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Abstract

Metal cutting tools experience cutting forces distributed over a small chip-tool

contact area. When the magnitude of the stresses induced by the cutting forces

exceeds the tool material fatigue strength, failure of the cutting tool results. In this

thesis, stress analysis in cutting tools is presented in order to predict the location and

modes of tool failures.

The stress analysis of cutting tools is presented using both analytical and numer-

ical (Finite Element) based methods. First, various cutting force distributions on

the rake face of the tool and analytical cutting tool stress solutions available in the

literature are surveyed. It is then shown that the previous analytical solutions are in-

correct because they directly applied the infinite wedge solution to determine stresses

in the loaded region of the cutting tool. In this thesis, the tool and the boundary

stresses are considered both in the loaded and free region. For a polynomial boundary

stresses on the rake face and zero boundary stresses on the flank face, the stresses

in a two-dimensional cutting tool are determined using the infinite wedge solution.

The analytical cutting tool stress distributions obtained agrees well with finite ele-

ment solutions and published photoelastic experimental stress distributions. From

the stress distribution obtained, it is shown that the critical maximum tensile stress

occurs at the end of chip-tool contact and it results in initiation of cracks and final

fracture of the whole loaded region. The critical maximum compressive stress occurs

on the flank face close to the cutting edge which results on cutting edge permanent

deformation. The critical maximum shear stress occurs at the cutting edge and it

results in cutting edge chipping.

The possible extension of the two-dimensional solution to determine stresses in
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end mill flutes is considered. A comparison of a finite element solution of an end mill

flute and the two-dimensional solution obtained above (for the same wedge angle and

boundary load distribution) shows agreement at the cutting edge while at the end of

chip-tool contact the two-dimensional solution gives an upper bound estimate. Thus

the conclusions reached for tool failure in the loaded region from the two-dimensional

solution is also applicable in end mill flutes. At the end mill shank, stress predictions

using a cantilevered beam solution agrees with a finite element solution. The stress

distribution shows shank fracture either at the fixed end of the end mill where it is

attached to the chuck or at the flute section closest to the circular portion of the end

mill.

In this study for both orthogonal cutting tools and end mills, good correlation is

obtained between predicted and observed in-service cutting tool failures. Therefore,

the proposed cutting tool stress analysis approach may be recommended for cutting

tool design and selection of optimum machining conditions.
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Chapter 1

Introduction

Design and failure analysis of cutting tools and selection of optimum cutting con-

ditions require knowledge of the stress distribution in the cutting tools. The stress

analysis approach used to determine the stresses depend on where the stress predic-

tions are required. When the stresses far from the cutting edge (i.e. at the shank) are

required, beam equations with a concentrated load at the cutting edge can be used.

When the stresses outside the loaded region within the wedge shape are needed, an

elasticity solution with a concentrated load at the cutting edge could be used. How-

ever, when the stresses within the loaded region must be predicted then the actual

load distribution along tool-chip contact should be used in the elasticity solution.

The boundary load distributions on cutting tools are determined using one or more

of the following techniques:

• Split-tool method,

• Photoelasticity,

• Slip-line solution.
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CHAPTER 1. INTRODUCTION	 2

Once the boundary load distribution is determined using one of the methods listed

above, the stresses within the cutting tool may be determined either:

• Analytically, or

• Numerically (Finite Element Method or MeIlin Transform).

The analytical solution for a concentrated load at the cutting edge is based on

the elasticity solution given by Frocht [1]. The analytical solution for the distributed

load along tool-chip contact is based on Michell's [4] general stress function for two-

dimensional problems which was subsequently applied to an infinite wedge prob-

lem by Timoshenko [5]. Archibald [6], Betaneli [7], and others applied the infinite

wedge solution to determine the stress distribution in the finite cutting tool, i.e.

they assumed the infinite wedge solution to be applicable to determine stresses in

two-dimensional cutting tools.

For a given cutting tool geometry and boundary load distribution, numerical meth-

ods could be used to determine the stress distribution in a cutting tool. The two nu-

merical methods used in the stress analysis of cutting tools are the MeIlin Transform

and the Finite Element Method (FEM). The Mellin Transform method is described by

Tranter [9], and cutting tool stress solutions using this method are given by Thomason

[10].

From the discussion above, the analytical approach available to determine the

stresses in the loaded region of a cutting tool is based on the assumption that the

infinite wedge solution can be applied to determine the stresses in the finite cutting

tool. It is important to verify this assumption because the solutions obtained by using

this approach may sometimes lead to incorrect conclusions. To critically investigate
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this assumption and to conclude whether and under what conditions this approach

could be applied is the purpose of the first phase of this work.

In the second phase of this work, the critical regions of cutting tools where breakage

is likely to occur will be predicted. For this an orthogonal cutting tool and an end mill

will be considered. Analytical methods are first used to predict the critical stresses

then these solutions will be verified with numerical methods. This verification is

useful to indicate whether analytical solutions can be applied in cutting tool failure

analysis.

A brief description of the contents of the chapters which follow are given below.

The principles of the experimental methods used to determine the boundary load

distribution in cutting, and some results by previous workers of these distributions

are discussed in Section 2.3. In Section 2.4 and 2.5 the analytical stress equations

and the solutions obtained by previous workers are presented.

In Section 3.2 the method for calculationg stresses in a cutting tool are calculated

for a general boundary load distribution is shown. Section 3.4 gives the finite element

solution for the low speed photoelastic boundary load distribution. Finally in this

chapter previous analytical solutions and finite element solutions will be compared,

and the types of load distributions that the analytical solutions may be used will be

identified.

Analytical and finite element solutions will be compared in Chapter 4 for the types

of load distributions where the analytical solution may be applied. These results will

also be compared to previous experimental results for similar boundary conditions.

In Section 4.5 the critical regions in two-dimensional cutting tools and their modes

of failure will be determined.
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In Chapter 5 the stress analysis of an end mill is presented. The critical regions

for breakage of an end mill is shown. The possibility of using a simpler analytical

solution to determine the stresses in these critical region is discussed.

Finally in Chapter 6 the results are summarized and conclusions drawn. The

recommendations for future work for a better understanding of the stress distribution

in cutting tools are given.



Chapter 2

Literature Review

2.1 Introduction

Stress analysis of a metal cutting tool deals with the determination of the stress

distribution in the cutting tool produced by cutting forces. This stress distribution

provides the critical regions of the cutting tool where breakage is likely to occur, and

it also helps in selecting the maximum cutting force that the cutter can withstand

without breakage. Experience in metal cutting indicates that tools usually break

near the cutting edge where the loads are applied, and therefore to predict these

tool failures stresses near the applied loads have to be determined. The method of

strength of materials which is only applicable further away from applied loads and

fixed boundaries can not be used and therefore in this case the more general theory

of elasticity method is used.

Stress-strain relations and the basic equations of theory of elasticity is described by

Timoshenko [5]. In elasticity the solution of a two dimensional problem is the stress

function which satisfy the biharmonic and the boundary conditions of the problem.

Once the stress function for the given problem is known then the stress components

5
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can be determined by differentiation of the stress function and satisfying the boundary

conditions of the problem.

In cutting tool stress analysis, the boundary conditions are determined experi-

mentally using one of the following methods:

• Split-tool

• Photoelasticity

• Slip-line field.

The principle behind these methods and some boundary load distribution results by

previous workers are reviewed in Section 2.3.

Once the boundary load distributions are known, the stresses within the tool may

be determined using one of the following:

1. Analytical methods with:

• concentrated load approximation.

• distributed boundary loads.

2. Numerical methods:

• Mellin transform

• Finite Element Method (FEM).

The analytical methods are reviewed in Section 2.4. The MeIlin Transform method

is described by Tranter [9], and cutting tool stress solutions using this method are

given by Thomason [10]. The finite element method is described by Cook et al [8].
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V

Figure 2.1: Schematics of an orthogonal cutting process

The determination of boundary conditions on cutting tools require the under-

standing of the principles and terminologies used in metal cutting. Therefore, this

chapter is started by reviewing relevant metal cutting principles.

2.2 Metal cutting

Metal cutting principles are discussed by Shaw [12], Trent [13], Boothroyd [14] and

others. Here metal cutting principles and terminologies required in this study will be

briefly summarized.

All metal-cutting operations are likened to the fundamental process illustrated in

Fig. 2.1 in which a wedge-shaped tool with a straight cutting edge is constrained

to move relative to the workpiece in such a way that a layer of metal is removed in

the form of a chip. The thickness of material removed from the workpiece is known
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rake
angle

rake
face

clearance
or flank
face

Figure 2.2: Definition of terms used in cutting

as the depth of cut t. The width of the material removed is the width of cut b. If

the cutting edge is at right angles to the direction of the relative work-tool motion,

Fig. 2.1, the cutting mechanism is said to be orthogonal, otherwise the term oblique

cutting is used. Two-dimensional orthogonal cutting is widely used in research works

because the principles developed is also generally applicable to the three-dimensional

oblique cutting. The surface along which the chip flows (Fig. 2.2) is known as the

rake face of the tool, and it intersects the tool flank face to form the cutting edge.

The angle the rake face makes with the vertical to the machined surface is called the

rake angle -y. The clearance angle is the angle between the machined surface and

the flank face. This angle is necessary to prevent rubbing between the tool and the

machined surface.

The mechanism of chip formation could be explained using a photomicrograph
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-

•

%A;

Figure 2.3: Photomicrograph of a partially formed chip, Trent [13]

of a partially formed chip shown in Fig. 2.3, Trent [13]. Such a photomicrograph

is obtained by suddenly stopping the cutting operation and taking a photograph

through a microscope of a polished and etched section of a partially formed chip. The

device used to suddenly stop the cutting operation is called a 'quick stop' mechanism.

Examination of Fig. 2.3 shows there is a plane AB in which some change in the metal

structure is taking place. This plane is called the shear plane. If the work material

is ductile so that it does not fracture first, then there will be plastic flow along that

plane and the chip will be created and will glide along the rake face of the tool. The

second point to be observed from Fig. 2.3 is that close to the cutting edge, where the

normal loads are very high, the chip is in intimate contact or is under seizure with

the rake face of the tool. Under this condition relative movement cannot occur at the

interface between tool and chip and instead the movement involves shearing within
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Figure 2.4: Principles of split-tool dynamometer

the chip close to the interface. Thus, the shear stress applied on the cutting tool at

the cutting edge is close to the yield shear strength of the workpiece material.

2.3 Boundary load distributions

2.3.1 Split-tool method

Stress analysis of a cutting tool requires prior knowledge of the applied normal and

shear cutting force distributions or boundary stresses along chip-tool contact. Bound-

ary stresses in cutting tools have been determined using split-tool dynamometers by

Kato et al [15], Barrow et al [16] and Childs et al [17].

The working principle of the split-tool dynamometer can be described using the

schematic diagram of the dynamometer shown in Fig. 2.4. The dynamometer consists

of two parts separated by an air gap (about 0.1 mm) and supported independently.
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The air gap on the rake face is parallel to the cutting edge. The two tool parts are

identified as the front-tool and the rear-tool which indicate their relative position

in the composite tool. Usually, only forces transmitted through the rear-tool are

measured.

For a given machining condition, the distance of the rear-tool from the cutting

edge xi, the shear and normal forces transmitted through the rear-tool (F.), and

(F„), respectively, are measured (Fig. 2.4). Then the front-tool of the composite

tool is replaced by a front-tool having a different land width resulting in a new value

x2+1 for the distance of the rear-tool from the cutting edge. For the same machining

conditions, the change in x, results in a change in the chip and rear-tool contact

length, and therefore change in the forces on the rear-tool. For the new value of xa+1,

the shear and normal forces (F8)1+1 and (F)2+1 transmitted through the rear-tool are

measured.

From the above measurements, the boundary stresses at a distance of (xi -Fxi+i)/2

from the cutting edge can be calculated using

(F„)2+1 — (F„),
Cis =  	 (2.1)

b(Xj+i — xi)

(F3)2+1 — (Fs). 
Ti = 

b(Xj+i — xi)

where,

= width of cut

x,	 = distance of the rear-tool from the cutting edge for the ith front-tool

Crt	 = normal stress at a distance of (xi + xi+i )/ 2 from the cutting edge

Ti	 = shear stress at a distance of (x. xi+i)/ 2 from the cutting edge

(Fn)i = normal force on the rear-tool for the ith front-tool

(2.2)
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stress

Figure 2.5: Cutting boundary load distribution result from split-tool dynamometer, Kato
[15], Barrow [16], and Childs [17]

= shear force on the rear - tool for the ith front - tool

Barrow [16] has shown that a better way to obtain a smoothed boundary stresses is

to first plot the normal and shear force versus rake distance curves and to use the

instantaneous slope of the curves to determine the stresses instead of the average

slopes indicated by Eqs. (2.1) and (2.2).

Previous boundary stress distribution results using split-tool dynamometer

As mentioned above, various workers have used the split-tool technique to determine

the boundary load distribution on a cutting tool.

Kato et al [15] determined the boundary load distribution using high-speed steel

split-tool dynamometer while machining aluminium, copper, zinc and lead workpieces.

The general boundary load distribution obtained is shown in Fig. 2.5. They found
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that the region of constant shear stress (also called sticking region) is equal to the

chip thickness and the contact length lc is about twice the chip thickness. They also

found that the ratio of the contact length to the depth of cut depend on the workpiece

material, being maximum for aluminium and minimum for zinc.

Barrow et al [16] used a carbide split-tool dynamometer to determine the boundary

load distribution while machining a nickel-chromium-steel workpiece. The results

obtained are also as shown in Fig. 2.5. They found that the sticking region and

contact length increase with increasing depth of cut, but decrease with increasing

velocity.

Childs et al [17] modified the conventional split-tool by changing the inclination

of the air gap with the cutting edge from 00 to 450• They used brass, aluminium,

and mild steel workpieces. Their results are again similar to those shown in Fig. 2.5.

However, in this case the ratio of sticking region to contact length for steel is much

higher (about 0.7). In their conclusions, Childs et al. have indicated that more work

is required to assess the reliability of their method.

Due to design limitations in these experiments (i.e. minimum front-tool strength

and air-gap requirement) it was not possible to determine the boundary stresses near

the cutting edge (within 0.2 mm) It was also observed (Barrow [16]) that at a low

depth of cut, the air-gap interferes in the chip formation processes and therefore alters

the forces. This implies that the boundary load distribution near the cutting edge

from this method may not be reliable.

2.3.2 Photoelasticity

Another technique used to determine the boundary load distribution in a cutting tool

is the photoelastic method. The photoelastic method of stress analysis is described
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Figure 2.6: Orthogonal cutting of a lead workpiece with a photoelastic tool, Amini [20]

in detail by Frocht [1]. Here a brief review of this technique applied to cutting will

be made.

Certain materials, notably plastics such as epoxy resin, celluloid and bakelite

transmit polarized light along the principal stress axes at different velocities when

stressed. This difference in velocity of the transmitted light produce interference

fringe patterns called isochromatics which are used in the measurement of stresses in

the photoelastic method. The apparatus used to determine stresses in the photoelastic

method is called a polariscope.

In the photoelastic method of cutting tool stress analysis, a photoelastic tool is

used to machine a low strength workpiece at low cutting speeds (Fig. 2.6). Lead

is typically selected as the workpiece because it is soft enough to be cut without

breaking the photoelastic cutting tool. The cutting tests are conducted at low speeds
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to avoid the rapid drop in strength with increase in temperature of the plastic tool.

A milling machine is generally used in these orthogonal machining tests.

The cutting loads on the photoelastic tool produce fringe patterns, like those

shown in Fig. 2.6, which are related to the principal stress difference by

— cr3 = f0.1n11h	 (2.3)

where,

N = fringe order

h = tool thickness

= the algebraically larger principal stress

0-3 = the algebraically smaller principal stress

f, = fringe constant

In addition to the fringe patterns, the polariscope also gives the angle 0 between

cri and the x—axis. The locus of points having the same angle of inclination 0 is

called an isoclinic. Once the isochromatic N and isoclinic 0 are determined, the

shear stresses everywhere in the body are calculated using Eq. (2.3) and the shear

stress equation

T =yx
— 0-3 .
2
	 sin 20 (2.4)

Then one of the normal stresses is determined by numerical integration of the equation

of equilibrium
aa aT

xii-EY=0
aY	 ox

(2.5)
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Figure 2.7: Numerical integration of the equation of equilibrium to determine normal
stresses

for zero body forces (Y = 0), as (see Fig. 2.7)

y (97-x
v 	dycr =- (70

fy0 (IX

n ,c,
cryo	 c

OY
.;41

(2.6)

In the above equation ayo is determined from the principal stresses at the clearance

face (Fig. 2.7) using the normal stress equation

ay = o sin2 qS + (73 cos2	 (2.7)

and Eq. (2.3). The clearance face is a free boundary; as a result al = 0. Therefore

along the clearance face where a+ q5 = 7r/2, cry° = —L,Nsin2 a lh and is directly

determined from the fringe patterns and tool geometry.
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Once the stress in the y-direction everywhere in the tool is determined using Eq.

(2.6), then the normal stress in the x-direction is determined using the normal stress

relation given by

o-. = o•1, + .V(71 — c73)2 — 47-2.1i (2.8)

Thus, the photoelastic method can be used to determine the stress distribution

throughout the photoelastic tool including the boundary load distribution at tool-

chip interface.

Many workers have used the photoelastic method to determine the stress distribu-

tion in a cutting tool. The boundary load distribution results obtained by this method

can be roughly divided into two categories. The first category is the distribution for

low cutting speeds of about 1 in/min as obtained by Usui [18], Chandrasekaran [19]

and Betaneli [7] and is shown in Fig. 2.8. The second category is for the distribution

at relatively higher cutting speeds of about 100 in/min as obtained by Amini [20] and

Ahmad [21] and is shown in Fig. 2.9. The fringe patterns which are proportional to

the maximum shear stress contour lines, from the photoelastic cutting tests of Amini

[20], are shown in Fig. 2.6.

Boundary load distributions at lower cutting speeds.

Photoelastic boundary load distribution results at lower cutting speeds will be dis-

cussed here. Usui [18] obtained a value of 0.7 for the ratio of the sticking region to

the contact length for a tool having a seven degree rake angle. Chandrasekaran [19]

showed that the load distribution depends on the rake angle used: the sticking region

and the contact length for a positive rake tool increase with decrease in rake angle.

However, the ratio between sticking region to contact length was found to be almost
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stress

Figure 2.8: Cutting boundary load distribution result from photoelasticity at low cutting
speeds, Betaneli [7], Usui [18], and Chandrasekaren [19]

Figure 2.9: Cutting boundary load distribution result from photoelasticity at higher cutting
speeds, Amini [20] and Ahmad [21]
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independent of the rake angle and has a value close to 0.4. Betaneli [7], for a tool

having a 200 rake angle, obtained a value of 0.4 for the ratio of the sticking region to

the contact length.

Betaneli [7] has fitted a power law function for his lower cutting speed boundary

load distribution. This function is

Ia = Cfc1(1 — (rificin (2.9)

where,

o-o' =- maximum normal stress at the cutting edge of the photoelastic tool

= contact length in photoelastic cutting

r' = rake distance from cutting edge of the photoelastic tool

n = exponent of the parabola

By cutting lead with a photoelastic tool at 25.4 mm/min, depth of cut of .75 mm,

rake angle of 20° and wedge angle of 62°, Betaneli [7] found that the exponent of the

power law function n = 3.3.

The photoelastic normal distribution given by Eq. (2.9) can be used to determine

the boundary load distribution on metal cutting tools. If the shapes of the boundary

load distribution obtained from photoelasticity are assumed to be similar to those

in metal cutting, then the linear relationship between the two distributions can be

written as

(2.10)

(2.11)

where,
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a-, cr'	 = normal stresses distribution in metal cutting and photoelastic cutting

r, r'	 = rake distance in metal cutting and photoelastic cutting respectively

ao, a: = cutting edge applied normal stresses in metal cutting and photoelastic cutting

Substituting Eqs. (2.10) and (2.11) into Eq. (2.9), the boundary normal load distri-

bution on the metal cutting tool is obtained as

a = cr„,(1 — (r/1)")	 (2.12)

where,

cro = maximum normal stress at the cutting edge of a metal cutting tool

dc = contact length in metal cutting

r = rake distance from cutting edge of a metal cutting tool

n = exponent of the parabola

To determine the boundary load distribution from Eq. (2.12) for a metal cutting

tool, the contact length 4 and the maximum normal stress cro should be determined

from metal cutting tests and the exponent n is obtained from photoelastic cutting

tests.

The maximum normal stress in Eq. (2.12) could be determined from the average

normal stress on the cutting tool. This average stress is given by

F„
a =

av	 bl,

where,

crot, = average normal stress

= cutting force normal to rake face

(2.13)
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b = width of cut

/c = contact length

The average normal stress is also related to the normal boundary load distribution

by
0.. =1 fic 

udr	 (2.14)
/c o

Substituting the parabolic distribution given by Eq. (2.12) into Eq. (2.14) and

simplifying, the expression obtained for the maximum normal boundary stress is

n + 1
a 0 -= 	 (Inv

n
(2.15)

The normal boundary load distribution of Eq. (2.12) is thus completely determined

from the photoelastic results which gives the exponent n, and from actual metal

cutting tests which provide the contact length, normal cutting force, width of cut

and the average normal stress. The boundary shear stress is determined by assuming

the shear stress to be related to the normal stress through the coefficient of friction.

Therefore, the boundary shear stress is given by

T = ACT
	

(2.16)

In the above equation the friction coefficient is calculated using the relation

F,
14 — Fn

where,

F,., = boundary force normal to rake face

F. = boundary force parallel to rake face

(2.17)
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Boundary load distribution for higher cutting speeds

Photoelastic boundary load distribution result at higher cutting speeds will be dis-

cussed here. Ahmad [21] has fitted a polynomial function for his higher speed bound-

ary load distributions and they are given by

= 2.91 — 1.53r' + .214r'2 — .0033r'3 (2.18)

Ti = 1.63 — 1.24r' + .315r'2 — .0266r'3 (2.19)

where,

a' = normal boundary stress on the photoelastic tool, kg/mm2

Ti = shear boundary stress on the photoelastic tool, kg/mm2

r' = rake face distance from the cutting edge of the photoelastic tool, mm.

These equations were obtained for a photoelastic tool model having a rake an-

gle of 6°, depth of cut of .203 mm, width of cut of 5.1 mm, cutting speed of 2.93

m/min and contact length of 4.5 mm. As described in the previous section, the above

equations can also be used to determine the stress distribution in metal cutting tools

by assuming the shape of the boundary stress on both photoelastic tool and metal

cutting tool to be similar.

In the photoelastic boundary load distribution for higher cutting speeds shown in

Fig. 2.9, there is little sticking region (constant shear stress near the cutting edge)

and this fact has been confirmed by Barrow [16] using split-tool dynamometer where

he shows a decrease in the sticking region with increase in cutting speed. Therefore,

at higher cutting speeds where the sticking region is small, the shape of the boundary

load distribution from split-tool and photoelasticity are approximately similar.
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Figure 2.10: Stress components on shear planes on an infinitesimal element

2.3.3 Slip-line theory

In the previous sections the experimental methods used to estimate the boundary load

distribution in metal cutting tools were discussed. In this section a purely theoretical

method from plasticity theory can be used to approximate the applied normal and

shear stresses at the cutting edge is discussed.

This plasticity solution, as proposed by Loladze [37], makes use of the properties

of slip-lines along the shear plane to determine the normal and shear stresses at the

cutting edge. The state of stress throughout a rigid, perfectly plastic solid material

under deformation can be represented by a constant yield shear stress k in plane strain,

and a hydrostatic stress p which in general varies from point to point throughout the

material. The two maximum shear stress planes at each point of the material under

deformation are perpendicular to each other and form two orthogonal families of
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Figure 2.11: Derivation of co-ordinate stresses from the shear plane stresses

curves known as slip-lines. These slip-lines are labelled as a and 0 as shown in Fig.

2.10. The directions of these slip-lines are not arbitrary and are determined from

the direction of the shear stresses. The shear stress directions and the corresponding

direction of the slip-lines are as shown in Fig. 2.10. Another parameter which is

important in slip-line theory is the angle 0 measured in the counter-clockwise direction

from the x-axis to the a slip-line, Fig. 2.10. The stresses in the x and y-directions

in terms of the hydrostatic pressure and yield shear stress can be derived from the

Mohr's circle shown in Fig. 2.11, and are given by

uz -.= —p — k sin 20	 (2.20)

Cry = —p + k sin 20	 (2.21)

rii, = k cos 20	 (2.22)
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In the above equations p is considered positive when in compression. Substituting

the above equations into the equations of equilibrium for the case of no body forces,

and taking the a-line to coincide with the x-axis at the origin (Johnson [23]) yields

along an a-line

Op = —21c60	 (2.23)

and along f3-line

Op = 21c60	 (2.24)

where,

Op = change in hydrostatic pressure

k = shear yield stress

Scb = change in the angle between x-axis and a slip-line (radian).

These equations are known as the Hencky equations and together with the com-

ponent stresses given by Eqs. (2.20) to (2.22) are all that are required to determine

the normal and shear boundary stresses at the cutting edge.

The use of the above equations to estimate the applied stresses at the cutting

edge B of Fig. 2.12 is discussed next. Since the shear plane passing through A and

B of Fig. 2.12 is a maximum shear stress line it is a slip-line. From the knowledge

of the direction of the shear stress along the shear plane, the orientation of the slip

lines are as shown in Fig. 2.12 and the shear plane is a /3-line. At point A the plane

perpendicular to the x-direction is a free boundary (u. = 0 and -r.i, = 0), therefore

it is a principal plane. The angle between the normal to the principal plane and the

maximum shear plane is 7r/4, and therefore at point A the angle between the x-axis

and the a-line is OA = 7r/4 + 7r/2 = 37r/4. Applying Eq. (2.20) to point A, the
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Figure 2.12: Boundary stresses at the cutting edge using slip line theory

hydrostatic compressive stress is found to be PA = k. It is known that along the rake

face, at the cutting edge, the work material is in shear yielding and therefore this

face is an a-slip line. From Fig. 2.12 it can be seen that at point B, OB =- 7r — 7 and

therefore the change in angle 0 from A to B is 80 = 7r/4--y. For a # slip-line, from Eq.

(2.24) the hydrostatic stress at the cutting edge therefore is pB = 2k(1/2 -1-7r/4 —

Finally, from Fig. 2.12 at point B it can be seen that the applied normal stress is

equal to the hydrostatic pressure and the applied shear stress is equal to the yield

shear strength of the workpiece, and these yield

ac, = 2k(1/2 ir/4
	

(2.25)

To = k	 (2.26)

where,

ao = normal boundary stress at the cutting edge
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To = shear boundary stress at the cutting edge

k = yield shear strength of the work material

7 = rake angle

The above equations provide the applied normal and shear stresses at the cutting

edge and they can be used to estimate the cutting edge stresses. They do not take

into account the strain-hardening and strain-rate effects of real materials, and there-

fore their correlation with experimental values are approximate. However, as shown

by Chandrasekaren [19] for non-strain hardening material at lower strain-rates good

correlation is obtained.

2.4 Analytical stress analysis of cutting tools

2.4.1 Analytical stress analysis of cutting tools for a concentrated load
approximation.

When the stresses far from the cutting edge within the wedge shape are required, the

solution with single load approximation by Frocht [1] may be used. This solution is

derived from the stress function

ik ,-- CrO sin 0	 (2.27)

where,

C = a constant,

r and 0 are as defined in Fig. 2.13.

The stress components are derived from the stress function using the relations

320

cr8	 37-2	
(2.28)

1 alk	 1 a20
(2.29)

(Tr r Or + r2 ae2
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Figure 2.13: Concentrated cutting load at the cutting edge

a 1 ao
Tro =	 ( 	 )

ar r ao (2.30 )

where V) is the stress function.

By substituting Eq. (2.27) into Eqs. (2.28) to (2.30), and applying force equi-

librium for the cutting tool in Fig. 2.13, the stress distributions within the tool are

obtained as
2P (cos A cos 0 sin A sin 0)

cir = 	 +  	 (2.31)
	rb a + sin a	 a — sin a )

	0-8 = 0.	 (2.32)

	

7-re = 0.	 (2.33)

where,

P = concentrated load on the tool, P = ‘ / Fn2 + F32

F, = shear force on rake face
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Fn = normal force on rake face

b = width of cut

a = wedge angle

r = radial distance from cutting edge

p = average friction coefficient, A = F,IF„

A = angle between tool axis of symmetry and force P, A = tan'(1/p) — a/2

0 = angle measured from tool axis of symmetry, positive when as shown in Fig. 2.13

The component stresses are shown in Fig. 2.15.

The above equations were used by Kaldor [2] to determine the optimal tool ge-

ometry and by Chandrasekaran [3] to calculate fracture stresses in milling cutters.

Examination of Eq. (2.31) shows that at the cutting edge where r = 0, the radial

stresses is undefined and therefore this solution can not be used to estimate stresses

close to the cutting edge. However, far from the cutting edge within the wedge shape

this solution may be applicable. This will be investigated in the current study. An

important conclusion that can be made from Eq. (2.31) is that for a given cutting

tool and cutting conditions, further from the cutting edge (i.e. as r increases) the

radial stress decreases. This decrease in stress further from the cutting edge is due

to the increase in resisting area or section modulus of the wedge.

2.4.2 Analytical stress analysis of cutting tools for distributed boundary
loads.

When the stresses near the cutting edge where the cutting loads are applied are re-

quired, the actual load distribution along tool-chip contact should be used. Elasticity

solution applicable for a distributed load on an infinite wedge may be used to de-

termine the stress distribution in the loaded region of the cutting tool. The infinite
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Figure 2.14: Distributed load on the rake face

wedge solution for distributed loads is discussed in this section.

The generalized stress function for two dimensional problems in polar coordinates

was derived by Michell [4]. This stress function was then used by Timoshenko [5]

to determine the stress distribution in an infinite wedge for polynomial boundary

load distributions. The infinite wedge solution was letter used by Archibald [6] and

Betaneli [7] and others to determine the stress distribution in metal cutting tools.

The generalized stress function derived by Michell [4] is given as

V) = ao log r + bor 2 + c0r2 log r + d0r20 + 40

+ —

a1 re sin 6' -I- (bir3 + a:1r + blir log r) cos 19
2

ci
— —r0 cos 0 + (d1r3 + c; r _1 + ce r log r) sin 0

2	 i
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00
+ E(anrn + bnrn+2 + anr-n + bn r -n-F2 ) COS nO

n=2

00

+ E(enrn + dnrn+2 + cni r + dn r- n-I-2
) 

sin nO
n=2

(2.34)

where,

r and 0 are as defined in Fig. 2.14 and a0, b0, c0, c/0, ... are constants.

The stress components are determined by substituting Eq. (2.34) into the compo-

nent stress equations (2.28) to (2.30) and taking only terms containing rn with n > 0.

The results of this substitution as given by Timoshenko [5] and Archibald [6] for the

tangential (a9), radial (cr,) and shear (r,.9) stress components as shown in Fig. 2.15

are:

ce = 2b0 + 240 + 2a2 cos 20 + 2c2 sin 20

00

+ (n + 1)(n + 2)rn[bn cos nO + dn sin nO
n=1

+ an+2 cos (n + 2)9 + cn+2 sin (n + 2)0], 	 (2.35)

a-, = 2b0 + 2c/00 — 2a2cos29 — 2c2 sin 219

00

— E (n + 1)rn[(n — 2)(bn cos nO + 4 sin n8)
n=1

+ (n + 2){an+2 cos (n + 2)0 + en-0 sin (n + 2)01],	 (2.36)

Tr° = —d0 + 2a2 sin 29 — 2c2 cos 29
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Figure 2.15: Stress components in polar co-ordinate on an infinitesimal element of a cutting
tool

00

+ E rn(n + 1)[n(by, sin ne — d, cos ri9)
n=1

+ (n + 2).(an+2 sin (n + 2)8 — c„+2 cos (n + 2)01] 	 (2.37)

How the above equations may be used to determine the stress distribution within

the loaded region of the tool will be discussed in the following section and in Chapter

3.

2.5 Previous analytical cutting tool stress solutions

2.5.1 Cutting edge stresses

Archibald [6] used the stress component equations (2.35) to (2.37) to determine the

stresses at the cutting edge (r = 0 and 8 = 0). He assumed a linear boundary
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rake
distance

Figure 2.16: Linear cutting load distribution assumption, Archibald [6]

load distribution to determine the boundary stresses from cutting forces. This linear

normal load distribution is given by

a = ao(1— r/lc)	 (2.38)

where,

a = normal boundary load distribution

r = rake distance from cutting edge

ic = contact length.

The normal stress at the cutting edge determined by Archibald [6] from his linear

load distribution assumption and power measurements is given by

cosi3
a°, 3.36(88.24 -y)

cos(i3 —
	 ,y)
	

(2.39)

where,
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-y = rake angle (deg)

/3 = friction angle (deg)

a° = maximum boundary normal stress at the cutting edge (kpsi)

In his analysis, Archibald used a chip-tool contact length of twice the depth of cut

(dc = 2t). He indicated this length to be determined experimentally. The boundary

shear stress is determined from the coefficient of friction and the normal boundary

load distribution as T = lair . The clearance angle used was 50 and the wedge angle a

is related to the rake angle 'y by a = 85 — 'y.

For the linear boundary load distribution, from the stress component equations

(2.35) and (2.37), n = 0 and 1 and the eight constants bo, do, az, cz, b1, d1, az, and cz

can be determined by substituting the linear boundary load distributions on the rake

face, and the zero load distributions on the flank face, into Eqs. (2.35) and (2.37)

and solving the equations obtained simultaneously for the constants. Then the stress

components at the cutting edge are determined by substituting the determined con-

stants back into equations (2.35) to (2.37). The solution obtained for the rake face

radial stress at the cutting edge by Archibald [6] using this procedure is given by

Ur =
a	 tan a(a tan a + 1) — a
	  CFI 01 	 ITO I
tan a — a	 (tan a — a) tan a

(2.40)

where,

Cr r	 = radial stress parallel to the rake face at the cutting edge

a	 = wedge angle, radians

I o-01 = magnitude of normal stress at the cutting edge on the rake face

iTol = magnitude of shear stress at the cutting edge on the rake face
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The radial stresses from Archibald's [6] solution for various coefficients of friction

(it = ro/cro) as a function of the wedge angle a, as determined from Eq. (2.40) and

Eq. (2.39), are shown in Fig. 2.17. In the current study the applicability of Eq.

(2.40) in cutting edge stress analysis will be verified numerically.

2.5.2 Stress distribution in the loaded region for parabolic load

As discussed in the previous section, Archibald [6] used the stress component equa-

tions for distributed loads, Eqs. (2.35) to (2.37), to determine the stresses at the

cutting edge of a tool. Betaneli [7] then went further and used these equations to

determine the stress distribution in the whole loaded region.

The method used by Betaneli [7] was similar to that used by Archibald [6] except

he replaced the linear load assumption by an experimental one. The experimental

boundary load distribution result by Betaneli [7] was described in Section 2.3.2. In

Section 2.3.2 it was noted that in addition to the results from photoelasticity, force

and contact length measurements are required to completely determine the boundary

stresses in metal cutting tools. Betaneli [7] took data from Zorev's [24] extensive

machining test results in order to determine the boundary load distribution on a

metal cutting tool. Zorev's results which were used by Betaneli [7] as discussed in

Section 2.3.2 are given in Table (2.1).
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Figure 2.17: Radial cutting edge stresses as a function of wedge angle and friction coefficient,
Archibald [6]. Here /3 is the wedge angle
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Table 2.1. Machining parameters

when cutting steel in water, Zorev [24].

-y = 200, v =.7m/min

t

Min

lc

min

It aav

kg/nun.'

0.2 0.5 0.36 60.0

where,

= rake angle

= depth of cut

lc = contact length

= velocity of tool relative to the workpiece

= coefficient of friction at chip-tool contact

= average normal stress along chip-tool contact

Using the relations given in Section 2.3.2 and the data from Table (2.1), the

boundary load distributions on a metal cutting tool can be determined completely.

For this load distribution, the stress distribution in the loaded region is determined

from the stress component equations (2.35) to (2.37). The principal stresses from

Betaneli's [7] solution are shown in Fig. (2.18).

The results discussed in the previous sections are the available analytical ap-

proaches in analytical cutting tool stress analysis. The limitation of these approaches

and the objectives of the current study are discussed in the next section.
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Principal stresses at and as plotted against r and
0 (with y . 2; p. 62" a = 0.2,1a and n . 3.33):
I - 6 . y . 20'; 2 - 0 - 3CP; 3 - 6 . 40'; 4 - 0 . 50';
5 -0.  60 3; 6 - 0 . 7l; 7 - 0 . 80 '; 8 - 0 . /3 + y . Pr.

Figure 2.18: Principal stress distributions in the loaded region for a parabolic load, Betaneli
[7]. Here a is the depth of cut and # is the wedge angle
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2.6 Objectives of the present work and methods of investi-
gation

From the discussion in the previous sections, stress on cutting tools have been esti-

mated analytically both at the cutting edge and in the whole loaded region. However,

these solutions were obtained on the assumption that the infinite wedge solution can

be applied to determine the stresses in the finite cutting tool. It is important to

verify this assumption because the solutions obtained by using this approach may

sometimes lead to incorrect conclusions. To critically investigate this assumption and

come up with a conclusion as to whether this approach could be applied or not, and

if it could be applied then to identify the conditions is the purpose of the first phase

of this work.

In the second phase of this work, the critical regions of cutting tools where breakage

is likely to occur will be predicted. For this an orthogonal cutting tool and an end

mill will be considered. Analytical methods will first be used to predict the critical

stresses then these solutions will be verified numerically. This comparison will indicate

whether analytical solutions could be applied in the failure analysis of cutting tools.

The steps that will be taken in this study are listed below:

• Compare the analytical solution by previous researchers with a finite element

solution for the same geometry and 'same' boundary load distribution.

• If there is difference between the two solutions then determine the cause for this

difference.

• From the understanding of the reason for the difference between the two solu-

tions identify the conditions (boundary load distribution) where the analytical
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solution may be used and verify this using an example.

• Compare the solution reached in the last step above with previous experimental

result for similar geometry and boundary load distribution.

• From the solution obtained above identify the critical regions of the two-dimensional

cutting tool and its modes of failure.

• Determine the stresses at critical regions of an end mill for shank breakage using

analytical methods.

• Verify the analytical solution for shank stresses obtained above numerically.

This result will indicate whether analytical methods are applicable in end mill

shank stress analysis.

• Compare the analytical solution obtained for the orthogonal cutting tool above

with numerical solution for an end mill flute. This result will indicate whether

analytical methods are applicable or not in end mill flute stress analysis.

• Finally give a conclusion of this work and suggest what future work should be

done to get an improved understanding of stress distribution in cutting tools.



Chapter 3

Stress Calculation in Orthogonal
Cutting Tools

3.1 Introduction

The analytical stress equations (2.35), (2.36), and (2.37) of the previous chapter were

used by Archibald [6], Betaneli [7] and others to determine stresses in cutting tools.

This analytical approach is based on the assumption that the infinite wedge solution

could be used to determine the stress distribution in the finite cutting tool. One of

the motivations of the present research is to critically investigate this assumption.

We begin this investigation by first verifying previous analytical solutions and then

comparing these results with numerical solutions.

The boundary load distribution used by Archibald [6] is linear and that of Betaneli

[7] is parabolic. These boundary load distributions are limited since they can not

include the different possible boundary load distributions on a cutting tool. In Section

3.2 an analytical solution for a polynomial load distribution which provides a more

general case is developed. The previous analytical solutions are compared with current

analytical solutions in Section 3.3. This is done to verify the previous analytical

41
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solutions and also to test the computer program for our analytical solutions. In

Section 3.4 these analytical solutions are compared with FEM results for 'identical'

boundaries and geometry. In Section 3.5 the results of this chapter are discussed and

conclusions regarding these analysis is drawn.

3.2 Analytical cutting tool stress calculation

In this section, the analytical method used to determine the stress distribution in a

cutting tool for a general polynomial boundary load distribution is discussed.

The stress equations (2.35), (2.36), and (2.37), can be rewritten in the following

form

a-0 = 2a0 + 21)09 + 2c0 cos 20 + 2d0 sin 20

E(i + 1)(i + 2)r1[ai cos i8 bi sin it)

ci cos (i + 2)9 + di sin (i 2)9],	 (3.1)

(Tr = 2a0 2b09 — 2c0cos28 — 243 sin 29

00

- E(i + 1)71(i — 2)(ai cos i8 bi sin i9 )

(i	 2){ci cos (i	 2)0 + di sin (i	 2)01],	 (3.2)
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TT° = —bo 2c0 sin 29 — 2d0 cos 20

+ > r(i 1)[i(ai sin i9 — bi cos it9

(i 2)(c2 sin (i 2)0 — di cos (i 2)8)]	 (3.3)

where

• = tangential stress

• = radial stress

Tr() = shear stress ai, bi, ci, and d, for i > 0 are constants

✓ and 9 , and the positive direction of the component stresses are as shown in Fig. 2.15.

The above equations can be written in a simplified form in terms of normal (N,),

radial (Ri) and shear (S,) polynomial coefficients as given below:

00
0-0 = E Niri

co
o-r = E Rr

i=o
00

Tro = E SiTi

i=0

where the coefficients of the polynomial in the above three equations, determined

from equations (3.1) to (3.3), are given by

(3.4)

(3.5)

(3.6)
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for i = 0,

and for i > 1,

N0= [2 20 2 cos 20 2 sin 20] {

Ro = [2

So = [0

20

— 1

— 2 cos 20

2 sin 20

2 sin 20]

— 2 cos 20]

ao
bo
co
do

abo°
co
do

[cos i0 sin i9 cos(i + 2)0 sin(i + 2)0]
i

= m [cos i0z + 2 sin i0 cos(i + 2)0 sin(i + 2)0 I
+ 2	 i — 2	 i — 2 ]

(3.7)

(3.8)

(3.9)

ai

ci

(3. 1 0)

ai

ci

(3.11 )
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Si

 ai

	= j L s
.
ini0 	cos i9 sin(i + 2)0	 cos(i + 2)0 J bi
2+2 i+2 

(3.12)

where,

j = i(i + 1)(i + 2)

m	 (i — 2)(i + 1)(i + 2)

= Normal polynomial distribution coefficients

R, = Radial polynomial distribution coefficients

Si = Shear polynomial distribution coefficients

ai, b , ci, and di are constants to be determined from the boundary load distributions.

The stress components in Eqs. (3.1) to (3.3) at any point (r, 0) can be determined

if the constants ai, bi, ci, and d, for i > 0 are known. These constants are determined

from the boundary load distributions of ae and .74 at the rake and flank faces. From

Eqs. (3.4) and (3.6), the boundary loads can be written in polynomial form so that at

the boundaries Ni and S, take the values of the coefficients of the polynomial normal

and shear boundary load distributions respectively. From these boundary conditions,

as is shown below, the arbitrary constants and therefore the stresses within the cutting

tool can be determined. The coordinate axes and tool geometry used are shown in

Fig. 2.15.

If the normal (as) and shear (Trio) boundary load distributions on the rake and

flank faces are assumed to be represented by (n + 1) finite terms of a polynomial,

then they can be written as

(00)9=0,.=E Nfiri	 (3.13)
i=o
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where,

(040.=-9/ = E Nfiri
i=0

(Tr8)0=9,. = E srirs
i=0

(rr0)0=01	 E Sfiri
n=0

(3.14)

(3.15)

(3.16)

or = -y

Of = 7 + a

r = radial distance from cutting edge

n = degree of the polynomial boundary load distribution

(u9)9=0, and N. are the rake face normal load distribution and its coefficients

(u8)19=91 and Arfi are the flank face normal load distribution and its coefficients

(Tre)9=9,. and Sr, are the rake face shear load distribution and its coefficients

(r7.9)9=91 and Sfi are the flank face shear load distribution and its coefficients

Substituting the polynomial coefficients for the normal and shear load distribu-

tions at the rake and flank faces into the equations for N, (Eqs. (3.7) and (3.10)) and

S, (Eqs. (3.9) and (3.12)), for 0 < < n yields (n+1) sets of matrix equations:

for i = 0

- 2 2OT 2 cos 20,. 2 sin 20r ao{Nr0

A 10} 2 219f 2 cos 29f 2 sin 2Of b0
S r0 0 —1 2 sin 2OT —2 cos 2Or co

f 0 0 —1 2 sin 2Of —2 cos 2Of do

(3.17)
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cos Or	 sin iOr	 cos(i + 2)0,.	 sin(i + 2)0,.
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Nri CO5 i91 sin Of cos(i + 2) 0 f sin(i + 2) 0 f

Nfi _ . aibi
Sri

Sfi

- sin iB,. cos Or sin(i + 2)8,. COS(i	 2)0,. Cl

i + 2 i + 2
sin Of cos Of sin(i + 2) 0 f cos(i + 2) 9j

i + 2 i + 2

(3. 1 8)

where,

j	 = i(i + 1)(i + 2)

Or = -y

f = -y + a

= rake angle

a = wedge angle

i	 = powers of the polynomial

Nri = rake face polynomial normal load distribution coefficients

N1 = flank face polynomial normal load distribution coefficients

Sri = rake face polynomial shear load distribution coefficients

Sfi = flank face polynomial shear load distribution coefficients

ai, b„ c, and d, for i > 0 are constants.

Eqs. (3.17) and (3.18), with the knowledge of the boundary normal and shear

load distribution and the geometry of the tool, are sufficient to determine the con-

stants that appear in the stress equations (3.1), (3.2) and (3.3). From Eqs. (3.17)



CHAPTER 3. STRESS CALCULATION IN ORTHOGONAL CUTTING TOOLS 48

and (3.18), for each term i of the boundary load distribution there are four unknown

constants and four equations, and therefore each of the 4x4 matrix equation are suf-

ficient to determine the unknowns ai, bi, ci and d,. The number of arbitrary constants

to be determined depends on the number of terms of the polynomial boundary load

distribution. For a polynomial expression of degree n, the number of terms are n 1

and therefore 4(n + 1) constants must be determined which can then be substituted

into equations (3.1) to (3.3) to obtain the stress components.

The equations given here is used in the next section to determine stresses in cutting

tools for a parabolic load distribution, and in Chapter 5 to determine stresses for a

general polynomial load distribution.

3.3 Analytical cutting tool stresses for parabolic load dis-
tributions

The solution developed to determine stress distribution for the general polynomial

load in the previous section is used here to solve the particular case of a parabolic

load distribution. This is done to verify the stress distribution result obtained by

Betaneli [7] and also to test the computer program results of the current study.

The experimentally determined normal boundary load distribution by Betaneli [7]

(Section 2.3.2) has a parabolic distribution given by

= cro	 cro pcn ) r n

= Nro N,rn	 (3.19)

and the shear boundary stress distribution is determined from the normal boundary
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stress as

	= 	 _ (two! icn)rn

	

=	 Sro Srnrn	 (3.20)

From the above equations for a and T, the coefficients of the boundary stresses on

the rake face are

Nro

	

Nrn	 { —00:00111:

	

Sro	 "Lao
	Srn	 —110-0M

(3.21)

The flank face is assumed to be free from loads and as a result N10, Nfn, Sic) and Sin

are zero. Substituting these coefficients into Eqs. (3.17) and (3.18), the equations

that are sufficient to obtain the constants and therefore the stress distribution in

cutting tools for the parabolic boundary load distribution assumption are

for i	 0

cro - 2 20T 2 cos 2Or 2 sin 29r
0 2 20f 2 cos 20f 2 sin 2Of

two 0 —1 2 sin 20,. —2 cos 20,.
0 0 —1 2 sin 219f —2 cos 20

(3.22 )

I al):

co
do
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for i n

cos nO,	 Sin ner	 cos(n + 2)9,

cos nO f	 sin nO f cos (n + 2) Of

sin nO,	 cos nO, sin(n + 2)0,.

n + 2	 n + 2

sin nOf	 cos nOf sin(n + 2) Of

n+2	 n+2

sin(n + 2)0,. -

n

sin(n + 2)Of

cos(n + 2)8,.

cos(n + 2)8f 

 

an

bn

cndn

   

(3.23)

where,

n(n + 1)(n +2)

Or = 7

Of = 'Y

7 = rake angle

a	 wedge angle

= coefficient of friction

= exponent of the parabolic boundary load distribution

= applied normal stress at the cutting edge

dc = contact length al), 1)0, co, do, an, bn, cn, dn are the constants to be determined.

In the above equations a consistent sign convention for stresses must be used.

Normal tensile stresses are positive. Positive shear stresses relative to the coordinate

axes chosen are as shown in Fig. 2.15.

For given values of cro, contact length lc, parabolic exponent n, average friction

coefficient p, rake angle -y and wedge angle a, the eight constants can be determined
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by solving Eqs (3.22) and (3.23) simultaneously. The constants obtained can then be

substituted into Eqs. (3.1) to (3.3) to determine the stress distribution in the loaded

region of the cutting tool.

For expedience, these equations were programmed using Fortran and this program

is given in Jemal [40] (Appendix C.1). The outputs from this computer program are

the polynomial coefficients Ni, R and S1; the component stresses ory, 07. and 7-r9; and

the principal stresses

a1,3 = (a, + 08)12 + V(a, — 09)214 + 7-7.20	 (3.24)

which can then be used to determine the region of maximum stresses and thus predict

failure in the cutting tool.

For a given boundary load distribution and tool geometry, the stress distribution

is independent of the choice of the coordinate axes and therefore the rake face can

be taken as the x-axis by substituting -y = 0 (see Fig. 2.14). Thus, at the rake face

= ay, ar cr. and TrO = Try •

The boundary load distribution used by Betaneli [7] (Section 2.3.2) is shown in

Fig. 3.1. This boundary load distribution, as discussed in Section 2.5.2, is for a

cutting condition having a contact length lc=.5 mm, parabolic exponent n=3.3, fric-

tion coefficient A=0.36 and average normal stress o-,,,,=60 kg/mm2 For the parabolic

boundary load distribution, the applied maximum stress at the cutting edge is re-

lated to the average normal stress by ac, = (n+1)cravIn (Eq. 2.15), therefore cro = 78

kg/mm2. The wedge angle of the tool considered is 62°, so Of = 627r/180 radians.

Substituting these values into Eqs. (3.22) and (3.23) yields



-78.0 2 0.000 2.000 0.000
0.0 2 2.164 -1.118 1.658

-28.1
=

}

0 -1.000 0.000 -2.000
0.0 0 -1.000 1.658 1.118

1

Co

do
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for i = 0

for i = n = 3.3

768.2 22.79 0.000 22.79 0.000	 -
0.0 _ -20.72 -9.49 19.45 -11.87

276.6

{	
1

- 0.00 -14.19 0.000 -22.79
0.0 -5.91 12.90 -11.87 -19.45 _

Solving the above equations simultaneously, the results obtained for the non zero

constants are:

1
 ao }

bo
co
do

=
1 -14.7

- 15.8
- 24.3 } '
21.9 1

 an
bn

Cr,

4

19.8 1
1.8

} = { 13.9
-13.3

These constants are then substituted into Eqs. (3.1) to (3.3) to determine the

stress components at any point (r, 0) of the cutting tool. From these stress components

the principal stresses are determined using Eq. (3.24) and the maximum shear stress

from

Tniaz = (cri - a-3)/2 (3.25)

The analytical solution for the principal stress distribution in the loaded region is

shown in Fig. 3.2. This figure shows the maximum principal stress distribution for

different values of angle 8 (see Fig. 2.14) as a function of distance from the cutting

edge.

The rake face stress distributions from the analytical solution, together with the

boundary loads, are shown in Fig. 3.3. In this figure ay and r 	 the normal and
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Figure 3.1: Polynomial boundary load distribution determined by photoelasticity at low
cutting speeds, Betaneli [7]

shear boundary load distributions respectively and a. is the normal stress parallel to

the rake face. This result predicts the maximum principal stress al at the cutting edge

while giving zero stress at the end of chip-tool contact. This conclusion is identical

with that given by Betaneli's [7] which is shown by the dashed curve labelled '1' in

Fig. 2.18.

This result of a zero maximum principal stress at the end of chip-tool contact does

not explain breakage of cutting tools that are observed in practice in this region. This

result, as shown below, also does not agree with conclusions reached of stresses from

the elastic deformation of the loaded region of the cutting tool. During cutting the

loaded region of the cutting tool elastically deforms as shown in Fig. 3.4. As shown

in this figure, the rake face locally bends about point A near the end of chip-tool

contact, producing a bending stress (non zero tensile stress) at this point.
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A  Principal stress distribution. 
3- I

20	
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Radial distance (mm)

Figure 3.2: Analytical principal stress distributions in the loaded region of a cutting tool
done to verify Betaneli's result

Rake distance (mm)

Figure 3.3: Analytical solution of rake face stresses for the parabolic boundary load distri-
bution made to verify Betaneli's result
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Figure 3.4: Elastic deformation of the loaded region of a cutting tool

Thus, the validity of Betaneli's [7] analytical result needs be investigated. To

verify this result a finite element model as described in the next section is used.

3.4 Finite element cutting tool stress analysis for parabolic
load distributions

In the previous section it was mentioned that the analytical solution obtained for the

rake face principal stress distribution by Betaneli [7] does not explain cutting tool

failure near the end of chip-tool contact and therefore this solution need be verified.

To verify this analytical result the finite element method will be used.

One of the more powerful methods of numerical analysis is the Finite Element

Method (FEM). By means of FEM, solutions can be obtained for a wide range of

practical problems. The finite element method is described by Cook et al [8] and

others. To assist in development of the finite element model, ANSYS [25] finite
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Figure 3.5: Finite element model of the cutting tool

element software was employed.

The finite element model of the tool developed in this study is shown in Fig.

3.5. The zero displacement boundary were applied at a radial distance of 1 cm from

the cutting edge. This distance was chosen because its further increase does not

have any significant effect on the accuracy of the FEM solution. A combination

of two-dimensional quadrilateral and triangular isoparametric elements with mid-

side nodes were used. These types of element were selected to obtain a. reasonable

representation of the steep stress gradient in the loaded region. These elements were

generated automatically after the element sizes around the tool boundary were chosen.

A magnified view of the loaded region of the tool is shown in Fig. 3.6. The finite

element boundary load distribution in the loaded region was determined from the

parabolic equations (2.12) and (2.16) at the mid-point of each element (Fig. 3.6)

along the rake face. The normal stresses were applied directly to the element sides as
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Figure 3.6: Finite element model of the loaded region of the cutting tool, contact length
=lc

pressures. The shear stresses were first converted to forces by multiplying them by

the element length in the loaded region (0.02 mm in this case) and then were applied

at the nodes. Very small elements were used to accurately represent the steep stress

gradient that exists in the loaded region. The thickness of the tool was taken as unity.

The ANSYS finite element input data and other programs used in this analysis

are given in Jemal [40] (Appendix C.2). The results of the FEM analysis for the

principal stress distribution for the parabolic load distribution of Fig. 3.1 is shown

in Fig. 3.7. This figure shows that the principal stress al at the rake face reaches

its maximum at the end of chip-tool contact, and within the wedge it increases from

flank face to the rake face.

The rake face stress distributions from the FEM solution together with the bound-

ary load distributions (ay and Try) are shown in Fig. 3.8. In this figure a. is the normal
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Figure 3.7: FEM solution for the maximum principal stress distributions in the loaded part
of the tool for the boundary shown in Fig. 3.1

FEM solution.
11111111111I11111111111111111111111111111111111IIIII

50
al

_100	
0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 07

Rake distance (mm)
Figure 3.8: FEM solution for the rake face stresses for the parabolic boundary load distri-
bution of Fig. 3.1, contact length lc = 0 5 mm
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Figure 3.9: Comparison of FEM and analytical maximum principal stresses al along the
rake face for the boundary shown in Fig. 3.1, contact length I = 0.5 mm

stress parallel to the rake face. The above FEM results and the analytical result of the

previous section are compared in Fig. 3.9, and will be discussed in the next section.

3.5 Discussion and conclusions

From the analytical and FEM solutions obtained in the previous sections, the maxi-

mum principal stresses cri on the rake face from the two solutions are compared in Fig.

3.9. From this figure, it is clear that the principal stress results from the analytical

and FEM solution for the parabolic load distribution of Fig. 3.1 do not agree. The

analytical solution shows the maximum principal stress at the cutting edge, while the

numerical solution shows the maximum principal stress just after chip-tool contact

length lc. In addition, the maximum principal stress in the tool given by the numeri-

cal solution is more than two times that given by the analytical solution. The reason

100 -ill
"
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FEM boundar load.

Rake distance (mm)

Figure 3.10: The FEM solution satisfies the boundary load conditions both in the loaded
and free region of the rake face, contact length lc = .5 mm

for this disagreement between the two solutions is explained below.

Since identical geometry were used in both solutions, clearly the geometry is not

the cause of the difference in the results shown in Fig. 3.9. The next step should be

to check to see if the applied boundary load distribution are the same everywhere in

the tool for the two solutions.

Upon comparison in the loaded region, both the FEM and analytical boundary

load distributions are the same. Outside of the loaded region, the finite element

solution satisfies the zero boundary load conditions as shown in Fig. 3.10. To de-

termine the boundary load distribution value taken by the analytical solution outside

the region of chip-tool contact it is necessary to extrapolate the parabolic normal

boundary curve of equation (2.12) beyond the chip-tool contact length lc = 0.5 mm.

This extrapolation is shown in Fig. 3.11 and this clearly does not satisfy the free
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Figure 3.11: The Analytical solution does not satisfy the boundary load conditions in the
free region of the rake face, contact length /c = .5mm

boundary condition after chip-tool contact. It is this difference in applied boundary

loading which is responsible for the difference between the analytical and FEM solu-

tions. Thus, the comparison made was for two different problems where in the first

(analytical) there is load after chip-tool contact while in the second (FEM) there is

no load after chip-tool contact. To check this hypothesis, the extrapolated analyti-

cal boundary load distribution was applied on the FEM model. The finite element

inputs for this problem are given in Jemal [40] (Appendix C.3) and the results are

shown in Fig. 3.12. From this figure it can be seen that the two solutions are now in

agreement. This result shows the analytical solutions can be used to determine stress

distribution in a wedge geometry whose applied loading is continuous. However, when

analytical solutions are used to determine the stress distribution in cutting tools, it

should be made sure that the analytical expression chosen to represent the boundary



CHAPTER 3. STRESS CALCULATION IN ORTHOGONAL CUTTING TOOLS 62

Comparison of results.

-100
	

It111111111iIIIIIIIIIIi1111111111 11111110il

0.1	 0.2	 0.3	 0.4
	

05

Rake distance (mm)

Figure 3.12: Comparison of FEM and analytical solutions for the boundary load distribution
shown in Fig. 3.11

load distribution satisfy the zero loading condition after chip-tool contact, otherwise

the solution obtained might be for an entirely unrealistic boundary load distribution

where there are loads on the cutting tool after chip-tool contact.

The result of applying the boundary load distribution which does not satisfy the

zero loading condition after the end of chip tool-contact is shown in Fig. 3.13. In this

figure the position of the cutting edge before the load is applied was at the origin of

the coordinate system. Thus, it can be seen that for this condition the cutting tool

deforms upwards, i.e. opposite to the direction of the cutting force. Since Betaneli's

[7] results were for a tool which behaved as shown in Fig. 3.13, his conclusions are

incorrect. Further examination of Fig. 3.12 shows a negative maximum principal

stress u1 near the end of chip-tool contact. This is because the analytical solution is

based on the two-dimensional case and therefore does not include the zero principal
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Figure 3.13: Tool deformation and maximum principal stress distribution for the boundary
shown in Fig. 3.11

stress perpendicular to the plane of the tool when the value for the algebraically

greatest stress al is calculated. Thus, whenever both the principal stresses in the plane

of the tool, from the analytical solution, are negative then the maximum principal

stress al should be zero as shown by the FEM solution.

Other conclusions that can be drawn from the results in this chapter are:

• Analytical and FEM solutions for the maximum principal stress at the cutting

edge do agree (Figs. 3.9 and 3.12). This result supports Archibald's [6] analytical

solution for cutting edge stresses.

• The maximum principal stress increases from flank face towards the rake face

(Fig. 3.7).

In the boundary load distribution types shown in Fig. 3.10 there is a discontinuity
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of slope at the end of chip tool contact, lc = .5 mm. For these type of boundaries

it is difficult to get a polynomial expression that can reasonably represent the curve

shown in Fig. 3.10 both in the loaded and free regions of the rake face. However, for

the boundary load distribution types of Amini [20] and Ahmad [21] as determined

from photoelastic studies at higher cutting speeds (see Fig. 2.9), it is possible to get

a polynomial expression which approximately satisfies the boundary condition both

in the loaded and free region of the rake face. This is because in these particular

boundary load distributions there is little discontinuity of slope at the end of chip-

tool contact and therefore it can be approximated by a polynomial function. Then

it can be proposed that for these types of boundary load distributions, the solutions

from the analytical and FEM solutions will be close and as a result the analytical

method could be used to determine the stress distribution in the loaded region of

cutting tools. This is verified in the next chapter.

The split-tool dynamometer result by Barrow [16] shows reduced constant shear

stress region (sticking region) with increase in cutting speed. Therefore for this case

the shape of the boundary load distribution from the high speed photoelastic cutting

and split-tool dynamometer are approximately similar (see Figs. 2.9 and 2.5). Thus,

the high speed photoelastic boundary load distribution can be assumed to reasonably

represent the boundary load distribution in metal cutting at higher cutting speeds.



Chapter 4

Stresses for Higher Speed
Photoelastic Boundaries

4.1 Introduction

In Chapter 3 it was shown that when an analytical solution is used to determine

cutting tool stresses, the analytical function chosen to represent the boundary load

distribution should satisfy the zero loading condition after chip-tool contact. The

photoelastic boundary load distribution at higher cutting speeds shown in Fig. 2.9

are almost tangent to the rake face at the end of chip-tool contact. For such a

continuous distribution it is possible to fit a polynomial which can approximately

satisfy the boundary condition both in the loaded and free regions of the rake face.

In this chapter, the stress distribution in a cutting tool for such polynomial bound-

ary load distribution is determined analytically, and then these results are verified

with numerical solutions. The result is compared with a photoelastic experimental

result given by Amini [20] for a similar boundary load distribution and tool geometry.

Finally, from the stress distributions obtained, the critical regions of the orthogonal

cutting tool and its modes of failure will be discussed.

65
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4.2 Analytical solution for high speed photoelastic bound-
ary load distributions

The boundary load distribution determined from photoelasticity at higher cutting

speeds by Ahmad [21], as discussed in Section 2.3.2, is given by

o-' = 2.91 — 1.53r' + .214ra — .0033ra 	 (4.1)

T1 = 1.63 — 1.24r' + .315ra — .0266r'3	 (4.2)

where,

o-' = normal boundary stress on the photoelastic tool, kg/mm2

Ti = shear boundary stress on the photoelastic tool, kg/mm2

r' = rake face distance from the cutting edge of the photoelastic tool, mm.

In order to determine whether this polynomial boundary load distribution satisfies

the free loading condition after chip-tool contact, these equations are plotted beyond

the contact length of 4.5 mm in Fig. 4.1. From this figure, it can be seen that the

free boundary conditions on the rake face are not satisfied. Therefore, Eqs. (4.1)

and (4.2) as they are cannot be used as boundary conditions to determine the stress

distribution in cutting tools. The second reason why these equations cannot be used

directly in metal cutting tool stress analysis is because these boundary stresses were

determined from photoelastic cutting test where the magnitude of the stresses are

very low and the contact length is very high for metal cutting tools.

A boundary load distribution which approximately satisfies the boundary condi-

tions in the free region of the rake face and having stress magnitudes experienced

by metal cutting tools is shown in Fig. 4.2. The least squares method was used to
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Rake distance (mm)

Figure 4.1: Ahmads's [21] polynomial functions for his photoelastic data do not satisfy the
free boundary condition after chip-tool contact (lc = 4.5 mm)
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Figure 4.2: A polynomial function which approximately satisfy the free loading condition
after chip-tool contact for a metal cutting tool (/, -= 1 mm)
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determine the polynomial function which provides a satisfactory approximation of the

free loading condition after chip-tool contact. In the determination of this boundary

load distribution function, Zorev's [24] cutting data which gives a friction coefficient

of 0.36 when cutting steel in water with a cutting tool having a rake angle 200 was

taken. These data were used by Betaneli [7] in his analytical cutting tool stress

analysis. This particular metal cutting condition was selected in this current study

because it is similar to the cutting conditions used in photoelasticity and therefore

the analytical results to be obtained could be compared with previous photoelastic

results. The contact length and the width of cut were assumed to be 1 mm. At

the cutting edge, the shear stress applied on the cutting tool was assumed to reach

the yield shear strength of the workpiece material being machined, Fig. 2.3. For

N.E. 9445 steel, the shear yield strength quoted by Merchant [26] is 40.5 kg/mm3.

This value was assumed as the applied shear stress value at the cutting edge. The

shear stress and the normal stresses were assumed to obey the relation 7- = fLa. The

equations for the boundary load distributions shown in Fig. 4.2 are given by

a- = —112.5 + 242.1r — 170.5r2 38.4r3 3.1r4 — 1.5r5

T = —40.5 + 87.2r — 61.4r2 13.8r3 1.1r4 — .5r5

or they could be represented in simplified form as:

5

	= E Nrie	 (4.5)

5

T =	 sriri	 (4.6)

where,



—112.5 Sr 0

242.1 S„

—170.5 S2
38.4	 1' S3
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—1.5 Sr 5
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where,

a- = rake face normal stress distribution, kg/mm2

T = rake face shear stress distribution, kg/mm2

Nri = rake face normal load distribution coefficients

Sri = rake face shear load distribution coefficients

= rake face distance from cutting edge, mm.

From Fig. 4.2, it can be seen that there is a good approximation of the free

boundary after chip-tool contact (1 <r < 2) mm and for this distribution analytical

and FEM solutions will be compared. The FEM boundary can be made to satisfy

the free loading conditions completely as shown in Fig. 4.3.

As described in Section 3.2, the arbitrary constants that appear in the stress

equations (3.1) to (3.3) can be determined from the boundary conditions and the

geometry of the tool using Eqs. (3.17) and (3.18). For quick reference Eqs. (3.17)

and (3.18) are also given by Eqs. (4.7) and (4.8) below.

for i = 0

N70 2 29, 2 cos 29,. 2 sin 29r ao
N10 2 2Of 2 cos 29f 2 sin 29f bo
Sr0 0 —1 2 sin 28,. —2 cos 29r CO

S 10 0 —1 2 sin 20f —2 cos 2Of dO

(4.7)
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Rake distance (mm)

Figure 4.3: The FEM boundary completely satisfy the free loading condition after chip-tool
contact (I, = lmm)

for 1 < i < n

- COS 9r sin iOr COS(i	 2)Or sin(i + 2)19,.

N. cos ie f sin i0 cos(2, + 2)	 f sin(i + 2) Of

S . sin iOr cos iOr sin(i + 2)8r COS(i	 2)Or
Sf i-1-2

sin Of cos Of sin(i + 2) 0 f cos(i + 2) O f

i-1-2 i+2

where,

j	 = i(i + 1)(i + 2)

=-
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Of =-yd-a

= rake angle

a = wedge angle

i	 = powers of the polynomial

= rake face polynomial normal load distribution coefficients

Nfi = flank face polynomial normal load distribution coefficients

S,., = rake face polynomial shear load distribution coefficients

Sfi = flank face polynomial shear load distribution coefficients

ai, bi, ci and di for i> 0 are constants.

The calculation of the constants and then the stress distribution in the cutting

tool is discussed below. The boundary conditions are already given by Eqs. (4.5)

and (4.6), where the degree of the polynomial n = 5. The x-axis is taken along the

rake face and therefore Or -= 0 (Fig. 2.14). The wedge angle is 62°, so Of = 627r/180

radians. The flank face is assumed to be free from loads, therefore, Nfi 0 and

Sfs= 0. Substituting these values into Eqs. (4.7) and (4.8) yields

for i 0

—112.5 2 0.000 2.000 0.000
0.0 2 2.164 —1.118 1.658 bo

—40.5 0 —1.000 0.000 —2.000 co
0.0 0 —1.000 1.658 1.118 do

for i 1

242.1 - 6.000 0.000 6.000 0.000
0.0 2.817 5.298 —5.967 —0.627 1)1

87.2

{

0.000 —2.000 0.000 —6.000
0.0 1.766 —0.939 —0.627 5.967



for i = 5

1 —1.5
0.0

—0.5
0.0

-	 42.000 0.000 42.000 0.000
_ 26.997 —32.174 11.577 40.373
— 0.000 —30.000 0.000 —42.000

—22.981 —19.284 40.373 —11.577

1 a5 1
b5

C5

d5

}={

 —21.2

—35.1 1'
—22.7

31.6

133.3
—11.0= 
7.1 , • • • ,

1	 —10.8 1

1 —0.02 1
—0.00
—0.01
0.021

 ao
bo

Co
do 1

 al
bi
Cl
di.

{
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b5
C5
d5

}
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Solving the above equations simultaneously, the results obtained for the non zero

constants are:

These determined constants are then substituted into Eqs. (3.1) to (3.3) to deter-

mine the stress components at any point (r, 0) of the cutting tool. From these stress

components, the principal normal stresses can be determined from Eq. (3.24, and the

maximum shear stress from Eq. (3.25). For convenience, the above calculations were

performed using a Fortran program which is given in Jemal [40] (Appendix D.1).

The analytical result for the principal stress distribution in the loaded region

within the cutting tool is shown in Fig. 4.4. This result shows increase in principal

stress from the flank face towards the rake face. The stress distributions along the rake

face are shown in Fig. 4.5. In this figure ay is the applied normal load distribution,

Ty is the applied shear stress distribution and az is the normal stress parallel to the

rake face. In the next section this analytic solution is compared to an FEM solution

for the boundary load distribution shown in Fig. 4.3.
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Anal tical solution.
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Figure 4.4: Analytical solution for the maximum principal stress distribution for the bound-
ary shown in Fig. 4.2
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Figure 4.5: Analytical solution for rake face stresses for the boundary shown in Fig. 4.2
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Figure 4.6: FEM solution for the maximum principal stress distribution for the boundary
shown in Fig. 4.3

4.3 FEM solution for higher cutting speed photoelastic bound-
ary load distributions

The FEM procedure described in Section 3.4 was again used to determine the stress

distribution in a cutting tool for the boundary load distributions shown in Fig. 4.3.

The finite element model used is shown in Figs. 3.5 and 3.6. The element length

along the rake face in the loaded region was 0.04 mm. The input data files and other

programs used in this analysis are given in Jemal [40] (Appendix D.2).

The FEM solution for the maximum principal stress in the loaded region, for the

boundary load distribution of Fig. 4.3, is shown in Fig. 4.6. This result shows an

increase in maximum principal stress magnitude from flank face towards the rake

face. On the rake face, the principal stress is a maximum at the end of chip-tool
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Figure 4.7: FEM solution for the minimum principal stress distribution for the boundary
shown in Fig. 4.3

contact (point A). These conclusions agree with those given in Section 3.4. These

two solutions were for two different types of boundary load distributions, but the

location of the maximum principal stress from both solutions was found to be at the

end of chip-tool contact.

The minimum principal stress distribution is shown in Fig. 4.7. This figure shows

that the magnitude of the compressive stress is a maximum in the flank face close to

the cutting edge (point A).

The FEM solutions of the rake face stress distributions are shown in Fig. 4.8. In

this figure, au is the applied normal load distribution and Tx is the applied shear stress

distribution. The maximum principal stress reaches its maximum value at the end of

chip-tool contact (lc--=-1 mm) and then drops off gradually. A comparison between the

analytical and FEM solution is shown in Fig. 4.9. This figure shows a satisfactory
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Rake distance (mm)

Figure 4.8: FEM solutions for rake face stresses for boundaries shown in Fig. 4.3

agreement between the two results and therefore indicates that analytical methods

can be used to determine stresses in cutting tools for certain types of boundary load

distributions with reasonable accuracy. The results obtained in the previous sections

will be discussed in Section 4.6.

4.4 Point-load analytical solution for higher cutting speed
photoelastic boundary load distributions

As discussed in Section 2.4.1, the point load analytical solution was used by Kaldor [2]

to determine optimal tool geometry and by Chandrasekaran [3] to determine fracture

stresses in milling cutters. The point load solution (Eq. 2.31) cannot be used to

estimate stresses close to the cutting edge. In this section, the way in which the point

load solution and the current analytical solution may together be used to estimate

the stress distribution close to and far from the cutting edge is examined.
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Figure 4.9: Comparison of analytical and FEM principal and maximum shear stress distri-
butions for the boundary shown in Fig. 4.3

The maximum principal stress distribution crj at the rake face from the point-load

approximation (Eq. 2.31) is compared with the analytical and finite element solutions

obtained in the previous sections in Fig. 4.10. The magnitude of the concentrated

force P was calculated from the areas of the distributed shear and normal boundary

stresses (Fig. 4.3 in this case). From Fig. 4.10, it can be seen that in the loaded

region (rake distance < 1 mm) the point-load approximation provides a significantly

less accurate result. However, after the chip-tool contact the result from the point-load

approximation improves indicating that an estimate of the maximum principal stress

in the cutting tool could be made by using the value of the point load solution where it

intersects the current analytical distributed load solution (Fig. 4.10). The advantages

of this method are that it is very simple to use, and the maximum principal stress is

linearly related to the resultant cutting force by Eq. (2.31). Since the cutting force
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Labels:

1 = Analytical concentrated
load solution.

2 = Analytical distributed
load solution.

3 = Finite element distributed
load solution.

Rake distance, mm

Figure 4.10: A comparison of rake face principal stress ai by different methods for a 620
wedge angle and boundary load distribution shown in Fig. 4.3, chip-tool contact lc = 1 mm
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is also considered to be linearly related to the uncut chip thickness, the point load

solution gives a linear relation between the uncut chip thickness and the maximum

principal stress. This relationship can be used to determine the maximum uncut chip

thickness (i.e. feed) corresponding to the allowable tensile stress of the tool material.

Thus the current distributed analytical solution can be used to estimate the stress

distribution in the loaded region while the point load distribution can be used to

estimate the principal stress distribution outside the loaded region. This procedure

provides a complete analytical solution for the prediction of the critical stresses that

causes failure in the cutting tool.

It is noted from Fig. 4.10 that the maximum normal stresses given by the point-

load solution are higher than the solutions given by the other methods. This feature

can be explained by the fact that the resultant of the normal distributed boundary

stresses which act at the distribution's centroid is instead applied at the cutting edge

in the point-load solution. This results in a larger bending moment and consequently

higher bending stresses. Thus the solution obtained from the above procedure for the

critical maximum principal stress and its location on the rake face, as shown in Fig.

4.10, are higher than the numerical results.

In order to use the stress analysis results obtained in the previous sections to

predict the critical regions of cutting tools and their types of failures, cutting tool

failures will be considered next.

4.5 Failure in cutting tools

The two modes of failure of a loaded body are ductile and brittle failure. If the

amount of permanent deformation occurring in the loaded body at rupture is large,
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Figure 4.11: Fracture locus of a brittle material

the failure is ductile, if the deformation is small it is brittle.

Brittle failure

The Coulumb-Mohr theory is often used to predict fracture of brittle materials.

This theory indicates that for plane stress conditions, a2 = 0, the loaded body is

safe as long as (cri, a3) falls within the area shown in Fig. 4.11. In this figure,

the ultimate compressive stress IS2,1 is typically greater than the ultimate tensile

strength Std. This is because flows such as microcracks or cavities which are present

in materials weaken it in tension, while it does not appreciably affect its compressive

strength.

When the principal stresses al and 03 at a critical point in the tool are both

greater or equal to zero then the factor of safety F.S = Sutlai. If both the principal

stresses are less than or equal to zero, the factor of safety F.S = 1,9.1/1(731. When



CHAPTER 4. STRESSES FOR HIGHER SPEED PHOTOELASTIC BOUNDARIES 81

al > 0 and 03 < 0, the equation to be used is

0-1	 0-3	 1
c + ---0 = D 0
...Jut	 iluc	 X' • 43 .

(4.9)

In this equation both Suc and 03 are negative quantities.

From the above discussion, the stresses to be considered for brittle failure of a

cutting tool are the maximum principal stress al and the minimum principal stresses

cr3. Since in Fig. 4.9, the results obtained in the loaded region from the analytical and

numerical solutions are similar, either solution can be used to determine the critical

regions of the cutting tool. The principal stress distributions are shown in Figs. 4.6

and 4.7, where the critical points are shown by point A in both figures. These results

can be explained from the elastic deformation of the loaded region. During cutting,

the loaded region of the cutting tool deforms as shown in Fig. 3.4 and results in

the shortening of the flank face close to the cutting edge and bending of the rake

face at a point near the end of chip tool contact. The shortening of the flank face

results in the minimum principal stress to be in this face close to the cutting edge as

shown in Fig. 4.7. The rake face bending about the point near the end of chip-tool

contact results in the maximum principal stress to be at this point as shown in Fig.

4.6. Inside the cutting tool wedge, the stresses are within these two extreme values

increasing algebraically from the flank face towards the rake face. From Figs. 4.6 and

4.7, since the maximum stresses occur on free surfaces, the other principal stresses at

these critical points are zero.

From the principal stress distributions shown in Figs. 4.6 and 4.7 the ratio of the

critical minimum principal stress to the critical maximum principal stress is 2.7. This

ratio, when compared with the ratio of the compressive strength to tensile strength

of the tool material used, provides an indication of whether the tool failure is due to
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compressive stress on the flank face close to the cutting edge, or due to maximum

tensile stress near the end of chip-tool contact. If the ratio of the critical compressive

stress to the critical tensile stress is assumed not to vary with change in cutting

forces, then when the magnitude of the critical maximum principal stress al = Sut

(say) then the magnitude of the critical compressive stress 53 = 2.7Sut. Also, if the

tensile strength of the tool material is S. and its compressive strength S. = N Sut,

then the factor of safety for tool failure due to maximum principal stress is F.S,, =

Sut/cri = 1, and the factor of safety for tool failure due to minimum principal stress

is F.Sus = Suck-3 = N/2.7. When F.Sui > F.S,8, the tool fails due to compressive

stresses, while when the inequality is reversed it fails due to tensile stresses. Therefore,

when N = Suc/ Sut for the tool material is lower than 2.7, then the tool fails due to

critical compressive stress at the cutting edge and if higher it fails due to critical

tensile stress at the end of chip-tool contact. For example, the typical ratio of the

compressive strength to the tensile strength of high-speed steel is 2, of carbide is 3

and that of ceramics is 5 (Loladze [37]). From these values, for the boundary load

distribution and tool geometry considered in this study (53/ai = 2.7), the high-speed

steel fails due to maximum compressive stress at the cutting edge while both the

carbide and ceramic tools fail due to the maximum tensile stress near the end of chip-

tool contact. This result explains why tool materials that have low tensile strength

(carbides, ceramics and diamond) are used only with robust tool geometry (large

wedge angles or low rake angles) where the maximum tensile stresses are low. The

above analysis is an example of the use of cutting tool stress distributions in selection

of tool material properties.

With increase in depth of cut in the carbide and ceramic tools, cracks initiate
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Figure 4.12: Brittle failure of a cutting tool near the end of chip-tool contact, Tlusty [27]

near the end of chip tool contact, point A in Fig. 4.6, due to maximum principal

stresses and results in breakage of the whole loaded region of the cutting tool. A

photograph by Tlusty [27] which shows this failure of the whole loaded region of a

carbide cutting tool due to maximum tensile stresses is shown in Fig. 4.12. Failure

due to compressive stresses result in permanent deformation of the cutting edge as

shown in Fig. 4.13, Wright [36]. Thus the analytical results obtained for tool failures

correlate well with observed cutting tool failures and this verifies the approach used

in this study.

Experimental investigations by Trent [34] show, cutting tool materials loose their

strength with increase in temperature. Therefore, the effect of temperature on the

properties of the tool material should be taken into account when failure analysis of

the cutting tool is performed.
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Figure 4.13: Cutting edge deformation due to maximum compressive stress, Wright [36]

Ductile failure 

The theory of failure commonly used to predict ductile failure is the von Mises-

Hencky theory. According to this theory, also known as the distortion energy theory,

a loaded body is safe as long as the maximum value of the elastic distortion energy

per unit volume in that material remains smaller than the distortion energy per unit

volume required to cause yield in a tensile-test specimen of the same material. For the

plane stress case this theory indicates that a loaded body is safe as long as aey < Sy,

where

2	 2
Greg = N/0.1 — al U3 + U3

 

(4.10)

where,

a1, a3 are the algebraically largest and smallest stresses

a-ey = an equivalent stress
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Figure 4.14: Equivalent stress contour lines for the boundary shown in Fig. 4.3

Sy = yield tensile strength of the material.

To determine the ductile cutting tool failure regions, the equivalent stress contour

lines in the loaded region were plotted and are shown in Fig. 4.14. The results in this

figure can be explained from the maximum and minimum principal stress distributions

shown in Figs. 4.6 and 4.7. At a free surface the equivalent stress is proportional to

the non zero principal stress. Since the magnitude of the minimum principal stress

close to the cutting edge in Fig. 4.7 is about three times the maximum principal

stress at the end of chip tool contact in Fig. 4.6, the equivalent stress therefore will

be maximum near the cutting edge as shown in Fig. 4.14.

From Fig. 4.14, it can be seen that the region of maximum distortion energy is

close to the cutting edge. Near the cutting edge the temperature is very high and this

reduces the strength of the tool and increases its ductility and results in the shearing

of the cutting edge which is known as edge chipping. A photograph by Tlusty [27]



CHAPTER 4. STRESSES FOR HIGHER SPEED PHOTOELASTIC BOUNDARIES 86

Figure 4.15: cutting edge chipping, Tlusty [27]

which shows chipping of the cutting edge is shown in Fig. 4.15. It is interesting to see

the good correlation between the equivalent stress lines in Fig. 4.14 and the profile

of the chipped surface.

To complete the failure analysis of the cutting tool its stress at the shank where

it is attached to the tool post needs to be considered. This was done by considering

the bending stresses at the fixed end for a width of cut of 5 mm. This analysis for

the tool geometry shown in Fig. 4.16 shows the maximum tensile stresses near the

cutting edge is four times the bending stress at the fixed end (point A). This result

shows shank design is not only based on cutting tool breakage at the fixed end but

also is based on the rigidity of the tool.
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Figure 4.16: Bending stress calculation at the fixed end (point A) of a cutting tool

4.6 Discussions and conclusions

In the above sections, both analytical and FEM cutting tool stress distributions for

high speed photoelastic boundary load distribution were determined. The results for

the principal stresses and maximum shear stress distribution from both solutions in

the loaded region are in good agreement. The results are identical at the cutting edge

(verifying Archibald's [6] result), however, further from the cutting edge the difference

between the two solution increases. The value for this difference at half the chip-tool

contact length is 8% for the maximum principal and shear stresses. The results for

the minimum principal stress are almost identical everywhere in the loaded region.

If the boundary conditions after the tool-chip contact were completely satisfied then

the above differences would vanish.

From Fig. 4.9, the analytical solution for the distributed boundary load gives a
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similar result to the finite element solution in the loaded region where the stresses

are most critical. Therefore, either solution can be used to predict the failure regions

and their mode of failure of the cutting tool. From these results it was found that

the maximum principal stress in the cutting tool occurs on the rake face (Fig. 4.6)

and the minimum principal stress on the flank face (Fig. 4.7). These results can be

explained from the local deflection of the loaded region shown in Fig. 4.18. Due to

cutting forces the loaded region bends downwards about point A creating a maximum

bending stress (tensile) at this point. On the other hand, the flank face, as shown in

the figure, shortens and is therefore under compression. Thus cutting tool failures are

either at the cutting edge or near the end of chip-tool contact. At the cutting edge

the failures are either due to maximum shear stress (Fig. 4.14) which causes cutting

edge chipping as shown in Fig. 4.15, or due to maximum compressive stress (Fig. 4.7)

which causes permanent deformation of the cutting edge as shown in Fig. 4.13. At

the end of chip tool contact the failure is due to the maximum tensile stresses (Fig.

4.6) which causes initiation of cracks at this point and results in the fracture of the

whole loaded region of the cutting tool as shown in Fig. 4.12.

The stress distribution at the rake face from the analytical and finite element

solutions were compared with point-load elasticity solutions. This comparison is

shown in Fig. 4.10. From this figure the two analytical solutions together can be

used to determine the stress distribution in a cutting tool, where the distributed load

solution is used in the loaded region while the point load solution is used after the

loaded region. It is interesting to note that after twice the contact-length the result

from the point load solution and finite element solution in Fig. 4.10 are in agreement

and therefore in this region the point load solution is very satisfactory.
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Figure 4.17: Maximum shear stress distribution from photoelasticity , Amini [20]

The stress distribution obtained can also be compared with a photoelastic result

by Amini [20]. The photoelastic result is shown in Fig. 4.17. In this figure the

isochromatics or fringe patterns (see Section 2.3.2) are proportional to maximum

shear stress lines. Amini used a tool having a wedge angle of 760, but the analysis

made in this study was for a 620 wedge angle. Therefore, in order to get good

comparison of our solution with the experimental result the analysis was repeated

for a wedge angle of 760. The contour lines which are equal to twice the maximum

shear stress, obtained for the boundary load distribution of Fig. 4.3 and wedge angle

of 76°, are shown in Fig. 4.18. Comparison of this figure with Fig. 4.17 shows the

experimental and maximum shear stress contour lines of this study agree verifying

the proposed solution.

To see the effect of the wedge angle on stresses in a cutting tool, minimum principal
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Figure 4.18: Twice the maximum shear stress distribution obtained for the photoelastic
cutting boundary of Fig. 4.3

stresses at the flank face and maximum principal stresses at the rake face for two

wedge angles (62° and 76°) were compared. This comparison is shown in Fig. 4.19.

This figure shows the effect the wedge angle has on the principal stresses distribution.

At the end of chip-tool contact length, 1, = 1 mm, the maximum principal stress has

decreased by 60% for the same boundary load distribution with the increase in the

wedge angle. This result explains why tool materials having low transverse rupture

strength (like carbide, ceramics and diamonds) are made with higher wedge angles

or have low rake angles. At the cutting edge, with the increase in the wedge angle

for the same boundary load distribution the magnitude of the minimum principal

stress has decreased by 45%. These are the reasons why rough cutting operations are

performed using tools that have high wedge angles.

Close to the cutting edge the temperatures and the compressive stresses are very
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Labels:

=- Rake face max. principal stress.

cr3 = Flank face min. principal stress.

	 = For a wedge angle of 620

- - - - = For a wedge angle of 760

0.5	 1.0
	

1.5	 2.0	 2.5

Radial distance, mm

Figure 4.19: Effect of change in wedge angle on the critical principal stresses of a cutting

tool
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high, and therefore tool materials that maintain their compressive strength at this

high temperature are superior. This is the main reason why carbide tools are better

than high speed steel tools in their cutting performance.

This chapter is summarized by listing the important results obtained:

• An analytical stress distribution in a cutting tool which agrees with numerical

and previous experimental results for the high speed photoelastic boundary load

distribution was obtained.

• From the solutions obtained the failure regions of the cutting tool and their

modes of failure were identified. These failure predictions were found to correlate

well with observed cutting tool in-service failures.



Chapter 5

Stress Analysis of an End Mill

5.1 Introduction

Maximum production in metal cutting requires a large chip load. However, at very

high chip loads breakage of the cutting tool may occur. Therefore, to select the

optimum cutting condition (maximum cutting force) for maximum production, with.-

out the danger of tool breakage, knowledge of the relationship between cutting tool

forces and tool stresses is required. These stress distributions also help to predict the

location and types of failures in the cutting tool.

The stress distribution in an end mill can be determined using numerical methods,

however, these methods require much time and effort. Analytical solutions may not

have these shortcomings, and therefore the possible use of analytical solutions in end

mill stress analysis is investigated.

An end mill could fail in two ways due to stresses developed in the tool during

cutting. It could fail at the shank section due to excessive bending stresses or it could

fail within the flutes where the cutting forces are applied. Thus, both of these critical

regions must be considered for potential failure of the end mill.

The cutting force distribution along the flutes of the end mill must be known to

93
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determine the stress distribution in an end mill. When the stress distribution far

away from the cutting edges (shank stresses) are required, the cutting forces can be

assumed to be distributed as concentrated forces along the cutting edge. However,

when stresses close to the cutting edge are required, then the actual cutting force

distributions across tool-chip contact along the cutting edge (like those determined

from photoelastic cutting) must be used.

Once the cutting force distribution and the geometry of the end mill are selected,

the stress distribution in the tool (at the shank or the flute) may be determined

analytically or numerically. The analytical solution to be obtained in this study will

be verified with numerical solutions. In the literature there is little work done on

end mill stress analysis, while there is sufficient work done on end mill deflection

and cutting force analysis. In the end mill shank stress analysis, the cutting force

distribution models established in the literature will be used. The critical regions for

shank breakage obtained in this study will be compared with shank failure regions

observed in practice. Shank stress analysis will be considered in Section 5.2.

In end mill flute stress analysis, the stresses required are close to the applica-

tion of the cutting forces. In this case, the actual force distribution across tool-chip

contact must be used. Photoelastic cutting force distributions will be used in these

flute stress analysis. From the two-dimensional stress analysis done in the previous

chapters, it was seen that the critical stresses occur close to the loaded region, be-

cause further from the loaded region the load resisting area or section modulus of

the wedge increases and this reduces the magnitude of the stresses. Thus, in the end

mill flute stress analysis only a portion of the end mill close to the loaded region

will be considered. Finite element solutions of flute stresses are obtained, and they

will be compared with the two-dimensional solutions. End mill flute stress analysis
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No of flutes, T = 4

Helix angle = 30 deg.

        

Units in mm

 

-

  

I = 76.23
C = 54.45

h = 40

d = 25.4

     

Figure 5.1: Schematic diagram of an end mill

is considered in Section 5.4.

5.2 Shank stresses in an end mill

5.2.1 Force distribution along end mill cutting edge

Fig. 5.1 shows a schematic diagram of an end mill and Fig. 5.2 shows its cutting

operation.

When stress predicitions in the shank of an end mill are required, the section is

further from the application of the cutting forces and therefore these stresses can be

determined from the resultant cutting force on the tool. The resultant cutting force F

on the tool acts at a distance a from the fixed end of the cutter as shown in Fig. 5.2.

This resultant force can be calculated using the force distribution model of Kline et

al [28], an example of which is shown in Fig. 5.3. In this figure, the forces shown are

the radial and tangential forces which act on each axial elements of the end mill and
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View A—A

I = .127 mm/tooth

N = 190 rpm
w = 25.4 mm
Hellix = 30 deg

Figure 5.2: Schematics for the cutting operations of an end mill

which vary in magnitude and direction along the cutting edge. From these elemental

forces the resultant cutting force F and its point of application a can be determined.

In the end mill cutting edge force distribution model (also called mechanistic

model), the three-dimensional milling operation is assumed to be equivalent to an

aggregation of orthogonal cuts by each axial elements of the cutter. On each axial

element, as shown in Fig. 5.4, the tangential elemental cutting force is proportional

to the radial depth of cut Sr and the axial length of the element 8z. From this figure

the radial depth of cut is related to the feed rate per tooth f by Sr = f sin 0, where

0 is the position of the cutting edge of the axial element measured from the normal

to the finished surface. Therefore, the elemental tangential force is given by

.5Ft = Kt f 8z sin 9	 (5.1)

where,
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Figure 5.3: Cutting force distribution along the cutting edges of an end mill, Kline [28]

Kt = tangential force constant, MPa

The elemental radial force is proportional to the elemental tangential force and

thus can be written as

SF, = Kr8Ft	 (5.2)

where,

Kr = radial force constant.

Kline [28], has shown that the tangential and radial force constants depend on the

cutting conditions, which are mainly the feed rate, the radial depth of cut and the

axial depth of cut. For the cutting conditions and the standard end mill geometry

shown in Figs. 5.1 and 5.2, the values of the force constants for steel workpiece from

Kline [28] are Kt = 2660 MPa and Kr = .553. These values are used in the shank
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Figure 5.4: Definition of terms used in elemental force calculation

stress analysis presented here.

In Eq. 5.1, to determine the elemental tangential force, the angle 0 shown in Fig.

5.4 for each axial element along the cutting edge should be determined. This angle

can be determined from the equation for the swept angle 0 of the cutter tooth shown

in Fig. 5.2. The swept angle is measured about the cutter axis and is defined as the

angle swept from the beginning of a cut to the end of the cut by one tooth of the end

mill in one revolution. The swept angle 0, from the geometry of Fig. 5.5, is given by

0 = 7rd

where,

w = axial depth of cut, mm

0 = helix angle

d = cutter diameter, mm

360w tan 0
(5.3)
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i 	
7r d

 

Figure 5.5: Developed surface of a four flute end mill having helix angle 0

0 = swept angle, degree

From Eq. (5.3), angle 8 which is required in the elemental force calculation along

the cutting can be determined just by replacing w with the corresponding axial dis-

tance z (< w) of the element under consideration (see Fig. 5.5).

The above equations are sufficient to determine the elemental cutting forces, the

resultant cutting force and its point of application on the end mill. In the following

sections, these equations will be used to determine the forces to be applied on the

end mill in the analytical and numerical shank stress analysis.

5.2.2 Analytical stress analysis in an end mill shank

In the literature, there is little information on the stress distribution in end mills. In

this section an analytical solution for the determination of shank stresses in an end

mill will be presented.
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At the shank, which is far away from the application of the cutting forces, the

stresses can be determined from the resultant cutting force F acting at a distance

a shown in Fig. 5.2. The critical regions of the end mill for shank breakage could

either be at the circular section close to the fixed end denoted by A in Fig. 5.2, or

it could be across the flutes section close to the circular section denoted by B in the

same figure.

Shank stress at the fixed end

At point A, the section is circular and the maximum bending stress can be de-

termined from cantilever beam equations. If the resultant bending moment at this

section is denoted by Ma, then the maximum bending stress for the circular section

having diameter d is given by

cra 	
32Ma

	7rd3

	 (5.4)

The maximum shear stress for the circular section of the end mill due to cutting

torque T is given by

T = 	
16T

	

ird3
	 (5.5)

One of the important properties of cutting tool materials is their high hardness.

With an increase in hardness, the rupture strength of materials reduces and they

become brittle. Therefore the critical stress to be consider for shank failure of an end

mill is the maximum (tensile) principal stress. This maximum principal stress can be

determined from the normal and shear stresses using the relation

= cra / 2 + cfa / 2 )2 + T2 (5.6)

The above equations, together with the mechanistic force distribution model given

in Section 5.2.1, can be used to determine the stresses at the fixed end of the end

mill.
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The above equations will be used to determine the shank stresses of the end mill for

the cutting conditions and tool geometry given in Figs. 5.1 and 5.2. The calculation

at the fixed end for the resultant bending moment and torque, using the mechanistic

model, is given in Jemal [40] (Appendix E.1). From these calculations the resultant

bending moment at the fixed end is Mo = 337 kN-mm, and the resultant cutting

torque is T = 56.2 kN-mm.

From the resultant moment and torque at the fixed end and from the stress equa-

tions given above, the critical stresses at point A of Fig. 5.2 can be calculated. The

results of these calculations are summarized in Table 5.1.

Table 5.1: Stresses at the fixed end, point A,

of the end mill shown in Fig. 5.2, (MPa)

Ta Cra 61

17.5 209 210

Table 5.1 shows the difference between the bending stress cra and the principal

stress cri is only 1% and this means that the contribution of the shear stress towards

the principal stress is negligible and therefore the bending stress is sufficient to predict

shank breakage. These analytical results will be verified with numerical solutions in

Section 5.2.3.

Shank stress at the end of the flute section

It is not easy to determine analytically the maximum bending stress at the end

of the flute section closest to the circular section (point B of Fig. 5.2) because of the

complicated shape of the flute. However, an approximate solution can be obtained

by using the concept of equivalent diameter. The equivalent diameter is defined as

the diameter of a circular bar which gives the same deflection as the end mill under

the same cutting forces. Kops et al. [29] have used finite element end mill deflection
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iTO = end mill dia, d

Figure 5.6: Determination of the equivalent diameter for four flute cutters

solutions and beam deflection equations to determine the equivalent diameter. An

easier method of calculating the equivalent diameter for four flute cutters from Kops

et al. [29] is to take the moment of inertia of the equivalent circular bar, 7r4/64, to

be equal to the moment of inertia of a square section ABCD shown in Fig. 5.6 about

x-axis, d4/48. Then this yields for the equivalent diameter the relation de = .8d.

When applying the equivalent diameter concept, it is imagined that the flute

portion of the end mill is replaced by a circular section of the same length but smaller

diameter, de = .8d, as shown in Fig. 5.7.

Once the flute section at point B is approximated by a circular section as shown in

Fig. 5.7, the stresses can be determined in exactly similar manner as described above

for shank stresses at the fixed end. The resultant moment and torque at section B

are also given in Jemal [40] (Appendix E.1), and the value for the bending moment

is Mb = 231 kN-mm, while the resultant cutting torque is still T = 56.2 kN-mm.
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Units in mm
o=69.2
b=47.4
d=25.4

de=20.3

F=4867 N

Mo=aF

Mb=bF

d
	

d e

Figure 5.7: Representation of an end mill by an equivalent solid stepped bar

From the resultant moment and torque at section B and from the stress equations

(5.4) to (5.6), the critical stresses at point B of Fig. 5.7 can be calculated. The

results of this calculation are summarized in Table 5.2.

Table 5.2: Stresses at point B of the

equivalent end mill shown in Fig. 5.7, (MPa)

Tb ab cri

34 281 286

Table 5.2 shows the difference between the bending stress al, and the principal

stress ui is less than 2% and this means that the contribution of the shear stress

towards the principal stress is negligible and therefore the bending stress is sufficient

to predict shank breakage. The reason for the negligible effect of the shear stress

on the shank principal stress is due to the large cutter axial length to cutter radius
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ratio found in end mills. Comparison of the results in Tables 5.1 and 5.2 shows that

the bending stress at the critical flute section is higher than that at the fixed end.

This is because the effective section modulus of the flute section is much lower than

the section modulus of the circular section. This lower section modulus at the flute

section offsets the smaller bending moment at this section and makes it the most

critical point for shank breakage of the end mill for the cutting condition and tool

geometry considered in this analysis.

The analysis above can be extended to more complex end mills such as tapered

end mills. However, in this case, or when the number of flutes of the cutter are

different from four, the equivalent diameter has to be determined using finite element

deflection solutions and beam deflection equations as described by Kops et al. [29].

In the next section numerical solutions will be used to verify the analytical solu-

tions presented above for shank critical stresses.

5.2.3 Finite element stress analysis in an end mill shank

In the previous section analytical methods were used to determine critical shank

stresses for the end mill geometry and cutting conditions shown in Figs. 5.1 and

5.2. In this section these analytical solutions will be verified using the finite element

method (FEM) for the same cutting condition and tool geometry. The ANSYS [25]

finite element software will be used in this analysis.

The finite element model of the end mill shown schematically in Fig. 5.1 will be

developed from the geometry of the cross-section of one flute at the free end of the

end mill shown in Fig. 5.8. In this figure the co-ordinate positions of nodal points

that define the geometry of the cross-section are also given. From this cross-section

the flutes of the end mill can be developed. The flute has a helix angle, therefore as
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NODE X(mm) Y(mm)

1 -8.8900000 0.00000000
2 -8.8900000 3.8100000
3 -8.2550000 6.9850000
4 -6.9850000 9.2075000
5 -5.0800000 10.795000
6 -2.5400000 12.065000
7 0.00000000 12.700000
8 -0.25400000 11.430000
9 -0.63500000 9.5250000

10 -2.2225000 6.6675000
11 -4.4450000 4.4450000
12 -6.6675000 2.2225000
13 0.00000000 8.8900000
14 0.00000000 4.4450000
15 -2.2225000 2.2225000
16 -4.4450000 0.00000000
17 0.00000000 0.00000000

Figure 5.8: Cross-sectional geometry of one flute of a four flute cutter at z 0, Fig. 5.1

we move along the axis of the end mill (z-axis) to generate new nodes, the flute cross-

section shown in Fig. 5.8 has to be rotated. The amount of this rotation in degrees per

axial distance can be calculated from Eq. 5.3 and is given by 0/z = 360 tan 7,1) 1 (r d),

where is the helix angle and d is the diameter of the end mill. From this angle

and the nodes of the flute cross-section shown in Fig. 5.8, the nodes for one flute

model having any axial length c can be made. Fig. 5.1 shows, after the end of the

flute section z = c, the end mill has a circular cross-section. This circular section can

be made by adding nodes to the flute cross-section at z = c (this cross-section has

rotated by some angle relative to the free end's cross-section shown in Fig. 5.8) as

shown in Fig. 5.9. From these nodes, the nodes for the circular portion of the end

mill are generated. This results in nodes for one quarter of the four flute end mill,

and to obtain its finite element model these nodes are filled with six-node triangular

prism elements. These elements are selected because they take less computer time,
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X(mm)	 Y(mm)
6.99	 -5.48
4.64	 -8.48
2.18	 -10.59
-.18	 -11.55

-2.66	 -11.62
-5.36	 -11.51
-7.83	 -9.99
-6.85	 -9.15
-5.37	 -7.88
-2.36	 -6.61
0.755	 -6.24
3.87	 -5.86

-5.48	 -6.99
-2.74	 -3.49
0.377	 -3.12
3.49	 -2.74

0.000	 0.000
-2.85	 -12.37

-0.221	 -12.69
2.64	 -12.42
6.15	 -11.10
9.99	 -7.83
9.15	 -6.85
7.88	 -5.37

NODE

301
302
303
304
305
306
307
308
309
310
311
312
313
314

5 315
316
317
451
452
453
454
455
456
457

Figure 5.9: Circular cross-section of a flute at the beginning of the circular section at z=c,
Fig. 5.1
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Figure 5.10: Finite element model of an end mill with elemental forces applied

and because the stress gradients in the shank are low so they can be modeled with

sufficient accuracy using these linear elements. Finally, to obtain the complete finite

element model of the four flute end mill, new nodes are generated from the nodes

already defined by rotating them by 90° about the end mill axis four times and filling

them with elements. This results in the finite element model of the complete end mill

shown in Fig. 5.10. The finite element ANSYS input used to generate this end mill

model is given in Jemal [401 (Appendix E.2). In this model the nodes and elements

were generated manually and the numbering kept systematic in order to simplify the

generation of elements and to enable identification of their position in the model when

the boundary conditions are to be applied.

The concentrated forces to be applied along the cutting edge can be calculated

from the mechanistic model described in Section 5.2.1. For the cutting condition and

end mill geometry given in Figs. 5.1 and 5.2, An example of cutting force calculation
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is given in Jemal [40] (Appendix E.1). The calculated tangential and radial cutting

edge forces are then applied on the model as indicated in Fig. 5.10 to obtain the

shank stresses in the end mill using the finite element approach.

Results

The finite element results obtained for shank stresses are discussed here. In Section

5.2.2 it was shown that for end mills, due to its large axial length to radius ratio, the

contribution of the shear stress towards the maximum principal stress is negligible,

and as a result the bending stress distribution is similar to the maximum bending

stress distribution. The finite element solution for the bending stress distribution,

az, of the end mill is shown in Fig. 5.11. From this figure, the bending stresses

are maximum at the fixed end, point A, and at the flute end close to the circular

section, point B. Thus, this finite element solution predicts shank failure in these

two regions.

Comparison of the stress results at points A and B of Fig. 5.11 shows the

bending stress at the critical flute section is higher than that at the fixed end. This

is because the effective section modulus of the flute section is much lower than the

section modulus of the circular section at the fixed end. This lower section modulus

at the flute section offsets the smaller bending moment at this section and makes it

the most critical point for shank breakage. Another contribution to a higher stress

at point B could be stress concentration. In our FEM end mill model the transition

from the flute section to the circular section is not continuous and this results in

higher stresses. The relative magnitude of the critical stresses at points A and B

depends on the effective section modulus of the flute, the section modulus of the

circular section, and the axial length of the circular section. Therefore, in general,

it is not possible to say the stress in this region is always higher than in the other
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Figure 5.11: Finite element solution for end mill bending stress distribution
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region. So in determining shank stresses both the critical regions shown in Fig. 5.11

must be checked.

5.2.4 Discussions and conclusions

In the previous sections analytical critical shank stresses for an end mill were deter-

mined, and for the same cutting condition and tool geometry finite element bending

stress distribution were obtained. The analytical results are summarized in Tables 5.1

and 5.2, and the finite element solution is shown in Fig. 5.11. Both of the analytical

results lie within the range of values corresponding to the red coloured regions of the

finite element solution and therefore they are in good agreement. Calculations show

that the difference in the critical stresses between the two solutions are less than

9%, and this verifies the applicability of the analytical approach presented in Section

5.2.2. Improved solution could be obtained by reducing the element size used in the

finite element analysis. However, this lead to the need for larger computer memory

and time so a compromise element size was taken.

The analysis above gives the location for shank breakage of end mills. This result

could be compared with common types of end mill shank breakage observed during

the manufacture of turbine components by Bouse [33] of General Electric Company

which is shown in Fig. 5.12. Comparison of this figure with Fig. 5.11 shows the

solutions obtained in this study correctly predict the location of end mill shank in-

service breakages.

From the results obtained, the allowable cutting force Fail corresponding to the

allowable tensile stress craii of the tool material could be obtained from the linear

force-stress relationship. This relation gives Fat = (F / cr)aaii, where F and a are the

resultant cutting force and critical tensile stress relations obtained in this study for
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Figure 5.12: Common types of end mill shank breakages, Bouse [33]
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the cutting condition and tool geometry considered. This allowable force gives the

optimum force for maximum production without the danger of tool shank breakage.

5.3 End mill flute stresses

The general objective of this study to investigate how far the analytical solutions can

go in determining the critical end mill stresses. In the previous sections, an analytical

approach was presented which was used to determine shank stresses, and it was found

that the solutions obtained are in reasonable agreement with numerical results. The

second critical region for an end mill failure is its flute. In this section end mill flute

stresses will be considered.

Comparison will be made between the two-dimensional cutting tool stress solutions

already obtained in Section 4.3 and finite element solution of a. straight end mill flute

for the same wedge angle of 62° and boundary load distribution shown in Fig. 4.2. The

simple straight flute is selected because it is the most likely end mill flute geometry

where its stress distribution could be approximated by the two-dimensional solution.

If the two solutions are similar then helical end mills will be considered, but if the

solutions are different then it can be concluded that end mill flute stresses can not be

determined from two dimensional solutions and their solutions have to be obtained

using three-dimensional numerical methods.

The same procedure as described in Section 5.2.3 was used to develop the finite

element model of the flute shown in Fig. 5.13. Since in flute stress analysis the concern

is for local stresses, only two flutes of a four flute end mill near the loaded region was

considered. The ANSYS input used in generating the model and determining the

stress distribution is given in Jemal [40] (Appendix F.1). The boundary loads were

applied on face ABC D where AB is the active cutting edge (also equal to the axial
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depth of cut), while AD and BC are equal to the chip-tool contact length. The

applied distributed loads along any plane perpendicular to the cutting edge AB are

identical and are as shown in Fig. 4.2. The chip-tool contact length for this boundary

load distribution is 1 mm. This length denoted by BC and AD in Fig 5.13 is divided

into 20 elements of length 0.05 mm. The length of the elements along the cutting

edge is 0.5 mm. The boundary normal stresses were calculated at each of the elements

along the contact length. The normal stresses were applied directly as pressures on

the element faces. The shear stresses at each element was first converted to forces by

multiplying them by the element area (0.025 mm2 in this case) and they were applied

at the nodes. Very small elements were used to accurately represent the distributed

shear and normal boundary load distribution shown in Fig. 4.2.

Fig. 5.13 also shows the minimum principal stress distribution in the loaded re-

gion. This figure clearly shows the increase in the magnitude of the minimum principal

stress on the flank and rake faces when moving towards the cutting edge. The min-

imum compressive stress value given in this figure agrees with the two-dimensional

solution given in Fig. 4.7. Therefore, the critical cutting edge stress for straight end

mill flutes can be determined from two-dimensional solutions. It is also interesting

to see how the stress distribution is uniform along the cutting edge, and how the

stress variations are localized to the loaded region alone. This observation verifies the

validity of considering only a portion of the end mill in flute stress analysis.

The rake face maximum principal stress distribution of the flute model is compared

with the two-dimensional result in Fig. 5.14. From this figure the critical maximum

principal stress in the end mill flute is less (by 35%) than that in the two-dimensional

cutter. Therefore, two-dimensional solutions cannot be used to accurately determine

the maximum principal stress in the loaded region of an end mill flute. However, they
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Figure 5.13: End mill FEM flute model and its minimum principal stress cr3 distribution
for the boundary load distribution shown in Fig. 4.2
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Figure 5.14: Comparison of maximum principal stress distributions 01 for a two dimensional
wedge and an end mill flute for the boundary load distribution shown in Fig. 4.2

can give an upper bound value as shown in Fig. 5.14. Fig. 5.14 also indicates that

in both two-dimensional wedge and end mill flute, the maximum principal stresses

reach their peak at the end of chip-tool contact (in this case at lc = 1 mm).

The reason for the difference between the end mill flute and the two-dimensional

cutting tool solutions observed in Fig. 5.14 may be explained as follows: In two-

dimensional cutting tools the planes perpendicular to the cutting edge (side faces of

the tool) are free from resisting stresses. On the other hand, in the end mill flute,

resisting stresses act on the sides faces and provides support for the cutting edge.

This effect results in lower deflection of' the loaded region and lower tensile stress at

the end of chip-tool contact as shown in Fig. 5.14.

A finite element solution was also obtained to see the effect of change in axial depth

of cut AB on the flute stress distribution. Results of this flute stress distribution for
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the same boundary load distribution, but different axial depth of cut show similar

stresses. From this result, flute failures and shank failures could be compared for the

end mill geometry given in Fig. 5.1. For the axial depth considered in Fig. 5.13,

the maximum tensile stress in the flute is found to be four times the stress at the

fixed end. Therefore, with further increase in radial depth of cut, the flute fails first

compared to the shank. If, however, the axial depth of cut is increased to more

than four times, then the shank stress becomes higher, and in this case with further

increase in radial depth of cut the shank fails first. At moderate axial depth of cut,

failures at either the shank or flute is possible.

The results from the two methods for the maximum principal stresses as shown

above are different even for the simple straight end mill, and therefore when these

stresses are required in the complex helical end mill a three-dimensional numerical

solution has to be used.

5.4 End mill cutting edge stresses

In the previous section stresses for straight flute end mill were considered. These

results show two dimensional solutions can be used to determine cutting edge stresses

in straight end mill flutes. To complete the investigation for the possible use of

analytical solutions in end mill stress analysis, the effect of the shape of the cutting

edge on the stress distribution is considered in this section. For this analytical two-

dimensional cutting edge stresses will be compared with numerical stresses for a

curved cutting edge.
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Figure 5.15: Boundary stress distribution considered for cutting edge stress analysis

5.4.1 End mill cutting edge stresses using elasticity

In this section the analytical equations for cutting edge stresses will be discussed.

Then as an example, this equations will be used to determine the cutting edge stresses

for the boundary load distribution shown in Fig. 5.15 and a wedge angle of a standard

1 inch end mill. The analytical solution to be found will then be compared with finite

element solutions for the same boundary load distribution and wedge angle in order

to verify the applicability of the analytical solutions in cutting edge stress analysis.

Analytical solution for the cutting edge stresses are discussed in Section 2.5.1.

The solution for the radial rake face stress is given by Eq. (2.40) and is

a	 tan cx(cg tan a + 1) —
— 	  aoi 	1„01tan a — a i	 (5.7)

(tan a — a) tan a

where,

= radial stress parallel to the rake face
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a = wedge angle, radians

lo-01 = magnitude of normal stress at the cutting edge on the rake face

NI = magnitude of the shear stress at the cutting edge on the rake face

The wedge angle of the end mill to be analyzed is a = 76° and it is measured from

a standard 1 inch diameter end mill. The boundary stress distribution to be applied

on the tool is the high speed photoelastic boundary (Section 2.3.2) shown in Fig.

5.15. For the wedge angle considered, from Eq. (5.7), the radial stress at the cutting

edge is given by ar = .51501 — 2.217-01. Once this stress component is determined, the

principal stresses can be determined using Eq. (3.24). These stress results at the

cutting edge are summarized in Table 5.3.

Table 5.3: Cutting edge stresses for the boundary

of Fig. 5.15 and wedge angle of 76°, (kg/mm2)

Ur U2 U3 SI = 0-1 - 0-3

-12 -4 -113 113

In Table 5.3 since both the principal stresses in the cutting tool plane are negative,

the maximum principal stress for the plane stress problem ui = 0 was taken.

Examination of Eq. (5.7) shows that the cutting edge stresses are functions of

the applied normal and shear stress at the cutting edge and the wedge angle only.

The magnitude of the shear stress at the cutting edge on the rake face is close to the

yield shear strength of the workpiece material being machined and is independent

of the cutting conditions. The normal stress at the cutting edge on the rake face

is approximately related to the shear stress at the cutting edge. This relation by

Loladze [37] is given by Eq. (2.25) in Section (2.3.3) which is

cro , 2k(1/2 + 7/4 — 7)
	

(5.8)



CHAPTER 5. STRESS ANALYSIS OF AN END MILL 	 119

where k is the yield shear strength of the workpiece material and -y is the rake an-

gle of the tool. Since the rake angle is directly related to the wedge angle for a

given clearance angle, the applied normal stress is a function of only the yield shear

strength of the workpiece material and the wedge angle. This means that for the

same work material and wedge angle, a change in cutting conditions or change in

tool geometry (meaning change in cutting forces) do not result in a change in cutting

edge stresses. For the same work material and tool wedge angle, a change in cutting

conditions results in a change in chip-tool contact length or a change in the shape

of the boundary load distribution while the boundary stresses at the cutting edge

remain approximately constant.

5.4.2 End mill cutting edge stresses using FEM

In the previous section cutting edge stresses using elasticity solutions were considered.

In this section the elasticity solutions obtained will be verified with finite element

results for the same boundary load distribution shown in Fig. 5.15 and wedge angle

of 76°.

The finite element results shown in Fig. 5.13 show that the flute stresses, and

more so the cutting edge stresses, are localized and therefore when stresses in these

regions are required, only a portion of the end mill flute near the loaded region need

be considered for the finite element model.

The same procedure as described in Section 5.2.3 was used to develop the finite

element model of the flute shown in Fig. 5.16, which is a portion of the ball end of the

end mill shown schematically in Fig. 5.17. In this model because of the steep stress

gradient in the loaded region finer elements were used (an average area of 0.0125

mm2). The ANSYS input used in generating the model and determining the stress
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Figure 5.16: Finite element solution for the minimum principal stress a3 at the cutting edge
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Figure 5.17: Schematic diagram showing the portion of the ball end mill considered for
cutting edge FEM model

distribution is given in Jemal [40] (Appendix F.2). The boundary loads were applied

on face ABC D where AB is the circular cutting edge and AD and BC are equal to

the chip-tool contact length. The applied distributed loads along any radial plane

perpendicular to the cutting edge AB are taken to be identical and are shown in Fig.

5.15. The same procedure were used to apply the boundary load distributions on the

element faces as described in the straight flute finite element stress analysis.

Fig. 5.16 also shows the minimum principal stress distribution near the cutting

edge. The minimum principal stress occurs at the cutting edge and has the value

O3 = —117 kg/mm2. The other stress which is responsible for end mill cutting edge

failure is the maximum shear stress. Twice the maximum shear stress distribution

close to the cutting edge is shown in Fig. 5.18. From this figure the maximum shear

stress in the loaded region occurs at the cutting edge and twice the maximum stress
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has the value 27-„,az = S/ = 112 kg/mm2

A comparison of the above numerical solutions with analytical results given in

Table 5.3 show less than 4% difference and therefore they are in very good agreement.

Thus, the analytical solution can be used to determine cutting edge stresses, and end

mill cutting edge failures could be explained by the two-dimensional cutting tool

failure analysis discussed in Section 4.5.

The rake face maximum principal stress distribution of the ball end model is com-

pared with the two-dimensional result in Fig. 5.19. From this figure the maximum

principal stress in the ball end is much less than the two-dimensional solution. There-

fore, two-dimensional solutions cannot be used to accurately determine the maximum

principal stress in the loaded region of the ball end of an end mill flute. However,

they can give an upper bound estimate as shown in Fig. 5.19.

5.5 Conclusions

An analytical approach for shank stress was presented and the solution obtained was

compared with finite element solution. Good agreement was obtained. Therefore,

shank stresses can be determined using analytical solutions. The critical regions for

shank failures obtained from these solutions were also found to reasonably predict

the location of end mill shank failures observed in practice.

The possible use of two-dimensional solutions to determine maximum principal

stresses in an end mill flute was studied. It was found that for the same load distri-

bution and wedge angle, the maximum stress in the two-dimensional cutting tool is

much higher than that in the end mill flute. Therefore, when accurate stress predici-

tion near the end of chip-tool contact of an end mill is required, a three-dimensional

numerical solution should be employed. If only approximate values are required,
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Figure 5.18: Finite element solution for the maximum shear stress at the cutting edge
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however, then the two-dimensional analytical solution may be used to provide upper

bound estimates.

The second critical region of an end mill flute is its cutting edge. Analytical and

finite element cutting edge stress solutions were compared, and it was found that

there is good agreement. Therefore, end mill cutting edge stresses can be determined

using analytical solutions.



Chapter 6

Concluding Remarks

6.1 Summary

In this study, the stresses within cutting tools (orthogonal cutting tool and an end

mill) were analyzed. The stress distributions from the analytical solutions were com-

pared with numerical solutions in order to investigate the possible use of analytical

solutions in cutting tool stress analysis. The analytical and numerical results obtained

for the location and modes of tool failure were also compared with observed cutting

tool in-service failure in order to see the correlation between predictions and actual

cutting tool failures.

6.2 Conclusions

For accurate determination of the stress distribution in a cutting tool, the actual

mechanical and thermal boundary loads are required. Because of the complexity of

the cutting process, the knowledge of the boundary load distributions and therefore

the stress distribution in the cutting tool is approximate. In this study stresses due

to mechanical loads only are considered and these stresses can be superposed on the

125
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thermal stresses to obtain the overall stress distribution in the cutting tool.

From the results obtained in the previous chapters, the following conclusions can

be made

• Previous analytical stress distribution results near the end of chip tool contact

were shown to be incorrect. This was found to be due to the direct use of the

infinite wedge solution to determine stresses in the loaded region of the cutting

tool.

• An analytical stress distribution in an orthogonal cutting tool which agrees with

numerical and previous experimental stress distribution results was obtained.

This was done by satisfying the boundary condition beyond the loaded region.

• Analytical stresses at the critical shank sections of an end mill were found to

agree well with numerical solutions. This indicates the applicability of analytical

methods in shank stress analysis.

• Comparison of two-dimensional stress distribution with numerical solution of

an end mill flute show good agreement at the cutting edge, but at the end of

chip-tool contact the two-dimensional solution gave a significantly higher critical

maximum principal stress.

• The analytical and numerical prediction of cutting tool (orthogonal cutting tool

and end mill) failure locations and modes of failure were found to correlate well

with observed cutting tool in-service failure.

From the results obtained in the previous chapters, the following conclusions can be

made of the stress distributions and deformations in cutting tools
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• During cutting, the loaded region of a cutting tool deforms, causing shortening

of the flank face close to the cutting edge and bending of the rake face at a point

near the end of chip-tool contact.

• The shortening of the flank face results in the critical minimum principal stress

to be in this face, close to the cutting edge. The rake face bending about the

point near the end of chip-tool contact results in the critical maximum principal

stress to be at this point. Within the cutting tool the principal stresses are

within these two extreme values, increasing algebraically from the flank face to

the rake face.

• The magnitude of the critical compressive stress is much higher than the critical

tensile stress. Since the maximum shear stresses on free surfaces (at the critical

points) is proportional to the non zero principal stress, the critical maximum

shear stress occurs at the flank face near the cutting edge.

• With increase in cutting forces the critical maximum principal stress results

in initiation of cracks near the end of chip-tool contact and final fracture of

the whole loaded region of the cutting tool. The critical minimum principal

stress results in permanent deformation of the cutting edge, while the critical

maximum shear stress results in chipping of the cutting edge.

• For both low and high speed photoelastic boundary load distributions, for the ge-

ometries of the cutting wedge considered, the critical maximum principal stress

occurs at the end of chip-tool contact.

• The magnitude of the critical maximum principal stress, minimum principal and

maximum shear stress decrease with increase in the wedge angle of the tool.
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• When prediction of stresses further from the loaded region of the cutting tool are

required the cantilever beam equations can be used to determine the maximum

principal stress which may cause cutting tool fracture.

6.3 Recommendations

The following recommendation are suggested for future work in order get an improved

approximation of the stress distribution in cutting tools.

• The cutting tool stress distribution due to flank loading should be included in

future cutting tool stress analysis. In this study the cutting tool was assumed to

be sharp with no flank face loads. The stresses due to flank face loads could be

easily added by using the same procedure used for the rake face loads and super-

posing the results. The stress distributions due to the flank and rake face loads

have opposing effects and therefore when the flank face stresses are included the

magnitude of the stresses should be lower. Thus the stress distribution obtained

in this study is the worse case. However, to get an improved solution the stress

distribution due to flank loading should also be considered. Unfortunately, ex-

perimental flank face boundary load distribution data are sparse and therefore

the shape of the distribution must be assumed to be similar to the rake face

boundary load distribution but with smaller average loads and smaller contact

length.

• The cutting tool stress distribution due to thermal effects should be included in

future cutting tool stress analysis. In this study the temperature effects were

not considered. The temperature effects should be considered in order to explain

failures due to thermal effects observed in cutting tools at higher cutting speeds.
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To accomplish this, the boundary temperature distribution on rake and flank

faces must be known or assumed. The temperature distribution along these

faces can be estimated from the inserted thermocouple technique (Chao [30],

Kusters [35]) or using the metallographic method (Smart at el. [31]) where the

temperature distributions are deduced from the structural change of the high

speed tool. Based on this temperature distribution, the thermal stresses could be

estimated and then superposed on the mechanical stress distribution to enable

prediction of cutting tool failure and stress levels at higher cutting speeds.

• Future cutting tool stress analysis results should be verified experimentally. In

this study, the conclusions reached for cutting tool failures was found to correlate

well with observed in-service failures of cutting tools. However, to quantitatively

predict tool failures it is necessary to compare the value of the predicted critical

stresses at cutting tool failure with the strength of the cutting tool material.

For this analysis, the cutting tool strength at the temperature that the tool

experiences, as determined by Kreimer [39], should be used. It will also be

important to compare the predicted location for initiation of cracks on the rake

face with the location observed from actual cutting tool failures. Finally, when

doing this analysis it is important to note, as discussed by Shaw [38], that the

variability in the strength of cutting tool materials is large and therefore the

agreement between the predicted critical stress values and the tool material

strength might not be that close.
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