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Abstract

Component mode synthesis (CMS) is a condensation method for vibration analysis which

preserves the low frequency vibrational characteristics of a structure. In this method, the

structure is treated as an assemblage of components whose displacements are described

in terms of component modes. These modes may be some combination of static response,

free vibration, or rigid body displacements of a component. In this thesis, the compo-

nent mode sets used by other researchers are reviewed with a view to establishing which

is most suitable for large-order finite element models. Two component mode sets are

identified as ideally satisfying the basic requirements for inter-component compatibility,

high convergence rate, linear independence and completeness. Fixed-interface and free-

interface CMS formulations in the form of matrix eigenvalue equations are derived from

these mode sets and describe approximately the low-frequency free vibration modes of

the structure. They are improvements over previous formulations in that they can be sys-

tematically and efficiently applied to linear, undamped, discrete systems of an arbitrarily

complex geometry. The free-interface formulation is derived both with and without an

approximation of the high-frequency component inertia, and this results in two different

structural mass matrices. Two new developments of the free-interface formulation are

presented: (1) a method for calculating upper and lower bounds to the exact natural

frequencies is given, providing a measure of the absolute accuracy of the structural fre-

quencies; (2) the convergence and interlacing properties of the free-interface method are

explored through the analysis of a two-component vibrating rod.

Both the fixed- and free-interface methods have been implemented in the general-

purpose finite element program VAST. Three finite element models are analyzed and a
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comprehensive comparison of the frequency and mode shape results obtained with CMS,

direct finite element analysis, and Guyan reduction is presented. The complexity of the

test cases is sufficient to infer general performance characteristics of the CMS methods.

It is shown that with CMS, accuracy equal to a direct analysis is readily obtained in the

low frequency modes, and that by using a frequency cutoff criterion to select dynamic

modes, the natural frequencies converge in a fairly uniform manner. It is also shown that

in terms of computational cost and order-reduction, the relative advantages of using CMS

increase with the size of the model and with the stringency of the accuracy requirements.

The free-interface method with second-order mass approximation gives the best overall

performance because of its high convergence rate and superior condensation in complex

two and three dimensional models.

Application of CMS to structural dynamic modification and inverse modification is

also studied. These techniques use a baseline modal analysis as a reference point for the

modified system dynamics. A generalized CMS formulation for the baseline system is

used to derive a linear-equivalent perturbation equation from which modified modes can

be efficiently determined without recalculating the component modes. Also, two new

methods are presented for predicting design changes which satisfy prescribed frequency

constraints. An iterative scheme is proposed in which the energy-balance perturbation

equations are solved with a full account of the nonlinear coupling terms; and a Newton's

method algorithm using inverse iteration eigenvector updating is applied to the linear-

equivalent equation. Numerical results using a finite element model are presented which

show that for large structural changes, the two new methods give similar or better results

than an established method.
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Chapter 1

Background and Objectives

A basic problem in structural dynamic analysis is the evaluation of natural modes of

vibration. Accurate knowledge of at least some of the modes is of considerable importance

for determining the dynamic response of a structure to applied loads. Mathematical

idealization generally results in a system of linear equations which, under zero loading,

describe the free vibration state of a structure. The efficient formulation and solution of

these equations for complex structural systems has been studied extensively and remains

a primary concern of analytical modal analysis.

Linear vibrations of a distributed, elastic, undamped structure are described by a

partial differential eigenvalue equation of the form,

ZW(x) = \M(x)W(x) (1.1)

where .0 is a linear self-adjoint, partial differential operator of order 2/, M(x) is the mass

density of the structure, A is a parameter, x is a vector of spatial variables and W(x) the

displacement function for the structure [1). The displacement is further constrained by

the following boundary conditions which are defined at all points on the boundary:

13;W(x) = 0 i = 1,2, ... ,1 (1.2)

where Bi is a. linear partial differential operator of maximum order 2/ — 1. Solution of

the eigenvalue problem consists of determining the eigenvalue, eigenfunction pairs AT.,

Wr which represent the natural modes of the structure. While all elastic, undamped
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Chapter 1. Background and Objectives^ 2

structures can be described with equations (1.1) and (1.2), closed form solutions are rare

and the analyst is left to seek an approximate solution.

The most popular and well known approximate methods for solving these equations

are the finite element and the Rayleigh-Ritz method. Both seek to replace the continu-

ous variable W(x) with a collection of discrete variables and to replace the differential

eigenvalue problem with an algebraic eigenvalue problem. Algebraic eigenvalue problems

can in general be solved, whereas differential eigenvalue problems cannot.

In the finite element method a structure is divided into a number of sub-domains or

finite elements. The displacement of each element is described by a linear combination

of element shape functions, each of which is in turn defined by a unit displacement of

an element coordinate. Thus, the continuous displacement function of the structure is

replaced by a vector describing the displacement of the element nodes. The advantages

of the method are that a structure of arbitrary structural geometrical complexity can

be effectively modelled with a mesh of relatively simple elements and that if the correct

elements are used, the results can be made to converge to exact solutions as the element

mesh is refined. One of the disadvantages, however, is that accurate results for complex

structures require a large number of nodal coordinates. The subsequent analysis may

then require lengthy computations.

The Rayleigh-Ritz method, by contrast, uses a set of approximating shape functions

defined over the whole domain of the structure. A solution in the Rayleigh-Ritz sense

corresponds to a configuration that is a stationary point in the Rayleigh quotient,

R(W) = A = [W, 14/^(1.3)

where [W, W} is the energy inner product defined by I W.CWdx and D denotes the

spatial domain occupied by the structure. The continuous variable W in R is replaced

by a number of discrete, generalized coordinates representing the relative participation

h MW2 dx



Chapter 1. Background and Objectives^ 3

of the approximating functions. This substitution transforms (1.3) into an algebraic

eigenvalue problem. The advantage of the Rayleigh-Ritz method is that accurate results

can be found with fewer discrete variables than is required with the finite element method.

However, for structures of great geometrical complexity, the task of finding suitable

approximating functions is too difficult and the method is discarded in favor of finite

elements.

A third method for modal analysis of a linear structure is component mode synthesis

which combines features from the Rayleigh-Ritz method and finite elements. Structures

may, in general, be treated as an assemblage of components or substructures; indeed, in

some cases it may be both natural and convenient to describe a structure in this way.

Moreover, approximating functions are more easily derived for a structural component

than for the entire structure. For a component, such approximating functions might

include static deflections or rigid and elastic mode shapes; they might be measured

experimentally or they might be calculated from a detailed finite element model of the

component. The object is to replace the detailed model of a structural component with

a simplified one based on a set of shape functions that provide a good approximation in

a particular frequency range.

In the Rayleigh-Ritz method, approximating functions must be defined over the entire

domain of the structure. These global approximating functions can be formed implicitly

from the component shape functions by maintaining displacement compatibility at the

component interfaces [2]. This same process is apparent in the finite element method

when compatible element types are used. Indeed, if a model is substructured so that

each component corresponds to a single finite element of the original model, a CMS

analysis will be same as a finite element analysis. On the other hand if no substructuring

is performed, i.e., the entire model is treated as a single substructure, the CMS method

is no different than the Rayleigh-Ritz method. The proper course for using the CMS
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method lies between these two extremes. The number of structural components is usually

considerably less than the number of finite elements required in the modelling, while

at the same time, each component represents a much simpler model than the entire

structure. Having established a set of component shape functions for each component,

the equations of motion of the structure are derived by enforcing displacement and slope

compatibility at the inter-component boundaries. Sometimes it is convenient to satisfy

force and moment equilibrium here as well. What results is a global stiffness and mass

matrix in terms of generalized coordinates, which are themselves related to the component

shape functions.

One of the important advantages of component mode synthesis is that equations of

motion of the structure are of smaller order than, for instance, those that are obtained

with the finite element method. For large-order models, reduction in the number of

degrees of freedom means computational savings, but with a possible loss of accuracy.

However, the accuracy of the low-frequency structural modes can be preserved if compo-

nent modes are chosen so that the static and low frequency motion of the components

is well represented. Any inaccuracies which arise from the reduction are confined to the

high-frequency modes.

1.1 Thesis Objectives and Overview

This thesis provides an in-depth assessment of the effectiveness of component mode syn-

thesis in finite element applications. The specific objectives of this thesis are the following:

1. To give a comprehensive review of existing component mode synthesis methods and

to identify those suitable for application to general, large-order structures;

2. To present general formulations of the free vibration structural equations that can

be applied to complex discrete structural models, and directly implemented in a
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general-purpose finite element program;

3. To develop the general formulations further in order to gain a better understanding

of convergence properties and to investigate the effects of approximations at the

component level;

4. To present comprehensive frequency and mode shape results for realistic finite ele-

ment models which illustrate the key performance characteristics of the CMS meth-

ods in large-order problems;

5. To develop efficient methods for structural dynamic modification analysis which,

through the use of CMS formulations, exploit order-reduction in the free vibration

equations.

To simplify the analysis energy dissipation is not considered, although the analysis is

also applicable to damped systems that possess normal modes.

In Chapter 2, a detailed survey of the basic component mode representations is given.

The degree to which a representation satisfies the the basic requirements for a compo-

nent mode set is discussed, as well as the topics of convergence, mode selection and

inter-component compatibility. In Chapter 3, attention is focussed on the synthesis of

structural components—the process by which the free vibration equations of the system

are formulated. In this area, the treatment differs somewhat from previous work in that

the emphasis is on deriving equations specific to a particular component mode set but

which are applicable to systems with an arbitrary number of components and in the most

general geometric configuration. Two advantages of this approach are that the synthesis

of the equations can be done more efficiently and that predictions can be made about

the performance of the various component mode representations based on the form of

the free vibration equations.
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Two component mode synthesis methods are selected for further study: the fixed-

interface and free-interface method. In Chapter 4, modal analysis results for three finite

element models are presented. The purpose is to compare the performance of the fixed-

and free-interface methods with direct finite element analysis and Guyan reduction. The

influence on the performance of these methods of model complexity, modal truncation,

modal density, and accuracy demands is evaluated.

In the course of developing a finite element model, numerous modifications may be

made, each of which requires its own modal analysis. Structural dynamic modification

techniques have been developed by various researchers to improve the efficiency of multi-

ple analyses. In Chapter 5, it is shown how structural dynamic modification techniques

can be applied when the baseline, or unmodified, structure is represented by a general-

ized CMS formulation. The condensation inherent to the CMS formulations is helpful

in reducing the cost of the reanalysis, and it is demonstrated that in many instances

accurate results for the modified structural modes can be obtained. If it is required that

the modified structure have certain prescribed frequencies, the efficiency of the redesign

process can be improved using inverse modification techniques. In these techniques,

which in the past have been based on sensitivity or perturbation analysis, design changes

are calculated which satisfy free vibration equations of the modified structure subject

to prescribed modal constraints. In Chapter 5, two methods—one based on Newton's

method, and the other on an iterative solution of the perturbation equations—are used to

solve freqency modification problems. The equations of motion of the modified structure

are based on a generalized CMS formulation and the results are compared with those

obtained with an established method.



Chapter 2

Component Mode Representations

2.1 Introduction

Component mode synthesis is an analysis method for determining the natural modes of

vibration of a structure. As described in the introductory chapter, it combines features

of the Rayleigh-Ritz method and the finite element method in an attempt to render an

accurate, reduced-order model of a physical structure. The method can be viewed as

having two stages; the first is the subdivision of a structure into components and the

description of each component in terms of approximating functions; the second consists

of reassembling the structure with the aid of the approximating functions and thereby

establishing coupled equations of motion for the entire structure.

In the present chapter, attention is focussed on the first stage of the analysis—the

selection of a set of approximating functions for a component, which will collectively

be referred to as a component mode representation. First, a statement of the general

requirements for component shape functions is given. Following that, a survey of the

existing component mode representations is presented along with some discussion of

their strengths and weaknesses.

2.2 Requirements for Approximating Functions of Structural Components

To begin, consider the general structural component depicted in Figure 2.1. Assuming

that it is a linear, distributed elastic component, its free vibration response as part of a

7
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Adjacent Components

II

Figure 2.1: A general distributed model for a structural component

larger structure can be expressed as,

Cw(x) = AM(x)w(x)
^

(2.1)

where w is the displacement of the component and the rest of the notation is the same

as for (1.1). The displacement is subject to the boundary conditions of the type

Biw(x) = 0^i = 1, 2, . . . , 1^ (2.2)

The boundary of the component in Figure 2.1 may be divided into five regions, each

of which possesses characteristic boundary conditions. The two fundamental types of

boundary conditions are geometric boundary conditions, where the order of the operator

Bi is 1— 1 or less, and natural boundary conditions, where the order of Bi is 1 to 21— 1.

First is the free boundary (I) along which homogeneous natural boundary conditions

apply. There are no geometric boundary conditions along the free boundary. Second is
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the region where external constraints are applied. An external constraint is some phys-

ical property of the component which manifests itself in either the geometric or natural

boundary conditions. These may be geometric constraints (II), natural constraints (III)

or some mixture of the two (IV). Last is the region where adjacent components are at-

tached (V). This region is called the component interface or the inter-component bound-

ary. Here, adjacent components exert forces and moments which quantitatively remain

unknown until the dynamics of the entire structure are determined. For the purposes

of the component analysis, the interfaces are regarded as having only non-homogeneous

natural boundary conditions.

As in the analysis of the whole structure, closed form solutions to the component

problem are rare because of the complexity of the governing equation and also because

the boundary conditions on the component interfaces are unknown. Instead, a solution

is sought with a sequence of approximating functions, as in the Rayleigh-Ritz method.

The displacement w may be approximated by a linear combination of functions

wn(x) = E Ni(x)pii=i (2.3)

where pi is the participation of the ith function in the displacement function wn. For

wn to be an approximation in the Rayleigh-Ritz sense, the functions Ni must be linearly

independent, they must be 1 times differentiable, and they must satisfy the geometric

boundary conditions. They do not have to satisfy either the differential equation or the

natural boundary conditions [4].

Such a sequence of approximating functions should also be complete so that as n is

made arbitrarily large, the approximate displacement wn may be made to approach the

exact displacement w to within an arbitrarily small difference in the sense of the energy

norm. A sequence N1 , N2 . . . is said to be complete in energy if the energy inner product

[w — wn, w — wn] can be made less than any arbitrarily small postive number e [4].
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When selecting approximating functions, the objective is to closely approximate the

component displacement (and by association, its kinetic energy and strain energy) as it

is undergoing free vibration motion as part of the larger structure. If a wide spectrum

of natural modes is to be determined, then a large number of approximating functions

will be necessary to correctly model the energy in all the modes. Typically though, it is

usually only a small portion of the structural modes that are of interest, especially in a

complex structure, and these are usually the lowest frequency modes. This simplifies the

task of selecting approximating functions since the kinetic and strain energies only need

to be accurately modelled at low frequency.

The approximating functions, which from now on will be referred to as component

modes, should conform with the actual boundary conditions on the component as much as

possible. On the free boundary for instance, homogeneous natural boundary conditions

should be used when calculating the component modes. On the component interfaces

the boundary conditions are unknown and so the conditions that ought to be applied to

the component modes are left to the judgement of the analyst.

2.2.1 Component Modes for Discrete Models

Relatively complex components are difficult to analyze with a differential equation and

boundary conditions of the form (2.1) and (2.2). Instead it is often more practical to build

a component model with the aid of a discretization procedure such as finite elements.

Such a procedure enables the distributed representation to be replaced by an equation

of the form,

Mii(t)-F Ku(t) = f(t)^ (2.4)

where M and K are real, symmetric, mass and stiffness matrices derived by the dis-

cretization procedure, u is the displacement vector and f is the vector of applied loads.
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In general, M is positive definite and K is either positive semidefinite or positive definite,

depending on whether or not rigid body motion is possible. The boundary conditions

on the component are handled in the following way: external constraints, whether ge-

ometric or natural, are incorporated in K, M and u; natural boundary conditions at

the component interfaces are represented by force and moment terms in the load vector.

The discretization thus replaces the partial differential equation (2.1) and its boundary

conditions (2.2) with a system of ordinary differential equations.

A sequence of component modes which may be used to approximate the displacement

vector u is given by

= E Xi1ji^ (2.5)
i=i

where the vector Xi is the ith component mode and where ni is the participation of the ith

mode in the vector un. As un is only an approximation to u, the number of component

modes n will be less than the number of coordinates in u. Applying the Rayleigh-Ritz

method to the discrete representation gives the following elements of the generalized

stiffness and mass matrices:

ki;^XTKXi^i,j =1,2,...,n^(2.6)

mi; = mii = XTMXi i,j =1,2,...,n (2.7)

Note that Xi, i = 1, 2, ... , n do not need to be normal modes although they should be

linearly independent. If the component modes accurately represent the static and low-

frequency motion of the component, k and m will give an accurate description of the

component's stiffness and mass distribution at low frequency.

The remaining sections of this chapter describe a variety of component mode repre-

sentations for a discrete component model. Reviews of component mode representations

have been given by Hurty [5], Kubomura [6], and Craig [7].
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2.3 Free-Free Modes

The simplest component mode representation describes the displacement as a linear com-

bination of its unconstrained or free-free vibration modes, i.e.,

21(t) = E Oipi = (bp(t)

where the modal matrix (1) contains the free-free mode shapes as columns:

= {(ai ... (an}

and p(t) is the column vector of component modal coordinates. This type of component

mode representation has been used by Goldman [8], Hou [9], Dowell [10] and Yee and

Tsuei [11].

Free-free component modes are calculated from the component equation with the

applied loads set to zero:

^Mu(t) -F Ku(t) = 0^ (2.10)

This is transformed to an eigenvalue problem by assuming a sinusoidal solution for u(t)

at frequency w:

^[ K — (41i110i = 0^ (2.11)

From this equation are computed the natural frequencies of the component wi and their

corresponding free-free mode shapes fit. A useful convention is to incorporate any external

constraints into K and M. The resulting free-free modes will therefore satisfy the external

constraints applied to the component, guaranteeing the admissibility of the modes. The

mode set will also include any rigid body modes in the component. The number of rigid

body modes is usually between zero and six, but more may exist if the component is

articulated.

(2.8)

(2.9)
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The general equation of motion of a component is obtained by including a non-zero

force vector on the right-hand side of (2.10):

Mi(t) + Ku(t) = f(t)^ (2.12)

The component mode representation (2.8) is substituted into (2.12) to give

Ms:1) .7;W + 1‘40p(t) = f(t) (2.13)

It may be assumed without loss of generality that the mode shapes in I, are mass nor-

malized. By premultiplying (2.13) by 4 T and by assuming a sinusoidal solution for p(t),

the equation of motion of a component becomes

[A 7 w2I]p(t) = (I)Tf(t) (2.14)

where A is the diagonal matrix with the component eigenvalues A i = (4 on the diagonal

and (DT At) is the vector of modal forces acting on the component. Comparing (2.14) to

(2.12), it is seen that in modal coordinates, the component stiffness matrix is A and the

mass matrix is I.

If coordinate reduction is to be achieved, the set of component modes included in

(I) must be truncated; i.e., the number of component modes must be fewer than the

number coordinates in the original model. It is the truncation at the component level

that primarily distinguishes component mode synthesis from other dynamic condensation

methods [12, 13]. Generally, since it is the lower structural modes that are of interest,

rigid body and low frequency component modes are included in (1); the high frequency

component modes are omitted as they contribute little to the low frequency dynamic

response of the structure.
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While coordinate reduction is important, a sufficient number of modes must be in-

cluded in 4, to satisfy the compatibility equations between components. Each Oi con-

tributes one modal coordinate to a component. The total number of these modal co-

ordinates in all components must exceed the total number of compatibility equations if

these are to be fully satisfied. The analyst will usually want to use enough modes to

ensure inter-component compatibility, plus additional modes to improve the accuracy of

the results.

The compatibility requirement becomes troublesome in structures whose component

interfaces consist of meshed curves or surfaces. As finite element meshes are further re-

fined, the number of degrees of freedom on the interfaces increases. At the same time, the

number of component modes that can be reasonably calculated diminishes because of the

increased order of the governing matrices. As a result,"it may become very difficult to ob-

tain enough component modes to enable the compatibility equations to be fully satisified;

instead, only partial or approximate satisfaction of compatibility may be possible. This

is not necessarily detrimental to the accuracy. Using a truncated mode set constrains

a component's motion and tends to produce a model that is too stiff. Conversely, the

under-constraint which stems from improperly satisfied constraint equations relaxes some

of the constraints on the component, thereby reducing its stiffness. Obtaining a balance

between these two operations could offset the ill-effects of each. However the amount by

which the frequencies of the structure are raised and lowered by model truncation and by

relaxing interface constraints cannot be quantified. Furthermore, it is very easy to devise

a substructured model in which the number of interface coordinates exceeds by an order

of magnitude the number of component modes that can be realistically computed. In

these situations the under-constraint will be severe and would lead to unreliable results.

It has been shown by Meirovitch [4, 14] that mode sets containing admissible shape
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functions with homogeneous natural boundary conditions show poor convergence char-

acteristics. Equation (2.8) is an example of this type of representation. The slow con-

vergence stems from the inability of this type of mode, whether taken individually or in

small numbers, to satisfy non-zero natural boundary conditions. Even though a small

number of free-free modes may describe the displacement of a component very well in its

interior, there are inherent inaccuracies at its boundary which do not disappear unless

very large numbers of modes are used. This conclusion is supported by the investiga-

tions of Hou [9] which show that the structural frequencies converge very slowly with the

component mode representation in (2.8).

2.4 Free-Free Modes with Interface Loading

Benfield and Hruda [15] introduced a variation to the classical method by including

stiffness and inertial interface loading in the eigenvalue equation of a component. This

was an attempt to at least partially account for the presence of adjoining components

in the dynamics and thereby render component modes closer to the structural modes in

frequency and energy distribution. For this reason it is expected that these modes will

converge faster than classical free-free modes.

Static condensation is used to calculate the interface loading. This method, which

is often referred to as Guyan reduction [16], will be discussed in another context in

Section 2.7. For the present discussion it will be sufficient to quote the formula. To

calculate the stiffness and inertia loadings on a particular component the stiffness and

mass characteristics of the adjoining components are condensed on to the interface. For

simplicity, consider the two component system shown in Figure 2.2. The stiffness and

mass matrices of each component are partitioned into interface (B) and interior (I)
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Interface

a
^ b

Figure 2.2: Two component system

coordinates:
KBB KBI
^MBB mBI

K=
Kra KII

^M= 
MIB mll
^(2.15)

The interface loadings on component a are determined through the condensation of the

stiffness and mass properties of component b on to its interface:

Ice il = Ter KbTe

BB riICT ibr ITCMb = -Lb 4L‘b"b

(2.16)

(2.17)

where 4313 and mr are the condensed stiffness and mass of component b and the matrix

Tbc is defined as,

uB

ur lb =
[ I

1.,B^ri,C.,B
(Job = J. b u,b

_reII-1 KII, B
'Lb

(2.18)

which is the general result from Guyan reduction [16].

The free vibration modes of component a are now determined with the interface

loadings applied. The appropriate eigenvalue equation is,

+ iclb3B^KaBI sp 2 iti-aBB + meB maBI '',B[KBB
=($) (2.19)

K B IT^K II it mBIT^mlI p.
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The component displacement is subsequently described by the truncated sequence of

modes:
na .

. ,.., E 0,5,
i.i

(2.20)

where na is the number of modes calculated for component a.

It should be emphasized that the interface loadings are used only to determine a more

convergent mode set; once the mode set is established the stiffness and mass properties

of the components revert to their original forms and the synthesis of the components can

proceed in the usual manner.

The modal representation (2.20) is an improvement over the classical representation

with respect to its convergence properties but it is does not assist in the satisfaction of

compatibility conditions at the component interfaces. A large number of dynamic modes

are required to properly satisfy compatibility along complex interfaces while the compu-

tational effort necessary to calculate these modes is greatly increased by the inclusion

of interface loading. It is also a disadvantage to require knowledge of the stiffness and

mass characteristics of adjacent components when choosing component modes. It may

be that structural components are being designed independently and that one design

group may not have detailed information about the work of other design groups. Also, to

reanalyze the structure after extensive modifications to one component means not only

that the modes of that component have to be reanalyzed but that the interface loadings

of all components attached to it have to be adjusted as well. It is clear then, there are

distinct advantages to using component modes which allow components to be analyzed

independently.
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2.5 Static Approximation of Higher Modes

The dilemna of how to maintain compatibilty between components without having to

compute large numbers of dynamic modes is resolved by using a static approximation

for the higher component modes. Suppose that the mode shapes of a component are

partitioned into two groups such that

n(t)u(t) = [ 4)1 (kh J
 1 ph(t) (2.21)

The modal matrix is partitioned so that 4)1 contains rigid body modes 40,. and low fre-

quency elastic component modes 4)/ e :

4)1 = { Cr tie ]
^

(2.22)

Modes that are considered low frequency have frequencies that are comparable to a

target frequency range. Modes in 41, have frequencies that are significantly higher than

the target frequency range. With this partitioning, the component equations become

{ At — w2 /^0^p,(t) 1^[ 4)T
. ^f (t)^(2.23)

0^Ah — w2/^ph(t)^4,T

While undergoing free vibration in a structural mode, the component force vector At)

contains the forces applied by adjacent components and w is a structural natural fre-

quency. Define

2We »W 2 (2.24)

where we is the cutoff frequency, or the lowest frequency in the th set. The following
approximation may then be used:

ph(t) = Al; 1 4V(t)^ (2.25)
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The displacement of a component is now modified to the following expression using (2.25):

u(t) = vi(t) + Gf(0^ (2.26)

where

(2.27)

The component mode representation (2.26) is commonly referred to as the MacNeal-

Rubin mode set in recognition of its originators [17, 18]. The second term of u(t) is

a static approximation of the displacement contributed by the higher modes, G being

the static flexibility in the higher modes. Urgueira and Ewins [19] used (2.27) in their

derivations. MacNeal [17], Rubin [18] and Craig and Chang [20] used instead the residual

flexibility of the component:

= G — (1) 1.4.14:1q. (2.28)

where G is the full static flexibility of the component and (1)/. is the matrix of lower

elastic modes of the component. Note that (2.27) and (2.28) are equivalent when the set

of higher modes is complete. However, by using (2.28) the higher modes no longer need

to be computed.

In the free vibration of the structure, f(t) has non-zero values at the interface locations

only. As a result, the only columns of 6 that will contribute to the displacement will

be those associated with interface locations and each of these columns represents the

residual displacement caused by a unit force at that location and zero force elsewhere.

It therefore follows that each of these columns can be thought of as a residual static

attachment mode. Defining

At) = Or (i )
^

(2.29)

where fB(t) contains forces at the interface coordinates only and ,a is the coordinate

transformation from the interface to the full coordinate system of the component, the



Chapter 2. Component Mode Representations^ 20

displacement of a component is then given by,

u(t) = (1)p(t) 'tfB (t)^ (2.30)

where

xi/ = Op (2.31)

and where subscript 1 has been dropped. The matrix if contains the residual attachment

modes as columns. By their definition, these modes are mass-orthogonal and stiffness-

orthogonal to the lower normal modes.

Because the interface forces appear on the right-hand side of (2.30), they may be

treated as modal, or generalized, coordinates. A sufficient number are available to ensure

that compatibility and equilibrium can always be satisfied, but this requires that the

residual attachment modes be linearly independent.

As each free-free mode is added, the rank of the residual flexibility matrix is reduced

by one. Thus, with a full set of modes, the residual flexibility disappears and the mode

set reduces to the classical representation. By this means, linear independence and

completeness requirements are satisfied. But to maintain the linear independence of

the residual attachment modes, the rank cannot be less than the number of interface

forces, thus limiting the number of free-free modes that can be used. In most realistic

situations, however, accurate results can be obtained with a relatively small number of

free-free modes and so this limitation does not play a significant role.

The first-order approximation [Ah — w 2 /] -1 Ah- 1 is used in (2.25). This result is

valid provided (2.24) is maintained, but this may not be possible in components having

high modal density in the target frequency range, as a very large number of modes

would have to be calculated to satisfy (2.24). To improve the accuracy, a second-order

approximation may be employed in which

[Ahh w 
2 

—1 = I cd 2 A h— 1 I —1 Ah 1 Ah 1 co 2 A h— 2^(2.32)
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The expression for ph and the component displacement thus become,

Ph 
=^(412 42) 41:f (2.33)

u = (lop + Of + 2:6 f

where ds is as before and,

B = .1)hA.172 (1q:

(2.34)

(2.35)

The symmetric matrix /3 can be calculated without knowledge of the neglected modes

by using (2.28) and by observing that

 

(2.36)

(2.37)

Applying (2.29),

u = (pp + (.1 + w2611/1) afifB

Or,

U = Ifop + Off + ca2t) fB^ (2.38)

where

= 13,3 = Omit^ (2.39)

It should be emphasized that the columns of E do not represent a new set of modes, but

rather are complementary to the existing residual attachment modes. It will be shown

in Section 3.5 that retaining this second-order contribution in the substructure synthesis

creates a supplementary global mass matrix which partially accounts for the inertia of

the neglected modes.

The MacLaurin series expansion of [Ah — ca 2 /1 -1 can be continued further so that,

[Ah w211 —1 = Ah-1 w2Ah-2 w4Ah 3 w6Ah-4^(2.40)
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This expansion is valid as long as GJ2 is smaller than all diagonal elements of Ah. Since the

diagonals are eigenvalues of the neglected modes and are therefore always larger than 4,
the expansion is valid for the frequency range 0 < w < we . The resulting displacement

contribution from the higher modes is,

4/sPh 4//1 (Ah 1 W242 + W4 A173^.) 4:01:f^(2.41)

By (2.27), (2.35), and (2.36), it can be stated that for integer n > 1,

thAh-t*: n-1= ( 4PhAh -
T
^430;111:11:

= (GM)n-1 us

(2.42)

(2.43)

In other words, every term in the expansion (2.41) dependent on the higher modes can

be replaced with an equivalent expression in terms of 6 and M; i.e.,

1/isPh = [a + C4/ 26Ma Cs.14 (GM) 2 G +...] f^(2.44)

= a(w)f
^

(2.45)

where G(w) is the dynamic residual flexibility of the component. By factoring out 6, the

series converges to the expression,

6(w) = 6 (.1 — w 2m6) -1 (.1 — w 26m) -1 G^(2.46)

provided liw 2 dMIlp < 1, for the general class of p-norms [21]. In Appendix A it is shown

that there exists a low frequency range 0 < w2 < 4/a, a > 1 in which this condition

holds. Furthermore, it can be shown through a similarity transformation that I — c‘, 26M

is positive definite and invertible when w < w e . Define A as

A = 4) -1 — cv 26M)^ (2.47)
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where (I) is a square matrix containing all free-free modes of the component. Matrix fl• is

invertible, and from mass-orthogonality,^= (DT M. Therefore,

A =^(1)T^- W 2 e11161114)^(2.48)

I — W2
41,T m ,f)h^m 4f,^(2.49)

1 0 2 0^0 
- w (2.50)

0^I 0^All

It is inferred from (2.50) that the eigenvalues of A (i.e., its diagonals) are positive when

the diagonal elements of c,./ 244 are less than 1, a condition which holds for w < wc.

Because of the similarity transformation, A and I — (26 M have identical eigenvalues.

Therefore, I—w26M is positive definite and invertible in the frequency range 0 < w < wc.

The modulation matrix •

II (w) = (/ — c4;26M) -1 (2.51)

tunes the static residual flexibility 6 to frequency w. The evaluation of 6 at w and

its substitution in (2.45) gives an exact account of the higher modes' contribution to

the component displacement. However, using d(w) in the CMS formulations is difficult

because w is unknown and appears in a highly nonlinear form. Indeed, including terms

higher than w 2 in (2.44) creates a nonlinear eigenvalue equation for the structure. How-

ever, once estimates of the system natural frequencies CA have been obtained with either

the first- or second-order approximations, calculating d(cDi) is useful for estimating the

magnitude of the error in wi. This is explored further in Section 3.9.

In summary, a free-free mode representation by itself will often not provide enough de-

grees of freedom to satisfy compatibility constraints at interface locations on discrete com-

ponents. By adding a linearly independent set of residual attachment modes, the mode

set is expanded relatively inexpensively so as to ensure satisfaction of inter-component
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compatibility, and a more accurate component mode representation is produced by in-

cluding the static flexibility of the neglected free-free modes.

2.6 Inertial Approximation of Lower Modes

The concept of using an approximation of the higher modes was carried further by Kubo-

mura [6] and Kuang and Tsuei [22] who used approximations for both the high and the

low frequency modes. Suppose the component mode set in (2.8) is partitioned into three

groups such that

u(t )

4Phil

P

Pm

Ph

(2.52)

The set L contains component modes that are in the same frequency range of the system

modes of interest. Modes with much lower frequencies are contained in (I)i and modes

with much higher frequencies are in (I)h. The equation of motion of the component is

then,
At — co 2I^0^0 (DT

0^A„, — cy 2/^0 Pm = 4,InT 1(0^(2.53)

0^0^Ah - Q.,21 Ph

If upper and lower frequency cutoffs are such that wc2, < w2 and c4h^wa, then

=^
1^

At)^ (2.54)

Ph = 41,101: f(t)^ (2.55)

and the displacement of the component is given by

1^TU =^f
B +^+^h A h i (eh fB^(2.56)
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Or

u = (1)„,pm fB (2.57)

As before, the approximation for the high frequency modes can be thought of as residual

attachment modes as designated by xis. The approximation of the low frequency modes

is purely inertial. Each column of t is the acceleration of the component induced by a

unit force at one interface location with zero force elsewhere. Consequently, each of these

columns can be called residual acceleration modes.

It is convenient to keep the w 2 on the right-hand side of (2.57) with fB, as it is still

yet to be determined. Thus a new set of inertial coordinates are defined: pc„ = 113 /w2 .

Observe that the residual acceleration modes are linear combinations of the rigid body

and low frequency elastic component modes. Approximating the low frequency modes

does not preclude the need for computing them, as it did with high frequency modes.

The component mode representation in (2.57) will not be useful for the type of struc-

tures which are of interest in the present work. In these structures, it is the very lowest

system modes that are of interest and so an inertial approximation is not appropriate.

However, approximations of the higher modes will prove to be very useful.

2.7 Constraint Modes

Hurty [23] proposed a component mode representation in which the displacement of a

component is described by a combination of rigid body modes (r) (if the component

is unrestrained or partially restrained), static constraint modes (c), and cantilevered

normal modes (n). Partitioning into determinate interface (R), redundant interface (5),
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uR

uus, = ck4
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and interior (I) coordinates, the component displacement is given by,

The determinate interface coordinates are interface coordinates which, if constrained,

make the component statically determinate. If a component is fully restrained with ex-

ternal constraints, the R set is null and all interface coordinates appear in the S set.

A rigid body mode is defined by a unit displacement at an R coordinate, with zero

displacement at other R coordinates. A static constraint mode is defined by a unit dis-

placement at an S coordinate with zero displacement at all other coordinates in R+S.

The cantilevered normal modes are free vibration modes calculated with all interface

locations rigidly held. Craig and Bampton [24] recognized that a complete set of con-

straint modes would automatically include any possible rigid body motion. As a result,

the rigid body modes can be explicitly dropped from (2.58) and no distinction needs

to be made between determinate and redundant interface coordinates. The component

displacement is therefore given by the following, where B denotes the complete set of

interface coordinates:

or, in unpartitioned form,

uB^I 0Pc + ^p.

(1);,

U = XlicPc (DnPn

(2.59)

(2.60)

The component mode representation as expressed by (2.59) is commonly referred to as

the Craig-Bampton mode set and is statically equivalent to (2.58). This representation

was also adopted by Hurty et al. [25] and SandstrOm [26]. Note that each static mode

has a unit displacement at one interface coordinate and that each normal mode has zero
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displacement at all interface coordinates. By the top equation in (2.59), uB = pc and so

I^B AIU =^-rnPn (2.61)

The matrices xli! and cl,„I are calculated in the following manner: the equation of

motion of a component in partitioned form is

KBB KBI mBI uB fBH uB}
w2

[MBB
(2.62)

KIB MIB^mII 111 0

Setting w = 0 for a static analysis, the second equation in (2.62) becomes

ul =^KIBuB = TIuB (2.63)

Holding the interface rigidly by setting uB = 0, the second equation in (2.62) becomes

[KII 402mII1 ul = 0^ (2.64)

The eigenvector solutions to this equation define the cantilevered normal modes 4)n.

Applying (2.59) to (2.62) and by premultiplying by the modal matrix, the component

equation in modal coordinates is

kBB^0 uB mBN f B

0^kNN pn

[mBB

M^MNB^NN

lliiB

0
(2.65)

where

kBB KBB KBIT cI

kNN

mBB MBB mBIC + TcITmIB^T cITAIIIC

MBN = MBI +emIl(DI = mNBT

mN = On
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Note that the modal stiffness matrix is block diagonal and that the static constraint

modes are orthogonal (with respect to the stiffness matrix) to the cantilevered normal

modes.

There are as many static constraint modes as there are interface coordinates in a

component. A complete set of these modes must be included in the analysis to ensure

that the rigid body motion and static behaviour of the component are preserved, as these

are important characteristics of the lower structural modes.

The normal modes are included in the representation to account for some of the

inertial properties of the component. To give a complete account of the component

inertia, a full set of normal modes has to be included. Generally this is not practical

because great computational effort is required to calculate a large number of normal

modes and also because the normal mode set has to be truncated if any coordinate

reduction is to be achieved. The normal modes which are generally kept and included in

4:1)n/ are the modes of lowest frequency. It is the lower component modes which make the

most significant contribution to the lower structural modes.

An important special case of the Craig-Bampton representation is static condensation,

or Guyan reduction, in which all dynamic modes are deleted from (2.59). While the

remaining set of constraint modes is statically complete, it tends to produce poor results

in a free vibration analysis because of an inadequate account of the kinetic energy. This

can be improved within the confines of static condensation by including static modes for

degrees of freedom other than those on the interface. In the parlance of Guyan reduction,

a set of master degrees of freedom are selected which include both the boundary and a

subset of the interior degrees of freedom such that the motion of the component is best

described with a minimum of constraint modes. Various procedures for selecting masters

have been proposed [27, 28]. While masters chosen from the interior coordinates play no

part in the inter-component compatibility, they do foster a more accurate representation



[KBB KBI 1[0^[mBB MB! 1[Vs
(2.67)

KIB KII^r^mIB mII

Chapter 2. Component Mode Representations^ 29

of the inertial properties at non-interface locations. However, this can be better achieved

by including dynamic modes by means of a CMS procedure rather than by adding more

static modes.

Hintz [29] proposed a constraint mode method in which the constraint modes of the

Craig-Bampton mode set are augmented with inertia-relief modes.

0 uBuBl . [I
(2.66)

AF^41; pi

The inertia-relief modes W if are defined as the static response of a component (with

interfaces held fixed) to rigid body inertia forces. They are calculated by the following

formula, in which a unit modal acceleration is applied to each rigid body mode, and in

which RB is a vector of reaction forces necessary to maintain zero displacement at the

interface:

The inertia-relief modes can therefore be expressed as,

vf^KH-1 (m/B,I,Br MI/(DT)
^(2.68)

With respect to the stiffness matrix, the inertia-relief modes are orthogonal to the con-

straint modes. By (2.68), the number of inertia-relief modes is equal to the number of

rigid body modes. Thus, for a fully restrained component, the constraint mode method of

Hintz [29] reduces to the definition of constraint modes used by Craig and Bampton [24].

For an unrestrained or partially restrained component, the inertia-relief modes enhance

the component displacement field at low frequency by including rigid body inertial effects.

However, these modes are not strictly necessary for static completeness, as the constraint
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modes defined in (2.63) are capable of exactly describing the static displacement to an

interface load.

To improve the component representation in dynamics problems, Hintz added fixed-

interface free vibration modes to (2.66), giving the following component mode represen-

tation:
uB

P 
^(2.69)

Pn

Note that for a fully restrained component, the inertia-relief modes disappear and (2.69)

reduces to the Craig-Bampton mode set. One difficulty that may arise is that xli if and 43./

span the same vector space and therefore may not be linearly independent modes. If the

number of fixed-interface modes is small, this problem can be generally avoided [7, 29].

In fact, the most significant benefit of inertia-relief modes is that they can be used in

place of dynamic modes in a CMS analysis, and thereby reduce the number of dynamic

modes that need to be calculated. However, results presented by Hintz [29] comparing

(2.69) with the Craig-Bampton mode set were inconclusive as to which offered the best

accuracy.

2.8 Attachment Modes

Hintz [29] proposed a static mode set consisting of rigid body and attachment modes

which would be statically equivalent to the constraint mode representation (2.66). At-

tachment modes are defined by placing a unit load at an interface location, with zero load

at all other locations. To show how attachment modes are calculated, statically restrained

components are distinguished from those that are unrestrained, or partially restrained.

For a restrained component, attachment modes IP are calculated by substituting w = 0

1 :1
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and 1B = I into (2.62) and solving the following equations for':

or, in unpartitioned form,

KT = /3^ (2.71)

Note that
TI = _KII-1 KIB TB = gicI AFB1 TB 1 [ I

=^TB

1 11 1^t 11 1

(2.72)

(2.73)

Thus, attachment modes are linear combinations of constraint modes.

For an unrestrained component, the applied forces must be equilibrated by the resul-

tant inertia forces if the deformed displacement is to be isolated. This involves solving

the statics problem,

KT = (/ — API),.4:1:0,1 /3 = P/3 (2.74)

where P is a projection matrix having the property P = P2 and where PP defines

equilibrated force vectors resulting from applying unit loads to the interface coordinates.

Because K is singular, T cannot be determined directly from (2.74). Instead, the modified

equation
if/ = Gcps (2.75)

is used where GC is the component flexibility after a set of statically determinate con-

straints is applied. If the attachment modes are to be mass-orthogonal to rigid body

modes, it is necessary to remove the rigid body component of if- [7]; i.e.,

T = 4 - 4'rPr
^ (2.76)
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where

(2.77)

Assuming mass-normalized rigid body modes, the result of substituting (2.76) in (2.77)

is

Pr = 4),T11141
^

(2.78)

and
tp . (i _ 4, rT 4, r m) if = pril = pTGepp^(2.79)

Thus, premultiplying a force vector by P transforms it into an equilibrated, or inertia-

relief, force vector; and premultiplying a displacement vector by PT makes it mass-

orthogonal to the rigid body modes [30]. The attachment modes resulting from (2.79) are

referred to as inertia-relief attachment modes. This equation can be used as the general

definition of attachment modes by noting that for a restrained component, P = I and

Gc = If' and hence (2.79) is equivalent to solving (2.70). If a component is unrestrained,

inertia-relief attachment modes are not linear combinations of the constraint modes.

However, the static mode set

41 a = [ 4) r 4' ]
^

(2.80)

is equivalent to the expanded constraint mode set used in (2.66) [29].

For dynamic analysis, the static mode set (2.80) is augmented with a truncated set

of component free-vibration modes. Hintz [29] suggested using either fixed-interface or

free-interface dynamic modes and showed examples derived with each. However, the

free vibration modes have to be selected carefully to avoid linear dependence with the

attachment modes. This is cited as a common problem when attachment modes are used

with complex components [31]. Only when fixed-interface free vibration modes are used

with a fully restrained component is linear independence between the attachment and
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free vibration modes guaranteed. In this case, the attachment mode set is equivalent to

the Craig-Bampton mode set.

The main advantage of attachment modes is that, in general, they are easier to obtain

experimentally than are constraint modes because the necessary boundary constraints

are easier to impose on a structural component [31]. Computationally, they are more

expensive as they involve the inversion of the full stiffness matrix, whereas constraint

modes require only the inversion of If - II. Moreover, the Craig-Bampton mode set does

not require explicit calculation of the rigid body modes, giving it an added computational

advantage.

2.9 Polynomial Functions

Meirovitch and Hale [2, 3] observed that the basic requirements for component modes

of distributed models—completeness, linear independence, and differentiability—are sat-

isfied by a much larger class of admissible functions which may include, for instance,

low-order polynomials. Independent polynomial functions are generally easier to de-

rive than component modes because they can be established without knowledge of the

stiffness and mass distribution in the component: they depend only on its physical di-

mensions. For these functions to be admissible, it is also necessary that they satisfy

external geometric constraints. This may be a difficult requirement to satisfy if the con-

straints are distributed in a complex manner throughout the component. However, this

requirement is not strictly necessary since the enforcement of the external constraints can

be postponed until later in the analysis when inter-component compatibility constraints

are satisfied. Therefore, it is permissible to generate component polynomial functions

without taking into account external constraints.

Admissible vectors are generated for discrete models by sampling polynomials defined
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over the spatial domain of the component. Translational elements of admissible displace-

ment vectors are sampled directly from the polynomials; rotational elements are sampled

from the spatial derivatives of the polynomials. Generally, an infinite number of indepen-

dent polynomials are available from which only a finite number of linearly independent

admissible vectors are chosen. Therefore, sampling of the polynomials must be done with

care to ensure that the resulting admissible vectors are linearly independent.

Admissible vectors defined in this way depend only on the spatial extent of the com-

ponent and its node locations. They do not depend on the distribution of strain or

kinetic energy in the vibrating component. If the material properties of the components

are uniformly distributed, low-order polynomials can be used effectively to predict the

low frequency modes. This has been demonstrated by Meirovitch and Hale [2, 3], for a

system composed of flat, rectangular plate components, and by Johnson and Jen [32],

for beam components comprising the links of a flexible robot arm. But if the material

properties are distributed nonuniformly, there may be small-scale vibration effects that

cannot be represented with low-order polynomials. Higher-order polynomials will have

to be added, and although this in itself is not difficult, it has the effect of increasing

the order of the system equations and necessitates prolonged computation at the system

level.

As an example, consider the segments of a ship hull as structural components. A

low-frequency mode of the hull may consist exclusively of bulkhead vibration. If this is

the case, it is likely that the bulkhead vibration will appear in the low frequency compo-

nent modes as well. As a result, this local vibration mode can be adequately represented

with a small number of component modes. By contrast, none of the polynomial-derived

admissible vectors are likely to be similar to the bulkhead mode. These vectors are deflec-

tion shapes defined over the spatial dimensions of the component under the assumption

of a uniform distribution of mass and stiffness within the component. However, local
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vibration modes only appear as the result of a non-uniform distribution of mass and

stiffness. Therefore, such modes can only be represented by taking large numbers of

polynomial functions in linear combination, which, as was mentioned above, is harmful

to the computational efficiency of the analysis.

Faced with this difficulty, a different approach might be to substructure the model

further so that all components are reduced to simple, uniformly distributed, plates and

beams. However, this severely restricts the way in which components can be designed

separately and then reassembled. Consequently, using polynomial-derived admissible

functions may be useful in certain types of structures, but in general application to

finite-element models convergence problems and insufficent order-reduction will likely be

encountered.

2.10 Comparison of Component Mode Representations

Some general conclusions can be drawn from the foregoing discussion on the subjects of

compatibility, linear independence, completeness, convergence rate, and computational

aspects of the component mode representations.

Compatibility

In the most general applications, a component mode set should contain a mixture of

static and dynamic modes. Static modes can be calculated relatively cheaply and so

large enough numbers of them can always be assembled to satisfy the interface compat-

ibility requirements. A dynamic complement is necessary to give a good account of the

low frequency component inertia. Four component mode representations described in

this chapter—the MacNeal-Rubin mode set, the Craig-Bampton mode set, and the con-

straint and attachment mode sets of Hintz—are of this type. Mode sets using dynamic
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modes only, such as classical free-free modes or the interface-loaded modes of Benfield

and Hruda, have a more limited applicability because they are more difficult to calculate

in large numbers. They would mainly be useful in structures composed of beam-like com-

ponents, such as a series of robotic links, where the number of compatibility constraints

remains small.

Linear Independence and Completeness

The linear independence and completeness of a mode set are both necessary conditions

for convergence of the system modes. Both the Craig-Bampton and the MacNeal-Rubin

mode set satisfy these requirements, the latter by degenerating to the classical free-free

mode set when a full complement of modes is used. The constraint and attachment

mode sets of Hintz can generally be made to satisfy the linear independence requirement

provided the truncted set of free vibration modes is chosen carefully. However, as the

number of free vibration modes is increased, the linear independence of these two mode

sets will eventually be lost.

Convergence Rate: the Relation to Mode Acceleration

When comparing component mode representations, an important consideration is the rate

at which the system modes converge as a result of increasing the number of component

modes. It is known from the Rayleigh-Ritz method that a solution obtained with a set of

approximating functions will converge to the exact solution as the number of functions

is increased, provided that they satisfy the requirements of linear independence and

completeness. In this respect, the component mode representations presented in this

chapter are generally convergent but not all will converge at the same rate.

It was demonstrated by Rubin [18] that the MacNeal-Rubin mode set enjoys the

same improvement in convergence over the classical method that the mode acceleration
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method enjoys over the mode displacement method. The mode acceleration method was

first suggested by Williams [33] as an alternative method for determining stresses induced

by transient loads on aircraft. In comparison to the more conventional mode displacement

method it is generally accepted that mode acceleration is a faster converging method;

that is, results of equal accuracy can be obtained with fewer modes [34].

How this improved convergence is achieved can be just as easily analyzed by examining

displacements rather than stresses. In the mode displacement method, the displacement

is approximated by a set of n dynamic modes,

U = E
i=i

(2.81)

The equations of motion for an undamped structure can then be written in terms of the

modal coordinates pi :

pi + wfpi Orf^= 1,2,...,n^(2.82)

This system of equations can be solved for pi using Duhamel's integral and the summation

in (2.81) provides the dynamic response. Supposing (2.81)—(2.82) describe the motion

of a structural component acting under periodic interface loads, the mode displacement

method is then equivalent to the classical free-free mode representation.

In the mode acceleration method, (2.82) is transposed:

Pi = a (4)Tf
Wi

and the dynamic response becomes,

mm

^

U = E^- E
^i=1^

T 
f 

i=1

(2.83)

(2.84)

If the summation were over all modes, the first term would reduce to simply the static

response to the applied load; it is the second term that accounts for the inertial effects.
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Consequently, the dynamic response for a truncated mode set can be written:

u = Gf —^ (2.85)

The improved convergence is derived from fact that the static portion of the response is

no longer dependent on the number of modes retained; it is determined directly through

the static flexibility [34, 35].

The response given by the mode acceleration method is transformed by substituting

(2.82) into (2.85) giving,

u = Gi^071,-.24(01. — c4Pi) = stkp + Of
^

(2.86)

which is precisely the MacNeal-Rubin mode set. Thus it is expected that the MacNeal-

Rubin mode set will converge faster than the classical mode set as a consequence of the

complete account of the static response of a component to interface loading.

For the same reason, it is expected that the other statically complete mode sets

discussed in this chapter—the Craig-Bampton mode set, and the constraint mode and

attachment mode sets of Hintz—will also experience a higher convergence rate than the

classical method.

Computational Considerations

It has already been noted that constraint modes are computationally less expensive than

attachment modes because they are derived from the inversion of the submatrix

rather than that of the full matrix K. A further point to note is that fixed-interface

free vibration modes can be calculated more cheaply than free-free modes, owing to

the smaller order of its associated eigenvalue equation. It has also been noted that

the Craig-Bampton mode set does not require the rigid body modes to be calculated

explicitly. These considerations indicate that the Craig-Basnpton mode set is the most
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advantageous computationally. But it will be shown in the next chapter that the extra

computation needed at the component level gives the MacNeal-Rubin mode set important

advantages in the formulation of the system equations.

2.11 Mode Selection

Having established the requirements for component mode representations and having

discussed some aspects of their respective convergence rates, it is now necessary to con-

sider the problem of component mode selection: namely, deciding how many component

modes are required to get results of a certain accuracy. Unfortunately, this is a question

for which no definitive theoretical answer can be given. It is known that if a full set of

component modes are used, exact results are obtained; but this fact is of no practical

use since CMS offers no advantages in this case. CMS is most attractive when modal

truncation, especially severe modal truncation, is possible.

All analytical methods use a mathematical model to predict the behaviour of a phys-

ical system. But the accuracy of one method is not known until its results are compared

to those of another. For example, the accuracy of a finite element analysis is largely

dependent on the degree of mesh refinement; but this accura cy cannot be known with-

out a comparison with experimental results or with results obtained by some method

known to be accurate. Nevertheless, experienced analysts can choose an appropriate

mesh refinement without foreknowledge of the correct results.

The same is true of CMS with regard to mode selection. While the absolute accuracy

of a particular choice of modes is unpredictible, general rules of thumb can be developed

to guide the analyst in choosing modes for a particular problem. The appropriate choice

of component modes is problem-dependent. It is a function of the number of components,

their size with respect to the whole structure, their modal density, the differences in their
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flexibilities, and their relative participation in the modes of interest. If it is the lowest

frequency modes that are chiefly of interest, a cutoff frequency criterion can be used. A

cutoff frequency c' is chosen based on the analyst's intuition or experience: all component

modes below this frequency are included in the analysis, all above are excluded. This

criterion can be adjusted as the accuracy requirements change. If good accuracy is

required only in particular modes, component modes can be weighted according to a

component's participation in the targeted modes.

2.12 Summary

Several component mode representations satisfying the basic requirements of linear de-

pendence and completeness were presented in this chapter. The representations give a

reduced-order description of a structural component which preserves its rigid body, static

and low frequency elastic response. It was found that representations combining static

and dynamic modes are more successful in general applications for two reasons: first,

the number of modes is always large enough to satisfy inter-component compatibility

constraints; secondly, a higher convergence rate is expected because a complete static

response to interface loading is automatically included.



Chapter 3

Substructure Synthesis

3.1 Introduction

In the previous chapter several component mode sets were discussed and it was shown

that with them, reduced-order discrete representations of the component matrices could

be generated. In the present chapter, attention is focussed on the general problem of

linking the reduced-order component representations together, a process which gives

equations of motion for the entire structure. The coupling of the components is achieved

by satisfying the compatibility and equilibrium conditions at the component interfaces.

Specifically, interface displacement and rotation coordinates must match, and interface

forces and moments must cancel.

The object of the present chapter is to show how these conditions can be applied

in their most general form to the various component representations described in the

last chapter. A critical assessment of the various forms of system equations will be

given with regard to their applicability to substructured problems of large size and of

general geometric complexity. In particular, two criteria by which they will be judged

are the following: the system equations should be in a form that is convenient to solve,

(an algebraic eigenvalue problem in standard form being the most preferable); and, a

substantial degree of coordinate reduction is desirable to minimize the size of the system

equations and thereby reduce the computational time.

The second criterion is important because it is often the case that when large, complex

41
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structures are analyzed with finite elements, the majority of the computational time is

spent on the eigensolution. Any reduction in the size of this equation is beneficial if it

does not sacrifice accuracy.

3.2 Inter-Component Equilibrium and Compatibility

Meirovitch and Hale [2, 3] examined the problem of satisfying inter-component compati-

bility in distributed models. A basic difficulty encountered with interfaces that are curves

or surfaces is that with a finite number of modes, it is impossible to satisfy the infinite

number of constraints at the interface. Instead an intermediate structure is introduced.

This is a structure made up of the original structural components but where interface

compatibility is only partially satisfied with a finite number of weighting functions. In

this respect, the intermediate structure lies between the system of uncoupled components

and the actual, fully coupled, structure. One particular intermediate structure of impor-

tance to the present work is where compatibility is exactly satisfied at a finite number of

discrete locations on the interface.

In substructured finite element models with conforming elements, maintaining com-

patibility at interface nodes guarantees its maintenance between the nodes. Therefore,

no distinction between the intermediate and actual structures is needed. If the model

contains non-conforming elements, the intermediate structure satisfying compatibility at

the interface nodes is the nearest configuration to the actual structure possible. And so

in either case, this particular intermediate structure represents the optimal configuration

for the assembled finite element model.

Of course, the option exists for satisfying compatibility at only a subset of the interface

nodes. One consequence of this is that any upper bound provided by the Rayleigh-Ritz

method is immediately lost. Moreover, this approximated compatibility is unnecessary
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since it was shown in Chapter 2 that by using a mixture of static and dynamic modes,

enough can be readily obtained to allow all compatibility constraints to be satisfied. In

the remainder of this section, general expressions for compatibility and equilibrium are

presented for discrete models.

Equilibrium conditions describing force and moment balance at the inter-component

boundaries can be expressed in the following general form:

= Aff
^

(3.1)

-B iwhere f is a vector containing the interface forces and moments of each component in

sequence:

e
7B =
^ (3.2)

fB

and J.]: is an independent set of global interface forces and moments partitioned from
-Bf . Assuming that the relative positions and orientations of the components are time-

invariant, and that the interfaces themselves possess no flexibility or inertia, the trans-

formation matrix A contains constant coefficients that depend only on the structural

geometry.

In a similar manner, 77113 may be defined:

 

UB =- 
uB1

•
•
•

}

(3.3)

By the principle of virtual work,

 

u!'

 

_Br^-BT= u A 51gB = 0^ (3.4)



Chapter 3. Substructure Synthesis^ 44

where 6f: is a set of virtual interface loads. Therefore, the requirement for inter-

component compatibility is
ATTu-B 0

A different expression for the compatibility is,

-B TAUSU = 1 AU

(3.5)

(3.6)

which can be derived from (3.5) by selecting an independent set of coordinates u9 from

rsB . By combining (3.5) and (3.6) and by noting that u9 may assume arbitrary values,

ATTA = 0^ (3.7)

By the principle of virtual work,

- B - Brf Br 81-4 = f^BTA6u = 0g (3.8)

where Su: is a set of virtual interface displacements. Therefore, the requirement for

inter-component equilibrium is,

TT? = o^ (3.9)

The expressions for equilibrium, (3.1) and (3.9), and the expressions for compatibility,

(3.5) and (3.6), can be applied to structural models of an arbitrary number of compo-

nents and of an arbitrary geometrical configuration. Based on information detailing the

connectivity of the structural components, the matrices A and TA can be easily and

systematically constructed.

3.3 Lagrangian Formulation of the System Equations

Regardless of what type of component representation is used, the total potential and

kinetic energy of s uncoupled components may be written as,

(3.10)
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T = —2 77i mt
^

(3.11)

The vector 3 contains the component modal coordinates of each component written in

sequence:

71

ri= ^ (3.12)

77.

where 77,772,...,77, are vectors of modal coordinates corresponding to each of the s com-

ponents. Depending on the component mode representation, these might include normal

modal coordinates, interface displacements, or interface loads. The quantities WI and i

are block-diagonal matrices of the form,

m1 0 .^.^. 0 k1 0^.. 0

0 m2 0 0 k2 0
m = = (3.13)

•^•

0 0 .^.^. 771, 0 0^... lc.

where ki and ms are the condensed stiffness and mass for the ith component. For a par-

ticular mode set, these are determined from (2.6) and (2.7). The equations of constraint

which link the various components together may be written in the general matrix form,

RI/ = 0 (3.14)

The rows of R may express compatibility or equilibrium relationships between the com-

ponents, or any other constraints on the system. The overbar notation will be used

throughout to indicate square or rectangular matrices of the form (3.13), or vectors of

the form (3.12).

The equations of motion of the system are obtained from the Euler-Lagrange equa-

tions. Two methods are available for incorporating the constraints (3.14) [36]. The
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method of Lagrange multipliers can be used, in which the Euler-Lagrange equations are

applied to the modified Lagrangian,

L = T — V - Rff (3.15)

where p is a vector of Lagrange multipliers. Dowell [10] used this method to derive the

characterstic equation of coupled systems from the classical free-free mode set. This

method is also used in Section 3.10 to illustrate solutions obtained from the MacNeal-

Rubin mode set.

The more usual method is to eliminate some of the coordinates in 7-7 by means of a

coordinate transformation. Many researchers [9, 15, 23, 24, 29] have derived transforma-

tion matrices by a direct partitioning of R. The vector r7 is partitioned into dependent

(d) and independent (g) coordinates giving,

Rd Rnd = 0 (3.16)g ri 

where Tld is selected so that Rd is invertible. The following transformation may now be

derived:
?id

(3.17)

Applying this transformation to V and T eliminates the dependent coordinates nd from

the analysis and couples together the system components.

Another elimination method has been given by Kuang and Tsuei [22]. Multiplying

(3.14) by RT gives

RTR =^= 0^ (3.18)

where D is a rank-deficient square matrix. The eigenvectors of 2) corresponding to its

zero eigenvalues are calculated from the equation

DYi = 0^ (3.19)
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Each of these eigenvectors satisfies all of the constraint equations contained in R. The

linear combination of all these eigenvectors therefore gives a coordinate transformation

between the uncoupled and coupled system:

= = [Yi • • • Yq] (3.20)

Elimination schemes such as these create an overall transformation between the un-

coupled component coordinates and the generalized coordinates of the system,

= (3.21)

Substituting this transformation into the energy expressions and applying the Euler-

Lagrange equations gives the free vibration equations of motion for the coupled system

in the following general form: .

+ =O (3.22)

where

= Terlit = TeTin-Te (3.23)

This system of algebraic differential equations can be synthesized from any of the com-

ponent mode representations given in the previous chapter and in general it is not nec-

essary to use the same representation with each component. The order of (3.22) is equal

to the difference between the number of columns and the number of rows in R, or in

other words, the excess in the number of component modal coordinates over the number

of constraint equations. Equations (3.22) are legitimate provided that R contains all

the inter-component compatibility constraints. Other constraints can be added through

(3.14) as desired. Although it is not essential to include the equilibrium relations as well,

it will be shown in the subsequent sections that it is sometimes advantageous to do so.

The main drawback of elimination methods is that they are generally cumbersome

and inefficient to use in complex problems. In the remainder of this chapter, a different
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approach is taken in which it is assumed that all structural components are expressed

in terms of the same type of modal representation. The general equilibrium and com-

patibility relations given in Section 3.2 are used to synthesize the system equations for

different component mode sets. This leads to a more efficient and economical handling

of the inter-component constraints which can nevertheless be applied to components of

an arbitrary geometrical complexity.

3.4 Modal Force Method

The classical free-free mode representation (2.8) has been used by Yee et al. [11, 37, 38] in

a synthesis procedure called the modal force method. Rather than identify a stiffness and

mass matrix, this method derives a single dynamic response matrix H(w) by combining

(2.8) and (2.14):

u(t) = 4:0{A w2I] At) = H(w)f(t) (3.24)

Since a free vibration state of the structure is being considered, the vector At) contains

interface loads only. Equation (3.24) may be partitioned according to whether the co-

ordinates of u(t) are located on the component interface or at an interior point. For a

single component,

1UB =[HBB HatlIfn

ur^RIB H"^fi }

(3.25)

Since we are considering the free vibration of a whole structure, fl = 0. For a system of

s components,

  

{

   

uB2

4

Hp 0 .^0

0 HBB^02^• • •

A

f2 7-1B B (w) .7.B (3.26)

    

0^0^. . . HBB fl

       



Chapter 3. Substructure Synthesis^ 49

Satisfying compatibility using (3.5) gives

ATTI-B = ATTIBBt = 0
^

(3.27)

Satisfying equilibrium between the interface loads by applying (3.1) gives

ATTIBBAfgB = 0^ (3.28)

The expression (3.28) is the most general form of the structural equations that can

be obtained with the modal force method. Yee and Tsuei [11] have derived a form of

(3.28) applicable to a simply-connected three-component structure. A simply-connected

structure is one in which only two components are joined at any single point on the

inter-component boundaries. The size of (3.28) is equal to the number of compatibility

equations which, for simply-connected structures, is equivalent to the number of inde-

pendent interface coordinates. For structures whose components have more complex

interconnections, the number of compatibility equations is somewhat larger and is in fact

equal to the number of independent interface loads.

As the terms containing w in (3.28) are not in simple polynomial form, it cannot be

put into the form of an algebraic eigenvalue problem, as is obtained when the Lagrangian

formulation is used. The natural frequencies of the structure may nevertheless be found

by computing the zeros of the determinant of ATTI BBA. For each natural frequency wi

there is a corresponding non-trivial vector fgBi determined from (3.28). The structural

mode shape can be recovered from f9 with the following transformations:

1.71? =^= TIBB (ciji)AfgBi^ (3.29)

ui = FIB (uji)7B = RIB (4 ji)AfgBi^ (3.30)

with HBB defined in (3.26) and with H1B similar in form to HBB . The vector Til3 gives

the interface portion of the mode shape and Fit gives the non-interface portion of the

mode shape.
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The accuracy of the system modes determined from (3.28) depends on the number

of component modes included in (2.8). It was established in Section 2.3 that there is a

minimum number of normal modes that must be used in order to maintain compatibility

between components. Additional modes beyond this minimum will improve the accuracy

of the final solution. Unlike some other CMS methods, the number of component modes

does not change the size of the system equations (3.28). Their size is determined solely

by the number of compatibility equations that are defined for the structure.

The chief drawback of the modal force method is the nonlinear character of the

governing equation (3.28). This equation is both difficult to formulate and difficult to

solve unless the number of compatibility constraints is very small. As a result, the modal

force method is only of practical use in special types of structures where the component

interfaces are simple, and where sufficient accuracy can be obtained with free-free modes

alone.

3.5 Free-Interface Formulation

In this section, a general synthesis procedure is presented for the MacNeal-Rubin mode

set described in Section 2.5. This mode set has been used in various forms by a number

of researchers [17, 18, 19, 20]. MacNeal [17] derived equations based in the first-order

expression (2.26). His assembled equations took the form of a stiffness matrix defined in

terms of physical displacements and modal coordinates. Rubin [18] derived similar equa-

tions using the second-order expression (2.38). Chang [39] synthesized the equations of

motion using the Lagrangian method with direct partitioning of the constraint equations.

Irretier and Sinapius [40] developed the system equations from the general connectivity

matrix TA defined by (3.6) and (3.9). This derivation is relatively complicated and fur-

ther approximations are used to simplify the system equations. A simpler form of the
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system equations is developed in this thesis using the connectivity matrix A, defined by

(3.1) and (3.5) [41]. The details of this method and its extension to the second-order

approximation (2.38), occupy the remainder of this section.

In Section 2.5, the component displacement using residual attachment modes was

given as

u(t) = 4>p(t)^fB (t)^ (3.31)

where

=

From (3.31) the uncoupled interface displacements can be written

g^'.13—= 41' p^fB

(3.32)

(3.33)

it.17^0^.^0

0^c ^.^0

0^0^4)Bs

where

(3.34)

77B
and ill is similar. Likewise, the uncoupled component equations of motion may be

written in the following compact form:

- w 2/1 = -VT? (3.35)

The compatibility equations are obtained by premultiplying (3.33) by AT , as in (3.5):

ATV + ATiBr =0^ (3.36)

In addition to compatibility, equilibrium is also satisfied by invoking (3.1),

AT ^+ ATTF BAfr: =0^ (3.37)
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This allows the component interface loads to be expressed in terms of the modal coordi-

nates:
B 1 -1

fB = —A [ATT A AT (I)
B

(3.38)

Observe that (3.38) along with (2.25) defines a direct relationship between the higher

and lower modal coordinates.

Applying (3.38) to (3.35), the system equations take the form of a symmetric, positive

definite eigenvalue problem in standard form:

(3.39)

where
T [ -B 1 -1 „, B-^T -r=A+T A A T A Al (3.40)

Corresponding to each natural frequency wi is an eigenvector p-i determined from

(3.39). Each entry of this vector is a modal coordinate associated with one of the free-

free component modes. Unlike a mode shape, which describes how much each physical

degree of freedom is participating in a natural mode of the system, the eigenvector

describes how much each free-free component mode is participating in a natural mode

of the system. Component modes which make a large contribution will have a large

amplitude in the eigenvector, those that do not will have a small amplitude. Structural

mode shapes can be recovered from the eigenvectors of (3.39) by writing the component

displacement in a similar manner to (3.33):

-B2-1.4p+xlif (3.41)

Applying (3.38) to (3.41), the i th structural mode shape is expressed in terms of the i th

eigenvector:
-,7111 ]- 1

us = apt —^[Al T A AT 4) pi (3.42)
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To interpret the physical meaning of matrix r , consider a system of uncoupled com-

ponents each of which is represented by a truncated set of free-free modes only. The

stiffness matrices of the uncoupled components can be represented using the overbar

notation as,

X
^

(3.43)

The original component stiffness matrices K can be partitioned and rearranged so that

B [,,,BB re,B
A =

I^K-IB

Note that by (3.40) and (3.44), the matrix I' can be expressed as

(3.44)

 

T -BB^]-1
K + A [AT tif A AT -KB1[- --B

-IB Kzz r
 —st'

 

r :B (3.45)

    

-

Since KBB 
is block-diagonal and A { B lANIArAT is in general full, the latter can be

interpreted, as was noted by Urgueira and Ewins [19], as the stiffness matrix of an

intermediate, or coupling, spring system which links the interface degrees of freedom of

the uncoupled system. Note that the inter-component links of the actual structure are

rigid. The finite stiffness given to the links by virtue of the intermediate system is a

softening effect introduced by the residual approximation of the neglected modes. This

softening effect partially compensates for the overstiffness resulting from the truncated

free-free mode sets.

The order of the global matrix in (3.39) is equal to the total number of free vibration

modes used for all components. This is quite different from the system equations derived

in (3.28) where the size is equal to the total number of compatibility equations. If this

number is less than the sum of all the component modes, then it may be advantageous to

use (3.28). If instead, the number of compatibility equations is greater than the number
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of component modes, as is usually the case in complex structures with many degrees of

freedom, then it would be better to use equations in (3.39). Not only is compatibility

guaranteed by (3.36), but the resulting equations are smaller and are easier to solve,

because they are in the form of a symmetric, positive definite eigenvalue problem.

If instead the second-order approximation to the higher modes is used, the uncoupled

interface displacements are expressed, from (2.38), as

7, B^ 7,—13 ^B —u = (I) p + (41 + u.) 2E. ) t^ (3.46)

Applying compatibility and equilibrium gives,

B CB
f = — A [AT 111 + co 2 F.,

-7.7B
) A] - 1 AT (i) B 15^(3.47)

Since w 2 is unknown until the final solution is found, the inversion in the preceding
--B

equation cannot be performed exactly. Defining KcPL = [411T if 14.1

gives
^—^ ]-1

fB = —A {I + w 2 KcpLAT E A KcpLATTBp

A linearized approximation for 
—fB 

is given by,

^—B^ --,.B
f —̂' —A [KCPL — w 2 &MAT F Axcpd ATTBT)

- i

and rearranging

(3.48)

(3.49)

where the matrix inverse in (3.48) has been approximated by the first two terms of its

MacLaurin series expansion. Note that this expression contains the original expression

(3.38) in addition to the linearized contribution from the second-order term.

Applying (3.49) to (3.35) gives the global matrix equation,

rk — w 2 i/j p = 0^ (3.50)

k = r . A- + TBTAKcpL ATTB
^

(3.51)

IC/ = I + TBTAKcpLATrAKcpLATTB
^

( 3 . 5 2 )
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Thus, the net effect of including the second-order term in the approximation of the

neglected component modes is the creation of a non-identity, supplementary global mass

matrix. The order, symmetry and positive definiteness of global matrices are not affected

by the inclusion of the second-order term. Craig and Chang [42J derived expressions

equivalent to (3.39)-(3.40) and (3.50)-(3.52) for a two component system.

The same global stiffness and mass matrices can be generated via the Lagrangian

method. Using the first-order approximation to the neglected modes, potential and

kinetic energies of the uncoupled components are given by (3.10) and (3.11), where

 

[7^0^_ [A o
-^ -

0 XII M^ 111
(3.53)

and

p
fB (3.54)

-= B^T -
Note that^= G =^KW. The coupling of the components is achieved with (3.38)

which suggests the transformation,

I
B^—AKcpLATTB

 

13
^

(3.55)

Applying this transformation to (3.10) and (3.11) and by noting that,

=-B^-7,-T
=^M
^

(3.56)

global stiffness and mass matrices identical to (3.51) and (3.52) are obtained.

Consequently, the supplementary global mass matrix is a product of the first-order

approximation if the Lagrangian formulation is used, or of the second-order approxima-
-,-.13

tion if the direct formulation is used. The form of E in (3.56) clearly indicates that the

supplementary mass matrix represents the inertia contributed by the residual attachment
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modes, a term which is significant if the criterion (2.24) is not strictly adhered to in the

selection of component modes. Note that in developing the transformation (3.55), the

relationship (3.38) had to be used. If instead the direct partitioning procedure (3.16)-

(3.17) is used, the equations satisfying both compatibility and equilibrium constraints

take the form,

AT r ATiB^p
16i =^ = 0^(3.57)

0^TT^.1B

where (3.9) and (3.36) have been used. The direct partitioning of R requires the inversion

of the submatrix Rd defined in (3.14). In this case, the square matrix Rd has order equal

to the number of compatibility plus the number of equilibrium constraints. Typically this

is about twice the dimension of KCPL and therefore the procedure leading to (3.51)-(3.52)

is generally more efficient than direct partitioning. In terms of the order of the global

matrices and the predicted natural modes, both approaches should produce identical

results. The greater efficiency of the synthesis method presented above stems from the

more economical handling of the constraint equations.

3.6 Fixed -Interface Formulation

In Section 2.7, a component mode representation was described in which static constraint

modes were augmented with fixed-interface dynamic modes. This led to a component

equation of the form (2.65). Based on this equation, the uncoupled equation of the system

may be written as,

,B
0 kNN

0 11,11B +[?-.TIBB r-FtBN 1{,BH}
fin^

Frt-NB^ 0
(3.58)
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where

kBB
=

kBB 0^0

0 kBB .^0
(3.59)

0^0 kBB

— 7-7-1BB —mBNand kNN ,
^

and r--1/NN are similar.

To enforce the displacement compatibility between components, (3.6) is applied to

(3.58). If the top equation in (3.58) is then premultiplied by TT, the result is,

[ TATIBB TA 0  1 u: } [ Tim-,BBTA
-I-NN^7-Ti NB TA0^k^Pn

Tir-TinN iign . Tir
(3.60)

--NNM -13n
0

The term TA r on the right-hand side of (3.60) is zero by (3.9). The coupled equations

of motion of the system at frequency w therefore take the form of an algebraic eigenvalue

problem:

where

—w2k = o (3.61)

uB
=

n
}

(3.62)

and k and /Cf are the coupled stiffness and mass matrices in (3.60).

Corresponding to each natural frequency w i is an eigenvector^This eigenvector

describes the participation of the interface displacement coordinates and the participation

of the fixed-interface dynamic modes in a natural mode of the system. The modal

displacement at the interior degrees of freedom can be recovered from the eigenvector by

arranging the interior displacement of all components in sequence. This can be expressed

in the following compact form:

I 1T/ 1--B^ gu = c u^npn = w c TAug (Pnpn (3.63)
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The modal displacement of the interior degrees of freedom for the i th system mode can

therefore be obtained from the ith eigenvector:

I = [ xli Iui^c TA^(Dni. (3.64)

The vector uf, taken together with 4, defines the i th structural mode shape. The

component displacement in the i th mode can be written in unpartitioned form as

z7i = 
L

TA „ Si (3.65)

The order of (3.61) is equal to the number of independent interface coordinates in

the structure plus the total number of fixed-interface dynamics modes used. For a large

structure with many interface coordinates, this number can be be very large and the time

required to extract the natural modes can be considerable. This is the chief drawback of

the fixed-interface method which, in other aspects, is a very useful and attractive method.

The calculation of static constraint and fixed-interface dynamic modes is economical in

comparison to other types of component modes. Also, the synthesis procedure is simple

and requires little computation. The global matrices are derived from the component

matrices through simple transformations which, when examined closely, are similar to

assembling global matrices from element matrices, as done in the finite element method.

This assembly process eliminates the need for multiplication of large matrices and matrix

inversions at the system level. Therefore, this is a more efficient means of synthesizing

the system equations than is provided by the more general elimination methods described

in Section 3.3.

SandstrOm [26] carries the fixed-interface method one step further by applying a

condensation procedure to the system equations. A similar idea was introduced by Kuhar

and Stahle [43]. Assuming a periodic solution with frequency w, the first equation in
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(3.60) can be written as,

Aft'  m ^(TT BB ^ITT —BN-
A ft' -L AU - L02^M -1- Ally + -L Am Pit) = 0

Likewise, the second equation in (3.60) can be written as,

(3.66)

(kIN wzieN)._^2NB T B 0pn — —m AU g ^ (3.67)

This establishes a relationship between the modal coordinates p„ and the interface coor-

dinates uB:

pn 
= w2^- w2—NN) 

-1 M NB ry, BA119

Substituting (3.68) into (3.66) gives,

(3.68)

rrrATIBBTA w2 (TITfiBB TA + ce2TIBN [INN
1- - W2MNNi-1—mNBTA)] ugB = 0 (3.69)

The modal coordinates pr, have been condensed out of the equation of motion (3.69).

Because of the condensation, the system mass matrix is a function of the parameter w 2

and a nonlinear eigenvalue problem results. Consequently, the solution of (3.69) is both

simplified, by a reduction in order, and complicated, by the introduction of nonlinearities

in w2 . The advantages of this condensation may outweigh its difficulties if the coordinate

reduction is significant, i.e., if the number of modal coordinates eliminated is comparable

to the number of interface coordinates retained.

In large complex structures in which the component interfaces are curves or surfaces,

the number of interface coordinates is usually much larger than the number of modal

coordinates and so this condensation procedure would have little value. As with the

modal force method, it would be of more use in beam-type structures where the com-

ponent interfaces are restricted to a small number of point locations. If the number of

interface coordinates could be thus limited, the nonlinear equation (3.69) is potentially

very compact.
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Corresponding to each natural frequency wi is an eigenvector u9 determined from

(3.69). The remainder of the mode shape, given by the displacement at the interior

coordinates, is constructed with the aid of (3.6), (3.63) and (3.68):

-1ui = [471,TA^(TCNN - Wi2-M,NN) -MNB TA} UBgi (3.70)

With this formula, the mode shapes can be constructed without having to explicitly

calculate the the modal coordinates To n .

3.7 Condensation in the Fixed- and Free-Interface Formulations

The Craig-Bampton and MacNeal-Rubin mode sets give fundamentally different formu-

lations of the system equations. The formulation (3.60) produced by the Craig-Bampton

mode set will be referred to as the fixed-interface method. These equations are in terms

of the interface displacements and the fixed-interface modal coordinates. Two separate

formulations have been derived with the MacNeal-Rubin mode set. The first-order mass

formulation (3.39)—(3.40) and the second-order mass formulation (3.50)—(3.52) are ex-

pressed in terms of the free-free modal coordinates only; all physical displacements and

loads have been eliminated. Collectively these two formulations will be referred to as the

free-interface method.

The distinctions between these two methods are of prime importance to the system

condensation. Consider a system of complex components with meshed curve or meshed

surface interfaces. As the mesh is further refined, the u: set expands, increasing the

order of (3.60). But modal sets Ton and IT) do not experience a corresponding expansion,

for the number of dynamic component modes is only weakly dependent on the model

complexity; in fact, it is more strongly influenced by the accuracy demands and the

degree of substructuring. Thus, as the complexity of a substructured finite element
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model is increased, the free-interface method enjoys a greater degree of condensation.

This point will be clearly demonstrated with the examples in Chapter 4.

It should be noted that in the free-interface method, both compatibility and equi-

librium are explicitly enforced, while in the fixed-interface method only compatibility

is enforced. Consequently, twice as many constraints are applied in the free-interface

method, since in most cases the number of equilibrium and compatibility constraints is

approximately the same. It was established earlier that the order of the coupled sys-

tem equations is equal to the total number of component modes minus the number of

constraints. Thus, as more constraints are applied, more coordinates are eliminated

from the governing equations. This provides an additional explanation for the improved

condensation of the free-interface method.

However, the benefits of the free-interface formulation come at a price. It was noted

at the end of Chapter 2 that more extensive component level calculations are required

for the MacNeal-Rubin mode set than for the Craig-Bampton mode set. Moreover,

in the present chapter it was shown that the coupling procedure in the free-interface

method is far more complicated than what is needed in the fixed-interface formulation.

This illustrates an essential trade-off in the CMS method: to avoid computations at the

system level, more are required at the component level and in the coupling algorithm.

As model complexity increases, this trade-off works in the free-interface method's favour.

3.8 Component Mode Substitution

Benfield and Hruda [15] proposed a hybrid substructure synthesis method in which a clas-

sical free-free mode representation is used for some components, and the Craig-Bampton

mode set for others. This approach attempts to resolve one of the basic difficulties of

the fixed-interface method—the retention of interface degrees of freedom in the system
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equations.

Consider a two-component discrete structure shown with components a and b. Com-

ponent a is designated the main body and its displacement is described with free-free

modes:

ua = (pp^ (3.71)

or, in partitioned form,

a

{

UB

u

[4113
(3.72)

Component b is designated a branch component and its displacement is described

with the Craig-Bampton mode set:

lutiJu l ^( Nuts
"^xijcz 4)1,^pn

For the purposes of this example, compatibility equation (3.5) can be written

(3.73)

[ AT AT
uB

a =
Ub

(3.74)

Because it is a two-component system, the number of interface coordinates in a and

b is the same, and is exactly equal to the number of constraint equations in (3.74).

Therefore, Aa and Ab are square matrices and, in general, the compatibility equations

can be arranged so that one of the two is an identity matrix. Letting Ab = I, and using

(3.71) and (3.74),

uB _AaTuaB = _AaTep^(3.75)

Substituting (3.75) in (3.73) gives

uf,'^—A„TV 0 ^p^p IP
Ab

ub^--tiPIAI(DB 4)4^Pn^Pn
}

(3.76)
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With this transformation, expressions for the kinetic and potential energies of the

coupled system can be derived. Applying Lagrange's equations gives

ii/-i + k^= o

where

iff = Tc7,1', M Tab

"k = TLY Tab

(3.77)

(3.78)

(3.79)

4. =
1 P }

(3.80)
Pn

and Tab is the general two-component transformation matrix,

4)B^0

4)I^0
Tab= (3. 81 )

—AaT(DB^0

—TIA/V3^cl.,

Note that the static constraint modes defined for component b allow full satisfaction

of the compatibility constraints at the discrete interface locations. On the other hand,

the free-free modes of component a allow the interface coordinates to be eliminated from

the coupled equations. This keeps the order of the coupled equations small, regardless of

how complex the interface is.

The method is applied to multi-component models by executing the above steps suc-

cessively. For instance, to synthesize a third component c, which may be connected to

either a or b, the procedure is to repeat (3.71)—(3.77) with the coupled system a-b defined

as the main body and the new component defined as the branch. The total synthesis of

a multi-component system therefore requires intermediate eigensolutions which provide

free-free modes for the main body in the next level. The number of intermediate eigen-

solutions varies according to how the components are connected, but at most it is .s — 2,
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where s is the number of components. Although it is undesirable to have to perform ad-

ditional eigensolutions, they are typically of small order, thus limiting the computational

expense.

The chief drawback of component mode substitution is the inconsistency in the treat-

ment of the components. The representation for the branch component is statically com-

plete in that the static response to interface loading is exact, whereas that of the main

body is not. Moreover, the static incompleteness of the main body is carried through

each of the intermediate stages, resulting in poor convergence for the system equations.

It is for this reason that Benfield and Hruda proposed using free-free modes with inter-

face loading, as described in Section 2.4. Although this innovation improves convergence

by providing more realistic modes for the main body, it also means that components

can no longer be analyzed independently and it significantly increases the computational

burden. (Note that the static condensation used to calculate the interface loadings is,

for multi-component models, not the same as that given by the static constraint modes

of the branch components.)

A further point to note is that if the structure is to be reanalyzed following a design

modification, many of the intermediate results may have to recalculated, in addition to

the modes of the modified components.

3.9 Error Estimation for Natural Frequencies

The task of selecting dynamic component modes for a CMS analysis provides certain

challenges. There is a computational advantage in including a small number of modes,

but using too few will compromise the accuracy of the results. Modes may be selected

using a cutoff frequency criterion, but some judgement is required in choosing a cutoff

frequency suitable for the target frequency range. It is therefore of considerable interest
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to be able to predict the accuracy of a particular choice of component modes, if not in

advance of the analysis, then immediately afterwards. It is also of interest to make these

predictions without having to compare the results to those of other methods.

Hurty [5] provided a convergence criterion for the fixed-interface method based on

estimating the perturbation to a natural frequency resulting from the addition of com-

ponent modes. It can be readily noted that introducing more fixed-interface dynamic

modes into the analysis adds rows and columns to the system equations (3.61). Thus,

the matrices of the system can be partitioned into original (0) degrees of freedom and

extras (E) representing the newly added component modes:

A-4.00 A;40E
= (3.82)

  

These extra rows and columns can be condensed into the original equations through

a process similar to that used in (3.66)—(3.69). In this way, the extra modes form a

frequency-dependent addition to the system mass matrix of the form,

6,A4- (03) = co2k0E rEE^2 -1 -
A — w mEo (3.83)

where it is assumed that the fixed-interface modes are mass normalized.

Hurty showed that a first-order estimate of the change to the natural frequency w i

can be obtained with,

AC44 = aAk(Wigi 
wi 1 14

(3.84)

The formula is accurate for small frequency changes. If the set of extra modes is expanded

to include all neglected modes, Awi corresponds to the absolute error in the eigenvalue.

Thus, if a frequency has sufficiently converged, a reasonable estimate of frequency error

is obtained. If a frequency has not converged the frequency error will not be accurate.

Nevertheless, the estimated frequency change will be large enough to indicate that there
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is a significant error in the mode. In this way, inaccurate natural frequencies can be

identified in the results. But this method has two drawbacks: the error estimate depends

on the selection of extra modes; and, if they are not unused modes left over from the

original analysis, the extra modes have to be calculated anew.

In the present section, an error estimation scheme is developed for the free-interface

formulation in which a complete account of the neglected free-free modes is taken. This

is possible because the residual flexibility can be tuned to a particular frequency w by re-

placing G with d(w), as was shown in Section 2.5. The resulting component displacement

given by

u (I)p + d(w)f (3.85)

is an exact representation at frequency w when 0 < w < wc . Using the synthesis procedure

for the first-order mass formulation in Section 3.5, the resulting free vibration equation

of the system is,

{r(w) — ca 2 1} P = 0 (3.86)

where

r(w) = X + TBTA [AT-1i7B(w)A1 -1 ATTB (3.87)

tr(w) = -6-,-BB(w) 
(3.88)

Solving the characteristic equation

det [r(w) — w 2 .1] = 0 (3.89)

gives the exact natural frequencies of the coupled system in the range 0 < w < coc .

Although (3.86) provides a condensed representation of the system, a complete account

of the static and inertial effects of the neglected modes has been included by virtue of

the dynamic residual flexibility.
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Now consider a second problem in which the following eigenvalue equation is solved:

[r (65) - A,i1 A
^

(3.90)

where 65 is an arbitrary frequency such that 0 < w < wc . It is of interest to investigate

how the eigenvalues of (3.90), a i , vary as a function of ci). It is shown in Appendix B that

the Rayleigh quotient

Pi Pi

is a continously non-increasing function of ar in the range 0 < (2) < wc . If 65 is equal to an

exact natural frequency of the system (C) = wi), the Rayleigh quotient is stationary at

ai = If ai is moved to a value larger than wi , the Rayleigh quotient will stay the same

or decrease; if (7) is moved to a value smaller than wi, it will stay the same or increase. As

it does not matter which mode is being considered, the same result can be applied to all

modes of the system. This leads to the following general conclusion: in a system where

the modes are ordered such that w 1 < w2 < < < ..., and where Ca is situated

between two exact modes of the system such that wi < iw <

< 4^j^1,2,...,i^ (3.92)

•^4^j=i+1,i+ 2...^ (3.93)

In (3.92) lower bounds to the exact natural frequencies are obtained; in (3.93) upper

bounds are obtained.

The free-interface formulation with the first-order mass matrix is obtained by setting

= 0 in (3.90). In this case,

>
3
2.^j = 1,2, ...^ (3.94)

(3.91)

and the frequencies obtained are upper bounds to the exact values. Defining f/ i , (22, • •

to be frequencies calculated from the free-interface formulation, (3.90) is now solved with
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=^for i > 1; i.e., the following eigenvalue equation is solved:

[r(O 1 ) — 3tid P, = 0^ (3.95)

Evaluating the eigenvalues results in a series of lower bounds and upper bounds similar

to (3.92) and (3.93). For the i th mode, in particular,

At <^ (3.96)

Thus, an absolute measure of the accuracy of the i th mode is obtained.

The evaluation of (3.95) is useful for determining the accuracy of modes in the target

frequency range when no other means of comparison are available. By using the dynamic

residual flexibilities of the components, the cumulative effect of all neglected modes can

be evaluated at a particular frequency without computing additional free-free modes.

3.10 Modal Properties of Combined Systems; the Inclusion Principle

To conclude this chapter, the convergence of CMS-derived frequencies is investigated.

Particular attention is given to the improvement in convergence offered by the free-

interface method.

Rayleigh [44] showed that if a constraint is applied to a dynamical system, the modi-

fied frequencies interlace the original frequencies in such a way that the former are greater

than, or in exceptional cases equal to, the latter. In a discrete system, adding a constraint

is often equivalent to removing a degree of freedom, and vice versa [1]. This leads to the

inclusion principle, whereby the frequencies of a discrete system monotonically decrease

towards the actual frequencies as the number of degrees of freedom increases. This result

is important in situations where modal truncation is a factor. Meirovitch and Kwak [45]

have investigated the applicability of the inclusion principle to substructured synthesis

formulations. They prove the monotonic convergence of the frequencies provided that a
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a

  

b
x = 21

Figure 3.1: Two-component continuous bar

supplementary degree of freedom adds a single row and column to the system matrices,

leaving the original portion of the matrix the same. This is generally true for system

matrices resulting from classical free-free mode sets, and by examining (3.60) it can be

verified that this property holds for the fixed-interface method. However, it does not hold

for the free-interface formulations. While each additional free-free mode contributes a

single row and column to F, the simultaneous reduction in the residual flexibility affects

matrix elements throughout r. Consequently, the inclusion principle cannot be applied

in its canonical form. It is therefore important to the discussion of residual flexibility

formulations to investigate their convergence characteristics.

Dowell [46] showed that if two substructures are joined at a single point, the fre-

quencies of the combined system interlace the component frequencies. Thus, the general

interlacing principle for a dynamic system also applies to a system of uncoupled compo-

nents. Dowell used a classical free-free representation of the system components, a case

for which the inclusion principle is known to hold.

To investigate the influence of residual flexibility on the modal properties, consider

the axial vibration of the two-component distributed system in Figure 3.1. Component

a is a fixed-free bar with a frequency spectrum wai = = 7r/2, 37r/2, 57r/2, ,
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while component b is a free-free bar with spectrum wbi = abj = 0, r, 21-, 3r, ....

Two constraints exist between the components: one geometric, and one natural. In a

classical free-interface component mode representation, only the geometric constraint is

used explicitly, but if residual flexibility is included both must be used. The displacement

functions of the two components are

wa = E 0.i(x)ai 0.(x)f
^

(3.97)
1=1

J

Wb = E obi (x)bj — ti,b(x)f^ (3.98)
j=1

where Oa i (X) and Obi (X) are the fixed-free eigenfunctions of component a and the free-free

eigenfunctions of component b respectively; and where I and J are the number of modes

selected for components a and b respectively. The functions Ti,a (x) and 1/;b(x) are the

residual attachment modes associated with f:

0.i(x)Oai(1)
L-s•^1=1+1^at

^a (x )̂ Oat(x)95.(1) 
^" ^(71^at

(3.99)

(3.100)

(3.101)
j=J+1

bb(x)^
E- obi(x

A
)
boi bi(1) 

= bb(x) — Ej (1)17i(X)fkbi(1)^(3.102)
j=1^Abj

where ika (x) and/Pb(x) are the inertia-relief attachment modes associated with f . Note

that by using the same force f in (3.97) and (3.98) and 'by the sign inversion in (3.98),

inter-component equilibrium is at once satisfied.

The potential and kinetic energies of the two components is given by

dtP 2^21 dti„ 2
(3.103)+ [f^dx^(--=) dx1 f 2

2 o dx^dx
1 1^'1

V =^Aai4 — E
2 i=i 13-1
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1 I^J=^a2^i) + [
/Ap2 dx + 1

21^

P^(3.104)
2 4.4 i^2 L's^2 ^a^ti=i^J=1

where mass normalization of the eigenfunctions has been assumed. The geometric con-

straint is satisfied with the equation

I^ J

R =^Oai (1)a i + l'ska (l)f —^Obj(1)bj 114(1)f = 0^(3.105)
i=1^j=1

The method of Lagrangian multipliers is used to derive the equations of motion. With

the Lagrangian,

L=T —V —pR^ (3.106)

the following three equations are derived in conjunction with (3.105):

a i A a ia i — pOai(/) = 0^ (3.107)

Abibi pcbbi (1) = 0^ (3.108)

Ei+df— ft (1'4a(1) + 1414 1)) = 0^ (3.109)

where

E = 101 ,tp̂!dx + f 21 1'4 dx

=^
1^

00
^2 7 \

t° (1)2a,\i1) + E c'b, i2( ‘ )
i=i+i^al^j=J+1^bi

G = 
fi ich

dx
pa \ 2^/21 ( dijIb 2

JO^) dx +
1^dx^dx

t (gii( 1 ) + t qi( 1 ) =
1=1+1 1\az^j=J+1 A b3

Assuming sinusoidal solutions of frequency cv for ai, ki and f, (3.107)-(3.109) are substi-

tuted into (3.105) giving the result

02 . (/) \--■ ^7)30)^1^
(3.110)

A .a-1 co 2 + 47g b •
0 

— 4) 2 = k— W 2 A/1-i^at^3
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where

= =G2 (3.111)

The right-hand side of (3.110) is the residual contribution from the neglected modes given

by the second-order formulation. Setting this term to zero gives the equation resulting

from the classical free-free component mode representation. Replacing the right-hand

side of (3.110) with -d gives the equation for the first-order free-interface formulation,

in which the kinetic energy of the residual mode is neglected.

Graphical solutions for the classical, first-order and second-order approximations are

shown in Figures 3.2 and 3.3. In these figures, the left- and right-hand sides of (3.110) are

plotted independently. The three curves corresponding to the three right-hand sides are

labelled according to the residual approximation used. In Figure 3.2, the fundamental

fixed-free mode of component a and the rigid body mode of component b are used. The

fundamental free-free mode of b is added in Figure 3.3. The poles of the left-hand side of

(3.110) occur at the component frequencies (.0, 1 = 0, wai = 7r/2, wb2 = 7r, and are indicated

by vertical dashed lines. The intersections of the solid curves define solutions to (3.110)

for each of the three formulations. These can be compared to the exact spectrum of the

assembled bar ch./i = 7r/4, 37r/4, 57r/4, ..., indicated by vertical dotted lines.

Several observations can be made about the nature of the approximated frequencies.

First, for each right-hand side curve there is one and only one intersection point between

the poles of the left-hand side. The poles of the left-hand side occur at the component

frequencies, which are the same as the frequencies of the uncoupled system. Thus, fre-

quencies of the combined system always interlace the frequencies of the uncoupled system

such that

al <^< A2 <^<^ (3.112)

where A i , A2, ... are the squares of the uncoupled system frequencies, ordered from lowest
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Figure 3.3: Graphical solution for continuous bar, three mode approximation
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to highest, and Cpl. , 6.)2, . are the frequencies of the combined system. This provides an

upper bound for the combined system frequencies. Secondly, including residual effects

gives one more mode than is obtained with the classical method. The additional mode

appears in such a way that the classically-derived frequencies interlace the frequencies

derived with residual effects:

(2)^- (1)^- (0)^- (2)^- (1)^- (0)
W1 < W1 < W1^W2 < U-72^W2^• • • (3.113)

- (0) - (1) - (2)where wi , wi , wi are frequencies calculated with the classical, first-order and second-

order residual methods respectively. Note that the basic interlacing principle (3.112) is

unaffected by the vertical position of the right-hand side curves.

Thirdly, from the inclusion principle it is known that solutions obtained with the

classical CMS representation converge to the exact values as the number of component

eigenfunctions is increased. Also, it can be observed that as more functions are added,

the magnitude of the residual terms diminishes and the first- and second-order curves

degenerate to the classical case. To show this, the right-hand side of (3.110) can be

written,
1

K -w2f1^1 — w2 B

co^( 4.02 )^co Oti (i) ( (02 \

b^63 )4/2-132^i=l+1 Aai^Aai
 

-^

=J+1
02ai(1)^j^(gi(1)

^(3.115)

i=■+1^at^j= j+i

If c4.) 2 < Aai, i = I + 1, I + 2, ... and w 2 < Abj, j = J + 1, J + 2, ..., w 2 E is always less

than O. This is verified by comparing each term in the numerator and denominator of

(3.115). Consequently, the denominator of (3.114) is always positive in this frequency

range.

(3.114)

where



i^1 +1,1 +2,...
2w

11111^= 0
/-000 )tai

CV 2
11111^= 0
J-400 Abs j = J +1,J +2,...

Therefore, by (3.115)
w2B

Jim^— 0
/ ,J--000 G
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As more free-interface modes are used in the analysis, the lowest numbered terms

in the summation are removed; and since all terms are positive, G and w2B must both

decrease in magnitude. Furthermore, for a fixed frequency w,

and because Ern G = 0,

Ern^G —^ (3.119)
1 — W2B

As a result, the right-hand side of (3.110) vanishes as more component modes are con-

tributed to the modal representations. Evidence of the diminishing residual terms can

be found by comparing the the ls t order and 2nd order curves in Figures 3.2 and 3.3.

In this limiting process, the frequencies obtained with residual methods approach

those of the classical case. The combination of the two limits gives the required conver-

gence properties:

lim J.,C2) = lim Co•( 1) = lim w.°) = lim (3.120)
I,J.00 2  1,J-400

More importantly, the residual solutions are seen to converge to the exact results ahead of

the classical solutions. The residual terms adjust themselves as more component modes

are added, thus preventing the frequencies from falling below the exact solutions.

In the derivation of (3.110), the two-component system in Figure 3.1 was used only to

supply the variables with numbers. The general form of (3.110) is in fact applicable to any

two-component system subjected to a single constraint. By adding further summations
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to the left side, the equations can be used for any number of components. But when

another constraint is imposed on the system, (3.112) is no longer applicable and the

upper bound provided by this relation is lost. Systems with multiple constraints require

a more sophisticated treatment than the one presented above.

3.11 Summary

A number of specific CMS formulations which are suitable for substructured systems of

an arbitrary geometrical complexity have been derived based on the component mode

representations detailed in Chapter 2. Inter-component compatibility and equilibrium

are expressed with the general relations stated in Section 3.2. The resulting formulations

are computationally more efficient than the more general elimination methods of Section

3.3 and are therefore better suited for a finite element program.

Of particular interest are the free- and fixed-interface formulations derived from the

MacNeal-Rubin and Craig-Bampton mode sets. Two free-interface formulations were

derived, in which first- and second-order mass matrices are employed. Both formulations

give matrix equations in terms of the free-free modal coordinates only. On the other

hand, the fixed-interface equations are in terms of interface displacements and modal

coordinates. As a result, the free-interface formulations can be expected to provide

greater condensation when applied to arbitrarily complex systems.

New contributions made in this chapter are the following: the generalized formula-

tions for the two free-interface methods and the modal force method using the general

connectivity matrix; the method for calculating lower bounds to frequencies derived from

the free-interface method using the dynamic residual flexibility concept; and the demon-

stration that frequencies calculated with residual flexibility will converge to the exact
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results as component modes are added (the inclusion principle), and that residual flexi-

bility provides an accelerated convergence for the system modes.



Chapter 4

Modal Analysis of Three Finite Element Models

4.1 Introduction

In this chapter, detailed results are presented for the following finite element models:

• A two-dimensional model of a container ship;

• A three dimensional model of a telescope focus unit (TFU);

• A three dimensional model of a telescope focus unit and its support structure.

The results are presented with a view to comparing the following:

• The accuracy of the natural frequencies and mode shapes obtained with,

—the fixed-interface method using the Craig-Bampton mode set;

— the free-interface method using the MacNeal-Rubin mode set with both first-

and second-order mass terms;

— direct finite element analysis;

— Guyan reduction.

• The computational time required for each method as a fuitction of the eigensolution

tolerance.

• The effect of modal truncation on the CMS methods by presenting results obtained

with various cutoff frequencies.

79
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The accuracy of CMS-derived frequencies and mode shapes is determined by com-

paring these results with direct finite element analyses of equivalent full-size models.

Because both the substructured and full-sized models are derived from the same finite

element mesh, a CMS analysis can do no better than reproduce the results of a direct

analysis. The CMS frequency and mode shape results can thus be presented as a per-

centage difference from the direct results. The percentage difference in the ith natural

frequency is,
-%Af, = f.s x 100%
fi

A percentage difference in the ith mode shape is given by,

%Au, =
11%112 

112
 x 100%

where 11%11 2 is the Euclidian norm of the vector u1.

The natural frequency and mode shape results were computed using the Vibration

and Strength Analysis Program (VAST), Version 06 [47]. Originally, this program only

had the capability for direct analysis of finite element models and Guyan reduction of

substructured models. Modifications were made to the program to allow CMS analysis

using the fixed- or free-interface method. Details of the CMS implementation in VAST

can be found in Appendix C.

4.2 Analysis of a Container Ship

A two-dimensional model of a container ship is depicted in Figure 4.1. This type of model

is useful for predicting the vertical modes of vibration of the actual ship. Wave motion

and propeller-induced pressure forces can excite resonances in the ship's structure and

so accurate knowledge of the natural modes is important in the design stage. The model

is composed of 8-node membrane elements, and 3-node bar elements: the membranes

(4. 1)

(4.2)
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(c)

(a)^(b)

Figure 4.1: Two-dimensional container ship model: a) stern; b) aft-body; c) deckhouse;
d) mid-body; e) fore-body

simulate the sides of the hull and interior walls; the bar stiffeners simulate the hull

bottom, decks and bulkheads. The substructuring scheme shown in Figure 4.1 is used for

the CMS analyses. Relevant data regarding the model and its constituent components

can be found in Table 4.1.

Components # nodes # d.o.f. # membranes # bars
Stern (a) 54 162 13 10
Aft-body (b) 65 195 16 16
Deckhouse (c) 121 363 32 32
Mid-body (d) 121 363 32 16
Fore-body (e) 121 363 32 24
Complete Model 447 1341 125 106

Table 4.1: Description of the container ship model

(d)
^

(e)
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4.2.1 Natural Frequency Results

In Table 4.2 are found the free-interface CMS natural frequency results for the ship

model. Six cases are analyzed: first- and second-order approximations are employed

with cutoff frequencies on the free-free modes of 25, 30 and 35Hz. The CMS frequencies

are compared with the results of the direct analysis for the first 37 elastic modes. It

should be noted that the model also has three rigid body modes that are omitted from

the table. At the bottom of the table are the total number of degrees of freedom in the

equations of motion resulting from each formulation.

For each of the three frequency cutoffs, the second-order mass offers a distinct im-

provement over the first-order mass. This does not come as a surprise since in Chapter

2 it was demonstrated that the MacNeal-Rubin mode set employing the first-order ap-

proximation is only accurate when the square of the target frequency is negligible in

comparison to the square of the cutoff frequency (see Equation (2.24)). In other words,

the second-order terms are expected to have a significant effect when this condition is

not met. In view of the cutoff frequencies that have been used here, this condition clearly

has not been met for the target frequency range 0-30Hz. Satisfying this condition re-

quires calculating a much larger number of component modes, something which should

be avoided. Including the second-order mass terms improves the inertial representation

of the neglected modes, which partially compensates for low cutoff frequencies.

Another important phenomenon is that as the cutoff frequency increases, the CMS

frequencies converge to the direct-analysis results and that, in general, the low frequencies

converge before the high. However, there are some exceptions to this latter rule. For

example, mode 20 converges faster than either mode 15 or 16. But it should be observed

that each mode has a different distribution of strain and kinetic energy and so they

cannot be expected to converge at the same rate.
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Direct FEM Analysis % Error, Free-Interface CMS Analysis
Mode Frequency

(Hz)
25 Hz. Cut-off 30 Hz. Cut-off 35 Hz. Cut-off
1st 2nd 1st 2nd 1st 2nd

4 0.881 0.00 0.00 0.00 0.00 0.00 0.00
5 2.14 0.02 0.00 0.02 0.00 0.01 0.00
6 3.52 0.07 0.01 0.05 0.01 0.04 0.01
7 4.55 0.18 0.06 0.09 0.02 0.07 0.02
8 5.58 0.19 0.02 0.12 0.01 0.11 0.01
9 5.91 0.57 0.33 0.28 0.10 0.23 0.08

10 8.01 0.26 0.04 0.18 0.02 0.11 0.02
11 8.93 0.39 0.09 0.30 0.07 0.23 0.05
12 10.2 0.51 0.07 0.38 0.04 0.25 0.03
13 12.3 0.72 0.14 0.44 0.08 0.35 0.07
14 13.1 2.07 0.47 1.17 0.25 0.75 0.17
15 13.7 2.61 1.01 1.71 0.90 1.07 0.49
16 14.2 6.52 2.49 2.82 0.79 1.71 0.66
17 15.0 2.22 0.38 1.19 0.24 0.81 0.14
18 16.4 3:35 0.54 1.79 0.22 0.76 0.10
19 17.3 2.58 1.00 1.89 0.84 1.13 0.39
20 18.9 1.64 0.48 0.77 0.14 0.38 0.09
21 19.2 3.85 2.16 2.56 1.65 1.19 0.59
22 20.0 2.92 0.57 1.63 0.23 1.08 0.10
23 20.2 5.98 3.21 1.86 0.56 0.91 0.48
24 21.4 3.57 1.44 1.10 0.42 0.85 0.24
25 21.7 6.82 3.26 2.00 0.35 1.45 0.25
26 22.9 9.45 1.81 1.35 0.41 0.82 0.13
27 23.7 6.06 1.73 1.88 0.59 1.36 0.36
28 24.0 15.5 5.20 2.77 0.87 1.24 0.28
29 24.9 20.0 4.48 3.43 1.21 1.89 0.52
30 25.3 25.4 7.37 3.57 0.93 2.45 0.52
31 25.7 26.6 8.77 2.98 1.28 1.01 0.32
32 26.1 32.2 14.6 3.57 0.36 1.11 0.20
33 26.9 35.9 14.8 5.42 1.54 2.36 0.52
34 27.8 47.4 20.9 2.94 1.55 1.37 0.49
35 28.1 74.3 40.8 2.56 0.89 1.18 0.19
36 28.6 - - 4.94 1.53 2.17 0.58
37 29.3 - - 8.16 1.67 1.14 0.42
38 29.7 - - 14.0 4.00 1.44 0.30
39 30.0 - - 15.2 4.26 2.59 0.66
40 30.6 - - 17.7 4.60 2.40 0.92

# d.o.f.^1341 36 36 50 50 62 62

Table 4.2: Natural frequency results for the container ship, free-interface method



Chapter 4. Modal Analysis of Three Finite Element Models^ 84

Table 4.2 demonstrates the efficiency of the free-interface method's condensation,

particularly when the second-order approximation is used. In the last column (35Hz

cutoff, 2nd order mass), the first 37 non-zero frequencies are computed to within 1%

error. The effectiveness of the condensation is admirable—the equations of motion of the

ship have been reduced in order by a factor of 20 over those of the direct analysis, while

leaving the low-frequency spectrum nearly perfectly intact.

The results of the fixed-interface method (Table 4.3) are similar in that convergence

increases with the cutoff frequency and the low frequencies tend to converge before the

high. The cutoff frequencies here refer to fixed-interface component frequencies, which

are always higher than their free-free counterparts. Thus, the 35Hz cutoff in the fixed-

interface method allocates 45 dynamic modes to the analysis while in the free-interface

method 62 are needed. Table 4.4 shows the frequencies of the component modes used in

both cases. Note that the free-free modes include the three rigid body modes for each

component. The mid-body and the fore-body contribute the majority of the modes, as

these are geometrically the largest and therefore the most flexible of the components.

Figure 4.2 combines the natural frequency results for the free- and fixed-interface

methods and displays their convergence characteristics as a function of the number of dy-

namic component modes. This is in contrast with Tables 4.2 and 4.3 where the accuracy

of the frequencies is recorded as a function of the cutoff frequency. For the curves cor-

responding to the free-interface formulations, the number of dynamic component modes

refers to non-rigid body modes only. Rigid body and static modes are essential for good

accuracy in all CMS analyses, while elastic dynamic modes are non-essential because they

can be added in varying numbers as the accuracy requires. The graph therefore shows

the effect of different types of dynamic modes on the overall accuracy and convergence

rate of the system frequencies. In terms of overall accuracy, free-free modes are more

effective provided that their inertia contribution is included; if not, fixed-interface modes
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Direct FEM Analysis % Error, Fixed-,Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
20 Hz.
Cut-off

25 Hz.
Cut-off

30 Hz.
Cut-off

35 Hz.
Cut-off

40 Hz.
Cut-off

4 0.881 14.4 0.00 0.00 0.00 0.00 0.00
5 2.14 36.5 0.02 0.02 0.01 0.01 0.01
6 3.52 48.8 0.03 0.02 0.01 0.01 0.01
7 4.55 106 0.18 0.08 0.07 0.06 0.06
8 5.58 114 0.10 0.03 0.02 0.00 -0.01
9 5.91 210 0.15 0.07 0.06 0.05 0.05

10 8.01 132 0.08 0.02 0.02 0.01 0.00
11 8.93 166 0.92 0.34 0.26 0.20 0.17
12 10.2 192 0.43 0.19 0.16 0.08 0.05
13 12.3 194 0.74 0.55 0.39 0.34 0.21
14 13.1 178 1.86 0.42 0.35 0.21 0.15
15 13.7 181 1.26 0.84 0.71 0.67 0.55
16 14.2 195 1.64 1.10 0.96 0.79 0.54
17 15.0 218 0.92 0.51 0.29 0.19 0.11
18 16.4 215 5.20 0.62 0.50 0.23 0.16
19 17.3 202 .5.18 0.85 0.73 0.49 0.38
20 18.9 193 7.36 0.60 0.43 0.23 0.20
21 19.2 198 10.3 3.96 2.18 1.29 1.04
22 20.0 209 14.5 1.53 0.87 0.65 0.55
23 20.2 230 15.3 2.56 1.31 0.81 0.68
24 21.4 232 17.8 3.04 1.60 0.72 0.40
25 21.7 238 20.7 7.35 1.23 0.73 0.47
26 22.9 229 42.9 3.90 2.28 1.09 0.63
27 23.7 219 43.8 4.73 0.77 0.39 0.19
28 24.0 247 47.1 9.68 2.71 1.25 0.94
29 24.9 241 53.7 13.9 1.24 0.81 0.37
30 25.3 246 52.8 14.3 2.53 1.49 0.47
31 25.7 243 54.7 19.2 3.44 1.35 0.85
32 26.1 244 58.2 26.6 4.71 2.15 0.58
33 26.9 257 57.7 26.3 5.68 1.46 0.90
34 27.8 257 88.0 23.9 2.81 1.10 0.58
35 28.1 276 92.6 28.7 10.4 1.43 0.76
36 28.6 288 102 35.2 13.2 1.85 0.95
37 29.3 295 99.8 37.5 16.6 2.25 0.89
38 29.7 290 109 43.5 15.8 2.24 1.86
39 30.0 293 112 42.3 19.4 1.66 0.92
40 30.6 297 114 43.6 22.3 1.15 0.42

# d.o.f. 1341 102 120 127 133 147 160

Table 4.3: Natural frequency results for the container ship, fixed-interface method
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Component Frequencies (Hz)
Mode Stern Aft-body Deckhouse Mid-body Fore-body

Free Fixed Free Fixed Free Fized Free Fized Free Fixed
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
0
0

18.6
26.5
28.7
32.8

6.41
18.2
18.9
33.7
38.8

0
0
0

22.6
25.0
28.9
30.3

24.4
37.7

0
0
0

19.9
21.0
27.4
29.4
33.2

6.48
16.1
16.9
25.4
26.9
32.6
35.7
39.1

0
0
0

4.57
9.88
11.4
15.5
19:0
20.6
23.4
24.0
27.2
27.7
28.1
28.8
29.3
31.9
33.6
33.8

4.11
8.31
12.0
12.8
18.3
21.5
23.0
24.9
28.1
28.8
31.1
31.6
31.8
33.0
33.5
34.4
35.5
38.2
38.2
39.6

0
0
0

4.13
9.24
10.6
14.6
18.5
19.3
22.5
22.7
25.7
26.4
27.7
29.5
31.4
31.8
32.8
33.1
34.3
35.0

0.93
3.83
5.92
8.80
13.4
16.2
18.8
21.3
24.1
24.9
27.2
28.4
30.0
31.2
31.6
32.4
34.3
34.3
35.2
35.8
36.8
38.4
39.2

Table 4.4: Component frequencies of the container ship
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Figure 4.2: Combined natural frequency results for the container ship
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are more effective. The same conclusion can be drawn for the convergence rate, which is

indicated by the slope of the curves.

Independent of accuracy and convergence rate considerations, the fixed-interface for-

mulation is not as effective at condensing the equations of motion as the free-interface

method—more degrees of freedom have to be retained to get results of a similar accuracy.

As was shown in Chapter 3, the free-interface method yields more compact equations be-

cause in the formulation, more independent constraint equations can be specified with

the generalized coordinates.

4.2.2 Mode Shape Results

The accuracy of the CMS mode shapes is not only a function of the cutoff frequency

but it also shows a strong dependency on the eigensolution tolerance. Eigensolutions are

determined by an iterative procedure in which a tolerance factor is required to terminate

the solution. The VAST eigensolution routine EIGEN1 uses an algorithm based on the

inverse power method with shifting. The condition,

A (k) _
  < to/ (4.3)

Vie

is used to terminate in the kth iteration. While variations in the tolerance may have only

a minor effect on the frequencies, a much more pronounced effect is visible in the mode

shapes. This observation is verified by noting that first-order variations in the eigen-

vectors produce, through Rayleigh's quotient, second-order variations in the eigenvalues

[48]. Thus an error equivalent to tol in the eigenvalue corresponds to an error on the

order of tot} in the mode shape.

This is doubly true in a CMS analysis where accurate reconstruction of the system

mode shapes relies on accurate eigenvectors at both the component and system level. The

mode shape results for the ship model (Tables 4.5 and 4.6) were calculated with tol = 10-6
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Direct FEM Analysis % Error, Free-Interface CMS Analysis
Mode Frequency

(Hz)
25 Hz. Cut-off 30 Hz. Cut-off 35 Hz. Cut-off
1st 2nd 1st 2nd 1st 2nd

4 0.881 0.02 0.02 0.02 0.02 0.02 0.02
5 2.14 0.07 0.04 0.06 0.04 0.05 0.04
6 3.52 0.20 0.11 0.16 0.11 0.14 0.11
7 4.55 0.62 0.52 0.24 0.28 0.32 0.24
8 5.58 1.58 2.45 1.18 0.54 1.24 1.63
9 5.91 1.78 2.30 1.13 0.54 1.18 1.42

10 8.01 1.23 0.58 1.16 0.31 0.81 0.27
11 8.93 1.99 1.06 1.87 0.93 1.33 0.74
12 10.2 2.74 1.04 2.37 0.80 1.15 0.60
13 12.3 5.68 3.62 3.34 2.24 2.35 2.13
14 13.1 12.3 7.70 15.7 6.88 5.40 3.84
15 13.7 29.9 8.60 22.7 7.67 7.50 5.84
16 14.2 23.1 7.90 21.6 3.77 5.39 4.65
17 15.0 24.6 8.65 19.4 6.73 9.78 5.00
18 16.4 24.3 8.21 16.7 5.94 5.89 2.88
19 17.3 24.7 15.3 17.4 13.2 11.3 6.08
20 18.9 37.1 20.6 22.0 8.01 14.9 4.32

# d.o.f. 1341 36 36 50 50 62 62

Table 4.5: Mode shape results for the container ship, free-interface method

and are compared with direct-analysis mode shapes of the same tolerance so as to best

isolate the effect of modal truncation. Although acceptable results for frequencies can

be obtained with a larger tolerance (requiring fewer iterations and therefore less time),

the quality of the mode shapes declines.

The results in Tables 4.5 and 4.6 show that convergence is much slower for mode

shapes than for frequencies and that larger absolute error can be expected in mode

shapes than in frequencies at a particular cutoff value. Indeed, if a e% error is found in

the frequency, the error in the mode shape might be expected to be,

2^1

AU%  ( 1 + TZ) J^_ 1^1.0% (4.4)

By this formula a 0.10% error in frequency, whatever the source of the error may be,

would correspond to a 4.5% error in the mode shape. This order of magnitude is typical

of the differences between frequency and mode shape errors found in the tables.
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Direct FEM Analysis % Error, Fixed-Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
20 Hz.
Cut-off

25 Hz.
Cut-off

30 Hz.
Cut-off

35 Hz.
Cut-off

40 Hz.
Cut-off

4 0.881 15.5 0.03 0.02 0.02 0.02 0.02
5 2.14 42.4 0.14 0.10 0.07 0.06 0.06
6 3.52 103 0.37 0.24 0.18 0.17 0.16
7 4.55 108 0.98 0.51 0.49 0.45 0.43
8 5.58 68.0 1.03 0.94 0.88 1.00 0.99
9 5.91 95.2 1.02 0.75 0.69 0.80 0.80

10 8.01 122 1.45 0.75 0.62 0.63 0.40
11 8.93 114 5.58 2.29 1.88 1.53 1.25
12 10.2 124 4.18 2.53 2.19 1.58 1.13
13 12.3 101 12.4 7.27 6.05 4.74 3.72
14 13.1 112 23.6 6.35 6.91 5.07 5.56
15 13.7 113 13.8 12.3 8.25 7.76 6.07
16 14.2 103 9.92 11.8 7.90 7.04 4.51
17 15.0 130 11.2 6.20 4.82 3.82 3.53
18 16.4 122 40.4 8.66 6.95 5.42 5.32
19 17.3 114 49.1 11.2 9.01 8.24 6.89
20 18.9 134 59.4 18.1 11.0 4.31 3.75

# d.o.f. 1341 102 120 127 133 147 160

Table 4.6: Mode shape results for the container ship, fixed-interface method
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CPU Times (s) for 40 Modes
Tolerances 10-2 10' 10 -6

Direct Analysis 664 2448 5298
Guyan Reduction 317 401 484
Fixed-Interface CMS 793 1356 2379
Free-Interface CMS 298 462 1028

Table 4.7: CPU times for modal analysis of the container ship

Tables 4.5 and 4.6 show that comparable results are obtained with the fixed-interface

and the free-interface methods, in spite of the fact that the latter uses significantly fewer

independent variables in the cases presented. This reiterates the free-interface method's

superiority in condensing the equations of motion whilst preserving the low-frequency

spectrum.

4.2.3 Performance

Table 4.7 shows the CPU time expenditure for the four methods at three different tol-

erances. For the CMS analyses, the tolerance factor applies to both the component

and system analyses. Two general observations can be made. First, as the tolerance

is reduced, the relative efficiency of CMS increases. Secondly, the free-interface method

maintains a significant performance edge over the fixed-interface method for all three

tolerances. For this latter comparison, it is only fair to use CMS runs which give a sim-

ilar degree of accuracy. The two used in Table 4.7 are, for the free- and fixed-interface

methods respectively, the 35Hz cutoff with second-order mass (see the last column of

Table 4.2) and the 40Hz cutoff (see last column of Table 4.3). The advantage enjoyed by

the free-interface method is partly explained by its superior condensation and partly by

differences in the program implementation. Because the two methods had to be fit into



Chapter 4. Modal Analysis of Three Finite Element Models^ 92

an existing finite element program, certain redundancies in the algorithm were unavoid-

able and tended to work against the fixed-interface method. Finally, of the four methods,

Guyan reduction is the fastest but as was seen in Table 4.3, its accuracy is very poor

compared to the other methods.

If only natural frequency results are of interest, the larger tolerances are adequate.

When to/ = 10 -2 , the free-interface method is somewhat faster than a direct analysis

and the fixed-interface method somewhat slower. But the difference either way is not

very significant and unless a substructured treatment is needed for some other reason, no

special advantage is gained from using CMS at this level of accuracy. Indeed, this rep-

resents the lower limit of CMS's performance advantage. Models significantly smaller in

order than the container ship would be more efficiently analyzed with the direct method;

because for small-order models, the advantages gained by a CMS condensation are more

than cancelled by the computational overhead required for two levels of analysis.

On the other hand, if accurate mode shapes are wanted, or if closely grouped fre-

quencies are to be resolved, a tolerance of about 10-6 is usually needed. At this level of

accuracy, CMS has a clear performance advantage.

4.3 Analysis of a Telescope Focus Unit

The telescope focus unit (TFU) is composed of the three concentric cylinders shown sepa-

rately in Figure 4.3. The finite element modelling divides the TFU into five components,

the function of each of which is described in the following:

Inner Tube Supports a mirror which focusses light reflected by the main mirror.

Outer Tube Surrounds and supports the inner tube by means of a screw assembly and

four guide rails.
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Components # nodes # d.o.f. # plates # bricks # bars
Inner Tube (1) 76 456 20 0 8
Outer Tube (2) 92 552 28 0 0
Screw Assembly (3) 84 504 16 4 0
Chopping Mechanism (. 4 ) 120 360 0 18 0
Support Tube (5) 108 648 28 0 0
Complete Model 428 2568 92 22 8

Table 4.8: Description of the TFU model

Screw Assembly Allows the inner tube to be advanced or retracted for focussing.

Chopping Mechanism Appended to the inner tube, this creates rapid oscillations in

the lens position necessary for superimposing infrared images of the object under

observation and its background.

Support Tube Supports the outer tube along a flange with adjustable positioning

screws.

The model is composed of plate (8-node thick/thin shell) elements, brick (20-node solid)

elements and 2-node bar elements. The exact composition of each component is listed in

Table 4.8.

Because vibration of the TFU inner components could degrade the telescope's image

quality, the dynamic response and the existence of resonances is of great importance to

the design. The source of excitation is the chopping mechanism, which exerts a square-

wave periodic force and can therefore excite a wide range of vibrational modes. In

this section, CMS is used to determine the low-frequency modes of the TFU with eight

locations on the support tube fixed. These eight locations are where the support struts

would normally be attached in the complete telescope (see Section 4.4).
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(a) (b) (c)

Figure 4.3: Components of the TFU model: a) inner tube With screw assembly attached
to top, and chopping mechanism attached to bottom; b) outer tube; c) support tube
with external constraints.
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4.3.1 Natural Frequency Results

The same general trends can be seen in Tables 4.9 and 4.10 as were found in the frequency

results of the ship model. Clearly visible are the systematic convergence as cutoff

frequency is increased (except in modes 1-3); the convergence of the low modes before

the high; the greater condensation provided by the free-interface method over the fixed-

interface method; and, in the former, the improved accuracy with the second-order mass

approximation.

However, one feature not evident in the ship results but more noticeable here is the

apparent slow convergence of the fixed-interface method. Between Guyan reduction—

which is essentially a zero-frequency cutoff—and 4000Hz cutoff, the improvement in the

accuracy of natural frequencies is noticeably less than what the free-interface method

achieves over a smaller range of cutoff frequencies. One might be tempted to conclude that

in this case the free-interface method enjoys a speedier convergence, but this is largely an

illusion. Comparing the fixed- and free-interface modes of the telescope components (see

Table 4.11) reveals that the unconstrained components have either the same or a higher

modal density than their constrained counterparts. Thus, if an incremental increase is

made to the cutoff frequency, more free-interface modes have to be added than fixed-

interface modes. Because of this difference, the fixed-interface method may require a

higher cutoff frequency to get comparable results, but it may not mean that it requires

more dynamic modes. Indeed, of the 63 free-free modes used in the last two columns of

Table 4.9, 24 are rigid-body modes which still leaves 39 elastic modes in comparison to the

29 used by the fixed-interface method at 4000Hz cutoff. This point is reflected in Figure

4.4 where the overall accuracy of the frequencies is plotted as a function of the number

of dynamic component modes. Here, as in the ship model, the fixed-interface curve falls

between the two free-interface curves. An interesting point is that the convergence rates
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Direct FEM Analysis % Error, Free-Interface CMS Analysis
Mode Frequency

(Hz)
2000 Hz. 2500 Hz. 3000 Hz. 3500 Hz.

1st 2nd 1st 2nd 1st 2nd 1st 2nd
1 34.7 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
2 72.8 -0.05 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06
3 72.8 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03
4 185.8 0.07 0.02 0.05 0.00 0.05 0.00 0.05 0.00
5 432 0.17 0.10 0.08 0.01 0.03 0.01 0.03 0.01
6 433 0.17 0.10 0.17 0.10 0.03 0.01 0.03 0.01
7 655 0.26 0.15 0.13 0.03 0.13 0.03 0.13 0.03
8 658 0.26 0.15 0.26 0.15 0.14 0.04 0.14 0.03
9 1002 0.34 0.22 0.34 0.22 0.34 0.22 0.34 0.22

10 1059 1.03 0.21 0.92 0.11 0.23 0.10 0.23 0.10
11 1067 1.08 0.22 1.08 0.22 0.23 0.09 0.23 0.09
12 1231 1.55 1.40 0.27 0.13 0.27 0.14 0.28 0.14
13 1232 1.54 1.39 1.54 1.39 0.28 0.13 0.26 0.12
14 1273 3.48 0.23 3.40 0.19 3.27 0.17 0.68 0.06
15 1347 0.04 0.00 0.04 0.00 0.02 0.00 0.02 0.00
16 1444 0.16 0.01 0.16 0.01 0.14 0.01 0.05 0.01
17 1447 2.73 0.20 2.73 0.21 2.73 0.20 0.16 0.03
18 1486 5.86 0.00 5.86 0.00 5.85 0.00 0.00 0.00
19 1576 2.13 0.00 2.12 0.00 2.11 0.00 0.00 0.00
20 1693 13.0 12.1 1.88 1.20 1.88 1.20 1.79 1.19
21 1913 1.31 0.07 0.79 0.06 0.42 0.02 0.30 0.00
22 1955 0.34 0.31 0.34 0.31 0.34 0.31 0.12 0.10
23 2210 26.4 6.55 0.02 0.00 0.02 0.00 0.01 0.00
24 2289 26.5 4.53 15.7 1.88 3.48 0.56 3.48 0.56
25 2321 57.4 48.2 17.5 3.10 3.56 0.60 3.54 0.60
26 2562 69.8 40.6 11.8 5.81 0.03 0.02 0.03 0.02
27 2563 72.7 51.0 13.0 6.58 0.69 0.48 0.24 0.05
28 2596 75.9 57.8 40.7 32.5 0.60 0.12 0.31 0.03
29 2699 69.5 53.8 36.8 33.5 1.64 1.16 1.64 1.17
30 2702 81.7 64.5 61.0 34.9 1.65 1.14 1.64 1.13
31 2911 99.1 52.7 52.4 26.5 1.08 1.04 1.08 1.04
32 2941 175 62.8 55.2 31.7 7.80 6.61 2.77 1.49
33 2979 179 80.9 64.8 37.5 13.8 5.64 1.82 1.82
34 3032 206 97.5 91.8 37.0 16.6 13.5 7.77 3.43
35 3118 203 97.0 93.0 42.6 17.2 12.5 5.03 4.72
36 3264 214 101 148 65.1 13.1 10.4 3.01 2.65
37 3315 239 107 150 69.4 31.4 9.97 7.23 3.74
38 3323 247 115 179 70.8 33.5 16.3 9.94 6.50
39 3359 280 145 181 78.3 45.6 20.9 9.30 5.70
40 3533 261 152 191 85.5 54.6 17.6 5.71 1.99

# d.o.f. 2568 42 42 47 47 56 56 63 63

Table 4.9: Natural frequency results for the TFU, free-interface method
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Direct FEM Analysis % Error, Fixed-Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
2000 Hz.
Cut-off

3000 Hz.
Cut-off

4000 Hz.
Cut-off

1 34.7 0.04 -0.04 -0.04 -0.04
2 72.8 0.89 -0.06 -0.07 -0.07
3 72.8 0.91 -0.01 -0.01 -0.01
4 185.8 0.32 0.32 0.00 0.00
5 432 7.33 0.60 0.01 -0.03
6 433 7.42 2.00 0.00 -0.03
7 655 6.14 1.20 0.27 0.07
8 658 6.12 2.88 0.53 0.07
9 1002 10.9 0.41 0.41 0.41

10 1059 5.71 4.10 0.62 0.27
11 1067 5.88 4.18 3.52 0.28
12 1231 5.75 1.93 0.27 0.22
13 1232 25.9 5.51 1.10 0.22
14 1273 53.9 5.97 2.08 2.06
15 1347 60.3 7.23 0.09 0.09
16 1444 49.8 2.81 0.07 0.05
17 1447 69.6 7.05 2.62 0.18
18 1486 67.6 6.14 4.21 -0.11
19 1576 62.6 23.4 0.11 0.00
20 1693 72.0 15.7 0.49 0.49
21 1913 54.1 27.5 2.19 0.10
22 1955 52.0 27.0 13.1 0.01
23 2210 48.5 16.0 9.51 0.01
24 2289 44.2 27.3 7.24 5.24
25 2321 50.2 41.3 10.1 5.18
26 2562 43.2 28.1 0.39 0.04
27 2563 44.9 28.8 7.47 1.32
28 2596 58.2 34.3 12.2 4.79
29 2699 54.3 36.0 9.00 1.87
30 2702 63.7 37.2 21.4 2.02
31 2911 52.0 36.1 12.8 1.13
32 2941 52.8 35.9 18.6 3.34
33 2979 68.3 35.5 23.3 8.34
34 3032 65.6 35.4 22.1 7.73
35 3118 67.6 41.3 23.6 5.29
36 3264 69.2 53.6 18.6 5.81
37 3315 77.5 52.3 20.6 6.72
38 3323 86.3 56.5 29.7 6.82
39 3359 88.1 65.0 30.2 8.69
40 3533 87.2 62.8 35.6 7.97

# d.o.f. 2568 360 369 380 389

Table 4.10: Natural frequency results for the TFU, fixed-interface method
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Component Frequencies (Hz)
Mode Inner tube Outer tube Screw Assem. Chop Mech. Support tube

Free Fixed Free Fixed Free Fixed Free Fixed Free Fixed
1 0 1233 0 2764 0 0 490 1338 1477
2 0 1233 0 3178 0 0 490 1428 1503
3 0 2093 0 3178 0 0 862 1482 1594
4 0 2411 0 3759 0 0 2074 1574 1600
5 0 2728 0 0 0 2955 2203 2230
6 0 2728 0 0 0 2955 2557 2603
7 968 3201 1399 1706 2560 2995
8 968 3245 1399 1706 2919 3061
9 1650 3839 1675 3031 3075

10 1859 1723 3246 3481
11 2439 1811
12 2439 1811
13 2562 1835
14 2654 1948
15 3035 2362
16 3343 2459
17 2731
18 2859
19 2995
20 2995
21 3051
22 3089
23 3298

Table 4.11: Component frequencies of the TFU
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for the three cases are about the same. That is, regardless of the overall accuracies, the

effect of adding one additional dynamic mode is the same on average for each formulation.

Another interesting feature is the appearance of negative frequency errors, particu-

larly in modes 1-3. It has been argued in Chapter 2 that as long as inter-component

compatibility is maintained, the CMS results should converge from above as more com-

ponent modes are added. That is, modal truncation being the only source of error, it

is theoretically impossible for CMS-derived frequencies to be less than the exact values.

However, in practice three other possible sources of error exist: errors derived from the

tolerance factor in the eigensolver, which have already been discussed in Section 4.2.2;

numerical loss of precision, which often happens, for example, when subtracting numbers

of similar magnitude or when inverting a poorly condition matrix; and the influence of

non-conforming elements in the structural model. Since both methods show the same

negative error in modes 1 and 2, it is unlikely that the tolerance factor or numerical round-

off could be responsible. Instead, this shows the effect of using incompatible elements

in the mesh, in particular, the thick/thin shell element whose rotational coordinates are

incompatible when two elements meet in perpendicular planes. With incompatibilities in

the component modes, the upper bound on the CMS frequencies is lost and the possibility

of a negative frequency error arises. Such negative errors are most likely to occur in the

lowest frequency modes, as these are the first to converge, and in modes with significant

displacement in the incompatible elements.

4.3.2 Mode Shape Results

The convergence characteristics of the mode shapes (see Tables 4.12 and 4.13) are in

many ways similar to those of the ship. But now, because of the presence of repeated

frequencies, there is an added complication: mode shapes cannot be defined uniquely for

repeated frequencies and so it makes little sense to compare them with Equation (4.2).



Chapter 4. Modal Analysis of Three Finite Element Models^ 101

Direct FEM Analysis % Error, Free-Interface CMS Analysis
Mode Frequency

(Hz)
2000 Hz. 2500 Hz. 3000 Hz. 3500 Hz.
1st 2nd 1st 2nd 1st 2nd 1st 2nd

1 34.7 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2 72.8 - - - - - - - -
3 72.8 - - - - - - - -
4 185.8 0.08 0.03 0.05 0.01 0.05 0.01 0.05 0.01
5 432 4.58 0.25 2.17 2.19 0.12 0.12 4.59 4.57
6 433 4.59 0.25 2.18 2.21 0.12 0.12 4.60 4.59
7 655 0.72 1.90 2.21 2.37 1.79 7.84 0.25 1.78
8 658 0.72 1.93 2.36 2.49 1.82 7.86 0.25 1.81
9 1002 1.14 0.80 1.16 0.79 1.19 1.16 1.19 0.79
10 1059 2.49 3.15 2.29 1.05 2.26 2.23 2.25 0.45
11 1067 2.39 3.32 2.51 2.70 2.17 2.12 2.18 0.46
12 1231 5.80 7.88 14.6 13.4 13.9 13.8 18.5 22.7
13 1232 5.89 8.15 15.6 14.5 14.1 14.0 18.8 23.0
14 1273 5.81 3.52 6.22 2.33 6.01 1.84 1.85 1.56
15 1347 1.57 1.27 2.66 0.33 2.49 0.31 1.06 0.58
16 1444 14.6 7.47 14.5 3.76 13.6 7.33 10.9 16.8
17 1447 121 6.08 121 3.37 122 6.03 5.28 9.45
18 1486 98.6 1.52 98.5 1.60 98.6 1.36 1.53 1.52
19 1576 130 0.52 130 .0.55 130 0.59 0.48 0.44
20 1693 15.8 15.6 5.01 4.36 5.00 4.36 4.62 4.35

# d. o .f. 2568 42 42 47 47 56 56 63 63

Table 4.12: Mode shape results for TFU, free-interface method
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Direct FEM Analysis % Error, Fixed-Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
2000 Hz.
Cut-off

3000 Hz.
Cut-off

4000 Hz.
Cut-off

1 34.7 0.02 0.05 0.05 0.05
2 72.8 - - - -
3 72.8 - - - -
4 185.8 .^0.38 0.38 0.03 0.03
5 432 11.1 52.2 8.63 4.60
6 433 11.0 53.0 8.71 4.61
7 655 11.4 57.0 57.1 0.33
8 658 11.6 59.2 57.5 0.34
9 1002 115 1.85 1.84 2.00

10 1059 133 8.78 64.7 2.60
11 1067 112 8.13 70.0 2.55
12 1231 131 58.5 61.1 7.87
13 1232 117 131 61.2 8.04
14 1273 161 111 3.72 3.61
15 1347 215 91.2 2.79 2.33
16 1444 232 95.2 8.08 7.36
17 1447 127 22.1 121 5.30
18 1486 205 98.5 158 3.06
19 1576 135 182 23.8 0.65
20 1693 121 25.6 2.17 2.18

# d.o.f. I 2568 360 369 380 389

Table 4.13: Mode shape results for TFU, fixed-interface method
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For example, modes 2 and 3 have identical frequencies and so the mode shape error has

been omitted.

Other modes have frequencies that are very close though not identical. This seems to

present difficulties for CMS in that the mode shapes can remain ill-defined long after the

corresponding frequencies have converged. In the free-interface results, this occurs most

noticeably in modes 12 and 13 whose frequencies are 1230.9Hz and 1232.0Hz respectively.

Despite the accurate frequency predicitions provided by CMS, the mode shape errors

remain large, and indeed get larger, as progressively higher cutoff frequencies are used.

A similar trend is seen in the fixed-interface results. For example, modes 7 and 8 show

very large mode shape errors until the 4000Hz cutoff where they all but disappear. It

can be verified that these large errors are not caused by a reversal in the modes' order;

if these modes are switched, the mode shape errors are just as large. Instead, what is

happening is a symptom of CMS condensation, of trying to specify modes with a severely

reduced quantity of independent variables. That CMS is able to accurately predict the

frequencies is a reflection of how a reduced set of generalized coordinates, corresponding

to low frequency component modes, will render the Rayleigh quotient,

ai = ttT -^ (4.5)
ST MSi

stationary at the correct values of Ai. However, this does not necessarily mean that the

condensed eigenvector i corresponds to the true mode shape with the same degree of

accuracy. If the size of the system has been reduced from 2568 to less than 400, as is in

the case of the focus unit, far fevier independent variables are available for determining

the full extent of the mode shapes.

The difficulty with the near-repeated modes is that they look very much like repeated

modes; it is only a small asymmetry in the model which distinguishes them. At the lower

cutoff frequencies, the condensation is too severe for the asymmetry to be detected; that
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is, in representing the components with a small number of component modes, the analysis

condenses out the asymmetric features in the model. But at a higher cutoff, the mode

suddenly locks in—that is, enough coordinates have now been added for these closely-

related modes to be distinguished. This sudden convergence can also be observed in the

distinct modes, but it is not delayed to the higher cutoffs as it is for the near-repeated

modes. In general, mode shapes of the distinct modes are ultimately more accurately

predicted with CMS than those of the near-repeated modes.

The locking-in feature occurs throughout the fixed-interface results in Table 4.13.

With the exception of modes 12 and 13, the free-interface method does a better job of

predicting the near-repeated mode shapes, in spite of its greater condensation. Evidently

free-interface component modes do a better job of detecting the asymmetries than do

fixed-interface modes.

4.3.3 Performance

Table 4.14 shows the CPU times for the CMS methods with various cutoff frequencies,

direct analysis and Guyan reduction. It is immediately noticeable that the free-interface

method is unable to give results at the two larger tolerances. This is because of ill-

conditioning in the residual flexibility matrix 6, which is calculated with the equation,

= G — (1)11 -1 (DT (4.6)

If too large a tolerance is used, errors occur in the free-free modes 4). These errors

are magnified by a loss of precision in the subtraction operation, and this can cause 6
to lose its positive definiteness. In this particular example, the problem was caused by

inaccurate calculation of modes 7 and 8 of the screw assembly. These are repeated modes

of the component, but the eigenvalue solver only renders them so when the tolerance is

sufficiently small. In general, this is a problem in components with high modal density,
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CPU Time (s) for 40 Modes
Tolerances 10-2 10 -4 10 -6

Direct
auyan

5294
1524

12999
2119

53355
4836

Free-Interface CMS
2000 Hz. M1 i.c. i.c. 2045
2000 Hz. M2 i.c. i.c. 2299
2500 Hz. Mil i.c. i.c. 2229
2500 Hz. M2 i.c. i.c. 2483
3000 Hz. M1 i.c. i.c. 4621
3000 Hz. M2 i.c. i.c. 4936
3500 Hz. Ml i.c. i.c. 4991
3500 Hz. M2 i.c. i.c. 5094
Fixed-Interface CMS
2000 Hz. 4571 5742 6386
3000 Hz. 5010 5764 7013
4000 Hz. 4890 5711 8308

Table 4.14: CPU times for modal analysis of the TFU
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and a high tolerance is needed to obtain sufficiently accurate component modes. The

fixed-interface method is not sensitive to errors in the free vibration modes because it

does not use a residual flexibility approximation, and at the two larger tolerances it

performs either comparable or favorable to direct analysis.

At to/ 10-6 , both CMS methods have a performance advantage over direct analysis.

Using a second-order instead of a first-order mass makes little difference to the time

expended and therefore the improved accuracy is obtained cheaply. However, between

the 2500Hz and 3000Hz cutoffs, the time expenditure nearly doubles as a result of slowly

converging component modes in this frequency range. As the density of the component

modes increases, eigensolution routines require more iterations to resolve the modes.

Therefore, in components with high modal density, the cost of the component analysis

inevitably increases; but in proportion to a direct analysis, the cost of the total CMS

analysis declines. For the container ship model, the free-interface method was about

five times as fast as a direct analysis; for the TFU model, a similar level of accuracy is

obtained at one-tenth the cost.

4.4 Analysis of a Telescope Model

The complete model of the telescope consists of the focus unit of Section 4.3, and a

supporting framework suspending the focus unit above the centre of the main mirror (see

Figure 4.5) The supporting framework, or spider, consists of four separate and identical

components, giving the telescope model a total of nine components. Each leg of the

spider is composed of 38 2-node beam elements and one thick/thin shell element, for

a total of 35 nodes and 210 degrees of freedom. The beam elements have rectangular

tubular sections of dimension 1 x 3 in. and a wall thickness of 8in.

It is easy to appreciate that the supporting framework is susceptible to vibration
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Figure 4.5: Complete telescope model, with focus unit and spider
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from the chopping mechanism and that this is potentially harmful to the telescope's

image quality. Particularly dangerous are resonances in the support structure causing

lateral or skewing motion in the focus unit. It is with this in mind that the following

modal analysis results are presented.

4.4.1 Natural Frequency Results

Both CMS methods display very rapid and well-defined convergence for the natural fre-

quencies (see Tables 4.15 and 4.16). Indeed, it is remarkable to note, especially in the

results for the fixed-interface method, how sharp the distinction is between regions of

high and low accuracy. This can be attributed to the dominance of spider vibration in

the natural modes of the telescope. In both of the CMS methods, the only dynamic

modes used were from the spider components; the free vibration modes of the TFU com-

ponents were of such high frequency that they could be safely neglected. Another factor

contributing to the sharp convergence is the distinct and the well-separated frequency

spectrums of both the free-free and clamped modes of the spider (see Table 4.17). By

contrast, the high modal density in the focus-unit components created a much slower

and less sharp convergence.

Because of the high inertia of the TFU, many vibration modes of the telescope act

like individual modes of the four spider components under clamped boundary conditions.

This is verified by noting that the spider component fixed-interface frequencies in Table

4.17 closely correspond to many of the telescope frequencies. Thus, the fixed-interface

modes are seen to give greater overall accuracy in terms of the number of dynamic modes

contributed (see Figure 4.6). Indeed, it would be difficult to find shape functions more

suitable for describing the telescope modes. An equal number of free-free modes clearly

cannot give the same level of accuracy, but as with the TFU, the convergence rate is

about the same in each case.
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Direct FEM Analysis % Error, Free-Interface CMS Analysis
Mode Frequency

(Hz)
30 Hz. 90 Hz. 150 Hz.

1st 2nd 1st 2nd 1st 2nd
1 11.5 0.86 0.02 0.05 0.00 0.03 0.00
2 13.3 3.16 0.05 0.04 -0.01 0.01 -0.01
3 13.3 3.25 0.26 0.08 0.02 0.06 0.02
4 13.4 3.31 -0.03 0.01 -0.02 -0.03 -0.02
5 25.5 18.7 2.93 0.20 0.01 0.18 0.01
6 33.5 15.5 6.87 0.72 0.03 0.19 -0.04
7 34.0 25.8 6.55 0.54 -0.06 0.28 0.08
8 34.6 26.2 10.6 0.29 0.08 0.10 0.03
9 34.6 74.1 16.6 0.32 -0.01 0.08 -0.08
10 39.1 55.3 7.08 1.96 0.03 0.48 0.00
11 42.2 45.1 2.09 2.01 0.06 0.67 0.03
12 45.3 46.5 4.88 0.02 -0.03 -0.06 0.04
13 45.3 77.3 8.29 0.01 -0.02 0.04 0.01
14 45.3 88.7 9.95 0.13 0.14 0.14 0.03
15 45.6 152 9.33 0.38 -0.02 0.17 -0.02
16 50.6 135 46.1 0.56 -0.03 0.26 -0.06
17 61.0 119 30.1 1.03 0.07 0.28 -0.10
18 61.0 123 . 42.5 1.11 0.07 0.29 -0.06
19 61.1 191 72.1 1.12 0.07 0.26 -0.01
20 71.0 159 54.7 4.10 0.89 0.96 0.08
21 78.1 151 43.4 4.03 0.38 2.88 0.05
22 83.7 168 67.7 0.89 0.18 0.16 0.01
23 83.9 244 70.0 1.78 0.60 0.14 -0.10
24 84.0 294 206 3.05 0.75 0.26 0.04
25 85.6 341 225 5.18 1.38 0.22 0.04
26 85.7 365 232 10.8 2.83 2.46 -0.02
27 98.1 460 375 17.4 7.21 0.76 0.02
28 99.0 469 391 62.3 9.57 1.10 0.25
29 99.7 646 537 63.6 9.63 0.88 0.19
30 104.0 615 578 92.8 8.10 0.45 0.03
31 104.1 1039 670 106 12.0 1.22 0.24
32 104.3 1108 943 116 12.2 3.99 0.31
33 105.9 1091 1018 116 10.6 6.41 0.07
34 117.3 1270 964 94.7 19.4 1.55 0.22
35 117.5 1409 1000 107 19.4 1.60 0.29
36 117.7 1525 1043 136 52.3 1.58 0.38
37 120.1 1679 1072 141 49.7 2.65 0.43
38 125.5 1604 1334 141 44.6 2.88 0.10
39 127.4 2344 1388 160 78.5 4.03 0.97
40 133.6 2267 1453 195 92.6 0.22 0.00

# d.o.f. 3360 46 46 62 62 78 78

Table 4.15: Natural frequency results for telescope model, free-interface method
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Direct FEM Analysis % Error, Fixed-Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
85 Hz.
Cut-off

100 Hz.
Cut-off

125 Hz.
Cut-off

1 11.5 58.8 0.01 0.00 0.00
2 13.3 171 0.00 0.00 0.00
3 13.3 175 0.00 0.00 0.00
4 13.4^. 200 0.00 0.00 0.00
5 25.5 207 0.15 0.08 0.05
6 33.5 157 0.11 0.05 0.04
7 34.0 209 0.02 0.10 0.01
8 34.6 207 0.00 0.06 0.09
9 34.6 208 0.04 -0.05 -0.05

10 39.1 218 0.57 0.52 0.14
11 42.2 289 0.62 0.57 0.17
12 45.3 295 -0.06 -0.10 -0.11
13 45.3 334 -0.05 -0.06 0.01
14 45.3 451 0.15 0.18 0.10
15 45.6 808 0.12 0.12 0.08
16 50.6 728 1.00 0.34 0.14
17 61.0 650 -0.03 -0.03 -0.03
18 61.0 706 0.07 6.07 0.02
19 61.1 722 0.02 0.01 0.03
20 71.0 740 5.35 1.11 0.44
21 78.1 841 1.80 0.84 0.67
22 83.7 785 4.30 0.14 -0.04
23 83.9 803 26.8 -0.03 0.15
24 84.0 880 67.4 0.06 0.03
25 85.6 944 68.2 0.31 0.21
26 85.7 1090 192 0.90 0.64
27 98.1 984 179 -0.02 -0.02
28 99.0 1026 178 0.71 0.43
29 99.7 1033 244 0.17 -0.05
30 104.0 1013 251 2.35 0.45
31 104.1 1097 382 2.96 0.40
32 104.3 1224 383 36.1 0.32
33 105.9 1419 376 36.6 0.38
34 117.3 1341 345 113 0.14
35 117.5 1418 434 157 -0.04
36 117.7 1428 494 159 0.08
37 120.1 1489 521 214 0.26
38 125.5 1465 496 223 -0.02
39 127.4 1543 701 295 1.60
40 133.6 1481 735 278 80.2

# d.o.f. 3360 408 424 432 440

Table 4.16: Natural frequency results for telescope model, fixed-interface method
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—D---- Free, l it order mass
—6,-- Free, rd order mass
—0— Fixed

10^15^20^25^30^35^40^45
No. of dynamic component modes

Figure 4.6: Combined natural frequency results for the telescope model
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Component Frequencies (Hz)
Mode Free Fixed

1 1.55 13.4
2 10.1 34.6
3 20.0 45.5
4 28.7 61.1
5 39.5 84.1
6 55.4 98.6
7 64.2 117.3
8 90.0 124.9
9 95.9
10 107.3
11 120.3
12 135.8

Table 4.17: Natural frequencies of spider components

One impressive feature of CMS is how greatly it has simplified the analysis of the

telescope model. Whereas a direct finite element analysis of the complete telescope

represents a more difficult problem—by virtue of the increased number of coordinates—

over that of the focus unit, using CMS has made this problem no more difficult than was

the focus unit, and in fact in some ways has made it much simpler. The simplification

stems from recognizing that with the spider attached, the focus unit acts by and large

as a rigid body whose deformations can be accounted for by static approximation. This

could be discovered in the course of an analysis by comparing the component frequencies

(listed in Tables 4.11 and 4.17), and by noting that the focus unit component frequencies

are an order of magnitude larger than the spider frequencies. Consequently, in the free-

interface method, only rigid body modes and static flexibility of the focus unit are needed,

while in the fixed-interface method only static constraint modes are needed. One might

be tempted to introduce a similar simplification in the direct analysis by replacing the

detailed model of the focus unit with a cruder equivalent. Such an attempt may be
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partially successful but it should be noted that among the many repeated modes of the

telescope are a few that are entirely distinct. These modes are typified by simultaneous

vibration of the spider and the inner components of the focus unit. Therefore, the detail

in the modelling of the focus unit components needs to be maintained in order to predict

these interactive modes. Moreover, it is these interactive modes which are of the most

critical interest in the dynamic response because they are most likely to affect the image

quality. It should be noted that CMS does not detract from the complexity of the original

model. Instead, it allows the analyst to discard information from the original model that

is of no importance to the targeted modes.

In view of the CMS results, a cutoff frequency criterion can be confidently proposed for

the telescope model. To establish such a criterion, first a suitable definition of accuracy

must be agreed upon. One reasonable definition might be that structural modes below

a target frequency of f* are accurate when at least 90% of these modes have less than

1% error in the natural frequency. If this definition is satisfactory, the fixed-interface

method ought to be used with a cutoff frequency fc = p. For the free-interface method,

L = p should be used with a second-order mass, while fc = 1.5f* should be used with

a first-order mass. Of course, this criterion is only valid for the telescope model; if,

for instance, it was applied to the focus unit, it is clear from the results of Section 4.3

that these cutoff frequencies would not be high enough to give the same accuracy. In

establishing such rules of thumb, such factors as the modal density and the complexity

of the component connectivity have to be accounted for. However, it is obviously not

practical to routinely engage in a detailed numerical study involving comparison to a

direct finite element analysis in order to determine an appropriate cutoff frequency. Hence

the need for intuition or numerical experience on the part of the analyst. Of course, if

there is doubt about a suitable value for the cutoff, it is safer to add too many modes

than too few.
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Although the two CMS methods seem capable of giving results of equal accuracy, the

free-interface method does so with more condensed equations and thus fewer independent

variables. In Table 4.15 the first 40 modes are resolved to within 1% error with only

78 degrees of freedom retained; to achieve comparable results with the fixed-interface

method, more than 440 are necessary.

4.4.2 Mode Shape Results and Performance

The mode shape results for the fixed-interface results are shown in Table 4.18. The

results for the free-interface method are similar but have been omitted for the sake of

brevity. As was the case for the focus unit, comparing mode shapes only makes sense for

distinct modes. On the whole, the mode shapes display slow convergence and this can be

attributed to the fact that to/ 10-4 was used instead of tol 10 -6 . The direct analysis

of the complete telescope model proved prohibitively expensive with a tolerance smaller

than 10 -4 , and while this is quite sufficient for giving reliable frequency results, some

discrepancy can be expected in the mode shapes. Since the direct-analysis mode shapes

are the standard of comparison for Table 4.18, the percentage errors cannot be expected

to converge smoothly. However, this does not prevent accurate mode shape calculations

because with CMS stricter tolerances can be used without great expense.

In Table 4.19, the CPU time expenditure for tolerances of 10 -2 and 10 -4 is shown.

The performance of the CMS methods is little affected by the tolerance, even though

more accurate mode shapes are obtained with the smaller of the two. In both cases,

the free-interface method is 2.5 to 3 times faster than the fixed-interface method and for

tol 10 -4 , the former is more than 10 times as fast as a direct analysis. With the results

for the two previous examples in mind, the performance advantage for CMS evidently

increases with the size of the model. Also, the advantage of the free-interface method over

the fixed-interface method appears to increase with the model size. No ill-conditioning
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Direct FEM Analysis % Error, Fixed-Interface CMS Analysis
Mode Frequency

(Hz)
Guyan

Reduction
65 Hz.
Cut-off

100 Hz.
Cut-off

125 Hz.
Cut-off

1 11.5 62.0 2.38 2.37 2.37
2 13.3 - - - -
3 13.3 - - - -
4 13.4 165 0.32 0.32 0.32
5 25.5 153 1.15 0.53 0.27
6 33.5 135 6.27 15.5 4.80
7 34.0 115 33.1 23.5 26.3
8 34.6 - - - -
9 34.6 - - - -
10 39.1 102 3.65 2.56 2.23
11 42.2 134 3.60 3.71 1.32
12 45.3 - - - -
13 45.3 - - - -
14 45.3 - - - -
15 45.6 119 27.2 57.7 35.8
16 50.6 105 8.75 7.47 5.36
17 61.0 - - - -
18 61.0 - - - -
19 61.1 188 71.2 76.1 39.2
20 71.0 119 31.7 9.90 4.62

# d.o.f. 1 3360 408 424 432 440

Table 4.18: Mode shape results for telescope model, fixed-interface method

CPU Time (s) for 40 modes
Tolerances 10-2 10 -4

Direct Analysis 6324 25121
Guyan Reduction 2637 3123
Free-Interface CMS 2161 2203
Fixed-Interface CMS 6225 5744

Table 4.19: CPU times for modal analysis of the telescope model
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problems were encountered with the full telescope model; the modal density of the spider

components is low enough for accurate computations with the larger tolerances.

4.5 Natural Frequency Error Estimation: Ship Model

In Section 3.9, a procedure was described for calculating lower bounds to the exact

frequencies based on a free-interface CMS analysis. This procedure provides a means of

estimating the absolute error in the CMS-derived frequencies without having to compare

them to results of another method, and without having to calculate additional free-free

modes. In the present section, the results of lower bound analyses of the container ship

model are given and compared to direct-analysis results of the assembled model.

Table 4.20 shows natural frequency results obtained using the dynamic residual flex-

ibility evaluated at four different frequencies: U.; = 2.14, 5.94, 10.24, 19.26Hz . These fre-

quencies were originally calculated as the 5 th , 9th, 12th, and 20th modes in the 25Hz,

first-order mass results listed in Table 4.2. The numbers listed in each of the four cases

in Table 4.20 are percentage errors calculated with respect to the direct analysis results.

Thus, a negative percentage error indicates that a lower bound has been predicted; a

positive error indicates an upper bound. Lower bounds generally appear in all modes of

lower frequency than Cv, whereas upper bounds appear in all modes above Cv. Note that

the smallest percentage errors occur in modes closest in frequency to ar. For example,

when (.1"; = 2.14Hz, the smallest error is 0.003% which occurs in mode 5. Because the

values used for (1) are upper bounds calculated from the free-interface method, the error

in this mode ought to be slightly negative, according to (3.96). However, in this example

the results are so close that secondary sources of error such as numerical round-off create

a slightly positive frequency error.

To summarize, the original results in Table 4.2 and the lower bound estimates in Table
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Mode Direct
(Hz)

% Frequency Error with G(m)
cii = 2.14Hz ci,' = 5.94Hz c 7, = 10.24Hz ii, = 19.26Hz

4 0.881 -0.01 -0.11 -0.35 -1.62
5 2.14 0.003 -0.15 -0.51 -2.43
6 3.52 0.04 -0.11 -0.47 -2.34
7 4.55 0.14 -0.11 -0.73 -4.37
8 5.58 0.16 -0.03 -0.48 -3.47
9 5.91 0.50 -0.002 -1.19 -6.37
10 8.01 0.24 0.12 -0.16 -1.64
11 8.97 0.37 0.24 -0.08 -1.90
12 10.2 0.49 0.35 0.01 -1.78
13 12.3 0.70 0.58 0.27 -1.62
14 13.1 2.02^• 1.72 0.96 -3.56
15 13.7 2.57 2.29 1.56 -5.49
16 14.2 6.39 5.48 3.34 -3.97
17 15.0 2.18 1.93 1.32 -1.88
18 16.4 3.30 2.98 2.20 -1.57
19 17.3 2.55 2.35 1.87 -0.57
20 18.9 1.62 1.53 1.29 -0.08

Table 4.20: Lower and upper bounds calculated with dynamic residual flexibility

4.20 are compiled in 4.21 for four selected modes. It should be noted that the lower bounds

are much closer to the exact frequencies than are the upper bounds. By this means, a

good estimate of the error in the upper bounds is obtained. The dynamic residual

flexibility therefore provides a means of accurately estimating the absolute error of natural

frequencies calculated with CMS. This is valuable when direct-analysis results are not

i CZu (Hz) rvi (Hz) il)i - 6.-4 (Hz) wi (Hz)
5 2.1406 2.1411 -0.0005 2.1406
9 5.9071 5.9412 -0.0341 5.9072

12 10.1870 10.2375 -0.0505 10.1860
20 18.9314 19.2566 -0.3252 18.9461

Table 4.21: Lower and upper bound estimates of four CMS frequencies, with predicted
absolute errors and exact frequencies
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available for comparison. Although this technique is only valid for natural modes below

the cutoff frequency, it was shown in the earlier examples that the cutoff frequency must,

in general, be above the target frequency range if accurate results are to be obtained.

However, the accuracy for a particular cutoff frequency is uncertain, and depends on

the characteristics of the model being analyzed. Assuming that the cutoff frequency is

always chosen to be high enough to include the entire target frequency range, the accuracy

of structural natural frequencies falling in this range can be tested using the dynamic

flexibility concept. The cost of the error estimates is dominated by the calculation of

the component modulation matrices (2.51). The same free-free modes are used as in the

original CMS analysis, and therefore the same static residual flexibilities apply.

4.6 Reanalysis Following a Design Modification

Many changes may be made to a structural model before the design is finalized, and

a separate modal analysis may be required for each change. If a direct finite element

analysis has been performed, two possibilites exist: to perform a direct analysis on the

modified model which will be just as expensive as the original; or to seek an approximate

solution using structural dynamic modification techniques [49].

If instead a substructuring approach was taken and the original model was analyzed

with CMS, more options are available to the analyst. If the design modification affects

every structural component, reanalysis requires a CMS analysis like the original. How-

ever, if the design modification affects only some of the components, the component

modes need only be recalculated for the components that have been modified; compo-

nent modes from the previous analysis can be re-used for the unchanged components.

For a complex model, design modifications may well be localized in a single component

and so computational savings can be realized by omitting the reanalysis of unmodified
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Figure 4.7: Mode 9 of the container ship, f = 5.91Hz.

components.

4.6.1 Reanalysis of the Container Ship

In the results for the container ship presented in Section 4.2, mode 9 was found to

have frequency 5.91Hz and the mode shape depicted in Figure 4.7. This mode could

be excited in a resonant or near-resonant condition by pressure forces on the hull. For

instance, a four-bladed propeller rotating at 90RPM would produce a 6Hz periodic force

in the immediate vicinity. Excessive vibration in this mode could bring about fatigue

problems in the structural members and panels and it would also create uncomfortable

living conditions for the crew in the deckhouse.

One solution to this problem is to raise the frequency to a safe region without causing

any other frequencies to fall into the region around the forcing frequency. As this is a

local mode in the stern and deckhouse components, it is susceptible to a purely local

modification. In this example, the four horizontal bar stiffener elements representing

the top deck of the stern component (groups 1 and 2 in Figure 4.8) are modified, and

four stiffener elements representing a new bulkhead (group 3) are added. Inspection of
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Figure 4.8: Six groups of bar stiffeners used for modifications

Figure 4.7 indicates that element groups 2 and 3 will be deformed axially. The stiffness

of group 2 is increased by doubling the cross-sectional area A, whereas the new bulkhead

is given the same properties as the other bulkheads in the vessel. By contrast, group 1

experiences large deflection but little deformation in this mode. Therefore, the frequency

is best raised by reducing the mass of these elements and hence, the cross-sectional area

of group 1 was reduced by half.

Tables 4.22 and 4.23 show the reanalysis results with the modifications to the stern

component. The beam-like hull bending modes that predominate at low frequency

are little influenced by the stiffness modification in the stern and so only mode 9 is

significantly affected out of the first fourteen modes. Only at higher frequencies do

significant frequency shifts begin to appear again. Nevertheless, raising mode 9 to 6.24Hz

may be enough to produce a satisfactory dynamic response. All that remains is to

translate this stiffness modification into an actual physical modification of the ship.

The CPU time expended for the two CMS runs are also shown in Tables 4.22 and
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Free-interface Method
Mode Original Re-analysis % Change

4 0.881 0.877 -0.40
5 2.14 2.14 0.10
6 3.52 3.52 0.05
7 4.55 4.54 -0.26
8 5.58 5.60 0.53
9 5.91 6.24 5.55

10 8.01 8.01 -0.07
11 8.94 8.90 -0.46
12 10.19 10.17 -0.18
13 12.28 12.16 -0.94
14 13.08 13.01 -0.46
15 13.79 13.58 -1.40
16 14.27 14.63 2.86
17 15.00 15.00 0.08
18 16.45 16.41 -0.23
19 17.39 17.41 0.25
20 18.96 18.95 -0.02

CPU time 1028 176 -82.9

Table 4.22: Reanalysis of the container ship model, free-interface method

Fixed-Interface Method
Mode Original Re-analysis % Change

4 0.881 0.877 -0.40
5 2.14 2.14 0.10
6 3.52 3.52 0.05
7 4.55 4.54 -0.26
8 5.58 5.60 0.54
9 5.91 6.24 5.54

10 8.01 8.01 -0.07
11 8.94 8.91 -0.46
12 10.19 10.17 -0.18
13 12.28 12.18 -0.92
14 13.08 13.01 -0.49
15 13.79 13.61 -1.34
16 14.27 14.66 2.85
17 15.00 15.01 0.11
18 16.45 16.42 -0.21
19 17.39 17.43 0.23
20 18.96 18.99 0.02

CPU time 1561 662 -57.6

Table 4.23: Reanalysis of the container ship model, fixed-interface method
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4.23. The reanalysis times are for calculation of 40 modes, as was done in the origi-

nal analysis. The greater proportional time reduction in the free-interface method can

be attributed to two factors. First, this method places more computational empha-

sis on component analysis, creating more condensed system equations. Conversely, the

fixed-interface method performs fewer computations at the component level, instead al-

lowing larger system equations and therefore placing more computational emphasis on

the system level. In a reanalysis mode, the free-interface method stands to benefit more

because component-level calculations are skipped. Secondly, the implementation of the

fixed-interface method in VAST had to be made less efficient, particularly in a reanalysis

mode where it was difficult to avoid unnecessary computations. These two factors com-

bine to give the free-interface method the advantage, but this advantage diminishes as a

larger proportion of the components undergo modification.

4.6.2 Reanalysis of the Telescope Focus Unit

As a further example of the advantage of using CMS for reanalysis, the stiffness of the

bearings connecting the inner tube to the outer tube will be modified to determine their

effect on the focus unit frequencies. These bearings have been modelled as simple bar

elements and are included as part of the inner tube component (see Figure 4.3). The

difficulties involved with modelling bearings accurately justifies some investigation into

the effects of different modelling options. Tables 4.24 and 4.25 show the results of a

reanalysis of the focus unit with the cross-sectional area of the bar elements doubled.

The results clearly indicate which modes are affected by the bearings and which are not.

With a CMS reanalysis, only component modes associated with the inner tube need to

be re-calculated. The time savings obtained are similar to those found for the container

ship, with the free-interface method showing the largest proportional reduction. But it

is here that the benefit of having condensed system equations is most apparent. With
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Free-Interface Method
Mode Original

A = 36mm2

Re-analysis
A = 72mm2

% Change

1 34.7 34.7 0.00
2 72.8 78.7 8.16
3 72.8 78.7 8.18
4 185.8 185.8 -0.01
5 431.6 468.2 8.47
6 433.2 470.4 8.59
7 655.4 710.0 8.34
8 658.0 714.2 8.54
9 1004 1003 -0.06

10 1060 1148 8.26
11 1067 1152 7.90
12 1233 1274 3.39
13 1234 1317 6.73
14 1273 1321 3.69
15 1347 1349 0.10

CPU time 5094 1114 -78.1

Table 4.24: Reanalysis of the TFU, free-interface method

Fixed-Interface Method
Mode Original

A = 36mm2

Re-analysis
A = 72mm2

% Change

1 34.7 34.7 0.00
2 72.7 78.7 8.16
3 72.7 78.7 8.17
4 185.8 185.8 -0.01
5 431.5 467.9 8.44
6 433.0 470.1 8.57
7 655.6 710.0 8.29
8 658.3 714.2 8.49
9 1006 1005 -0.06
10 1062 1151 8.38
11 1070 1156 8.02
12 1234 1299 5.34
13 1235 1316 6.54
14 1273 1319 3.66
15 1349 1350 0.09

CPU time 8308 6768 -18.5

Table 4.25: Reanalysis of the TFU, fixed-interface method
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the fixed-interface method, whether in the original analysis or the reanalysis, the time

expended for the final eigensolution alone is about 30003, while the entire reanalysis with

the free-interface method expends only 1114s (Table 4.24). These results were obtained

with a eigensolution tolerance of 10 -6 . If a larger tolerance is used, the performance gap

is narrowed at the price of obtaining less accurate mode shapes.

4.7 Discussion and Summary of Numerical Results

The examples presented in this chapter show a variety of typical situations: models

of differing size and complexity in two and three dimensions. In all cases, CMS has

proven capable of accurately predicting the low frequency modes with a reduced-order

formulation of the free vibration equations. Moreover, CMS is more efficient than direct

finite element analysis and its relative efficiency increases with the number of degrees

of freedom in the model, with the number of low-frequency structural modes that are

calculated, and with stringency of the accuracy requirements.

Of the CMS methods used, the free-interface method with second-order mass terms

appears to be the most economical. Although the relative speed of the methods is partly

a function the efficiency of the software implementation, the free-interface method does

benefit from a highly condensed set of global equations. A close study of the examples

presented in this chapter will strengthen this point further. The finite element models

used in the examples have respectively 1341, 2568 and 3360 degrees of freedom but the

results for the free-interface method show that comparable accuracy between the different

examples is obtained with equations of the same order. That is, the size of the condensed

system equations is not determined by the size or complexity of the original model;

instead, they are determined solely by the cutoff frequency, which itself is determined by

the desired range of accuracy. The opposite is true for the fixed-interface method where
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the original size and complexity does ultimately determine the size of the condensed

system. Comparing the results for the ship model and the focus unit, a large jump can

be seen in the order of the condensed system because of the increased complexity of the

component interfaces in the latter.

This point is illustrated by imagining the following process. Suppose that the coarse-

ness of the mesh in the container ship model is reduced by a factor of two: that is, each

bar element is replaced by two others one-half its size and each membrane is replaced by

four others one-quarter its size. The overall effect will be to approximately double the

number of nodes situated on the component interfaces (and thereby double the number

of static modes). If the fixed-interface method is used on the refined model, a larger

order system is the result.

However, as the mesh was already sufficiently fine, one would not expect either the

low-frequency system or component modes to change significantly when the additional

refinement takes place. That is, results of essentially the same accuracy would be obtained

with the same cutoff frequencies, entailing the same dynamic component modes. With

the free-interface method this leads to equations of the same order. The same process

if carried out with the focus unit would give the same result. More generally, it can be

remarked that the number of dynamic modes needed in a CMS analysis is not a function

of the mesh refinement.

When applied to relatively complex models, the basic differences between the two

formulations have a great impact on their performance. Throughout the examples, the

free-interface method is consistently quicker than the fixed-interface method (excepting

the cases for which ill-conditioning occurs); and as the model complexity increases, so

does the discrepancy in the solution times. Furthermore, the difference is magnified in

reanalysis problems where a partial reanalysis of the structural components precedes a

complete eigensolution of the condensed system equations.



Chapter 5

Structural Dynamic Modification

5.1 Introduction

The previous chapters of this thesis have dwelt on the problem of analyzing the natural

modes of a system. In structural design, accurate knowledge of these modes is required

to determine whether the vibrational response will be acceptable or not. Closely related

to the analysis problem are the reanalysis and re-design problems, which are concerned

with determining the effects of modifications on the natural modes of the system and

with the ways in which a system can be modified in an efficient manner.

The design cycle of a particular structure may entail numerous modifications, each of

which requires a free-vibration analysis. The purpose of developing structural dynamic

modification techniques is to provide a capability for efficient design and re-design, and

to foster a better understanding of structural dynamic behaviour.

Dynamic modification techniques all use an unmodified or baseline state as a reference

point for the modified structure. In this respect, there is great potential for using a CMS

formulation of the baseline system. Because of the compact, reduced-order nature of the

CMS formulations, numerical techniques used in dynamic modification can be applied

with less computational effort. As of yet, little work has appeared in the literature

relating CMS analysis to structural dynamic modification.

Reanalysis is concerned with the efficient evaluation of the natural modes of a mod-

ified structure. This is often referred to as structural dynamic modification or forward

126
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modification. This subject was touched on in Section 4.6 where it was shown that the free-

interface CMS technique provides a means of accurate and efficient reanalysis for local

modifications. In this chapter, forward modification is dealt with in a broader sense, the

intention being to demonstrate how techniques successfully applied to unsubstructured

systems can be adapted to substructured situations.

Inverse modification is concerned with assessing the changes to structural properties

necessary so that prescribed modal constraints are satisfied. The modal constraints may

consist of constraints on the frequencies, mode shape constraints or a combination of

both. Generally, mode shape constraints will take the form of limits on the relative

amplitudes of specified locations in the mode shapes. Techniques for solving problems of

this kind are valuable because they eliminate the element of guesswork from the re-design

process.

Inverse modification techniques applicable to general structural changes fall into two

classes: perturbation and sensitivity techniques. The application of these two techniques

to substructured models analyzed with CMS is the subject of Sections 5.4 and 5.5. In

Section 5.6, numerical results are presented and the performance of the two techniques

is compared.

5.2 Structural Changes

It should be made clear what is meant by a modification of a structural model. In the

present context, a structural modification can be any combination of the three following

types of changes:

• Changes to the material properties of the structure;

• Modification of existing elements provided that node locations are left unchanged;
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• Adding new elements, externally connected springs or lumped masses to the existing

mesh.

These restrictions bring about two important advantages. First, because topological

changes are excluded, re-meshing of the model during reanalysis is not a concern. Sec-

ondly, a structural modification defined as above can be expressed as a perturbation to

the existing system; i.e., the stiffness and mass matrices of the modified structure are

perturbed versions of the original matrices: K K + AK, and M --+ M + AM.

When using finite element models, the stiffness and mass matrices of a structure (or

structural component) are assemblies of all constituent element matrices. Likewise, the

perturbed matrices are assemblies of perturbed element matrices:

AK =E seT Akese (5.1)

AM = E seTAmese (5.2)

where S. is the appropriate transformation from local to global coordinates. When deal-

ing with substructured models, the above formulae define perturbations to a structural

component. The perturbations to all components are expressed collectively using the

overbar notation, where AK is the uncoupled collocation of the various component stiff-

ness perturbations:

OK = diag {AK ( ')} (5.3)

AM = diag {OM ( `)} (5.4)

where the superscript (i) indicates the perturbed matrix of the ith component.

The element matrices are functions of a number of independently varying properties.

For example, the stiffness matrix of a beam element is a function of its length, elastic

modulus, cross-sectional area, and second moment of area. Changes to any of the last

three are admissible, according to the definition above; changing the length is forbidden
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since this requires relocating the element nodes. If the second moment of area is the only

property to be changed, ke is in the following form:

= (1c!') r (5.5)

where r denotes the current value of the property and where lc!' is defined as the portion

of the element stiffness matrix proportional to the property variable r. The perturbed

element stiffness Ake is therefore,

Ake = — = (1o) Ar = (lc!) ra (5.6)

where a is the fractional change to the property r. The above equation reflects the linear

relationship between the second moment of area and the element stiffness. Consequently,

property changes of this type are called linear property changes. Changes to element

mass matrices are usually of this type.

It could be argued that since the cross-sectional area and its second moment are

difficult to change independently, a better choice of property variables would include the

actual dimensions of the cross section. For instance, choosing the width of a rectangular

cross section as the property variable gives a perturbed element stiffness of the form,

Ake = kr, (r' — r) kc ((r')3 — r3)

= (kr, + 3icecr3) a + (3kcr3) a2 (keCr3) a3 (5.7)

where r' = (1 a)r and where Icec is defined as the portion of the element stiffness matrix

proportional to r3 . The higher-order terms in a reflect the nonlinear relationship between

the width of the beam and the element stiffness. Property changes of this type are called

nonlinear property changes.

In forward modification problems, the property changes are prescribed at the outset

and so element perturbations can be calculated exactly, whether they are of the form (5.6)
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or (5.7). On the other hand, for inverse modification problems the property changes

are unknown and have to be determined to satisfy some modal constraints. In this

application, a is referred to as a design variable. When a design variable appears in a

nonlinear form it cannot easily be determined, particularly if it is coupled to another

property change in the same element. Moreover, the linear and cubic portions of the

stiffness, and /cc , are not always easy to separate, adding further complications to the

exact determination of a.

As a simplification, a linearized version of the perturbed element matrix is obtained

with the first term of a Taylor expansion about the baseline value:

Ar 8ake
a (Ake )

a=0
(5.8)-a

as
T=TO

For a linear property Ake = Ake ; for a nonlinear property of the form (5.7),

Ake^Ake = (Icezfr^31cecr3) a (5.9)

where the equality is justified for small a only. In practical computations, the derivatives

in (5.8) can be evaluated numerically by calculating small perturbations around the

baseline.

Supposing the total number of design variables is m, the linearized element matrix

perturbations are,

Aice = Eln (al-2—e ) r 
2
•a • = Ein^(k.,)i a;^(5.10)

^j=1 ar; ^3 :7=1

171 ,((a^me^m
^Ark = E^—^ria, = E^(m.,.)i a;^(5.11)

^

J1. uri^j=1
Usually one would be concerned with property changes affecting groups of elements rather

than just individual elements. Indeed, a single design variable can be used to describe a

property change of a whole range of elements. The following expressions for the overall
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perturbations are obtained by applying (5.10) and (5.11) to (5.1) and (5.2):

^m ^ m

^AK = E E^(lcer )i Sea; = E (Kr ); a;^(5.12)
^E j=1^ j=1

AM = E E Si (m ). a • E (m. ) a •.e^Spa;ej^T3 j (5.13)
e j=1^ j=1

Similar expressions for substructured systems can be developed with the help of (5.3)

and (5.4). In this case, (5.12) and (5.13) describe property changes extending over a

range of elements within a component. But the process can be taken one step further by

considering changes extending over a range of components. The appropriate expressions

are,
m

6,17 E Cg,.) aj
j=1^3

= E (sir) i
=1

dwhere CL) = iag {(Kr ); } and (MT ) i is similar.

(5.14)

(5.15)

5.3 Structural Dynamic Modification with CMS

A comprehensive review of structural dynamic modification techniques has been provided

by Baldwin and Hutton [49]. They divide the various techniques into three classes: tech-

niques for local modifications, techniques for small modifications, and techniques based

on modal truncation. In Section 4.6, some attention was given to local modifications of

substructured models within the context of CMS. The present discussion is relevant to

modal truncation techniques. First, a brief review of the fundamental equations is given;

and in the subsequent section the method is applied to substructured systems.

The free-vibration equation of motion for a modified structure is,

(K + AK) — (M + AM) Xi = 0^(5.16)
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where A:, X: are the ith modified eigenvalue and mode shape of the structure. A direct

solution of this equation gives accurate values for A:, X: at a cost equal to that of

the original solution. To reduce this cost, a standard practice in forward and inverse

modification is to use the original (baseline) modes as a basis for X::

x: E xici; Xci
j.1

(5.17)

That the modified and baseline mode shapes can be represented in the same vector space

is a consequence of the definition of a structural modification stated in Section 5.2. In

(5.17), the projection of the modified mode on to the baseline modal space is given by

the vector ci. With a complete set of baseline modes, this representation of X: is exact.

However, in realistic situations the baseline mode set is inevitably truncated and usually

includes just the low frequency modes. This introduces an approximation whereby (5.17)

is suitable only if X: can be adequately represented within the confines of the reduced

modal subspace. The strengths and weaknesses of this approximation are the subject of

much discussion in the modal analysis literature [50, 51].

Applying (5.17) to (5.16) and premultiplying by XT gives,

XT (K AK)Xci — A:XT (M AM) Xci = 0^(5.18)

Assuming mass normalized modes, this becomes,

(c12 XTIKX) ci — (/ XTAMX) = 0^(5.19)

This equation is, like the original equation (5.16), an eigenvalue equation but where now

the eigenvector is ci. Determining ci defines the modified mode shape within the limits set

by (5.17). The order of (5.19) is reduced because of the truncation of the baseline modes;

as with CMS, the equations of motion are condensed at the expense of high-frequency

information.
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It is interesting to note that the procedure described in Section C.4 for calculating

the wetted modes of a structure from its dry modes is a special application of (5.19). In

that procedure, the fluid added-mass matrix serves as AM and the stiffness modification

is zero.

5.3.1 Application to Substructured Models

The free-vibration equation of motion formulated by a CMS method is, in its most general

form,

- Ai /Cgs = 0
^

(5.20)

where, k = TT—KT ,^TT MT, and T is the transformation from the physical coordi-

nate system of the structural components to the generalized coordinates of the system.

In the free-interface method, T takes on the form,

T= 71) —^A [grill A1 -1Are;^= (5.21)

In the fixed-interface method, it takes the form,

T = [^cTA =
I 

9
3

(5.22)
Pn

Reformulating the CMS equations after a modification to the components gives,

^(k OK) — A: (if + AM);^= 0^(5.23)

where the modified condensed system matrices are defined by,

^ff Ak = T IT (K + AK) T'^ (5.24)

^+ OM = (m + AM) T 1^(5.25)

and where T' is the new transformation formed by substituting updated component

modes in either (5.21) or (5.22). Because T' is dependent on the modification, a simple,
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linear perturbation in the component stiffness or mass appears as a complex, nonlinear

change in the condensed system matrices. As a result, it is difficult to predict the

precise form of the modified CMS equation unless the component modes are recalculated.

The treatment of the reanalysis problem in Section 4.6 included recalculation of the

component modes. In this section, an approximation to (5.23) is derived which can be

used without recalculating the component modes.

The structural modification equation (5.19) can be directly applied to a substructured

model once the mode shapes have been reconstructed from the baseline CMS analysis

with the general relation,

= n (5.26)

A modal approximation appropriate for substructured systems is derived by using ui in

place of Xi in (5.17):

= E = E T64; = TZci
j=1^j=1

(5.27)

The kinetic and potential energies of the baseline system oscillating in the ith mode

can be written as,
1^1^---T = iAiXTMXi =^M

V = —1 XTKX. = —1 fiTKii.
2%^a^2s^s

(5.28)

(5.29)

These expressions make use of the fact that the energy in the system is equal to the

sum of the energy in all the components. Likewise, the energies of the modified system

oscillating in the it" modified mode are,

= —2 A: T^+ AM) re
^

(5.30)

_IT= ut + Ax) (5.31)
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Applying (5.27) and Lagrange's equation to T' and V' gives the following equation of the

modified structure:

[02 + ZTTTA-ITTZ - of (./ ZTTTAMTZ)]ci = 0^(5.32)

where now the necessary definition of mass normalization is,

S2 2 = ZTTTICTZ I = ZTTT MTZ
^

(5.33)

The number of modes available for the baseline set is at most equal to the size of the

baseline CMS equations. Assuming that such a complete set is available, define as,

= Z c.i (5.34)

The matrix Z is square and invertible; thus,

= (5.35)

Substituting (5.35) into (5.32) and premultiplying by (Z -1 )T gives,

[Z-TS2 2 Z-1^TTAKT -.A (Z-TZ -1^TTAMT)] = 0 (5.36)

With (5.33), this equation reduces to,

[k^TTAKT - A: (if^TTAMT)] i = 0 (5.37)

Equation (5.37) is the same as the modified CMS equation (5.23) except that the

transformation T' is replaced by its baseline counterpart T. As a result, linear pertur-

bations in the structural matrices now only appear as linear changes in the global per-

turbation matrices, Ak and OM. Thus (5.37) can be described as the linear-equivalent

equation for the modified system. Since (5.37) was derived assuming a full complement

of CMS modes, it represents the optimal case for structural dynamic modification of a
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substructured system when no recalculation of the component modes is performed. Yet

(5.37) can be derived independently of the number of baseline modes that are actually cal-

culated; all that is required is the preservation of k, Si and the baseline transformation

matrix T.

Some advantages to using (5.37) are immediately apparent. The order of (5.37) is the

same as the original CMS equation and so the reanalysis benefits from the same degree

of condensation as the baseline analysis. Also, the component modes do not need to

be recalculated to solve (5.37); instead only the matrix products TT LIKT and TT AMT

need to be evaluated.

For special types of modifications, the linear-equivalent equation gives an exact de-

scription of the modified structure. Obviously, if the modification is such that the system

mode shapes are left unchanged, the modal truncation in (5.27) introduces no error and

the results from (5.37) will be exact. However, a stronger statement than this can be

made. Exact results will be obtained when the modal approximation (5.27) is capable of

exactly representing the modified mode shape. Using (5.35), this condition is equivalent

finding a 4 such that

= = T (5.38)

Modifications in which the columns of T' are linear combinations of the columns of T will

satisfy (5.38) since, in that case, the columns of both matrices span the same space. In

the free-interface method, this situation arises when a perturbed component mass matrix

AM is proportional to the baseline component matrix M. Such a modification leaves the

component modes unchanged except for an adjustment to the mass normalization factor

in the free-interface modes (1). Thus, the columns of T' are scaled differently from those

in T, but through (5.38), an exact description of the modified mode shape can still be

obtained using T. An example is given in the next section which shows that in special
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cases exact results can also be obtained when adding lumped masses.

5.3.2 Numerical Results

In this section, four examples are presented which compare the linear-equivalent and CMS

reanalysis methods. While the linear-equivalent equation (5.37) is in a general form which

can be applied to either the fixed- or free-interface CMS methods, the examples here use

results from the free-interface method only, because of its superior condensation.

Consider the example used in Section 4.6.1 where the modes of the container ship

were determined after a modification to the stern stiffeners (groups 1 and 2 in Figure

4.8). The same modification is now made, but the natural modes are recalculated using

the linear-equivalent equation. The ninth modified mode was found to be A = 6.317Hz,

whereas in Table 4.22, it was predicted to be 6.235Hz. The descrepancy is explained by

the nature of the approximation in the linear-equivalent equation. In the derivation, the

modified mode shape is projected on to a modal subspace spanned only by CMS-derived

modes; the large number of higher frequency modes that cannot be calculated with these

equations are ignored. This effectively puts constraints on the modified structure which

raise its natural frequencies. The baseline modes are not an effective basis for the modified

mode because the latter is a local mode in the stern and superstructure, as was shown in

Figure 4.7. On the other hand, the majority of the baseline modes are vertical bending

modes in the hull which are not very useful for characterizing localized displacements.

To show better the effectiveness of modal truncation, consider raising the elastic

modulus of the stiffeners located at the bottom of hull (groups 4, 5, and 6 in Figure

4.8). These stiffeners extend from the bow to the stern and are used to partly simulate

the bending stiffness of the hull bottom. Changing these stiffeners requires modifications

to three components, and so the change is not nearly as localized as in the previous

example. The effect of these stiffness changes on the fundamental flexible mode (h) is
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Figure 5.1: Reanalysis results for modifications to hull-bottom stiffeners

shown in Figure 5.1. An excellent match is obtained between the linear-equivalent and

CMS reanalysis results. Because the fundamental mode is the 2-node bending mode of the

hull, changes to this mode are well approximated as a linear combination of the baseline

modes. The cost of the linear-equivalent method compares very favourably with the

CMS reanalysis results. The average time for reanalyzing 10 modes in a CMS reanalysis

is 1150 seconds; with the linear-equivalent method the average time is 43 seconds.

Another example is furnished by Section 4.6.2 in which the telescope focus unit was

reanalyzed after a modification to the bearing stiffnesses. Figure 5.2 shows the variation

in the second and third frequencies (which are identical) resulting from modifications to

the bearing stiffness. The fractional change a refers to the cross-sectional area of the bar
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Figure 5.2: Reanalysis results for modifications to bearing stiffnesses
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elements used to model the bearings. The inaccuracy of the linear-equivalent method

is caused by the inability of the truncated baseline mode set to describe the modified

mode. While the linear-equivalent method is more accurate for small changes, it should

be emphasized that it is not a "small modification" method in the same sense that the

sensitivity method is; the method is valid for large and small changes alike, as long as

the modal subspace is sufficiently large to describe the mode shape changes.

As a third example, consider again the second and third modes of the TFU. Both of

these are swinging modes affecting the inner tube and chopping mechanism. Consider

now the effect of adding mass to the chopping mechanism. Four equally-distributed and

identical lumped masses of varying magnitude are added to the bottom of the component.

As this addition increases the kinetic energy in these two modes, the frequencies should

drop. This is verified in Figure 5.3, where it can also be seen that the linear-equivalent

method and the CMS reanalysis predict identical results. This is explained by noting

that the chopping mechanism is modelled as a block of aluminum solid enough for its

dynamics to be represented by rigid-body modes and static flexibility. Because of the

component's rigidity, adding lumped masses has an insignificant affect on the static

modes. The effect on the rigid body modes is only to adjust the mass normalization

factors, and consequently the modified matrix T' can be represented as

T' = TD (5.39)

where D is a general diagonal matrix. In such situations, exact representations of the

modified mode shapes are obtained using (5.38). Not only the second and third, but all

of the modes should be predicted with equal accuracy. This underscores the second inter-

pretation of the linear-equivalent equation: it provides an equivalent CMS formulation

of the modified system under the restriction that linear combinations of the columns of

T provide an accurate description of the modified mode shapes.
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5.4 Perturbation Methods for Inverse Modification

Attention is now turned to inverse modification, which is concerned with determining a

set of design changes which satisfy some prescribed modal constraints. To perform such

an analysis, the design variables must first be selected from among the allowable property

changes. As was mentioned in the introduction, the modal constraints may consist of

frequency goals or mode shape constraints. In the present discussion, only frequency

goals are considered; extra difficulties arise with mode shape constraints which need not

be discussed in this treatment.

5.4.1 Background

The original work by Stetson [52, 53, 54] in this area used an equation of motion of the

modified structure in the following perturbed form:

(X + OX )T (K OK) (X AX) = (X + OX ) T (M OM) (X AX) (02 + An2)

(5.40)

Two basic approximations were made: in the expansion of (5.40), all nonlinear incremen-

tal terms were deleted; and the perturbed modal matrix AX was approximated as the

linear combination of the baseline modes,

AX = XC^ (5.41)

where C is a square matrix of admixture coefficients in which the diagonal elements

0. Note the slight difference between (5.41) and (5.17). With these two approximations,

Stetson derived the linear perturbation equations,

XTAKXi — AiXTAMXi = MiAAi for i = j^(5.42)

= Mlci7̂ for— Ai) for i j^(5.43)
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Equation (5.42) is used for frequency modification, (5.43) for mode shape modification.

A prescribed frequency shift is defined by AAi, a prescribed mode shape change by cii.

The equations can be solved after expressing the AK, AM perturbations in terms of

unknown design variables a, as was described in Section 5.2. The solution a represents a

first-order estimate of the design change satisfying the dynamic equation of the modified

structure.

Sands&Om and Anderson [55] presented a similar formulation, but expressed the

prescribed mode shape shift explicitly, rather than with admixture coefficients. Kim et

al. [56] proposed a method in which the modified perturbation equations were solved by

mathematical programming, while retaining all the nonlinear terms in (5.40). Minimum

weight solutions were found with the aid of a starting vector. A general dynamic reduction

method combining static condensation with subspace iteration was used to compress the

perturbation equations for large-order models [57, 58].

Hoff et al. [59, 60] proposed a two-stage predictor-corrector method for frequency

modification which is more suitable for large structural changes. The predictor phase es-

timates the design changes and the perturbed mode shapes using the linear perturbation

equation. In the corrector phase, the general perturbation equation (5.40), incorporat-

ing the estimated mode shape perturbations, are solved in an attempt to improve on

the predictor phase results. Welch [61] reported that the predictor-corrector scheme is

adequate for problems with linear property changes but is unable to predict nonlinear

property changes accurately. To improve the performance for large modifications, Bernit-

sas and Kang [62] used the predictor-coirector incrementally to calculate a sequence of

small steps which cumulatively result in the complete solution. Gans and Anderson

[63] adapted the predictor-corrector method for systems with significant centrifugal and

coriolis forces. The predictor-corrector method has also been implemented in the finite

element program INSTRUM [64].
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The approach taken by Smith and Hutton [65] is somewhat different. The free vi-

bration equation of the modified system (5.40) is premultiplied by the baseline modes

rather than the modified modes. This gives the following equation which bears a strong

resemblance to the forward modification equation (5.18):

XT (K + AK) XC = XT (M + AM) XC (Se Af22) (5.44)

The advantage of using (5.44) is that the number of nonlinear incremental terms is less

than in (5.40), and this facilitates the solution of inverse modification problems with-

out further approximation of the equations. Smith and Hutton described an interative

method for calculating design changes exactly satisfying (5.44) in the presence of pre-

scribed frequencies. The only limiting approximation is the truncation of the baseline

mode set in (5.17).

In a parallel development of perturbation methods, Ram and Braun [66] determine

optimal perturbing stiffness and mass matrices for a particular modal subspace. The

subsidiary problem is then to relate the optimal perturbation to physical changes in the

actual model, but this was not investigated by the authors. The philosophy adopted in

the present discussion is that all possible design solutions should be chosen from a set

of perturbing matrices that are defined by a set of design parameters, as described in

Section 5.2. As the design parameters are chosen by the analyst, this approach requires

greater engineering judgment but at the same time affords greater flexibility in satisfying

the modal constraints.

5.4.2 Application to CMS

Little research work has as yet made use of CMS formulations in inverse perturbation

studies. Linearized perturbation equations for the fixed-interface CMS method have been

developed which are suitable for uniform stiffness and mass changes to the components
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[67]. The present discussion is concerned with ways more general structural changes can

be predicted, and is an adaptation of the method described in [65].

The basic perturbation equation for substructured systems is given by (5.23). To

begin the development, consider a frequency modification problem having one frequency

constraint, .X = A:. The task is to find the design variables a and the modified eigenvector

4: satisfying (5.23). While the characterization of AK and AM in terms of design

variables is straightforward, a complication arises here because the transformation T' is

also a function of the design variables. The following frequency modification equation

results:

7111- (a) (K + AK) r(a) : = A:T1T (a) CH T'(a) (5.45)

The equation is clearly nonlinear in a. Moreover, the functional dependence of T' on

a is not exactly known; for the relationship between the dynamic modes in T' and a

can only be expressed with the help of approximate sensitivity techniques; and the static

modes in T', because they are calculated with an inverted stiffness matrix, will generally

have a complicated relationship to the structural properties. Consequently, the frequency

modification equation is exceedingly difficult to formulate to its full extent.

Instead, consider the practice used in perturbation methods of expressing the modified

mode shape as a linear combination of a truncated mode set, as in (5.17). In Section 5.3.1

it was shown that if the baseline mode set included the maximum number obtainable

from a CMS analysis—that is, when the number of baseline modes equalled the order of

the CMS equations—the linear-equivalent perturbation equation (5.37) results. Applying

the frequency constraint as = A: to that equation gives,

TT (-1–f AK) 71e = A; TT (M AM) Te^(5.46)

Because the baseline transformation T is invariant with respect to a, the linear-equivalent

frequency modification equation (5.46) is greatly simplified from (5.45).
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The baseline mode set is truncated further by the substitution,

q

1;; =EZ;ci; = Zci
j=i

(5.47)

where now q is less than the order of the baseline CMS equations. Premultiplying (5.46)

by ZT gives,

ZTTT AK(a)T^= A: [i ZTTT AM(a)TZ] ci^(5.48)

This equation is exactly analogous to the equation derived for unsubstructured systems

in [65].

Solution Algorithm

An algorithm is now given for calculating design solutions satisfying (5.48). This algo-

rithm is applicable with linear design variables, though by linearizing nonlinear variables

accurate solutions can still be obtained for small fractional changes. Consider the ith row

of (5.48):

ZTTT [A-17(a) — A:AM(a)1TZci + (A i — A:) = 0^(5.49)

This is called the design equation because it is used for determining the design variables

a satisfying the frequency constraint A: = A:. The remaining q —1 equations in (5.48),

ZTTT [6:K(a) — A:AM(a)1T Zci (A; —^= 0^j = 1,2,...,q; j i (5.50)

are the admixture coefficient equations. They are used to determine the parameters c i;

defining the modified eigenvector Unfortunately (5.49) and (5.50) cannot be solved

simultaneously; unknowns a and ci; are coupled in both equations. A solution is found

with the following iterative algorithm, in which t designates the current iteration. This

algorithm is exactly analogous to the one proposed for unsubstructured systems in [65].
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1. Let t = 0, cT ) = 1, dicl) = 0 for j = 1, 2, ... , q; j^i.

2. Calculate the design variables satisfying the frequency modification equation (5.49);

i.e., solve

ZTTT [AK(a(t-I-1)) A:AT/02(t+1) )] TZc! t) + (Xi —^= 0^(5.51)

(ait+i), ari ,) Tfor a( t+ 1) =^a(„+1)) . Note that if m = 1 the solution of this

equation is unique. When m > 1, the solution is underdetermined and it is nec-

essary to use optimization. A description of the optimization algorithm is given

below under the heading "Mathematical Programming".

3. Calculate the eigenvector change satisfying (5.50) subject to the design modification

a(t+1); i.e., solve

ZTTT {rf(ce(t+1) ) — A:AM(a (t+1) ) ] TZe l) + (Ai —^= 0

j = 1, 2, . , q; j^i^(5.52)

forr
_^1) = (c

(
it+1) c(2t-I-1)^cltq-1-1)1) T and normalize such that liclt+1) 11 2 = 1. In thisci

step, q elements of ci
(t+i) are determined from q — 1 equations. Because cl t+1) can

only be specified to within a common multiplicative factor, one of its elements can

arbitrarily be assigned unit value. With this substitution, (5.52) becomes a set of

q — 1 equations in q — 1 unknowns. To avoid numerical difficulties, it is best to

assign a unit value to the largest element in cl t+1) , which in most cases is 4 +1) .

4. Set t = t + 1 and repeat Steps 2, 3 and 4 until a(t+ 1 ) = a( t).

In Step 1, the initial assumption made is that the modified eigenvector is no different

from the baseline. This is the same assumption used by Stetson in his derivation of

the linear perturbation equation. However, in subsequent iterations the above algorithm
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differs from approach taken by Stetson and others. In (5.51) and (5.52), all of the

coupling terms between a and ci are retained and the only supporting approximation is

the truncation of the baseline modes in (5.48).

Mathematical Programming

When more than one design variable have been defined, the solution of Step 2 is underde-

termined and an infinite number of solutions are possible. To resolve this, mathematical

programming is used to solve (5.51). In this study, a penalty function method employing

a minimum change objective is used. This involves minimizing the functional,
ng

F* = aT + iCi RT R ItEl/g; (5.53)

The first term is a measure of the overall change that is to be minimized. Minimum

change solutions are often preferable to minimum weight solutions in redesign problems

and are less liable to produce pathological solutions [63]. The second term is an external

penalty function where R is the residual of the equality constraints. In this case R is just

the residual of the design equation:

R = ZTTT [AK(d+1) ) — A:AM(a(t+1) )] TZc!t) + (Ai — (5.54)

The third term of F* is an interior penalty function in which g; > 0, j 1, 2, ... , ng are

inequality constraints limiting the feasible domain of the design variables. For instance,

a; < —1 are physically impossible, and so

ai + 1 > 0 j = 1,2,...,m (5.55)

are necessary inequality constraints. Further constraints on a can be added as desired.

The use of this type of penalty function is discussed by Haftka and Kamat [68]. For it

to be successful, the starting point (a = 0) must be in the feasible region, otherwise the

interior penalty function cannot work.
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The minimum value of F* is calculated using a quasi-Newton algorithm with a weak

line search and a BFGS update, a description of which is given in [69]. The factor it is

chosen based on an initial estimate of the minimum of F*. In the course of the quasi-

Newton algorithm, is decreased by a factor of 5 after each iteration, progressively

de-emphasizing the inequality constraints in favour of the equality constraints.

It should be emphasized that mathematical programming is only used in Step 2 and

therefore constitues just one part of the larger algorithm. By contrast, Kim [57] uses

a mathematical program to solve the full set of dynamic equilibrium equations. The

unknowns include both the design variables and all the unspecified components of the

perturbed mode shapes, thus making the number of unknowns very large for complex

models. The procedure adopted in this study is simpler in that design variables alone

are determined through optimization; modified mode shapes are subsequently determined

from the remaining perturbation equations. Modal truncation allows the iterative method

to be executed inexpensively even for large-order complex systems.

Multiple Frequency Constraints

The above algorithm is easily adaptable for simultaneous multiple frequency constraints.

If 1 frequencies are prescribed, 1 sets of q equations are obtained by substituting the

appropriate index i in (5.48). One design equation is selected from each set, giving 1

equations with m unknowns in Step 2. A solution is possible when m > 1, provided

the 1 design equations are independent; a unique solution is possible when m = 1, and

mathematical programming is used when m > 1. In Step 3, the mode shape perturbation

is obtained by solving each set of the 1 sets of q — 1 equations separately. Generally, the

number of frequency constraints is small compared to q. Thus, the number of additional

equations is not too large to jeopardize the numerical efficiency of the method.
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5.5 Sensitivity Analysis; Newton's Method for Inverse Modification

5.5.1 Background

Many developments in dynamic optimization have been based upon sensitivity methods

[68]. General discussions of sensitivity methods in structural dynamics are given by

Adelman and Haftka [70] and Brandon [71]. The basic sensitivity equations were derived

originally by Lancaster [72] and Fox and Kapoor [73]. For a general, undamped, discrete

structure with distinct eigenvalues, these equations take the form

aA, _ tT  a k^kA ai
ar — 3̀1 [ Or — s Or (5.56)

3T T^511;11
[k Ask]ar 4.3 LaT At a7.1 (5.57)

where derivatives are taken with respect to a structural property r, and where the eigen-

vectors are assumed to be mass normalized. Eigenvalue derivatives are readily obtained

with (5.56). Fox and Kapoor [73] and Nelson [74] established methods for calculating

eigenvector derivatives using (5.57). Rudisill [75] investigated adding second-order terms

to the sensitivity equations. Johnson and Jen [32] calculated sensivities for a multi-link

robot analyzed with a CMS procedure based on monomial functions. A complete sen-

sitivity analysis of the fixed-interface CMS formulation was given by Heo and Ehmann

[76].

Several researchers proposed solving inverse eigenvalue problems with a Newton's

method iteration approach [77, 78, 79]. The equations studied were of the form

441i = AM;^A = Ao E AkCk^ (5.58)
k

An adaptation of Newton's method to discrete structures was shown to involve repeated

solution of (5.56) combined with accurate updating of modal and structural parameters



Chapter 5. Structural Dynamic Modification^ 151

[80]. To avoid the expense of repeated eigensolutions and the truncation errors inherent

to the modal subspace approximation, inverse iteration is used to update the eigenvectors.

5.5.2 Newton's Method for Substructured Problems

A Newton's method application of the sensitivity equations is suitable for frequency

modification problems. Using the general CMS formulation for the baseline system (5.20),

the following expressions are obtained:

a k^T OK^aT (...,TyaT)T= T T + TT-K- Tr -I- T
Or^ Or

ail^aM^p_aT)Tail = TT --T + T - M— + T- M—ar^ar^ar^ar

(5.59)

(5.60)

The structural property r may refer to a property of a particular component or one ex-

tending over a range of components, and it can be either linear or nonlinear. Derivatives

of K and M can be evaluated by assembling derivatives of element matrices. Deriva-

tives of T are more difficult to express as they involve rates of change of component

eigenvectors.

In the derivation of the linear-equivalent equation in Section 5.3.1, it was shown that

a useful simplification is to treat T as an invariant transformation. This is justified

when components change in a uniform manner, and for more general changes it allows

component modes to change within the subspace provided by the baseline analysis. A

completely accurate prediction of the component mode derivatives by methods proposed

in [73, 74], is much more costly and therefore diminishes the value of the inverse modifi-

cation procedure.

The resulting linear-equivalent sensitivity equation is given by

OA,^Lrai^T a mT^ T - T^Ti^(5.61)Or^Or
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When multiple properties are allowed to change simultaneously, the total perturbation to

the eigenvalue is estimated with a first-order Taylor expansion about the baseline values:

aA,A: = Ai + E^rkak^ (5.62)
k=1 ark

where the derivatives are evaluated at the baseline property values. Substituting (5.61)

in (5.62) for an appropriate rk gives

A: — at =^[TT aK T — TTan7I I T14'irkak^(5.63)
ark^ark

The frequency modification equation is obtained by substituting A: = A: in (5.63). Design

variables ak which solve (5.63) give a first-order estimate of the design changes satisfy-

ing the linear-equivalent equation. For a single design variable the solution of (5.63) is

unique; with more than one design variable, this equation can be solved using the math-

ematical programming technique suggested in Section 5.4.2. In the more general case of

I prescribed frequencies, 1 equations similar to (5.63) are solved simultaneously.

Succesively more accurate solutions can be obtained by solving (5.63) repeatedly,

updating the quantities between iterations. Three methods are available for updating the

eigenvector (1) re-analyzing the modified system with CMS; (2) using the expansion

(5.47) and then calculating the admixture coefficients c i from the modified dynamic

equation; (3) using a single step of inverse iteration [80}. This requires solving the

following linear system for -yi:

(5.64)

m

OK = E (xr) k ak
k=1

EM 
m

 (R.) ak
k=1^k

a-K
=^ark rkakk=1

m am= ^rk ak
ark

[k + Ak - (/Cf + AM. )] -yi =

where the perturbation matrices are given by:

(5.65)

(5.66)
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The updated eigenvector is obtained by mass normalizing

= [7r ( 1171^(5.67)

The eigenvalue is updated with Rayleigh's quotient:

(k k)
= ^_^s^ (5.68)

V. (M M)

With nonlinear property changes, the derivatives in (5.63) must be recalculated after

each iteration. Inverse iteration has also been used to update eigenvectors in a forward

modification procedure called Rayleigh quotient iteration [81].

Using inverse iteration to update is particularly advantageous with the compact

CMS formulation. The order of (5.64) is small and it can be solved in much less time than

is needed for a CMS reanalysis of the eigenvectors. Another advantage of inverse iteration

is that the accuracy does not depend on the number of baseline modes available. Indeed,

the Newton iterative cycle can be carried out without any knowledge of the baseline

modes, excepting those with frequency constraints.

The Newton procedure converges quadratically provided the starting point (baseline)

is not too far removed from the solution. The convergence of the process is improved by

substituting Ai = A: in the right-hand side of (5.63). Smith and Hutton [80] showed with

an example of an unsubstructured model, that the zone of convergence is sufficient for

engineering purposes.

Solutions found with this procedure satisfy the linear-equivalent equation, not the

actual equation of the modified structure. At this point the analyst should check the

accuracy of the predicted solution with a CMS reanalysis. Using the reanalysis as the

new baseline, further frequency modification calculations can be done as required.

Newton's method is expected to give equal accuracy to the perturbation method when

the latter is supplied with a full set of baseline modes. Because of the impracticality of this
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requirement, Newton's method generally gives somewhat better results. Although both

are iterative methods, the nature of the iterations is fundamentally different. Newton's

method converges to a solution through a sequence of linear steps, the length of which

progressively diminishes to zero. On the other hand, the perturbation method solves

the same system of equations repeatedly, each time making adjustments to the coupling

terms, until all the equations are satisfied simultaneously.

5.6 Numerical Results

In this section, the results of three frequency modification problems are presented. In

each example, a single frequency goal is varied over a range of values. Three inverse

modification methods are compared: the Newton's method algorithm of Section 5.5, the

new perturbation algorithm described in Section 5.4, and the predictor-corrector method.

The two perturbation methods differ from Newton's method in that they generally op-

erate within a smaller subspace. This means that the perturbation methods are less

capable of accurately predicting the modified mode shape.

The two perturbation methods differ from each other in that the predictor-corrector

uses a linearized perturbation equation to predict the modified mode shapes of the struc-

ture. With small structural changes this is adequate; but with large changes, inaccurate

modified mode shapes lead to erroneous design changes. A further difference is that the

iterative method calculates the design changes using (5.51) alone. There is one such equa-

tion for every frequency constraint. On the other hand, the predictor-corrector method

attempts to satisfy one equation associated with the frequency constraint plus q —1 other

equations associated with mode shape constraints. The latter are necessary conditions

for making the predicted mode shapes orthogonal with respect to the corrected struc-

ture. A variation of this method is to satisfy both the necessary and sufficient conditions
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for orthogonality by using a total of q(q — 1) constraint equations [60, 62]. In either

case, the mode shape constraints are somewhat artificial in that they are not prescribed

in the original specification of the problem; the only genuine constraint to be satisified

is the frequency constraint. Furthermore, the imposition of these extra constraints is

apt to make a naturally underconstrained problem overconstrained, thus necessitating a

minimum error rather than a minimum change solution [59]. In such cases, Welch [64]

suggested relaxing the mode shape constraints, and using only equations associated with

the frequency constraint to determine the design variables. This is the approach used for

the predictor-corrector results in the following examples.

Consider the second example presented in Section 5.3.2 in which modifications are

made to the elastic modulus of the hull-bottom stiffeners in the container ship. Tak-

ing the elastic modulus as the design property, frequency constraints are applied to the

fundamental elastic mode (14). The results using the new perturbation method for five

different modal approximations are shown in Figure 5.4. The one-mode approximation,

which does not allow for any mode shape correction, produces a linear curve. The ef-

fect of additional modes in the approximation is the inclusion of correction terms in the

frequency constraint equation. These correction terms enable the prediction of progres-

sively more accurate design variables and mode shape changes. As the number of modes

approaches the order of the CMS equations, the results should converge to the linear-

equivalent curve. But this process converges slowly, and with 30 modes the optimal curve

has still not been obtained.

Figure 5.5 shows the results of the new perturbation method and the predictor-

corrector, both using a 30-mode approximation, in comparison with Newton's method

and CMS reanalysis results. The two perturbation methods show almost identical re-

sults, and both match the CMS reanalysis reasonably well, although Newton's method
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Figure 5.6: Three-parameter frequency modification of hull-bottom stiffeners

does slightly better. Clearly, the modified mode is fairly well approximated by the 30-

mode subspace. Also, because the stiffeners are changed uniformly using only one design

variable, the mode shape change is small. Thus, the linear perturbation equation used

in the predictor-corrector method is sufficient for predicting the modified mode shape.

Consider applying the same frequency constraints, but where now the stiffeners be-

longing to each component can vary independently. In Figure 5.6 a 30-mode approxima-

tion has been used for the perturbation results. Design variable a l is the fractional change

of the elastic modulus of the stiffeners in the after-body, a2 the fractional change in the

mid-body, and a3 the fractional change in the fore-body. The frequency constraint equa-

tion is solved using optimization with a minimum change objective. A description of the
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optimization algorithm is given above under the heading "Mathematical Programming".

The analysis produces fairly accurate results for two of the methods. A reanalysis

based on the design prediction for g = 1.00 gives the following results:

Newton : f: = 0.996Hz

New perturbation : f4 = 0.995Hz

Predictor-corrector : fl = 0.931Hz

Because the stiffeners are being changed in a nonuniform manner, the mode shape changes

associated with these modifications are more significant. Thus, the linearized perturba-

tion equation is not adequate for predicting the perturbed mode shape when the design

change is very large. This accounts for the poor performance of the predictor-corrector

method in the region where large design changes are required.

It is interesting to note that although both Newton's method and the new perturba-

tion method predict changes giving similar frequencies, the distribution of the change is

significantly different. Of many possible solutions, both methods seek a minimum change

solution. The magnitude of the change is, for the f4 = 1.00 results,

Newton : E al! = 38.4

New perturbation : E cz2k = 26.3

The perturbation method is more economical because in each step it determines a min-

imum solution for the total modification. By contrast, Newton's method determines a

minimum partial solution in each iteration. The accumulation of these partial solutions

does not necessarily lead to a minimum total change. In Figure 5.6, Newton's method

has weighted the mid-body component too heavily at the expense of the fore-body, giving

a modification that may be more difficult to realize in the actual structure.
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Figure 5.7: Frequency modification with mid-body stiffeners

Now consider changing only the stiffeners in the mid-body component. The predicted

design changes for prescribed fundamental-mode frequencies are shown in Figure 5.7. The

effect of two separate approximations is clearly visible. In the region f: > 0.925Hz, the

predictions based on the approximate methods begin to diverge from the CMS reanalysis

curve. This is the influence of modal truncation. Both perturbation methods use a

35 mode approximation but since large design changes are being made along just one

segment of the hull, the mode shape change is severe and is not easily represented within

the 35-mode subspace. Also in this region, the Newton's method curve begins to diverge

from the perturbation curves. The better accuracy obtained with Newton's method

results from using equations of larger order (62 degrees of freedom versus 35 for the
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perturbation equations). This enables the modified mode shape to be represented more

accurately, although over the range of prescribed frequencies presented, the extra degrees

of freedom make only a small improvement in the predictions.

In the region f: > 0.95Hz, the new method begins to diverge from the predictor-

corrector curve as a result of errors in the latter stemming from the linear perturbation

equation. The new method is able to follow the general trend of the CMS reanalysis curve,

if lagging behind it somewhat, whereas the predictor-corrector method fails to predict

any design changes above a = 7.60. The shape of the predictor-corrector curve is similar

to those in Figure 5.6; the peak and decline in regions of high a and large mode shape

change signal the neglect of perturbation terms in the energy of the modified structure.

It should be noted that in the region f: > 0.98Hz, the slope of the CMS reanalysis

curve approaches infinity, which means that this frequency becomes insensitive to changes

in the mid-body stiffeners. In this region, the mid-body stiffeners are completely rigid in

the fundamental mode, a design change which in practical terms would be impossible to

make.

Because of the increasing insensitivity of the mode, predicting design changes in the

region just below f: 0.98 is very difficult, regardless of the number of baseline modes

available. It may be useful in situations like this to perform an inverse modification

analysis in two or more steps, with an accurate reanalysis between each step. Because

only the mid-body component is changed, a CMS reanalysis can be done fairly inexpen-

sively and each reanalysis provides a new reference point, or baseline, for the subsequent

perturbation analysis. In Figure 5.7, a second set of Newton's method results are shown

using a = 4.48 as the baseline. This was the result obtained for f4 = 0.975Hz in the first

perturbation analysis. Reanalysis for a = 4.48 gives 4 0.966Hz. From this baseline,

new design changes are predicted, where the fractional changes now refer to the second
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baseline. The overall change for multiple perturbation analyses is given by,

oT (1 +^(1 + a(21)^(1 + a(n)) — 1^(5.69)

where a(j ) is the change predicted from the j th analysis. In this way, progressively more

accurate design changes can be calculated.

5.7 Summary

Structural dynamic modification has been treated as two separate problems: forward

modification, which is concerned with the modal analysis of a modified structure; and

inverse modification, which is concerned with finding a set of design changes which sat-

isfy prescribed modal constraints. In this chapter, perturbation methods for structural

dynamic modification have been applied to substructured systems, using a CMS formu-

lation for the baseline analysis. Approximating the modified mode shapes by projecting

them on to a modal subspace, it was shown that if the size of the subspace equals the

order of the CMS equations, the linear-equivalent equation (5.37) results. This equation

represents the optimal description of the modified structure that can be obtained with-

out considering changes to the component modes. Forward modification problems can

be directly and efficiently solved using the linear-equivalent equation.

A new method for frequency modification problems has been presented which uses the

energy-balance formulation of the perturbation equations. An iterative scheme is used

which converges to a solution of the full perturbation equations. Examples have been

presented which show thit the new perturbation method compares favourably with the

predictor-corrector technique when large structural changes occur in conjunction with

significant mode shape changes. Also, a Newton's method algorithm based on the linear-

equivalent equation has been described which gives a sequence of converging solutions

which do not depend on the number of baseline modes available. Examples given show
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that Newton's method is generally more accurate than perturbation methods, as modified

mode shapes are represented using a larger subspace.



Chapter 6

Summary and Conclusions

Component mode synthesis (CMS) has been studied as a modal analysis technique for

linear, undamped, discrete models. Of principle interest is the application of this tech-

nique to large-order finite element models of an arbitrary complexity where condensation

is most beneficial.

It is often natural and convenient to treat a finite element model as an assemblage of

structural components. CMS generates reduced-order representations of the components

by approximating their displacement with a truncated sequence of component modes.

The Craig-Bampton and MacNeal-Rubin representations are found to be the most ap-

plicable to arbitrarily complex models as they best satisfy the basic requirements for

component mode sets. By expressing the compatibility and equilibrium constraints in

terms of physical displacements and loads, free vibration equations of motion are de-

rived for each mode set. These two formulations are referred to respectively as the fixed-

and free-interface methods. Two variations of the free-interface method are presented in

which first- and second-order mass approximations are used. It was shown that these

formulations can be applied to discrete models of an arbitrary geometrical complexity,

and that they handle constraint equations more efficiently than the direct elimination

method.

Important differences distinguish the fixed- and free-interface formulations. The fixed-

interface equations are in terms of interface displacements and free vibration modal co-

ordinates; the free-interface equations are in terms of free vibration modal coordinates
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alone. This gives the latter a higher degree condensation in complex models, particu-

larly when component interfaces are meshed curves or surfaces; because as the mesh is

refined, the order of the fixed-interface equations steadily increases, while that of the

free-interface equations stays the same.

Consequently, free-interface CMS is preferable for the majority of large-order struc-

tural models; only in cases where interface coordinates are limited to a small number

of discrete points is the fixed-interface method favourable. Also the second-order mass

formulation of free-interface CMS is generally more effective than the first-order formu-

lation, as significantly better results are obtained with little additional cost. This is

particularly true for components with high modal density in the target frequency range.

Another factor affecting the performance of CMS is the tolerance to which eigenval-

ues are calculated. As the tolerance is reduced, the relative efficiency of CMS methods

increases in comparison to a direct finite element analysis. Moreover, when components

have high modal density, significant numerical loss of precision can result from not using

a sufficiently small tolerance in determining the component modes. In particular, this is

a problem in the free-interface method when loss of precision causes component residual

flexibilities to become ill-conditioned. For this reason, a tolerance of about 10 -6 is rec-

ommended for the component-level eigensolutions using the inverse power method with

shifting.

CMS can also be used advantageously when multiple variations of the same model are

analyzed. For each variation, only components that have changed must be reanalyzed.

Therefore, the efficiency of each analysis increases as the structural change becomes more

localized. This is especially true for the free-interface formulation where, for large-order

models, a greater emphasis is placed on component-level computations. If only one or two

of the structural components are changed, a much larger proportion of the computational

time is saved than would be with the fixed-interface method. Under these circumstances,
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it is advisable to use the free-interface method.

The results obtained with CMS depend on the care with which component modes are

selected. Truncation of the component mode sets is necessary for order-reduction, and

generally it is the high frequency modes that are eliminated. To distinguish between low

frequency and high frequency modes, a cutoff frequency criterion is used. It is shown in

Chapter 4 that fairly uniform convergence in the low frequency modes can be achieved

in this way. Selection of the cutoff frequency requires some judgement, but generally it

should be 1-2 times higher than the upper limit of the target frequency range.

The extension to reanalysis and re-design problems gives CMS a wide applicability.

In the derivation of the linear-equivalent equation, modal truncation is performed at the

component level (i.e., in the baseline CMS analysis), not the system level. This gives

a more easily adaptable description of the modified structure, as subsequent versions

are derived by updating the component modes rather than the system modes. The

linear-equivalent equations also provide a basis for developing the frequency modification

equations. Two methods are developed: a Newton's method algorithm originally used for

unsubstructured models is applied to the linear equivalent equation; and a new iterative

method is proposed for solving the energy-balance perturbation equations, in which all

coupling terms are accounted for. In the examples presented, Newton's method gives

slightly more accurate results, even though it does not require a large baseline mode set.

The iterative solution of the perturbation equations also exhibits superior performance

to the predictor-corrector method when large design and large mode shape changes occur

simultaneously.

The accuracy of the structural dynamic and inverse modification techniques varies

with the character of the structural change. Widely distributed modifications of limited

magnitude can be accurately represented by the linear-equivalent approximation; but the

condensed subspace afforded by this approximation makes severe, localized changes more
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difficult to represent. In the latter case, more accurate results can be achieved by applying

Newton's method to the unsubstructured model, assuming that such a model exists. This

requires solving a system of equations with potentially thousands of degrees of freedom,

leading to great computational expense. It is shown that by using a CMS method, the

order of the governing equations can be reduced by 10 to 20 times, while maintaining the

integrity of the low frequency spectrum. As a result, subsequent modification calculations

are inexpensive and many useful predictions can be made about the dynamic behaviour

of a modified structure of significant complexity.

Throughout this thesis, damping has not been considered because it is not of critical

importance for determining the natural modes of lightly damped structures. However, in-

cluding damping effects in the techniques presented may make the work more relevant to

situations involving experimentally derived modes and in systems where damping plays

a more significant role. Other areas in which additional work could be done are the fol-

lowing. (1) An error estimation technique for the free-interface method was described in

Section 3.9. This technique was based on using the dynamic residual flexibility, evaluated

at select frequencies, to determine the contribution of the neglected component modes.

This idea may find further application in inverse modification problems with prescribed

frequencies. (2) It was found that the eigenvalue tolerance has a significant effect on the

accuracy of the mode shapes. Further work is recommended to determine more precisely

the relationship between the accuracies of the component modes and the system modes.

Finally, (3) the perturbation method that was presented for solving frequency modifi-

cation problems could be adapted for situations involving prescribed mode shapes and

nonlinear property changes.
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Appendix A

Convergence Characteristics of the Modulation Matrix II

The series

^II . E. (40
2 dm)

k^
(A.1)

k=0
converges to the expression

^II = (/ - w2 dm) -1^(A.2)

if .11w 2OMIlp < 1 for the general class of p-norms. This condition also guarantees that

(A.2) will be invertible [21].

The p-norm of a matrix A is defined as

11II

^AI, 
P

^max 'O
lixiilip

(A.3)
x^p

where the p-norm of a n x 1 vector x of is

n

11x111,= (E xl) P^1 ,^ (A.4)
k=1

A general property held by all p-norms is that the norm of a product of two matrices, A

and B, obeys the inequality,

^IIABIlp 5_ 11A llplIB Ilp^(A.5)

Thus, for any particular p-norm

IIOMII = OhAV`DIMii
^

(A.6)

PhilliAViiiiqMii
^
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a > 1
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Because the higher modes 4h are mass normalized,

11(13IMIIII(13hil = a _>11 ,1q:McIth il= j1/11 = 1^(A.8)

Furthermore, the norm of a diagonal matrix is equal to the largest element on the diag-

onal. Therefore,

1141 II = max(Ah)i l = (m
k
in(Ah)kr i^(A.9)

Combining (A.7), (A.8), and (A.9) gives the result

ilaMii < a (qn(Ah )k)-1
^

(A. 10)

It is guaranteed that Ilw 2 dMil < 1 when

a w2 (min(Ah )k) -1 < 1^ (A.11)

The term min(Ah)k is the smallest eigenvalue among the neglected modes and is therefore

greater that are equal to the square of the cutoff frequency w c . Therefore

In conclusion, the infinite series (A.1) is guaranteed to converge in the low frequency

range 0 < w 2 < w! /a.



Appendix B

Eigenvalue Sensitivity to Residual Flexibility Changes

The eigenvalues of the equation,

[r (a). —^= 0^ (B.1)

in which r (LD) is a symmetric matrix of the form,

rp)^+ ciBTA [ATte()A1ATTB^(B.2)

are stationary points of the Rayleigh quotient

ai 137r(65)Fli —^ (B.3)
Pi Pi

Differentiation of the eigenvalues with respect to C4.7 2 gives the first-order sensitivity equa-

tion,

where

_T aA t•^arm
Pi Pi^= -T  awl Ps

-;-, B
B^-11 y (65) A [ATT (w)A1 ATTarp)^crTA [ATi(P) 

A1
-1

 A 
Ta

 acD25,7,2

(B.4)

(B.5)

From (3.38), (B.1), (B.4) and assuming that the eigenvectors pi are normalized such

that gp-i = 1,
B

aAi7.B2, alp (65),B
5,7,2 =^ac,2 (B.6)

where f a isi ^the interface load distribution in the ith mode. This expression is equivalent

to a summation of individual terms contributed by each component,

aA, _^DT NIB (6) ) _ E f„. ^f„,
0652 —^ac4,2 (B.7)
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where .9 is the number of components. Note that for any component

NIB^_ aT ad(ei,) a
awe —^5652 P.-

firà — 652 M^Ai^— 652 m 6) -1

PT a(cD)mOPV
= 44: (AV +6J 24 2 65443 + ...) 2 

(11T

=^(42 + 261243 + 36)444

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

The diagonals of Ah-2 , Ah-3 , ... are always positive and as a result, (B.12) is a positive

semi-definite matrix; i.e., for a non-trivial f1 3 ,

BT aii/B(w) B
fi 086,2 (B.13)

for all components. The above expression is equal to zero only when stbIfiB = 0; that is,

when there is no interaction between the interface forces and the higher mode shapes.

Applying (B.13) to (B.7) for each component gives the final result

aAi
aez,2 5- 0^ (B.14)

Thus, the eigenvalue Ai is a continuously non-increasing function of 65.



Appendix C

Implementation of Component Mode Synthesis in VASTO6

In Chapters 2 and 3 it was found that the fixed- and free-interface methods were the

most promising CMS techniques for application to general finite element models. Both

of these methods have been implemented in the finite element program VAST06, with a

capability for using either first- or second-order mass approximations in the free-interface

implementation. The present chapter gives a description of the VAST-CMS program and

guides the user in beginning a CMS analysis.

C.1 The Substructure/Superelement Option

The VASTO6 program contains a substructuring/superelement option which permits the

following:

1. Defining a structure as a collection of components or substructures;

2. Selecting a set of master nodes for each substructure, thus defining a superelement;

3. A Guyan reduction of each superelement, giving condensed stiffness and mass ma-

trices;

4. Assembling global stiffness and mass matrices from the superelement matrices,

giving equations of motion of the structure.

For Guyan reduction, any substructure nodes can be selected as master nodes as long

as they include all the interface nodes. In CMS applications, the same superelement

179
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ELEMS 1 Assembles element matrices.

ELEMS2 Defines superelement master node numbers.

ASSEM2 Assembles full-sized substructure matrices, K and M.

PARTSM Partitions substructure matrices into interface and interior coordinates.

DECOM2 Decomposes Ku into UTDU form.

REDSM^Performs Guyan reduction on stiffness and mass matrices, giving kBB and
MBB in (2.65). An in-core algorithm REDSM1 and an out-of-core algorithm
REDSM2 are available.

ASSEM1 Assembles global equations from reduced superelement matrices.

STIFM^Modifies stiffness matrix to account for external constraints.

MASSM^Modifies mass matrix to account for lumped masses or fluid added-mass.

DECOM1 Decomposes global stiffness or stiffness/mass combination into UTDU
form.

EIGEN1 Solves global eigenvalue problem.

EIGNSE Reconstructs global mode shapes from Guyan eigenvectors.

Table C.1: Description of VASTO6 modules

definition is used, but the master nodes are generally restricted to interface nodes only.

It is generally better to account for the interior nodes with normal modes, rather than

by defining additional master nodes.

The flow chart for a typical Guyan reduction analysis is shown in Figure C.1. Here,

the number of superelements is NSE, with one superelement defined per substructure. A

description of the function of each program module is found in Table C.1.



Appendix C. Implementation of Component Mode Synthesis in VASTO6^181

 

ELEMS1

                                   

ELEMS2

        

ASSEM2

                               

PARTSM

     

I = 1, NSE )

                           

ASSEM1

                      

STEM

                                   

MASSM

DECOM1

EIGEN1
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Figure C.1: Flow chart for Guyan reduction in VASTO6
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T54^Boundary node numbers in local and global coordinate system.

T55^Submatrix KB/.

T56^Reduced matrices k" and mBB computed from Guyan reduction.

T57/T82 UTDU decomposition of KII

T21^Submatrices KBB , KBI , MII ,

I
^I, mBB

)

 mBI

T22^_Tr' = (KII--1 KLB) T (out-of-core solution only)

T23^Submatrix K".

Table C.2: T-file locations of VAST information relevant to CMS

The information regarding the substructure and superelement matrices is stored in

various T-files. Table C.2 shows the T-file locations of information relevant to a CMS

analysis.

C.2 Implementation of the Fixed-Interface Method

The flow chart for the VASTO6 implementation of the fixed-interface method is shown in

Figure C.2. The only difference from Figure C.1 is the inclusion of module CMS_1 in the

ELEMS2 loop. This module is responsible for calculating the fixed-interface normal modes

and for calculating the extra submatrices that appear in the Craig-Bampton equation

(2.65). The first task requires solving the eigenvalue equation,

{KH. _ wwIl] q  = 0^ (C.1)

A UTDU decomposed version of KII has already been calculated in DECOM2 at this stage

of the program and matrix M" is available on file T21.
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Figure C.2: Flow chart for the fixed-interface CMS method in VASTO6
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The second task makes use of the fixed-interface normal modes to calculate the fol-

lowing terms:

kNN^(= ANN , for mass normalized modes)^(C.2)

mBN = mBI + rM"mNBT^ (C.3)

niNN = 4,/Tm114/ (= I, for mass normalized modes) (C.4)

One difficulty which arises here is that the static constraint modes calculated in REDSM

have to be saved if MBN is to be calculated. There are two algorithms in REDSM: an

in-core solution and an out-of-core solution. The in-core solution never explicitly forms

the constraint modes; only in the out-of-core solution are they calculated and saved on

file T22 (see Table C.2.) Therefore, if the in-core solution has been used in REDSM, the

constraint modes first have to be constructed before MBN can be calculated . Because

of this, it is usually more efficient to use the out-of-core solver with fixed-interface CMS.

Other changes to the program modules include a call to an additional subroutine

in ASSEM1 for assembling the submatrices (C.2)—(C.4) into the global equations; modi-

fications to EIGEN1 so that the extra modal coordinates in the system eigenvectors are

accounted for; and modifications to EIGNSE so that the fixed-interface component modes

are used in the reconstruction of the system mode shapes.

Figure C.3 shows the flow chart for the reanalysis option in the fixed-interface imple-

mentation. The algorithm is interrupted after DECOM2 if reanalysis of the component is

not desired. The implementation could be improved by skipping the entire loop if the

component is not being reanalyzed, but it is necessary to store beforehand the decom-

posed Ku matrices elsewhere so that they are not overwritten during reanalysis. These

matrices are needed in EIGNSE to reconstruct the system mode shapes.

Extra storage files created by the fixed-interface program are listed in Table C.3.

These files will appear with the same prefix as the other VAST files. Their contents
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Figure C.3: Reanalysis option of the fixed-interface CMS method in VASTO6
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C42 Reduced submatrices kNN , TnNN and mBN .

C46 Global stiffness and mass matrices assembled from the reduced submatrices.

C51 Fixed-interface component modes used in the analysis.

Table C.3: Additional storage files created by the fixed-interface method.

S42 Reduced submatrices kNN, „INN, and mBN for a single component. This
information is later moved to C42.

S46 Submatrices kBB and TriBB for one component. This information is later moved
to T56.

S51 Fixed-interface component modes calculated for one component. These are
later moved to C51.

Table C.4: Special storage files created by the fixed-interface program.

are described in Table C.4. There are also separate files with the suffix Sxx for each

component, which contain CMS data for a single component. These will appear with

a prefix supplied by the user and unique to a particular component. These special files

only need to be saved if a subsequent reanalysis is to be performed.

C.3 Implementation of the Free-Interface Method

The flow chart for the free-interface method based on the MacNeal -Rubin mode set is

shown in Figure C.4. A flow chart for the reanalysis option of the same method is shown in

Figure C.5. Whereas the fixed-interface method follows the Guyan reduction program

closely, the free-interface implementation differs greatly. The two modules added for

this method are CMS_2 which calculates the free-free and residual attachment component
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Figure C.4: Flow chart for the free-interface CMS method in VASTO6
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Figure C.5: Reanalysis option for the free-interface CMS method in VASTO6
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modes, and ASSEM4 which assembles and solves the condensed system equations.

The flow chart for module CMS_2 is shown in Figure C.6. An important difference

to note here is that the modules STIFM and MASSM, for stiffness and mass modifica-

tion respectively, are located inside the component. loop. By contrast, in the Guyan-

reduction/fixed-interface implementation they were located outside the component loop

(see Figures C.1—C.3). There are two principal advantages to making these modifications

at the component level. First, the free-free component modes calculated in EIGEN4 will

automatically incorporate any external constraints. This saves the trouble of having to

form special constraint equations later on in the analysis. Secondly, the spring and mass

additions can be applied to any node in the structure, not just at the master nodes. In-

deed, for the free-interface method master nodes should be defined only on the component

interfaces, otherwise the complex assembly algorithm will produce spurious results. On

the other hand, if spring and mass additions are required in the fixed-interface method,

master nodes have to be defined specially for them.

In addition to adding external constraints and springs, the module STIFM also checks

for and corrects certain types of linear dependencies in the stiffness matrix. It is necessary

to make these corrections to the component stiffness matrix to ensure that the component

modes, both static and dynamic, can be computed correctly. One case in which a linear

dependency correction is necessary is a two-dimensional model composed of membrane

elements (such as the container ship model described in Chapter 4.) Flat membrane

elements have no stiffness in the out-of-plane direction and therefore have degenerate

stiffness matrices. If the membranes are oriented in one of the coordinate planes, say

the x-y plane, the linear dependency correction is simply to add large springs to the z-

coordinate diagonals of the stiffness matrix. However, if the membranes are not oriented

in one of the coordinate planes, the linear dependency will not be obvious at first glance

and a more subtle detection and correction algorithm is used.
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Figure C.6: Flow chart for the module CMS.
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The fixed-interface program only does linear dependency checking on the Ku por-

tion of stiffness matrix to ensure that a correct UT DU decomposition is performed.

This decomposition is need for calculating both the static constraint modes and the

fixed-interface normal modes. On the other hand, the free-interface program has to de-

compose the whole component stiffness matrix, as is required for calculating the free-free

modes and the component flexibility. In this case, the linear dependency checking can

therefore affect both the interior and interface coordinates of the stiffness matrix. A dif-

ficulty arises here if a correction is made at an interface coordinate and, after calculating

the component modes, it is not removed from the flexibility, then the inter-component

compatibility and equilibrium constraints may not be properly satisfied.

Linear dependency corrections of the first type, where large stiffness are added to

the diagonal, can easily be detected as a zero diagonal in the flexibility. If this diagonal

corresponds to an interface coordinate, the constraint that should be applied here is zero

load, with non-zero displacement allowable. Unless the effect of the correction is removed

by replacing this zero with a large flexibility value, the constraint that will actually be

applied is a zero displacement, with a non-zero load allowable. This may seem a strange

distinction to make in light of the membrane example, where it seems natural to apply a

zero-displacement constraint at all out-of-plane coordinates, interface or otherwise. But

in this case it makes no difference whether a zero-displacement or zero-load condition is

imposed; the net effect will be the same.

As an example of a situation where it does make a difference, consider one component

with bar elements on the interface, meshing with another composed of brick elements.

Bar elements are degenerate in non-axial directions, which means that non-zero forces can

only be applied in the axial direction. The linear dependency corrections will effectively

eliminate non-axial displacement of the bars, as is needed to calculate the component

modes. But when this modified bar element is connected to the adjacent brick element
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during the synthesis phase, these corrections will effectively put zero-displacement con-

straints on the connecting node, constraints which in reality do not exist. If any constraint

is applied here it should be zero load in the non-axial directions, for the bar elements are

two force members and therefore should only support a load passing through the two end

nodes. To re-establish the proper interface constraints, the linear dependency correction

has to be removed from the interface nodes of the bar elements by making an appropriate

correction to the flexibility matrix.

Although the free-interface program can handle the first type of linear dependency

correction, the second type is much more difficult to detect. These corrections involve

manipulations of the triads situated along the diagonal of the stiffness matrix, and would

be invoked, for instance, when bar elements are not co-directional with one of the coordi-

nate axes. If these corrections cannot be detected, some method needs to be devised by

which the sequence of manipulations can be reversed in the flexibility matrix. It must be

emphasized that an error in the analysis will only occur if the second type of correction is

made to an interface coordinate, and if the connecting elements in the adjacent compo-

nent do not have the same degeneracy. Whether or not this type of error will occur can

be discovered by considering what would happen if the model were not substructured. In

the above example, the stiffness matrix would not be degenerate at the node connecting

the bar element to the solid element and so no correction would be made there in the

unsubstructured case.

The free-interface program provides two different algorithms for calculating the com-

ponent flexibility (see Figure C.6). If NCON = 0, the flexibility can be obtained directly

from the stiffness matrix. If NCON > 0, the more complicated method described by

(2.79) is necessary. Module RESFLX determines the residual flexibility matrix if, and

RESMASS determines the residual mass matrix Lt.

The additional storage files created by the free-interface program are listed in Table
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T23 Residual flexibility matrices Ail.

T24 Residual mass matrices E.

C42 Equilibrium/compatibility connectivity matrix A (see Eq. (3.1)).

C51 Free-interface normal modes used for the analysis.

Table C.5: Additional storage files created by free-interface program.

S24 Residual flexibility and residual mass matrices for a single component. These
are later stored in T23 and T24.

S38 Information regarding the number of free-free modes calculated, the number
retained, and the number of rigid-body modes.

S51 Free-free component modes calculated for one component. These are later
moved to C51.

Table C.6: Special storage files created by the free-interface program.

C.5. These files are stored under the same prefix as the other VAST files. There are

also some special files which are stored under a component-specific prefix defined by the

user (see Table C.6). These files have to be saved if a subsequent reanalysis is to be

performed.

The free-interface program has been designed for efficient manipulation of data on

modern computer systems. So as to avoid excessive I/O operations, as much of the

intermediate data as possible is kept in the internal memory space allocated for the

program. The maximum size of problem that can be solved is controlled by KORE,

which is defined at the beginning of the program. In the module CMS, the largest
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component that can be analyzed is

    

Ns 1/2x KORE 
VVV^5

(C.5)

where NS is the number of degrees of freedom in the component's finite element model.

A similar constraint governing ASSEM4 determines the total size of the system equations:

LEN
2xKORE 3112xKORE

^(C.6)
)

.:%2 min (07(017E,
LEN^5

where LEN is the total number of independent forces and moments acting on the com-

ponent interfaces. An estimate for LEN can be obtained with,

LEN Ls_d NMN x NDF^ (C.7)

where NMN is the total number of master nodes defined in ELEMS2 and NDF is the number

of degrees of freedom per node.

C.4 Including Fluid Added-Mass in a CMS Analysis

Suppose that the free vibrations of a structural model are described by the equation,

Mil -I- Ku = 0 (C.8)

where K and M are the structural stiffness and mass matrices. The modes of vibration

of the structure in air are calculated by means of the associated eigenvalue problem:

{---AiM In Xi = 0 (C.9)

If this equation refers to a ship hull or some other structure in a marine environment,

the standard practice for taking into account the surrounding water is to include a fluid

added-mass matrix MA in the equation of motion:

Mii + Ku = -MAU^ (C.10)
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There are various methods for computing the added-mass matrix, but once it is estab-

lished, the wet modes are computed by solving the eigenvalue problem associated with

(C.10):

(m + MA) + KJ = 0 (C.11)

where Ay' and Xr define the wet natural frequencies and mode shapes. For a substruc-

tured model, an analogous approach is to include added-mass effects in the component

level analyses and synthesis the equations of motion of the structure on this basis. How-

ever, unlike the structural matrices, the added-mass matrix is fully coupled and cannot

be substructured. A different approach is therefore required.

An approximate but generally efficient way to solve this problem is to first calculate

the dry modes using (C.9) and then approximate the motion of the wetted structure as

a linear combination of the dry modes:

u.-Ex4=x4. (C.12)

where X is a rectangular matrix containing the eigenvectors as columns, is the vector

of generalized coordinates and q is the number of modes shapes. This transformation is

exact only if a complete set of modes is included in X. This is seldom the case though

and q is usually small in comparison to the size of the original equations, making (C.12)

an approximation which is valid if the wet mode shapes are not radically different from

the dry mode shapes.

Applying (C.12) to (C.10) and premultiplying by XT gives the following equation:

+ 'CIA) + o (C.13)

where,

= xTmx
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MA = XT MAX

= xTifx

The dry modes are usually normalized so that

(C.14)

fc= diag {4} = si2^ (0.15)

Substituting these into (0.13), the wetted modes are computed from the corresponding

eigenvalue equation:

{_Ar (1-+ AL) S12] ,=0
^

(0.16)

where Ar and^define the natural frequency and mode shape of the structure in water.

The wetted mode shapes are reconstructed with the relation,

= X67'^ (0.17)

The added-mass matrix is generally calculated using a full-sized structural model and

an accompanying fluid-element model. If the full-sized and substructured models are

based on the same finite element mesh, there is a relationship between the coordinate

systems of the two models which enables the generalized added-mass MA = XT MAX

to be calculated from CMS-derived mode shapes. When this is case, (0.16) can be

established regardless of whether the dry modes were calculated with a substructured or

unsubstructured analysis.

The VASTO6 program already provides for calculating wetted modes of unsubstruc-

tured models with this method. To apply it in conjunction with a CMS analysis, two extra

modules had to be created. The program MATCH finds matching node numbers in a sub-

structured and full-sized model and lists the corresponding pairs in the file PREFX.GLM.

This program should be run after the added-mass matrix has been calculated and after
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the dry modes have been calculated with CMS. The module AMEIGN then assembles the

CMS-derived mode shapes into equivalent modes in the full-model coordinate system

and stores them in file C52. In this form, the mode shapes are passed on to the module

EIGNWM which computes the wetted modes with the method described above.

C.5 User's Guide to VASTO8 CMS (Pre-release Version)

The master control code IELEMS determines whether or not a CMS analysis is performed.

To initiate a fixed-interface CMS analysis, set IELEMS = 6 while for a free-interface

analysis, set IELEMS = 7. The remainder of the master control codes should be set as for

a regular natural frequency analysis. Direct iteration must be used for eigenvalue analysis

(IEIGEN = 1). To calculate the wet natural frequencies following a CMS analysis of the

dry modes, set the master control code IEIGEN to 3.

The structural components are defined in exactly the same way as substructures and

superelements are defined in the existing version of VAST06. However, some restrictions

are necessary on the parameters used in defining superelements (i.e. components):

• N LEVEL = 1. Only first-level superelements may be used as components in a CMS

analysis.

• NSLN = 0. The number of slave nodes must always be zero.

• For a fixed-interface analysis, master nodes must be defined at all nodes on the

component interfaces and at all nodes which have prescribed displacements and

lumped masses. For a free-interface analysis, master nodes are defined at the com-

ponent interfaces only; prescribed displacements and lumped masses are handled

at the component level.

To specify the component modes for each component, a data file PREFX.CMS must
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be supplied with the other VAST data files. To calculate wetted modes of a structure, a

data file PREFX.GLM must also be included.

C.5.1 Format of input file PREFX.CMS

Card 1 (215) NCOMP, IREAN

• NCOMP = no. of components in the structure.

• IREAN = 1 for analysis of all components.

• IREAN = 2 for reanalysis of specified components only.

Include Cards 2 through 15 for NCOMP components

Card 2 (215) IFLAG, NRIG

• IFLAG > 1, calculate component modes for this component.

• IFLAG = 2, use out-of-core solver if IELEMS = 6.

• IFLAG = 0, use component mode from a previous analysis.

• IFLAG = —1, the component and its component modes are identical to the

previous component. If the component is the same as the previous one except

for a change in orientation, this option cannot be used. Instead set IFLAG = 1.

• NRIG = number of rigid-body modes for the component (if IELEMS = 6,

NRIG = 0).

Card 3 (A5) CPREFX

• CPREFX = prefix to be used for this component's files

Omit Cards 4 through 15 if IREAN = 2 or IFLAG = —1.

Omit Cards 4 through 7 if IELEMS = 6.
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Card 4 (15, E10.3) NSK, SPRING

• NSK = the number of displacement nodes to be assigned prescribed displace-

ments.

• SPRING = default value for added spring stiffness (10 20 is assumed if SPRING

is not provided)

If NSK = 0, omit Card 5.

If NSK 0 0, provide Card 5 for NSK nodes.

Card 5 (14, 612, 6E10.3) NI, IDC 1 ...IDC6 , SKi ...SK6 .

• NI = component node number to be assigned a prescribed displacement

• IDCi = codes for specifying degrees of freedom to be assigned prescribed dis-

placment.

• SK; = translational spring stiffnesses or rotational spring stiffnesses to be as-

signed to the degrees of freedom indicated by IDC ; = 1. When spring stiffnesses

are not provided, default SPRING is used.

Card 6 (15) NLM

• NLM = number of nodes where lumped masses are to be assigned.

If NLM = 0, omit Card 7.

If NLM 0 0, provide Card 7 for NLM nodes.

Card 7 (14, 6E10.3) NI, AML i ...AML6

• NI = component node number to be assigned lumped masses

• AM Li = lumped masses for each degree of freedom of node NI.
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Omit Card 8 if IELEMS = 7.

Card 8 (15) IGEN

• IGEN = 1, for direct iteration.

Card 9 (215) IOPT, IPTC

• IOPT = 0, natural frequencies are computed.

• IPTC = 0, printing of normalized eigenvectors to CPREFX.LPT is suppressed.

• IPTC = 1, normalized eigenvectors are printed out with three significant fig-

ures.

• IPTC = 2, normalized eigenvectors are printed out with eight significant fig-

ures.

Card 10 (315, E10.3) NM1, NM2, MNIT, TOL

• N M1 = 1, the first mode to be computed.

• NM2 = the last mode to be computed. If no component modes are desired for

this component set NM2 = 0.

• MNIT = maximum number of iterations allowed. Default value is 20.

• TOL = tolerance to which iterations are carried out. The default value is

0.001.

Card 11 (15) NMKP

• NMKP = the number of component modes desired for this component.

Card 12 (1615) MODES 1 MODESNmKp
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• MODES1 MODESNMKP = the component modes to be used, listed in order

of increasing frequency.

Omit Cards 13 through 15 if IELEMS = 6.

Card 13 (15) NCON

• NCON = number of nodes to be assigned prescribed displacements in order

for the component to be statically determinate.

If NCON = 0, omit Card 14.

If NCON 0, provide Card 14 for NCON nodes.

Card 14 (14, 612) NI, IDC 1 ...IDC6

• NI = node number to be assigned a prescribed displacement.

• IDCi = codes for specifying degrees of freedom to be assigned prescribed dis-

placements.

Exactly N RIG degrees of freedom should be assigned prescribed displacements in

Card 14.

Card 15 (15) IMSS2

• IMSS2 = 0, second order mass terms are not calculated.

C.5.2 Format of input file PREFX.GLM

This file contains pairs of nodes, matching nodes in the substructure model to nodes in

the complete structure model used to compute the fluid added-mass matrix. This file

is necessary if wet modes are to be calculated from dry modes computed with a CMS

analysis. If the PREFX.T41 file exists for both the complete and substructured models,
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and the PREFX.T54 file exists for the substructured model, the PREFX.GLM can be

generated with the program MATCH.

Card 1 (I5) NSUB, NDN

• NSUB = the number of substructures in the CMS model.

• NDN = the number of nodes in the complete model.

Include cards 2 and 3 for each substructure.

Card 2 (I5) NNODES

• NNODES = the number of nodes in the substructure model

Include Card 3 NNODES times.

Card 3 (215) SSNN, FMNN

• SSNN = substructure node number

• FMNN = node number in the full model corresponding to SSNN.
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