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Abstract

For a manipulator mounted on a dynamic structure, as in space applications, the

interactions with the robot and its supporting structure can play a crucial role. For

example, stability and accurate control of space station operations are critical; therefore,

methods that minimize the dynamic interactions (force and torque ) between the space

station and robot manipulators are needed. This thesis evaluates two such approaches,

and extends these ideas to the design of space robots. General simulations of trajectory

optimization schemes are conducted based on the redundancy model proposed by de Silva

[1], [7], [8]. Furthermore, this optimization theory is extended to cover robot parameter

design for a redundant manipulator. Two techniques are developed. First method is

the “Joint Angle Manifold Approach”, which uses a path integral to define the global

cost function as the sum of the terms contributed by the reaction forces along the robot

trajectory, which are described mathematically as different topological manifolds. The

final cost function becomes a polynomial of the design parameters i. After calculating the

cost function in each manifold, the one with the minimal value was selected for further

optimization to search for the optimal link parameter solution. The second approach

uses a global time integral to define the cost function as the sum of two terms; one

term describing the time integral of the instantaneous base reaction cost function and

the second term describing the peak value of all instantaneous cost function curves.

The global cost function is then optimized against the design parameters which are link

lengths 1, using a numerical optimization method. Both methodologies are simulated for

a three degree-of-freedom manipulator.
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Chapter 1

Introduction

1.1 Preliminary Remarks

As the space technology advances, future space missions will progress to encompass

many sophisticated tasks and operations; for example, operating scientific experiments

such as constructing and repairing space stations, deploying satellites and delivering

multi-phased payloads. Robots need to provide the flexibility, adaptability, programma

bility, seif-reconfigurability and intelligence that would be neccessay for autonomous op.

eration, and also require to meet engineering specifications such as the end effector speed,

load levels and trajectory precisions.

Typical tasks of space robots would require extremely precise and accurate motion

control. However, manipulator motion control is generally difficult to achieve because,

for example, dynamic interaction resulting from the fact that manipulator motions are

coupled with the space station produces unwanted disturbances on the system. Conse

quently, as the arm moves, it will exert dynamic forces and torques on the space station,

causing the latter to move in a perturbed manner by changing its orbit and attitude.

Since there is dynamic coupling between the robot and the space station, these distur

bances also affect the performance of the manipulator. Hence, it is desirable to minimize,

if not eliminate, the dynamic base reaction forces and moments through proper design

and control of the robot manipulator.

1



Chapter 1. Introduction 2

There are many considerations in robot system design. Common criteria such as

load capacity, load to mass ratio, low parts count and high modularity are important,

but even more critical are considerations like large workspace, high dexterity and end

effector dynamics. Preferably it should be a concurrent engineering process; in which

the design, planning and developmental tasks are carried out in parallel. However, since

many space missions are multi-tasked, it is difficult to compensate for all unwanted space

interactions through physical design of the robot. Then, such disturbances have to be

minimized by appropriate control of the robot and the space station. Nevertheless, the

need for interaction compensation through control has to be reduced to a minimum so

as to maintain controller simplicity and fuel efficiency.

Using the minimization of dynamic interactions as the central criterion for the robot

system design process, the goal of this research is to develop a unified methodology for op

timizing robot parameters for a particular task. Recently, there has been much emphasis

in using path planning of redundant manipulators to achieve optimal performance under

disturbances. This is however a limited approach; a general theory and methodology

would be needed to extend the current solutions to include the geometric and physical

parameters of a robot like link length and mass.

In order to implement the theory of design optimization, an accurate model of the

dynamic interaction of a space robot and path optimization and planning techniques is

required. Kinematic redundancies may be employed in this optimization. This research

therefore looks into the aspects of developing a physical model for a robot manipulator in

space operations; develops software programs to simulate robot motions and dynamics;

and obtains fast and accurate optimization of the trajectory and design parameters for
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complex space robot systems such as the NASA seven degree-of-freedom traction drive

manipulator.

1.2 Literature Review

The earlier work on base reaction minimization was done by Vafa and Dubowsky

[3], K.Yamada and K.Tsuchiya [6],and de Silva [1]. Vafa and Dubowsky considered the

reduction of altitude variations for satellite bodies by path planning through the model

of disturbance map; which shows the direction of the effect of joint velocities on the base

station disturbance. It was essentially a mapping of the disturbance vector field for ma

nipulator variables. Vafa and Dubowsky attempted to use a virtual manipulator method

for the analysis of base station dynamic disturbance; this method offers the advantage

of decoupling manipulator dynamics from the base station because of the selection of

an appropriate coordinate frame of reference. Algorithms were also developed to use

the disturbance map for trajectory planning in order to achieve minimal base reaction

effects. The search for trajectory in disturbance map approach is an extremely time

consuming task for high degree-of-freedom manipulators whose kinematics and dynamics

are complex. Yamada and Tsuchyi considered the trajectory planning of a robot ma

nipulator through the application of quantified cost function for the reaction forces of

the base station. Analytical trajectory is achieved for a simple satellite model. De Silva

uses kinematic redundancy to design manipulator trajectories so that base reaction is

minimized; In his approach, a local quadratic positive definite cost function is employed

to characterize the base disturbance. Unconstrained optimization is used to select the

optimal end effector trajectory of the robot according to motion specifications such as

acceleration and jerk limits.
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1.3 Objectives and Contributions of the Research

The objective of this research is to develop a comprehensive methodology for the op

timization of design parameters of a robot mounted on a dynamic structure. The research

will be based on the foundation of the theory developed by de Silva for base reaction

minimization through trajectory planning using kinematic redundancy. Computer simu

lations are developed using this theory for two systems; a three degree-of-freedom planar

robot and a NASA seven-degree-of-freedom traction drive manipulator. The numerical

simulations are used to demonstrate the application of the theory, which are expected to

show significant reduction in the base reactions for both manipulators, through the use

of kinematic redundancy. Since redundancy, in a given application only, allows the pos

sibility for optimization of joint trajectories, the optimization model must be extended

to include other geometric and kinematics design variables, such as link parameters,

mass, and end efFector velocity of the manipulator. Therefore, an important part of

this research will be to develop numerical methods for global optimization; including a

method of defining a global cost function, as well as methods for optimizing this complex

and multi-valued cost function. The concluding task of the research will be to produce

numerical simulations to verify the design parameter optimization methodology for a

three-degree-of-freedom planar redundant manipulator.

The main contributions of this research are:

1. Development of computer simulations for a three-degree-of-freedom planar manip

ulator and a NASA seven-degree-of-freedom traction drive manipulator based on

the theory developed by de Silva for trajectory planning. Numerical simulations

are performed on a SUN SPARC station computer platform using MATLAB© op

timization subroutines. These verify that base reaction minimization is possible for
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different types of robots, and further predict that the base reaction forces ( cost

function values ) are related to the geometric variables of the robot.

2. Development of optimization methodologies for design parameter optimization.

Two approaches are developed. They are:

(a) Use of the topological manifold method to identify different trajectory flows,

and to calculate the global cost function for the manipulator as the path

integral along each trajectory. The cost function is symbolically estimated

using first order terms, and the optimal design variables are calculated by

optimization programs in MATLAB©.

(b) A numerically oriented procedure based on the early version of the path plan

ning optimization is developed. This model uses the instantaneous cost func

tion of the original method as the integrand to calculate the new global cost

function; however, instead of optimization with respect to path parameters,

numerical optimization with respect to the geometric parameters is achieved

to obtain somewhat global, optimal design variables.

1.4 Scope of the Thesis

This section outlines the body of this thesis. Chapter 1 sum.marizes the objectives

of the work, describes the reason for developing robot design optimization, presents the

main results, and lists the contribution of the reseach. Chapter 2 introduces the tra

jectory optimization using kinematic redundancy and its application to base reaction

minimization. The theory of de Silva and the techniques of using redundant degrees of

freedom to optimize a cost function of the base reactions are reviewed. Chapter 3 is very

important for understanding the remaining chapters. Here, the kinematic and dynamic
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model of the NASA seven-degree-of-freedom robot manipulator is developed. In Chapter

4, computer simulations are carried out based on the model derived in Chapter 3. and

the computational algorithm and the methodology of optimization are described. Chap

ter 5 forms the core of the design parameter optimization. In particarlly, the basis that

leads to a global cost function definition and the methodology of nonlinear constainted

optimization are outlined. A new approach for incorporating a global cost function in

the optimization is introduced in Chapter 6. Here, the method of topological manifolds

is used to describe the “self motion” of a redundant trajectory, and grouping them into

finite number of submanifolds. This approach allows symbolic computation of the global

cost function, thereby, enabling design optimization of parameters. Finally, the conclud

ing chapter summarizes the design optimization problem and the theory and computer

models developed for resolution of the problem, and provides recommendations for future

research.



Chapter 2

Theory of Base Reaction Minimization

Before we formulate the theory of design optimization, we shall review the funda

mental idea of base reaction minimization through the use of kinematic redundancy for

trajectory planning as developed by de Silva [1], [7], [8]. There are four key steps in the

approach:

1. Formulation of space-station manipulator dynamics

2. Quantification of the base reaction disturbances in terms of a scalar cost function

3. Resolution of the end effector position and orientation in terms of redundant joint

angle variables

4. Optimization of the redundant joint coordinate to minimize the cost function values.

2.1 Dynamics of Space Station and Manipulator

Consider a space station that is orbiting around the earth in a circular orbit at

a certain attitude. The open chain robot is rigidly mounted on the base station, as

illustrated in Figure 2.1. The links are assumed to be rigid, and joint flexibility, friction,

and backlash are assumed to be ideal. The inertial frame is located at the center of the

earth. The center of mass of space station is located at rb from the base of the robot.

The dynamic equations ( both translational and rotational ) of the rigid space station

7
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Xe

Ze

Inertial
Reference Frame

Figure 2.1: A Space Station Based Robot
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are given by

f8 + fi, = (mv) (2.1)

N3 + Nb + rb 0 fb = + 0 (18w8) (2.2)

in which f3 is the resultant external force acting at the centre of mass of the space

station and N8 is the resultant torque.

Consider the i th link of a n link manipulator as shown in Figure 2.2. The Newton-

Euler equations for this link consist of the force-momentum equations:

f2—1 — f: + mg = (mvj) (2.3)

and the moment-angular momentum equations about the centroid of the link:

N_1 — N + rd 0 fj — rj 0 f = (Iriwi) = ‘ci.i + 0 (Iiw) (2.4)

Since f, = 0 and N = 0 for an open chain robot, by summing the n equations

given by equation (2.3) and (2.4), the bace-reaction forces and moments are obtained as

follows:

fb = >mi(ici —
gj (2.5)

Nb = + 0 (I’.’) + 0 (vc — gj] (2.6)

Note that in these summations, the vectors are assumed to have been expressed in a

common reference frame, through suitable coordinate transformations.

The required kinematic relations, specifically expressions for w2, and v in terms

of the joint velocities q and joint accelerations q are as follows:
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vi

vci
v!-1

zs

Figure 2.2: Nomenclature for Dynamics of a Space Station and Robot
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Angular velocities:

= (2.7)

Wi = Wi_i + it

i=2 ,n

Angular Accelerations:

(2.8)

i=2 n

Rectilinear velocities:

v0=v8+w8®r0 (2.9)

= Vj + W 0

V = V_1 + W: 0

i=l n

Rectilinear accelerations:

a0=a.+w30r0+CA.’30(W30r0) (2.10)

= v + 0 r + w ® (w 0

a = a_1 + c.’ 0 r_11 + 0 (w, 0 r_1,)

i=l,...,n

2.2 Base Reaction Minimization

Using the recursive Newton Euler dynamic formulation, the base reactions obtained

above can be used to express the cost function. Specifically, the six dimensional vector of
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the base reactions is mapped into a quadratic cost function, using the following measure:

CostFunctiom = RTQR (2.11)

in which the reaction vector R is given by:

R = [f&N&]T— (2.12)

Here, the vectors j and N1 are the nominal reactions for a given configuration;

and Q is a positive definite weighting matrix, which also takes into consideration of the

dimensional differeces in the vector R.

Let us assume that the end-effector trajectory is expressed in the normal manner as

a sixth order vector containing position and orientation of a body frame attached to the

end effector; and expressed in the base frame. The incremental joint motion öq that

would be needed to produce a trajectory increment of 6y is given as:

= J6q (2.13)

where J is the Jacobian matrix of the system.

The velocity of the end effector is given as:

v = Jq (2.14)

and the acceleration relationship is:

a=Jq+Jq (2.15)

The Jacobian matrix can be partitioned into:

J = [J, Jr 1 (2.16)
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where J is a nonsigular matrix corresponding to a set of independent joint coordi

nates q,.

.1,. is a submatrix corresponding to a particular choice of redundant joint coordinates

q,.

Similarly, the vector is partitioned into

q = [q,, q7] (2.17)

Thus, the velocity and acceleration equations are represented as

v = J4 + J,.47 (2.18)

a Jn1n + Jrqr + Jnqn + Jrqr (2.19)

The vectors v and a can be expressed in terms of curtate cycloidal motions, which

may be used to limit both acceleration and jerk.

The joint variables and their derivatives are represented as follow:

= J’(v
— elr4r) (2.20)

= J’(a
— Jrqr — Jnqn —

Jq7) (2.21)

Therefore, the cost function is represented in terms of the redundant variables q,

which are expressed as a polynomial of time:

= qo + c1t + c2t2 (2.22)



Chapter 2. Theory of Base Reaction Minimization 14

This in turn means the cost function is depended on the parameters c1 and c2. The

optimization scheme proceeds as follow: divide the trajectory into sufficiently large num

ber of segments, and find the suitable values for the parametes c1 and c2 to produce a

locally optimal solution for all joint coordinates. Such a method is repeated until the

end of the task trajectory is reached.

2.3 End Effector Trajectory Generation

The motion for the space robot system is primarily dependent on the end effector

trajectory. The need for engineering specifications on the acceleration and jerk at the

end effector of the robot means trajectory kinematics must be appropriately designed.

A curtate cycloidal time trajectory is used to meet such criteria [10]. For simplicity rea

sons in computer simulations, a linear segment is chosen to depict the motion of the end

effector of a manipulator, and also the rotational motion is executed in synchronism for

simulation purposes. An Euclidian rectilinear coordinate y and an angular coodinate 8

are chosen to represent the end effector position and orientation respectively.

In the curtate cycloidal motion, y and 9 are synchronized, and the velocity v = and

angular velocity w = 6 are represented parametrically as:

v(p) = b1(1 — cosp) (2.23)

w(p) b2(1 — cosp) (2.24)

t(p) = a(p — csinp) (2.25)
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a,bi,b2>0,1>c>0,2irpO

Here p is the parameter of the motion; corresponding to a scaled time variable. T is

the trajectory duration as given by

T = 2ira (2.26)

The position and orientation vectors of the trajectory are obtained by integrating the

equations (2.23) and (2.24); thus

= abi[1 + ()]p — (c + 1) sinp + () sin2p (2.27)

S(p) = ab2[1 + ()]p— (c-I- 1)sinp+ ()sin2p (2.28)

The final position and orientation at t = T are

y(T) = abi[1 + (2.29)

6(T) = ab2[1 + ]2ir (2.30)

Rectilinear and angular accelerations a and a are obtained by differentiating equations

(2.23) and (2.24).
b1sinp /

ap) = i2.31
a(1 — ccosp)

b2 5flPa(p) = (2.32)
a(1 — ccosp)

The maximum acceleration values are

lamaxi =
1

(2.33)
aJ(1_c2)
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b2
ImaxI = (2.34)

a/(1_c2)

Linear and angular jerks a and a are:

• b1 (cosp—c)
a(p) = -j (2.35)

a (1—ccosp)

• b2 (cosp—c)
cz(p) = — (2.36)

a2 (1 — ccosp)

These jerks remain finite throughout the trajectory as desired. There are four sta

tionary values for each expression. However, the largest magnitude is

b1Iamaxl = a2(1 — c)2
(2.37)

b2
krnax 2 2 (2.38)

a (1—c)

These occur at the points with p = 0 and p = 27r.

2.4 Summary

In this chapter, the theoretical framework of the base-reaction optimization of a

robot manipulator mounted on a dynamic structure is presented from the point of view of

kinematics and Newton-Euler dynamics. Specifically, the physical description of robotic

motion and reaction forces is presented using Newton-Euler equations, expressed in a

reference frame fixed to the space station. The fundamental variables are joint motions.

Furthermore, the base reactions are defined as a positive-definite functional of the force

and moment vectors. Using the Jacobian relationship between the joint velocities and

the end-effector velocities, the force and moment equations are mapped in terms of the

derivatives of the redundant joint varibles q. The optimization of the cost function is
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expressed as a stepwise, local, parameter optimization procedure. Finally, a theoretical

model for limiting the acceleration and jerk of the end effector is introduced using the

curtate cycloidal motion.



Chapter 3

The Simulation Model of the NASA 7 d.o.f. Manipulator

As discussed and shown in Chapter 2, the differential kinematics of a robot manipu

lator can be described using its Jacobian. Furthermore, the dynamics of the robot and a

dynamic supporting structure can be formulated using the Newton-Euler equations. In

this manner, the complete mathematical relationship between the joint angle velocities,

accelerations and the dynamic base reactions of F and N can be linked together. Sub

sequently, the optimization of base reactions (forces and moments) through trajectory

planning may be carried out as formulated in Chapter 2. In order to carry out the opti

mization, an analytical model has to be developed in this manner, for the specific robot

of interest. In this chapter, such a model is presented for a practical robot.

The NASA Langley Research Center sponsored and the Oak Ridge National Labo

ratory (ORNL) developed a Laboratory Telerobotic Manipulator (LTM) for space appli

cations. This robot will serve as prototype that is used in this chapter for the computer

simulation of the optimization scheme. As shown in Figure 3.1, the LTM arm has seven

degrees of freedom that provide one degree of joint-space redundancy over that needed

for the fundamental task of end-effector placement and orientation. The arm is config

ured from three common pitch/yaw joints which combine to provide shoulder, elbow, and

wrist joints. Each of these joints has two degrees of freedom which are provided by a

differential drive mechanism and is termed a traction drive joint, that has two outputs

18
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providing pitch/yaw motions [11], [12]. This mechanism may be represented by two in

tersecting revolute joints. A wrist roll mechanism, mounted at the wrist joint, provides

the seventh degree of freedom. Seven degrees of freedom allow the LTM to reorient itself

without changing the end-effector position and orientation.

The theoretical background that is necessary to carry out a computer simulation of

the LTM includes kinematics and dynamics. First, a traction drive joint is described.

Then, the kinematics of the arm is presented. Finally, the equations of motion are derived.

3.1 The Traction Drive Joint

The joint mechanisms for conventional robots are usually gear transmissions, timing

belts, sprockets and chain devices. Some others use the technique of harmonic drives.

Neither of these mechanisms satisfies the requirement for accurate and repeatable oper

ational specifications for teleoperating robot manipulators in space. In particular, the

need for minimal backlash, high flexibility, high stiffness and smooth operations. The

NASA Oak Ridge National Laboratory developed the traction drive joint mechanism for

a seven d.o.f. manipulator. Traction drive is among the most elementary way of imple

menting speed changing mechanisms. It simply utilizes the application of the friction

wheels of different dimension (diameter) to regulate speed. It can then be construct to

give a single, fixed speed ratio, by controlling the rolling surfaces to engage at different

radii. Using lubricant films, this joint poses better power transfer performance charac

teristics than others mechanisms because of minimal backlash.

For the specific case of seven d.o.f. LTM, the traction drives are located at the shoul

der, elbow, wrist joints as well as another roll motion at the wrist to provide the extra
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Figure 3.1: The NASA Seven-Degree-of-Freedom Traction-Drive Manipulator
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degree of redundancy. At each joint, two input rollers are frictionally engaged with two

other wheels of larger diameter dimension, forming a differential mechanism. The two dif

ferential wheels are also engaged with a output roller. This whole mechnism will produce

two different independent vector motions pending on the motion of the two differntial

wheels. When they are undergoing opposite motions with same speed, a roll motion

is produced. When they are undergoing same direction motion at same speed, a pitch

motion is produced about the axis of the output roller. The input rollers are of course

controlled by dc servo motors, and any linear combination of pitch and yaw motion can

be generated by varying the motion of input rollers.

The dynamic characteristics of the traction drive have been evaluated by de Silva

and Hankins using controllability, observability, stability and response analysis [13]. Us

ing state vector and system matrix analysis, the traction drive joint is found to be well

behaved with the implementation of a linear quadratic regulator for servo control. In

particular, satisfactory performance of the traction drive is possible with joint servo using

roll and pitch angle feedback.

3.2 Kinematics

The forward-kinematics problem is to find the position and orientation of the end

effector of the maniputor given the joint angles 6. The differential-kinematics problem

is to find the corresponding joint volecities that cause the end-effector to move at the

desired velocity. The inverse-kinematics problem is to determine the joint angles which

will result in a desired end-effector position and orientations, typically given relative to

and expressed in a coordinate frame fixed at the base. All of these relations have to be
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determined for the LTM arm.

Differential relationships of manipulation are important in several ways. The most

obvious is in the case of motions of accommodation, for instance, when a camera ob

serves the manipulator end-effector position and calculates the differential changes in

position and orientation in order to reach some goal. In this case, we should be able to

convert defferential changes in one coordinate frame ( measurement space ) into changes

in another ( the attraction or control space ). Another use of differential relationships

follows directly, which is particularly applicable in this work. Given a differential change

in the end-effector position and orientation, we will employ differential relationships to

find the corresponding changes in the joint coordinates, since it is the joint velocities and

accelerations that appear in the expressions of the base reactions. The Jacobian matrix,

which corresponds to a set of linear equations, that has the differential change in position

and orientation of the end effector as dependent variables, and the differential change in

the joint coordinates as independent variables, as in equation (2.13).

3.2.1 Forward Kinematics

First, a means of relating positions on one link with respect to a fixed frame or to

another moving link is established. In this manner, the position and orientation of the

end-effector can be expressed in terms of the joint coordinates. The principal points are

covered here. Details are found in references [15] and [161.

Given a point P and two coordinate frames F1 and F as shown in Figure 3.2, the

position of P relative to F1’ is expressed as a vector ‘ in F1,whereas the position

of P relative to Ft is expressed as r in Ft. A superscript denotes which coordinate
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system the vector is referred to.

x
Figure 3.2: Position Vector Representation in Coordinate Frames

The vectors z and z are related by

= d + i’ ‘

23

(3.1)

where R is the matrix of coordinate transformation from Frame i to Frame i — 1 and

d is the distance between the origins of the two frames, expressed in Frame i — 1. Note

that

=

cos — cos a sin 9 sin a2 sin 8

cosacos92 —sina2cos61 (3.2)

0 sina1 cosaj

where 6 is the joint angle from aj axis to the axis about the z2_1 axis. d is the

distance from the orgin of the i — 1 th coordinate frame to the intersection of the z..1

with the axis along the z1 axis. a2 is the offset distance from the intersection of

the z1 axis with the axis to the origin of the i th frame along the axis. a2 is

P

z
F’

d’1

Y

F’1
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the offset angle from thez1.. axis to the Z1 axis about the (using the right-hand rule).

Note that equation (3.1) represents a rotation and a translation. This transforma

tion between ‘‘ and a’ may be represented by a single matrix through the use of

homogeneous vectors. An extra unity element is added to the vectors, so that given

x

= V (3.3)

z

the vector X is defined

x

X= (3.4)

1

Note that, the original vectors ‘ and a are augmented by adding a “ 1 “ as the

fouth element so that the result is a 4 x 1 vector.

Now, the transformations are expressed as

X’ = A’ X (3.5)

where, the homogeneous transformation matrix is given by

d

41 (36)

0 0 01
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By applying equation(3.5) successively, a vector expressed in Frame F’ may be

given by a vector X in Frame F°. Specifically, we have

X = A A ....A’ X (3.7)

The combined transformation which is a chain of A matrices is denoted by the T

transformation matrix, as

X = T X1 (3.8)

where

n s a d

ri, s,, a 4
n2 s a d

0 0 0 1

In order to relate positions and velocities at any point on each link of the robot

to a fixed base frame, a coordinate frame is attached to each link. Denavit-Hartenberg

convention [16] is used in this work for establishing coordinate frames. For a manipulator

that has a revolute joint i, the joint variable O is taken to describe the rotation of joint

i about the z2_1 axis. The axis is chosen normal to both z_1 and z2 from the cross

product z1_1 ® z. The intersection is the origin. The y axis completes the coordinate

axis triplet according to the right-hand rule, y = 0 The following parameters

describe the relationship between neighbouring links:

• a is the distance between z and z, measured along

• d1 is the distance between and measured along z1_1

• a2 is the angle between z_1 and z2 measured about , using the right hand rule.
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z6

z5
Figure 3.3: Joint Coordinate Frames for LTM

The local coordinate frames of the LTM, established in this manner are shown in

Figure 3.3. The Choice of coordinate frames is important, since the whole description of

the behaviour of the robot, from trajectories to dynamics equations, rests on it. Table

3.1 gives the kinematic parameters for the LTM.

The next step is to obtain the A2 matrix from the choice of coordinate frames. Us

ing the above definitions, a vector X expressed in link i coordinate frame may be re

expressed in terms of link i — 1 coordinate frame as X’ by performing the following

sequence of sub-transformations:

• first, rotate by an angle 9 about z2_1 to bring the axis parallel to the axis

• second, translate along z2_1 a distance so that a and z_ coincide

• third, translate along x = a distance a to bring the two origins together

• finally, rotate by an angle a: about to bring the coordinate frames into coinci

dence.

zi

zo

z2 z7

z4
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Table 3.1: Denavit-Hartenberg Link Parameters

8 d(m) cx2(deg) a1(m) 91(deg)
8 0 -90 0 -90
92 0 90 ‘2 0
93 0 90 0 90
94 0 -90 13 0
95 0 90 0 0
86 0 90 0 90
87 d7 0 0 0

The result is the general matrix A2 given by

cos — cos a1 sin sin a2 sin 82 a1 cos

= sin 9 cos aj cos 9 — sin aj cos 9 a1 sin 9

0 sina1 cosa d1

0 0 0 1

For the LTM, the resulting A matrices, i = 0, 1, ..7 are given below:

10011 C1 0 —S10

0 1 0 0 S1 0 C1 0
A=

0 0 1 0 0 —1 0 0

0 0 0 1 •0 0 0 1•

C2 0 S2 121.12 C3 0 S3 0

S2 0 —C2 l2S2 S3 0 —C3 0

010 0 0100

000 1 0001
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C4 0 —S4 l4C4 C5 0 S5 0

S4 0 C4 l4S4 S5 0 — C5 0

0 —1 0 0 0 1 0 0

00 0 1 0001

C6 0 —S6 0 C7 —S7 0 0

S6 0 C6 0 S7 C7 0 0
A6=

0—1 00 0 0 1d7

00 01 0 001

where

C1 = cos 9, S2 = sin8,C2= cos(61 + 9,), S, = sin(Oj + 9,).

and, l is the distance between z0 and z measured along O, 12 is the distance between

z2 and z1 measured along 2, 13 is the distance between z4 and z3 measured along ,

4. is the distance between and z6 measured along Z7.

3.2.2 Differential Kinematics

For differential kinematics, the main problem is to obtain the Jacobian matrix. Here

we just briefly discuss some main principles. More details are found in reference [15] and

[16].

In Figure 3.2, assume that point P is fixed to Frame F’. We have:

= d’ + R’ ‘ (3.10)

Note that the superscript indicates which coordinate system the vector is referred to.
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The expression for the velocity is obtained by differentiating this expression with

respect to time:

= Vd1 + + R v (3.11)

Note that the point P is fixed with respect to Frame Fl. It can be shown that, for

the present case,

= Vd’ + R1 R_1T R’ a’ (3.12)

Note that the R’ matrix is given by

cos 91 — cos a1 sin 8 sin a sin 6

= sin 6 cos a1 cos 61 — sin a1 cos (3.13)

o sin a1 cosa1

Differentiating R’ with respect to time yields:

— sin 6 — cos a1 cos 6 sin a1 cos

cos 6 — cos a1 sin 8 sin a sin 9 Oj (3.14)

o o 0

Mutiplying R’ and R’ yields:

o —1 0

R1T
= 1 0 0 (3.15)

000

Hence, we note that R1 R_1PR_1
= iz’

For a revolute joint that rotates about z axis without translation,

= 0 (3.16)

So, from equation (3.12), we have

= (R’ R_1T) R’ (3.17)
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=

‘ ói’ [x] (3.18)

000

If we consider X as the origin point of the end effector frame n, measured with

respect to frame i, equation (3.18) can be rewritten as follows:

0 —1 0 Pa,

v1 = 1 0 0 8 R p (3.19)

0 0 0

0 —1 0 Pa;

= 1 0 0 1 F1,

0
O_

P

-F1,

Pa,

0
Ti

We multiply the equation (3.19) by the appropriate R transformation matrices to

express the end effector velocity in Frame F’ with respect to the base coordinate frame.

Specifically,
i—i

-F1,

= R R .... R: Fa, 9, (3.20)

0
n

where,
0

R R .... = a1, (3.21)

m sa, a
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Hence,
0 i—i

n2, s2, a,2, —P

= a, F2, (3.22)

ri s a 0
1—1 n

From this equation, the translational velocity of the end-effector with respect to the

base frame is found:
0 0 0

S2,

=
— fly [Py}’ + y [P2,]’ 9 (3.23)

flz 8z
i i—i i—i

The joint variable 9 is defined to be a rotation about the z1_1.

0

= 0 8 (3.24)

1

0

= 0 6. (3.25)

1

Then the angular velocity of the end-effector with respect to the base frame is obtained

by multipling the corresponding R trasformation matrices.
0 0

92, ri2, s a,), 0

= fly Sy a 0 (3.26)

n s a 1
I

0

a2,

ay

a
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Then the total velocity relation is formed by combining equations (3.23) and (3.27).

Specifically,

0 0 0

th
• rD li—i i FD 1:—i

— L’ yin 8y Vxin

flz •sz

0 8. (3.27)

a
I ii

The velocity relationship between frames can be converted into the differential form,

which results in the well-known Jacobian matrix. The Jacobian matrix is a 6 x n matrix

consisting of differential translation and rotation vector elements.

d81
dx

dO2
dy

dO3
dz

= J(8) (3.28)
d8

d6

d8
d8

where J is given by the right-hand side matrix of equation(3.27)

Each column of the Jacobian matrix consists of the differential translation and rota

tion vectors corresponding to the differential changes of each joint coordinates. For the

LTM, if q is picked as the redundant degree of freedom, the Jacobian is found to be (
see equation (2.16) ):

J = [J, J7 1 (3.29)

where the vector
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C1C2C3C4C5C6d7—S1S3C4C5C6d7+C1S2S4C5S6d7—C1C2S3S5S6d7—

S1C3C5S6d7 — C1S2C4C6d7+ C1C2C3S4C6d7— S1S3S4Cd7—

13c1C2C3c4+13s1s3C4—13C1S2S4—12C1C2 —

—S1C2S3S4C5S6d7—C1S3C4C5S6d7—S1S2S4C5S6d7+S1C2S3S5S6d7+

C1C3S5S6d7+S1S2C4C6d7—S1C2C3S4C6d7—C1S3S4C6d7+
Jr

— 13s1c2C3s4+13c1C3C4+13s1S2s4+12s1s2

0

0

0

1

and the 6 x 6 square matrix

J = [Ji J2 J3J4J5J6] (3.30)

where

C1S2C3C4C5S6d7—C1C2S4C5S6d7—C1S2S3S5S6d7+C1S2C3S4C6d7—

C1C2C4C6d7—13C1S2C3C4+13C1C2S4— 12C1S2

S1S2C3C4C5S6d7—S1C2S4C5S6d7—S1S2S3S4C6d7+S1S2C3S4C6d7+

S1C2C4C6d7—13S1S2C3C4+13S1C2S4— 12S1S2

Jnl = C2C3C4C5S6d7+S2S4C5S6d7—C2S3S5S6d7+C2C3S4C6d7—

S2C4C6d7— 12C2C3C4 — 13S2S4 — 12S2

—Si

Cl

0
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C1C2S3C4C5S6d7+S1C3C4C5S6d7—S1S3S5S6d7+C1C2C3S5C6d7+

S1C3S4C6d7+C1C2S3S4C6d7—13C1C2S3C4—13S1C3S4

S1C2S3C4C5S6d7—C1C3C4C5S6d7—C1C3S4C6d7+S1C2C3S5S6d7+

S1C2S3S4C6d7+ 13C1C3C4 — 13S1C2S3C4
Jn2 =

—S2C3C4C5S6d7+S2C3C5S6d7—S2S3S4C6d7+13S2S3C4

C’s2

S’s2

C2

C1C2C3S4C5S6d7— C,S2C4C5S6d7— S,S3S4C5S6d7— C,C2C3C4C6d7+

S,S3C4C6d7— C,S2S4C6d7+ lC,S2C4+13S,S3S4

S,C2C3S4C5S6d7— S,S2C4C5S6d7+ C,S3S4C5S6d7— S,C2C3C4C6d7—

C,S3C4C6d7— S,S2S4S6d7+13S,S2C4—13C,S3S4+13S1C2C3S4

Jr3 = —S2C3S4C5S6d7—C2C4C5S6d7+S2C3C4C6d7—

C2S4C6d7+L3S2C3S4+L3C2C4

C1C2s3+ s,c3

S,C2S3— C,C3

—s2s3
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C1C2C3C4S5S6d7+C1C2C3C5S6d7—S1S3C4S5S6d7-f-

C1S2S4S5S6d7+S1C3C5S6d7

S1C2C3C4S5S6d7—C1C3C5S6d7+S1C2C3C5S6d7-j-

C1S3C4S5S6d7+S1S2S4S5S6d7
Jn4 =

—S2S3C5S6d7+C2S4S5S6d7—S2C3C4S5S6d7

—C1C2C3s4+s1s3s4+c1s2c4

-.-s1C2c3s4— C1s3s4+s1s2C4

s2C3s4+ c2c4

—C1C2C3C4C5C6d7+C1C2C3S4S6d7+S1S3C4C5C6d7+C1C2S3S5C6d7—

C1S2S4C5Cd7 — S1S3S4S6d7 — C1S2C4S6d7+ 51C3S5C6d7

—S1C2C3C4C5C6d7+S1C2C3S4S6d7—S1S2S4C5C6d7+S1C2S3S5C6d7—

C1S3C4C5C6d7—S1S2C4S6d7+C1S3S4S6d7—C1C3S5C6d7
Jn5 =

S2C3C4C5S6d7—C2S4C5C6d7+S2C3S4S6d7—C2C4S6d7+S2S3S5C6d7

C1C2C3C4s5—S1S3c4S5+c1C2s3C5+s1C3C5

s1C2C3C4s5+C1S3C4S5+S1S2S4S5+S1C2S3C5+C1C3C5

—S2C3C4S5+c2S4S5—S2S3C5
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0

0

0

— C1C2C3C4C556+ SS3C4C5S6 — C1S2S4C556+ C1C2S3S556+
Jn6 =

s1C3s5s6—C1C2C3S4C6+S1s3C4C6+C1S2C4C6

—S1C2C3C4C556— C1S3C4C5S6 — S1S2S4C5S6 + S1C2S3S5S6—

C1C3S5S6—S1C2C3S4C6—C1S3S4C6+S1S2C4C6

s2C3C4C5S6+C2S4C5S6—S2S3S5S6+S2C3S4C6+C2C4C6

3.3 Dynamics

The Newton-Euler equations of motion are used for deriving the dynamic equations in

this work mainly because of the computational efficiency that results from the associated

recursive formulation.

The necessary mathematical relations are briefly described here. More details are

found in reference [16] and [15].

In Figure 3.2, suppose that Frame F is rotating and translating with respect to Frame

F. Also suppose that a particle p with mass m is located by vectors Zt and i, with

respect to the origins of the coordinate frames Ft and F’. The origin of Fl is given by

a vector d’ with respect to the origin of Frame F’.

Then, we have the relation between the position vectors a and z1l:

= z + d4 (3.31)
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where all vectors are assumed to have been expressed with same coordinate frame.

Furthermore, if we define e and v’ as the velocities of the particle p reletive to the

frames F’ and F, and if Vd is the velocity of the frame F relative to the frame F1’,

the velocity of the particle p with respect to the coordinate system F’ is given by:

V’1 = V’ + 1)d (3.32)

dr,’ dd’ d) dd
V = +

dt = cit
+ ‘4’ ® +

di
(3.33)

where cl*( )/dt is defined as time derivative with respect to the coordinate system F,

and is the angular velocity of this frame.

Similarly, the acceleration of the particle p with respect to the coordinate frame F’’

is found to be:

1 d2a &d’
a =-;i-+ dt2

=a+ad (3.34)

where a’ and & are the accelerations of the moving particle p relative to the coordinate

frames F’’ and F’, and ad is the acceleration of Frame F’ relative to Frame F’.

Accordingly,

d*2& d*a_l dw d2d’’
= dt2

+2w
di

+ w 0 (w 0 ‘) + 0 a’ +
dt2

(3.35)

We wish to apply these results to link coordinate systems of the robot, to obtain

the kinematic relationship of the moving links of a robot arm with respect to the base

coordinate system.
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Assume that the base coordinate system is (x0, Yo, zo). The coordinate system (x1,

yj1,z2_i) with origin O_ is attached to link i — 1 and the coordinate system (x1, y,

z) with origin O is attached to link i, as shown in Figure 3.4. Origin O is located by

a position vector p1 with respect to the origin 0 and by a position vector p from the

origin O_i with respect to the base coordinate frame.Origin 0_ is located by a position

vector P1—. from origin 0 with respect to base coordinate frame.

xo

-1

i -1 Joint I

Figure 3.4: The Relationship Between the Coordinate Frames of Base, i — 1 th Joint and
i th Joint

Let v1_1 and w..1 be the linear and angular velocities of the coordinate frame F’

(x.4,yjl, z_i) with respect to the base coordinate system. The angular velocity of the

frame Ft with respect to the frame F1 is w1.

x/
z/

ZO

Base
0

Yo

Then, the linear velocity v1 and the angular velocity w1 of the coordinate frame Ft
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(xe, y, z) with respect to the base coordinate system are given by:

= +w Øp+v2_i = w2 ®p+v1-i (3.36)

= ‘_i + w (3.37)

* i—i i—iHere d ( )/dt denotes time derivative with respect to the frame F , and dt =

since the joint is revolute and not prismatic. Also, w1 =

The linear and the angular accelerations v and of the coordinate system (xi, yj,

z2) with respect to the base frame are:

d*p d*p

= dt2
+ 2w_1 0 + we—i Op + 0 (wi 0 p) + v1_1 (3.38)

=

= ‘—i + + w1 (3.39)

Here, 2
= dW’

® p + w’ 0 (w_ 0 p) since the joint is revolute.

The dynamic equations of a rigid body can be represented by two equations; one

describing the translational motion of the center of mass, called Newton’s equation of

motion for a mass particle, while the other describing the rotational motion about the

center of mass, called Euler’s equation of motion.

Let us consider an individual link i as shown in Figure 3.5. All the forces and mo

ments acting on the link are shown in the figure. Let vd be the linear velocity of the

center of mass of the link with respect to the base frame ( xo, Yo, zo ), w1 be the angular
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-1

x

0

Figure 3.5: Schematic Diagram of Link i

velocity of the link and I be the moment of inertia of the link with respect to center of

mass.

The equation of translational motion is obtained by using Newton’s second law,

— f1 + m1g1 = (3.40)

and the rotational motion is described by Euler’s equation.

— N1 + ?c,,j_1 0 f_1 —
rc 0 f = Icài + W: 0 (Icii) (3.41)

where w1 is the angular velocity of the body frame of the link.

The N-E equations of motion consist of a set of forward and backward recursive

equations. Equations (3.36), (3.37), (3.38), and (3.39) form the forward equations, while

equations (3.40) and (3.41) form the backward equations. For the forward equations,
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linear velocity and acceleration, angular velocity and acceleration of each link, are com

puted from the base reference frame to the end effector. For the backward recursive

equation, the moments and forces acting on each link are computed recursively from the

end effector to base reference system. Hence, the forward equations compute the kine

matics of each link from the base frame to the end effector, while the backward equations

compute the necessary moments/forces for each joint from the end effector to the base

reference frame. The computational algorithm is shown in Figure 3.6.

For the LTM, the necessary equations are summarized below:

Angular velocities:

Wa = W3 (3.42)

= W9 + z041

W2 Wi + Z1q2

= W2 + Z2q3

= W3 + z344

W4 + Z4q5

= W5 + Z5q6

W7 W6 + Z6q7

Angular Accelerations:

= ‘.‘ (3.43)

“2 = W1 +q2+w1 ®Z1q2
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Initialization

Forward Recursion I

Set 1=1

Compute Kinematic Variables

,
c•,1, ye a1

:esn0

rBackward Recursion

Set f1÷1, N÷1

Figure 3.6: Computational Steps for the Recursive Newton-Euler Equations
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w3=w2+q3+w2®Z2q3

w4=w3+q4+w3®Z3q4

W5 =w4+q5+w4ØZ4qs

W6 =4’s+q6+wsØZ5q6

Linear accelerations:

(3.44)

Vi = Vo + Wi 0 ro,i + Wi 0 (Wi 0r0,i)

=

= V2 + W3 ® r2,3 + W3 0 (w3 0r2,3)

V4 = V3

V5 = V4 + W5 0r4,5 + 45 0 (w5 0r4,5)

= V5

V7 = V6 + W7 0 r6,7 + W7 0 (w70)r6,7

Linear accelerations of the centers of mass:

i’d i’i + ‘i 0 1,d1 + l 0 (w1 0r1,1) (3.45)

Vc2 = Vci

Vc3 = V3 + 43 0 r3,c3 + W3 0 (w3 0 r3,3)

Vc4 = Vc3

Vc5 = V5 + W5 0 7’5,c5 + W5 0 (‘‘ 0 7’5,c5)
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Vc6 = ‘0c5

Vc7 = V + W7 0 V7,c7 + W7 0 (w7 0 r7,7)

Note that all vectors here are expressed in the base coordinate frame.

The efficient, recursive, Newton-Euler equations of motion, which Luh et al. [14]

improved are used. In their approach, all velocities, accelerations, inertial matrices,

locations of the centers of mass of the links, and the forces and moments are referenced

to the local coordinate systems, thereby improving the computational effeciency.

3.4 Summary

In this chapter, the theoretical framework of kinematics and dynamics of the NASA

Seven-Degree-of-Freedom traction drive manipulator is presented. The kinematic equa

tions of the robot are built based on the Denevit-Hartenberg convention. The differential

kinematics of the LTM is characterized by Jacobian matrix, which was derived from the

first principle. The dynamics of the LTM is described using the recursive Newton-Euler

equations. All the dynamic variables derived are expressed in terms of vectors in the base

coordinate frame. This chapter provides the fundamental mechanics for the modelling of

dynamic interaction between a robot and its support structure.



Chapter 4

Simulations of Base Reaction Optimization

This chapter will describe the computer simulation process in applying the base re

action optimization technique that has been formulated in the previous chapters. The

definition of an end effector path trajectory from the start point to the end point, the

division of the trajectory into time interval steps, the computation of the joint kinemat

ics at each interval using the inverse Jacobian and computing the instantaneous cost

function at each interval, and the local optimization of the cost function at each interval

using kinematic redundancy, constitute the main steps of the simulation process. The

associated software modules and their structure are described. They are utilized to ob

tain joint trajectories for the seven d.o.f. NASA robot as well as a three d.o.f. planar

revolute robot, that minimize a quadratic function in base reaction. The optimal results

are compared with non-optimal baseline results. A preliminary design optimization with

respect to robot parameters is also given.

4.1 The Computer Simulation

Based on the kinematic and dynamic model derived in the previous chapter, nu

merical software tools have been developed to show the feasibility of using kinematic

redundancy for trajectory planning, with the objective of minimizing dynamic interac

tion of a robot and its support structure. Initially, a simple three degrees of freedom robot

for planar motions is used. Subsequently, the current version of a NASA traction-drive

45
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robot with seven degrees of freedom that is capable of complex operations in the three

dimensional space is used. Finally, the three d.o.f. planar robot is used for parametric

studies, aimed at design optimization.

The numerical simulation is developed using the MATLAB© software [18] on a SUN

SPARC station platform. The structure of the software modules is shown in Figure 4.1.

The flowcharts for the simulation procedure and the algorithm for sigularity avoidance

are given in Figure 4.2 and Figure 4.3 respectively. The MATLAB© program consists

of nine main subroutines:

• iiitcost.m This routine determines the best initial joint configuration that has

the minimal cost function value.

• optim.m This routine initialize the physical parameters of the program. Con

stants such as mass, vectors like initial position and orientation of the end effector,

and arrays like the cost function are defined in this program. Also, This is the

main program that contains the procedures for the optimization algorithm, includ

ing generating the end effector trajectory, and optimizing joint angles by calling

other subroutines like Kinematic.m, costf.m and other.

• costf.m This is the key program that calculates the instantaneous cost function

at any time along the trajectory using the Newton-Euler equations, the Jacobian

matrix, and the local cost function.

• Kinematic.m This routine contains the inverse kinematic equations, and it calcu

lates the joint angles using the end effector position and orientation vector as the

input.
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• grad.m This routine contains the gradient function of the inverse kinematic re

lationship for the robot manipulator, and it is used for faster and more efficient

computation in the it Kinematic.m module.

• Jnfunc.m This routine contains the functional equations for the normal joint

Jacobian matrix.

• Jrfunc.m This routine contains the functional equations for the redundant joint

Jacobian matrix.

• Jrdotfunc.m This routine contains the partial derivative of the jacobian matrix

for the redundant joint variable.

• Jndotfunc.m This routine contains the partial derivative of the jacobian matrix

for the normal joint variable.

The initcost.m carries out the initial optimization using an exhaustive search method

to obtain initial confguration for the robot, that minimizes the cost function.

The main routine is optim.m and it performs optimization of the trajectory. It di

vides the end effector trajectory into many time intervals. For each interval, it calls

the MATLAB© OPTIMIZATION TOOL “fminu”to perform an optimization of the

trajectory by selecting a set of parameters c2, c3, which corresponds to selecting the

trajectory segment for the redundant joint, that would give a minimal value for the cost

function.

The routine costf.m calculates the value of the cost function for a particular value of

the redundant coordinate. The six main steps of the computational scheme are:
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grad.m

Kinematic.m’ optim.m

ptime.m

optimization • fmins
fsolvemodule

of matlab constr

matlab
routines

Figure 4.1: The Structure of the Software Modules
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Figure 4.2: Flowchart for Trajectory Optimization Using Kinematic Redundancy
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Figure 4.3: Algorithm for Avoiding Singular Configuration Using Kinematic Redundancy
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1. The first joint coordinate q is chosen as the redundant variable q7. It is represented

as a polynomial function of in t.

qi = C1 + c2t + c3t2

The parameters c1, c2 and c3, which are the coefficients of the polynomial, are to

be determined in the optimization process by calling function c= fminu (‘ costf’,

[11]’); where [11] is the initial guess of the solution for [c2,c3].

2. Given the values for coordinate q, the remaining kinematic variables are con

strained by the kinematic equations of the manipulator. Thus, by solving the

inverse kinematic problem numerially, we obtain the values for the remaining joint

angles. MATLAB© subroutines Kinematic.m and grad.m are used for such com

putations; Kinematic.m contains the inverse-kinematic equation. Also grad.m is

the gradient matrix of the kinematic equation. MATLAB© solves the equation

using the OPTIMIZATION TOOL “fsolve2 “.

3. The Jacobian matrix for a seven-degree-of-freedom manipulator is very complex.

The functional form of each of the matrix elements has been derived from first prin

ciples. They are listed in the programs Jnfunc.m and Jrfunc.rn. Their correspond

ing derivatives are derived and listed in Jndotfunc.m and Jrdotfunc.m respectively.

4. The dynamic variables of 4, q, , and 4 are then calculated using the Jacobian

equations along with the values of the end effector velocity and acceleration, and

Jocobian matrix J and Jr. Next the determinent of J, is checked. If it is zero, 4’
is replaced with another coordinate in q, and return to step 1. Else the steps are

continued.
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5. The joint variables e1, e, w and w, and their time derivatives are calculated

using the dynamic equations.

6. The force and torque at the base point are calculated using the Newton-Euler

equations.

7. Finally for the given weighting matrix Q the Cost Function is calculated.

cost = RT(QR)

4.2 Simulation Results

4.2.1 Simulation Results for the NASA Seven d.o.f. Robot

First consider the seven-degree-of-freedom NASA-ORNL traction-drive robot. In

this simulation, the space station is assumed to be orbiting the earth at geosynchronous

period of 24 hours; this means that the circular orbital radius is approximately .1? =

42330 km. The tangential velocity of the space station is calculated using the conservation

of kinetic and potential energy.
1 2 GmM
mv3

=
(4.1)

/2GM
(4.2)

where Me is the mass of the earth, and G is the universal gravitational constant.

Also, from simple kinematics,

Wa = (4.3)

The space station parameters values used are:

Moment of inertia about the axis of rotation I, = 19.7 x 106 kg.m2

Mass M3 = 18.0 x iO kg
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The link parameters values used are assumed identical links:

Link length i = 5.0 m

Link mass m = 20.0 kg

Link moment of inertia about the joint axis I 200.0 kg.rn2

The reference frame is located at the centre of mass of the space station. The end effec

tor is assumed to move along a straight line from the point (7.5,6.5, 6.5) to (7.2,5.5, 6.2),

and it is assumed to be rotated to the appropriate orientation at the end point of the tra

jectory. The distance travelled is y = /(7.5 — 7.2)2 + (6.5 — 5.5)2
+ (6.5 — 6.2)2 = 1.09

m. Assume that the time duration of motion T ( equation (2.26) ) is 2.0 seconds, the

acceleration limit a ( equation (2.33) ) is 10 rn/s2 and the angular acceleration limit (
equation (2.34) ) is 10 rad/s2. Then the curtate cycloidal parameters a, b1, b2 and c ( see

equations (2.23) through (2.25) ) are obtained for this specific end effector trajectory, as

a = 0.31831, b1 = 0.3597, b2 = 0.0297 and c = 0.9934. The linear jerk limit ( equation

(2.37) ) and the angular jerk limit ( equation (2.38) ) are calculated as a = 814.98 m/s3

and a = 672.93 rad/s3,using equations (2.37) and (2.38) respectively.

The end effector trajectory is divided into 200 intervals. During the initial step, the

optimal joint configuration of the robot is determined by carryiny out an optimization (
an exhaustive search method ) as, q = —2.2605 rad, q = 1.1250 rad, q3 = 1.5507 rad,

q4 = 2.0675 rad, q5 = —0.6290 rad, q = 1.2293 rad, and q7 = —0.1662 rad. Next, the

unconstrained optimization is carried out for each successive interval of the trajectory to

obtain the optimal joint trajectory.

A nonoptimal case is also simulated for the same end effector trajectory, by select

ing an arbitrary trajectory for qr by assigning the values for c1 = 1 and c2 = 1 for the
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ploynomial coefficients; and then obtaining qn and other variables to satisfy the specified

end effector trajectory.

The results are shown in Figures 4.4 through 4.12. These figures compare the optimal

case with the nonoptimal case.

Figure 4.4 shows the end effector trajectory for both the optimal and the nonopti

mal cases, which are constrained to be identical. The time interval is divided into small

enough steps so that there would be no deviation present due to numerical errors.

Figure 4.5 shows the optimal and the nonoptimal cost functions as functions with

respect to trajectory time. The relative magnitude of the optimal cost function is much

lower in comparision to that of the nonoptimal one, thereby indicating the potential

reduction of the dynamic interaction through trajectory optimization using the presented

approach. The corresponding joint trajectories (q to q7) are shown in Figures 5.5 through

4.12.

4.2.2 Simulation Results for the Three d.o.f. Planar Robot

The parametric studies are carried out using a three-degree-of-freedom planar robot

with revolute joints. Its kinematic and dynamic models are given in Appendix A. The

parameters of the space station remained the same as in last simulation while the param

eters of the robot are listing in Table 4.2.2. Noted that the mass of each link remained

constant, while the link lengths and the moment of inertia for each link have been changed

accordingly. Specifically, the moment of inertia changes proportionaly to the square of

the link length.
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Figure 4.4: End Effector Trajectory

The end effector is assumed to move along a straight line, from point (7.5,4.0) to

(8.0,4.5), through a distance y = /(7.5 — 8.0)2 + (4.0 — 4.5)2
= 0.71 rn. Assume the

trajectory duration T ( equation (2.26) ) as 0.7 s, the acceleration limit a ( equation (2.33)

) as 10 m/s2. Then the curtate cycloidal parameters a, b1, and c of the end-effector (
equations (2.23), (2.24), and (2.25) ) are obtained for this trajectory, as a = 0.11141,

= 0.73406 and c = 0.75224. The linear jerk limit is computed using equation (2.37)

as a = 963.43 rn/s3.

The end effector trajectory is divided into 200 intervals. The initial optimized joint

configuration is found to be q = 1.48 rad, q = —0.42 rad, q3 = —1.44 rad. Simula

tions are carried out with different link lengths for the parametric studies. The results

are shown in Figures 4.13 and 4.14.
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Figure 4.5: Base Reaction Cost Function

Figure 4.13 shows the optimal cost functions for different link lengths. The results of

curve 7 and curve 8 show clearly to be better than that of other curves, indicating an

enhanced optimal case. Curve 7 indicates the situation of having the length of the first

link decreased, and curve 8 indicates the situation of the length of the first link decreased

while the length of the third link is increased.

Figure 4.14 shows the curves 7 and 8 in Figure 4.13. Note that the link lengths for

the case of smaller cost function ( curve 1 ) are = 2.5 m, 12 = 5 m and 13 = 7.5 m,

and for the larger one ( curve 2 ) they are = 2.5 m, 12 = 5 m and 13 = 5 m.

It shows that the cost function is highly depended on the parameter values of link

lengths. The functional dependance is complex, but can be numerically simulated and

optimized. In particular, reducing the length of the first link for the manipulator seems
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to have the biggest impact on minimizing the cost function values. This phenamenon

is in agreement with physical interpretation because the first link produces the biggest

direct torque contribution to the base station, which is directly proportional to the length

of the first link. Therefore, It implies there are opportunities for design optimization.

4.3 Summary of Results

Using the framework of trajectory optimization, that was presented in the previous

chapter, several simulation studies were carried out. The method utilizes the kinemat

ically redundant degrees of freedom of a robot as means for instantaneous local op

timization of a quadratic cost function of the disturbance forces and moments at the

support structure of the robot. In this manner the best joint angle trajectories may be

0.5 1
Time (s)

Figure 4.6: Joint 1 Trajectory
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planned. The computer simulation has been developed using MATLAB© software on

a SUN SPARC station platform. The software is structured into a modular high level

form. The processing time of simulation is excessive because of the complexity of the

optimization. The simulation algorithm is however robust, with a built in capability to

avoid singular configuration of the robot and options to select a level of accuracy for the

optimization. Simulations were carried out based on the model of optimizing the joint

angle trajectory to satisfy a specific straight-line trajectory for the end effector. The

difference between optimal and non-optimal cost function values ranges from 2 dB to 3

dB. The individual joint angle motions of the optimal trajectory are also found to be

smoother than those of the non-optimal trajectory. Figure 4.13 illustrates how the cost

function changes with the link length of the manipulator. This plot shows that a locally

optimized cost function is still functionally dependent on the physical parameters such

as link lengths of the robot. This strongly suggest that the optimization using kinematic
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redundancy may be further utilized to do design optimization. However, a method of

defining a global cost function is required, and a technique to optimize such a cost func

tion must be developed and implemented. This aspect is addressed in the next chapter.
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Chapter 5

Parameter Design Optimization

5.1 Background

Design engineering for space robots covers many aspect of the space system; desirable

parameters include high capacity/mass ratio, low parts count, modularity in configura

tion, large work envelope for the activity environment, dexerterity in the end effector and

also low dynamic interaction with the supporting structure which is typically tIie space

station.

Reduction of dynamic interactions in a space robotic system by path planning forms

the basis of present thesis. This will minimize the required control effort, and thus reduce

control fuel in the space operations. This idea may be extended to the design of a space

robot system. Specifically, minimization of dynamic interactions between a robot and the

space station is used as the criterion for parameter design optimization that is described

in this chapter. The dynamic interaction is quantified by a mapping of reaction forces

and torques into a scalar functional. Such a mapping is expressed as a cost function,

which has to be minimized in the design procedure. Both local and global disturbance

effects have to be studied using an appropriate cost function, in the design optimization.

As discussed in chapters 2 and 3, in addition to its use in dexterity improvement and

sigularity avoidance, kinematic redundancy can be successfully applied to minimize the

64
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base reactions through appropriate planning of the joint trajectory, for a specified end

effector trajectory. This is possible because the extra and redundant degrees of joint

angle freedom can be utilized to locally minimize a cost function in terms of reactional

forces and torques at the support structure, throughout the trajectory. In particular, it is

attempted in this manner, to maintain the dynamic forces and moments at the location

of interaction with the support structure ( space station ) to be the same as reference

values set in the cost functional formulation.

A unified approach for robot trajectory optimization, design and control has been

proposed by de Silva [24]. Here the design of the robot system is linked to the problem

of trajectory planning. This approach integrates the latest technology in each field in the

spirit of concurrent engineering. The main steps of the procedure of the unified design

optimization are:

1. Define the robotic tasks.

2. Group the tasks into appropriate, general subtasks, using a group technology ap

propriate.

3. Design the end effector trajectory for each subtask.

4. Select robotic parameters for individual groups.

5. Select a common set of parameters for all groups.

6. Optimize trajectory of each subtask using kinematic redundancy built into the

robot.

7. Shape the optimal cost function by parameter redesign if needed.
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8. Design the controller to achieve the optimized joint trajectories.

An effort to apply this general approach for a simple 3-R robot is given in the follow

ing section.

5.2 Global Parameter Optimization

Optimization of the joint angle trajectories of a redundant manipulator to minimize

the reaction forces and torques generated at the base of the manipulator, according to

a cost function defined locally along the trajectory, is the fundamental problem in the

present work. This locally optimized cost function may be reshaped globally through

parameter changes, and could constitute a design approach for the robot system.

In a unified parameter design optimization approach, it follows that, a global opti

mization can be quite useful. Unlike joint variables, geometric parameters such as link

lengths and mass are considered global parameters. These parameters affect the dynamic

forces and interactions because link lengths and inertia are directly present in the dy

namic equations. For example, the link length is a global parameter in the sense that

variations in it affects the workspace of the robot manipulator irrespective of joint angle

configurations. Therefore, the end effector path imposes a constraint on the link lengths

and vice versa. Note that link parameters do not have the same level of freedom as the

local variables such as joint angles.

To optimize the choice of the design parameters i for a particular task, a global cost

function F2 is defined as:

F2
=

Fdt + /3Fmax (5.1)
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Fmax = Max(F) (5.2)

where a, /3 are positive constants, t1 is the final time of the trajectory, F is the instan

taneous cost function value at the i th interval, as defined in the previous chapter, and

Fmax is the peak value of the entire cost function along the end effector trajectory. In

other words, the global cost function is the sum of the time integral of the local cost

function and a weighted measure of the peak value of that cost function. The purpose

of this cost function is to limit the peak values of the previous cost function, and also to

restrain the global time average of dynamic reaction of the manipulator. In other words,

in the global optimization process the local cost function would be reshaped through the

proper selection of the design parameters.

The parameters of optimization here are 4, which may represent, for example, link

lengths and link inertia values. In what follows, we assume that the design parameters 1,

are link length alone. Then, the link inertia values could be adjusted depending on the

link lengths according to same design strategy.

5.3 Computer Simulation

Based on the global cost function presented in the previous section, numerical simu

lations are carried out in the MATLAB© environment. The flowchart of the simulations

is shown in Figure 5.1. The method of optimization used is the nonuniform convergence

of a feasible set using a gradient line search algorithm.

The procedure of global optimization of the base reactions using link lengths i as the
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optimization parameters, for a given end effector trajectory, is as follows:

1. Assume an initial best guess for i.

2. Use joint angle redundancy to minimize the instantaneous forces and moments at

the supporting structure using a quadratic cost function, with the design parameters

i being kept unchanged.

3. Integrate the instantaneous cost function, and identify the overall peak value of

the cost function. Calculate the global cost function for the end effector trajectory

using this information.

4. The global cost function Fg is used to globally optimize the system using link

parameters 4 subject to physical constraints. During each search step, goto Step 2

to obtain a best fit joint trajectory for a specific end effector trajectory.

The flowchart of computer simulation of this design procedure is shown in Figure 5.1

5.4 Results and Discussions

5.4.1 Optimization Results

A 3-R planar robot manipulator in 9?2, as shown in Figure 5.2, serves as the model for

the computer simulation, for parameter optimization. Assume that the reference frame

is located at the centre of mass of the space station, with the x — y plane coinciding

with the motion plane. The link length is denoted by 4. The joint angle q is the angle

between link 1 and x-axis. The joint angle q2 is the angle between link 2 and link 1, and

q3 is the angle between the links 3 and 2.
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The space station is assumed to be orbiting the earth at a geosynchronous period of

24 hours. The following parameters values are used for the space station:

Moment of inertia about the axis of rotation I,, = 19.7 x 106 kg.m2.

Mass M3 = 18.0 x iO kg.

The link mass values used are

Link mass m1 = 20.0 kg.

Therefore, the moment of inertia will also be changing as the square of the link length,

which is to be optimized.

An initial guess of link length is set at 1 = [5 5 5]. In each optimization search

step, for every change in link length, program calls the local cost function optimization

routines to obtain the best set of joint trajectories.

The optimization program is set to search for the best numerical solution that satisfy

a given physical constraint [20].

ll+l2+1315 (5.3)

l312

0.512 13

The constraint equations set the limits of the workspace of the manipulator as well as

the ranges of the values for link 2 and link 3 based on physical considerations.

During local optimization period, the end effector is assumed to move along the

same straight line, from point (7.5,4.0) to point (8.0,4.5), traveling the distance
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y = J(7.5 — 8.0)2 + (4.0 — 4.5)2
= 0.71 m. Assume that the time of the trajectory mo

tion ( T in equation (2.26) ) to be 0.7 second, and the acceleration limit ( a in equation

(2.33) ) to be 10 rn/s2. Then the curtate cycloidal parameters a, b1, and c are obtained

for this specific end effector trajectory as, a = 0.11141, b1 = 0.73406 and c 0.75224.

The end effector trajectory is divided into 200 time intervals. The starting joint config

urations are obtained through optimization within the first step, and was found to be

qi = 1.48 rad, q = —0.42 rad, q3 = —1.44 rad, This remained unchanged in each

global optimization.

The globally optimal set of link variables was found to be 1 = [1 7 7] with the global

cost function value of f9 = 1.19 x iO. Figures 5.3 and 5.7 present the results. Figure

5.3 gives the end-effector trajectory used in the simulation. In Figure 5.4 the locally

optimized cost function for link lengths 1 = [5 5 5] is shown as the reference ( curve 2

) with which the global optimization began. In the same figure, the instantaneous cost

function for the final step of global optimization, which corresponds to 1 = [1 7 7], is

also shown. As expected, the instantaneous cost function for 1 = [1 7 7] is found to be

substantially smaller than that of 1 = [5 5 5] throughout the end effector trajectory.

This shows the potential of using the dynamic reactions at the support structure as the

performance index.

5.4.2 Summary of Results

Based on the simulation model for trajectory planning using kinematic redundancy,

a global cost function is defined as the time integral of the local cost function with an

additional term given by a linear function of the overall maximum value of that local

cost function. The optimization algorithm uses a recursive technique to optimize the
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Figure 5.3: End Effector Trajectory
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Figure 5.4: Optimal Local Cost Function Values for 1 = [1 7 7] (curve 1) and I = [5 5 5j
( curve 2 )
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link length parameters globally and the joint trajectory locally, in succession. In this

manner, the link lengths of the robot are optimized as well as the joint trajectories. The

link lengths are optimized with respect to a set of physical constraints while the joint

trajectories are considered unconstrained. The computer simulation were carried out for

a three-degree-of-freedom, revolute, planar manipulator. This method of optimization

takes many hours of CPU time because of the high level of computational complexity

of the global optimization. However, the results indicate that the algorithm and the

numerical model are robust, with the cost function of the final optimal design being 1dB

to 2dB below that of the initially, locally optimized case. As shown in the computer

simulation results, a set of optimized design parameter values is obtained as 1 = [1 7 7].

It is expected that the optimal link length values will always be depend ent on the defi

nition of the global cost function and the physical link constraints. This is a brute force

method of doing design optimization. The methodology is essentially a local analysis

approach because the global cost function is still directly related to the locally optimized

joint trajectory. This functional relationship is embeded in the cost function definition,

and the looped optimization procedure. A more global approach to exploit the funda

mental relationship between link parameters and the cost function would be desirable.

In the next chapter, a relatively global technique for analysing of inverse kinematics of a

redundant manipulator from a topological point of view will be used for the parameter

design optimization of the manipulator.



Chapter 6

The Trajectory Manifold Approach

6.1 Introduction

In the investigation described in the previous chapter, the trajectory optimization

of robots has been based on the instantaneous kinematics approach. This approach has

been applied to both local trajectory optimization and global design optimization with

the cost function that expressed in terms of the dynamic forcs and torques at the sup

port structure. Burdick [27] has, however, look at the global application of redundant

kinematics of manipulators from a topological point of view. Here, the infinite number

of trajectory solutions, which is possible in view of the kinematic redundacy, is grouped

into a finite and bounded set of disjoint and continuous manifolds, known as self motion

manifold. This concept of self motion manifold for a redundant robot manipulator is ex

tended in the present chapter into a systematic and convienient method for redundancy

resolution and parameter design optimization.

Smooth surfaces may be generalized as manifolds in an abstract, multidimensional

hyperspace. In manifold theory, a smooth n dimensional surface may be characterize

by a set of flat Euclidian surfaces in the n dimensional Eucidian space. In such a

framework, useful mathematical concepts like differentiation become meaningful in the

neighborhood of any locally defined coordinates. The concept of manifold has useful

applications in robotics because the trajectories of joint angle coordinates for a general n

79



Chapter 6. The Trajectory Manifold Approach 80

degree-of-freedom manipulator can be treated as an ri dimensional manifold flow, and the

mathematical tools used in manifold theory can be applied to solve robotics problems.

This can provide new insights into understanding robotic dynamics through a new ge

ometric perspective. In particular, for kinematically redundant manipulators, manifold

theory allows for the resolution of infinitely many possible trajectories into a finite group

of submanifolds with similar characteristics. Furthermore, this approach allows for the

implementation of a global cost function through a natural definition using the concept

of a path integral along a family of submanifold.

The forward kinematic function of a manipulator is a nonlinear vector function that

maps joint angle vectors into the end effector position and orientation vectors. For a

redundant manipulator, there exist infinitely many joint angle configurations that can be

mapped into a single end effector position and orientation. However, this set of infinite

points can be grouped into a finite set of manifolds, each with a set of distinct global

geometric characteristics. These submanifolds are known as “self-motion” manifolds. In

other words, the motion in joint angle configuration in a self-motion manifold leaves the

end effector motionless.

From the foregoing discussion it should be clear that a specific manipulator task maps

out a specific end effector trajectory, which in turn maps out a family of flow submani

fold, or “self-motion” submanifold. By defining the global cost function, which represents

dynamic interactions between the robot and its support structure, along each submani

fold, the design parameters of the robot system can be optimized by computing the cost

function. Here the concept of Path Integrals is introduced. Since the full description

of reaction forces and torques is complex for symbolic computation, only the first order

approximations of F and N are considered. In other words, only higher order terms in
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F and N containing link variables l are considered in evaluating the path integral in

the global cost function calculation.

6.2 Manifold Formulation of Manipulator Kinematics

In order to analyse the global characteristics of redundant manipulators, one needs

to understand the kinematics of the robot in terms of manifold mapping instead of local

kinematic analysis [26], [27].

6.2.1 Forword Kinematics

Let Q = {q} be the set of joint angle coordinates for the manipulator. Here, {q2} is

of dimension n. Let X = {} be the set of end effector coordinates in vector space

of dimension m. Note that, for kinematic redundancy of a manipulator we must have

nm+1

The forward kinematics of a manipulator may be expressed as a nonlinear vector func

tion which relates a set of Ti joint coordinates, Q, to a set of m end effector coordinates:

X = f(Q) (6.1)

The forward kinematic function in equation (6.1) maps a given joint configuration,

Q, to a unique end effector location, X. The set of joint configurations forms the “con

figuration space”, C, and the end effector locations form the “workspace”, W. Therefore,

the forward kinematic function can be understood as a mapping of points from the con

figuration space to the workspace.

f(Q) : C = W (6.2)
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where, C = configuration space; W = workspace. The configuration space has an n

dimesional torus manifold. The workspace has a sheet liked structure.

6.2.2 Inverse Kinematics

The inverse-kinematics relation is given by:

Q = f(X) (6.3)

For a redundant manipulator, and a given end-effector position and orientation, there

exists an infinite number of solutions in {q2} to satisfy the f operation. In other words,

f is a one-to-many mapping, that is, for a fixed X = {z1} then Q = {qj is not a

compact set. However, a non-redundant manipulator would have a bounded set of dis

crete and finite points in the configuration space for a given end effector position and

orientation in the workspace.

For a redundant manipulator, let r = n — m be the degree of redundancy. The

inverse-kinematic solution is represented as a group of one or more disjoint r-dimensional

manifolds M, such that,

f_i(X) = UM() (6.4)

and

M2()flM3(b)= 0 V i j (6.5)

Note that M2 is the i th r-dimensional submanifold, with i = 1, 2, . . s, where, s is

the number of self motion in the inverse kinematics solution. Furthermore, is a vector

of r independent parameters, b = ...,
/i,.}, which are the generalized coordinates for

the self motions.
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Each of these submanifolds is thought of as a “self-motion” manifold, which is a set

of continuous joint motions that has no effect on the end effector motion.

6.2.3 Jacobian Relations

Differential relationship between the joint displacement and the end effector position

is given by:

ax = J6Q (6.6)

where J is the m x n Jacobian matrix of the redundant manipulator. The incremental

self motion which corresponds to the incremental joint motion 6Q, is given by the

differential relationship.

Si/i — J, SQ (6.7)

where J is the r x n Jocabian matrix, and r = n — m.

Let us consider the end effector coordinates and the self motion variables as an aug

mented task vector {X, i/i } . The differential relationship corresponding to this new set

of generalized coordinates is:

ax
= JA SQ (6.8)

where JA is an n x n augmented Jacobian matrix, which is given by

ax,aq
JA = (6.9)

8b/ãQ

Note that the augmented Jacobian JA will be singular whenever J loses rank and/or

when J is not full rank. Assuming that this is not the case, the joint velocities are
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obtained from equation (6.8), as

x
Q = (6.10)

1’

and the joint accelerations are obtained by differentiating equation (6.8), as

x
Q = .. — JC’JAQ (6.11)

7,1’

6.2.4 Manifold Solution for a 3-R Robot

Consider the three-degree-of-freedom planar robot that has been discussed in the

previous chapters. There are two possible sets of joint configurations for this 3-R manip

ulator.

1. 62a, 83a} = {(cz + 77), (,‘ — 7r), ( — a —77 —7 + ir)} (6.12)

2.{81b,82b,O} = {(a—77),(1r—7),(’’—a+77+7—r)} (6.13)

where,

a = tan’( Ye —

13 sifl3b)
(6.14)

Xe — 13 C05

cos’(
21112

(6.15)

12 12 R2
77 co&(

21112
2) (6.16)

(6.17)
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Here, {Oia, °2o 6} is a set of joint motions in manifold a. {Olb, 62b, 8} is a set of joint

motions in manifold b. {e, ye} is the position vector of end-effector. Also, b is a redun

dant independent variable which is defined as the orientation of the third link relative

to the base coordinate frame, and 11, 12, 13 are lengths of links 1, 2, and 3 respectively.

As b changes in its feasible range [7r, —7rj, equations ((6.12) and (6.13) ) will define two

1-dimensional manifolds in the configuration space. These manifolds are disjoint for all

values of tb unless the Jacobian submatrix formed by links 1 and 2 is not full rank.

6.3 Design Parameter Optimization

As in the previous chapter, the objective of the parameter design problem for a space

robot is considered as the optimal selection of the most suitable set of link length {l}

for the manipulator such that the dynamic interactions with the support structure are

minimized in a global manner. In particular, we wish to select a set of suitable design

parameters such as link lengths to find an appropriate trajectory £, such that,

jFdt = mm [jFdt} (6.18)

subject to the following constraints:

11 + 12 + 13 = 15 (6.19)

l312

0.512 13

where F is the global cost function. F is path dependent, and hence depends on the

fundamental joint motion variable such as q, j, and . F is also dependent on the design
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parameters {l}

The cost function used for parameter optimization must be global and representative

description of the dynamic objective ( e.g. minimization of the dynamic interaction ).
Also, it must explicitly depend on the design parameters. However, for the simplification

of numerical simulations, the partial functional dependance is considered to include the

most significant contributing terms. Suppose that the functional form of the global cost

function is

Fc
=

+ 4qkllk)dt (6.20)

The first term of the integrand is representive of the direct inertia forces while the second

term is representative of the cross coupling effects between joints.

The procedures used in the design parameter optimization using the monifold method

are as following:

1. Initialize the self motion parameter 1’ and the design parameters (link length i ).

2. Generate the end effector trajectory. Divide the trajectory into a suitable number

of time intevals.

3. Compute the multiple set of self-motion manifolds.

4. Compute the augmented Jacobian matrix JA, and also JA’, JA, along with the

end-effector velocity e and acceleration a. Compute the joint velocities Q and

accelerations Q.

5. Repeat Steps 2, 3 and 4 for the complete trajectory.
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6. Compute the global cost function for each self motion monifold. Select the manifold

with the smallest cost function value, for use in the optimization.

7. Increment the link lengths so as to minimize the cost function, subject to the

physical constraints of these parameters.

8. If the minimum cost is not reached, go to Step 2. Else stop.

6.4 Computer Simulation

As before, let us consider a 3-R planar robot manipulator in J2 as the model for

the computer simulation. This robot and supporting space station are schematically

shown in Figure 6.1. Assume that the reference frame is located at the centre of mass

of the base, with the x — y plane coinciding with the motion plane. The link lengths are

denoted by l. The joint angle q1 is the angle between link 1 and the x-axis. The joint an

gle q2 is the angle between links 2 and link 1, and q3 is the angle between the links 3 and 2.

Let the self motion parameter /‘ be defined as the orientation of the third link relative

to the x — y — z inertial reference frame. For a given end effector position (se, ye), there

are two possible sets of joint configurations.

Suppose that the global cost function is defined by:

F
= (6.21)

In order to compute the global cost function, let us assume that the initial position

of the end effector is set at {a,,y0}. Also the end effector velocity v and acceleration a

are obtained from cycloid motion assumptions as described in Chapter 2.
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Figure 6.1: A Three-Degree-of-Freedom Planar Robot and a Supporting Space Station
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The self motion parameter b, which is defined as the angle between the third link of

the robot and the inertial reference frame, is given by:

‘‘=q1+q2+q3 (6.22)

The Jacobian matrix J of the 3-R planar manipulator is given by:

J
= us1 — — 13s123 —12s12 — 13s123 —13s123

(6.23)
lid — 12Ci2 — 13C123 —l2Ci2—l3Ci23 —l3Ci23

and the Jacobian matrix J corresponding to incremental self motion S’çb and the incre

mental joint angle SQ is given by:

= [] = [111] (6.24)

the augmented Jacobian matrix JA, is given by:

us1 — 12512 — 13S123 —12S12 — 13S123 —l3S123
J

JA = = u1c1 — 12 C12 — 13c123 —i2c12 — u3c123 —i3c123 (6.25)
Jb

1 1 1

Now, the joint velocities can be obtained from equation (6.10), and the joint acceler

ations from equation (6.11).

The space station model is assumed to be the same as in the previous simulations.

The robot parameters are as follows:

Link length 1: = 5.0 m.

Link mass m1 = 20.0 kg.

Link moment of inertia about the joint axis I = 200.0 kg.m2.

It is assumed that the end effector moves along the straight line, from point (7.5,4.0)

to (8.0,4.5), as before through a distance y = /(7.5 — 8.0)2 + (4.0 — 4.5)2
= 0.71 m.
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Assume that the time duration of the trajectory ( T in equation (2.26) ) is 0.7 s, the

trajectory acceleration limit ( a in equation (2.33) ) is 10 rn/s2. Then the curtate cycloidal

parameters a, b1, and c are obtained for this specific end effector trajectory, as a =

0.11141, b1 = 0.73406 and c = 0.75224. The linear jerk limit ( as given by equation

(2.37) ) is obtained as a 963.43 rn/s3. The end effector trajectory is divided into

200 time intervals. The global cost function is calculated for the two manifolds, and the

smaller is chosen for the cost function optimizatiom. The optimal set of link lengths is

found to be 1 = [5.4 6.4 3.2 J with the minimum value of the global cost function as

fg = 4.78 X iO.

Table 6.1 presents a set of global cost function values and the corresponding link

lengths. The optimal result is given by the shaded row.

6.5 Summary of Results

In this chapter, the idea of flow manifolds, the separation of inverse-kinematic so

lutions of a robot into self motion manifolds, and the application of the concept of self

motion for design optimization have been developed. Base on the definition of the global

cost function as a path integral of design parameters on individual self motion manifolds,

the cost function was computed along all self motion manifolds using the augmented Ja

cobian matrix, and the one with minimum value was set to optimize for the best design

parameters. The global cost function is defined through a heuristic interpretations of

the dependance of the base dynamic interaction on the link parameters, such that only a

few quadratic terms are used to approximate the functional relationships. This method

was used to simulate the parameter design optimization for a 3-R planar robot, and

simulation results shown on Table 6.1 indicated that the method is capable for design

optimization. This is another alternative to the brute force design optimization process
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Table 6.1 Cost Function Values versus Link Lengths
Link Lengths

Cost Function
lI 12 13

2.0 7.0 6.0 7.16x10e3

3.6 4.6 6.8 7.80x10e3

3.8 6.4 4.8 5.62x10e3

4.0 7.6 3.4 4.90x10e3

4.4 4.0 5.6 5.94x10e3

4.8 5.2 5.0 5.77x10e3

54 64 32 { 478x1OeS
5.0 6.6 3.4 4.82x10e3

5.2 6.0 3.8 4.99x10e3

6.0 5.4 3.6 5.04x10e3

7.8 3.2 4.0 5.41x10e3

7.6 4.0 3.4 5.61x10e3

8.0 4.0 3.0 5.66x10e3
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as described in the previous chapter. This method provides a more transparent design

optimization because of the simplified cost function. Also, as a result of the computations

being able to be done symbolically rather than numerically, the computed global cost

function becomes a simple polynomial ( quadratic ) function of the design parameters.

This method has its limitations as well. One is the difficulty to resolve the redundant,

inverse kinematics into self motion manifolds for a manipulator with large number of

degrees of freedom. Another is the error introduced as a result of using a simplified cost

function.

In comparision to the results obtained by the method of the previous simulations,

the optimal set of link variables obtained by the manifold method, in this Chapter, is

different for the following reasons:

1. The global cost functions used are different. In the manifold method, the symbolic

cost function consists only of a few terms expressed as a quadratic form of l,

whereas the cost function in the original simulation in Chapter 5 uses the complete

expression for the base reactions.

2. The approach in Chapter 5 utilizes the joint angle redundancy to locally minimize

the instantaneous forces and moments along each interval of the end effector tra

jectory, whereas in the manifold method, the joint angles are computed using the

manifold equations.

Topology is the study of global geometric characteristics of mathematical objects,

such as the curvature of surfaces, which is invariant under continuous transformations.

For deisgn optimization, this approach is suitable and convienient because of many simi

plications that can be used. These advantages include the ability to an group the infinite

number of inverse-kinematic solutions into a finite number of classes which depend on
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the link parameters. This provides a more heuristic and direct definition of a g1obaI cost

function with respect to design parameters, even though not exact. Also, a simplified

understanding of the functional relationship between the design parameters and the cost

function is possible through such a cost function. Thereby, the optimization complexity

is reducded which is an advantege in numerical simulations.



Chapter 7

Conclusion and Recommendations for Future Work

7.1 Summary of the Thesis

Advances in the space technology and the development of robotics will lead to more

and more sophisticated robotic designs and advanced control techniques. Unwanted

dynamic disturbances can adversely affect the performance of a space robot system.

The objective of this research has been to explore and develop a methodolgy for the

optimization of robot design parameters, by exploiting kinematic redundancy in the

robot. The scope of this research includes the analytical formulation and computer

simulation of the optimization of trajectory planning using kinematic redundancy, and

the development of approaches and software tools for optimal parameter design of a

robot. Initially, a robot manipulator with redundant degree of freedom is considered

for minimization of dynamic interaction between the robot and its support structure.

Using this as the preformance measure as expressed by a quadratic cost function, local

optimization along the end effector trajectory, for a specific task, is formulated using the

redundant joint motion as the means of optimization. On this basis, numerial models

have been built using the MATLAB© software language. Computer simulations for both

3-R planar robot and the NASA seven d.o.f. traction drive manipulator have shown

that the base reactions can be effectively minimized through the optimization process.

These software tools are subsequently extended for the analysis of the parameter design

problem for a robot. Two approaches have been developed for this purpose. The first is a

94
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brute force method that numerically describes the global cost function for the parameter

design problem as the sum of a time integral of the previously explored instantaneous cost

function and the scaled maximum of the instantaneous cost function. The second method

uses the mathematical concept of topological manifolds to separate the trajectory flows

of redundant manipulators into different but finite number of “self motion” submanifolds

that have similar geometric characteristics. In each submanifold, the end effector is

motionless, and hence an optimization may be carried out with a proper definition of

global cost function for base reaction minimization. This function is typically a simple

quadratic of the design parameters and can be easily computed and eventually optimized.

Even though there are computational advantages, because the cost function is simplified,

the design results become less accurate. Both methods have been verified through the

computer simulation of a 3-R planar robot manipulator, and have shown to perform

effectively.

7.2 Major Contributions and Shortcomings of the Research

The key accomplishments of this research are:

1. Formulation of the optimization problem for minimizing dynamic interactions be

tween a robot and its support structure, in terms of kinematic redundacy.

2. The MATLAB® modelling of the associated trajectory optimization problem.

3. The development of global techniques for design parameter optimization. This

includes:

(a) Definition of a global cost function.

(b) Development of computer simulation algorithms for optimizing the global cost

function.
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(c) The application of the manifold flow concept to redundant robots for comput

ing the multivalued global cost function as a path integral along the redundant

d.o.f. trajectory.

(d) Development of computer simulation for carrying out the design optimization

process.

(e) Carrying out several computer simulations to illustrate the techniques.

Even though an approach for design optimization has been developed, which was

found to be effective, there are still some issues that need to be addressed, and techniques

that need to be further developed. For example:

1. The overall optimization process is computationally inefficient.

2. The results of the design optimization depond on the specific definition of the

global cost function. The numerical stability of the optimization methods, results

to various parameters of the deisgn problem have not been investigated.

3. The manifold flow method, in this stage, serves only as illustrative purposes. In

particular, only a quadratic function in the design parameters is used to compute

the path integral which forms the global cost function.

4. In the design simulations, only the link length have been used as the optimization

parameters. The explicit use of other parameters such as mass, moment of inertia,

and strength, in the design has not been addressed.
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7.3 Recommendations for Future Work

This thesis has made contributions towards the use of kinematic redundancy for

minimizing dynamic interactions between a robot and its support structure, when carry

ing out specific classes of trajectory following tasks by an end effector. This research has

also made progress towards the development of a robot parameter design methodology,

on that basis. In order to enhance the theory and to realistically apply this work, there

are several reconmmendations that can be made for future research:

1. Development of efficient numerical algorithms for constrained optimization of a

nonlinear global cost function.

2. Extension of the concepts developed here to include other robot parameters and

structures.

3. Development of control techniques that will guarantee the execution of the designed,

optimal trajectories.

4. Enhancement of the design optimization to cover several robotic tasks, through

for example, a group technology approach.

5. Application of the techniques to a realistic design, and evaluation of the design.

7.4 Application of the Work

Since the software modules developed here are general, they may be applied to

simulate any robot. Specific application considered here is in space robotics. For example,

the methodology developed can be used to design a robot manipulator for space station

operation. Consider a robotic task such as deployment of a scientific instrument like the

Hubble Telescope using a redundant Canadian Arm on a NASA space shuttle mission.



Chapter 7. Conclusion and Recommendations for Future Work 98

For the purpose of saving fuel and minimizing the dynamic disturbance on the space

station, the design parameters of the Canada Arm can be optimized according to the

task specifications of the mission. First, kinematic and dynamic requirement of the end

effector of the arm are used to calculate the kinematic parameters in the curtate cycloidal

motion planning for the manipulator. Secondly, physical considerations on dynamic

disturbance can be translate into an appropriate weigthing matrix Q for the description

of the cost function at the base station. The robot arm trajectory, either a straight line

or more complex motion, is used to help generate the appropriate joint trajectory for the

robot arm using inverse kinematics in the kinematic.m software module. The link length

optimization for the Canada arm can be done using the brute force method described in

Chapter 5. In this case, the Jacobian matrix for the Canada arm need to be derived, the

physical parameters of mass, moment of inertia, and the parameters in the description of

the global cost function all need to be realistically estimated according to the engineering

specification of the space mission, but the methodology of design optimization is identical

to the procedures outlined in the thesis. After the optimal selection of link parameters,

the redundant trajectory planning software module can also be applied to generate the

best joint angle path for the Canada Arm to deploy the instrument from the start point

to the end point according to the specified end effector trajectory, either a straight line or

a curve. However, there is of course the need to design controllers to regulate the joints

of the robot accordingly. But nevertheless, the Canada Arm can now deploy a payload

swiftly and smoothly.
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Appendix A

Appendix

A.1 Kinematics and Dynamics of a Three d.o.f. Planar Robot

For a 3 d.o.f. planar robot with rotary joints, the Jacobian matrix is given by:

J
= —us1 — 12s12 — 13s123 —12s12 —13s123

(A.1)
—lid — 12C12 — 13C123 —l2Ci2 —l3Ci23

The positions of the centers of mass of the links with respect to the base reference

frame are:

(r1) lCC
r1 = = (A.2)

(r1) —lcisi

(r2) l2C1 +42C12
= = (A.3)

(r) l2S1 +l2S12

(r) 42C1 +l2C12 +143C123
rC3 = = (A.4)

(r3) 1c251 + lc2Sl2+l3S123

where

C1 = cos 8, S1 = sin 8, C1 = cos(81 + 63), S, = sin(62 + 6,),

C, = cos(61 + 63 + 6k), St3 = sin(61 + 0, + Ok)
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The velocities of the centers of mass of the links are obtained by differentiating equa

tions (A.2) through (A.4):

— id 1S1
= (A.5)

id 1C1

—
iC2(qL +2)S12

= (A.6)
lciqiCi + 1c2(ql +2)C12

—l1q1Si — 1d2(ql +2)S12 — lC3(1 + 2 +3)S123
= (A.7)

liqiCi + 1c2(ql +2)C12 + 1d3(ql + 2 +43)C123

The accelerations of the centers of mass of the links are obtained by differentiating

equations (A.5) through (A.7):

1 2’ I
ciq1L’i — ‘ciq1’i

= (A.8)
— id ?si + C1

—l1qC1— liij1S1
— l2( +)2C12 — Ld2(l +2)S12

= (A.9)
—l1qS1+ liq1Ci —l2(q +)2S12 + 1c2(ql +.2)C12

— L11j1S1 — l2(q +)2C12
— i2(ql + 1j2)S12

.—ld3(q + + j)2C123 — lC3(ql + ‘2 + )S123
Vc3 =

—l1qS1—i1ij1C1 — i2(q + 4)2S12 — l2(1 +2)C12

—lC3(q + 4 +)2C123 — id3(ql + q2 + )S123

The angular accelerations of the three links are:

= (A.10)

w2=q1+q2 (A.11)
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w3=ql+q2+q3 (A.12)

The base reaction forces and moment are given by:

= mi(ii) +m2(i2)+m3(i’3) (A.13)

= mi(ii) +m2(i2)+m3(i3) (A.14)

mi(r1)(i’i) — (A.15)

+ m2(rC2)(vC2)Y — m2(rC2)Y(vC2)

+ m3(rC3)(vC3) —

+ Ic14) + 1c2W2 + IC3W3




