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Abstract

This work is a study of adaptively controlled systems with plant model structures that may
vary due to changing operating conditions. Most closed loop adaptive control algorithms use
identification methods for determination of the parameters in fixed structure models. Those
parameters, once estimated, are assumed to be correct and uncertainties in the values are
ignored. If the structure of the plant dynamics changes on-line, the incorrect model can lead
to poor performance and instabilities.

The adaptive algorithm used in this work is the Generalized Predictive Control (GPC)
algorithm. It 1s reported to be capable of handling a number of simultaneous problems
and therefore was chosen. Along with handling on-line changes of parameters, it claims to
overcome nonminimum-phase plants, open loop unstable plants, plants with badly damped
poles, plants with variable or unknown time delay, and plants with unknown order.

The goal of this research is to investigate and study GPC with the on-line changes in the
model structure of the plant, and corresponding changes in the order of the estimated model
for GPC and the structure of the controller and as well as to propose a method that detects
on-line; the need for model order changes and determines the correct one.

There are at least two major sources for structure variations in the estimated model.
The first i1s the model actually being time variant and the second resulting from the use of
inherently nonlinear systems and mis-modeling. Two applications exemplifying these variants
were selected to examine the techniques developed in the thesis. The first is a single flexible
hnk manipulator, whose changes in model structure are due to new excited vibration modes.
The second i1s a two link rigid manipulator with hydraulic actuators causing the system to be

highly nonlinear, whose model could change due to changes in operating points. The effect

i



of mis-modeling on the total system performance and stability was assessed.

A cost function was used as a measure of the closed loop controlled system reaction to
under, correct and over-modeling. Its effectiveness in terms of stability and performance
was measured in context of the two applications. In addition, experimental data from open
loop identification of the dynamic model of a 215B Caterpillar, an excavator type machine,
confirms the study of the behavior of the cost function for those conditions.

Based on the behavior of the cost function a new algorithm was developed. The MOD
(Model Order Determination) algorithm detects, determines and executes, on-line, changes
to the model order. It was implemented for both application which were controlled with the
GPC algorithm. The results show that good performance and stability can be achieved.

The main contributions of this work are:

o The MOD algorithm which based on the behavior of a cost function, corrects on-line

mis-modeling of adaptively controlled systems while maintaining good performance.

e GPC was successfuly implemented for hydraulically actuated manipulators. On-line
automatic change of the GPC output horizon was introduced to achieve sufficiently fast

transient response and avoid overshoots.

¢ Experimental data from a 215B Caterpillar manipulator proved the need for a closed

loop approach.

la
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Chapter 1

INTRODUCTION AND STATEMENT OF OBJECTIVES

1.1 Introduction

The research in this thesis deals with adaptive control systems whose plant model parameters
and structure may vary due to changing operating conditions. There are numerous examples
of systems that need adaptive control algorithms, (Astrom et al 1). One example is a robotic
manipulator whose moment of inertia may vary within a working cycle. A flexible robot may
have unexpected modes of vibration occurring and changing its model structure. Process
control also has changes in dynamics, which depend on operating parameters, such as flow
through tanks and pipes that change with production rate.

The structure of the plant’s model is usually determined by its order and the nature of its
nonlinear terms. The model generally used for the adaptive algorithms is linear and therefore
its structure is actually its order. In most stability proofs for adaptive systems, the basic
assumption is that the model order is known, or at least the upper bound of the system’s order
1s known. In the presence of a change in the system’s order, such as new significant modes
in a flexible mechanical system, or in the presence of any unmodeled dynamics, instabilities
can occur due to incorrect model structure and therefore incorrect parameters. The on-line
changes in the plant’s model structure if they occur, may result in the need to identify those
changes accordingly, and adjust the order of the model for the adaptive algorithm in addition
to the parameter identification.

The identification methods of a model off-ine can have the advantage of choosing a model
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out of a set of proposed model structures. The model, its structure and parameters can later
be verified with model validation methods. Many closed loop adaptive control algorithms
use identification methods for on-line determination of the model parameters (Astrom et
al 1). We are not aware of any effective on-line structure validation methods. It is not
surprising that most if not all identification methods use a fixed model structure to estimate
the parameters. In some cases, the uncertainties in the values are ignored, i.e. the identified
parameters are assumed to be correct, and are used as if they were the true ones. This is
called the certainty equivalence principle ( Astrom et al 1 and Middleton and Goodwin
2 ). Adaptive systems have been said to be inherently nonlinear (Astrom et al 1) and reliance

on that principle can lead to instability.

1.2 Objectives and Motivation

One objective of the research is to investigate and study a chosen adaptive control algorithm
with a changing model structure for the plant, and with it, the change in estimated model
order and of the controller structure. A second objective is to develop a method to detect
the need for a model order change, determine the correct order, execute it on-line and ensure
that the control system will maintain its performance and stability. Changes in the order
of the model along with the accompanying parameter estimation are to be integrated into a
closed loop adaptive system. (All calculations and estimations are done on-line in real time).

The approach taken to the problem is listed below:

1. An approach to on-line order change detection and estimation was developed. An as-
sumption considered is that order changes are less frequent and converge slower than
the changes in the model parameters. Most existing techniques choose the order, esti-
mate the model parameters, validate the order and if incorrect go through the whole

3).

procedure again, off-line and in open loop, (Ljung
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2. Experimental evidence from a real machine, a 215B Caterpillar excavator was exam-

1.3

ined for open loop operation. The model output and representing cost function values
were calculated and investigated. (The results corroborate the numerical results, see

Appendix A). It was shown that a closed loop approach was needed.

The model determination algorithm was implemented with GPC for two examplifying
applications. The Generalized Predictive Control (GPC) algorithm was chosen for the
study, since it claims to effectively handle a number of problematic system character-
istics at the same time (Clarke 4, 5). There are at least two reasons for plant model
structure variations. First, the machine model itself changes such as vibration modes
in a flexible link. Second, use of a linear representation of a highly nonlinear machine
model tracking an operating point, such as a two rigid link manipulator with hydraulic
actuators. The structure flexibility of the single flexible link manipulator may give rise
to modes of oscillations. During a work cycle of a robot, new modes can occur due to
movement and change in the tip’s load. This resembles an ’infinite order’ system. ( see
Chapter 3). The two link rigid body manipulator with hydraulic actuators resembles
a ’'finite order’ system. The hydraulic actuators can be modeled with several model
structures and are highly nonlinear. Coupling between different motions of the arm’s

parts generates nonlinear terms. ( see Chapter 4).

The Thesis Outline

Chapter 2 presents a review of previous work done in areas relevant to the research. Chapters

3, 4 and 5 present in detail the work done tn this research. Chapter 3 deals with a single

flexible link manipulator, its dynamic equations of motion, the control strategy, results of

closed loop simulation and the effects of under and over-modeling. Chapter 4 deals with

the two link manipulator actuated by hydraulic actuators and reports on the same topics
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as Chapter 3. Chapter 5 introduces the chosen cost function as a measure of plant mis-
modeling. The behavior of the cost function and its derivative is investigated. The conclusions
drawn lead to the proposal of a method that detects on-line the need for a model order
change, determines the correct order and executes it while developing or maintaining good
system performance. Chapter 6 presents the implementation of the MOD algorithm on
both applications and results are presented. Chapter 7 discusses the conclusions drawn from
this research. Appendix A provides the experiment results from operating the heavy duty
manipulator, the 215B Caterpillar. Appendix B presents the modal analysis of a cantilever

beam, the results of which were used for the equations of the single flexible link in Chapter 3.

1.4 Thesis Contribution

This work is a study of robotic systems controlled with an adaptive algorithm (GPC). The
main focus is on the behavior of those systems when the plant is mis-modeled and on restoring
its desired performance and stability if needed.

The main research contributions are described here as:

1. We developed a method called the Model Order Determination (MOD) algorithm, to

detect mis-modeling and implement its correction on-line.

e A cost function was studied for correct, under and over-modeling, it was found it

has significantly different behavior for each case.

e The cost function behavior for correct, under and over-modeling was similar for

two exemplifying applications.

When MOD was implemented, the desired performance was restored for mis-

modeling for both applications.

Rules for choosing the parameters for the MOD algorithm were defined.
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2. We have found that GPC can be successfuly implemented for heavy duty manipulators.

e This work examined some complex considerations, such as the effects of nonlin-
earities in the application of GPC to a broad category of hydraulically actuated

manipulators.

o The work introduced on-line automatic change of the output horizon (for GPC)

so transient response can be sufficiently fast and undesirable overshoot avoided.

3. Experimental results from an open loop experiment on a 215B Caterpillar indicate that
the cost function behavior in open loop does not vary strongly to be reliably determined
and a closed loop approach is required. This was also verified by numerical simulations

with other applications.



Chapter 2

REVIEW OF PREVIOUS WORK

2.1 Outline

This chapter reviews some of the relevant work published in the literature considering some
of the topics discussed in this thesis. Adaptive control in general and GPC in particular, are
described. Some review on model order and parameter determination is also given.

Adaptive control is the basic motivation for the search for a method to change the model
structure on-line. Section 2.2 describes adaptive control in general terms. A block diagram
(Figure 2.1) is presented to clarify how all the components (identification, plant model, control
algorithm, etc.) are implemented in the complete configuration.

In the last two decades, much research on modeling, system identification, model structure
determination, and adaptive control algorithms has been done (Ljung 6, 3). Most of the work
concerning model structure determination and its validation is done off-line. The advantage of
the off-line methods is in the possibility of choosing a model out of a set of likely ones. On the
contrary, other works which involve on-line (recursive) identification demand an assumption
of a fixed model structure, (Ljung 6, 3 and Astrom 1). A brief review of the above modeling
and structure determination will be given in Section 2.4.

In Section 2.3 we present the GPC (General Predictive Control) algorithm in detail. The
GPC has been used in the work done so far, from which the results will be presented in
Chapters 3 and 5.

Flexible structure models are dealt with in this work. The need for flexibility arises when
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Process parameters

Design Estimation
Regulator
parameters
u [+
S———————
Regulator Process
u y

Figure 2.1: Block diagram for a self tuning regulator, (Astrom 1)
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the certainty equivalence principle is used, or in the presence of unmodeled dynamics, or
when changes occur in the structure. In order to maintain stability of the adaptive controlled
system, the flexible model structure is particularly important.

Section 2.5 includes a discussion of the prior work done in the area of linear model’s order
determination in the 1970’s and some later work on linear and nonlinear model structure

determination.

2.2 Adaptive Control - General Description

2.2.1 Introduction

Much work has been done and published on adaptive control (Astrém and Wittenmark 1,
7, Astrém and Borrison and Ljung and Wittenmark 8. Landau 9, Edgar 10). Most of the
techniques for the design of control systems assume that the plant and its environment are
known. This is not often the case, since the plant might be too complex, or basic relationships
may not be fully understood, or the process and the disturbances may change with operating
conditions. Adaptive control deals with the above problems. There are four main categories

of adaptive control:
1. Self Tuning Regulators - STR

2. Model Reference Adaptive Systems - MRAS

3. Auto-Tuning

I=N

. Gain Scheduling

The STR and the MRAS are two widely discussed approaches to solving the problem
for plants with unknown parameters. The proposed research concentrates on self tuning

regulators.
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2.2.2 Self Tuning Regulators - (STR)

STR are based on a fairly natural combination of identification and control. In Figure 2.1 a
block diagram of the structure of an STR control loop is shown. It has two feedback loops, i.e.
an inner loop and an outer loop. The inner one is an ordinary feedback loop with a process
and a regulator. The regulator has adjustable parameters which are set by the outer loop.
The adjustments are based on feedback from the process inputs and outputs. The outer loop
is composed of a recursive parameter estimator and a design calculation. Estimations can
be done on the process parameters or on the regulator parameters, depending on the control
algorithm. The starting point is a design method for known plants. Since the parameters are
not known, their estimates are used. The assumption is that there is a separation between
identification and control, and the parameters’ uncertainties are initially not considered here.

As a sumple example, consider the plant modeled by Equation 2.1:
y(2) + ay(t — 1) = bu(t — 1) + (t) (2.1)

Where u is the input, y is the output and e(t) is a sequence of independent, zero mean random

variables. A control law that will give minimum variance control is :

a
u(t) = Ly(t (22)
If a and b are unknown, the algorithm by Astrém and Wittenmark 1 can be apphed. It

consists of two steps, each repeated every sampling period:

e Estimate the parameter a in the model:

y(t) = ay(t — 1) + foult — 1) + (1) (2.3)
Where ¢ is the error. The resulting estimate is &.

o Use the control law:
a
u(t) = —y(t) (2.4)
Bo
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The estimation of a can be done recursively and on-line.
The above algorithm was also generalized in Astrém & Wittenmark 1 Astrom & Wittenmarkl,
11 3nd Clarke & Gawthrop 12 proposed a generalization of the above basic algorithm. STR
are not confined to minimum variance control. Edmunds 13, Astrom et al. 1 proposed

algorithms based on pole placement. Multivariable formulations were given by Borrisson 14

2.2.3  Stability

Stability is a key requirement for a control system; however stability analysis of adaptive
systems 1s difficult because the behavior of such systems is complex as a result of their
nonlinear character. The stability problem can be approached in several different ways. A
local stability technique is of limited value since it reveals little about global properties. The
fundamental stability concept for nonlinear systems refers to the stability of a particular
solution. One possibility is to apply Lyapunov’s theory (Edgar 10 and Astrom 1). However,
it 1s often difficult to find a suitable Lyapunov function. Closed loop systems with bounded
input/output signals and desired asymptotic properties can be achieved, provided that certain

0

assumptions are made as in Astrom et al. 1, Edga,r1 , as noted below:

Given a plant model of the type:
Alg y(t) = bog I B(g M Yu(t) + €(t) (2.5)

Where A(q™') & B(q™!) are polynomials of degree n & m of the output y(t) and the input
u(t) respectively, d is the time delay and e(t) is a disturbance that can not be measured, and
g~ ! is the backward shift operator. Also given are the following:

The time delay d is known. The upper bounds on the degrees of the polynomials A & B
are known, i.e. the order of the system is known. The plant is a minimum phase process.
The sign of by is known.

Considering those assumptions, in Astrom and Wittenmarle, it is shown that the closed
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loop system is stable if bounded disturbance and command signal (u.) gives bounded input

(u) and output (y).

2.3 Generalized Predictive Control - GPC

2.3.1 Introduction

Equations of motion of a robotic manipulator contain nonlinearities, inertial characteristics
and disturbances that vary during a working cycle and may not always be predictable (Fu
16). In many cases, performance obtained with fixed time invariant controllers may not be
satisfactory. Lately, self tuning predictive algorithms have been used, since the results are
more robust compared with other self tuning control algorithms, such as Pole Placement and
Minimum Variance. The robustness of predictive algorithms is due to the minimization of a
multi-step cost function, Clarke et al 4 The basic predictive method contains the following

steps:
1. Prediction of the output.

2. Choice of the future set points, and minimization of a cost function calculated from the
future errors, between the future outputs and future set points, which yields a set of

future control signals.

3. The first time step of the control signals is that actually used, and the whole procedure

is repeated. This is a receding-horizon controller.

2.3.2 The GPC Algorithm

The type of controllers mentioned above consider the output at one point in time in the
future. The Generalized Predictive Control (GPC), Clarke et al 4, 5, algorithm minimizes a

cost function that considers the future predicted outputs j steps ahead, the future set points
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and future control signals. The GPC is robust and deals with overparametrization because
of its predictive capabilities, and with dead time since it uses an explicit plant model. The
robot manipulator can be nonminimum phase and incorrectly parametrized (especially when
there is some flexibility in the links ), can have dead time in the hydraulic system, and if
sampled fast, can have instabilities. Many discussions about adaptive control and GPC can
be found in the literature, such as Astrém ll,Tomizuka. 17, Demircioglu 18, Latornell 19,
etc. .

The GPC uses a plant model which is a CARIMA type ( Controlled Auto Regressive

Integrating Moving Average): i.e.

Alg™Yw(®) = Bla™ult 1) + et (26)
o(t) = elg™) 2D

A=1-gq"

Where y(t) is the measured output, u(t) is the control input, e(t) is the unmeasured distur-
bance term, § is uncorrelated random sequence, ¢! is the backward shift operator, A is the
differencing operator and A(¢™'), B(¢™!) and C(q™') are polynomials of degrees n,, n, and
n. respectively.

The algorithm minimizes a cost function of the form (Clarke et al 4 5):

I8, Ny, V) = E { 3 ot +3) —wlt + ) + Y06 [Ault + 5 - 1)12} (27)

Where N, is the minimum output horizon, N, is the maximum output horizon, N, is the
control horizon A(j) is a control weighting sequence, y(t + j) is the output j steps ahead and

w(t + j) is the future set point.
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The GPC algorithm predicts future outputs and aims at good performance a few steps
ahead by minimizing the above cost function, which gives a sequence of future control signals
and avoids large input signals with saturation.

To derive a j step ahead predictor of y(t), Equation 2.6 should be multiplied by g7 E;(¢~1)A

and the following identity used:
1= Ej(g7)Alg)A+q7Fiq") (2.8)

This is the Diophantine equation, where E; and F; are polynomials in the backward shift
operator. In order to get a unique solution, the degree of the following polynomials is chosen

as:
deg(Ej(q7')) <j—1
and

deg(Fj(g™")) < deg(A(q™"))

So the j step ahead output y(t+j) is:
y(t+7) = Fi(q y(t) + Ej(q ") B(g ") Au(t + 5 — 1) + E;(q 7" )é(t + j) (2.9)

C(q~') is chosen to be 1.

The disturbance sequence consists only of future values which are unknown, so the optimal

predictor is:

gt +5) = Fi(a 7 )y(t) + Gi(g ") Auft + 5 - 1) (2.10)

Gi(g7") = Ej(¢7")B(¢ ")

The objective of the predictive control law is to derive future plant outputs y(¢t + 7), given

a future set point sequence w(t + j). It is done as follows:
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1. The future set point sequence w(t + j) is determined.

2. A set of predicted errors is calculated:
e(t+7) =gt + ) —w(t +7)

3. The cost function in Equation 2.7 is minimized to provide a suggested sequence of future
control increments, assuming that after some control horizon N,,, future increments in
the control are zero, and the control signal is kept constant. The weighting factor was
mitially selected as recommended by Clarke et al 4, 5, followed by adjusting the values

according to the controlled system.
The optimal prediction of y(t + j) can be written as:
y=Gu-+f (2.11)

Where f includes the components of the predicted output §, which are known at time t, and
G is a lower triangular matrix of dimension N, x Nj.

Minimization of equation 2.7 yields the control increment vector:
(u) = (GTG + A 'GT(w - f) (2.12)
The first element of u is Au(t) so that the current control u(t) is given by:
u(t) = u(t — 1)+ gT(w — 1) (2.13)

Where g7 is the first row of (GTG + AI)"'GT.

The design parameters for this algorithm are:

1. Minimum Output Horizon, N;: is set to the time delay K, if known, to save compu-

tation load since the control signals have no effect earlier. The time delay, K, in discrete
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systems corresponds to the degree of the polynomial B, so when K is not known, N;

1s given the minimal value for the time delay, N; = 1.

2. Maximum Output Horizon, N,: the authors recommend to set it approximately
at the value of the rise time of the system. Both parameters N; and N, are used in
Equation 2.11 in which the number of prediction steps j vary from N; to N, and are

then used in calculating the control law in Equation 2.13.

3. The Control Horizon, N,: A major advantage of the GPC is in the assumption about
future control signals. After an interval of N, < N,, the projected control increments
are assumed to be zero. This reduces the computation burden, since dim(u) = N,
and (GYG + AI)"'GT is an N, x N, matrix. Usually, the control horizon can be
chosen as N, = 1 (for stable plants with delay or with nonminimum phase), but when
poorly damped or unstable poles are present, N, should equal the number of those

poles.

4. The Control Weighting Sequence, A(7): Acts as damping of

the control action when greater than zero.
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Final goal of Type of Required accuracy Identification
model application process model of model method
verification of linear/continuous medium/ off-ine step
theoretical time nonparametric/ | high response,
models parameters frequency response,

parameter estimation
controller linear nonparametric, | low for off-line
parameter continuous time input/output step response
tuning behavior

computer aided
design of
digital control

linear parametric
(nonparametric)
discrete time

medium for
input/output
behavior

on-line, off-line
parameter estimation

self-adaptive linear parametric medium for on-line parameter
digital control discrete time input/output estimation in close
tuning behavior loop

process linear /nonlinear high for on-line parameter
parameter parametric continuous | parametric process
monitoring and time continuous parameters

failure detection time estimation

Table 2.1: Different final goals and specifications for identification cases.

2.4 Introduction to Model Structure and Parameter Determination

System identification is basically a function of building a mathematical model by analyzing
the relations between observed input and output. A considerable amount of work has been

3

done and can be found in references Ljung and Soderstom 6, Ljung ¢ and Isermann 20 1tis
important to first consider the final goal for the application of the process model, since this

determines the type of model, its accuracy requirements, and the identification method.
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Table 2.1 (Isermann 20) shows some examples for relationships between different final
goals and some specifications of process identification. The a priori knowledge of the pro-
cess 1s, for example, based on general process understanding, on principal laws and on pre-
measurements.

The choice of a model structure is essential for successfully identifying a system. Ljung 3
in his book describes techniques and procedures about model structure selection and model
validation. The choice of a model structure should be based on good understanding of the

identification method and a priori knowledge of the system. There are three basic steps in

choosing a model structure i.e.

1. Choice of type of the model set: linear or nonlinear model, input-output or black box

models, etc. .
2. Choice of the model size: model order for linear systems.

3. Choice of model parametrization: identification of model parameters.

The quality of the model is usually measured by minimizing a criterion. There i1s a trade-
off between flexibility and parsimony. Flexibility will give, for a larger number of parameters,
a better fit for the minimization of the criterion since the data set is larger. On the other
hand it is important, in practice, to employ the smallest number of parameters for adequate
representation of physical systems.

The type of the chosen model is usually based on a priori knowledge about the system
and intuition. Generally it is advisable to start with the simplest possible model.

Order estimation of a linear system is usually based on preliminary data analysis. The

relevant methods fall into the next categories:

o Spectral analysis of the transfer function.
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o Testing ranks of sampled covariance matrix.
o Correlating variables.

e Examining the information matrix.
Model validation methods can be as follows:

e Comparing linear models with a priori knowledge of the system.
e Comparing measured and simulated outputs.
e Testing residuals for independence of past inputs.

e Comparing criteria fit obtained in different model structures.

Off-line methods are capable of choosing a model structure and identifying its parameters.
There are many cases where on-line identification of the model is needed. There are two
disadvantages to recursive (on-line) identification, in contrast to off-line identification. The
first is that the decision on which model structure to use has to be made and fixed a priori,
before starting the recursive identification procedure. 1t is well known that parametric models
can give large errors when the order of the model does not agree with the order of the process
(see Astrom 21). In the off-hine situation, different types of models can be examined. The
second disadvantage is that recursive methods generally are not as accurate as off-line ones
(Ljung 3).

For off-line identification, the basic three steps are:
e data recording - good choice of the data record makes it maximally informative.

e a sel of candidate models - the most important and difficult choice of the system iden-

tification. This is the actual determination of the model structure.
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o determining the best model in the set - guided by the data (this is the identification
method).

After having settled on the preceding three choices, one must validate the model, i.e.
establish a criterion to examine if the model accepted is good enough. If it is not, the entire
procedure is repeated again as shown in Figure 2.2 .

After determining the system model‘s structure, the user may choose from the identifica-
tion and adaptive control techniques that are available. Considerable work in these areas has
been done and will not be discussed at this point, but some important references are Ljung
and Soderstom 6, Ljung 3, Astrém and Eykhoff 21, Astrom 22, Astrém and Wittenmark 1,

Strejc 23, Goodwin and Payne 24

2.5 Review of Previous Work in Order Determination

To emphasize the effect of incorrect modeling, we refer to Rohrs et al 25 which analyzed the
effect of unmodeled dynamics on the robustness and stability of continuous time adaptive
control algorithms. The conclusion in this paper is that adaptive algorithms published in the
literature are likely to produce unstable control systems if they are implemented on physical
systems directly as they appear in the literature. Unfortunately, stability proofs of all those
algorithms have in common a very restrictive assumption that the order of the system is
known. So if there are errors in the structure assumptions, instabilities can occur. It 1s also
noted that this problem can be partially alleviated by sufficient excitation, but the amount
of modeling error or the amount of disturbance for which the adaptive system can maintain
stability may be extremely small.

In the 1970’s, several works were published, such as Akaike 26 and Akaike 27, Isermann
20, Schwarz 28, primarily establishing estimates of a measure of fit of the model. Those

procedures are off-line ones and are part of the model validation techniques.
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"1 NON- PARAMETRIC DETERMINATION
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YERIFICATION

YES

FINAL
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Figure 2.2: General procedure of process identification, (Isermann 20)
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As mentioned, several criteria for order estimation were published. Rissanen 4 proposes

the following cost function:

n+m . 2 ~
U(z,n,m,€) = Nint + Z In [ffaa?;r

i=1 i

} +(n+m+ V(N +2) + 2In(n + 1)(m + 1) (2.14)

Where
z is the model:
z(t) = falz(t —1),...,2(t — n),e(t), ..., e(t — m))
N - number of sampled observations.
e - disturbance.
¢ - consist of real valued parameters.
N log 7 - the minimized log likelihood function.
The first and third terms together virtually coincide with a criterion derived by Schwartz
28 The most commonly used criterion, derived by Akaike (26, 6), is the AIC (Akaike’s

Information Theory Criterion) which is:
AIC = Nlogr + 2k (2.15)

Where
Nlog? - the minimized log-likelihood function.
k - the number of parameters in the model.

More criteria were introduced by Akaike in 1977 30 and by Hannan and Quinn in 1979
31 1n 1989, Gou 32 introduced a new criterion for order estimating of a CARAMA model.
The final conclusion is that estimates presented are non-recursive and require availability of
upper bounds for unknown orders; therefore further research 1s required.

Approaches for different structures have been explored such as canonical structures (Guidovzi
33 and 34). These try to close the gap by exploring a class of state space canonical models
with particularly simple relations to input/output difference descriptions that can be di-

rectly identified from input/output sequences. However, in order to avoid error, the previous
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estimate of the order and structure of the process, out of a class of models, is required.
Further off-hne methods, including MIMO ( Multi Input Multi Output) systems, have
been published and will not be discussed here. Most of the recursive identification methods

35

for MIMO also assume a model structure a priori. Such a method by Gauthier °° extends the
use of input/output description in terms of polynomial matrices for recursive identification
in canonical state space form. However, before identifying the polynomials’ coeflicients, one
must define the structure and the polynomials’ degree or at least, their upper bounds.

Ljung and Sodestrom 6 discuss in their book the concept of identifying overparametriza-
tion of a model set and the choice of a model order. The choice of a model order is a delicate
trade off between good description of the data and the model complexity. Most methods for
model order selection are developed for off-line techniques. The basic approach is to compare
performance of models with different orders and test whether a higher order model is worth
while. Recursive algorithms in on-line applications require identification of several models
simultaneously. A model set is said to be identifiable if its parameters can be identified i.e.
parameters can be uniquely determined from the data. Lack of identifiability can be caused
by non-exciting inputs and overparametrization.

MIMO systems, can be parametrized depending on the choice of structure of the system.
The problem has been avoided by some researchers, assuming that the designer has enough
a priori knowledge of the structure of the system to select stable parametrization. Overbeek
and Ljung 36 suggested a procedure that provides a means of obtaining the best model
structure. The model Structure Selection (MSS) algorithm, the structure dealt with in that
work, is the parametrization of systems and can be performed in a number of ways. The
technique does not deal with how to select an appropriate order. The algorithm receives as
input a given system with a given parametrization. It tests whether this parametrization 1s
well conditioned for identification purposes. If it is not well conditioned, another structure

is considered. The best structure of a possible set is decided upon a priori. Nagy and
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Ljung 37 describe in their paper the subject of computer- aided model structure selection.
In order to use a software package for system identification, an appropriate model structure
should be chosen. A common feature for these methods is that they mix extensive numerical
computations, code generation and symbolic algebra.

Davison 38 in his paper describes a method of model size reduction. Many physical plants
can be represented by simultaneous linear differential equations with constant coefficients, of

the form:
x = Ax + Bu

Where the order of matrix A can be large, for example chemical plants or nuclear reactors,
which can pose numerical problems, the method suggests the reduction of the rank of such
matrices by constructing a matrix of lower order with the same dominant eigenvalues and
eigenvectors as the original system.

39

The paper by Niu, Xiao and Fisher presents a simultaneous recursive estimation of
the model parameters and loss functions for all possible model orders from zero through n is
done by using augmented information matrix (AIM) and a UDU7 factorization algorithm.

The AIM matrix is:

Cu(k) = S, (k) = [Z ‘I’n(j)‘I’Z(j)} (2.16)

Where ®,, is the regression vector and C, 1s the AIM matrix.

¢n = [—y(t = n),v(t —n),u(t —n)--- —y(t —1),v(t — 1),u(t — 1), —y(t)]

Where y is the output, v is the noise and u is the input.

The algorithm is reported to be computationally efficient and have good numerical prop-
40

erties due to the use of the UDUT algorithm. In a second paper Niu and Fisher ¥ report on a
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MIMO system identification technique using augmented UD factorization. This work extends
the AUD algorithm from SISO systems to MIMO systems. It is based on the canonical state
space representation be Guidorzi 33 34 {he Bierman’s UD factorization 41. This algorithm
too, 1s reported to poses excellent numerical properties.

The work reported next, (Wulich and Kaufman 42) is a trial and error model order
estimation procedure. The estimation is based on sampling a signal and calculating its

autocorrelation function:

:f Z ()= (2.17)
k=

)Lk<<L

Where z(¢ — j) are sampled values of the signal #(¢) and L is the number of samples. A

system of n linear equations is generated:

R,A=0

Where A is a nonzero vector of coeflicients and R, is a matrix. The order is estimated
by examining the determinant of the matrix R,:

IfdetR, =0thenn >N

and

IfdetR, #0 thenn < N

Wheren = 1,2,3,---
and N is the correct order.

A method for simultaneously selecting the order and identifying the parameter of an
Autoregression (AR) model, has been developed, (Katsikas et al 43). The AR model is

defined as:
N

y(k) =D _ as(k)y(k — i) + v(k)

i=1
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Where a; are the coeflicients, y(k — ¢)) are previous outputs and v(k) is zero mean white
noise. The order of the system N in unknown but it is in the range of 1 < N < M, where M
is known. The true model will be one of a family of models with the above range of order.

A paper by (Birch, Lawrence et al 44) deals with fitting and estimating a model to EEG
(Electroencephalography) signals. The EEG signal is modeled with an AR model type and a
spectral estimation procedure is performed. The selection of the proper model order is done
by some a priori knowledge of expected results.

Very little work has been published on structure determination for nonlinear systems.
One which treats mathematical models for representation of the dynamic of ship rudder-
yaw and roll motions is in Zhou et al 45 The work checks suggested models given in the
literature for the problem with the Recursive Prediction Error (RPE) identification methods.
It is an off-line method that finds the best nonlinear terms for the model. A non linear
on-line method has been described by Zervos and Dumont 46 The plant is modeled by an
orthogonal Laguerre network put into state space form. The number of the Laguerre filters
used depends of the presence of time delay and undamped modes. The actual plant order
does not influence the number of Laguerre filters (N) used. Usually the choiceis 5 < N < 10,
and N can be changed on line.

Hemerly 47 presents a method for order and parameter identification of industrial pro-

cesses. The processes to be identified are described by ARX mode:
y(t) = —ary(t — 1) — - —any(t —n) + byu(t — 1) + - - + bpu(t — n) + w(t)

Where y(t) is the systems output, u(¢) is the input, a; and b; are the coefficients and w(t)
is white noise. The parameters are identified by Recursive Least Squares (RLS) algorithm
and for the order estimation the Predictive Least Squares (PLS) criterion is used, (Rissanen

48)_

Where:
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lt—l
t

PLS(n.t) = e*(n,i + 1)

1=

The best estimate of the order should be
7(t) = arg min PLS(n,t)
with
e(n,t+ 1) = y(t + 1) — 67 (n, 1)8(n, )

where

(;): [_ah'“)ma’N)b]')“')bN]T

®(n,5) = [y(3), - y(G —n+1),u(), -, u(Gi-n+1)"

The PLS criterion is highly intuitive and at time t the order estimate n(t) is the order
of the model which has given the least mean square prediction error up to that time. The
process can be identified for different operating points by varying the excitation amplitude
and therefore getting several linear models. A controller can be designed for each model

49

and changed in real time if necessary. Medeiros and Hemerly * integrated lattice form for
constructing a minimum variance adaptive controller with parameter and order estimation.
As described in the former paper the order is estimated with the PLS criterion. The lattice

filter i1s a way to parametrize as following:

Onia(t) = Ou(t) + pialt — 1)

Fra(t) = Fult — 1) + pOu (1)
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where:

én(t) = y(t) - gﬂ(t/én)

Fu(t —1) = y(t —n ~ 1) +afy(t —n)+--- +apy(t — 1)

Where p, are coefficients, ©,, estimated parameters for order n, y(t) is the measured
output, ¥, is the estimated output for model order n, and €, is the error. A set of prediction
errors is calculated and the estimated order of the model is the one that has a minimal least
squares error.

As can be inferred from the previous discussions, much work has been published on
identification and adaptive control algorithms, mostly for fixed order and structure models.
Very little research work has been done for flexible model structures particularly for on-line
methods and there is definitely a need for research in the area. This work constitutes a

contribution to the research for on-line model structure determination.



Chapter 3

SINGLE FLEXIBLE LINK MANIPULATOR

3.1 Outline:

In this Chapter, we present the work done with the flexible link manipulator. The mathemat-
ical model and equations of motion have been developed. Numerical results for the control
of the manipulator are presented, as well as the effects of mis-modeling on the magnitude of
a cost function and an outline for an iterative method for the order estimator.

Section 3.2 develops all mathematical modeling involved in the numerical simulation of a sin-
gle flexible link manipulator, including the linear equations of motion and control strategy.

Section 3.3 presents the numerical results and analysis for the flexible link application.

3.2 Single Flexible Link Manipulator

3.2.1 Introduction

A robot is a complex system to control not only because it is a nonlinear system and has
variations in the moment of inertia, but also because flexible link structure or nonlinearities,
such as hysteresis or backlash. There are two approaches for the design of controllers for such
systems: 1.e. to design one that will not excite the poorly damped modes, or one that actively
damps oscillatory modes. The second option i1s not used in industrial robots. Such control
systems are complicated, since the frequencies of the oscillatory modes vary with orientation
and load. The variations in the oscillatory modes are the reason for choosing the flexible

link as an application. New vibration modes that arise mean that the structure of the model

28
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has changed on line, so the model and the control system should be updated. Data for the
chosen flexible link can be found in 90 and 19. The arm is a 1 meter long, flexible mechanical
structure which can bend freely in the horizontal plane but is stiff in vertical bending and in

torsion. Its motion is only in the horizontal plane i.e. gravity effects are not important.

3.2.2 Equations of Motion for the Single Flexible Link

The flexible arm is comparable to a cantilever beam. Figure 3.1 describes the flexible link

configuration.
Where:

xo - is the reference axis.

T - is the position of a rigid arm at 4 [rad.] from z,.
w(z,t) - is the deflection from the rigid body.

Ip - is the moment of inertia about the hub [kg - m?].
Iy - is the motor’s moment of inertia [kg - m?|.

TH - is the torque applied by the motor [N - m].

E - is Young’s module [N/m?|.

I- is the beam cross sectional moment of inertia [m?.

The displacement of any point P along the beam at a distance = from the hub is given by

6(t) and the deflection w(z,t), measured from the line Oz which would be the arm, had it

been rigid. The assumptions made are:
o the deflection is small - w(L,t) < L
o shear deformation and rotary inertia effects are neglected.
e gravitation effects for deflection and movement in a horizontal plane are neglected.

The displacement y(z,t) of a point p along the arm is defined as:
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Figure 3.1: Configuration of the single link flexible arm

Xo

30



Chapter 3. SINGLE FLEXIBLE LINK MANIPULATOR 31

y(z,t) = w(z,t) + z6(t) (3.1)
Let:
t) = ; $i(x)gi(t) (32)
Where ¢;(z) is the i** mode shape and g;(t) is the i** mode generalized coordinate. n =
1,2,3,4,... is the number of vibration modes. (Note that when i = 0, ¢o(z) = =, d"sd": =1,
go(t) = 0 and go(t) = 8 are the parameters for a rigid body. )
All derivatives as § are with respect to time, all derivative as §' are with respect to x.

The kinetic energy of the system is:

_ 2 L dy(e, t)
Tk _—IHe 2 /(

d t .
T = It +m [ (22D | gy,
Using Equation 3.2 the kinetic energy is:
2T, = Ip6% + 3 L g3 (t) + 26 3 Li gilt) (3.3)

i=1 i=1

The inertia integrals I ;, I»;, I3; are described in Appendix B and their values are presented
in Table B.1. (The number indicates if it is I;, I, or I as indicated in Appendix B, and the
i shows for which mode the integral is calculated ).

The potential energy is strain energy due to bending deformation is:

L
2P:/ Br (22 4o
0

d:r:2

2P = ZZ/ EI ¢} ¢7 g q; de

i=1j=1
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Using orthogonality relations:

w? 2ode = I,; W? i—=7
I ! do - Toip 2 J
0 i#£]

the potential energy becomes:

2P = 211:13,‘ q;z

i=1

Introducing a dissipation function D that may be defined as:

1 n n .
D=32 2 cidds

i=1 j=1

the damping force will be:
dD e )
- = Cij 9;
dg; .Xz:l ’
Combining all together and applying Lagrange’s equation,
the equations of motion are:

for 2 = 0 - rigid body:

ITé—JrZI“é,'(t):TH—COé

i=1

for1=1,2,3,...:

Li 6+ Iyi Gi(t) = —Ta gi(t) — co gil2)

Where: Iy = Ig + Iy is the total moment of inertia, and ¢; where 2 = 1,2, 3,

damping coefficient.

32

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

...,n1is the
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3.2.3 The State Space Model

Equations 3.7 and 3.8 can be put into a matrix form, such as:

Mx = Kx + bTH

Where z is the state space vector defined as:

- . T
X = 0; 1, 92, *° Qn, 97 q1, 9z, **- qn] (39)

M, K and b are matrices defined as:

(1 00 «ov cci 0 0 0 0 -or voo 0 )
010 0 0 0 O 0
0 01 0o 0 0 o0 0
000 1 0 0 O 0

M = (3.10)

000 0 Ir Ly Ly La --- Ly,
0 0 0 0 ]11 ]21 0 « . « s 0
0 00 0 1 0 Iy -+ -« 0
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0 0 O 0 1 0 0 0
0 0 0 0 0 1 0 0
0 O 0 0 1 0
0 0 0 0 0 0 0 1
K = (3.11)
0 0 0 0 —c O 0 0 0
0 —131 0 0 0 —C 0 0
0 0 0 0 0 0 —c 0
6 0 0 —1I3, O 0 0 —Cn
b=[000---1000 ---]" (3.12)
The state space model in its final form is:
x=A-x+B-7, (3.13)
Ytip = C-x
Where:
A=M"'.K
B=M"'.b
C=0111---000 ---} (3.14)

The order of the system depends on the number of modes that are included. For example,
a 3 mode model will be an 8* order model. Table 3.1 shows the order of the system versus

the number of modes considered.
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3.2.4 The Discrete Time Model

35

The system was converted with a zero order hold sampling from a continuous state space

form into a discrete time form.

For sampling with period h, the time is:
ty=k-h

The state space discrete time model has the following structure:

((k + 1)h) = ® 2(k k) + T u(kh)

y(kh) = C z(kh)

Where:

P = eprh

h
r :/ expAS dS B
0

In order to simplify calculations, we expanded it into a series, 1.e.:

h AhR* A?h? Al pit
As
= dS =1Ih —_ ...
v /oexP Fart T Tt Ty
Now the matrices are given by:
P=/+A"

I'=¥B

+ ...

(3.15)

(3.16)

(3.17)

(3.18)
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3.2.5 Open Loop Discrete Time Models for Different Number of Modes

The discrete time models for y,,, ver. 7, were developed for cases with a different number of
modes. The structure of the discrete model is in the form of Equation 2.6, where the noise
sequence is equal to zero. The sampling period is A = 0.01 [sec.]. The damping factors are,
c; =0.0b.

Remark: All the following discrete time models for the different orders were checked with
continuous time simulation for the flexible link with the same number of vibration modes (i.e.
the same model order). The results show the same behavior for the continuous time and the
discrete time models.

For rigid body - i+ = 0, model order is 2 :

Viip(bk)jo =  +1.9982yup(t — 1) — 0.9982 yyip (£x — 2) (3.19)

+0.17774 - 1073 7 (b, — 1) + 0.1773 - 7 (tx — 2)
For one vibration mode ¢ = 1, model order is 4 :

Ytip(tk)/l = +3.1423 ytip(tk — 1) —4.1531 ytip(tk — 2) (320)
+2.8781 ytip(tk - 3) — 0.8673 yta’p(tk — 4)
+0.1458 - 1037 (¢ — 1) + 0.0173 - 10 1y (ts — 2)

—0.0405 - 10 375 (tr — 3) + 0.1344 - 10 7 (ts — 4)
For two vibration modes 1 = 2, model order 1s 6 :

Viip(tk)z =  +1.5506 yrip(te — 1) — 0.4874 yup(ts — 2) (3.21)
+0.5763 yuip(tic — 3) — 1.2837 yuip(ti — 4)

+1.0311 yyip(t — 5) — 0.3870 yip(ts — 6)
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+0.0534 10 1 (te — 1) + 0.4899 10 315 (t), — 2)

+0.1043 10 2ty (¢ — 3) — 0.1471 10 31y (t — 4)

+0.1764 10 27 (ty — 5) + 0.0187 10 37 (ts — 6)

For three vibration modes 7 = 3, model order is 8 :

Yiip(tk)/s =

+0.0662 yrip (b — 1) + 2.0013 yeip(t — 2)

+0.6734 yt,-p(tk — 3) —1.7043 yt,-p(tk — 4)

~1.1544 y,i (s — 5) + 0.9074 ygip (£ — 6)

+0.6223 yip (b — 7) — 0.4120 yyip (i, — 8)

+0.0576 -
+0.8196 -
—0.6113 -

+0.1971 -

10737y (e — 1) + 0.5583 - 10 31y (¢ — 2)

(

10375 (t, — 3) — 0.1301 - 10 %75 (L) — 4)

10 375 (t, — 5) + 0.0127 - 1073 754(ts — 6)
(

10375ty — 7) + 0.0217 - 10 37y (t — 8)

For four vibration modes i = 4, model order is 10 :

Yiip(ty)/4 =

+1.1390 yoip(te — 1) + 1.2433 y,ip (b — 2)

_13167yt1p(tk — 3) —1.1016 Yiip tk 4)

—1.0645 yuip(tk — 7) — 0.3661 yuip(ti — 8)

(

(
+0.9544 yip (te — 5) + 0.8454 yip (s — 6)

(

(

+08878 ytip(tk - 9) — 0.3062 Yiip tk - 10)

+0.0583

+0.2602 -

+0.0219

—0.2846 -

107 37y (te — 1) 4 0.4965 - 10 375 (¢ — 2

10 1y (te — 3) — 0.6346 - 10 37 (s — 4

) )
) — )
10 3 rg(te — 5) + 0.4743 - 10 15 (¢ — 6)
) )

10 g (te — 7) — 0.1749 - 10 27y (5 — 8

37

(3.22)

(3.23)
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+0.1224 - 10 315 (ty — 9) + 0.0172 - 10 37 (¢, — 10)

The structure of all models is such that y;, at the present value in time depends on a sequence

of previous measured outputs y;,(¢x — 1) and previous inputs 74(tx — 7).

3.2.6 Control Strategy for the Flexible Link Manipulator

Self tuning adaptive control algorithms are the control strategy used in this work. These
algorithms can be direct STR’s or indirect ones. In the direct algorithms, the controller
parameters are estimated directly whereas the estimation for the indirect ones is done on
the plant’s model parameters rather than the regulator’s parameters, which are calculated
later. The first algorithm, which has already been implemented, is the General Predictive
Control algorithm (GPC), and its results are presented in Section 2.3. As was presented in
the previous section, the basic structure of the linear model for the flexible link is (without

noise):

A(g ™) y(t) = b(g ") u(t) (3.24)

Figure 2.1 presents a block diagram of the control which was designed to deal with one
structure of the plant’s model at a time. We will examine the effects of changes in that
structure. Actual changes should be done in the parameter estimation block once their
number changes and in the controller calculations, since the dimensions of all polynomials

and matrices will change.

3.3 Analysis and Results of Simulation and Control Work Performed

3.3.1 Introduction

The results presented in this section are for numerical simulations of the single flexible link

controlled with the GPC algorithm. The "measured” outputs are produced by a simulation
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solving the dynamic equations for the flexible link as presented in Section 3.2 . Those equa-
tions are referred to as the "real plant” whose model is to be estimated. The unknown model
is chosen in the form of Equation 2.6 (without the noise term). Different models for the
different number of modes are presented in Subsection 3.2.5. In addition, the parameters of
those models are presented, even though in actual situations they are unknowns. They are
found by an estimation technique fitting for the plant to be estimated. The method used in

this work so far has been Recursive Least Squares (RLS).

3.3.2 Effects of Under-Modeling and Over-Modeling on the Controlled Flexible
Link

This section will present the simulation results of investigating under and over modeling of
the actual plant, with regard to the structure. It means that for each figure, the actual
number of modes are shown, 1.e. modes that are used in the dynamic equations ( Section 3.2
), as well as the number of modes taken into account in the estimator model. With every
choice of estimated structure for the plant’s model, the number of parameters to be estimated
changes.

In Figure 3.2, the flexible link was modeled with two vibration modes, which means that
the "real” model of the link is of 6** order (see Table 3.1). The estimated structure for the
discrete time linear model was also of order 6. As mentioned before, the tip position of the
flexible link is controlled with the GPC algorithm. The set point is a square wave between
the values of +1. The output, the tip position, follows it very well. Figure 3.3 shows the
behavior of the angle 8 and its derivatives for the same conditions as in Figure 3.2. Since it
is a linear model and the length of the arm is 1 m., and the effect of the vibration modes is
small, y.;, and 6 appear to be the same. Figures 3.4 and 3.5 present the vibration modes

generalized coordinates q; and g, and their derivatives, and Figure 3.6 shows the torque input
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The effect of under-modeling can be seen in Figure 3.7, where a ”"real” flexible two mode
link (6 order plant) is estimated for a model with a structure of one vibration mode (4%
order estimated model). The result is unstable. This unstable result was expected since
stability analyses usually assume that the estimator model should be at least as complex as
the plant itself.

Figure 3.8 presents the opposite effect of over-modeling where a flexible one mode link ( 4**
order) is modeled with a four mode estimator ( 10** order). The output develops oscillations
which diverge and ends with instability. The frequency of oscillations is about 14 [rad./sec.]
which is the frequency of the first modes.

When the over-modeling is closer, as in Figure 3.9, where a 2 mode flexible link (6** order)
is modeled with an estimator model of 3 modes (8" order), the response is not unstable.
Here the output tracks the square wave of the set point as shown in Figure 3.2, where the
simulated model and the estimator’s model match in structure. These results are also checked
in Chapter 5 for the two link rigid manipulator with the hydraulic actuators.

The conclusions so far are that under-modeling of a plant with an adaptive control system
will most probably result in an unstable system. This is expected, if one observes assumptions
made in stability proofs in the literature (Edgare 10 and Astrom 1), which say that the
estimated model should be at least as complex as the real plant model. There is more
freedom in the choice of structure for over-modeling a plant. If the estimator is close to the
actual model as in Figure 3.9, then the system behaves very well, but when the difference
grows, as in Figure 3.8, instability can occur.

It seems that the instabilities in the over-modeling case are due to dynamics introduced in
the control algorithm through the estimator model-dynamics which do not actually exist in
the system but which are present for the control algorithm, since the estimator will give
non-zero values to over modeled model parameters. There is an effort made to control an

entirely different plant than the actual one, which is projected through the "measured” values
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of yip. The next subsection describes the behavior of a cost function and a possible method
of detecting the need to change the structure and integrate the new one, on line, into the

control system.

3.3.3 Use of an Estimation Cost Function as a Criterion for Changing the Struc-

ture of the Plant’s Model

The cost function is a tool for attaining an optimal behavior of a physical property of the
system. One may want to optimize a trajectory for a robot arm or to optimize time or output
error, as may be logical for this case. The cost function chosen, Equation 3.25, minimizes
the output error between the tip position y.;,, the ?measured” output as calculated from the

equations of motion, and the one from the estimator model y,,.

t

‘I(ytipa yeat) = E[ytip - yeat]2 (325)

k=0

Figure 3.10 presents the behavior of the cost function in Equation 3.25. Its value rises
initially when there is a difference between the model and plant dynamics, and then when
the error goes to zero, it settles to a constant value.

There are, of course, additional possibilities for the choice of a cost function which are
not himited to the one mentioned.

Another interesting cost function, described in Section 2.3, is the one used for the GPC
algorithm (Equation 2.7). There an error is also minimized; however, the outputs are the
ones predicted. Not only should the present output track a set point, but the values to
be minimized are predicted ones, so the cost function ensures that the future error will
be minimal. In order to have reasonable control inputs and not to demand, for example,
extremely high input signals that may drive the system to saturation, the total sum of control

increments is also minimized. The result is minimal output error, with minimal control effort.
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The behavior of the two cost functions for the flexible link application will be compared later

in this work.

3.3.4 Effects of On Line Changes in Model order

Chapter 5 will present a full discussion on the effects of under and over-modeling on the cost
function for both applications of this work, the flexible link manipulator and the hydraulically
actuated two link manipulator. It will also present a method to detect structure modeling
errors and correct them. In this section, preliminary discussion on the effects of the change of
the estimator model structure on the controlled tip position of the flexible link is presented.
The link itself, the "real” model, was chosen to have 2 vibration modes ( i.e. 6 order ).
Two cases are presented; in the first, the estimator model is initially a 2 mode model (i.e.
6 order) and is then changed into a 1 mode model ( i.e. 4% order). In the second case,
the estimator model is initially a 1 mode model ( 4** order) and is then changed into a 2
mode model ( 6 order) to match the ”real” model mentioned above. The next figures will
show numerical simulation results for on line model changes. For each case, the tip position,
the estimator cost function, and the estimator output error behavior will be presented. It
should be noted that the criterion used to change the structure of the estimator in the cases
presented was time, which is not the final one (Chapter 6 presents the full criteria). The
actual criteria are the changes in the values of the chosen cost function and its derivatives.
In Figures 3.11 and 3.12 the 6** order model converges to the set point, and after 5 sec.,
the estimator model has been changed to an under-modeled situation (order = 4) when the
whole system goes unstable. In Figure 3.11 y.;, reaches instability after the change of the
estimated model structure. Figure 3.12 shows the changes in the cost function and output
Error.

In Figure 3.13, Figure 3.14, Figure 3.15, Figure 3.16 the process starts with the wrong

estimator model and is changed on line to the correct one.
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In the examples presented, the output converges and tracks the set point. In Figures 3.13
the change in models is done at an early stage (0.1 sec which are 100 sampling steps), 50 y¢p
converges well. Compared with Figure 3.2 it is slower, but the results are still satisfactory.
The estimator cost function (Figure 3.14) converges to a higher value ( order of magnitude
of 107*) than the one ( order of magnitude 10~° ) which exists when both models match. In
Figures 3.15 and 3.16 the correction of the model is done later, so the system gains more
error from the wrong estimator model. The convergence takes longer than in Figure 3.13,

and the estimator cost function has much larger values.

3.3.5 Comparison Between the Behavior of Two Different Cost Functions

It is of interest to compare the estimator cost function behavior as presented in Equation 3.25
and the GPC control algorithm cost function as presented in Equation 2.7. Figures 3.17 3.18
3.19 present such comparisons for different mis-modeling cases.

When writing GPC error or estimator output error, the calculations are of the terms within
the sum symbols in both Equation 2.7 and 3.25, respectively. Those terms are calculated
at each time step. When writing the GPC cost function or the estimator cost function, the
calculations are accumulated with time. Figure 3.17 is the cost function for the changing
estimator model. It starts with the correct 6** order model that changes to a 4** order one
after 5 seconds, as in Figure 3.11. Figures 3.18 and 3.19 present the opposite case, where
the difference between the two is the time of switching models (as in Figures 3.13 and 3.15
). The two cost functions are functions of different variables. The estimator cost function
(Equation 3.25 ) is the sum of the square estimator error, which is the difference between
Yeip, the measured value, and y.,; , the estimator output. The GPC cost function is the sum
of the square error between the predicted output and future set points and the sum of the
weighted square future control effort. Yet even though the behavior of both cost functions is

very similar, their values are different. This may promote the use of different possible cost
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functions for the model structure changes algorithm.

3.4 Conclusions

An interesting point of this research is the response of adaptively controlled systems to
on-line changes in the model structure due to variations in operating conditions. Adaptive
algorithms usually use an estimation procedure for the plant or controller parameters in which
the structure of the plant’s model is assumed to be fixed. Estimated values are considered to
be correct, and uncertainties in those values are ignored (the certainty equivalence principle).
Reliance on that principle can lead to instability in the system.

A good example is a flexible link manipulator, where changes in load during a working
cycle can result in the rise of vibration modes which were not there before. This chapter
presents the equations of motion for a single flexible link manipulator which is controlled
with a General Predictive Control algorithm (GPC) and the parameters estimated with the
Recursive Least Squares (RLS) algorithm. Simulation results of the controlled system are
presented. Under-modeling of the plant’s dynamics (i.e. the order of the estimator is smaller
than the ”real” order) leads to instability. Over-modeling could also lead to instability when
the gap between the estimated model order and the actual system’s model is too large.
However, there are conditions under which the system behaves well with over-modeling. It is
also shown that a system which begins with an under-modeled estimator plant, and is then
changed to the correct one, will not become unstable under the right conditions, as it would
have if the change in the estimator had not been done.

It 1s suggested that the cost function presented in Equation 3.25 may be a criterion to detect
the need for the estimator’s order change. A change of the estimator’s model structure on
line requires a change in the controller’s structure as well.

The work in Chapter 5 puts together the results in Chapter 3 that detect the need in
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model structure change and execute it when the system is controlled with the GPC adaptive
algorithm. This chapter shows the results of correcting mis-modeling by using a time criterion,

i.e., a system that could be unstable, but with the correction has an acceptable performance.
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SINGLE FLEXIBLE LINK MANIPULATOR

No. of Modes 011128 415
Order of the system | 2 {4 16 | 8 |10} 12

Table 3.1: No. of flexible modes vs. order of system
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Chapter 4

TWO LINK MANIPULATOR WITH HYDRAULIC ACTUATORS

Outline

Robotic manipulators consist of links (rigid or flexible), connected by joints that control the
relative motion of neighboring links. The joints usually have position sensors which measure
the relative motion and are actuated by electric, pneumatic or hydraulic drives 9l These
systems are subject to nonlinearities such as coupling, coulomb friction and backlash. Their
inertial characteristics and loads vary during operation and are not always predictable 17,
Hydraulically actuated manipulators are widely used in industry today. Hydraulic systems
have relatively large torque to weight ratios, higher loop gains and wider bandwidths com-
pared with electrical motors 52, Hydraulic robots are used for heavy duty tasks requiring
position accuracy, rapid dynamics and rapid start and stop. However, hydraulic systems are
complex , nonlinear and difficult to analyze for control purposes 53, 54

In the design of a manipulator control strategy two kinds of physical quantity should
be considered, those that can be determined accurately with the values remaining relatively
constant, and those that vary within a range of values during a working cycle. The second
type of quantities cannot always be avoided in a control system and may require an on-line
change of the controller parameters. Examples in hydraulic systems would be external and
internal leakages, size of orifices, temperature changes, accumulation of oil contamination,

viscosity changes of the hydraulic fluid, damping coeflicient etc. In the modeling of the links,

one can find changes in the moments of inertia during a working cycle when an external load
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(in some cases an unknown external load) is being picked up and put down. Compliance in
the links may give oscillatory dynamics with low damping, i.e. excite vibration modes that
change the model of the controlled system.

Most of the techniques for control system design assume the plant and its environment
are known. In many cases however, this is not so, since the plant might be too complex,
the model not fully understood, or the process and the disturbances changing with operating
conditions. When a system’s dynamic model is uncertain or has the possibility of changing
its parameters on-line, adaptive control may be considered.

Control of robotic systems has been widely discussed in the literature before, (Fu et
al 16, An et al 55, Asada 56, Craig 1 and others.) The dynamics of the actuators are
usually ignored and the link motion provides second order equations with coupling effects
16 Sepehri et al 94 show a control strategy in which the link motion is controlled by a self
tuning algorithm ( minimum variance control), and the hydraulics is controlled by a classical
control algorithm.

A study on a hydraulic manipulator controlled by an adaptive algorithm was presented
by Vaha in 1988 53. The control algorithm was based on a one-step-ahead self-tuning con-
troller proposed by Clarke et al in 1975 12 An integral term was introduced to a quadratic
performance criterion which was minimized to find a control law that was applied to a heavy
duty manipulator in two ways. An experimental study was performed in order to evaluate
the applicability of the adaptive algorithm to control the movement of the manipulator’s
links. The autoregressive model chosen for the adaptive control process experienced difficul-
ties caused by mechanical and physical characteristics and measurement noise. As well, the
study considered simulation evaluation of the problem. The model chosen to simulate the
actual manipulator was a linearized second order model.

As previously mentioned, in 1987 Clarke et al 4, 5 developed the Generalized Predictive

Control technique which may have advantages for the control of complex systems such as
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heavy duty manipulators.

The present work applies the GPC algorithm to an extensive mechanical and hydraulic
system model of an industrial hydraulic manipulator, to assess the control capability of this
more recent algorithm on such a nonlinear system, and to study the effect of the design
parameters, Kotzev et al 57

First the dynamic model of the manipulator is presented as well as the equations of
motion of the hydraulic actuator including compliance, dead time and full dynamics of the
servovalve, resulting in a rather complex nonlinear system in which the order of the estimated
linear model for the GPC may vary from 6 to 10 . The GPC algorithm is also presented in
detail. It uses for control purposes a linearized model of the system. The control law derived
depends on values of the measured output from the nonlinear system, and uses assumed and
estimated parameters for the linear model.

The control strategy in this work, consists of two adaptive loops, in which the process
model contains the manipulator link with the hydraulic actuator. There is an advantage in
combining all the system states into one control loop, where the system is represented by an
input/output model in the GPC, since the estimated parameters can reflect all changes in
the system as well as the uncertainties, disturbances, nonlinearities and coupling, provided
that safety limits on the required system variables exist. This approach can be implemented
on any hydraulic manipulator with as many links and actuators as required. It can also be
implemented on manipulators with other actuators such as electric motors. The results show
the effects of the different control tuning parameters on the controlled system performance.
The GPC has an inherent integrator which helps overcome offsets but results in undesirable
overshoot when operating robot manipulators.

In advancing the state of the art of predictive control, in this work special attention is
given to the maximum output horizon, which for larger values (i.e. larger prediction horizon),

has stabilizing effects and damps the output behavior but slows the transient response. The
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work also introduces an on-line automatic change of the maximum output horizon so that
the transient response can be sufficiently fast and undesirable overshoots avoided. Further
advances are also made in the selection of other GPC design parameters.

The dynamic equations of the manipulator and its actuators have been simulated in a
FORTRAN program along with the control algorithm and the numerical simulations were

performed on a VAX 3200 computer.

4.1 Rigid Two Link Manipulator with Hydraulic Actuators

4.1.1 Introduction

A two link rigid manipulator is a complex and nonlinear system. The coupling between the
motion of the arm’s components introduces nonlinearities. The hydraulic actuators consist of
servovalves and cylinders and may be described as a third or a fifth order system. The next
two sections will present the equations of motion of the dynamics of the manipulator links,
and the equations of motion of the hydraulic actuators, which will be expressed in equations

for solving P, , and 6; The state space vector, of order 8, for this specific system is:

tout

x= 1k, P, 6 91 P, P, 6 92] (4.1)

4.1.2 Equations of Motion for the Rigid Two Link Manipulator

Figure 4.1 shows the configuration of the two link manipulator.

Using a general formulation,w, the dynamic equations of motion derived via Lagrange’s

approach are:

=Y Difi+ > Y Dijeb;be + D; (4.2)

j=0 7=0 k=0
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Figure 4.1: Configuration of the two link manipulator

Figure 4.1: Configuration of the two link manipulator
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Where n is the number of degrees of freedom, D;; terms for effective and coupling inertia
at joint 7 due to link j motion, D;;, terms for the Coriolis and centripetal forces at joint 1 as
a result of motion in links j and k, and D; are terms for gravity loading at joint 1.

The kinetic energy of the system is:

1
2

1
2

1
2
+mglyl; cos 02(9f + 9192)

Tp = =mI26% + —m,l260% + —m,12(6% + 26,0, + 62) (4.3)

The potential energy of the system 1is:
P = —mgl; cosf; — myly cos §; — magly cos (6, + 62) (4.4)

Combining and applying Lagrange’s equation, the nonlinear equations of motion are:
g plymg Lagrang q )

= [(ml -+ mg) lf + mzlg + 2m21112 COs 02] 01 (45)
+ [mzlg + mzlllz COS 62] éz
—2m21112 sin 029192 - m211l2

sin 9293 + (m1 + ma) gly sin 61 + maglysin(6; + 6)

Ty = [mzlg + molyl, cos 92] 6, (4.6)
-{—mglgéz -+ m21112 sin 6203

9% + nglz sin (91 -+ 02)

Where 73 and 7, are input torques to the joints.

4.1.3 Equations of Motion of the Hydraulic Actuator

The links of the manipulator are actuated by hydraulic actuators. Each link is activated by a

hydraulic motor which is connected to a servovalve through expandable hoses. The servovalve
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monitors the flow of the hydraulic liquid. Figure 4.2 describes a critical center symmetric
valve.

The supply pressure is kept constant which allows each servovalve to function indepen-
dently. The return pressure is the atmospheric pressure, since it is connected to a storage
tank. Components such as check valves and relief valves are for machine safety. The servo-
valves control the fluid power. The most widely used valve has a spool valve type construction,
and is classified by the way flow goes through the valve. The valve variables are the spool
displacement ( Xy;), the flows in and out of the valve ¢;;, and g,,,, , the supply pressure ( P,,,),
the return pressure (P,.,), and the line pressures (P;,, and p;,,,). The equations describing

the equations of motion for the valves are nonlinear. The flow equations are 52,

Xy, >0, (positive direction)

gi;, = Kuave Xv; \/ Poup — Py, (4.7)
Givus = Kuatve XV, \/ Pipur — Pres (4.8)
Xy, <0, (negative direction)

Giin = Koatve Xv; y/ Piip — Pres (4.9)
Givus = Kuvatve Xv; \/ Poup — Pius (4.10)
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Hydraulic Contro! Elements

| = 1
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Alimatm P2 .
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N
|
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Figure 4.2: Electrohydraulic actuator
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Linearization of these equations with a Taylor series expansion about zero spool displace-

ment, for initial design purposes only, gives:

%, = Koy Xv, — Ky, P (4.11)

1

qimn = Kﬂ!i XV, + Kp.‘ Pl (4.12)

out

Where K, and K,, are the flow gain and the flow pressure coefficients, respectively.

A first order model, 58, describing the equations of the pipes model are:

Pi.'n - é (qi.',. - Dm 0:) (413)

Po.=5(Dmbi—a.,) (4.14)

tout

<|®

Where D,, is the volumetric displacement of hydraulic motor, and % is the hydraulic
compliance.

The motor and link dynamic model is :

T":(Pi _th)Dm:jmiéi‘I'bméi‘*‘Ti (4.15)

in

Where the first term expresses the movement of the hydraulic motor, the second is a
damping term, 7; expresses external load by the links movement and T} is the applied torque

to the link z.
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4.2 Control Strategy

4.2.1 Introduction

As mentioned before, the equations of motion of a robotic manipulator contain nonlinearities,
inertial characteristics and disturbances that vary during a working cycle and may not always
be predictable. Lately self tuning predictive algorithms have been used since the results have
better robustness compared with other self tuning control algorithms such as Pole Placement
and Generalized Minimum Variance (Astrom 1). The robustness of predictive algorithms is
due to the minimization of a multi-step cost function 4 The basic predictive method has the

following steps:
1. Prediction of the output in the future.

2. Choice of the future set points, and minimization of a cost function calculated from the
future errors, between the future outputs and future set points, yields a set of future

control signals.

3. The first element of the control signals is actually used and the whole procedure is

repeated. This is a receding-horizon controller.

The type of controllers mentioned above consider the output at one point of time in the
future. The Generalized Predictive Control (GPC) 4 5, algorithm minimizes a cost function
that considers the future predicted outputs j steps ahead, the future set points and future

control signals.

4.2.2 Control Strategy for the Two link Rigid Manipulator

Figure 4.3 presents a block diagram for controlling the tip position of the two link manipulator

with the hydraulic actuators.
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Figure 4.3: Control strategy for the two link manipulator
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The tip location error is translated to angle changes in the joints. The control consists
of two adaptive loops, in which the process model contains the manipulator link with the
hydraulic actuator. Each of the joint links is controlled separately with the general predictive
control algorithm. The model for each loop will be an Input/Output type of model in the

form of :
A(g ") y(t) = b(g ") u(t) + c(g7") e(t) (4.16)

Where:
y(t) is the output - joint angle.
u(t) is the input to the process - spool displacement

e(t) 1s the noise sequence.

4.3 Analysis and Results of Simulation

4.3.1 System Parameters

The link parameters are:

l, = 50 cm.
I, = 50 em.
my; = 1 kg
my; = 1 kg.

The hydraulic actuator parameters are:
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5
Koatve = 243. 'cﬂ_
kg
D,, = 82 cm?
B, kot
v " cmb
kgf
Pap = 65. — 250. =25
Pfea =0 !‘ig_f_
sz

K., = 1387. ==

1

3

1

-
il
[}

K, = 4.65

E

The range of the spool displacement is:

—05 em. < Xy, 2 0.5 cm.

Where i = 1,2 for the number of links.

4.3.2 Open Loop Analysis

The linearized equations of motion, i.e. Equation 4.11, Equation 4.12, Equation 4.13, Equa-
tion 4.14, Equation 4.15 and linearized Equation 4.5, Equation 4.6 produces the following

state space form, for a single link and are used only for preliminary study and design :
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x=Ax+ BXK
where the state space vector for one loop is:

X:[PL'.H,' é;]T

Allow Py, = P, — P,,,, and:
~£Kp, 0 —28D,
A = 0 0 1
Buw 00

Where the eigenvalues are:

[ 0.9997413 1.072178 0.9996837 ]T

28 K.,
B= 0
0

The transfer function between the angle and spool displacement is:

0:(s) 2& D,. K.,
Xy, s(JLs?+ JLEK,, s+28D2)
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(4.17)

(4.18)

(4.19)

(4.20)

The system was converted with a zero order hold sampling into a discrete time form, the

input/output model is:

Hi(tk) = —ay 9,‘(tk - 1) — ay Hi(tk - 2) - as 0,-(tk - 3)

+by Xv,(tk — 1) + by Xv,(tr — 2) + by Xy, (te — 1) + €i(te)

(4.21)
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For sampling period of A = 0.005 ([sec|] the parameters of the A and B polynomials
are: al = —2.9326, a2 = 2.8652, a3 = —0.9326, bl = 0.000000554, b2 = 0.000002177,
b3 = 0.0000005348. Where e(t) is the unmeasured disturbance term which includes two
components, the first, dynamic coupling between the links and gravitation effects, and the

second an uncorrelated random noise sequence if exists.

4.3.3 Simulation Study and Results

Subsection 4.3.2 developed the open loop analysis which was used to determine the order of
the input/output model for the GPC algorithm, and the initial values for identification of its
parameters. The actual system is a nonlinear system resulting from coupling terms due to
relative motion of the links, the gravity term, saturation limits on variables, the hydraulic
system etc. The nonlinearities were incorporated into the simulation model while the model
estimated and used by GPC is linear by its nature. Figure 4.4, Figure 4.5, Figure 4.6, and
Figure 4.7 present the controlled nonlinear system, (the two link manipulator actuated by
hydraulic actuators) which exhibit good performance in output tracking of the given set
points. The nonlinearities are treated as unknown deterministic disturbances in that the
GPC assumes a linear model for the actual system.

Figure 4.4 and Figure 4.5 show the behavior of the outputs 6;, and 8, and their derivatives
to square wave setpoints. Figure 4.6 presents the spool valves displacements and the control
action Au(t) for both links and actuators. Figure 4.7 presents the hose pressures for both
actuators.

The design parameters used for tuning the GPC are noted at this point. Nj, the maximum
output horizon, is changed on line. Nj, the minimum output horizon, N,, the control horizon
and A, the weighting factor are additional design parameters. At first a lower value of N,
(N2.,~1 )was used, to achieve a faster transient response and later it was increased to Ngviz to

avold overshoots. In the case presented in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7
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GPC control — 2 fink manipulator with hydroufic octuctors
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GPC control — 2 link manipulator with hydraulic ectuators
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the system’s performance was achieved with the following design parameters:

1. for 6, :
Ny, =1, Ny, =70, Ny, =100, N,,,, =1, A, = 0.05
2. for 6, :
Ny, =1, Ny, =40, Ny,, =60, Ny, =1, Ay, = 0.05

Note that in steady state there is a chatter in some of the parameters, such as the spool
valve displacement, the control increment signal, the hose pressures and the accelerations.
In steady state the spool valve chatters around the zero value which it cannot maintain
due to nonlinearities in the system and the mis-match between the nonlinear model that
simulates the actual system and the representing linear model used by the adaptive algorithm.
Figure 4.8 and Figure 4.9 show the results for the same design parameters as Figure 4.6 and
Figure 4.7, only in this case the model of the hydraulic actuator system was linearized. The
nonlinearities due to coupling between the movement of the links or due to saturation in the
displacement of the spool valve remain in the simulated model of the system. The chattering
has been reduced significantly.

Changes in the values of the design parameters above will change the behavior of the
system. The effects of the output horizon N, were checked in both loops. The larger the
value of N,, the slower the response. Larger values have the tendency to stabilize the system
since it uses predicted errors over a larger period of time. On the other hand fewer prediction
steps will result in a more rapid control action, and the inherent integration term of the model
used for GPC causes the response to have more overshoot and more oscillations. 6, in the
upper part of Figure 4.10 is the same as the one in Figure 4.4 but the setpoint is constant
instead of a square wave. The lower part shows 6, in response to the same setpoint, but the
output horizon is constant and its values are the higher values for Nz,12 = 100 and Nz,,22 =170

used in Figure 4.4. The response for the larger values is slower.
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GPC control — 2 link manipulator with hydroulic octuctors
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Figure 4.8: Control action and spool displacement for hydraulic linearized model.
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GPC control — 2 link manipulator with hydroulic octuctors
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GPC control — 2 link monipulator with hydroulic octuators
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GPC control — 2 link maonipulotor with hydroulic octuotors
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4.3.4 Effects of On-line Changes in Model Order

An analysis of the effect of under and over modeling for the two link hydraulic manipulator
is given in Chapter 5. The analysis is based on the behavior of a cost function for the cases

of correct, under and over-modeling,.

4.4 Conclusions

In this chapter a rigid two link manipulator with hydraulic actuators controlled by a GPC
algorithm is presented. The system is highly nonlinear, controlled with a GPC algorithm that
assumes a linear structured input/output model, whose parameters are estimated online. The
control strategy treats the control of each link and its actuator as one model. The changes in
the system parameters are handled without the need to identify the exact cause of the change.
Such an approach may need safety measures and bounded values on some of the system
variables. The system is well behaved when controlled with the set of design parameters
shown in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7. GPC overcomes the effects of the
nonlinearities in the actual model of the system, (coupling between links, saturations etc.)

In terms of advancing the state of the art of predictive control, the influence of the main
GPC design parameters, N; and N,,, was studied. It was recommended, by Clarke et al, that
the control horizon N, should be chosen as high as the number of poorly damped poles of
the system. In this study there was no significant effect on the output by choosing it so,
(Figure 4.13). When N, is chosen as high as 10 the outputs have a more oscillatory nature.
As well, the maximum output horizon N, is shown to have a stabilizing effect if the prediction
margin is wide enough. The larger the value N,, the slower and more damped the response.
The output horizon was found to play a role in reducing the inherent overshoot of the GPC
algorithm (Figure 4.10 compared to Figure 4.11 ).

In this work, its value was changed on line and resulted in a relatively quicker response
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at first and significantly reduced overshoot (if at all) as shown in Figure 4.4 and Figure 4.5
compared to Figure 4.10. The sluggish response to higher values of N, and the oscillatory
nature of it for lower values was shown in Figure 4.12 compared to Figure 4.11.

Many different industrial manipulators in use today are represented by 2 link hydraulically
actuated mechanisms of the type in this work. This work studies the behavior of this category
of manipulator when controlled by an adaptive control algorithm. The study can be expanded
to a manipulator with additional links. Hydraulically actuated machines are highly nonlinear
systems and their parameters may vary online during a working cycle. When controlled by
GPC a good performance of the output in tracking a sequence of set points was achieved.

Thus in addition to advancing the state of the art in certain areas of predictive control
related to design parameters, the work described in this chapter has also examined some
complex considerations such as the effect of hard nonlinearities in the application of GPC to

a broad category of hydraulically actuated manipulators.



Chapter 5

MODEL ORDER DETERMINATION

5.1 Introduction

Adaptive control algorithms are designed assuming that the plant model is defined by a fixed
structure. A question asked in this work is how will an adaptive control algorithm (the GPC
in this case) behave when the true plant is not perfectly described by any model of a given
class.

The behavior of a specific algorithm is understood through analyzing stability and per-
formance. Stability proofs usually require restrictive assumptions,for example, assumption
on the structure of the model (number of poles, number of zeros, time delay, etc.). In many
research studies, stability proofs for adaptive controlled systems are done for examples which
deal primarily with linear systems, and the signals are bounded with small perturbations
(for example in Astrom et al 1). If modeling errors are sufficiently small, robust stability of
adaptive systems can be achieved (Bahnasawi and Mahmoud 59 ). Modeling errors (such
as unmodeled or over-modeled dynamics, nonlinearities, etc.) appear as disturbances in the
adaptive process.

The present research deals with changes in the structure of the plant, and therefore changes
in the model order. When the model order i1s not accurate, the modeling error can be large
and instabilities can appear. Both applications used in this work are analyzed with modeling
€rrors.

The GPC uses a linearized model of the system for control purposes. Any diversion from

95
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the linear form is as a disturbance to the adaptation mechanism. The hydraulic manipulator
example is a highly nonlinear system which is represented by a linear model for the GPC. The
modeling errors act as disturbances caused partly by the nonlinearities. Chapter 4 analyzed
this system and good performance is achieved. When the order of the system is changed, for
example when time delay or valve dynamics are introduced, and the control algorithm has
not been updated with the changes, the modeling error is large and instabilities occur (the
nonlinear terms remain unchanged). The single flexible link manipulator, is modeled by a
linear model that matches the order of the one for the adaptive algorithm. Good performance
is shown in Chapter 3. When the order of the system does not match the one representing
it for the adaptive algorithm due to vibration modes, the modeling errors are large and
instabilities occur.

This chapter presents a method for detecting and correcting the model order and hence
minimizing the modeling error. It evaluates a cost function and its derivative. If necessary,
the represented model order for the adaptive algorithm is changed on-line to reduce modeling
errors and the uncertain parameters in the model estimated as is normally done in an adaptive

algorithm.

5.2 Cost Function - For Detection Of The Model Structure

The goal, in order to achieve good performance, is to reduce modeling errors. As a measure
of the modeling error, we choose a cost function which is the square of the difference between
the output measured from the actual system and the one of the linear model as used by the

adaptive control algorithm i.e.

i
J(ymean Yeat) = Z[ymeua - yeat]2 (51)
k=1

A cost function is usually chosen as a criterion to be minimized according to the final
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target. For the estimation problem, for example, the process output and the estimated
model output are compared and some optimal adjustment between the two should be found.
The optimum is defined using a criterion with respect to output signals or to the expected
error of the estimated parameters values.

For control purposes the criterion is optimized in order to achieve a desired control law.
The criterion can be a quadratic form which, for example, could be a function of the state
vector and the input signal (see Astrom and Wittenmark 15, Ljung 6 and Eykhoff 60). In
Chapter 3 the behavior of the cost function of the GPC algorithm ( Equation 2.7) is compared
with the one presented in Equation 5.1 and was found to be similar.

The behavior of the cost function in Equation 5.1 was studied with open loop and closed
loop control in order to determine a method of detecting an on-line change in the actual
system’s model and of changing the model for the control algorithm accordingly. The cost
function behavior was studied in two ways, first as a function of order changes (Figures 5.1
and 5.2 ) i.e. the value of the cost function was recorded at a certain time as a function
of different estimated model orders (the plant’s model remained unchanged) and second, as
a function of time. In each run the plant model and order of the estimated one remain
unchanged for the desired period of time.

To examine the open loop behavior of the cost function as a function of the order, the
estimated model order was changed while the actual system structure remained unchanged.
For example, for the flexible link (as described in Chapter 3 ), the actual system had two
vibration modes (plant model order of 6), but the estimated model order was changed (from 2
which is a rigid body, to 10 which is four vibration modes). Figure 5.1 shows the cost function
behavior as a function of the model order. The values at each order are relatively small, and
1t 1s hard to differentiate between them. On the other hand, Figure 5.2 shows the behavior
of the same cost function with the same model order changes to a closed loop situation, with

the GPC algorithm. This time, the results for each chosen order of the estimated model differ
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extensively, and the cost function can indicate the size of the modeling error.

Appendix A shows the results of experimental data obtained for the identification of the
dynamic model of a Caterpillar 215B excavator, which is a two link manipulator actuated
by hydraulic actuators. The identification done was an open loop one in which no adaptive
control algorithm was introduced. The results in Appendix A show that after the cost function
becomes flat at high orders it is easy to mis-choose the order for the system’s model. (see
Figures A.8 and A.9)

Observing the time behavior of the cost function reveals three parameters that can be used
for detecting mis-modeling. The parameters are: the Rise Slope jR, the Zero Slope Jz, and
Change Time T.. Figure 5.3 also shows a behavior format of the cost function (C.F.) ( which
are backed up, later in the work, with figures showing the actual behavior of the C.F.) for
several configurations, for the two applications, where the three parameters are shown. In all
of the configurations shown in Figure 5.3 the model of the actual system matches the order of
the estimated model by the GPC. One and two mode flexible links, and a linear and nonlinear
model of the hydraulically actuated manipulator all have the same nature of behavior, i.e.
all three parameters, for linearized models of the systems, have a similar behavior. The Rise
Slope Jg has the order of magnitude of 10~° [deg/sec or cm/sec depending on the system),
the Change Time T, from 1.5 [sec.] to 5.4 [sec.] depending on the system’s nature and the
control parameters. The Zero Slope stabilizes on different values with an order of magnitude
of 107® [deg. or cm.].

The values of the parameters do not necessarily have the same order of magnitude, as it
all depends on the nature of the system being controlled. However the nature of the behavior
is the same. This is important, since regions can be defined for each of the parameters for a
specific system so that detection of mis-modeling can be achieved. It will be shown below that
the behavior of the C.F. is different when a mis-modeling occurs. Figure 5.3 also shows that

the behavior of the C.F. for a nonlinearized model of the hydraulic actuated manipulator.
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Figure 5.3: Schematic description of the C.F. behavior for the different applications
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When the system is under or over-modeled, the behavior of the cost function changes
extensively in some cases, and moderately in others. Since those changes can be detected,
the assumptions about the structure of the estimated model will be updated and the results

improved.

5.2.1 The Cost Function for the Flexible Link Manipulator
Cost Function of the Flexible Two Mode Link

When a flexible two mode link ( order 6 ) is estimated by a two mode link, the modeling
error is small and good control is achieved, as mentioned in Chapter 3. Figure 5.4 shows
the behavior of the cost function, which has low values in the order of magnitude of 10719,
the Change Time is T, = 1.5[sec.] to a zero slope, which means that for ¢ > T, the error has
very small values (Figure 5.5).

Mis-modeling can be classified into two categories: under-modeling and over-modeling.
When this system is under-modeled with a one mode estimated model (order 4), instabilities
occur, since the control algorithm does not account for the unmodeled dynamics and can not
overcome it as a disturbance. Figure 5.6 presents the behavior of the cost function in this
case, showing that its values rise very high even before the Change Time (1.5 sec.); thus the
mis-modeling can be detected and changed on-line. Figure 5.7 produces very similar results
for under-modeling of the estimated model with the order of 2.

When the system is over-modeled, the reaction to the mis-modeling is more moderate.
When the estimated model is a 3 mode one (order 8), the cost function and the other pa-
rameters behave as if there is no mis-modeling (Figure 5.8 ). When a 4 mode model (order
10) is introduced, the modeling error is larger, and the cost function value rises beyond the
desired value ( order of magnitude goes to 1078 instead of 107!° ); after 7. it keeps on rising

and does not achieve the zero slope. (Figure 5.9).
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The conclusion so far is that unmodeled dynamics affect the performance and stability of
the system faster and in a more intensive manner than the over- modeling does. This fact
will help the on-line model structure detection differentiate between under and over-modeling.

These conclusions will be backed up by further results.

Flexible One Mode Link

The one mode link (order 4), when estimated with a one mode estimated model, produces a
controlled system with good performance. Figure 5.10 shows the behavior of the cost function
for these conditions. The C.F. ( like the one in Figure 5.4) has a zero slope and stabilizes
at the order of magnitude of 1072 and 7, = 2sec. . The behavior of the two cost functions
15 the same but the values are different. Here too, the mis-modeling is addressed by the two
categories: under-modeling and over-modeling. Under-modeling, as in Figure 5.11, causes the
unstable response if an estimated model of a rigid body is chosen. It produces an oscillation
frequency of about 14.5H 2., the frequency of the first mode not accounted for by the control
algorithm (see Table B.1).

Figure 5.12 shows that the cost function grows, and at 7. = 2, its value is approximately
50, whereas in Figure 5.10 it was at the order of magnitude of 107®. This is a clear indication
that the model chosen was not the right one. These results match the behavior of the 2 mode
system for under-modeling as presented in Figure 5.6 and Figure 5.7.

Over-modeling has a more moderate response. A two mode estimated model (Figure 5.13)
behaves like the 1 mode model, but a 3 mode estimated model (Figure 5.14) at T, has a value
of the order of magnitude of 107° where the 1 mode estimated model had the value of 107°.
This case shows that the C.F. continues increasing, and the whole process becomes unstable.
The rate of approaching bad performance or even instability is much slower than the one for
under-modeling. A 4 mode estimator (Figure 5.15) has a similar behavior to the previous

case, but the cost function value rises quicker. At 7, the C.F. has the order of magnitude
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of 107* and at ¢t = 5sec. the order of magnitude of 10 where the order of magnitude for the
previous case is 1071,

The conclusion that can be drawn so far from analyzing the flexible link, is that for
under, over or correct modeling, the cost function behavior is significantly different. So a
model plant mis-match could be detected by examining the behavior of the cost function and

1ts derivative.

5.2.2 The Cost Function for the Two Link Manipulator with Hydraulic Actu-

ators

The two link manipulator is highly nonlinear, widely used in the industry, and is therefore
of interest in this investigation. Chapter 4 presents a thorough discussion of such a system
controlled with the GPC algorithm which achieves good performance. In this chapter, the
behavior of a cost function for such a system will be studied. The hydraulically manipulated
robotic link is basically a third order system, order of 2 for the dynamics of the links, and
order of 1 for the hydraulic systems. The order of such a system can change if the link is not
rigid, but flexible with an unknown number of vibration modes, or if the hydraulic system
contains a time delay (which will add an order of one to the basic system), or if the spool valve
dynamics influence the process (then an order of 2 is added to the basic process bringing it to
order 5). In this discussion the order change will be in the hydraulic part, where the results
will be divided into two categories. First a linearized model of the machine is introduced and
the behavior of the cost function studied, and then the full nonlinear model for the system is
used in the simulation and the behavior of its C.F. studied as well.

Figure 5.16 shows the behavior of 8; and 8, to a step function when the linearized model
of the system and the model assumed for GPC match and are both of order 3. Figure 5.17
shows the behavior of the cost function and its derivative for both links The same pattern

of behavior can be observed (as in the flexible link). The Rise Slope, the Time Change T,
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and the Zero Slope are found in this case too (schematic description of these parameters and
their values are described in Figure 5.3).

When the actual nonlinear system is introduced (the order remains 3), the behavior of
the cost function changes and so does the behavior of the system. In order to maintain
steady state values for some of the hydraulic parameters, the spool valve chatters around its
zero value. As a result, the output error is constant (not zero), and the cost function rises
constantly. Figure 5.18 shows that the C.F. behaves similarly to the behavior in Figure 5.17
up to the time when the chattering begins. It can be detected clearly on the C.F. derivative
plot .

Since good performance is achieved in controlling the nonlinear system with GPC (see
Chapter 4 ), the cost function indicates that the order of the estimated (linearized) model
matches the order of the actual nonlinear machine model and can be used to detect modeling
errors of the system. When the order of the estimated model does not agree with that of the
actual system, it is also evident in the cost function behavior. Figure 5.19 shows an under-
modeled first link, in which its estimated model was of order 2, whereas link 2 had a matching
estimated model of order 3. The cost function of Link 2 has a very similar behavior to the one
seen in Figure 5.18 and its output (Figure 5.20 ) stabilizes on its set point. However, it has
a larger overshoot due to the coupling with link 1, which is under-modeled by its estimated
model.

Over-modeling, as in the flexible link case, reacts in a more moderate way than the under-
modeling. In Figure 5.21 both links were over modeled with an estimated model of order 4.
The cost function for both links grows, indicating the mis-match between the models. The
derivative however, decreases eventually. The cost function and its derivative change in a
moderate manner compared with the under-modeling case.

In order to get a realistic fifth order model for the system, dynamics should be introduced

to the servovalve of the system. Usually, for most practical purposes, the servovalve dynamics
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are fast enough to be ignored. In this case, an equivalent second order system was added to
the structure of the estimated model. The initial values for the estimated parameters included
the data for the servovalve dynamics with natural frequency of 20Hz and a damping ratio
of 0.6 (see Catalog, Moog Inc. 61). In Figure 5.22 link 1 has an estimated model of order 5,
which grows constantly due to the error between the models. For link 2, the order is 3 and
the cost function behaves like the one in Figure 5.18. Figure 5.23 shows the behavior of the
outputs. 6; can not achieve the goal of its set point due to the mis-match of the models, and
8, behaves well since the models match each other.

The conclusions drawn from this section are similar to the ones from the flexible link.
It 1s possible to identify, through the cost function and its derivative, the case in which
the estimated model matches the actual system’s model. The cost function also indicates
under-modeling and over-modeling. This information forms the basic data for the method

for detecting on-line the order of a system model and its changes.
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Figure 5.23: 8, and 6, behavior for 5 mode model and 3 mode estimated model



Chapter 5. MODEL ORDER DETERMINATION 127

5.3 Reasons for Under and Over-Modeled Behavior

Most adaptive control algorithms assume that plant dynamics can be modeled by one member
of a specified class of models. Usually, there are uncertainties in the estimated model due
to unknown but estimated parameters or disturbances. These can be from external sources
or internal ones such as nonlinearities in the plant dynamics which are not included in the
estimated model. If the disturbances are bounded and there is sufficient excitation by the
input signal to estimate the model parameters, then the system can be controlled and stability
retained. This was demonstrated in Chapter 3 by controlling a single flexible link manipulator,
and in Chapter 4 by controlling a hydraulically actuated two link manipulator which is a
highly nonlinear system. Both systems were modeled by a linear model for control purposes,
with parameters estimated on-line, and the nonlinearities are considered to be disturbances.
By tuning the GPC parameters, acceptable and good performance can be achieved ( see
Figures 4.4, 4.5, 4.6, 4.7).

This work deals with model/plant mis-match in which the estimated model for the GPC
algorithm has a different structure (i.e. linear and different order) from that of the real plant.
Such mis-match is another form of uncertainty in the adaptive controller. The cost function
(Equation 5.1) and its time variations were chosen as a measure of that phenomenon. When
the plant and model match, the cost function rises initially for the time period that it takes
for the estimated model to adjust, and then stabilizes on a close to constant value, since the
error between the models becomes very small.

The behavior of the cost function J as a function of the estimated model order ( Figure 5.1,
for open loop investigation) shows that under-modeling, and over-modeling are hard to detect
by comparison with the correct structure.

On the other hand, Figure 5.2 (closed loop calculations) shows that model mis-match in

most forms is significant and can be detected. The real processes have complex nonlinear
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dynamics ( as in the two link hydraulically actuated manipulator), and the adaptive controller
attempts to control the dynamics by a simple linear model.

The parameters of the linear estimated model depend strongly on the properties of the
input signal and its frequency content. Proper excitation is needed for good estimation results.
There is self excitation when the estimation is done in closed loop (as when the adaptive
controller is used), since the estimation process is excited by the signal from the feedback. The
feedback could cause dependencies between the elements of the regression vector (Equation 5.4
which means that the parameters cannot be determined uniquely (Astrom 1). Errors due to
modeling errors arise when the chosen model does not describe the system completely, it can
cause poor performance depending on the value of the modeling error and its nature.

In the following material, a discussion on the estimation process RLS (Recursive Least
Squares), used with GPC (see Ljung 6 and Astrom and Wittenmark 15), and the effect of
under, and over-modeling is given.

When the plant is linear and its order is known, it can be described by the mathematical

model:

y(t) = —aiy(t — 1) —asy(t —2) —-- -+ bou(t — 1) + biu(t —2) + --- (5.2)

or:

y(t) = ¥7()© (5.3)

where @ is the regression vector:

e’ = [~y(t - 1)7 —y(t - 2)1 ceeyou(t— 1), u(t - 2) " ] (5'4)

and O is a vector of unknown parameters:
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O =[ai, as, ---, bo, by, -]

The estimated model is:

§(t) = @7(£)©

where © is a vector of the estimated parameters, and err(t) is the error.

ern(t) = y(t) — (1)

Thus the RLS algorithm is:

: : _aP(t—1)8(t)(y(t) — §(t))
() =8t = 1) = =R Tam () Pt - 1o (2)

—aP(t - 1)®(2)dT(t)P(t — 1)

P =PI =1) = — 2 a7 Pl - 1) ()

129

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

where: a(t) € [0,1] is a gain, 4(t) > 0 is a normalization term, AT is the sampling period,

y(t) 1s the measured output, and g(¢) is the estimated output.
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Under-Modeling

When under-modeling is considered the measured output can be expressed as:

y(t) = 87 ()0 + (1) (5.10)

where 7)(t) contains the unmodeled terms.

rearranging Equation 5.8, Equation 5.10 and Equation 5.6 yields:

aP®d” PO aP®y

A(t) - Ot — 1) = —
o) ~Ot - = ~F AT87Ps ' T 1 ATST PG

(5.11)

Where:

6=6-0

&, the regression vector, contains information on previous outputs and inputs to the plant
and therefore information about the feedback to the controller. The unmodeled dynamics,
although unknown, are part of the plant’s output and of the feedback signal. It can thus be
concluded that ® and 7 are dependent.

Equation 5.11 shows that even when the estimated parameters match the ones in © the
term with ®7 in it can cause © to drift. This effect can also be seen in the equations describing
the cost function. Basically when the error grows the cost function grows in value i.e.: Based
on equations 5.10 5.5 5.6 and 5.7, the error in terms of the regression vector ®7, the

difference between estimated and true parameters and the unmodeled dynamics is:

err(t) = ®T(£)0 + q(t) (5.12)

Where:

O=(a, -, an, by, ---, bo.]



Chapter 5. MODEL ORDER DETERMINATION 131

and the regression vector for this case is:

@T:[~y(t—1), e, —y(t—ny), u(t—1), -+, u(t—mn,) (5.13)

its dimension is: dim(®T) = 2n,,, where n, is the order of the modeled dynamics for the

under-modeling case, and the terms y(t — i) are:

y(t —i) = ®7(t — )0 + y(t — 1) (5.14)

1=1,2--4,n,
The term ®T(¢ — 1)© is derived using equation 5.5:

Ny +1

oT(t —3)0 = 3 —azy(t—j) + bju(t — j) E ¥(y,u) (5.15)

j=i+1

The cost function is defined as:
t
J=> err? (5.16)
k=1

Based on Equation 5.12 it follows that:

err?(t) = (87 (¢)0)? + 287 (¢)On(t) + n*(¢) (5.17)

The second term on the right hand side of Equation 5.19 contains the regression vector ¥,
and the unmodeled dynamics 5, which as can be concluded from Equations 5.14 and 5.15,
are dependent. As can be seen from Equation 5.17 there are two contributions to the error,
the modeling reflected in the unmodeled dynamics term, and the estimation which is reflected

in the parameters. By expressing the regression vector ® terms, with Equation 5.15 the term

@T(t)é is calculated as:

#7()6 = S[-a,(n(t — ) + ¥ly,u)] + byult — 5) (518)
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Substituting Equations 5.17 and 5.18 into Equation 5.16 the cost function is described

by:
J = Xt:(@T(k)é)2 (5.19)
*2 i[“‘"‘f;"(’“)"(’“ —3) - &fgi:n(k)‘v(y,u) +5; 2 n(kyulk - 5)]

¢
+ > n(k)n(k)
k=1

The unmodeled dynamics 7 is a physical signal and though unknown it is part of the
plant’s output. The second term in the right hand side of Equation 5.17 @T(k)(:), will be
strong for under-modeling because of § and because of the correlation between the regression
vector @ and the unmodeled dynamics 7. When evaluating the correlation between mea-
surements of pairs of variables, the correlation 1s determining whether there exists a physical
relationship between the two, or whether the variations in the observed values of one quantity
are correlated with the variations in the measured values of the other. In Press 62 the discrete

correlation of two sampled fanctions is defined by:

Corr(g,h); = ig(] + k)h(k) (5.20)

k=1
When g and h are the same function the above is the autocorrelation of the signal. The

correlation will be large at some value of k if the first function g is a close copy of the second
h but lags it by k. In Equation 5.19 several terms are summed with respect to time. Since
7, y and u are real physical signals there are terms of autocorrelation and correlation. These
terms do not exist in the over modeling case as will be shown in the discussion on over-
modeling. The third term in the right hand side is an autocorrelation of two 7 signals shifted
in time. The fourth and the fifth terms in Equation 5.19, are correlation terms between
7 and the output y or # and the input u. In the under-modeling case 5 is a part of the

output y and since there is feedback of y it is correlated with the input u and therefor the
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unmodeled dynamics 7 as well. In the under-modeling case, the correlation between the
different variables in Equation 5.19, is the reason for the rapid rise in the cost function’s
values as was shown in Section 5.2 for both applications.

Over-Modeling

When over-modeling is concerned y and y are:

y(t) = @7(¢)0 (5.21)

and:

§(t) = 7 (£)0 + n(¢) (5.22)

The regression vector for the over modeling case is:

T:[“y(t”1)7 __y(t__2), M) —"y(t—n)a u(t—'l)) u(t_z): B u(t_n)] (523)

its dimension is: dim(®T(¢)) = 2n, where n is the correct order of the system, and

dim(n(t)) = n, — n, where n, is the over-modeled model order. The error is then:

err(t) = ®T(¢)0 — g(t) (5.24)

and :
err?(t) = (8T(£)0)? — 20T (£)On(t) + n2(t) (5.25)
37 (t)0 i a;y(t — i) + bju(t — 7) (5.26)

J=1
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Substituting Equation 5.26 into Equation 5.25 and into Equation 5.16 results in the cost

function for over-modeling:

J = §t:(<1>’-’"(k)(l))2 (5.27)

> 2[—aj§n<k) ;3 a(ku(h )

j:

t
+ > n(k)n(k)
k=1

In this case, 7 contains all the extra terms of the estimated model. These dynamics are
just in the estimated model and not in the real system. This means that there is no correlation
between the regression vector ¢ and the extra terms 7, i.e. both variables are independent.
The correlation and autocorrelation terms in Equation 5.19 do not exist in equation 5.27,
and (k) in the third and fourth term of the right hand side acts as a time varying coefficient.
7 therefore influences the control parameters which influence the input to the process (u),
but not the feedback of the controlled system.

Closed Loop Poles for Under, Over and Correct-Modeling

The change in the controller parameters is a change in the controller dynamics which
determine the location of the closed loop poles. The minimization of the cost function for
the estimation will determine the parameters uniquely, only when the model order is correct.
When the model is over parametrized it can result in any one of several solutions, and the
correct parameters cannot be determined. The closed loop poles show in some cases unstable
modes indicating that the excess model dynamics add poles which are close to the dominant
poles of the system driving the error into the higher values. This can result eventually in
poor performance or in instability (especially if there is not enough excitation in the process).
The reaction for the over-modeled dynamics is not as extreme as to the under-modeled ones.

Next we discuss some examples, from the flexible link application, for the behavior of the
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closed loop poles which show the unstable modes of the controlled system when mis-modeling

poses a problem. The calculations of the closed loop poled are based on Clarke 4 and on

Latornell 83. First the closed loop poles for correct modeling:

correct-modeling - order 6 for plant and model

pl = +0.9871 + 0.01405
p2 = +0.3955 + 0.4982;
p3 = —0.6192 + 0.7582;
p4 = +0.0360 + 0.00005
p5 = —0.6192 — 0.7582;
p6 = +0.3955 — 0.4982;

p7 = +0.9871 — 0.01405

All poles for the correct modeling of a two mode flexible link ( order 6 ) are within the

unit circle indicating a stable system. The system behavior is presented in Figure 3.2 and

the cost function in Figure 5.4.

correct-modeling - order 4 for plant and model

pl = +0.9869 + 0.0132;
p2 = +0.5720 -+ 0.7359;
p3 = +0.0337 + 0.00005
pd = +0.5720 — 0.7359;

p5 = +0.9869 — 0.0132;



Chapter 5. MODEL ORDER DETERMINATION 136

When one mode occurs for the flexible link and the system is correctly modeled the GPC
conrtol achieves good results and the cost function behaves as presented in Figure 5.10. The
closed loop poles as shown above are all in the stable region with in the unit circle.

over-modeling - order 6 for plant and order 8 for model

pl = +0.9987 + 0.0299;

p2 = +0.6295 + 0.0000;
p3 = +0.5045 + 0.6561;
p4 = —0.1567 + 0.8209;
p5 = +0.3912 + 0.5150;
pb = —0.6192 + 0.7582;
pT = —0.6910 + 0.2549;5
p8 = —0.6910 — 0.2549;
p9 = —0.6192 — 0.7582;
p10 = +0.3912 — 0.51505
pll = —0.1567 — 0.8209;
p12 = +0.5045 — 0.6561;
pl3 = +0.9987 + 0.0299;

As previously mentioned when a system is over parametrized there is no unique solution
to the identification process. If the excess dynamics add closed loop poles that are close to
the dominant ones it could drive the controlled system into instabilities. In this case all closed

loop poles are stable and it was shown that good performance was achieved. However p6 and
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P9 are close to the circle at a radius of 0.97889 and pl and pl13 are at the radius of 0.9915.
Any small change in the systems parameters or even in the control parameters ( which are
chosen for correct modeling of the best system known to the designer) could drive the system
to instability.

over-modeling - order 4 for plant and order 10 for model

pl = +1.2089 + 0.3954;
p2 = +0.8569 + 0.78155
p3 = +0.2784 + 0.95735
pd = —1.0204 + 0.7592;
p5 = —0.0348 + 0.00005
p6 = —1.0204 — 0.7592j
p7 = +0.2784 — 0.9573]
p8 = +0.8569 — 0.7815;
p9 = +1.2089 — 0.3954;

This over-modelig case is one with six unstable modes: pl and p9 at a radius of 1.3577,
p2 and p8 at 1.1597 and p6 and p4 at 1.2718, the system is unstables as the cost function
indicates Figure 5.15.

under-modeling - order 6 for plant and order 4 for model

pl = +1.2795 + 0.0000;

p2 = +0.7764 4 0.41915
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p3 = +0.2420 + 0.6053;
p4 = —0.5956 + 1.33595
p5 = +0.3840 + 0.5073;
p6 = —0.7740 + 0.00005
p7 = —0.3511 + 0.0000;
p8 = —0.5956 — 1.3359;
p9 = +0.2420 — 0.6053;
pl10 = +0.7764 — 0.4191;
pl1 = +1.2795 — 0.0000;

When under-modelimg occurs the reaction of the cost function was more rapid and the
system became unstable faster than the under-modeling case. The unstable modes are: pl
at radius of 1.2795, and p4,p8 at 1.3002. The over-modeling of the two mode manipulator
presented above was stable, in this case the unstable poles are quite far in the unstable region.

under-modeling - order 4 for plant and order 2 for model

pl = +1.8581 + 0.00007

p2 = +0.6089 + 1.3839;
p3 = +0.7904 + 0.8734;
p4 = —1.1640 + 0.00005
p5 = —0.2321 + 0.00005

p6 = +0.6089 — 1.38397
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pT = +0.7904 — 0.87345

In this under-modeled case the unstable modes are: pl at radius of 1.8581, p2 and p6 at
1.5119, p4 at 1.164, and p3 and p7 at radius of 1.1779. in this case too, the unstable poles
are further in the unstable zone that the ones for the over-modeling case (for plant order 4

and model order 10).

5.4 MOD - Model Order Determination Algorithm

Section 5.2 presents the behavior of the cost function J and its time variations for both
applications, the flexible link manipulator and the hydraulically actuated manipulator, for
under, over and correct modeling. The cost function is a measure of the accumulated error
between the plant and the model dynamics. The difference between under and over-modeling
is clear in the behavior of J its time derivatives as discussed in Section 5.2. This section
presents an algorithm to detect mis-match between plant and model, based on the results
above, and to correct the order. It should be noted that correcting mis-modeling is not a
target in itself, but rather, is to detect a possible route to instability and poor performance.
Thus, if an over-modeled system is well controlled, there is no reason to interfere. The goal
of the method presented is to detect problematic mis-match cases, to identify their nature,
and to correct them regardless of their cause.

As mentioned in Chapter 2 (Figure 2.1), the adaptive system contains two loops; one is an
ordinary feedback loop, and the second loop identifies the estimated model parameters and
updates the parameters of the controller. Figure 5.24 shows an adaptive system block diagram
with a model determination block which is an addition to the two loops mentioned above.
In the procedure a feedback loop is added to the identification loop. This loop calculates
the error between the measured and estimated outputs and minimizes it with the algorithm

given below. Figure 5.25 shows the block diagram of the order determination method.



Chapter 5. MODEL ORDER DETERMINATION 140

! |
i (
| |
' |
Q! 9
A
| ] RLs | 1| MOD o
Calculations | Algorithm @ I
+& |
| y |
!
e |
Design
Contoller
parameters
Adaptive u y
! = controller Plant

Figure 5.24: Flow chart of an adaptive control loop with model order determination
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The order change is calculated with the MOD algorithm which is presented next:
N(t)= N(t — 1)+ AN(J, J, torger, Ty, Te, NDT) (5.28)
Where J is the cost function which is described in Equation 5.1. Its derivative J is the
following:
. J@)—-J(t-1)
J o~ .
AT (5.29)
Where:

torder 15 the MOD’s time scale. In the event of several order changes during a working
cycle, in every change t,rq4er is set to zero. This moves the origin of the time scale
relative to the absolute time t, and enables the time parameters (that will be stated

next) for each order change to be considered.
Ty 1s the time for under modeling detection.

Tc 1s the time when the cost function changes to Zero Slope for correct modeling. Its
value will be within the region T¢,, <T. > Tg¢,... -
N DT is the number of time steps to wait for convergence after an order change.

Ny is the initial guess for the order.

K yait 1s the number of time steps to wait between indication of possible mis-modeling

and 1ts acceptance.

The order change function, AN based on the behavior of J in Equation 5.19 for under-

modeling and Equation 5.27 for over-modeling and for correct modehng, is as follows:
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0 Lorder < T¢e
> Tc

AN =
DUM  tordes { <Ty

< Tec
-DOM torder

> Tc

where :

< AT -NDT

J<Jn, J<Jg,
J<Jz, J<Jz,

J > Jry, ijRU

J>Jn, J>Jg,
J > Jz, ijz,,
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(5.30)

e Jg, and J Ry are minimum values for the cost function and its derivative, for identifying

under-modeling.

e Jg, and Jp, are minimum values for the cost function and its derivative, to 1dentify

over-modeling, for t < T¢.

e Jz, and J z, are minimum values for the cost function and its derivative, to identify

over-modeling, for t > T¢.

e Jg, and ij are maximum values for the cost function and its derivative, to identify

correct-modeling,.

e Jz, and J 7, are minimum values for the cost function and its derivative, to identify

correct-modeling.

e DUM is the under-modeling addition to the order at each order change step.

e DOM is the over-modeling subtraction from the order at each order change step.
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This is a gradient algorithm designed to minimize the number of steps to achieve the
correct order. Based on the results from the investigation of the robotic applications presented
in this work parameters initial values were determined. The MOD algorithm was implemented
on the flexible and the hydraulic manipulator and was found to be stable in behavior due to

several factors:

® K.t is the number of time steps to wait and verify the need for order change. This
prevents a random increase in the values of the parameters and on unnecessary order

change.

® {,.4er a relative time origin is used and reset after an order change to what is believed

is the correct value.
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IMPLEMENTATION OF THE MOD ALGORITHM

6.1 Implementation of the Order Determination Algorithm
The algorithm implementation is described as follows:
1. Initialization: definitions by the user

(a) No : initial value for the estimated model order.

(b) Te,.. <T¢ > Tg,,. : time region for the time change.

min —

(C) TU . TU STC

: time for under-modeling detection

(d) Kuait: number of time steps to wait between indication of possible mis-modeling

and its acceptance.

(¢) NUDT: the number of time steps to wait for convergence, when an order change

was done due to under-modeling.

(f) NODT: the number of time steps to wait for convergence, when an order change

was done due to over-modeling.
(g) data for correct-modeling:
1. at -t < T¢
e Jg, : maximum value for rising cost function: J < Jg,,
. jnm : maximum value for rising slope J < Jr,.
i. at -t > T¢

145
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Jz,, : maximum value for zero slope cost function: J < Jz,,

e Jz, : maximum value for zero slope J < jz,,,

m

o Jz,.1 : influence of nonhnearities Jz,, > Jz,,
° jz,,l : influence of nonlinearities J. Zy 2 J Zm
(h) data for under-modeling:
1. at -t < Ty
o Jg,: minimum value for cost function (to identify under-modeling): J >

Jr

u
) jRUZ minimum value for cost function slope (to identify under-modeling):
J > Jg,
(i) data for over-modeling:
1. at -t <Tg¢
o Jg,: minimum value for cost function (to identify over-modeling): J >

Jr

0
o J R, minimum value for cost function, slope (to identify under-modeling):
J > Jg,
i. at -t > T
e Jz,: minimum value for cost function (to identify over-modeling): J >
Jz,
e Jz,: minimum value for cost function, slope (to identify under-modeling):
J > Ja,

2. The MOD Algorithm

(a) Check time relative to T and values of the cost function J, and its slope J.
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(b) Determine if mis-modeling is indicated, then:

e Determine under or over-modeling

e Wait for K. time steps

¢ The algorithm has logic to handle model order changes according to the type
of mis-modeling

e Convergence to acceptable structure when at ¢t > T¢: J < Jgz,, and J < -jz.,.
(c) When mis-modeling is not indicated:

e convergence for verification of the model model occurs: when at ¢ > T¢:

.] § sz a.nd J S jzm

(d) At each time step, the control algorithm is activated with the present model order.

6.1.1 The Method For The Flexible Link Manipulator
Data for the Flexible Link

The values for the parameters presented in this section are based on the investigation done in
Section 5.2 for the behavior of the cost function of the flexible link. In Section 5.2 the MOD
parameters were determined from simulation results. In other applications of the algorithm,
such simulations would first be run on-line with MOD turned off, the order of the model
will be changed and based on the cost function behavior parameters will be determined.
The values for TCriin, Tcpaes JBum> me, Jz., Jz.., Jz.1, Jz.1 were determined from correct
modeling results shown in Figure 5.4 and Figure 5.10. Values for Jg,, jRU and Ty are from
data based on under-modeling Figure 5.6, Figure 5.7 and Figure 5.12. Data for the over-
modeling case, Jg,, jaa, Jz,, Jz,, was obtained from Figure 5.8, Figure 5.9, Figure 5.13,

Figure 5.14, Figure 5.15.
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Figure 6.1 shows the regions in which J and J indicated the mis-modeling. The shaded

areas show for the flexible link at what values under, over or correct modeling occur.

1. Time data

(a) T¢,n = 1.4[sec.]
(b) Tc,nae = 2.5[sec.]

(c) Ty = 0.5[sec.]
2. Data for correct modeling

(a) Jp, =5-107°
(b) Jg,, =5-10"?
(c) Jgz,, = 107°
(d) Jz, = 1072
(e) Jz.u = Jz,

(f) Jzu = Jz.,

3. Data for under-modeling

4. Data for over-modeling

(a) JRO =10"¢

(b) jRO = 1078
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(C) JZ() =108

(d) Jgz, = 1078
5. Data for other parameters

(a) DUM =2, (4), (6)

(b) DOM =1, (2)

Results for the Flexible Link

The data for both the two mode and the one mode examples when modeled correctly, show
that when ¢ < T, the values of J are approximately 0.5107® and at ¢t > T, J is of the order
of magnitude of 10™°. When under-modeled at small ¢, the values of J rise to the order of
magnitude of 1072 and higher, and so do the values of J. For over-modeling the changes
are more moderate. In the case of small over-modeling (by order of 2 ), the mis-modeling
can not be detected since the control algorithm works well and the C.F. derivative’s values
are small. When over-modeling is larger, the values of J change in a more moderate slope.
The observation of the values of J and J were made on the basis of results in Section 5.2. J
accumulates its values with time, and order changes on-line. Its values may be higher, but its
shape remains the same and important. J values do not change and are very important. The
results to be shown describe the behavior of the systems dealt with in this work in under and
over-modeling for different values for the data needed by the order determination algorithm.
(Note: each time an order change is done, the algorithm sets its internal time to zero, so
all parameters for the value regions can be treated in the proper time frame and not in the
absolute one).

Figures 6.2, 6.3, show the behavior of the 2 mode (order = 6) flexible link when under-

modeled with a second order estimated model. Case A is the behavior of the system when
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no order correction 1s done. Ytip goes unstable. In case B, the system converges to the
desired set point, but has a very high overshoot. The algorithm detects the under-modeling
soon enough, but does not have the needed time to settle on order = 6. It understands it
as over-modeling again and goes to order = 4, which drives the system into instability. The
algorithm then changes the order to the value of order = 10, which stops the rapid change
in the values of J. After T, ., the over-modeling has been detected and the order is reduced
to 8, J is reduced to the region accepted as the correct modeling and the system goes to the
value of the set point. In case C some of the parameters have been adjusted. First, more time
has been given for the system to settle after the under-modeling was detected and changed.
In addition, the values for Jz, and Jz, have both been increased to 10~7. All the changes
made in the parameters of this case were made done order to increase the time of convergence
between order changes. As a result, YTIP has almost no overshoot. It takes a little more
time to converge to the set point (about 4 seconds instead of about 1.5 seconds); yet, it is far
better than the under-modeled response presented in case B and ofcourse case A.

The next set of results combines under and over-modeling in the process of correction an
under-modeling case of a two mode (order = 6) flexible link initially under-modeled with
estimated model of order = 4. Figure 6.4, Figure 6.5, Figure 6.6, Figure 6.7 show three such
cases. Case A shows the unstable behavior of a two mode flexible link, controlled with an
estimated model of order 4. In case B, the output converges to the set point slower (about
5 seconds in contrast to 1.5 seconds) and has an overshoot of 27 percent, but it does not go
unstable like case A. The parameters for the order determination algorithm are DOM = 2,
Jz, = 107° and Jz, = 1075. The algorithm detects the under-modeling soon enough so as
not to have a very large overshoot, and the order is set to the correct value of 6. Therefore,
the cost function derivative rises at first, but after the order change, it drops and settles on
an order of magnitude of 107!* which is an indication for convergence. In case C, DOM = 2,

DUM =6, Jg, = 10"? and jR(, = 107®. The output has a larger overshoot (Figure 6.4) since
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the order of the estimated model changes from under-modeled (order = 4) to over-modeled
(order = 10) to (order = 8) and is inaccurate for a longer time. But the output converges at
the same time as case B.

Figure 6.8, Figure 6.9, again show the behavior of the 2 mode flexible link when initially
under-modeled (order = 4) and depending on the order change of algorithm parameters,
later over- modeled. Case A has a larger NUDTy, DUM = 6, DOM = 2. NUDTy is the
parameter defining the number of time steps, after under-modeling is detected. When it has
a larger value, the system is in the unstable mode longer; thus, there is a large overshoot
(Figure 6.8 case A). DUM = 6 changes the order to the value of 10, over-modeling that yields
higher values for the cost function and its derivative; with time, the order is reduced to 6.
The whole procedure resulted, as mentioned, in a high overshoot and in a slower convergence.
In case B the time to change the order after under-modeling is detected was reduced, while
all other parameters remained unchanged. The result is a much smaller overshoot and a
faster convergence. Case C presents the best result of the three, with an overshoot of about
15 percent and convergence to the setpoint within less that 6 seconds.

The one mode flexible link (order = 4) when under-modeled, reacts like the two mode link
to under-modeling. Figures 6.10, 6.11, present 3 cases. Case A is a one mode (order = 4)
flexible link under-modeled with an estimated model of order 2. The output is unstable like
the corresponding in Figure 5.11. The cost function and its derivative rise to high values which
indicate the responding instability. In case B, the order is changed on line to stabilize the
response. When under-modeling is detected, the order is changed, by the parameters given a
priori, to an over- modeling value of 8, and then goes down gradually to the correct value of
4. The response has an overshoot of 83 percent which is mainly due to the initial instability
and the later over-modeling. But the overall response, instead of going unstable, converges to
the set point after an acceptable time (about 4 seconds). Case C presents a better behavior

of the system, in which the overshoot i1s smaller. The order change of algorithm parameters
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was changed, with DUM that has a smaller value of 4 instead of 6. Thus after detecting the
under-modeling, the order rises to the value of 6 (the correct one is 4); yet the overshoot is
still quite high due to the initial instability.

Figures 6.12, 6.13, show 3 cases for initial over-modeling (for a one mode link) where
the different cases present different parameters of the order determination algorithm. In all
of the 3 cases, the estimated model order for the control algorithm is initially 10, and the
outputs vary slightly in the overshoot and time of convergence. In case A, DOM = 4, and
the algorithm, after detecting over-modeling, sets the order on 6. In case B, the parameters

changed are: DOM = 2, T¢,... = 2.5 sec., Jp, = 1078, jRo = 107%. The order detection

algorithm detects the over-modeling and changes it to the value of 8, then after 4.3 sec. to
the order of 6. Case C has Tg,,,, = 1.5 sec., Jp, = 10~%, Jp, = 10~°, which brings a quicker
change of the order from 8 to 6. The differences between the three results is small. Cases A
and C have almost no difference because of the quick change of order = 8 or 10 to order = 6;
Case B takes more time and the cost function and its derivative limits are higher, so the
result has a slightly higher overshoot and takes a little longer to converge.

The conclusions drawn so far from the results of the flexible link (one or two modes) is that
under-modeling creates instability, which can be controlled by detecting the under-modeling
and changing it to the correct one or one close to it. The results may take longer to converge
and have an undesired larger overshoot (than the correct modeling), but the output is not

unstable. The over-modeling has a much more moderate response, which is easier to control

after detecting it and changing the order of the estimated model.
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6.1.2 The Method For The Two Link Manipulator With Hydraulic Actuators
Data for the Two Link Manipulator

The values for the parameters presented in this section are based on the investigation done in
Section 5.2 for the behavior of the cost function of the Two Link Manipulator. The values for

Tc TCmazs JRms JRus J20y J20y J2a1, J2,1 Were determined from correct modeling results

wmin )

shown in Figure 5.17 and Figure 5.18. Values for Jg,, jRU and Ty are from data based
on under-modeling, Figure 5.19. Data for the over-modeling case, Jg,, jR,,, Jz,, jZo; was

obtained from Figure 5.21 and Figure 5.22.
1. Time data

(a) Te,,, = 2.0[sec.]

maxc

(b) Te,,.. = 3.5[sec.]

(¢) Ty = 1.0[sec.]
2. Data for correct modeling

(a) JR1n. =5.10"°
(b) Jg, =5-107°

(¢) Jz,, =5-107°

(d) Jz, =107
(e) JZ,,I = 10—8
(f) Jz = 1078

3. Data for under-modeling

(a) JRU =102



Chapter 6. IMPLEMENTATION OF THE MOD ALGORITHM 167

(b) Jg, = 1072
4. Data for over-modeling

(a) JRO =10"8
(b) Jg, = 107*
(C) JZ() = 10°

(d) Jz, = 10°
5. Data for other parameters

() DUM =1, (2), (3)

(b) DOM =1, (2)

Results for the Two Link Manipulator

The data for the hydraulic manipulator when modeled correctly, show, as in the previous
application, a typical behavior of the cost function and its slope where the values are relatively
small. Here too, the changes are more rapid for the under-modeling case than for the over-
modeling case. Figure 6.14, Figure 6.15, Figure 6.16, Figure 6.17 present 3 cases. Case
A 1s the one where the order determination algorithm is not activated. Link 2 is initially
estimated with a correct order 3 model and is well controlled to follow a set point. Link 1 is
nitially under-modeled with a second order model, so that the output does not detect the set
point. In cases B and C, the order determination algorithm is activated to detect the correct
model and control the system. The difference between the two cases is in the parameters
used for the order determination algorithm. In Case B, DUM =1 and DOM = 1, so the
under-modeling when detected, is corrected to the correct order in the first try. The result

1s that 6, converges to the set point in, about 7 seconds in comparison with 5.5 seconds for
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the case where both links are structurally correctly modeled, as described schematically in
Figure 5.3 . In case C, DOM has changed to the value of 2. When under-modeling is detected
the algorithm changes to the order 4, over-modeling at first and then reducing it. The result
is even slower than in case B (about 9 seconds to converge), but the set point is tracked, in
contrast to case A.

The next three cases present the behavior of the hydraulic system when over-modeled.
Figure 6.18, Figure 6.19, present the results. Case A shows the behavior of the system where
link 1 is correctly modeled with a third order system and link 2 is over modeled (order = 5).
6, does not track the set point. In case B, link 2 is initially under-modeled (order = 2). When
the order detection algorithm is activated, DOM = 3 brings the system to over-modeling
(order = 5), which gradually is brought down to the correct value (order = 3). As a result,
the output in the first 3 seconds goes in the unstable direction and then stabilizes on the
set point. In case C, link 2 in initially over-modeled (order = 5), and gradually the order
1s changed to the correct one. The output stabilizes faster (6.5 seconds, as compared to 9.5
seconds).

The hydraulic actuated manipulator, like the flexible link, when mis-modeled can be
brought to the desired results with the order determination algorithm. Again, under-modeling
affects the response of the output more than over-modeling and is more difficult to control,
but both are solved with the order determination algorithm. Figure 6.20 presents results
similar to those presented in case B of Figure 6.18, but on a larger time scale. Once the
mis-modeling is detected and corrected, the system will persist with the suitable estimated

model structure and will yield the desired response.
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6.2 Comparison of method’s Results with Other Work

The method developed in this thesis, detects, determines and executes on-line changes in
model order. The MOD algorithm is a gradient algorithm based on the behavior of a chosen
cost function and its time derivative. The cost function behavior enables the algorithm to
distinguish between types of mis-modeling of the system (under and over-modeling). When
mis-modeling creates problems in controlling the system it changes the model’s order. Ini-
tialization of the MOD algorithm is based either on a priori knowledge of the system and
simulation results or on preliminary tests of the system.

The control strategy for a system is designed based on the best knowledge of the system
available. A model order change will occur if an operating point change on-line and therefore
the conditions change or if the initial identification of the system was not accurate. The
MOD algorithm activates a model structure change only when the cost function indicates
that mis-modeling is a problem. The computational burden of this algorithm is relatively
small, and by using it the desired behavior of the system is achieved.

A discussion of the advantages and disadvantages of existing techniques will now be pre-
sented. A more detailed discussion of the methods, has been reviewed in Sections 2.4 and
2.5.

Identifying a system depends strongly on the choice of the model structure. Off-line
methods have the advantage of choosing a model structure, identifying its parameters and
then validating the model. If the results are not satisfactory, different types of models can
be examined to find the best model for the system and the operating conditions. Off-line

28

model validation techniques were published by Akaike 27, Isermann 20, Schwarz and

others. These works propose different criteria as a measure of the fit of the model. As well,

different methods for state space representation have been developed. Canonical structures

- 33 34 38

were proposed by Guidovzi . Davison “° presented a method for model order reduction
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by selecting the dominant eigenvalues and eigenvectors of the system. A minimal description
of a system with all significant dynamics is a basis for designing a controller, but the method
does not address the question of changing conditions and therefore changes in the number of
dominant eigenvalues.

36 suggested the model

There are also several recursive methods. Overbeek and Ljung
structure selection (MSS) algorithm in which the structures differ in the parametrization of
the model, but there is no recursive order selection that is, the order is chosen a priori. The
algorithm calculates at each time the entire set of structures and compares them on-line
resulting in a possibility of a high computational burden. Niu, Xiao and Fisher 39 present a
simultaneous recursive estimation of parameter and order. The order is found by calculating a
cost function for all possible orders up to a known upper bound. The order which corresponds
to the minimal value of the cost function is the one that is used. Further work By: Niu and

47 presented a

Fisher 40 implemented the above algorithm for MIMO sestems. Hemerly
method for on line order and parameter identification using the RLS algorithm and the PLS
criterion. Mereiros and Hemerly 49 integrated the above method with lattice form filters for
a minimum variance controller. This work is the closest in nature to the work presented in
this thesis. However, it requires computation of a cost function for all possible orders (up
to an upper bound), at each time step. There is no reference or discussion of the type of
mis-modeling. Other recursive and off-line order and parameters identification methods were
reported (open loop methods), such as the one by Wulich and Kaufman 42 and Katsikas 43.
These methods are based on a priori defined criterion, and calculations of all possible orders

and the choice of the one which gives the best performance of the criterion.

There are several advantages to the MOD method presented in this thesis:

1. The method is an on-line method that detects the need to change the model’s order

and implements it while using well known methods for the indentification and adaptive
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control processes. Most of the published works that were presented in Section 2.5
discuss model order determination, either off-line or on-line but open loop, with no

control algorithm implemented.

e Off-line methods can estimate a model then check and validate it and if the results
do not satisfy, another model structure is chosen, until a good representing model
1s achieved. If a model is chosen with one of the off-line methods its structure is

fixed when used on-line, for control purposes for example. Representing works can

be found in Akaike 26, Isermann 20, Schwartz 28, Rissanen 29, Guidovzi 33 34
38

and Davison

o Recursive identification methods and structure selection are mainly parameter
selection methods where the order is fixed. The possible structures are scanned

36

and the best chosen, Overbeek and Ljung °°, or simultaneous order and parameter
estimation with the same principle, a set of possible orders are chosen and a cost
function is calculated for all the set each time step. The chosen order is the one

that correspond to the minimal value of the cost function. See Niu, Xiao and

Fisher 39, Niu and Fisher 40, Waulich and Kaufman 42, Katsikas 43 and Hemerly
47

2. Cost function behavior indicates the best estimated model order to the MOD algorithm.

e It was found that the cost function has a different behavior for under and for

over-modeling, but similar behavior for the two applications .

e The cost function indicates the best possible order for the present operating point

and does not search for the exact model.

e An initial order is provided and there is no need to assume on upper bound to the

order.
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o The cost function behavior indicates indicates the influence of the closed loop,

especially in the mis-modeling cases.

e There 1s no need to examine and scan a set of models for each time step as the

cost function is calculated for the present model order.

49

The work done by Hemerly ¥, combines a recursive identification process and recursive
order estimation for a model represented by lattice filter form with a minimum variance
control algorithm. The upper bound of the order is assumed to be known and the

order is estimated by scanning all possible PLS functions and choosing the order that

corresponds to the minimal value.

To the best of our knowledge, there is no other method like the one presented in this
thesis. Based on the time behavior of a cost function the algorithm detects and executes
on-line changes of model order. It was established that both, under and over-modeling can
cause poor performance and instability and for both, order correction is done if required.
The algorithm detects changes in the cost function behavior which is monitored on line. The
computation burden is fairly small and the algorithm has stable characteristics and is able
based on some a priori knowledge within a few iterations to maintain desired performance of

the system.

6.3 Conclusions

This chapter presented the behavior of two kinds of robotic manipulators controlled with
the GPC algorithm in mis-modeling of the estimated model for the control algorithm. The
behavior of the cost function and its derivative for the one and two mode flexible link and for
the two link hydraulic actuated manipulator showed a pattern of behavior for under, over and

correct structure for the estimated model. Based on these results, an order determination
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algorithm was presented. Depending on its parameters, mis-modeling can be corrected to

give an acceptable response from these systems, even when they are initially unstable or have

bad performance.



Chapter 7

CONCLUSIONS AND SUMMARY

7.1 Main Results of the Thesis

This work has challenged the concept of using a fixed structure model for a plant controlled by
an adaptive control algorithm (GPC). Generally, in order to implement an adaptive algorithm
for a system, the plant is modeled by a linear model in which parameters are estimated on-
line. This can result in uncertainties in parameter values, especially when the model order is
incorrectly chosen.

Two robotic applications chosen for the study were modeled, simulated and controlled.
The single flexible link can give rise to modes of oscillations on-line during a working cycle,
and therefore have on-line changes of the plant dynamics. The two link manipulator with
hydraulic actuators can be mis-modeled, but it was also chosen because of its highly nonlinear
nature and its extensive use in industry.

Chapters 3 and 4 present the dynamic modeling of the systems , implementation of
the GPC algorithm and the tuning of the control parameters to achieve good performance
control. Chapter 5 presents a model order determination (MOD) algorithm for detecting the
need to change the model structure, correcting the order and executing it on-line. The study
that led to the above method began with the establishment of a cost function as a measure
of the error between the plant and model dynamics.

The main results of this study are:

e A cost function for the modeling error was studied and it was found that for correct

181
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modeling, the cost function rises initially ( when the error goes to zero), and then settles
on a constant value. When under-modeled, the cost function’s initial rise is steeper,
going to much higher values and leading to instabilities. When over-modeled, the
behavior i1s much more moderate, but the performance deteriorates and the system can
go unstable. When under-modeling is involved, the regression vector is correlated to the
unmodeled dynamics. However, the over-modeling does not include that correlation and
therefore the response is more moderate. The excess of dynamics in the model (over-
modeling) causes the control algorithm to try and control dynamics that are not there;

thus, the control parameters are no longer well tuned.
e Both applications show similar cost function behavior.

e Based on the above results, an on-line model order determination (MOD) algorithm is

given to detect the need to change the model order and to correct it on on-line.

e Results from implementing the method on both applications show that for under and

over-modeling, instabilities are avoided and desired performance is restored.

o Generalized Predictive Control (GPC)can be applied to heavy duty manipulators which
are highly nonlinear systems. The hydraulically actuated heavy duty manipulators are
used extensively in large resource based industries, and any improvement in efficiency
may result in major financial benefits. Therefore, the results in Chapter 4 that advance

the state of the art will be stated next (Kotzev et at 57):

— This work examined the effect of nonlinearities in the application of GPC to a

wide range of hydraulically actuated manipulators.

— Special attention is given to the maximum output horizon. The work introduces

an on-line automatic change of the maximum output horizon so that the transient
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response can be sufficiently fast and undesirable overshoots avoided. The selection

of other GPC design parameters is also addressed.

¢ Experimental results from an open loop experiment on a heavy duty manipulator, a
215B Caterpillar, indicate that the cost function behavior in open loop does not vary
strongly enough for mis-modeling to be reliably determined. This has also been verified

by numerical simulations with other applications. A closed loop approach is needed.

7.2  Suggestions for Future Work

The goal of this thesis was to study the behavior of a system controlled with an adaptive
control algorithm when plant mis-modeling occurs, understand the behavior, and suggest a
method to overcome problems that arise, such as poor performance and instability. Such a
study was conducted and a method that provides good results is presented. The scope of the

investigation can be made broader for further generalization of the results:

e More adaptive algorithms, predictive and non-predictive, should be tried.

¢ More systems should be checked, not only from the robotic family. This could generalize
the conclusions on the behavior of those systems in mis-modeling and may come up
with parameters to characterize it. For example the time constant of the system could

have an influence on the results.

e A closed loop experiment with the order determination method implemented should be
done with a 215B Caterpillar or a similar system to find advantages and disadvantages,

since the aim is to implement it for industrial use.

e More attention should be given to other possible order determination methods and their

performance should be compared with the present one.
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o The sensitivity of the identification algorithm and its influence on the cost function
should be checked. Othe indentification algorithms should be considered, shuch as
the Householder transform 64, which is reported to be numerically stable, and able to

determine directly from signals, the correct regression order at a given time instant.
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Appendix A

Experimental Results for the Hydraulic Actuated Manipulator

A.1 Introduction

At UBC (the University Of British Columbia) an excavator, Caterpillar 215B, which is en-
65

gaged in a teleoperation project, Sepehri V2 was available to us for some experiments. The
goal in the experiment was to identify the dynamic model of the manipulator with open loop,
check the behavior of the cost function (Equation 5.1), and compare it with the results of
a simulation of a similar manipulator controlled with GPC, as described in Chapter 4 and
Chapter 5. The results show that after the cost function becomes flat at high orders, it is
easy to choose a mis-matched order for the system. But results in Chapter 5 for the two link

manipulator with the hydraulic actuator show that if the order is wrongly chosen, then the

instabilities can occur.

A.2 Description of the System

The Caterpillar 215B excavator is a mobile three degree of freedom manipulator. The links
are the "Swing”, which is the base that rotates. The "Boom” and the ”Stick” are two links
operated through hydraulic cylinders. The end effector, the "bucket”, which is used to dig
and carry heavy loads is also operated with a hydraulic actuator. Figure A.1 describes the
excavator’s structure. The motions of the "Boom” and ”Stick” are coupled by cross-over

valves, which allow for a faster movement of one link when the other is slower.

192
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The experiment for this work is the identification of the dynamics of the ”Boom” and
its actuator that were operated. The coupling between the valves was eliminated. The
estimation algorithm used was a Recursive Least Squares. The input is the signal from the

spool valve, and the output, from the angular position of the link.

A.3 Results

Six runs were made wherein each, the next input characteristics were given:

S1f - amplitude of 1.0 volt and frequency of 4 seconds.

S2f - amplitude of 1.5 volt and frequency of 3 seconds.

S3f - amplitude of 1.5 volt and frequency of 2 seconds.
e S4f - amplitude of 1.3 volt and frequency of 6 seconds.
e RIf - random input, maximum amplitude of 2 volt.

e R2f - random mput, maximum amplitude of 3 volt.

Figures A2 A3 A4 A5 A6 A.7 present the behavior of the measured output, the
estimated model output, and the cost function which is an indication of the error between
the two outputs. In all six cases, the drawing of the measured output vs. the model output
show very little difference between the two, as does the cost function which grows fast to a
value and drifts slowly from it due to the nonlinearities which are not modeled in the linear
model for the estimation algorithm. Figure A.8 presents the behavior of the cost function for
the four Sif runs. The values of the cost function in all runs was taken after 2000 sampling
steps. The results confirm the discussion in Chapter 2 that the cost function for open loop

identification will have high values for under-modeling and will reach a plateau for higher
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Figure A.1: Caterpillar 215B excavator
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orders of the estimated model. The same goes for the Rif experiments, as shown in Figure A.9,
the measured and the model output agree with each other quite well, and the cost function,
after 2000 sampling steps, again has high values for under-modeling and reaches a plateau
for higher order values. In Chapter 5 the cost function for the closed loop algorithm behaves
differently. There is a clear difference between the values for under-modeling and correct
modeling. For over-modeling, there could also be a clear difference from correct modeling,

resulting in instability of the system if left unattended.
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A.4 Conclusions

This experiment was done with an excavator which is used extensively in the forest and con-
struction industry. The system 1s a highly nonlinear one, and it is therefore of interest to
check the behavior of the cost function when open loop identification is done. This confirms
the fact that even when an identification is done open loop and an over modeled model is
chosen the closed loop controlled system may run into performance and stability problems.
Thus, there is a need to detect on-line a significant model mis-match as mentioned in Chap-
ter 5. The results show (see Figures A.8 and A.9), that when identification is done in
open loop the behavior of the cost function is not such that an error in model structure can
be easily determined. Thus a closed loop approach is needed. This has also been shown in

simulations in chapter 5.
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Appendix B

Modal Analysis for a Cantilever Beam

The analysis is based on Bisplinghoff et. al 66 and Tse et. al 87. The Partial Differential
Equation (PDE) for the deflection w(z,t) in a cantilever beam, considering bending and

shearing strains and neglecting shear deformation and rotary inertia effects, is:

dPw d*w
m-—— +

v T 0 (B.1)

Where E is Young’s modulus, I is the cross sectional moment of inertia of the arm, and m 1s

the mass per unit length. The above PDE is separable, so let:

w(z,t) = ¢(z)q(t) (B.2)
d*q 2 _
T TYa= 0 (B.3)
d'¢ .,
i =0 (B.4)

Where b* = 7. General solutions for the above equations are:

g(t) = Asin(wt) + Beos(wt) (B.5)

#(z) = Csinh(bz) + Dcosh(bz) + Esin(bz) + Fcos(bz) (B.6)

The boundary conditions for cantilever beam are:

: _ ds(0) _
at z=0: #$(0) =0, —d(z—)-——()
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at z =L : d___(_)zdif =0, ——(“if' =0

Solving the above equations with the boundary conditions result with:

The natural frequencies by:

cos(bL)cosh(bL) =1

Where bL = 0.5969, 1.4942m, 371', %71', ......

The mode shapes by:
¢(x) = D[A(sinh(bz) — sin(bz)) + cosh(bz) — cos(bz)]
Where:

_ sin(bL) — sinh(bL)
B cos(bL) + cosh(bL)

D is a normalized coefficient where ¢(L) = 1 so:

_cosh(bL) + cos(bL)
~ 2sinh(bL)cosh(bL)

206

(B.7)

(B.8)

(B.9)

(B.10)

A dynamic model has three integrals as a function of ¢(x), which are (assuming uniform

mass distribution m) :

L 2mD
n :m-/o 2g(e)dz = <

L
12:m-/ ¢#*(z)dz = mD*L

L J2
3= EI/ 4’ (”)]Zdz — W12

For arm with the next data:
L =1 [meter]

EI = 574.024 [N - m?]

I, = 0.2817 |kg - m?)

¢(L) =1

m = 0.8451 [kg/m|

(B.11)
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Table B.1 presents the data for the first five modes. Figure B.1 shows the modal shapes for

the cantilever beam.
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Mode | bl (rad) | w (rad/dec) | Delta | D I I, Iy
1 1.8752 [ 91.644 -0.7266 | 0.5 |[0.2404 |0.2113 | 17744
2 4.6942 | 574.294 -0.9805 | -0.5 | -0.03835 | 0.2113 | 69681.4
3 7.854 | 1606 -0.9999 | 0.5 |0.00138 |0.2113 | 544928
4 10.9956 | 3151 -0.99998 | -0.5 | -0.00699 | 0.2113 | 2097707
5 14.137 |5208.77  |-0.9999 | 0.5 |0.00423 |0.2113 | 5732162 |

Table B.1: Data for the first five modes of a cantilever beam
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Figure B.1: Modal Shapes for a Cantilever Beam
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