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Abstract

Conventional servo controllers are not able to provide the high degree of accuracy

that is required in many robotic and contour machining applications. New control

algorithms are usually difficult to implement in practical machining or robotics

environments, since they require extremely fast computer hardware, or a very exact model

of the plant. Such algorithms also usually assume that the drive system may be modeled as

a linear system; unfortunately this assumption is often violated during contouring

operations. The objective of the work reported in this thesis is to utilize the special

architecture of the UBC controller to allow the development of control algorithms that

allow high speed contouring operations to be undertaken with automatic, real time, error

control. The system has been simulated and tested in situations which result in significant

non linearity, (sharp corner tracking being a particularly important example.) The results

of these tests indicate that the system is able to achieve contouring performance that is

better than other systems described in the literature to date.
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Chapter 1

An Introduction to Robots, Applications, and Previous Research

1.1 Introduction

The necessity to achieve higher quality control and increased productivity has

lead progressive companies to examine computer-based automation. At the present time,

many tasks are carried out by special purpose machines that are able to perform specific

tasks at high production rates. Such systems are generally referred to, in a generic sense,

as hard automation systems. It is evident however that in the future, it may well be better

to have general purpose machines, that are able to overcome the inflexibility and the high

cost of product changes. This usually implies the application of robotic devices.

Early applications of robots usually involved only simple pick and place

operations. The robots were required to accurately position objects at certain positions in

space, but they did not have to follow a specified path between the final positions with a

high degree of accuracy. During the last decade, robots have been put into use in

continuous operations such as welding, abrasive finishing, and adhesive applications.

These tasks require the actuator to follow the prescribed paths very accurately. At the

same time, one seeks to run at the highest speed possible, (consistent with path and

process constraints.) Conventional servo controllers are not usually able to achieve the

necessary path accuracy at high speeds without extensive path preprocessing.

The objective of the research described in this thesis is to develop a contouring

control algorithm that is able to address the requirements of high speed profiling and

process control. In the course of the work a candidate robot, to be used in further

research, has been selected and refurbished. The robot (a GMF S-108) was retrofitted

1



Chapter 1 An Introduction to Robots, Applications, and Previous Research 2

with high performance actuators and PWM amplifiers. The overall aim of the controller

design was to perform all path control activities in real time, and to reduce the

cumbersome preprocessing activity used in other approaches. The controller used is an

existing UBC designed, multi-processor based system. The architecture allows not only

master-slave communication, but also high speed interaction between slave processors.

The latter feature has proven to be critical in this application.

1.2 Historical Development of Robots

The overview in this section is based on Craig [1]. References in this section are

directly quoted from Craig.

The first work on industrial robots started in the late 1940’s. The Oak Ridge and

Argonne National Laboratories began work on a remotely controlled manipulator to

handle radioactive materials. These systems were designed to reproduce the hand and

arm motions of the operator, and they were later equipped with force feedback, allowing

the operator to “feel” the forces acting between the slave manipulator and its

environment.

In the 1950’s the first systems capable of autonomous, repetitive operations were

developed. The first industrial robot was introduced by Unimation INC. in 1959. It used

a computer in conjunction with a manipulator that could be taught to carry out a variety

of tasks.

It quickly became evident that sensory feedback would improve the usefulness of

robots. Ernst[2] introduced a mechanical hand with tactile feedback that could feel

blocks and use that information to stack them without operator assistance. In 1968 a

manipulator equipped with a TV camera and a microphone was built at Stanford. It was

able to recognize spoken messages, see blocks scattered on a table, and manipulate the

blocks (in a variety of ways.)
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In the late 1960’s Pieper [3] studied the general kinematics problem of

manipulators, while Kahn and Roth [4] analyzed robot dynamics and proposed the first

near minimum time control strategy.

During the 1970’s, most work was focused on the use of sensors to facilitate

manipulative or assembly tasks.

Today robotics research is a very broad field that includes kinematics, dynamics,

planning systems, control, sensors, programming languages, and machine intelligence.

13 Kinematics and Dynamics

Kinematic analysis is used to study the geometry of motion of a robot with

respect to a base coordinate system. It describes the displacement of the manipulator

without regard for the forces and moments that cause the motions. The analysis

examines the relationship between the joint-variable space and the position and

orientation of the end-effector in Cartesian space. Figures 1.1 to 1.4 show a number of

typical manupulator types. Paul [5] presents a comprehensive introduction to Kinematics

and Dynamics.

There are two basic problems that are of interest. The so-called forward

kinematic solution describes the position of the end-effector in terms of the joint

variables, while the backward kinematic solution determines the joint-angles in terms of

the position and orientation in Cartesian space. Usually the task is stated in terms of the

reference coordinate frame. This requires that backward kinematic solutions must be

available in order to determine the joint-angles.
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Figure 1.1. Cartesian Robot

Figure 1.3. Spherical Robot Figure 1.4. Revolide Robot
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A matrix representation of link geometries was first presented by Denavit and

Hartenberg [6]. This approach allows one to represent the spatial geometry of the links

with respect to a base reference frame. It utilizes 4x4 homogeneous transformation

matrices that relate adjacent links, and reduces the problem to finding an equivalent 4x4

matrix relating the hand coordinate frame to the reference coordinate frame.

Robot dynamics deals with the mathematical formulation of the equations of

robot arm motion. They are useful in computer simulations and the design of robot

motion controllers. The dynamic equations are derived from the laws of Newtonian and

Lagrangian Mechanics. Using the Denavit-Hartenberg convention it is possible to

develop standard procedures to derive the equations of motion in terms of specified

geometric and inertial parameters. Two standard procedures for this task are the

Lagrange-Euler formulation, first developed by Uicker [7], and the Newton-Euler

procedure, introduced by Stepanenko and Vukobratovic [8].

1.4 Drive Systems

There are a number of different drive systems that can be used to power a robot.

The type of drive is usually determined by the application (task) for which the robot is

designed. Koren [9] describes some of the basic drive systems.

Electrical drive systems are usually used for small to medium size manipulators.

Direct current actuators provide good speed regulation, high torques and efficiencies, and

have therefore traditionally been used for high precision operations. However the low

power to size ratio usually requires gearing systems. Being angular actuators, they

require ball screws or similar devices to provide linear motion.

With the development of new high power electronics, alternating current

actuators have become more available. They are beginning to replace DC actuators,

because they have slightly better characteristics.
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Stepping motors are incremental digital drive systems that rotate one angular

increment per command pulse. They usually do not have position feedback. This means

that they operate in an open loop control system that does not let the controller know

whether or not the actuator has actually performed the prescribed motion. Large position

and velocity errors cannot be detected. Usually such actuators have a very limited power

and torque capacity.

Hydraulic actuators are used for large robots. They provide high power with

small units, and the response characteristics are very good. Linear and rotary actuators

are readily available and no gearing is required. Hydraulic actuators however have

several disadvantages. They require highly pressurized liquid as the operating fluid,

which often causes maintenance problems. The response characteristics change with the

temperature of the working fluid and they are also strongly influenced by entrained

materials. The relative cost of a hydraulic system does not decrease with size and hence

they are too expensive for small systems. Finally the various devices used in hydraulic

control elements are often distinctly nonlinear, leading to significant design problems.

Pneumatic actuators are usually used in small manipulators, which are designed

for point to point operations. They have fast response times, and compressed air is

usually readily available. On the other hand they require relatively large actuators,

because of the low pressures, and they produce a considerable amount of noise.

1,5 Trajectory Phinning

With the knowledge of kinematics and dynamics of the actuators one would like

to control the actuators to make the manipulator follow a desired path. The space curve

that the manipulator describes while moving from an initial location (position and

orientation) to a final location, is called a path. In trajectory planning one is interested in
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constructing such a path. Craig [101 discusses trajectory planning in a broader scope than

this introduction allows.

There are three constraints that enter trajectory planning. The path constraint

specifies what path the manipulator has to follow. The obstacle constraint restricts the

path to manipulator motions that will not interfere with other objects (obstacles) along

the trajectory of the manipulator. Finally it is of course impossible to put infinite power

into an actuator, and hence discontinuities in the path and its first second and third

derivative should be avoided. This last constraint is referred to as the manipulator’s

dynamic constraint.

There are basically two approaches to trajectory planning. In the first approach

knot points are selected along the path in the manipulator’s generalized coordinate frame

(joint coordinates). Using constraints such as continuity and smoothness of position,

velocity, and acceleration, polynomials are fitted between the knot points. They

guarantee that the constraints are met at the knot points. With this method it is difficult

to check for obstacle avoidance, because the trajectory is planned in joint coordinates,

making it difficult to trace the path of the manipulator in Cartesian space.

The second approach specifies the path in an analytical function such as a straight

line or a circle in Cartesian space. Thus, obstacle avoidance can be checked for in the

initial stage of calculation. The Cartesian path constraint must then be transferred to

joint path constraints. Again a splining operation is conducted during the fit between the

joint knot points, which will ensure continuity and smoothness of position, velocity, and

acceleration.

Usually the actuator dynamics are not considered in the trajectory planning phase,

because of their computational complexity. Thus, large tracking errors will result within

the servo control of the manipulator, if the actuators cannot supply the torque required

for the desired path.
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16 Motion Control

Motion control is the process of controlling the actual actuators of a manipulator

in order to achieve a desired trajectory. Motion control is usually divided into two parts.

First the dynamic model of the manipulator is obtained. This model is then used to

determine a suitable control law. There are usually two distinct phases in a motion

segment. First the manipulator is moved from its initial position to the vicinity of the

final location along a planned trajectory. In the second segment fine-motion control

often in combination with sensory feedback is employed to make the end-effector

dynamically interact with the object.

Currently most industrial robot controllers do not utilize information from the

dynamic equations of motion, but rather use simple servo controllers. This leads to the

requirement for slow speeds, (often accompanied by unnecessary vibrations). In order to

improve the performance, more sophisticated control approaches and dedicated computer

architectures are often utilized. There are two basic philosophies in modern contouring

control. The first attempts to minimize path error by minimizing the position error of

each axis. The usual way that this is achieved, is to insert a filter before the control loop

that is the exact inverse of the actual control ioop. In theory this should lead to a unity

transfer function. The initial problem, that such a controller is often unstable, was solved

by Tomizuka [11] by only canceling the stable zeroes of the system. Still this approach

had two flaws. First it requires a very accurate model of the system, since otherwise the

position loop cannot be canceled exactly. One would therefore have to use an exact

dynamic model of the actuators, and the equations of motions of the robot arm, including

loads and disturbances. This is extremely computationally complex, and it is often

impossible to extract exact information on the load and disturbances. The second

problem arises from the saturation limits of the amplifiers and motors. In order to cancel

the position loop dynamics, large control signals are required, which can saturate the
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amplifiers. This problem becomes more pronounced when the frequency components of

the reference path increase. (Thus, the system performance deteriorates around corners.)

Both problems have been addressed by Weck [121. He proposed the use of a regressive

system characterization to determine the position loop model, and used this information,

instead of an analytical model, to design the inverse filter. In his proposal the system

characterization is carried out in the start up phase. Therefore the system model does not

contain loads and position dependent arm dynamics. In order to get a truly accurate

model it would be necessary to perform system characterizations throughout the

complete operating cycle. This in turn poses problems with large computational efforts.

Weck also proposed the use of a linear phase low pass filter in order to reduce the high

frequency components in the reference signal. This idea seems to work very well for

improving corner tracking.

The second approach was first proposed by Koren [13]. This approach attempts

to minimize the path error directly instead of the single axis error. The approach requires

the controller to calculate the path error from the single axes errors and then use this path

error to compensate the different axes, a strategy which clearly requires cross coupling of

errors. The controller is complicated and the computational effort rises with the square

of the number of axes. To this date the author has not been able to find a paper that

discusses the implementation of this system on high performance servos, which require

fast sampling times in order to fully utilize their capabilities. It seems that the

computational effort is too large to actually implement this system with today’s

computing capacity.

The algorithm that is proposed in this thesis does not rely on an exact dynamic

model. It therefore does not require regressive system characterizations. The algorithm

relies on the principle that an error proportional to the reference velocity in each axis

leads to a phase lag between the actual and the reference signal, but the path accuracy

itself is not compromised by such an error. The algorithm then predicts an allowable
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error proportional to the velocity, compares it with the actual error, and inserts extra time

steps in those cases where the allowable error is exceeded. This algorithm is very fast

and has been implemented in real time. It can be implemented on other industrial

equipment without major changes, because it is not dependent on an exact dynamic

model.

1.7 Sensing

The use of external sensors allows a robotic manipulator to interactively adapt to

changes in its environment. Even though, at present, most tasks only require the robot to

perform preprogrammed repetitive tasks, a great deal of effort has gone into the

development of new sensory techniques. Merrit [14] has presented a detailed survey

article on robot sensing.

There are two categories of sensors. Internal sensors detect variables such as arm

joint position that are used by the controller. External sensors detect variables such as

range, proximity, touch, force and torque, and vision. They are used for guidance as well

as object identification. Vision is potentially the most powerful robot sensory capability.

It can be defined as the process of extracting, characterizing and interpreting information

from images of a three dimensional world. It is often divided into sensing,

preprocessing, segmentation, description, and interpretation.

The unique architecture of the UBC controller that is described in Chapter 3

allows the integration of contouring control with external sensory inputs. Force sensors

in metal cutting operations have been used to ensure a constant cutting force and a

constant equivalent chip thickness.
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1.8 Programming Languages

Communication between the operator and the manipulator is the major obstacle in

utilizing a general purpose assembly machine. Fu et al. [15] have presented an

introduction to this topic.

There are three major approaches to this problem. Discrete word recognition is

very limited, because state of the art speech recognition can only recognize discrete

words from a limited vocabulary. It is also speaker dependent, it needs very powerful

computers for efficient real time algorithms, and it requires a large memory space to

store the speech data. As a result discrete word recognition has not yet found its way into

real industrial applications.

When using teach and playback, an operator slowly leads the robot (off line)

through the entire assembly task with a manual control. A computer records points along

that path in order to be able to replay the motion at a later time. The taught motion is

played back and edited until it contains no errors. Finally the robot is run on line at its

appropriate speed to perform the taught motion repetitively.

The most advanced approach to solve the communication bottleneck between the

operator and the manipulator, is to use high level programming. When using a robot for

such tasks as welding or spray painting, no interaction is required between the robot and

its environment. If the manipulator is used for assembly purposes, sensory feedback is

usually required. This can only be handled by conditionally programmed methods that

are best implemented using high level programming techniques. There are two

programming categories for robotics applications.

In robot-oriented programming assembly tasks are divided into a number of robot

motions. The programmer has to guide the robot through the task by sequentially

programming every single motion segment. This procedure is very cumbersome making

it difficult to use.
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In task-oriented programming, assembly tasks are described in terms of objects

being manipulated rather than by robot motions. This means that the programmer can

specify a task such as picking up an object in a high-level language, and the program

then uses a database to convert the task to a robot-level program. This procedure is much

more user friendly than robot-oriented task planning, but many problems, notably task

planning, obstacle avoidance, and sensory information utilization still remain to be

solved.

The UBC controller, which is described in detail in Chapter 3, uses high level

programming that allows easy trajectory programming which can be integrated with

technological sensory feedback to ensure optimal operating conditions.



Chapter 2

Previous Approaches to the Development of Fast Contouring Controllers

2.1 Introduction

In the last decade many researchers have begun to examine the development of

high speed contouring algorithms. This has been accompanied by the development of

faster computer hardware that allows one to run control strategies that were not

previously feasible.

Two main approaches have arisen from this previous work. The first control

strategy, proposed by Tomizuka [11] tries to eliminate path error by achieving zero axis

following error. It attempts to cancel the traditional control loop with an inverse filter of

the position loop. For this system to perform adequately, it is necessary to have a very

exact model of the plant.

This strategy unfortunately often leads to the saturation of amplifier current and

the violation of other torque-related constraints, during phases of large acceleration.

Weck [12] proposed a solution to this problem which involves placing a low pass filter in

front of the controller. This alleviated the saturation problem, and better corner tracking

was achieved.

The second approach, introduced by Koren [13], tries to minimize path error

alone, while still allowing actual axial position errors. It calculates a path error from the

individual errors of the axes and then uses this path error to compensate the individual

axes. This strategy requires very fast hardware, and to date the author has not been able

find a paper on an experimental setup using high performance servos in combination

with this strategy.

13
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2.2 Comparison of Existing Approaches

A paper comparing the various advanced controller strategies has been presented

by Koren and Lo [16]. The course of their argument will be followed in this introduction,

following which an introduction to existing methods and the new concepts arising from

the author’s work, will be compared with the simulated and experimental results obtained

by Koren.

Figure 2.1 shows a typical servo system. The actual position is fed back and

subtracted from the desired position. This error signal is fed into a controller. The

controller then feeds a velocity command to the plant. Usually the plant may be modeled

as a first order lag. In the simplest case, the controller has a simple proportional gain.

This system has been used in many NC machines. Advanced CNC applications require

very high feedrates, which lead to large contouring errors with P-controllers. Thus, P

controllers are often not adequate for advanced CNC applications.

Three basic methods have been developed to overcome the limitations of a simple

proportional control action:

The first approach applies more sophisticated axial controllers such as P1]) or

state feedback controllers. These controllers attempt to reduce the position errors of the

Disturbances

Figure 2.1. Typical Position Control Loop

individual axes.
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The second approach adds a feed forward controller, such as the ZPETC or IKF

approaches discussed in the introduction, to compensate for axial position errors.

The third method uses cross coupling in order to reduce the contour error rather

than the axial tracking error. The controller proposed in this thesis has some of the

characteristics of the third method, since the axes can communicate with each other via a

state line. Unlike the original system proposed by Koren, this proposed system is very

simple. It can handle more degrees of freedom and it is possible to optimize contouring

performance and technological factors such as maximum cutting forces, at the same time

and with very little more effort.

There are variations and accessories to these three basic control approaches. The

most prominent are adaptive control and predictive control as mentioned in the

introductory chapter.

2.3 Sources of Error

There are three different types of error:

The first are due to mechanical errors. This category contains backlash or

nonstraightness of the table motion. It cannot be improved upon by the simple addition

of more sophisticated controllers. Those errors can only be reduced by using better

hardware or compensation techniques.

The source for the second type of error is the effects of the production process.

Machine tool operations for instance lead to errors due to tool wear or tool deflection.

These errors must also be handled through compensation.

The third type of error arises from the controller and drive dynamics. These

errors are often dominant in high speed operations, and they can be alleviated by

improving the control algorithm. The three above controller types and the one proposed
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in this thesis all concentrate on this third class of error, which will further be subdivided

into three categories:

The first category is parameter mismatch. In a type-I control system, a mismatch

in the open loop gains will lead to a steady-state error when following a straight line.

Different time constants on the other hand, will lead to transient contour errors that may

be more prominent than those due to mismatched gains.

The second type of error is due to disturbances. The disturbances result from

cutting forces or other parameters imposed by the process.

The third kind of error stems from the contour path and the machine dynamics.

When the desired path contains a discontinuity or a sharp corner, the system is often

unable to follow the path within the prescribed tolerances. The major problem in such

cases is the fact that the maximum acceleration is limited by the saturation current of the

amplifier.

Most of these errors increase with feeding speed. This means that more effective

servo controllers are needed for high speed operations.

2.4 Feedback Controllers

In this category controllers with basic feedback only will be listed.

2.4.1 P-Controller

The P-controller is a proportional gain that is usually tuned such that the closed

loop damping ratio is approximately equal to 0.707. This controller works well for low

feed rates.
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2.4.2 Pm-Controller

The PID-controller adds the integrated error and a derivative of the error to the

control signal. The integral term ensures that the system has zero tracking error for ramp

inputs (assuming the uncompensated system is type I), and the derivative term shapes the

dynamic response of the system. The Pm-controller provides poor tracking and

significant overshoots for nonlinear contours like sharp corners which cannot be

described with first order polynomials. These problems are addressed by

preprogramming a path with sufficiently small accelerations.

Figure 2.2. P-Controller and PID-Controller Structure

2.5 Feedforward Controllers

The idea behind this type of controller is to implement a filter in the control loop

that leads to a unity transfer function of the system.

2.5.1 Zero Phase Error Tracking Controller (ZPETC)

The ZPETC controller was first proposed by Tomizuka [11]. It introduces a filter

before the position feedback loop in an attempt to cancel the zeroes and poles of the

system. A block diagram of this controller is shown in Figure 2.3.

P-Controller P1 D-Controller

R+
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G0(z) is the feedforward filter that is intended to cancel the position loop. Ideally

it should have the following form:

G0(z)
(B(z)1=1 H(z) D(z)

(2.1)
kA(z)J L\l+H(z)D(z))

It is not possible to cancel the zeroes outside the unit circle because to do so

would lead to an unstable controller. The zeroes are divided into cancelable and non

cancelable zeroes:

G0(z)
= (B+(z) B(z))1

(2.2)
A(z)

Tomizuka only cancels the cancelable zeros B+and arrives at the following

controller:

G(z)
A(z1)B(z)

2 (2.3)
B(z1)[B(1)]

The phase angle of the overall transfer function of this system is zero, which

implies that this system achieves zero phase error tracking. Haack and Tomizuka [17]

proposed the reduction of the possible gain error by adding zeroes to the feedforward

controller.

This system requires that the model of the system be very accurate. Disturbance

torques will severely reduce the performance of the system.

Reference Error Actual
Position Position

R

Figure 2.3. Block Diagram ofZPETC
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This controller also produces very large control signals that can saturate the

amplifiers. Buttler et a!. [18], recognizing this problem, have proposed the use of path

planning to avoid large accelerations.

2.5.2 Inverse Compensation Filter (IKF)

The ZPETC controller inherently requires large control signals which saturate the

amplifiers and motors during moves with high frequency components. This problem was

alleviated by Weck [12] by putting a low pass filter with linear phase in front of the

ZPETC. Figure 2.4 shows the a block diagram of the IKF Controller.

The ideal IKF filter has the transfer function described in equation 2.4:

IKF(z)
= .ft3 AT + [i + cos(i it/N)] sin(i AT)

+ z’)l A(Z1) B (z) z: 1(2.4)
i-i 2z it J I i

Here N is the filter order, and Weck proposed that N be equal to the ratio of the

drive time constant and the controller sampling time. AT is the controller sampling time,

c is the cutoff frequency of the speed controlled drive system, and d is the estimated

dead time.

Reference Signal after Signal after Error Control Actual
Position Low Pass ZPETC Position

R

Figure 2.4. Block Diagram ofIKF
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Week also proposed the use of a recursive least square model identification

according to the Bierman factorization method, instead of an arithmetical model. This

should eliminate large computing efforts and the insecurity of model design.

The results obtained with this method seem to solve most of the ZPETC

controller’s problem. Still the system tends to become unstable for sampling times of less

than 5 ms. The threat of saturating the amplifiers has been considerably decreased, but

not eliminated.

2.6 Cross Coupling Controller (CCC)

This controller was first proposed by Koren [13]. It is based on the idea that, in

order to improve the contouring performance, it is necessary to eliminate the path error

rather than individual axis errors.

This controller uses a contour error model that is then implemented in a simple

control law. Figure 2.5 shows a block diagram of a cross coupled controller.

The error model is given by equations for Cx and Cy, which are functions of the

instantaneous slope and the radius of the contour, and the errors of the system,

respectively.

The cross coupling controller uses a simple P1]) control law of the form described

in equation 2.5:

W(z)=KP+KITz+KDzl (2.5)
z-1 ATz

This controller structure has been tested by Koren and Lo [19]. It was able to

give an improvement in performance of 1:5 to 1:10 compared to a simple P-controller.

The main disadvantage of this controller is that it requires very fast hardware in

order to perform in real time. At this time a three axis system is operating satisfactorily.

This three axis system has a slow time constant, which in turn requires only a low
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sampling rate. It seems that it will be difficult to use this system with high performance

servos, as such servos need very fast sampling rates to give optimum results.



Chapter 3

UBC Controller

The UBC controller is an open architecture multi-axis controller that was

specifically designed to coordinate a large number of axes, and to allow integration of

process control with position and velocity control.

3.1 Controller Architecture

The controller utilizes the STD 32 Bus. The master is an IBM PC compatible

computer, which can control up to 15 slave controllers. In the work described in this

thesis, the master updates the position of each slave every 16 ms; this corresponds to

approximately twice the time constant of the slave servos. The slaves are digital lead lag

controllers that interpolate 32 times between every master position. They have a

sampling time of approximately 0.5 ms.

The architecture ensures that most of the workload is taken from the master and

transferred to the slave controllers.

Every slave controller is connected to a so-called state line. If the state line is

high, the slaves perform as ordinary lead-lag controllers. If the state line is low however,

the slaves will not increment position, but will continue to close the position loop. Each

slave is able to pull the state line low, in response to conditions where some error

criterion is met. The arrangement described means that each slave is able to slow down

or stop the complete system when it cannot follow the required path at the programmed

velocity.

Figure 3.1 shows a schematic diagram of the controller architecture:

22
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STD BUS

II II II II
Master Slave Slave Slave

CPU CPU CPU CPU

80x86 Axis 1 Axis 2 Axis 3

Coordinating Line

State Line Jj.. Jj,
Front Plane Bus

Figure 3.1. UBC Controller Architecture

The slaves receive position incremnents every master sampling time. These

position increments are modified twice. First the slaves perform a second stage

interpolation. This procedure reduces the sampling time to half a millisecond and it also

provides velocity shaping in order to reduce acceleration levels between position

increments. The second operation that is performed on the reference signal is velocity

modulation with the state line. This concept allows the reduction of acceleration levels

below the saturation limits of the amplifiers. The signal modified in this way is then fed

into a simple lead-lag servo controller. It should be noted, that it is quite difficult to

analyze the complete slave controller with conventional control techniques, because the

system is not linear and the author was not able to obtain a closed transfer function of the

system. A comprehensive stability analysis of the system has not been performed, but

simulations and experiments of the control system including the state line strategy tend to

be more stable than the simple servo controller. A schematic block diagram of a two axis

control system is shown in Figure 3.2.
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Line

If SL-1,
Ry - Sy

Else
Ry - Sy

End

Figure 3.2. Schematic Block Diagram of a Two Axis Control System
Mx \ My First Stage Interpolated Position
Sx \ Sy Second Stage Interpolated Position
Rx \ Ry Reference Position of Lead-Lag Controller
Vx \ Vy Velocity Spline
Ex \ Ey Position Error
SLx \ Sly State Line Flags
SL State Line
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In the following sections the lead-lag controller, the position spline, and velocity

modulation using the state line will be discussed.

3.2 Slave Transfer Function

The block diagram of the position loop of the conventional lead-lag controller of

State

My

I

Ry

Velocity
Spline Vy

If Vy
•+ östat> Ey,

Else SLy-O

SLy— 1
End

Ey

the slaves is shown in Figure 3.3:
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The block diagram shows that the system is half continuous and half discrete. In

order to analyze the system it is first necessary to transform it into either form.

The easiest approach in this case, where the sampling frequencies are relatively

high, is to convert the digital filter and the zero order lag to a continuous filter. The

continuous filter will have the following form:

0 s+a
F(s)—K (3.1)

E sb

Using forward difference approximations this can be rewritten as:

KEk+l +K(aIT—1)Ek °k+1 +(bAT—1)Ok (3.2)

This corresponds to the lead lag filter in the z-Domain given by:

z+(aT—1) z—A
F(z)K =Kp (3.3)

z+(bT—l) zB

The transformations from the continuous to the discrete domain are:

A1-aciT

BbT—1 (3.4)

Kp=K
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A simplified continuous block diagram is shown in Figure 3.4. (Both saturation

limits and the amplifier bandwidth are neglected in this case.)

1
Kss =

____

Ktsa
Je

ti =

_________

Ka Kt Ktsa

The resulting block diagram is shown in Figure 3.5

There are two very important characteristics of this system. First, it has a limited

acceleration due to current saturation. By inspecting Figure 3.3 it becomes apparent that

the maximum achievable acceleration is:

The velocity loop is a first order lag of the form:

u Kss
35i1 ts+1 .)

where:

Figure 3.5. Position loop ofsimplified continuous
model
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Ke
= IKt— (3.6)

Je

The second important characteristic is the expected following error to a ramp

input. The open ioop transfer function of the model in Figure 3.5 is:

G(s)=KKdKssKe
sa

(37)
(s + b)(t1 s + i) s

This is a type I system and the steady state error to a ramp input can be shown to

be:

b Ktsa
e38 = v = (3.8)

a K Kd Ke

This means that the following error is proportional to velocity. In other words

during a ramp, the steady state response will result in the actual signal always lagging a

constant time behind the reference signal. If the different axes have the same gains, the

path error will be zero, even though the actual path lags behind the reference.

Equation 3.8 also shows that it is possible to control the velocity of the system by

controlling the error.

An equivalent expression for the following error in the z-domain is derived in

Appendix 1. It yields the same numerical values as equation 3.8, but it is much more

complex. The simple expression derived in the s-domain is used for further analysis and

calculation.

3.3 Position Spline

Before the reference positions are transferred from the master to the lead-lag

slave controllers, the slaves performs an interpolation operation. This operation is called

position splining and it aims to reduce large accelerations of the reference signal by

shaping the velocity during master samples. The position spline also transfers some of



Chapter 3 UBC Controller 28

the work of the master to the slaves, because the master needs to send less position

increments to the slaves. This enables the master to concentrate on other operations such

as task planning.

The Interpolation scheme was developed by Yellowley and Pottier [201. It

assumes that points are evenly spaced in time, and it assumes a linear variation in

velocity over each master sampling period. This leads to the following formula for

displacement:

= + —

+ [x1+2 — X—X1+ Xe.., I [t2 -

(3.9)

where 0t&

Figure 3.6 shows the velocity profile which results from this scheme. The spline

assumes a constant acceleration and zero jerk over a master sampling interval. At every

master sample a velocity discontinuity is encountered.

velocity
/ %

— master samples
A — — position spline

\

A

- -t-i ‘ -iime

Figure 3.6. Position Spline

A position spline with linear acceleration and constant jerk that would have a

continuous velocity profile was investigated, as a first alternative, and its derivation is
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given in Appendix 2. The added computational complexity did not yield a significant

improvement in performance and so the constant acceleration spline was maintained,

together with the addition of a velocity spline which is described in a later section.

3.4 The Application of the State Line to the Minimization of Error

It was shown in the previous section that the position spline contains infinite

accelerations. As shown in equation 3.5 however, there is a maximum achievable

acceleration. The state line will be used to smooth the velocity discontinuities. The

basic idea, which will be expanded upon in this section, is to allow the smoothing of

velocity and acceleration by triggering the state line based upon error. The reader will

realize that this is the inverse of the normal procedure. This is achieved by controlling

the amount of error, and hence the velocity before and after a large acceleration. In the

proposed system one is indirectly controlling the velocity through error.

3.4.1 Velocity Spline

Equation 3.8 allows one to stipulate an error criterion for the state line:

F b 1
e,JJk = v I + = + (3.10)

LaKKdKssKeJ

The first term allows for the expected error proportional to velocity and stat

allows for friction, and other imperfections in the system.

Ideally an actual reference velocity should be used to calculate the allowable

error. The reference velocity based upon the position spline contains accelerations that

are beyond the possible system limits described by equation 3.5. It is thus necessary to

form a reasonable independent velocity spline to permit the allowable error to be
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calculated. The most logical approach is to assume a velocity spline that linearly

connects the average velocities of two adjacent master velocities and thus contains no

velocity discontinuities. It takes two master sampling intervals to accelerate from zero to

a constant velocity; this corresponds to about 4 times the time constant of the non-

saturated position loop. The spline is illustrated in Figure 3.7:

velocity

—
— velocity spline

\

I I
\ I I- time

H A

Figure 3.7. Velocity Spline

The spline itself can be described mathematically in the form:

v(t) = — x_1)+ (x+2 — — x, +x1_1)4] (3.11)

3.4.2 State Line Triggering Logic

The intention of the approach should by now be clear; the author intends to

trigger the state line when the actual error is greater than would be expected, should the

velocity be that of the velocity spline. There are however several ways in which the line

may be triggered.

In the first series of experiments the state line was triggered using an absolute

error criterion of the form:
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IeaI (3.12)

This criterion then allows an error band around the actual position. It means that

the state line will be triggered when the actual position is leading the reference position.

Such an approach forces the system to slow down more than necessary. A sign sensitive

error criterion was therefore formulated.

When the reference velocity is positive, the criterion is:

v > 0:
(3.13)

< V) +

In the case of negative reference velocity, the criterion changes to:

v < 0:
/ (3.14)

> ‘4’$ v)
—

In order to combine both constraints into one single equation it is necessary to

negate the second constraint. This is equivalent to multiplying either equation by the

sign of the velocity. Hence the final constraint used is given by:

sign(v)ej0 < sign(v)4,3v+, (3.15)

3.5 Sampling Period

For the velocity spline to give satisfactory results, it is necessary to choose a

master sampling time that allows the system sufficient time to slow down from

maximum speed to zero speed within one master sampling period.

One way to determine the required master sampling period is to calculate the

distance required for the above mentioned deceleration, and transform it to the required

number of slave samples per master sample:

The time required to accelerate from vo to v1 can be calculated using:
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vi— vO
t=

This requires a distance of

(3.16)

1s=v0t+—at2 1 0
(3.17)2 2a

During a deceleration phase, this requires that the state line starts triggering Nd

slave samples before the velocity discontinuity, where:

Nd
= v12—v02

v0AT 2v0aAT (3.18)

During an acceleration phase, this requires that the state line stops triggering Na

slave samples after the velocity discontinuity, where:

N0=
= V12 —V02

v1T 2v1aET

3.6 Filter Parameters

The position loop without the state line is a third order system:

(3.19)

This third order system can be reduced to a second order system by canceling the

dynamics of the velocity loop with the filter. This leads to:

U

Figure 3.8. Block Diagram ofPosition Loop
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a
= Ktsa Ka Kt

(3.20)
Je

The position loop block diagram reduces to the form shown in Figure 3.9:

The transfer function of this system is given by:

0 KKdKaKtKe
(3.21)

R Jes2+Jebs+KKdKaKtKe

The natural frequency of this second order system is given by:

IKKdKaKtKe
= (3.22)

Je

The damping ratio of that system is given by:

c b
(3.23)

2w

The final parameter of interest is the steady state phase lag to a unit ramp input:

= bJe
(3.24)

KKdKaKtKe

One is thus left with three equations, but only two system parameters. In a normal

servo system, one would pick a natural frequency and a damping ratio in order to

calculate the filter gain K and the lag time constant 1/b.

In the case of the velocity spline, one actually needs to specify the phase lag and

the damping ratio of the system. This leads to a filter gain of:

K=
4Je

(3.25)
Kd Ka Kt Ke

Figure 3.9. Block Diagram ofReduced Position Loop
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The resulting inverse of the filter lag time constant is given by:

b=2i IKKdKaKt (3.26)
Je

and the resulting natural frequency of the system is:

(3.27)

This parameter choice usually yields a stable and fast result. In the case of the

system with a sampling time of 0.5 ms, a desired phase lag of 3 ms and a desired

damping ratio of one, the resulting natural frequency of the system was 666 rad/sec.

3.7 Mismatched Gains

In some circumstances it is possible (but in the author’s opinion not very

probable), that the gains of different axes will be mismatched. In such an event the

following error of the different axes will have different proportionality constants to the

velocity. A steady state velocity path error will then result. Simply choosing the

smallest proportionality constant as the common velocity error constant will trigger the

state line and slow down the system. Such an approach however will still result in a path

error which is proportional to the new, slower, velocity.

In order to run at the maximum speed with no path error it is necessary to

feedforward the difference in errors between the fastest and the slower axes to the slower

axes. In this manner all the axes have their own gain dependent velocity error constants,

and the system can still run at the reference speed.

It is relatively easy to implement this concept for linear motions within the UBC

controller. The axis with the largest gain still operates in the usual fashion. Any slower

axis will have a larger velocity error constant. The actual steady state error will be:

(3.28)
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The faster axis requires a steady state error of:

ere..dred d?ssjasiest V

The error may be reduced by the difference of the above two equations:

compensation v (ciasenax Pzsacnsai)

(3.29)

(3.30)

velocity v (
fastest axis actuaI

In a linear move this is achieved by adding the compensation to the first master

sample and subtracting it from the last. The basic scheme is illustrated in Figure 3.10:

The first and the last master sample position increments are updated in the

following fashion:

x1’ = +

(3.31)
= x —ct)

3.8 Conclusions

In this chapter the UBC controller was described in detail. A new contouring

algorithm was introduced. This algorithm smoothes out velocity discontinuities by

Figure 3.10. Mismatched Gains Compensation
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controlling the amount of error of each axis. The procedure ensures path accuracy

without extensive path preprocessing or fast computer hardware.

Simulations and experimental results from a real system are presented in the next

chapter. They will show that the strategy utilizing a velocity spline in order to trigger the

state line provides good results which are comparable to the ones obtained with other

algorithms described in the literature.
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Simulation and Experimental Results

4.1 Introduction to Computer Simulations

The first phase of the work concerned with the evaluation of new control

strategies, involved the creation of a realistic simulation model of the system. The

program was developed using Matlab; it allows the examination of the path performance

of an arbitrary number of axes and the introduction of nonlinear influences. A typical

high speed servo system was also constructed and tested to validate the results from the

simulated model. Results from the experimental system are given later in this chapter.

The actual MATLAB program is reproduced in its entirety in Appendix 3. As

mentioned previously, the program allows the calculation of actual path errors as well as

individual axis errors in an (N) axis system. The major non linearity in the basic system

comprises the current limit of the amplifier, which is included in the simulation. The

ordinary differential equations corresponding to the analog part of the loop were solved

using a second order Runge-Kutta algorithm, while the time domain equations of the

digital part (including the state line), were solved directly. The values of the various

parameters in the model were chosen to correspond to the high performance experimental

servo system, which is described later.

The majority of the simulations have been concerned with corner tracking

capability. In order to simulate this, the path shown in Figure 4.1 has been used. The

reader should realize that the path chosen requires one of the servos to change direction,

while the second may, in essence continue at constant velocity. Most of the simulations

37
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of this rather difficult contour have used a nominal speed of 500 RPM (one motor will

thus reverse to -500 RPM during the corner.)

4.1.1 Simple Servo System

The first set of simulations were conducted on a conventional system with no

state line in order to provide a reference from which the degree of improvement could be

gauged. Figure 4.1 shows the corner tracking ability of the system. It has large

overshoots that obviously cannot be tolerated in practical contouring operations. It is

important for the comparison with attempted improved strategies, which are described

later, (with a nominal speed of 500 RPM) to point out that the whole traverse time

required, according to the simulation is 0.225 seconds.

X—Y Position

a,
I)

c’1

—1

—100 0 100 200 300 400 500 500

theta 1 [deg]

Figure 4.1. Corner Tracking With a Simple Servo Controller
Solid: Master Position Spline
Dashed: Reference Position
Dash-dot: Actual Position

700
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4.1.2 State Line Strategies

39

There are many different approaches which may be used to trigger the state line.

The most promising have been simulated.

4.1.2.1 Allowable Static Error

This is the simplest way of using the state line to control error. The state line in

this strategy is triggered whenever the position error of a single axis exceeds a certain set

constant limit. The error criterion is given by equation 1.1.

sign(v)e0, < (4.1)

Figure 4.2 shows the simulation of this method. The path accuracy is very good,

but the system has been slowed down to a third of the original speed; this results from

the fact that only a very small following error is allowed. (The complete simulation

lasted 0.68 seconds.)

theta 1 [deg]

Figure 4.2. Corner Tracking with Static Error Criterion
Solid: Master Position Spline
Dashed: Reference Position
Dash-dot: Actual Position
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4.1.2.2 The Use of a Velocity Spline

It was shown in section 2.2 that the expected following error is proportional to

velocity. The fact that this kind of following error does not lead to a path error but rather

to a phase lag, was used in section 2.4.1 to derive an error criterion that uses a velocity

spline. The simulated response resulting from this approach is presented in Figure 4.3.

It shows that this method yields excellent path accuracy while only slowing down the

mean speed over the complete simulation by 20%, (the velocity spline approach took

0.285 seconds compared to 0.225 seconds for the simple servo.) The actuators were

operating at the reference speed during most of the simulation; at the corners however

the state line actively slowed down the system appreciably, allowing considerably

reduced errors.

-150 —

—100

X—Y Position

a’
I)

150

100•

2000 100

Figure 4.3.
Solid:

300 400 500 600

theta 1 [deg)
Corner Tracking with Velocity Spline

Master Position Spline

700

Dashed: Reference Position
Dash-dot: Actual Position



4.1.3 Velocity Feedforward

It may be advantageous to eliminate the phase lag that is inherent in the velocity

spline, (this is the normal approach taken in the literature). One way of achieving this

goal is to feedforward the expected velocity error. A simulation of this approach is

shown in Figure 4.4. The system is now able to eliminate the phase lag, but corner

tracking performance has deteriorated. When the axis with no discontinuity is slowed

down at the corner, the velocity feedforward is no longer proportional to the actual

velocity (0 at the corner itself.) Thus when the state line is actuated, the velocity

feedforward for the second axis is larger than it should be, and a path error is encountered.

150
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X—Y Position
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4.1.4 Constant Jerk Position Spline

It was shown in section 2.3 that the original position spline has velocity

discontinuities. A new spline with constant jerk during a master sampling period was

derived and tested. Figure 4.5 shows the tracking ability of this new spline. It shows no

great improvement over the existing constant acceleration spline.

X—Y Position

100

50
I I I I I I

I, I I I I I

I I I I I I I

—50 — — — —

—100

I

—100 0 100 200 300 400 500 500 700

thetol [deg]

Figure 4.5. Corner Tracking with Constant Jerk Position Spline
Solid: Master Position Spline
Dashed: Refrrence Position
Dash-dot: Actual Position
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4.1.5 Conclusions from Simulations

Figures 4.6 and 4.7 show enlargements of the simulated system performance with

various strategies (500 RPM and 1000 RPM). It is seen that the best approach involves

using the velocity spline in combination with the original position spline. A static error

criterion is not feasible, because it does not allow the system to speed up to the reference

velocity. The modified position spline does not improve the performance of the system

over the previous simpler approach. Velocity feedforward is not feasible, because it

introduces a path error when the state line is activated.

Table 4.1 shows the path error encountered and the time the different strategies

take to contour the required path at 500 RPM:

Table 4.1. Execution Time and Path Error ofSimulated Strategies

Strategy Time [sec] Path Error [BLU]

Simple Servo 0.2250 260

Static Error Criterion 0.6800 007

Velocity Spline 0.2850 005

Velocity Feedforward 0.2875 045

Constant Jerk Position Spline 0.2795 005
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4.2 Experimental Results

After the velocity spline had been chosen as the most efficient method to trigger

the state line, actuators, amplifiers, and controllers from a retrofitted GMF s-108 robot

were used to validate the simulated results.

4.2.1 Experimental Apparatus

The experimental apparatus consists of a controller, amplifiers, and actuators.

The actuators are equipped with tachometers and encoders. The tachometer signals are

fed back to the amplifiers, and the encoder signals are utilized by the control computer.

Figure 4.8 shows a schematic diagram of the drive system.

Figure 4.9 shows a schematic block diagram of a single axis of the system.
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4.2.1.1 Actuators

The actuators are DC motors which are supplied by Inertial Motors. They are

equipped with tachometers for measuring actuator velocity and encoders for measuring

actual position. Table 4.2 lists the motor parameters:

Table 4.2. Motor Parameters

Name Symbol Value Units

Motor Torque Kt 0.2967 Nm/A

Constant

Motor Inertia Je 0.9636e-3 Nm s’2

Tachometer Ktsa 0.047 V/(rad/sec)

Feedback

Encoder Gain Ke 636.6198 BLU/rad

Maximum Current 1m 10 A

Maximum Speed comax 2000 RPM

4.2.1.2 Amplifiers

The amplifiers were built by Glentek specifically for the Inertial motors. They

are PWM amplifiers with a bandwidth of more than 750 Hz. Table 4.3 shows all

pertinent parameters of the amplifiers:

Table 4.3. Amplflerparameters

Name Symbol Value Units

Amplifier Gain Ka 13.6136 A/V

Maximum Current ‘m 10 A

Bandwidth fcmn1jfir >750 HZ
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4.2.1.3 Controller

The control algorithm was implemented on a Ziatech STD32-bus industrial

computer. The master is a V53 and the slaves are 80c 196 based STD32 boards from

Universal Systems.

The controller parameters are listed in Table 4.4:

Table 4.4. Table ofModel Constants

Name [ Symbol Value Units

D/A Converter Kd 0.0049

Gain

Filter Gain Kp 34.1333

Filter Lead A 0.9

Parameter

Filter Lag B -0.333
Parameter

Master Sampling At 16 m see

Period

Slave Sampling AT 0.5 ms

Period

Position Loop C 1
Damping_Ratio

Position Loop 3 ms
Steady State Ramp

Phase Lag

Position Loop Un 666.67 rad / sec
Natural Frequency

Position Loop h 67 Hz
Bandwidth

The filter parameters were chosen to yield a damping ratio of unity and a steady

state ramp phase lag of 3 msec. Obviously the theoretical bandwidth of 67 Hz cannot be

achieved, unless sinusoidal reference commands with very small amplitudes are utilized.
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The Bode plots of the position loop are plotted in Figure 4.10 and the step

response of the experimental system is shown Figure 4.11.

The slave sampling period was chosen to be 0.5 ms to ensure that the slave board

itself and the communication protocol between the master and the slaves was always

reliable. At the same time this sampling period is small enough to ensure that the

continuous analysis presented in this work remains valid.

The master sampling period was chosen to provide a compromise between the

possible acceleration of the system and the bandwidth of the position spline. According

to equation 2.19, a master sampling period of 16 ms ensures that the system is able to

reverse smoothly at 1000 RPM. Larger sampling periods are not advisable, because they

would decrease the reference bandwidth below an acceptable level. Increasing the

current limit to 20 A or averaging the velocity spline over 4 instead of 2 master samples

would make a reversal at 2000 RPM possible.
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Figure 4.10. Bode Plots ofExperimental System
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4.2.1.4 Data Recording Device

51

It is necessary to have an accurate data recording scheme in order to achieve

reliable test results. In the experiments that follow, a forth program was run on the

master. This program continuously reads the values of position and error from the slaves

and writes them to an array. The program is initiated after all the position increments for

an experiment have been transferred to the slaves. At this point the slaves are slowly

emptying their buffers, and the recording program simply writes current positions and

errors to the array. As soon as the array is filled, the program stops. At a later stage the

array is transferred to a file and imported into Matlab for post processing. This

procedure is extremely simple, but unfortunately it cannot capture the beginning of an

experiment. It also does not provide an accurate measure of time, because data is simply

read as quickly as possible from the slaves. The data recording program and programs to

create the input required for the experiments themselves are listed in Appendix 4.

1
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Figure 4.11. Step Response ofExperimental System
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4.2.2 Circular Interpolation

During machining operations, the contouring of

circles is the second most common geometry, (after

contouring of straight lines.) It is therefore important to

determine the limits of the system in circular interpolation.

In addition, circular interpolation can give some insight into the frequency response of

the system. In this section relationships will be derived which specifically define the

limits that the simple servo system and the modified system with a velocity spline can

follow. It will be shown that a frequency response in the usual sense is difficult to derive

in those cases where the simple servo system would show a deteriorated performance due

to the imposed saturation limit. The state line system, when subjected to the same

conditions, will decrease the reference frequency to acceptable levels, hence avoiding

large errors.

In order to achieve good path accuracy, it is necessary to meet the constraint set

by the position spline. A single axis is required to have a maximum path error of less

than one BLU. (One BLU is the resolution of the encoder. One revolution of the

actuator corresponds to 4000 BLUs.) According to Pottier [21] this requires:

142.6667
(4.2)

V r

This can be rewritten in the form:

142.6667
21rtf,=4j (4.3)

Thus relating the maximum radius of the circle to the maximum allowable

frequency.

The maximum achievable velocity puts a second constraint on the system.

During circular interpolation the actuator position is described by:
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0 = rsin(2irft) (4.4)

The corresponding velocity is:

ci=2irfrcos(2irft) (4.5)

The maximum velocity takes place when the cosine term equals one (or -1). This

leads to the final form of the second constraint:

=2fr (4.6)

The third constraint is current saturation of the amplifier, which limits the

possible acceleration. The acceleration corresponding to the reference signal is:

a = —(2irf)2rsin(2irft) (4.7)

The maximum acceleration occurs when the sine term equals one (or -1). This

leaves a third constraint that correlates the maximum radius to the maximum frequency:

a (4.8)
Je

The maximum velocity constraint is only active at low frequencies and large

radii. The problem then is to determine which of the two other constraints is dominant.

For the system under consideration with a slave sampling time of 0.5 ms and a master

sampling time of 16 ms, Figure 4.13 shows a plot of frequency versus circle radius.

The two constraints meet at rcrit = 5900 BLU and crit = 2.9 Hz. At radii less

than rent the position spline imposes the dominant constraint. At radii higher than the

critical radius, current saturation is dominant.

If one attempts to use reference commands along the position spline constraint for

radii larger than rerit, the state line should pull the actual response down to the limiting

acceleration constraint line. This means that it would decrease the actual output

frequency. The shape of the sine curve would of course change, because the state line

would only try to alter the portions that exceed the limiting acceleration. In the extreme

case the final output would have a constant curvature that changes sign every half cycle.
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02 04 05 081i2182

Rodlue [BLU] x104

Figure 4.13. Maximum Radius vs Maximum Frequency
Dotted Line: Limiting Velocity Constraint
Dashed Line: Limiting Acceleration Constraint
Solid Line.• Position Spline Constraint

This resulting non sinusoidal response complicates a true frequency analysis,

because the error is superimposed on the non sinusoidal carrier signal. The two

responses are difficult to separate, because one cannot easily determine the frequency

components of the carrier signal.

4.2.2.1 Low Feedrate Experiment

In this experiment ten circles were contoured and the third is shown in the Figures

below. A feedrate was chosen that would not saturate the system. The state line is not

activated and the system behaves as a normal servo system. Table 4.5 gives pertinent

parameters:

Table 4.5. Parameters for Low Feedrate Circular Interpolation

Name Value Units

Frequency 3 Hz

Radius 5000 BLU

Feedrate 94248 BLU/sec

Radius vs Fr.qu.ncy
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Figure 4.14 shows the actual path and Figure 4.15 the path error during the

experiment.

Path During Circuor Int.rpolation
6000

4000
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0

—2000

-4000
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—5000 —4000 —3000 —2000 —1000 0

x—axie [BLU]
Figure 4.14. Path ofLow Feedrate Circular Interpolation Experiment
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Figure 4.15. Path Error ofLow Feedrate Circular Interpolation Experiment
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Clearly the system is able to follow the contour well. No state line is needed,

because the saturation limit is not reached. The maximum error is approximately 45

BLUs.

4.2.2.2 High Feedrate Experiment

In this experiment the feedrate was chosen such that current saturation and the

maximum required speed would make it impossible for the simple servo to follow the

path. Table 4.6 shows the parameters for this experiment:

Table 4.6. Parameters for High Feedrate Circular Interpolation

Name Value Units

Frequency 3 Hz

Radius 8000 BLU

Feedrate 150796 BLU/sec

Figure 4.16 shows the actual path and Figure 4.17 the corresponding path error

during the high feedrate experiment using a simple servo with no velocity spline:

9000

Path During Circular Interpolation

—C—

0 2000 4000 6000 8000 10000

x—axis [BLIJ]

Figure 4.16. Path ofSimple Servo System During High Feedrate Experiment

12000
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The system is not able to follow the reference path, because acceleration levels
have driven the amplifiers into saturation, and the required velocity exceeds the
maximum velocity of the actuators..

Figure 4.18 shows the path and Figure 4.19 the path error of a high feedrate

experiment with the state line being activated using the velocity spline error criterion.

Path Error During Circular Interpolation

0

-f

0

Samples

Figure 4.17. Path Error ofSimple Servo System During High Feedrate Experiment
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Figure 4.18. Path ofServo System with Active State Line During High Feedrate
Experiment
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Clearly the velocity spline has slowed down the system at the places of high

acceleration to an acceptable level. The path error is approximately 78 BLUs. This is

good considering that the maximum velocity constraint and the saturation constraint from

Figure 4.13 were exceeded.

4.2.3 Mismatched Gains

An experiment was arranged in which the second axis had half the gain of the

first axis. Two straight line contouring experiments were performed with this system. In

the first experiment no compensation was utilized, and in the second the algorithm

described in section 2.7 was implemented to compensate for the mismatched gains.

Figure 4.20 shows the reference path, and the actual path of both experiments on the

same plot. Figure 4.21 shows the error for both experiments. In the first experiment

L

0 10 20 30 40 50 80 70 80 90

Sample.

Figure 4.19. Path Error ofServo System with Active State Line During High Feedrate
Experiment

100
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with no compensation, a steady state path error of approximately 75 BLU was

encountered. In the second experiment the compensation scheme yielded a steady state

error of approximately 5 BLU. This shows that the scheme described in section 2.7

works well for compensating mismatched gains.

Path with Mimotched Axs

7000 7500 8000

X—dlr,ctlon [BLU]

Figure 4.20. Path with Mismatched Gains
Solid Line: Reference Path
Dashed Line: Simple Servo Path
Dotted Line: Compensated Path

sample.

Figure 4.21. Path Error with Mismatched Gains
Solid Line: Simple Servo Error
Dashed Line: Compensated Error
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4.2.4 Disturbance Torques

The controller strategies described in the previous sections should be able to

compensate for disturbances that might result from loads on the actuator or cutting

torques. It will simply slow down the system until the error criterion imposed on the

system in order to achieve the necessary path accuracy is met.

In order to check the performance of the system with severe disturbances, it was

decided to abruptly stop the second axis during a linear move. This should then make the

first axis stop at the same instant. The experiment was performed at 65 RPM for each

axis respectively. The requested distance was 4000 BLU and the y-axis was stopped at

approximately 2200 BLU.

For the system with no state line acting, the required and the actual path of the

system in response to the described disturbance are shown in Figure 4.22. The path error

of this system is shown in Figure 4.23.

Servo Path with Disturbance Torque
4000

3500 - -
- - - - - - - -

: —

2500
- - - - —

2000 — — — —

1500 a —

1000
—

500 - - - - - - - - —

o
—500 0 500 1000 1500 2000 2500 3000 3500 4000

X—dlrectlDn [BLLJ]
Figure 4.22: Path ofSimple Servo System with a Torque Disturbance

Solid: Reference position
Dashed.• Actual Position
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Figures 4.22 and 4.23 show that when the second axis is stopped, the first axis (of

course) continues to operate normally. This introduces a large path error.

Figure 4.24 shows the path in a similar experiment with the state line active. The

state line stops the system as soon as it detects the large torque applied to the second axis.

(this is done through monitoring error rather than torque itself.) Figure 4.25 shows the

path error in this experiment. It is reduced to 15 BLUs.

This simple experiment would lead one to believe that the system is able to

compensate for disturbance torques, even in extreme cases.

1400
Path Error with Disturbance Torque

0

—200
0 10 20 30 40 50 60 70

Figure 4.23.

80

SampI.s
Path Error ofSimple Servo System with a Torque Disturbance

90 100
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Servo Path with Disturbance Torque

2000 8.

1500 - - -

1000

500 -

—500 0 500 1000 1500

X—directlon [BLU)
Figure 4.24. Path of UBC Servo with Torque Disturbance
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Figure 4.25. Path Error of UBC Servo with Torque Disturbance
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4.2.5 Corner Tracking

In terms of robotic and high speed machining operations, the most important test

criterion is corner tracking ability. This task requires the controller to compensate for

large motor inertia torques that can lead to saturation of the amplifiers. Usually one

attempts to avoid saturation by choosing a sufficiently small speed around a corner. The

UBC controller on the other hand will recognize a large acceleration and slow down the

system automatically, in order to allow the cornering to be achieved at maximum

possible deceleration and acceleration levels.

The experiment was arranged as described in the previous section so that the

actuator of the first axis would travel at constant speed while the second actuator would

reverse at the same speed a number of times during the experiment. The data shown

depict one such cycle in the middle of the experiment.

4.2.5.1 Reversal at 500 RPM

Figure 4.26 shows a plot of the first axis versus the second axis of a simple servo

system. Figure 4.27 shows the result of the same experiment with an active state line.

Clearly there is a vast improvement in path accuracy.

This experiment also allows the validation of the results obtained from the

simulations. Clearly Figures 4.1 and 4.26, and Figures 4.3 and 4.27 show similar

responses.

Figure 4.29 shows a magnified view of the performance of the simple servo in the

first corner. Figure 4.28 shows an enlargement of the first corner of the performance of

the system with an active state line. The simple servo has a path error of approximately

26° while the system with a state line shows less than 2° of path error. The “non

smoothness” of the reference path is a result of the data acquisition program. It



Contouring Path of Simp’e Seivo at 500 RPM

I I I I

• “ I I I I I

• I I / I I

:-\
I I • \ / r/ • I

I I I

Chapter 4 Simulation and Experimental Results 64

calculates the reference path by adding the actual position to the error. Data acquisition

is relatively slow and sometimes the error and the actual position may be a sample out of

phase.

—100 0 100 200 300 400 500 600 700

x..direction Idegi
Figure 4.26. Corner Tracking ofSimple Servo at 500 RPM

Solid: Reference Position
Dashed: Actual Position

Contouring Path of UBC Controller at 500 RPM
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Figure 4.27. Corner Tracking of UBC Controller at 500 RPM
Solid: Reference Position
Dashed: Actual Position
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4.2.5.2 Reversal at 1000 RPM

65

Figure 4.30 shows a plot of the first axis versus the second axis of a simple servo

system. Figure 4.31 shows the response of this same system with an active state line.

Figure 4.32 is a magnified view of the first corner of the simple servo system. Figure

4.33 is an enlargement of the performance during the first corner of the system with an

active state line. The simple servo system now has a path error of approximately 900 and

the system with the active state line has a path error of approximately 7°.
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Contouring Path of UBC Controller at 1000 RPM
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Enlargement of Contouring Path of simple Servo at 1000 RPM
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4.2.5.3 Comparison with Other Proposed Controllers

The results shown in the previous section are fairly good. In order to compare

them with other algorithms described in the literature, it is necessary to select a

performance parameter (since no two researchers use the same experiment.) It was

decided to choose path velocity over path error for this comparison:

= path velocity
(49)

path error

This parameter should stay almost constant for different velocities, but it may

show poorer results for higher speeds. The arrangement should not to the advantage of

the experiments reported here, since these experiments were carried out at very high

speeds.
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Koren has presented computer simulations for the ZPETC arrangement proposed

by Tomizuka as well as his proposed CCC arrangement [16] (both of which have been

described in Chapter 3.) Motor velocity in this case was approximately 25 RPM. It

should be noted that the data presented is derived from simulations only. Simulations

will often give better results than real experiments, because they utilize absolutely

accurate models with matched gains, and no unexpected disturbances.

Table 4.7 shows however, that the system proposed in this thesis performs

favorably when compared to the simulation results of other systems.

Table 4.7. Performance in Corner Tracking

Control Algorithm Single Axis Speed Performance Factor r j
Zero Phase Error Tracking Control 25 RPM 375
Cross Coupled Control 25 RPM 750
UBC Controller 500 RPM 1500

UBC Controller 1000 RPM 850

4.3 Conclusions

In this chapter simulations of different controller strategies have been presented.

It is concluded from these simulations that a velocity spline approach to trigger the state

line is the best compromise between computational effort and contouring performance.

The experimental results are in good agreement with the simulations., validating

the conclusions drawn from the simulations.

Constraints have been derived for circular interpolation. They limit the

maximum amplitude or frequency of the system according to saturation limits

(acceleration), position spline accuracy, and maximum velocity. The experiments carried
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out show that the velocity spline approach can in fact overcome the amplifier saturation

limit.

It has also been shown that the compensation scheme for mismatched axes

described in section 2.7 successfully eliminates path errors in linear moves.

The controller’s ability to compensate for disturbance torques has been proven by

showing that it is able to slow down the complete system almost instantaneously, when

one of the axes is stopped by an external torque. This result suggests that the controller

will be able to compensate for disturbance torques that are not as drastic as the one

chosen in this experiment.

Finally the corner tracking ability of the control algorithm has been extensively

tested. The experimental results compare very well with the simulations obtained in

previous sections. The system can indeed track a sharp corner at high speeds. The

results from the author’s experiments have been compared with simulated results, shown

in the literature. The UBC controllers performed equally well or better than any other

control strategy found.



Chapter 5

Conclusions and Future Developments

Many robotic and contour machining applications require a high degree of

accuracy from the feed drives. This goal cannot be accomplished with conventional servo

controllers. A great deal of research has gone into the development of advanced servo

controllers, however most of these controllers are difficult to implement in practical

machining or robotics environments. The latter point arises because the time constants of

the plants are so short that digital controllers have difficulties performing the required

arithmetic in the allowable time. Finally some of the algorithms rely on an exact model of

the plant which may not be available in a real system.

Computer simulations show that the limiting factor in many cases is not the control

algorithm, but the physical limits of the system. When a system has to follow a path with

a discontinuity or a sharp corner, it is often impossible to outperform a simple servo

controller, because the possible acceleration of the system is limited by the limiting current

of the actuator. This in turn means that the system will become nonlinear at high

accelerations. Such behavior is often neglected in algorithms and simulations of controller

performance.

In this work a new approach to contouring is proposed, based on a special

controller architecture developed at UBC. Most industrial machines today are servo

controlled. If one axis cannot follow its prescribed path due to a current limit or a

disturbance torque, the whole system may have large errors. By using the UBC controller

architecture, it is possible to slow down the complete system in those cases where one axis

cannot follow the prescribed path. This is achieved by using a state line on the front plane

bus, which connects all the slaves. When the state line is high, all slaves operate normally

70



Chapter 5 Conclusions and Future Developments 71

as simple servos. If one of the slaves encounters a constraint, it pulls the state line low.

This tells the other slaves to stop processing new position increments until the slave in

question has resolved the problem and pulled the state line high again.

The system has been simulated and the results from the simulations have been used

to choose an algorithm for the triggering of the state line, which represents a compromise

between computational efficiency and resulting path accuracy.

The system has been analyzed in Chapter 3 of this thesis. A proposal for the

selection of all pertinent parameters is given. This selection process is quite simple, and

usually provides reliable and stable controls.

In a series of experimental tests, the simulated results have been validated. The

results of these tests indicate that this system is able to achieve contouring performances

that are better than other systems found in the literature to this point.

A simple algorithm for compensation of mismatched gains was also developed and

tested in a straight line move on the experimental system. The experiments indicate that

the algorithm is able to compensate for mismatched gains.

Since disturbance torques compromise the contouring performance of real

systems, a test was carried out to demonstrate the robustness to external disturbances of

the controller. During a linear move, one axis was stopped abruptly. In a normal

contouring system other axes would continue to operate normally, and thus a large path

error would be introduced. The UBC controller on the other hand was able to detect the

error and stop the second axis in its path. A minimal path error was detected.

In the future it would be of interest to combine the control algorithm with a path

planning algorithm. A team under the leadership of Dr. Cherchas at UBC has been

working on a path planning program for robotic applications, which utilizes Auto Cad for

solid modeling. It should be possible to utilize their findings in a real time as opposed to

preprocessing stage. A separate master computer could be used to perform the path
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planning, which would then pass the required path directly over the STD-32 bus to the

master controller.

This controller can be used in machining operations. These applications often

require technological input to the controller. Mr. Ramin Ardekani [22], has developed a

control algorithm for the UBC controller that is able to use the state line in order to limit

the cutting force or equivalent chip thickness on a lathe. It would be of interest to fuse

this system with the new contouring control. This should be possible, because both

applications rely on the state line to slow down the system when a constraint is

encountered. This means that the system can either be slowed down by contouring

constraints or machining constraints, depending on which constraint is dominant.

It should be mentioned that the control algorithm, as it stands, is designed for

Cartesian machines. Unfortunately there are a lot of non Cartesian machines used in

industry (especially robots). It is possible to transform the Cartesian contour errors to

joint coordinates using a Jacobean transformation. In this way the controller can be

modified for non Cartesian machines with little more computational effort.
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Appendix 1

Derivation of Following Error in the z-domain

The derivations in Chapter 3 were based on a very simple forward difference

approximation of the discrete filter. It was deemed desirable to prove that this

representation is adequate for the design of the contouring algorithm of the UBC

controller. Thus the following error was derived in the z-domain and compared with the

results obtained in chapter 3.

The simplified continuous part of Figure 3.2 can be transformed into a third order

discrete system, assuming that the D/A converter behaves like a zero order hold. The

closed loop position transfer function can be described by:

O(z) — Kl(1z_1 ÷( A1)z2—A2z)
Al 1

R(z) -l+(B+a1+K1)z1+(Ba1+a2+K2-KA1)z2+Ba2-KA2(

I3

where: a1 = _[i + e a2 = e

K1 KpKdKssKe

Equation A 1.1 can be rewritten into:

O(z)
= Ki

b1z+b2z2+b3z3
(Al.2)

R(z) l+a1C1+i.2 +a3z3

The transfer function for the error is:
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E(z)
= Ki

1 + (a1 — ÷ (a2 —b2)z2 + (a3 —

(A1.3)
R(z) 1 +a1z +a2z2 +a3z3

Applying the final value theorem to a ramp input yields:

e
= Inn

(i
— z’)

vtTz’
Ki

1 + (a1 — + (a2 —b2)z2 + (a3 —b3)z3
(A1.4)

z—*l (1z1) 1+aC1+a2z2+a3z3

Using long division this can be simplified to:

e vEaKl1)(22) (A1.5)
I, 1+a1+a2+a3

This representation yields the same result as the continuous solution, which was

presented in section 3.2. It is much longer and there is no advantage over the continuous

solution.



Appendix 2

Constant Jerk Position Spline

The original position spline that was proposed by Yellowley and Pottier [20] has

velocity discontinuities. During the course of this research a new spline was proposed and

tested. It has constant jerk and a linear change of acceleration over one master sampling

period. This results in a continuous velocity, with acceleration discontinuities.

The displacement over one master sampling interval for a path with constant jerk is

described by:

1 f 1 /

x=xo+vI+!aoi1 j1ui (A2.l)O& 2 k.&) 6 O&)

where: 0t&

The spline assumes that the starting and finishing velocities are the averages of the

two adjacent velocities at those points. This assumption provides two boundary

conditions.

The boundary conditions at t=0 is:

v+v-1
=

2 (A2.2)

1+1 1where : V =

_______

&

The boundary condition at t=At is:

v =
‘‘ +

(A2.3)
2

The instantaneous velocity is defined as:
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t 1 (t2
V = V0 + a0 + (A2.4)

The boundary condition at t=O is met automatically, but the boundary condition at

t=At requires:

v1+v. 1.
V1

=

2 ‘

= v0 + a0 + Jo (A2.5)

Substituting equation A2.2 into equation A2.5 leads to:

v-v i1+1 fri a0 + —J0 (A2.6)
2 2

It is necessary to have the correct mean velocity over a master sampling period.

This requirement provides the second equation in order to solve for the initial acceleration

and jerk:

= v0 +!a0÷!0 (A2.7)

Substituting equation A2.2 for vO leads to:

v-v_ 1
(A2.8)

2 2 6

Solving equations A2.6 and A2.8 yields:

a0 = +3i —2T’ (A2.9)

= 3T’ — 61’ + 3T’ (A2.lO)

This spline ensures continuous displacement and velocity proffles. It is an

improvement over the old spline that assumes a constant acceleration over a master

sampling time interval. Figure A2. 1 shows an example of a velocity profile of the constant

jerk position spline.
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velocity
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Figure A2.1 Constant Jerk Position Spline

The velocity spline of this position spline is described by equation A2.4. In those

cases where the acceleration exceeds the maximum allowable limit imposed on the system

by current saturation, an new average velocity is chosen such that the acceleration stays

within its bounds. Maximum acceleration can either occur at the beginning or at the end

of the sampling period.

case 1: maximum acceleration at t=O:

a0 =a (A2.ll)

Substituting into equation A2.9 and rearranging yields:

a +J +2V
V = 1+1 i-I (A2.12)

This result can be used to calculate the remaining coefficients:

V + T- = 2T’ + + 2a
(A2.13)

2 6

= — 6T + 3 V11 V1 — 2a (A2.14)

case 2: maximum acceleration at t=tt:

a0+j0cç_ (A2.15)

Substituting into equations A2.9 & A2.1O leads to:

=211+T’1—a
(A2.16)
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This can be used to derive the remaining coefficients:

= v + T’ = 2T’+ +411a,
(A2.17)

2 6

a0 = — J’ +3 J’— 21= — — a (A2. 18)

= 3T’ —6V +3I’ = —1’ + 1’ t-2a (A2.19)

Simulations showed that the added complexity of this spline does not significantly

improve the performance of the system. It was decided to keep the original spline with

constant acceleration over one sampling period.



Appendix 3

Listings of Matlab Simulation Source Code

During the course of this thesis, a computer program was generated using Matlab,

that is able to simulate an n-axis servo system with current amplifiers. The program uses a

Runge-Kutta second order algorithm to solve the differential equations of the velocity

loop. It should be mentioned that the program allows for current saturation and limited

bandwidth of the amplifiers.

A3.1 Main Program

Filename: main.m

% *******************************

% Main program to simulate servomotors
*******************************

clear; % Clear variables

% Number of links

n=2; % 2 motors

% Step response data

Kss=2000*2*pi/60/lO*ones(n,1); % Steady state velocity 2000 rpm /
by
tau=5.e3*ones(n,l); % Time constants 5 ms

% Global parameters

global Je Kt Ka Itau Ktsa Ke VCMD Imax Vmax Kd Rt;

Imax=10*ones(n,l); % 12 amp current limit during
simulation
Vmax=10*ones(n,l); % 10 Volts D/A maximum output
DAres=2A 1 l*ones(n, 1); % 12-bit D/A resolution
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Je=(O. 135+1 .5e3)*7.O616e3*ones(n, 1); % Equivalent inertia [N*m*s ‘2/A]
Kt=42*7.06 16e3*ones(n, 1); % Torque constant [N*m/AJ
Ka=(Kssftau).*(Je./Kt); % Amplifier constant [AN]
Itau=.63/750/2/pi*ones(n,1); % Amplifier time constant
Ktsa=Kss .‘ (-1); % Tach generator constant
Ke=4*1000/2/pi*ones(n,1); % Encoder gain
Kd=Vmax./DAres; % D/A gain
C2D=Ke.’(1)*36O/2/pi; % Conversion counts to degrees

psi=3e3*ones(n,1); % following error of 3 ms
zeta=.707*ones(n, 1); % damping ratio of one

% Sampling times

Ts=O.5e-3; % Slave sampling interval
Tms=32*Ts; % Master sampling

% Filter parameters in s-domain

a=Ktsa.*Ka.*Kt./Je; % filter lead cancels plant lag
K=4*Je./Kd./Ka./Kt./Ke.*(zeta./psi).A2; % filter gain
b=K.*Kd.*Ka.*Kt.*Ke./Je.*psi; % filter lag

% Filter parameters in z-domain

Kp=K; % filter gain
A=ones(n, 1)Ts*a; % filter lead
B=Ts*bones(n,1); % filter lag

% Error limits

global Kve del amax;

Kve=psi; % allowable velocity error
del=2*ones(n,1); % 5 BLU allowablwe static error
amax=Ivmax.*Kt.*KeJJe; % Acceleration limit

% Master and slave sample generation

sample % Calculate master samples

% subsample using constant acceleration
subsample; % Calculate subsamples
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% subsample using constant jerk
% isubsample; % Calculate subsamples

% Simulation

position; % Simulate motors

% Plot results

plo; % Plot results

A3.2 Subprogram to Create Master Samples

Filename: sample.m

% *******************

% Create Master Samples
% *******************

% clear master samples

clear MR;

% Master samples for 500 RPM reversal

% MR=533*[[2:l:6;2:l:6],[7:l:12;5:_l:0],[13:l:16;l:l:4]];

% Master samples for 1000 RPM reversal

MR=1067*[[8:l:13;8:l:13],[14:l:26;12:_1:0J,[27:1:33;l:1:7}J;

% Master samples for sin wave

% MR= 1000*[sin(O:piJ8:2*pi);cos(0:piJ8:2*pi)];

A3.3 Subprogram to Create Slave Samples

There are two versions of this file. the first one creates a position spline with
linear acceleration, and the second one creates a position spline with linear jerk.
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A3.3.1 Subsample with Linear Acceleration Position Spline

Filename: subsample.m

% ****************************

% Subsample with linear acceleration
% ****************************

clear R;
clear Ve;

[k,qJ =size(MR);
m=Tms/Ts;
k=2;

MR=[MR( 1 :n, l)*ones( 1,k/2),MR( 1 :n,:),MR( 1 :n,q)*ones( 1,k/2+ 1)];
V=(MR( 1 :n,2:q+k+ 1)-MR( 1 :n, 1 :q+k))/Tms;

R(1 :n, 1)=MR( 1 :n, 1);
Ve=sum(V( 1 :n, 1 :k)’)Yk

V1=Ve;
for i=k12+ 1:q+kJ2-1,

VO=Vl;
V1=sum(V(1:n,i-k/2+ 1:i+k/2)’)’fk;
a=(V 1-VO)/Tms;

% Interpolate

for t=1:m,
Ve( 1 :n,(i-k12- 1)*m+t+ 1)=VO+t/m*a*Tms;
R(1 :n,(ik/21)*m+t+ 1)=MR( 1 :n,i)+(MR( 1 :n,i+ 1)-MR( 1 :n,i))*t/m+(tA2_

m*t)*(MR( 1 :n,i+2)-MR( 1 :n,i+ 1)-MR( 1 :n,i)+MR( 1 :n,i- 1))/(4*m’2);

end;
end;

MR=MR(:,k/2+ 1 :q+kJ2);
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A3.3.2 Subsample with Linear Jerk Position Spline

Filename: lsubsample.m

% ***********************************

% subsample in with linear jerk position spline
% ***********************************

clear R;
clear Ve;

Amax=amax*TmsA2;

[k,q] =size(MR);
m=Tmslrs;

MR=[MR( 1:n, 1),MR( 1 :n,:),MR(1 :n,q),MR( 1:n,q)];

V=MR( 1 :n,2:q+3)-MR(1 :n,1 :q+2)

R(1:n,1)=MR(1:n, 1);
for i=2:q+ 1,

vO=(V( 1:n,i)+V( 1 :n,i-1))/2;
aO=-V(1:n,i+ 1)+3*V(1:n,i)_2*V(1:n,i1);
jO=3*V( 1 :n,i+ 1)_6*V( 1 :n,i)+ 3*V( 1 :n,i-1);

for j=1:n,
if abs(aO(j,1))<Amax(j,1),

ve(j,1)=vO(j,1);
ae(j,1)=aO(j,1);
je(j,1)=jO(j,1);

else,
ve(j, 1)= 1/6*(2*V(j,i+ l)+7*V(ji_1)+2*Amax(j, 1)*sign(aO(j, 1)));
ae(j,1)=Amax(j,1)*sign(aO(j, 1));
je(j, 1)=3*V(j,i’ 1)_6*V(j,i)+3*V(j,i_ 1)_2*ae(j, 1);

end;
if abs(aO(j,1)+jO(j,1))>Amax(j,1),

ve(j, 1)= 1/6*(2*V(j,i+ 1)+4*V(j,i_ 1)-
Amax(j, 1)*sign(aO(j, 1)+jO(j, 1)));

ae(j, 1)=V(j,i+ 1)-V(j,i- 1)-Amax(j, 1)*sign(aO(j, 1)+jO(j, 1));
je(j, 1)=-V(j,i+ 1)+V(j,i1)+2*Amax(j,1)*sign(aO(j,1));

end;
end;

for t= 1 :m,
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R(1 :n,(i2)*m+t+ 1)=MR( 1 :n,i)+vO*t/m+ 1/2*aO*(tlm)’2+ 1/6*jO* (tim)’ 3;
Ve(1:n,(i2)*m+t+ 1)=(ve+ae*(tlm)+ 1/2*je*(t/m)A2)/Tms;

Ae(1 :n,(i2)*m+t+ 1)=(ae+je*(tlm))/Tms;
end;

end;

MR=MR(:,2:q+ 1);

A3.3 Subprogram to Simulates the Position Loop

Filename: position.m

% ***********************************

% Position loop subprogram called from main
***********************************

% Clear variables

clear theta;
clear time;
clear omega;
clear error;
clear filt;
clear Vcmd;
clear Rp;
clear Vp;
clearRi;

% Order of predictor
p0=1;
tim=po+ 1;

% Initial conditions

[k,l]=size(R);
time=Ts*[po:O];
theta=[zeros(n,n-1),R(:, 1)] *ones(n,t);
omega=zeros(n,tim);
I=zeros(n,tim);
error=zeros(n,tim);
filt=zeros(n,tim);
Vcmd=zeros(n,tim);
Rp=[theta(:, 1:po—l),R,R(:,1),R(:,l),R(:,l),R(:,l),R(:,l),R(:,l),R(:,l),R(:,l),R(:,1)J;
Vp=[zeros(k,po— 1),Ve,Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l),Ve(:,l)];
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[y,z] =size(Vp);
Va=sign(Vp);
for i=1:n,

for j=2:z,
if Va(ij) == 0,

Va(i,j)=Va(i,j-1);
end;

end;
end;

R 1(:,1)=Rp(:,1);
pf= 16;

% Start simulation

for step=po+ l:l+po-l,

sflag=1;

while ((errflag(Rp,R1,Vp,Va,step,theta,tim,n) > 0.5) (sflag > 0.5)),

sflag=0;

R 1(:,tim)=Rp(:,step);

if ((tim-po- 1)/16-floor((tim-po- 1)116)) < le-5,
plot(time,C2D( 1)*R 1 ( 1,:),time,C2D(1)*theta(1 ,:),time,C2D(2)*R 1
(2,:),time,C2D(2)*theta(2,:)),
title(’Response, Motor 1 & 2’),
xlabel(’time [see] ‘),ylabel(’angle [deg]’),grid;

end;

error(:,tim)=R 1 (:,tim)—theta(:,tim);

Velocity feedforward
% error=error+Kve.*Vp(:,step);

filt(:,tim)=Kp.*(error(:,tim)_A.*error(:,tim_1))_B.*filt(:,tim_ 1);
VCMD=filt(:,tim);

for i=1:n,
if abs(VCMD(i))>DAres(i),

VCMD(i)=sign(VCMD(i))*DAres(i);
end;

end;
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VCMD=VCMD.*Kd;

Vcmd(:,tim)=VCMD;

% solve differential equation
clear t;
clear y;
[t,y] =runge2((tim-po- 1)*Ts,Ts/3,3,[omega(:,tim);theta(:,tim);I(:,tim)J,n);
tim=tim+ 1;
[lcq] =size(t);
k=k*q;
time(tim)=t(k);
omega(:,tim)=y(k, 1 :n)’;
theta(:,tim)=y(k,n+ 1 :n*2y;
I(:,tim)=y(k,2*n÷ 1:3*n)’;

end;
R1(:,tim)=Rp(:,step+ 1);

end;

% calculate current
for i=1:n,

for j=1:tim,
if abs(I(ij))>linax(i),

Is(ij)=sign(I(ij))*I.max(i);
else

Is(ij)=I(ij);
end;

end;
end;

A3.3.1 Function to perform Runge Kutta Second Order Integration

Filename: runge2.m

% ******************************

% Runge Kutta Second Order Algorithm
% ******************************

function [time,y 1J=runge2(tO,h,tn,yO,n)

tim= 1;
yl(tim,:)=yO’;
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time(tim)=tO;
for t=1:tn,

ki =h*rdyn(yl(tim,:)t,n);
k2=h*rdyn((y 1 (tim, :)+kl)’,n);
tim=tim+ 1;
time(tim, 1)=tO+h*t;
yl(tim,:)=yl(tim-1,:)+(kl+k2)/2;

end;

A3.3.1.1 Function Containing Differential Equations of Velocity Loop

Filename: rdyn.m

% ******************************

% Velocity Loop Differential Equations
% ******************************

function yprime=rdyn(y,n)

% current limit

% I=y(2*n+1:3*n);
I=(VCMDKtsa.*y( 1 :n)).*Ka;

for i=1:n,
if abs(I(i))>lmax(i),

I(i)=sign(I(i))*Jnaax(i);
end;

end;

% Disturbance torque
Td=O*ones(n, 1);

% dw/dt
yprime(1 :n)=(Kt.*ITd)JJe;

% dthetaJdt
yprime(n+ 1 :2*n)=y( 1 :n).*Ke;

% Bandwidth of Amplifier

% dL/dt
yprime(2*n+ 1 :3*n)((VCMDKtsa.*y(1 :n)).*Ka...y(2*n+ 1:3*n))Jltau;
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A3.3.2 Function Containing Error Checking for State Line

Filename: errflag.m

********************

% State line Error Checking
% ********************

function f=errflag(Rp,R 1,Vp,Va,step,theta,tim,n);

if tim> 3,
error=(Rp(:,step)-theta(:,tim))+((Rp(:,step)-theta(:,tim))-(R1(:,tim-1)-theta(:,tim-

else,
error=(Rp(:,step)-theta(:,tim));

end;

% velocity feedforward

% error=error+Kve.*Vp(:,step);

f=0;
if tim> 2,

for i=l:n,
if (sign(Va(i,step))*error(i))>

(sign(Va(i,step))*Kve(i)*Vp(i,step)+del(i)),
f= 1;

end;
end;

end

A3.4 Subprogram to Plot Results

Filename: plot.m

*********

% plot results
*********

!rm metatmp.met

[k,lJ=size(time);
k=k*l;
times( 1)=time( 1);
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R ls(:,1)=R1(:, 1);

for i=2:k,
times((i- 1)*2:(i_ 1)*2+ 1)=[time(i),time(i)];
Rls(:,(i_1)*2:(i_1)*2+ 1)=[R1(:,i—1),R1(:,i)];

end;

% plot Theta 1 and Theta2 vs Time

plot(times,C2D(1)*R 1 s( 1,:),time,C2D( 1)*theta( 1,:),times,C2D(2)*R ls(2, :),time,C2D(2)
*theta(2,:)),
title(’Response, Motor 1 & 2’),xlabel(’time [sec]’),ylabel(’angle [deg]’),grid;
gtext(’Ref 1 -->‘),gtext(’Ref 2 -->‘),gtext(’<-- Theta 1’),gtext(’<-- Theta 2’);
meta metatmp;

% plot Theta 1 vs Theta2

plot(C2D( 1)*MR( 1,:),C2D(2)*MR(2, :),C2D( 1)*R 1 ( 1,:),C2D(2)*R 1 (2,:),C2D( 1)*theta(1
:),C2D(2)*theta(2,:)),

title(’X-Y Position’),xlabel(’thetal [deg]’),ylabel(’theta2 [deg]’),grid;
gtext(’Master Ref ->‘),gtext(’Slave Ref ->‘),gtext(’<- Position’);
meta metatmp;

% plot closeup of theta 1 vs theta 2

% 500RPM
% axis([260,340,265,300]);
axis([260,3 15,265,300]);

% 1000RPM
% axis([1200,1500,1200,1300]);
% axis([1200,1300,1200,1300]);

plot(C2D( 1)*MR( 1 ,:),C2D(2)*MR(2,:),C2D(1)*R1( 1,:),C2D(2)*R 1(2,:),C2D( 1)*theta( 1
:),C2D(2)*theta(2,:)),

title(’X-Y Position’),xlabel(’theta1 [deg] ‘),ylabel(’theta2 [deg]’),grid;
meta metatmp;

axis;

% plot filter output vs time

plot(time( 1 :k- 1),filt( 1,:),time( 1 :k- 1),filt(2,:)),title(’Filter output’),
xlabel(’time’),ylabel(’Magnitude’);
pause;
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% Plot command voltage vs time

plot(time( 1 :k- 1),Vcmd(1 ,:),time( 1:k- 1),Vcmd(2,:)),title(’Command Voltage’);
xlabel(’time’),ylabel(’Volts’);
pause;

% plot current vs time

plot(time( 1 :k),I( 1 ,:),time( 1 :k),I(2, :)),title(’Current’);
xlabel(’time’),ylabel(’Amperes’);
pause;

A3.5 Program to Calculate Filter Parameters

Filename: param.m

**********************

% Determine filter parameters

clear;

% number of links

n=2; % 2 motors

% Step response data

Kss=2000*2*piJ6O/10*ones(n,1); % Steady state velocity 2000 rpm / 10 V
tau=5e3*ones(n,1); % Time constants 5 ms

% Position loop parameters

Je=(0. 135+1 .5e3)*7.06 16e3*ones(n, 1); % Equivalent inertia [N*m*s ‘2/A]
Kt=42*7.0616e3*ones(n,1); % Torque constant [N*m/A]
Ka=(Kss./tau).*(Je./Kt); % Amplifier constant [AN] (from step
response)
Ktsa=Kss.” (-1); % Tach generator constant
Ke=4* 1000/2/pi*ones(n, 1); % Encoder gain
Kd=VmaxJDAres; % D/A gain
C2D=Ke.’(1)*360/2/pi; % conversion counts to degrees

% Sampling times
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Ts=.5e-3; % Slave sampling interval
N=5;
Tms=2’N*Ts; % Master sampling

%Filter design parameters

zeta=.707*ones(n,1); % damping ratio of position loop
fw=6; % 6Ts (3 ms) following error

% Filter parameters

a=Ka.*Kt.*Ktsa./Je; % filter cancels dynamics

% b for specified following error and zeta

K= (2*zeta./a.IKss/(Ts*fw)). ‘(2) .*Ka.*Kt.JJeJKd./Ke;
b=2*zeta.*(K.*Ke.*Kd.*Ka.*KtJJe).A (0.5);

% forward differences

A=ones(n, 1)_a*Ts;
B=b*Tsones(n, 1);
Kp=K;

% Tustins approximation

% A=(2*ones(n, 1)a*Ts)./(2*ones(n,1)+a*Ts);
% B=(b*Ts2*ones(n, 1)).J(b*Ts+2*ones(n, 1));
% KpK.*(2*ones(n, 1)+a*Ts)./(2*ones(n, 1)+b*Ts);

num=Kp(1)*Kd(1)*Kss(1)*Ke(1)*[O,0, 1,a(1)];
den=num+[tau(1),b( l)*tau( 1)+ 1,b( 1),Oj;

% bode plot of the position loop
w = logspace(0,3);
[mag,phase] = bode(num,den,w);
dc
subplot(2 11)
semilogx(w/2/pi,20*log(mag)flog( 10)), grid,title(’Magnitude response’),..
xlabel(’Frequency (Hz)’), ylabel(’Gain dB’), subplot(2 12),..
semilogx(w/2/pi,phase), grid,title(’Phase response’), xlabel(’Frequency (Hz)’),..
ylabel(’Phase deg’),pause;
!del bode.met;
meta bode;
subplot(1 11);



Appendix 3 Listings ofMatlab Simulation Source Code 94

dc;

% Plot step response

t=[O:.OO1 :.03];
y=step(num,den,t);
plot(t,y),title(Step Response’),xlabel(’time [sec]’),ylabel(’Magnitude),
grid;
!del step.met
meta step;
pause;

% print filter parameters for forth file

G4=ceil(log(Kp)/log(2));
G1=Kp./2.O.G4
G2=G1.*A
G3=B
G4

% print velocity error constant

Kve=fw*TsjTms
Kve_recommendet= 1 .25*Kve

% print maximum acceleration

amax=Imax.*Kt.*Ke./Je

% print second order system characteristics

omega=(Kp.*Kd.*Ka.*Kt.*Ke.IJe).’(O.5)
zeta=O.5*b./omega
fe=b./a./Kd.fKss./Ke./Kp



Appendix 4

Listings of Forth Code for Controller Experiments

The forth code listed in this appendix was used to calibrate the velocity loop and

perform contouring experiments.

A4.1 Program to Calibrate Amplifiers

\ AMPLIFIER CALIBRATION
HEX

\ PUT VOLTAGE ONTO DAC (FFF=1OV, 800=OV, 0=-by)
DACX DUP OFF AND SWAP -8 SHIFT 1FD1 BWX IFDO BWX;
DACY DUP OFF AND SWAP -8 SHIFT 1FD1 BWY 1FDO BWY;

\ STEP INPUT 1.875V=375RPM 980 680
PXY 888 DACX 880 DACY;
ZXY800DACX800DACY;
NXY 780 DACX 780 DACY;

DECIMAL

\ READ AND PRINT SLAVE VARIABLES

\ X-DIRECTION
PEX 102 WRX.; \ POSITION ERROR
PAX 144 LRX D.; \ ACTUAL POSITION
RLX 156 WRX.; \ VELOCITY SPLINE LIMIT

\ Y-DIORECTION
PEY 102 WRY.; \ POSITION ERROR
PAY 144 LRY D.; \ ACTUAL POSITION
RLY 156 WRY.; \ VELOCITY SPLINE LIMIT

95
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A4.2 Data Array Routines

\ STORE CURRENT POSITION INTO AN ARRAY

VARIABLE POSSIZE \ SIZE OF ARRAY
12000 POSSIZE!
CREATE POS POSSIZE @ ALLOT \ ALLOCATE ARRAY
:STO

144 LRX 2 PICK 2! 4+ \ STORE X & Y POSITION
144LRY2PICK2!4+
102 WRX 1 PICK ! 2 + \ STORE POSITION ERROR
1O2WRY1PICK !2+

\ 156 WRX 1 PICK ! 2+ \ STORE R_LIMIT
\ 156 WRY 1PICK !2+;
-->

\ FILL UP THE DATA ARRAY

FILLPOS \ FILL THE ARRAY
Pos
POSSIZE @ 0 DO

STO
12+LOOP;

-->

\ WRITE POSITION ARRAY TO THE SCREEN

PP
POS POSSIZE @ 0 DO

DUP 2@ D. 4+ \ X-POSITION
DUP 2@ D. 4+ \ Y-POSITION
DUP @ .2+ \X-ERROR
DUP @ .2+ \Y-ERROR

\ DUP @ . 2 + \ X-R_LIMIT
\ DUP @ . 2 + \ Y-R_L1MIT

CR
12+LOOP;

-->
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\ WRITE POSITION ARRAY TO A FILE
:WP

SHELL” ATTRIB -R TPOS” \ DELETE OLD FILE
SHELL” DEL TPOS”
>FILE TPOS \ OPEN FILE TPOS
PP \ TRANSFER DATA
CONSOLE; \ CLOSE FILE

\ COPY POSITION FILE TO A:SERVO.MAT
P2S

wP
SHELL” COPY TPOS A:SERVO.MAT”;

\ COPY POSITION FILE TO A:VELO.MAT
P2V

wP
SHELL” COPY TPOS A:VELO.MAT”;

A4.3 Corner Tracking Using XYL

\ TESTRUN AXIS REVERSAL USING XYL
DECIMAL

RUPERT 6075. X 6075. Y XYL;

WORRY 6075. X -6075. Y XYL;

DONE 1061. VEL
100 DO RUPERT WORRY LOOP
FILLPOS;
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A4.4 Corner Tracking Using Lower Level Commands

\ TESTRUN REVERSAL USING STUFFX/STUUFY

VARIABLE RVEL
VARIABLE MS

RM1 DECIMAL
5N!
CALC_T2AN

500.E0
4.0E3 F* 6.OE1 Fl FDUP
T2AN F@ F* F>S RVEL!
2.OE6F/T2ANF@ Fl
6.OEO F* F>S DUP MS!
S>F20.OEOF*K2F!

-->

\ 2A3 SLAVE SAMPLES
\ CALCULATE MASTER SAMPLING TIME
\ SET A VELOCiTY OF 500 RPM
\ CORESPONDING BLU/SEC
\ VEL=BLU/SEC*T2’N=BLUfMAST.SAMP.

\ MS=MASTER SAMPLES IN 1 DIREC.
\ K2=# OF MASTER SAMPLES

RMOVE
RM1 CALC_CVS STUFF_INrrX STUFF_INITY SEND_HEADER
100DO

MS @ ODO
RVEL @ STUFFX RVEL @ STUFFY

LOOP
MS @ ODO

RVEL @ STUFFX RVEL @ NEGATE STUFFY
LOOP

LOOP
0 STUFFX 0 STUFFY
DUMP_SMALLX DUMP_SMALLY
FILLPOS;

-->
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A4.5 Frequency Response Experiment

\ FREQUNCY REPOMSE

\ SET UP FREQUENCY RESPOSE EXPEERIMENT

FVARIABLE MAO \ DESIRED MAGNITUDE
FVARIABLE FREQ \ DESIRED FREQUENCY
VARIABLE TJME \ LENGTH OF EXPERIMENT IN MASTER SAMPLES

\ WRITE MASTER SAMPLES TO TABLE

:FRI
5 N! CALC_T2’N \ DEFINE MASTER SAMPL
4.OEO FREQ F! 3.0E3 MAG F! \ DEFINE MAO & FRE
6.283185E0 FREQ F@ F* T2AN F@ F* \ OMEGA * DELTA TIME
OEO \ OMEGAO
5E0 T2N F@ F! F>S TTIME! \ EXP. LASTS 5 SEC.
POSTr1ME@4*+POSDO

FDUP FSIN MAG F@ F* F>S I! \ MAG*SIN(OMEGAO*TIME)
FDUP FCOS MAG F@ F* F>S 12+!
I FPICK F+ \ OMEGAO+OMEGA*DEL(TIM)

4 +LOOP FDROP FDROP;

\ CONVERT SAMPLES TO INCREMENTS

VARIABLE OX
VARIABLE OY

FR2
POS@ OX!POS2+ @OY!
POSTnME@4*+POSDO

I@DUPOX@-I!OX!
12+ @ DUPOY @ -12+! OY!

4 +LOOP;
-->



Appendix 4 Listings ofForth Codefor Controller Experiments 100

\ SHUFFLE TABLE TO CONTROLLER BOARDS

FR3
TTIME S>F K2 F! \# OF MASTER SAMPLES
CALC_CVS \ PREPARE TO SEND
STUFF_INITX STUFF_INITY \ COMMANDS TO BOARDS
SEND_HEADER
POS \BEGINNING OF TABLE
TIME@ 4*OD()

DUP @ STUFFX 2 + \ STUFF POSITION
DUP@STUFFY2+

4 +LOOI) DROP
0 STUFFX 0 STUFFY \ FLUSH PIPE
DUMPSMALLX DUMP_SMALLY;

\ FILL UP TABLE WITH RESULTS

FR4
POS \ BEGINNING OF TABLE
POSSIZE @ 0 DO

144 LRX 2 PICK 2! 4 + \ STORE POSITION
144 LRY2PICK 2! 4+
102 WRX1PICK !2+ \STOREERROR
102 WRY 1PICK !2+
56WRX1PICK !2+ \STORESTEP

14 +LOOP DROP;

\ TRANSFER RESULTS FROM TABLES TO SCREEN

PRES
POS \BEGINNING OF TABLE
POSSIZE @ 0 DO

DUP 2@ D. 4+ DUP 2@ D. 4+ \TRANSFER POSiTION
DUP @ . 2 + DUP @ . 2 + \ TRANSFER ERROR
DUP @ . 2 + \ TRANSFER STEP
CR

14+LOOP;
-->
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\ TRANSFER RESULTS FROM TABLES TO FILE

FR FRi FR2 FR3 FR4
SHELL” DEL FREQRESP”
>FILE FREQRESP \ OPEN NEW FILE
PRES \ WRiTE DATA
CONSOLE \ CLOSE FILE
SHELL” COPY FREQRESP B:FREQRESP.MAT”;




