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Abstract

The pressure distributions _along two airfoil models of differing profiles equipped with upper
surface Kruger flaps were measured. The results were compared with the predictions of a
theoretical potential flow model, which used conformal mapping to bring the flapped airfoils
into a final transform plane where the pfoﬁle of the flapped airfoil was represented by a unit
circle. Potential flow singularities such é,s sources, sinks, and doublets were added to the flow
in the final transform plane to replicate the separation bubble created beneath the flap. Dif-
ferent arrangements of these singularities resulted in four different variations of the theoretical
model. The model calculates the velocity and pressure distributions about the airfoil in the

final transform plane, and then relays the information back to the original airfoil plane.

As mentioned, the experimental investigations were conducted on two different airfoils, the
NACA 0018 airfoil, and the FXL III 142 airfoil. Each clean airfoil model had a chord of 24
inches, spanned the 15 inch high test section, and was equipped with a removable 10% chord
-leading edge Kruger flap. The wind tunnel used had its side walls replaced with arrays of evenly
spaced airfoil slats at zero incidence. The airfoil slatted walls resulted in a test section that
needed little or no boundary corrections. Each airfoil was equipped with a row of pressure taps
located at mid-span which allowed the local static pressure to be measured at various points

along the chord.

Agreement between experimental and theoretical results was poor at low angles of attack for all
model variations, but became increasingly good as angle of attack increased, and as the influence
of the separation bubble decreased. The model’s accuracy reached a maximum in mid-range

of angles of attack, from abdut 8° to 14°. In this range, the agreement along the suction side

it




of the airfoils was excellent, and the agreement along the pressure side and bubble region was
good for all four of the different models. As the angle of attack was increased to values near

stall, non-linear and viscous effects became larger, and the models’ accuracy decreased again.

Methods of increasing the accuracy of the models were tried. Mapping an airfoil artificially
augmented by the displacement thickness of a turbulent boundary layer was found to bring the
experimental and theoretical results into almost perfect agreement along the suction surface
of airfoils at mid-range angles of attack. Averaging the theoretical results for slightly different
mapping functions was also found to remove some of the oscillations in the theoretical pressure

distributions near the leading edge. . | |

Although there were some problems at both the low and high angles of attack, the potential
flow model successfully predicted the pressure distributions along airfoils equipped with upper
surface Kruger flaps in the middle range of angles of attack, where the flaps are most likely to

be deployed.

il
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Chapter 1

Introduction

1.1 Typical Approaches to the Problem of Separated Fluid Flow

Low speed, separated flow arises in many different applications including wind-building inter-
actions, ocean currents around underwater obstructions, and even small aircraft wings during
take-off and landing. Engineers have been struggling with this problem for the latter half of
this century. Unfortunately, the flows involved are not yet completely understood, and this

complicates the solutions.

Typically, the problem is dealt with either through a computational or an analytical solution.
Neither solution method is exact. Turbulence, and the resulting Reynolds stresses, create
problems which are not directly solvable at the moment due to a superfluity of unknowns.
All of the computational methods in use model turbulence and its effects by creating extra
equations linking the properties of turbulence, while the analytical models try to ignore the
portions of the flow where turbulence controls the fluid properties. The only solutiop method
to deal with turbulence in a completely accurate manner is direct numerical simulation, and it

is incredibly time consuming to use, even for the simplest flows.

With the recent increase in both speed and storage capacities in computers, the computational
solutions have been gaining favour. This group of solutions involves splitting a typically external
flow into two different components. The first componént comprises the main body of the flow
and is dealt with as a low turbulence flow where viscous effects are small. The second part of

the flow includes the separated region and the bounding shear layers, and is the region in which

viscous forces play a large role. Each region is solved in turn and the results are iterated until
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the solution along the common interface converges. Such solutions are still computationally

intensive, and involve modeling the turbulence in an empirically acceptable manner.

Analytical solutions, on the other hand, normally ignore turbulence, and thus the separated
region, entirely. Using the geometry of the flow, in combination with the fluid properties, this
group of solutions makes an educated guess at the location of the boundary between the two
regions described above. The main body of the flow is then treated as an inviscid fluid, and
the flow properties are determined. In order for this approach to be successful, the interface
between the separated region and the main flow must be well defined and steady, so that the
only effect of the separated region is to create a new boundary for the inviscid flow. In the
case of a body immersed in the flow, the pressure of the fluid upon the body in the separated
region must be approximated in another fashion. This group of solutions has the advantage of
being simpler to implement and faster to solve than the computational methods, but it doesn’t

provide as complete a picture of the flow.

While the'analytical models of separated ﬂdw aren’t perfect, they can give valuable results.
Direct testing of models in a wind tunnel environment is both time consuming and expensive,
As mentioned above, numeric simulation of viscosity is also costly, and in the preliminary stages
of design, possibly unnecessary. Here, an analytical model would be capable of giving a fast
idea of the flow and an estimate of the resulting fluid forces. This allows alterations to the
design to be made quickly and easily. Additionally, later on in the design process the results
from an analytical model could be used as the input into a computational model, accelerating

convergence time and reducing costs.

1.2 Previous Research in the Area

Modern research into analytical solutions to separated flow problems began in the mid 1950’s

with the work of Roshko and Woods.

In 1954, Roshko [13] published a hodograph theory extending the method of Helmholtz-Kirchhoff
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for separated flow past a flat plate normal to the stream. In the original method, the wake was
bounded by separation streamlines extending from the separation points at the tips of the plate.
These streamlines simulated the free shear layers that exist in the real situation. Separation
velocity and pressure were ﬁxedi at free stream values, an obviously unrealistic situation as it
is well known that the pressure on the body in the wake region is lower than the free stream
pressure. This produces faulty results for derived quantities, especially the drag on the body.
Roshko modified the theory to permit the velocity at the separation point and thus the base
pressure to vary, by providing the model with one empirical input, the velocity of the flow at
the separation point. By increasing the velocity at separation, the base pressure is lowered.
The theory was also altered .to deal with symmetric (with respect to the free stream velocity)

bluff bodies of arbitrary shape, resulting in a theory with many more real world applications.

The velocity along the separation streamlines in this model is constant until a finite distance
downstream from the body, where it begins an asymptotic approach to the free stream value,
adding a notch in the hodograph plane. Other hodographs allow the separation streamline
velocity to vary in other Ways from the separation point to infinity, but seemingly more realistic
models (such as a continuous asymptotic decay towards the freé stream value) do not yield
results that are as accurate. This is an interesting little bit of empiricism in Roshko’s otherwise
well argued theory, but it is typical of solutions involving mathematical mappings that there
are a bevy of mappings that accomplish the end goal, and that each mapping gives a slightly

different result.

In 1955, Woods [17] extended the classical Helmholtz theory of incompressible flow about a flat
plate in several ways, applying it to a circular cylinder in compressible subsonic flow, and a
varying bubble pressure. Woods, like Roshko, saw that cla.ssicé.l theory at the time made several
quite invalid assumptions or had invalid results. For example, the current model in use was
based on the work of Levi-Civita (developed around 1907, and extended in the 1920’s), and it
predicted wake widths that grew with downstream distance, so that the wake became infinitely
wide. Additionally, except for Roshko’s approach, the models available at the time required

a wake of constant pressure. At infinity, the pressure in the wake must equal the free stream

pressure. This meant that the pressure anywhere in the wake was equal to the free stream
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pressure. Unfortunately, all physical wakes have a lower than free stream pressure behind the
body, meaning that none of the models corresponded to reality. The errors in the formulation

of these models also led to errors in the various results obtained.

Woods’ method corrected these problems. He permitted a varying velocity distribution on the
separation streamlines. The model assumes that the correct formulation would be the simplest
one possible that yielded asymptotically parallel separation streamlines with a finite wake width
at infinity. The theory only requires one experimentally known value, the pressure coefficient
on the portion of the object covered by the wake. However, this method gives multiple values
of the separation points for a given back pressure, and determining which result to use requires
a knowledge of the actual separation points in the flow. This means that there are essentially

two empirically determined variables needed.

The math involved is very long, complex, and more than a little tedious. Additionally, although
the model deals with non-symmetric bluff bodies, it is still restricted to flows producing an

infinite wake.

The next link in the chain of progress was both a step forward, and a slight step backwards. In
1970, Parkinson and Jandali [11] introduced their wake source model for bluff body potential
flow. This theory used conformal mapping to reduce the problem of a symmetrical bluff body
in an exterior flow to the well known problem of a circle in uniform flow. By adding ideal flow
sources, an infinite wake of finite width is created. Like the previous two methods, this model
requires the input of an empirically determined pressure coefficient at separation. Unlike the
previous two models, it doesn’t try to determine the separation points by flow properties, but

instead allows them to be used as input into the model.

This approach was mathematically simpler than any of the models before it, and produced
results that were as least as accurate, but it wasn’t as flexible as Woods’ model, as it couldn’t

deal with either non-symmetrical bodies or compressible flow.

As often happens in research, backing up out of a dead end and taking a slightly different

approach opened up new avenues for dealing with more complex problems. In 1985, Parkinson
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and Yeung [12] modified the theory and introduced the wake source model for airfoils with
separated flow.” By introducing new mapping techniques, and adding a vortex in the final
transform plane to deal with the lifting effects of a non-symmetrical body, they managed to
accurately model any airfoil shape with an upper surface spoiler or lower surface split flap.
The empiricism involved was kept to a minimum, requiring only the pressure coefficient at
separation, as well as the locations of separation, which are determined solely by the geometry

of the airfoil and spoiler or flap.

Next, Yeung and Parkinson again modified the model to deal with one and two element airfoils
experiencing trailing-edge stall, separation bubbles on flat plates, separation bubbles upstream
of spoilers, and spoiler/slotted flap combinations, showing the versatility of the original ap-
proach. Now the model could not only deal with lifting bodies, but also with non-infinite

separated flow regions.

Finally, in 1993, Brun [1] improved the theory to deal with a flat plate normal to the flow
and separation bubbles on an airfoil by increasing the number of boundary conditions applied.
Using this knowledge, Brun then modified the theory to deal with the case of an airfoil equipped

with a Kruger flap, creating a lower surface separation region.

Unfortunately, there wasn’t very much published data available on the pressure distributions
along airfoils equipped with Kruger flaps. One of the few papers published on the subject,
by Kruger himself in 1947 [6], had sketchy pressure data on a modified Mustang profile wing
(subject to three-dimensional effects), and thus it was hard to determine how accurately the

model was working.

This last work by Brun provides the impetus for the present study.

‘1.3 Direction of Current Research

The present study continues the work done by Sarah Brun. Specifically, it will provide data on

the pressure distribution along two different airfoil profiles. This data will then be compared
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with the predictions of the model, and the results from each profile contrasted.. From these

results, both the most effective configuration and the overall effectiveness of the model can be

determined.




Chapter 2

The Potential Flow Model for Airfoils with Upper Surface Kruger Flaps

2.1 Introduction

As mentioned, Sarah Brun applied the ideas of Parkinson, Jandali, and Yeung to the problem

of an airfoil equipped with an upper surface Kruger flap.

From the mid 1940’s to the early 1950’s, W. Kruger developed and tested a simple leading edge
flap that could either be extended from the upper surface of an airfoil or rotated forward from
the lower surface. Both of these arrangements are shown in figure 2.1. The flow about the lower
surface flap is complicated, containing two separated regions, and so this research concentrates

on the upper surface Kruger flap.

a)

Figure 2.1: Sketch of two different Kruger flap: a) Lower surface Kruger flap, b) Upper surface
Kruger flap.

Both versions of this flap delay stall of the wing and increase Cimnq. at the expense of an increase

in C4, making them useful during both take-off and landing of an aircraft. Additionally, when

stall does occur, it is normally a trailing edge stall, and thus gentler. Other, more complex,
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leading edge flap arrangements, like the multiple slat and flap systems in use on most passenger
jets, may be more effective, but are more difficult and expensive to manufacture. On smaller
planes, the Kruger flap represents a viable alternative, but even larger aircraft like the Airbus

Super Transporter, the A310, and the Boeing 737 and 747 have made use of this flap.

The use of this flap by smaller aircraft is also an advantage for the aerodynamicist who wishes
to model and test the flap in a university setting. Small, inexpensive aircraft tend to travel
slowly, well below the speed of sound, where compressibility effects are negligible. This provides
a two-fold benefit to the researcher. Firstly, few university wind tunnels are capable of testing
in the transonic, supersonic, or even the high subsonic, range, but the results from a Kruger
flap equipped airfoil tested in a low speed tunnel are still applicable. Secondly, the absence
of compressibility effects means that incompressible theory can be used to create a simpler

theoretical model.

2.2 Modeling the Flow

The streamlines about an unstalled airfoil equipped with a Kruger flap are sketched in figure
2.2. The flow separates from a point near the tip of the flap, and reattaches itself at a point

further downstream on the lower surface of the airfoil, forming a separation bubble. The flow

remains attached along the upper surface until stall.

//—\\\

- T

Separation Bubble Region

Figure 2.2: Streamlines about an airfoil equipped with a Kruger flap.

The model used is a\potential formulation, which has several a.ssumptiohs, requiring that the
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flow remain two dimensional, incompressible, inviscid, and steady. Fortunately, the Kruger flap

problem satisfies these assumptions fairly well.

Flow along a wing section of reasonably large aspect ratio remains approximately two dimen-
sional except near the tips. As already mentioned, most Kruger flap applications are at low
speeds, and so the flow can be well approximated as incompressible. Additionally, the flow
around the airfoil is essentially inviscid, except in the boundary layers and inside the separa-
tion bubble. The boundary layers are usually small and have a negligible effect on'the pressure
distribution and lift at these speeds. The effects of viscosity in the separation bubble are not
negligible, meaning that the model is not capable of calculating details of the flow within the
separation bubble. However, the boundaries of the separation bubble are assumed to be well
defined and steady, meaning that fluid properties just outside of the separation bubble can be
determined. Finally, only steady flow is dealt with. This doesn’t mean that the flow within the
separation bubble itself is steady, but instead that the shear layer representing the boundary
of the bubble is steady.

2.3 Brun’s Conformal Mapping Solution

Solid bodies in fluid dynamics are represented by requiring that there must be no flow through
the exterior of the body. In complex potential flow, there is no flow across streamlines, and
therefore the body is represented by a streamline of the same shape as the body. Once this
streamline is found, the fluid properties along it can be determined, and the forces on the body

calculated.

Complex potential flow theory defines the fluid potential as:

F(() =% +i¥ (2.1)

and the complex velocity as the first derivative of the complex potential:

{
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wZ)=—;"=u—-w (2.2)

where Z = z + iy is a complex variable representing location in a plane.

As the flow was assumed to be two dimensional, incompressible, and inviscid, the Bernoulli

equation can be applied to determine the pressure coefficient:

Z2 o U2
p w2’ _ pe U°
P 2 P 2
P~ P
Co="13 (2.3)
2

where p is the local static pressure, p is the fluid density, and p,, and U respectively represent

the free stream pressure and velocity.
The pressure coeflicient can then be used to determine the forces on the body, if required.

It’s difficult, however, to find and deal with streamlines that accurately represent arbitrary
shapes. It would be ideal if only one simple body had to be modeled, and the results from that
body could be applied to other shapes. A good candidate for the simple shape would be the
circle, which has been studied extensively, and can be easily modeled in potential flow theory by
the doublet, with a vortex at the origin to simulate the lifting properties of the airfoil. Happily,

there is a way of doing exactly this.

Conformal mapping is a powerful branch of mathematics that uses analytical functions to stretch
and mold space so that shapes inscribed thereupon can be transformed into other shapes. Each
point in one plane, defined previously as Z = z + iy, is mapped to another plane, for example

¢ = £ + in, by the transform function:

Z = f(¢) (2.4)
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By choosing the correct series of mappings, it is possible to map most closed shapes, including
almost any airfoil, to a plane in which they are represented by the familiar circle. Addition-
ally, the Milne-Thomson circle theorem provides an avenue to add other flow elerhents, such
as sources, sinks, or vortices, to the flow without disturbing the original circular streamline,

allowing the simulation of more complicated flows.

Conformal mapping using analytical functions also has a key property: angles of intersection
of curves are preserved in both magnitude and sense. If two line segments meet in the oi‘iginal
plane at an angle of §, they will meet at the same angle § in the t',ransform plane. As with any
rule, there is always an exception. At critical points of the mapping function (where the first
derivative of the mapping function has a zero), the angles of intérsection are preserved in sense
but increased in magnitude by a factor equal to one greater than the order of the zero, i.e. first

order zeroes double the angle of intersection, second order zeroes triple it, etc.

Of course, being able to transform an airfoil into a circle, and solve the flow about the circle, is
only useful if there exists a method of translating the information back into the original airfoil
plane. Indeed, given the velocity in the final transform plane and the first derivative of the

mapping function, it is not difficult to find the velocity in the initial plane. As defined in 2.2:

_4F _dFd¢
v =7 = adz
_ dFjd¢

T dZ/dC

_w(©)

=70 25)

The models used have the following properties:

i) Only the wetted surface of the airfoil is mapped. The section contained within the separation
bubble is ignored, and the rest of the airfoil becomes an airfoil slit. The separation and reat-

tachment points, as well as the trailing edge, are made simple zeroes of the complete mapping

function, so that angles there are doubled. At separation and reattachment, the corresponding
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lines on the circle meet at 180° in the final transform plane, meaning that they meet at 360°
in the physical plane, and are thus cusps, as expected in an airfoil slit. The separation and
reattachment streamlines, which intersect the body at 90° in the final mapping plane are tan-
gential to the body in the original plane. The trailing edge also becomes a cusp or wedge in

the physical plane.

ii) As mentioned, the portion of the airfoil within the separation bubble is ignored. The bubble
is assumed to have relatively small normal shear forces, meaning that the normal pressure
gradient is small. Therefore, the pressure é.long the streamline representing the separation
bubble is assumed to be equivalent to the pressure exerted on the airfoil at that position along

the chord, as shown in figure 2.3.

Figure 2.3: Pressure on the bubble is equivalent to pressure on the airfoil at that position along
the chord.

iii) The shear layer forming the separation bubble is assumed to be thin, well defined, and
steady. It is represented by a separation streamline extending from the separation point to the -
reattachment point. The separation and reattachment points are considered known and used

as inputs to all of the models.

iv) All of the flow calculations are performed in the final transform plane, where, as already
mentioned, the airfoil is represented by a circle, and the computations are much simpler. Once

all of the relevant quantities have been determined, they are relayed back to the original physical

plane.
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2.4 The Mapping

Mapping an arbitrary airfoil into a circle is not a one step process. Several consecutive mappings

are needed, and the mappings used will now be described.

The beginning physical plane contains the airfoil and Kruger flap to be mapped. Both the
original airfoil and the flap are treated as a single airfoil. The trailing edge of the airfoil is
located at +2 on the x-axis, and the point half way between the leading edge of the airfoil and
the center of curvature of the leading edge is placed at -2. The mapping sequence is illustrated

in figure 2.4.

The first step is to apply a Joukowsky transformation.

z:m+% (2.6)
This transforms a Joukowsky airfoil into a perfect circle. Most airfoils have shapes similar to
the Joukowsky airfoil, and so the airfoil is mapped to a shape that is almost a circle. Any
real airfoil, with either thickness or camber, will form a near circle centered slightly off the
origin. The first derivative of the Joukowsky transform has a simple zero at Z; = 1, which
represents the trailing edge of a thick airfoil. Thus the trailing edge becomes a simple zero of
the first deriviative of the complete transform function. Z; = —1 is also a simple zero of the
first derivative of the mapping function, but represents a point in the interior of a thick airfoil,

and therefore is of no consequence to the model.

The next mapping shifts the near circle by the distance from its centroid to the origin. This

centers the near circle on the origin. Z;¢ is the distance from the centroid to the origin.

Z\ =2 - Zyo (2.7)

Now, a Theodorsen transform, as described in references [1] and [15], iteratively maps the near
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circle to a perfect circle by applying the following infinite series.

© A. 1 iB. ’
Z1 = Zy exp LZ 4i +iB; (2.8)

J
=0 Z2

Practically, this series is truncated by determining n points on the near circle that will be
mapped to a perfect circle. As there are two coefficients for each j, these n points allow n/2

Theodorsen coefficients A; and B; to be determined.

n/2 .
A;+1iB;
Zi = Zz €xXp E J_Z-;——l (29)
7=0 2

The airfoil has now been mapped to a perfect circle. As mentioned previously however, the
model requires that both the separation and attachment points become simple zeroes of the

complete mapping function, which has not been accomplished yet.

The portion of the airfoil between the separation and reattachment points is discarded, and the
circle becomes a circular arc slit. The slit is rotated and scaled so that the newly formed cusps

are located at 2¢ and —2i.

Z Z3 + cos(¢2 - ¢1)

,(21"'_4’2.)
= |— e 2
R3 2

(2.10)

where ¢; and ¢, are the angular locations of the separation and reattachment points in the Z,

plane, and Rj is the radius of the circle in the Z3 plane.

A modified Joukowsky transform then opens this airfoil slit into a full circle which is simul-
taneously translated to the origin. This mapping creates the necessary simple zeroes in the .
mapping function at the separation and reattachment points, which are located at Rcosg + i

and Rcos$ — i in the plane of the full circle, where R is the radius of the circle in the Z, plane.

From the geometry of the mapping, 4¢ = ¢ — ¢, , and so ¢ = Qa_z_ﬂ_
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1

Z3:Z4_COt$——Z———cot$
4 —

(2.11)

Finishing it all off, the circle is scaled and rotated to obtain a unit circle at zero incidence to

the oncoming flow. This simplifies the mathematics in the final plane.

Zy = R¢e*™ (2.12)
where ag is the incidence of the flow in the second last transform plane.

It is easily shown that:

R=—=;and
sin¢’an

R; = R_. (2.13)
cos ¢

To find the velocity in the physical plane using equation 2.5, the first derivative of the complete

mapping function must be known. Applying the chain rule yields: % = %%%%%' At

most of the points along the airfoil, this is easily calculated, giving:

dZ _ — 1 1 i(ao+m)dZ1
ac = ¢ [1 B Zf] [1 Gz cota)z} A7
where:
dZ2 B j:OJ Zg P =0 Zg -

At an infinite distance from the origin, no disturbance from the airfoil should be seen, and the

flow should be uniform and at the same incidence. Therefore, at Z; = Z3 = Z4 = oo:

“z, _ cos_qzei("”""b %) gAo+iBo (2.15)
d¢ ' -
giving:
V = Ucos peto
@1+ ¢2

Qg = — Bo - (216)

2
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V is the magnitude of the incident velocity in the final plane.
Now, all of the variables in the mapping functions can be calculated.

Examining equation 2.14, it is noted that the points Z; = 1, the trailing edge, Z4 = cot¢ — 1,
the separation point, and Z4 = cot¢ + i, the reattachment point, are all critical points of
the complete mapping function. From equation 2.5, these critical points create indeterminate
velocities in the real plane, as both the numerator and the denominator approach zero. In order

to evaluate the velocities at these points, it is necessary to apply L’Hopital’s rule:

w(¢) _ w'(¢)

li = —= 2.17
6 FIC T 1(Q) (210
where: . \
2
f” = % = 2C0$2$ (1 + ﬁi) g—l (218)
4 — CO 2
at the trailing edge, and:
T - 1\ dZ
7= | = 2Rcos ¢ (1 - _Z—22) EZ—: (2.19)

at the separation and reattachment points.

Now, it is important to realize that the choice of mappings used is arbitrary. Other mapping
sequences that create critical points at the necessary locations, and result in a unit circle in the
final transform plane, are just as valid as the sequence used here. Choosing other mappings

may result in slightly different pressure distributions in the separation bubble region.

2.5 Flow Models

All of the flow models model the physical airfoil by a doublet forming a unit circle, located at
the origin of the final transform plane. A uniform flow is then added, simulating the motion of
the airfoil through the air. The circulation about the airfoil is modeled by a vortex, also at the
origin of the final transform plane. Brun developed two models that introduce either one or
two doublets located on the unit circle. Two new models have since been added which involve

adding either a source/sink combination on the unit circle, or a single doublet not located on
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the circle. Each of the four variations uses the flow singularities, all located in the region of
. 5
separation, to create a separation streamline from the separation point to the reattachment

point.

There are three boundary conditions that are intrinsic to all of the models. To avoid infi-
nite pressure coefficients, all three of the critical points of the mapping function must be also

stagnation points in the final plane.

2.5.1 Single Doublet

The simplest model adds a doublet to the flow, located on the unit circle at an angle § somewhere
in the region of separation. Milne-Thomson’s circle theorem is used to calculate the strength
and position of the image doublet within the unit circle. This situation is described in reference

[1]. From potential flow theory, the potential is given by:

8
and the velocity:
‘ w(l)=V(1- l) + z—r- + iLiJ. (2.21)
, (27 ¢ (C—e)?

This results in three unknowns, q, the strength of the doublet, 4, the angular location of the
doublet, and T', the circulation about the airfoil. The three boundary conditions then provide
a closed problem, and the unknowns can be determined. The solution method is well described

in reference [1], hereafter referred to as Brun.

2.5.2 Source and Sink

An alternative is to add a source and sink of equal strength, q, at angles é; and ; along the body
streamline. This introduces an additional unknown, requiring an extra boundary condition.
The largest discrepancy between the predictions of the single doublet and experimental results

occurs at the separation point, and so it seems logical to choose the pressure coefficient at this
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point as the next boundary condition. With four unknowns, and four boundary conditions, the

problem is again closed. The potential, velocity; and velocity gradient in the final plane are:

F(Q)=V({+ %) +illog¢ +¢ [1og(c — 1) — log(¢ - e“’=)] (2.22)

w(()=V(1- <_12) + z% +q [C _16,.51 o _16,.52] (2.23)
ey 2V _.T 1

w'(() = 3 C? +4q [(C )2 ((— ei51)2] (2.24)

At the critical points, after some manipulation the boundary conditions become:

@(0,@, Oret,0rE) =0 =2Vsinf + T + g [cot (0 ‘252) — cot (0 _251)] (2.25)
and .
Cpoep = 1 - (%%)2 (2.26)

The most robust solution method found was to iteratively satisfy the boundary conditions as
follows.

i) Set 4; so that W(0sep) = 0;

it) Set &7 so that w(fre) =0 ;

iii) Set q so that

W' (Caep) -

F(Cocp) = 4/1 = Cp 4ep; and
iv) Set I so that w(frg) = 0.

Repeat from step i) until error is sufficiently small.

It seems probable that the source and sink are approximately evenly spaced between the sep-
aration and reattachment points, and so initial guesses of 6; = 0,ep + (Oret — 0sep)/3, and
82 = Oyep + 2(0ret — 05ep)/3 are used. At the trailing edge, the contribution of the source and

sink should be small, so an initial guess of I' = —2V sin @75 seems proper. Finally, the initial

strength of the source and sink is set arbitrarily to a value of 0.
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2.5.3 Radial Doublet

Both the single doublet and the source and sink models result in fairly thin separation bubbles
at low angles of attack. This is at least partly a property of the mappings used. Examining
the mapping, it seemed that a thicker bubble might result if the circular bubble in the final
transform plane were shifted radially either a little outwards or a little inwards. The one doublet
model was modified to allow the doublet to be placed at a radius 7¢ in the final transform plane,
instead of directly on the body streamline as was the case previously. This introduced another
unknown into the model, and again the separation pressure coeflicient was used to close the
model. The mathematics for this situation become more complicated, but are still easily solved.

The potential, velocity, and velocity gradient created by the radial doublet alone are given by:

_ CTO _ ei& _ C2ei5 + CroeiZJ

F, - - 2.27
rd (C — roe®)(Cro — €9) (2.27)
ot — C27‘3 _ C28i26 + 2croei36 _ ,,.(zjei‘l& _ 2(,,.061'6 (2 28)
rd 9 (—C + roei®)2(Cro — €%)? .
w/d _ —2q3c,,,oei26 _ C2,',ge£6 _ 3Crgei45 _ C3roei26 + 3Cz,’,(2jei35 + C3rg + ,’,aleiss _ ez’35
rd =

. . 2.29
(_C + 7'06‘5)3((7'0 _ 615)3 ( ‘ )
These values are then added on to the potential, velocity, and velocity gradient created by the

origin centered doublet, the lifting vortex, and the uniform incident flow.

As in the source and sink model, an iterative method is used to determine the values of the
unknowns. It is assumed that ry will be fairly close to one, #nd therefore that the values for
4, q, and T' from the original single doublet model are used as initial guesses. From there, the
following boundary conditions are applied iteratively:

i) Set T so that the trailing edge is a stagnation point;

ii) Set q so that the separation point is stagnated;

iii) Set & so that the reattachment point is stagnated; and
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iv) Set 7q so that the pressure coefficient at separation is the desired value.

Repeat from step i) until the error has been reduced to an acceptable value.

2.5.4 Two Doublets

Brun’s other variation on the model was to introduce two doublets, of strengths ¢; and g¢,, at
angles §; and 43, in the region of separated flow on the body streamline. With 5 unknowns,
two extra boundary conditions are needed. The pressure coefficients at both the separation and
reattachment positions seem the most logical values to use. This allows a little more control
over the pressure distribution along the separation bubble, but also adds an extra degree of

empiricism. The resulting potential and velocity are given as:

F(C)—V(C—}-l)-l—il‘lo ¢—i _ﬁ_i ﬂ (2.30)

- C g QIC — et 92C _ ¢tz .

W) = V(1L - =) im +3 wet | @e (2.31)
C2 C (C _ 6151)2 (C - 6152)2 . :

Again, the solution method is well described in Brun.
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Figure 2.4: The mapping sequence.
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Experimental Conditions

3.1 The Wind Tunnel

All experiments were performed in UBC’s Green wind tunnel, a recirculating tunnel with an.
8.5’ long test section. AThe Green tunnel was equipped with two dimensional test éection (2DTS)
inserts, further described in references [3],[10], and [16], which alleviate the effects of blockage,
curvature, and downwash that occur in most wind tunnel testing, removing the need to apply
boundary corrections to the experimental data. These inserts altered the test section by re-
placing the solid side walls with airfoil slatted walls with an open air ratio of 0.60. The test

section had a height of 15” and a width of 36”.

The entrance to the test section in the Green wind tunnel is equipped with a ring of four
connected pressure taps. These taps allow the static pressure at the test section entrance to
be measured. All initial airfoil pressure tap measurements are made relative to this static
pressure. An additional pressure tap in the upstream settling chamber allows the stagnation
pressure to be determined. From the static and stagnation pressure, the velocity at the test

section entrance can be calculated.

Up = [2—(@%’")]”2 | (3.1)

The airfoils are mounted on a six component force balance, which can measure lift, drag, side

force, roll, pitch, and yaw. For this research, only lift and drag measurements were made, and

only lift measurements were used.
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3.2 'The Airfoils

Two separate airfoil profiles were tested to provide a comparison of both the effects of the flap
and the predictions of the models for different airfoil shapes. Both Kruger flaps were designed
to be removable, so that the clean airfoils could be tested. Each clean airfoil had a 24” chord
and spanned the 15” high test section. The airfoils were equipped with a row of pressure taps
along the midspan line on both the suction and pressure surfaces. The taps were placed about
half an inch apart near the leading edge, and then about one inch apart until about two or

three inches from the trailing edge, where the airfoils became too thin to tap.

The NACA 0018 airfoil, shown in figure 3.1, was chosen as an example of a thick, low Reynolds
number airfoil. It reaches its maximum thickness of 18% at 30% chord. The clean airfoil is

symmetrical.

The coordinates used for the mapping sequence of this airfoil can be found in appendix A. This
airfoil has a large leading edge radius, and a fairly linear lift curve. It typically stalls at an angle
of about 16 degrees. The model of the clean airfoil had 53 pressure taps, which was increased

to 56 taps when the flap was added.

Figure 3.1: NACA 0018 profile.

The other airfoil selected was the FXL III 142, which also performs well at low Reynolds
numbers. This airfoil is thinner, with a maximum thickness of 14.2% at 30% chord. It has a
small leading edge radius, and a lift curve slope that remains very linear almost to stall, which
occurs at about 12 degrees. This profile is sketched in figure 3.2. There were 48 pressure taps

on the clean airfoil, and 53 taps once the flap was installed.

Both the clean airfoil coordinates and the coordinates for the mapping of the Kruger flap

equipped airfoil can be found in appendix A. Coordinates for this airfoil, and the previously
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Figure 3.2: FXL III 142 profile.

published lift and drag data for both airfoils are fa.ken from reference [8].

'3.2.1 The Upper Surface Kruger Flap

The flap is designed to simulate a flap that retracts smoothly into the leading edge of the airfoil.
Both flaps are 10% chord flaps, which is a typical size for this application. The profile for the
first half of the flap is identical to the clean airfoil profile to the 5% chord position. The second
half of the flap is a portion of a circular arc created by fitting an arc to three points on the
original profile of the airfoil. One point is chosen at close to 2.0% chord, one point at 5.0%
chord, and one point between the previous two. The flap would be extended on a real wing by
rotating it forward through this arc. Because the arc forms a portion of the original profile, the
flap fairs smoothly into the airfoil, attaching at the first point on the arc, at 2.0% chord. The
small extension of the flap past the 10% chord point is necessary if the flap is to join the airfoil

at this point. This is sketched in figure 3.3, adapted from reference [2].

In the construction of the models, the flap was made thick enough to allow pressure taps to
be added along the mid span line, and to ensure that the flap would not easily break. The
thickness of the flap on the model is not of large importance, as the underside of the flap is in
the separated region, where small changes in shape do not greatly affect the flow. A problem
arises when one attempts to map the exact profile for the models, as the Theodorsen mapping
will not converge for airfoils with abrupt changes in curvature, such as the regions between
the underside of the flap and the leading edge ball, and the edge of the flap and the underside
of the original profile. As the region between separation and reattachment is discarded in the
‘mappings to form the airfoil slit, it seems acceptable to exclude the small part of this region

from just after the tip of the leading edge ball to a point along the original profile at about two

or three percent chord. This allows the Theodorsen mapping to converge easily.
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Figure 3.3: Flap construction.

3.3 Comparison Between Experimental Results and Published Data for Lift

Figure 3.4 shows a comparison between a published lift curve for the clean FXL III 142 airfoil,
and the results of measurements from the 2DTS. The published lift curve has a slope, m, of
about 0.1038, while the measured lift curve slope is lower at 0.0864. A careful examiner will
note that the disagreement between experimental and published lift coefficients is not as large
at negative angles of attack. This does not indicate a problem with the experimental lift curve,
which has the same slope in both the positive and negative a quadrants, but instead it shows

a slight asymmetry in the published data.

This disagreement between measured and previously published data is constant in all of the
lift curves at various Reynolds numbers for both airfoils. Within experimental error, all of the
measured data is low by a constant, k = m,,/m, = 0.842. This is an indication of a problem
somewhere within the experimental apparatus. Extensive testing failed to reveal the source of

the low loadings, which were also seen in the pressure measurements. It was not due to the

2DTS airfoil slatted walls, as the loads were also low by the same constant when the airfoil
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slats were replaced with solid walls, and conventional boundary corrections were applied to the
data.

FXL I 142in 2DTS
Uncorrected lift coefficient vs. angle of attack
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Figure 3.4: Discrepancy between measured and published lift curves.

For a valid comparison between the experimental pressure distributions and those of the theo-
retical models, the data must in some way be corrected to compensate for the disparity. There

are two simple ways to correct for low loadings in wind tunnel testing.

The first assumes that all of the pressure and lift measurements are linearly low. To correct

the lift curve and pressure measurements, define:

Cro=Cn2 =0y, 2
My k
m. 1

Cpt = Cpm = Cpmy (3.2)

This approach obviously corrects the lift curve slope. Unfortunately, the uncorrected pressure

data includes pressure coefficients very close to stagnation (Cp, = 1) at points near the tip of

the flap. Applying this correction means that the pressure coefficient at these points becomes
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greater than one, which is not physically meaningful. This method is obviously not applicable.

The second method is commonly used in airfoil testing, and assumes that both the velocity
and pressure have been correctly measured somewhere upstream, but that the velocity changes
before reaching the test section. This seems to be the situation that applies in this case, as both |
total head and dynamic pressure are measured just upstream of the test section, and pressures
near or at stagnation are being measured along the airfoil. If there are no (or negligible) losses
in the flow, any change in the free stream velocity as the flow enters the test section will also
result in a change in free stream pressure, py,. In these experiments, both the measurements of
lift and pressure coefficients are low, and the only variable shared between the two equations is

the free stream velocity, U. Therefore, the constant k can also be defined as:

U: mp,
This change in free stream velocity also results in a change in free stream pressure of:
1 2
giving the following correction for the pressure coefficient:
1 1-k
Coe = Cpmz T TR (3.5)
or
) 1
1—Cpt: (I—Cpm)k‘ (36)

The corrections applied to the lift coefficient remain the same as in the first method.

This method preserves stagnation points, corrects the lift measurements, and provides good

agreement for the pressure coeflicient along the entire chord of the airfoil. It also seems to be
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the method that most correctly simulates the experimental set up. It has been applied to all

of the data that follows.
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Results and Discussion

4.1 Measured Lift Curves

4.1.1 Clean Airfoils

To insure that the clean airfoil models were symmetrical and behaving properly, their lift curves
were measured over a range of angles of attack using the six component force balance, and the
data was compared with published data from reference [8]. The results for both airfoils are

shown below, in figures 4.1 and 4.2.

FXL Il 142
Published and measured lift comparison
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Figure 4.1: FXL III 142: published and experimental lift comparison.
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The clean FXL airfoil results compared very well to the published data at both of the Reynolds
numbers tested. The lift curve was almost completely symmetric about zero, and remained
linear almost to the point of separation. The results were independent of Reynolds number
to within experimental error. As mentioned in the previous chapter, agreement is better at
negative angles of attack, which is a result of a slight lack of symmetry in the published data.
Experimental stall occurs at 15° or 16°, as compared with about 12° in the published data.
Stall for a low Reynolds number airfoil is typically boundary layer controlled, and the change in
stall angle probably arises from different surface conditions on the tested airfoils, which could
easily be the result of the manufacturing methods used. As lift and pressure distribution results
for both Reynolds numbers tested were virtually identical, only the Re = 1.0 E 6 results will

be used, saving needless repetition.

NACA 0018
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Figure 4.2: NACA 0018: published and experimental lift comparison.
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Agreement for the NACA airfoil is also very good at low angles of attack. This airfoil is far
more sensitive to boundary layer effects than the FXL airfoil in the range from Re = 1.0 E 5
to 1.5 E 6, which is also the range that can be tested in the Green wind tunnel. Published lift
curve slopes range from 0.086 to 0.095, and stall angles vary from 12° to 16°, with 16° being by
far the most prevalent. The lift curves chosen for comparison seemed to be the most reliable

ones in this range.

The experimental results are almost completely symmetric about 0, and line up almost perfectly
with the previously published results. Again, the experimental stall angle is higher than might
be expected, as the airfoil stalls at about 17° or 18°, compared with published stall angles of

14° to 16°. Both the published and experimental stalls are gentle.

Both clean airfoils behave well, and seem to be constructed correctly.

4.1.2 Effect of Kruger Flap

Kruger flaps are most commonly used on airfoils with a relatively sharp leading edge profile.
Sharp leading edge airfoils usually have less drag, but they have a large suction spike which
leads to a high pressure gradient near the leading edge. The large pressure gradient triggers
stall at a lower angle of attack than a round nosed airfoil. When a Kruger flap is deployed, it
increases Cj mq, not only by adding a little chord to the airfoil, but also by effectively creating a
rounder leading edge, reducing the suction spike. This is by far the leading cause of the increase
in stall angle. The FXL airfoil model has a far sharper leading edge than the NACA, and so
should be affected more by the addition of a flap. Airfoils with large leading edge radii also
exhibit a more gentle stall, as seen on the clean NACA airfoils lift curve. This is the result of
the airfoil undergoing trailiﬁg edge instead of leading edge stall. The NACA and FXL airfoils
were chosen to provide a contrast between the performance of the models for two airfoils with

differing stall characteristics.

Figures 4.3, 4.4, and 4.5 show the effect of adding a Kruger flap on the FXL’s and NACA’s

respective lift curves.
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Figure 4.3: FXL III 142: effect of Kruger Flap on lift curve, Re = 7.5 E 5.
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Figure 4.4: FXL III 142: effect of Kruger Flap on lift curve, Re = 1.0 E 6.
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NACA 0018 with Kruger Flap
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Figure 4.5: NACA 0018: effect of Kruger Flap on lift curve, Re = 7.5 E 5.

The results for the FXL are, as expected, virtually identical at both Reynolds numbers. Neither
test reveals a significant change in lift curve slope. At Re = 7.5 E 5, the stall angle is increased
from 14° to 20°, resulting in an increase in Cjmg, from 1.33 to 1.73. At Re = 1.0 E 6, the
increase in stall angle from 15° to 20° yields an increase in C]pq. from 1.33 to 1.72. The stall
is also much gentler, as expected. The lift curves are no longer symmetrical, as at negative
angles of attack the Kruger flap causes stall to occur far sooner, at about -4° or -5°. The flap

has been effective.

Adding a Kruger flap to the NACA airfoil also delays stall, from 18° to 20° at Re = 7.5 E
5, increasing Cjq.z by between 0.32 and 0.41. The change in Cjq, is not only due to the
increase in stall angle, as was the case for the FXL airfoil. Most of the improvement results from
improved airfoil performance at the higher angles of attack, as the lift curve remains nearly
linear over a larger range. The clean airfoil already experienced trailing edge stall, and so no

improvement in stall quality is expected or seen.

The NACA airfoil was also tested at two Reynolds numbers, Re = 3.7 E 5 and 7.5 E 5. Again,

it would be needlessly repetitious to include both sets of data, as the results were similar. In
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choosing which set to use, it is observed that this airfoil does not behave entirely inviscidly,
despite having a linear lift curve, as the lift curve slope is around 0.088 to 0.095, below the
ideal lift curve slope for an inviscid airfoil, 0.1096, or greater. The lift curve slope for the lower
Reynolds number had the same form, but is a little lower, showing that the viscous effects
are slightly larger. The same trend is seen in the pressure measurements, which are uniformly
slightly lower at the lower Reynolds number. As the theoretical model assumes inviscid flow, it

seems logical to compare the theoretical results with the data from the runs at Re = 7.5 E 5.

4.2 Pressure Distributions

The goal of the project was to measure pressure distributions along the Kruger flap equipped
airfoils and compare them with the theoretical predictions. First, however, it must be verified
that the pressure along the midspan line, where the taps are located, is not subject to tip
effects or other examples of three-dimensional flow. This can be simply done by integrating the
pressure results along the airfoil to obtain lift, which is then compared with the lift measured
by the force balance. The integrated pressure lift curve should agree well with the measured
lift, qf, ideally, be slightly higher, as tip effects will decrease the measured lift. This was done

for both airfoils, and the results are summarized in figures 4.6 and 4.7.

There is some error in the lift resulting from the integrated pressure measurements. As the
pressure is only known at a finite number of p)oints, the results are not actually integrated, but
summed using Simpson’s rule. This will result in slightly low values. Additionally, there are no
pressure taps along the last two or three inches of the airfoils, which creates a small uncertainty

in the calculated lift along this region.

The FXL results are in very good agreement, save for a single point on the integrated pressure
curve at an 18° angle of attack, which can be explained as follows. A large amount of the lift
generated by an airfoil at high angles of attack is the result of the suction peak, which refers

to the very low pressures (large suction) on the first 30% or so of the upper surface. When

the airfoil is close to stalling, the pressures in the suction peak can oscillate by significant
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Figure 4.6: FXL III 142, verification of mid-span pressure.

amounts. When pressure is measured using a manometer, as was done in these measurements,
it often takes a while for the readings to settle. If the readings are oscillating faster than the
manometer can adjust, the manometer will tend to remain close to the last pressure measured.
In the case of the suction peak, this would mean that the readings remain low, resulting in a

lower integrated lift.

There are two slightly low points for the NACA airfoil, at 6° and 9°, which may be due either
to a slight experimental error, or to the introduction of small three dimensional effects at these

angles of attack. It is interesting to note that these points are also low for the data at Re =

3.7E5.

Apart from the errors discussed, the integrated pressure measurements agree very well with the

lift measurements.
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Figure 4.7: NACA 0018, verification of mid-span pressure.
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4.2.1 NACA 0018 and FXL III 142 Airfoil Pressure Distributions

The sheer volume of data taken prohibits including all of the angles of attack measured. Only
the results for the representative angles 0°, 4°, 8°, 9°, 12°, 16°, and 22° are shown. The pressure
distribution for each angle of attack is compared to the distribution predicted by each of the
four different models, except for the 16° and 22° cases, where some of the models would not

reliably converge.

Low Angles of Attack: 0° and 4°

At low angles of attack, none of the models performs exceptionally well. A large suction spike
exists just before separation. This spike is reduced as angle of attack increases, and is smallest
for the radial doublet model. Agreement is satisfactory along the suction surface, and again
improves as angle of attack increases. The separation bubble seems to have little effect on the
suction surface pressure distribution. The pressure surface agreement is also acceptable, except
in the separation bubble region. Single doublet and source and sink model results are almost
identically poor, predicting a separation bubble of higher pressure than the rest of the pressure
surface. The two doublet model doesn’t fair significantly better. The radial doublet performs

best, predicting the bubble pressure distribution well at 0°, and as well as any of the others at

higher angles of attack. Overall, agreement is poor at low angles of attack.
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Figure 4.9:

NACA 0018, 0 degrees, source and sink model
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Figure 4.11: NACA 0018, 0 degrees, two doublets model
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Figure 4.13:

NACA 0018, 4 degrees, source and sink model
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NACA 0018 with Kruger Flap
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Figure 4.14: NACA 0018, 4 degrees, radial doublet model
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Figure 4.15: NACA 0018, 4 degrees, two doublets model
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Figure 4.17: FXL I1II 142, 0 degrees, source and sink model
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Figure 4.19: FXL III 142, 0 degrees, two doublets model
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Figure 4.20: FXL III 142, 4 degrees, single doublet model
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Figure 4.21: FXL III 142, 4 degrees, source and sink model




Chapter 4. Results and Discussion ' 45

FXL Il 142 with Kruger Flap
4T Comparison between model and experimental results
xr: 0.20, yr: -0.055, a1: 205 degrees, Cp sep: -0.31
model: radial doublet
3 | a: 4 degrees
-Cp — Model Results along Airfail

2 — — — — Modd Results along Bubble

aA a Experimental Results

[AN A

’ \\ a A A B8 A a s a4,

FY-Y-Y & A A

\ A ALADLAL
o | - —A_A_A L4 a
N - -
1 . n L L L
a0 02 04 X/C 06 X

Mapped Profile with Separation Bubble

yiC

Figure 4.22: FXL III 142, 4 degrees, radial doublet model
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Figure 4.23: FXL III 142, 4 degrees, two doublets model
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Mid Range Angles of Attack: 8°, 9°, and 12°

The limited success of the models at lower angles of attack is not of great importance. When
the flap is deployed, the aircraft will typically be either taking off or landing, and therefore be
traveling at a higher angle of attack. This means that the range of angles from about 8° to 14°

is really where the most accuracy is needed.

Angles of attack of 9° and 12° degrees for the NACA 0018, and 8° and 12° degrees for the FXL
IIT 142 airfoil were chosen as representative. Good agreement is seen on the suction surface for
both airfoils. The models overestimate the first part of the suction peak on the both airfoils,
which is to be expected, as the flow model neglects the effects of viscosity. In the first section
of the suction peak, the pressure and velocity gradients are largést, and so are the effects of
viscosity. This effect is minimal on the FXL airfoil, which had a nearly ideal lift curve, but

larger on the NACA, whose lift curve was significantly lower than ideal.

On the pressure side, the single doublet model does poorly at first, but improves as the angle
of attack increases. The other three models, which use the separation pressure coefficient as a
boundary condition, meet with limited success at 8° and 9°. They show the first bit of a low

pressure bubble, but this rapidly decays back to a higher pressure.

By 12°, all models are performing well, a trend which continues until around 16°, where the
proximity to stall starts reducing lift. Indeed, the results of the models are almost identical.
This is partly a result of the inputs to the models, as will be discussed later. Agreement along

the suction surface is very good, and along the pressure surface the models are also doing well.

The source and sink model has some problems at these angles of attack. It has developed a
“saucer” shape pressure distribution for the NACA profile at 12°. This is a result of the model
trying to match the imposed separation pressure condition. It does succeed, but not in an -
empirically acceptable fashion. If the separation pressure condition is relaxed to Cp ,ep=0.7 or

so, this model yields results very similar to the others.

One interesting feature becomes apparent at these angles. On the FXL airfoil, a dip in —C), just
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prior to the suction peak becomes apparent. This dip first appears at around 8°, and increases
in size with angle of attack. This effect is present in both the experimental and theoretical data.
It seems to be a result of the large changes in curvature in the flap profile near the leading edge.

The NACA airfoil, with its larger leading edge radius, and smaller changes in curvature near

the leading edge, doesn’t exhibit the same effect until much later, at around 14° or 16°.
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Figure 4.25: NACA 0018, 9 degrees, source and sink model
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Figure 4.26: NACA 0018, 9 degrees, radial doublet model
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Figure 4.29: NACA 0018, 12 degrees, source and sink model
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Figure 4.30: NACA 0018, 12 degrees, radial doublet model
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Figure 4.31: NACA 0018, 12 degrees, two doublets model
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Figure 4.32: FXL III 142, 8 degrees, single doublet model
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Figure 4.33: FXL III 142, 8 degrees, source and sink model
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Figure 4.34: FXL III 142, 8 degrees, radial doublet model
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Figure 4.35: FXL III 142, 8 degrees, two doublets model
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Figure 4.36: FXL III 142, 12 degrees, single doublet model
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Figure 4.37: FXL III 142, 12 degrees, source and sink model
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Figure 4.38: FXL III 142, 12 degrees, radial doublet model
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Figure 4.39: FXL III 142, 12 degrees, two doublets model
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High Angles of Attack: 16° and 22°

As the airfoils approach stall, both non-linear and viscous effects on pressure distribution and
lift become apparent. There isn’t much of a diﬁ'erence in the pressure distribution between the
models. They all overpredict the values in the suction peak and along the pressure side of the
‘airfoil. The dip in the pressure distribution discussed in the previous section has developed into
a large suction spike in the FXL airfoil solutions. A similar, but smaller, spike also appears in
the pressure distribution along the NACA airfoil. Happily, the models all behave well in the
separation bubble region. The models successfully predict the shape of the pressure distribution,

but are no longer quite as good at predicting its magnitude.

In general, it becomes more difficult for the models to converge as the angle of attack increases.
The sensitivity of the models to the boundary conditions is increased, particularly for the two
doublet model, which has problems converging for the NACA airfoil at angles of attack larger
than about 15°, or for the FXL airfoil for angles greater than 18°. For this reason, the figure

for the NACA airfoil with the two doublet model at 16° is not included.

Both Kruger flap equipped airfoils experience trailing edge stall, as shown for the FXL III 142
at 22° in figure 4.47. None of the models will converge for an angle of attack this high, and so

the results from the single doublet model at 16° are included for reference. The results would

have been meaningless in any case, as potential flow solutions cannot predict stall.
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Figure 4.40: NACA 0018, 16 degrees, single doublet model
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Figure 4.41: NACA 0018, 16 degrees, source and sink model
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FXL 111 142 with Kruger Flap
‘“r Comparison between model and experimental results
xr: 0.05, yr: -0.049, a1: 209 degrees
A model: single doublet
3 F « 16 degrees
AL
-C Model Resuits along Airfoil
P 2 = = — — Model Results along Bubble
a Experimental Results
1
7oy
° AAALAL A A A A A & Ao & &
N A A ABLL a4
* DTD Dj2 0:4 XIC 0:6 0,‘0
Mapped Profile with Separation Bubble
015
ot [
yiC
a1 |

0.0 01 02 03 04 05 08 0r 08 09 1.0

Figure 4.43: FXL III 142, 16 degrees, single doublet model
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Figure 4.44: FXL III 142, 16 degrees, source and sink model

FXL 1ii 142 with Kruger Flap
. Comparison between model and experimental results
xr: 0.05, yr: -0.049, a1: 210 degrees, Cpsep: 0.995
model: radia doublet
« 16 degrees

ad
Model Resuits along Airfoil
= = = — Model Results along Bubble
a Experimental Results
05N
AADDLALAAL L A A A A & A L 4
Al AA anL
A
- . s L s
00 02 04 X/C 08 [Y
Mapped Profile with Separation Bubble
. ) . . . " L z L L )

0.0 0.1 02 03 04 [X3 06 07 08 09 1.0

xC

Figure 4.45: FXL III 142, 16 degrees, radial doublet model
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Figure 4.46: FXL III 142, 16 degrees, two doublets model
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Figure 4.47: FXL III 142 at 22 degrees exhibiting trailing edge stall.
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4.2.2 Oscillations in the Solution

There are a couple of additional points of interest about the numerical solution. Upon closer
examination of the models’ output, an oscillation can be seen in the pressure coefficient on the
suction surface of both airfoils, especially near the flap. It seems logical that a smoothly curved

airfoil should result in a smooth pressure distribution, which doesn’t seem to be the case.

For the FXL airfoil, the oscillations, especially near the trailing edge, are partly due to the
nature of the profile. This airfoil has an experimentally determined profile, which is defined
by a set of x and y coordinates. These coordinates do not form a smooth curve, resulting in

perturbations that are visible to the eye.

The NACA airfoil, on the other hand, is defined by a known polynomial, and therefore has a
perfectly smooth curve. This indicates that the problem is not entirely due to the airfoils, but
| is instead partly a property of the mappings used. The only mapping that doesn’t deal with
the airfoil as a smooth curve is the Theodorsen transformation. This mapping picks a number
of equally spaced points on the airfoil near circle, and maps only these points to a perfect circle.
Mapping the entire airfoil would require an infinite number of Theodorsen coeflicients, and so
is not done. In areas of the airfoil profile where there is a high curvature, such as along the
flap, the regions between the points chosen for the mapping may give rise to the oscillations
in the pressure coeflicient. If this is the case, the results from generating several different sets
of coefficients by mapping different sets of points along the airfoil could be averéged, and the
oscillations should disappear. Figure 4.48 shows the pressure distribution along the flap of
the NACA airfoil at 12° for ten different sets of Theodorsen coefficients. The coefficients were

generated for 10 equally spaced (in the near circle plane) sets of airfoil coordinates.

The results do seem to be oscillating about a mean. Unfortunately, when the average is taken, it
becomes apparent that there is still a warble in the average, albeit smaller than originally. The
question of how many sets of coefficients one must average to entirely remove the oscillation

arises. Figure 4.49 attempts to answer that question by giving a comparison between the

original ten equally spaced sets of coefficients and four new equally spaced sets of coefficients,
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Figure 4.48: Pressure distribution in flap region for ten different sets of Theodorsen coefficients.

with no set of coeflicients in common. The resulting averaged pressure distributions are virtually
identical. There is no advantage in averaging more sets of coeflicients. This last remnant of the
warble appears to be a property of the mappings, and there doesn’t seem to be an easy way of

removing it. All of the model pressure distributions that have been presented are the result of

an average of four sets of coefficients.




‘ Chapter 4. Results and Discussion | 63

NACAQ018 with Kruger Flap
Oscillations in the solution

o8 L Comparison between four and ten sets of equally spaced coefficients
. Enlargement of flap region
2.6 |-
.Cp
2.4 -
22 |-
o =12 degrees
model: single doublet
Ten coefficient average
20 0 ====- Four coefficient average
1.8
i 1 ]
-0.05 0.00 0.05
x/C

Figure 4.49: Comparison between the averages for four and ten sets of Theodorsen coeflicients.
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4.2.3 Boundary Layer Thickening of the Airfoils

All of the results from the models alsé differ a little from the experimental results near the
trailing edge. The flow model predicts a higher pressure coeflicient here than was found exper-
imentally. This indicates that, experimentally, the air was moving faster in this region than it
should have béen according to the principles of ideal fluid flow. It was thought that this might
be due to boundary layer thickening of the airfoil. The boundary layer would be small near the
leading edge, but would thicken quickly as it encountered the adverse pressure gradient along
the suction surface. As the boundary layer thickened, it would shift the streamlines farther
away from the airfoil. The air would have to travel faster around this thickened airfoil, causing

the lower pressure coefficients seen.

In view of this, the displacement thickness of a turbulent boundary layer was added to the
original airfoil, and this new airfoil was run through the models. The boundary layer displace-
ment thickness was calculated by Moses’ method, as in references [4] and [9]. The pressure
distribution calculated by the single doublet model along the original airfoil and flap was used
to determine the free stream velocity and pressure gradients. The results for the FXL airfoil at

12° are shown in figure 4.50.

Along the suction surface, the addition of the boundary layer brought the predicted and mea-
sured pressures into excellent agreement. The lack of smoothness near the trailing edge is easily
explained. For the airfoil to be properly mapped, the profile must still come to a cusp or wedge
at the trailing edge, even with the boundary layer added. This means that the boundary layer
must be arbitrarily brought back to zero thickness in some fashion. For this approximation,
the boundary layer thickness was linearly reduced from a maximum thickness about two inches
before the trailing edge to zero thickness at the trailing .edge. This results in a less smooth

pressure distribution near the trailing edge once the boundary layer is added.

On the pressure surface, the addition of the boundary layer has little effect on the pressure

distribution. Good agreement is not to be expected, though, as the boundary layer here is not

simply a laminar or turbulent boundary layer subject to a pressure gradient. The separation
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Figure 4.50: Effect on the pressure distribution of the addition of a turbulent boundary layer.

and reattachment of the free shear layer makes it difficult to determine a proper boundary layer
thickness. Simply calculating a displacement thickness, as was done, probably underestimates

the thickness.

4.2.4 Convergence Problems among the Models

While all of the models converged for the range of angles of attack studied, they would not all
do so for given sets of boundary conditions. Often, different boundary conditions were needed

for each model at a given angle of attack.

The single doublet model is the simplest approach, and also the most robust. It converges for
all angles of attack up to about 20°, independent of the initial guesses for the location of the

doublet. It will also converge for a wide variety of separation and reattachment points, except

at high angles of attack, when the separation point must be shifted slightly downstream.
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All three of the models that use the separation pressure boundary condition often have difficulty
converging for the experimentally determined pressure coeflicient. Often this condition must

be relaxed, which results in the similarity of results from the models at higher angles of attack.

The source and sink model was also well behaved, converging for only a slightly smaller range of
initial inputs than the single doublet, especially if the separation pressure coefficient boundary
condition is relaxed to allow a suction spike at separation. As noted in the discusion of the mid
range angles of attack, this model does not always generate realistic pressure distributions. To
match a low separation pressure coefficient, it will often create a suction spike on its own, as
in figure 4.29, that matches the separation condition,i but leaves the pressure along the bubble
. unchanged. The initial guesses for source and sink strength and location could speed or delay

convergence, but this model will generally find a solution if one exists.

The radial doublet model was a pleasant surprise, as it was almost as robust at the single
doublet. Initial guesses for the unknowns did not affect it very much at all, and it almost
always satisfied, or came close to satisfying, the boundary conditions. At times, it generated
solutions which used a suction spike, but not as often as the source and sink. In all cases,

relaxing the boundary conditions removed the spike.

The two doublet model was not enjoyable to use. It has large convergence problems. Even
slight changes in the Theodorsen coefficients will change the boundary conditions for which it
converges, making averaging the results very difficult. This model will also not converge for as

wide a range of angles of attack as the previous three models.

This model is very sensitive to the initial guesses for 4; and 4, the initial locations of the
doublets. At times, selecting 4; close to separation, and é; close to reattachment will result
in convergence, while at other times, equally spacing the doublets, or placing both near the
middle of the separation region works best. Even changing these initial guesses slightly may

result in non-convergence.

If this model is to be used in the future, I strongly suggest that the time be taken to rewrite

the portion of the code involving the non-linear solver.
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Conclusions

5.1 Summary of results

Four different variations of the potential flow model were studied over a wide range of angles of
attack. The single doublet and two doublets variations had been previously developed by Brun,
while the radial doublet and source and sink variations were created as part of this research.
The results from these theoretical models were compared with experimental results for two

different airfoil profiles.

The experimental results showed that the addition of a Kruger flap to the clean airfoil profile
had the desired effect on the lift curve. The maximum lift coefficient for the NACA 0018 airfoil
was increased by between 0.32 and 0.41; while delaying stall by 2°. The maximum lift coefficient
for the FXL III 142 airfoil was increased by approximately 0.40, and stall was delayed by 5° or
6°. As expected, the most dramatic improvements in lift curve and stall angle were observed

on the FXL airfoil, the airfoil with the smaller leading edge radius.

At small angles of attack, the theoretically predicted pressure distributions were not in close
agreement with the experimental results. All four variations of the theoretical model predicted
pressures along the bubble that were uniformly greater than measured values. Along the rest
of the airfoil, agreement was also poor, as both the size and effects of the separation bubble
were largest at small angles. This meant that the failure of the models to correctly predict the

bubbles properties caused greater problems here than at larger angles of attack.

The different model variations gave different bubble shapes and pressure distributions, but very

67




Chapter 5. Conclusions ‘ 68

similar results along the rest of the airfoils. Results from the single doublet and source and sink
models were the poorest. The two doublet model offered slight improvements, and the radial

doublet model performed the best.

Agreement between experimental and theoretical results improved as angle of attack increased.
At the same time, the results from the different models converged, with each model giving

similar results in the middle range of angles of attack, from 8° to 14°.

All models gave their best performance in this region, giving excellent results for the suction
surface of the airfoils, and good results on the pressure surface, as well as along the separated

region.

As the angle of attack is further increased, the models still perform well, until close to stall,
" where non-linear and viscous effects begin to play a larger role in determining the pressure dis-
tribution along the airfoil. Near stall, the discrepancy between the theoretical and experimental

results is most obvious in the suction peak, which the models began to overpredict.

Apart from the separated region at low angles of attack, there are several identifiable areas

where the theoretical models have problems in successfully predicting the pressure.

In the first small portion of the suction peak, the model tends to overpredict the local velocity.
This is not a surprise, as this is a region of high velocity gradients in the free stream, suggesting
that the effects of viscosity are being seen. There is no easy fix for this problem, as it is a
direct result of the assumptions in the formulation of the theoretical solution. Any potential
flow model is going to encounter problems here. This effect was largest on the NACA 0018, an
airfoil whose lift curve was already showing the effect of viscous losses. The effect was much

smaller on the FXL airfoil, which had a nearly ideal lift curve.

The models underpredicted the local velocities near the trailing edge of the airfoils. This effect
appears to be the result of boundary layer thickening of the airfoil, and can be accounted for

on the suction surface by artificially thickening the airfoil by the displacement thickness of a

turbulent boundary layer subject to the predicted pressure gradient.
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There was also a slight underprediction of the velocities along the pressure surface of the airfoil,
which could not be corrected for by thickening the pressure surface of the airfoil in a manner
similar to the method used on the suction surface. This underprediction could well be the result
of the separation and reattachment of the shear layer in the bubble region. Separation bubbles
normally reattach by entraining a sufficient quantity of fluid from the area of separated flow.
This might cause the reattached boundary layer to Be much thicker than would be calculated

by simple growth in a favourable pressure gradient.

Finally, the small oscillations in the pressure distribution near the leading edge of the suction
surface resulted, at least partly, from the pointwise nature of the Theodorsen transformation.
By generating several slightly different sets of Theodorsen coeflicients and averaging the results,

the oscillations could be reduced, but not completely removed.

None of the models were very sensitive to the location of either the separation or reattachment
points. As long as the separation point was chosen close to the tip of the Kruger flap, and
the reattachment point was chosen sufficiently downstream of this point, the models remained
fairly consistent in the pressure distributions that were predicted. The choice of separation
and reattachment points did affect the convergence of the models, however, especially at higher

angles of attack.

The shape of the separation streamline representing the bubble boundary was not consistent
between models. Even for the same model at various angles of attack, the bubble shape did
not seem to vary in any predictable way. This feature of the model was not closely examined,

as no experimental measurements of the bubble shape were made.

In conclusion, while none of the models functioned remarkably well at low angles of attack, the
radial doublet model did significantly outperform the other models, and should be chosen if

results are needed at low angles.

At higher angles of attack, all models performed similarly. This suggests that the single doublet
model, which was the simplest model, required the smallest number of inputs, and was the most

robust, should be used. Alternatively, the radial doublet model, which is only slightly more
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complicated and needs only one additional input, and was nearly as robust, could be used to

provide consistency with the results from smaller angles of attack.

5.2 Recommendations for the future

Most of the research on this project seems to have been done, but two additional areas of

research would be useful.

The results along the pressure surface of the airfoils indicate that the boundary layer here may
be large. A study of the prgséure surface boundary layer, and a simple method of prediction

its thickness after reattachment could increase the accuracy of the model.

Additionally, flow visualization of the separation region would allow separation bubble location
to be measured. These results would then be used to find the model with the most realistic

bubble, as well as accurately determining separation and reattachment points.

Apart from these two minor points, the results obtained indicate that the theoretical models
are working well in the range of angles where a Kruger flap is most likely to be used. The next

logical step would be to use the models in a wing design situation.
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NACA 0018 with Kruger Flap: Inverted Lower Surface

X

y

X

y

0.004487
0.011057
0.038616
0.074592
0.095826
0.114524
0.131861
0.148300
0.164076
0.179332
0.194161
0.208628
0.222779
0.236651
0.250271
0.263659
0.276834
0.289809
0.302596
0.315204
0.327640
3.076469
3.442186
3.931968
4.423577
4.916598
5.410767
5.905897
6.401855
6.898537
7.395860
7.893758
8.392173
8.891058
9.390373

0.069967
0.118690
0.234396
0.308964
0.336554
0.356059
0.371231
0.383536
0.393731
0.402269
0.409447
0.415470
0.420488
0.424614
0.427936
0.430523
0.432429
0.433698
0.434367
0.434466
0.434017
-0.03413
0.128524
0.310255
0.462223
0.591193
0.701493
0.796120
0.877273
0.946643
1.005570
1.055149
1.096294
1.129782
1.156281

9.890081
10.39015
10.89055
11.39127
11.89226
12.39353
12.89504
13.39679
13.89875
14.40091
14.90327
15.40580
15.90851
16.41138
16.91440
17.41757
17.92088
18.42433
18.92792
19.43164
19.93548
20.43946
20.94356
21.44778
21.95214
22.45663
22.96125
23.46601
23.97125
24.22410
24.47699
24.72992
24.98288
25.23587
25.48892

1.176374
1.190577
1.199345
1.203086
1.202165
1.196910
1.187619
1.174560
1.157973
1.138078
1.115071
1.089127
1.060404
1.029040
0.995159
0.958865
0.920250
0.879390
0.836346
0.791165
0.743882
0.694518
0.643081
0.589566
0.533957
0.476224
0.416327
0.354213
0.284117
0.245368
0.206100
0.166074
0.125554
0.084384
0.042442
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Appendix A. Airfoil Profiles 73

Clean FXL III 142: One surface only
as airfoil is symmetrical

X y x y
0.00000 | 0.0000 | 12.78576 | 1.3248
0.02448 | 0.1008 | 13.56600 | 1.2144
0.10128 | 0.2352 | 14.34000 | 1.1112
0.23040 | 0.3888 | 15.10512 | 0.9984

.0.40848 | 0.5376 | 15.85776 | 0.9072
0.63600 | 0.6768 | 16.59192 | 0.8016
0.91248 | 0.8016 | 17.31720 | 0.7008
1.23792 | 0.9312 | 17.99880 | 0.6240
1.60656 | 1.0464 | 18.66552 | 0.5616
2.02128 | 1.1616 | 19.30440 | 0.4608
2.47920 | 1.2576 | 19.91280 | 0.3888
2.97672 | 1.3488 | 20.48400 | 0.3312
3.51432 | 1.4304 | 21.02160 | 0.2736
4.08888 | 1.5072 | 21.51456 | 0.2304
4.69392 | 1.5744 | 21.97704 | 0.1824
5.33304 | 1.6272 | 22.39176 | 0.1392
5.99952 | 1.6656 | 22.76352 | 0.1152
6.69384 | 1.6944 | 23.08608 | 0.0816
7.40664 | 1.704 | 23.36256 | 0.0624
8.14392 | 1.6992 | 23.58984 | 0.0480
8.89344 | 1.6752 | 23.76816 | 0.0336
9.65832 | 1.6368 | 23.89704 | 0.0192
10.4326 | 1.584 | 23.97384 | 0.0144
11.2159 | 1.512 | 24.00000 | 0.0000
11.9998 | 1.416




Appendix A. Airfoil Profiles

FXL III 142 with Kruger flap: upper surface

X

y

X

y

25.87232
25.64295
25.46584
25.23986
24.96506
24.64515
24.27554
23.86422
23.40553
22.91611
22.38302
21.81639
21.21351
20.58195
19.92027
19.24462
18.52682

117.80046
17.05477
16.29794
15.53167
14.75960
13.98014
13.20408
12.42656
11.65698
10.89586
10.14919
9.413571

0.000000
0.047660
0.072896
0.101114
0.137120
0.190306
0.236908
0.305290
0.381373
0.454521
0.544762
0.637050
0.745977
0.885508
0.988405
1.106582
1.251375
1.401501
1.538379
1.697576
1.847733
2.005456
2.144396
2.287936
2.407521
2.507385
2.592307
2.661919
2.711622

8.701510
8.006725
7.339144
6.697994
6.089984
5.511813
4.970241
4.468089
4.005172
3.584204
3.209231
2.876501
2.592932
2.518869
2.374655
2.154737
1.937213
1.722124
1.509523
1.299472
1.092047
0.919495
0.645812
0.417576
0.240372
0.113263
0.034394
0.000000

2.745460
2.759008
2.761278
2.747508
2.717289
2.675631
2.626931
2.566206
2.498279
2.408556
2.316025
2.206490
2.098764
2.068366
2.006406
1.904667
1.795055
1.677430
1.551620
1.417419
1.274581
1.147401
0.928758
0.728946
0.529595
0.335438
0.150926
4.23E-12
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Appendix A. Airfoil Profiles 75

FXL IIT 142 with Kruger flap: inverted lower surface

x y X y
0.005893 | 0.103560 | 12.23358 | 0.75460
0.057898 | 0.192130 | 13.01987 | 0.73045
0.091687 | 0.220770 | 13.80763 | 0.68235
0.122090 | 0.238270 | 14.59820 | 0.63922
0.150557 | 0.249400 | 15.38372 | 0.57656
0.177654 | 0.256020 | 16.16257 | 0.52070
0.203663 | 0.259060 | 16.93314 | 0.45471
0.252995 | 0.256310 | 17.68994 | 0.40953
0.276461 | 0.250980 | 18.42916 | 0.34885
0.299161 | 0.243140 | 19.15924 | 0.29242
3.095783 | -0.45708 | 19.84425 | 0.25728
3.456721 | -0.31964 | 20.51353 | 0.23561
3.863654 | -0.17939 |.21.15737 | 0.17391
4.314875 | -0.05568 | 21.76902 | 0.13911
4.805916 | 0.065660 | 22.34267 | 0.11641
5.337547 | 0.179860 | 22.88278 | 0.09166
5.906362 | 0.291510 | 23.37746 | 0.07857
6.506185 | 0.395440 | 23.84200 | 0.05883
7.140901 | 0.487080 | 24.25858 | 0.04098
7.803805 | 0.566010 | 24.63112 | 0.03967
8.495081 | 0.637050 | 24.95512 | 0.02578
9.205972 | 0.690050 | 25.23226 | 0.02345
9.942176 | 0.730170 | 25.45999 | 0.02293
10.69177 | 0.751870 | 25.63886 | 0.01942
11.45756 | 0.760140
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