRLZ(3)^= EXSPL/EXDTPZ
CNTRLZ(4) = EXSPL
CNTRLZ(5)=0.
RETURN
END

SUBROUTINE DMCCONTROL (CNTRLZ,CNTRLD)
DIMENSION CNTRLZ(5),CNTRLD(5)
INTEGER*4,CNTRLD

CNTRLD(1)=INT(2*CNTRLZ(1))
IF(CNTRLD(1).GT.255)THEN

CNTRLD(1)=255
PRINT*,'MAX. GAIN!'

ENDIF
IF(CNTRLD(1).LT.O.OR.CNTRLD(1).EQ.1)THEN
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CNTRLD(1) =0
PRINT*,'MIN. GAIN=',CNTRLD(1)

ENDIF
C

C CHECK CORRECTNESS OF NEXT LINE (256?)
CNTRLD(2)=INT(127*CNTRLZ(2))
IF(CNTRLD(2).GT.127)^CNTRLD(2)=127
IF(CNTRLD(2).LT.0)^CNTRLD(2)=0.

C

CNTRLD(3)=INT(256*CNTRLZ(3))
IF(CNTRLD(3).GT.255)THEN

CNTRLD(3)=255
PRINT*,'MAX. ZERO!'

ENDIF
IF(CNTRLD(3).LT.O. )THEN

CNTRLD(3)= 0
PRINT*,'MIN. ZERO!'

ENDIF
C

CNTRLD(4)=INT(256*CNTRLZ(4))
IF(CNTRLD(4).GT.255)THEN

CNTRLD(4)=255
PRINT*,'MAX. POLE!'

ENDIF
IF(CNTRLD(4).LT.O. )THEN

CNTRLD(4)=0
PRINT*,'MIN. POLE!'

ENDIF
C

CNTRLD(5)=0
C

RETURN
END

B.2.7 Print Out

SUBROUTINE PRINTOUT
DIMENSION CNDQNT(5),ATRNET(5),CNGATR(5),DECTBL(5,5,5),PRFORM(5)
CHARACTER*5,CNVAR(5)
CHARACTER*6,CNQNT(5)
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CHARACTER*5,ACVAR(5)
CHARACTER*5,ACQNT(5)
INTEGER CNDQNT

ENTRY INITLINGU
OPEN(UNIT=74,FILE='LINGUIST.DAT')
READ (74,15) CNVAR,CNQNT,ACVAR,ACQNT

15 FORMAT (5A5,5A6,5A5,5A5)
CLOSE(74)
RETURN

ENTRY INITPRNT(ATRNET)
PHMAXD=ATRNET(1)*57.29
PRINT 100

100 FORMAT (20X,'Initial attributes:')
PRINT 101,PHMAXD,ATRNET(2),ATRNET(3),ATRNET(4)

101 FORMAT (5X,'PHMAX=',F4.1,5X,'FRMAX=',F4.0,4X,'HFRGN=',F4.2
0,5X,'LFRGN=',F4.1)
RETURN

ENTRY PRNT(CNDQNT,PRFORM,DECTBL,ATRNET,
OIPHMAX,IFRMAX,IHFRGN,ILFRGN,K)
PHMAXD=ATRNET(1)*57.29

PRINT 102,K
102 FORMAT(20X,'TEST SIGNAL',2X,I3)

PRINT 103,CNVAR(IPHMAX),CNQNT(CNDQNT(IPHMAX)),PRFORM(IPHMAX)
,ACVAR(1),DECTBL(IPHMAX,CNDQNT(IPHMAX),1),PHMAXD

103 FORMAT(1X,A5,' = ',A6,' (',F5.2,') ==> ',A5,'AC= ',F4.1,2X
O ,'PHMAX=',F7.2)
PRINT 104,CNVAR(IFRMAX),CNQNT(CNDQNT(IFRMAX)),PRFORM(IFRMAX)
O ,ACVAR(2),DECTBL(IFRMAX,CNDQNT(IFRMAX),2),ATRNET(2)

104 FORMAT(1X,A5,' = ',A6,' (',F5.2,') ==> ',A5,'AC= ',F4.1,2X
,'FRMAX=',F7.2)

PRINT 105,CNVAR(IHFRGN),CNQNT(CNDQNT(IHFRGN)),PRFORM(IHFRGN)
,ACVAR(3),DECTBL(IHFRGN,CNDQNT(IHFRGN),3),ATRNET(3)

105 FORMAT(1X,A5,' = ',A6,' (',F5.2,') ==> ',A5,'AC= ',F4.1,2X
,'HFRGN=',F7.2)

PRINT 106,CNVAR(1),CNQNT(CNDQNT(1)),PRFORM(1),ACVAR(4)
,DECTBL(1,CNDQNT(1),4),ATRNET(4)

106 FORMAT(1X,A5,' = ',A6,' (',F5.2,') ==> ',A5,'AC= ',F4.1,2X
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,'LFRGN=',F7.2)
RETURN

ENTRY FINALPRNT(CNDQNT)
PRINT 107

107 FORMAT(20X,'Final performance: ')
PRINT 108,CNVAR(1),CNQNT(CNDQNT(1)) ,CNVAR(2),CNQNT(CNDQNT(2))

@^,CNVAR(3),CNQNT(CNDQNT(3)) ,CNVAR(4),CNQNT(CNDQNT(4))
0^,CNVAR(5),CNQNT(CNDQNT(5))

108 FORMAT(1X,A5,'=',A6,3X,A5,'=',A6,3X ,A5,'=',A6,3X,A5,'=',A6
0,3X,A5,'=',A6)

RETURN
END

*eof
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B.3 Fuzzy Tuner Program listing

B.3.1 Main Program DECISION

PROGRAM DECISION

C
^

Program DECISION computes, off-line, the Fuzzy Tunner Decision-Table.

C
^

3 Data base are used:

C
^

a) Ruleset Table (RULST), generated in sub-program SUBRU LST.
b) Membership Functions table of the Condition Variables (CNDMF), generated

in sub-program SUBCNDMF.
C^c) Membership Functions of the Action Variables (ACTMF), generated

in sub-program SUBACTMF.

Sub-program SUBRLTION computes the Fuzzy Relations Table (RLTION)
using SUP (Sub-program SUP) of MIN (Sub-program MIN) operation.

This Relation table is now matched with the Membership Function of
Condition Variable by applying the compositionl rule of inference
("SUP" of "MIN"), in sub-Program SUBDCSION, to generate the Fuzzy value
of the action. This value is defuzzified in sub-program SUBDEFUZD, using
the Center Of Gravity Method.

The Decision table is stores in DCSION to be used by the Servo Expert
To produce the Tunning Action in real-time.

COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax

DIMENSION CNDMF(5,5,5),ACTMF(5,5,5),RULST(5,5,5)
#,BARLEV(5,5,5,5,5),RLTION(5,5,5,5),DCSION(5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
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CHARACTER*5,ACTQNT
INTEGER ACTGRD,RULST

CALL DAT
CALL SUBCNDMF (CNDMF)
CALL SUBACTMF (ACTMF)
CALL SUBRULST (RULST)

CALL SUBRLTION (CNDMF,ACTMF,RULST,RLTION)
CALL SUBDCSION (RLTION,CNDMF,DCSION)

C

C

C

C

STOP
END
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B.3.2 Sub-Program DATA

SUBROUTINE DATA
COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT
INTEGER ACTGRD

c^Membership Function cardinality for the Condition Variables:
kmax=5

c^Membership Function cardinality for the Action Variables:
nmax=5

C
c^CONDITION AND ACTION VARIABLES AND QUANTITIES:

c^Fuzzy CoNDdition VARiables (CNDVAR), index i, Cardinality imax.
imax=5

C!^IMAX=1

c^OFFSET in the error response:
CNDVAR(1)='OFFST'

c^OSCILlation in error response:
CNDVAR(2)='DMPRT'

c^SPEED of response:
CNDVAR(3)='RISIN'

c
c^OVer SHoot of the error response:

CNDVAR(4)='0VSHT'

c^Damped natural frewuency
CNDVAR(5)='DMPFR'
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c

^

^Fuzzy CoNDition QuaNTitie (CONQNT) index j, Cardinality jmax.

jmax=5

c^ GRAD

c^Well UNder SPCisfiaction^(-3)
CNDQNT(1)='UNSATF'

c^UNDer SPCification^(-2)
CNDQNT(2)='POOR '

c^IN_SPCification^(-1)
CNDONT(3)='MODRAT'

c^OKEY^ ( 0)
CNDONT(4)='IN_SPC'

c^Well OVer SPCification^(1)
CNDONT(5)= 1 0VRSPC'

c^Fuzzy Action Variables index 1, Cardinality lmax.

c!^LMAX=1
lmax=5

C

c^Change the PHase LeaD in the C.0 freq.
ACTVAR(1)='PHMAX'

c^Change the CRose-OVer Frequency.
ACTVAR(2)='FRMAX'

c^Change the HIgh Frequency Gain.
ACTVAR(3)='HFRGN'

c^Change the Low Frequency Gain.
ACTVAR(4)='LFRGN'

c^Change the Dead BaNd Zoon.
ACTVAR(5)='DBNDZ'
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c

^

^Fuzzy ACTION Quantities (Grades from -2 to +2), index m, Cardinality mmax.

mmax=5

c^ GRAD

c^Negative HI^(-2)
ACTQNT(1)='NEGHI'
ACTGRD(1) = -2

c^Negative LO
ACTQNT(2)='NEGLO'
ACTGRD(2) = -1

c^No ChanGe
^

( 0 )

ACTQNT(3)='NOCHG'
ACTGRD(3) = 0

c^Positive LO
ACTQNT(4)='POSLO'
ACTGRD(4) = 1

c^Popsitive HI
^

(+2 )

ACTQNT(5)='POSHI'
ACTGRD(5) = 2

OPEN(UNIT=74,FILE='LINGUIST.DAT')
WRITE (74,15) CNDVAR,CNDQNT,ACTVAR,ACTQNT

15 FORMAT (5A5,5A6,5A5,5A5)
CLOSE(74)

RETURN
END
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B.3.3 Sub-Program CNDMF

SUBROUTINE SUBCNDMF (CNDMF)

COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax
DIMENSION CNDMF(5,5,5)
CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT
INTEGER ACTGRD

open(unit=60,file='cndmf.tbl')

c^Asume Crisp Values for Condition i, Quantity j (i.e [0 0 0 1 0] ):

DO 2 i = 1,imax
DO 2 J = 1,jmax

c^DO 2 k = 1,kmax
c^IF (j.eq.k) GO TO 1
c^CNDMF(i,j,k) = 0.
c^GO TO 2
c 1^CNDMF(i,j,k) = 1.

DO 2 k = j,kmax
CNDMF(i,j,k)=1.-(k-j)*0.2
CNDMF(i,k,j)=CNDMF(i,j,k)

2 CONTINUE

DO 3 i = 1,imax

PRINT 10,CNDVAR(i)
WRITE(60,10) CNDVAR(i)

10 FORMAT (1h0,//,'^Membership Function Table for Condition
OVariable:',A5)
PRINT 11
WRITE(60,11)

11 FORMAT (1H,23X,' 1^2^3^4^5')

PRINT 12
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WRITE(60 , 12)
12 FORMAT (1H , 15X , 50 ( ' - ' ) )

DO 3 .1 - = 1, jmax
PRINT 13 , CNDQNT(j ) , (CNDMF (i , j ,k) ,k=1,kmax)
WRITE(60 , 13) CNDQNT( j) , (CNDMF(i , j ,k) ,k=1,kmax)

13 FORMAT ,(1h,8x,A6, ' I ' ,5F10 .1)

3 CONTINUE
close (60)

RETURN
END
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B.3.4 Sub-Program ACTMF

SUBROUTINE SUBACTMF (ACTMF)

COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax
DIMENSION ACTMF(5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTOT
INTEGER ACTGRD

open(unit=61,file='actmf.tbl')
c^Asume Crisp Values for Condition 1, Quantity m (i.e [0 0 0 1 0] ):

DO 2 1 = 1,lmax
DO 2 m = 1,mmax

c^DO 2 n = 1,nmax

c^IF (m.eq.n) GO TO 1
c^ACTMF(1,m,n) = O.
c^GO TO 2
c 1^ACTMF(l,m,n) = 1.
c 2 CONTINUE

DO 2 n = m,mmax
ACTMF(1,m,n)=1.-(n-m)*0.2
ACTMF(1,n,m)=ACTMF(1,m,n)

2 CONTINUE

DO 3 1 = 1,lmax

PRINT 10,ACTVAR(1)
WRITE(61,10)

10 FORMAT (1h0,//,14X,' Membership Function Table for the Action
eVariable:',A5,/,)

PRINT 11, (ACTGRD(n),n=1,nmax)
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WRITE(61,11)
11 FORMAT (1H,15X,5I10,/,10X,58('-'))

WRITE(61,12)
12 FORMAT (1H,15X,50('-'))

DO 3 m = 1,mmax
PRINT 13 ,ACTQNT(m),(ACTMF(1,m,n),n=1,nmax)
WRITE (61,13) ACTQNT(m),(ACTMF(1,m,n),n=1,nmax)

13 FORMAT (1h,8X,A5,' I',5F10.1)

3 CONTINUE
CLOSE(61)

c^RETURN
END
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B.3.5 Sub-Program RULESET

SUBROUTINE SUBRULST (RULST)

COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax

DIMENSION RULST(5,5,5),RULST1(5,5,5),RULS(5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT
CHARACTER*5,RULS
INTEGER RULST,RULST1,ACTGRD

c^Rules for default: IF CONDITION(i) = OKY, THEN ACTION(1) = NCH .

open(unit=62,file='rulset.tb1 1 )

DO 1 i = 1,imax
DO 1 j = 1,jmax
DO 1 1 = 1,lmax
RULST(i,j,l) = 3
RULS (i,j,1)=ACTQNT(3)

^

1^CONTINUE

^C^RULES 140R: IF OSCIL = CNDVAR THEN PHMAX = ACTQNT

^C^if OSCIL = WUNSPC then PHMAX = POSHI
RULS (2,1,1) = ACTQNT(5)
RULST(2,1,1) = 5

^C^if OSCIL = UNDSPC then PHMAX = NOCNG
RULS (2,2,1) = ACTQNT(3)
RULST(2,2,1) = 3

^C^if OSCIL = IN_SPC then PHMAX = NOCNG
RULS (2,3,1) = ACTQNT(3)
RULST(2,3,1) = 3

^C^if OSCIL = OK^then PHMAX = NOCNG
RULS (2,4,1) = ACTQNT(3)
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RULST(2,4,1) = 3
C^if OSCIL = WOVSPC then PHMAX = NOCNG

RULS (2,5,1) = ACTQNT(3)
RULST(2,5,1) = 3

C^RULES FOR: IF SPEED = CNDVAR THEN PHCOV = ACTQNT

C^if SPEED = WUNSPC then PHCOV = NEGHI
RULS (3,1,1) = ACTQNT(1)
RULST(3,1,1) = 1

C^if SPEED = UNDSPC then PHCOV = NEGLO
RULS (3,2,1) = ACTQNT(2)
RULST(3,2,1) = 2

C^if SPEED = IN_SPC then PHCOV = NEGLO
RULS (3,3,1) = ACTQNT(2)
RULST(3,3,1) = 2

C^if SPEED = OK^then PHCOV = NOCNG
RULS (3,4,1) = ACTQNT(3)
RULST(3,4,1) = 3

C^if SPEED = WOVSPC then PHCOV = POSLO
RULS (3,5,1) = ACTQNT(4)
RULST(3,5,1) = 4

C

C^RULES FOR: IF OVSHT = CNDVAR THEN PHMAX = ACTQNT

C^if OVSHT = WUNSPC then PHMAX = POSHI
RULS (4,1,1) = ACTQNT(5)
RULST(4,1,1) = 5

C^if OVSHT = UNDSPC then PHMAX = POSLO
RULS (4,2,1) = ACTQNT(4)
RULST(4,2,1) = 4

C^if OVSHT = IN_SPC then PHMAX = POSLO
RULS (4,3,1) = ACTQNT(3)
RULST(4,3,1) = 4

C^if OVSHT = OK^then PHMAX = NOCNG
RULS (4,4,1) = ACTQNT(3)
RULST(4,4,1) = 3

C^if OVSHT = WOVSPC then PHMAX = NEGLO
RULS (4,5,1) = ACTQNT(2)
RULST(4,5,1) = 2
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C^RULES FOR: IF OSCIL = CNDVAR THEN COVFR = ACTQNT

C^if OSCIL = WUNSPC then PHCOV = NEGHI
RULS (2,1,2) = ACTQNT(1)
RULST(2,1,2) = 1

C^if OSCIL = UNDSPC then PHCOV = NEGLO
RULS (2,2,2) = ACTQNT(2)
RULST(2,2,2) = 2

C^if OSCIL = IN_SPC then PHCOV = NEGLO
RULS (2,3,2) = ACTQNT(2)
RULST(2,3,2) = 2

C^if OSCIL = OK^then PHCOV = NOCNG
RULS (2,4,2) = ACTQNT(3)
RULST(2,4,2) = 3

C^if OSCIL = WOVSPC then PHCOV = NOCNG
RULS (2,5,2) = ACTQNT(4)
RULST (2,5,2) = 4

C^RULES FOR: IF OVSHT = CNDVAR THEN COVFR = ACTQNT

C^if OVSHT = WUNSPC then PHCOV = NEGHI
RULS (4,1,2) = ACTQNT(1)
RULST(4,1,2) = 1

C^if OVSHT = UNDSPC then PHCOV = NEGLO
RULS (4,2,2) = ACTQNT(2)
RULST(4,2,2) = 2

C^if OVSHT = IN_SPC then PHCOV = NEGLO
RULS (4,3,2) = ACTQNT(2)
RULST(4,3,2) = 2

C^if OVSHT = OK^then PHCOV = NOCNG
RULS (4,4,2) = ACTQNT(3)
RULST(4,4,2) = 3

C^if OVSHT = WOVSPC then PHCOV = NOCNG
RULS (4,5,2) = ACTQNT(4)
RULST(4,5,2) = 4

C^RULES FOR: IF DMPFR = CNDVAR THEN COVFR = ACTQNT
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C^if DMPFR = WUNSPC then PHCOV = NEGHI
RULS (4,1,2) = ACTQNT(1)
RULST(4,1,2) = 1

C^if DMPFR = UNDSPC then PHCOV = NEGLO
RULS (4,2,2) = ACTQNT(2)
RULST(4,2,2) = 2

C^if DMPFR = IN_SPC then PHCOV = NEGLO
RULS (4,3,2) = ACTQNT(2)
RULST(4,3,2) = 2

C^if DMPFR = OK^then PHCOV = NOCNG
RULS (4,4,2) = ACTQNT(3)
RULST(4,4,2) = 3

C^if DMPFR = WOVSPC then PHCOV = NOCNG
RULS (4,5,2) = ACTQNT(4)
RULST(4,5,2) = 4

C^if DMPFR = WUNSPC then FRMAX = NEGHI
RULS (5,1,2) = ACTQNT(1)
RULST(5,1,2) = 1

C^if DMPFR = UNDSPC then FRMAX = NEGLO
RULS (5,2,2) = ACTQNT(2)
RULST(5,2,2) = 2

C^if DMPFR = IN_SPC then FRMAX = NEGLO
RULS (5,3,2) = ACTQNT(2)
RULST(5,3,2) = 2

C^if DMPFR = OK^then FRMAX = NOCNG
RULS (5,4,2) = ACTQNT(3)
RULST(5,4,2) = 3

C^if DMPFR = WOVSPC then FRMAX = POSHI
RULS (5,5,2) = ACTQNT(4)
RULST(5,5,2) = 4

c^RULES FOR: IF OFFST = CNDVAR THEN HFRGN = ACTQNT

C^if OFFST = WUNSPC then HFRGN = POSHI
RULS (1,1,3) = ACTQNT(5)
RULST(1,1,3) = 5

C^if OFFST = UNDSPC then HFRGN = POSLO
RULS (1,2,3) = ACTQNT(4)
RULST(1,2,3) = 4
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C^if OFFST = IN_SPC then HFRGN = POSLO
RULS (1,3,3) = ACTQNT(4)
RULST(1,3,3) = 4

C^if OFFST = OK^then HFRGN = NOCNG
RULS (1,4,3) = ACTQNT(3)
RULST(1,4,3) = 3

C^if OFFST = WOVSPC then HFRGN = NEGLO
RULS (1,5,3) = ACTQNT(2)
RULSTp,5,3) = 2

C^RULES FOR: IF OSCIL = CNDVAR THEN HFGRGN = ACTQNT

C^if OSCIL = WUNSPC then HFRGN = NEGHI
C^RUL (2,1,3) = ACTQNT(1)
C^RULST(2,1,3) = 1
C^if OSCIL = UNDSPC then HFRGN = NOCNG
C^RULS (2,2,3) = ACTQNT(3)
C^RULST(2,2,3) = 3
C^if OSCIL = IN_SPC then HFRGN = NOGNG
C^RULS (2,3,3) = ACTQNT(3)
C^RULST(2,3,3) = 3
C^if OSCIL = OK^then HFRGN = NOCNG
C^RULS (2,4,3) = ACTQNT(3)
C^RULST(2,4,3) = 3
C^if OSCIL = WOVSPC then HFRGN = NOGNG
C^RUL$ (2,5,3) = ACTQNT(3)
C^RULST(2,5,3) = 3

C^RULES FOR: IF RISE = CNDVAR THEN HFRGN = ACTQNT

C^if RISE = WUNSPC then HFRGN = POSHI
RULS (3,1,3) = ACTQNT(5)
RULST(3,1,3) = 5

C^if RISE = UNDSPC then HFRGN = POSLO
RULS (3,2,3) = ACTQNT(4)
RULST(3,2,3) = 4

C^if RISE = IN_SPC then HFRGN = POSLO
RULS (3,3,3) = ACTQNT(3)
RULST(3,3,3) = 4
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C^if RISE = OK^then HFRGN = NOCNG
RULS (3,4,3) = ACTQNT(3)
RULST(3,4,3) = 3

C^if RISE = WOVSPC then HFRGN = NEGLO
RULS (3,5,3) = ACTQNT(2)
RULST(3,5,3) = 2

C^RULES FOR: IF OVSHT = CNDVAR THEN HFRGN = ACTQNT

C^if OVSHT = WUNSPC then HFRGN = POSHI
RULS (4,1,3) = ACTQNT(5)
RULST(4,1,3) = 5

C^if OVSHT = UNDSPC then HFRGN = POSLO
RULS (4,2,3) = ACTQNT(4)
RULST(4,2,3) = 4

C^if OVSHT = IN_SPC then HFRGN = POSLO
RULS (4,3,3) = ACTQNT(3)
RULST(4,3,3) = 4

C^if OVSHT = OK^then HFRGN = NOCNG
RULS (4,4,3) = ACTQNT(3)
RULST(4,4,3) = 3

C^if OVSHT = WOVSPC then HFRGN = NEGLO
RULS (4,5,3) = ACTQNT(2)
RULST(4,5,3) = 2

C

C^RULES FOR: IF DMPFR = CNDVAR THEN HFGRGN = ACTQNT

C^if DMPFR = WUNSPC then HFRGN = POSHI
RULS (5,1,3) = ACTQNT(5)
RULST(5,1,3) = 5

C^if DMPFR = UNDSPC then HFRGN = POSLO
RULS (5,2,3) = ACTQNT(4)
RULST(5,2,3) = 4

C^if DMPFR = IN_SPC then HFRGN = POSLO
RULS (5,3,3) = ACTQNT(4)
RULST(5,3,3) = 4

C^if DMPFR = OK^then HFRGN = NOCNG
RULS (5,4,3) = ACTQNT(3)
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RULST(5,4,3) = 3
C^if DMPFR = WOVSPC then HFRGN = NEGHI

RULS (5,5,3) = ACTQNT(1)
RULST(5,5,3) = 1

c^RULES FOR: IF OFFST = CNDVAR THEN LFRGN = ACTQNT

C^if OFFST = WUNSPC then LFRGN = POSHI
RULS (1,1,4) = ACTQNT(5)
RULST(1,1,4) = 5

C^if OFFST = UNDSPC then LFRGN = POSLO
RULS (1,2,4) = ACTQNT(4)
RULST(1,2,4) = 4

C^if OFFST = IN_SPC then LFRGN = POSLO
RULS (1,3,4) = ACTQNT(4)
RULST(1,3,4) = 4

C^if OFFST = OK^then LFRGN = NOCNG
RULS (1,4,4) = ACTQNT(3)
RULST(1,4,4) = 3

C^if OFFST = WOVSPC then LFRGN = NEGLO
RULS (1,5,4) = ACTQNT(2)
RULST(1,5,4) = 2

DO 2 i = 1,imax
PRINT 10,CNDVAR(i)
WRITE(62,10) CNDVAR(i)

10^FORMAT(1h0,//,30X,'Rules for Condition Variable:',A5,/)
PRINT 11,(ACTVAR(1),1=1,1max)
WRITE (62,11) (ACTVAR(1),1=1,1max)

11^FORMAT(1H,22X,5A10,/,20x,55('-'))

DO 2 J = 1,jmax
PRINT 12,CNDQNT(j),(RULS(i,j,1),1=1,1max)

c

^

^PRINT 13,CNDQNT(j),(RULST(i,j,1),1=1,1max)
WRITE(62,12) CNDQNT(j),(RULST(i,j,1),1=1,1max)

12^FORMAT(1h,15x,A6, 1 1',5A10)
13^FORMAT(1h,15x,A6,'1',5I10)
2^CONTINUE

CLOSE(62)
RETURN
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END
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B.3.6 Sub-Program RELATION

SUBROUTINE RELATION (CNDMF,ACTMF,RULST,RLTION)

COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax
DIMENSION CNDMF(5,5,5),ACTMF(5,5,5),BARLEV(5,5,5,5,5)
0,RULST(5,5,5),RLTION(5,5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT
INTEGER ACTGRD,RULST

OPEN(UNIT=63,FILE='RELATION.TBL')

DO 1 i = 1,imax
DO 1 1 = 1,lmax

IF(i.ne.1.or.l.ne.1) go to 110
PRINT 10, CNDVAR(i),ACTVAR(1)
WRITE(63,10) CNDVAR(i),ACTVAR(1)

10 FORMAT(1H1,/////,10X,'Development of the Fuzzy Realation Table
!for:',A6,' ==>',A5)

110 continue

DO 2 j = 1,jmax

DO 3 k = 1,kmax
DO 3 n = 1,nmax

BARLEV(i,l,j,k,n) =
# MIN(CNDMF(i,j,k),ACTMF(1,RULST(i,j,1),h))

3 CONTINUE

IF(i.ne.l.or.l.ne.1) go to 112
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PRINT 11 ,CNDVAR(i),CNDQNT(j),ACTVAR(1),ACTQNT(RULST(i,j,1))
WRITE(63,11) CNDVAR(i),CNDQNT(j),ACTVAR(1),
ACTQNT(RULST(i,j,1))

11 FORMAT(1h,//,25X,'IF ',A5,' =',A6,' Then',A5,' =',A5)
PRINT 12, (ACTGRD(n),n=1,nmax)
WRITE (63,12) (ACTGRD(n),n=1,nmax)

12 FORMAT(1h,/,22X,5110,25X,55('_'))
112 continue

DO 2 k=1,kmax

IF(i.ne.l.or.l.ne.1) go to 113
PRINT 13,k,(BARLEV(i,l,j,k,n),n=1,nmax)
WRITE(63,13) k,(BARLEV(i,l,j,k,n),n=1,nmax)

13 FORMAT (1h,10X,I10, 1 1',5F10.1)
113 continue

2 CONTINUE

DO 5 k = 1,nmax
DO 5 n = 1,kmax
RLTION(i,l,k,n)=BARLEV(i,1,1,k,n)
DO 5 j = 1,jmax-1

RLTION(i,l,k,n) = MAX(RLTION(i,l,k,n),BARLEV(i,l,j+1,k,n))

5 CONTINUE
IF(i.ne.1.or.l.ne.1) go to 115

PRINT 14,CNDVAR(i),ACTVAR(1)
WRITE(63,14) CNDVAR(i),ACTVAR(1)

14 FORMAT(1h,//,17x,' Composite Relation Table for ',A5,' ==> ',A5)
PRINT 15, (ACTGRD(n),n=1,nmax)
WRITE(63,15) (ACTGRD(n),n=1,nmax)

15 FORMAT (1H1,22X,5I10,/,15X,58('-'))
115 continue

DO 7 k = 1,kmax
IF(i.ne.1.or.l.ne.1) go to 116
PRINT 16,k,(RLTION(i,l,k,n),n=1,nmax)
WRITE(63,16) k,(RLTION(i,l,k,n),n=1,nmax)
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16 FORMAT(1h,10X,I10,'I',5F10.1)
116 continue
7 CONTINUE

1 CONTINUE

CLOSE(63)
RETURN
END
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B.3.7 Sub-Program DECISION

SUBROUTINE SUBDCSION (RLTION,CNDMF,DCSION)

INTEGER ACTGRD
COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax

DIMENSION CNDMF(5,5,5),RLTION(5,5,5,5),SHANY(5,5,5,5,5)
!,YAEL(5,5,5,5),DCSION(5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT

OPEN(UNIT=64,FILE='DECISION.TBL')
DO 1 i = 1,imax

DO 1 1 = 1,1max
DO 1 j = 1,jmax

DO 2 n = 1,nmax
DO 2 k = 1,kmax

SHANY(i,l,j,k,n) = MIN(CNDMF(i,j,k),RLTION(i,l,k,n))

2 continue
c!^do 100 k=1,kmax
c! 100 print 110,i,l,j,k, (shany(i,l,j,k,n),n=1,nmax)
c! 110 format(1h,2x,4i5,5f5.0)

DO 3 n = 1,nmax
YAEL(i,1,J,n)=SHANY(i,1,J,1,n)
DO 3 k = 1,kmax-1

YAEL(i,l,j,n) = MAX(YAEL(i,l,j,n),SHANY(i,l,j,k+1,n))

3 CONTINUE
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C^PRINT 10, (YAEL(i,l,j,n),n=lonmax)
C^WRITE(64,10) (YAEL(i,l,j,n),n=1,nmax)
C 10 FORMAT(1h,10X,5F10.1)

1 CONTINUE

CALL SUBDFUZD (YAEL,DCSION)

DO 5 i = 1,imax

PRINT 11,CNDVAR(i)
C^WRITE(64,11) CNDVAR(i)

11 FORMAT(1H,///,25X,'Fuzzy Decision Table for Condition:'
@,2x,A5,/,20x,55('*'))
PRINT12, (ACTVAR(1),1=1,1max)

C^WRITE(64,12) (ACTVAR(1),1=1,1max)
12 FORMAT(1H,/,40X,'ACTION VARIABLE',/,20x,5a10,/,10x,60('-'))

DO 5 j = 1,jmax

PRINT 13,CNDUT(J),(DCSION(i,l,j),1=1,1max)
WRITE(64,14) (DCSION(i,j,1),1=1,1max)

13 FORMAT(1H,12X,A6,'I',5F10.1)
14 FORMAT(5F10.2)

5 CONTINUE

CLOSE(64)
RETURN
END
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B.3.8 Sub-Program DEFUZZY

SUBROUTINE SUBDFUZD(YAEL,DCSION)
C

INTEGER ACTGRD
COMMON/COM1/ CNDVAR(5),CNDQNT(5),ACTVAR(5),ACTQNT(5),ACTGRD(5)
COMMON/COM2/ imax,jmax,kmax,lmax,mmax,nmax
DIMENSION YAEL(5,5,5,5),DCSION(5,5,5)

CHARACTER*5,CNDVAR
CHARACTER*6,CNDQNT
CHARACTER*5,ACTVAR
CHARACTER*5,ACTQNT

C

DO 1 i = 1,imax
DO 1 1 = 1,lmax
DO 1 j = 1,jmax

C

DCSION(i,l,j) =
DO 1 n = 2,nmax
DCSION(i,l,j) =

1 CONTINUE
DCSION(i,l,j) =

C

RETURN
END

*eof

YAEL(i,l,j,1)*ACTGRD(1)

DCSION(i,l,j)+YAEL(i,l,j,n)*ACTGRD(n)

DCSION(i,l,j)/nmax
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B.4 Subprogram LEARN

SUBROUTINE LEARN(K,PRFRS,THOLRN,CNGATR,RULSET)
COMMON/COM1/ CNVAR,CNQNT,ACVAR,ACQNT
DIMENSION RULSET(5,5,4),PRFRS(5),PRFRSO(5),CNGATR(4)
#,THOLRN(5),DPRFRM(5),RULS(5,5,4)
CHARACTER*5,CNVAR(5)
CHARACTER*6,CNQNT(5)
CHARACTER*5,ACVAR(4)
CHARACTER*5,ACQNT(5)
CHARACTER*5,RULS

INTEGER RULSET

OPEN(UNIT=70,FILE='RULS.LRN')
OPEN(UNIT=71,FILE='RULSET.LRN')
IF (K.EQ.1)THEN

DO 1 1=1,5
PRFRSO(I)=PRFRS(I)
DO 1 J=1,5
DO 1 L1=1,4
RULSET(I,J,L1)=3

1^RULS(I,J,L1)=ACQNT(3)
RETURN

ENDIF

L=K -1

DO 2 1=1,5
DPRFRM(I)=(PRFRS(I)-PRFRSO(I))/ABS(PRFRS(I))

IF(DPRFRM(I)*SIGN(1.,CNGATR(L)).LE.-THOLRN(I))THEN
RULSET(I,1,L)= 5
RULSET(I,2,L)= 4
RULSET(I,3,L)= 4
RULSET(I,4,L)= 3
RULSET(I,5,L)= 2

ELSEIF(DPRFRM(I)*SIGN(1.,CNGATR(L)).GE.+THOLRN(I))THEN
RULSET(I,1,L)= 1
RULSET(I,2,L)= 2
RULSET(I,3,L)= 2
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RULSET(I,4,L)= 3
RULSET(I,5,L)= 4

ENDIF

DO 6 J=1,5
6^RULS(I,J,L)=ACQNT(RULSET(I,J,L))

2 CONTINUE

DO 3 i = 1,5
WRITE(70,10) CNVAR(i)

10^FORMAT(1h0,//,30X,'Rules for Condition Variable:',A5,/)
WRITE (70,11) (ACVAR(1),1=1,4)

11^FORMAT(1H,22X,4A10,/,20x,55('-'))

DO 3 J = 1,5
WRITE(70,12) CNQNT(j),(RULS(i,j,1),1=1,4)

12^FORMAT(1h,15x,A6,'I',4A10)
WRITE(71,13)(RULSET(i,j,1),1=1,4)

13 FORMAT(4I10)
3 CONTINUE

CLOSE(70)
CLOSE(71)
RETURN
END
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