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Abstract

An analysis of linear dynamic viscoelastic discrete systems is presented, and its application to
the vibration of an engine supported on viscoelastic mounts is discussed.

A new procedure is developed which allows exact (closed form) homogeneous solutions
in the time domain to be derived for a dynamic system consisting of isotropic viscoelastic
components, for which the relaxation kernels are represented as a sum of exponentials. The
developed procedure (which is given a name "substitution method”) for determination of
closed form solutions is extended to the solution of boundary value problems. The application .
of the substitution method is also extended to the case of periodic loading. Based on this
method, a numerical investigation of free and forced vibration responses of some viscoelastic
systems is presented.

Several approximation techniques are developed in this study which allow the parameters
of the relaxation kernels (represented as a sum of exponentials) to be determined from exper-
imental data. Also a numerical procedure for determination of complex moduli of isotropic
viscoelastic materials is developed, in which certain experimental data related to the material
specimen are required as input information.

A hereditary (viscoelastic) stiffness matrix-operator is obtained by replacement of the
elastic constants in the elastic stiffness matrix by the corresponding viscoelastic operators, or
by complex moduli (for steady-state response problems). Comparison of experimental results
(in terms of steady-state responses) with the numerical ones is presented.

The sufﬁcient conditions of diagonalization of discrete viscoelastic systems are formulated

in this study.

Analysis of the conditions of overdamping of a simple viscoelastic single-degree-of-freedom




system is conducted, and ﬁew fi_esuits concerned with this analysis are demonstrated.

A particular case of a dynamic \)iscoelastic A'system (an internal combustion engine on
elastomeric mounts) is given special consideration. A new dynamic model of an engine-
mount system is developed where rotating and reciprocating parts lead to the mass matrix and
velocity matrix (matrix-coefficient at the velocity vector) as periodic functions of time. The
derivation of the equations of motion on the basis of Lagrange’s equations is demonstrated.
An analysis of parametrivc resonance phenomena for some examples of engine-mount systems
is conducted. A method for steady-state response calculations for the case of time-dependent
(periodic) matrices in the equation of motion is developed and some numerical results are
presented. |

An optimization problem is posed and solved with the associated constraints and the

objective function reflecting the optimum criteria of the performance of an engine-mount

system. As a result, the optimum parameters of the mount material are determined.
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Chapter 1

Introduction

1.1 Objectives of the research

The following were the primary objectives of this study:

i) Survey of the literature which is concerned with the treatment of viscoelastic dynamic
systems. Review of different constitutive models of linear viscoelasticity, formulations of dy-
namic problems for discrete viscoelastic systems, methods of solution, optimization problems
concerned with the performance of engine-viscoelastic mount systems.

it) Analysis of the mechanical properties of viscoelastic materials and substantiation of the
application of exponential kernels for modelling of their constitutive properties. Inclusion of
two parameters in the constitutive stress-strain relation for a viscoelastic isotropic material,
namely, Young's modulus and Poisson's ratio, which will be considered as operators of the
hereditary type.

iii) Experimental determination of complex Young’s modulus and complex Poisson’s ratio as
functions of frequency for a series of viscoelastic materials. Design of an experimental model
and creation of the appropriate software for this purpose.

iv) Further development of the existing applied methods to treat discrete dynamic viscoelastic
systems in the framework of the finite element formulation. Particularly, this includes the
development of a method which allows the solutions to be obtained in the time domain and

which is more effective than methods using numerical integration schemes. Creation of the

appropriate software based on developed numerical methods in order to conduct investigation
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(numerical experiments) of free and forced vibration responses of some viscoelastic systems
and to investigate the effect of variation of material’s properties. Comparison of the obtained
numerical results with experimental ones.

v) Formulation of a dynamic model of an engine-mount system where the contribution of
rotating and reciprocating parts are taken into account with accuracy. Creation of the ap-
propriate software in order to investigate (numerically) free and forced vibration responses for
this model of an engine-mount system.

vi) Optimization of the performance of engine-mount system in terms of reduction of the
force transmissibility through the mounts, which are considered as viscoelastic. Formulation
and solution of an optimization problem with the associated constraints and the objective
function reflecting the optimum performance criteria for an engine-mount system. Creation
of the appropriate software for this purpose. Determination of the optimum properties of the

material used in vibroisolation mounts.

1.2 Background and review of the literature

Viscoelastic damping provides an energy dissipation mechanism and the use of passive damp-
ing mounts (isolators) is expedient, because it is inexpensive and a reliable way of vibroisola-
tion, and noise reduction. The use of polymeric (elastomeric) materials for these purposes is
quite extensive in the industry - [1], [2], [3]. [4]. [5].

Hereditary (viscoelastic) properties are present in many elastomeric materials, for example,
chloroprene, polyepichlorohydrin, acrylonitrile-butadiene and many others. The definition of
a hereditary medium will be given below.

In this study, isotropic homogeneous viscoelastic materials and systems which utilize them

are considered. It is known that polymers possess linear properties at quite significant strains
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[6], [7]- It will be assumed that the theory of linear viscoelasticity is adequate for the de-
scription of constitutive laws of considered materials. It is also assumed that the material is
supposed to be in an isothermal state, i.e., the change of temperature is small.

Vibration mounts are used to minimize the levels of forces that are transmitted from
operating machinery to the supporting structure. In seismic applications the mounts are
used to isolate the structure from motions produced by the ground. The problem of choosing
optimum mounts is not straightforward. Viscoelastic mounts have complex material properties
which are dependant upon the frequency of excitation. The determination of optimum mount

properties depends also on optimality criteria which needs to be specified.

1.2.1 Constitutive laws of linear viscoelasticity

Elementary viscoelastic models are shown schematically in Figs. 1.1a,b, 1.2a,b, where K, E;,
E,, Eo, E are stiffnesses of the springs and C, nE,, bE,, are viscous coefficients of the

dashpots.

Figure 1.1: Maxwell and Voigt models

Combining such models one can create more complicated models of viscoelastic materials

particularly like those shown in Fig. 1.3 a), b) which were discussed in [8].
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Figure 1.2: Standard linear solid model

W
T R i
. H
a) Kelvin chain model b) Biot model

Figure 1.3: Kelvin chain and Biot models

The term "viscoelastic material” has quite a broad meaning, e.g., in the literature there is
use of this term if the equation of motion includes a viscous damping term, i.e.; the equation
of motion is written in terms of current instant values of displacement, velocity, acceleration.
In this study the equation of motion will include the integral term and a history of strain (or
stress) is required for its formulation. Materials yielding such a constitutive relation (requiring
history) are also called as viscoelastic, but the term "hereditary” will be used in this study as

well to distinguish them.

Models using the viscous linear damping mechanism can be considered as simplest models
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of viscoelastic constitutive laws. Note that these models do not contain hereditary properties.
Such viscous damping models were investigated, e.g., in [9], [10], [11], [12], [13], [14], [15].
[16]. The application of the component modes synthesis (CMS) along with the finite element
procedure is demonstrated in [17], [18], [19], [20], [21], where the solution of the eigenvalue
problems (free vibrations) is considered for systems with nonclassical (nonproportional) viscous
’damping. The case of arbitrary periodic excitation is considered in [19], [20] with the use of
a modal representation of the solution. The necessary and sufficient conditions of classicall
damping are considered in [13], [20], [22] [23], where an explicit expression of the damping
matrix in terms of the mass and stiffness matrices is presented.

In the theory of viscoelasticity, one of the models of the stress (¢o')-strain (¢) relation [24],

[25], [26]. [27], [28], [29] is a constitutive law of the form:

d e
S it b

b €+ bld dt (1.1)

a6 T
B0 T M In ggm

Note that a constitutive relation in such form is not convenient to use, thus it is expedient
to represent it in other equivalent form. Taking the Laplace transform of equation (1.1) one
obtains

(ao +ap+...+ aﬂpn)& + ¢n—1(00,aél)’ U(()n—l) 123 PREIY) an)p)

= (bo + b1p + ...+ bnpn)E + 61;—1(60, E(() )’ (n Y bla bn,p)

or in abbreviated form

' An(p)5 + Yt (s P) = Balp)E+ bncs () (1.2)

where ¥,,_1(...,p), én—1(...,p) are polynomials of order n — 1, coefficients of which depend
on the initial values of a,...,a(* 1), ¢,....e(® 1) and coefficients ay, b and Laplace transform

variable p. If the roots of polynomials A, and B, are real, distinct and negative the material

is called an hereditary-elastic (or viscoelastic) medium [24].
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From (1.2) one obtains

§n—1(---1p) - '¢’n—1(---ap)
A.(p)

It is a customary assumption that for ¢ < 0 the material is assumed unstressed and

(1.3)

undeformed, i.e., €(t) = 0, o(t) = 0 for t < 0 and a history of deformation starts at ¢ = 0

with zero conditions

(1) _ (n—1)

— — — — ) _ (1)
g =0 =,..., =0y =0 €0 = €5 =yeeny= € =0

In this case (zero conditions)‘the polynomials in (1.3) &.-1(...,p) = ¥n-1(...,p) = 0.
Here the conditions at ¢ = 0 will be generalized, i.e., it will be still assumed that for ¢ < 0
the material has ¢(t) = 0, o(¢t) = 0, but at ¢ = 0 the conditions are not absolutely zero ones.

The fraction of polynomials B,(p) and A,(p) can be represented in the following form

Ba(p) _ o= G
) E(1 ;p-%—ai) (1.4)

where a; > 0, i = 1,n (recall that the roots of polynomial A,, were assumed negative). Using

the inverse Laplace transformation and the convolution theorem one obtains from (1.3), (1.4):

o(t) / Zc,ewp — it — 7)]e(r)dr) + O(...,t) (1.5)

where function
> ciexpl—ai(t — )] =T(t —7) (1.6)
1=1

is called the relaxation kernel. The function ©(...,t) originated from the second term in (1.3),

and it depends on 0'0,...,0((,"_1), eo,...,e((,"_l) and coefficients a, bx.

It was verified in this study that if the initial conditions oy, .. ((,""1), eo,...,e((,"_l) are related

according to

(e —/ Zc,e;cp[—a,(t — 7)]e(r)dr) (1.7)
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then in equation (1.3)
én-1(.c,p) — Yp_1(...,p) =0

and consequently the term ©(...,t) in (1.5) vanishes too. This fact will be illustrated on an
example of standard linear solid model below.

In [24] it is mentioned that the constitutive relation (1.1) is equivalent to (1.7) under the
appropriate initial conditions, though they were not discussed. Here these appropriate initial
conditions are specified as those which satisfy relation (1.7). Note that all necessary relations
between derivatives of o(t) and €(t) at t = 0 are obtained from (1.7) by differentiation and
then substituting ¢ = 0.

One can rewrite relation (1.7) in the inverted form
(o + / (t — 7)o(7)dr) (1.8)
where
K(t—r) Z d;ezp[—Li(t — 7)]
is called the creep kernel. Coefficients d;, 3; can be expressed through coefficients ¢;, a; of
the relaxation kernel I'(t — 7) and vice versa.

. An example of the standard linear solid model of a hereditary-elastic medium is shown in

Fig. 1.2a. This model yields the following relation between stress and strain:

o+ ao = E(é + pe)

where p =1/n, a = %

. Taking the Laplace transform of this equation one obtains ,
(p+ @)d — g0 = Ei(p + p)e — Ereo

which can be rewritten as

a,:EI"|',U__}_<70—E160 a—/L)E_l_a'o—-Eleo

:E(l_

P+a p+a ! pt+a pt+a
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Applying the inverse Laplace transformation and the convolution theorem to (1.9) the follow-

ing constitutive relation is obtained

o=FE(e- /ot(a — pexp[—a(t — 7)]e(T)dT)

Note that the second term in (1.9) vanishes upon the assumption that the inital values are
related according to (1.7), which in this case means oo = Ej€o. The latest relation has
a clear physical interpretation (see Fig. 1.2a). The dashpot cannot undergo instantaneous
deformation, because of the infinite strain rate. Therefore the spring E; takes all instantaneous
deformation, i.e., o¢p = E;¢.

Constitutive relations (1.7), or (1.8) of a hereditary material have so-called difference type

relaxation and creep kernels, i.e.,
I'(t,7)=T@—-71) K(t,7)=K(t—T)

which is an appropriate assumption for polymers, however it is not possible to say the same
about some ageing materials, for example, concrete which has properties that vary in time.

To justify that these kernels have this property consider the steady-state response case
when both functions (stress and strain) are periodic in time with period T, (the fact that
this is possible can be verified for any elastomeric material). To have an exact steady-state
response at time t < oo, it is necessary to start the loading at time —oo (unless the initial
conditions which correspond to the steady-state response at time ¢ = 0 are prescribed). This
is why instead of 0 as a lower limit of integration in the constitutive law the value —co will
be used.

Thus we have at time ¢
t
Ee(t) = o(t) + / K(t,7)o(r)dr

at timet 4+ T

t+T
Eet+T)=o(t+T)+ /_ K(t+Tyr)o(r)dr
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Recall that

ot +T) = o(t)
e(t+T) = e(t)

Then replacing 7 by 7 + T in the integral for time ¢ + T one obtains
t t
/ K(t,7)o(r)dr = / K(t+T,r+ T)o(r)dr
With an arbitrary T this relation is possible if, and only if, K(¢,7) can be represented as a
function K(t — ), i.e., as a function of one argument K ({), where { =t — 7. This condition

is also called the Volterra principle of closed cycle.

Consider now the concept of a complex modulus. Substituting the harmonic strain:
€ = egexp(iwt) i=+v-1

in the constitutive stress-strain relation

one obtains
t

o(t) = Eeexp(iwt)[1 — / ['(t — r)ezp(iw(r — t))dT]

—Oo0

Replacing t — 7 by £ one obtains

o = Eegexp(iwt)[1 — /Ooo I'(¢)ezp(—iwf)dé]

or in another form

o= coezp(iwt)[Ey(w) + 1By (w)]

where

Eyw) = El1— [ T(€)cos(we)dt
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and
Exw) =B [ T(§)sin(w)dg

The quantity E;(w)+1E,(w) is called the complex modulus, E, is called the storage modulus,
E, = the loss modulus, E,/E;, = the loss factor (or loss tangent). Analogous formulae are
mentioned in [30], [24]. Note that one can find the relaxation kernel I'(¢) from a given complex
modulus E;(w) + :Ez(w) (this formula will be given in the next chapter). The coefficients
¢, a; in (1.6) can be found from an experimentally obtained I'({). Some experimental data
and descriptions of procedures for determination of viscoelastic characteristics can be found
in [7], [31], [32], [33], [34]. [35]. [36]. [37], [38], [39]. In [40] viscoelastic materials such as
(re-entrant foams) with possible negative Poisson’s ratio were investigated.

An example of expressions for the complex modulus is presented below. For a material
with properties as in Fig. 1.2b (standard linear solid model), the complex modulus can be
expressed as:

) E,+ E b*w? (Eyn — E,)bw
Ey(w) +iEp(w) = 1+ b2w? 1( 1+ wzbz

It has been found that this model gives a qualitative description of the behaviour of some
elastomeric materials, but not a quantitative one [41]. In [42], [41] empirical 5-parameter for-
mulae for E,, E, were proposed, which yield some quantitative agreement with experimental
data.

Viscoelastic models with a constitutive relation based on fractional calculus were consid-
ered in [30], [24], [6], [3], [43], [44]. [45].

The definition of the fractional integral of function y(t) as it follows from [46] is:

Dy(t) = — /ot( v, 9>0 (1.10)

where I'y(...) = gamma function.
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The definition of the fractional derivative of order vartheta (9 > 0) of y(t) is

D%y(t) = D*[D™"y(t)] = D" [[‘01(,7) /0‘ ¢ i/(:))l_ndf] n>0 t>0

where n is the smallest integer greater than ¥, and 4 = n — 1.

For example, for 4 C (0, 1) the fractional derivative of order J will be

D’y(t) = r—oul——m% /ot (ty_(TT))ddT t>0 (1.11)

As an example of a fractional model, the constitutive relation can be expressed as [43):

o(t) + bDPo(t) = Eoe(t) + E1D’¢(t) 3,8 C (0,1)

where 5 parameters b, Eq, E, 9,3 are involved.

Another model based on fractional derivative and considered in [45] was
o(t) = ke(t) + cD’¢(t) ¥ C(0,1)

where 3 parameters k, ¢, ¥ are involved.

The fractional derivative (1.11) can be expressed in equivalent form [46] as follows

Dy(t) = ro(11_ 7 fo t (ty_(‘?)odr-i— o 11_ 7 yt(f) t>0 9cC(0,1) (112

This form has only the operator of integration, while form (1.11) involves integration and
differentiation, which is less convenient to use. Note that according to definitions (1.11),
(1.12) the fractional derivative is not defined for ¢t = 0.

Consider some fractional models of the constitutive law which use the concept of the

fractional integral (1.10). For example, one can assume the following constitutive relation:

t o—B(t-7)
o(t) = Ee(t) — c /0 o) 9> 0 (1.13)

Using the convolution theorem and finding the corresponding Laplace images [47] one obtains

5= [E . CFo(’l9)

|€

(p+8)°
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This model corresponds to the Davidson-Cole model according the terminology from [42].

The complex modulus for this model is

clo(¥)
(tw + B)?

One can generalize the relaxation kernel in (1.13) further, introducing a summation on

E.(w)=FE -

the quantity 3, i.e.,
: n e—Bj(t—‘r)
o(t) = Belt) = [ 3 esgr—yrmaelr)dr
The complex modulus for this model will be
ero(ﬂ)

E,(w)=E - i[m]

=1
which can be compared with the complex modulus of the Havrilak-Negami model [42]:

E.w)=E — W (1.14)

It has not yet been established what kind of relaxation kernel can yield such a complex modulus
as (1.14).
In [30], [24] so-called fractional exponential functions E4(8,t — 7) were proposed. With

their use the constitutive relation can be presented as follows:

o(t) = Ee(t) — /ot cEs(B,t — 7)e(r)dr ¥ C (0,1)

where

o [BE=7) 0
Es(Bot—7)=(t—7)" To[(n + 1)(1 — 9)]

n=0
Note that with ¥ = 0 the function E4(83,t — 7) is a regular exponential function

(1.15)

Eo(B,t — 1) = A7)

and the first term (n = 0) in the above sum (1.15) constitutes the following kernel

_ =)
-~ To(1 -9)

I'(t—r)
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As a conclusion to the review of fractional models, one can say, that these models produce
a good fit to the experimental data with a few parameters (3,4 or 5) in the constitutive
relation. However the advantage of using of regular exponential kernels instead of fractional
exponential (or fractional) models, as will be shown later, is that analytical (closed form)

solutions in the time domain can be derived for discrete viscoelastic systems.

1.2.2 Viscoelastic discrete dynamic systems

According to the correspondence (Volterra) principle a solution of the viscoelastic problem
can be obtained from a solution of the corresponding elastic problem by replacement of
elasticity constants (Young's modulus, Poisson’s ratio) in the solution by their hereditary
analogs (operators). However this works only in those cases [48], [24] when the elastic
solution is found analytically in the space domain, and not applicable when the boundary
conditions depend on time.

The application of the finite element method to elastic systems leads to the formulation of
dynamic problems in terms of mass and stiffness matrices. In the case of viscoelastic systems
it is necessary to replace the material constants E, v, or A, G (in the stiffness matrix) by
their viscoelastic analogs (operators) E, i, or X, G, or by complex moduli E,, v,, A,, G.
in steady-state response problems. It is a fact that very little data is available for complex
Poisson's ratio v, as function of frequency [2]. Some data related to the complex moduli E,
and G, of polymeric materials can be found in [2] and [7].

Finite element method applications for dynamic viscoelastic systems are usually described
in the literature in the context of step-by-step numerical integration (in time) schemes [49],
[50], [51], or based on numerical inversion algorithms of the Laplace transformed solution.

Description of these numerical methods can be found, e.g., in [52], [63]. It may be noted

that the use of numerical integration for the boundary value problem (when conditions are
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prescribed at different points in time) is much more complicated than for the initial value
problem.

In practice one of the widely used models of the constitutive viscoelastic law is when the
relaxation kernel is represented by the sum of exponentials. The existence of homogeneous
analytical solutions to the free vibration problem for this case has been shown [54], using the
Laplace transform method. In papers [55], [56] a different approach is developed to determine
the unknown parameters which are involved in the analytical solution. This approach also
yields the formulation of an eigenvalue problem.

In papers [4], [67] an introduction of "mini-oscillators” was shown incorporated into the
finite element formulation, where a quite restrictive combination of certain exponential terms
for the relaxation kernel was assumed in order to obtain symmetrical matrices in the Laplace
transformed equation of motion, written in some state-space form (additional dissipative

coordinates were introduced). Each "mini-oscillator” must consist of two exponential terms:

[(t — 1) = arexp[—au(t — 7)] + azexp[—as(t — 7)]

where the coefficients in this expression must satisfy the following condition
a1y — —asz0s

and the relaxaltion kernel must consist of some number of such couples which leads to even
number of terms. This may impose a significant restriction on the behavior of viscoelastic
models. To illustrate this circumstance, it is sufficient to consider a matgrial, the relaxation
kernel of which is described by an odd number of exponential terms.

Multilayered elastic-viscoelastic structures were considered in [58], [59], [60] along with
optimization of damping properties (loss modulus) of the material. In [2] the damping layer

treatment was considered along with application of tuned dampers.

The application of vibration mounts (isolators) for multicylinder engines is quite a common
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practice [61], [62]. In this study some examples involving optimization of the mounts for such
type of engines will be considered.

In practice engines are attached to structures through multipoint isolation systems, and
there are coupling effects in the engine and structure between the various mounting locations.
Therefore a traditional optimization based on a single isolator model is not adequate [63].

In [64], [65] the authors described an optimization technique, which is aimed at the mini-
mization of forces transmitted through engine mounts, with constraints imposed on the static
engine displacements. The engine was modelled as a rigid body subjected to periodic load-
ings. Steady-state responses were computed with the following evaluation of the transmitted
forces. The Voigt element was used to simulate the properties of elastomeric material of the
mounts, hence some inadequacy of this model should be expected (it is known that hereditary
properties cannot be described by the Voigt element even qualitatively). The design variables
were the stiffness and orientation of each individual engine mount.

In [66] the objective of the optimization was the removal of natural frequencies of an
engine-mount system from the undesirable frequency range. Voigt elements were also used to
model the constitutive properties of the mount material. Some comparison of the numerical
results with laboratory measurements was produced in terms of optimized frequencies.

Variations of the optimization problem depend upon the choice of an objective function,
imposition of different constraints on the design variables, or the level of vibrations. Different
numerical techniques [67] can be employed to accomplisﬁ the optimization problem.

In the present study the force transmissibility through the mounts will be considered as a
primary factor. A dynamic model of engine-mount system will be shown where contributions
of rotating and reciprocating parts are taken into account exactly. The elastomeric material

of the mounts, namely, its complex modulus as function of frequency will be viewed as a

design variable.




Chapter 2

Constitutive properties of viscoelastic media

In the theory of linear viscoelasticity, one of the commonly used hereditary models [30], [24],

[27], [68] is a constitutive law of the form:

t

azE@—Aru—ﬂqﬂM) (2.1)

where the scalar function I'(t — 7) is called the relaxation kernel and E is instantaneous
modulus. An alternative form of representing (2.1), which was used by [6], [7], [29] is as

follows:
t
a:/R@—ﬂ& (2.2)
0
which can be reduced to (2.1) by integration by parts. R(t — 7) is called the relaxation

function. Note that a_};’(-g = ET(§), where ¢ =t — 7, E = R(0). In this study relation (2.1)

will be used.

2.1 The complex modulus and relaxation kernel concepts

2.1.1 Complex modulus in terms of relaxation kernel

Consider the constitutive stress-strain relation (2.1) for the particular case when the strain is

harmonic:

€ = ege™” 1=+-1

16
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and by considering the steady-state response (i.e., assuming that deformation started at
t = —oo) one obtains
T opt

o(t) = E(eoe™* — / T(t — 7)ee™ dr)

-00

, ; t ,
= E(eoe™* + eoe“"t/ L(t —r)e”“t7d(t — )

—o0

= e E(1 — /ooo [(¢)e td¢) = E,(w)eoe™®

where the complex quantity

E. = Ey(w) + iEs(w) = E(1 - |7 reeitde) (2.3)

0

will be called the complex modulus.

Note that from (2.3) it follows that
E.(w) = E,(—w) (2.4)

i.e., Bi(w) = E;(—w) - an even function, E(w) = —E,(—w) - an odd function. These
properties will be used below. The quantity E; is called the storage modulus, E, = the loss

modulus, % = the loss factor (or the loss tangent).

2.1.2 Relaxation kernel in terms of complex modulus

Now one can show how to derive the relaxation kernel I'(¢) from a given (known) complex

modulus. Using (2.3) and assuming I'(¢) = 0 for £ < 0 one obtains
e —iwt 1 .
/_ D(¢)etdg = 1 — = (Br +iFy)

Taking the inverse Fourier transform of both sides one obtains

1

T o

/ (1= 5 (Br +iBy))edu

—o0

I'(¢)
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_ ]_ oo El E2 . . . El . E2
= 5 /_co[coswf ~Z coswf + i sinwé + i(stnwé — T sinw + z coswé)|dw

Taking care of the odd and even terms, i.e., using relation (2.4), one obtains:

') = %/oco((l - %)coswﬁ + %sinw{)dw (2.5)

In the literature, e.g. in [24], there are alternative formulae which were derived by using

Fourier cosine, or sine transforms:

') =- /Ooo(l - %)coswﬁdw (2.6)

L) = ;2;/000 %sinwfdw (2.7)

Note that formula (2.5) follows from (2.6) and (2.7) as well.
When an experimentally obtained complex modulus E, = E;+iE, is substituted into (2.6)
and (2.7), it can result in different values of I'({). This can occur, because the constitutive

law (2.1) is just an approximate model. Thus it may be expedient to take the average of the

values of I'(¢), which is done in formula (2.5).
2.1.3 Multiplication and division of operators and calculation of complex
moduli

The stress-strain relation for an isotropic elastic material has the form
o = /\51']'9 + 2G€ij

where
Ev E
= A= =
6 ;6’“" 190 -2) °~ 301y

For an isotropic viscoelastic material this relation can be rewritten as

Oi; = :\(5,'3'9 -+ 2@6,’_1'
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where viscoelastic Lame's operators are

Ev - E
(1+7)(1 — 29) ¢=3+9)

=
In the development below the relaxation kernels of viscoelastic operators are assumed in
the form of a sum of exponential functions. Note that there is no restriction on the number

of terms in this sum.

For example, for the operator E:

Introducing the auxiliary definition of operator M*(r):

t
M*(r)zz/ et~ g(r)dr

— o0
Assuming, for now, a kernel ['(¢) = ae™*¢, one can rewrite the expression for the operator
E:

E=E(l-aM*(—a))
Assume an analogous expression for the operator
5 = v(1 - bM*(~f))
Consider their product
Ei = E(1 — aM*(—a))v(1 — bM*(-B))

According to the theorem of multiplication of such kind of operators [24], there exists an

equality:

M*(T)M*(S) — M*(’I‘) _ M‘(S)

(2.8)

r—38
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Thus

- b

Ep = Ev]l — bM* (=) — aM*(—a) + ——— (M*(—a) — M*(=B))]

—a+ ,B
Now let = = ¢™* and calculate (E7)z, it will be
N b a a b it
(B7)e = Ev(l - B+iw a+iw + (o + iw) (ﬁ-{-iw))e = he
where |
P, = Bu(1— = 2 2 b (2.9)

B+iw a+iw i (o +1w) (B + iw)
will be called the complex modulus of the operator P = Ep.

From the other side, consider separately the complex moduli of operators E, and 7. One

has
o iwt a 1wt
Ee** = E(1 - —)e
a+w
thus the complex modulus of operator Eis
E.,=E(1l- —) (2.10)
T o+ w |
and
. b .
Deuut — l/(l . /8+ 7:w)ezwt
thus
(1 ’ ) (2.11)
ve =v(1— - .
B+ iw

Comparing (2.10), (2.11) with (2.9) one concludes that
P, =E,v,

Therefore the following property holds.

Property 1. The complex modulus of an operator, which itself is a product of two

operators, is equal to the product of complex moduli of these two operators.
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The extension of this property to the case of multiplication of several operators (each of
them can contain several exponential terms) is straightforward and for the sake of brevity is
not shown here.

The case, when a = [, deserves some attention. In this case formula (2.8) is not
applicable (r = s). There is another one, mentioned in [24], which can be used, but for our

purposes of proving Property 1, it is enough to consider the limit transition at o — 8 — 0:

aM*(—a)bM*(—a)e™* = Lim [aM*(—a)bM*(—B)e™"]

i a~-B3—-0
_ im ab 1 _ 1 eiwt — im ab (—a + ,3) eiwt
‘ayﬂ—m[—a-}-,@(a-l—iw ﬂ-l—iw)] allﬁ—m[(—a—i—ﬂ) (a+iw)(,3+iw)]
ab Twt
~ (atw)(a+ iw)e

Now by considering (2.9), (2.10), (2.11), it becomes obvious that Property 1 will be also
valid for this particular case when a = .

For future purposes it is also necessary to consider the division of operators. Let

E _ E(1-aM*(-a))

D=3 =i (-p)

Using the multiplication rule (2.8) one can derive
[1—bM*(r)]"' =1+ bM*(b+r)

Using this result one obtains:

D=== (1+bM*(—ﬂ+b)—aM"‘(——a)—-:;—_I%(M'(—a)—M'("ﬂ‘{“b)))

NIles
v | by

Now applying operator D to et

FE b a ab

N iwt __ _ _
De —V(1+,B—b+iw atiw (a+iw)(B—>b+iw)

) iwt

Thus the complex modulus of D is

D—E(l-l— b _a ab )
Ty B-bt+iwv a+tw (a+iw)(f—>b+iw)

(2.12)
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From the other side, consider the ratio of complex moduli
E. E(-Z5)

0 atiw/ (2.13)
v v(l-— B-:iw)

After some rearrangement of fractions in (2.12), (2.13) one can see that

Therefore the following pfoperty holds.

Property 2. The complex modulus of an operator, which itself is a fraction of two
operators, is equal to the fraction of complex moduli of these two operators.

The extension of this property to the general case of operator

P (2.14)
B\B,...B,,

(each of the operators can contain several exponential terms) is straightforward and for the
sake of brevity is not shown here.

Proposition. The complex modulus of operator D in (2.14) is expressed in terms of

the complex moduli of participating operators as following:

The proof follows from Properties 1 and 2.
Remark. The multiplication rule (2.8) has been proven in [24] for so-called exponential
fractional operators with the same indices. In this study a particular case (subclass) of such

exponential fractional operators is utilized, namely, the kernels of operators are assumed to

be a sum of exponential functions.

2.2 Approximation of experimental relaxation and creep curves

The objective of this section is to show that the use of exponentials for the relaxation kernel in

a constitutive relation allows a good modelling of viscoelastic properties to be obtained, and
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also to show some methods of approximation developed in this study. These methods allow
the parameters of the constitutive relation to be determined from experimental relaxation, or
creep curves.

Assume that an experimental stress relaxation curve is given on a set of points in time:

t;. with values o, k = 1, m. Assume an approximation as a sum of exponential functions:

o~ Y die" + B

i=1

where unknowhs are d;, v;, B, and n is a chosen number of terms.

One can set the approximation problem as follows:
¥ =) [on— ) die”"* — B]> - Minimum (2.15)
k=1 =1

There are many numerical algorithms of unconstrained minimization [67], for example one of
them the conjugate-gradient method, which can be applied to the problem (2.15). However
due to the fact that analytical expressions for the derivatives on the design variables are
available Newton's method can be employed.

At first the minimization problem is posed with respect to parameters d;, B, while pa-
rameters 7; are assumed known (their prescription is discussed below). In this case the
minimization problem can be reduced to the solution of a system of linear equations with
respect to unknowns d;, B. Namely, differentiating (2.15) with respect to d; and B and

setting these derivatives to zero (necessary condition of an extremum point) one obtains:

N e—(m+m)te ) e-(m+u)te S e~ (mt+n)te ) e~ Mtk d; e ore Mtk

> e~ (Yitm )t Sk e~ (itmlte > e~ (vitm)te Y et d; 4 Ope itk

) e~lmimlte S e—(mtm)te Sk e~ (Intm)te 3, et d, 3, ope Ttk
> e~ Ttk S e~ T2tk S e~ Tntk n B Yok Ok

(2.16)
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If the determinant of the system (2.16) is not zero, then an optimum point exists and is
unique. Obviously it will be the global minimum point (not a maximum). The solution of
this linear system yields the optimum values of d;, B for prescribed values of ~;.

As an illustration consider original data for the relaxation Young's modulus curve (which is
actually a stress relaxation curve divided by the value of the constant strain) of polyisobutylene
(at 25° C) taken from [7]. This curve is shown in Fig. 2.1 by the line with the squares. With
an l-term approximation, a search of optimum values d; and B was undertaken for the
interval 4; C [0,0.1e + 06] and the increment Ay; = 0.25¢ + 04, i.e., with a given set of
values 7, the optimum values for d; and B were calculated from the system (2.16) and the

best approximation point (minimum ¥) was selected. These values were obtained as follows
B =10.86775 d; =2.90729 v, =2500 with ¥ = 0.62405 (2.17)

This approximate set of parameters was then used as an initial point for Newton's method
which will be described below.
Remark. An analogous technique can be erﬁployed when an experimental curve is a creep
curve. Then the experimental values will be the values of strain on a set of points in time.
In this case the values o}, should be replaced by values of strain ¢ in (2.16).

Another numerical method which is proposed to use for approximation purposes is New-
ton’s method.

Presume that a system of nonlinear equations is given as following:

f(X)=0

where X = [zy,...,zn]T, and f(X) is a vector-function

F(X) = [A(X),y oons I (X)]T

The iterative procedure of Newton's method is as follows

0
Xivs = X ~ [5R10 (X
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or in abbreviated form

Xiy = Xi — R f(X3)
where matrix R; has the form

%h B4 8n

dxy Oxy °°° Oz,
fs 8f2 8f2
Oz, 8z, "0 Ozn (2 18)

8z fxzy 0 Bzn

and derivatives are taken at point i. For our case vector X will consist of unknowns parameters

[dl, ceey dn, Y105 ns B]T

The necessary conditions of an extremum point of (2.15) give a system of N = 2n + 1

nonlinear equations as follows:

ov
f.s—ad’—-o s=1,n
ov
foan = o =0 s=1,n
ov
font1 _6_3_0

In more detail:

fo= Y [e"* (D dje™*™ + B—03)] =0 s=1,n

k=1 7=1

forn = D [(—tedse ) (D _dje™ "™ + B—0)] =0 s=1,n
k=1 j=1

m

f2n+1 = Z(Z dje—”’jt" + B — O'k) =0

k=1 j=1

The expressions for the components of matrix R; are obtained by straightforward partial

differentiation of the above formulae for f,.

This algorithm was implemented in a program and some results are presented below.
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Figure 2.1: 1-term exponential approximation. Line with squares - experiment, line with
triangles - approximation
For example, the set of parameters (2.17) was taken as an initial point. Then it required

four Newton’s iterations to yield the optimum point:
B =10.82902 d;, =2.82834 v, =1996.9 with ¥ =0.57584

The approximation graph (line with the triangles) for this set of parameters is presented in
Fig. 2.1.

Analogously this combination of two methods was undertaken for a 2-term approximation.
With a 2-term approximation, a search of optimum values d;, d,, B was undertaken for the
interval of changing of 4; C [0,5000], v, C [0,5000] and increments Ay, = Ay, = 100, i.e.,
with a given set of values v;, 72 the optimum values for d;, d;, B were calculated from the
system (2.16) and the best approximation point (minimum ¥) was selected. These values

were obtained as follows

B =0.6405 d; =2.5230 ~; =3300 d;=0.6192 v, =100 with ¥ =0.1036

This set of parameters was then used as an initial point for Newton’s method. It required




Chapter 2. Constitutive properties of viscoelastic media 27

o

Relaxation Young's modulus, MPa
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Figure 2.2: 2-term exponential approximation. Line with squares - experiment, line with
triangles - approximation

three iterations to yield the optimum point:
B =0.6462 d; =2.4753 ~; =3449.9 d, =0.667 v, =132.38 with ¥ =0.1017

The approximation graph (line with the triangles) for this set of parameters is presented in
Fig. 2.2.

Analogously one can conduct approximations with an arbitrary number of exponential
terms. Note that using the 1st method (system (2.16)) one can determine the optimum
point with a good accuracy, i.e., if small increments on the assigned values of ; are taken.
This would mean that the use of Newton's method is not really necessary. However if the
number n of exponential terms is large, then it will require a large number of solutions of
system (2.16). Denote the number of increment points on each parameter «; as L, then the
number of solutions of (2.16) will be L™. For example for n = 5, L = 20 it would require
3.2e 4 06 times to solve the system (2.16) (in this case 6 x 6) which would take a significant

amount of computer time. Therefore the use of Newton's method is expedient for the case

when number of exponential terms is chosen > 3.
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2.2.1 Determination of the parameters in the constitutive law and calcula-

tion of complex moduli

The constitutive stress-strain relation is assumed in the following form:

o(t)= E(e— /: g: are~+(t-"¢(r)dr) (2.19)

where the parameters E, ay, aj are to be determined, and n is a chosen number of terms.

Having represented the relaxation (or creep) curve as a sum of exponential functions,
one can without difficulty determine the parameters in the constitutive law and compute the
corresponding complex modulus.

Assume that the variation of stress upon the application of constant strain ¢ is as follows

ﬂ =B+ i die—‘v.'t

€o 1=1

From the other side using the constitutive law (2.19) one obtains

n n

t 7 , .
o(t) _ E(1- /0 Y geailt-ndr) = E(1 -3 2 4 3 Zemait)
=1

€o =1 a; =1 @

Thus the following relations between the parameters in the expression for relaxation modulus

and parameters in the constitutve law hold:
a; = %; a; = d,-a,-/E E(l — Z ﬁ) =B (220)

Therefore having determined d;, 4;, B from experiment, the parameters of the constitutive
law (2.19) are determined from (2.20). Then the corresponding complex modulus can be
computed using (2.3), which produces the following

a;

Assume now that an experimental creep curve is given, which is already represented as

d) _ gy e (2.21)

Jo

=1
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From the other side using the constitutive law in the form:

e(t) = -;77(0 + /ot g: cre P t-To(1)dr) (2.22)

parameters E, B, ci are to be determined.

Substituting o(t) = o into (2.22) one obtains

t n n . n .
) _ E~'(1+ /0 S e Py = BTN 1+ Y % -3 %e‘ﬁ‘t)
i=1 =1 =1 M

Oo

Comparing it with (2.21) the following relations follow:
Bi=v  a=-Edf  ET(1+) %) =B (2.23)
i=1 Pi

Therefore having determined d;, +;, B from experiment, the parameters of the constitutive
law (2.22) are determined from (2.23). Then the corresponding complex compliance can be

computed analogously to (2.3)

J.(w) = E71(1 +;ﬂi_‘;‘iw)

and the corresponding complex modulus is just the inverse of the compliance:

2.2.2 Use of two-part kinematic loading

Consider a kinematic loading (Fig. 2.3) in a uniaxial test. This graph has two portions: 1st
one when the strain is a linear function of time, an 2nd one when it is constant.

This type of loading can be realized experimentally. Note that relaxation curves consid-
ered in section 2.2 imply that the strain is applied instantaneously and kept constant. An

experiment to realize the instantaneous application of strain is, strictly speaking, impossi-

ble. Therefore relations are developed in this section which can be used to determine the
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Strain

0 S Time

Figure 2.3: Two-part kinematic loading

parameters of the constitutive relation by using the type of kinematic loadings shown in Fig.
2.3.

Note that by the "strain” hereis implied either tensile, or shear strain, depending on the
type of experiment which is conducted with a specimen.

The strain as a function of time is assumed to be

()= “€t , tC[0,s]

€ t>s

with the assumption that for ¢ < 0 the specimen was in natural state (zero stress and strain
histories).

According to (2.19) for any arbitrary instant ¢t > s one obtains

o(t) = E(e — /Otki: ake_a"(t_")e(r)dr)

eo—/ Zake“"‘(‘ ™) 0-rd-r——/ Zake“"’“(“f)eodr)

5 k=1

n

n
ag ay
= Eleg — € — e“”t—ca—e—e“"’
omeo3 2 3 e (oo, — o)
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where

8 1 1

ck=e°""(———2)+—2 k:l,n
(073 Q. Qay,

Having the experimental stress-time dependence for ¢t > s approximated by

o(t) =B+ de™*
k=1

one can express the parameters of the constitutive relation (2.19) in terms of experimentally

determined quantities B, di, 7x. Namely, they will be as follows

A = Yk

dy.

_r 2.24
ek — apcr/s ( )

E=B+Y
k=1

1
E (al—ke“h‘ — ck/3)

ap =

where E is viewed as the instantaneous Young's modulus for the case of a tensile experiment,
o : or the instantaneous shear modulus for the case of a torsion experiment.
The formulae (2.24) along with experimental input data can be used to evaluate the
paraméters of the constitutive relation a;, a;, E. Note that with the limit transition s — 0
formulae (2.24) converts to formulae (2.20) which corresponds to instantaneous (step-type)
kinematic loading. To calculate this limit it is necessary to use L'Hopital's rule.
In the following section another approach will be presented which allows the constitutive

parameters to be obtained through the approximation of complex modulus curves.

2.3 Approximation of complex modulus curves

If the experimental data are given in terms of a complex modulus then an analogous approx-

imation technique can be employed as it was described in the previous section.
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The objective of this section is to show some methods of approximation developed. These
methods allow the parameters of the constitutivg relation to be determined from experimental
complex modulus curves. |

Assume that experimental complex modulus is given on a set of points in the frequency
domain: w; with values E,;, = E;; + 1Fap, k‘= 1, N. This complex discrete function will be
approximated here as following

Ew~E),=E1-Y

i=1

a;

_ 2.25
a; + Wy ( )

where parameters a;, a;, E to be determined, and n is a chosen number of terms. Note
that it follows from (2.3), that representation (2.25) is equivalent to representation of the
relaxation kernel in the form
n
Lt—7)= Z aje_“"(t_")
=1
The function to be minimized is introduced as follows
)—E)[E(1-)

10 + zwk =1 % T Wk

aj

N : N n
Y = Z(Eik_Etk)(_E—,*k_E*k) = kX_:[E Z )——E*k]

k=1 =1
This is a real-valued function, because the multiplication of conjugate quantities is involved.
One will introduce new notations b; = Fa; and in the first method of approximation, it

will be assumed that quantities a; are known and quantities b;, E are to be determined.

Setting the derivatives to zero

b, * = =1
Ob,, ,Z:I(Re[a — Wy am-}—iwkaz:laj_iwk + am——iwkE k) =0 m ,n
or X n .
oE ~ E=) o Bl = 2.2
OE I;(Re[ ; Po— k) =0 (2.26)
one obtains a linear system of n + 1 equations. Note that each of the quantities 6’95‘1’ ,and 2%

yields a sum of two conjugate terms. Here in expressions (2.26) the real part of one of these
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terms is set to zero. The solution of this linear system yields the optimum values of b;, E for
prescribed values of a;.

As an illustration consider original data for the complex shear modulus G. = G; + iG>
of styrene-butadiene rubber at 25° C taken from [7]. This curve is shown in Fig. 2.4 by the
solid line. With an 1-term approximation, a search of optimum values b;, E was undertaken
when the interval of changing of a; was [0,5000] and the increment Aa; = 100, i.e., with a
given set of values a; the optimum values for b;, E were calculated from the system (2.26)
and the best (minimum ¥) approximation point was selected. These values were obtained as

follows
E =0.803128 b, = 39.87521 «a; =100 with ¥ = 7.0172¢ — 02 (2.27)

Note that with one term approximation the search interval for a can be evaluated by

noticing that for the complex modulus

. a
E.,(w) = E, +iE;, = E(1 - s iw)
the following fact follows
0E2 _ Ea (a2 . wz)

Ow  (a® + w?)?

i.e., 22 = 0if a = w. Thusif Ey(w) attains its maximum at some point w,,, then having this

maximum point from the experimental curve, one can assign the appropriate search interval
for a near w,, to seek the best approximation.

The approximation point (2.27) was then used as an initial point for Newton's method.

The procedure of Newton's iterations was described in the previous section in detail. Here it

is applied to the solution of a nonlinear system of equations:

v X E 1 nb; 1
= S (Rel > —Ba)=0  m=1n
obn = O — IW O + Wk ] @ — IWE Qi — Wk

ov N b —b,, i b b

—— =) (RelE ?
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v
3E kz:lReE Z —Eu]) =

i1 oy — Wk
Note that a,, (m = 1,n) are now unknown parameters.

Newton's method provides a fast convergence when an initial point is chosen in a small
enough vicinity of the solution point and may diverge if this condition is not satisfied. Thus
it is expedient at first to apply the 1st method (linear system (2.26) solution) to obtain an
initial point and then to apply Newton's method.

With the initial point (2.27) five Newton's iterations were required to obtain the optimum

point with values:
E=0.7869 b =29.683 a3 =72.956 with ¥ =6.87901e — 02

The approximation graph is presented in Fig. 2.4, where the solid line is original data, and
the dashed line is approximation results.

The same combination of two methods was then used to obtain a 2-term approximation.
For the 1st method, a search of optimum values b,,b,, E was undertaken when the interval
of changing of a; and a; was [0,1500] with the increments Aa; = Aa, = 30. This method
gave:

E =0.93851 b =8.2443 a3 =30 b, =317.8787 ap = 1200
with ¥ = 1.6619¢ — 02

This result was then used as an initial point for Newton’s method, and six iterations were

required to obtain the optimum point with values
E =0.91863 b; =4.8562 oa; =17.724 b, =230.60 o, = 830.18

with ¥ = 1.4631e — 02

The approximation graph (dashed line) for this set of parameters is presented in Fig. 2.5.
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Figure 2.4: Complex shear modulus by an 1-term exponential approximation, G;=real
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As a conclusion one can say that the use of exponentials for the relaxation kernel provided
a good fit to experimental data for both curves (relaxation modulus and complex modulus)
in the considered examples.

The constitutive properties of many elastomeric materials can be satisfactorily described
by relation (2.19) and the use of exponentials one can find in many applications, see, for

example, [49], [24], [25], [69], [70]. In the American literature a sum of exponentials used in

the relaxation kernel is sometimes referred as Prony’s series.
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Steady-state solutions for discrete viscoelastic systems

3.1 Homogeneous material systems

The application of the finite element method to an elastic system yields the mass matrix of
the system M and the stiffness matrix K. The derivation of the global system stiffness matrix

starts with an element stiffness matrix, where the constitutive law (Hooke's law) is involved
[o] = [E][€] (3.1)

where [0] = [0y, 022 033 012 013 023]7 is the column of stress tensor components, and
= T is th [ f i
[e] = [€11 €22 €33 €12 €13 €23]" is the column of strain tensor components.

For an isotropic material matrix [E] has the form:

A+2G A A 0 0 O
A A+2G A 0 0 O
A A A+2G 0 0 O
[E] =
0 0 0 26 0 0
0 0 0 0 2G O
0 0 0 0 0 2G

where Lame's coefficients A, G are

vE E
A= A=) ¢ =311y

37
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The hereditary analog of this matrix is obtained by replacement of E, v by the corre-
sponding viscoelastic operators, i.e., E — E, v = i, or by another replacement A — A,
G- G.

One can see that relation (3.1) can be presented in the two-part form:

[e] = [ML + 2G1][€] (3.2)
where
111000
111000
111000
I]_ =
000 O0O00DO
0000 O0OTOD
0 00 0O0TDO

and I is the unit matrix. Then the global elastic system matrix, due to the previous form

(3.2), will have the following two-part form [54]:

Note that matrices K;, K, do not depend on material properties.
The equation of motion for harmonic excitation of a viscoelastic system can be written

as:
MX + (AK, + 2GK;)X = Foe™t (3.4)
where viscoelastic operators X and G for the case of steady-state response have the following

form:

5()=210) - [ B -r)()dr)

&) =600~ [ st-m))dr]
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Recall that in the steady-state response consideration the deformation is assumed to begin at
t = —oo. This is why as a lower limit of integration in the expressions above the value —oo
is used.

One can seek the steady-state response solution of (3.4) in the form
X = Xoe™*
Substituting it into (3.4) one obtains
(—w?M + MK, + 2G.K,) Xoe* = Foe™* (3.5)

where )\,, G, are complex Lame's moduli and can be computed using the rule (2.3) and the

properties 1,2 of section 2.1.3, namely,

v.E, G — E,
(14 2.)(1 - 2v,) 21 +w)

A =
Therefore the steady-state solution (in real form) is

X(t) = Re [[~0*M + MK, +2G. K] Foe™!]

Extension to the general case of periodic loading with a period T = f)—’: is accomplished

by using the Fourier series and by application of the principle of linear superposition. Namely,

for

F(t) = Fpe™ wr = kwy (3.6)
k=0

the solution is
X(t) = Re | D [~wiM + A(wi) K1 + 2G. (wi) K] ™ Fie™™
k=0
A program was written which calculates the steady-state response according to the for-

mulae presented above. Matrices M, K;, K, used in the equation of motion (3.5) can be

built by a finite element code written for elastic dynamic systems. Here the program [71] will
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Figure 3.1: Viscoelastic brick clamped at the hatched sides

be used, which was modified by the author of this study for this purpose. As an illustration

some numerical results are given below.

Numerical examples.

Numerical results are presented for a viscoelastic brick loaded by periodic concentrated
forces F(t) and clamped at the hatched sides (Fig. 3.1).

The parameters of the brick's cross section were 0.1 x 0.1 m, the length = 1 m. 20-node
solid finite elements [71] were used to mesh the brick.

The periodic forcing function F(t) is shown in Fig. 3.2 for the duration of one period
(T = 0.1 s), thus the 1st harmonic frequency w; in (3.6) is 27 x 10 rad/s (or 10 Hz). The
Fourier series of this loading function has a noticeable contribution of harmonics up to the
order of 9 (frequency 90 Hz).

As far as Young's complex modulus E, = E;(w)+1E,(w) is concerned the experimentally

obtained values (Fig. A.11, Appendix A) for polyepichlorohydrin (PEC H) were used. The
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Figure 3.2: Periodic loading

procedure used to obtain these values from certain experimental input data will be discussed
in the next section.

To illustrate the effect of Poisson’s ratio the computations of steady-state response were
produced for two models. In the 1st model complex Poisson’s ratio was frequency-dependent
V. = v,(w) and its values were taken from experimentally obtained data (Fig. A.12, Appendix
A). In the 2nd model Poisson’s ratio was assumed as frequency-independent and equal v =
0.4995. Note that Young's complex modulus was the same for both models. The density
prescribed to the material was equal 300 kg/m?®.

Calculated steady-state responses are shown in Fig. 3.3, where Y-displacements of the
force application node (node 1) and node 2 (Fig. 3.1) are presented as functions of time for
the duration of one period T = 0.1 s. The solid line corresponds to the displacement for
varying v, model, and dashed line to v, = const model. One can see some difference between
the steady-state responses for these two models. Particularly the 2nd model predicts larger

maximum displacement.

The results when the period T of the same type of forcing finction was 0.05 s (the 1st
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harmonic frequency w; is 2 x 20 rad/s, or 20 Hz) are presented in Fig. 3.4. The Fourier
series of this forcing function had noticeable contribution of harmonics up to frequency 180
Hz. Again one can see noticeable difference between the steady-state responses for these
two models. For this case the 1st model predicts larger maximum displacement.

It should be noted that analogous results were also obtained for such material as CR.
Its material properties such as E,, v, are presented in Fig. A.20, A.21. One can see (Fig.
A.21) that Poisson’s ratio is almost constant, and as it was expected, the difference between
steady-state responses for these two models was negligible.

As a conclusion one can state the following. The use of viscoelastic models where Poisson's
ratio is constant can be inappropriate in some cases. The experimental data, for example,
for such material as PEC H indicate that for the frequency range 10 to 250 Hz its value
varies in the range between 0.4995 to 0.406, and differences in the calculated steady-state

responses for the considered example (Fig. 3.3, 3.4) confirm this conclusion.

3.2 Procedure for determination of the complex moduli

A procedure will be presented below which was used to experimentally obtain the complex
Lame modulus ), and shear modulus G,. Note that given these two moduli all the other char-
acteristic moduli such as complex Young's modulus, or complex Poisson’s ratio, or complex
bulk modulus can be computed.

Some experimental procedures were described in [31], [32] for specimens that had the
shape of a long bar which was subjected either to tension, or torsion vibration tests. The
assumption of uniform tensile, or shear stress state for such a long rod specimens was made.
In this study the specimen’s shape is a 3-D cubic one, and no simplifying assumptions about

stress (or strain) state will be made. As it will be seen from the procedure an arbitrary shape

of specimen can be used. In this approach it is necessary to have an accurate finite element
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model of the specimen.

For viscoelastic systems, Lame coefficients A and G should be replaced by their hereditary
analogs (operators). In the case of the finite element method this implies the replacement of
material constants A and G in the stiffness matrix by their viscoelastic analogs (operators) A
G, and for a particular case (harmonic deformation) this replacement leads to corresponding
complex moduli A,, G, which depend on frequency of excitation.

To obtain steady-state responses in analytical form for periodic forcing functions, the
forces acting on a viscoelastic system are represented in the form of the complex Fourier
series. A steady-state response (also in the form of the complex Fourier series) can then be
determined, provided two complex moduli for the material of the system are known. The
determination of these complex moduli is considered in this section.

Consider an example of harmonic excitation of the systems shown in Fig. 3.5. Base

harmonic excitation tests are conducted and transfer functions

fl(w) = y01/wo1 fz(w) = yoz/woz

are measured for both tests. At first, assume the 3-D element connecting the mass m and
the base (Fig. 3.5a) is modelled as a one-dimensional viscoelastic spring of length L and
cross-section area A.

Considering a single-degree-of-freedom (SDOF) equation, one obtains:
mz+k*z=—mi

where z = y — z, © = zoexp[iwt]. Assume z = zpexp[iwt] and substitute into the equation
of motion. The term k*z equals to b(E;(w) + iE;(w))z, where b= A/L. Thus

mTow?

—mw? + b(E1(w) + tEa(w))

zZ0 =

and y = = + z = (zo + 20)ezpliwt].




Chapter 3. Steady-state solutions for discrete viscoelastic systems 45

'}

m
B |
BASE BASE
a) 1st test ‘ b) 2nd test
reference

system

Figure 3.5: Two types of base excitation test; tension type - 1) and shear type - 2)

The transfer function will be:

Yy _®otz _ b(E1(w) + 1Bz (w))
T= .  zo  —mw?+ b(E(w) + iEy(w)) (3:7)

Now instead of a viscoelastic spring consider a finite element model which will be used
to simulate the experimental results. This model includes as parameters the complex Lame
moduli A, and G,. 20-node solid finite elements are used to mesh a given 3-D domain (Fig.
3.6). One side of the specimen is assumed fixed, and for the opposite side some displacements
will be prescribed (side T').

Two types of prescribed kinematic loadings (displacements on side I') will be considered
according to two experimental tests: 1) u, =1, uy, =u, =0and 2) u, =1, u, = u, = 0.

As was shown before the stiffness matrix of a viscoelastic homogeneous system based on

application of 3-D elements can be presented in the following form:

K = MK, + 2GK,




Chapter 3. Steady-state solutions for discrete viscoelastic systems 46

—=

. ﬂ/’ﬂ
2

- —
a) 1st loading b) 2nd loading
Lz .

y

Figure 3.6: 3-D finite element model of the specimen with two types of loading

For a static loading we have
[AK1 +2GK,)U = F

where U = vector of displacements, F' = vector of forces.
Neglecting the mass of the specimen in comparison with the attached rigid mass, one can

write the following expression for a harmonic loading with frequency w, namely,
A (@)K + 2G.(w) K3 Upe™* = Foe™* (3.8)

where the force vector on the right-hand side represents the action from the attached rigid
mass on the specimen.

Note that force vector Fy will have only non-zero components which correspond to degrees
of freedom on the side I.

Also note that in the vector of displacements U, the components which correspond to

degrees of freedom on the side I" are known (they are prescribed according to the two types

of loading).
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Assume that the size of matrices K; and K is N, and the number of degrees of freedom
pertaining to the side I is 3n, then denote the rest N — 3n as 3m degrees of freedom which
correspond to internal degrees of freedom. It assumed here that the elements have 3 linear
degrees of freedom per node.

Considering the 1st loading, the vector of displacements can be subdivided as follows:

T T
Uo=[1 0 0 ... 10 0 | ue %y Uiz - Usmz Usmy ugmz] Z[Ug} Ug}]

Analogously one can represent the force vector

T T
Foz[flz fly flz fSnz f3ny fSnz | 0 0 0 0 0 0} :[F(:)l;* 0]

Renumerating the degrees of freedom of the system and eliminating the time-dependent
coefficient on both sides, one can represent equation (3.8) in the following form:
Kir | Ki Kir | Ki Uor For
Ad| —— = —— | +2G. | —— —— —— — | =] —
Ki | Kni Kir | Ki Uor 0
where the subvector of displacements Up; (size 3m) is unknown, and subvector of forces For

(size 3n) is also unknown.

Thus one can solve the following system of linear equations

—I | AKL+2G.KE || For —A\KirUsr — 2G.K¢pUor

0 [ A,;K}I + 2G*KIZI UOI —AtK}I‘UOF - 2G*KI2FU01"
and subvectors Upr and For can be determined. Then one can find the total resulting force

which is neccessary to apply to create the prescribed vector of displacements on I', namely,

for the 1st loading it will be

Fo=[100 .. 10 0AK:Uor + MK Uss +2G K2Usr + 2G. K2 Uor]  (3-9)
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Having the non-zero components of Uyr equal to 1, from (3.9) one obtains the complex
stiffness S,:

Sz = M(A1 + Az) + 2G.(B1 + B:)
where
A= RKIITUOF Ay = RKII.IUOI B, = RKIZTUOF By, = RK{‘:IUOI (3.10)

and

BR=[100 .. 10 0

Introducing additional notations
Ci=4,+A4, C, = By + B, (3.11)
the previous expression for the complex stiffness in the 1st type loading becomes:
Sz = AC1 + 2G.C,
For the 2nd type of loading the displacement vector will look like
Up = [ 0 10 ... 01 0 | wz ¥ty Uiz - Usmz Usmy U3ms
and the auxiliary vector R used in (3.10) will be
R=[010 ..01 0

Applying an analogous procedure one can obtain the complex stiffness for the 2nd type of
loading (Fig. 3.6b):
Sy == 2(/\*D1 + 2G,D2)

where coefficient 2 stems from the fact that in the experiment two specimens are used to sup-

port the mass m,. Note that these complex stiffnesses depend on coefficients Cy, C2, Dy, D,
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(3.11) which in turn depend on the distribution of internal displacements Upy (3.10), which

in turn depends on )., G,. Thus the dependence will be nonlinear, namely,
Sz(A, GY) = ACi(A, GL) + 2G.Co( A, Gl)

(M, G.) = 200Dy (A, Gu) + 2G.Da (A, Gy))

Now consider the base excitation test (Fig. 3.6a) with a certain frequency w which will
correspond to the 1st type of loading. Assuming that the mass at the top is m; one can write

the expressions for transfer functions analogous to (3.7):

AtCI(At) G*) + 2G102(At’ Gt)

Yo1
T === 3.12
1(‘-‘)) Zo1 —m1w2 + A.Cl(A*, G*) + 2G*02(A., G‘) ( )
and analogous for the 2nd type of loading (Fig. 3.6b)
Yo2 2(A*D1(A,,G¢) + 2G.D2(A.,G,))
T === 1
2(w) To2 _m2w2 + 2(A*D1(A., Gt) + QG,Dz(A*, G*)) (3 3)
One can rewrite these previous nonlinear equations in the following form
Cl (A*, G,.)(T]_ bl ].) Cz(A,., G,)(Tl — 1) A., T1m1w2
2D1 (A‘, G,)(Tz - 1) 2D2(A‘, G,.)(Tz — 1) 2G. T2m2w2
Introduce notations for vector Z = [),,2G,]T and matrix
| GG 1) G G)(T - 1)
2D (A, GL) (T2 —1) 2Dy (A, GJ) (T2 — 1)
If Ty, T, are known and J,;, G,; are assumed one may write
Ty mw?
Ziy = [H(Z:)) ™ i=1,2,3,.. (3.14)
Tomqw?

The iterations are repeated until convergence is reached ||Z;,1 — Z;|| < €, (where € is a small

appropriate quantity), or another equivalent criteria can be used, e.g.,

ITe-Til|<e and  ||Tee—Tal| <e
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where T, T>. = calculated values of the transfer function (3.12),(3.13), and T3,T, = exper-
imental values of the transfer function in the 1st test, and 2nd test respectively. In other

words a fixed point Z, of the mapping (3.14) is determined

Zo = [H(Zo)™

T2m2w2

T1m1w2 ]

The convergence of this iterative process can be analyzed from a mathematical point of
view using the contraction mapping principle (see for example [72]), this analysis is omitted
here.

The transfer functions Ty, T (available from experiment [73]) for such materialas PEC H
(polyepichlorohydrin) are presented as functions of frequency in Appendix A, Fig. A.1 for the
test 1, and in Fig. A.2 for the 2nd test. For test 1 the value of the top mass was m; = 1.91 kg,
for the 2nd test it was m, = 0.54 kg. The dimensions of the specimen were 0.03 x 0.03 x 0.03
m. The temperature of all specimens in all tests was 20° C. Analogous transfer functions
for such materials as EAR C — 1002 are presented in Fig. A.3,A.4, DPNR (_natural rubber)
(Fig. A.5,A.6), CR (chloroprene) (Fig. A.7,A.8) and NBR (acrylonitrile-butadiene rubber)
in Fig. A.9,A.10. These transfer functions T (w), T2(w) were utilized in equation (3.14).

The criteria of convergence for the iterative procedure (3.14) was

iTlc - Tll |T2c - T2|
— << T and — < T
|| | T

where T}., T,. are calculated values, and the relative error r, was assumed 0.5 %.
Having determined the complex moduli A,, G, one can determine E, and v, according

to the following formulae:

A +2G, .
_ 3\ 426G, E

E*_ * * — -
» TG, %=, 1

Convergence of the procedure (3.14) was observed for all cases (no matter what the

starting point was), though the number of iterations required to reach the prescribed level of
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r. was different for different materials and frequencies. The fastest convergence was observed
in the case of EAR C — 1002 material, which yielded values of Poisson’s ratio between 0.35
- 0.2 (real part) in the considered frequency range.

In Appendix A the values of complex Young's modulus, Poisson’s ratio, shear modulus
are presented which were obtained using the above procedure for five materials PECH,
EAR C — 1002, DPNR, CR, NBR (Fig. A.11-A.25). For EAR C — 1002 the results
are compared with results from [2] (Fig. A.16), where the real part of the complex shear
modulus G; (storage modulus), and the loss factor gf are shown as functions of frequency.
One can notice a good agreement between these results. The values from [2] correspond
to the temperature 24° C, and the experimental results in this study are presented for the
temperature 20° C.

As a conclusion one can say that in the considered frequency range 10 — 250 Hz for
such materials as C R, NBR complex Poisson’s ratio can be considered as real and constant,
because its values fluctuate between 0.4995 and 0.4991, and it has a negligible imaginary
part. The same conclusion is not true for such materials as PECH, EAR, DPNR which
demonstrate a dependence of v, on frequency in the range of 10 — 250 Hz.

At low frequencies the measured transfer functions is close to 1 for all materials (Fig.
A.1-A.10). Thus for frequencies below about 10 Hz additional experiments with different
geometric parameters of the specimens are required to provide transfer function values which
are not too close to 1 to cause any accuracy distortion.

One can also see that the value of the transfer functions tends to zero (real and imaginary
part) as the frequency increases (Fig. A.1-A.10). Therefore to use its values for higher
frequencies does not seem appropriate due to a possible accuracy distortion of experimental
data. The behaviour of v,, E, for a greater frequency range > 250 Hz requires additional
experiments with different geometric parameters of the specimens to provide transfer function

values which are not too small to cause any accuracy distortion.
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3.3 Inhomogeneous material systems

Consider now a system consisting of a number of subsystems with different material properties.
The stiffness matrix of the system can be presented in this case as
N
K =) (\Ky; +2G;Ky)
i=1
where N is the number of homogeneous subsystems. The equation of motion (3.5) can be

written as

N
(=M + > (A Ky + 2GijKyj)) Xoe™ = Foet*

i=1

Therefore the steady-state solution (in real form) is

N
X(t) = Re |[[~w’M + Y (M K1 + 2G.; Kpj)] H Foe™
J=1
Extension to the general case of periodic loading with a period T' = i—f is accomplished

by using the complex Fourier series
F(t) = Z F,e™t wr = kw,
k=0
Using the linear superposition principle one can find the solution in the following form

n N
X(t) = Re Z[—w,fM -+ Z()\tj(wk)Klj + 2G,j(wk)K2j]_1erwkt
k=0 j

Jj=1
3.3.1 Numerical results and comparison with experimental data

A program was written to treat the case of inhomogeneous material viscoelastic systems and
some numerical results are demonstrated below.

A vibration rig (Fig. 3.7) was used as an example of an inhomogeneous viscoelastic system.
The steel box (mass 34.2 kg) was mounted on polymeric pads which in turn were placed on

two cantilevered steel beams. The dimensions of the vibration rig are presented in Appendix

B.
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Figure 3.7: Vibration rig with viscoelastic mounts

Four pads (mounts) which are indicated in Fig. 3.7 by 1-1',2-2",3-3",4-4' have a cubic
shape 3 x 3 x 3 (c¢m) and such polymeric materials as DPNR and EAR FC’ — 1002 were
prescribed for these mounts. Note that the complex moduli for these materials (which were
prescribed to the mounts in the numerical model) are presented in Appendix A.

An electromagnetic shaker provided a sinusoidal (of frequency w) vertical force applied
at point A. The following quantity (which will be further called the response function) was

measured in the experiments [73]:

Response function = %(w) (3.15)

where ||V|| is the amplitude of the velocity of point 5 or 6, and || F|| is the amplitude of the
external harmonic force at point A (Fig. 3.7). The comparison of experimental results and
numerical ones is produced in terms of this response function.

The numerical results are rep.resented by a series of calculated steady-state responses, each

of them yields a point in the graph (Fig. 3.8). The experimental results were produced by

using a frequency sweep (0.1 Hz/s) with the measurement of the response function for each
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Figure 3.8: Reéponse function (point 5). Material - DPNR. — Numerical, - - - Experi-
mental

passing frequency. The experimental response function was measured on a set of discrete
points in the frequency domain with a frequency increment 0.25 Hz. A frequency increment
used in the numerical model was 0.1 Hz.

For such material of the mounts as natural rubber (DPN R) the results are shown in Fig.
3.8 (for point 5) and Fig. 3.9 (for point 6), where the solid line represents the numerical
results in terms of the response function (3.15), and the dashed line - experimental results.

For such material of the mounts as EAR C — 1002 analogous results are presented in
Fig. 3.10, 3.11 for points 5 and 6 respectively.

One can see a good correspondence of the numerical results with the experimental ones
for both materials. Some disagreement can be explained by the following facts. Firstly, the
frequency sweep rate used in the experiments was 0.1 Hz/s, which is not slow enough for the
assumption to be made that at each passing frequency a steady-state response takes place.

Recall that numerical graphs in Fig. 3.8-3.11 are obtained by evaluation of the ratio of the

steady-state response velocity amplitude to the force amplitude at each frequency. Secondly,
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Figure 3.10: Response function (point 5). Material - EAR C-1002. — Numerical, - - -
Experimental
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the values of complex moduli used in the numerical model may differ to some extent from
the real values. Recall that these complex moduli (see Appendix A) were calculated from
certain experimental input data according to the procedure presented in section 3.2. Thirdly,
the frequency increment in the experiments was 0.25 Hz (in the numerical modelling it was

0.1 Hz), therefore some points in the frequency domain near peaks are not presented in the

experimental graphs.




Chapter 4

Closed form solutions for discrete viscoelastic systems

Two methods of obtaining homogeneous solutions for the vibration of discrete viscoelastic
systems are compared. The first [54] uses the Laplace transform; the second, a new method
[56], [65] which is given a name "substitution method”, does not. The advantage of the
substitution method is indicated for the case of multi-degree-of-freedom (MDOF) systems.
Analytical results computed by using the substitution method are demonstrated on an
example of a viscoelastic beam. The free and forced vibration responses with various initial

conditions are presented.

4.1 Single-degree-of-freedom system

Consider a mass m connected to the base by a one-dimensional massless element which
combines the properties of hereditary and viscosity in parallel. The equation of unforced

motion is as follows
mi(t) + b+ Kla(t) — [ "It — r)a(r)dr] = 0 (4.1)

where the relaxation kernel is assumed to be of the form:
n
Tt—1)=> a;e” =T

=1

The initial conditions are:

z(0) = zo #(0) = o

57
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The presence of the term cz arises from placing a viscous dashpot in parallel with a viscoelastic
element. It should be noted that for some elastomeric materials the term cz can be introduced
into the constitutive law of the material. Here the integral term plus the instantaneous part

kz(t) will be referred as a viscoelastic element, and term cz as a viscous element.

4.1.1 Application of the Laplace transform

Applying the Laplace transform to (4.1), one obtains:

n

m(p*Z — (0) — pz(0)) + c(pz — z(0)) + kZ — kZ ; Pt o

a;

=0

where p is the Laplace transform variable. From the expression above the Laplace transform

of the x-displacement will be

m(2(0) + pz(0)) + cz(0) _ R(p)
pPm+pe+k(l-L ;3)  T(p)

=1 ptay

=
Knowing the roots, in general complex, of denominator T'(p) (denote them p;), and
assuming they are simple (multiplicity of 1) one can obtain a solution in the form (see the

theorem in [74]):

z(t) = "2:; ;;I((%e"‘t (4.2)

Thus the free vibration solution in complex form is given by (4.2). If the initial conditions z,
and 2, are assumed real, then the solution (4.2) will be real, because the roots p; are either
complex conjugate, or real. In general one can assume that zo and &, are complex, then
the real part of the complex sblution (4.2) will be a solution for the real parts of zo, £o, and

imaginary part of (4.2) will be a solution for the imaginary parts of zq, Zo.

4.1.2 The substitution method

The solution of (4.1) will be sought in the following form [56], [55]:

n+2

z(t) = z_:l cjePt (43)
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where c;, p; are complex. Substituting it in (4.1) one obtains

i DB NESES vi) DRI
mp2 +cp; +k—k L et +k P cilem ™t =0
J=1 ! ’ i=1 Pj +a; ’ i=1 j=1PJ a; ’

In this equation there is a sum of exponential functions. To satisfy this equation one can set

all the coefficients of these functions to zero, namely:

n a;

mp; +cp+ k(1= ) =0 (4.4)
=1 7 1
and
n+2 .
Y2 =0 i=1n (4.5)
j=1 p;, + Qa;
The initial conditions:
n+2 n+2

D¢ =20 > ep; = o (4.6)
=1 i=1

provide two more equations.

Equation (4.4) can be called as the characteristic equation with respect to n + 2 complex
(in general) roots p;. They can be determined, for example, by using Newton's method, or
by reduction to an eigenvalue problem (see the Remark below).

Equations (4.5), (4.6) yield a linear system of n+ 2 equations with »+2 unknown complex

constants ¢;. In matrix form one obtains:

L5 5 S ves e W 0
piton  p2ton Pny2to
1
—8n  _9n = _9n s = 0 (47)
p1toan p2ton Pni2ton
1 1 1 Cnt2 Zo
p1 P2 - DPnt2 Zo

Note that a; # 0 for ¢ = 1,n, otherwise it does not make sense to introduce a term in the

constitutive law which is a priori 0. It is interesting to note that the requirement that roots

p; are simple (multiplicity of 1) is necessary here to provide the nonsingularity of the matrix in
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(4.7). It may be noted that if there is a repeated root then the corresponding columnsin (4.7)
will be identical and the determinant of the matrix vanishes. This simple roots requirement is
not a restriction imposed on a system, it is just an indicator which can be used to determine
if a given viscoelastic system (4.1) assumes a solution in the form (4.3), or not. If it assumes,
then according to the theorem of uniqueness [53] this solution is unique. The satisfaction of
this requirement is expected for most viscoelastic systems, although if this requirement is not
satisfied, then the analytical homogeneous solution may differ from (4.3), and this requires
an additional investigation.

Remark. The reduction of the characteristic equation (4.4) to an eigenvalue problem is
as follows. Equation (4.4) can be rewritten as

pn+2bn+2 +pn+1bn+1 + +Pb1 + bo _

0
H?:l (p + a‘i)

or
pn+2bn+2 + pn+1bn+1 + ...+ pb]_ + bo =0 (4.8)

where coefficient b, = m, and the other coefficients can be easily evaluated (expressions

for them are omitted here).

n+41

Introducing the state-space vector Q = [go pgo p*qo .- P" T qo]”, the following eigenprob-

lem will correspond to the characteristic equation (4.8):

([ by 8 b5 oo ba | ¢ :
b 0 0 .. 0 -
1 00 .. 0 0
0 -1 0 .. 0
001 0 .. 0 0
P +]10 0 -1 ... 0 Q=
0 0 1 ... 0
0
0 0 0 -1 -
00 .. 1 0 -

or in abbreviated form
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The eigenvalues of (4.9) will be the characteristic roots of (4.4).
Example. For the purpose of illustration, consider the equation
t]
F+z— / ~ et g(7)dr = 0
02

with initial conditions: z(0) = 1 4 0, #(0) = 0 + 70. The complex solutions obtained by
application of the Laplace transform (4.2) and by using the substitution method (4.9), (4.7),

(4.3) are identical:

z(t) = (0.6184 — i0.03739)e”** 4 (0.6184 + 50.03739)e** — 0.2368e"*
where the roots of the characteristic equation are

p1 = —0.1761 +:0.86071 p, = —0.1761 — ¢0.86071 ps; = —0.64779

whence the free vibration response comprises a combination of a decaying oscillatory mode

and one overdamped mode.

4.2 Multi-degree-of-freedom system. Poisson’s ratio is constant.

Application of the finite element method to an elastic system yields the mass matrix M and

the stiffness matrix K. Represent the stiffness matrix as
K = EK, (4.10)

It is assumed here that Poisson’s ratio operator is elastic (i.e. constant) 7 = v = const. The
approach when Poisson’s ratio operator is not constant will be presented in section 4.5.

Young's modulus operator E has form:

E() = E[1() - fotI‘(t —7)()dr] (4.11)
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where the relaxation kernel is assumed as a sum of exponentials:
rt-—r)= zn:a,-e_“‘(t_") (4.12)
i=1
The equation of free motion can be written as
MX +CX + EKoX =0 (4.13)

The term CX takes into account the presence of viscous damping arbitrary distributed

over the system.

4.2.1 Laplace transform method

Applying the Laplace transform to (4.13) and taking into account (4.11), (4.10), (4.12) one

obtains:

n

M +pC + K(1 -
pP’M+p ( §p+ai

a; = .

)| X = M(X(0) + pX(0)) + CX(0)

In abbreviated form, denoting the matrix coefficient of X as S:

S(p)X = M(X(0) + pX(0)) + CX(0) (4.14)
where the matrix S(p) can be written as

S(p) = ﬂl——jl)(?)

1P+ a;

The elements of matrix D(p) are polynomials of degree n + 2. Inverting the matrix 5(p)
S7H(p) = My (p + a:) D7 (p)

and introducing the adjoint matrix A(p) = D~*(p)det(D(p)), equation (4.14) can be written

as follows

Ap)
3et(D(p))

X =T, (p + o) [M(X(0) + pX(0)) + CX(0)]
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The roots of the characteristic equation det(D(p)) = 0 can be determined numerically in an
analogous way to that shown in (4.9). The extension of (4.9) to the MDOF case will be
shown in the following section.

Denoting the characteristic roots as py, the determinant of D(p) will be

det(D(p)) = gTLiLy (p — pi)
where N = m(n + 2), m is the number of degrees of freedom, n = number of terms in
(4.12), and g = a constant complex coefficient. Now one can express the solution of the free
vibration problem in a form analogous to (4.2):

Ap:)
n_, (p: + o
Z 7=t 3) H£v=1,k¢i(1’i — Px)

[M(X(0) + p:; X(0)) + CX(0)]e”t  (4.15)

This is the extension of the theorem from [74] (the scalar case was considered there) to the
matrix case. It should be noted that a formula similar to (4.15), but for the case of an elastic
undamped system is mentioned in [9].

Remark. Note that in the use of formula (4.15), it is not an easy task to derive the
analytical expressions for D~(p) and consequently for A(p). Also the computation of A(p;)

by A(p;) = D' (p;)det(D(p;)) requires the calculation of the limit

A(p:) = lim [D7*(p)det(D(p))|

pP—pi

D~1(p)|| = oo and lim,,,, det(D(p)) = 0.

where lim,,_,,,
The substitution method described below, yields a better way to obtain the closed form
solution.

4.2.2 The substitution method

The solution of (4.13) is sought in the form [56], [55]:

m(n+2)
X(@)= > cjXjert (4.16)

i=1
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where X; = a complex vector (m X 1), ¢;, p; are complex, m=number of degrees of freedom
(size of matrices, M, C, K).
Substituting (4.16) into (4.13) and taking into account (4.11), (4.10), (4.12) one obtains:

m(n+2) n @ n m(n+2) .
> [p?M +pC+K(1-) — )],cj)(,-e”"lt +KY1 Y & c; X;le”** =0
j=1 i=1 Ps i i=1 ;=1 Pi + oy
Therefore the following equations need to be satisfied:
>~ a :
[pj:M +piC+K(1-)_ )] X;=0 j=1,m(n+2) (4.17)
=1 pJ + a; .
and (with a nonsingular matrix K):
m(n+2) @
Z : Cij =0 1= l,n (418)
o1 Pit oo
If matrix K is singular then instead of (4.18) one should consider
m(n+2) )
Z LCijzo i:1,n
j=1 Pit o

Equation (4.17) represents a so-called characteristic equation, which can be reduced to
the eigenvalue problem (see the Remark below) and the characteristic roots (eigenvalues) p;
along with vectors X; can be determined.

The initial conditions of the problem are:

m(n+2) m(n+2) '
> 6X;i=Xo 3 epiX; = Xo (4.19)

Note that initial conditions (4.19) can be replaced by other conditions in the following ways:

m(n+2) m(n+2)
Z) Z CjXJ' = Xo E CijepjT = X(T) (420)
j=1 j=1
or
m(n+2) m(n+2) .
i) Y. 6Xi=Xo > c;pi X;ePT = X(T)

i=1 i=1
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or
m(n+2) . m(n+2)
ZZZ) Z ijij = Xo Z CijepjT = X(T)
J=1 7=1
or
m(n+2) . m(n+2) .
w) > cpiX;=Xo > cpiX;ert = X(T)
Jj=1 J=1
or
m(n+2) m(n+2) .
v) Y. eX;et = X(T) >, cipiXieht = X(T)
Jj=1 i=1

where T represents some given instant of time (7' > 0). Thus instead of the initial value
problem, the terminal value problem or its variations can be posed, and this will only require
a change in the two last matrix rows in the system (4.21) accordingly to conditions ) — v).

Proceeding with conditions (4.19), relations (4.18), (4.19) constitute a system of linear
m(n + 2) equations with respect to m(n + 2) unknowns c;. In matrix form this system can

be written as

P1110¢1 Xl pz‘-’:al X2 mxm(n+2) 0
]
e Xl mren Xz e Xm(nt2) wo =10 (4.21)
Xy X Xm(n+2) Cm(n42) Xo
ple p2X2 pm(n+2)Xm(n+2) ] i Xo |

Remark. Introducing a common denominator for all terms, equation (4.17) can be

rewritten as follows:

[ (p; + ai)(PﬁM +p;C + K) - KZ aiHZ=1,k¢i(Pj + ak)]Xj =0
=1

Collecting the matrix coefficients of p;-""z,p;-”rl , ...,p? and denoting themas B, 2, Bpt1,..., Bo
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respectively, equation (4.17) is equivalent to:

B, By B; .. Bui Bp 0 0 .. 0 X; 0

I 0 0 .. 0 0 ~I 0 .. 0 ||| mX; 0

plo I o .. o |+|0 0 —-I .. 0 pX; |=]0

\ [0 o .. T o 0 0 0 .. -I prHX; |0
(4.22)

or in abbreviated form

(pPA+D)Q =0 (4.23)
where jth eigenvector will be
X;
piX;
Qi=| nx j = 1,m{n+2)
| PP

The matrix coefficient B, = M, and other coefficients can be easily evaluated.

The eigenvalues of (4.23) will be the characteristic roots of (4.17). The basic part X; of
eigenvector @; is used in (4.21), (4.16).

Here it is assumed that coefficients a; # 0 for 1 = 1,n (otherwise the determinant of the
matrix in (4.21) would be 0). As far as the eigenvalues p; are concerned, they are allowed to
be multiple (for the MDOF system case only). However they must have linearly independent
corresponding eigenvectors, to provide nonsingularity of matrix in (4.21). It is easy to note
that if there is a root, for example of multiplicity 2, which has only one eigenvector (the

second one is linearly dependent), then the two corresponding columns in (4.21) will be

linearly dependent and the determinant of the matrix vanishes. In other words, in order to
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have a solution of (4.13) in the form (4.16), it is required that the eigenproblem (4.22) yields
m(n + 2) linearly independent eigenvectors.
It should be noted that the size of the eigenvalue problem (4.22) can be quite large, so it

is necessary to have an effective eigensolver for matrices of the type in (4.22).

4.3 Periodic loading case. Application of the substitution method

X

The general case of periodic loading with a period T' = 2Z is treated by using a complex

Fourier series. The forcing function is represented as
L ’ .
F(t) = Z Fpet+ wr = kw
k=0

where Fj, are vectors of size m.

The equation of motion is written as follows:

L
MX +CX + EKoX = Y Fret (4.24)
k=0
with initial conditions
X(0) = Xo X(0) = X,

The general solution is now sought as a sum of homogeneous and particular solutions, namely:

m(n+2) L )
X(t)= Y, Xt 4+ Zpet (4.25)
7j=1 k=0

Substituting (4.25) in (4.24) and taking into account (4.11), (4.10), (4.12) one obtains:

m(n+2) n
2 a; ¢
pPM +p;C + K(1 — ]X~epl+
> [+ 0+ KO- 3 2
L . n a; et
—wiM 4w, C + K(1 — 2 7 ek
+kz=%[ WiM +iw,C + K( ;iwk+ai)] pet Ry
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n m(n+2) L
K X; ———Z e Fye™t

From this the characteristic equation (4.17), and subsequently the eigenproblem (4.22) follows
yielding values for p; and X;.

The quantities Z;, are determined as follows:
Zy = —wkM—+—zwkC'+K Z—) F k=0,L

The linear system of equations (4.21) with respect to unknowns c; in this case will have

the modified right-hand side:

J > N —a R ‘ _<xL a
p1ton X1 pata; 2t Pm(n+2) To1 Xm(”+2) Zk:o iwpton Zk
C1
An 9 an — _ L an
pitan "l patan X2 Pm(n+2)+0n KXom(n+2) 2 k=0 jwptan Zk
L
Xy X - Xm(n+2) Cm(n+2) Xo — Ek:o Zy,
. L .
p1X1 P2X2 pm(n+2)Xm(n+2) i | Xo — Zk:o wi Zy, ]

4.4 Numerical results

A program was written which calculates analytical solutions according to the substitution
method and was used for the examples below.

Numerical results are presented for a viscoelastic beam of square cross section with fixed
ends (Fig. 4.1). The parameters of the beam’s cross section were 0.01 x 0.01 m, the length
= 0.12 m, instantaneous Young's modulus E was 0.15e+08 Pa, v = 0.3, the density of the
material was 0.141e+04 kg/m®. The beam was meshed by 6 general finite beam elements.

Each node of a beam element had 6 degrees of freedom (3 linear and 3 rotational). Thus the

size of the problem (number of degrees of freedom) was m = 30.




Chapter 4. Closed form solutions for discrete viscoelastic systems 69

The relaxation kernel in (4.11) was taken as
T(t—7) = aje”(t-7) (4.26)

where a; = 150, a; = 200 (n = 1). Thus the size of eigenvalue problem (4.22) and of linear
system (4.21) was m(n + 2) = 90.

The matrix coefficients in (4.22) for this case are computed as follows:
B():K(al—al) ’ B1=Ca1-|—K B22M01+C B3:M

One can see that if a, is negligible (a; ~ 0), then the characteristic matrix equation (4.17)
is reduced to the usual complex eigenvalue problem of viscously damped system.
To investigate the influence of the hereditary part (term EK,X) in (4.13), it was assumed

that the damping matrix C = 0.

1 2 3 4
% —o——o0——o0
Y

ZLX

Figure 4.1: Viscoelastic beam with fixed ends

o
9 o
\\Qv\ﬂ

A standard subroutine "DREIGN” [75] was used for the eigenproblem (4.22) and sub-
routine "CDSOLN? for (4.21).
Consider the eigenvalue problem (4.22) in more detail. For the system in Fig. 4.1 the

chart of computed eigenvalues is presented in Fig. 4.2 (imaginary parts) and in Fig. 4.3 (real

parts). Numeration of the eigenvalues was done on the basis of their absolute values.
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Figure 4.2: Imaginary part of eigenvalues

It is found that for the model (4.26) defined by only one exponential term there are 30
repeated (note this number is equal to the number of degrees of freedom) real eigenvalues
which correspond to "overdamped” eigenvectors (also real). The other 30 pairs of com-
plex conjugate eigenvalues which have nonzero imaginary part correspond to "underdamped”
eigenvectors (complex conjugate). Although the terms "overdamped”, "underdamped” are
usually used in the context of viscously damped system, their use in the case of a viscoelastic
(hereditary) system may be adopted as well.

For the purpose of illustration, some of the eigenvectors are presented below in Figs. 4.4-
4.7. The 1st of the underdamped eigenvectors (corresponding to eigenvalue No. 31) has a
shape of the 1st vibration mode in plane X —Y (Fig. 4.4). For eigenvalue No. 29 (note that
numeration of repeated real eigenvalues is arbitrary to some extent) the eigenvector has the
same shape (Fig. 4.5) as the eigenvector corresponding to eigenvalue No. 31.

A second vibration mode in plane X — Y is represented by the underdamped eigenvector

No. 35 (Fig. 4.6). The analog to it from the spectrum of the overdamped eigenvectors

(corresponding to eigenvalue No. 28) is in Fig. 4.7.
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Figure 4.4: The 31st eigenvector (1st underdamped)
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Figure 4.6: The 2nd underdamped eigenvector
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Figure 4.7: Overdamped eigenvector (analog to the 2nd underdamped)

The numerical results in terms of displacements are presented in Figs. 4.8 and 4.9. The
vertical displacements and velocities were imparted to the middle node 4 at t = 0. The
following variations of initial conditions were considered for node 4: case i) y(0) = 0.005 m,
9(0) = 0; case i) y(0) = 0, y(0) = 10 m/s. All the other degrees of freedom had zero initial
conditions.

The vertical displacements of the node 4 (Fig. 4.1) were chosen to illustrate the response.
The results of free vibration response are presented in Fig. 4.8 for the case i), Fig. 4.9 (case
ii).

The contribution of vectors ch; to the solution, namely, their norms ||c; X|| are presented
in Fig. 4.10, 4.11 for the initial conditions i) and ii) respectively. Note that the complex
conjugate eigenvectors contribute equally, for example, pairs of eigenvectors No. 31 and 32,
43 and 44, 59 and 60, 71 and 72, 85 and 86 in Fig. 4.10. One can see that the contribution of
overdamped eigenvectors No. 24, and 29 is quite noticeable for the case of initial conditions

ii) (Fig. 4.11). It is clear that relative contribution of the underdamped eigenvectors (with

respect to each other) will not change in time, because the real parts of their eigenvalues are
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Figure 4.9: Free vibration response, case ii)
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Figure 4.10: Contribution of eigenvectors, case i)

the same (Fig. 4.3).

One can see that the contribution of the overdamped eigenvectors No. 24 and 29 is
quite noticeable for the case of initial conditions ii) (Fig. 4.11). Note that their relative
contribution with respect to the underdamped terms will increase in time, because real parts
of their eigenvectors are greater (less negative) (Fig. 4.3).

As it should be (one can see it from system (4.21)) this contribution depends on initial
conditions.

A boundary value problem (4.20) was then considered. The conditions shown in Fig. 4.12
were assumed, where for a chosen instant of time T' = 0.02 s , all the displacements were
prescribed to be zero. The solution (the vertical displacements of nodes 2,3,4) for this case
is shown in Fig. 4.13. Then an instant T = 0.016 s was chosen, and the response is shown
in Fig. 4.14. One can observe the difference in the initial velocities which are not prescribed,
but computed.

For the forced vibration a vertical periodic force F(t) (Fig. 4.15) is applied at the node

4 (Fig. 4.1). This loading has a period T = 0.1 s and the Fourier series (30 harmonics)
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Figure 4.11: Contribution of eigenvectors, case ii)
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Figure 4.13: Solution for conditions (4.20), T=0.02 s
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Figure 4.14: Solution for conditions (4.20), T=0.016 s
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was used to represent the forcing function F(t). In Fig. 4.15 this function is shown for the
duration of one period ¢ C [0,T). The solution (4.25) with zero initial conditions (for all
degrees of freedom) is presented in Fig. 4.16 for ¢ C [0, T'], where the vertical displacements

of the nodes 2,3,4 (Fig. 4.1) were chosen to illustrate the response.

4.5 The substitution method. Poisson’s ratio as a viscoelastic operator

The finite element method application yields a mass matrix of the system M and a stiffness
matrix K. The derivation of the global system stiffness matrix starts with an element stiffness

matrix, where the constitutive law is involved. For an elastic material:

[o] = [E][¢]

where
[0'] = [011 O22 033 012 013 0’23]T, [6] = [611 €22 €33 €12 €13 623]T
A+ 2G A A 0 0 0
A A+ 2G A 0o 0 O
A A A+2G 0 0 0
[E] =
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G
where
vE E
A = 2 =
(14 v)(1—2v) ¢ 1+v

and E=Young's modulus, v=Poisson’s ratio. The hereditary analog of this matrix is obtained

by replacement of E, v by corresponding operators, i.e., E — E, v = ¥, or by another

replacement A — X G—G.
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Viscoelastic Lame's operators A and G are assumed in the following form

() = Awlt) - [ Y- asean(—ault — 7)lu(r)dr) (4.27)

=1

Gy(t) = Glu(t) ~ [ bueapl—u(t — 7)lu(r)dr) (4.28)

Now the equation of free vibrations can be written in the following form
MX +CX + (AK; +2GK;)X =0 (4.29)

The application of the substitution method in this case is analogous to one described in
section 4.2.2.

The solution of (4.29) is sought in the form:
m(2n+2)
X(t) = Z Cijepjt (430)
i=1
where X; = a complex vector (m x 1), ¢;, p; are complex, m=number of degrees of freedom,

n = number of exponential terms in (4.27) and (4.28).

Denoting N = m(2n + 2) and substituting (4.30) into (4.29), using (4.27),(4.28) one

obtains:
g: [ M + p;C + \K (1 z": % )+ 2GK. (1 zn: b )] X.ePit+
D; D - - c; X;e
j=1 ’ ? ' =1 Pi ta ? =1 P TV 7
n N a: n N b -
+ Z[AK]. Z i chj]e—a,'t + Z[zGKz Z 2 chj]e—‘y,'t — 0
i=1 j=1Pi T o1 =i Pi T

Therefore the following equations need to be satisfied:

2 oa “Loob )
p2M + p;C + MK (1 — + 2GK,(1 — ]X-:o =1,N
R R R S R R oL BRI
_ (4.31)

and
N a
Y ——¢;X;=0 i=1n (4.32)

pit o

=1
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and
N

2

— pJ+'y¢

=0 i=1n | (4.33)

Equation (4.31) represents a so-called characteristic equation, which can be reduced to
an eigenvalue problem and the characteristic roots (eigenvalues) p; along with vectors X; can
be determined (see section 4.2.2).

Relations (4.32), (4.33) and initial conditions (4.19) constitute a system of linear N =

m(2n + 2) equations with respect to N unknowns c; analogous to (4.21):

al a1 J
Pt 'l pptar 2 pyten N

b b by [ ]

1 1 1 .
ntn ol pm 2 pnim N 0

5]

an an an = 4.34
San-X) Ea-Xp . S X || . 0 (4.34)
bn b by
pitm 1l prtvm 2 pNtvm XN eN Xo

X, X2 XN Xo

p1X1 szz pNXN

Thus the homogeneous solution in the form (4.30) can be found for this case when
Poisson's ratio is considered as operator. Note that the number of exponential terms in the
solution (4.30) is taken for this case as N = m(2n + 2) in comparison with m(n 4 2) in
(4.16) when only Young's modulus was considered as a viscoelastic operator.

Remark. Note that the extention of the substitution method to the case of inhomoge-
neous material systems is accomplished in an analogous way, i.e., by representing the system
stiffness matrix;operator as

L .
K =) (AKy; + 2G;Ky;)
j=1

where L is the number of homogeneous subsystems. Then the solution is sought in the



Chapter 4. Closed form solutions for discrete viscoelastic systems 82

following form
m(2Lxn+2)

X(t) = Z Cijepjt

i=1
where n = number of exponentials in relaxation kernels of operators };, G;, m = number of

degrees of freedom (size of matrices M, C, K.;, Kaj, j = 1,L).

4.6 Application of modal analysis technique

4.6.1 Conditions of diagonalization of two matrices. Analysis of eigenvalues

Consider an eigenvalue problem of the following form:

where z=eigenvector, A=eigenvalue. A, B are assumed to be real symmetric matrices (a
special case of Hermitian matrices) and one of them, say, A is positive definite.
Then according to a theorem of linear algebra, see for example [76] (theorem 12.7), there

exists a nonsingular matrix (in our case it can be real) P such that
PTAP =1 (4.36)

and

"PTBP =A (4.37)

where A is a real diagonal matrix.

Introducing a change of variable in (4.35):
z = Pq

and premultipling (4.35) by PT one obtains

(M +A)g=0 (4.38)
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where relations (4.36), (4.37) were used. From this it follows that the eigenvalues of the
problem (4.35) are the elements of —A and therefore all real. Also all eigenvectors x are real.

It is obvious that the eigenvectors Q = [g;...gn] of problem (4.38) are linearly independent,
hence det[Q] # 0. Actually one can put @ = I, which leads to the conclusion that the matrix

of eigenvectors X of problem (4.35) is
- X =[z1...p) =PQ =P

and these eigepvectors are linearly independent, because matrix P is nonsingular as was
mentioned above.

Consider now the case when neither of the matrices A, B is positive definite. Sometimes
in practical applications, e.g. viscously damped dynamic systems, the matrices A, B can be
(so-called state-space form):

C M K 0
B
M 0 0 —-M
where M =mass matrix (positive definite), K =stiffness matrix (positive semidefinite), C'=damping
matrix (symmetric). One can see that matrices A and B are not positive definite, because
according to a necessary condition [76] of positive definiteness all the diagonal elements must
be positive. [t is expedient to establish whether A is semidefinite, indefinite (without zero

eigenvalues), or negative definite. Represent A in the following form:

c M I C 0 M
M 0 0 M I 0

From this representation one obtains:
det[A] = (—1)™det[M]det{M] # 0

because M is positive definite. The number m in the formula above is the size of matrices

M and C. Therefore A cannot be semidefinite, because in this case at least one of its
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eigenvalues would be 0, and the determinant of A (as the product of all eigenvalues) would
be 0 as well. Thus one comes to the conclusion that matrix A is either indefinite (without
zero eigenvalues), or negative definite.

Consider the following eigenproblem:
Ap=np or (A—nDp=0

where p = an eigenvector, and 7 is an eigenvalue. It is known that the eigenvalues of a general
real symmetric matrix are real and eigenvectors (can be taken real) are linearly independent

and orthonormal [76]. Upon the normalization of eigenvectors p! p; = 1, the following holds:
g pp g

pf Ap; = 1

As it was mentioned above at Ieﬁst one of the eigenvalues 7n; is negative (matrix A is either
indefinite without zero eigenvalues, or negative definite). One can renormalize eigenvectors
in P to get PTAP = I, namely, by introducing the new eigenvectors as follows p; —
ﬁp,-. Thus it is clear that some of these new eigenvectors P=[p;...p,| corresponding to the
negative eigenvalues 7; will be complex. Now introducing a change of variable z = Pq and

premultiplying (4.35) by PT one obtains:
(Al + PTBP)q =0 (4.39)

where PTBP will be a complex symmetric matrix (that is not Hermitian). Therefore to say
that the eigenvalues and eigenvectors of problem (4.39) (and respectively of problem (4.35))
for the case when neither of the matrices A, B is positive definite are real is not possible.

In general they can be complex. The conditions of diagonalization of matrices A, B for this

case were discussed, for example, in [77].
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4.6.2 Conditions of diagonalization of three matrices

Consider at first the system of equations of free vibration of a discrete viscously damped
system

MX +CX+KX =0 (4.40)

where mass matrix M is symmetric positive definite, K =stiffness matrix (symmetric positive
semidefinite), C'=damping matrix (symmetric). In the section above it was shown that the
diagonalization of two real symmetric matrices (one of them is positive definite) by means of
a nonsingular real matrix transformation is always possible.

It is known that the mode shape (eigenvectors) matrix of the undamped system can
make this transformation with respect to the M and K matrices. In this section a necessary
and sufficient condition of diagonalization of C by this matrix of undamped mode shapes is
considered. For a general M, K, C system such condition has been formulated, for example,

in [78], [13] as M~!C commutes with M~ K, or in equivalent form
CM'K=KM'C

It should be noted that a necessary and sufficient condition for diagonalization of matrix

C in terms of undamped system modes &

3TC® = [ay],
or |
C = (®7) 'a;)®" (4.41)
( [ai] is a diagonal matrix) implies that NV real coefficients a; is enough to describe all the
variety of possible damping matrices for the given system defined by M, K.

Starting consideration with systerhs which have distinct (no repeated) undamped natural

frequencies the necessary and sufficient condition of proportionality imposed on matrix C' will

be formulated in terms of matrices M, K in the proposition below.
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Proposition.
For the given matrices M, K of order N in (4.40) the matrix C will be diagonalized simulta-
neously with M, K if, an;i only if, it is represented as
. . N
C=M> g(M 1K) (4.42)
=1
where g;,1 = 1,2,..., N are arbitrary coefficients.
Proof. |
Necessity.

There is such a matrix ® consisting of undamped mode shapes that

TM® =1
®TK® = b))
3TC® = [aj]

where [b;] = b, [a;] = a are diagonal matrices and the matrix ® is mass normalized (first
equation), so the elements of b will be the natural frequencies squared. Rewrite the above

expressions as

C = (") tad™? | (4.43)
K = (®7) 5! A (4.44)
and
M = (38T)! (4.45)
M =337 (4.46)

It is obvious that there is one to one mapping, namely, a —+« C, b =« K. Express matrix

a as

a=gI+gb+..+gnyb"? (4.47)
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Equation (4.47) can be rewritten as a system of linear equations for coefficients gi,k =

1,2,..,N

(16 o8 L | “
N = “
1 by b?v b%_l

' “lew ] [ow]

The determinant of this system (the Vandermonde determinant) is non-zero because there

are no repeated values b; (natural frequencies squared), so the solution is guaranteed and this

representation (4.47) holds. Rewrite (4.47) using (4.43),(4.44)

N
3TCe® =) g(®TK®)*!

k=1

Therefore any matrix C can be represented as -
C = (8T) Ygi] + g.3TK® + g:3TK®PTK® + ...+

+gv®TK®..0TK®)®!

and using (4.46) one can obtain
N
C=MY g(MK)"!
=1
as required.
Suf ficiency.
The damping matrix is given as in (4.42). Using (4.45),(4.46),(4.44) one can obtain
N
C = (Q@T)—l Zgl(QQT(QT)—IbQ—I)I—I —
=1

= (") (g1 + g2b + ... + gnb" )@

Therefore
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N
3TCd = Zglbl_l

=1
represents a diagonal matrix as a sum of diagonal matrices, which was required to prove.

It may seen from (4.42) that if the first two terms are taken then
C=aM+ gK
which is Rayleigh damping. If more terms taken, e.g. three, then
C=gM+g.K+g KM 'K

and so on.

Remark. Note that for systems with repeated undamped natural frequencies expression
(4.42) will represent a sufficient condition, but not the necessary one. This means that there
might be matrices C, which are not represented as in (4.42), but are diagonalizable.

In the case of repeated eigenvalues a formula for general classical damping matrix will be

as follows

0 0 0
0 a; O 0

N

C=MYgM'K)7+&T| 0 .. 0 agyy 0 .. .. 0|3 (448)

=1
0 ... ... 0 a1 0 ... 0
0o 0 .. .. e e 0

Here it is assumed that jth eigenvector is the jth column of the matrix ®, and the eigenvalues

numerated from i to i + s are repeated (multiplicity = s +1). In (4.48) s quantities a;, a;11,
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..,Qiy,—1 are arbitrary real coefficients which are a"ocated along the principal diagonal in
columns i,..., © + s — 1 respectively. )

Formula (4.48) is the necessary and sufficient condition of diagonalization for the case
when repeated undamped natural frequencies are present. In this representation the matrix
of mode shapes (eigenvectors) ® is involved, i.e., they need to be calculated. Therefore in

this case there is actually no advantage of formula (4.48) in comparison with formula (4.41).

4.6.3 Diagonalization of discrete viscoelastic systems

Now one can consider the conditions of transformation of the equation of motion of a discrete
viscoelastic system to a uncoupled form. Assume that the system consists of one viscoelastic
homogeneous material. If Poisson’s ratio of the material is assumed constant, then the

stiffness matrix-operator K can be expressed in the following form
K = EK,

where Young's modulus operator E is taken out as a common factor for all components of
matrix-operator K, and K, is a symmetric matrix. Therefore the equation of free motion can

be written in the folllowing form:
MX + CX + EKo,X =0 (4.49)

with the initial conditions

Matrix C (viscous damping) is assumed here to be diagonalizable together with matrices

M and K. Therefore introducing the change of variable

X = %Q




Chapter 4. Closed form solutions for discrete viscoelastic systems 90

and premultiplying (4.49) by ®7, the decoupled system of equations is obtained:
m;g; + g + Ek,-q,- =0 t=1,N (4.50)

where matrix ® is nonsingular, and (as it was shown in section 4.6.1) is equal to the matrix

of undamped modes of the system
MX + KoX =0

These N scalar integro-differential equations (4.50) can now be solved by the Laplace

transform method, or by the substitution method. The initial conditions in terms of variable

Q = [q1(0)...g.(0))F are following
Q(0) =37'X(0)  Q(0)= &' X(0)

which can be used directly in the case of the Laplace transform method application (see (4.2)
in section 4.1.1). In the case of the substitution method application the solution of each

equation (4.50) is sought as
n+2

G(t) =) cje™
j=1
where c;, p; are complex. The procedure of determination of c; and p; is described in section
4.1.2.

As a conclusion to this section, one can state, that the equations of motion for a discrete
viscoelastic system (of a homégeneous material and with the proportional viscous damping)
are always diagonalizable (i.e., can be decoupled) if Poisson’s ratio is assumed constant and
real.

If Poisson's ratio is considered as a viscoelastic operator, or the system consists of several

different materials (even with constant Poisson’s ratios), then decoupling of equations, in

general, is not possible. An additional investigation is required for this case.
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4.7 Investigation of the conditions of overdambing of a SDOF system

Assume that a MDOF viscoelastic system is diagonalizable, for example, consider a viscoelastic
system of a homogeneous material with constant Posson’s ratio and with the proportional
viscous damping term (if present). Then it is expedient to consider a SDOF case [79] which
will correspond to one of the modes associated with the system.

The equation of motion is as follows:

t

m3 + ci + k(z — / I(t — 7)z(r)dr) = 0 (4.51)

0

where the relaxation kernel will be assumed as for the standard linear solid model:
I(t — 1) = ae~t"7)

In equation (4.51) the quantity k is the instantaneous stiffness, e.g., for an axial element

it is calculated as k = -EL—A, where E=instantaneous Young's modulus, A=area of the cross

section and L=length of the element.

The eigenvalue problem which arises for this case is as follows

by by b3 bo O 0 0
pl1 0 of[+]0 -1 o Q=10
0 1 0 0 0 -1 0

where

bi=ca+k bzzmd+c b3=m by =k(a—a)

The corresponding characteristic equation is

PPteap’+epte=0 (4.52)

where

a=a+p c; = Ba+ A cs = M(a—a) (4.53)
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where A2 = k/m, 3 = c/m. Introduce some auxiliary quantities:
Q = (3¢c; — ¢2)/9 R = (9¢cicp — 2Tcs — 2¢3) /54 D=@Q*+R (4.54)

The roots p;, p2, ps of (4.52) are determined according to known Cardan’s formulas [80].

If D < 0 then all three roots are real and equal

pL = 2\/jc03(0/3) —¢/3
p2 =2 —Qcos(gﬂ' +6/3) —c1/3 (4.55)

4 .
ps = 24y/— COS(§7T+ 6/3) — c1/3

where
6 = arcos(R/+/—Q3)

For the case D > 0 there are two complex conjugate roots and one real:
1 3.

p2=—%@nym—w¢3-%?uv—T) (4.56)

p1:V+T—-Cl/3

where

V=(R+VD)} T=(R-VD)

Note that the imaginary part of the complex roots is reduced to zero when D = 0. Therefore
the cases D < 0, D = 0 can be combined to represent the overdamped case D < 0 (all three
roots are real).

Consider the conditions which are implied for parameters k, m, ¢, a, a of equation (4.51)

to satisfy the condition D < 0. Substituting (4.53) in (4.54) one obtains

(a+B) B

1 a
g =Y

Q=»pE2+1)- - 3|

A? ]9
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and
3 Ba, a+ _on—a a+ ., ~ é_(_z_
R=¥Cr (O EE) r Tt (P = R(5,5,5)
Note that the quantities §, §,§ are nondimensional. Thus the expression for D will be
D=Q*+ B =x(Q°+ B = (%, 5, ) (457)

The sign of D is the same as of D, which depends on nondimensional parameters 5 éf—

Denote them as

> &

71_A 72_A 73_

Also introduce notations:

s=m7+1 g="+7s T=71—"2

The expression for D will be (intermediate derivations are omitted):

F_la 1 VR P P
=—8 — — — —sqr r
7° " 108° ¢ Tty Tt

The boundary between the overdamped case (all roots are real) and underdamped case is
expressed by the equation:
D(s,q,7) =0 (4.58)

Consider a special case when the viscous damping is absent, i.e., § =43 =0, thens =1,

g =7 = § and equation (4.58) becomes

. 4, 2. 1, 4
D=riar(ze-390-5 27 ="

From which one can determine

1. 4 5.2 4 . 2 1, 4
Sl 3 - Z20)2 —4(——q% + —
m2 = 5l-gnd +3q+\/(27q 307 4=z + 57)]

Recall that r = v, — 72 = ¢ — %, then

a

(X)I,Z (27q + \/—\/—q -t +¢ -1 (4.59).
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Thus the quantity ¢ gets real values when S = .¢® — 1¢* + ¢* — 1> 0. The case § =0
corresponds to the minimum value of ¢ = v; = §. The value g, is easily determined from

the solution of cubic algebraic equation

1 1
S(z)=ﬁz3——§z2+z—1=0

which yields z; = z; = 23 = 3 = ¢, and gmin = v/3. This value is minimum one because

S'(z) is

which is semipositive, therefore S(g?) is a monotonica"y increasing function of argument ¢2.

For the value gmin = (5)min = v/3 one can calculate from (4.59) the corresponding value

1 1 8 :
(3 )min = 2qmin(§q,2nin +3)=:-V3

3 9

TR

Thus for any ¢ = § > gmin one can determine from (4.59) two values ()12 which yield
D = 0 in (4.57). In this way the boundary- of the region D < 0 can be determined. Two
lines demonstrate this boundary (D = 0) in Fig. 4.17. The region between them corresponds
to D < 0 (overdamped éase);

It should be noted that the c_ondition

<1 (4.60)

Qe

must be taken into account, which implies that the stress in the material cannot relax to less

than zero. To verify this, it is sufficient to substitute e(t) = e, in the constitutive relation

o(t) = E(e(t) — /: a exp[—af(t - T)]e(T)dr)

and to integrate to { = oo. If £>1 then, e.g., for uniaxial extension, the stress will relax to

a negative value which is not possible. Taking into account the constraint (4.60) results in

the region shown in Fig. 4.18. Thus a viscoelastic system whose parameters §, $ fall within
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Figure 4.17: The boundaries of the region where D < 0 (all roots are real).

the region D < 0 will not be able to sustain any oscillatory motion. Further it may be noted

that such overdamped behaviour is not possible when
a
— < V3
A V3

or in another form, when the relaxation time 1/« satisfies the following

T
27r\/§

where T is the period of the undamped elastic system.

1
- >
a

For the case when the viscous damping term is present (c-# 0 in (4.51)) the region of
overdamping is broadened. For the values 3/ = 0.5, 3/A = 1.0 these regions are presented
in Fig. 4.19. |

For a series of prescribed points in the plane §, $ (Fig. 4.20) the eigenvalues, namely,

their ratios to quantity A = \/g were computed and presented in Table 4.1 for the case when

the viscous damping term is neglected 8 = & = 0.

It follows from formulas (4.55), (4.54) that the fractions %' (= 1?2,3) will depend only
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Figure 4.20: Selected points in the plane of nondimensional parameters

| Point | Coord-s §, § | P/ | p2/A | p3/A t
1 (1 5;1. 0) -1.0 -0.25+i0.6614 -0.25-10.6614
2 (1.5;1.5) 0.0 -0.75+10.6614 -0.75-10.6614
3 (V3.1.2) | -1.275 | -0.2085+i0.6042 | -0.2285-10.6042
t | WA | A | V33
5 (v3,V/3) 0.0 -v/3/2+i0.5 -Vv/3/2-10.5
6 (2.0;1.45) -1.588 | -0.2058+10.5513 | -0.2058-10.5513
7 | @.050/27) | -1/3 -1/3 -4/3
8 (2.0;1.92) -0.0984 -0.6489 -1.253
9 (2.0;2.0) 0.0 -1.0 -1.0

10 (3.0;2.91134) | -0.1835 -0.1835 -2.633
11 (3.0;2.96) -0.0463 -0.3288 -2.625
12 (3.0;3.0) 0.0 -0.382 -2.618

Table 4.1: Nondimensional eigenvalues for the selected points
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ali 2 i o8]

Figure 4.21: Imaginary part of the complex root in terms of $, §

on nondimensional parameters £, £. The same holds for the case when complex roots are
present (4.56). The quantities & will be called nondimensional eigenvalues.

Table 4.1 can be expanded to present more points in the plane $, 5. Thus if it is necessary
to prescribe certain eigenvalues p;, pa, ps to the system (4.51), one can choose from Table
4.1 the quantities 3, $ to yield the most suitable nondimensional eigenvalues and then to
rescale them by assigning the appropriate factor A.

For the underdamped region (case D > 0), the imaginary part of one of the complex

conjugate roots was calculated in terms of viscoelastic parameters $, £ and it is illustrated

in Fig. 4.21, where the lines of constant value are presented. The real part of the complex

conjugate roots is analogously presented in Fig. 4.22. The third root (real root) is presented

in Fig. 4.23.
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Figure 4.23: Real root in terms of §, §




Chapter 5

Dynamics of an engine-mount system

5.1 Derivation of equations of motion

The system which is under consideration consists of the following rigid bodies: 1) body A -
the engine framework (it includes all the non-moving parts of the engine) with mass m4 and
tensor of moments of inertia J 4 taken at the mass centre (point A, Fig. 5.1); 2) body B - the
crankshaft with the mass mp and tensor of moments of inertia Jp taken at the mass centre
(point B); 3) the pistons, each with the mass my;, ¢ = 1, N. Note that connecting rods are
not included, because their mass is assumed to be distributed between the crankshaft and the
pistons. It is a customary assumption [61] to distribute the mass of the connecting rod m.,

into two concentrated masses m;, m, using the following relations
miLy = myL, my + My = Mgy

where L; = distance from the axis of the crank joint to the c.g. of the connecting rod, and
L, = distance from the axis of the piston joint to the c.g. of the connecting rod.

One can introduce the following generalized coordinates for the system: displacements
U14,Uz4,Uuss Of the body A mass centre in a groun,d based system of coordinates e;, e;, e;
(Fig. 5.1) and angular rotations ¢, ¢, ¢3 about axes e;, e, e; respectively. The angular ro-
tations are presumed to be very small, so that they can play the role of generalized coordinates
[81].

The angular speed of the crankshaft in rotation about axis b—b is presumed to be constant

(w) with respect to the ground based system of coordinates e;, e,, es.

100
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Figure 5.1: Schematic view of engine framework and crankshaft

One can begin with a derivation [82] of the kinetic energy of the system. For the body A
it will be:
1 1

Ty = -é-mA'Ufl + EwA T4 wy : (51)

where the second term is the kinetic energy of rotational motion about the mass centre (point
A), and is calculated as a double scalar product of the vector of angular velocity and tensor
of moments of inertia. The vector of angular velocity is expressed in terms of the generalized
coordinates as follows

wp = €Z>191 + 4'5292 + q.53e3

Tensor J4 will be also expressed in terms of projections onto the axes parallel to e, e, €3,
and therefore will be time-dependent. However assuming that the angles ¢,, ¢, ¢s are very
small, it will be assumed that J 4 is constant.

Expression (5.1) can be rewritten as follows

Ty = Smav) + 5l dur bl Ja b, s alT




Chapter 5. Dynamics of an engine-mount system 102

where J, is the matrix of components of tensor J 4. -
The kinetic energy of body B (the crankshaft) will be:

1 1
Ts = EmB’Ug + EwB -Jp-wp (52)

where the second term is the kinetic energy of rotational motion about the mass centre of
body B. The vector of angular velocity is expressed in terms of generalized coordinates as
follows '

wp = we; + <I'3292 + q33e3
The tensor Jg is time-dependent when expressed in terms of ground basis vectors e, e, es.
Consider a set of basis vectors g;, g2, gs rigidly connected with the body B, in which tensor

of moments of inertia J5 has constant components

Jp = Jﬁogigj (5.3)

J

where summation on repeated indices is assumed. Also introduce an auxiliary rotating set of
basis vectors i;, 12,13, which has the angular velocity vector we;. These basis vectors i, 15,13

can be expressed in terms of the ground basis vectors as follows

i1 1 0 0 €
i | =10 cosy siny e,
is 0 —siny cosy e;

where v = wt + ¢, (angle of crankshaft rotation).

Given the angular displacements ¢,, ¢., ¢35 at a given moment of time i, the basis vectors
g1,82, 83 rigidly connected with the body B can be expressed in terms of the ground basis
vectors as follo;Ns |

g 10 0 0 #3 —¢2 e

g | ={| 0 cosy siny |+ | dasiny — ¢scosy —isiny  Picosy | es

gs 0 —siny cosvy P38iny + Pacosy —Picosy —disiny es3




o
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or introducing notation T' for the first matrix term and & for the second, one obtains
g: = (Tik + ‘I’;k)ek = R;kek ’L,k = 1,2,3 (54)

where summation on repeated indices is assumed. Matrix R will be called the transformation
matrix.

Note that components of matrix T in (5.4) are functions of « only, whereas components
®,;. are functions of angular coordinates ¢,, ¢,, ¢3 as well as of y. Thus the basis g1,82,83
is related with the basis e, e;, e through matrix R:

1 $3 —¢2
R = | ¢osiny — ¢pacosy cosy — ¢ysiny  siny + ¢icosy
P38iny + pacosy —siny — P1cosy cosy — Pysiny
The details of the derivation of the matrix R are presented in Appendix C. The contribution of .
components containing ¢; will be neglected, because the angular displacements are assumed
very small (|¢;| << 1,1 =1,2,3). Note that comparing the C-norms [72] of these functions,

one obtains

l$rcosylle = l|grsinylle = |¢1] << [|cosylle = [lsinylle =1 v C[0,2n]

Thus the final form of the transformation matrix R will be further assumed as
1 $s  —¢2
R = ¢ysiny — ¢scosy cosy siny
P38iny + ¢pcosy —siny cosy
Substituting (5.4) into (5.3) one obtains

JB = Jg"Rikekijem = R;ng"ijekem (5.5)

where summation on repeated indices is assumed. Using matrix form, expression (5.5) will

correspond to

Js = RTJB°R (5.6)
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Note that matrix Jp is a functioni of time, and strictly speaking, of angular coordinates
&1, b2, d3, because matrix R is a function of these variables.
Now one can rewrite the expression for the kinetic energy of the body B in matrix form.
Namely,
1

TB = ‘2'va% + %[w’¢2’¢3] JB(t) [w’¢22’¢3]T (57)

Figure 5.2: Determination of velocity vector vg

It is left to express the velocity v in terms of the generalized coordinates. The following

vector relation hold (Fig. 5.2):
rg=ra+rap+rpp (5-8)

where

ry = ujg€; + uzs€s + uzge€s

Vectors rp, rpp are represented in the coordinate system p;, p2, ps (which is rigidly con-

nected with body A, Fig. 5.1) as follows

rsap = $1P1 + $2P2 + $3P3 IpB = pcosyPz + psinyps
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where point D is the projection of mass centre B on the axis of shaft rotation, and quantities
81, 83, 83 are constant and assumed known.

Differentiating (5.8), one obtains
VB =Va+Tap+Tpp ' (5.9)
Differentiation of r,p yields
f4p = wa X Tap = (G285 — Pssz)er + (¢381 — 153)es + (—pas1 + d15z)es

where vector r4p in the multiplication above was represented by the components s, 32, s3 in
the basis e, e;, e3 instead of basis p;, p2, p3 (assumption about smallness of angles ¢;, ¢, ¢3
was used).

Differentiation of rpp yields
DB = W4 X DB — pwSinyPz + pwcosyPs

Neglecting the first term and replacing basis vectors p,,ps by e»,e; (assumption about

smallness of angles ¢;, ¢2, @3 is used again) one obtainsv
Ipp = —pwsinye; + pwcosyes
Thus from (5.9) the velocity of mass centre of body B will be
VB = (ﬁ1A+<2>233—€2>332)e1+(1‘112A+¢.5381—<7.5183—Pw~92'n’)’)ez+(113,4—91.5231 +d.>132+pwcos'y)e3
and the kinetic energy of linear motion of body B will be as follows
Tp = %mB([th + ¢.’233 - (2’352]2 + [ti24 + ¢.5331 —"<1.5133 - pwsiny)?+

+iisa — d231 + dr52 + pwcosy]’)

Consider now the determination of the kinetic energy of the pistons (Fig. 5.3). It will be

presumed that pistons are moving in the direction of p3 (Fig. 5.1), i.e., the engine cylinders
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Figure 5.3: Determination of kinetic energy of the pistons

are parallel to each other. The derivation will be shown for one cylinder and then generalized
for the case of several cylinders.

The velocity vector of point G (mass centre of the piston) can be calculated as
V@ = VA + wa X Tye + V6 Ps3 (5.10)

where vg, is the velocity of linear motion of the piston with respect to the cylinder along the

vertical direction. One gan find that this velocity vg, will satisfy the following relation:
ver = lwsinyytand + lwcosy, ' (5.11)
where v, = v + 10 ,'%0 is the initial phase of the piston, and
siné = Ecos'yp

The radius-vector r 4 can be represented as follows

rag = rap +rpg = (81 + f)P1 + $2P2 + (83 + Isiny, + lacosé)ps (5.12)
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where f is the offset of the cylinder line (point D’) with respect to point D. Introduce the
notation: s; + f = a; which will be used below.

Upon the calculation of wy X rae in (5.10), vector ryg is represented by the same
components as in (5.12), but in the basis e;, e,, e3 instead of basis p;, p2, ps (assumption

about smallness of angles ¢,, ¢, @3 is used) and analogously the term v, ps is replaced by

Var€s.
Substituting relations (5.12), (5.11) in (5.10) and taking into account the mentioned

above replacements, one obtains
vg = (24 + <;1'52(s3 + lsiny, + lacosé) — szq'53)e1+

+(ya — ¢.>1(33 + lsiny, + lycos8d) + a1¢'33)e2—|—
+(24 + lwsinyptand + lwcosy, + szd')l - a1>q'$2)e3
Now consider the case of N cylinders, introduce the following auxiliary notations which

will be used later:

M, = Z Mpi h; = 83 + lsiny,; + l2cosd; d; = lcosypiw — lzsin&&-

N N N
A= me'h,' B = Zmp,-d; P = Z mp,hf (513)
=1 i=1 1

=1

N N N
S = Zmp,-ah- U= Z mp:al; W = Zmpiauh,-

=1 =1 =1

where m,; = mass of ith cylinder. The kinetic energy of all pistons will be:
1 . . . .
T, = 2 Z Mpil(£4 + p2hi — 5293)° + (Y4 — b1hi + anids)’+
=1

+(za + sz<i>1 — a1i¢2 + lwsinyytand; + lweosyy)?] (5.14)

where h; were defined in (5.13).
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The total kinetic energy of the system will be
T = TA + TB + Tp

where Ty, Tg, T, are given by (5.1), (5.2), (5.14) respectively. Introduce a new notation for

the generalized coordinates, namely,
q1 = U4 q2 = U24 g3 = Us4g

9= ¢ % = ¢2 96 = ¢3
Using Lagrange’s equations [81]:

d 8T, OT _

E(EE) b " Q; j=1,6 (5.15)

one obtains the following equation in matrix form:
M(t)i + D(t)q = Q1 (5.16)

where the inertia matrix M(t) is symmetric, time-dependent and has components M;; defined
by:
My =ma+mp+ M, M, =0 M3 =0

M, =0 Ms = mpss + A Mi¢ = —mps; — Mys,
My, =msg+mp+ M, My; =0
M,y = —mpsz — A My =0 My =mps; + S
Ms; =my+mp+ M,
M3y = mps; + Mps, Ms; = —mps; — S Mz =0 (5.17)

My = JA + mp(s + s2) + P + M,s?

A A
M45 = J12 — mMpBS8182 — 582 M46 = J13 — mp8183 — W
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My = Jp +mp(s3+2) + JB+P+U Mg = JA —mpsyss + JE — As,
Mes = JA +mp(s? +82) +JE+ M,s2+ U
where J# = components of the tensor J4, and JZ(t) = components of the tensor Jp(t).
The expressions for J5,J2,JE are as follows
JB(t) = JBocos?y + J5°sin®y — I sin2y
JE(t) = %(J.g" - Jg’)sin?y + JBcos2y
JE(t) = JB°sin?y + J5 cosy + JBsin2y

The quantities M,,, A, P, S,W,U used in (5.17) were defined in (5.13).

The matrix coefficient D(t) associated with the velocity vector will be:

0 0 0 0 B 0
0 0 0 -B 0 0
0 0 0 0 0 0
D(t) = +G()
0 —B 0 2N, myhid; 0 — N myiad;
B 0 0 0 JE 425N myhid;  JEB —s:B
0 0 0 -V myuaud; JB — s,B JEB
(5.18)

where the additional term G(t) arises from ﬂﬂ (7 = 5,6) and will be presented below. The
quantity B used in (5.18) was defined in (5.13).

Below the assumptions which were made in ‘the process of the derivation of term G(t)
are presented. These assumptions allow the obtained matrices M, D to be independent of
generalized coordinates.

Namely, upon the calculation E( 2), (7 = 5,6), the assumption that the angular dis-

placements ¢,, @2, ¢3 are small is used, so the second term (components ®;;) in (5.4) are

neglected in comparison with components Ty, i.e., transformation matrix R is assumed to
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be a function of « only. However upon the calculation %{3, (7 = 5,6) this term (matrix ®)
J

is taken into account, i.e., using (5.7)

0T _1, . .00, . ..o . _
an 2[ gs q6]a [w qs qG] .7_576

where (using (5.6))

= J °R+ R J°°—
0g; 94 dg;

j=5,6

where for matrix R (when it is not under differentiation) is assumed dependence only on .

Therefore the calculation of the term %sﬂ yields:

oT, 1
a—q]: = -2—(G’(5) 24 2wG’( gs + 2WG13 de)

where the terms containing ¢sgs, ¢sge, ¢sge have been neglected in comparison with the terms
containing gsw, gew, w®. Analogously

6TB

B (G‘e)w2+2wG ds + 2wG3 d)
6

where
1
Ggi) = 537:712’)’(«]2320 — JB°) + J5°cos2y
1 _
Gﬁ? = isinZ'y(J:go — JB°) — JB°cos2y
G = —JB° 4 JBesin?y + JBocos?y + JE°sin2y

G12 = JBo — JBocos?y — JB°sin’y + J5°sin2y

Therefore the additional matrix G(t), which can be called a gyroscopic matrix, will be
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Figure 5.4: Assumed location of the mounts

expressed as follows

0000 0 o |

0000 0 0

0000 0 0
G(t) = |

0000 O 0

0000 —wG® —wGaly)

0000 —wGl ~wG

One can see that with an axisymmetric body rotating about the axis of symmetry, the
terms G(152) = Gﬁ? = 0 and Gf’) = —GE‘;) which yields a skew-symmetric addition to the
velocity matrix D, but in the general case when the body is not axisymmetric this addition
to the velocity matrix will not be skew-symmetric.

Now consider the generalized forces @, in (5.15), or vector Q(t) = (@1, ..., Q¢]T in (5.16).
One contribution to these generalized forces are the forces arising from interaction of body
A with the mounts (Fig. 5.1). The location of the mounts is assumed as shown in Fig.

5.4, where point A is the mass centre of the engine framework, and ks, k2, k; are viscoelastic

springs parallel to axes e;, e, e3 respectively.
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Each of the mounts is modelled as a combination of 3 viscoelastic uniaxial elements with

the following relation between the force F' and elongation ¢:

F(t) = Kio(e) — | "Dt = r)8(r)dr]

where parameter k = Ev, E = instantaneous Young}'s» modulus, and ;y:the stiffness factor
depending on the mount’s geometry and Poisson’s ratio. The stiffnes§ factor in each direction
(for each spring) can be, for example, determined by application of the finite element method
to a real mount 3-D model. The derivation of the stifness matrix operator will be conducted
as if springs were purely elastic, and only in the final form the stiffness matrix will be converted
to a matrix-operator by replacing Young's modulus E by the operator E.

The relation between the generalized coordinates ¢; and generalized forces arising from
forces and moments (denote them as vector Q™) transmitted through the mounts to the

engine framework can be written as follows
QM = —Kq . (5.19)

where matrix K will be called the stiffness matrix. To derive this matrix the definition of
generalized forces is used. According to this definition for a system with N points at which

the external forces are applied, the generalized force will be [81]:

N .
' 5.20
- (520)

where 7, is the radius-vector of the point k, and F}, is the external force vector acting at the
point k.
Given generalized coordinates ¢ = [qi, ..., gg], the following resulting forces and moments

(in projections on axes e1, €2, €3) are transmitted from the mounts to the engine framework:

Fz = —4k3q1 -+ 4k3HQ5
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F, = —4ksq; — 4k Hq,
F, = —4k1<13
Mys = —4kyHgy — 4(ky H? + k1 A2) g
Mya = —4(k1A; — ksH")gs + 4ksHq
M, = (—4k2A§ — 4k3Af)q6

where index A means that the moments are calculated with respect to the axes passing
through the point A. Now one can calculate the generalized forces contributed from the

mounts using (5.20), namely, for this case the components of the vector Q™ will be:
Q'=F. Q'=F s =F.

QM =M., QY = M, Q¥ = M4

From these expressions the stiffness matrix K mentioned in (5.19) can be obtained. It will

be symmetric and with the following components:
Ky = 4k; Ky = K13 = Kis = Ki =0 Kis = —4ksH

Kjy = 4k, Ky = Kys = Ky = 0 Ky = 4k H
Kgs =4k Kag = K5 = Kag = 0 (5.21)
Ky = 4(koH? + k1 A?) Ky = Ky =0
Kiss = 4(ky A2 + ks H?) Ky =0
Kes = 4k AL + 4k A2

Note that the generalized force contribution from gravity does not depend upon the gener-

alized coordinates. The same situation exists regarding to the generalized force contributions

from the gas pressure in the cylinders, except that they will be functions of time. Derivation
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of them is straightforward and is omitted here. Also note that modeling of mounts in the
form of springs is not a unique approach which can be appropriate, in general the components
of matrix K can be derived according to any finite element model of the mounts and their
or.ientation, or can also be obtained analytically using other elements, e.g., beam elements
instead of bar elements.

Now having collected the terms resulting from (5.15) which depend on generalized coor-
dinates, velocities, accelerations on the left-hand side of the equations and having transfered
all the other terms to the right-hand side, the equation of motion of the engine-mount system

in matrix form can be written as follows
M(t)j+ D(t)g + Kq= F(t) (5.22)

where matrices M and D were given respectively by (5.17), (5.18). The matrix-operator K
follows from (5.21) by replacing k; — k; i = 1,2,3. Note that matrices M, D are periodic
functions of time: M(t) = M(t+ T), D(t) = D(t + T), T = 2n/w. The right-hand side of
(5.22) will be as follows

F(t) = [Fi(t) Fy(t) ... Fs(t))T

where
Neyl »
Fi(t)= ) F&'(t)
j=1 .
Neyl
Fy(t) = mppw 2c0swt + > Far(t
j=1
Neyl Neyl
F3(t) = mppw’sinwt — (my + mp + Mp)g — Z MpiVGri + Z F2r(t (5.23)
=1 1=1
Neyl Neyl
Fy(t) = —mppsswicoswt + mppsyw’ sinwt — Z MpiS2VGri + Z M a[F{*°(t)]
=1 j=1
Neyl Neyl

F5( ) = G 5) 2 JB( )w — meslwzsinwt + Z mp,-ali'i)G,i -+ Z MyA[FfM(t)]

=1 7=1
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. Neyl
Ft) = L60 — (0o + mapsiaeosat + 3 MoslFE(0)
Jj=1

where vg,; is given by (5.11), and
1 5) _ Bo
§G11 = JB°siny + JBcosy

G(G) ~JEcosy + JB°siny

F22, F3P°, Fi° = X,Y,Z projections of the resulting gas force in jth cylinder, and
M a[F}*), Mya[F{*°], M,4[F;{*’] = resulting moments of the gas forces in jth cylinder with
respect to the axes X,Y, Z passing through the point A. The expressions for JB(t),JE(t)

are obtained by differentiation of
JE(t) = JBcosy — J5°siny

Jg( )= J12 siny + Jg"cos'y

Remark 1. Note that forces and moments related with the gas pressure should be only
taken into acount when there is a gradient of pressure in the combustion chamber. If the
pressure is uniformly distributed inside the chamber at each instant of time, then the resulting
force is zero at each instant of time, and all terms with superscript "gas” in the right-hand
side of equations (5.23) vanish.

Remark 2. Note that for some engines (slow, or medium speed marine engines) there is
a propeller drive shaft which joins the crankshaft and the propeller. In the dynamic model
considered here the interaction between the crankshaft and the propeller drive shaft is reduced
to a torque moment (M) upon the assumption that a flexible coupling will minimize all other
forces and moments of interaction. Therefore its contributions to the generalized forces are
neglected. The moment M, does not contribute into the generalized forces (5.20), because

the rotation angle of the crankhaft is prescribed v = wt + ¢, i.e., v is not considered as a

generalized coordinate.
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5.2 Parametric resonance investigation

Consider a general equation

M)+ D(t)g+ Kq=0 (5.24)
where matrices M, D of order n, T-periodic, and g is n x 1 vector. In general K can be T-
periodic as well. To investigate parametric resonance phenomena (dynamic instability) [83],
[84], [85] it is sufficient to consider the conditions that give rise to unbounded solutions g(t)
of (5.24).

It is assumed in this section that no viscoelastic properties-are present in the system which
means K = K (elastic case). This represents the case when parametric resonance arises more
easily. A general theory of linear differential equations with periodic coefficients [83] allows a
treatment of equations like (5.24). However the case when viscoelastic (hereditary) elements
are present brings a new type of equation, namely, integro-differential where some coefficients
are time periodic. The analysis of resonance conditions for this case can be a subject for
future work.

The equation (5.24) can be represented in equivalent state-space form

ABX +B()X =0

where
D(t) Mt K 0
Alt) = (t) M) B(t) = x_|¢
Mi@) 0 0 —M(t) q
or in abbreviated form
X =P@t)X (5.25)

where P = —A™!B, 2n x 2n matrix, and P(t + T) = P(t). Note also that matrix A is

nonsingular, upon the presumption that the mass matrix M is nonsigular for all ¢ C [0, T'].
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Consider now X as a 2n X 2n matrix as well. Assuming the initial conditions X (0) = I,
the matrix-function X (¢) will be called a matrix of fundamental solutions (or matrizant), and
the matrix X(T') is called the monodromy matrix.

According to the Floquet-Lyapunov theorem [83] the matrix of fundamental solutions can

be expressed as

where S(0) = I, R = zInX(T), S(t + T) = S(t). Eigenvalues of R, 7; are called charac-
teristics exponents, eigenvalues of X(T'), §i are called multipliers of the system. Note the
relation between them |

& =enT t1=1,2n

Therefore X (T) the monodromy matrix (namely its eigenvalues) yields all information
required to analyse the stability of trivial solutions of (5.25), and consequently of (5.24),
namely [83]:

1) all solutions bounded on [0, cc], if multipliers are inside, or on the unit circle (the latest
case with simple elementary divisors),

i) asymptotic stability, if multipliers are inside of unit circle,

iii) instability of solution, if at least one multiplier is either outside the unit .circle, or on the
unit circle with multiple elementary divisor.

There are several methods to obtain regions of stability and instability for systems de-
scribed by differential equations with periodic coefficients. For example, for the Mathieu
equation such methods as straightforward expansion (in power series of parameter), the
method of strained parameters, Whittakers's method, and the method of multiple scales
are described in the literature [86], [83], [87].

In this study it is proposed to conduct the stability analysis by obtaining the eigenvalues

of the monodromy matrix X(T'). Note that in the case of a general system of coupled
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Figure 5.5: Example of a SDOF system

differential equations with periodic coefficients determination of the hatrix of fundamental
solutions X (t) is not a trivial task. Here it is proposed to conduct a numerical integration on
the interval [0,T], for equation (5.25) to obtain X(T') starting from X (0) = I. An explicit
4-stage Runge-Kutta method will be used as a numerical integrator (a computer program was
written for this purpose).

At first, for illustration purposes, a special case of one-degree-of-freedom system was
considered. An example of mechanical system is shown in Fig. 5.5, where there is a crankshaft
(body B) rotating about axis b — b and the framework (body A) is allowed to rotate about
axis a — a which passes through the mass centre of the framework (point A). The angle of
rotation gs is assumed to be very small. The framework (body A) is attached to the ground
by elastic springs which create the rotational stiffness denoted by Kjs.

The equation of motion for this system is obtained from the general equation (5.22) by
constraining all degrees of freedom except g5 and assuming that M, = 0 (no pistons). Assume
also that the mass center of body A coincides with point D (see Fig. 5.2). Recall that point

D is the projection of the mass centre of body B on the axis of crankshaft rotation.

Then the motion of this system (with forcing functions set to zero) can be described by
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the following equation:
C 2 e 3 : 2
(1 — esin’wt)ds — iswszn2wtq5 +Ags=0 (5.26)

with parameters

Bo Bo
€= J22 - J33
Ji+ JB°

where JB°, JB° are components of the tensor of moments of inertia defined with respect to

A = VKss/ (0 + JB) (5.27)

axes g, g2, g3 rigidly connected to the body B. From (5.27) it follows that ¢ < 1, because
JBe>0,JB°>0,J5 >0

The rigidly connected system g;,g,,8s is chosen in the following way. The axis g; is
taken parallel to e;. As far as, g,,gs are concerned, they are taken in such a way that the
component J2° = JB° = 0. Without loss of generality, it also assumed that at the instant
t = 0 bases g;,g2,83 and ey, e,, e; coincide.

Note that the unbalance radius p which contibutes to the external forcing function does
not appear in equation (5.26), because it is not involved in consideration of the homogeneous
solutions.

One can rewrite the equation (5.26) using a new variable: v = wt, thus t = v/w, i.e. ¢
can be considered as function of 7, t = t(vy). Then g5(¢) = gs(v/w) = g5() and

1 - 1

H

q's(v) = 45; q"s(v) = 51'507
Thus
gs = W‘;Is(’)’) gs = “-’2‘1."5(’7)
Substituting this into (5.26), one obtains:
) ~ 3 - .
(1 — esin®y)w’q"s(7) — Jew’sin2yq's(v) + Ags(y) =0

Denoting § = A\?/w? one can write

. - 3 .- .
(1 — esiny)q"s(v) — Sesin2yq's(7) + 6gs(7) = 0 (5.28)

2
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Figure 5.6: Regions of stability and instability for the SDOF system (Fig. 5.5)

Note that the coefficients of this equation have a period 7. This equation was numerically
infegrated and the monodromy matrix X () ( 2 X 2 in state-space form) was obtained. Then
its eigenvalues (multipliers) were evaluated. Regions of stability and instability (dark area)
are presented in the plane of the nondimensional parameters §, € in Fig. 5.6. For the unstable
(dark) area the absolute value of one of the multipliers was > 1.

One can see that the greater parameter |¢| which reflects nonsymmetry of the body B,
the wider frequency region where resonance can occur. Note that the line § = 1 corresponds

to the frequency rotation w = ), where X is the natural frequency of the system.

5.2.1 Parametric resonance analysis of an engine-mount system

The parametric resonance analysis of a 6 degree-of-freedom engine-mount system will be
conducted on the basis of equations (5.22), where the right-hand side is assumed zero, because
homogeneous solutions are of interest in this section. The equations (5.22) will be represented

in state-space form (5.25). Thus there will be a system of 12 coupled differential equations

with periodic coefficients. Note again that in equation (5.22) it will be assumed K = K
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Real part

Imaginary part

Absolute value

[ S — 2z
RBEo B ©oNou ks w =g

0.1458943369E-+00
0.1458943369E+00
0.4635743596E+-00
0.4635743596E-+00
-0.3079144813E+00
-0.3079144813E+-00
-0.6181632403E+00
-0.6181632403E4-00
-0.9896163146E+00
-0.9896163146E4-00
-0.8928809929E4-00
-0.8928809929E+00

0.9893001778E4-00
-0.9893001778E4-00
0.8860580191E+00
-0.8860580191E4-00
0.9514140383E-+00
-0.9514140383E+00
0.7860497493E+-00
-0.7860497493E+00
0.1437343028E+00
-0.1437343028E4-00
0.4502927186E+00
-0.4502927186E+-00

0.1000000000E+-01
0.1000000000E+01
0.1000000000E+01
0.1000000000E+-01
0.1000000000E+01
0.1000000000E+01
0.1000000000E+01
0.1000000000E+01
0.1000000000E4-01
0.1000000000E+01
0.1000000000E+-01
0.1000000000E+-01
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Table 5.1: Eigenvalues of monodromy matrix (multipliers). Example 1, stable case

(elastic mount case.)

The input data for an example of engine-mount system (a medium-speed diesel type
multicylinder engine was considered [62]) are presented in Table D.1 (column 1) of Appendix
D. It was assumed that all elastic springs k;, k2, k3 (Fig. 5.4) have the same stiffness 0.206e +
07 N/m.

. A numerical integration on the interval [0, T], for the equation of motion represented in the
state-space form (5.25) was produced and X (T') (12 x 12 monodromy matrix) was obtained.
An explicit 4-stage Runge-Kutta method was used as a numerical integrator.

The eigenvalues ¢;, ¢« = 1,12, of the monodromy matrix are presented below for two
examples. Input data for the 1st example are in Table D.1 (column 1, Appendix D). In this
example (the crankshaft with J2° = JB°) all eigenvalues (Table 5.1) are on the unit circle
and not repeated which means a stable case, i.e. the homogeneous solutions of (5.22) are

bounded.

For the second example just one parameter was changed in input data (column 1, Table
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Real part

Imaginary part

Absolute value

= e Z
RE S ©owo-No o kw8

0.1990503196E-+00
0.1990503196E-+00
0.4635742820E+-00
0.4635742820E+-00
-0.2761777116E+00
-0.2761777116E+00
-0.6181632403E+00
-0.6181632403E+-00
-0.9496800600E+00
-0.9496800600E4-00
-0.8930918482E+00
-0.8930918482E+00

0.9799898711E+00
-0.9799898711E+00
0.8860580620E+00
-0.8860580620E4-00
0.9611066333E+00
-0.9611066333E4-00
0.7860497493E+-00
-0.7860497493E+-00
0.3132183178E+00
-0.3132183178E4-00
0.4498769529E+00
-0.4498769529E--00

0.1000000589E+01
0.1000000589E+-01
0.1000000000E+01
0.1000000000E+-01
0.1000000044E4-01
0.1000000044E+-01
0.1000000000E+01
0.1000000000E+01
0.9999989655E+-00
0.9999989655E+-00
0.1000001161E4-01
0.1000001161E+01
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Table 5.2: Eigenvalues of monodromy matrix (multipliers). Example 2, unstable case

D.1), namely, a crankshaft with Jg"

1.5JE° was considered which gives a greater contri-

bution to the time-dependent components of matrices M and D (see (5.17), (5.18)). For
this example one can see that absolute values (Table 5.2) of some eigenvalues are slightly
greater than 1 (outside the unit circle) which means a weak instability eventually leading to
unboundness of the homogeneous solutions. In other words parametric resonance arises.

The numerical integrations were produced with different step sizes to verify the obtained
values of the monodromy matrix X(T'), and consequently its eigenvalues (multipliers). The
results (Tables 5.1, 5.2) are presented for the engine’s operating frequency 10 Hz (T = 0.1
. 8).

Several other engine-mount systems operating on different frequencies were numerically
tested in this study. Some of them, on certain frequencies, produced such absolute values of
the multipliers as 1.2 - 1.4 which are far from the unit circle.

As a conclusion one can say that when the relative contribution of time-dependent compo-

nents in matrices M, D exceeds a certain level then instability can occur at certain frequencies.




Chapter 5. Dynamics of an engine-mount system 123

A full analysis of the input parameters of engine-mount system in terms of their influence (ob-
viously different for different parameters) on the multipliers of the system (instability criteria)

can be viewed as a subject of future work.

5.3 Steady-state response for the case of periodic matrices M and D

Consider a general equation of motion

M(t)X(t)+ D@#)X(t) + KX(t) = F(t) (5.29)

where matrices M, D are T-periodic, and forcing vector-function F(t) is T-periodic as well.

A procedure to obtain the T-periodic solution (steady-state response) is proposed using

complex Fourier series, and avoiding numerical integration in time starting from some initial
conditions. |

Real periodic matrices M(t), D(t) are represented by complex Fourier series (using con-

jugate terms) in the following way:

M(t) — Z(Mkeikwt + Mke—z’kwt) D(t) — E(Dkeikwt + Eke—ikwt)
k=0 v k=0

where M;, and D, are complex matrices and w = 27 /T.
The forcing function is extended into complex form: .
© 3
F(t)= Y, Fpe™"
k=—o0
where F; are complex vector-columns.
The steady-state response solution is sought in analogous complex form:

X(t) = f: Xy ettt (5.30)

k=—oc0

where X}, are complex vector-columns.
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Substituting (5.30) into (5.29) gives:

Z Xkeikwt _k2w2 Z(Meilwt + Mle—ilwt) + ikw E(Dleilwt + —D—le—ilwt) + E*(kLU)Ko

k=—o0 1=0 =0

= Y Fpe* (5.31)

k=—0c0

In this illustration only complex Young's modulus E,(kw) for the complex stiffness matrix
is introduced, although in the general case of isotropic material one can introduce a two-
part form (3.3). Note that in the case of numerical integration in time, instead of such
parameters as Young's complex moduli given on a set of certain frequencies, the relaxation
kernel parameters of the matrix-operator K would be required.

The equality in (5.31) is achieved by equating the coefficients of like harmonics e*“*
kE =0,F1,F2,F3,F4,... in the left-hand and right-hand sides of the equation. Therefore a
linear system of infinite number of complex equations with respect to the unknown complex
vectors X}, k = 0,+1,+2,+3,+4,... is obtained.

In practical applications the number of terms taken in (5.30) will .be finite, and conse-
quently the system of equations will be of a finite brder (contribution of harmonics €7t is
assumed to decrease with p — 0o). Note that Re[X (¢)] (real part) and Im[X(t)] (imaginary
part) of a found complex solution X (¢) will be solutions of (5.29) for Re[F(t)] and Im[F(t)]
respectively.

To illustrate the developed method some numerical results are presented below.

Equation (5.22) obtained for an engine-mount system can be considered as a particular

example of (5.29). Introduce a new notation of the generalized coordinates for this example

z; = ¢;, © = 1,6. In vector form
X(2) =q(t) = [z1(t) z2(t) 'z3(t) wza(t) zs(2) z6(t)]T

In the previous section the multipliers (complex eigenvalues of the monodromy matrix)

were obtained (Table 5.1,5.2) for some examples of engine-mount system. For these examples
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“none of the mulitipliers was equal 1. According to the results from [83] this means that the
inhomogeneous equation (5.29) with K = K will have a unique T-periodic solution, which
will be referred here as the steady-state response. Note that this result is proved in [83] for
the case of differential equations with time-periodic coefficients, which is our case when the
stiffness matrix is assumed constant (or time-periodic). In this section a viscoelastic matrix-
operator K replaces K in (5.29), however it will be still assumed that equation (5.29) has a
unique T-periodic solution (proof is not considered here).

The real forcing function (see 5.23) is extended into complex form as follows
F(t) — FO _l_ Fleiwt + erz‘iwt, I;\_1 — F_z — 0

provided that Re[F'(t)] is the given real forcing function (5.23). The quantity w is the
crankshaft rotation frequency [rad/s]. For this example the force contributions arising from
non-uniform gas pressure distribution wefe neglected, i.e., the terms with superscript "gas”
in (5.23) were dropped.

The timbe-dependent mass matrix (5.17) and velocity matrix (5.18) were represented in

the following form

and a Fourier representation of the complex solution is chosen as follows
4 .
X(t) — Z Xkezkwt
k=-4
Note that for this example it was enough to keep 9 terms (k =-4,-3,..,3, 4) in (5.30). The
numerical results obtained with a larger number of terms were practically identical to ones

obtained with 9 terms. Note that Re[X(t)] will be the solution of (5.29) for Re[F(t)], i.e.,

for the given real forcing function.
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Figure 5.7: Steady-state responses. Crankshaft with J5° = J2°, elastic mounts

Two models were compared: in the 1st the mass matrix M, and the velocity matrix D
were assumed constant, i.e., M = My, D = Dy, where My, D, are the coefficients in Fourier
series. In the 2nd model M, D were time-dependent.

The input parameters of the engine-mount system are presented in Table D.1 (column 2)
of Appendix D. The stiffnesses (complex in general) of the springs (Fig. 5.4) were assumed
equal k,; = k.2 = k..

The steady-state responses are demonstrated by the angular displacements cc4,é:5,:z:6 of
the engine framework for the duration of one period. There was virtually no difference between
the 1st and 2nd model (Fig. 5.7). The solid lines represent both solutions.

However when a crankshaft with JB° # JB° was considered (all the rest input parameters
in Table D.1 were the same), namely, J3° = 9453 kg x m?, JB° = 8453 kg x m?, then
time-dependent components in matrices M, D become more noticeable and cause a larger
difference in the responses (Fig. 5.8). Note that the mounts were assumed elastic for both
models.

For the next example only one change comparing with the previous example was done.
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Figure 5.8: Steady-state responses: — M,D constant, - - - M,D time-dependent.

Crankshaft with J2° # JE°, elastic mounts
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Crankshaft with J3° # J2°, viscoelastic mounts
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Some viscoelastic properties were introduced in the mounts, namely, it was assumed that

ktloss (nw)

P (1) = 0.05 n=0,1,2,3,4
for the mount material, where k,;,,,(nw) = the imaginary part, and k,,:or(nw) is the real
part of the complex stiffness of the springs. One can see that difference between these two
models was reduced (Fig. 5.9) in comparison with the elastic mount case (Fig. 5.8).

As a conclusion one can say at this stage that in many practical cases when the time-
dependent components are small in comparison with the constant components in matrices
M and D, the difference in steady-state responses between these two models is negligible,
i.e., one can use M, D-constant model. However in the case of crankshafts with JBe £ JEBe,
or significant contribution of the reciprocating parts (pistons), the use of M, D-constant
model may yield unreliable results. A full parametric analysis of the effect of different input

parameters of engine-mount system on the steady-state response can be viewed as future

work.

5.4 Optimization problem for an engine-mount system

The steady-state response of the engine-mount system (6-DOF model) yields the information
which is necessary to evaluate its performance. The determination of the steady-state response
for this model was presented in section 5.3, where the forcing function is represented by a
Fourier series with a frequency spectrum wy,ws, ..., wp.

Here the optimization problem of an engine-mount system is posed with respect to prop-
erties of the mount material, namely, the values of complex Young's modulus at the frequency
spectrum w, wa, ..., w, will be the design variables. Usually n = 2 (1st two harmonics) are es-
sential for the type of engine which is of interest in this study (multicylinder, slow, or medium
speed diesel engines), all other higher harmonics of the excitation will be neglected. Due to

a relatively slow passage from the start (0 frequency) to the operating frequency, a slow (or
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medium speed) engine will be considered as passing through a series of steady-state responses
at the intermediate frequencies. Of course, for high speed engines this passage can be quite
short, and this assumption will have less relevance.

It is assumed that the mounts rest on a rigid foundation. As far as constraints are
concerned, the maximum allowable amplitude of dynamic displacements (relative to static
equilibrium position) at the mounts are prescribed. For examplé, at several frequencies €;, 1 =
1,2,.. (which include intermediaté frequencies and the operating one) a system of inequality

constraints will be given at each mount as follows
(6, Q) < b1 lzo(t, Q)| < 62 les(t, )] < s (5.32)

where z,,z,, and z3 are respectively X,Y, and Z displacements of the engine at the mounts.

The objective of the optimization procedure is the minimization of the transmitted forces
through the mounts. It is assumed for the class of problems considered that the resonant
frequencies of the engine-mount system lie well below the operating frequency, which implies
that minimum damping is required to minimize the transmitted forces at the operating fre-
quency. The introduction of damping is necessary to decrease the dynamic displacements in
order to satisfy the inequality constraints (5.32). Therefore the required value of minimum
damping depends on limiting values 4;, 42, 85 in (5.32). For interrﬁediate frequencies the
minimum value of damping (among those values which yield the satisfaction of (5.32)) will
be assigned to the mounts as well. The latest assumption is made not from the considera-
tion of transmitted forces, but from the consideration of difficulties in creating of high level
damping at low frequencies for the mount material. -

Therefore the optimization problem posed with the objective to minimize transmitted
forces thfough the mounts (at the operating frequency) and with inequality constraints (5.32)

is reduced to the problem of determination of the minimum damping at each frequency in

the interval [0 - operating frequency]. Minimum damping means here minimum loss modulus
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(imaginary part of the complex modulus).

After the optimization problem is solved one can compute the transmitted forces for
the optimum set of design variables, and compare (as a tool for checking) them with ones
computed for alternative (not optimum) sets.

For each jth mount the norm of transmitted force is computed as

|IF9|| = Mazscoml Y Ea(wi)vizeie ||

k=0

where E,=the complex modulus of the mount material, v;= stiffness factor, zk'jei‘""‘ is the
steady-state response elongation (kth Fourier harmonic) of the mount.

As an objective function, it is proposed to calculate the following quantity
N .
T(w)=>_IIF] (5.33)
i=1

which will be called the transmitted force factor. In expression (5.33) NV is the number of
mounts.

Now consider this optimization problem in more detail. For the general case of periodic
loading with a period T' = i—’l' the real forcing function can be expressed by a complex Fourier

series

F(t) = Re[i Fre] wr, = kw; (5.34)

k=0
The steady-state response X (t) (in real form) for the case where M, D are time-dependent

matrices can be found in closed form according to the procedure presented in the previous

section, i.e.,

X(t) = Re

l
Z Xk eiwkt]

k=-1

where the number of terms I depends on the number of terms n in expression (5.34). The
order of the system to determine the unknown components of vectors X, will be (21 + 1) %6,

because the system is coupled with respect to the unknown vectors X;. For computations

presented in section 5.3 [ = 4, thus the order of the system was 54.
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With the assumption that M, D matrices are constant (taking the constant term of the

Fourier series for these matrices) one can determine the steady-state response as

' n
" X(t) = Re [Z Xkei“’*t]
k=0

where the number of terms coincides with the number of terms in (5.34). Note that it is
required to solve a system of order 6 with respect to each unknown component X;. For the
optimization routine where steady-state responses are calculated many times (for different
values of design variables) the model with constant M, D matrices would require much less
of computer time, than the model with M, D time-dependent. From the other side, it is
expedient to use the model with M, D time-dependent when one can expect a large difference
in the responses between these. two models. ’_It can occur when time-dependent components of
matrices M and D are significant, for example, when the engine’s crankshaft has J2° # J&°
(see Fig. 5.8), or when contribution of reciprocating parts is large.

A 3-D mount (it can be of cubic, or cylindrical shape etc) is modelled as an appropriate
combination of 3 bar elements (Fig. 5.10). The complex modulus of the mount material
for these bar elements will be prescribed. Here it is assumed that the mount cross-section
is symmetric, thus the lateral stiffnesses are equal and described by one bar element k,. If
the cross-section is nonsymmetric, then all the derivations below can be without difficulty
generalized by introducing a third parameter k;.

Note the stiffnesses of these bar elements are
kl = E»’h kz = E:’)’z

where 7,, 7, are calculated, for example, by the finite element method using an elastic model
(with real constant Young's modulus and Poisson’s ratio) of the mount. This is done by

imparting unit displacements to the mount top plane (Fig. 5.10) in each direction, and

calculating the stiffnesses in each direction respectively. Then these stiffnesses divided by the
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Figure 5.10: Mount model

value of elastic modulus of the model yield the stiffness factors v;, 42 which have dimension
of length. Coupling between linear lateral displacement and the moment arising is neglected
for this model.

The values of E, as function of frequency will be considered as the design variables,
specifically the values of the loss modulus at the frequencies w; and 2w,. The real part of
the complex modulus is computed from the static constraint condition, e.g., if the allowable

static displacement of the engine (mass M,) is A, then the storage modulus will be

_ Mg
N N’)’]_A

E,

(5.35)

where N = number of the mounts, g is the gravity acceleration. The value of E; mentioned
above will be the optimum one, because it is clear that any increase in its value would shift
the natural frequencies (designed to be below the operating frequency) closer to the operating
one, and by that providing an increase in the amplitude of steady-state responses.. From the

other hand E; cannot decrease with the frequency (such behavior has not been observed in

experiments with polymeric materials). Therefore the value of the storage modulus for the
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optimum material is assumed constant (independent on frequency) and determined by (5.35).

5.4.1 Numerical results for the optimization problem

The numerical examples below were obtained for a medium speed multicylinder engine. The
input parameters of the engine-mount system are présented in Table D.1, (Appendix D,
column 2). One can see that the crankshaft with J5° = JZ5° was considered. For this case
the model with constant M, D métrices was utilized as a part of the optimization routine in
calculations of steady-state responses.

Note that the external forcing vector-function was calculated according to (5.23), where
the force contributions arising from nonuniform gas pressure distribution were neglected, i.e.,
the terms with superscript "gas” were dropped. |

The minimum values of loss modulus E,(w;) and Ez(éwl) (which provide satisfaction
of constraints (5.32)) were obtained by a simple incremental selection (starting from values
E3(w;)) = E(2w;) = 0) with the increments AE,(w;) = AE3(2w;) = 0.01E;. Such
selection was produced for the operating frequency (which was equal 10 Hz for examples
below) and for a set of intermediate frequencies in the interval [0,10] Hz. In such manner
the optimum profiles of E;(w) were built and for different values of the unbalance radius (p)
(hence for different levels of excitation) are shown in Fig. 5.11.

The allowable static displacement of the engine was 0.02 m which determined the value
of th.e storage modulus E; as shown in Fig. 5.11. The limit values for the dynamic steady-
state response displacements in (5.32) were assumed to be §; = §; = d3 = 0.0001 m. The
six natural frequencies of the associated undamped system were 1.715, 3.035, 3.524, 5.456,
5.701, 6.461 Hz. A local peak in the region of 1.5-2.0 (Hz) (Fig. 5.11) is explained by the

existence of the 1st natural frequency 1.715 Hz.

The stiffness factors of the springs (as was mentioned above they have dimension of
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Figure 5.11: Profiles of E;(w) for different unbalance radii p (m): 1 - p = 0.00014, 2 -
p = 0.00016 , 3 - p = 0.00018 , 4 - p = 0.00020

length) were prescribed to be 4, = 4, = 1 (m). Note that with a change of the assumed
stiffness factors from 1, to, say, 71 = 72 = a the storage modulus will change respectively
E; — £t and the values of the loss modulus will be scaled in the same way Ez(w) — Bale),
However with a change of the ratio of the stiffness factor; 2 the optimum profile of E;(w)
will change. This will be shown below.

The transmitted force factors are shown respectively in Fig. 5.12 by solid lines. The
calculated transmitted force factor for the case of absolutely rigid mounts is shown by dashed
lines (it is proportional to w?). One can see that introduction of viscoelastic mounts yields
a significant reduction in the forces transmitted through the mounts. For this example the
transmitted force factor at the operating frequency 10 Hz was 3-5 times less than it would
be for the case of rigid mounts.

The optimum profiles obtained with different stiffness factor ratios are shown in Fig. 5.13

for two cases: 7; = 1, v2 = 0.5 (m), and 4, = 1, 72 = 1 (m). The unbalance radius was

0.00018 m for both cases. The six natural frequencies of the associated undamped system
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Figure 5.12: Transmitted force factor T'(w) for different unbalance radii p (m): 1 -
p = 0.00014 , 2 - p = 0.00016 , 3 - p = 0.00018, 4 - p = 0.00020
for the case 1—: = 0.5 were 1.584, 2.302, 3.524, 3.866, 4.356, 5.667 Hz.

The graphs of transmitted force factors are presented in Fig. 5.14. The solid line represents
the previous graph from Fig. 5.12 (y2/71 = 1), the dash-dot line represents the (v./y1 = 0.5)
case, and the dashed line represents the rigid mount case. One can see that (y,/v; = 0.5)
case yields a lesser transmitted force factor at the operating frequency (10 Hz), than the
(72/71 = 1) case in about two times.

The stiffness factors of the springs v; and «, are determined by the shape of the mount
and Poisson’s ratio of the mount material (assumed constant for this case), were prescribed
here. However the selection of the optimum stiffness factor ratio can be undertaken as an
analysis task, i.e., in this case the parameter ;’—: will be allowed to change.

As a conclusion to this section one can notice that the calculated optimum profiles of

complex Young's modulus will indicate the ideal (required) properties of a viscoelastic material.
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Conclusions and future work

In this study the application of exponentials for the relaxation kernel of a viscoelastic operator
has been presented and substantiated. Approximation techniques which allow the parameters
of the relaxation kernel (as a sum of exponentials) to be determined from experimental
data have been developed. Such experimental data which can be used for this purpose are
relaxation, or creep curves, or complex moduli (given on a set of frequencies) of elastomeric
materials.

An explanation of how the finite element procedure is used in treatment of viscoelastic
systems has been presented. This procedure can be used to build the mass and elastic stiffness
matrices of a system. A hereditary (viscoelastic) stiffness matrix-operator is then obtained
by replacement of the elastic constants (Lame's coeff:cients A and G) in the elastic stiffness
matrix by the corresponding viscoélastic operators, or by complex moduli (for steady-state
response problems). If Poisson’s ratio is assumed constant then only Young's modulus needs
to be replaced.

A numerical procedure for the determination of complex Young's modulus and complex
Poisson's ratio of elastomeric isotropic materials has been Jeveloped. This procedure uses
as input information certain experimental data concerned with a material specimen. The ob-
tained complex Poisson’s ratios have shown that for some materials such as C R (chloroprene),
NBR (acrylonitrile-butadiene rubber) one can consider Poisson’s ratio v, as constant and
real (for the frequency range 10 — 250 Hz). For other materials, e.g., PEC H (polyepichloro-
hydrin), EAR C — 1002 (Isodamp), and DPNR (natural rubber) the dependence of v, on

137
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frequency is quite noticeable for the mentioned frequency range. Therefore, in general, when
a viscoelastic material is considered it is not always possible to assume that v, is constant.

A procedure of obtaining steady-state response for discrete viscoelastic systems has been
demonstrated and some numerical results have been presented. The effect of complex Pois-
son's ratio as a frequency-dependent parameter was significant in some cases, and insignificant
in others.

The comparison of the numerical results (in terms of steady-state responses) with the ex-
perimental ones, obtained for a model of a vibration rig with viscoelastic mounts has demon-
strated a good correlation. The theoretical model for this example utilized the complex
modulus data calculated through the above mentioned procedhre.

Finite element formulations forA dynamic viscoelastic systems have traditionally been de-
scribed in the literature with step—By-step numerical integration (in firﬁe) schemes. In this
study the closed form solutions in the time-domain for both initial and boundary value prob-
lems have been presented for the case when the relaxation kernels of E (Young’s modulus
operator) and i (Poisson’s ratio operator) are represented as a sum of exponentials. Namely,
two methods of obtaining closed form solutions in the time-domain by using Laplace transform
method and substitution method have been shown. A new approach (substitution method)
avoids the difficulties encountered in the use of the Laplace transform approach for multi-
degree-of-freedom systems and involves the formulation of an eigenvalue problem. Forced
vibration solutions for the case of a periodic forcing function have been also obtained in
closed form with the use of the substitution method.

An eigenvalue problem for a viscoelastic system has been formulated. The analysis of
eigenvalues and eigenvectors has shown that there will be a significant number of overdamped
eigenvectors, which correspond to real eigenvalues. The contribution of certain eigenvectors
to the homogeneous solution depends essentially on the initial conditions.

It is expedient to use the substitution method for the boundary value problems and also
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in situations when it is advantageous to have the solution in analytical form. It may be
noted that the use of numerical integration for the boundary value problem is much more
complicated than for the initial value problgm.

The ah_alysis of conditions of diagonalization of discrete viscoelastic systems has demon-
strated that when only Young's modulus operator is introduced (Poisson’s ratio is assumed
constant) for a system of one homogeneous material and with the proportional viscous damp-
ing term, then the equation of motion (in matrix form) is always diagonalizable. If Poisson’s
ratio is considered as a viscoelastic operator, or the system consists of different viscoelastic
materials (even with constant Poisson’s ratios), theﬁ decoupling of equations of motion, in
general, is not possible. An additional investigation is required for this case.

An analysis of the free vibration response of a SDOF viscoelastic system (when the relax-
ation kernel was assumed to consist of one exponential term) has been presented. In general
the response of this system consists of a damped oscillation mode plus an overdamped mode.
However there exists a region in the parameter space for which the response consists of
three overdamped modes. This region has been analytically defined and expressed in terms
of nondimensional parametérs characterizing _thé properties‘ of the material and the inertia
property of the system. It has been shown that such a overdamped response is not possible
for values i of relaxation time |

1 T

- >

a’ 23

where T is the period of the undamped elastic system. In the underdamped region the

constitutive parameters can be assigned in such a way that yields prescribed frequencies and
decay rates.
A formulation of a dynamic model of an engine on viscoelastic mounts has been presented.

The equation of motion contains the time-periodic mass and velocity matrices which. may lead

(under certain conditions) to such phenomena as parametric resonance (dynamic instability).
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The investigation of the parametric resonance conditions on an example of engine-elastic
mount system has shown that in the case of a specific crankshaft (when certain diagonal
components of the tensor of moments c;f inertia are nonequal) and combination of a certain
rotation frequency the instability can occur. In genkeral, one can say that when time-dependent
components in the mass andbvelocity matrices become larger then more possibilities exist for
instability to take place. A full parametric analysis of the effect of different input parameters
on the system’s stablitiy, or instablity can be viewed as future work.

A steady-state response calculation method has been developed for the case of time-
dependent (periodic) matrices in the equation of motion. This method has been applied to
an example of engine-mount system and the results have demonstrated that under certain
combination of input parameters one can have a significant difference between the responses
of two models (one - when mass, velocity matrices are constant, and 2nd - when mass,
velocity matrices are time-periodic). Note that upon introduction of damping in the mounts
the difference in the responses between these two models is reduced. A full parametric analysis
of the effect of different input parameters of the engine-mount system in the creation of such
difference can be also viewed as future work.

An optimization problem has been posed and sélved with the associated constraints and
the objective function reflecting the optimum criteria of the performance of the engine-mount
system. As the result the optimum parameters of the mouht material (storage and loss
moduli) have been determined. It was obtained that the transmitted force factor can be
reduced several times in comparison with the rigid mount case. It was also discovered that
depending on the unbalance radius (level of excitation) there will be different optimum profiles
for the loss modulus as function of frequency. A full parametric analysis of the effect of

different parameters of an engine-mount system on the optimum profile of the loss modulus

can be viewed as future work.
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Appendix A

Transfer functions, complex moduli

The description of the procedure for determination of complex moduli has been presented in
section 3.2. Below the complex transfer functions experimentally obtained for each specimen
of material in the two tests are represented by the real and imaginary parts.

Calculated complex Young's and shear moduli are represented by the real part (N/m?)

and the loss factor. Complex Poisson’s ratios are represented by the real and imaginary parts.

Transfer function

Imaginary part
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40 80 120 160 200 240

Frequency, Hz
Figure A.1: Transfer function in the 1st test for PECH
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Real part
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Figure A.2: Transfer function in the 2nd test for PECH
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Figure A.3: Transfer function in the 1st test for EAR C-1002
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Figure A.10: Transfer function in the 2nd test for NBR
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Dimensions of the vibration rig
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Figure B.1: Vibration rig with viscoelastic mounts, dimensions in [inch]
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Appendix C
|
|
|
|
|

Derivation of the transformation matrix R (for section 5.1)

The vectors i;,15,13 of the auxiliary rotating basis (Fig. 5.1) are expressed in terms of the

ground basis vectors as follows

i1 1 0 0 €
iz [ = |0 cosy siny e (C.1)
i3 0 —siny cosy es

where v = wt + ¢, (angle of crankshaft rotation).

Assume that at the moment ¢ (or for the angle +) the engine framework has the following
angular displacements ¢;, ¢3, ¢a, then the basis g1, g2, g3 (rigidly fixed with the crankshaft)
is actually the basis i;,1i2,1i3 which is given the angular displacements ¢,, ¢2, ¢3, i.e.,

3
8k = ik + Z Aikn k= 1,273 (02)

n=1
where Aiy, is the change to the i; basis vector due to its rotation about the basis vector e,,.

These changes are computed as follows (note that angles ¢, ¢2, ¢3 are assumed very small):

e e €3

Aijy =¢grey xiy=|¢, 0 0 |=0

1 0 0
analogously
e; e, eg
Al =dres Xip=| 0 ¢, 0 | = —2e3
1 0.0
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165

€; €3 €3 ‘
Aljg =¢ses xiy=| 0 0 b3 | = Pses
1 0 0
€ €2 €3 |
Aiy = grey xia=| ¢, 0 0 |= dicosyes — ¢13in’7ez
0 cosy siny
- €1 €s €3
Alyy = ¢pey X1 = | 0 b 0 = Postnye;
0 4cos§' siny
€ €9 €3
Alyz = ¢gez X i =| 0 0 ¢s | = —pscosve;
0 cosy siny
€1 €9 €3
Aig; = ¢re; X i3 = | ¢, 0 0 | = —¢isinyes — Picosye,
0 —siny cosy
(] €9 €3
Aigy = ¢rey X3 =| 0 o2 0 | = ¢acosye;
0 —siny cosy
[} €9 €3
Aizz = ¢se3 X iz =| 0 0 ¢s | = ¢pssinye;
0 —siny cosy
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Therefore substituting the obtained Ai;; in (C.2) one can rewrite it in matrix form

81 i 0 #3 '—¢2 e;
g | = | 1z | T | d28iny — ¢pscosy —¢isiny  ¢icosy e
83 i3 B3siny + Pacosy —¢icosy —isiny es

and substituting (C.1) in the expression above one obtains

g1 1 #3 — o2 e
g2 | = | d2siny — dscosy cosy — drsiny  siny + ¢gicosy | | ex
g d38iny + acosy —siny — Picosy cosy — ¢ysiny es

or in abbreviated form

g,-:R,'kek i=1,2,3

where matrix R will be called the transformation matrix.




Appendix D

Input parametérs of an \engine-mount system

The parameters below are mentioned in section 5.1.

p = unbalance radius of the crankshaft (the distance between the mass centre of the crankshaft
and the axis of rotation)

m4 = mass of the engine framework

mp = mass of the crankshaft

51, $2, 3 = components of the vector r4p (see Fig. '5.2)' where point A = mass centre of
the engine framework and point D = projection point of the crankshaft mass centre on the
axis of rotation -

[ = length of the crank (see Fig. 5.3, denoted as ”[”)

I, = length of the connecting rod (see Fig. 5.3, denoted as "1,”)

Ncyl = number of cylinders

m, = piston’s mass

fi = distance between ith cylinder and point D along the axis of rotation (see Fig. 5.3,
denoted as " ")

Ypoi = phase angle of ith piston

J;; = components of tensor of moments of inertia of the engine framework

J£° = components of tensor of moments of inertia of the crankshaft (in the system rigidly
connected with the crankshaft)

Al, A2 = dimensions of the engine plate which sits on the mounts (see Fig. 5.4)

H= vertical distance between c.g. of the engine framework and horizontal plane which is
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attached to the mounts
k.(nw) = complex stiffness of the spfings (Fig. 54) at frequency nw, n = 0,1,2,3,4.
Below the values of these parameters are shown in Table D.1, where column 1 contai‘ns
input parameters for the parametric resonance example, column 2 - input parameters for the
steady-state response and optimization problem examples. The values with ' are used for the
steady-state response example only. For values of p for the optimization problem example see
section 5.4.1.
For the optimization routine the following additional input parameters are required:
A= maximufr; allowable static displacement (Z direction),
81, 65,03 = maximum allowable dynamic displacements at the mounts (X,Y,Z directions).
Remark. Without loss of generality, at the instant ¢ = 0 it is assumed that unbalance
radius has zero phase, i.e., it.is 6rie‘nted as axis Y (vector e; in Fig. 5.2). The phase angles
of the pistons are determined according to the configuration of the cranks and with respect
to the unbalance radius direction. The components of Ji’;" are calculated in the coordinate
system parallel to the reference system (¢t = 0) and taken at the crankshaft’'s c.g. They are
so-called components in the fixed with the crankshaft coordinate system. The components
of J4 are taken at the c.g. (point A) and in the system parallel to the reference system (they

are assumed constant).
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Parameter 1 2 Parameter 1 2

p - | 0.00018f JA 12000. 12000.
ma 12181. | 12181. JA 10. 10.

mp 4116. | 4116. JA 10. 10.

8 -0.1 -0.1 JA 17100. 17100.

83 0.02 0.02 J4 20. 20.

83 -0.8 -0.8 J 17100. 17100.

l 0.2286 | 0.2286 JEBe 299. 299.

ly 1.162 | 1.162 JEe 0. 0.
Neyl 6 6 JB° 0. 0.

myp 81. 81. JBe 8453. 8453.

fi 1.6 1.6 JB° 0. 0.

fa 0.96 0.96 JBe 8453. 8453.

f3 0.32 0.32 Al 0.72 0.72

fa -0.32 | -0.32 A2 1.8 1.8

fs -0.96 | -0.96 H 1.2 1.2

T -1.6 -1.6 k.(0) - 1 0.206e7+i0t
Ypot 0. 0. k. (w) - | 0.206e7+i0!
Ypo2 -60. -120. k. (2w) - 0.206e7-+i0t
Ypo3 -120. | -240. k. (3w) - ] 0.206e7+i0t
Ypot -180. | -240. k. (4w) - | 0.206e7+i0t
Ypos -240. | -120. - - -

Ypos -300. 0. - - - -

Table D.1: Input parameters of the engine-mount system. Units: length - [m], mass -

[kg), angle - [degree], JF, J5° - [kg x m?], k. - [N/m]

ij




