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Abstract 

The objective of this research is to define, specify, and implement a new, robust, and extensible manipulator 

control founded upon recent developments in multiagent robot control architectures.. 

Historically manipulator controllers serve within an idealized monolithic"sense-modcl-plan-act" (SMPA) 

control cycle that is both difficult and expensive to design for real time implementation. Recently, however, 

robotic systems have achieved remarkable performance through the combination of multiple, relatively sim­

ple, task specific controllers. These agents are arguably more reliable, robust, and extensible than SMPA 

architectures exhibiting similar performance. Furthermore, complex tasks have been achieved through multi-

agent teams, often exhibiting self organinzing or emergent behaviour. Despite these benefits and the growing 

popularity of these techniques, a formal model of agent and/or multiagent systems has not been proposed nor 

has any such architecture been applied to classical manipulation robotics. This thesis attempts to address 

these omissions through the analysis and application of multiagent design principles to manipulator control. 

After an introduction; to problems in real time supervisory robot control, an overview of manipulator and 

controller dynamics establishes a reference robot model. With this model as background, experimental high 

performance robot architectures arc examined and concepts common to these systems identified. Multiagent 

manipulator control strategies are then discussed and global goal distribution mechanism introduced. The 

design and implementation of a complementary multiprocess manipulator simulator is then described. 

With a global goal distribution definition, the design of a manipulator model-free global goal generator 

is discussed. Results from a multiagent manipulator control simulation are then presented and evaluated. 

The focus then turns to multiple global goal operation, discussing self organization, multiple global goals, 

and the impact of simultaneously active local and global goal systems on stability and arbitration. Results 

demonstrate multiple global and local goal operation including combinations of end effector trajectory track­

ing, joint failure, obstacle avoidance, joint centering, and joint limit avoidance. Finally, the significance of 

these results is discussed in the context of general multiagent control. 
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Nomenclature 

In the following nomenclature section significant acronyms are listed alphabetically. This is followed by a 

nomenclature listing of significant symbols grouped into sections by topic. 

With few exceptions, this dissertation adopts the following notational conventions: 

• italic roman symbols, (e.g. x), signify scalars. 

• small case bold roman symbols, (e.g. x), signify column vectors, 

• capitalized bold roman symbols, (e.g. X), signify matrix quantities . 

Acronyms 

APF Artificial Potential Field (from OSF). 

OSF the Operational Space Formulation (resolved motion computed torque). 

JTC Jacobian Transpose Control. 

FCC Force Convergent Control (from RMFC). 

PSH Point Subject to Hazard (similar to PSP). 

PSP Point Subject to Potential (from OSF). 

RMAC Resolved Motion Acceleration Control. 

RMDAC Resolved Motion Decentralized Adaptive Control or Configuration Control 

RMFC Resolved Motion Force Control. 

RMOA Resolved Motion Obstacle Avoidance. 

RMPC Resolved Motion Position Control. 

RMR.C Resolved Motion Rate Control. 

Manipulator Kinematics and Dynamics. 

q the configuration space position vector. 

X the task space position vector. 
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f (q) the Forward Solution, a map from configuration space to task space. 

= 6^dcf t u e Jacobian of the Forward Solution. 

D(q) the inertia matrix in configuration space coordinates. 

g(q) the gravitational forces in configuration space coordinates. 

C(q, q) coriolis, centrifugal forces in configuration space coordinates. 

M(q) the inertia matrix in cartesian space coordinates. 

N(q) the gravitational forces in cartesian space coordinates. 

P(q?q) coriolis, centrifugal forces in cartesian space coordinates. 

u link control forces 

P(x) the gravitational forces in task space coordinates. 

t time. 

r manipulator joint torque. 

Denavit Hartenberg Parameters. 

6i revolute actuator displacement about z; 

di prismatic actuator displacement about z,-

a,- link twist 

a,- link length 

The Link Model. 

rfc gear train coefficient for the fcth link. 

r the redundancy rate r — n — m 

dk link disturbance forces 

Jm link motor inertia 

Jeff effective link inertia 

p,- the position of link frame i in world coordinates 

the position of the ith link's centroid in link coordinates 

R; the orientation of link frame i in world coordinates 
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w, the angular velocity of link frame i in world coordinates 

The Agent Model. 

Q a goal space. 

r(t) a trajectory or goal in Q. 

B a behaviour space. 

y(t) a trajectory or behaviour (or response) of some dynamic system in B. 

Agent Definitions 

A(-) an agent. 

b the number of behaviour controllers in agent control system. 

Gi(-) the jth subplant of a dynamic system. 

Yj(t) the behaviour (or response) of Gj(-). 

H.-(-) an agent's ith controller. 

',•(*) the goal of H,(i). 

Ui(*) the output of Ui(t). 

rB(t) a composite goal of A . 

Uc(t) the composite output of A . 

r A « = [ri(t)... Tb(t)]T a column vector of all r,- . 

«A(*) = [ui(t)... Ub(t)]T a column vector of all u; . 

kA(*) a linear arbitration vector such that uc(£) = k^(i)u^. 

Multiagent Definitions 

/V the number of agents in multiagent system. 

Ai(-) the jth agent where 1 < j < N. 

the number of behaviour controllers in A j ( - ) . 

Ho-(-) the ith controller of Aj. 

the goal of Hij(t). 

the output of Hij(t). 

r

A j M — [rj'i (*)••• rjbj a column vector of all r,- in A j . 

U A / ' ) = [uji (t) •. • Ujbj (t)]T a column vector of all ut- in Aj. 
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rnA W = IrAj (*)••• rAjv(*)]Ti the vector of controller setpoints for all Aj(t) : 1 < j < N. 
rcnA^) = [r<;1 (*)••• rciv(*)]T> the vector of the composite goals for all A _,•(£) : 1 < j < N. 

ucj(t) the composite output of Aj(t). 

unA W = [uAi (*)••• UAN(*)]T' *he vector of controller outputs for all Aj(t) : 1 < j < N. 

K p ^(i) a linear arbitration matrix such that ucnj^(t) = K n^(i)u n /^. 

ucn^(i) = [uci(^)... uc./v(i)]T, the vector of composite output for all Aj(t) : 1 < j < N. 

Qj the goal space of Aj(t). 

Q3 the image of Qj in Q. 

Bj the behaviour space of Aj(t). 

BJ the image of Bj in B. 

G(-) a plant composed of n subplants. 

^nAM = [yi • • • YN}1 a vector of the behaviours (or dynamic response) of N agents. 

y(t) = f(yn^), the global or aggregate behaviour (or dynamic response) of G(-). 

f(ynA) e ,S- y(0 = ^(ynA): Si x . . . x 8jv -> S - ail aggregate relation. 

g(r(i)) e.g. rcnfa(t) = g(r(i)): Q —¥ Qi x . . . x Q^ - an inverse aggregate relation. 

Cartesian Controllers 

G a global goal couplet. 

the basis vectors of the ith coordinate frame. 

P a p p the objective position of a global goal couplet. 

x(i) a state in task space {p,R, p,w}, often x(i) = x^(i), the end effector state 

xd(t) the desired task space position with elements x.di(t) : 1 < i < M 

xc(t) = Xd(t) — x(t) the task space position error vector. 

x, = [</,- qi]1 the joint state. 

X = [XJV XAI]7 the end effector state. 

&(*) the desired force at the end effector. 

f-(*) the applied force at the end effector. 
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Uart an artificial potential field in OSF 

p the range to an obstacle surface 

po the trigger range to an obstacle surface 

V the vector gradient 
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d(t) an auxiliary gain. 

C(t) an feedforward gravitational gain. 

B(t) an feedforward Coriolis gain. 

A(*) an feedforward Inertia gain. 
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di(t) the ith auxiliary gain. 

a(t) the ith feedforward gravitational gain. 

bi(t) the ith feedforward Coriolis gain. 

Cli(t) the ith feedforward Inertia gain. 

Kpi(t) the ith cartesian position error gain. 

Kvi(t) the ith cartesian velocity error gain. 
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Wpi the ith component of the position error weighting gain 

wvi the ith component of the velocity error weighting gain 
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b a convergence coefficient for the Robbins Monroe Stochastic Estimator. 

k a counter for the Robbins Monroe Stochastic Estimator. 
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Chapter 1 

Introduction 

As robot control engages progressively more complex problems, centralized supervisory architectures en­

counter barriers to real time performance, specifically: computational complexity coupled with insufficient 

computing power and impoverished sensor resources. Despite startling advances in hardware and software 

technology and similarly surprising cost reductions, these fundamental barriers remain unchanged. This the­

sis investigates an alternative to centralized supervisory control of manipulation robots known as multiagent 

control. 

Centralized supervisory robot control architectures are usually based on variants of the sense-model-

plan-act (SMPA) cycle [Brooks, 1989c] l . The dominance of this architecture can be traced to early AI 

[Brooks, 1991a] in which artificial intelligence was broken into four distinct problems: sensing, modelling, 

planning, and action. This decomposition stemmed from the belief that cognition was a monolithic process 

in which the relatively simple phases of sensing and action supported complex symbolic modelling and plan­

ning engines. This 'reductionist' view of intelligent action focussed research into symbolic manipulation of 

the environment and task-level robot programming techniques (e.g. Stanford Research Institutes's 'Shakey' 

in which logic and planning were of primary interest). Task-level programming describes tasks through a 

hierarchy of symbolic operators fundamentally founded upon basic geometric relationships (i.e. homoge­

neous transformations, trajectories, etc.) within some coherent representation of the environment, a world 

model. Within a structured, slowly varying environment like an assembly line, world modelling and task 

level programming methods are more than sufficient to support safe, accurate, predictable, and cost effective 

automation. 

The advantage of SMPA is that, if the environment is known a priori, so too is the robot's behaviour. 

The disadvantage, of course, is that unstructured environments (UE) are intrinsically unpredictable. Real 

time SMPA relies on a fragile chain of events: fast planning, precise modelling, and rich sensing. Since the 

latter tends to be expensive and/or unreliable in a UE, strictly following an SMPA model inevitably ensures a 

robotic system's performance never exceeds that of the worst sensor. Such systems become input and compute 

1 Brooks original papers describe this as the Sense-Think-Act cycle 

1 
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Figure 1.1: The Sense-Model-Plan-Act (SMPA) manipulator control cycle. An example of the prototypical 
robot control cycle borne out of early A l research. 
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bound, awaiting all relevant data prior to distilling plans and world models into a single action. In maximizing 

SMPA performance in a UE, computing resources can become sufficiently expensive and/or physically large 

that elements must be housed remotely, adding the burdens of communication delay, bandwidth limits, and 

tethered operations to input and compute bound performance. 

It is not surprising, then, that research into practical, real time robotics has diverged from the SMPA 

model. Research, in artificial intelligence [Minsky, 1990], mobile robotics [Brooks, 1989b]-[Brooks, 1991b], 

[Connell, 1990], and high performance manipulation [Khatib, 1987, Colbaugh, 1989, Seraji, 1996a] in partic­

ular have challenged the reductionist model. While not entirely rejecting the utility of recognition, modelling, 

and compensation of environmental events, practical real time controllers are often designed to react to the 

world through the adoption of control arbitration networks. Using high speed sensors, minimal signal post 

processing, multiple inexpensive embedded computers execute one or more control strategies. 

Such sensor driven, distributed, control arbitration processes are increasingly referred to as agents. In 

agent based systems, the semantics or meaning traditionally embodied in a world model is condensed into 

a sense-act relationship distributed over multiple application specific computing elements. In effect, task 

level cognitive elements are transformed into a set of control level instinctive responses or behaviours and 

combined through some arbitration mechanism, a greatly simplified model-planning system. It is important 

to note that this method seeks not to remove centralized cognitive or supervisory elements from the cycle 

but to distribute model based control to simpler application specific controllers and, in so doing, both reduce 

expense and improve autonomous performance. Proponents argue that agent architectures both simplify the 

design and improve robustness of robot systems by basing behaviour on the interaction of the robot with its 

environment. 

Based on his research experience, an outspoken critic of traditional AI, Rodney Brooks, proposed a set 

of properties [Brooks, 1991a] he believed crucial to intelligent real time behaviour 2 : 

Situatedness The world is its own best model. A robot should 'model' the world through sensing. 

Embodiment The world grounds regress. A robot should reside within a physical system. Simulated robot 

capabilities usually regress in the real world. 

Intelligence Intelligence is determined by the dynamics of the interaction with the world. 

Emergence Intelligence is in the eye of the beholder. Intelligence emerges from the interaction of parts of 

the system. 

italicized remarks are quotes from Intelligence without Reason [Brooks, 1991a], perhaps his most controversial paper. 
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Though uriproven, these properties are, nevertheless, a useful summary of this new breed of simple, capable, 

real time robots. An example from manipulator control clarifies the difference between SMPA and agent 

control. 

An Example 

Consider the common tasks in redundant manipulator control: end effector trajectory tracking and obstacle 

avoidance. 

At each control time step, an SMPA system uses high level machine vision and world modelling to 

capture and extract surrounding hazards for construction of object models. The manipulator's configuration 

space trajectory is determined through a centralized process such as resolved motion acceleration controller 

(RMAC). In RMAC the desired cartesian acceleration Xd(<), is transformed into joint torques, u, based on 

the pscudoinverse of the end effector Jacobian, J^(x), a PD cartesian controller with gains kp and kv, and 

an estimate of the manipulator dynamic model (D(q), C(q, q), and g(q)): 

q<i(t) = J f jxd(t) - Jq(t) + kvke + fcpxe] 

j=n 

- ( I - j t j ) ( K o b s ^ j J f m o d e l ) 

u = D(q)qd+C(q,q)+g(q) 

where rj and n are the number of joints and obstacles respectively, fmodei is a model based obstacle avoidance 

strategy, and Jj is the Jacobian of a nearest point of contact on link j. In this approach the obstacle avoidance 

control is explicitly inserted into the null space of the Jacobian, ensuring the end effector trajectory is not 

perturbed. To achieve obstacle free trajectory tracking, sensing and modelling must work in concert to 

supply the centralized controller with accurate data. 

In contrast, an agent-like system employs embedded low level range sensing in each link to trigger 

obstacle avoidance behaviours. No attempt at obstacle mapping or representation is made. By combining 

obstacle avoidance and end effector trajectory tracking control behaviours an obstacle free configuration 

space trajectory can be achieved. In this thesis this is achieved through an adaptive end effector trajectory 

controller fd(xd(i)), and a reactive obstacle avoidance controller embedded into each link, fpsnk(")- For the 

jth link : 

Ucj = [1 (Savoid(£)] Utrack 

Uavoid 



Chapter 1. Introduction 5 

1 if |x,-fc| < c 

0 if jxifcj > c 

where c is a triggering range and |x,fc | is magnitude of the distance from the fcth link to the ith obstacle. 

The tracking and avoidance controllers respectively are: 

where Jj is the jth row of a generic Jacobian Transpose or global proxy and JV is the number of links. In 

this approach, the adaptive end effector controller serves two purposes normally requiring a manipulator 

model. It ensures accurate trajectory tracking and forces all additional behaviours into the null space of 

the Jacobian. Sensing and control are decentralized and need not be synchronous, while modelling of both 

manipulator and environment are drastically reduced. 

1.1 Motivation 

This research was motivated by the desire to understand multiagent systems and by the demand for more 

capable 'real world' robotic manipulation systems. The inspiration for this work and perhaps the most 

famous example of agent based robotic systems is Brooks' subsumption architecture [Brooks, 1989c]. While 

subsumption represents only one approach in agent design, the simplicity and effectiveness of the methodology 

represented a wake up call to the robotics community. Similarly, the early work of Wu and Paul [Wu, 1982], 

Khatib[Khatib, 1985], and more recent research by Seraji et al [Seraji, 1989b, Colbaugh, 1989, Glass, 1995] 

at JPL acted as both foundation and guiding light for much of the new material presented here. 

Despite the remarkable behaviour exhibited by agent and multiagent systems and the simplicity of their 

design, the theoretical foundations for these systems remains relatively shallow. While significant effort has 

been made to set agent control in the context of hybrid systems (e.g. Zhang and Mackworth [Zhang, 1995]), 

the fundamental problems of arbitrator and controller design, coupling are unresolved. Few investigators have 

explicitly described their design methods in control theoretic terms. Thus agent design remains inconsistent, 

ad hoc, and experimental. 

In real time manipulation, Jacobian Transpose systems have achieved an important balance between 

computing resources, performance and cost within monolithic reactive architectures. This thesis will show 

that these same systems represent an avenue to an area gaining popularity in mobile robotics - the use of 

multiagent teams to control complex systems. 

Utrack = jJ(Pn,X j_ 1)f d(x d(t)) 
N—j i=K 
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A key motivation for this work was the potential impact of a genuine autonomous multiprocess manip­

ulator control architecture on manipulator performance and capabilities. If possible, the configuration of a 

given manipulator need not be limited to static nonredundant serial manipulators. Indeed the arrangement 

and construction of the manipulator can be both arbitrary and time varying, presenting some interesting 

possibilities including expandable, modular manipulators. All of which pose significant barriers to tradi­

tional, centralized supervisory control (or, for that matter, single agent) systems. Thus the application of 

multiagent control to manipulation expands the definition of manipulation systems while providing simple, 

robust, manipulation architectures at lower cost. 

1.2 Survey of Related Research 

1.2.1 Multiagent Control 

The term agent originally appeared in distributed computation research (e.g. agent oriented programming 

[Shoham, 1993]) and decentralized artificial intelligence. In these systems, independent processes or intelli­

gent agents act autonomously to perform tasks in the interest of a user (e.g. an electronic mail filter). 

As applied to robots, agent often implies a number of relatively recent techniques, including reactive 

control, behavioural control, subsumption, sensor actuator networks, motor schema, discrete event or hybrid 

systems and others. 

Robots as Agents 

The concept of robot agent has evolved from a large number of noteworthy 'agent-like' robotic systems. Per­

haps the earliest demonstration of this design philosophy appears in Walter's [Walter, 1950a, Walter, 1950b] 

published an account of reactive mobile robots, Elmer and Elsie 3 in 1951. These entirely analog 'shoe box' 

robots exemplified pure reactive control. With the widespread use of computers in the '60's and '70's such 

analog methods were supplanted by model based techniques. Perhaps the most famous of these are SRI's 

Shakcy and the allied planner STRIPS, the top down philosophy of which that has dominated research robot. 

Despite early successes, the demand for real world performance has driven the evolution of robot ar­

chitectures away from a serial sequence or single threaded, model driven SMPA architectures to parallel 

or multithreaded, reactive architectures. In 1984 Raibert and Brown implemented a hopping robot that 

adopted a pragmatic, sensor driven, finite state machine architecture. By interacting with the surroundings, 

'Walter inserts these into a mock biological species Machina Speculatrix 
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the robot could hop in place, travel and leap obstacles. In 1986 Brooks applied subsumption, a hierarchical 

behaviour arbitration system to a mobile cart, Allen[Brooks, 1989c]. and later refined on a walking robot, 

Genghis [Brooks, 1989b, Brooks, 1989a]. A student of Brooks, Connell, published an extensive description of 

a can collecting robot, Herbert, based on a heterogeneous behaviour network [Connell, 1990]. Further exper­

iments using this architecture include learning in Mahadevan's mobile carts [Mahadevan, 1992]. Similarly 

Verschure investigated self organization and learning within a mobile cart [Verschure, 1992]. Hartley and 

Pipitonc investigated subsumption and carrier aircraft landing systems [Hartley, 1991]. Using Motor schema 

or behaviours driven by a simple potential field world model, Arkin implemented a navigation system for a 

mobile robots [Arkin, 1987]. All demonstrated that autonomous behaviour often arises from the interaction 

of instinctive controllers, simple arbitration networks and the real world. The success of these techniques 

encouraged Brooks to make fervent arguments against traditional AI [Brooks, 1991b, Brooks, 1991a] and 

others to extend the technique [Jones, 1993]. 

A new robot control design philosophy seems to be emerging in which parallel behaviours, some reactive 

and some model driven, are combined, algebraicly or discretely, in real time to achieve a composite behaviour. 

Despite the current popularity of such approaches, a number of technical issues are unresolved or poorly 

defined: 

i What is a behaviour? Variously understood to mean either an input plan, an applied control 

effort, or the response of a robotic system. Terminology remains a lingering problem in agent 

research. 

ii What is an agent? There is no formal definition of agent other than 'a behaviour arbitration 

process' (e.g: [Mataric, 1994]) though agent characteristics seem widely recognized. 

iii How should agent activity evolve over time? The popularity of subsumption has encouraged 

Kosecka and Bajcsy [Kosecka, 1994] to apply Discrete Event Systems[Rarnadge, 1989] to be­

haviour sequence design. Similarly, Zhang and Mackworth have placed hybrid systems (i.e. pos­

sessing both discrete and continuous dynamics) into a formal mathematical context [Zhang, 1995], 

Constraint Nets though arbitration remains unexamined. Van de Panne and Fiume determine 

sequencing and behaviour design in Sensor-Actuator-Networks (SAN) through genetic algorithms 

[van de Panne, 1992]. A formal relationship between behaviours, the environment, and arbitra­

tion strategies has not been established. 
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iv What constitutes emergent behaviour? Most agree emergence is a qualitative, even subjec­

tive property of an agent based system [Brooks, 1989c, Mataric, 1994]. Indeed, only Steels 

[Steels, 1991] informally addressed the problem. 

Multiagent Systems 

Perhaps the first recognizable account of an artificial multiagent system appears in Walter's description of the 

analog robots Elmer and Elsie[WalteT, 1950a, Walter, 1950b]. Significantly, Walter documents emergent or 

spontaneous organized behaviour in which simple controllers are combined to generate complex navigation, 

avoidance, and exploration behaviours. 

In a seminal 1987 paper, Reynolds at Symbolics Corp., devised a multiprocess reactive method for ani­

mating flocking behaviour and obstacle avoidance in bird-like agents, boids [Reynolds, 1987]. This inspired 

Mataric's effort to assess agent interaction and behaviour [Mataric, 1992, Mataric, 1994] and Parker's investi­

gation of troop movement [Parker, 1992b, Parker, 1992a]. Similarly, Tu and Grzeszczuk [Tu, 1994] designed 

surprisingly realistic reactive fish animations. To date all multiagent research has focussed on subjective 

behaviour assessment of teams (or herds) of mobile robots leaving additional unknowns to be itemized for 

multiagent control: 

i What constitutes global behaviour? If agent behaviour is ill defined, so too is global multiagent 

behaviour. Though generally accepted that agent systems possess both individual behaviour and 

global team behaviour, there is no formal definition of collective behaviour. 

ii What is a multiagent system? Specifically, what properties of an agent colony forms a recogniz­

able, coordinated team of agents? 

iii How do agents interact? Agent interaction is the crucial mechanism that enables agent teams 

to accomplish group objectives. Though agent interaction is widely observed, the mechanisms of 

interaction remain largely unscrutinized. 

iv What is the origin of emergent multiagent behaviour? Without knowledge or consistent represen­

tation of interagent dynamics exploration of emergent or desirable, unplanned, group behaviour 

has been limited to broad characterizations such as [Steels, 1991] 
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1.2.2 Real-Time Manipulator Control 

Though the literature on manipulator control is enormous ( e.g. [Lewis, 1993]), virtually all control methods 

rely on at least one of four fundamental supervisory control strategies: joint position control, resolved mo­

tion rate control, resolved motion acceleration control, and Jacobian transpose control. Traditional industrial 

position control first thoroughly treated by Paul[Paul, 1981], remains the foundation of modern industrial 

manipulator control. Resolved motion rate control was established by Whitney in [Whitney, 1969] and ex­

tended in resolved motion acceleration control by Luh, Walker, and Paul [Luh, 1980b]. The latter now forms 

the basis of most redundant manipulator control schemes. Achieving the desired performance from these 

techniques characterizes virtually all research in manipulator control, from simple PD control to linearizing 

feedforward, feedback, optimal and adaptive centralized and decentralized control strategies. Another, less 

common, class of manipulator end effector control, Jacobian Transpose Control, was initially popularized 

by both Khatib [Khatib, 1985] and Wu [Wu, 1982] in the early 1980's and later promoted by Seraji at JPL 

[Seraji, 1989c]. 

1.3 Contributions of the Thesis 

The primary contribution of this thesis is the development of a manipulation system that controls an TV d.o.f. 

manipulator in the execution of multiple tasks using N independent processes or agents relying neither upon 

a centralized manipulator parameter model nor an auxiliary task distribution mechanism. The models and 

techniques used in the course of this research leading to the achievement of this task include: 

Theoretical Foundation Agent and multiagent systems theory has little foundation in traditional control 

theory and, furthermore, is often obscured by inconsistent, vague terminology. To classify and for­

malize both agent and multiagent architectures required the application of standard control theoretic 

definitions to terms and components commonly referenced in reactive, behavioural, and other agent 

based control schemes. The translation of these terms into a formal control theoretic context is new 

and facilitates precise specification, comparison and reproduction of agent architectures. 

Agent and Multiagent Architectures With inconsistent terminology and weak theoretical foundations, 

a control theoretic specification of agent and multiagent architectures was not previously possible. By 

formally translating and defining terms and components, a formal architecture could be proposed in 

which an arbitrator combines a set of task specific behaviour controllers into a composite command 

which, applied to the plant, generates a response or behaviour. It was further shown that to achieve 
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a desired behaviour, an arbitrator could use explicit, implicit, and emergent arbitration to combine 

controllers through either model based local goal assignment, broadcast global goal assignment, or 

autonomous local goal assignment, respectively. 

A formal multiagent architecture was proposed based on this agent model. A set of agents were shown 

to generate global behaviour through the combination of local behaviours through a binding or aggregate 

relation. It was also shown that inversions of this relation, governed by the Inverse Function Theorem, 

could be classified according to explicit, implicit, and emergent coordination strategies. 

Cartesian Decentralization To create a multiagent manipulation system composed of TV link agents, 

manipulator control must be decomposed into TV independent processes. By examining the problem of 

end effector control it was shown that traditional inverse kinematic solution methods such as resolved 

motion position, rate and acceleration controllers (RMPC, RMRC, and RMAC respectively) were 

fundamentally centralized systems. However, Jacobian Transpose Control was shown to be a function 

solely of link and end effector coordinate frames. By assuming a distributed Newton Euler kinematic 

computation structure, JTC was shown to be cartesian decentralizable and a distributed manipulation 

architecture specified. 

Multiagent Manipulator Control Using TV autonomous link processes, this thesis demonstrated for the 

first time the parallel control of a TV d.o.f. manipulator without estimation or reliance upon a centralized 

manipulator parameter model. In combination with a well established task space adaptive controller, 

the innovation of cartesian decentralization removes the robot's structural description from the goal 

generation system. In effect, no manipulator model of any kind is required to derive setpoints for link 

agents to track a desired end effector trajectory. Rather, the combination of "natural" manipulator 

dynamics, cartesian decentralization, and adaptive task space control are sufficient to determine the 

necessary control forces for end effector trajectory tracking. 

Behaviours With each link agent acting autonomously to fulfill the end effector trajectory, it was shown 

how individual agents may act on local goals and "assert" global goals to the agent team. In selecting 

a simple PD joint space position controller as a local goal generator, new manipulator configuration 

policies were demonstrated including near minimal joint displacement trajectory tracking, fail safe 

trajectory tracking, retraction and variable compliance behaviours. A global goal assertion protocol 

enabled multiagent obstacle avoidance. Though some of these behaviours are well established (e.g. 

joint centering and obstacle avoidance), none have been decentralized over TV processes. 
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Multiple Goal Interaction Auxiliary task tracking is not new to redundant manipulator control. How­

ever, these auxiliary tasks, traditionally developed and assigned to regions of configuration space 

through a centralized supervisory controller, were distributed over the multiagent manipulator control 

system without any centralized task assignment process. This study identified a number of significant 

properties of goal interaction that made this possible: 

1. Compliance as Priority. Adaptive task space goals always suppress local compliant (PD) goal 

systems. Similarly, conflicting compliant systems may be biased through manipulation of PD 

gains in each system. 

2. Null Space Self Organization. Adaptive global goal enforcement was shown to functionally equiv­

alent to an explicit Jacobian null space task assignment. If local goals perturb the global goal 

system, adaptive global goal enforcement drives these goals automatically into the Jacobian null 

space. 

Emergent Coordination The combination of global goal regulation and compliant local goals results 

in emergent manipulator configuration policy. By enforcing a global goal, local disturbances that 

propagate to the global behaviour are corrected and transmitted (as a correction) to the agent team. 

This local perturbation/global correction mechanism thus becomes a communication medium between 

agents. 

1.4 Thesis Outline 

To clarify agent and multiagent structures and permit an in depth dynamic analysis, chapter two intro­

duces a standard plant by reviewing the kinematics, dynamics, and joint motor models of an arbitrary serial 

manipulation system. Chapter three then examines the real time control of these robots by examining the 

common supervisory centralized manipulator control strategies. This is contrasted by a brief overview of high 

performance single and multirobot real time supervisory controllers. Relating these agent-like controllers to 

traditional control theory, chapter four develops a theoretical foundation and introduces structural compo­

nents to provide a consistent understructure for agent based control. The resulting agent and multiagent 

models are then applied to manipulator control and candidate global goals are considered. Chapter five 

documents the design and structure of a manipulator simulation platform, the Multiprocess Manipulator 

Simulator. Chapter six presents a detailed exploration of a global goal implementation and is followed 

in Chapter seven by results documenting several global, local and global goal combinations and identifies 
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a mechanism for apparent emergent behaviour in combined systems. Chapter eight offers a comparison 

between centralized model based manipulator control and multiagent control, citing the advantages of sim­

plicity, extensibility, and freedom from a manipulator parameter model and exploring the stability of multiple 

goal systems. Chapter nine summarizes the conclusions of the research and points out new directions possible 

through the techniques developed. 



Chapter 2 

The Manipulator Model 

2.1 Introduction 

While producing capable and robust robots, the investigation of agent and multiagent systems has been 

hampered by unique, underdocumented robot platforms, poorly understood agent and interagent dynamics, 

and inconsistent, confusing terminology. Despite the success of these systems, the variety of robots upon 

which agent and multiagent techniques are demonstrated greatly complicates the independent corroboration 

of results and the exploration of intra- and interagent dynamics. Terminology, hopefully clarified in chapter 

4, further obscures this otherwise promising area of investigation. Therefore, this chapter introduces the 

dynamic structure of a well established 'benchmark' robotic platform, a serial manipulator, upon which 

multiagent control will be applied in subsequent chapters. 

Compared to most agent or multiagent systems, typically one or more mobile robots, the selection of a 

manipulator robotic platform may seem unusual. After all, manipulator control is well established and few 

operate in time varying unstructured environments. These observations are certainly true. The kinematics 

and dynamics of manipulators are well understood with an overwhelming selection of capable industrial 

manipulator controllers. Yet, the same problems that once limited mobile robots to cautious laboratory 

excursions continue to limit manipulation systems to slowly changing, structured environment applications. 

As discussed earlier, reliable motion in a changing, unknown environment requires close integration of 

real time sensing, modelling, planning, and control components. However, in assuming that configuration 

space positions, velocities, or forces are specified externally, the great majority of industrial manipulator 

control systems surrender sensing, modelling, and planning to other systems. In short, the attraction of a 

serial manipulator model as a foundation for multiagent control is threefold: 

i Manipulator tasks are well formed, i.e. the movement of the end effector along a prescribed, 

collision free, task space trajectory. 

ii Kinematics and dynamics of serial kinematic chains are well understood. 

13 
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iii SMPA manipulator real time controllers for unstructured environments are complex, compute 

intensive, and scale poorly. 

Manipulator trajectory tracking stands as an effective benchmark against which controllers of all kinds have 

been tested. By applying new controllers to this benchmark, results can be placed within a familiar, control 

theoretic context and compared against established methods. So the selection of a manipulator model as 

a basis for multiagent control can be justified as a well defined control problem that will profit from such 

methods. 

This chapter will, therefore, briefly review the kinematics and dynamics of manipulators and introduce 

the joint motor model. 

2.2 The Manipulator Model 

The 'atomic' unit of the serial manipulator is the link, and, depending on the research objective, can have 

many characteristics such as flexible motor shafts and/or elastic material properties. For simplicity, this 

study will treat a link as a rigid body connecting two single degree of freedom revolute (rotating) or pris­

matic (linear) joints driven by some joint motor system. The manipulator model describes the dynamic 

characteristics of a kinematic chain of link/motor systems [Fu, 1987, de Silva, 1989]. 

2.2.1 The Kinematic Model 

A manipulator is a serial kinematic chain composed of an arbitrary number of links driven by either pris­

matic or revolute joints. The base of the manipulator is fully constrained or fixed while the end effector 

is unconstrained or free. A manipulator with TV such links may adopt a configuration described by a joint 

displacement vector q € Q C R^ composed of either angular or linear displacements, t9,- or d,- respectively. 

The position of the link in cartesian space is described by an homogeneous transformation from an 

arbitrary world coordinate system to a link frame. A homogeneous transformation, A, is composed of a 

rotation matrix R € SO(3), a position vector p e R 3 and a scaling vector s G R 4 arranged in the following 

4 x 4 matrix: 

Since the position of the «th link frame is a function of superior link frame positions, or those between 

the base link, 0, and the link, i : 0 < i < TV, it is convenient to employ relative transformations between 

adjacent link frames: A ) - 1 . 

(2.1) 
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Figure 2.2: A 6 degree of freedom elbow manipulator. Note coordinate systems conform to Denavit Harten-
berg conventions. 

The transformation process is further simplified through the adoption of the widely used Denavit Harten-

berg homogeneous transformation [Denavit, 1955] characterizing both revolute and prismatic joints with the 

standardized matrix expression: 

a ; - 1 = 

cos(6*,-) — cos(a;) sin(f?,) sin(a,-)a,- sin(f5*) a,-cos(#t) 

sin(#,) cos(a,) cos(0,) — sin(at) cos(6*,) a,sin(0,) 

0 sin(a,) cos(a;) d,-

0 0 0 1 

(2.2) 

given revolute displacements, or prismatic displacements, d,- and the relative rotation, a,-, about the x 

axis between adjoining frames. 

Conventions for the placement of the link frame vary, but most apply the link frame at the distal (inferior) 

joint. This differs with the convention in dynamic analysis, that places the frame at the link centroid. 
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The Forward Solution 

Given a fixed world coordinate system at the base of the manipulator, the world position of the ith frame 

in the manipulator is the product of all the transformations from frame 0, the base coordinate frame, to the 

link: 

A,- = U)=1A(qi)j-1 (2.3) 

With a common abuse of notation, the world position and orientation of any point is presented as a vector 

in R 6 , though it is clearly a 4 x 4 matrix in the above expression. The world position of the end effector, x, 

may be computed through forward solution, f(q), a function of the joint displacements, q: 

x = f(q) = n f = 1 A t e ) f 1 (2-4) 

Thus the forward solution may be characterized as a map between configuration space, Q C R^, and task 

space, X C R M , or f (q) : Q -> X. 

The Manipulator Jacobian 

End effector velocity vector, x, may be computed through the chain rule: 

= J(q)q (2-6) 

where J(q) is the Jacobian of the forward solution. However, the rate of change of orientation (a ma­

trix) complicates this expression and is better expressed through a position subJacobian J p and orientation 

subJacobian J c [Lewis, 1993]: 

x -
J p ( q ) 

J o ( q ) 

(2.8) 

J 0 ( q ) = [ K I Z 0 . . . K J V Z J V - I ] (2.10) 

where «; is a selection operator (1 for revolute, 0 for prismatic) and z;_i is the axis of rotation for the ith 

link in world coordinates. 
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A still more useful expression reveals the column-wise structure of a generic Jacobian [Spong, 1989]: 

j [k,-_i x (p„ - p,_i) ki-i]T if revolute 
«•«' ~ ] r (2-11) 

t [0 k,_i] if prismatic 

Just as in the forward solution, the Jacobian is a map J(q) : Q —• X. By reapplying the chain rule, end 

effector acceleration, x may be determined: 

x(t)=J(q)q + J(q)q (2.12) 

2.2.2 Manipulator Inertia Matrix 

The link inertia matrix, I,-, for link i in inertial coordinates is a 3 x 3 is a diagonal matrix of constant principal 

inertias: Ix t, Iyi and IZi of the ith link about the centroid. Assuming the principal axes are aligned with the 

coordinate frame and the Denavit-Hartenberg conventions are followed, IZi is related to JCfT,, the effective 

moment of inertia about the actuator axis, through the parallel axis theorem while IXi and Iy. are a function 

of link geometry. The inertia matrix of the ith link about its centroid in world coordinates, D, is therefore: 

D, = (2.13) 
nii 0 

0 R,I,R^ 

where mt- is the mass of the link and R; is the orientation of the link frame with respect to the world 

coordinate system. 

The manipulator inertia matrix, D(q), is an expression of the inertia of the kinematic chain expressed in 

world coordinates. The matrix is a function of the mass and the link inertias, D;, of the TV links. From the 

principle of conservation of energy: 

N 
q T D(q)q = £ x £ D , - x C i (2.14) 

i'=i 
M 

= J ^ q ^ D i J ^ q (2.15) 
1=1 
n 

D(q) = £ j £ D , - J c < (2.16) 
»=i 

where J c . is the 6 x TV Jacobian of the ith centroid, the subscript c, indicates the centroid of the ith link 

and D; is the ith inertia matrix in world coordinates. 
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2.2.3 Manipulator Dynamics 

As stated earlier, the manipulator dynamics equations of motion are usually formed through either Newton-

Euler methods, a recursive link by link application of Newtons Laws, or Lagrange methods in which potential 

and kinematic energy is conserved within the kinematic chain. Developing the manipulator Lagrangian 

equations [Spong, 1989, Goldstein, 1981], the Lagrangian, L, is: 

L = K — V 

= ^q TD(q)q-V(q) 

(2.17) 

(2.18) 

(2.19) 
i= l j=l 

where K is kinetic energy, and V(q) is potential energy and d,j is the ijth element of D((/). The Lagrangian 

equations: 

Tk -
d dL _ dL_ 
dt dqk dqk 

Computing the components of this equation 

dL 
dqk 

dL 
dt dqk 

Ii 

d dL j •• , dclfc kj.. 
—mi 

j=i »=i j=i 
dL _ 1 ̂  ^ ddjj . . dVjcj) 
dqk ~ 2 ^ ^ d q k

q i q j dqk 

Thus the L E equations can be rewritten: 

E , .. , ddkj . . 1 - A dd^ . , 3V(q) 

n r 
2 ^ dqk dqk 

ddkj 1 ddjj 1 
dqi 2 dqk 

mi + = E d * ' & + E 

realizing that through reorganization the term 53^q^Q'^i b e c o m e s 

dq-, 

dV(q) 
dqk 

E ddkj . . 1 ̂  9d^ 9dt,-
2 4^ % a?,-

which when substituted into the second term of 2.25 becomes: 

E 
cMfcj 13d,-,-
dqi 2 <9gfc J 

.. . _ 1 A f^dtj 9d t i- _ 5di;,-
~ 2 2 - [ ag,- + % a % 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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This term produces the Christoffel symbols: 

Cijk(q) 
ddkj ddki _ ddij 
dqi dqj dqk 

qiqj 

The last term of equation (2.25), the change in potential energy, is often expressed as: 

dV(q) 
<Mq) dqk 

(2.28) 

(2.29) 

the L E equations finally becoming: 

n n 

n = ̂ 2 dkjqj + Cijk{<\)qiqj + </>fc(q) (2.30) 

j i,i 

where rk £ Q.In a gravitational potential field 4>k(<l) = g(q)- However if the end effector applies an external 

force, fcxt G X, at the end effector then the work done: 

V(q) = SxTfcxt = <5qTJ(q)Tfext 

and <Afc(q) attributed to this work: 

dV(<l) 
dqk 

5f(q) 

Tfo 
dqk 

Jfc(q)fext 

(2.31) 

(2.32) 

(2.33) 

where the (q) is the fcth row of the Jacobian Transpose. The manipulator joint forces expressed in matrix 

form: 

t = D(q)q + C(q, q) + g(q) + J T f c x t (2.34) 

where the k,j element of C(q, q) is 

1 " ddkj ddid _ z^ii 
dqt dqj dqk\ 

(2.35) 

Through appropriate control of joint forces, T , a manipulator can execute a desired task at the end 

effector. 

2.2.4 Properties of The Manipulator Jacobian 

Since the properties of the Jacobian are frequently cited throughout this text, it is important to establish 

a clear understanding of the concepts surrounding Jacobian null and range spaces. Referring to figure 2.3, 

recall that the instantaneous domain of the Configuration space is the volume that bounds all possible joint 
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q x 

Figure 2.3: The Range and Null spaces of the Jacobian and Jacobian Transpose. 

velocities, q € Q, within a particular configuration, q € Q. The range of the Jacobian, i?(J), is the space 

occupied by all end effector velocities x € X produced through joint motion. The null space of the Jacobian, 

N(J), is the space occupied by all joint velocities q for which no end effector motion results. 

Conversely the range of the Jacobian transpose, R(J T ) , is the space within which all joint forces must 

be applied to balance an end effector force. While the null space of the Jacobian transpose, N ( J 7 ), is the 

region of configuration space for which no joint forces are required to balance an end effector force. Now the 

duality [Asada, 1986] of manipulator kinematics and statics means that the, R ( J 2 ), and N(J) are orthogonal 

complements or R(J' r) U N(J) = Q. 

2.2.5 The Motor Model 

Each link is driven by either a linear or revolute powered mechanism. A popular model for direct drive joint 

motors is the armature controlled dc servomotor [Fu, 1987]. In this model, the servomotor dynamics are 

described by: 

Tmk = Jmjmk + Bmhqmt (2.36) 
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where Jmk is the motor shaft inertia and Bmk is a viscous force coefficient . An identical expression governs 

the link itself: 

Th = hkqik + B,kqik (2.37) 

The torque required to drive the motor-link system is simply the sum: 

rk = rmk + r£ (2.38) 

where T,* is the torque applied by the link via the gear train on the motor shaft. Given the gear train ratio: 

rk = ^ (2.39) 

where Nm and TV; are (for example) the number of teeth on each gcar( see figure 2.4a), r;fc can be rewritten 

in terms of qmk producing the expression: 

rik = r2

k(Jlkqmk + Blkqmk) (2.40) 

For the total torque: 

rk = (Jmk + r\.h k)qmk + (Bmk + r\B, k)qmk (2.41) 

= Jcftkqmk +Bcf{kqmk (2.42) 

Small gear ratios rk tends to isolate the motor from the fcth link's dynamics. 

Now it is common to assume that the motor torque is directly proportional to armature current, iait: 

Tk=Kakiak (2.43) 

Applying Kirchoff's law to the motor circuit in figure 2.4a: 

Vai (t) = Rak iak (t) + Lak ^ 1 + e H { t ) (2.44) 

The back electromotive force, ebk(t), is proportional to the motor's angular shaft velocity. 

ebk(t) = Kbkqmk (2.45) 

Taking the laplace transform of equations (2.42), (2.43), (2.44), (2.45) a transfer function relating shaft 

position to motor voltage can be developed [Fu, 1987]. 

Qmk(s) _ Kgk 

Vak(s) s[s2Je(!kLak +(Be([kLak + Ra k Jett k)s + Ra k Be({ k +KakKbk] 
(2.46) 
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D(S) 

b) 

Vfl(s) 
0 - 1 

[ S L A + R A ] - ' [ S J ^ B ^ ] -
sê s) eL(s) 

Figure 2.4: An armature controlled dc drive joint motor and gear train model. 

Since the mechanical time constants are generally far larger than the electrical time constants, the motor 

inductance Lak is usually ignored.Thus the servo control block diagram in figure 2.4b, is usually reduced to 

the transfer function [Fu, 1987]: 

Qmk(s) (2.47) 
Vak(s) ~ [s2Jet!k +sBeak + A'tA'iJ 

where Kk = Ka/Ra. Within a manipulator, the link does not act in isolation. Unmodelled disturbances 

dk include off-axis inertial and coriolis/centrifugal forces (i.e. imposed by other links on link fc) or from the 

manipulator dynamics: 

d>° ~ ] C d i k q i + E C'Jkqi<ij (2.48) 

With these link disturbances included, the link motor dynamic equation becomes: 

'h«k(imk + {Bc«k + KkKbk)qmk = Kkuk - rkdk(t) 

where uk = Vak(t), the command voltage. The state space equation for the fcth link: 

xfc = AfcXfc + bu A + dv 

(2.49) 

(2.50) 
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Xfc - A f c = 

bfc = 

dfc = 

0 

1 

0 

1 

0 -Jeff\(Bcifk + KkKbk) 

Ufc = J~ffkKku 

Vfc = - J~Jrkdk 

(2.51) 

(2.52) 

(2.53) 

It is not surprising that given the relative simplicity of link servo control and the dynamic regime of 

industrial robots, most manipulator controllers ignore link dynamics entirely. Nonlinear coupling and ma­

nipulator inertia are significant only during high velocity or acceleration, commonly found in low precision 

maneuvers in industrial applications. High precision maneuvers are generally performed at low velocity and 

with minimal acceleration. Therefore, pure PD control without dynamic compensation (the cancellation 

of dk) is adequate for the majority of industrial manipulator tasks. However, high performance manipula­

tion (e.g. high speed, precise positioning), redundant manipulation, and unstructured environments (UEs) 

challenge such joint space robot control methods as explained in the following chapter. 



Chapter 3 

Real Time Robot Control 

3.1 Introduction 

This chapter will explore the relationship between the inverse problem, the specification of robot action 

based on a desired robot behaviour, and real time control. In so doing, the argument will be proposed that 

real time robot controller design and robotic system design are closely related problems. Though directed 

at manipulation robotics in particular, much of this chapter is applicable to robotics in general. 

As mentioned in the last chapter, the primary objective of most manipulation systems is to track an end 

effector trajectory in task space. Since control of the end effector is performed indirectly through the control 

of joint motor controllers, a desired task space trajectory must first be transformed into configuration space 

coordinates before it can be realized at the end effector. This transformation must invert the relationship 

between configuration space and task space, a process complicated by the nonlinear structure of the forward 

kinematic solution. 

For typical manipulators, the transformation between task and configuration spaces is usually a geometric 

inversion of the forward kinematic solution, the inverse kinematic solution, and often considered separate 

from the control problem. However, if the number of degrees of freedom available to the manipulator, N, 

exceed the number required to accomplish the task, M, the manipulator becomes redundant, capable of 

additional simultaneous tasks. Unfortunately, as the degree of redundancy, N — M, grows, geometric inverse 

solution strategies become increasingly complex. In general, the solution embeds the inverse solution within 

the manipulator controller. 

To explore these issues further, this chapter adopts a task formalism to discuss inversion strategies and 

show that, in general, model based inverse solution methods influence the structure of redundant manip­

ulation systems. Finally a discussion of general robot control architectures will show that idealized, single 

threaded, SMPA robot control is rarely used in practical real time systems and that robot architectures are 

evolving towards pragmatic multithreaded reactive designs: an agent architecture. 

24 
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3.2 Task Functions 

The colloquial definition of the term task, much like the term goal, is simply a desired action. However, in 

robotics, tasks are more precisely defined in terms of one or more trajectories in some task space that, with 

the application of appropriate tools, accomplish some change in the environment. Typically, tasks reside 

in task space, R M , often (but not limited to) a subset of cartesian space, R 6 . Though a number of task 

specification techniques exist, the objective of task generation is the construction of a desired task space 

trajectory, Xd(t) and velocity Xd(t). 

Samson et al.[Samson, 1991] further formalize this specification within Task Functions. Briefly, a task 

function is the error between the desired task space coordinate and the forward solution over a time interval 

[0,T] or: 

x e (q, i )=x d ( i ) - f (q) (3.54) 

Samson et al. further define the feasibility of a task by: 

x e(q,i) = 0 Vte [0,T] (3.55) 

By recognizing that the specification of configuration space positions based on a task space coordinate 

requires the inversion of the forward solution, Samson applies the inverse function theorem [Vidyasagar, 1993] 

to characterize inverse solutions. Reiterating the inverse function theorem: 

Theorem 1 ( Inverse Function Theorem) Suppose f : R" -¥ R" is C1 at xo € R" and let y 0 = f(x0). 

Suppose ^1 is nonsingular. Then there exist open sets U C R" containing Xo and V C R" containing 
L -I X=Xo 

yo such that f is a diffeomorphisrn xofU onto V. If, in addition, f is smooth and f _ 1 is smooth then f is 

a smooth diffeomorphisrn 
This theorem was then used by Samson to describe three factors influence task feasibility: 

i A unique solution exists. If ^gffi'^ is invertible 2 a position Xd can be mapped to a unique 

position q^. This task is feasible, since a unique inverse kinematic solutions exists that will map 

Xd onto qj. 

ii Infinite solutions exist. If a X g^'^ is not invertible but onto 3 , a position Xd can be mapped to 

a region of dimension corank( 9Xgq^'^ )• In effect an infinite number of positions q<j exist. The 

' A differentiable mapping with a differentiable inverse. 
2 or infective: For every member in the range there is a unique member in the domain. 
3 or surjective. Define the codomain of a function as the simply connected region that bounds the values of the function and 
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manipulator has fewer constraints, m, than degrees of freedom, n. The manipulator is said to 

possess r — n — m redundant degrees of freedom. This case is feasible if the redundant degrees 

of freedom are somehow constrained to determine a unique solution. 

iii No solution exists. If 8 X g q ^ ' ^ is neither invertible nor onto. This is the singular case and, by the 

Inverse Function Theorem no inverse, g (x d (£ ) ) , exists. 

So task feasibility is a measure of whether an inverse solution exists. If a task is feasible and is either 

invertible or simply onto, some form of inverse kinematic solution g : X —> Q can be constructed that will 

map desired task space coordinates into configuration space or 

qd(t) = g(xd(*)) (3.56) 

The next section will examine four methods of inverse solution. 

3.3 Manipulator Control and the Inverse Solution 

Given the feasibility of a task, four basic inversion methods are used to map desired task space coordinates 

into configuration space through three classes of inverse function: geometric inverse, integrable inverse, and 

projection inverse solutions. Geometric solutions map task space positions directly to configuration space 

positions and here will be referred to as Resolved Motion Position Control. Integrable solutions include 

Resolved Motion Rate and Acceleration Control, both of which map task space to configuration space 

derivatives of position. Finally, Jacobian Transpose Control projects task forces onto configuration space 

generalized force axes. 

3.3.1 Resolved Motion Position Control 

The most common form of inverse kinematic solution is the inverse geometric solution. The analytical inverse 

map: 

qd(t) = g(xd(i)) (3.57) 

is derived off-line, enabling fast on-line determination of q d . However, as the forward solution is usually a 

nonlinear product of transcendental functions, this off-line inversion process requires both mathematical and 

the set of values itself is the range of the function. Then the surjective function, ^jqS associates two sets, Xe and Q, such 

that every member, X e, of the codomain, Xe, is the image of at least one member, q, of the domain, Q, though there may be 
members of the domain that are not mapped to the codomain (i.e. some values of q may not map to any Xe). Thus the range 
of the surjective mapping R( 3 i%/ ) is the entire codomain, Xc. 
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geometric insight to rapidly achieve an efficient solution [Paul, 1981, Fu, 1987] and is unique to a particular 

manipulator design. Indeed, inverse solution functions are rarely simple mathematical procedures and usually 

include considerable flow control logic to achieve physically realizable solutions. Given the complexity of 

manipulator geometry, errors in inverse kinematic solutions are common and thorough testing of these 

solutions throughout the workspace is mandatory prior to installation. 

Once established, the desired configuration space vector, q ,̂ is passed to the manipulator's joint control 

processes. The majority of manipulator control techniques rely on such setpoint specification. In particular, 

industrial manipulator control often applies basic PD control to the setpoints qdk 

Uk = kgqck + ku>qek (3.58) 

where kq and kw are position and velocity gains, respectively, and qek = qdk — qmk is the joint error for the 

fcth link. 

Redundancy Resolution 

As mentioned earlier, there exist tasks for which either an exact inverse kinematic solution exists, an infinite 

number of solutions exist, or no solutions exist. When an exact inverse kinematic solution exists, the 

manipulator is fully constrained and any inverse kinematic solution method will produce unique solutions. 

However, most realistic end effector trajectories enter regions of task space for which the manipulator becomes 

redundant, possessing degrees of freedom in excess of those required to accomplish the task. Technically, 

joint space becomes divided between two regions, the range and the null space of the manipulator Jacobian, 

R(J) and N(J) respectively. 

A manipulator becomes redundant when an infinite number of solutions form a dense set in joint 

s/>ace[Samson, 1991]. While a 2R planar manipulator may adopt one of two configurations for any point 

in planar cartesian space, it is not possible to move on a continuous path in configuration space from one 

solution to the other while maintaining the desired end effector position. Thus the solution space for this 

manipulator is bifurcated but not redundant. In contrast, a 3R planar manipulator can adopt a continuous 

path through a subspace of Q while maintaining a planar end effector position. While these 'extra' degrees 

of freedom permit a wide selection of configurations and therefore flexibility, determining inverse solutions 

for such systems can be complex. 

The simple answer to finding a unique inverse solution for an underconstrained manipulator is to add 
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constraints to N(3). By fully constraining a redundant manipulator through heuristics or task space aug­

mentation, a unique inverse kinematic solution may be generated. In RMPC a geometric solution of a 

redundant manipulator requires the adoption of joint displacement selection rules or heuristics. Another ap­

proach is to augment the forward solution with additional or secondary tasks that constrain the manipulator's 

unconstrained degrees of freedom. Redefining the task space as: 

where fc(q) : q € Q m and fc(q) : q G Qr are the end effector and additional constraint forward solutions 

respectively. With an appropriately augmented task space an inverse solution can again become one-to-

one. Despite this useful technique, geometric inversion remains a complicated process. Therefore, redundant 

systems are usually controlled through numerical inverse methods such as either resolved motion rate control 

(RMRC) or resolved motion acceleration control (RMAC) techniques. 

Configuration space position setpoints are a double edged sword. Though the determination of provides 

a clear specification of both the joint and end effector trajectories under stable control, the inversion process 

becomes increasingly complex with robot geometry. Thus RMPC provides an easy method of inversion 

for simple robot geometries combined with the security of predetermined trajectories. Conversely, RMPC 

becomes very complex for redundant manipulation - precisely when the robot exhibits the most versatility. 

3.3.2 Resolved Motion Rate Control 

An alternative to the geometric inverse kinematic solutions for position q, is to solve an inverse kinematic 

solution for joint rates q. 

First introduced by Whitney [Whitney, 1969], Resolved Motion Rate Control, RMRC, exploits the relation­

ship between cartesian and joint space velocities in equation (2.6). 

Since RMRC is a velocity controller, the joint controller is of the form: 

x(t) = 
f e ( Q ) 

f e ( q ) 

(3.59) 

qW=J- 1 (q )x ( i ) (3.60) 

= fc, '•w<lek 
(3.61) 

Uk = fcu)Jfc

1(q)Xe(*) (3.62) 

where J k is fcth row the Jacobian inverse. 
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Unfortunately, this method is prone to numerical instability near Jacobian singularities. These usually 

occur near the extremities of a manipulator's work space or in underconstrained, redundant, regions of 

configuration space. 

Redundancy Resolution 

Whitney [Whitney, 1969] recognized these hazards and recommended the use of the pseudoinverse for re­

dundant systems: 

q(t) = J+x(t) (3.63) 

to solve for joint angles. Defining the pseudoinverse as: 

JT(t) = J ( J T J ) _ 1 (3.64) 

produces a least squares velocity solution. Additional constraints can then be inserted into N(3) using the 

well established technique: 

q(t) = J+x(t) + ( I -J f J)h (3.65) 

where (I —J^J) selects the Jacobian null space and h is an arbitrary vector inserted into N(3) based on some 

secondary optimization criteria (e.g. [Hollerbach, 1987, Nakamura, 1984, Nakamura, 1991, Kazerounian, 1988, 

Sung, 1996, Whitney, 1969]). 

3.3.3 Resolved Motion Acceleration Control 

Similarly Resolved Motion Acceleration Control, RMAC, exploits the relationship in equation (2.12): 

q(t) = J 1 [x(t)~ jq(t) (3.66) 

With a prescribed twice differentiable task space trajectory, x<j(£), an acceleration control law may be devised 

[Luh, 1980b]: 

qd{t) — J - 1 x<i(t) — 3q(t) + kvxe + &pXej (3.67) 

= -fc„q + J - 1 [*(*)- Jq(t) + fc„xd + fcpXe] (3.68) 

clearly the equation 3.68 is only possible if kp and kv are scalars. 

From (2.34), the acceleration vector computed in equation (3.67) can be substituted into a feedforward 

dynamic model to provide the necessary control effort for each actuator: 

u = D(q)qd + C(q,q) + g(q) (3.69) 
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Since RMAC relies on the Jacobian inverse, it, too, becomes numerically unstable near Jacobian singularities. 

Redundancy Resolution 

Differentiating equation (3.65) produces the general solution for joint accelerations in a redundant manipu­

lator : 

q(t) = J f [*(*) - Jq(t)] + (I - J tJ)(J tx(t) - J f Jh + h) (3.70) 

where the second term again inserts secondary tasks into the null space. Though setting h = h = 0 in 

equation (3.65) results in a least squares joint velocity solution, clearly it does not necessarily produce a 

least squares acceleration solution in equation (3.70). Indeed [Kazerounian, 1988] shows that ignoring the 

second term of (3.70), locally minimizing joint accelerations, globally minimizes joint velocities. 

Since the computation of both the dynamic model, equation (3.69), and the pseudoinverse [Press, 1988] 

can be a slow process, the computing resources required to exploit redundant manipulators in real time 

position control are significant. 

3.3.4 Jacobian Transpose Control, J T C 

Now, the setpoint controllers in equations (3.58),(3.62), and (3.67) ultimately specify a torque setpoint 

related through some map to task space position. So PD, RMRC, or RMAC controllers first invert the 

forward solution and then apply an error regulator to ultimately generate the necessary joint forces to move 

the end effector along the desired trajectory. Though effective, the control of end effector trajectories through 

inversion, joint space error regulation, and finally joint space force application is somewhat indirect. A more 

immediate method would be to regulate end effector forces directly through joint space forces and is exactly 

the mechanism behind Jacobian Transpose Control (JTC). 

Unlike joint space methods, Jacobian Transpose Control applies torques to the manipulator by projecting 

a task-dependent end effector force trajectory onto each joint through the following equation 

uk = Jl fd(xd(t),xe(t),xe(t)) (3.71) 

where uk and f(-) are generalized forces in configuration and cartesian space respectively. Common in force 

control (e.g. [Raibert, 1981, Fisher, 1992]), JTC is less well known as an on-line position control scheme 

[Wu, 1982, Hogan, 1985c, Khatib, 1987, Seraji, 1987b] and off-line inverse kinematic solution [Asada, 1986, 

Slotine, 1988]schemes. In general, JTC is less compute intensive than " Newtons method" numerical so­

lutions (i.e. RMRC and RMAC) but is slower to converge [Slotine, 1988]. Compute intensive disturbance 
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compensation (i.e. through feedforward dynamics or adaptive control) must also be added to J T C to achieve 

precision position control [Khatib, 1985]. 

Redundancy Resolution 

The Jacobian Transpose solution does not suffer numerical instability near Jacobian singularities as do 

solutions based on the Jacobian inverse. Since the required end effector force is projected onto each actuator, 

redundant manipulators are treated no differently than fully constrained manipulators. However, kinematic 

singularities, in which desired end effector forces have no projection on any of the actuators, produces no 

response in the manipulator. Such singularities occur near the extremities of the robot work space and can 

be avoided through simple techniques [Slotine, 1988]. 

3.4 Real Time Supervisory Control Architectures 

Control represents one of four phases in the sense-model-plan-act (SMPA) cycle that persists as the context 

for 'intelligent' robotic systems. Of the four, the symbolic model-plan portion of the cycle has traditionally 

been considered the crux of the AI problem. The sensing and action phases of the cycle are generally 

considered services to this 'intelligent' symbolic system. As reviewed above, manipulation systems use 

symbolic engines that often include model driven inverse kinematics solutions (i.e. centralized RMPC, 

RMRC, RMAC, and JTC solutions) - the output of which is a deterministic trajectory in joint space. As a 

consequence, the traditional responsibility of manipulator control is to guarantee exact joint space trajectory 

tracking. 

Contrary to early optimistic assessments of the problem, many now believe that autonomous robot per­

formance is limited not by inadequate symbolic reasoning but by impoverished sensor fusion and control. 

Initially, investigators assumed that sensor fusion would eventually yield simple methods for detection and 

modelling of the workspace 4 . However, building and maintaining a sufficiently capable sensor fusion system 

for autonomous operation has proven to be complex, often unreliable and, in general, prohibitively expen­

sive. Hence the interest in alternative control architectures that do not rely on extensive signal processing, 

modelling, and symbolic reasoning to achieve real time autonomous performance. 

4 A view traceable from early systems such PLANNER, and Winograd's S H R D L U [Winograd, 1972] to existing task specifi­
cation/assembly modelling languages such as R A P T [Ambler, 1975, Ambler, 1980, Thomas, 1988] 
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3.4.1 Manipulation 

Real time manipulation has many aspects, such as real time navigation and force control, that often place 

multiple demands on manipulator performance in a changing workspace. Since it is possible that multiple, 

unpredictable, constraints may arise over the course of a single task, redundant robots are more attractive 

than traditional fully constrained manipulators in an unstructured environment. To leverage this flexibility, 

a growing number of redundant robotic systems incorporate additional sensing into RMRC, RMAC or JTC 

controllers. These sensors engage task specific auxiliary controllers through switching logic and/or provide 

data for environmental servos. In effect embedding limited modelling and planning portion into the control 

system. Some examples from manipulation and mobile robotics follow. 

Hybrid Position/Force Control 

Manipulation often requires not only simple end effector positioning but also force control, for example in 

machining tasks. Hybrid position/force control, in figure 3.4.1, [Raibert, 1981, Anderson, 1988, Fisher, 1992] 

employs a switching architecture to select appropriate control techniques for either position or force control. 

By incorporating end effector force sensors to control the manipulator's control effort, force controllers can 

regulate end effector forces in real time. Hogan formalized this concept further within impedance control 

[Hogan, 1985a]. From [Fisher, 1992] the equations for (differential) position and force control respectively: 

q e = (SJ^Xe + [I - J + J]z q (3.72) 

r = (S xJ) rf e + [I - JTJ]zT (3.73) 

where the matrix S is the selection matrix and S-1- = I — S. 

Visual Servoing 

For target tracking in real time (e.g. grasping a moving object), even simple model-based vision can be too 

slow in unstructured environments. By embedding image processing into the controller a task specific vision 

servo can be devised. Weiss demonstrated visual servoing [Weiss, 1987] in which a desired image feature such 

as area or centroid was compared against actual image features and a mobile camera servo ed to regulate the 

error between the features. This structure is depicted in figure 3.4.1.The system does not track an object in 

task space, but a feature in image space, a geometric object model does not exist. 

A more ambitious system, MURPHY, by Mel [Mel, 1990] left feature extraction and inverse kinematics 

to a neural network to implement fast vision servoing and vision based obstacle avoidance. With a trained 
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Figure 3.5: Fisher's corrected Hybrid Position Force Control. S is the selection matrix. J + is the pseudoin-
verse of the Jacobian and Z q and z T are arbitrary vectors. 
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Figure 3.6: A block diagram of the Visual servoing approach to target tracking. Desired reference values are 
in feature space frcf. Image feature changes are computed through a feature Jacobian Jf e at-
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the neural network, image, robot motion, and obstacle semantics became internal to the control system and 

unknowable to an external observer. 

Obstacle Avoidance 

SMPA based obstacle avoidance requires world models supplied with high speed, rich, range images over 

the robot's work space. At least two methods of real time manipulator obstacle avoidance [Colbaugh, 1989, 

Khatib, 1985] dispense both with the modelling of obstacle boundaries and planning of collision free trajec­

tories. These algorithms simplify the obstacle avoidance process by relying on real time sensing and reactive 

control. By identifying points on the manipulator threatened by collision, "points subject to hazard" (PSH)5 

and applying an evasive force to each PSH, both schemes avoided collisions with workspace obstacles. 

Khatib's Operational Space Formulation (OSF, see figure 3.4.1) [Khatib, 1987] employed a potential field 

obstacle model embedded into a simple control level obstacle avoidance scheme. By adopting a nonlinear 

potential field about an obstacle with a specified clearance range, manipulator motion was unconstrained 

while outside the clearance range of the obstacle. In OSF, Khatib circumscribed obstacles with artificial 

potential fields (APFs), $. By determining the negative gradient of these potential fields at the PSH, a 

repulsive force could be prescribed and applied to the PSH. The Jacobian Transpose of the PSH could then 

be used to project the repulsive forces onto the manipulator's actuators to generate an evasive maneuver. 

Recognizing the computational burden in computing and assembling $, Colbaugh at ,IPL [Colbaugh, 1989] 

used range sensing, state augmentation and an adaptive controller to achieve similar results. In this imple­

mentation, range sensors on each link determine the range between the PSH and the nearest obstacle. By 

augmenting the state of the end effector with the state of the PSH to form an augmented task space vector, 

x a, and monitoring the range sensor values continuously, an augmented Jacobian Transpose could be applied 

to the augmented force vector. 

Teleoperation 

In recognition of practical real time system requirements, Albus et al. [Albus, 1990, Lumia, 1994] proposed 

a multilevel SMPA model of robot control that operates in parallel at multiple time scales, the NASA/NIST 

Standard Reference Model for telerobot control system architecture. In NASREM, the sense-model-plan-act 

cycle is spread over six time scale levels, successive scales differing by, approximately, an order of magnitude. 

5 A convention similar to Khatib's "points subject to potential" or PSP 
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Figure 3.7: Khatib's operational space formulation. Feedforward cartesian dynamics and obstacle avoidance 
forces are summed to drive a manipulator along a stable collision free trajectory. Colbaugh's configuration 
control replaces the potential field model with sensing and the feedforward dynamics with adaptive control. 
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Figure 3.8: The NASA/NIST Standard Reference Model for telerobot control. 
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Level Scope 
servo coordinate transforms 
primitive dynamics 
elementary movement path planning 
task actions on objects 
service bay assembly tasks 
service mission mission scheduling 

Table 3.1: The temporal scope of the NASREM layers. Each layer represents an increasingly (approximately 
an order of magnitude) longer planning horizon . 

All time scales access sensor data streams in the modelling and planning of tasks. Similarly all time 

scales contribute to the manipulators final motion. At any time, a human operator can interrupt the systems 

operation at any or all time scales. NASREM represents an important step in the formalized specification 

of robot system components and, like any specification, avoids detailed design issues. Only one published 

implementation conforms to this model [Lumia, 1994], though presumably NASREM is sufficiently flexible 

to accept many of the control systems reviewed here. 

3.4.2 High Speed Motion 

Real time robot control is naturally not limited to manipulation robotics, and much can be learned by 

reviewing high performance robots in other applications. The following is a brief overview of some particularly 

successful real time robotic systems. 

Raibert's Hopping Robot 

R.aibert [R.aibert, 1984] and others (e.g. [Pratt, 1995]) have designed robots to explore hopping and leaping 

dynamics. Raibert's was controlled through a sequencer, or finite state machine, driven by data streams 

from pressure, inclinometer, angle and position sensors. By observing incoming data streams the sequencer 

could coordinate height, velocity, and attitude controllers with the timing of the machine's support and flight 

phases. 

Raibert's hopping robot employed a double acting pneumatic cylinder connected to a pair of pneumatic 

'hip' actuator joints, and the entire leg/hip assembly to a large inertia balance beam. By tethering the 

balance beam to rigid aluminum boom, the robot was constrained to hop within a spherical surface. Two 

controllers cooperated in the motion of the robot. 



Chapter 3. Real Time Robot Control 37 

Each phase of the hopping sequence was triggered by specific sensor thresholds determined through 

experimentation and analysis. The modelling portion of each phase was limited estimating the dynamics of 

the hopping frame, while the planning portion used the dynamic model to plan an angle/thrust response. 

Raibert's robot is significant for its use of a combination of dynamic analysis, control, and finite state strat­

egy sequencing rather than an SMPA like planning of the robots running stride. Quoting from [R.aibert, 1984]: 

"The back and forth motions were not explicitly programmed, but resulted from interac­

tions between the velocity controller that operated during flight and the attitude controller that 

operated during stance." 

Andersson's Ping-Pong Player 

Anderssons Ping Pong player [Andersson, 1989] used an 'expert controller' - an hybrid between an expert 

system and a controller. Andersson employed a 'figure of merit' system to trigger activity within the expert 

controller. Through an analysis of the ping pong ball dynamics, Andersson identified a set of 'free variables' 

upon which the ping pong task was dependent including: paddle orientation, ball velocity, manipulator settle 

time and others. In each control cycle these values would be run, in parallel, through a set of simple models, 

each generating a figure of merit. The model returning the highest figure of merit would be executed as 

the next task in the system. In effect, Andersson condensed the model-plan portion of the cycle into a set 

of parallel processes that simultaneously examined the free variable stream and developed correspondence 

measures. 

3.4.3 Mobile Robot Navigation 

Mobile robotics stands as one of the most challenging autonomous robotic tasks. Unlike manipulators, the 

robot is no longer holonornic and must rely on sensing and dead reckoning to establish its position (though 

differential global positioning systems make this task increasingly easier). The environment challenges sensors 

and actuators with inconsistent lighting, irregular surface properties and topographies, and complex obstacle 

morphologies. In an olympian contest, autonomous navigation systems pitch state of art hardware and 

software against changing environments only to reach a target location in one piece. Understandably, many 

of these systems are only partially successful, but all provide useful lessons in real time robot architectures. 

Task Control Architecture (TCA) 
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Figure 3.9: Carnegie Mellon's Task Control Architecture for the Ambler hexapod. Note the centralized 
planner and distributed reactive controller. 

The Task Control Architecture, in figure 3.9, a product of CMU's Robotic Institute, sought to unite delib­

erative and reactive systems through an SMPA-like layer. T C A acts as a planner/oversear on top of task 

specific reactive systems. Perhaps the most well known implementation of T C A is on the Ambler hexapod. 

After initially using an SMPA cycle for Carnegie Mellon's six legged robot, 'Ambler's' Task Control Archi­

tecture (TCA) [Simmons, 1991, Simmons, 1994] was modified into an asynchronous reactive layer combined 

with traditional A l modelling and planning elements. 

Distributed Architecture for Mobile Navigation (DAMN) 

The DAMN architecture, depicted in figure 3.10, also developed at CMU, again sought to integrate delib­

erative planning with reactive control. In DAMN, a discrete set of control actions on a group of actuators 

(e.g. pan/tilt camera, vehicle steering motors, engine speed) forms a command space in which multiple 

modules concurrently share robot control. By voting for or against alternatives in the command space, each 

module contributes to the control commands for the robot. DAMN employs an arbiter for the resolution of 

the voting process on each device. In the case of the UGV project [Leahy Jr, 1994]: a turn arbiter, a speed 

arbiter, and a 'field of regard' arbiter. To explain the arbitration process the turn arbitration procedure will 

be described: 

Each behaviour votes (ranging between —1 and +1) on every member of a discretized set of radii,i?oi-

This means that each behaviour's vote is actually a distribution over all the possible steering radii. The 
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Figure 3.10: Carnegie Mellon's Distributed Architecture for Mobile Navigation for the NAVLAB series of 
robots. Each behaviour votes on every possible command (e.g. steering radii) and all votes arc processed 
within the arbiter. 

arbiter collects vote distributions from all participating behaviours, performs a gaussian smoothing on each, 

followed by a 'normalized weighted sum' for each of the i radii candidates: 

(3.74) 

where IUJ is a behaviour weight and Vj is the vote for the jth behaviour. The radius with the highest vote 

v = Max(v,-), is sent to the controller. 'Field of regard' and velocity arbiters perform similar smoothing and 

selection operations. This approach allows for multiple modules operating at multiple frequencies to vote 

on various command spaces. DAMN runs on a number of platforms [Leahy Jr, 1994, Rosenblatt, 1995a, 

Rosenblatt, 1995b]. 

Motor Schemas 

Motor schemas [Arkin, 1987, Arkin, 1991] are small processes that correspond to primitive behaviours that, 

when combined with other motor schemas, yield more complex behaviour. Arkin employed two kinds of 

schema, perceptual schema, that observed and represented the environment through sensing and potential 

field models respectively and motor schema that devised responses to classes of events. A central move-to-

goal or move-ahead schema sums the responses and commands the robot motors. 

Thus if a find-obstacle schema detected an obstacle, an avoid-obstacle schema was instantiated that 

produced a velocity vector based upon a repellent potential field around the obstacle (similar to Khatib 

[Khatib, 1985]). By summing the output velocity vectors from a collection of such schemas, a move-robot 

could navigate through the environment. 



Chapter 3. Beal Time Robot Control 40 

P1 

P2 
P3 

P4 

U1 

EKDi 
M3 

P2_ 
P4 

P3 

M4 M4 

M5 

Augmented Finite State Mactiine. 

1 

line X. 

—KD 

line Inhibition: tap messages 
block line messages. 

Suppression: tap message 
replaces line messages. 

Figure 3.11: A subsumption network. Perception (P) drives augmented finite state machines (M#) to output 
messages. Suppression nodes substitute horizontal line messages with vertical (tap) messages. Similarly 
Inhibition nodes disable line messages if a tap message is received. 

Subsumption Architecture 

Physically, subsumption is a hierarchical network of simple sensors, controllers, and actuators that can 

be embedded into relatively small robots. In Ferrell's 14 inch 3 kilogram hexapod, 19 degrees of free­

dom were controlled through 100 sensors, including leg mounted foil force sensors, joint angle and velocity 

sensors, foot contact sensors, and an inclinometer. Applications include aircraft flight and landing systems 

[Hartley, 1991], heterarchical subsumption (Connell's Herbert[ConneYL, 1990]), and hexapod motion (Ferrell's 

Hannibal[FcTTell, 1993]). Mataric [Mataric, 1994] Nerds showed that behaviour arbitration could be learned 

through repeated trials. 

Each subsumption network node, an augmented finite state machine (AFSM), consists of registers, a 

combinatorial network, an alarm clock, a regular finite state machine, and an output. Sensors are connected 

to specific registers while actuators receive commands from the output of specific AFSMs. A message arriving 

at a register or an expired timer can trigger the AFSM into one of three states: wait, branch, or combine 

register contents. Results of combinatorial operations may be sent to an input register or an output port. 

Since each AFSM uses an internal clock, output messages can decay over time. 

AFSMs can inhibit inputs and suppress outputs of other AFSMs through inhibition and suppression 

'side taps' placed on input or output connections in the network. Inhibition side taps prevent transmission 

of original messages along an input connection if an inhibition message has been received from an AFSM. 

When a suppression message is sent to a suppression side tap from an AFSM, the original output message 

is substituted by messages from the AFSM. 

Inhibition and suppression side taps encourage layered subsumption (as in figure 3.11) in which basic 
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behaviours are embodied within a fundamental layer of AFSMs. Through judicious use of side taps, additional 

behaviours can be built over the basic set (e.g. 'leg down','walk', 'prowl'). Mataric developed a set qualitative 

criteria to aid in the selection of basic behaviours. Each behaviour should be:Simple, Local through local rules 

and sensors, Correct by provably attaining the desired objective, Stable through insensitivity to perturbations, 

Repeatable, Robust by tolerating bounded sensor or actuator error, and Scalable by scaling well with group 

size. 

3.4.4 Computer Graphics 

In order to produce complex, believable movement in computer animation, a number of novel strategies have 

appeared for motion control. While most ignore the details of real world dynamics, these systems apply a 

'sensor' driven switching architecture to simplify the programming of flocks of birds [Reynolds, 1987], schools 

of fish [Tu, 1994], and planar running machines [van de Panne, 1992]. 

Boids 

The realistic animation of large collections of entities e.g. crowds of people, schools of fish, etc. becomes 

time consuming and inflexible if the trajectories of each entity are specified a priori. In a novel solution, 

Reynolds [Reynolds, 1987] employed a set of three behaviours: collision avoidance, velocity matching, and 

flock centering to model formation flying within every bird-like graphical construct, bird-oids or boids.Each 

behaviour generated an acceleration vector and was placed in a priority list. 

As each behaviour contributed a desired acceleration to the arbitrator, the arbitrator would accumulate 

both the acceleration vectors and the magnitudes of each output behaviour over time in order of priority. 

When the sum of the accumulated magnitudes exceeded a fixed acceleration value, the acceleration vector 

components would be apportioned to each behaviour in priority. Under normal flight conditions in which 

each behaviour is of approximately equal priority, this is equivalent to vector averaging. However, if one 

behaviour experiences an emergency and issues large magnitude vectors, this method effectively suppresses 

lower priority requests. 

Similar strategies were used by Terzopoulos et al [Tu, 1994] to produce realistic behaviour within more 

sophisticated animated fish. 

Sensor-Actuator Networks 
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Figure 3.12: A SAN network example. Note the interconnections sensor (S), hidden (H) nodes and Actuator 
(A) nodes. Each node has the structure expanded at right. The hidden nodes act as an interactuator 
information mechanism. 

The realistic animation of complex running or galloping entities, like the real world equivalent, is difficult 

to coordinate and control. Van De Panne and Fiume tackled this problem through the creation of Sensor 

Actuator Networks (SAN) [van de Panne, 1992]. Given a mechanical configuration and the location of bi­

nary sensors and PD actuators on the mechanism, a generate-and-test evolution method modulates weights 

connecting sensor nodes, hidden nodes, and actuator nodes of the network. In a complex information ex­

change, all sensor nodes are linked to all hidden and actuator nodes, all hidden nodes to one another and 

actuator nodes, and all actuators nodes to all sensors and hidden nodes. Each link is unidirectional and 

weighted. Within each node, a weighted sum is performed on all connections, thresholded, integrated, and 

filtered through a simple hysteresis function. The SAN structure is depicted in figure 3.12. 

3.4.5 Common Denominators in Real Time Robot Control 

Many of these architectures adopt common, pragmatic solutions to shared problems of computational com­

plexity, limited time, and unstructured environments. While an SMPA controller might be feasible given 

sufficient computing and communication resources, in general the only means of implementing 'real world' 

autonomous robots (or real time animations) is through embedded, often multiprocess, control exploiting 

fast simple data streams. A summary of these shared characteristics follow. 

Application Specific Sensing 

While cost and precision requirements make task specific sensor suites more attractive than higher level 

general purpose sensors, time and computing constraints limit the amount of signal processing and modelling 
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available for control. Together, these constraints drive the adoption of application specific signal processing 

and control. 

Multiple Data Streams 

Using multiple data streams, a single controller can perform limited sensor fusion based entirely on task 

specific criteria. Rather than performing broad based signal processing and recognition to develop a multi­

purpose symbolic model, behavioural systems embed meaning into sensor data by responding through simple 

signal processing methods (e.g. thresholding) to specific stimuli. Thus each controller establishes a partial, 

self-interested, view of the available data streams. 

Arbitration of Multiple Controllers 

Using task specific sensing, a controller's output represents both an actuator command value and a confidence 

measure within a multicontroller environment. In effect, the output is a measure of the correspondence 

between the controller's task specific world model and the sensor data stream. In this way multiple behaviours 

classify the sensor data stream, merging the database-like world models and symbolic planners of the SMPA 

into a smaller, simpler action model. 'Correct' action selection is left to simple arbitration procedures (e.g. 

weighted averaging or switching). 

Parallel Computation 

A number of factors promote the distribution of control over multiple processors including sensor and con­

troller complexity, disparate time scales, and robustness. Signal processing complexity can vary consider­

ably within a single system e.g. from topographical LADAR mapping to inclinometers in the CMU Ambler 

project. Similarly controllers vary from simple PD-like control to sophisticated model based systems. Con­

current sensing and control removes I/O boundedness within the system during complex computation by 

allowing the system to respond over many scales. Furthermore, physically distributed computation makes 

the system less susceptible to catastrophic damage to the control system. In general, distributing computing 

" cycles over multiple CPUs substantially reduces the cost of such systems, though some additional complexity 

may be encountered in interprocess communication. 

In summary, practical constraints on cost, time, and performance are slowly driving robot control tech­

niques that exploit inexpensive simple sensing, multiple control behaviours, and behaviour arbitration. These 

are the basic constituents of the modern robotic agent and to a significant extent, describe many existing 
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real time manipulation systems. However, just as agent control methods may simplify the control of real 

time robots, teams of agents may simplify the control of complex, multiplant, systems. 

3.5 Multiple Robot Control 

Using multiple robots to achieve a single task is not new. Indeed, multiple manipulator control is a key 

issue for the International Space Station Special Purpose Dextrous Manipulator (SPDM) a twin armed ma­

nipulation system mounted on a remote manipulation system (RMS). However, the difficulties of real time 

manipulator performance become further magnified in such unstructured multirobot environments. Central­

ized methods must accommodate modelling and planning for multiple manipulators that carry common or 

separate payloads through a possibly cluttered work space. A task made more difficult by complex sensors 

and, possibly, remote computing installations. This section will review some examples of distributed robot 

team control and draw some conclusions on the significance of these architectures. 

Reynolds' Boids revisited 

Based on beliefs of actual bird behaviour, Reynolds reasoned that given similar, if simplified, sensing and 

flight dynamics, behaviours such as velocity matching, collision avoidance, and flock centering should be 

sufficient to 'hold together' a group of boids in a flock as well as produce realistic flock trajectories. In effect, 

Reynolds believed that desired team behaviour could be achieved through careful design of a team member. 

After trial and error, this approach generated realistic flocking behaviour. Perhaps more interesting than 

the final flock performance are some of Reynold's observations on the design process: 

• "Flock behaviour depends on a localized view". 'Realistic' behaviour did not require complete flock 

models within each boid. 

• Linear collision avoidance rules (e.g. PD rules) produce oscillatory 'unrealistic' behaviour while non­

linear 'inverse square' rules promoted stability. In observing that linear flocking rules produced spring 

like behaviour, Reynolds demonstrated that agent teams are dynamic systems. 

• Apparent flock complexity is due to environmental complexity (e.g. obstacles), an phenomenon ob­

served by others (e.g. the Intelligence property identified by Brooks [Brooks, 1989a]). 

• The control algorithm is 0(N) in the number of boids, due primarily to the implementation of the 

behaviours. Autonomous agents in a multiagent systems should be constant time. 
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Figure 3.13: By applying both direct 0 and temporal ® combination to the same basic behaviours 
higher-level behaviours can be generated. In this example, safe wandering is used to generate both flocking 
and foraging. Similarly aggregation is used in both foraging and in surrounding. 

The central conclusion is that multiagent systems can exhibit desirable behaviour without explicit coor­

dination from an external supervisor. 

Ferrell's Hannibal: single or multiagent? 

Though subsumption architecture has resisted classification, the approach falls within the definition of agency. 

In some subsumption networks it is debatable whether individual AFSMs are not themselves agents and that 

these hierarchies are not multiagent systems. Indeed, Ferrell refers to AFSMs in Hannibal as agents, each 

distributed over each leg of the hexapod coordinated loosely by a set of global agents. Each leg of the 

hexapod is controlled by a discrete AFSM network and the legs as a whole are coordinated by a central 

timing agent. In this instance coordination between agents is explicit, timing signals set the walking pace 

of the machine. However, the implementation of each step is unique to each leg. This demonstrated that 

while a global agent might explicitly synchronize agent activities, it need not explicitly specify the activity 

itself. Strict subsumption systems such as Hannibal show that multiagent systems can be hierarchical and 

yet autonomous within any given layer. Indeed, viewed as a multiagent system, Connell's Herbert shows 

that multiagent systems can be heterarchical. 

Mataric's Nerd Herd 

Mataric investigated the interaction of agents within a group of 20 mobile robots, 'the Nerd Herd'. As 

mentioned earlier, each robot was equipped with a set of basic behaviours: Safe-Wandering, Following, 

Dispersion, Aggregation, and Homing. These controllers used input from contact sensors, piezo-electric 
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bump sensors, IR range sensors, and IR break beam sensors. Each shoe box sized robot could collect and 

stack pucks with a simple fork-lift gripper/actuator assembly. By expressing basic behaviours in terms 

relative to the agent or the environment, global group behaviour was distilled into each agent. For example 

safe wandering was expressed as: 

^ ^ 0 and dij > <5avoid (3.75) 

where pj is the absolute position of the jth agent, ^jjji is the velocity, J a v o id is a range threshold, dij is the 

magnitude of the distance to the ith agent or obstacle. Similarly, following minimized the angle 6 between 

the relative distance vector and the agent's velocity vector: 

\\(Pi-Pj)\\cose (3.76) 

where i is the leading and j is the following agent. Similarly dispersion and aggregation employed 

attraction and repulsion controllers. By modulating the velocity vector through the use of these rules desir­

able global behaviours were generated.Figure 3.13 summarizes the behaviour hierarchy developed through 

behavioural and temporal sequencing in a single Nerd. 

Troops 

Parker [Parker, 1994] successfully explored the use of robot systems in the mediation of (simplified) toxic 

spills. The goal of the research was to establish a software architecture that enabled explicit cooperation be­

tween robots. Each robot possessed a set of low level subsumption behaviours. These behaviours are grouped 

into sets, each set representing a high level task (e.g. cleaning the floor). A set of prioritized motivational 

behaviours receives information through sensors, communication, and feedback from other behaviours and 

selection behaviour sets based on: 

Behaviour Set Priority a,, (integer). 

Sensor Feedback Fi(t). the applicability of the behaviour set to the current situation, (boolean). 

Impatience Ii(t). the period this agent will wait for another agent to accomplish the same behaviour (real). 

Acquiescence Ai(t) the period this agent will maintain the behaviour before yielding to another agent 

(boolean). 

Suppression Si(t) whether another behaviour suppresses this behaviour set (boolean). 

• P ; ) < 
dpj_ 
dt 
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The motivation calculation: 

m,(0) = oti • Fi(t) (3.77) 

m,(i) = (m,-(t-!) + /(«)) • Ai(t) • Si(t) • Fi(t) (3.78) 

if rrij(t) > 9i, a threshold of activity, then the behaviour set is activated and, possibly, a message broadcast 

to other agents. Based upon observed broadcasts and the environment, an agent could either engage a task 

achieving behaviour set, wait while another agent performed the task, or, if an agent failed to perform, take 

over a task. 

In this model of multiagent activity, agents inform one another through broadcast communication and 

do not know or assume the abilities of other agents present. Cooperation arises through opportunistic agent 

activity. Agents act only if they are ready and able to respond. Since there is no central coordinator or 

agent-to-agent information exchange, the system is robust to agent failure. 

3.5.1 Common Denominators in Real Time Robot Team Control 

Again, sharing similar problems to robot team control, multiagent systems possess common solutions worth 

summarizing. In particular: Global and Local goals, Interagent Communication, Robustness, Locality in 

Sensing, Linearity in Computation, and Interagent Dynamics. 

Global Goals 

Agent teams are often fulfill a team or global objective. The objective is either a specific goal (e.g. a 

trajectory) expressed by an external process to the team, or arises from interagent dynamics (e.g. Reynolds' 

boids) and the changing environment (e.g. Ferrell's Hannibal). 

Local goals arc often used to ensure safe operation. Global goals often coexist (and even arise from) the 

maintenance of local goal systems. Local goals are usually explicitly stated relative to the agent and not 

some global coordinate system (e.g. move-forward). Though a number of similar goal arbitration methods 

exist, there docs not seem to be a consensus how to establish goal priorities or how local goal systems should 

be selected and/or designed. 

Local Goals 
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Interagent Communication 

Individual agents often communicate either through one-to-one (directed) transmission between agents, 

through broadcast, or through interagent sensing. Parker's Troops used directed messages between agents 

over RF bands while Mataric's Nerd Herd did not generally communicate. Similarly Ferrel's Hannibal did 

not use intcrleg communication to achieve stable gates. A common feature amongst most systems is that 

if a global objective is set, it is done so externally through some goal generation system and communicated 

either to all the agents or through some lead agent (e.g. boid's flock leader and Ferrel's synchronizing agent). 

Global Robustness 

The fulfilment of a global goal is often robust to individual agent failures. Mataric's system demonstrated 

considerable robustness to failures in positioning and communications, achieving the puck collecting objec­

tive in spite of these problems. Similarly Ferrel's Hannibal was robust to leg failures and environmental 

irregularities, while flocking in Reynold's boids was not influenced by flock fission or fusion. 

Locality in Sensing 

Individual agents sense only neighbouring team members and do not monitor the entire team. In general, 

sensing is kept local to each agent: short range sensing, limited boid fields of view, joint angles, forces, 

etc. This limits the impact of distant events on individual agents and, subsequently, lowers the computa­

tional burden. This means that global goals must be expressed either in terms of locally sensible events 

or communicated to each agent. There are exceptions to this rule, however. Hannibal adopted a single 

inclinometer 

Constant Time Computation 

Additional agents within a team do not significantly add to the computational burden on an individual 

agent. The short sensor horizon, limited modelling, and embedded computation within each agent means 

that (ideally) the number of agents should not affect the response time of a lone agent. In effect a multiagent 

system becomes a distributed, parallel computer. 
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Interagent Dynamics 

Reynolds' Boid system demonstrated that multiagent teams are dynamic systems. Ferrel's Hannibal relies 

on dynamic interaction with the environment to achieve stability. Mataric's Nerd Herd, too, demonstrates 

characteristics of dynamic systems, though, surprisingly, she felt analysis of the team as a particle system 

had little merit. 

3.6 Remarks 

In this chapter we have reviewed the structure of supervisory manipulator control and shown that, in context, 

real time control of robots in an unstructured environment often requires novel robot architectures, most of 

which bear little resemblance to SMPA supervisory control. 

Clearly, real time control of robots and robot teams requires integrated design of the four components 

of SMPA. It seems that rather than generating a monolithic model-plan system, real time systems classify 

and reduce environmental events into a set of controller processes. The response of each controller is often 

used as a measure of correspondence between the classification and the observed world. Though there is no 

consensus on action selection or combination from the controller set, voting schemes, simple combination, 

and switching (through AFSMs) seem the most common. 

The next chapter will take these features and place them into a familiar, concise, control theoretic 

representation, laying the basic foundations for both Agent and Multiagent Control Theory. 



Chapter 4 

The Agent and Multiagent Model 

4.1 Introduction 

Previous chapters have discussed the SMPA architecture, its origins in AI, and the difficulties in extending 

it to real time environments. In particular, the last chapter reviewed architectures that break away from 

the SMPA model to a class of task specific architectures. Furthermore, a set of features common to real 

time robotics was identified, reinforcing the perception that a genuinely new class of controller, an agent, is 

emerging. Agent based control has spawned interest in multiagent systems, agents acting not only on the 

environment, but on and with other agents. 

The objective of this chapter is to propose a control theoretic agent model based on observations of 

common features in existing agent and multiagent systems. In so doing, terminology will be defined, relating 

the characteristic features of agent control to traditional control theory. Within this framework, the reputed 

abilities of these systems will then be summarized within a set of hypotheses. Given these properties of 

agency, further definitions of multiagency will be offered and hypotheses on multiagent control proposed. 

4.2 Behaviour Control 

Though the basic philosophy of multithreaded behaviour arbitration that underlies agent control is widely 

acknowledged, the theoretical foundations remain weak due in large part to the wide variety of imple­

mentations, interpretations, and nomenclature of agent control. These applications range from production 

scheduling systems and autonomous mobile robot teams to software avatars (virtual personas) and combat 

simulators. Terminology is often the source of confusion in any growing field, agent and multiagent control 

is no exception. 

Recognizing the breadth oiagent oriented applications [Shoham, 1993], this thesis focuses exclusively on 

the control of robotic systems. Even within this narrow context, the definition and structure of an agent 

has yet to be formally fixed, though most agree that an agent contains some kind of 'behaviour arbitra­

tion mechanism' capable of perception and action [Mataric, 1994, Parker, 1992b, Kosecka, 1994]. Mataric 

50 
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[Mataric, 1994] proposes the following qualitative definition "An agent is a process capable of perception, 

computation and action within its world...". Mataric goes on to develops a spectrum of agent control schemes 

based on modelling and state retention including reactive systems possessing no memory, behavioural sys­

tems with limited state retention, hybrid methods relying partially on symbolic systems, and purely symbolic 

deliberative systems. 

MacKenzie, Cameron, and Arkin [MacKenzie, 1995] also proposed that an agent is "... a distinct entity 

capable of exhibiting a behavioural response to stimulus ", providing the symbolic expression: 

defining an agent as a behaviour, itself a function of some stimuli. 

To complicate matters, the term behaviour is rarely used consistently. From Steels [Steels, 1991] behaviour, 

is "... a regularity in the interaction dynamics between the agent and the environment". While Mataric 

suggests behaviour is [Mataric, 1994]: "...a control law that clusters a set of constraints in order to achieve and 

maintain a goal". This latter definition seems to equate control and behaviour as does Parker [Parker, 1992a]. 

MacKenzie et al [MacKenzie, 1995] are more specific. Behaviour is y where: 

where u,- are some input variables and /(•) is defined Vi>,-. Others are careful to discriminate between control 

and observed behaviour (e.g. [Colombetti, 1996]). Despite some confusion of terminology, behaviour is clearly 

related to the response of some system to control input. 

Some have defined agents as a hybrid control problem, one in which discrete and continuous systems coex­

ist, and have applied Discrete Event Systems (DES) theory[Kosecka, 1994] and a notable variant, Constraint 

Net (CN) theory [Zhang, 1995] to agent analysis. Discrete event systems experience asynchronous state 

changes at discrete points in time. Each state in the system corresponds to some continuous evolution of the 

system, while each event is a discontinuous transition between qualitative changes in the system's behaviour. 

In this model the definition of behaviour is trace [Zhang, 1995] or "an event trajectory" [Kosecka, 1994] and 

the agent a Supervisory Controller (or Constraint Solver in [Zhang, 1995]). By issuing a trace or event 

stream, these controllers can modulate the output of the plant, itself an event stream or trace, to follow 

a desired event trajectory. Since each symbol represents a control strategy, Pure DES controllers are a 

means of sequencing action towards a desired objective. Though powerful in uniting analog and switching 

controllers, neither represents new techniques in the design of individual controllers nor provide insights into 

the interaction between these controllers and the environment. 

Agent = Behaviour (Stimulus) (4.79) 

y = f{vi,v2,... ,vm) (4.80) 
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Agency and Control Theory 

Though few investigators dispute Brooks' [Brooks, 1991a] assertion that 'the world should be its own model' 

and Steel's [Steels, 1991, Steels, 1994] observation that agents are dynamic systems, most continue to believe 

that furthering agent control depends on better computational and linguistic apparatus and not on the 

application of control theory. Some have concluded that agent based system's can only be designed through 

field trials and that control theoretical approaches have limited value. From Mataric [Mataric, 1994]: 

The exact behaviour of an agent situated in a nondeterministic world, subject to real error 

and noise, and using even the simplest of algorithms, is impossible to predict exactly...1 Precise 

analysis and prediction of the behaviour of a single situated agent, specifically, a mobile robot in 

the physical world, is an unsolved problem in robotics and Al . 2 

While it is true the exact trajectory of any dynamic system is not exactly knowable, Mataric's statement 

underestimates the value of a dynamics and controls analysis of even simplified problems. Indeed, amongst 

subsumption researchers in particular there is an open prejudice against simulation [Parker, 1994]. 

Imprecise, confusing terminology has obscured the specification of agent designs and hindered the for­

malization of a plainly successful real time control technique. The result is a collection of systems that 

have many common structural attributes but, surprisingly, little theoretical common ground. To enable a 

theoretical treatment, this section will review the concepts behind agent control from the control theoretic 

standpoint, and establish formal definitions where possible. Through this process a set of hypotheses will be 

proposed that characterize agent design and performance objectives. 

4.2.1 Goals 

The term goal has many interpretations and is discussed in detail by Weir [Weir, 1984]. Colloquially un­

derstood to represent a desirable, possibly time varying, state of some system, the philosophical arguments 

reviewed in [Weir, 1984] center mostly on whether such states are external or internal to the construction 

of goal directed systems. For the purposes of machine control however, a goal is generally equivalent to the 

desired behaviour of a controlled mechanical plant. Such behaviours are sometimes expressed as the abstract 

"wander" [Brooks, 1989c] while others are more precisely expressed as a static setpoint or time varying tra­

jectory through some relevant coordinate system (e.g. position, velocity, temperature, etc.) . A broadbased 

definition can then be proposed: 
xpage 27: paragraph 3. 
2 page 29: paragraph 4 
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Figure 4.14: A generic plant, Gj(-), with control input U;(£) and behaviour yj(t). 

Definition: D4.1 (Goal) If a trajectory, r;(t), is specified to traverse through some space, Qi € IR", then 

r(t) is a goal and Qi a goal space. 

There are no preconditions on the function r ,•(£). However manipulator end effector goal functions 

r,-(r) = Xd(t) € R 6 are usually at least C1 trajectories through task space. Since mobile systems often 

leave path planning to an on board reactive system goals are usually discretely changing planar positions or 

perhaps intervening waypoints or r,-(t) = x<j(i) € R 3 [Gat, 1994]. 

4.2.2 Behaviours 

The artificial intelligence community uses the term behaviour to describe the observable evolution of an 

automaton's state. In robot control, behaviour is understood to mean the performance of the robot within 

its environment. The colloquial use of " behaviour" in the context of machine control generally refers to the 

response of some plant. 

So to clarify the concept of behaviours, consider the plant in figure 4.14. In this figure a control effort u,-(r) 

and a disturbance, v(t) drives a plant, Gj(-), to produce a response yj(t). To an observer, the behaviour of 

a plant is simply the observable response, yj(t). 

Definition: D4.2 (Behaviour) Consider an arbitrary plant, Gj, with state, Xj € JRIj' that is perturbed 

by both control effort, u,-(t) € IR", and environmental disturbances v(t) S IR". Then the plant's behaviour 

is the observed output, yj(t) : TRXJ x IR" x IR" x IR + -4 IR6: 

yj(t) = Gi(t,xi(t),ui(t),v(t)) (4.81) 

and the state of the system evolves according to some relation: 

kj(t)=f[t,xj(t),m(t),v(t)}, V*>0 (4.82) 
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For example, given a linear time invariant system, a familiar multivariable description of the system can 

be composed: 

X(t) = Ax(t) + Bu(t) + Dv(t) (4.83) 

y(t) = Cx(t) + Fu(t) (4.84) 

Through appropriate selection of C and F, the system's behaviour, y(t), can be defined. For a linear time 

invariant manipulator, U(i) could be a vector of desired joint torques and, with C = I, the identity matrix, 

and F = 0, the observed behaviour could be defined as the end effector state y(t) — [x x] T . However, this 

expression could just as easily describe the ith time invariant link, in which case U,-(t) = TJ, a scalar, and 

y*(*) = [qi qi]T-

D4.2 reflects the consensus that "behaviour" is the observed response of the plant. Since any realistic 

plant produces a bounded range of observable behaviours a behaviour space can also be defined, formally: 

Definition: D4.3 (Behaviour Space) / / the set of all possible output trajectories, yj(t), are bounded 

within a region, Bj C IR6, then Bj is the behaviour space ofyj(t). 

4.2.3 Behaviour Control 

In agent and multiagent control literature, confusion arises when investigators use the term behaviour. 

Though differences in desired and actual response in a plant are minimized through control, "behaviour" 

is usually used indiscriminately, equating control and response. For example, in describing an obstacle 

avoidance behaviour in a mobile robot it is often unclear whether the robot's final response or driving 

control algorithm is described.In using such terminology, the process of controller design is ignored and, 

more significantly, the dynamics between control and environment overlooked. Nevertheless, the intent of 

this usage is clear: controllers can be designed to generate a specific predictable response from the system 

under specific stimuli. So to clarify this usage, a more precise concept, behaviour control will be examined 

in detail. 

The purpose behind behaviour control is the generation of a predictable response to a specific, but narrow, 

set of stimuli. Suppose a controller can be designed to react to a specific stimulus. The controller must map 

the stimulus through some setpoint to a control effort that generates the desired response from the plant. 

The setpoint, a point or trajectory in a controller's input space, is clearly a goal description and the plant's 

response, as described earlier, a behaviour. Immediately, an elementary necessary condition of reachability 
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Figure 4.15: A goal r,(t) input to the generic controller, H,(-), with output u,(t) controls the plant, G •,-(•) 
making the behaviour, yj(t). 

can be applied to behaviour control. A goal is reachable by the plant if the goal resides within the range of 

all possible plant behaviours. 

Definition: D4.4 (Reachable Goal) Given a behaviour space, Bj, and a goal space, Gi, a goal r,(£) G Gi 

is reachable ifvi(i) G Gi H Bj 

A controller, as depicted in figure 4.15, achieves a desired response by modulating a control input to a 

plant such that the desired and actual responses converge, specifically: 

Definition: D4.5 (Control) If a process H,(-,r(t)) producing a control effort u,(t), can be designed such 

that given a reachable goal Vi(t) G Gi, the output behaviour, y(t), is stable about r,(£), then the function, 

H;(-,r(t)), is a controller. 

Thus control ensures that desired and actual responses are convergent. Clearly, goal seeking behaviour is 

synonymous with convergence: 

Definition: D4.6 (Goal Seeking Behaviour) / / the behaviour yj(t) G Bj is stable[Vidyasagar, 1993] 

about a reachable goal r,(i) G Gi, then the behaviour is goal seeking. 

This definition equates goal seeking with stability, including its progressively strict definitions such as local, 

global, and asymptotic, and exponential stability stability [Vidyasagar, 1993]. D4.5 establishes an artificial, 

causal relationship between a goal state and the observed behaviour and imposes an artificial dynamic 

equilibrium on the system through the application of control forces. In contrast, the more general D4.6 

states that goal seeking behaviour can arise from any dynamic equilibrium - no causal relationship has been 

assumed (though one may exist nevertheless). In short, goal seeking behaviour does not imply control though 

control does imply goal seeking behaviour. 
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Figure 4.16: A goal r,(t) input to the generic controller, H,(-), observes disturbances v(t) to output u,(i) 
and control the plant, G(-) making the behaviour, Vj(t). 

For example: given stable turn-right-to-avoid and turn left controllers, a mobile robot will sponta­

neously follow a wall. Thus the apparent goal seeking f ollow-wall behaviour arises out of equilibrium with 

the environment and the two controllers. Unless an explicit f ollow-wall goal was issued, one cannot say 

the robot is controlled by a f ollow-wall controller, only that the robot exhibits f ollow-wall behaviour. 

Ideally, perfect control is the result of complete knowledge of the plant's dynamics and disturbances. When 

condensed into a model, this knowledge can be used within the controller to cancel undesirable dynamics 

and disturbances. 

In an unstructured environment, however, such complete knowledge is often too complex to maintain in 

real time. If only partial, task specific models are available, a task specific controller may be used to manage 

a particular disturbance or behaviour. In short, such behaviour controllers conforming to the structure in 

figure 4.16 respond to particular stimuli (e.g. wall collisions) using appropriate sensing (e.g. range finders), 

a suitable control algorithm, and a setpoint strategy to either minimize disturbances to the system or engage 

specific behaviours: 

Definition: D4.7 (Behaviour Control) If a process H,-(-,r,-(t), v(t)) can be designed such that, given a 

reachable goal r,(i), the output o/H;(-), u,(t), minimizes the effect of a specific disturbance v(t) and if the 

behaviour yj(t) is stable about r,(i), then the function, H,(-,r,(t), v(t)), is a behaviour controller. 

Some good examples of behaviour control include: 

• Hartley and Pipitone's [Hartley, 1991] aircraft landing gear deployment/retraction triggered at a fixed 

altitude. 

• Arkin's [Arkin, 1987] obstacle avoidance triggered by obstacle range. 

• Reynold's [Reynolds, 1987] boid velocity matching behaviour. 
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Given these definitions, behaviour controlled systems seem to be simple variations on traditional control 

albeit under new nomenclature. How does agent based control differ from traditional systems? 

4.3 A General Model of Agency 

Of course, agents are traditional control systems that exploit multiple goal systems to achieve desired be­

haviour. In highly structured environments, it is possible to devise model based traditional closed loop 

control system to detect and compensate for all likely disturbances. However, as the environment becomes 

more complex so too does the model dynamics, greatly challenging centralized closed loop architectures in 

performance, cost, and complexity. 

One solution to the growing complexity of centralized model-based controllers is to arbitrate between a 

set of controllers, each coping with a specific contingency, to generate desirable plant behaviour. Though 

unproven, it is widely accepted that arbitrary behaviours can be decomposed into either simultaneous and/or 

sequential 'atomic' behaviours. Usually, atomic behaviours respond to a physically accountable stimulus, 

producing behaviour through either attractive or repulsive controllers. 

All arbitrators seem to fall between two extremes: combination and switching. Combined arbitration 

mixes the outputs of behavioural controllers algebraicly to achieve the composite behaviour. Conversely, 

switching arbitrators switch from one controller to another based on some criteria. In either instance, 

arbitration between behaviours plays a critical role in the generation of final desired behaviour. Figure 4.17 

documents this multicontroller structure while figure 4.18 depicts a condensed shorthand representation. 

The set of controllers and the arbitration process together form a new control element known as an agent: 

Definition: D4.8 (Agent) Given a plant, Gj(t,Xj(t),xii(t)), and a set of behaviour controllers, H,(£, •) : 

1 < i < b, an agent, A, combines u,- : 1 < i < b to form a composite control effort, ucj(t), to generate the 

behaviour y(t) or: 

By mapping the relatively informal definitions and structures from literature to more stringent terms within 

control theory, it is possible to specify an agent as a component composed of three fundamental parts: 

• a plant: a controlled dynamic system acting within some environment. 

ucj(t) = Aj(ui (*),...,ut(*)) (4.85) 

yj(t) = G i(i,x(*),uc j(0,v(0) (4.86) 
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Figure 4.17: A set of goals r,(t) : 1 < i < b input to generic controllers, H;(-) : 1 < t. < b, each observing 
select disturbances v(t) to output U;(t) : 1 < i < b to the arbitrator Aj(-). The composite output ucj 
controls the plant, Gj(-) to make the behaviour, Yj(t). 

• a set of behaviour controllers that respond to specific environmental stimuli. 

• an arbitrator that combines behaviour controllers to control the plant. 

In effect, the combination process condenses and segments the model-plan portion of the SMPA cycle into 

smaller subproblems. From the earlier literature review, it is clear that many believe that this represents a 

fundamental control strategy, specifically: 

Hypothesis: HI (Agent Control) Given a reachable goal, rcj(t), and a set of behaviour controllers, 

\ii(t) = Hi(t,-,Ti(t)) : 1 < ii < b, an agent, A j , can be designed to combine u,-(i) into ucj(t) such that 

the composite behaviour yj(t) is stable about rcj(t). 

In effect, Aj acts as composite controller with output, ucj(t) or: 

uci(t) = Aj(re,-(t),y(t),u,-(t),v(t)) (4.87) 

Based on control theoretic arguments, a general model of agency has been proposed. Given a fixed plant, 

this model highlights the two fundamental design problems of agent based systems: behaviour controller and 

arbitrator design. 

Though apparently distinct in this model, behaviour controller and arbitrator design are not always 

distinct in practice and are rarely simple in structure. While some architectures draw clear distinctions 

between control and arbitration (e.g. the DAMN architecture), others appear to closely couple decision 

and control (e.g. subsumption or voting models). Furthermore, in some systems (e.g. subsumption and 
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Figure 4.18: A set of behaviour controllers r,(i) and H,(-), each observe select disturbances v(t) to output 
Ui(t) to the arbitrator Aj(-). Aj(-) arbitrates amongst these controllers to track a desired goal rcj(t). The 
composite output ucj(t) controls the plant, Gj(-) to make the behaviour, yj(t). 

the SAN networks) arbitration is driven by individual controllers (a bottom up approach) while others rely 

on a centralized decision making process (e.g. Andersson's Ping Pong Player). Structurally arbitration 

mechanisms have been formed from linear (e.g. Motor Schemas) and nonlinear (subsumption), discrete (e.g 

AFSMs) and continuous functions of controller output, sensor data, and time. 

A first step to understanding arbitrator design and the coupling between arbitration and control can be 

made by examining the information flow or communication between these controllers and arbitrator. The 

following section examines these data flow relationships to aide in the further classification of arbitration 

schemes. 

4.3.1 Information Exchange 

Information exchange can be classified according to the relationship between sender and receiver of a message. 

Fundamentally, a transmission has a source or sender, an audience or receiver, and possess' data content, a 

message. The act of communication reflects two assumptions: 

1. a sender exists that can assemble a meaningful message. 

2. a qualified receiver exists to disassemble the message. 

Between a number of entities these assumptions are complicated by the potential of one-to-one or one-to-many 

transmission events. In one-to-one (or one-to-few) communication, the sender must be able to discriminate 

between potential receivers (e.g. through frequency selection, message tagging, encryption, etc.). To do 

so requires that the sender must maintain a model of the intended receiver (e.g the receivers frequency, 

identifier, or encryption key). In one-to-many communication, this need not be the case, the sender need 

only maintain a common communication standard (e.g. through a common frequency, message identifier, 
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or encryption algorithm). From this basic description some definitions may be proposed that assist in the 

characterization of agent arbitration (and, later, multiagent coordination) strategies. 

First, formalizing the concept of a message as a formal representation built out of some consistent language 

(here drawing briefly from elementary formal-language theory [Cormen, 1990]): 

Definition: D4.9 (Message) Given 

• a set of symbols or alphabet, E , and 

• a set of strings composed of the alphabet E or language, I C S , 

a message is simply an element of m € L. 

Thus a message can range from a lone 8 bit character to an elaborate set of data structures, the meaning of 

which is determined by mutual agreement of sender and receiver. 

Transmission of a message is simply the transfer of an interpretation of a representational structure from 

one entity to another or 

Definition: D4.10 (Transmission) Given a sender, S, a receiver, R, and a message, m, a transmission 

of m is the act of conveying m from S to R. through some medium. 

The correct assembly of the message is the duty of the sender while interpretation of the same message 

is the duty of the receiver. Transmission could be as basic as variable sharing within a single program to 

interprocess communication between hosts (i.e. independent computers) over some network connection. 

A sender may possess the ability to discriminate a subset of receivers from a field of candidates and trans­

mit to them alone - an act of one-to-one or one-to-few communication, here termed directed transmission: 

Definition: D4. l l (Directed Transmission) Given a 

• sender, S, 

• a set of receivers, Rj : 1 < j < Nr, 

• a message, m E L, 

then if S somehow identifies a unique receiver d £ Nr and transmits m to R<j, the transmission of m is a 

directed transmission and the message m is private. 

In other words there exist messages for which the sender must know the identity of the receiver prior to 

transmission. Clearly, private messages exploit particular capabilities within particular receivers to interpret 

http://D4.ll
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and/or act upon a message. So the act of direct transmission requires that the sender refers to an internal 

model of the receiver to both identify the receiver and compose a message that the receiver will understand. 

Within a multiprocess agent (i.e. an agent composed of many processes), the implications of such actions are 

obvious, the sending process must know the location of the receiving process (e.g. a UNIX socket or memory 

address) and must send a legible message (e.g. a byte format). In single process agents, direct transmission 

amounts to explicit variable sharing between functions or objects. 

Conversely, it is possible the sender does not know the identity of the receiver(s) prior to transmission 

in which case the content of the message must adhere to some common or public standard, i.e. a broadcast 

transmission: 

Definition: D4.12 (Broadcast Transmission) Given a 

• sender, S, 

• a group of receivers, Rj : 1 < j < Nr, 

• a message, m € L, 

then if S does not identify a unique receiver and transmits m to all Rj : 1 < j < N~r, the transmission of m 

is a broadcast transmission and the message m is public. 

This definition implies that a public message contains data that may be translated and/or acted upon by any 

or all receivers. These definitions can now be applied to the classification of agent arbitration and control 

strategies. 

Mataric [Mataric, 1994] offers similar definitions of directed communication but does not distinguish 

between one-to-one and one-to-many. Interestingly, she defines indirect communication as act of one agent 

observing another's behaviour, known as stigmergic communication in biology. 

4.3.2 Arbitration 

The combination of behaviours to form a composite behaviour is commonly referred to as arbitration. Many 

strategies have been discussed in literature from subsumption [Ferrell, 1993] and task priority[Nakamura, 1984] 

to weighted summation[Rosenblatt, 1995a] and discrete event systems [Kosecka, 1994]. No single technique 

is definitively more applicable to autonomous operation than any other, though subsumption has enjoyed 

wider application than most arbitration techniques. 
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Behaviour arbitration usually falls between concurrent behavioural combination and serial temporal se­

quencing. Between these extremes, an arbitrator combines the output of concurrent behaviours, changing the 

mixture over time. However, most arbitrators occupy the extreme regions of this design spectrum, resulting 

in some common arbitration strategies. Mixtures of these systems generally employ combination in the basic 

controllers and build meta controllers through switching [Mataric, 1994]. Colombetti et al [Colombetti, 1996] 

supply a classification notation descriptive of many multiagent systems: 

• Independent Sum. Two or more behaviours (e.g.a and P) act independently (i.e. on different actuators): 

a\p (4.88) 

• Combination. Two or more behaviours are combined into a new behaviour on a single actuator: 

a + P (4.89) 

• Suppression. One behaviour inhibits another, not necessarily on the same actuator: 

~p (4-90) 

• Sequence. A behavioural pattern is built as a sequence, o, of simpler behaviours, again not necessarily 

on the same actuator: 

cr = <*•/?•... (4.91) 

and a repeating pattern may be suffixed or o*. 

In the transformation of controller output, U; , into composite output, u c , all arbitration algorithms draw 

from one or more of these tools. As mentioned earlier, the integration of arbitration and control varies 

considerably in practice. Some arbitrators rely on a centralized model to select a specific controller. Others 

broadcast a single objective to the controller set and rely on a voting or summation strategy to determine 

the appropriate response. Finally, some arbitrators rely exclusively on environmental interaction to select 

the appropriate controller. Based on these observations the following classes of arbitration are proposed: 

• explicit arbitration 

• implicit arbitration 

• emergent arbitration 
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Explicit arbitration transforms r c into a set of subgoals,r,-, executed by the controllers, H,-, as directed 

by the arbitrator. Implicit arbitration occurs when each controller determines the appropriate response to 

the composite goal without direction from the arbitrator. Finally emergent arbitration occurs when the 

controllers drive the plant towards r c based purely on environmental interaction and without the application 

of an externally denned goal system. 

The communication definitions developed earlier can now be applied to form definitions that formally 

characterize these arbitration approaches: 

Definition: D4.13 (Explicit Arbitration) If an agent, A, with behaviour controllers H,(t,-,r,(t),v(t)) : 

1 < i < b 

1. directly transmits r,(t) to controllers H,-(i,-,r,-(i),v(*)) 

2. combines the output ut(i) to form a composite output uc(t) 

3. achieves a stable trajectory yc(t) about rc(t) 

A exercises control through explicit arbitration or simply explicit control. 

In effect, the agent determines which controller can best achieve the desired behaviour. To do so requires that 

the arbitrator maintain an accurate model of the participating controllers and that the desired behaviour can 

be explicitly decomposed into controller setpoints. The direct transmission of setpoints r,(i) is symptomatic 

of model maintenance since each setpoint is correlated with each controller. An example of explicit arbitration 

is common in manipulation control where a supervisory controller determines the necessary setpoints for 

each link controller. Since each setpoint is correlated with a particular link controller, setpoints must be 

transmitted directly to each controller (often through a simple moveto procedure call). 

The less strict implicit arbitration permits each controller to determine suitable setpoints, autonomously: 

Definition: D4.14 (Implicit Arbitration) If an agent, A, with behaviour controllers H t(£,-,r c(£),v(t)) : 

1 < i < b 

1. broadcasts the composite goalrc(t) to controllers H,-(t,-,rc(t), v(t)), 

2. combines of the output u,-(i) to form a composite output uc(t) 

3. achieves a stable trajectory yc(t) about rc(t) 

A exercises control through implicit arbitration or simply implicit control. 
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Again broadcast information transmission is symptomatic of a relatively model-free arbitrator. With a 

broadcast goal, there is no explicit one-to-one correspondence between goal and setpoint assignment by the 

agent. In effect, the agent leaves the applicability of a given control strategy to the controller, and arbitrates 

between the results using some selection criteria (e.g. votes, etc.). Implicit arbitration is rare in traditional 

control but common in daily activity. Consider the combat pilot's task of formation flying. The flight leader 

does not specify a trajectory for each wingman (in fact he may not know how many wingmen are present), 

but relies on the wingmen's ability to track the flight leader and maintain intervals autonomously. 

Emergent arbitration permits each controller to respond purely to environmental stimuli - the environ­

ment becomes the arbitrator: 

Definition: D4.15 (Emergent Arbitration) If an agent, A, with behaviour controllers H,-(t,-,r,-(t), v(t)) : 

1 < i < b 

1. only combines the output u,(i) to form a composite output uc(t) 

2. achieves a stable trajectory yc(t) about vc(t) 

A exercises control through emergent arbitration or simply emergent control. 

With no arbitrator to controller transmissions, an emergent arbitrator becomes a simple algebraic function or 

switching protocol of stimulus driven controller responses. Emergent controllers rely on a complex interaction 

of three dynamic systems to achieve the desired behaviour: the environment, the combination mechanism, 

and the controllers. Though this last form may seem somewhat contrived, in fact it represents a very common 

method of generating useful composite behaviours such as the wall following combination: avoid-obstacle 

and move-ahead [Arkin, 1987]. By fixing the arbitrator as a finite state machine switched between active 

behaviours, this stimulus driven controller combination will drive the system parallel to obstructing walls. 

This classification strategy dissects predictive modelling and planning out of arbitration. The specification 

of setpoints based on a centralized model is a form of a priori arbitration, implying that a monolithic internal 

representation of the world is sufficiently accurate to plan future actions. By classifying setpoint transmissions 

as directed or broadcast, arbitration can, therefore, be categorized as explicit or implicit. 

If no a priori setpoints are transmitted, then arbitration must be emergent or purely stimulus driven. 

Emergent arbitration does not preclude feedforward or predictive models within each controller, rather it 

limits their use to specific, narrowly defined problems. Similarly, models within an emergent arbitrator (i.e. 

those based solely on controller responses) are limited to action selection alone. 
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Figure 4.19: A simple linear agent arbitration model. 

In theory, the spectrum of explicit, implicit, through emergent arbitration represents a migration from 

centralized to decentralized modelling; relatively fragile single threaded control to relatively robust paral­

lelism; and reliance on computational determinism to dependence on environmental/controller interaction. 

In practice, agent-like systems often exhibit one or more of these arbitration strategies. In other words, 

explicit, implicit and stimulus driven arbitrators may operate concurrently within a given agent. 

4.3.3 Example: A Linear Arbitration Model 

Despite the significance of the arbitrator in most real time systems, few choose to explicitly describe the 

arbitrator as part of the control system, preferring to classify the arbitrator as a computing and not a control 

element. To explore arbitration more deeply, a simple agent model can be presented that distinguishes the 

control from the arbitration while retaining a control theoretic representation. 

Consider a model of A in which the output of m controllers are linearly combined to form a composite 

control action or: 

xic(t) = A(r(t),y(t), v(t),u(t)) = kT{t) U(t,r(t)) (4.92) 

where k(t) = [fci(i),..., kt(t)]7 is a set of b gains and u(t) = [iii (i),... , Uf,(i)]3 . 

Since the gain vector represents any class of arbitrating mechanism, from finite state machine to contin­

uous combinatorial system, k should evolve as a nonlinear function of environmental events,v(i), time and 

possibly its current state: 

k(t) = /((,k(t),r(t),y(t),v(0) (4.93) 

as depicted in fig. 4.19. Though /(•) has been chosen to map continuous time to a continuous domain 

k(i), plainly many arbitrators use discrete domains and discrete time measures [Zhang, 1995]. Indeed, the 
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evolution of k(i) might be defined as a function of either a finite state machine (discrete time and domain), 

a difference equation (discrete time and continuous domain), an asynchronous circuit (continuous time and 

discrete domain), or a differential equation (continuous time and continuous domain). Recalling Colombetti's 

[Colombetti, 1996] composition operators, the outputs of controllers HQ(-) and Hlg(-), u Q and up respectively 

might be combined through linear arbitration vectors as: 

• Independent Sum: 

• Combination: 

• Suppression: 

Uco(t) 1 0 u 0 

_ UC|g(r) 0 1 

UC(«) = [ 1 1 

uc(t) = 1 0 

u / 3 

u / 3 

(4.94) 

(4.95) 

(4.96) 

• Sequence: 

uc(t)(t) = kT(t) U0 (4.97) 

8(k(t),t)={ 

1 0 . . . 

0 1 . . . 

t < tp 

t>tp (4.98) 

where 6(-) is the delta function indicating a discrete change in state. Therefore k is a temporal sequencer 

or finite state machine within which mutual suppression, combination and/or independent action can 

be expressed. 

Now if r,- is based on a centralized model, it must be transmitted directly to each agent, symptomatic 

of explicit arbitration. If r(t) is unknown a priori and broadcast to all agents, then arbitration is implicit. 

Finally, if r,-(r) is internal to each controller, arbitration must be emergent. 
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Equivalency 

Most of the models described here use elementary combination or sequencing. Indeed, Arkin's motor schemas, 

Steels' behaviours, Van de Panne's SAN, and the DAMN architecture are plainly behaviour summation 

strategics. In contrast, subsumption and DES are plainly discrete, using finite or augmented finite state 

machines to evolve k over time (e.g. [Mahadevan, 1992]). 

4.3.4 From lone Agents to Agent Teams 

During the design evolution of a complex single agent system, it is conceivable that individual controllers 

within an agent might themselves become sufficiently complex that they acquire the attributes of agents. 

Indeed, many multiagent systems are composed agent hierarchies, in which a set of agents operate within a 

larger agent (e.g. subsumption). 

Alternatively, tasks may exist that are practically impossible to fulfill with a single agent (e.g. lacking 

time, energy, or degrees of freedom). In either case, close examination of the goal system and the available 

resources may suggest more than one agent is necessary to achieve the desired behaviour. 

Not surprisingly, real time constraints makes centralized control of agent teams impractical. For this 

reason, the coordination and control of agent based robot teams has become a growing area of investigation 

and, as we shall see in the next section, shares many of the attributes and definitions of agent based control 

systems. 

4.4 A General Model of Multiagency 

In the previous section, definitions of behaviour, control, behaviour control, and agents were established and 

an Agent Control hypothesis proposed. Within a team these definitions remain largely unchanged, the team 

is composed of a set of plants each perturbed by disturbances and controlled by an agent controller. The 

difference and advantage that homogeneous teams of agents hold over lone agents is that the goal trajectory 

need not be reachable to all team members all the time. If members cooperate or compete to fulfill the goal 

trajectory, a degree of robustness and flexibility can be afforded. 

The behaviour of a multiagent team, or global behaviour, is an aggregation of every agents' local behaviour 

in the team. Global goals are, of course, the desired behaviour of the agent team and are analogous to 

composite goals in single agent systems. 

Achieving a global goal is more complex than a composite goal, since controller arbitration within a 
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single agent is less complex than behaviour coordination amongst an agent team. As observed in Mataric 

[Mataric, 1994], the size of a discrete state space balloons from s states for a lone agent, to s a for a team of a 

identical agents. Just as in the lone agent case, information exchange governs the classifications of explicit, 

implicit, and emergent coordination. 

Historically, the ideal global behaviour arises from emergent coordination, in which a set of agents pro­

duces the desired behaviour through interagent dynamics and environmental interaction. Since both be­

haviours and the manner in which they are combined (e.g. temporally, algebraically, etc) greatly influence 

the output of such systems, the design of local behaviours becomes critically important. Without an explicit 

global goal definition, local behaviour has historically been an exercise in trial and error. Thus emergent 

behaviour is as potentially powerful is it is difficult to implement. 

Therefore, this thesis attacks the multiagent control problem assuming an explicit a priori global goal 

statement. This approach is supported by two arguments. The first is that many tasks exist that must 

be executed with some predictable guarantees of stability and precision. The second is that through a top 

down analysis and decomposition of a global goal system, a clearer understanding of multiagent dynamics 

might be achieved. Given this investigation strategy,the following sections must again address structure and 

nomenclature in a manner consistent with foregoing definitions, in particular: 

• What is global behaviour? 

• What is a global goal? 

• What is the structure of a multiagent system? 

• How are global behaviours derived from local behaviours? 

• How are local goals derived from global goals? 

4.4.1 Local Behaviour 

In a multiagent system, a group of agent controllers generate behaviours through their respective plants. 

Recalling that each agent arbitrates between b local controllers, H; : 1 < i < b we can define local behaviour 

in a familiar form: 

Definition: D4.16 (Local Behaviour) Consider the jth subplant, Gj : 1 < j < N, within a composite 

system perturbed by both control effort, VLij(t) : 1 < i' < b, and environmental disturbance Vj(t). Then the 

plant's local behaviour is the observed output, yj(t) (E Bj. 
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In a flock of boids, for example, the trajectory of boid i is the local behaviour of the boid i. Flock behaviour, 
r 

on the other hand, is clearly an aggregate characteristic or global behaviour of the collection of boids. 

4.4.2 Global Behaviour 

In [Mataric, 1994], global behaviour is termed ensemble, collective, or group behaviour and is defined loosely 

as: 
"...an observer defined temporal pattern of interactions between multiple agents." 

If the dynamics of a team of agents were enclosed within a 'black box', the system's behaviour could be 

defined through definition D4.2 as the behaviour of the black box and the structure would be indistinguishable 

from figure 4.14. Thus the definition of Global Behaviour is simply an extension of D4.2: 

Definition: D4.17 (Global Behaviour) Given plants, Gj : 1 < j < N, perturbed by control efforts, 

u,j(r) : 1 < j < N, and disturbances Vj(t) : 1 < j < N, global behaviour is the observed output, y(t) : 

TRX x IR" x 1R+ —¥ IRfc of the aggregate system: 

y'(t) = G(t,x(t),uc(t),v(0) (4-99) 

where x(t) = [xi(i),...,xx(t)]T and uc(t) = [u ci(t),...,UCJV(t)]T and the state of the system evolves ac­

cording to some relation: 

k(t) = f[«,x(t),u,-(t),v(*)], Vi>0 (4.100) 

and a definition of the global behaviour space may be similarly defined as: 

Definition: D4.18 (Global Behaviour Space) If the set of all possible output trajectories, y(t), are 

bounded within a region, B, then B is the behaviour space ofy(t). 

Observing a large flock of birds, global behaviour is often observable as a flockwide change in direction 

and the behaviour space, possibly a complex mixture of gross motion and flock shape. 

To the observer, a multiagent system may appear to behaves as a single 'black box' plant, G (Le. at 

great distance a flock may appear as a coherent mass). On closer inspection the behaviour exhibited by the 

system arises from the combination of agent action and interaction (or birds in a flock). Thus the black box 

structure of definition D4.2 and depicted in figure 4.20 is more precisely described in the complex structure 
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Figure 4.20: A multiagent controller model. Note that each agent acts upon the global plant G , though each 
agent may apply control effort to only a portion of the plant G j . 

of figure 4.21 in which the global behaviour is the product of some binding aggregate relation applied to 

agent behaviours 3 . Drawing again on the flock of birds, the aggregate relation is some function that relates 

the properties of each individual bird to the behaviour of the flock (e.g. bird position and flock centroid). 

Definition: D4.19 (Aggregate Relation) Given the behaviour of N agents, an aggregate relation is a 

function that maps the set of behaviours yj(t) : 1 < j' < N of the combined system into an observable global 

behaviour y(t) in some global behaviour space B or: 

y(t) = f(yi(t),...,yN(t)) (4.101) 

Thus, aggregate relations express constraints on the behaviour of a multiagent system, relating the 

behaviour of individual plants to the behaviour of the global plant. Such constraints can be physical equality 

or inequality constraints (e.g. end effector position, obstacle boundaries, etc.) or performance constraints 

(e.g. minimum time or minimum energy). For example, holonomic constraints on a multiagent system of 

dimension N described in some coordinate system rj can be expressed through the equality constraint: 

y-f(r]i,...,r]N) = 0 (4.102) 

Such expressions are greatly simplified through the adoption of a set of generalized coordinate systems. An 

aggregate relation describing the behaviour of the system, y 6 6, and the generalized coordinate space of the 
3Note that it is not apparent in this figure that as each subplant Gj(t) generates behaviour yj(t), it may also disturb other 

subplants in the system. The term, v(t), however, embodies all such disturbances. 
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ith of N agents, yj G Bj, are often related by a nonlinear transformation f : B\ x ... x BN -> B or: 

y = f(yi,.. . ,yjv) (4.103) 

and the coordinates yj are independent of the constraints. 

For example, the cartesian position of a manipulator end effector, y is clearly a function of the cartesian 

positions of the manipulator's links forming the constraint: 

y - f ( x 1 , . . . , x J V ) = 0 (4.104) 

Since the j'th joint's cartesian position, x,-, is a function of joint displacements, this constraint can be further 

simplified through configuration space generalized coordinates^ = qj or: 

y - f ( q i , . . . , q j v ) = 0 (4.105) 

the forward kinematic solution. The role of the aggregate relation is depicted in figure 4.21. Many examples 

can be drawn such as: 

• mobile robot troops local robot trajectories combines to form troop formations. 

• legged walkers local leg trajectories combines to form gate patterns. 

• vehicle control individual motor output combines to form vehicle thrust. 

Of course, there exist systems for which establishing a desired behaviour is trivial in comparison to 

generating the aggregate relation4 necessary to describe the aggregate behaviour. 

4.4.3 Multiagent Coordination 

From the definition of aggregate relation, any function of agents' behaviours is an acceptable aggregate 

relation. Thus, given the local behaviours of an agent team, aggregate relations describe a global behaviour. 

To achieve a desired global behaviour requires that local behaviours are organized into coordinated behaviour. 

More precisely: 

Definition: D4.20 (Coordinated Behaviour) / / agents Aj : 1 < j < N demonstrate a global behaviour, 

y(t), stable about r(t), given a set of local composite goals rcj : 1 < j < N then the agents exhibit coordinated 

global behaviour through some aggregate relation. 
4e.g. Stewart platforms [Fichter, 1996] a parallel mechanism in which a known platform position easily specifies leg lengths 

but known leg lengths do not easily specify platform position. 
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Figure 4.21: A decomposed model of a multiagent controller. Though each agent acts upon a local plant G j , 
disturbances dynamically bind plants to form a single global plant G . The aggregate relation f (•) represents 
the binding between the local and global behaviour states yj and y respectively. 

Just as an agent's arbitration strategy may be classified into either explicit, implicit, or emergent, so too, 

can multiagent coordination. The definitions of behaviour, D4.2, and global behaviour, D4.17 are virtually 

identical and the control of such system raises similar issues of centralized and decentralized arbitration. 

Indeed, it is this very duality that allows for single agent systems to be decomposed into multiagent systems. 

In explicit coordination, a centralized process composes a unique instruction set for the jth rCj. (t) of N 

agents in a multiagent system or: 

Definition: D4.21 (Explicit Coordination) / / agents, Aj : 1 < j < N, achieve coordinated behaviour 

through direct transmission (i.e. private message) of composite goals rcj(t) then agents Aj : 1 < j < 

exhibit control through explicit coordination. 

In order to collate goal messages and receivers prior to a directed transmission, the centralized sending process 

must possess a description or model of the receiving process. Explicit coordination identifies a particular 

agent receiver as capable of understanding and acting upon a goal message of a particular type. 

For example, air traffic controllers assign unique instructions to each aircraft (eg. altitude, heading, take 

off and landing order, etc.) on approach or take off, but do not necessarily instruct each aircraft how to 

achieve these goals (e.g. stick/rudder/throttle positions). To achieve such explicit coordination requires 

an accurate centralized modelling system (e.g. radar imaging, transponders, air to ground communication, 

etc.). 
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Implicit coordination, however, disposes of a centralized model of the multiagent system while retaining 

a centralized goal generation process. Such coordination requires that each agent is able to interpret and 

act locally to pursue some form of global goal expression. Furthermore, implicit coordination suggests that 

the goal generation process does not maintain a model of each receiver, permitting the same message to be 

broadcast to any number of receivers. 

Definition: D4.22 (Implicit Coordination) If agents, Aj : 1 < j < TV, achieve coordinated behaviour 

through broadcast transmission (i.e. a public message) of a goal, rc(t), then the agents Aj exhibit control 

through implicit coordination. 

Again drawing on air traffic control, air strikes in ground support are sufficiently uncertain to render 

explicit air traffic control impossible (however desirable). Though general directives (e.g. targeting, safe flight 

corridors, etc.) may be supplied by ground and air controllers, individual aircraft behaviour is determined 

by pilots as conditions warrant - an example of implicit coordination. 

Given sufficient communication resources any single agent system could be decomposed into an explic­

itly coordinated multiagent system. In such systems a centralized process engages in bilateral information 

exchanges to achieve the global goal. Implicit systems presumably require lower bandwidth, unilateral com­

munications between the goal generation and agent processes. In emergent coordination, the ideal system 

falls 'naturally' into the desired goal state through interagent dynamics: 

Definition: D4.23 (Emergent Coordination) / / agents, Aj : 1 < j < TV, achieve coordinated behaviour, 

y(t) , through neither directed nor broadcast transmissions of a goals rCj. (£) or rc(t) respectively, then the 

agents Aj : 1 < j < TV exhibit control through emergent coordination. 

In a dogfight, air traffic is still less structured and pilots often must act independently based on local 

observation and experience (and rarely with external air traffic control) to achieve local air superiority. Since 

air traffic models are necessarily local to each pilot, this global objective is often difficult to observe, but is 

achievable with sufficient training and equipment. 

In reality, multiagent systems often exhibit the full spectrum of coordination methods. Agents within 

multiagent systems have been known to communicate to negotiate explicit local plans and pursue broadcast 

objectives, while exploiting reactive behaviours (e.g. [Parker, 1992a]) - all of which support the global 

objective. 
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In Mataric's PhD thesis [Mataric, 1994], similar though not identical definitions are used to describe 

cooperation 5 that often requires directed communication to assign particular tasks to the participants. 

Explicit cooperation is defined as: 

"...a set of interactions which involve exchanging information or performing actions in order to 

benefit another agent" 

Implicit cooperation is defined as 

"...consists of actions that are part of the agents own goal achieving repertoire, but have effects 

in the world that help other agents achieve their goals." 

Implicit cooperation has more in common with emergent coordination in that global behaviour arises from 

local goal achieving behaviour. 

4.4.4 Global Goals 

Thus far the properties of global behaviour and multiagent coordination have been discussed, often with 

passing reference to a global goal. Global behaviour is, in general, the result of team behaviour. Global goals 

follow this definition by specifying a desired global behaviour. A necessary condition in the composition of 

a global goal is (as in the single agent case), reachability: 

Definition: D4.24 (Globally Reachable Goal) Given a global behaviour space, B, and a global goal 

space, Q, a goal r(t) 6 Q is globally reachable ifr(t) € Q f l B 

Given that agents can only pursue locally reachable goals (D4.4), for a goal to be Globally reachable it 

must be locally reachable for at least one agent throughout the interval of the global goal. Therefore, one 

possible definition of global goal is: 

Definition: D4.25 (Global Goal (basic)) / / a trajectory r(t) S Q is locally reachable by two or more 

agents then the trajectory is a global goal. 

Now recall that agent behaviour spaces Bj : 1 < j < N, are mapped into B, the global behaviour space, 

through the aggregate relation, f(-). Acting in isolation, the behaviour of the jth agent when projected 

through the aggregate relation, prescribes an agent behaviour subspace, B3, within B. In other words, at any 

5[Mataric, 1994]:p. 23, paragraphs 4 and 5 
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instant there exists a finite region of B reachable by the jth. agent alone. The union of the N agent subspaces 

B* is the global behaviour space or B = (Jjli &• Defining y n ^ = [yi • • • yjv]7, the rate of change of global 

behaviour with respect to local behaviours may be expressed as: 

y = ^ f y n A (4.106) 

y = J(y„A)y,,A <4-1<)7> 

where J(yn^) is the Jacobian of the aggregate relation. Given bounds on the local behaviour 'velocity' the 

instantaneous extent of an agent's global 'velocity' subspace. 

To achieve the desired global behaviour, the global goal must be decomposed into local goals through 

an inverse of the aggregate relation from the global space into the agent's local goal spaces rcr]/\(t) = 

[rcl(t)...rcN(t)]T: 

'cnA(') = g ( r « ) ( 4- 1 0 8) 

and g(-) : G Gi x ... x GN • Ideally, g(-) would be a simple inverse of the aggregate relation or: 

g(r(t)) = f- 1(rW) (4.109) 

For example, in resolved motion position control, a geometric inverse of the forward solution (an aggregate 

relation) is an example of an inverse aggregate relation. However, aggregate relations may not be easily 

invertible. There may be too few or too many agents available to exactly achieve the desired global goal. 

Recalling Samson's task function approach, it is clear that, just as in manipulation end effector tasks, 

global goals must be instantaneously feasible. So a more stringent definition of global goal can be proposed: 

Definition: D4.26 (Global Goal ) Given a trajectory r(t) £ G, local behaviours yj : yi < j < YN, and 

an aggregate relation y = f(yi • • • YN), */r(t) is feasible through f(-) then the trajectory is a global goal. 

If the aggregate relation is invertible, explicit coordination can use a one-to-one mapping to decompose the 

global goal trajectory into a unique set of trajectories for each agent. In implicitly coordinated systems, the 

inverse aggregate is distributed amongst the agents, each agent determining autonomously the appropriate 

contribution to the global goal. Finally in emergent control, an inverse aggregate is unnecessary, since the 

system falls naturally into the desired global behaviour. 

Regardless of the coordination method, one might argue that the perfect multiagent system contains 

exactly the right number and configuration of agents to produce the desired global behaviour (i.e. the 

aggregate is invertible). However, it is often beneficial for a multiagent system to contain agents in excess 
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of the global goal's requirements. In this case the inverse aggregate is not invertible requiring the extension 

of an explicitly coordination system with additional rules to distribute subgoals between 'redundant' agents. 

So while redundant agent teams complicate explicit coordination, they provide flexibility and robustness 

to multiagent systems and encourage the adoption of implicit or emergent coordination methods. Indeed 

robustness through redundancy is a key attribute of many published multiagent systems (e.g. [Mataric, 1994, 

Parker, 1992a]). 

4.4.5 Multiagent Control 

It has been demonstrated by a number of investigators [Mataric, 1994, Reynolds, 1987, Parker, 1992a] that 

through the arbitration of multiple local control strategies, each agent within a population of such agents 

can contribute to useful global behaviour with little or no modelling of the entire system. The foregoing 

definitions provide the necessary components to construct a second hypothesis that characterizes the intent 

of multiagent control control systems: 

Hypothesis: H2 (Multiagent Control) Given a global goal, r(t), a set of Agents, Aj : 1 < j < N, can 

be designed such that the global behaviour of the system, y(t), is stable about r(t). 

Encompassing both implicit and explicit varieties of coordinated agent behaviour, figure 4.20 and hy­

pothesis H2 imply the existence of some form of goal statement r(t). However, D4.23 implies that explicit 

global goals and aggregate relations need not be specified in some systems, though desired global behaviours 

and aggregate relations may be observed nevertheless. 6 This is an example of emergent multiagent control, 

discussed in the following section. 

4.4.6 Emergent Multiagent Control 

Though often attributed with "something for nothing" [Mataric, 1994] qualities, emergent coordinated be­

haviour is attractive because it does not require a central controller to produce a global behaviour. Un­

fortunately, this reputation masks the considerable difficulty in designing systems that 'naturally' converge 

towards a desirable behaviour. Historically, the attributes of a given emergent behaviour has been subjective 

and rarely explicitly defined or measured. Hence the following broad hypothesis on emergent control: 
6 A good example is the Flock Centering behaviour in Reynolds Boids [Reynolds, 1987]. At no time was an explicit flock 

description provided, though the local goal 'attempt to stay close to nearby flockmates' produced the desired grouping behaviour. 
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Hypothesis: H3 (Emergent Multiagent Control) Given a global goal, r(t), a set of Agents can be 

designed to exhibit emergent coordination such that the global behaviour of the system, y(t), is stable about 

a desired trajectory r(t). 

So important are the implications for redundant, fault tolerant control systems that emergent behaviour, 

originally an interesting side effect of multiagent interaction (e.g. [Walter, 1950b]), is now pursued as a 

performance objective in its own right ([Steels, 1991]). Unfortunately, the mechanisms of emergent be­

haviour remain largely unexplored, few investigators having modelled action and interaction of agent teams 

as dynamic systems. 

Though condensing individual agent dynamics into a single team expression permits the exploration of 

multiagent dynamics, the number and variety of agent implementations, makes a generally descriptive model 

difficult. Nevertheless, one approach to this condensation is to adopt the linear agent model described earlier 

and assemble a linear multiagent model. 

4.5 Linear Arbitration and Multiagent Control 

Suppose that N agents , Aj, coexist in a multiagent system. From figure 4.20 uc(i) may be defined as: 

ucnA(*) = [ u c iW- - - u c N W] 

Substituting equation (4.92) for each u C j: 

(4.110) 

ucnA(*) = 

uCl(*) 

uCN(t) 

k ' f 

0 

k f ( t ) u A i ( t ) 

k £ ( t ) « A N ( * ) 

U A , W 

U A N « 

(4.111) 

(4.112) 

(4.113) = K n A ( ' K A W 

where ucn^(i) is the composite control vector, K n A is a linear arbitration matrix and u p A ( £ ) is the agent 

control input vector. The condensation of a multiagent system into a single expression flattens the control 

hierarchy and conceals individual agent structures. 

Theoretically, if an aggregate relation is defined for a multiagent system as in equation (4.103) and the 

agent plants, G j , (or global plant, G) can be established and combined with the above linear arbitration 
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model, the response of the system can be determined. In practice, however, this is rarely undertaken primarily 

due to the complexity of the (real world) plant dynamics. Thus further discussion of multiagent systems is 

difficult without greater understanding of the nature of the plant G(-), the disturbances v(t) and aggregate 

relation f(-). Clearly, the exploration of agent and multiagent systems would be facilitated by the adoption 

of a standard plant. The next section will do exactly this by adopting a serial manipulator as a reference 

plant and applying the foregoing definitions and structures to explore the multiagent control hypotheses in 

greater detail. 

4.6 Multiagent Manipulation 

A logical starting point in the development of a multiagent manipulator control system is to identify agents 

that together generate an aggregate behaviour. Fortunately, this is a problem with a simple solution. As 

reviewed earlier, a serial manipulator is the physical combination of a set of links - each driven by a single 

degree of freedom actuator. The selection of individual links as agents automatically relates a number of 

manipulator properties to multiagent system components. 

4.6.1 Links as Agents 

Recalling D4.2 and reiterating the time invariant linear link state space equation (2.50) for the jth link, we 

have: 

Gj: Xj = AjXj + bjUj+djVj (4.114) 

(4.115) 

Yj = CjXj (4.116) 

with control input uy and disturbance Vj. Selecting the output matrix, Cj, as the identity matrix and 

assuming a direct drive robot (the gear transmission ratio in equation (2.50), rj = 1), one can define the 

behaviour of the jth link as the output [qj <jj]T. Given bounds on yj, the maximum and minimum joint 

displacements and velocities, the behaviour space Bj can also be prescribed. A reachable goal for the jth 

agent is then a trajectory that intersects this behaviour space - a joint position and velocity setpoint within 

the bounds of qj and qj respectively. 

By selecting a stable controller (e.g. a PD controller with LHP characteristic roots) and providing 

a reachable goal trajectory, Tj(t), goal seeking behaviour can be observed. By providing multiple stable 
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controllers that respond to local and global goal objectives, this link controller is transformed into a link 

agent. 

4.6.2 Manipulators as Multiagent Systems 

Collecting the link agents into a single model, the nonlinear manipulator plant can be recovered. Expressed 

(for example) in the linear time invariant Brunkowsy canonical form: 

where 

q 

q 

0 

1 

0 

1 

G : X = AX + bu + dv 

0 I 

0 0 

(4.117) 

y = 

u = D(q) _ 1 r 

v = -D(q)- 1 [C(q,q) + g(q) + J T f c x t ] 

Cx 

(4.118) 

(4.119) 

Again, selecting the output matrix C as the identity matrix and the transmission coefficient TJ = 1, one can 

define the behaviour of manipulator as the output [x x]T. Given bounds on y, the maximum and minimum 

end effector displacements and velocities, the behaviour space B can also be prescribed. 

The definition of the aggregate relation is dependent upon the desired global behaviour. Though not 

directly controlled by most manipulator controllers, the end effector ultimately performs tasks expressed in 

cartesian coordinates. Adopting generalized coordinates for each link agent, the aggregate relation maps the 

agent states to the end effector coordinate, the forward kinematic solution. Reiterating equation(2.4): 

y = f ( q ) = I l f = 1 A f 1 ( ( ? i ) (4.120) 

If, for example, the global behaviour was the manipulator shape, the aggregate relation could be stated as: 

y = f (q) = ijvq (4.121) 

and the global behaviour: y = q. 
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4.6.3 Global Goal Distribution 

Once a feasible global goal trajectory has been established, the goal expression must somehow be transformed 

from Q to the Qi : 1 < j < N generalized spaces of the contributing agents through some inverse of the 

aggregate mapping as in equation (4.108). 

End effector trajectory inverse solution methods, discussed earlier, are commonly implemented as explicit 

coordination strategies. In these methods joint positions, velocities, accelerations or forces are uniquely 

correlated to each joint of the manipulator. These methods may be characterized as monolithic centralized 

inverse solutions often requiring substantial dynamic modelling and are, therefore, a poor foundation for 

multiagent control. However, a closer examination of these methods reveals subtle differences that ultimately 

provides insight into an effective decentralized multiagent manipulator control strategy. 

Inverse Aggregate Maps 

Recall that R.MPC,RMRC and RMAC establish a one-to-one mapping of end effector position to joint 

displacement, velocity, and acceleration respectively. RMPC performs this through a geometric inverse 

kinematic solution, transforming end effector position from task space to configuration space. Usually 

nonlinear functions, independent of the manipulator's configuration space history, RMPC inverse solutions 

tend to be monolithic solutions in which model errors are not easily corrected on line. Therefore, it is 

imperative that this solution exactly model both manipulator and environment. 

Like RMPC, RMRC and RMAC are centralized inverse solutions that correlate unique setpoints with 

each joint. These integrable methods rely on the Jacobian inverse or pseudoinverse to solve for joint velocities 

or accelerations respectively. Unlike RMPC, however, the Jacobian inversion process uses the manipulator's 

configuration space history to correct for modelling errors. As reviewed in chapter 3, RMAC and RMRC 

use this model to implement an outer, task space control loop, moving centralized end effector tracking from 

joint space to task space. In redundant systems, this outer loop frees inner loop joint controllers to pursue 

local goals in the end effector Jacobian null space as described in detail in the next chapter. 

Finally, J T C methods apply a similar outer loop control strategy. Provably identical to RMAC given an 

exact feedforward dynamic model in task space, the Operational Space Formulation (OSF) appears to be 

little more than a transformation of integrable methods into task space. 

This summary suggests that local goals and link controller are correlated, explicit coordination methods. 

Indeed, RMPC is restrictive even for explicit multiagent coordination, since all decision making is bound to 
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a centralized geometric arbitration strategy. Conversely, RMRC and RMAC seem reasonable candidates for 

explicitly coordinated multiagent manipulator control of redundant systems. Through the use of outer task 

space control loops, both permit local activity with little global interference. 

And yet, the requirement of centralized models for both RMRC and RMAC seems to defeat the purpose of 

a multiagent system. If the state of each agent must be collected, a centralized aggregate relation assembled 

and inverted, prior to forming a set of local setpoints, what advantages are there to decomposing a monolithic 

RMAC controller into a multiagent system? Computationally and architecturally, there is no advantage. 

Indeed, the overhead of interprocess communications would add to the computational burden. 

To reduce or remove the burden of information exchange would require a substantial reduction in reliance 

upon a centralized model. However, if a model free agent-decentralized global objective could be formulated 

based on a task space control strategy, the computational disadvantages would vanish, replaced by significant 

gains in robustness, extensibility, and, possibly, real time response. 

Does a model-free decentralized global goal system exist for manipulation robotics? Given the complex 

nonlinearity of manipulators one would not think so. However, with some minor compromises a decentralized 

global goal system is possible. 

Consider the problem from the standpoint of the lone link agent. What action must this agent take to 

perform an end effector task if acting alone? Referring to figure 4.22 the required action becomes apparent. 

Suppose the desired end effector motion can be expressed as a differential distance and rotation: 

6r(t) = [<Srtrans(t) f5rrot(i)]2 

£r t r a n s(t) = [dx dy dz]T 

SrI0t(t) = [dexdOyd9z]T 

and that a lone actuator is to provide this motion. A prismatic actuator, oriented arbitrarily along vector 

k,_i must translate: 

Sq = k,-_i • Srtians(t) + 0 • Jr r o t(i) (4.122) 

but cannot rotate (hence the second term on the right hand side). For a revolute actuator at pt--i 

Sq = k,-_i x (p„ - p,-_i) • cfrtransM + k,-_i • Sr(t)TOt (4.123) 

represents the differential rotation of the ith agent's actuator. Using this line of reasoning the following 

global differential motion projection operator can be developed: 

Sq = Si(Pn,P,--i,kI--i)-6r(t) (4.124) 
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f [k,-_i x (p„ - pi-i) k,_i ] if revolute 
^Pn.Pi-i.k,-.!) = I (4.125) 

^[ki-i 0] if prismatic 

Comparison of this equation with equation (2.11) reveals that (/,•(•) is, in fact, the column vector of a revolute 

or prismatic Jacobian respectively. Thus #,•(•) is the row of the Jacobian Transpose, Jf. Apparently, the 

product of the end effector force trajectory and the ith row of the Jacobian transpose prescribes the required 

generalized force required from the ith actuator. Furthermore, the components of the row elements are 

simply the local and end effector frames in task space. 

Jacobian Transpose Control 

Jacobian Transpose control also employs equation (4.120) as the aggregate behaviour and adopts a varia­

tion on the inverse solution by determining required forces and torques rather than position, velocity, or 

acceleration: 

T=JT(q)f d (4.126) 

where fd is a desired force profile. On the surface, this seems little different than RMPC, RMRC, or RMAC, 

since the joint torque vector is computed through a central process that models the complete manipulator 

kinematics in the Jacobian, J. As we have seen, however, the transpose has a unique rowwise structure 

equivalent to a differential projection of the end effector's motion onto each actuator or: 

n =Jf(p , - - i ,p„) f (4.127) 

Encapsulated within a joint controller, J] (•) can be applied to a common global goal f, acting as a proxy 

of on behalf of the global goal. 

4.6.4 The Global Goal Proxy 

Jacobian Transpose Control offers an avenue for implicitly coordinated multiagent manipulator control. By 

assuming that p n , p;_i and f are communicated to or sensed by the agent, the Jacobian Transpose may 

be decomposed row-wise into n separate, parallel computations. Unlike decentralized controllers in which 

setpoints and controllers are uniquely correlated, distributed Jacobian Transpose Control enables all the 

controllers to apply the same global goal, fd, to p n . In effect, J / (•) is a projection operator that identifies 

that portion of the global goal that the ith joint can perform. Since it is decentralized 7 , the row can be 

7Strictly speaking decentralized control refers to the independent control of generalized coordinates. Clearly task space 
link states, functions of geometric constraints, are not generalized coordinates. However, from the data flow (or parallel 



Chapter 4. The Agent and Multiagent Model 83 

a) Prismatic Link 

r(0 

Figure 4.22: The rows of the Jacobian transpose are a projection operator from the global goal (a force 
vector) to the local goal space (an actuator moment or thrust vector). 
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incorporated into each link agent as a proxy controller, a local controller acting on behalf of a global goal: 

f [k,-_i x (p a p p - pi_i) k,-_i] if revolute 
Jf(p 1 _ 1 ,p a p p)= . (4.128) 

[ [k,_i 0] if prismatic 

where p a p p is the position of application - in the case of trajectory tracking, p„. Rather than decentralizing 

the controller into functions of local joint state, this technique decentralizes the controller into functions of 

local cartesian state, p,- and k;. To acquire this state information, each link process must either sense or, 

receive through communication, the necessary information. 

If the jth agent link stores a communications directory (arguable a rudimentary model) of agents j — 1 and 

j + 1, directed transmission can be used to pass kinematic packets containing cartesian state data between 

neighbours8 These messages are equivalent to shared sensory data upon which the agent may act at its own 

discretion. 

To support the proxy controller, message packets (composed from the language of real numbers) describing 

the distal coordinate frame of link agent Aj_i: 

Kinematic Packet, Hj_i : {pj,Rj,...} (4.129) 

must be assembled and directly transmitted by Aj_i to agent Aj. Interpreted by agent Aj as the jth proximal 

coordinate frame, Aj must transform the data to describe the distal frame of j and transmit a new packet to 

Aj+i. Through this recursive communication, the communication bus distributes the forward solution (the 

aggregate relation) over the manipulator. 

With the proxy controller and the distributed forward solution, an implicitly coordinated multiagent 

system is possible. The global goal process derives a and broadcasts a message composed of a point of 

application and a desired applied force, together forming a global goal couplet 

a-{p a p p,f d} (4.130) 

for end effector tracking, p a p p € R 6 is end effector position vector and fd S R 6 the force goal, both in global 

coordinates. Once assembled, Q may be broadcast to the agent team. The global goal generator performs no 

arbitration and, as detailed later in this study, need not maintain a model of the manipulation system. 

computing) standpoint, global proxies are solely dependent on the task space objective and link frame positions and, therefore, 
are decentralized inverse aggregate relations. In contrast, traditional decentralized manipulator controllers (e.g. [Stokic, 1984]) 
require explicit centralized inverse kinematic solutions. 

Alternatively a unilateral communications bus structure could be implemented to transport packets from manipulator base 
to end effector, 'hard wiring' a communications model into the agent. 
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(4.131) 

Trajectory tracking under Jacobian transpose control is not without difficulties, however. It is trivial to 

construct conditions under which the transpose becomes 'singular', the row product collapsing to zero: 

f [k,-_i x (p a p p - pi_2) k,_! f fd if revolute 
T i = ] T 

[[k;_i 0] if prismatic 
Though rare, such conditions arise in revolute links through the colinearity of 

1. fd and k,_i. 

2. fd and (p a p p - p,-i). 

3- (Papp - Pi-i) and k.-.j. 

and in prismatic links if fd and k;_i are perpendicular. Rarely completely freezing link motion, these 

conditions can produce a stalled or wallowing response as p a p p leaves the collapsed region. With these caveats 

in mind, Jacobian transpose techniques permit the specification of a variety of global goals, automatically 

fulfilling the implicit coordination definition. 

4.7 A Link Agent Specification 

Having identified a distributed trajectory tracking global goal, the specification of an implicitly coordinated 

link agent can now be formed based on the previously defined structure of generic agent and multiagent 

systems. 

The jth agent acts on a subplant, G ; , first defined in chapter 2. 

Xj(t) = Ajxj(t) + buj(t) + dv{t) (4.132) 

where: 

A,- = 
. q m J 

V J = -JcB,di 

note that since rj, the motor transmission coefficient is set to 1.0, qj = qmj. 

The behaviour of this subplant is simply the current link's joint: 

(4.133) 

(4.134) 

(4.135) 
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For end effector trajectory tracking, the behaviour of the multiagent system is simply the end effector 

positionp„(t), velocity pn(t), and force,f„(£): 

y(*) = 

PnW 

Pn(*) 

fn(«) 

(4.136) 

(4.137) 

The instantaneous local behaviour space Bj, is bounded by the joint position and velocity limits. 

{ Qjiow < q < Qjhigh Joint position 
• 

qjmin < q < qjmax Joint velocity 

Despite the vector notation, the control effort in this case applied to the jth link is a scalar generalized 

force or torque, ucj. The combination and/or selection of behaviour controllers will be performed through 

the linear arbitration model defined earlier 

ucj(t) - A(k(t),Uij(t) : 1 < i < b) = k r (i) Uj(t) (4.138) 

Though the details of global and local goal design are yet to be discussed, the form of the global goal is 

known. The global goal proxy discussed earlier provides the foundation for decentralized global goal seeking. 

A global goal trajectory tracking goal is a force trajectory applied to the end effector. The global goal r(t): 

(4.139) 
fd(Pn(*),Pr») 

Pn(*) 

where p n is the location of the end effector in world coordinates. Therefore, the multiagent system's be­

haviour space, B, is ultimately limited to the bounds of end effector position and velocity performance as 

well as the maximum applied force. The latter is a product of the saturation properties of each link motor, 

u s a t , and the manipulator dynamics: 

' p n C Work Volume,, Cartesian position 

B=< p„ 6 i?(Jn) Cartesian velocity (4.140) 

Jf„| < \J-T(Dq+ Cq + g - u s a t)| 

The bounds on f<j simply indicate that the bounds on the available applied force are dependent on the 

manipulator's instantaneous joint state and joint actuator saturation limits. 

The global proxy becomes: 

u,- = H,(rc(0,Pj-i) 

= Jj(p J_ 1(i), P n (0)fdW 

(4.141) 

(4.142) 
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Other Agents 

Local 
Behaviour 
Controllers 

End Effector 
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Figure 4.23: With a global goal and the global goal proxy, Jf (p,-i, PTV), manipulator end effector control 
can be distributed amongst N agents, each with local and global goals r<j and respectively. 

where Jj (pj-i(t),pn(t)) is defined in equation (4.128). This prototype link agent structure is depicted in 

figure 4.23. 

4.8 Summary 

In this chapter, a number of common terms in both agent and multiagent control have been discussed and 

formal definitions proposed. In particular, behaviours have been defined as the response of some plant; a 

behaviour controller seeks to produce a particular behaviour in response to a specific environmental condition; 

and an agent combines behaviour controllers through some arbitration mechanism. Definitions of public and 

private messaging clarified three forms of agent control: explicit, implicit, and emergent. 

These definitions have enabled the clear statement of three hypotheses that drive interest in agent and 

multiagent control systems: 

An Agent Control Hypothesis posits that an agent can be devised to achieve a desired composite behaviour, 

the product of selection and/or combination of control action to achieve a desired net behaviour. 

The Global behaviour of a multiagent team was defined as the product of some aggregate relation, a 



Chapter 4. The Agent and Multiagent Model 88 

function of some set of constraints imposed on the system. Just as agent control was classified according 

to explicit, implicit and emergent arbitration strategies, multiagent control was categorized according to 

explicit, implicit and emergent coordination. From these definitions, multiagent hypotheses were formulated. 

A Multiagent Control Hypothesis proposed that a set of agent controllers may be designed such that 

the global behaviour of the system achieves a desired global behaviour. By using a global goal generation 

process, explicit and implicit coordination methods were identified as a mechanism for the production of 

desired global behaviour of the team. Emergent multiagent coordination was discussed as the product of 

a multiagent system without such central processes, the Emergent Multiagent Control Hypothesis proposing 

that such control was possible. 

With these tools in hand, the manipulator control problem was reexamined to discover a mechanism that 

decomposes a monolithic manipulation process into a set of link agents. After discussing the significance of 

aggregate and inverse aggregate relations and manipulation, a global goal distribution operator was derived 

and shown to be exactly equivalent to the Jacobian Transpose. 

Given these results, it seems that multiagent manipulator control is indeed possible, though many ques­

tions remain unanswered. While multiple control strategies have been combined within Khatib's OSF, 

Seraji's Configuration Control, and numerous RMAC based redundant resolution controllers, these combi­

nations have been strictly controlled through a centralized arbitration mechanism such as task prioritization 

and/or null space selection. Implicitly coordinated agents do not have the luxury of a centralized null 

space selection technique. Naturally, this raises questions on the stability and practicality of multiagent 

manipulator control. 

Decentralized manipulator control is not new. However, decentralization of manipulator control through 

the Jacobian Transpose has, to this authors knowledge, neither been identified nor demonstrated previously. 

The next step is to demonstrate that multiagent trajectory tracking is possible and to explore the effects 

of additional behaviours within each agent on global behaviour and stability. Manipulator simulation, like 

manipulation in general, is typically performed through monolithic simulators. The next chapter will discuss 

the structure of a multiprocess manipulator simulation system assembled specifically for this research. 



Chapter 5 

The Multiprocess Manipulator Simulator 

5.1 Introduction 

In the previous chapter the structure of agent and multiagent systems was examined from a control theoretic 

standpoint. It was shown that multiagent systems are composed of multiple processes each capable of 

achieving independent local goals but cooperating towards a collective, global objective. Exploring these 

issues further, a manipulator was chosen as a benchmark dynamic system upon which these concepts could 

be applied. With the identification of an implicit coordination architecture, the dynamics of a multiagent 

system can now be explored through simulation. 

Traditional control simulations are usually monolithic, centralized processes. Though such simulations are 

often implemented in a high level language such as Mathematica™ or Matlab™, the real world controller 

is implemented in a lower level language such as C or assembler. Of course high level languages speed the 

investigation of controller-plant dynamics by ignoring details such as hardware architecture, data flow and 

communications limitations. However, these details are crucial to the successful control of a real world plant. 

For this reason, the software system was designed with a view to the simulation of a real world multicontroller 

environment in the belief that some of these architectural concerns might be clarified. The objective of this 

chapter is to explain the structure of the Multiprocess Manipulator Simulator (MMS) and its relevance to 

multiagent control. 

Though any simulator remains only an approximation of real world conditions, this multiprocess simula­

tor represented a significantly more realistic and demanding software development environment than mono­

lithic simulators, bearing a striking resemblance to distributed, embedded controller development platforms 

[RTI, 1996]. 

89 
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5.1.1 Requirements Overview 

Functional Requirements 

The functional requirements of any manipulator control simulation fall into two areas: environmental simu­

lation and controller logic. The environmental simulation must manage real world events such as temporal 

flow, manipulator dynamics, and other environmental features such as obstacle kinematics. The control 

portion of the simulator represents some form of controller that, ultimately, applies a force through each 

actuator in the simulator. 

Fundamentally, a manipulator simulator must faithfully generate the dynamic response of a robot given 

the application of an arbitrary number of linear or revolute actuator forces. In short, the simulator must 

be capable of modelling any serial configuration of links that drive an arbitrary constant payload along any 

feasible end effector trajectory. Of course manipulation is not limited to end effector trajectory tracking. 

A versatile simulator must allow for controllers based on environmental sensing such as force, range, and 

machine vision sensors, all operating within disparate time scales. Furthermore, the system must accommo­

date the possibility of world modelling and path planning extensions. In reality a system of this complexity 

would likely be distributed over multiple computers, becoming a multiprocess controller. 

To simulate parallel multicontrollers, each controller and dynamic model must become a distinct process, 

ideally each executing on separate CPUs. This multiprocess architecture places additional requirements 

on the simulation system in the design of both process and communication structures. In reality, control 

processes communicate with the environment through sensors and actuators. In monolithic simulators this 

'data flow' is scarcely visible, embedded within a common set of symbols shared between simulator and 

controller. In multiprocess controllers, however, interprocess data flows must be explicitly implemented 

through interprocess communication (IPC) or shared memory structures. 

An inescapable reality of all control processes, and one that presents a significant barrier to SMPA 

architectures, is that sensing and actuation usually occur at different rates, often by orders of magnitude. 

Similarly, data transfer between domains (e.g. from controller to motor or from controller to controller) 

may not occur synchronously or at identical rates, and may not always be reliable. Simulated data flow 

implementations should reflect these realities. 



Chapter 5. The Multiprocess Manipulator Simulator 91 

5.1.2 Design Specification Overview 

In examining a generic parallel multiprocess control problem, a number of key processes can be identified as 

fundamental to a simulated manipulator control system: 

• a process manager and synthetic clock 

• a generic manipulator and obstacle modelling process 

• a generic link process. 

• a global goal process 

Clearly, the launch and synchronization of the simulator requires a central simulation management module 

or process manager within which a clock can simulated. For speed, the manipulator model that mimicks the 

response of a real manipulator and its environment must be contained within a single process. Obviously 

each link agent is, ideally, an independent process. Global goals are, themselves, independent processes 

performing tasks such as trajectory generation, visual servoing, and obstacle avoidance. 

Despite the multiprocess architecture of the system, each process type shares a number of common 

elements, such as interprocess communications, vector and matrix algebra, and cartesian state representation 

to name a few. Coherent design and implementation of a class library is crucial to the simplification of the 

simulator's design and implementation. 

With basic software design specifications in place, a number of nonfunctional requirements impose con­

straints on the implementation of the multiprocess manipulator simulator. 

Nonfunctional Requirements 

To take advantage of available computing platforms (Sun SPARCstations, NextStations, and SGI Indigo 

workstations), the simulator should be designed for extensibility, robustness and portability. Extensibility 

is greatly enhanced through the adoption of object oriented computing languages such as C++ or objective 

C and the adherence to both code libraries or class hierarchies. Robustness should be guaranteed through 

modular testing and industrial debugging tools. Portability can be guaranteed through the use of ANSI 

standard languages, particularly ANSI 2.0 C++. The selection of an object oriented language such as C++ 

is based on portability and the ability to build on tested, proven code with little difficulty. 
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To ease portability between imaging platforms (e.g. Display PostScript or X windows) and between 

simulation and hardware implementation, animation, rendering, and analysis should be separated from sim­

ulation. By using an ASCII data log format any third party data analysis tool may be used for performance 

assessment. 

Another portability issue is the form of IPC or interprocess communication. On the grounds of per­

formance and simplicity, shared memory appears to be a logical choice for interprocess data transfer. Un­

fortunately, standard shared memory is based on local machine memory protocols for which there is no 

standardized network support, the most likely hardware option. This forces the selection of widely sup­

ported, though slower, UNIX datagram socket techniques. 

With these basic requirements for a multiprocess manipulator simulator, this chapter will overview the 

design of the simulation system and discuss the implications of this architecture on both simulator and 

controller design. 

5.2 Foundations 

Written in C++, any manipulation simulator will be composed of numerous classes that, if well designed, fall 

into a class hierarchy. The Multiprocess Manipulator simulator is no exception, composed of approximately 

20 object classes. This section will briefly overview the technical details around the most significant members 

of the MMS class hierarchy. In particular, attention will be focussed on the most complex abstractions 

including: quaternions, cartesian state and trajectory, LinkModel and ManipulatorModel classes. Where 

possible every class possessed a dedicated testing module and passed through the industrial-strength bug 

filter, Purify™. 

5.2.1 Quaternions 

Crucial to the implementation of a cartesian controller is the representation of orientation and, in particular, 

orientation error. Orientation, unlike translation, presents special problems not the least of which is that 

elements of the familiar 3x3 rotation matrix are not a generalized coordinates. A number of alternatives exist 

including a number of Euler angle representations [Goldstein, 1981]. In representing orientation error, Paul 

[Paul, 1981] employed a differential orientation system only useful over small displacements (from Appendix 
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B equation(B.399)): 

x e = 

dx n a • (Pd -Pa) 

dy Oa • (Pd -Pa) 

dz a a • (Pd -Pa) 

Sx 2 ( & a Od - ad • o a) 

Sy | ( n a ad - n d • a a) 

Sz n d - Od • n a) 

where n, o, arid a are the column vectors of the end effector orientation matrix and the subscripts d and a 

refer to desired and actual respectively. 

Alternatively, Yuan [Yuan, 1988] developed a Quaternion expression for orientation error Q e = —Q1Q2 

where the quaternion Q is a couplet t], q: 

Sri = mm + qfq2 (5.143) 

<5q = J A q 2 - %qi - qi x q 2 (5.144) 

and determines that two coordinate systems coincide if and only if r5q = 0. Thus cartesian error can be 

represented as: 
r 

dx 

dy 

dz 

Sqx 

H/ 
<fcu 

(see Appendix A for more detail on quaternion algebra and Appendix B for details on orientation error). 

Since this representation is compact and accurate over large orientation errors, MMS regulates cartesian 

orientation error through quaternion representations. 

By providing a quaternion class with the necessary addition, subtraction and inversion operators, a 

uniform interface to both vectors and quaternions was established. This interface greatly simplifies the 

implementation of the Cartesian State and Trajectory classes to follow. 

(5.145) 

5.2.2 Cartesian State 

The Cartesian State is universally understood to be a position and velocity vector in IR6, though, as stated 

above, orientation is usually represented as a 3 x 3 matrix. In building a Cartesian State, quaternions were 
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Class Object Representation 
vector P position 
vector V velocity 
vector A acceleration 
Quaternion Q orientation 
vector w angular velocity 
vector Wd angular acceleration 

Table 5.2: Structure of the CartesianState. 

incorporated into the object definition summarized in table 5.2. With equality and subtraction operators, 

arithmetic manipulation of cartesian states, (e.g. cartesian error vectors, trajectory generation, etc.) is 

straightforward. 

5.2.3 Cartesian Trajectories and Paths 

Cartesian Trajectories used four simpler trajectory objects to build both step and cubic linear trajectories 

in both position and orientation. A CartesianTrajectory could be completely described through a time 

interval, starting, and endpoint cartesian states. Once instantiated, CartesianTrajectory data members 

could be updated through an update(int TimeStamp) method. The class has been designed to be easily 

extensible to other trajectory types. 

Each element of the cartesian position vector was described by a trajectory object.Since the difference 

between two quaternion orientations is, itself a quaternion, an orientation trajectory can be described as 

a time varying angle of rotation, <f>, about the quaternion error axis Jq was also specified as a trajec­

tory object. Hence a trajectory in IR.'' requires the maintenance of four time varying trajectory objects 

xex(t),xCy{t),xez{i),<f>e(t) and the preservation of an orientation error axis, (5q, and start (or end) point 

positions. 

Since realistic manipulator trajectories are usually chains of smooth trajectories sometimes joined by 

discrete changes, a CartesianPath list class was defined that automatically managed the trajectory over 

changing segments. New trajectory segments could be appended to the trajectory list at any time. 

5.2.4 Parsers 

The system relies heavily on a flat file database format that describes the physical and architectural charac­

teristics of each link in the manipulator. Though flat files are often adopted for legibility, large streams of 
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numbers remain extraordinarily difficult to read without classification. A flat file format based on a simple 

BNF syntax implemented through Lex and Yacc1 enabled the assignment of numbers, strings, vectors, and 

matrices to named standard variables such as mass and inertia or 'user defined parameters' for unique 

variables (e.g. in a particular controller implementation). This data file system also allowed the definition 

of more abstract structures such as globalgoal, knotpoint,controller and link, the details of which are 

discussed later. 

In general, manipulator control experiments test the response of systems given variations in robot type, 

payloads, trajectories, control algorithms, and, sometimes, obstacle trajectories. Within the Multiprocess 

Manipulator Simulator, these four entities have been formed into an abstraction called a scenario. 

Experiments as Scenarios 

A scenario is formed by bundling five database files: 

• a robot database: manipulator link and controller specifications 

• a payload database: payload mass and inertia. 

• an obstacle database: obstacle geometries and knotpoint lists. 

• a goal trajectory database: end effector knotpoint list. 

• a global goal database: a globalgoal list. 

together within a single directory structure. By maintaining libraries of robot types, payloads, trajectories, 

end effector goal descriptions, and obstacle trajectories, scenarios can be the rapidly assembled for experi­

mental trials. Furthermore, automated scripting enables rapid construction of experimental series in which 

a single database type may be varied over a number of scenarios (e.g. varying payload mass). So significant 

is the scenario concept that each process in the MMS is launched with an internal representation of this 

file bundle, a Scenario, retrieving initialization data as required and writing execution and data logs to the 

Scenario directory. 

5.2.5 LinkModel 

The abstraction of a 'link', though straightforward, is fundamental, appearing as a parent class to both the 

link agent and link rendering concepts. The LinkModel class contains fundamental link descriptive types 

'Lex and Y A C C (Yet Another Compiler Compiler), both standard Unix utilities 
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Class Object Representation 
char Name link label 
matrix I inertia 
vector C centroid 
vector X state vector 
char Type revolute or prismatic 
double Mass link mass 
double theta revolute link rotation 
double offset offset displacement 
double length link length 
double alpha link twist 

Table 5.3: Structure of the LinkModel. 

and scenario based self initialization methods. Table 5.3 details the root structure of the LinkModel family 

tree. 

5.2.6 Interprocess Communications 

Interprocess communications play a central role in the multiprocess manipulator simulator. IPC acts in 

three capacities: the application of forces computed by link processes to the link joint motors in the dynamic 

model, the simulation of sensor data flow in link agents, and communication between link and global goal 

processes. 

In Berkeley UNIX, the main mechanism for interprocess communication is sockets a named file-like device 

with a well deserved reputation as both difficult to implement and debug. To simplify and encapsulate the 

communications protocol a Socket object was developed as the base of a communications hierarchy that is 

ultimately equivalent to a distributed shared memory system. 

The first layer of this hierarchy is the abstraction of data sources and sinks or Measurands and Sensors 

into segments of shared data SensorVector and MeasurandVectors. 

Sensor and Measurand Vectors 

MeasurandVectors are the means through which an MMS process sends data streams to other processes 

(thus acting as a measurand). Each MeasurandVector is composed of a linked list of data types (double, 

vector, or matrix) and a transmission buffer composed of an array of doubles. Double, vectors, or matrices 

of specified dimensions allocated through a MeasurandVector with a specific update rate are mirrored in the 

buffer.Allocated data elements may then be transmitted through an update (int TimeStamp) message to the 
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MeasurandVector. With a specific update rate, stale buffer elements can be updated prior to transmission. 

Similarly, SensorVectors are the means through which a process receives data streams from other pro­

cesses (thus acting as a sensor). Just as in the MeasurandVector, doubles, vectors, or matrices of specific 

dimensions can be allocated with a specific update rate and are mirrored in a receive buffer. Again sensed 

data can be updated through an update (int TimeStamp) message in which only stale variables are updated. 

To establish the equivalent of a distributed shared memory, a transmitting processes must establish a 

MeasurandVector and receiving process a SensorVector. Once both processes have allocated identical data 

sets in identical orders, continuous data updates can be facilitated through update messages on each side of 

the communication connection. 

Sensing and Actuation 

By default, each link has joint position and velocity sensors. These are implemented through SensorVector 

connections to the dynamic model and are updated at a specified rate. Other sensors can also be implemented: 

end effector force data for example. Again this is provided through a SensorVector connection to the 

dynamic model. Conversely, joint actuator forces are exerted on the link through a MeasurandVector 

connection to the dynamic model. 

The foregoing overview provides enough background to simplify the description of the individual processes 

in the Multiagent Manipulator Simulator. In the following sections, each MMS process structure will be 

briefly reviewed and the execution life cycle explained. 

5.3 The Process Manager and Synthetic Clock, SI 

The Process Manager launches, safely initializes, and synchronizes each process in the system. Given a 

scenario, SI launches and initializes the necessary link processes, the dynamic modelling process, and the 

goal process. The process manager also establishes communication links to each process used to synchronize 

processes to the synthetic clock. In the MMS, an artificial clock was adopted to maintain synchronization 

and to ensure that all the time dependent processes receive a common time stamp. 

5.3.1 Execution 

The process manager and synthetic clock are contained within the Simulation Initialization process, SI. 

Launched with the command: 
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SI <aScenarioName> 

, SI reads the robot database file and spawns a link process, LP, for every link in the manipulator description. 

A goal process, GP, and dynamic model, DM, are then spawned successively. Therefore at any time in the 

simulation cycle at least N + 2 processes are active an TV link manipulator. 

Once initialized, SI creates a set of synchronization sockets through which Time St amps can be transmitted. 

The link and goal processes then await for the time stamps from SI, the number of milliseconds (a long 

integer) from simulation To and broadcast in 1 ms. intervals. 

Execution commences with a call to the method,execute(StartTime .EndTime ,TimeStep). Only SI 

uses the experiments duration from StartTime to EndTime, all other processes cycle ad infinitum. During 

execution, the process manager transmits time stamps to both goal and link processes, synchronizing them 

to a common, synthetic clock. Before sending the next timestamp, the process manager awaits an 'echo' of 

the timestamp from the dynamic modeler. 

If an error occurs, due to spawn failures or a late 'end-of-cycle' message, or if the simulation is concluded, 

the system invokes a clean shutdown by transmitting a k i l l notice - a negative timestamp. During error 

based termination the system simply completes writing to execution logs, terminates socket connections, to 

exit cleanly. During normal termination, the system awaits an 'end-of-cycle' message from DM before shutting 

down. 

The overall structure of the multiprocess manipulator simulator is illustrated in figure 5.24. 

5.4 The Dynamic Modeler, DM 

The dynamic modeler represents the core of the simulation portion of the MMS. The purpose of the Dynamic 

Modeler is to accurately compute the response of a specific robot given physical characteristics such as the 

mass, inertia, relative geometry, and state of each link in the manipulator and the link motor's applied forces. 

The dynamic modeler must also manage the motion of obstacles in the environment. 

5.4.1 ManipulatorModel 

An abstraction of a manipulator model is important for both the dynamic modelling aspect of the MMS and 

also for controllers that rely on models for dynamic cancellation. Unlike other C++ modules in the class 

hierarchy that compromise speed for ease of use, the ManipulatorModel class has been optimized exclusively 

for speed. Object oriented methods are powerful programming tools and greatly simplify the design and 
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SI Log Scenario 

Link History 

Figure 5.24: The interprocess data flow of the Multiprocess Manipulator Simulator. As GP is not a mandatory 
process, it appears as a dashed circle. 

testing process. However, OOP methods are often slower than traditional C procedural methods. Therefore, 

a compute intensive dynamic model [Luh, 1980a, Walker, 1982] was implemented based on proven ' C tools 

[Press, 1988]. 

The manipulator was represented by an array of link structures, similar to the LinkModel object above. 

This approach permitted fast access to a given link's parameters through a single structure rather than 

simpler methods that aggregate manipulator parameters into monolithic arrays indexed by link number. 

Kinematics and Dynamics 

Kinematics and dynamics were computed using established Newton-Euler methods [Luh, 1980b, Walker, 1982]. 

Given link state values, [</,- </,• qi\T : 1 < i < N, and the link Type, link cartesian position, velocity, and ac­

celeration, [x,- x; x,] T : 1 < i < N were developed through a recursive outward computation from the 
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manipulator base to the end effector. 

R, = R,-_i R--1(</;) (5.146) 

p.- = R , - p ; - 1 + p , - _ 1 (5.147) 

{ LOi-i + Ri-iijik,- if revolute 
(5.148) 

if prismatic 

f Pi - i + Ri_i(jik x (p, — p,-_i) if revolute 
(5-149) 

p , _ i + Ri-iijjk if prismatic 
+ R,-_iq,-k + R,_i-j tk x (p,- - p,-_i) if revolute 

if prismatic 
(5.150) 

{ p,-_i + uj{ x p,- + u>i x Ui X (p,- - p,-_i) if revolute 

(5.151) 
Pi_i + R,_i(j',k + ui x (p; - p,-_i) + 2u>i x Ri-iij.k + w,- x w,- x p,- if prismatic 

Recall that the ith joint displacement (and derivatives) is expressed as a vector with a direction along link 

a prismatic or revolute axis of frame i — 1 (hence the frequent terms such as: R,-_i<7,-k). 

Link forces were developed in a recursive inward computation from end effector to manipulator base. 

The inertial forces in each link: 

ftotali = miPi (5.152) 

nitotai; = J,wi + w,-x (J,Wi) (5.153) 

where J ; is the link inertia in world coordinates. Applying Newtons Second Law to the »th link: 

ftotal; - f i - f » + i (5.154) 

nitotai = m,--m,-+i+ (p,-_i-p c , -) x f,-- (p,--p c ,-) x f,-+i (5.155) 

where f , + i is the force applied to the ith link by link i + 1 and pCI- is the position of the center of mass in 

world coordinates. Solving for f; and m,-: 

fi = fi+l+ftotal; (5.156) 

m,- = m,-+1 + p* x f i + i - (pt - p*.) x Pt- (5.157) 

where p* = Pi+i — P; and p* ; is the location of the ith link's center of mass in link i coordinates (i.e. a 

constant). The forces at the joint may then be extracted from fi and m,- through: 

{ (R;_ik) 7 m if rotational 
(5.158) 

(Rj_ik) T f if prismatic 
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The origin of the world coordinate system is fixed to the base of the manipulator and assigned a null 

velocity (i.e. p 0 = 0 wo = 0). Gravity is simulated by applying an acceleration of magnitude g to the world 

coordinate system (e.g. po = ffk wo = 0). 

Dynamics are initialized with either known end effector forces (e.g. f„+i = fee m n + i = m e e) or inertial 

payload forces (e.g. assuming a fixed end effector payload: fn+i = "ipayloadPn mn+i = JpayioadWn 4- u„ x 

(JpayioadWn)). For clarity, the manipulator equations of motion have been presented in world coordinates. 

However, the actual dynamic model adopts a faster, though less intuitive form of these equations composed 

in link coordinates. For a complete discussion of this well established technique consult [Luh, 1980a]. 

Model Integration 

The objective of a dynamic simulator is to compute the accelerations of the joints given the applied torques, 

displacements, and velocities, integrating the results to develop the next time step's position and velocity. At 

each timestep (every 0.001 seconds of simulation time) the MMS manipulator model was integrated through 

a fixed timestep fourth order Runge Kutta integrator [Press, 1988]. Joint accelerations are determined from 

the robot equation: 

D(q)q + C(q, q)q + G(q) + J r(f e) = r (5.159) 

The robot equation can be rewritten: 

D(q)q = r-b (5.160) 

b = C(q,q)q + G(q)+JT(f e) (5.161) 

where b is a bias vector, the output of the recursive Newton Euler dynamics algorithm when q have been 

set to zero. The accelerations may then be computed simply through: 

q = D(q)- 1 [r-b] (5.162) 

The final problem is the determination of the mass matrix D(q). For a manipulator of known geometry an 

analytical solution may be determined manually a priori. However, for arbitrary manipulators a numerical 

method is required. 

Determining the Manipulator Mass Matrix 

The mass matrix algorithm (from [Walker, 1982]) employs an interesting technique to determine the ma­

nipulator mass matrix, the most CPU intensive task of a generic manipulator modelling system. Basically 
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the technique uses the relation that each element, ij, of the mass matrix is equivalent to the internal forces 

present in link i during a unit acceleration of link j , all other links being motionless. For a given accelerated 

link j , the inferior links > j are treated as a rigid body, requiring the computation of an effective mass center 

and moment of inertia for this rigid body. The forces exerted on the rigid body above link j are: 

Fj = Mj&j (5.163) 

where Mj and ay are the mass and acceleration of the composite rigid body in the jth coordinate system. 

Since only the jth link is accelerating and all others are motionless, this may be rewritten as: 

Fj = MjqjZj-i x Cj (5.164) 

where Cj is the rigid body's center of mass. Rewritten for a unit acceleration: 

Fj = Zj_i x MjCj I revolute joint j 
> (5.165) 

Fj = MjZj_i J prismatic joint j 

Similarly the applied moment becomes: 

Mj=Zj_iEj 1 revolute joint j (5166) 

Mj =0 J prismatic joint j 

where Ej is the effective moment of inertia of the composite rigid body. These forces,f,-, and moments,mi, 

are propagated down to the base of the manipulator employing the recursive relations begun at joint j : 

fj = Fj (5.167) 

mj = M J + C J X F J (5.168) 

and propagated down to the base of the manipulator through all the links i < j: 

fi = f i + i (5.169) 

m; = m,-+i + p,-x fj+i (5.170) 

where p; is the distance from joint i — 1 to i and remembering that all the links i < j are motionless. With 

the values of fi and m, known for each link i — 1... j , the value of the Mass Matrix Elements for the jth 

column may be determined by: 

* 
. z,_i • m,- revolute joint i 

Dij = <( _ / _ _ (5.171) 
z,-_i • fi prismatic joint i 
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The key in this process is designing this algorithm to be completely recursive, thus conserving CPU 

resources. Walker and Orin [Walker, 1982] describes the necessary recursive technique in detail, finally 

recommending a "method 3", used in DM, that has the least computations per degree of freedom. The total 

minimum computations to compute N joint accelerations using "method 3" becomes [Walker, 1982]: 

Thus, at best, arbitrary manipulator dynamic model computations are 0(N3). 

5.4.2 Obstacle Modelling 

In this simulation, obstacles were represented as rigid physical objects having both geometry and movement 

specified in the obstacle database. An ObstacleManager acted as a single interface between the dynamic 

modelling process and a set of obstacle objects. Updates or queries posted to the manager were broadcast 

to all obstacles. 

Obstacle objects were specified in database entries standardized about the obstacle type, current posi­

tion and path of the obstacle frame to form a trajectory script. Specific characteristics, unique to obstacle 

subclasses, were specified through nonstandard 'user defined variables'. Though only spheres were imple­

mented (SphereObstacles), the obstacle interface was designed to be generic and could support arbitrary 

obstacle geometry. 

In addition to motion, obstacles must also respond to sensor probes of the environment. Fortunately, 

such probing produces data of limited dimension, either scalar, linear arrays, or matrices of values. For a 

given sensor type, the magnitude of these values depends entirely on the relevant obstacle property (e.g. 

shape, temperature, etc). Thus sensor implementations reside not in a Sensor class but within the obstacle 

itself. In this way a Ping method applied to a particular obstacle returns the vector to the surface nearest to 

the sensor source - much like an ultrasound, lidar, or radar sensor. It is up to the obstacle implementation 

to develop the correct return vector for a particular obstacle morphology. 

5.4.3 Physical Realizability 

Though every attempt has been made to ensure that the manipulator and motor dynamic models are realistic, 

one important real world characteristic has been omitted from DM, interference checking. Interferences occur 

when two objects simultaneously occupy identical regions of space. Of course, in reality colliding objects do 

multiplications : 

additions : 
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not intersect, but rebound according to the kinematic and material properties of both bodies. In manipulation 

simulation, interference is frequent as revolute manipulators rotate ad infinitum about their axes and links 

intersect both work space obstacles and other links. The solution is to model and maintain the boundaries 

of each object in the system and, if interference is detected, apply collision forces to interfering bodies. So 

for every TV simulated bodies TV — 1 interference checks must be performed or TV(TV — 1) checks per timestep 

and, if necessary, collision forces applied. Collision modelling, too, is nontrivial, requiring accurate surface 

geometric and material descriptions to compute incident angles and return forces. 

Neither the link nor obstacle modelling systems adopt interference checking (a common practice in many 

manipulator simulations) nor is a collision model provided. The computational cost of such checking, the 

subsequent difficulty of developing a realistic collision model, and the limited value of such extensions to an 

investigation of multiagent control are sufficient cause to leave these features to future manipulator simulation 

systems. 

So while manipulator dynamics have been developed according to standard well established simulation 

techniques, DM is unable to accurately portray manipulators collision dynamics during interference events. 

Though theoretically valuable, the manipulator's response during such events is, nevertheless, physically 

unrealizable. 

5.4.4 Execution 

When DM is spawned by SI: 

DM <aScenarioName> 

the robot database is used to build the ManipulatorModel object discussed above and to construct two 

socket connections to each link process, a measurand connection to provide each link with joint state data 

and a dynamic stream connection to receive motor control commands. DM also inspects the global goal 

database for global goal sensor requirements (e.g. force sensing in RMFC). Obstacles and their trajectories 

are created based on the contents of the obstacle database. DM then creates both an execution log and a 

result history within the scenario directory. 

Once initialized DM initializes sensor data to the Link Processes. The process then enters the main event 

loop by awaiting a controller command, a timestamp and force value pair. If either a k i l l notice is received 

or a discrepancy in the timestamps is observed, an error condition has occurred and DM begins shutdown and 

cleanup. Otherwise, the model proceeds with the integration process, a call to the RungeKutta4( .) method. 
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The result of a successful integration, a new manipulator state, is immediately transmitted to the link 

processes as position sensor data. Similarly, force data computed through the Newton Euler dynamic model 

methods may also be transmitted, if required. Integration fails only if the inversion of the mass matrix, 

D (q ) , in equation 5.162 (via LU decomposition) fails, a sure sign of lurking algorithmic errors or controller 

instability. Such failures trigger k i l l notice transmissions and subsequent process shutdowns. 

If the state transmissions are successful, an end of cycle message is passed to SI and the system returns 

to the start of the main event loop. 

The dynamic modeler executes the main event loop ad infinitum. However, any k i l l notice frees DM from 

this loop and invokes a clean shutdown of the process, including the transmission of the final timestamp to 

SI, the storage to file of historical data, the deallocation of memory, and the closure socket connections. 

Thus far the simulator portion of MMS has been described, the basic infrastructure of the system. The 

following sections detail the control portion and represent a significant divergence from traditional monolithic 

control architectures. 

5.5 The Global Goal Process, GP 

The global goal process serves a key function in MMS: to compute and distribute goals to link processes. 

The design of the global goal process accommodates multiple global goal processes through the adoption 

of a GoalArray, a simple array of goal generation objects. As indicated in the definition D4.1, a goal is a 

trajectory through some goal space. The goal space varies between control strategies. Traditional RMPC 

systems translate desired end effector locations into local goals for each link process, position setpoints 

in joint space. RMAC systems, however, translate these same locations into force setpoints for each link 

process. JTC, as discussed earlier, uses a goal couplet containing both end effector position and desired force 

(equation(4.130)), 

5.5.1 The GlobalAgent Object 

The GlobalAgent forms the core of the global process. This object has two important data structures: the 

Goal array, and the AgentlOStream array. The Goal array contains a list of active global goals, and the 

AgentlOStream is an array composed of a SensorVectors and a MeasurandVectors, each of which comprises 

an input and output data flow between global and link processes. 

The purpose of the GlobalAgent is to generate and distribute global goals to all of the link processes. 
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There are two sources of goal generation. The first is through local goal generators such as : 

• Resolved Motion Force Control 

• Resolved Motion Decentralized Adaptive Control 

• Resolved Motion Acceleration Control. 

and reviewed in the next chapter. The second mechanism is through remote goal generation in which link 

processes assert global goals to the agent team, demonstrated in Resolved Motion Obstacle Avoidance in 

the next chapter. In this case, the global goal process acts as a rebroadcast medium propagating a single 

goal expression to the entire agent group. 

To support multiple goals, the GlobalAgent employs a Goal array. Given goals specified within the 

Global Goal database file, the GlobalAgent instantiates objects inheriting from the Controller class into 

the Goal array. 

The Controller Abstract Superclass 

The Controller class encapsulates any object possessing time dependent response within an abstract su­

perclass, such as goals and controllers. By adopting an abstract superclass for various goals, goal subclasses 

can be placed into a single array of Controllers. Practically speaking, this means that regardless of the 

controller subclass, all Goal array members will respond to the update () method regardless of their subclass. 

For a further description of the abstract superclass concept consult [Lippman, 1991]. 

IOStreams 

To communicate global goals, receive goal assertions, and kinematic bus data, a general purpose inter­

process input/output data structure or IOStream implements a bilateral communication connection. The 

GlobalAgent object can pass these connections to members of the Goal array, allowing each to establish 

input or output data streams with the agent team at will. In this way an end effector trajectory tracking task 

can simultaneously receive end effector state data and obstacle avoidance goal assertions without interference 

from the GlobalAgent object. The only requirements for successful mating of goal and agent communication 

is that the agent proxies and the global goals employ identical data formats and that space is allocated in 

SensorVector and MeasurandVector structures for both link as the global goal processes. Fortunately, the 

latter is easily ensured by adopting identical sequences in both link controller and globalgoal lists in the 

robot and global goal database files respectively. 
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5.5.2 Execution 

A t launch GP parses the robot i n the S c e n a r i o and creates the necessary number of IOSt reams. Based on 

their order of appearance i n the global goal database, GP instantiates the necessary goal generators into the 

G o a l array, passing the IOStreams to each generator. W i t h i n each goal generator, d a t a is a l loca ted f rom the 

S e n s o r V e c t o r and a M e a s u r a n d V e c t o r components of the IOStreams. T h i s a l loca t ion step, when m i r r o r e d 

i n the l ink processes, establishes the equivalent of a shared memory connect ion between the two processes. 

T h o u g h not a l l goal generators al locate S e n s o r V e c t o r memory, a l l a l locate M e a s u r a n d V e c t o r space th rough 

wh ich the g lobal goal is t ransmi t ted . 

Once in i t i a l i zed GP enters an event loop by awai t ing the ar r iva l of a t imes tamp f rom S I . O n receipt of a 

t imes tamp, the inpu t IOSt ream is u p d a t e d . If successful, the G l o b a l A g e n t successively calls the upda t e () 

m e t h o d for each C o n t r o l l e r subclass i n the G o a l array. T h i s m e t h o d either updates or copies goal assertions 

into the appropr ia te a l loca ted variables i n the output IOs t ream. T h e event loop is concluded by u p d a t e i n g 

the output IOs t ream. 

Jus t as the receipt of a k i l l notice invokes shutdown and cleanup, so too w i l l an IOSt r eam t ransmiss ion 

or receipt failure. L i k e the other processes, t e rmina t ion does not occur u n t i l the execut ion a n d h is to r ica l 

da t a logs are comple ted . 

5.6 The Link Process,LP 

T h e l ink process draws on the scenario database to construct an agent that receives sensor d a t a streams 

f rom the d y n a m i c mode l , acts on an a rb i t ra ry number of b o t h loca l a n d global goals, a n d returns a some 

force output back to the dynamic mode l . T h e core of LP is the Agen t object. 

5.6.1 The Agent Object 

T h e Agen t Objec t implements the concept of an agent as defined i n chapter 4 . 8 . Since the purpose of an 

agent is to arb i t ra te between behaviours employing some decision or combina t ion strategy, a means of s tor ing 

a n d invoking generic behaviours must be provided as well as a mechanism for the col lec t ion a n d supply of 

goal and sensor da t a to and f rom external processes. 

S t ruc tura l ly , an agent object is composed of three fundamental entities: 

• the K i n e m a t i c B u s 

• the IOSt ream 
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• a set of Controllers 

• an arbitrator 

exploiting six fundamental data flows: 

• kinematic bus streams (input/output) 

• Sensor data streams (input) 

• Global goal IOStreams (input/output) 

• Control effort (output) 

5.6.2 The Kinematic Bus 

LP decentralizes control by distributing cartesian state computations over each link of the manipulator. This 

is accomplished by supplying each link process with locally sensed displacement data, a local geometric model, 

and through distributed Newton Euler equations coupled to an interagent communication infrastructure or 

Kinematic Bus. This infrastructure has a flow through recursive architecture in which the ith link successively 

receives and transforms cartesian state information packets from link i — 1 and transmits the transformed 

data in a packet to link i + 1. The Kinematic Packet sent from i to i + 1 is a message with syntax: 

Kinematic Packet, E,- : {p,-,R,-,p,-, w , } (5.172) 

Since values are in double precision (8 bytes) the kinematic packet is 144 bytes: 

• R;, an orientation matrix (72 bytes). 

• p,-, a position vector in base coordinates (24 bytes). 

• pi, a velocity vector in base coordinates (24 bytes). 

• Wi,an angular velocity vector in base coordinates (24 bytes). 

The Kinematic Bus encapsulates the reception, transformation, and transmission of cartesian state data as 

well as sensed data collection from the dynamic model, DM within a single KinematicBus class. Communi­

cations are through SensorVector and MeasurandVector objects updated at every timestep. 
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On receipt, a kinematic packet is transformed from the cartesian state of A,_i to A,- through the following 

set of recursive Newton Euler equations: 

R, = R i - i R p ' t e ) (5.173) 

p,- = R , - P r 1 +p , -_ 1 (5.174) 

{ LOi-i + RiQik; if revolute 
(5.175) 

u){-\ if prismatic 

{ x>i-i + R,a,k x (pi — Pi-i) if revolute 
(5.176) 

pi_i + Rj^jk if prismatic 

where k is the link's revolute axis of rotation or the prismatic axis of translation (according to the Denavit 

Hartenberg convention [Denavit, 1955]) in link coordinates and (qi,qi) are the sensed joint positions and 

velocities respectively 2 . The local geometric model is limited to Denavit Hartenberg parameters. 

5.6.3 The Global Goal IOStream 

As mentioned in the description of GP, the global goal and link processes communicate through IOStream 

connections - pairs of SensorVector and MeasurandVector structures. Controller proxies receive global goal 

directions (such as global setpoints) through the SensorVector, while data can be transmitted to a global 

goal process through the MeasurandVector structure (such as end effector locations, obstacle avoidance 

assertions, etc.). 

5.6.4 Controller Objects 

A key feature of the MMS in general and LP in particular is controller modularity. This was greatly simplified 

through the adoption of the Controller abstract superclass for the description of local controllers. All 

controllers employed within an agent were subclasses of Controller. Though most local controllers used 

fixed setpoints specified within the robot database file, another variety of controller acted on behalf of the 

global goal process to influence the agents actions. 

When a global objective is being pursued, SI launches the global control process, GP that generates and 

transmits instructions to the link processes, LP. This requires that each link has a mechanism for receiving 

and interpreting externally generated goal process instructions. Controllers that implement these reception 

protocols are proxies, acting on behalf of the global goal specifying a control effort to the agent. Controller 
2 A s a second derivative of position, cartesian accelerations are considered too volatile to incorporate into the kinematic 

packet. 
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proxies object allows external goal processes to act as a local controller to a link object. These proxies are 

indistinguishable from any other controller object from the Link object's standpoint. However, a controller 

proxy differs from local controllers by establishing a communication link between an independent controller 

process and the link object. 

The goal process (described earlier) continuously broadcasts goal objectives to the client controller proxies. 

Semantically one can interpret such transmissions as the arrival of global sensory data to a local controller. 

Depending on the control rate of the sensor the controller proxy may or may not act upon the information 

received from the global goal. 

The Controller Array 

Active controllers (and controller proxies) are stored within an array of M Controller objects, u A : 

u A = [ui u 2 . . . uM]T (5.177) 

. After the link process parses the link database file, legal controller database definitions are instantiated 

as subclasses of the Controller class and added to the controller array. 

Once instantiated, the link process has no mechanism discriminating between controller objects treating 

each controller identically by invoking an update () message in all members of the controller array at each 

timestep. 

5.6.5 Arbitration 

In this agent implementation a simple linear arbitrator of the form described in equation (4.92) is used to 

weight controller array responses. The jth controller definition in the link database file can assign a constant 

arbitration coefficient kj (by default kj = 1.0). These coefficients are, in turn, stored as an arbitration vector 

k: 

k A = [ki k 2 . . . k M ] T (5.178) 

The agent output, u c , becomes: 
M 

uc = 53k,-Uj (5.179) 
J'=I 

As discussed in the following chapters, even this simple strategy can produce interesting 'self arbitrating' 

behaviour between rival goal systems. 
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5.6.6 Execution 

At launch, link processes establish bus connections through the SensorVector and MeasurandVector objects 

to neighbouring links, and the terminal link (the end effector) establishes a similar connection through an 

IOStream connection to the global goal process. 

The link cartesian state is updated upon confirmation of incoming data from the Kinematic State Bus 

describing the cartesian kinematic state of the lower link frame. 

Once this data has been retrieved the Newton Euler transformations (either revolute or prismatic) are 

applied to the cartesian state and transmitted immediately to the next link process via the KSB. 

If global goals have been specified, each link process awaits any global goal broadcasts. Each controller 

is then anonymously invoked and the responses combined within the linear arbitrator to form u c. Finally, 

u c is transmitted to the Dynamic model as a motor torque. 

As in other processes, the receipt of a k i l l notice invokes shutdown and cleanup as does the failure of 

interprocess communications. Again, termination occurs only after execution and historical data logs are 

completed. 

5.7 Operational Overview 

Figure 5.25 provides an overview of the operation of the Multiprocess Manipulator Simulator. At the 

beginning of each cycle a timestamp is transmitted to the GP and all LP processes. The timestamp triggers 

the base LP process to transmit the kinematic packet Ei to LP2, in turn triggering a similar recursive 

transmissions down the kinematic chain to LPjv and, if necessary, GP. With updated end effector data, GP is 

free to compute and broadcast the global goal couplet to all LP;. On receipt of global goal couplet(s) each 

LP,- computes and transmits a response to the dynamic modelling process, DM. DM incorporates these control 

efforts into the dynamic model and integrates the system to the next time step. Finally, the model transmits 

sensed data back to each link process. 

5.8 Data Logs and Viewing 

Only GP, DM, and LP processes generate experimental data, all stored in historical data logs. Rather than 

archiving results from every 1 ms. time step, all results data streams are sampled every five timesteps to 

reduce potentially enormous data files to manageable sizes. Nevertheless, running a 10 degree of freedom 

manipulator over a 40 second simulation run consumes 12 Mbytes. 
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Figure 5.25: Interprocess data flow between the link processes 1... N, global goal process GP, process 
SI, and dynamic model DM. Note that the link state X; = [</, r j , ] T . 
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Digesting and analyzing these data files was, itself, a significant undertaking. The MMS class hierarchy 

in conjunction with Pixar's excellent QuickRenderMan™ image rendering library [Upstill, 1990] and su­

perb N E X T S T E P ™ [NeXT, 1993] 'AppKit' libraries, greatly facilitated the rapid recovery, representation, 

manipulation, and archiving of robot images from these data files. Data plots were generated through the 

powerful MATLAB™ environment. 

5.9 Verification 

Verification of such complex software systems must be a cumulative process, each software layer tested 

independently. By ensuring that vector mathematics modules (for example) are functioning to specification, 

only the algorithmic correctness of later modules (such as the dynamic modeler) need be verified. Extensive 

cumulative testing played a crucial role in establishing confidence in the simulator software. 

While cumulative tests are necessary and sufficient for service utilities, they are ineffective in testing 

the algorithmic correctness of physical simulations. Therefore, the final verification step in the simulator 

development process is to validate the kinematic, dynamic, and mass matrix computations by comparing 

the simulator against a standard, verified, reference model. 

To speed the verification process and ensure accurate implementation of a reference model, the dynamic 

modelling facilities of the simulator were verified against an established symbolic dynamics generator, NEDYN 

provided by Toogood [EL-Rayyes, 1990]. This remarkable software generates symbolic dynamic models 

for either rigid or flexible manipulators models in FORTRAN, further optimizing these models into the 

minimum number of operations. At once, this software provides arbitrary dynamic models, optimized and 

verified through previous testing. After minor conversion to C++, NEDYN's output was used to verify the 

arbitrary dynamics generator, DM through comparative testing. 

Though the specific verification reference model must be sufficiently rich to exercise all aspects of the 

modelling system, it must not be overly complex. Indeed as an error detection tool, it is important that 

discrepancies between the reference and tested models be easily resolved. For this reason a relatively simple 

planar manipulator model is sufficient to exercise the dynamic modeler and mass matrix computation system 

and yet is simple enough to provide a useful debugging tool. Based on previous matrix algebra verifications, 

planar manipulators provided sufficient complexity to demonstrate algorithmic correctness. 
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Parameter Symbol Value 
Name link i 
Mass m,- 1.000e+01 kg. 
Pr. Inertias IJJ [+0.0500 + 0.4938 + 0.4938] kg-m2 

centroid C [-0.3750 + 0.0000 + 0.0000] m. 
Type R (revolute) 
Init. Displacement 60i or cZ0l 

+0.000e + 00° (or in) 
Init. Velocity +0.000e + 00° /s (or m/s) 
Twist a; +0.000e + 00° 
Length di 7.500e - 01 m. 
Back E M F 1.0 
Saturation +1.000e + 06 (unsaturated) N-m 

Tabic 5.4: Reference Link, Joint, and Motor parameters. Centroid is relative to link frame. 

Figure 5.26: The 3R planar reference model used to verify DM against NEDYN. 

5.9.1 A 3R Reference Model 

One such example is the planar three degree of freedom robot depicted in figure 5.26 and composed of three 

identical links. 

Within the robot database file, each link entry clearly identifies all the relevant parameters for a given link. 

A link name distinguishes each entry and provides a source of unique socket names. Link parameters such 

as the link mass, inertial and centroidal data (in local coordinates), and the denavit Hartenberg parameters, 

9,d,a,£, provide critical geometric data the assembly of both kinematic and dynamic models. Saturation 

is included to provide real world constraints on torque/force output from each actuator. These values are 

summarized in table 5.4. 

These physical parameters are followed by controller specifications. For the verification runs, a simple PD 
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Figure 5.27: Here, the superimposed displacement responses of both the symbolic NEDYN and numerical 
3R planar reference manipulator (link 1, top; link 2, middle; link 3, bottom) indicate excellent agreement 
between the two methods. 
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controller, PID.joint.center, described in detail later, with setpoint = +1.57rad, position and velocity 

gains set to 100 and 20 respectively, operating at 120Hz. The payload data file specifies a 10 kilogram 

payload centered on the end effector. Since PID.joint.center controllers pursue the setpoint specified in 

the database entry, they do not require a central global goal generator, and GP is never launched. 

The experimental results depicted in figure 5.27 demonstrate excellent agreement between the symboli­

cally optimized NEDYN and the equivalent numerical methods described by Walker and Orin. Since NEDYN 

and the numerical modeler are based on identical Newton Euler methods and use identical manipulator mod­

els, identical output from the two systems is to be expected. 

5.10 Summary 

In this chapter we have reviewed the design and implementation of the Multiprocess Manipulator Simulator 

and verified its performance against a published numerical simulation system. In the following chapters, this 

simulator will be applied to the multiagent manipulator control problem and the goal and link processes 

expanded to implement multiple local and global goals. The next chapter, however, will examine the per­

formance of the global goal system for trajectory tracking, through comparison of goal generation methods 

and demonstration of the global goal proxy concept. 



Chapter 6 

Global Goal Generation 

6.1 Introduction 

In chapter 4 resolved motion position control, resolved motion rate and acceleration control, and Jacobian 

transpose control were evaluated as global goal distribution mechanisms. Based on an examination of the 

structure of these inverse aggregate methods, RMRC and RMAC were shown to be less desirable than 

Jacobian transpose methods. Further, it was suggested that if each link's cartesian state could be sensed 

or computed, Jacobian transpose control becomes effectively decentralized. By projecting a global goal, an 

end effector force onto the ith link through the ith row of the Jacobian transpose, a global goal couplet was 

defined in equation (4.130): 

where p n is the end effector position. 

This chapter will explore a multiagent manipulation system based on these precepts. Having identified 

a distribution mechanism for f<j in the global goal proxy, a method of generating fd must be selected from 

the following possible techniques: Resolved Motion Force Control, the Operational Space Formulation, and 

Configuration Control. Each of which develop joint forces based on an end effector force vector, fd, a function 

of a desired task space trajectory x<j(i): 

where xe(t) = Xd(t)—xa(t) and to varying degrees, employ a centralized kinematic model of the manipulation 

system. In the Operational Space Formulation cartesian trajectory tracking forces are generated through a 

task space feedforward manipulator model. In a simpler technique, Resolved Motion Force Control develops 

a force trajectory based on a feedforward payload model, compensating for 'unmodelled' dynamics with a 

force feedback stochastic estimator. Direct Adaptive Control (for clarity renamed here Resolved Motion 

Decentralized Adaptive Control or RMDAC) employs model reference adaptive controllers to compensate 

for both payload and manipulator dynamics. Appendix E briefly reviews the pros and cons of OSF and 

GG = (pn,fd) (6.180) 

fd = /d(xd(i),xe(t),xc(r)) (6.181) 

117 
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RMFC as goal generator candidates, while the details of Resolved Motion Decentralized Adaptive Control, 

the preferred goal generator, are described below. 

6.2 Global Goal Generation 

A number of force trajectory generation methods have been proposed for Jacobian Transpose Control, includ­

ing Khatib's Operational Space Formulation (OSF), Wu and Paul's Resolved Motion Force Control(RMFC), 

and Seraji's Direct Adaptive Control (DAC). Intended as centralized end effector control architectures that 

maintain a single, coherent, manipulator model, these techniques must be reevaluated as global goal gener­

ation systems. In short, what constitutes an appropriate global goal generator for multiagent manipulator 

control? 

Recall that three forms of coordination span multiagent system control: explicit, implicit, and emergent, 

each representing a compromise between deterministic behaviour and robustness. Explicit coordination 

strategies regulate each agent's behaviour through a centralized model based process. Implicit coordination 

strategies control global behaviour without any team model. Emergent coordination methods produce global 

behaviour purely through agent interaction, without any global goal specification or modelling. 

Local and global Behaviour are deterministic for systems under explicit coordination though they tend 

to be fragile in the face of unmodelled changes. By sacrificing some local determinism, implicitly coordi­

nated systems maintain globally deterministic behaviour and gain robustness to unmodelled events. Local 

behaviour under emergent coordination is often unpredictable while global behaviour often cannot be an­

alytically guaranteed. Nevertheless, these systems routinely fulfill global objectives while demonstrating 

resilience to environmental change. 

For multiagent manipulator control, a balance between determinism and robustness must be maintained. 

With less modelling to achieve a desired behaviour comes less computation, lower expense, and the robustness 

to change. Yet, to be useful, global behaviour must also be deterministic. Clearly a compromise exploiting 

some form of implicit coordination is necessary. 

In decentralizing Jacobian transpose control, a centralized kinematic model has been removed from the 

goal distribution mechanism, a significant step towards this compromise. However, the global goal generator, 

fd, too, must limit model dependency. Therefore, establishing model independence within a global goal 

generator is an important objective in implicit multiagent controller design. 

Retaining centralized feedforward dynamic models of the manipulator, both OSF and RMFC are less 
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attractive implicit coordination strategies (see appendix E) than Seraji's Direct Adaptive Control. This latter 

controller replaces the last vestige of a feedforward dynamic model with an adaptive task space controller 

that models an ideal generic trajectory tracking process rather than a specific manipulator geometry. In so 

doing this global goal generator becomes manipulator independent or model-free1. In the following section 

DAC will be explored in detail and its performance within a multiagent controller demonstrated. 

6.2.1 Resolved Motion Decentralized Adaptive Control 

Though the internal operation of any global goal generator, such as RMDAC, is a separate issue from 

multiagent control, the global performance of the multiagent team is dependent on the performance of this 

generator. Furthermore, the less manipulator within the generator, the more robust the global goal system is 

to environmental changes. A close examination of this global goal generator is, therefore, worthwhile. In 1987 

Seraji [Seraji, 1987b] introduced Direct Adaptive Control and later Configuration Control of manipulators in 

cartesian space. To differentiate this technique from a further variation Improved Configuration Control for 

joint space controllers, these methods are henceforth referred to as Resolved Motion Decentralized Adaptive 

Control (RMDAC) in recognition of its cartesian adaptive control heritage.This technique differs from OSF 

and RMFC, in that a model reference adaptive controller (MRAC) generates the desired end effector forces 

based on an idealized trajectory tracking process, devoid of any manipulator model. 

The controller may be derived from a linearized manipulator model about an initial condition P. At 

P, the manipulator is at joint positions q o , end effector position X o , and joint torque r o . By perturbing To 

slightly by Sr(t) to form r(t) = To + ST(t) the joint and end effector positions change by <5q(i) and 8x(t) to 

form q(£) = q o + Sq(t) and x(t) = x o + Sx(t). In [Seraji, 1987a], Seraji shows that by linearizing 2.34 about 

P: 

AeSq(t) + B<Sq(t) + CJq(t) = Sr(t) (6.182) 

where A, B, and C are constant n X n matrices dependent on P. By using equation (2.33) and (2.7), this 

expression can be transformed into cartesian space 2 . 

ASx(t) + B8x(t) + C6x(t) = Sf(t) (6.183) 

where Seraji then defines Sr(t) as an "incremental reference trajectory" in cartesian space. To track this 

trajectory, feedback and feedforward controllers are developed. The feedback controller provides a stable 

'Model-free in the sense that the global goal neither estimates nor guarantees convergence of any manipulator parameters. 
2 Significantly, Seraji points out the system could be derived entirely in cartesian space and, therefore, irrespective of any 

manipulator model 
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closed loop control, ensuring asymptotic convergence of any error to zero: 

= KpSxe(t) + Kv6xe(t) (6.184) 

where Sxe(t) = Sr(t) — Sx(t). The feedforward controller ensures that Sx(t) tracks the reference trajectory 

Sr(t) and is simply the inverse of the end effector model in equation (6.183): 

<Sf2(*) = ASr(t) + B6r(t) + C5r(t) (6.185) 

Substituting Sf\(t) and Sf2(t) into 6f(t) and rewriting equation (6.183) 

A6xe(t) + (B + Kv)(t)6xe + {C + Kp)6xe(t) = 0 (6.186) 

Now this control scheme works well for regulating small errors about the nominal operating point, P. 

However, the control of the end effector over a general trajectory, r(£), is the sum of the incremental control 

forces required to maintain the control at Sr(t) and the nominal force f0(t) required to drive the end effector 

along the trajectory, r(t): 

f = f0 + <5f (6.187) 

= f0 + Kp6xe(t)+Kv6xc(t) + ASr(t) + BSr(t) + C6r(t) (6.188) 

Now defining the total reference trajectory and end effector positions as r(t) = ro +c5r(£) and x(t) = Xo+Sx(t) 

respectively, equation (6.188) can be rewritten as: 

f = d + KpX e(r) + K„x c (*) + Af(*) + Br(t) + Cr(r) (6.189) 

d = f0 - A f 0 - B r 0 - C r 0 (6.190) 

By generalizing these equations to control the nonlinear end effector dynamics, Seraji establishes the following 

system: 

M(x,x)x + N(x,x)x + G(x,x)x = d(t) + K p x c ( t ) + Kvxe{t) 

+Af (t) + Br(t) + Cr(i) (6.191) 

where d(t) corresponds to the operating point term d and is synthesized by the adaptive controller. Rewritten 

in terms of total tracking error x e: 

M i e + CN + K^xe + CG + Kpjxc = d(t) + (M - A)r(t)+ 

(N - B)r(i) + 

(G - C)r(f) (6.192) 
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From this equation it is clear that d(t) and r(t) drive the error system of the total controller. Therefore it 

is essential to adapt the gains of the system. Rearranging equation (6.192) into a state variable form: 

Mt) 
o i „ 

- M - ^ G + Kp] - M _ 1 ( N + K „ ) 

0 

- M _ 1 ( G - C) 
r(t) + 

0 

0 
z(t) + 

-
- M - *F(t) _ 

i(t) + 
>J-B) - M -

Ht) 

where z(t) — [xe x e ] T . Now a simple linear reference model can be developed 

xem (t) + D 2 x e r „ (t) + D l X c m (t) = 0 

Defining zm(t) = [x e ,„ x C m ] T the state space reference model becomes: 

(6.193) 

(6.194) 

z m ( t ) = 
0 I„ 

-Dj - D 2 

>(*) (6.195) 

Since equation (6.195) is stable, there exists a positive definite 2n x 2n matrix, P, which satisfies the 

Lyapunov equation: 

P D + D T P = - Q (6.196) 

where D is the system matrix in equation (6.195). 

By defining e = zm(t) — z(t), and subtracting (6.193) from (6.195) a model reference error equation in e 

can be assembled. Seraji then uses a simple design method [Seraji, 1989c] to generate a Lyapunov function 

based on this equation and, in solving for P, produces adaptation laws ensuring the convergence of z(t) to 

z m ( t ) : 

v(*) 

d(t) 

K „ ( t ) 

K „ ( t ) 

C M 

B(t) 

Mt) 

diag(wp,-)xe + diag(wvi)xe 

d(0) + <Ji / v(«)d* + *2v(t) 
Jo 

Kp(0) + ai / v(t)xc(t)dt + a 2 v 7 » x e ( i ) 
Jo 

»(0) + /?i / v(t)xe(t)dt + p2vT(t)ke{t) 
Jo 

(0) + i/i / v(t)r(t)dt + v2vT(t)r(t) 
Jo 

(0) + 7i / v(t)r(t)dt + l2vT(t)r(t) 
Jo 

(0) + Ai / v{t)T(t)dt + X2vT(t)f{t) 
Jo 

K 

C 

B 

A 

(6.197) 

(6.198) 

(6.199) 

(6.200) 

(6.201) 

(6.202) 

(6.203) 
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where {S\,ai,/3i,i/i,Xi} are positive scalar integral gains and {62,c*2,02,^2, A2} are zero or positive gains 

and {wpi,ivvi} are positive scalar weighting factors. By adaptively modifying the force vector f(t) in this 

way, z(t) will converge to zm(t): 

f(t) = d(t) + C(t)r(t) + B(t)r(t) + A(t)f(t) + 

Kp(t)xe(t)+Kv(t)xe(t) (6.204) 

Later, in 1989, Seraji [Seraji, 1989b] described a further variation on this approach, Configuration Control, 

by decentralizing the computations in cartesian space. In effect the expression in equations (6.197) through 

(6.203) appear virtually identical - but arc scalars equations applied in each cartesian direction or 

fi(t) = di(t) + Ci(t)n(t) + bi(t)Ti(t) + ai(t)ti(t) + 

Kpi(t)xc(t) + Kvi(t)xe(t) (6.205) 

where, as before, {a,-,6,-,c,-} are adaptive feedforward gains and {Kpi,Kdi} are adaptive PD feedback gains 

and di is an auxiliary signal to improve transient performance and i : 1... n and r(t) £ R n . As before, these 

coefficients are an integral of the generic form: 

ki(v(t),e(t),t) = ki(0) + uu f vi(t)ei(t)dt + u2iVi{t)ei(t) (6.206) 
Jo 

where ui, are positive scalar gains, U2i are zero or positive, and Ci(t) is the variable modified by the coefficient 

(e.g. k,(t) = Kvi, ei(t) = xc(t)). Again r,-(r) is a weighted error of the form: 

r,-(t) = WpiXei + IVviXei (6.207) 

where wpi and I/J„; are weighting gains. 

In summary Seraji noted the following characteristics of this algorithm: 

• Computation is extremely simple, using discrete trapezoidal integration. For the fcth time step: 

fi(k) = di(k) + Ci(k)ri(k) + bi(k)ri(k) + ai(k)ri(k) + 

Kpi(k)xe(k) + Kvi(k)xe(k) (6.208) 

r,-(fc) = wpixei(k) + wvixei(k) (6.209) 

A T 
ki(k) = fc,-(fc-l)+ — [w,-(fc)e,-(&)+u,-(»-l)e,-(i-l)] + 

u2i[vi(k)ci(k) - vi(k - l)e,-(fe - 1)] (6.210) 

governed by the task space dimension, M, the computational cost is O(M). 
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• The manipulator parameters are assumed to be 'slowly time varying'. 

• Initial manipulator parameters are not required to ensure convergence. 

• Convergence is guaranteed through the Lyapunov Design method [Seraji, 1989b]. 

• The rate of convergence is governed by the integral adaptive gains. 

• The rate of convergence is independent of initial values. 

Indeed, Seraji demonstrated that even gross violations of the 'slowly time varying' assumption parameters 

does not destabilize the system. 

6.3 Multiagent Controller Performance 

Within the context of the multiprocess manipulator simulator, the RMDAC global goal generator is imple­

mented as a subclass of Controller within the global goal process, GP. This subclass, RMDAController, 

retrieves the end effector location, p n , through the kinematic bus, computes fd through equations (6.210), 

and broadcasts both p n , and fd as the global goal couplet: 

Q = {PnM (6-211) 

to link agents Aj: : 1 < j < N. Within each agent process, LP, the trajectory tracking behaviour controller 

observes this broadcast and commands the joint motor (or dynamic model) with the output: 

ucj = u t r a c k = Jj(pj_1(t),pn(<))fd(0 (6.212) 

In the following section, a simulated manipulator (see figure 6.28) under multiagent control will demon­

strate this technique through the implicit coordination of a reference manipulator and payload along a 

specified trajectory. Below, the reference manipulator, payload, and trajectory used in this simulation are 

described. 

The Manipulator 

The reference robot is a redundant planar revolute manipulator composed of ten links. Each link is of the 

form described in table 6.5. Inertia parameters assume a 0.75 metre cylindrical link 0.2 rn in diameter with 

a mass of 10 kilograms. 
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Parameter Symbol Value 
Name Name link i 
Mass mi 1.000e+01 kg. 
Pr. Inertias [Ixx,Iyy,Iz,] Ijj [+0.0500 + 0.4938 + 0.4938] kg-m2 

centroid c [-0.3750 +0.0000 + 0.0000] m. 
Type Type R (revolute) 
Initial Displacement 60i or d0i +0.000e + 00° 
Initial Velocity +0.000e + 00° per sec. (or m/s) 
Twist C*i +0.000e + 00° 
Length di_ 7.500e - 01 m. 
Back emf constant A'emf 1.0 
Saturation Saturation +1.000e + 06 (unsaturated) N-m 

Table 6.5: Reference Link, Joint, and Motor parameters. Centroid is relative to link frame. 

AY 

Figure 6.28: The Reference Manipulator: a ten degree of freedom planar revolute manipulator initially lying 
along the x axis. 
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Parameter Symbol Value 
Mass 
Pr. Inertias [Ixa;,Iyy,Izz] 
Centroid 

mp 

hu 
c 

l.OOOe + 01 kg. 
[+0.4938 + 0.4938 + 0.4938] kg-m2 

[+0.00 + 0.00 + 0.00] m. 

Table 6.6: Reference Payload parameters. Centroid is relative to gripper frame. 

Time (sec.) X(m) Y(m) Angle (rad.) 
10.00 1.00e+00 2.00e+00 0.00e+00 
16.00 1.00e+00 1.00e+00 1.57e+00 
22.00 2.00e+00 1.00e+00 1.57e+00 
28.00 2.00e+00 -1.00e+00 1.57e+00 
34.00 1.00e+00 -1.00e+00 1.57e+00 
40.00 1.00e+00 -2.00e+00 1.57e+00 

Table 6.7: Knotpoints on the reference trajectory. 

As mentioned previously, the motor model of chapter 2 is included within the MMS dynamic modeler, 

DM. The values A'fc and K\,k and Bcnk may be set within the robot database file, but are left to the default 

(and arbitrary) values 0.5, 1.0, and 0.5 respectively. 

The Payload 

The payload, centered on the gripper (the coordinate frame of link n) of the manipulator, has been chosen 

to be identical to the mass and inertia of a manipulator link (see table 6.6). In this way, payload sensitivity 

studies may be assessed in terms of simple manipulator/payload mass ratios. 

The Trajectory 

The reference trajectory specification ("SquareWave.spt") describes a planar trajectory composed of 6 cubic 

segments (i.e. a straight line segment with parabolic velocity profile) of 40 seconds duration. A simple 

orientation trajectory rotates the end effector counterclockwise 90 degrees along the first leg and constant 

during the remaining trajectory. See table 6.7 and figure 6.29. 

The trajectory presents some difficulties for the Jacobian based Algorithms. Since the manipulator is 

initially homed along the x axis, Jacobian inverse algorithms may encounter a kinematic singularity if motion 

along the x axis is required. Though the trajectory does not specify such motions, controller dynamics may 

demand such motions nevertheless resulting in numerical instability. The shallow inclination of the first 
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Figure 6.29: The Reference end effector position (top) and orientation (bottom) trajectories. Each segment 
employs a parabolic velocity profile in both position and orientation. The position trajectory plot is annotated 
with time milestones. 

leg to the x-axis, relatively small initial velocity and acceleration vectors, and poor initial manipulator 

position, means Transpose algorithms tend to produce a delayed wallowing response. This has the effect of 

exaggerating integral wind up in adaptive controller as shown later. 

6.3.1 Trajectory Tracking Performance 

Having selected a set of integral gains for the RMDAC goal generator through a trial and error process 

(see table 6.8 and appendix D), the first experiment examines the trajectory tracking performance of the 

multiagent team. Initialized with the desired reference trajectory, the global goal process GP generates the 

global goal couplet, (xn,fd), through an R M D A C o n t r o l l e r object. The couplet is broadcast to a team often 

link agents, each controlling a link by observing and responding to the global goal couplet through a global 

goal proxy. 

The results of this demonstration, depicted in figure 6.31, clearly show that, despite decentralization, the 

manipulation system exhibits coordinated trajectory tracking behaviour. Note that while the end effector 

appears to track the desired trajectory, the manipulator seems to adopt arbitrary, 'jumbled', configurations. 

Since a geometric interference engine was not implemented in DM, physically impossible configurations are 
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often observed. Nevertheless, this experiment demonstrates that global behaviour can be deterministic 

without resorting to local behaviour specification. 

A root mean square (RMS) measure characterizes the end effector's tracking accuracy over the reference 

trajectory and is defined as: 

1 
2 

(6.213) 

where Na is the total number of timesteps. Similarly, the planar orientation error is measured through the 

RMS of the scalar rotation about the global z axis: 

(6.214) 

Figure 6.30 depicts the trajectory tracking error and end effector trajectory while table 6.9 documents the 

RMS position and orientation error over a step trajectory , the reference trajectory and a spiral trajectory. 

The step trajectory simply jumps from x s tart = [7.5 0.0 0.0] to X f i n ; s h = [6.5 1.0 0.0] and from 62 — 0.0 

to 6Z = 1.57 radians in rotation at t = 1.0s. This trajectory was primarily used to compare goal generation 

strategies. See appendix E. 

Since the initial end effector position lies near a kinematic singularity and the initial end effector forces 

are small, initial tracking of the reference trajectory is characterized by large overshooting oscillations as 

RMDAC works to discover the parameters of the idealized trajectory tracking process. Trajectory tracking 

improves significantly as the desired trajectory exits this region. Despite these excursions, the RMS error 

over the total trajectory is limited to 2.8 mm. Similar, though smaller, end effector perturbations may be 

observed at segment transitions in the reference trajectory (16.00, 22.00, 28.00, and 34.00 seconds). 

The global goal generator is equally effective over arbitrary trajectories. Figures 6.32 and 6.33 demon­

strate the multiagent system's trajectory tracking performance over a 'spiral' trajectory. In this trajectory 

both the radius and the angular displacement about an axis x a x j s = [4.5 0.0 0.0] vary according to a parabolic 

velocity profile from xstart = 

[4.5 2.0 0.0] to X f i n i s h — [4.5 —0.5 0.0]. RMS position and orientation results are 

reported in table 6.9. It is apparent that centripetal accelerations encountered between 15 and 25 seconds, 

the maximum angular velocity of the trajectory about x a x j s , drives position and orientation errors on this 

trajectory. 

The simulation does not occur in real time, as it is dominated by relatively slow socket interprocess 

communications and model integration. Typically, a 40.00 second run of the reference manipulator on an 

6rms — 
X > d ( f c ) - P n ( f c ) ) T ( P d ( f c ) - P n ( f c ) ) 
Jt=0 

$ r m s — •fr E^(fc) " <?n(fc))T(0«*(fc) " 0n(k)) 
k=0 
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SGI Indigo2 using an integration step size of 1 millisecond takes approximately 15 minutes. Define the 

normalized execution time as: 

ATN = r f i n i s h ~ T s t a r t (6.215) 

Where T s t a r t and Tfinj sh are real clock start and end times in seconds and N is the manipulator's degrees of 

freedom. The normalized execution time, the time committed to simulate a degree of freedom per timestep, 

is 2.2 ms for this reference scenario. Such measures are greatly affected by interprocess communications (i.e. 

disk and network) loads. 

6.3.2 Model Free Goal Regulation 

A lingering question, however, is whether the global goal generator, RMDAC, is actually a centralized 

manipulator controller harbouring a manipulator model. If this were so, RMDAC's performance would be 

governed by changes to the configuration and/or nonlinearity of the manipulator model. The following 

experiment demonstrates that RMDAC is insensitive to these factors, reinforcing that this goal generator 

is regulating an ideal dynamic tracking process and not any particular robot dynamic model. In effect, 

RMDAC is manipulator model free. 

By examining tracking performance of a variety of planar manipulator configurations, the model-free 

characteristics of RMDAC can be demonstrated. In this experiment 5, 10, 15, and 20 degree of freedom 

manipulators are applied to identical reference payloads and trajectories. 

Each manipulator has an identical mass and fully extended length to the reference manipulator and 

all links within a given manipulator possess identical physical parameters. Thus as N rises, link inertias, 

length, and centroid dimensions fall while agents remain computationally identical. This method permits an 

investigation of the sensitivity of RMDAC to manipulator design. 

Table 6.10 documents RMDAC's relative insensitivity to changes in the robot model. Indeed, higher 

degrees of freedom (and therefore smaller links) appear to improve tracking slightly, probably due to the 

smaller link inertias in the higher degree of freedom manipulators. The end effector of the three additional 

cases may be observed within figures 6.34,6.35, and 6.36. Note the exaggerated end effector error in the five 

link case in comparison to the relatively smooth error curvature of the twenty link run. End effector error 

magnitudes arc smaller and of shorter duration as the number of links rise. 

Given identical integral gains, varying manipulator inertia influences initial trajectory tracking (i.e. the 

convergence rate of the adaptive controller) as expected. Once converged, however, the end effector tracks 
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Wpi U>vi f an Pit V\i 7i« 
linear 1800 800 6 4 4 1 1 2 
rotation 500 100 6 4 4 1 1 2 

Table 6.8: The reference RMDAC 'Best Gains' determined through trial and error. 

Trajectories r̂ms $rms 
Step 
Reference 
Spiral 

1.132e-01 9.179e-02 
2.779e-03 2.850e-02 
4.348e-03 7.372e-03 

Table 6.9: 'Best Gains' RMS error in position and orientation for 'step', 'reference' and 'spiral' trajectories. 

the desired trajectory regardless of the manipulator's order of nonlinearity. As long as these parameters 

remain slowly time varying, convergence is guaranteed regardless of manipulator complexity. 

Normalized execution times are almost constant, indicating near linearity in degrees of freedom and that 

a real world, multiprocess implementation of a multiagent manipulator architecture3 is constant in time. In 

a real world system, the dominant computational load of the MMS, an 0(N3) dynamic model [Walker, 1982] 

disappears. Similarly the larger interprocess communications load, of O(N), that dominate MMS overall 

could be drastically reduced or removed through more efficient design. An efficient implementation of 

multiagent control would exploit multiple processors and an asynchronous kinematic bus, rendering execution 

time independent of agent team size. Unlike the MMS synchronous bus in which communications are 

triggered by an external clock, asynchronous buses allow agents to read and/or write shared data at any 

time. 

In short, this experiment demonstrates the feasibility of a decentralized, multiagent manipulator archi­

tecture and the relative independence of the RMDAC global goal generator to manipulator configuration. 

6.3.3 Actuator Saturation 

In previous demonstrations, each agent's motor could generate arbitrarily large torques. In reality, motor 

performance saturates at some torque value, u s a t . In the following demonstration, the effects of saturation 

on trajectory tracking will be examined. With saturation limit of u sat = 1000 N-m applied to all joint 

actuators, each link agent will, again, adopt equation (6.212) as the global goal proxy modified to prevent 
3Ideally, a multiprocess task that exhibiting O(N) execution time on a single C P U (such as MMS) is constant time in a 

process per C P U environment. 
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Figure 6.30: End effector trajectory tracking under 'Best Gains' RMDAC. Note oscillation prior to conver­
gence. 
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Figure 6.31: Trajectory tracking history for the reference trajectory under 'Best Gains' RMDAC. 
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Figure 6.32: End effector tracking performance over an unusual spiral trajectory in which the radius and 
angular displacement vary according to a parabolic velocity profile. 
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Figure 6.33: Trajectory tracking history for the spiral trajectory under 'Best Gains' RMDAC. 
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Figure 6.34: End effector trajectory tracking using 'Best Gains' RMDAC goal generator for a 5 degree of 
freedom planar manipulator. 
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Figure 6.35: End effector trajectory tracking using 'Best Gains' RMDAC goal generator for a 15 degree of 
freedom planar manipulator. 
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Figure 6.36: End effector trajectory tracking using 'Best Gains' RMDAC goal generator for a 20 degree of 
freedom planar manipulator. 
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D.o.F. Reft 

\ / | X e | 2 

urence Traje ctory 

ATN(sec.) 
5 
10 
15 
20 

5.331e-03 
3.059e-03 
2.404e-03 
1.965e-03 

1.737e-02 
6.014e-03 
5.376e-03 
5.196e-03 

0.0024 
0.0022 
0.0025 
0.0027 

Table 6.10: Tabulation of position and orientation RMS L 2 error and normalized execution time as a function 
of manipulator degrees of freedom. 

Ucj = < 

torque values from exceeding usat: 

' Jj(pj-i(t),pn(t))fd(t) if - U s a t > Ucj < U s a t 

USat if UCJ- > Usat (6.216) 
— usat if u c ; < — usat 

The results depicted in 6.37 show that end effector performance is virtually identical to figure 6.30. This 

is the first indication that the global goal generator's maintenance of the desired end effector trajectory 

tends to drive local disturbances (such as torque error due to saturation) into the Jacobian null space, a 

phenomenon discussed in the next chapter. 

6.4 Summary 

In this chapter, a global goal generator was specified and the implicit coordination of a multiagent manipu­

lator controller demonstrated. The following points can be taken from this discussion: 

• the RMDAC global goal generator models not a manipulator, but an ideal tracking process 

• the generated global goal may be broadcast as a desired force-position couplet. 

• a simulated manipulator can be controlled by N autonomous processes without a centralized manipu­

lator model. 

• each agent acting on the global goal, end effector control becomes linear in time on a single CPU, or 

constant in time if distributed. 

By regulating an idealized trajectory tracking process rather than estimating and compensating for a 

specific manipulator architecture, RMDAC was shown to be an effective global goal generator free of any 

manipulator model. 
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Figure 6.37: End effector trajectory performance for the reference manipulator and payload under RMDAC 
end effector and joint force saturation (u s a t = 1000 N-m). 
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The combination of this goal generation method and the global goal proxy described in the last chapter 

enables an arbitrary number of link processes to observe a single broadcast global goal couplet. 

This simple computational architecture was successfully applied to the reference scenario through the 

multiprocess manipulator simulator and demonstrated, for the first time, the control of an end effector 

trajectory by a set of autonomous link processes devoid of any manipulator model. Given the definitions in 

chapter 4, this behaviour is clearly an example of an implicit coordination strategy. 

The scalability and model independence of this strategy was explored in a performance comparison 

between manipulators of various configuration. Multiagent manipulator control was shown to be manipulator 

independent and, given one CPU per agent, constant in time. 

The next chapter will examine the design and performance of additional goal systems within this archi­

tecture and discuss the arbitration of multiple conflicting goals. 



Chapter 7 

Multiple Goal Systems 

7.1 Introduction 

In the previous chapter, an adaptive end effector trajectory tracking controller, Configuration Control (or 

RMDAC), was reviewed and formulated into a global goal generation strategy. In this chapter additional 

global and local goals will be formulated and combinations of these goals demonstrated in multiagent ma­

nipulator control simulations. 

While multiple goals in the form of primary and auxiliary controllers are not new to manipulator control, 

multiagent control adopts a decentralized architecture that changes how these goals might be generated and 

raises interesting questions about how agents should be coordinated to pursue multiple tasks. In particular, 

how can the convergence of multiple, simultaneous global goal systems be guaranteed without centralized 

coordination or allocation of agents to tasks? This chapter will address such questions in the context of 

redundant multiagent manipulator control and present a distributed global goal generation protocol. In 

particular, the impact of local goal systems on global stability and team coordination will be discussed and 

a general approach to multiple goal system design presented. The following specific local and global goal 

strategies will be presented in combination with trajectory tracking: 

• global nonlinear obstacle avoidance. 

• local nonlinear limit avoidance. 

• local constant compliance centering 

• local constant compliance retraction 

• local variable compliance centering 

• combined (local constant compliance centering and global nonlinear obstacle avoidance). 

It will be shown in applying both compliant and adaptive goal systems, emergent coordination replaces 

traditional coordination strategies. Furthermore, it will be shown that through the combination of local and 

140 
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global goal systems, additional global behaviour emerges. 

However, before venturing into multiple goal systems the next section will explore the fundamental 

interaction of primary and auxiliary goal systems and, based on established arguments, propose a Null 

Space Self Organization Theorem. 

7.2 Auxiliary Behaviour and the Jacobian Null Space 

In this section, a simple argument will demonstrate the inherent robustness of end effector control and, 

by analogy, any globally controlled multiagent system. The development demonstrates clearly that an 

underconstrained or redundant system under global control automatically inserts auxiliary behaviour into 

the null space of the global behaviour. Equally important, this argument suggests that adaptive global goal 

regulation is equivalent to explicit null space insertion. 

Redundant manipulators are excellent vehicles to explore and demonstrate multiple global goal seeking. 

By explicitly inserting tasks into the null space, techniques such as RMRC and RMAC can guarantee the 

convergence of multiple tasks. Similarly, JTC can be applied to augmented tasks by ensuring the dimension 

of the auxiliary task, Af a u x does not exceed the dimensions of the null space or A / a u x < N — M p r ; m a r v . While 

this is clearly a necessary condition that the number of constraints should not exceed the available degrees 

of freedom, it is not immediately clear why this simple rule is often sufficient. Surely, some additional care 

must be taken to ensure that, at the joint level, tasks do not conflict directly or G a u x fl G p r i m a r y = 0 for all 

G a u x in the manner of explicit null space insertion methods. An et al. [An, 1989] provide some insight into 

these issues. 

An et al. intended to establish stability conditions for the convergence of kinematic learning controllers, 

those that estimate the end effector Jacobian through learning algorithms. The objective was to demonstrate 

that estimates of an inverse kinematic solution, f _ 1(x), converged to an actual inverse f _ 1(x). However, by 

examining their arguments in a different light and assuming that f _ 1(x) = f _ 1(x), it becomes clear that end 

effector control automatically drives joint level perturbations into the Jacobian Null space. This property is 

sufficiently important to propose a simple theorem: 

Theorem 2 (Null Space Self Organization) Consider an N degree of freedom redundant manipulator 

in configuration q* € R^ and at task space position, x* G R M . If a task space control law is applied to the 

manipulator: 

q f c + 1 = qfc + t f - V J - r ^ x t ) ) 
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where the forward kinematic solution, f(q) : R^ -> R M , is invertible. Then a disturbance, Sqk, is always 

reorganized into the Jacobian Null Space, N(J): 

Sqk+1= [l-jt(x*)J(q*)]*q t (7.217) 

where Jt is the pseudoinverse of the task space Jacobian, J . 

Proof 

At time k, the manipulator is in position q* with the end effector at x*. Now consider the effect of the small 

configuration space perturbation, Sqk on the manipulator configuration position becomes: 

q fc = q* + <5qfc (7.218) 

This deviation propagates to the end effector: 

Xfc = f(qjfe) 

= x* + Jxfc 

= x* + J(q*)Jqfc 

Without correction, such deviations must corrupt the end effector trajectory. 

Now suppose an end effector position correction strategy is adopted to correct such deviations, by com­

manding a new configuration, qk+i through the simple rule [An, 1989]: 

qjb+i = q fc + (f-1(x*)-f-1(x f c)) 

i.e. the difference between desired and current inverse solutions defines the joint error. Given: 

f - ^ X f c ) = r1(x*)+jt(x*)<5xfc 

where is the pseudoinverse, qk and Sxk may be substituted 

q*+i = qfc + (q*-(f- 1 (x*)+J t (x*)^Xfc)) 

= q* + Sqk + Jt(x*)J(q*) Sqk) 

= q* + (I-jt(x*)J(q*))<5qfc 

Thus the correction to the manipulator configuration becomes: 

6qk+i = qk+1 - q* 

= (I-jt(x*)J(q*))<JqJb 
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i.e. perturbations not already in the null space will be corrected into the null space. As k marches through 

time, <5q/b+i will diminish if the absolute value of all the eigenvalues of (I — J (̂x*)J(q*)) are less than one 

[An, 1989]. Since Jt is the pseudoinverse of J , this is always true unless q* lies on a kinematic singularity. 

Therefore, end effector control ensures that the manipulator reorganizes itself such that disturbances persist 

only in N(J). 

Now for a perfectly constrained manipulator in which the dimension of task and configuration spaces are 

identical, Jt = J - 1 and q̂ +i = q/t, and the new position command is identical to the original setpoint. 

However, if the manipulator is redundant then the correction command Sqk+i is the projection of c5qfc onto 

N(J) through the null space selection operator (I — Jt(x*)J(q*)). Thus perturbations initially in R(J) 

migrate into N(J) if the manipulator is redundant and the correction <5qfc+i is exact. On reflection, this 

derivation is clearly reminiscent of the redundant manipulator control law in RMRC. 

In summary the simple Null Space Self Organization theorem implies that perturbations in configuration 

space are driven into the null space by end effector control commands. Significantly, this property is not 

limited to manipulator kinematics but includes any multiagent system controlling some aggregate behaviour. 

Thus any multiagent system will exhibit the property that strict enforcement of a global goal ensures that 

local disturbances (or behaviours) are automatically driven into the null space. 

This argument can be extended to the dynamic case in the following corollary to Theorem 2: 

Corollary 2.1 Consider an N degree of freedom redundant manipulator with configuration forces r* £ R^ 

applying task space forces, f * £ RM. If a task space control law is applied to the manipulator: 

where the Jacobian Transpose JT(q) : R M —• R^. Then a disturbance, ST, is always reorganized into N(J): 

Remarks 

u f c + 1 =u* + (J r (q*)r-J T (q*)ffc) (7.219) 

5 T k + l = [l-jt(x*)J(q*)] Srk (7.220) 

where is the pseudoinverse of the task space Jacobian, J . 

Proof 

Consider that actuators apply torque to each joint to provide a desired force at the end effector: 

u* - [D(q*)q + Cq + g(q*)] = JT(q*)fd (7.221) 
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with precise dynamic compensation in fj = fCOmp + f *: 

u* = J'r(q*)f* (7.222) 

the application of u* produces the force f* at the end effector. Now suppose at time k, the manipulator 

exerts joint forces u* with the end effector forces at f*. Given a small perturbation <$Ufc, the correction forces 

t5ufc+i can be discovered through a derivation similar to Theorem 2. The task and configuration space forces 

at time k: 

Ufc = U* + JUfc 

^ = J t r ( x * H 

= r + <Jffc 

= f*+JtT(x*)<Sufc 

Again without correction, torque perturbation deviations corrupt the end effector trajectory. Correcting the 

end effector force error at time k + 1 through, uk+i with the rule: 

u* + 1 = ^ + (Jr(q*)f* - J'r(q*)ffc) = Ufc - JT(x*)<5ffc (7.223) 

In effect, the projection of the error between desired and current end effector forces determines the configu­

ration space force error. Given Ufc and Jffc : 

u f c + 1 = u* + (I - JT(x*)JtT(x*))<hifc (7.224) 

Thus the applied correction torque becomes: 

Suk+1 = (I-J7'(q*)jtT(x*))Jufc 

and configuration space force corrections are projected into a redundant manipulator's Jacobian null space 

through the (I - J7'(q*)JtT(x*)) operator. 

As before, fully constrained manipulators (i.e. = J - 1 ) command the original joint force setpoint. 

Since joint forces balancing the end effector load reside, by definition, in R(JT), forces that produce no end 

effector force must reside solely in N(J). Having established a Null Space Self Organization Theorem, the 

combined performance of multiple goal systems can now be discussed. 
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7.3 Auxiliary Global Goal Systems 

To this point, global goals have been generated by a external, dedicated global goal processes (e.g. a user 

defined trajectory generator). However, it is not uncommon for agents, themselves, to both generate and 

pursue one or more global goal requests. Indeed many multiagent systems use agent based global goal 

broadcasts (e.g. [Mataric, 1994, Parker, 1992a]) as a foundation of interagent communication. This section 

will introduce and demonstrate a protocol that enables individual link agents to both assert and pursue 

multiple global goals within the agent team. 

7.3.1 Obstacle Avoidance 

Avoiding collisions with workspace obstacles is perhaps the most desirable auxiliary task in manipulation. 

The object is to avoid collisions in the manipulator's workspace while tracking a desired end effector trajec­

tory. Despite some similarity with path planning, obstacle avoidance schemes often do not rely on detailed 

world models to ensure that the manipulator will not collide with objects in the work space. In this way, 

auxiliary obstacle avoidance task supports the primary trajectory tracking global goal. 

In RMPC position control, obstacle avoidance strategies require the geometric resolution of both manip­

ulator and obstacle boundary constraints. RMRC and RMAC are less complex methods, inserting obstacle 

avoidance controllers either directly or indirectly into the null space of the end effector Jacobian through 

the Jacobian insertion operator, (I — J^J), or augmentation of the task space, x, (and the Jacobian) with an 

avoidance function. Controllers include simple proportional [Slotine, 1988] and adaptive [Colbaugh, 1989] 

range controllers, nonlinear and optimal model based controllers (e.g. [Nakarnura, 1984, Sung, 1996]). Sim­

ilar methods have been applied to Jacobian Transpose control by applying virtual avoidance forces to the 

manipulator. 

The next subsections will briefly overview two relevant JTC techniques and present a multiagent hybrid 

of these methods. 

The Operational Space Formulation (OSF) 

In the operational space formulation, Khatib [Khatib, 1985] described obstacles of known geometry with an 

APF or artificial potential field model, By composing 'virtual' repulsive forces derived from the negative 

gradient of $ and applying them to "points subject to potential" or PSPs, the Jacobian transpose of the 

PSP can be used to propagate these forces to the.manipulator and avoid the obstacle. The strategy was 
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active only within a specific PSP-obstacle surface triggering range. Specifically, repulsive forces (again per 

unit mass),f(*- ^ were derived from the jth objects potential field model, $j, applied to the ith links PSP: 

^ ) = - V $ i ( p w ) (7-225) 

a technique since emulated by many including Arkin [Arkin, 1987]. The potential field model Khatib used 

was based on an inverse law: 

ifp<Po ( 7 2 2 6 ) 

if P > Po 

where r) is a gain, p describes the obstacle in link coordinates and po is a threshold distance. Applying the 

gradient operator, the repulsive force becomes an inverse square law: 

'lfp^P° (7.227) 
[ 0 iip>Po 

As defined in [Khatib, 1985], p is a function of obstacle geometry, requiring a recognition and world modelling 

system to identify and store obstacles. With the jth obstacle modelled by an APF, the repulsive force 

at ith PSP is computed through simple superposition: 

?=E?;,o = £ - v * ; ( 7 - 2 2 8 ) 
j i 

Thus the combined expression control law for trajectory tracking and real time obstacle avoidance became: 

r = 3Tfd + E J?M(x) f 0 - 0 (7.229) 
i 

where fd is as in equation(E.414) and J,- is the Jacobian of the ith PSP. 

Discussion 

Despite the effectiveness of this technique, Khatib anticipated problems with OSF. Since fd, is a cartesian 

PD controller and are nonlinear forces, configurations are possible in which [Khatib, 1985]: 

"...local minima can occur in the resultant potential field. This can lead to a stable positioning 

of the robot before reaching its goal." 

Khatib recognized that a manipulator, trapped by obstacle repulsive fields, might not be able to follow the 

desired end effector trajectory. Khatib believed that local procedures might be able to extract a robot from 

this predicament, in effect resolving constraints through some decision making process. 
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Though powerful, APF models are not practical for multiagent obstacle avoidance. The reliance on 

complete, global view of both the environment and the manipulator is both computationally burdensome, 

difficult to decentralize, and, with current sensing, prohibitively expensive to implement in real time. 

An alternative to the global view is to combine local sensing with a simpler obstacle independent repulsion 

strategy, removing both the cost of sensing and recognition and the centralized world model. This strategy, 

adopted by Colbaugh in the implementation of an RMDAC based obstacle avoidance system, is briefly 

reviewed in the next section. 

Obstacle Avoidance with Configuration Control 

Colbaugh attacks the obstacle avoidance problem by augmenting the task space with an obstacle avoidance 

constraint and enforcing task space forces with a model reference decentralized adaptive controller. In redun­

dant manipulator Configuration Control (for clarity, here referred to as RMDAC), the end effector position 

vector, x, is augmented by additional kinematic constraints such as obstacle and joint limit boundaries: 

xe< 

X . 

(7.230) 

T T f -
J a la — 

T 

f dee( Xee) 

Jc fdc(Xc) 

Thus the end effector Jacobian, J e c , is also augmented by a constraint Jacobian, J c , through which constraint 

forces, fc, are applied to a manipulator's redundant degrees of freedom. Specifically: 

(7.231) 

An RMDAC controller is then applied to the augmented state vector to produce an augmented force vector. 

As before these forces are transformed into joint torques through the (augmented) Jacobian transpose. Note 

that the augmentation process and the summation process in OSF are mathematically identical. 

In RMDAC obstacle avoidance fdc(xc) was based on a computed minimum distance from the obstacle 

surface and range sensor data. In [Colbaugh, 1989], Colbaugh defines a critical point,(x.c)ij as the point on 

link i closest to the surface of obstacle j in local link coordinates. If the position, (x 0)j, of the jth obstacle is 

known and a clearance (or triggering) radius (rQ)j is defined, then the magnitude of the minimum distance 

is: 

[dc(q)],-,- = ll(xc),-i-(x0)i||2 (7.232) 

and an avoidance constraint,gij(<l) can be formulated: 

5 0-(q) = [dc(q)],-; - (r0)j > 0 (7.233) 



Chapter 7. Multiple Goal Systems 148 

where 
f[0 0]T if#;(q)>0 

I \-9ij ~ 9ij]T if .9.j(q) < 0 
(7.234) 

Now fdc(q) is generated through the feedback portion of an RMDAC controller to x c e: 

fdc(q) = dc{t) + KPc{t) IX e e + A'„c(i)x, •ce (7.235) 

where dc(t),KPc(t) and A' l ) c(i) are defined as in equation (6.206). 

Discussion 

Since there are no A P F obstacle models, this technique is less compute intensive than OSF and enables direct 

sensing of [dc(q)]i.j- Furthermore, the incorporation of x c into the task state vector means that both x e c and 

x c are enforced by an adaptive controller. To be achieved, therefore, both tasks must occupy complementary 

regions of configuration space, q or: 

This is merely a corollary on the fact that, given r the redundant degrees of freedom, a maximum of r 

constraints may augment the task vector or: 

If both tasks were compliant and if the above condition were not true, neither task would be achieved and an 

equilibrium would be established between the two tasks. Under adaptive control, however, there is no such 

compliance. Indeed, competition between adaptive controllers can lead to numerical instability. In other 

words, adaptive augmented state regulation ensures the convergence of mutually exclusive tasks, but cannot 

resolve conflicting tasks. 

Obstacle Avoidance and Arbitration 

Together OSF and RMDAC obstacle avoidance methods provide two important lessons on arbitration. 

Conflicts between strictly enforced goals can only be resolved through explicit coordination. If multiple goals 

are maintained by similar adaptive schemes, any conflict between goal systems (e.g. M a v o jd > N — Mt r a c k 

avoidance tasks) can lead to competitive adaptation and, ultimately, instability. Clearly, agents that use 

adaptive augmented state systems must use some form of explicit arbitration to either enable, disable, or 

modify goal systems during goal conflict. Indeed, if the goal systems are global, a centralized process may 

be necessary to orchestrate a global arbitration strategy - an explicit coordination system. 

/?.(j'f)ni?.(Jfe) = 0 (7.236) 

r 

(7.237) 

file:///-9ij
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Conflicts between compliant goals can be resolved through dynamic equilibrium. By using a compliant, 

albeit nonlinear, repulsion system and a compliant linear end effector force generator, OSF ensures collision 

avoidance and, when tasks conflict, stability. In short, OSF relies on environmental state, manipulator 

dynamics, and controller interaction to implement a goal coordination scheme - an emergent coordination 

system. 

Next, a multiagent technique will be introduced that exploits Jacobian Transpose decentralization and 

a compromise between the rigid goal enforcement of RMDAC and the compliance of OSF to demonstrate 

decentralized obstacle avoidance. 

7.3.2 Multiagent Obstacle Avoidance 

Since both Khatib's and Colbaugh's obstacle avoidance methods rely on Jacobian transpose control, it is clear 

that these, too, may be decentralized just as the end effector trajectory tracking task. Thus the structure of 

the global goal proxy is not specific to end effector trajectory tracking, but is applicable to any global goal 

system. Hence the variable p a p P refers to a generic point of application for some desired force. 

For obstacle avoidance, the desired applied force, fjj = f p s h , a repulsive force away from the obstacle 

surface while the point of application is the 'point subject to hazard' (psh)1 p a p p = p p s h- Together these 

form the obstacle avoidance global goal couplet: 

£ P s h = <PPsh,fpsh> (7.238) 

where p a p p = p p s h and fd = f p s h -

The structure and computation of the agent global proxy (4.128) remains unchanged, regardless of the 

source of Qpsh- However, for the ith link, avoidance forces can only be provided by superior links 0 < i -

those constituting the forward solution of the psh. Specifically: 

PPsh = /psh(q) (7.239) 
T 

fPsh (7.240) 

where q is the vector of generalized coordinates. Now if p p s h lies on link i then the forward solution / p s h (q) 

is a function of links j : 0 < j < i. This means that only 'superior' links, j < i, participate in the obstacle 

avoidance effort making obstacle avoidance a group correlated goal2. 

'With nomenclature reminiscent of Khatib's PSPs, 'points subject to hazard' are not fixed a priori and, in fact, are virtually 
identical to Colbaugh's critical points 

2However, if both end effector and base are rigidly constrained, theoretically all agents can drive the psh away from the 
obstacle based on the same global goal expression. 

''"psh — 
d/Psh(q) 

<9q . 
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Figure 7.38: A simple link agent controller model. 

This section will describe the design of an agent behaviour controller that, when triggered by a sensed 

obstacle boundary, asserts or broadcasts a global obstacle avoidance goal to the agent team. This resolved 

motion obstacle avoidance behaviour controller (RMOA) is formed of two fundamental components. The 

first monitors the local region with range sensors and formulates a response to an obstacle that intrudes a 

clearance lozenge surrounding the link. The second component polls the incoming goal stream for multiple 

global goals of the form (7.238) and develops a response based upon these requests. 

Responding to Obstacles 

Just as Colbaugh's obstacle avoidance system identified a critical point on each link, the sensor model in 

the multiagent obstacle avoidance behaviour controller determines a point subject to hazard or psh through 

a cylindrical sensor array. This array is aligned with the link axis and measures range to the nearest 

obstacle surface. Employing neither recognition nor surface mapping techniques, RMOA's sensor model 

simply returns a vector to the nearest obstructing surface, xr, expressed in the link's coordinate system. 

The RMOA sensor can be modelled as a linear range sensor array or its equivalent described parametri-

cally in link coordinates: 

where X i and x2 are the proximal and distal coordinates of the link in link coordinates. With such an array, 

xarr(a) = X i + a ( x 2 - X i ) 0 < a < l (7.241) 
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a visible surface can be interpreted as a function of the array length. 

S : X s u r f = / s u r f ( X a r r ) (7-242) 

Defining min(xsurf) as the value of / s u r f at which the following is true: 

<9/surf 

<9xarr 

<92/Surf 

= 0 (7.243) 

> 0 (7.244) 
<9x2 

a sensor array may be designed to report only the nearest hazard or min(xsurf): 

X m i n = min(x sur f) (7.245) 

X p s h = x r • x,- (7.246) 

where X ; is the basis vector of the ith frame in the x direction. Thus the minimum range from the psh to 

the surface, xr, is simply x,. = x m j n — x p s h . 

With a linear array of range sensors distributed over each link, as in Colbaugh's implementation, each 

link may be enclosed by an artificial potential field, reminiscent of obstacle APFs used in OSF and depicted 

in 7.38. The obstacle avoidance strategy enforces a clearance range forming a nonlinear repulsion 'lozenge' 

about the link within which an APF, similar to equation (7.226), is activated. Within the lozenge, a repulsive 

force is determined based on the magnitude of the minimum distance or p — |xr|, from the link surface to 

the obstacle surface (see figure 7.39): 

^ = ̂ \k7rl)\^ (7-247) 

The force acts in the direction of the range, T ^ T . Triggering the behaviour at a clearance range of c, the 

repulsive force becomes: 

fr(xP) = / & (W " 0 X " i f | X r | ̂  C

 (7.248) 
( 0 if |xr| > c 

Through this RMDAC/nonlinear repulsion hybrid a margin of stability is gained during periods of overcon-

straint. The advantage the potential field approach has over the RMDAC obstacle avoidance goal is that 

the former permits some deflection and, therefore, some room for direct conflict between constraints. The 

disadvantage is that these same conflicts may result in instability if the obstacle intrusion becomes large. 

Once computed, the fr and x p s h are transformed into the global coordinates f p s h and p p s h respectively 

and asserted to the global goal process for retransmission to other agents. 
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Range (m) 

Figure 7.39: Semilog plots of the potential field (top) and repulsive force (bottom) as a function of normalized 
range. 

Global Goal Assertion Rebroadcast 

As described in the previous chapter, the global goal process GP maintains all the global goal processes. As 

described above, RMOA also enables each agent to generate global goal assertions. However, agents lack 

the necessary information to broadcast such assertions to the agent team (such information constitutes a 

local manipulator model - a feature worth avoiding if possible). Ideally such broadcasts might occur over a 

common communications bus to all agents possessing the RMOA controller. To mimic such a bus system, 

the global goal process receives global goal assertions from RMOA controllers for rebroadcast to superior 

links with RMOA controllers. 

Thus RMOA controllers must transmit data (through a MeasurandVector) and a receive data (through 

a SensorVector) from the goal process, both of which are members of the agent's IOStream. For a given 

receiving agent, the global goal process determines that the agent is superior to (i.e. closer to the manipulator 

base in the kinematic chain than) the asserting agent and inserts the global goal couplet into the agents 

receive message queue. Unfortunately, this message filtering process is a clearly not a simple broadcast. 

However, a 'one way' or unidirectional bus structure from end effector to base simplifies the communication 

model, retaining a relatively model-free communications structure. 
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Arbitrating Between Multiple Goals 

Having completed the assertion phase of the obstacle avoidance task, RMOA retrieves the global goal message 

queue and applies the global goal proxy expression to every received RMOA couplet to establish response 

forces for each avoidance request. For the jth agent: 

Utrack = (p„,Xj_i)fd (7.249) 
N-j 

Uavoid = E J i (Ppshk,Xj-i)fpshk (7.250) 
fc=l 

where J J(-, •) is the global goal proxy and N is the number of agents. The response u a v oid is passed to the 

arbitrator, A. Just as in previous obstacle avoidance methods arbitration can be simplified to simple linear 

combination. Recalling equation (4.92), for the jth agent: 

(7.251) 

where the kj is the arbitration vector. Significantly, the arbitration strategy of linear combination is not the 

product of some design process but from Newtons Second Law. 

Since u a v oid is a triggered behaviour controller, the arbitration vector could be rewritten as: 

kj = [fctrack âvoid] (7.252) 

where 

{ 1 if |x r| < c 
(7.253) 

0 if |x r| > c 

Since this triggering occurs within Hjavoid and not within A ; the goal system is self triggering. 

Despite decentralization, goal assertion, and rebroadcast, the expression describing RMOA over the 

manipulator is identical to both equations (7.230) and (7.229) as would any system based on Jacobian 

Transpose obstacle avoidance. The benefit of this system is that the computation is distributed, each agent 

can assert unique (even multiple) avoidance strategies based on different sensing systems (e.g. thermal, 

ultrasonic, etc.), and, perhaps most importantly, the failure of a single RMOA controller threatens only a 

single link - and not the entire manipulator. Furthermore, by recognizing that task conflict can be reconciled 

through compliant and adaptive controllers a mechanism of decentralized arbitration has been identified. 

Though the process may seem complex in comparison to RMDAC or OSF, closer examination of these 

centralized schemes reveals similar (if not more daunting) complexity in collecting and polling N (possibly 

ucj = k ^ u A . = [1 1] Utrack 

Uavoid 
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Strategy 6rms $rms 
Avoidance 3.481e-03 5.989e-03 

Table 7.11: R.MS error for a combined tracking and obstacle avoidance strategy. 

dissimilar) sensor arrays and computing the responses for N links in real time. In the multiagent structure 

discussed here, the global goal process transmits (at most) N — 1 global goal couplets to each agent and 

receives at most N — 1 global goal couplet assertions, each only 96 bytes long. Agents receive and transmit 

kinematic packets (144 bytes each) as well as IOStream and goal assertions (receive: 96(N — j) bytes, 

transmit: 96 bytes). It is hard to imagine a centralized data collection, analysis, and control system with 

lighter communication loads than decentralized RMOA. 

7.3.3 Results 

An experiment can now be constructed to explore the performance of this distributed, multiagent obstacle 

avoidance protocol. In the following test, an obstacle, a sphere 0.25m in diameter, is placed at a known 

interference location of the manipulator's motion though not obstructing the reference trajectory. The 

resulting performance, depicted in figure 7.40, demonstrates that the reference manipulator under multiagent 

control can successfully negotiate an interfering obstacle while tracking an end effector trajectory. 

During pure trajectory tracking, the manipulator exhibits typical jumbled, unconstrained 'free' motion 

in the Jacobian null space. However, once an obstacle intrudes a link's clearance lozenge, links appear to 

'rebound' from and 'slide' along a surface enveloping the obstacle. Despite these intrusions, the end effector 

exhibits good trajectory tracking performance as described in figure 7.41 and condensed into RMS error in 

table 7.11. 

Examination of figures 7.42 to 7.46 reveals the assertion and propagation of avoidance torques from source 

to base agents. Exemplified in figure 7.46, an avoidance torque output is generated by link 9 in response to 

an obstacle encroaching its clearance lozenge. Link 9 then asserts an avoidance goal to the superior links 

(links 1 through 8). Thus link 9's avoidance torque waveforms are echoed and magnified as each superior 

agent formulates a local response to link 9's global goal assertion through its global goal proxy operator. 

Of course, each agent acts on global avoidance assertions and asserts global avoidance goals as well if an 

obstacle intrudes the local lozenge. Therefore, the jth link (j < 9) response is often the combination of global 

goal assertions from links k : j < k < 9. Not surprisingly, avoidance torque waveforms become increasingly 



Chapter 7. Multiple Goal Systems 155 

Figure 7.40: The reference manipulator avoids a small stationary sphere while tracking the reference trajec­
tory. The sphere is 0.250m in diameter at xO Ds = [1.00 — 0.750]T. The RMOA controller uses a clearance 
of 0.75 m and gain of i] = 100.0. 
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Figure 7.41: End effector trajectory tracking performance of the reference manipulator engaging in multiagent 
trajectory tracking and obstacle avoidance. 
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Figure 7.42: Evolution of the Global Goals within links l(top) and 2 (bottom). 
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Multiple Goal Evolution within: link_3 
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Figure 7.43: Evolution of the Global Goals within links 3(top) and 4 (bottom). 
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Multiple Goal Evolution within: link_5 
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Figure 7.44: Evolution of the Global Goals within links 5(top) and 6 (bottom). 
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Figure 7.45: Evolution of the Global Goals within links 7(top) and 8 (bottom). 
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Multiple Goal Evolution within: link_9 
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Figure 7.46: Evolution of the Global Goals within links 9(top) and 10 (bottom). 
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complex as j -4 0. 

Of equal interest is the interaction between tracking and avoidance torques within each agent. Examining 

figure 7.44, both link 5 and link 6 exemplify the self arbitration interaction between the adaptive tracking 

goal and the relatively compliant avoidance goal. At approximately 24.5 seconds, both links receive the 

asserted avoidance request posted by link 93 . Figure 7.41 reveals that this disturbance is propagated to the 

end effector. In compensating for this disturbance, the global goal regulator changes the required tracking 

forces. An examination of links 5 and 6 reveals that these force changes appear as inverted waveforms of the 

avoidance torque profile over the same interval (approx. 24.5 to 25.5 seconds). Similar controller interactions 

can be observed within all the agents of the multiagent manipulator team. 

This behaviour suggests that multiple global goal systems can, in effect, become self arbitrating in a 

redundant system. The combination and magnitude of tracking and avoidance torques are determined 

neither by a global explicit coordination mechanism nor a local agent explicit arbitration strategy, but 

through interaction of the system, the behaviour controllers, and the environment. Rather than modelling the 

environment and planning an explicit avoidance strategy, JTC obstacle avoidance schemes, including RMOA, 

demonstrate that obstacle avoidance and end effector tracking behaviours can be designed independently 

and superpositioncd to achieve collision free motion in a cluttered environment. Though the independent 

global goals of trajectory tracking and obstacle avoidance are applied to the system, the system's global 

behaviour becomes a hybrid of the two systems, apparently without explicit or implicit coordination of the 

link agents. 

7.3.4 Discussion 

Unlike compliant task space controllers, end effector trajectories enforced through adaptive control must be 

changed to avoid mid course obstacles. Compliant controllers, however, can spontaneously avoid such obsta­

cles by combining attractive and repulsive forces at the end effector. Overcoming linear repulsive controllers 

and unstable in combination with any other, adaptive controllers must actively formulate trajectories to 

avoid unexpected mid course obstacles. 

One must agree with Khatib, that to avoid end effector collisions, the global goal generator must itself 

become an agent, adopting some obstacle avoidance strategy to construct safe end effector trajectories. 

Though such agent based obstacle avoidance strategies arc numerous and would fit easily into the multiagent 
3Occasionally, a link range plot indicates an obstacle intrusion without triggering a local avoidance response, implying 

Ppsh k

 = x j — l - Overlapping the clearance lozenges at the joints ensures avoidance behaviour in these cases. 
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system discussed in this study, ultimately they are ultimately another trajectory generator and will not be 

investigated here. 

All goals are not always of the same priority, however. For tracking tasks obstacle avoidance and trajectory 

tracking are both of primary importance, divergence from either constituting a form of failure. Nevertheless, 

strict performance guarantees are often pursued for these less critical tasks (such as torque optimization, 

manipulability, etc.) and, in RMAC for example, have led to explicit task prioritization methods based on 

hierarchies of null space selection operators and switching logic [Nakamura, 1984]. In the next section, it 

will be shown that through appropriate specification of auxiliary goal systems, such prioritization/selection 

schemes can be greatly simplified. 

7.4 Local and Global Goals Combined 

Having demonstrated a global goal generation method in the last chapter and, in the last section, the interac­

tion of multiple global goals, this section will investigate the interaction of local and global goals. Furthermore, 

this section will demonstrate that appropriate design of linear local and adaptive global behaviour controllers 

can result in self organizing, emergent behaviour of a multiagent team. Finally simulation results will be 

presented that establish multiagent control as a new, computationally lightweight method of redundancy 

resolution. 

7.4.1 Why Local Goals? 

Fundamentally, local goals provide each agent with control over local conditions. For example, a manipula­

tor's free motion in N(J) can produce both undesirable and unpredictable dynamics. However, under local 

control this motion can be harnessed, enabling velocity minimization, free configuration space maximization, 

and joint limit avoidance. Therefore, the purpose behind local behaviour control is to reign in the less 

desirable characteristics of redundancy while achieving locally desirable states or properties. An additional 

objective, identified in the emergent multiagent control hypothesis, is that local control can lead to beneficial 

globally desirable states or properties. 

Before entering into a discussion of local goal design, a brief examination of a common local auxiliary 

controller [Khatib, 1985], joint limit repulsion, will demonstrate the benefits and difficulties of local goal 

design in a multi-goal environment. 
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7.4.2 Continuous Nonlinear Joint Limit Repulsion 

A persistent hazard of task space control, collision with joint limits, has led to the development of joint 

limit repulsion controllers. A good example, demonstrated here, is Khatib's joint limit repulsion strategy 

[Khatib, 1985]. A variant of his obstacle avoidance strategy, Khatib developed a force generator in which 

joint limit boundaries were enforced by the following nonlinear repulsive control law: 

{ - 7 ? ( T J ^ ) ^ if Pupper < Po > 0 

v*w„ P O ; P ( 7 2 5 4 ) 

-^[j^Z-To)!? i f P l o w e r < P 0 > 0 
where 

Pupper = (/upper — Q (7.255) 

Plowcr = q — Slower (7.256) 

Combining this behaviour controller and trajectory tracking behaviour controller: 

Utrack = Jj(p„,x,-_i)fr f (7.257) 

to each link agent controlling the reference manipulator or: 

u c j = k^.uA j. = [1 1] Utrack 

Ulimit 
(7.258) 

A physically realizable robot configuration history, i.e. within joint limits, can be observed. In the 

demonstration depicted in figure 7.48, the gain r/ = 5.00 is applied to the local joint limit repulsion goal. 

Clearly, the local repulsion goal prevent collision with the joint limit boundaries. Unfortunately, the non-

linearity of these local goals can produce collision-like effects visible in figure 7.47, often disturbing the end 

effector trajectory. Indeed, some trial and error is required to settle upon a local gain sufficiently strong 

to prevent collision and yet maintain stability of the manipulator. Furthermore, the nonlinearity of the 

local goal exacerbates the problem by permitting virtually free motion in N(J) only to prevent joint space 

collisions precariously near the joint limit. 

Clearly, arbitrary local goals do not guarantee stability of the system even in the presence of a relatively 

robust global goal generator. Some reliable design process is needed. The following sections will attack the 

local goal design problem by 

• adopting a simple linear local controller 
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Figure 7.47: End effector trajectory performance for the reference manipulator and payload under RMDAC 
end effector and joint limit avoidance (rj = 5.0 N-m). 
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Figure 7.48: Both RMDAC end effector global and joint limit local goals are engaged. 
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• combining this with a linear global controller 

• performing a linearized stability analysis. 

7.5 Linear Local Goal Design 

To separate the interaction and design of controllers from agent arbitrators assume, for the moment, that 

simple linear combination is an adequate arbitrator for the jth agent. For example: 

u C J =k^ xiA, = [1 1] Uglobal 

Ulocal 
(7.259) 

where is the arbitration vector. The local goal design problem then addresses how u i o c a i should be 

formed. Just as in global behaviour control, a number of local behaviour controller models are possible: 

linear or nonlinear, continuous or discrete. Unlike global behaviour control alone, however, local behaviour 

control interacts with both local and global goal systems. To simplify the problem, a good starting point 

is to clarify the interaction between local and global goal systems through the adoption of a simple linear 

continuous local controller. By reviewing the design of a simple P D local controller, the implications of this 

selection on the global performance of the system and on the distribution of local control effort throughout 

the system can be predicted, simulated, and discussed. 

Assume a P D controller is applied to the fcth agent based on the assumption that the link is an isolated 

linear system of the form in equation (2.49): 

Jeffkqmk + (-Befffc + KkKb)qmk = Kkuk - rkdk (7.260) 

where, as before: 

./eff, = Jmk+r2dkk (7.261) 

dk = ^djkqj + 'Y^Cijkqiqj (7.262) 

Now for a simple P D controller and the with the gains kq and kw, reiterating equation (3.58): 

u = kqqek + kwqek (7.263) 

where qCk = qdk - qmk- Substituting and rearranging: 

Jcffkqmk + (Beftk + KkKb + Kkw)qmk + Kkkqqmk = Kkkqqdk + Kkkwqdk - rkd (7.264) 
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A p p l y i n g the Lap lace Trans form w i t h zero i n i t i a l condit ions: 

JefuQm* (s)s2 + (Z?efrk + A V u + Kkkw)Qmk (s)s + KkkqQmk (s) = KkkqQdk (s) + KkkwQdk (s)s - rkDk{s) (7.265) 

Developing the expression: 

Qmk (*') 
Dk{s) 

:A f c(s) QM-rk^m (7.266) 
Afc(«) 

A f c (s) = J e r T t s2 + (S e f f „ + Kk Kb + Kkkw)s + Kkq (7.267) 

Now, this system will be stable if the roots of the characteristic equation Ak(s), reside in the left half plane. 

The steady state error is the product of two possible inputs Qdk and D(s). Applying a unit step for both 

Qdk and D(s), the final value theorem may be used to estimate the steady state error. 

ess(t) = lim s 
8->0 

1 Kkkq + Kkk 
T k 9 b (7.268) 

_s A f e(s) sAk(s)\ Kkkq 

Now, the remainder is that which remains constant in the robot equation, usually gravimetric forces. There­

fore gb = \gk | is the bound on the value of these forces. From this classical analysis one can conclude that 

the steady state error may be characterized by: 

ess(t) < ^ (7.269) 

Thus as kg increases steady state error diminishes. Using vector notation, we can describe the manipulator 

local controller behaviour as a typical PD manipulator controller or: 

ui o c a i = K 9q e(r) + Kwqe(t) (7.270) 

Given this classical PD joint controller construction, what are the implications of a similar local PD 

controller coexisting with a global goal system of the form discussed in chapter 6. The following sections will 

explore this topic through the combination of locally compliant and globally adaptive behaviour controllers. 

7.6 Local Goal Strategies 

In this section a number of local goal strategies will be described and combined with global goal strategies 

in simulation. Though based on the basic PD controller design above, each local goal adopts a specific 

compliance and/or setpoint combination to achieve unique global behaviour. 

Since each link is controlled by both a three degree of freedom task space controller and a single degree 

of freedom joint controller, the manipulator will be overconstrained with a total of n + 3 constraints. As 
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discussed earlier, this overconstraint should not produce a PD equilibrium offset at the end effector, the 

global RMDAC controller compensating for the local controllers in the steady state. However, those links 

that are fully constrained will, nevertheless, be able to transmit force and position requirements to other 

link agents by 'reflecting' control effort off the global goal regulator. 

7.6.1 Fail Safe Locking and Robustness 

The basic attraction of redundant manipulation is that a variety of configurations can achieve the same end 

effector task. Thus a disabled motor or controller need not bar the manipulation system from completing the 

task. However, this kinematic redundancy is usually not mirrored within traditional centralized controllers 

in which computer or algorithmic failure can be catastrophic. 

In RMPC or off-line numerical methods, joint jamming or locking requires centralized detection and 

recornputation of the desired joint space solution. While tolerant of such failures, RMRC, RMAC, and tra­

ditional JTC, like RMPC, are model driven processes within centralized architectures. Software or hardware 

failures of any centralized controller can lead to catastrophic failure. The solution, backup controllers ('hot 

standbys') and/or remote operation, greatly complicates the control system and substantially elevates costs. 

By exploiting a distributed computational model, Multiagent control is comparatively immune to system-

wide computer failure. This architecture provides a simple solution to controller and/or motor failure with 

little or no computational penalty. Since end effector performance is not disturbed by frozen joints in a 

redundant manipulator under Jacobian transpose control, an agent can manage a joint failure through, 

for example, a 'fail-safe' behaviour that engages an emergency brake. This approach combined with the 

decentralized computation model described in chapter 6 provides the necessary hardware robustness to 

survive relatively severe controller and/or motor failures. By basing an agent's fail-safe behaviour on triggers 

such as suspicious sensor data or poor motor performance, a factor of safety can be designed into the 

manipulation system. 

Of course, no system is immune to catastrophic failure and multiagent manipulator control is no exception. 

Multiagent control's weakness lies in each agent's dependency on kinematic packet transmission (assuming 

no local task space sensing is available). A failing rectified only through redundant communications 4 . 

Results 

* Probably required by 'hot standbys' in R M A C anyway, redundant communications alone are, nevertheless, far less costly 
than redundant communications and redundant, centralized controllers. 
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Figure 7.49: End effector trajectory error for the reference manipulator and payload under the failure of link 
9. 
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Figure 7.50: 
manipulator 

The manipulator configurations at the knotpoints of the reference trajectory for the reference 
and payload under the failure of link 9. The 'fail safe' braking behaviour locks link 9 to link 8. 
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Strategy firms $ r m s 

Reference with Failure 
Reference 

3.285e-03 5.528e-03 
2.779e-03 2.850e-02 

Table 7.12: Comparison of end effector RMS position and orientation error performance between reference 
and fail-safe behaviour of link 9. 

The performance of a local fail safe braking strategy can be simulated through the application of a stiff local 

PD controller at the failed joint and the removal the global trajectory tracking behaviour from the joint's 

goal list. This has the effect of binding the failed link, j, to link j — 1. 

Ubrake = kqqCk. (7.271) 

where kq is large. 

In the following simulation, each agent in the team pursues a global tracking goal while the disabled 

agent, l ink 9, employs a fail safe braking strategy. The multiagent system adopts the control laws: 

u c j = u t r a c k j = {1,..., 8,10} (7.272) 

u C 9 = u b r a k e (7.273) 

In figure 7.50, the configuration history of the reference manipulator with link 9's goal system disabled 

and motion locked. Together, adaptive global goal enforcement and the decentralized architecture enable 

the manipulator to continue trajectory tracking without interruption or substantial increase in tracking 

error as depicted in figure 7.49 and recorded in table 7.12. The increased RMS error can be attributed 

to larger inertias in the link 8/ link 9 system that can effect the global behaviour's transitory response. 

RMAC methods can exhibit similar robust performance, but at the cost of greater computation (an 0(N2) 

pseudoinversion and at least O(N) dynamic model) and centralized control. 

7.6.2 Constant Compliance Centering 

Earlier in this chapter a joint limit avoidance local goal was introduced, exhibiting effective , though poorly 

behaved, performance. Another strategy is to minimize the probability of a joint limit collision by maximizing 

each joint's available free maneuvering range. One strategy for maximizing available 'maneuvering room' in 

joint space, is to enforce a joint centering strategy on the system. By specifying a time invariant setpoint 

midway between each joint's upper and lower bounds in the following manner: 

feean, = ^ t ^ (7-274) 
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Figure 7.51: The structure of a multiagent system in which each agent has both local centering and global 
trajectory tracking (and other) behaviours. 

a simple joint centering strategy can be devised. For simplicity, assume all agents are homogeneous, with 

identical PD controllers of the form: 

^centering = ^qlck "t" kwqek (7.275) 

where qCk = qmcatik - qk- Where 

kqk = C Vfc (7.276) 

and (kqk,kWk) are selected to be LHP stable and perfectly damped or: 

fctujt — 2\/fc0A. (7.277) 

Figure 7.51 depicts the final structure in which each agent has both local centering and global tracking 

behaviours. 
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Intuitively, centering seems to be a reasonable method of ensuring each joint tends to remain in the 

middle of its range, but does this strategy, in fact, globally maximize maneuvering room (or globally minimize 

displacement from the midrange) over the trajectory? 

Joint Centering A s Optimization 

Joint Centering can be shown to globally minimize joint displacement from the midrange over the end 

effector trajectory. Kazerounian and Wang [Kazerounian, 1988] demonstrated that locally minimizing joint 

acceleration through RMAC (a least squares pseudoinverse solution for joint acceleration), globally minimizes 

the performance index: 
C> ,n 

1=1 q r A ( * ) q dt (7.278) 

and, therefore, the joint velocity if the symmetric matrix A(r) = I. By augmenting this index with a 

potential energy term a similar development will show that insertion of a proportional joint controller into 

N(J) globally minimizes joint displacement: 

1=1 q T K 9 q + q T A q dt 

Jt0 

subject to the forward kinematic solution G'((q), t) = x(t) — f (q) = 0. The Hamiltonian becomes: 

H (q, q, *) = q r K , q + q T A q + A TG((q)) 

making an augmented performance index: 

I* = fJ H(q,q,t) dt 
Jt0 Kazerounian then applies the calculus of variations in I* to produce: 

SI* [tJ \L*IL _ d d H 

Jt0 L^q d t dq 
Sqdt + 

OH 
dq(tf)\ 

Sq(tf) -
dH 

dq(t0) 
Sq(t0) 

For an arbitrary variation J q , the PI is minimized if: 

dH d dH 
dq dt dq 

= 0 

The term: 

— - 2 K ? q + A — + q 

Of course the term | g is simply J , the Jacobian of the forward solution. The term: 

d dH „ 4 .. . . 
- - = 2 A q + 2 A q 

(7.279) 

(7.280) 

(7.281) 

(7.282) 

(7.283) 

(7.284) 

(7.285) 
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Equation 7.283 then becomes: 

Solving for q: 

2 K 0 q + A T J + d ^ A ^ q - (2Aq + 2Aq) = 0 (7.286) 

q = A " 1 ( K 0 q + A T J + 0.5 ̂ ^ A ) q - Aq) (7.287) 

Twice differentiating the constraint, G((q)), produces the familiar equation: 

J q = x - j q (7.288) 

into which q may be substituted : 

d(aTA) 

J A _ 1 ( K , q + A T J + 0 . 5 - ^ - ^ q - A q ) = x - J q (7.289) 

J A - ^ ' A + J A - ^ K ^ q + ^ . S ^ j q - A ) q ] = x - J q (7.290) 
Now solving for A: 

A = ( J A ^ J 3 ' ) - 1 ^ - jq) - ( J A - ^ y ^ A - ^ K j q + ( 0 . 5 ^ q

A ) q - A)q) (7.291) 

Backsubtituting into the expression 7.287: 

q = A - ^ K j q + ^ K J A - 1 ^ ) - 1 ^ - jq) - ( J A - 1 J r ) - 1 J A " 1 [ K g q + ( 0 . 5 ^ ^ q - A ) q ] ] 

+ ( 0 . 5 ^ ^ q - A ) q (7.292) 

= J^(x - Jq) + (I - j t t J ) A ~ 1 [ K , q + ( 0 . 5 ^ ^ A ) q - A)q] (7.293) 

where: 

J ^ A - ^ ^ J A " 1 ^ ' ) - 1 (7.294) 

is the weighted pseudoinverse of the Jacobian matrix. If A = I and K ? = 0, then J ^ = j t , and (7.293) is 

equivalent to the minimum velocity solution.If the only joint value requirements are the satisfaction of the 

end effector forward kinematic solution constraint at tj and *o, then the joint velocities must satisfy the 

boundary conditions [Kazerounian, 1988]: 

q = J^x (7.295) 

at both tf and to. 
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However, both [Kazerounian, 1988] and [Colbaugh, 1989] show that by setting A = D(q), free motion in 

the null space of minimizes the kinetic energy of the system. Substituting into equation (7.293): 

q = J f

D(x - Jq) + (I - J+?J)D-1 [K ?q + (0.5 ̂ P ) q - D)q] (7.296) 

and recognizing the relation: 

C(q, q) = (D - 0 . 5 ^ ^ q ) (7.297) 

equation (7.296) reduces to: 

q = J^(x - Jq) + (I - J^J)D- 1 [K„q - Cq] (7.298) 

with the natural boundary conditions [Kazerounian, 1988] at to and t f . 

q = J*,x (7.299) 

If K g = 0 equation (7.298) describes the accelerations within a redundant manipulator under end effector 

control alone. Observe that these accelerations are weighted (as one might expect) by the manipulator inertia 

matrix and that accelerations in the Null space are governed by coriolis and centrifugal forces. By restruc­

turing this equation as a force-torque expression (as in [Colbaugh, 1989]), it can be shown that insertion 

of a simple proportional controller into the Jacobian null space is equivalent to a minimum displacement 

strategy. 

Recall the structure of the Robot equation in both task space and configuration space coordinates: 

r = D(q)q+C(q,q)q-r-g(q) (7.300) 

f = M(x)x + N(x,x)x-l-p(x) (7.301) 

where M(x), N(x,x)x and p(x) are related to D(q),C(q,q)q, and g(q) respectively in equations (E.421), 

(E.422), and (E.423). Now given a redundant manipulator with the inertia-weighted pseudoinverse: 

J ^ = D - 1 J T ( J D _ 1 J T ) _ 1 (7.302) 

the task space equation can be rewritten: 

f = (JD- 1 ^)- 1 ^-Jq]- f -J^ T [Cq + g] (7.303) 

Substituting equation 7.298 into the configuration space robot equation: 

T = D jj,(x - Jq) + (I - J ^ D - ^ q - Cq]] + Cq + g(q) (7.304) 
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Expanding J o and simplifying: 

T = D D - 1 J T ( J D _ 1 J T ) _ 1 ( x - j q ) + D(I - j J , J ) D _ 1 [ K , q - Cq] + Cq + g ( q ) (7.305) 

Simplifying: 

r = 3T(3D-1JT)-1(i - Jq) + (I - J ^ ) [ K , q - C q ] + Cq + g ( q ) (7.306) 

and substituting f and rearranging: 

T = 3Tf - 3T3%{Cq + g] + Cq + g(q) + (I - 3D3)[Kqq - Cq] (7.307) 

or simply: 

T = j £ f c + ( I - J l , J ) [ K , q + g ( q ) ] (7.308) 

From this last equation, one can conclude that proportional control in the null space of 3D globally minimizes 

displacement if g(q) « 0. The effects of the addition of derivative control is not clear using these arguments. 

A PI based on damping energy term q T K„,q becomes q7'[K«, +D]q and ultimately acts to bias the weighted 

pseudoinverse. 

The above development has shown that a proportional centering strategy inserted into N(j£>) globally 

minimizes displacement energy (and therefore displacement). However, in the current technique there is no 

explicit insertion process, rather the 'natural' evolution of perturbations described in section 7.2 performs 

this coordination automatically. Unfortunately, since RMDAC requires finite time to ensure end effector 

tracking and, moreover, cannot guarantee convergence of parameters5, the actual performance is probably 

a suboptimal displacement energy solution. Nevertheless, in accepting suboptimality, a decentralized, self 

coordinated system can be demonstrated. 

Results 

In the following simulations each agent employs a joint centering local goal in conjunction with the reference 

trajectory tracking global goal. In effect, each PD controller models a spring-damper system located at each 

link's joint. The agent output: 

In the demonstration run, depicted in figures 7.52 and 7.53, local gains kq and kw are set to 100 and 

20 respectively, with all controllers operating at 120Hz. The results may be viewed from both a local and 

aggregate perspective. 
5i.e. equations (E.421), (E.422), and (E.423) are not necessarily true 

[cj = k A J

u A J = I1 !] 
U t r a c k 

(7.309) u, 
^ c e n t e r i n g 



Chapter 7. Multiple Goal Systems 178 

Locally, each agent's centering behaviour keeps each joint near its midrange and, as a consequence, 

minimizes clashes with joint limits. Lacking the nonlinear boundary controller, centering behaviours produce 

less disturbed end effector performance and greater predictability than the joint limit behaviour described 

earlier, though they do not guarantee joint limits will not be exceeded. 

The aggregate effect is twofold. First, the local strategy induces the predicted local minimization. Sec­

ondly, the local strategy enforces a manipulator 'shaping' policy much like a 'leaf spring'. Both are the 

product of complex interactions between local and global behaviour controllers. 

The local centering strategy seems to maximize the available maneuvering volume within the limits of the 

usable C-space and exhibit a smooth curvature, an unplanned (though not unforeseeable) global behaviour. 

Just as in end effector trajectory tracking, a root mean square (RMS) measure characterizes the optimality 

of the manipulator's centering behaviour over the reference trajectory and is defined as: 

where Ns is the total number of timesteps. Table 7.13 documents the erosion of RMS end effector tracking 

accuracy as well as the reduction of the RMS joint displacement error with increasing local goal stiffness. 

Though slowing the global goal's convergence to an ideal tracking process, even relatively small local stiff­

nesses greatly improve the optimal displacement measure, qrms- Dynamically, the aggregate behaviour 

mimicks a spring-loaded or leaf spring mechanism, similar to configurations described in [Slotine, 1988]. 

Despite the simplicity of this strategy, examination of the torque histories (figures 7.54-7.58), reveals that 

this behaviour is the product of complex interaction between local and global constraints. As established 

earlier, end effector control drives disturbance forces into N(J). From the lone agent's perspective, the 

adaptive correction process allows local goals, Su, to be partially fulfilled while fulfilling the global objective. 

In terms of multiagent control, this process effectively reflects a local goal to the agent team. In this sense, 

cartesian adaptive controllers provide a communication infrastructure for an emergent coordination strategy 

between arbitrary local goal systems. 

The torque histories in figures 7.54-7.58 clearly document this coordination through the cancellation 

of local link centering forces, but only insofar as they interfere with the global goal. This cancellation is 

indicated by mirrored waveforms between the link's centering and trajectory tracking torque plots. In the 

steady state (q = 0), these forces balance exactly as predicted by the stability analysis. 

In an analysis of the locally and globally compliant systems it will be shown in the next section that these 

systems are coupled and that the performance of the combined system is a nonlinear hybrid of both systems. 

(7.310) 
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No. kg hw firms $rms Qrms 
01 0.00 0.00 3.059e-03 6.014e-03 7.848e+00 
05 30.00 10.95 4.573e-03 8.034e-03 2.813e+00 
04 50.00 14.14 5.023e-03 9.346e-03 2.738c+00 
02 100.00 20.00 5.963e-03 1.424e-02 2.700e+00 
03 225.00 30.00 8.183e-03 2.988e-02 2.675e+00 

Table 7.13: Tabulation of local joint centering PD gains versus RMS task space position error and RMS 
centering error for a simple joint centering strategy. 

The same may be said of the locally compliant and globally adaptive multiagent system: isolated stability of 

local and global systems does not guarantee combined stability. To ensure stability of the RMDAC generator, 

the manipulator's parameters must not appear to change suddenly. For example, setting local gains above 

kq = 400 and kw = 40 produces instability at the reference control rate of 120Hz. Stability can be recovered 

by either raising local control rates or using underdamped local derivative gains. Either tactic reduces the 

apparent change in manipulator parameters at the end effector. 

As the end effector approaches the origin, the local deflections become greater (and the 'leaf spring' 

more 'compressed'), forcing RMDAC to become increasingly stiff and, often, less stable. The combined 

effect is a stability gradient imposed on the work space dependent both on the position of the end effector 

and manipulator configuration. Thus marginally stable centering/tracking goal combinations at the start 

of the trajectory may become unstable near the origin. Indeed, for marginally stable cases many explode 

numerically either in the first few seconds of the reference trajectory or approximately at the midway point 

(t = 20.0 sec). 

While noting that local stiffness is a source of instability, large local position gains are not necessary to 

institute a manipulator shaping policy in N(J). Rather, it is the existence of such local behaviours that 

dominate the manipulator shape as indicated by the optimality measures, q r m s , in table 7.13. 

7.6.3 Constant Compliance Retraction 

The 'leaf spring' configuration behaviours demonstrated thus far maximize the available maneuvering volume 

for each link, minimizing the curvature along the manipulator. In effect, as the end effector approaches the 

origin, the local centering behaviours becomes more compressed, requiring greater stiffness by the adaptive 

global goal generation system to maintain the trajectory. Since stability and global goal stiffness are coupled, 

this strategy imposes a stability gradient on the system. This approach also biases the manipulator position 
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Figure 7.52: End effector trajectory for the reference manipulator and payload under both RMDAC end 
effector global and joint centering local goals. 
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Figure 7.53: The manipulator configurations at the knotpoints of the reference trajectory for the reference 
manipulator and payload under both RMDAC end effector global and joint centering local goals. Note 
the manipulator simultaneously adopts a 'leaf spring' configuration while tracking the reference trajectory, 
indicating that joint centering forces are acting in N(J). 
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Figure 7.54: Centering and tracking torques for links l(top) and 2 (bottom) of the reference manipulator 
tracking the reference trajectory. 
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Figure 7.55: Centering and tracking torques for links 3 (top) and 4 (bottom) of the reference manipulator 
tracking the reference trajectory. 
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Figure 7.56: Centering and tracking torques for links 5 (top) and 6 (bottom) of the reference manipulator 
tracking the reference trajectory. 
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Figure 7.57: Centering and tracking torques for links 7 (top) and 8 (bottom) of the reference manipulator 
tracking the reference trajectory. 
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Figure 7.58: Centering and tracking torques for links 9 (top) and 10 (bottom) of the reference manipulator 
tracking the reference trajectory. 



Chapter 7. Multiple Goal Systems 187 

towards the edge of the work volume and, by coincidence, closer to kinematic singularities. 

Qualitatively, these effects can be reversed by applying a retraction behaviour to the entire manipulation 

system. Though one might be able to design a global goal to implement a global retraction generator, a 

simple local strategy can produce a retraction behaviour. For a serial planar manipulator, retraction of the 

end effector to the origin may be easily affected by a l t e r n a t e l y applying maximum and minimum boundary 

setpoints along the length of the manipulator. Formally: 

f <?high k if k even 
qdk = Vfc (7.311) 

I fflowfc if fc odd 

again: 

u = kqqek + kwqek (7.312) 

where qCk = q<ik — qk- The agent's control effort: 

u c j = k^ u A . = [1 1] (7.313) 
U t r a c k 

U r c t r a c t i o n 

Adopting the local centering behaviour gains and setpoints in table 7.14 in the multiagent control of the 

reference manipulator, one can observe that the global shaping behaviour is markedly distinct from previous 

centering strategies, though the controller dynamics are identical. This strategy is a good example of local 

behaviour leading to complex aggregate or global behaviour and the simplicity of deriving such behaviour. 

The alternate extreme setpoint strategy serves to contract the manipulator in a manner reminiscent of a coil 

spring. 

The results in table 7.15 and figure 7.60 document improved trajectory tracking and, in figure 7.59, a 

relatively compact manipulator volume. Trajectory tracking is improved in part due to end effector rotation 

that conveniently coincides with the desired orientation trajectory. Furthermore, as all the links rotate in 

the first instants of motion, the manipulator spontaneously leaves the region of kinematic singularity (where 

the Jacobian Transpose performs poorly) improving both the projection of the end effector goal on each 

actuator and the image of the robot's dynamics to the end effector goal generator. 

Tertiary dynamics, also residing in N(J), differ between centering and retraction behaviours. Since PD lo­

cal behaviour controllers resemble a spring damper system, some form of tertiary oscillatory dynamics should 

be expected. Not surprisingly, the centering behaviour, modelling a leaf spring, tends to exhibit transverse 

oscillations more readily than the retraction behaviour that tends to exhibit longitudinal oscillations. 
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Figure 7.59: Both RMDAC end effector global and joint centering local goals with alternating setpoints are 
engaged. 
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Figure 7.60: End effector trajectory performance for the reference manipulator and payload under RMDAC 
end effector and joint centering 'retraction' local goals. 
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Agent kq Id id 
01 1.0e+02 2.0e+01 +1.570e+00 0.00e+00 
02 1.0e+02 2.0e+01 -1.570e+00 0.00e+00 
03 1.0e+02 2.0e+01 +1.570e+00 0.00e+00 
04 1.0e+02 2.0e+01 -1.570e+00 0.00e+00 
05 1.0e+02 2.0e+01 +1.570e+00 0.00e+00 
06 1.0e+02 2.0e+01 -1.570e+00 0.00e+00 
07 1.0e+02 2.0e+01 +1.570e+00 0.00e+00 
08 1.0e+02 2.0e+01 -1.570e+00 0.00e+00 
09 1.0e+02 2.0e+01 +1.570e+00 0.00e+00 
10 1.0e+02 2.0e+01 -1.570e+00 0.00e+00 

Table 7.14: Tabulation of joint centering PD gains and setpoint for the constant compliance retraction local 
goal strategy. 

Strategy firms $rms 
Retraction 2.244e-03 5.782e-03 

Table 7.15: RMS error for the constant compliance retraction strategy. 

7.6.4 Variable Compliance Centering 

Another global shaping behaviour strategy is to vary the stiffness of each local PD goal generator. By 

differentiating agents through a stiffness strategy, an agent with a relatively soft PD controller will accept 

more displacement than stiffer controllers, giving some links 'preferential' treatment over others. For example, 

consider the following compliance strategy based on the following PD controller stiffness selection: 

kqj>kqj_1 fe=l...n (7.314) 

With this strategy, a 'variable compliance' multiagent system can be designed to becomes stiffer towards the 

end effector. The reverse of this strategy: 

kqj<kq._l k-l...n (7.315) 

allows a 'variable compliance' multiagent system can be designed that becomes more flexible towards the 

end effector. For consistency both cases are are designed to be LHP stable and perfectly damped or: 

kWj = 2 ^ (7.316) 
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and the agent output is again: 
r 

U t r a c k 
ucj = k ^ u A . = [1 1] (7.317) 

^ c e n t e r i n g 

Simulating the reference manipulator with the increasing gains documented in table 7.16 the familiar 

global 'leaf spring' behaviour emerges. However, the manipulator exhibits progressively smaller deflections 

from joint midrange in figure 7.62 from base to end effector. Comparing figure 7.61 with figure 6.30 it is 

clear that the addition of this behaviour tends to exaggerate transient end effector tracking errors, though 

steady state response is ultimately unaffected. 

Similarly simulating the reverse strategy in figure 7.64 shows that decreasing gains from base to end 

effector permits progressively greater deflections at each link along the 'leaf spring', again magnifying the 

end effector transient response in figure 6.30. It is interesting to note the difference in transient response 

between increasing and decreasing gains cases. Clearly, the increasing gain strategy disrupts the end effector 

global goal less than the reversed, decreasing strategy. Given the Jacobian relationship between end effector 

and joint velocities, this should not be unexpected. Since the base gets 'preferential' treatment in the 

decreasing case (i.e. small deflections are desirable) with relatively large stiffnesses, restoration accelerations 

in the first link will be magnified at the end effector through equation (2.12). In the increasing gains case 

it is the end effector that retains relatively stiff gains and, as a consequence, generates smaller end effector 

disturbances. 

Despite the performance differences, a comparison of the figures 7.61,7.63 and 7.52 indicates that reducing 

total stiffness of these variable series goal systems improves transient performance. 

Remarks 

To dynamicists, the observation that subtle, structural changes can lead to large changes in the response of 

a nonlinear system is not surprising. To the multiagent designer, however, this lesson shows that seemingly 

minor changes within a multiagent team can have significant impact on the system's global behaviour. 

7.6.5 Combinations: Trajectory Tracking, Obstacle Avoidance, and Centering 

Trajectory tracking and obstacle avoidance guarantee collision free motion if the tracking goal is reachable 

and the end effector trajectory is obstacle free. However, triggered obstacle avoidance tasks constrain the 

manipulator only while activated and leave the manipulator to free motion in N(J) otherwise. Maximizing 
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Figure 7.61: End effector trajectory performance for the reference manipulator and payload under RMDAC 
end effector and joint centering local goals of linearly increasing stiffness. 
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Figure 7.62: Both RMDAC end effector global and joint centering local goals with increasing stiffness are 
engaged. 



Figure 7.63: End effector trajectory performance for the reference manipulator and payload under RMDAC 
end effector and joint centering local goals of linearly decreasing stiffness. 
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Figure 7.64: Both RMDAC end effector global and joint centering local goals with decreasing stiffness are 
engaged. 
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Agent Decreasing Increasing 
kq kv kq kv 

01 1.0e+02 2.0e+01 1.0e+01 6.324e+00 
02 9.0e+01 1.897e+01 2.0e+01 8.944e+00 
03 8.0e+01 1.788e+01 3.0e+01 1.095e+01 
04 7.0e+01 1.673e+01 4.0e+01 1.265e+01 
05 6.0e+01 1.549e+01 5.0e+01 1.414e+01 
06 5.0e+01 1.414e+01 6.0e+01 1.549e+01 
07 4.0e+01 1.265e+01 7.0e+01 1.673e+01 
08 3.0e+01 1.095e+01 8.0e+01 1.788e+01 
09 2.0e+01 8.944e+00 9.0e+01 1.897e+01 
10 1.0e+01 6.324e+00 1.0e+02 2.0e+01 

Table 7.16: Tabulation of increasing and decreasing joint centering PD gains for the variable compliance 
local goal strategy. 

Strategy firms ^rms 

Increasing 
Decreasing 

4.972e-03 1.082e-02 
6.045e-03 1.238e-02 

Table 7.17: RMS error for "increasing" and "decreasing" variable centering gain strategies. 

the maneuvering volume and avoiding obstacles frees the manipulator from conflicts with both configuration 

and cartesian space boundaries. 

In the following demonstration, previewed in the introduction, three behaviours act simultaneously within 

each agent: an RMDAC trajectory tracking global goal, an RMOA obstacle avoidance global goal, and a PD 

joint centering local goal. The jth agent of the form: 

ucj = k A \ u A . = [111] 

U t r a c k 

U a v o i d 

^ c e n t e r i n g 

Given that u a v o i d is a triggered behaviour controller, the arbitration vector could be rewritten as: 

Utrack 

^avoid 

^ t r a c k 

^ a v o i d 

[_ ^ c e n t e r i n g 

1 if |x r | < C 

0 if IxJ > C 

(7.318) 

(7.319) 

(7.320) 

(7.321) 
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Behaviour Controllers e. •rms 0, rms Qrrns 
Tracking 
Tracking, Avoidance 
Tracking, Centering 
Tracking, Avoidance, Centering 
Tracking, Avoidance, Centering 

",t 

[1.0] 
[1.0 1.0] 
[1.0 1.0] 
[1.0 1.0 1.0] 
[1.0 1.0 0.5] 

2.779e-03 2.850e-02 
2.537e-03 5.475e-03 
5.963e-03 1.424e-02 
4.679e-03 7.626e-03 
3.999e-03 8.046e-03 

7.848e+00 
9.904e+00 
2.700e+00 
2.239e+00 
2.292e+00 

Table 7.18: Comparison of RMS errors for a tracking, obstacle avoidance (rj = 10.0), and centering (kp = 100 
ltd = 20) combined strategies. 

where |x r | and c are described are the surface and clearance ranges respectively. 

Selecting the avoidance gain, rj = 10.0, and centering gains uniformly as kq = 100.0 and kw — 20.0, a 

multiagent simulation can demonstrate the combined interaction between these multiple goal systems. 

The resulting end effector performance depicted in figure 7.65 demonstrates that, as in previous centering 

tasks, the adaptive controller's performance does not degrade significantly. Indeed, the combined strategy 

shows marked improvement over the tracking strategy alone. When triggered, the obstacle avoidance be­

haviour stabilizes local oscillations and, as a result, improves RMS trajectory tracking. 

The individual agent torque contributions shown in figures 7.67 to 7.71 clearly demonstrate the interaction 

and arbitration between behaviours as a function of end effector trajectory, link displacement, and range to 

obstacle surface. Again all local goal activity resides in N(J) through the strict enforcement of the trajectory 

tracking task. 

As mentioned earlier a similar mixture of tasks was demonstrated by [Slotine, 1988] based on an of­

fline version of RMRC. Using a null space selection operator, joint centering and obstacle avoidance were 

demonstrated in conjunction with a trajectory tracking task. The control law used in [Slotine, 1988]: 

where rj and K are the number of joints and obstacles respectively. Clearly, Slotine used similar, centralized, 

controllers. In multiagent control, the adoption of the global goal proxy enables the distribution of these 

controllers over the manipulator, while the adaptive global goal engages self organization in the Jacobian 

null space. 

ĉentering (7.322) 

(7.323) 
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Figure 7.65: End effector trajectory error for the reference manipulator and payload under both RMDAC 
end effector global, RMOA obstacle avoidance, and joint centering local goals. 
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Figure 7.66: Reference manipulator configurations at reference trajectory knotpoints under RMDAC end 
effector and obstacle avoidance global goals (rj = 10.0) and joint centering local goals(fc9 = 100, kw = 20). 
Note 'leaf spring' configuration and avoidance reside in N(J). 
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Multiple Goal Evolution within: link_1 

Time (seconds) 
Multiple Goal Evolution within: link_2 

Time (seconds) 

Figure 7.67: Range to surface, avoidance, centering, and tracking torques for links l(top) and 2 (bottom) of 
the reference manipulator tracking the reference trajectory. 
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Multiple Goal Evolution within: link_3 
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E 21 1 1 1 1 1 r 
CD 

Time (seconds) 

Figure 7.68: Range to surface, avoidance, centering, and tracking torques for links 3 (top) and 4 (bottom) 
of the reference manipulator tracking the reference trajectory. 
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Multiple Goal Evolution within: link_5 

10 15 20 25 
Time (seconds) 

Multiple Goal Evolution within: link_6 

15 20 25 
Time (seconds) 

Figure 7.69: Range to surface, avoidance, centering, and tracking torques for links 5 (top) and 6 (bottom) 
of the reference manipulator tracking the reference trajectory. 
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Multiple Goal Evolution within: link_7 

15 20 25 
Time (seconds) 

Multiple Goal Evolution within: link_8 

40 

15 20 25 
Time (seconds) 

Figure 7.70: Range to surface, avoidance, centering, and tracking torques for links 7 (top) and 8 (bottom) 
of the reference manipulator tracking the reference trajectory. 
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Multiple Goal Evolution within: link_9 

0i 1 1 i-r-i 1 1 1 r 

§ -0 .05 [-
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Multiple Goal Evolution within: link_10 

„ 200 
E i 

Time (seconds) 

Figure 7.71: Range to surface, avoidance, centering, and tracking torques for links 9 (top) and 10 (bottom) 
of the reference manipulator tracking the reference trajectory. 
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7.7 Arbitration and Compliance 

In keeping the elements of the linear agent model's arbitration gain vector, kj, unity, arbitration has been 

simplified to an unmoderated equilibrium between goal systems. However, in the previous experiments it was 

observed that changing the gains within the local PD goal system significantly altered the performance of 

the system. Clearly arbitration and compliance are related. If this is so, what is the impact of changing the 

relative magnitudes of the arbitration vector elements? To explore this further, consider the local centering 

goal system in isolation. 

^centering = kgqCk + k w q C k (7.324) 

Within the linear agent model, the output of the agent is defined as: 

Xlcj — ^ A - ^ A j — [^track ^centering] (7.325) 
U t r a c k 

^ c e n t e r i n g 

Now suppose this expression was rewritten, defining new behaviour controllers, u[r a c k and u£ r a c k in which 

the arbitration gains have been incorporated: 

U c i = [l 1] 
track 

|_ ^centering 

Where, for example, the centering behaviour becomes: 

u, centering 

where 

kg — kcenteT\ngkq kw — fceentering^u; 

(7.326) 

(7.327) 

(7.328) 

Reexamining the model of the PD controller with gains k' and k'w the Laplace transform, Qmk (s), becomes: 

Qmk(s) = 
&k^centering~r~ &k^centering&u>S Qdk(s) - rk Ak(s) 

Afc(s) = Jefffc*2 + (Beflk + KkKb + A'jfcfccenteringAlu))* + A'fcfcccnteringfc? 

(7.329) 

(7.330) 

If we assume, for argument, that Bcffk and Kb are negligible and Kk is unity, then the characteristic reduces 

to: 

Afc(s) = Jcffk

s "f- kcentctiagkwS + fcccntcringfcg (7.331) 

It is apparent that arbitration gains other than unity can affect the performance properties of the simple 

PD controller. In figure 7.72 and table 7.18 this effect is demonstrated using identical behaviour controllers 
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to the obstacle avoidance, centering behaviour example (i.e. kq = 100, kw = 20, K p = diag(100), eta = 10.0 

and K„ = diag(20)) and with arbitration gains set to / ^ e n t e r i n g = 0.5 and fctrack = 1-0. Though trajectory 

tracking is only marginally affected, the centering performance index drops as might be expected with a 

lower arbitration gain. Interestingly, applying a gain of fcCentering = 2.0 renders this same system unstable, a 

confirmation that changing a lone arbitration gain can directly influence the stability of the entire system. 

Now, suppose that the PD controller was divided into separate position and damping behaviour con­

trollers. The linear agent model then becomes: 

ucj = [1 1 1]T 

U t r a c k 

U p o s i t i o n 
(7.332) 

d a m p i n g 

Then it becomes clear that local the position and velocity gains,kq and kw are, effectively, arbitration gains 

Ucj — [1 kq fcu)] 

^ r a c k 

(7.333) 

One conclusion to draw from this argument is that weighted combination arbitration strategies (such as the 

linear model) affect both the performance of the combined tasks and the stable performance of individual 

tasks. Another is that compliance and arbitration are equivalent in the linear agent model. 

With the recognition that arbitration and compliance are equivalent, adaptive goal generators (such as 

RMDAC) can be examined in a slightly different light. Using the RMDAC goal generator as an example 

and applying the arbitration gain fctrack into the global goal proxy: 

U t r a c k = Jj ( P n , ) fr f 

Since fctrack is scalar, the gain may be moved arbitrarily into f d or: 

fi(t) = kttack[di{t) + a(t)n(t) + bi(t)ri{t) + ai(t)ri(t) + 

Kpi(t)x.e(t) + Kvi(t)x:e(t)] 

(7.334) 

(7.335) 

which with further simplification, it can be shown that fctrack ultimately affects the integral gains. Recalling 

the generic integral gain structure of equation (6.206): 

fc-(«;(*),e(i),£) = ktrack[ki(Q) + uu / Vi(t)ei{t)dt + u2iVi(t)ei(t)] 
Jo 

(7.336) 
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0 5 10 15 20 25 30 35 40 

Time (seconds) 

Figure 7.72: End effector tracking performance overconstrained by R.MOA and 7V Center­
ing controllers ( K 9 = diag(100) , K w = diag(20)) and the agents arbitration vector 
^Aj = t̂ 'track fcavoid ^centering] = [1-0 1.0 0.5]. 
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Since fc,(0) and u2i are usually ignored in the cartesian case, as mentioned earlier, only the integral is affected: 

fc{(t;(t),e(t),t) = fctrackuu / Vi(t)ei(t)dt (7.337) 
Jo 

In which case, fctrack modifies either un, Vi(t) or e,-(t) or possibly some multiplicative combination. So, even 

in the adaptive case, multiplicative arbitration gains will affect the performance of the individual controller 

as well as the combined performance of multiple goal systems. 

Conversely, arbitration gains can be extracted from the existing goal generator. Just as in the PD 

case, the RMDAC global goal generator can be divided into six global goal generators and the Jacobian 

Transpose-integral coefficient products for each component elevated to an arbitration gain or: 

u c j = k A j u A . (7.338) 

kA = [Jj JjC(i) jjB(t) 3JA(t) 3JKp(t) JjK„(t) kq kw] (7.339) 

U A . = [d(t) f(t) r(t) Xe(t) Xe(t) qe qe ] (7.340) 

Though the linear agent model could be expressed this way, this obscures the fact that the local and global 

generators have been designed as separate stable components. In other words, the behaviour controllers U t r a c k 

and u c e n t c r i n g represent behaviour controller groups explicitly designed to work together to achieve a specific 

performance objective. 

7.8 Summary 

In this chapter, the design and interaction of combined behaviour systems has been explored in the context 

of multiagent manipulator control. These local and global behaviour controllers provide some important 

lessons on multiagent manipulator control in particular and multiagent system control in general. 

In particular, the conclusions drawn from this chapter include: 

• multiagency can be made robust to failure through simple, local measures. 

• multiagency accommodates global goal generation by any agent. 

• two design elements ensure the emergent coordination of an agent team towards multiple goals: 

— null space self organization 

— arbitration through compliance 
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• global and local goal systems can produce emergent global behaviour (i.e. manipulator shaping policy) 

in addition to desired global behaviours. 

Fail safe methods discussed earlier demonstrate that even in the absence of an agent's global goal proxy, 

local strategies can be devised (such as a braking maneuver) that permit arbitrary global goal seeking to 

continue. Kinematically, this is not surprising. Disabling one agent's capacity to seek global goals removes a 

single degree of freedom from the team. If the team is redundant in the global goal, global behaviour should 

be unaffected. Architecturally, centralized, model based schemes such as RMPC, RMRC, and RMAC are 

not well suited to these simple low-level solutions to link failure principally due to the dependence on an 

explicit map between global and local goal spaces. Since these maps often require an accurate system model, 

precise fault descriptions are required to maintain acceptable global performance. 

This chapter has shown that multiple goal systems are achievable for collections of independent link 

agents. Though investigated for some time, multiple tasks are usually incorporated into a centralized global 

process, disseminating primary and auxiliary tasks to each link according to centralized null space or task 

space augmentation models. Reexamined as a distributed, multiagent control problem, the previous chapter 

showed that centralized explicit manipulator control is not necessary for well posed global tasks. It has been 

shown in this chapter that any global goal conforming to Jacobian transpose methods may be generated and 

broadcast by any agent in a multiagent team. The addition of a simple PD local goal generator demonstrated 

not only that decentralized local and global goal systems can coexist in globally redundant systems but that 

this local generator can generate useful, even optimal, performance. 

Significantly, this study identified two distinct mechanisms that together provide an automatic goal 

arbitration mechanism for agents pursuing multiple goals: Null Space Self Organization and Arbitration 

through Compliance 

Null Space Self Organization 

By adopting an adaptive cartesian controller, this study predicted and demonstrated that explicit identifi­

cation of the null space and subsequent task insertion are unnecessary. As described in section 7.2, perfect 

regulation of the end effector position drives torque and displacement perturbations into the null space. 

This property has been used in JTC to implement mutually exclusive global goal systems. However, null 

space self organization has not previously been identified or exploited as a desirable byproduct of adaptive 

end effector task enforcement. Null space self organization ensures that local behaviours are automatically 
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inserted of into the Jacobian null space of an adaptive global goal system. Furthermore, this technique shows 

that compliance can be used as a self arbitration mechanism in multiagent teams. 

Arbitration through Compliance 

Experiments in this chapter demonstrate that arbitration can be distributed amongst behaviour controllers 

through the selection of an appropriate compliance strategy for each behaviour. In particular, if the 'highest 

priority' task is enforced through a rigid goal regulator such as an adaptive controller and 'lower priority' 

behaviour controllers are enforced through less rigid strategies such as nonlinear and linear control laws, 

then task conflicts are automatically resolved between controllers and require neither an explicit arbitration 

strategy within each agent nor an explicit coordination strategy between agents. 

Based on the Emergent Coordination definition D4.23, agents within a redundant multiagent manipulator 

under rigid global control and compliant local control exhibit an emergent coordination strategy and, there­

fore, emergent behaviour. Taking the centering local behaviour as an example, rigid end effector tracking 

drives local centering behaviour into the null space of the end effector Jacobian. In so doing, this interaction 

permits partial though maximal satisfaction of the local goal without coordination by a centralized coordi­

nation process. In effect, the interaction between the two goal systems alone acts as a coordination policy 

that enables desirable local behaviour if possible - an example of self arbitrating or emergent control. 

Furthermore, if a team of similar agents produce a desirable, stable global behaviour without external 

coordination then the team exhibits emergent global behaviour, for example manipulator shaping policies 

arise from local compliant goal systems. 



Chapter 8 

Multiagent Control Compared 

The application of multiagent control to manipulation was justified on the grounds that improved robustness, 

architectural simplicity, lower cost, greater extensibility, and improved real time performance observed in 

other multiagent systems might be realized in manipulator control. This chapter will show that this manip­

ulator architecture delivers these benefits, and, furthermore, that these advantages are unique to multiagent 

control. 

Multiagent manipulator control is not a single technique, but the careful reformulation of a number 

of fundamental techniques into a coherent control strategy. So while each component brings advantages 

in isolation, the combined performance is uniquely beneficial to redundant manipulator control. The key 

contributing components to multiagent manipulator control are: 

• Redundant Manipulator Control 

• Adaptive Control 

• Jacobian Transpose Control 

• Decentralized Control 

The relationship between these foundations and multiagent control appear in figure 8.73. Guided by the 

agent and multiagent structures developed in chapter 4, these components can be combined, delivering two 

distinct advantages over traditional, centralized manipulator model based systems: structure that is simple, 

robust, and extensible, and performance that is consistent, guaranteed, and independent of a manipulator's 

dynamic structure. 

8.0.1 Multiagent vs. Centralized Control 

Manipulator model based systems (i.e. those relying on knowledge of the manipulator's structure and 

parameters) achieve consistent guaranteed performance, but at the cost of a centralized inverse kinematic 

211 
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solution (e.g. a geometric inverse or Jacobian pseudoinverse). For example, in resolved motion acceleration 

control, a desired acceleration is computed from the pseudoinverse of a task space trajectory: 

This centralization extends to auxiliary tasks that must be assigned to regions of configuration space through 

a task assignment mechanism. For example, again in RMAC: 

where auxiliary tasks, u a u x j i j a r y are inserted into the Jacobian Null space by the (I — J^J) operator. 

By combining Adaptive Task Space Control with a decentralized Jacobian Transpose Controller an esti­

mation of a tracking task model is maintained rather than a manipulator's structure and parameters. Alone 

this reduces computing costs from an at least 0(N2) pseudoinversion and O(N) dynamic model to simply 

0(MN). Furthermore, by distributing the inverse solution amongst a set of link agents computational costs 

are further reduced from O(MN) to O(M). Finally, adaptive task space control ensures disturbances mi­

grate to the Jacobian null space. This means multiple tasks can coexist within each agent, providing robust 

control alternatives to each link without the necessity of a centralized task assignment protocol. 

Finally, multiagent systems permit either the removal, replacement, or addition of whole link agents at 

any time on or off line without costly software changes commonly required for traditional centralized control 

architectures. This has important implications on task or mission planning in which serial manipulators can 

be simply and easily "daisy chained" or "split" in real time, physically combining or dividing manipulators 

respectively. 

Together these features of multiagent manipulator control provide performance comparable to the com­

pute intensive, model based, centralized systems but with a substantially simpler structure, potentially lower 

implementation and maintenance cost, flexibility, and robustness to change or failure. 

8.0.2 Multiagent Manipulator Control and the Multiagent Context 

Though comparison of multiagent systems is difficult, the multiagent architecture presented here is un­

usual in that task assignment through explicit interagent bidding, negotiation, or competition, common to 

other systems, is unnecessary. Rather 'negotiation' emerges through the dynamics of both adaptive and 

compliant goal systems in a manner similar to Reynold's Boids. This is in contrast to Parker's Troops and 

q<*M = J 1 [xd(t) - Jq(r) + fc„xe + fcpxe 

U t r a c k = D(q)qd + C(q, q) + g(q) 

U = U t r a c k + (I ~ J * J ) u a u x i l i a r y (8.341) 
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Figure 8.73: Convergence of techniques that form Multiagent Manipulator Control. 
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Mataric's Nerd Herd that employ explicit negotiation protocols reminiscent of Smith's Contract Net Protocol 

[Smith, 1980]. 

8.1 Demonstrating The Advantages 

To clearly demonstrate the advantages that multiagent manipulator control offers over traditional centralized 

model based control, the performance and structure must be compared. In the first experiment, traditional 

RMAC will be used to perform end effector trajectory tracking and joint centering tasks. This result should 

demonstrate the performance possible from a centralized model based end effector and task assignment 

system. In the second test, the task assignment system is removed and the joint centering tasks decentralized 

to each link. This result should demonstrate the structural sensitivity of RMAC to both manipulator 

modelling errors and/or decentralized auxiliary controllers, both unmodelled constraints within RMAC. 

8.1.1 Performance 

In the following experiment, the independent variable will be the required performance: simultaneous tracking 

of a desired end effector trajectory and joint displacement minimization. The dependent variable will be the 

structure required to achieve the desired behaviour, one the centralized model based RMAC, and the other 

the decentralized manipulator model-free Multiagent Manipulator Control system. 

In resolved motion acceleration control the typical structures required to achieve these tasks are: 

qd(t) = J - 1 xd(t) - jq(t) + fc„xc + fcpXe (8.342) 

u ^ c k = D(q)qd + C(q,q)+g(q) (8.343) 

U c c n t e r i n g = K 0 q e + K„,q e (8.344) 

U = U t r a c k + (I - J t J)u C enter ing (8.345) 

and are very similar to [Slotine, 1988].Note the estimate of the manipulator's parameters and frequent use 

of the Jacobian pseudoinverse, both centralized models of the manipulator's kinematics and dynamics. 

Adaptive task space control and decentralization make multiagent control's structure substantially simpler 

than the RMAC equivalent: 

f(t) = d(t) + C(t)r(t) + B(t)r(*) + A(«)f(t) + 

K p ( * ) X e M + K „ ( * ) X e W (8.346) 

U t r a c k = jJ(p„,Xj_i)fd (8.347) 
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U c e n t e r i n g — ^ g ^ e t "f" kwqeh 

ucj = k A . u A . = [l l] 

(8.348) 

(8.349) U t r a c k 

U c e n t e r i n g 

This latter structure is the familiar link agent described in chapter 7 with both tracking and centering tasks. 

Again, note that there is no manipulator parameter description only a simple Newtonian dynamic model 

within the adaptive end effector goal generator. Furthermore computation of the cartesian states needed for 

the Jacobian transpose row is distributed over N agents. At no point in the multiagent system is it necessary 

to maintain a complete centralized representation of the manipulator geometry or physical parameters. 

Simulation 

Though the tracking and displacement minimization performance of the two systems are comparable, the 

computational cost is clearly less in the multiagent system. Comparing figures 8.74 and 7.52 in chapter 

7 and results in table 8.19, it is clear that these two structures exhibit similar end effector tracking and 

displacement minimization performance. However, RMAC is substantially more compute intensive with 

both a feedforward dynamic model and a pseudoinverse Jacobian computation. Since the pseudoinverse 

structures cannot be decentralized over N joint processes, RMAC must be centralized on a single powerful 

CPU. 

8.1.2 Structure 

As remarked above, the structure of the multiagent system is considerably simpler than that of centralized 

RMAC. Suppose, however, that RMAC was treated as a global goal generating process like RMDAC, how 

would this centralized system perform in the computationally simpler agent-like structure: 

qd(t) = J 1 [xd(0 - jq(t) + kvxe + kpxe (8.350) 

U t r a c k — D(q)qd + C(q,q) + g(q) (8.351) 

U c e n t e r i n g = kqqCk + kwqCk (8.352) 
r 

U t r a c k 
U c j = K A u A =[111] 

^ c e n t e r i n g 

(8.353) 
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Figure 8.74: End effector trajectory for the reference manipulator and payload under centralized RMAC end 
effector and joint centering task assigned to the null space. 
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Simulation 

In this experiment, the independent variable will be the structure: a distributed multiagent environment 

and decentralized control structure. The dependent variable will be performance: simultaneous tracking of a 

desired end effector trajectory and joint displacement minimization. This experiment may be viewed in two 

ways. On the one hand this experiment examines the performance of RMAC within a structure identical 

to multiagent control. On the other hand this experiment examines the performance of RMAC given an 

imperfect manipulator model (i.e. one in which joint controllers are biased by a linear PD controller). 

Structurally, these two systems are now comparable. The computational cost of the agent-like RMAC is 

less than in the original RMAC system and local behaviours may act without centralized coordination. 

With these changes, it is clear from figure 8.75 and table 8.19 that RMAC cannot match the performance 

of the multiagent system. Without centralized task assignment, the RMAC system exhibits considerably 

greater tracking performance error and somewhat poorer joint displacement minimization than the RMAC 

with null space task assignment. Interestingly, the multiagent control system is an order of magnitude more 

precise in trajectory tracking but exhibits poorer joint minimization performance than both RMAC cases. 

These results must be put in perspective. 

The performance of the RMAC system without task assignment must be a compromise between end 

effector tracking and joint centering. Given the large local gains, end effector tracking performance suffers 

substantially, while centering performs well (indeed, very near RMAC with task assignment). In this version 

of Multiagent control, the adaptive end effector task enforces the highest priority and, therefore, exhibits small 

end effector errors. Unlike RMAC, RMDAC cannot compensate for manipulator dynamics in the Jacobian 

Null space, producing greater motion in N(J) and larger RMS error over the joint displacement history. 

Ultimately, however, figure 8.75 shows that without task assignment RMAC fails to provide acceptable 

steady state end effector performance. 

Since RMAC is model based, arbitrary insertion of auxiliary tasks without altering the centralized model 

through a null space task insertion operator can only degrade end effector performance. In other words, 

model based systems rely on a complete description of all active constraints to achieve satisfactory control. 

To maintain this performance with added local behaviours requires that RMAC be altered through a task 

assignment mechanism. 

The ability to arbitrarily add local behaviours without alterations to a centralized process combined with 

the lower computational costs of decentralized control suggest that the multiagent system more flexible, 
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Strategy firms $rms Qrms 
RMAC with task assignment 
RMAC without task assignment 
Multiagent Control 

1.257e-02 1.109e-02 1.908e+00 
5.612e-02 7.756e-02 1.942e+00 
5.963e-03 1.424e-02 2.700e+00 

Table 8.19: RMAC and Multiagent Control RMS end effector and joint centering performance. 

extensible and robust than the model based counterpart. Clearly there are advantages to model based 

control if an accurate model is available. However, in a dynamic environment a static model is of little 

advantage and the costs associated with maintaining accurate dynamic models grows in proportion to the 

environment. 

This comparison also provides an avenue to understanding the stability properties of a multiagent system 

with both local and global goals. In the next section stability will be discussed by first examining the 

localized stability properties of the combined 'compliant' goal system, RMAC (a task space PD controller) 

and 'compliant' joint centering local goals (joint space PD controllers). These arguments will clarify the 

properties of the 'rigid' global RMDAC (an adaptive task space controller) and 'compliant'joint centering 

goal system. 

8.2 Stability 

Qualitatively, some useful observations can be made about the combined performance of global and local 

goals by first considering the combination of compliant global and compliant local goals. If modelled as 

a pair of spring-damper systems, compliant local and global goals should exchange potential and kinetic 

energy, ultimately settling into equilibrium offset from both local and global desired trajectories. 

R.ecall the case above of an adaptive global goal simulating a perfectly rigid (albeit, moving) task space 

constraint. Acting in combination with local compliant constraints, the adaptive controller corrected any 

end effector trajectory errors by adaptively changing the force setpoint. Since force setpoints are propagated 

to the agent team through the global goal, local control efforts that perturb the end effector position are, in 

effect, "reflected" off the global goal to the entire agent team. 

Though the RMDAC global goal generator has been designed from the outset to be asymptotically stable, 

a global stability proof for a combined compliant local/RMDAC global system is difficult. Nevertheless, a 

valuable starting point is to first examine the stability of the combined locally and globally compliant 

system near equilibrium. With this simple analysis, the coupling mechanisms between the global and local 
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Figure 8.75: End effector trajectory for the reference manipulator and payload under centralized RMAC end 
effector and decentralized joint centering auxiliary tasks ( K g = diag(lOO.O) , K», = diag(20.0)). 
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domains can be clearly observed and demonstrated. Furthermore, by extending these linear arguments the 

performance of locally compliant and globally adaptive systems can be clarified. 

8.2.1 Combining Locally and Globally Compliant Goal Systems 

A compliant global goal generator for task space manipulator control is best exemplified through a system 

such as Khatib's OSF, a cartesian computed torque controller. Now task space computed torque exploits a 

task space feedforward model in the construction of the required force vector fd'-

fd = M(x)f * + N(x, x) + p(x) (8.354) 

where the hat superscript indicates parameter estimates. If f̂ , is defined as the acceleration necessary to 

move a unit mass, identity matrix I m , along a prescribed trajectory, 

Vm = I m x d + K p (x d - x) + K d (x d - x) (8.355) 

Including the local controllers, the Robot Equation becomes: 

D(q)q + C(q, q) + g(q) = K , [qrf - q] + Kw [qd - q] + J T [M(X)C + N(x, x) + p(x)] (8.356) 

where 

M(x) = J"T(q)D(q)J-1(q) 

N(x,x) = J-TC(q,q)-M(x)J(q)q 

p(x) = J-Tg(q) 

Now suppose M(x) = M(x),N(x,x) = N(x,x), and p(x) = p(x) the simplified equation becomes: 

K g q e + K^qe + JTM(x) [xe + K p x e + K d x c ] = 0 (8.360) 

where x e = x d — x, q e = q d — q and, in general x,i ̂  f (qd). 

This combined error system provides insight into the performance of combined goal operations. In 

particular, equation (8.360) indicates that if the parameter estimates are exact, the cartesian system will 

asymptotically converge to x e = 0 if and only if the first two terms vanish. This is true under two possible 

conditions: 

1. Kqqe + Kwqc = 0. 

(8.357) 

(8.358) 

(8.359) 
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2. K g q e + KtuCJe C N(J), the local goals reside in the null space of the Jacobian. 

The first case is trivial, implying that either the setpoint error has vanished, position and velocity terms 

are equal and opposite, or the PD gains are precisely zero. The second possibility is that local and global 

systems reside in complementary regions of configuration space. If neither condition is true, then both 

systems reside in overlapping subspaces of R(J) and, though they may achieve a stable equilibrium, neither 

q e nor x e will converge to zero asymptotically. 

Local Stability 

Though equation (8.360) is a concise statement of the system's error dynamics, it does not completely show 

the coupling between global and local goal systems. By rewriting this equation entirely in task space a 

better understanding of these two systems can be established. Recalling that M = j t T DJt where Jt is the 

pseudoinverse : 

J D ^ K ^ q e + J E r ^ c u + x c + K p x e + K d x e = 0 (8.361) 

Since the term q e produces velocities at the end effector: 

X < , e = J ( q ) q e (8.362) 

where x ? e is the end effector velocity error induced by q e . Inverting this relation the equation can be further 

rewritten: 

J L V ^ q , , + J D - ^ j t x ^ + x e + K p x e + K d x e = 0 (8.363) 

Now assuming the local displacement error q e is small, the forward solution may be linearized about q : 

x, e = J ( q ) q e (8-364) 

A task space error expression can now be introduced: xqe = xqd — x. Where x ? e is the displacement error 

between the end effector position at q and q d . Rewriting (8.363): 

JV^K^Xqe + Jit^K^kqe + x e + K p x e + K d xe = 0 (8.365) 

Now, referring to figure 8.76, x g e and x e can be related through: 

e = xd-Xqd (8.366) 

x g e = x ? d - x = x e - e (8.367) 
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Figure 8.76: About the end effector position x(i), the desired global goal x d is related to the desired local 
goal x?d through the vectors x c, x g e and e. 

substituting for x ? e and rewriting equation (8.365): 

J D ^ K ^ J ^ X e - e) + J D - ^ u . J ^ X e - e) + x e + Kpxe + Kdxe = 0 (8.368) 

Applying the Laplace Transform: 

X e W = ± ~r~/ 7 ^E( S ) (8.369) 

A(s) 
A(s) = s2I + [Kd+3i)''1Kw3i]s + [Kp+3T)-1Kq3i] (8.370) 

where the characteristic equation of the combined system is A(s). Through this simple linearized analysis, 

it is clear that local and global goal systems are closely coupled and that the performance of the combined 

system is a hybrid of both systems. In particular, task space damping and stiffness coefficients are clearly 

configuration dependent with the introduction of the local goal system. 

If step inputs, X d and Q<j (or simple E(s)) , are applied to the cartesian and the local controllers 

respectively, the steady state error may be shown to be the equilibrium position between the two PD 

systems. Applying the final value theorem and recalling that X.c(s) is the end effector position error vector: 

x C e s = lim .sXe(.s) 
s-+0 

= lim [[s2I + [Kj + JD- 'K ^ j t j s + [K p + J D - 1 K , J f ] ] - 1 s [ jEr 'K, , . ! * + J D ^ K ^ j ' s ] 

x e ,„ = [Kp + J D - ' K j J * ] - 1 [ J E T ' K ^ E ] (8.371) 

Thus the intuitive conclusion that local goals residing in R(J T ) cause steady state end effector offsets is 

borne out. As the 'stiffness' of the local goals, K ? , increases, the cartesian steady state error, too, will 

increase. Clearly a system possessing both local and global compliant goals will experience steady state 

errors in both local and global domains if the local goals reside in R(J T ) . 
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Through further manipulation, the cartesian steady state error can be transformed into an expression 

of equilibrium between local and global systems. Rearranging equation (8.371) and substituting equation 

(8.367) produces: 

K px e„„ = - J D - ^ J H E - X e . . ) (8.372) 

= - J D ^ K ^ X g e . . (8-373) 

Thus the steady state error is an equilibrium between the local and global systems: 

J T M K > C 8 S = - K , q e „ (8.374) 

Of course if the parameter estimates are not exact: 

Mq)<i+Mq> q) + *B(q) - K?qe - K „ q e = J T M ( X ) [xe + K P X E + K d x e ] (8.375) 

the two linear systems will be driven by the nonlinear parameter errors defined as: 

M q ) = D(q)-D(q) (8.376) 

<5c(q,q) = C(q,q)-C(q,q) (8.377) 

W = g(q)-g(q) (8-378) 

Since gravitational forces are bounded [Lewis, 1993] and time invariant, parameter estimation errors 

reduce to errors in gravity compensation, |<Ss(q)| < SQ, in the steady state. Such errors contribute to the 

steady state offset: 

xC e s = [Kp + J f r ^ j t ] - 1 [ j D ^ K ^ E + JD-MG(q)] (8.379) 

It is important to reiterate that steady state offsets will arise only from local behaviours in R(J). However, 

in section 7.2 it was shown that local behaviours migrate to N(J) if J^J ^ I, an intrinsic condition of 

redundant manipulation. 

By overconstraining the system with both local and global goals, the combined performance of global 

and local goals can be demonstrated. Recalling that RMAC and OSF are functionally identical compliant 

goal systems, the results of the structural comparison in figure 8.75 show that, as predicted, a manipulator 

driven by a compliant goal system experiences steady state position and orientation offsets throughout the 

end effector trajectory if overconstrained by a compliant local goal system. 

While it is true that end effector control of underconstrained serial manipulators ensures local behaviours 

migrate to N(J), it is also true that homogeneous teams of agents might inadvertently overconstrain the 
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system with local goal activity. If this is so, the team should not have to rely on an omniscient explicit 

coordination system to arbitrate between local and global systems. Yet, both steady state analysis and sim­

ulation shows that centralized compliant methods (such as RMAC or OSF) require centralized coordination 

(e.g. equation (8.341)) to achieve convergence for both local and global goal systems under overconstraint. 

Now adaptive task space controllers (such as RMFC and RMDAC) are designed to overcome end effector 

errors and, as a consequence of the Null Space Self Organization theorem, drive local behaviours into N(J) 

without explicit coordination. 

8.2.2 Combining Globally Adaptive and Locally Compliant Goal Systems 

RMDAC was designed to ensure asymptotically stable trajectory tracking without an explicit manipulator 

model by adopting a model reference adaptive control strategy in cartesian space. The adaptive controller 

essentially adjusts task space estimates of the robots parameters to match the performance of an idealized 

linear tracking process. So, while RMDAC does establish a dynamic model, it is independent of a dynamic 

description of the robot. 

Including the local PD controllers and the RMDAC global controller, the Robot Equation becomes: 

D(q)q(*) + C(q,q)(t) + g(q)(«) = K,q e (t) + K„q e (t) + 3Tfd(t) 

fd(t) = d(t) + C(t)xd(t) + B(t)xd(t) + A(t)xd(t) 

+KP (t)xe (t) + K„ (t)xe (t) (8.380) 

R.ecall that RMDAC is the product of an MR AC Lyapunov design technique [Seraji, 1989a] converging not 

to a manipulator model but to an idealized trajectory tracking process. Therefore in general: 

A M M(x) 

B(t) N(x,x) 

C(t) g(x) 

So while parameter convergence cannot, in general, be guaranteed, asymptotic convergence of the end 

effector with the desired trajectory is guaranteed under the assumption of slowly varying manipulator pa­

rameters. Therefore, so long as the slow variation assumption is maintained, local goals acting in R(JT) 

should appear as slow parameter changes and RMDAC should remain stable about the desired end effector 

trajectory. Assuming this is true, what performance can be expected from the combination of local and 

global control? 
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First consider, again, the combined response of locally and globally compliant controllers. If the system 

N(J) = 0, the motion produced by an additional task in R ( J i ) inevitably disturbs the end effector trajectory 

by some offset (as in figure 8.75). Hence the necessity of explicitly inserting auxiliary tasks into N(J) and 

equation (3.70). On the other hand, if N(J) ^ 0 (the robot is redundant), the resulting motion is, ultimately, 

forced into N(J) by the compliant control forces and producing no end effector disturbance. 

Now consider the combined response of locally compliant and globally adaptive controllers. Since any 

disturbance at the end effector trajectory is adaptively removed, any local task (or portion thereof) in R(J T ) 

is removed if N(J) = 0. On the other hand, if N(J) ^ 0 (the robot is redundant), a local task (or portion 

thereof) is, again, forced into N(J) by adaptive compensation. 

Furthermore, since compensations in global behaviour are transmitted to the entire agent team. Adaptive 

global controllers can be interpreted as a natural goal assertion and broadcast mechanism. When local 

controllers act in R(J) and perturb the end effector, the compensation process 'reflects' or broadcasts this 

perturbation to the agent team. Thus even the end effector, fully constrained in task space by the end 

effector adaptive controller, can affect manipulator configuration simply by modulating global goal seeking 

with local activity. 

8.3 Summary 

Multiagent control offers comparable trajectory tracking performance to traditional systems at substantially 

lower computational cost, equal or better robustness to failure and parameter changes, and arbitrary exten­

sibility thanks to a parallel agent computational model, carefully selected global and local controllers, and 

the innate properties of redundant manipulation. 



Chapter 9 

Conclusions, Contributions, and Recommendations 

9.1 Conclusions 

In summary, this thesis provided control analysis and simulation of an N d.o.f. redundant manipulator 

executing multiple tasks using N independent agent processes without a centralized manipulator parameter 

model or auxiliary task distribution mechanism. The control strategy combined an existing adaptive task 

space controller [Seraji, 1987b] a new decentralized Jacobian Transpose Control (JTC) [Monckton, 1995] 

method, and a carefully developed agent architecture to autonomously control each joint. In proving that 

task space adaptive control drives auxiliary tasks into the Jacobian Null space, this thesis developed a 

decentralized manipulation system permitting link agents to act on multiple local and global goals with­

out manipulator model based setpoint derivation, auxiliary task assignment to the Jacobian Null Space 

[Nakarnura, 1984] or task space augmentation. Thus each link process became an agent within a multiagent 

manipulation system that exhibited self organizing task assignment, priority through compliance, robustness 

to failure, and computationally parallelism - independent of team size, composition, or degree of redundancy. 

9.1.1 Caveats 

Though the feasibility and benefits of multiagent manipulator control were shown in both simulation and 

analysis, this controller has notable weaknesses that may compromise real world performance. Through 

Jacobian decentralization, multiagent manipulator control clearly depends on a distributed, reliable commu­

nications bus or shared memory structure. The failure or underperformance of this communications structure 

would lead to catastrophic failure of the control system as currently described. 

Experimentation was restricted by the simulator's limited ability to model realistic manipulator and 

obstacle characteristics. For example: In adopting rigid link models, the effects of elastic deformation and 

collision were excluded and their impact on local and global goal systems remains unknown. Similarly, 

sensing and communications were idealized, ignoring sensor failure and/or noise along with unreliable com­

munications (a significant feature of implemented systems such as Mataric's Nerd Herd). All of which have 

226 
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well known deleterious effects on the practicality and, often, stability of control systems. 

Furthermore, the behaviours demonstrated here, while instructive, possess either limited or undetermined 

potential application. As implemented here, the obstacle avoidance simulation, for example, does not account 

for the manipulator itself (a common, if surprising, feature typical of such simulations). Though local PD 

behaviour controllers proved useful in revealing the interplay between goal systems they have undetermined 

practical application. Despite these caveats, this thesis provides fundamental contributions to the practice 

of multiagent control and manipulation that deserve review. 

9.2 Contributions 

Building on the considerable work of other investigators, this thesis contributes to both theory and practice 

of manipulation robotics and multiagent control. In particular: 

Multiagent Manipulator Control A manipulator was controlled through a set of autonomous processes 

acting on a common force trajectory goal. The first of its kind, a multiprocess simulator simulated 

an agent team able to control a manipulator's end effector trajectory without centralized geometric or 

integral inverse kinematic solutions or a centralized manipulator parameter model. This parameter-

free decentralization permitted the design of multiagent serial manipulation teams with constant time 

response regardless of team size or geometry. 

Multiple Goal Interaction Traditionally manipulator redundancy is resolved through pseudoinverse or 

task space augmentation [Nakamura, 1984, Seraji, 1989b] methods that insert auxiliary tasks into the 

primary task's Jacobian null space thus guaranteeing multiple objectives. Through simultaneous action 

of both local compliant and adaptive global goals this study identified a number of significant properties 

and techniques: 

Null Space Self Organization Drawing on a simple argument, a Null Space Self Organization The­

orem was developed that proves rigid end effector control and explicit null space task assignment 

operators are functionally identical. This means that model based centralized task assignment 

operators (e.g. (I — J^J)) are unnecessary in redundant multitask systems under adaptive task 

space control. 

Compliance as Priority If rigid global and compliant local goals occupy configuration subspace 

R(J^), global goals dominate and local goal activity is limited to the Jacobian null space. By 
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i 

assigning task priority through 'stiffness' or rigidity of auxiliary goal expressions, multiple tasks 

executed in overlapping domains can be biased according to priority. 

Emergent Coordination Agents acting in the global goal's Jacobian range space were shown to 

disturb the global goal. In broadcasting corrections to these disturbances, global goal adaptation 

reflects local goal activity to the agent team. So while emergent global behaviour is not specified by 

a particular global goal expression, it arises from interaction between global and local constraints 

nevertheless. 

Cartesian Decentralization Traditional inverse kinematic solutions (an inverse aggregate of end effector 

behaviour) uniformly require a complete manipulator description to relate end effector position to 

joint displacements. However, in this thesis, a simple, practical, distributed inversion strategy was 

developed out of the class of Jacobian Transpose Control. With cartesian sensing (or distributed 

Newton Euler kinematic computation), N processes can control N degree of freedom manipulators 

through the observation of a desired force trajectory goal. 

Behaviours A number of new redundant manipulator null space configuration strategies were demonstrated. 

Arising from simple local and global goal systems, complex organized manipulator behaviours were 

generated with little additional computational effort. In particular: 

• Analysis and simulation demonstrated that multiagent control is distinct from traditional cen­

tralized control. By overconstraining a redundant manipulator with an RMAC end effector goal 

and N PD joint centering local goals, it was shown that without explicit configuration space 

assignment of the centering goals, the RMAC end effector goal was disturbed. 

• Analysis and simulation demonstrated that overconstraining a redundant manipulator with an 

RMDAC end effector goal and N PD joint centering local controllers, produced both near optimal 

joint displacement minimization without explicit configuration space assignment of the local goals 

and convergent end effector tracking performance. 

• It was shown in simulation that by varying either setpoints or gains alone, local PD goal generators 

could produce qualitatively predictable, global manipulator shaping behaviours in conjunction 

with global end effector trajectory tracking without any centralized manipulator parameter model. 

• In simulation it was shown that, given a redundant manipulator under an RMDAC end effector 

goal, N agents could each broadcast a nonlinear global obstacle avoidance goals to the agent team 
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to successfully avoid obstacles i n the work volume wi thou t d i s tu rb ing the end effector trajectory. 

Agent and Multiagent Theoretical Foundations In p lac ing agent and mul t iagent s tructures w i t h i n a 

cont ro l theoretic context a s imple agent cont ro l architecture was shown to be composed of a set of task 

specific behaviour controllers, an arbitrator that combined the output of these controllers to act on a 

plant. T h e behaviour of the agent was defined as the response of the plant to the a rb i t r a ted cont ro l 

efforts. 

S imi la r ly , a logical development of the mult iagent m o d e l revealed basic s tructures a n d techniques that 

clarify the mult iagent design problem: 

Aggregate Relations A n aggregate relation was identified that maps loca l to g lobal behaviour . In 

doing so, this thesis recasts the p rob lem of mult iagent cont ro l as one of aggregate inversion and 

agent coordination. 

Feasibility Samson's feasibil i ty c r i te r ia (an app l ica t ion of the inverse func t ion theorem) appl ied to 

a mult iagent system's aggregate re la t ion establishes the existence of the inverse aggregate and 

classifies these solutions into one-to-one, one-to-many, or insoluble. 

Coordination Explicit coordination inverts the aggregate using a one-to-one m a p between g lobal a n d 

loca l behaviour , clearly a mode l based process. Implicit coordination inverts the aggregate th rough 

a one-to-many project ion. In manipu la to r control , i t was shown tha t man ipu l a to r parameter-free, 

i m p l i c i t coord ina t ion requires an adapt ive g lobal goal system. Emergent Coordination was shown 

to generate global behaviour as a byproduc t of constraint resolut ion and , therefore, wi thou t a 

g lobal goal descr ipt ion. 

Linearized Stability Analysis A p p l i e d to b o t h aggregate a n d inverse aggregates, l inear ized s tabi l i ty 

analysis l inear iza t ion can be used to explore loca l s tabi l i ty cr i ter ia . In par t icu la r , i t was shown 

that even w i t h a nonl inear man ipu la t ion system, the s tabi l i ty (e.g. the steady state condi t ion) of 

mul t ip le goal systems could be de termined loca l ly th rough s imple l inear iza t ion . 

In short , cont ro l theoret ic expressions of agent a n d mult iagent architectures represent an impor t an t first 

step i n the pract ice of mult iagent control design a n d clarifies c r i t i ca l issues of s t ructure , performance, 

a n d s tab i l i ty of mult iagent systems. 
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9.3 Recommendations 

Though performing comparably to traditional centralized control architectures without centralized compu­

tation or coordination, the study of multiagent manipulator control remains immature. In particular, time 

delay, sensor noise, and flexible links or actuators are fundamentally unexplored issues and may present 

significant barriers to the adoption of this architecture in some applications. 

While this thesis improves the understanding of agent and multiagent systems, there remain many out­

standing issues that deserve further investigation: 

• Goal design methods.Though partially explored here, the goal design process deserves more attention. 

For example: adaptation about a desired global behaviour clearly imposes order on the multiagent 

team. What other adaptive models exist for manipulation? How broadly applicable is this adaptive 

model to generic trajectory tracking tasks (i.e. mobile robotics)? How can local adaptive generators 

coexist with global adaptive systems? These are a few of many questions requiring attention in global 

and local goal design. 

• Arbitrator design. It was shown here that arbitration influences team stability. The converse must also 

be true - that stability can govern arbitration design. It is conceivable that arbitrator design could be 

refined through further exploration of stability. 

• Team homogeneity and morphology.Though it is a useful research model, team homogeneity is less 

likely in practice. Goal systems are likely to differ between agents by accident or by design (e.g. sensor 

suites, computational power, failures, etc.). What are the implications of heterogeneous teams? 

Particular to manipulation, however, a number of potentially critical issues remain unresolved and deserve 

additional attention including: 

• Time delay. The propagation of kinematic data along a shared memory bus structure invites time 

delay into end effector control. Though Seraji suggests that RMDAC will remain stable if control is 

faster than significant Jacobian rates of change (approx. 10 _ 1 seconds), it is conceivable that slow 

sensing or high degrees of freedom may drive control rates into this region. What is the significance of 

slow or time delayed computation on end effector control? 

• Sensor noise. Given appropriate filtering within each controller, sensor noise should not directly 

affect the practicality of multiagent control in general. However since filtering can introduce time 
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delay, noise clearly can effect the stability of the multiagent manipulator controller described here. 

Given a particular set of behaviour controllers what is the sigificance of noise on the performance of a 

distributed, multiagent manipulation system? 

• multiple manipulators under multiagent control. Perhaps the most intriguing. Broadcasting a single 

global goal to more than one multiagent team should lead to a competition between teams to provide 

the desired forces. Does global adaptation, as one might expect, resolve these conflicts automatically? 

• flexible links. Space based applications in which payloads, links, actuators, and bases are no longer rigid 

bodies greatly complicates manipulator control. Can local or distributed goal systems be developed to 

mitigate these affects? Can flexibility couple goal systems (e.g. obstacle avoidance)? 

Through the application of control theory to agent and multiagent systems in general and manipulation 

in particular, this thesis strives to outline and demonstrate an orderly method to the design and analysis of 

these new controllers. Yet with so many unanswered questions, this can only be one of many small steps on 

the road to a coherent multiagent control theory. 
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Appendix A 

Quaternions 

Quaternions are the IR3 equivalent of complex numbers, having real and imaginary pure components. The 

quaternion is composed of a scalar magnitude and a vector. Often these are combined into a single vector 

representation to create a four parameter representation of orientation. 

A . l Definition 

A quaternion may be expressed as a couple {rj, q} where r\ is an element of H while q is an element of IR 3. 

Suppose two coordinate systems exist seperated by a rotation ip about the unit vector r 1 . The components 

i] and q are described by 

r) = cos | (A.381) 

q = sin^r (A.382) 

A = {r/,q} (A.383) 

where A is a notational convenience representing the quaternion (r), q). Extending this notation: 

Tl(X) = r) (A.384) 

V(X) = q (A.385) 

where 1Z() is the real quaternion component and V() is the pure quaternion component. 

A.2 Properties 

Uniqueness Both {r/, q} and {—r/, — q} describe the same orientation. If the rotation tp is limited to 

—ir<p<n then n is nonnegative and the quaternion is unique. 

Normality From the definition it is clear that: 

rf + q T q = 1 (A.386) 

'Thus this becomes a unitary quaternion, commonly called Euler Parameters 
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Addition 

Conjugate 

Inner Product 

Multiplication 

Norm 

Inverse and Equalities 

imAi} + {»72,q2} = {vi + mAi + &} 

X = TZ(X)-V(X) 

< X,/.i >= ^(Xp + nX) 

{//i,qi}{'?2,q2} = {^I^ - q i q2,qi x q.2 + ?7iq2 + »?2qi} 

| | A | | = \ / A l = ^ 2 + | | q | | 2 

INII2 

V II = II A || || p 

(A.387) 

(A.388) 

(A.389) 

(A.390) 

(A.391) 

(A.392) 

(A.393) 

Propagation If T\ rotates about JF0 at an instantaneous angular velocity of u. Then the quaternion {77, q} 

evolves in time according to the following differential equation: 

(A.394) 
1 0 V 

_ q . 
~ 2 w -ux _ q . 

where UJ is expressed in the coordinates of T\ and u> x is the skew matrix of ui. 

A.3 Relation to the Rotation Matrix 

A rotation matrix may be generated from a quaternion through either the arbitrary rotation expression 

outlined earlier or through one of the two expressions below. In this instance the quaternion represents a 

rotation from frame 0 to frame 1. 

°Ri = coscpl + (1 — cose/?)?1? — sin^f x (A.395) 

where fx is the skew matrix of f. Using the definition the above expression may be rewritten 

"Ri = (if - qTq)I + 2qqT - 2»?qx (A.396) 

where qx is the skew matrix of q. 
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Orientation Error 

Orientation error for the purposes of cartesian control requires compact representation and therefore, limita­

tion of redundant terms. Two possible approaches have been developed in literature. The differential motion 

vector is based upon homogeneous transformation algebra and assumes that the orientation error may be 

expressed through a small angle approximation [Paul, 1981]. Quaternion orientation formulations, adapted 

from spacecraft attitude control, have been used for cartesian robotic control [Yuan, 1988]. 

B . l Differential Motion Vector or Euler Rotations 

A simple form of cartesian error, discussed in [Fu, 1987] in reference to [Wu, 1982], is the differential motion 

vector derived in [Paul, 1981]. This technique, [Fu, 1987] (pg. 177-181), requires the development of a 

transformation between actual and desired end effector orientations. This transformation employs the small 

angle approximation of the expressions for rotation about each principle axis. 

The expression for cartesian error, the differential motion vector. 

dx 

dy 

dz 

6x 

Sy 

Sz 

where 8x,8x, and Sz are incremental rotations about the x, y, and z axes respectively. This translates into 

the following homogeneous transformation: 

(B.397) 

1 -Sz Sy dx 

6z 1 —Sx dy 

-Sy Sx 1 dz 

0 0 0 1 

(B.398) 
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(B.399) 

where T n c i and T n a are the desired and actual end effector locations of an n degree of freedom manipulator 

respectively. With the above relation, [Paul, 1981] reduces xe into the following form: 

na • (fd-Pa) 

da • {fd ~ fa) 

da • (fd-fa) 

\(da •Od-d'd- o"a) 

\(na • (id - nd • da) 

\(oa - nd — o"d- na) 

While this is relatively conservative of space compared to the full 3 x 3 rotation matrix, the small angle 

approximation, [Paul, 1981], might prove to be a problem over large sampling periods. [Yuan, 1988] points 

out that this scheme is indeed stable over large orientation errors, but after linearization over small intervals 

is stable only over small intervals. Splitting the vector xc into its position and orientation components ep 

and ea. The latter is called the expression for Euler Rotation. According to [Luh, 1980b]: 

Sx 

dx 

dy 

dz 

8x 

Sy 

Sz 

Sy 

Sz 

= sin tp r (B.400) 

employing the half angle formula: 

= sin tp r 
ip tp _ 

= 2 cos — sin — r 
2 2 

= 28r) Sq 

(B.401) 

(B.402) 

(B.403) 

the latter being the Quaternion expression for Euler Rotations. See the appendix A for a discussion of 

Quaternions. 

B.2 Quaternion Orientation Error 

[Yuan, 1988] introduces Euler Parameter (Unitary or Normalized Quaternion) techniques from spacecraft at­

titude control to manipulator control.The quaternion expression for orientation error between two coordinate 

frames T\ and T2 is 

Si] = ifttft+qTqa (B.404) 

Sq = r)iq2 - mqi - qi x q 2 (B.405) 
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[Yuan, 1988] determines that two coordinate systems coincide iff <5q = 0. 

If T\ and Ti are the desired and actual hand coordinates relative to the base, then (B.405) is the 

orientation error. Now when two frames coincide: 

m = m (B.406) 

qi = q 2 (B.407) 

or using the normality condition A.386: 

6rj = 1 (B.408) 

Sq = 0 (B.409) 

Now at Jq = 0 

*,iq*2 - %qi = Qi x Q2 (B.410) 

Plainly r/iq2 — ^/2qi, qi, and q 2 share the same plane, qi x q 2, therefore, is perpendicular to this plane. For 

(B.409) to be true, then both sides are zero or: 

= %qi (B.411) 

Then qi is a multiple of q 2 . Since both vectors are of unit length and both vectors are aligned, the normality 

(A.386) condition may again be used: 

«tj = !&i72+qT32=±l (B.412) 

Therefore: 

{fft,4i} = {±%,±4} (B.413) 

both of which have the same orientation (see section A.2). Therefore B.405 is the orientation error between 

two coordinate systems. 
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Scenario Specification Database 

The Multiprocess Manipulator Simulator uses a flexible group of database files to specifiy a particular 

manipulation scenario. A scenario is composed of a manipulator configuration, a global goal generation 

system for the manipulator, the global goal (a trajectory specification) for the end effector, and an obstacle 

specification. 

To implement a 'database' that is legible to both man and machine a simple data formatting syntax 

for 'scenarios' has been adopted and will be discussed in this appendix. There are four very similar format 

types: 

• Manipulator Description files 

• Global Goal Description files 

• Obstacle Description files 

• End Effector Trajectory Description files 

all contained within a single directory suffixed by ".scenario" (e.g. GainSeries_01.scenario. Each 

format type relies on a common set of basic elements. In particular, the scoping operators def ine{} and 

end{} limit the scope of defined variables to particular objects. Current objects include link, controller, 

globalgoal, obstacle, and knotpoint definitions. Formal parameters may be assigned within a given 

def ine{}- end{} pair through the familiar variable assignment syntax: varname = parameter. Formal 

parameters are those permanently defined within a specific objects. Informal parameters are those specified 

for a particular instance of objects (e.g. the radius of a ball obstacle) and have an 'escape' syntax: @ varname 

= parameter. Regardless of parameter formality only four variable types are supported: 

double in exponential format. 

vector whitcspace delimited doubles enclosed in angle brackets < >. 

matrix whitespace delimited vectors enclosed in square brackets [ ]. 

244 



Appendix C. Scenario Specification Database 245 

strings whitespace delimited ASCII characters. 

The following sections will detail the use of object instances within each scenario element. 

C . l Manipulator Description Files (MDF): theRobot.rbt 

The Manipulator Description File documents all of the physical and local control parameters that constitute 

a link agent. The format is designed to be self documenting. Informal parameters to be added to the syntax 

without requiring a (time consuming) language redefinition. 

Link objects arc used to define individual links in the manipulator. The order of the link objects in the 

file represents the order of the links from base to end effector. There is no limit on the number of link objects. 

Formal parameters include mass, principle moments of inertia, and Denavit Hartenberg parameters. 

To implement the jth link's local controllers H, j , the controller object may be instantiated. The order 

of instantiation is of no consequence except where communication between local and global goals requires alloca­

tion of IOstreams. In this case the order of local and global controller instantiation should be identical. Local 

controllers have only one formal parameter, a name identifier ( a string e.g. " resolved-motion Jbrce_control") 

followed by a list of informal parameters. There is an arbitrary limit of ten local controllers that may be 

instantiated for a given link. Not surprisingly, failure to provide an MDF within a scenario is an error. 

The data file segment in figure C.77 demonstrates the manipulator description language employed in this 

simulator. 

C.2 Global Goal Description Files (GDF): theGoals.dat 

Global goal description files, as in figure C.78, are identical to the controller descriptions within the MDF 

described earler and carry the same caveats for order of instantiation. If the global goal file is omitted, 

simulation proceeds entirely using local goals alone. 

C.3 Trajectory Description Files: theTrajectory.spt 

Trajectory Description Files are simple lists of knotpoints in global coordinates. Each knotpoint is composed 

of a time interval over which the knotpoint is attained, an homogeneous transformation describing the 

knotpoint position 1 , and a final velocity vector. The starting point is function of the moving entities 

starting position and is assumed to be unknown at startup (as in the case of a manipulator end effector). 
1 Homogeneous transformations are generally more man readable than quaternion-cartesian hybrids. 
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gravity = <+0.000e+00 +0.000e+00 +0.000e+00> 
de£ine{link} 

name - l i n k _ l 
type - revolute 
theta = tO.OOOe+00 
offset = +0.000e+00 
alpha = +0.000e+00 
length = +0.750e+00 
mass = +1.000e-01 
saturation = +1.000e+06 
vel o c i t y = +0.000e+00 
i n e r t i a = <+5.000e-02 +4.938e-01 +4.938e-01> 
centroid = <-0.375e+00 t0.000e+00 +0.000e+00> 
define{controller} 

name = resolved_motion_f orce_control 
8 ControlRate = 1.200e+02 

end{controller} 

end{link} 
define{link} 

end{link} 

Figure C.77: A robot Specification Database flat (ASCII) file. Note that the link list order is from manip­
ulator base (frame 1) to end effector (frame N). 

define{globalgoal} 
name = resolved_motion_adaptive_control 
8 ControlRate = 1.200e+02 
8 Wp = <+1.800e+03 +1.800e+03 +1.800e+03 +5.000e+01 +5.000e+01 +5.000e+01> 
8 Wv = <+8.000e+02 +8.000e+02 +8.000e+02 +1.000e+01 +1.000e+01 +1.000e+01> 
8 f_zero = +0.000e+00 

8 f_coeff = <+O.O0Oe+0O +6.000e+00 +0.000e+00> 

8 kO_zero = +0.000e+00 

3 kO_coeff = <+O.OOOe+00 +4.000e+00 +0.000e+00> 

8 kl_zero = +0.000e+00 

8 kl_coeff = <+0.000e+00 +4.000e+00 +0.000e+00> 

8 qO_zero = +0.000e+00 

8 <jO_coeff = <+0.000e+00 +1.000e+00 +0.000e+00> 

8 ql_zero = +0.000e+00 

8 <jl_coeff = <+O.OOOe+00 +1.000e+00 +0.000e+00> 

8 g2_zero = +0.000e+00 
8 q2_coeff = <+0.000e+00 +2.000e+00 +0.000e+00> 

end {globalgoal} 
define{globalgoal} 

name = resolved_motion_obstacle_avoidance 
8 ControlRate = 1.200e+02 

end {globalgoal} Figure C.78: A Global Goal Database flat (ASCII) file. 
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def ine { knotpoint} 
inter v a l = 0.00e+00 10.00e+00 
position = [<0.00e+00 -1.00e+00 0.00e+00 1.00e+00> 

<1.00e+00 0.00e+00 0.00e+00 2.00e+00> 
<0.00e+00 0.00e+00 1.00e+00 0.00e+00> 
<0.00e+00 0.00e+00 0.00e+00 1.00e+00>] 

vel o c i t y = <0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00> 
end{knotpoint} 

def ine {knotpoint} 
inter v a l = 34.00e+00 40.00e+00 
position = [<0.00e+00 -l.OOe-t-00 0.00e+00 1.00e+00> 

<1.00e+00 0.00e+00 0.00e+00 -2.00e+00> 
<0.00e+00 0.00e+00 1.00e+00 0.00e+00> 
<0.00e+00 0.00e+00 0.00e+00 1.00e+00>] 

ve l o c i t y = <0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00> 
end{knotpoint 

Figure C.79: An Trajectory Database flat (ASCII) file. 

The default profile is cubic linear (a parabolic velocity profile). Step trajectories can also be specified by 

inserting @ type = step.trajectory into a knotpoint entry. A trajectory segment example appears in 

figure C.79. Failure to provide a trajectory file is an error if a global goal generation file is present, otherwise 

the trajectory file is ignored. 

C.4 Obstacle Description Files: theObstacle. obs 

Obstacle description files document a list of obstacles in the scenario. Each obstacle entry incorporates a 

brief shape description within an informal parameter list. This is followed by the objects current position 

and an obstacle trajectory (see figure C.80). Again there is no limit on the number of obstacles present. The 

inclusion of an obstacle file is optional. 
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define{obstacle} 
name = ball 
8 radius = 0.1250e+00 
position = [<1.00e+00 0.00e+00 0.00e+00 1.00e+00> 

<0.00e+00 1.00e+00 0.00e+00 -0.50e+00> 
<0.00e+00 0.00e+00 1.00e+00 0.00e+00> 
<0.00e+00 0.00e+00 0.00e+00 1.00e+00>] 

velocity = <0.00e+00 0.00e+00 0.00e+00 0.00e+00 O.OOe+00 0.00e+00> 
define{knotpoint} 

interval = 0.00e+00 40.00e+00 
position = [<1.00e+00 0.00e+00 0.00e+00 1.00e+00> 

<0.00e+00 1.00e+00 0.00e+00 -0.50e+00> 
<0.00e+00 0.00e+00 1.00e+00 0.00e+00> 
<0.00e+00 0.00e+00 0.00e+00 1.00e+00>] 

velocity = <0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00> 
end{knotpoint} 

end{obstacle} 
def ine {obstacle} 

end{obstacle} 

Figure C.80: An Obstacle Database fiat (ASCII) file. 



Appendix D 

R M D A C Gain Selection 

Though stability of Seraji's Direct Adaptive Control [Seraji, 1989c] (here known as resolved motion de­

centralized adaptive control, RMDAC) may be assured under appropriate operating conditions, adequate 

performance remains a function of the free variables of the adaptive control algorithm. The selection of these 

values determines the controller's rate and quality of convergence to the reference model. The next section 

will describe the process used to determine the free variables to achieve satisfactory end effector trajectory 

tracking. 

Unlike OSF or RMFC in which gain selection is simplified through linear system stability rules, Config­

uration Control has a large number of integral gains and initial values to assign, including 7 initial values, 

14 integral gains, and 12 weighting gains for each of n degrees of freedom or 33n values. The recommended 

method of determining these values is through trial and error [Seraji, 1989c, Glass, 1993], initial values can 

be left at zero, and the auxiliary term, d,-, merely speeds convergence and is not crucial for stability. The 

only guideline is to ensure that gains remain positive. 

This appendix describes a simple gain selection process that explores the significance of some of these 

values. The process is not an exhaustive and is merely designed to find a stable region possessing good 

performance. This experiment employs the reference manipulator configuration, trajectory, and payload. 

The following sections will explain the experimental method. 

The control rate is set at 120 Hz, double the standard 'real time' sampling rate and cosiderably more 

than the fixed integration period of 0.001 seconds or 1000Hz. In this study weights are initially assigned as if 

they are LHP stable position and velocity gains for a linear system. 1 and all integral gains have been zeroed 

except an and pu, set to 1.0. Recalling that each term in the RMDAC force expression is the product of 

an integration, at least one set of gains must have assigned values in order to track the trajectory. 

A velocity weighting experiment retains a constant wpl- while successively doubling the magnitude of w„;. 

By selecting the greatest stable [wp;, w„,] pair a series of integral tests can then be performed. In particular: 

'Though there is no foundation for this approach it has been found to be a safe first step in selecting position and velocity 
gains 

249 
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No. Wvi f <*i; 0ii v\i 71 i Ai , 
01 100.0 20.0 0.0 1.0 1.0 0.0 0.0 0.0 
02 225.0 30.0 0.0 1.0 1.0 0.0 0.0 0.0 
03 400.0 40.0 0.0 1.0 1.0 0.0 0.0 0.0 
04 625.0 50.0 0.0 1.0 1.0 0.0 0.0 0.0 
05 900.0 60.0 0.0 1.0 1.0 0.0 0.0 0.0 
06 1600.0 80.0 0.0 1.0 1.0 0.0 0.0 0.0 
07 900.0 120.0 0.0 1.0 1.0 0.0 0.0 0.0 
08 900.0 240.0 0.0 1.0 1.0 0.0 0.0 0.0 
09 900.0 480.0 0.0 1.0 1.0 0.0 0.0 0.0 
10 900.0 480.0 0.0 2.0 1.0 0.0 0.0 0.0 
11 900.0 480.0 0.0 4.0 1.0 0.0 0.0 0.0 
12 900.0 480.0 0.0 6.0 1.0 0.0 0.0 0.0 
13 900.0 480.0 0.0 1.0 2.0 0.0 0.0 0.0 
14 900.0 480.0 0.0 1.0 4.0 0.0 0.0 0.0 
15 900.0 480.0 0.0 1.0 6.0 0.0 0.0 0.0 
16 900.0 480.0 0.0 2.0 2.0 0.0 0.0 2.0 
17 900.0 480.0 0.0 2.0 2.0 0.0 0.0 4.0 
18 900.0 480.0 0.0 2.0 2.0 0.0 0.0 6.0 
19 900.0 480.0 0.0 2.0 2.0 0.0 2.0 2.0 
20 900.0 480.0 0.0 2.0 2.0 0.0 4.0 2.0 
21 900.0 480.0 0.0 2.0 2.0 0.0 6.0 2.0 
22 900.0 480.0 0.0 2.0 2.0 2.0 2.0 2.0 
23 900.0 480.0 0.0 2.0 2.0 4.0 2.0 2.0 
24 900.0 480.0 0.0 2.0 2.0 6.0 2.0 2.0 
25 900.0 480.0 2.0 2.0 2.0 2.0 2.0 2.0 
26 900.0 480.0 4.0 2.0 2.0 2.0 2.0 2.0 
27 900.0 480.0 6.0 2.0 2.0 2.0 2.0 2.0 

Table D.20: A tabulation of initial values (italic) and integral gains (bold) for a set of scenarios. Each 
integral can use up to three gains, un, « i j and u2. In this study un is omitted while u2 never varies, thus the 
listed gains represent the value of U\ in each integral. 

1. feedback position and velocity gains an and Pn-

2. Performance as a function of feedforward gains vn, ~fn and Ai,-. 

3. Performance as a function of auxiliary signal gains d,. 

Since these cartesian controllers are orthonormal no coupling gains (the first term in the coefficient vectors) 

were required [Seraji, 1989c].The integration (the second term in the coefficient vectors) gains again are 

somewhat arbitrary, though early trial and error suggested unit gains for the feedback terms and 2.0 for the 

feedforward mass gain. Offset gains were also excluded (the term u2 in the adaptive integrals). 

The results are divided into four sections. Weights, feedback gains, feedforward gains, and auxiliary 

gains. The results uniformly show that using all of the integral terms improves trajectory tracking. 

As observed in tables D.21 and D.22 as the weights arc increased maximum and RMS errors diminish. 

There is a limit to this tactic, however. As the weights are increased, it eventually becomes necessary to 
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increase the local control rates, possibly because of the ever increasing magnitude of accelerations. 

Greater performance improvement may be afforded through the selection of larger velocity weights. The 

results here indicate that the velocity and position weights are of the same order of magnitude unlike the 

position and velocity gains in a linear PD-like controller. 

It is interesting to observe that the maximum error is slightly higher in case 9 than in case 6. This is 

some early evidence that the control rate acts as a barrier to large gains. Apparently the initial error is 

larger in this latter case and the RMS error indicates poorer steady state performance, possibly hinting at 

an underdamped system. Convergence data from these runs, indicating that case 9 is slower to converge 

than case 6, confirms the perception that the system is less stable with the larger velocity weight. 

As expected, tables D.24 and D.23 indicate that feedback gains must be present to produce reasonable 

tracking, and that as these gains increase tracking improves. Caution must be exercised with these and 

other gains, however, in that excessively large gains may result in integrator wind-up and poorer R.M.S. 

performance. 

Tables D.25, D.26 and D.27 indicate that increasing feedforward gains improves tracking. While the basic 

trend is towards improved maximum and RMS performance, an inconsistent increase in both demonstrated 

in series 24 indicates that it is possible to apply excess feedforward position gains - leading to a decrease 

in maximum and RMS performance. It should be noted that convergence times were better for this run, 

however. This may indicate that as gains increase the system becomes underdamped, oscillating about the 

desired trajectory and converging rapidly. 

Enabling the auxiliary gains improves performance as predicted by Seraji and shown in table D.28. It is 

interesting to note, however, that initially the Maximum and RMS errors are elevated with the introduction 

of another integrating term. This could be attributed to additional integrator wind up in the first seconds 

of execution. Ultimately, as more information is used to augment the auxiliary signal, error is substantially 

reduced. 

Even with carefully selected gains, the reference trajectory presents some difficulties for the Jacobian 

Transpose Algorithm. The first segment's velocity and acceleration vectors have small magnitudes and are 

inclined only 15deg to the x-axis. Since the manipulator is initially homed along this axis, the algorithm 

produces small cartesian forces and even smaller torques. The effect of integrator windup is compounded by 

the six integrations - all of which depend on cartesian error. The overshoot serves to drive the system, making 

any instability more noticeable. Particularly in these low aspect segments, RMDAC showed considerable 

sensitivity to the feedforward term, presumably because this term would results in larger force requirements 
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No. Step Response Reference Trajectory 

v W v/e2 

100 01 2.610e-01 1.026e-01 2.248e-01 9.577e-02 
225 02 2.302e-01 9.160e-02 1.839e-01 7.698e-02 
400 03 2.103e-01 8.628e-02 1.489e-01 6.113e-02 
625 04 1.970e-01 8.438e-02 1.315e-01 5.670e-02 
900 05 1.868e-01 8.335e-02 1.167e-01 4.411e-02 
1600 06 1.713e-01 8.671e-02 9.759e-02 3.594e-02 

Table D.21: Tabulation of position and orientation RMS L 2 error with variation in error weights,Wp. 

earlier in the trajectory. The auxiliary signal, too, provided a significant improvement in performance. 

While earlier studies indicated that using initial values could improve performance. Some of these values, 

particularly the feedback gains, would be difficult to estimate. Indeed, only q 2 , the manipulator inertia 

parameter, represents an easily estimated initial value. 

Without more rigorous methods for establishing integral gains, we are left with a trial and error procedure. 

The procedure shown here, while not exhaustive, represents a reasonable method for searching the integral 

gain space. This process has been used to establish a 'best gains' RMDAC gain file for the trajectory, the 

'step' response for which appears in figure D.81. 

D . l Control Rates and R M D A C 

Given that RMDAC is designed with the assumption that the manipulator parameters vary slowly through 

time, control rate seems to play a role in determining the stability of a system that operates at the edge 

or outside of this assumption. Over the course of the trial and error process, large integral gains (or large 

position and velocity weights) sensitized the controller to large trajectory errors, often leading to instability. 

Increased control rates were observed to counter large integral gains, in effect reducing integrator wind up 

through smaller time steps. 
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Wvi No. Step Response Reference Trajectory 

v W 
60.0 03 2.103e-01 8.628e-02 1.489e-01 6.113e-02 
120.0 07 1.572e-01 8.449e-02 1.161e-01 4.733e-02 
240.0 08 1.391e-01 8.971e-02 1.112e-01 3.876e-02 
480.0 09 1.520e-01 1.028e-01 1.070e-01 4.362e-02 

Table D.22: Tabulation of position and orientation RMS L 2 error as a function of variation of the weight 
W „ given w>pi- = 900. 

No. Step Response Reference Trajectory 

V I X c l 2 vVi 2 Ve2 

1.0 09 1.520e-01 1.028e-01 1.070e-01 4.362e-02 
2.0 10 1.437e-01 1.006e-01 8.876e-02 3.614e-02 
4.0 11 1.336e-01 9.827e-02 7.128e-02 2.950e-02 
6.0 12 1.291e-01 9.600e-02 6.286c-02 2.668e-02 

Table D.23: Tabulation of position and orientation RMS L 2 error as a function of the Feedback integral gain, 
a u given pu = 1.0. 

Pli No. Step Response Reference Trajectory 

v/fl2 V W 
1.0 09 1.520e-01 1.028e-01 1.070e-01 4.362e-02 
2.0 13 1.579e-01 1.024e-01 1.045e-01 4.767e-02 
4.0 14 1.629e-01 1.053e-01 1.038e-01 5.246e-02 
6.0 15 1.633e-01 1.073e-01 1.012e-01 5.003e-02 

Table D.24: Tabulation of position and orientation RMS L 2 error as a function of the Feedback integral gain, 
Pu given au = 1.0. 

An No. Step Response Reference Trajectory 

vWl2 
V l X e l 2 V ^ 2 

2.0 16 1.496e-01 9.837e-02 7.166e-02 3.558e-02 
4.0 17 1.496e-01 9.837e-02 6.509e-02 3.311e-02 
6.0 18 1.496e-01 9.837e-02 6.004e-02 3.152e-02 

Table D.25: Tabulation of position and orientation RMS L 2 error as a function of the Feedforward integral 
gain, Ai,- given vu = 0.0, 71; = 0.0. 
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7i.' No. Step Response Reference Trajectory 

V ^ 2 vW 
0.0 16 1.496e-01 9.837e-02 7.166e-02 3.558e-02 
2.0 19 1.496e-01 9.837e-02 5.403e-02 3.483e-02 
4.0 20 1.496e-01 9.837e-02 4.631e-02 3.217e-02 
6.0 21 1.496e-01 9.837e-02 4.155e-02 3.124e-02 

Table D.26: Tabulation of position and orientation RMS L 2 error as a function of the Feedforward integral 
gain, 7 i , - , given isu - 0.0, AXl- = 2.0. 

No. Step Response Reference Trajectory 

VW 
0.0 19 1.496e-01 9.837e-02 5.403e-02 3.483e-02 
2.0 22 1.243e-01 1.057e-01 9.186e-03 1.632e-02 
4.0 23 5.775e-01 3.390e-01 9.670e-03 1.602e-02 
6.0 24 5.355e-01 2.853e-01 6.714e-03 1.634e-02 

Table D.27: Tabulation of position and orientation RMS L 2 error as a function of the Feedforward integral 
gain, uu given 71,- = 2.0, Ai; = 2.0.Note that cases 23 and 24 were unstable in the step response. 

Su No. Step Response Reference Trajectory 

VW 2 V ^ 2 vW V ^ 2 

0.0 22 1.243e-01 1.057e-01 9.186e-03 1.632e-02 
2.0 25 1.222e-01 9.658e-02 1.112e-02 1.337e-02 
4.0 26 1.211e-01 9.373e-02 6.908e-03 1.311e-02 
6.0 27 1.203e-01 9.234e-02 5.525e-03 1.306e-02 

Table D.28: Tabulation of position and orientation RMS L 2 error as a function of the auxiliary integral gain, 
Ji,-, given 71,- = 2.0, A,; = 2.0 . 
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Figure D.81: Absolute end effector step response under 'Best Gains'. 



Appendix E 

Global Goal Generators Compared 

In chapter 6, Configuration Control or Resolved Motion Decentralized Adaptive Control was proposed as 

an ideal global goal generator for a multiagent system. RMDAC exhibited attractive characteristics such 

as manipulator model independence, low computational requirements, and predictably stable end effector 

behaviour. Yet any one of a number of possible global goal generators based on the Jacobian Transpose 

methods described in 4 could have been chosen. Determining the most suitable goal generator required a 

detailed review and comparison of these candidate global goal generation methods. This appendix describes 

the process through which this generator was selected and provides a performance comparison between two 

systems: the Operational Space Formulation and Resolved Motion Force Control. 

E . l The Operational Space Formulation 

In 1985, O. Khatib introduced a novel method of manipulator control, the Operational Space Formulation 

(OSF), to simplify the obstacle avoidance problem [Khatib, 1985]. In this method, exact end effector tra­

jectory tracking was guaranteed by computing the precise cartesian forces required to drive the end effector 

along a desired trajectory. This was achieved through the use of a feedforward cartesian (operational space) 

manipulator model in which estimates of the manipulator's parameters were used in conjunction with a twice 

differentiable goal trajectory, Xd(£) to construct the desired force vector, fd or: 

The hat superscript indicates parameter estimates and f̂  is defined as the acceleration necessary to move a 

unit mass, the identity matrix I m , along a prescribed trajectory,x<j(£): 

fd = M(x)f * + N(x, x)x + P(x) (E.414) 

f™ = I m x d + Kp(x d - x) + K d (xd - x) (E.415) 

Now, if the parameter estimates are exact, equation (E.417) reduces to: 

xe(t) + K„x e(t) + Kpxe(i) = 0 (E.416) 

256 
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where x c = x d — x. Conversely, if the parameter estimates are not exact it can be shown that this linear 

system is driven by parameter errors: 

M(xd)- 1 [M e(x)x+N e(x,x)x + Pc(x)] = x e + K p x e + K d x e (E.417) 

where M e , N e , and P e are the parameter errors: 

M e(x) = M(x) - M(x) (E.418) 

N e(x,x) = N(x,x)-N(x,x) (E.419) 

P e(x) = P(x)-P(x) (E.420) 

Though parameter estimation is difficult particularly with time varying payloads, the chief disadvan­

tage of OSF for multiagent control centers on the centralized computation of the feedforward model, from 

[Khatib, 1985]: 

M(x) = J-^qJDfqJJ-Hq) (E.421) 

N(x,x)x = J- TC(q,q)q-M(x)J(q)q (E.422) 

p(x) = J- rg(q) (E.423) 

Further computation is required to determine the jacobian pseudoinverse for redundant manipulators and 

the avoidance of kinematic singularities. Indeed, substituting a precise dynamic model into the configuration 

space robot equation it can be shown that OSF is equivalent to RMAC: 

Dq-r-Cq + g = J T [ j ^ D J - 1 ^ + J T C q - J ^ D J 1 Jq + J~Tg] (E.424) 

q = J - ^ C - J q ] (E.425) 

q = J " 1 [(xd + K p x e + K d x e ) - Jq] (E.426) 

a result identical to equation (3.67) [An, 1989]. Thus OSF relies on both accurate manipulator geometric 

and mass parameters to achieve precise trajectory tracking. Such centralized models defeat the purpose of 

the decentralized, multiagent structure discussed thus far. 

E . l . l Theoretical Performance 

Selection of the feedback gains K p and K d such that the roots of the characteristic equation, (E.416), reside 

in the left half plane of frequency space ensures exponential asymptotic stability. As we have discussed, 

imprecise parameter estimates corrupt the stability properties of this system. 
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Furthermore, it is important to distinguish between the stability of the cartesian and configuration 

state spaces. Within fully constrained manipulation systems where 3T is full rank, exponential stability in 

task space is equivalent to exponential stability in configuration space. However, the same is not true for 

redundant systems in which 3r is usually not square. Recalling the definition of redundancy from chapter 

3, end effector stability gives no indication of stability in configuration space. Consider the configuration 

space expression of the robot equation and OSF: 

Given inaccurate parameter estimates, this expression relates two distinct dynamic systems: one in config­

uration space and the other in task space. If these parameter errors reside in the null space of the Jacobian 

iV(J) then the right hand side represents a stable system equivalent to equation (E.416) while the left hand 

side exhibits dynamics equivalent to unforced or free dynamics in N(3): 

If isolated in N(3), there is no requirement that these dynamics exhibit any form of stability. Realistically, 

however, joint friction would act to ultimately dampen motion in N(3). 

As mentioned above, redundant manipulators present identical difficulties to OSF as in RMAC. With­

out special measures such as singularity avoidance subtasks applied to the Null space of the jacobian 

[Ballicul, 1985], even the pseudoinverse becomes numerically unstable near kinematic singularities. 

£.1.2 Simulation 

Since OSF is provably identical to RMAC and computationally less burdensome, it is sufficient to demon­

strate RMAC. In doing so, this simulation not only demonstrates the performance of both cartesian control 

methods, but also provides a common benchmark against traditional redundant manipulator control systems. 

Of course, from the information flow standpoint, RMAC differs from OSF in the context of multiagent 

control. RMAC transmits uniquely specified joint torques for each actuator rather than broadcasting a 

common global goal couplet as would be used to implement OSF. RMAC is, therefore, an explicit coordination 

mechanism for multiagent control. This is significant, for while OSF appears to be an implicit coordination 

technique, broadcasting global goal couplets to the agent team, the feedforward dynamic model defeats 

the value of this decentralized approach. So, in truth, RMAC represents a more precise description of 

coordination within OSF. 

(D - D)q + (C - C)q + (g - g) = J T M [xe + K p x e + K d x e ] (E.427) 

( D - D ) q + ( C - C ) q + ( g - g ) = 0. (E.428) 
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Over the reference trajectory, RMAC demonstrates excellent trajectory tracking performance, depicted 

in figurcE.82 with exactly known manipulator parameters . In figures E.83, the manipulator configuration 

at each knotpoint of the reference trajectory is shown. Since the desired trajectory consumes only three 

degrees of freedom, the manipulator exhibits free motion in N(J), the remaining seven degrees of freedom. 

Unconstrained motion in Ar(J) is usually characterized by jumbled or convoluted manipulator configurations 

as exemplified in this figure. 

E.1.3 Discussion 

Though OSF is an effective goal generation mechanism, the centralized computation required defeats the 

decentralized structure of multiagent control. The computation of the jacobian inverse or pseudoinverse 

requires a centralized model of the manipulator and thus suffers from the same drawbacks as RMAC. This 

problem can be solved only through the removal of any reliance upon a centralized manipulator dynamic 

model in the production of fd. Indeed, the separability property of the cartesian and configuration dynamics 

implies that dynamic modelling in cartesian space need not model manipulator dynamics at all, but should 

models some projection of the manipulator in task space. The following sections will review a simple solution, 

Resolved Motion Force Control, that removes the manipulator, but not the payload from the goal generation 

process. 

E.2 Resolved Motion Force Control 

Coincident with the introduction of OSF, Wu and Paul suggested a simple form of Jacobian Transpose 

control Resolved Motion Force Control (RMFC) [Wu, 1982]. In its simplest form RMFC applies a 

computed acceleration, xa(t), to a known payload M p . Newtons second law applied to the payload: 

fd(t) = Mpxa(t) (E.429) 

where the acceleration, xa(t), is regulated over a desired trajectory, xd(t): 

x„(t) = K„x e(t) + Kpxc(t) + xd(t) (E.430) 

and xe = xd — x. Given that the manipulator inertia includes the payload mass or M'(x) = M(x) + M p , 

the error system for RMFC becomes: 

M ; 1 [M(x)x + N(x,x)x + P(x)] = x e + Kvxe + K p x e (E.431) 
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Figure E.82: RMAC end effector trajectory tracking performance of the reference trajectory with exact 
manipulator parameter estimates. 
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Figure E.83: RMAC (equivalent to OSF) configuration history of the reference trajectory for the reference 
manipulator and payload. Note that despite precise trajectory tracking, the manipulator adopts convoluted 
configurations, a clear indication of free motion in N(J). 
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) |AF/|<rfF / , i=1.. .6} 
AF(fc) = F„ - Fo(fc) 

{|AF,|>dF;,i = 1...6} 

F, = JTF„(k) 

Fo(fc) 

F.(*+l)=F.[t) + W F W 

AF(t) = [AF| A F 2 A F 3 A F 4 AF^AFs]' I T 

Figure E.84: The Force Convergent Controller 

A massless manipulator reduces the system to the familiar: 

x c(i) + K„x e ( r ) + K p X e ( r ) = 0 (E.432) 

Now tracking error will converge asymptotically to zero if K„ and K p are chosen such that the characteristic 

has negative real parts. As the manipulator mass matrix, M(x), approaches and exceeds M p the error 

system (E.432) becomes driven by manipulator and payload dynamics. 

While the manipulator will track the desired trajectory if M p is of sufficient magnitude, typical manipulator-

payload mass ratios (approximately 10:1) require dynamic compensation to guarantee convergence. Rather 

than employing an explicit manipulator dynamic model, Wu treated the manipulator as a 'black box' of un­

known structure. By adopting a Robbins-Monro stochastic estimator and a wrist force measurement through 

a force sensor, the desired end effector forces, fd, could be modulated to produce the necessary the forces to 

drive the payload along x d . 

The Stochastic Estimator Applied to R M F C 

The arm is modelled as an unknown function 

where fG, the observed force in base coordinates, is sampled through a wrist sensor. 

Initially, the applied force, fa, is set to compensate for gravitational payload forces. At the fcth timestep 

the required end effector forces are transformed into joint torques through the familiar expression: 

(E.433) 

r(fc) =JTf a(fc) (E.434) 
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Once these torques have been applied, a sample from the force sensor, f0(k), is taken and a cartesian force 

error computed: 

Af(fc) =f d -f 0 (fc) (E.435) 

where A f = [Afi Af 2 . . . A f „ ] r . 

If |Af,| becomes greater than a prescribed threshold dft, for any i : 1,... ,n then the applied force vector 

is modified according to a simple Force Convergence Controller (FCC): 

f„(fc+l) = fa(fc) + 6fcAf(fc) (E.436) 

H = ^ (E.437) 

Theoretically the Robbins Monroe stochastic estimator is an infinite series (k —¥ inf). Practically, however, 

as long as |Af,- > d/,-|, FCC increments k from zero up to a finite limit or until |Af,| < dfi at which point no 

further correction is applied for the rest of the control period. In practice [Wu, 1982] found that as little as 

two correction cycles, k, were sufficient to guarantee good trajectory tracking. 

Through FCC, RMFC effectively dispenses with a central geometric representation of the manipulator 

and opens the possibility of nearly model-free goal regulation. 

E.2.1 Theoretical Performance 

The convergence properties of stochastic estimation methods are best summarized in Fukunaga [Fukunaga, 1990] 

Stochastic approximation can be used for parameter estimation in pattern recognition, and con­

vergence is guaranteed under very general circumstances. It is usually difficult, however, to 

discuss the rate of convergence. 

So while convergence is generally guaranteed in RMFC, the rate of convergence is cannot be easily predicted. 

This is particularly true if there are payload inertia errors. An, Atkeson, and Hollerbach [An, 1989] report 

that stiffness controllers (of which OSF is one) can sustain modelling errors of 50 

E.2.2 Simulation 

In the following studies uncompensated and compensated RMFC will be demonstrated. An additional issue 

is that given a nominal control rate, the adoption of FCC effectively multiplies the applied control rate. Thus 

a nominal control rate of R with an FCC iteration limit of k generates an applied rate, R! = (k + 1)R (e.g. 

R — 120Hz, k = 3, R' = 4&0Hz). Conversely, if the applied control rate is fixed (typical of real controllers), 
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then the nominal control rate must be reduced. Since the desired end effector forces are evaluated at the 

nominal rate, real world RMFC controllers might operate on the edge of stability despite FCC. 

Simulated Uncompensated Response 

In figure E.85 the reference manipulator carries the reference payload using the basic RMFC controller 

of equation (E.429) at a control rate of 120 Hz. Despite the small relative mass of the payload to the 

manipulator and the lack of compensation, the end effector tracks the trajectory reasonably well without 

force convergent control. Figure E.85 clearly shows the severe initial error due in large part to the difficulties 

of the first trajectory segment outlined earlier. 

Simulated Compensated Response 

In figure E.86 the reference manipulator again carries the reference payload using employing RMFC with 

Force Convergent control at a nominal control rate of 120 Hz and an FCC iteration limit of 3 (forming an 

actual control rate of 480Hz). FCC compensates for severe initial errors successfully as depicted in figure 

E.86. 

Control Rates and F C C 

Given unbounded control rates, RMFC and FCC demonstrate excellent trajectory tracking. However, in 

practice control rates are generally bounded by the computational load on the control system. A better 

comparison between compensated and uncompensated strategies assumes a maximum control rate of 120Hz, 

in which case an FCC limit of 3 iterations fixes the nominal RMFC control rate to 30Hz. The results from 

this run are depicted in figures E.87,E.88. 

Not surprisingly, trajectory tracking performance is poor relative to the nominal 120Hz run, but remains 

tolerable. Orientation appears more sensitive to control rate than position control for the same gains. 

E.2.3 Discussion 

RMFC is simple and exhibits good end effector trajectory tracking. However, both the MMS and Wu's orig­

inal implementation of RMFC are only simulations using 'perfect' noise-free force sensors. The performance 

of RMFC in real world applications is unknown. Practically speaking, the controller's reliance upon force 

sensor data and the necessity of an accurately known payload represent significant barriers to comparable 
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Figure E.85: End effector trajectory error performance during the reference trajectory without Force Con­
vergent Control at 120hz.The manipulator carries the reference payload and the controller employs PD gains 
of K p = 100 and Kd = 20. 
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Figure E.86: End effector trajectory tracking performance during the reference trajectory under Force Con­
vergent Control (RMFC nominal rate of 120hz, actual control rate 480Hz). 
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Figure E.87: End effector trajectory performance during the reference trajectory under Force Convergent 
Control(RMFC nominal rate of 30hz, actual control rate 120Hz). 
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Figure E.88: Trajectory tracking history for the reference trajectory under Force Convergent Control (RMFC 
nominal rate of 30hz, actual control rate 120Hz). 
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real world performance. Of course, force sensing is not unusual for contact tasks where desired force magni­

tudes are often of limited dynamic range (e.g. fine manipulation or micromanipulation). In these situations, 

highly sensitive, fast response semiconductor strain gages are the preferred force sensing method. Though 

random noise is considered negligible in semiconductor strain gage sensors [de Silva, 1989], vibration due to 

unmodelled dynamics in the robot or payload is not insignificant. An, Atkeson, and Hollerbach's study on 

model based control [An, 1989] identify sensor vibration and drift as the two major sources of semiconductor 

sensor error. Though it seems likely the combination of real world sensor noise, drift, and miscalibration 

could significantly erode tracking performance, additional signal processing or mechanical damping could 

compensate for these effects. 

The most serious drawback, however, is the adherance to a payload model. Though the system is 

reasonably robust to payload errors, a priori payload models are not likely in unstructured environments. It 

is true that some form of learning phase could be adopted to determine the payload mass, but this defeats 

the purpose of both a known payload and force convergent control - if the payload inertia can be learned, 

then why not the manipulator inertia? RMDAC does exactly this, through the use of a model reference 

adaptive controller. 


