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Abstract

The cost of machining for milling is dependent on machining parameters such as spin-

dle speed and feed per tooth. The competitiveness of manufacturing industries can be

increased by optimization of machining parameters. A scientific method for the opti-

mization of machining parameters for workpieces of continously varying radial widths is

proposed in this thesis. The necessary mathematics for the proposed procedure is de-

rived for both single pass and multi-pass milling operations. The computational results

obtained on the basis of derived mathematical formulation are analysed and discussed.

The cutting direction has a considerable influence on the cost of machining. Therefore,

an algorithm to determine the influence of cutting direction on machining cost is also

suggested. The best cutting directions for a number of workpieces of known geometry

are ascertained on the basis of computational results.
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Chapter 1

Introduction

Low costs and high productivity are important requirements of competitive economies.

Sophisticated manufacturing systems, such as Flexible Manufacturing Systems ( FMS )

and Computer Integrated Manufacturing ( CIM ), are quite effective in meeting these

demands. Untended or minimally manned machining centres are the most versatile

form of computerised manufacturing. These systems offer a significant technological

advancement in terms of quality, design, time and costs, and may increase the user's

competitive advantage.

The most advanced automatic manufacturing systems utilize computers as an integral

part of their control. The era of advanced automation started with the introduction of

numerical controlled machine tools. The term numerical control is commonly used for

programmable automation; a demand for high accuracy in manufacturing and a desire

to reduce the production time as well as the necessity to produce complex geometries

were the primary motivations for the development of these machines. Numerical con-

trolled machines are hardware based machines which use electronic hardware and digital

circuit technology. In order to increase the flexibility of these systems controllers based

upon general purpose computers rather than specialised hardware were introduced. The

machines which use these controllers are called CNC (Computer Numerical control) ma-

chines. The schematic diagram of a CNC system is shown in Fig. (1.1). These machine

tools use a computer to control the machine tool and eliminate some of the hardware

circuits in the control cabinet of an NC machine tool. CNC systems are quite flexible

1



I Interpolator Controller Servo
Amplifier

1 Encoder —,—,,— Machine
Tool

Tachometer
Axis Motor ^•■■gk..,■,..

Chapter 1. Introduction^ 2

Computer

Figure 1.1: Schematic Diagram of a CNC System

FeedMicrocomputer
based
adaptive
controller

^--*-
Speed

Feedback data
from sensors

Depth
of cut

Machine
tool
control
system ^a.

Machine
tool

Figure 1.2: Adaptive Machine Tool Control System Block Diagram



Chapter 1. Introduction^ 3

and because of the declining costs of minicomputers and microcomputers the number of

CNC systems has increased tremendously in last few decades.

The full potential of CNC systems can be realized only if there are realistic strategies of

prescribing the operating parameters like speeds and feedrates of the machine tool. Quite

often, the prescription of these parameters is based on the experience and knowledge of

the part programmer. For the prevention of tool breakage and the safety of machine tool,

the most adverse machining conditions, (which might not occur in reality), are taken into

consideration. Therefore, the estimate of operating parameters tends to be conservative,

which results in an under-utilization of machines and production losses. This common

drawback of CNC systems can be overcome to some extent by the adaptive control

strategy. In adaptive control, the operating parameters automatically adapt themselves

to the existing conditions of machining in real time. Adaptive control systems for machine

tools can be divided in two categories:

• Adaptive control with optimization (ACO)

• Adaptive control with constraints (ACC)

In ACO systems, the extremum of a specified performance index is obtained within

process and system constraints. The performance index can be an economic function

such as the process cost or profit. In ACC systems the maximum possible machining

parameters within a prescribed region bounded by process and system constraints are

selected. In reality most ACC systems use a single easily measured parameter as the only

variable. The block diagram of an adaptive machine tool control is shown in Fig. (1.2).

Accurate measurement of tool wear or tool life is important for the implementation of

adaptive machine tool control. The capability of the computing equipment to do all the

calculations in real-time is also crucial for the performance of adaptive control systems.
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Most of the objective functions used for the optimization of machining parameters are

non-linear functions. Direct search techniques or hill climbing methods are required for

the numerical solution of these problems. These techniques are time consuming and

quite often it is not possible to find the optimal solution in real-time adaptive control.

The implementation of adaptive control becomes easier if the optimization of machining

parameters is carried out beforehand and the optimum values are stored in a database.

The primary focus of this thesis is to suggest procedures to determine the optimal

machining parameters for milling with various workpiece geometries. Both single pass

and multi-pass milling operations are considered. Keeping in view the strong influence of

cutting direction on the optimization procedure, an algorithm for the computation of an

optimal cutting direction is also suggested. Some researchers have proposed the adaptive

control of the feedrate based on the maximum allowable force. This method is compared

with the strategy proposed in this thesis.

1.0.1 Thesis Outline

A brief literature review on optimization of machining parameters, adaptive control and

tool path planning for milling process is presented in chapter 2 of this thesis. Chapter 3

discusses the economics of a milling process. The tool life equation, the objective function

and mathematical relations for the constraints are discussed in that chapter. Chapter

4 suggests a scientific basis for the selection of machining parameters for a workpiece

of a given geometry. The optimization of machining parameters for single pass milling

operations and a mathematical formulation for the evaluation of machining time is also

included in that chapter.

Since, in reality, a given cutter can only cut a certain maximum radial width of

cut, (because of physical or dynamic constraints), some practical guidelines have been

suggested for the subdivision of the total machining surface of the workpiece. Chapter 5
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contains the multiple pass optimization problem for milling operations.

Finally, in chapter 6 the problem of determination of the influence of cutting direction

on cost has been addressed, an attempt has been made to determine the cutting direction

that will minimize the cost for a generalized workpiece of given dimensions.



Chapter 2

Literature Review

The examination of the economics of the milling process is an important research topic.

Optimization of machining parameters is a highly desirable goal of any economic study

of milling process. Adaptive control and tool path planning also have a considerable

influence on the process cost of milling. However, relatively little attention has been paid

to this topic by manufacturing engineering researchers. This chapter presents a brief

overview of some of the work done in the areas of optimization of machining parameters,

tool path planning and adaptive control for milling process.

Yellowley and Desmit [1] have modelled the single pass optimization problem for

milling and have developed a suitable algorithm for its solution. They consider variable

cost as the single objective function. An algorithm which minimizes this objective func-

tion within four inequality constraints is used to suggest the optimum values of cutter

diameter, feed per tooth and peripheral velocity for a given geometry of shoulder. An

important conclusion for the selection of cutter diameter and number of teeth is expressed

as follows:

"In general, it would seem that it is preferable to either use the smallest diameter

of cutter available which is capable of machining the required width, or the first larger

radius having a greater number of teeth."

Chang and Wysk [2] have proposed an optimization criterion based on the discrete

transformation method. The objective function for this study is not process cost but

6
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production time which is expressed as follows:

TT = T, + Tt

L^uL
Vf + VfP+ 1 An, d, R, Z)

where

Tc^actual cutting time

Tt^tool change time per unit of work

TT^production time per piece (idle time excluded)

L^length of work piece

u^unit tool change time (could be a function of R and Z)

Vf^cutter traverse speed

n^spindle rotation rate

d^radial depth of cut

R^cutter radius

Z^number of teeth

p^constant coefficient

The tool life equation used in the study is of the following form:

TL, = VI f (n, d, R, Z)^ (2.1)

It is clear from the expression for production time per piece that the objective function

contains five decision variables Vf , n, d, R and Z. Some of these variables like spindle

speed and number of teeth belong to discrete sets such as ST, and S. This fact is

used for the discrete transformation of the objective function. Consequently only three

variables are left and the solution procedure is drastically simplified.

TT
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The optimization procedure suggested by Chang and Wysk is a good analytical exer-

cise but, somehow, falls short of practical requirements. Minimization of production time

is a desirable goal for those economies which have a scarcity of goods. The minimization

of production time is a primary manufacturing objective in very rare situations. In a

modern, free-market, with fiercly competitive economies the real challenge is of reducing

costs and not of reducing production time. Also, the model proposed by Chang and Wysk

does not take into account important constraints such as the tooth breakage and shank

breakage constraint. An optimization procedure which does not safegaurd the cutting

tool from breakage is of limited practical use.

Chatter and the physical dimensions of the tool impose a limit on the maximum radial

width for a single pass. In cases where the amount of stock to be removed in a rough

milling operation exceeds the allowable width, there is a need for a multipass operation.

Yellowley and Gunn [3] have examined the problem of multipass milling operations. The

following mathematical expression is used for the tool life equation:

Tr, =
360^C6

0, Xn1SVa
(2.2)

where

^C6^is a constant

^

Cbs^is the swept angle of cut in radian

^X^is the thermal fatigue parameter

^Seq^is the equivalent chip thichness in mm

^V^is the peripheral velocity in mm per sec.

^

a^is the axial depth of cut in mm

^

a, b, m^are positive exponents
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A similar tool life equation is discussed in detail in the next chapter.

The cutting time per unit length for each pass is given by

tco(i )^C7f2 (d,) ( 1-A )f1 (di )A^(2.3)

f1 (d) and f2 (d) are obtained from the following relations:

S f2(d) < C3

VT'S fi (d)A = C2

where

^C7^is a constant

^

V^is the cutting velocity

^T ^is the tool life

^S ^is the feed/rev.

^C2^is a constant

^C3^is a constant

^d ^is the radial width

and

0<a<#<1^ (2.4)

The objective function is reduced to the following mathematical form:

n

E(f2(d1)(1 -0)fi(di)')
^

(2.5)

0<d,< dmax

E = dTOT
i=1

0 < a < # < 1
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Figure 2.1: Boundary representation of a polyhedron

where

^d,^is the radial depth for the ith pass

^( Lax
^is the chatter limited depth

^dTOT
^is the total amount of stock to be removed

The objective function is minimized and an optimal solution is obtained. The optimal

solution has the property that all passes except one should be taken at the maximum

allowable width of cut, with the one other pass used to remove the required remaining

amount of stock.

Some researchers have reasoned that the optimal metal removal rate should not be

modelled independently of the cutter path selected for the operation. The choice of a,

proper cutter path can reduce the tool wear due to the lesser engagement of the tool

with the job, thus resulting in process optimization.

Wang et al. [5] presented a mathematical model for computing an optimal tool cutter

path for face milling. They utilized this model to identify the minimum length of cut
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for face milling flat surfaces. At the highest level a polyhedron is represented as a set

of surfaces. Then each surface is broken down into line segments which compose the

surface. The lowest level consists of the starting and end points of vectors which are the

vertices of surfaces. An illustration of boundary representation of a polyhedron is shown

in Fig. (2.1). The equation of set of surfaces of a polyhedron would be of the following

form:

AIX + Bl Y + CiZ < (or >)D i

A2X + B2 Y + C2Z < (Or >)D2

ANX + BNY + CNZ < (or >)DN

Each of the above surfaces can be represented in terms of their boundary vectors as

follows:

AT1XT + BT1YT < (or >)DTA.

AT2XT + BT2YT < (or >)DT2

ATNXT + BTNYT < (or >)DTN

An N-sided polygon is divided into (N-2) triangles and the length of cut Lm for each

triangle is computed from an analytical expression. Finally, the lengths Lm for all the

(N-2) triangles are added together to obtain the total tool travel length. This procedure
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is used for a range of sweep angles from 0 to 180 degrees and the angle corresponding to

the minimum tool travel length is thus determined.

The same authors in a second paper [5] have examined the two commonly used ap-

proaches of stair case and window frame milling. Again a boundary representation scheme

is used for the transference of input data about the workpiece geometries. A polyhedron

is represented as a set of surfaces and each surface can be identified by the equation of

its edges. Edges are recognized by their starting or end points

Once the part geometry has been defined, the impact of the selection of a starting

point and cutting orientation on tool path is studied for both stair case and window

frame milling. The conclusions of this study are summarized as follows:

1. In window frame milling, the selection of a starting point does not significantly

affect the length of cut, although a small amount of variation exists.

2. The cutting orientation in stair case milling produces a significant impact on the

length of cut. The average variation is on the order of 5 — 10 percent. The worst

case can be as much as 100 percent.

3. There appears to be no correlation between the optimal cutting orientation and

other control parameters, such as tool diameter and number of edges.

4. Based on the experimental results, the optimal length of cut generated by stair

case milling is better than that generated by window frame milling. However, the

average results from stair case milling are sometimes worse than those of window

frame milling.

5. From the experimental results, the authors observed that, for stair case milling of

regular polygons, the optimal cutting orientation is normally parallel to the longest

edge of a given polygon.
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Prabhu and Wang [6] have also developed a mathematical model representing the

total tool path on an N-sided convex polygon surface. They have considered the stair-

case type of tool path. The mathematical formulation is complex and can not be solved

by standard analytical or numerical methods. They have proposed an algorithm to find

an optimal solution between 0 and 180 degrees. The conclusions of this study are stated

as follows:

1. For a triangle the optimum sweep angle seems to be the one which makes the sweep

path parallel to the largest side of the triangle, which is consistent with the findings

of Wang et al. [5].

2. For a square or rectangle or parallelogram the optimum sweep angle is the one that

makes the sweep parallel to any one of its sides.

3. If the square is divided into two triangles the sweep of the tool path parallel to the

largest side of the triangles does not give an optimal solution.

4. A series of local optima of the objective function make global optimization difficult.

The above mentioned tool path planning studies for milling use length of cut as the

only optimization criterion. The authors of these studies have indicated that shortest

length of cut would minimise the tool wear. It is, however, not clear why these researchers

have chosen this objective. In most practical situations minimization of process cost is

the foremost consideration and in some rare cases minimization of production time is

the primary goal of manufacturing planning. Minimization of tool wear may not fulfil

any of these objectives. It has been proven by Yellowley [1] and Chang et al. [2] that

both process cost and production time depend on the machining parameters. Therefore,

a study on optimal tool path planning without any regard to machining parameters and

constraints may not be too useful for manufacturing engineering.
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It has been mentioned in chapter 1 that the adaptive control of machine tools is an

effective way of selecting machining parameters and reducing costs. Several researchers

have proposed the adaptive control of machine tools by varying the feed rate adaptivaly,

and keeping the cutting forces below the limiting value.

Tlusty et al. [7] proposed the following relationhip between the cutting force and the

workpiece traverse rate:

Fact(t) = Cvact (t — T)

Fact (s) = Cvact (s)e-"

where

T^is the tooth period

T represents the time delay between velocity change and force change. The above re-

lations are for actual values of these parameters and not for commanded values. The

proportionality constant C is expressed as follows:

C = Kba^ (2.6)

where

^K^depends on the workpiece material

^b ^is the axial depth of cut

^

a^is the radial depth of cut

The force error is evaluated as follows:

F Man — Facto f = ^
Fmam

(2.7)
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Figure 2.2: Block Diagram of Adaptive Control Loop (Tlusty)

where

Fnom
^is the desired cutting force which should

be kept constant by adapting feedrate

The actual cutting force is measured by the dynamometer attached to the spindle.

This force signal is compared with the nominal force F„,,, n . The result of the comparison

is the relative force error e f . Based on this force error a desired change of velocity is ex-

pressed as acceleration a = 0(ef). Integration of this expression gives us the commanded

velocity v.

The block diagram of the adaptive control scheme proposed by Tlusty is shown in

Fig. (2.2).

Tomizuka et al. [9] based their study on the model reference adaptive control method.

The milling process was treated as a first order dynamic process with time varying pa-

rameters. Daneshmend [10] used a similar strategy for the turning process. Due to
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cutting process to a simple time varying gain with a time invariant pole.

Tomizuka et al. [8] treated the dynamics of the feed drive as a gain which is not valid

for dc servo controlled machine tools. Moreover, none of these above mentioned studies

took into account the inevitable nonlinearities associated with systems of these kind.

Altintas et al. [10] developed an adaptive control strategy based on linear dynamics

of the plant with simple nonlinearities. The milling process to be controlled is considered

to have two cascaded dynamic processes. The time-invariant feed drive servo control and

the time variant cutting process dynamics. The discrete transfer function of the feed

drive servo is expressed as:

c(k)[mm/tooth]
Gs(z)^u(k)[count/8]

kpz -1 (1 + ziz -1 ) C3 (z) =^1 + pi z -1

where

kp,^are constants

The time variant cutting process dynamics is expressed by the following discrete transfer

function:
f3z -1

Fp(k) = îc(k) + 1
1 + az -^+ az - 1

(2.8)

The process parameters a, and -y are time varying and functions of the workpiece

geometry. The maximum cutting forces are regulated by estimating the time varying

parameters a, and -y at each sampling period. The method of Normalized Recursive

Least Square is used to estimate these parameters. The block diagram of the adaptive

control scheme proposed by Altintas is shown in Fig. (2.3).

None of these works on adaptive force control have indicated the method of calculating

the maximum reference force. It is also not certain how the feedrates obtained on the
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basis of this strategy are kept below the tooth breakage constraint. Therefore, there

is a need to conduct a closer investigation of adaptive force control strategy so that a

comparison between this strategy and the optimization strategy proposed in this thesis

can be made. However, it has been decided not to include the research related to this

topic in this thesis.



Chapter 3

The Economics of Milling Process

There are two kinds of industries in a free market economy - competitive and closed. The

competitiveness of an industry can only be established by thoroughly studying all the

details of the manufacturing cost and finding ways and examining means of reducing this

cost. The cost of machining can only be reduced by the proper selection of machining

parameters. The best selection is made when the value chosen for these parameters is

such that cost is minimized or profit maximized.

Milling is an important metal cutting process, but relatively little attention has been

paid to the economics of this process. The basic geometry of the milling process is shown

in the Fig. (3.1). The machining parameters of interest in a milling process are:

• Tool radius R

• Spindle rotational speed N

• Feed per tooth s t

• Radial width of cut d

• Axial depth of cut a

• Number of teeth Z

Optimization of these parameters can be based on several different objectives. Some

of these objectives are:

18
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Figure 3.1: Basic Geometry of the Milling Process

• Minimization of process time

• Minimization of process cost

• Maximization of profit

Depending upon specific circumstances any one of these criteria may be important.

Each criterion will typically lead to the selection of different conditions. Barrow has

presented an analysis for each of the above mentioned objectives. Minimization of process

cost is the most common objective and, therefore, the present work is based on this

objective.

The cost of producing a part can be divided into fixed and variable costs. Fixed

costs are independent of the machining process; these costs consist of machine centre set

up costs and raw material costs. Therefore, the goal of an economic model which is of

interest to manufacturing engineers is to minimize the variable costs. Figs. (3.2) and

(3.3) show the variation of total variable cost and machining time with cutting speed
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V1

Cutting speed

Figure 3.2: Variation of total variable cost with cutting speed

1/2

Cutting speed

Figure 3.3: Variation of machining time with cutting speed



Chapter 3. The Economics of Milling Process^ 21

respectively. These graphs indicate that the velocity giving the minimum cost is less

than the velocity giving minimum time corresponding to maximum production rate.

3.1 Cost Equation

Yellowley [1] has proposed an equation for the cost of milling per unit length at constant

width and depth of cut. This equation can be expressed as follows:

Ci = ^ + ^ -t-
Ch^Ct , ChTct

V VTL VTL
(3.1)

where

C1^is the process cost per unit length in dollars

Ch^is the machine cost rate in dollars per second

Ct^is the tool cost in dollars

Ta^is the tool change time in seconds

v^is the tool traverse rate in mms per second

TL,^is the tool life in seconds

The values of economic parameters used in the above equation are site specific and

are therefore dependent on the shop/machine/tool combination.

The machine cost rate includes labour, plant operating costs and machine operating

costs. Tool change cost is calculated by multiplying tool change time by machining cost

rate. Tool cost is determined by multiplying the tool life fraction used in the machining

operation by the total cost of the tool.
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3.2 Tool Life Equation

Milling is an extremely complex process. It is not only a discontinuous process, but is

also affected by both mechanical and thermal shock. Milling is also characterized by a

variable chip thickness during cut. Research workers in Germany are of the belief that

the mechanical effects are more important whereas Japanese and Soviet workers consider

thermal effects to be the more prevalent. Yellowley [11] has suggested that a realistic

tool life equation can be obtained by considering only the thermal effects provided that

only one mode of milling is considered and chip formation at exit is not problematic.

There are many ways of defining the useful tool life but the most common criterion

is related to flank wear. A tool is considered to have reached the end of its life when it

reaches the maximum limit of wearland width V. The rate of change of the width of

wearland with respect to time can be approximated by the following relation:

di7B 1713'^ ,_
dt^Tr,

where

Tr,^is the tool life corrresponding to VI;

The above equation may be used to evaluate an expression for the equivalent feed in

milling in the following manner:

The relation between tool life and equivalent chip thickness is assumed to be of the

following form:

hTt, = C^ (3.3)

where

h^is the chip thickness

k^is a constant with value quite close to unity^(3.4)

(3.2)
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Therefore,
CTL = —h

Consequently, the rate of change of wear land width takes the following form:

dVB VI; h
dt^C

Integrating the above expression to evaluate the total wear in a swept angle, we obtain:

q = Cvi; / 3 s t sin OdO
o

The expression for average wear rate is :

vA  ^vi; pp.^
O

0,^CO, ./o 
st sin Od

Yellowley has proposed the concept of this so called equivalent feed rate to combine the

influence of cutter diameter, width of cut and feed per tooth on the milling process. The

equivalent feed rate is defined as that constant feed rate which will yield the same average

wear rate as the variable chip thickness in milling. Using this concept of equivalent feed

in Eq. (3.6), the average wear rate can also be expressed as:

dVB^vb. seq

( dt )ave = C

From Eqs. (3.8) and (3.9), we obtain:

Vi; Se gvi; 0 .

C — co , 10 St sin NO

(3.9)

(3.10)

(3.5)

(3.6)

(3.7)

(3.8)

Or
st JO.

S„^
.

= —^sin OdO
0

(3.11)

The influence of the intermittent nature of the milling process on tool life can be well

represented by the thermal fatigue parameter, introduced by Yellowley [11] as :

X = ED (NO^ (3.12)



27r^Cl
711, = Os X m .5;19 VP aq
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where

^

Er^range of thermal strain parameter

^N^rotational speed

^x^ratio of total cycle time to time in cut

It is clear from the above relation that the thermal fatigue parameter is dependent

on both the range of thermal strain and the number of thermal strain cycles per unit

cutting time. The range of thermal strain is a function of heating and cooling time. The

values for this parameter do not vary too much for high speed steels and carbide tool

materials for the same heating and cooling times. The mathematical expression for the

range of thermal strain parameter is as follows:

Er = 39log t c — 23log th + 37.5^ (3.13)

where

tc^cooling time

th^heating time

Both the concepts of equivalent feed and thermal fatigue parameter have been used

in the tool life equation which is based on the allowable amount of flank wear in the tool.

Some of the process constraints are aimed at preventing catastrophic failure of the tool.

The active tool life of a milling cutter is defined as :

where

C1^is a constant
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^

0,^is the swept angle of cut in radian

^X^is the thermal fatigue parameter

^Seq^is the equivalent chip thichness in mm

^

V^is the peripheral velocity in mm per sec.

^

a^is the axial depth of cut in mm

^

m, n, p, q^are positive exponents

This equation is only valid when there is no chip sticking and when the lag angle between

leading and trailing edges is very small. We have not considered the effect of mechanical

shock caused by entry and exit conditions in the above equation. Fortunately, in processes

where chip sticking does not occur, the entry and exit conditions do not affect tool life

in milling. The effect of the tool/workpiece materials is reflected in the values of the

constants in the equation.

3.3 Process Constraints

The physical properties of the work/tool pair, the capacity of the driving motor, the

dynamics of the machining process (e.g.chatter) and part design specifications such as

surface finish impose constraints on the values of machining parameters. Therefore, any

realistic economic model must take into account these constraints. The constraints which

can influence the economics of the milling process are listed below:

• Tooth Breakage Constraint

• Shank Breakage Constraint

• Power and Torque Constraint

• Chatter Constraint
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• Surface Finish Constraint

These constraints will be discussed one by one.

3.3.1 Tooth Breakage Constraint

Tooth breakage is defined as the loss of a significant portion of the edge of an individual

tooth. A catastrophic tooth breakage will eventually result in damage to the workpiece

and the machine. Therefore, in order to avoid this catastrophic tooth breakage it is essen-

tial to control the maximum cutting stress experienced by the cutting teeth. Yellowley

has defined the tooth breakage constraint limit as:

St sin 95.9 < sma.
^ (d < R)^(3.15)

St < Smas
^ (d > R)^(3.16)

where

08^is the swept angle in radians.

Smax^is the maximum allowable feed per tooth in mm.

s t^is the feed per tooth in mm.

3.3.2 Shank Breakage Constraint

The shank of a tool may fail under the combination of bending and torsional working

loads. To avoid failure, the maximum tensile stress allowed on the shank must be kept

under a critical value. This critical value depends on the geometry and mechanical

properties of the shank. Let a represent the normal stresses on the tool and T be the

shearing stress. This state of stress can be represented by Mohr-circle diagram as shown

in Fig. (3.4). The maximum tensile stress is given by the distance OA on this diagram.
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T
7

Figure 3.4: Mohr-circle Diagram for Shank Stresses

It is clear from the geometry of this figure that

OA =

OA =

OC =

PC =

AP =

PX =

Therefore,

OA =

OA =
a + NA T ) 2 + ( ci )2  — cli

; + NA T )2 + ( i )2
From elementary mechanics of material we know that for a circular cross section,

MR
0" = I
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TR
T = 

J

where

^M^is the moment on the cutter

^T^is the torque on the cutter

^J ^is the polar moment of inertia

^I ^is the moment of inertia

^R^is the shank radius

Hence,
MR 1.1 TR^MR

OA =^+ (^ )2 + (^ )2
21 ^' 21

After some simplification we obtain:

2
croA = 

wR3 [M + (M2 +7,2)2]

Therefore, the mathematical expression for the torque constraint is:

2
7rR3 [111 + (M2 + T 2 ) ] < Grmax

(3.17)

(3.18)

(3.19)

where

Amax^is the max. allowable tensile stress on the tool shank

For a specific tool with defined geometry and material, the tensile stress on the shank

can be controlled by varying the depth of cut (a), peripheral cutting speed (V) and cutter

traverse rate (v).
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3.3.3 Power and Torque Constraints

Power and torque are machine constraints which are imposed by the maximum capacity

of the motor. The violation of these constraints may cause a serious damage to the power

drive, spindle shaft or workpiece. These constraints can be represented by the following

inequality relations:

Kavd < Pm.^ (3.20)

K aR( vv )d < Tmax^ (3.21)

where

^K^is the specific cutting pressure

^Pmax 3 Tmax^are the maximum allowable power and torque

3.3.4 Chatter Constraint

A chatter threshold limits the width of cut (d) and the depth of cut (a). This threshold

must not be exceeded if instability of the milling process is to be avoided. It is extremely

difficult to study the effect of width of cut on the occurrence of instability in milling.

This is mainly due to the following reasons:

• The width of cut influences both the magnitude and direction of the average resul-

tant force.

• The width of cut influences the frequency content of the milling force signal and

the basic frequencies are dependent on the cutter diameter and number of teeth.

It is therefore extremely difficult to formulate a realistic chatter constraint without signif-

icant specific machine tool and work/tool data. Chatter is neglected in the optimization

studies.
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3.3.5 Surface finish Constraint

Surface finish imposes a constraint on the depth of cut and cutter traverse rate, especially

for fine finishing. However, its influence is usually not considered in the study of rough

milling operations. A theoretical estimate could of course be made based upon the

kinematics of the process. This would not in most cases be indicative of actual finish

because of radial run out, adhered material and dynamic effects. Therefore, surface finish

constraints are also not included in the optimization studies.



Chapter 4

Optimization of Single Pass Milling Operations with Irregular Workpieces

The milling operation is an intermittent cutting process. The rotating cutter with one

or more cutting teeth comes in contact with a translating workpiece producing a chip

of variable thickness. The machining parameters for the milling process which can be

optimized are mentioned in chapter 3, and are once again listed below :

• Tool radius R

• Spindle rotational speed N

• Feed per tooth s t

• Radial width of cut d

• Axial depth of cut a

• Number of teeth Z

Yellowley and Desmit [1] have developed an algorithm for the selection of tool di-

ameter, feed per tooth and peripheral velocity for a shoulder of given geometry. Many

workpiece surfaces however have polygonal, circular or elliptic geometries. The radial

widths for these workpieces vary continously throughout the tool traverse length because

of which the optimum machining conditions also keep changing. The problem of de-

termining the optimum machining parameters for these workpieces is, therefore, quite

complex but of immense practical value.

31
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Figure 4.1: Generalized Workpiece Geometry (Top view)

In this chapter we present a model which can be used for the selection of machining

parameters for a large variety of workpiece geometries. The general method and strategy

on which the model is based is applied on a few specific workpiece geometries. However,

the same approach is also valid for other geometries not discussed in this thesis.

4.1 Mathematical Formulation

Let us consider a workpiece geometry as shown in the Fig. (4.1). It is assumed that the

maximum radial width encountered in the workpiece does not exceed the chatter limit

and a tool which can machine the workpiece in a single pass is available in the machine

shop. Also for simplicity the axial depth of cut is kept constant throughout this work

unless otherwise specified.

For process economy and real-time process control, the feed rate needs to be varied

with changing radial width as the tool traverse the workpiece length. This is done at a

series of sampling intervals. It is assumed that the tool traverses the whole workpiece
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E xk

k=1

k2

ZOt I -1
60
^ .(E stkNk)

11
d2 — d3

12

k=1
d2 — d1
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length^+ /2 ) in n sampling intervals.

let

di^be the radial width for the ith interval

x2^be the distance traversed by the tool in the ith interval

At^is the sampling period

Ni^is the R.P.M. for the ith interval

s ty^is the feed per tooth for the ith interval

Here i varies from 1 to n. The whole workpiece length can be written as a summation of

the distances traversed in all the sampling intervals as follows:

11 + 12 E xt^ (4.1)

Mathematically di can be obtained by one of the following two expressions:

=^ki(E xk )^ (4.2)
k=1

di = d2 — k2[E(xk — 10]
^

(4.3)
k=1

It is clear from Eqs. (4.2) and (4.3) that the radial width at each sampling interval is

dependent on the workpiece geometry and the history of spindle speed and machine feed.
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Using Eq. (3.1) the process cost of machining the ith interval of length x, can be

expressed as:
Ct ChTct Cpi = (Ch^) t
TL.^TL.

(4.4)

where

TL ,^is the tool life for the conditions at the ith interval

In terms of the basic machining parameters, the Eq. (4.4) can be expressed as :

Cp,^f(di,^ sty)^ (4.5)

It has been proved by Yellowley that the highest allowable feed always results in the

minimum cost. Therefore, for minimization of cost, we select the maximum allowable

feed without exceeding the limit imposed by any of the constraints. Now consider the

tooth breakage constraint, Eqs. (3.14) and (3.15). For any milling process, the tool is

pre-selected and hence the tool radius is constant. Therefore, the feed per tooth is either

a constant or a function of the radial width of cut as shown below:

St, = Sin=^(d < R)

Or^St, = g(di)^ (d > R)

s max
g(d,) = ^

s in(cos -1 (1 — 14))
It has been shown earlier that the radial width of each time interval is a function

of the workpiece geometry and the history of spindle speed and machine feed. It can

be evaluated by using Eq. (4.2) or (4.3). Therefore, the feed which satisfies the torque

constraint, Eq. (3.20), can be obtained from the above expressions. Equation (3.19) can

then be used to find the spindle speed within the power constraint which results in a

minimum process cost.
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Symbol Value
Ch 0.005 dollars/sec
Ct .0396.R.Z
Tct 120 sec
C1 1179.36
m 2
n 1
p 2
q 0.5

Pmax 7.5 K.W.
K, 4140 N/sq. mm.
Ti 0.3

smar 0.2 mm
arnax 1242 N/sq. mm.

Table 4.1: Table of constants

The process cost of machining the whole workpiece is :

Cp E^(4.6)

For minimum process cost for the whole workpiece we will have :

CPmin E( CPi. )7n n
^ (4.7)

i =1

The influence of cutter radii and number of teeth on cost for a generalized workpiece

and a triangular workpiece when feeds and speeds are kept optimal for each interval

is shown in Figs.(4.2) and (4.3) respectively. The optimal feeds and speeds for both a

generalized workpiece and a triangular workpiece are graphically shown in Figs. (4.4),

(4.5), (4.6) and (4.7). The values of economic parameters, tool life constant, tool life

exponents, machine constraints, cutting constants and tool material properties used in

this thesis are listed in table 4.1. It is obvious from Figs. (4.2) and (4.3) that it is

preferable to use the smallest diameter cutter available which is capable of machining
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Figure 4.2: Influence of Tool Radius on Cost for a Generalized Workpiece
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Figure 4.4: Optimum Feeds and Tool Traverse Distance For a Generalized Workpiece
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Figure 4.5: Optimum Feeds and Tool Traverse Distance For a Triangle
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Figure 4.6: Optimum Speeds and Tool Traverse Distance For a Generalized Workpiece
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the workpiece or the next larger diameter with more number of teeth. These graphs also

indicate that the cost of machining a larger axial depth is higher as would intuitively be

expected. Graphs (4.4) and (4.5) indicate that the allowable feed per tooth decreases

with increasing radial depths and also the value of allowable feed per tooth for each radial

width increases with the tool diameter. No clear trend is available from the graphs of

optimum spindle speeds.

It is thus clear that with the help of the optimization strategy we have employed, it

is possible to determine the optimal values of feed and speed for any kind of workpiece

for any cutting direction if we can obtain the radial widths either as a function of the

workpiece geometry or by some other means. The optimal values of feed and speed will

result in an optimal process cost.

4.1.1 Evaluation of Machining Time

The estimation of total processing time is important for efficient process planning and

scheduling of manufacturing activities. The total processing time consists of the following:

• Set up time

• Loading unloading time

• Machining process time

Machining process time consists of manual time and machining time. An analytical

expression for the machining time in milling when the feed is maintained at an optimal

value can be derived as follows:

Machining time is a function of the workpiece geometry, tool diameter, number of

teeth and the tool traverse rate. The tool diameter and the number of teeth can be
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selected on the basis of previous analysis and availability. The tool traverse rate is de-

pendent on the machining constraints. Therefore, it is possible to mathematically evalu-

ate the machining time for many workpiece geometries by making use of the constraint

relations.

Let us again consider the geometry of Fig. (4.1). Tooth breakage can be avoided by

restricting the maximum chip thickness encountered to some constant value according to

the inequality relations of Eqs. (3.14) and (3.15). Rewriting those relations, we have

St sin 0, < Smax^ (d < R)^(4.8)

St < Smax
^ (d > R)^(4.9)

where

0,^is the swept angle in radians.

smax^is the maximum allowable feed per tooth in mm.

s t^is the feed per tooth in mm.

Case 1:d < R

The tooth breakage constraint for this case is governed by equation (4.8).Rewriting equa-

tion (4.8)

s t sin 0, < smax

This equation gives:
s

st < 
max

sin 0,

(d < R)^(4.10)

(4.11)

The tool traverse rate in mms per second can be obtained from the relation:

dx s tNZ
dt^60

(4.12)



Chapter 4. Optimization of Single Pass Milling Operations with Irregular Workpieces44

where

N^is the spindle r.p.m.

Z^is the number of teeth.

For optimum conditions, feed per tooth should be as large as possible. Therefore (4.11)

assumes the form:

  

3 max
St = •sin 0,

Combining (4.12) and (4.13) we obtain:

dx smax N Z

(4.13)

(4.14)
dt^60 sin 0.

A constant spindle R.P.M. which does not exceed the constraints can be determined

for the given workpiece geometry. The selection of the tool is made before the start

of machining so that the tool radius R and the number of teeth Z are constant during

machining. The maximum permissible value of smax is also constant for a tool/workpiece

combination. Therefore, the tool traverse rate can be represented by the relation:

dx _ C

^

dt^sin 0.

where
smaxNZ^C =^

60

From (4.15), we obtain the following relation:

dt = C—1 
sin 0,,dx

(4.15)

(4.16)

(4.17)

We can integrate this equation to evaluate the time taken to traverse a specified length.

let

t i^is the time taken to traverse length d i

t2^is the time taken to traverse length / 2
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Figure 4.8: Geometry of Portion ABEF (Top View)

Then for portion ABEF Fig. (4.8),we obtain:

jot i^1
dt C—^sin 0,dx

o
(4.18)

The swept angle O a can be represented in mathematical form as follows:

= cos -1 (1 — )1)^ (4.19)

The radial depth of tool at an arbitrary position during its traverse can be found from

the following expression:

d =^kix

The slope k1 can be represented by the following relation:

kl 
d2 — d1

=

(4.20)

(4.21)
11

here

is the distance traversed by the tool
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Using Eqs. (4.19), (4.20) and (4.21) in Eq. (4.18) we obtain the following expression:

let

el^ 1 fii^+ kix 
]dxdt = 

C o 
sin cos -1 [1 (4.22)

m 1 =

m2

d1
1— R
k1

R

Integrating the left hand side of Eq. (4.22) and using the expressions for m 1 and m2 in

that equation, we obtain:

1 ill^-1t i = —^sin cos (m i — m2x)dx
C o

(4.23)

let

cos "(m i — m2x) = y l^(4.24)

then

m2 x^cosy].

1 ,
x = ---(m i --cosy l )

m2
sin y i dy i

dx
m2

Substituting the variable y i in place of x by using the above relations, equation (4.23)

takes the following form:

= ^
1

t i^sin2 yi dyi
2Cm

The new limits of integration can be evaluated as follows:

when

(4.25)

x = 0

yl = cos 1 m1
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and when

X = 11

y i = cos -1 (m i — m2 1 1 )

Equation (4.25) can also be written in the form:

ti^
f 

(1 — cos 2yi)dyi= ^
2Cm2

Integrating the right hand side of this expression, we obtain:

(4.26)

ti = 1 ,^sin 2yi 
2Cm2

lYi^)2
(4.27)

Applying the limits of integration to the above expression we obtain:

1
t i =

2Cm2 
[cos'
^2
(m i — m2 /1 ) — —

1
sin(2(cos' (m i — m2 1 1 )))

1
— cos -1 m l + 

2
— sin 2(cos -1 m l )]

Rearranging the terms,

1
2Cm2

1
^ [sin (2 cos -1 m1 ) — sin 2(cos -1 (m i — m211))]+ 4Cm 2

The time of traverse for any distance x between zero and 11 can be obtained from the

following expression:

1tx = ^
2Cm2 

[cos -1 (m 1 — m 2x) — 
2
—sin 2(cos -1 (m i — m 2x)))

1
— cos -1 m l + —2 sin 2(cos -1 m l )]

where

tx^is the time of traverse for a distance x between length 1 1

x^is the distance traversed

(4.28)

ti [cos l (Mi — m 2 11 ) — cos 1 m l ]
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let

1=
2Cm2

cos' (m i. — m2x)=

M12 = COS -1 M1

M13 = Sin[2(M11)]

M14 = sin[2(m 12 )]

(4.29)

With these substitutions, equation (4.28) becomes:

\ M3 ,
tx = M3(M11 — m12) + ^ (m14 — m13)2

 

(4.30)

The above expression is valid for any distance x between zero and 11

 

Similarly we can integrate equation (4.17) for portion BCDE Fig (4.9) as follows:

fo^
C

t2 

dt = —
1 f12 

sin O a dx
o

where

(A8
^is the swept angle as before

From Fig. (4.9), the radial depth at an arbitrary point along length / 2 can be determined

from the following relation:

d = d2 — k2 x^ (4.32)

where
d2 — d3

k2 —  ^ (4.33)
/2

Substituting the above expressions for d and k 2 in equation (4.31), we have:

fo
t2 
dt 

C o
= I 

112 
sin[cos'

^d2 
R

k2 x
(1 ^ )]dx^(4.34)

M3

mi i

(4.31)
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let

ilirr.^12 ........41

Figure 4.9: Geometry of Portion BODE (Top View)
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d2
7125 = 1 — R-

k2ms = ii

Integrating left hand side of Eq. (4.34) and using m5 and m6 in that equation, we obtain:

1 /2 .
t2 = 

C
— sm[cos' (m 5 + m6x)]dx (4.35)

let

COS -1 (1ns + M6X ) = Y2
^ (4.36)

then

m5 + msx = cos y2

1 ,
z = —kcos y2 — m5 )

sm
sin y2dy2

dr = ^
M6
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Substituting the variable y 2 in place of x in Eq. (4.35) we have:

t2^
Cm J

=^
1 f

(sin2 y2)42
6

The new limits of integration can be evaluated as follows:

when

(4.37)

x = 0

y2 = cos -1 m5

and when

X = 12

Y2 = COS -1 (M5 + m612)

Writing Eq. (4.37) in a slightly different form:

t2 L---- 1 ^f ( 1 — cos 2y2 )42
2Cm6 i

Integrating the right hand side of this expression, we obtain:

1
t2 = ^

2Cm6
( 
sin

2

2y2 
Y2)

Applying the limits of integration :

r

2
t2^

2CM6
= ^ [ sin 2 (cos -1 (m5 + m612))

1
— cos -1 (m5 + m6 /2 ) — 2 sin 2(cos' (m5 )) + cos -1 m5 ]

Rearranging the terms,

1^r
t2 =_ ^ [COS-1 m5 — COS -1 (M6 + 7/2612 )1

2CM6

+ 1

4Cm6 
[sin 2(cos -1 (m 5 + m6 /2 ) — sin 2(cos -1 m 5 )]

(4.38)

(4.39 )
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The time of traverse for any distance x between 1 1 and 1 2 can be obtained from the

following expression:

2Cm6

1
4Ĉ

[sin 2(cos -1 (m5 m6x)) — sin 2(cos -1 m5 )1
m6

where

ta,^is the time of traverse for a distance x between length 1 1 and length 12 .

x^is the distance traversed.

1

2c1 m66

M17^cos-1(m5 + M6X)

cos 1 m5M18 =

Sin[2(M17)]M19

M20 = sin[2(mis)]

Substituting the new nomenclature in equation (4.40) we have:

Ti/7 1

M7(M18 — m17) +^m20)2

The above equation is valid for any distance between 1 1 and 12

(4.40)

Case2:d > R

The tooth breakage constraint for this case is governed by the following equation:

tx^
1
^ [cos -1 m 5 — cos -1 (m 5 m6x)]

let

M7

St < Smas
^ (d > R)^(4.41)
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let the operating feed s t0 be slightly less than the maximum allowable feed sm.., then

the tool traverse rate in mms per second can be obtained from the relation:

dx _ s toNZ
dt ^60

here

s t0^is a constant operating speed

Integration of the above expression yields:

x
t. 

C

(4.42)

(4.43)

where

tx^is the time of traverse for a distance x between length (l i + 12 ).

x^is the distance traversed.

and

C
s toNZ

-=  
60

(4.44)

It is clear from Eqs. (4.30), (4.40) and (4.43) that the machining time for milling is a

function of the workpiece geometry, tool diameter, number of teeth and the tool traverse

rate. For many industries such as aircraft industry increasing the production rate is

a highly desirable goal. The analytical expressions for machining time can be used to

determine the machining parameters which minimize the production time for specific

workpiece geometries. Since minimization of process cost is the focus of this thesis it has

been decided not to explore the criterion of minimization of production time any further.



Chapter 5

Optimization of Multi-Pass Milling Operations

The maximum allowable radial width of cut for a single pass is dependent on the chatter

constraint and the size of the milling cutters available in the machine shop. When the

radial width of cut for machining is larger than the maximum allowable value, there is a

need for multi-pass milling operations. This need often arises in rough milling operations.

For these cases, it is therefore necessary to select an appropriate radial width for each

pass. This must be carried out in a manner which minimizes cost. Yellowley and Gunn [2]

have given a mathematical formulation for multipass milling operations, and established

an optimal selection procedure for the radial width of cut for each pass. This chapter

deals with the optimal selection of radial widths for various workpiece geometries.

Let us once again consider the generalized workpiece, Fig (4.1), of chapter 3. Rewrit-

ing Eq. (4.5)

CPC = 34) (5.1)

It was shown in chapter 3 that the objective for a single pass milling operation is to

minimize the value of Cpz for each sampling interval. The radial width of the workpiece

d, for each sampling interval is fixed. For a constant cutter radius the feed per tooth s t ,

is obtained from the tooth breakage and torque constraints. The spindle speed N, which

does not exceed the limit imposed by the power constraint and results in the minimum

cost is selected for each sampling interval. The process cost of machining the whole

53
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workpiece is obtained from the following expression:

Cp E Cpi^ (5.2)
2=1

For a multipass operation the radial width di for each interval can be varied by changing

the subdivision of the machining area. Our objective is then to minimize the following

expression:
k ni

= min. E( E f (dt, , Art,' S tsj )^ (5.3)
i=1 i3 =1

Subscript i denotes the number of intervals and j denotes the number of passes. For

example represents the radial width at the ith interval and jth pass. Mathemati-

cal formulation and computational results for two pass milling operations are presented

below. These results will then be used to make conclusions about a general multi-pass

milling operation.

5.1 Mathematical Formulation

The generalized workpiece of Fig. (4.1) can be subdivided into three different geometric

shapes depending on the maximum radial width dr selected for the first pass. A suitable

range for the selection of max. radial width of the first pass is chosen.

let

^d,.^be the maximum radial width of the first pass

^dq^be the maximum radial width of the second pass

^R^be the radius of the cutter for both the passes

^

dr,nin^be the lower limit in the range of max. radial width of the first pass

be the upper limit in the range of max. radial width of the first pass

^

A i ,^be the workpiece length for the first pass

^A2^be the workpiece length for the second pass
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T

First pass

Second pass

Figure 5.1: S i < dy. < dr. (Top view)

here

dq = da — dy,
nrl

= 4.4 s i,

n2

A 2 = X is
i2 =1

Let us introduce the following geometric constants:

s i = d2 —

32 = d2 — d3

Figs. (5.1), (5.2) and (5.3) show the three different ways in which the workpiece can

be subdivided when d, moves in its range from dims,, to d,„,... It is obvious that with

the change in the value of dr , the dimensions of each subdivision also undergo a change.

Therefore, our aim is to determine the dimensions of each part at every value of dr

within the selected range and evaluate the machining cost. We can thus ascertain the

best subdivision of the workpiece for minimum machining cost.
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S First pass
■•••■ MINN& ■1,. ■■•10^WENN. ••■■• .1■ND ■■•■■/

Second pass

Figure 5.2: s2 < d,. < s i (Top view)

First pass
T
8 2

Second pass

Figure 5.3: ds.„, < dr < 32 (Top view)
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Using Eq. (4.4), the process cost of machining the ith interval of jth pass of length

xii can be expressed as:
Ct^ChTctCpi3 = (Ch m^m )At

IL,3^1 L ‘3

(5.4)

where

is the tool life for the conditions at the ith interval of jth pass

At^is the sampling period^ (5.5)

In terms of the basic machining parameters, Eq. (5.4) can be expressed as:

= f(di , Arsa , St, )^ (5.6)

The process cost of machining the whole workpiece is :
k n3

Cp E(E Cpii^(5.7)
j=1 .3 =1

For minimum process cost, we should have:
k^113

Cpmn -7-- DE(
j=1 i.,=1

In order to determine the influence of d,. on cost, we should be able to express the

machining cost as a function of dr . It has been shown earlier (Eqs. (4.2) and (4.3))

that the radial width is a function of the workpiece geometry and the history of spindle

speed and machine feed. In addition, in a two-pass milling operation, the radial width

would also depend on the way the workpiece has been subdivided . In other words the

radial width can be represented as a function of dr , workpiece geometry and the history

of spindle speed and feed. Workpiece geometry and the history of spindle speed and feed

are known beforehand. Therefore, it is possible to determine the influence of dr on cost

by using Eq.(5.6).

Let us mathematically derive the relationships for the radial width for the three cases

represented by figures (5.1), (5.2) and (5.3).

)min
^ (5. 8)
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5.1.1 Case 1: dr ,„,„ < dr < 32

For this case the radial width of the first pass is given by one of the following two relations:

di, -=^E xk)
k=1

di l = dr k2(^xk)
k=1

dr
(0 < E xk < —)

k=1

dr^a1-1^d,.^dr ,
— < 

v-, 
x k < — —)

kl^k=1^klk2

where

ZOt a -1

E xk 60 (^3th Nk)
k=1^ k=1

d2

1 1

d2 — d3

12

The radial width of the second pass can be obtained from one of the following three

relations:

=2-1^ i2-1

^

,^dr ,
die =^+ ki( E xk)^(o < E xk Li — —)

k=1^ k=1

d dr ,
die = d2 — dr^ (/1 —^<^xk < /1 + 

2
)

k=1

i2-1^ 4^22-1
(d2 — dr) — k2(E xk)^(/1^< E xk < /1 + 12)

k=1^ k2^k=1

4 4
= 

k
-

1
+

 k
-

2

AZ = +

5.1.2 Case 2: s 2 < dr < s1

For this case the radial width of the first pass is given by one of the following two relations:

2, -1-1
d„ = k i (^(o < E Xk < 

k
--; )

k=1^ k=1

kl =

k2 =



E Xk
k=1

Z At " -1

60 •(^s t,N,)
k=1
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t i _ i dr^dr
d1 = (d3 — (d2 — dr)) k2^(xk –^(

^
Xk < 

J. 
+ 1 2)

kk=1^ 12;1

where

 

=
d2 — d1

 

11

k2

 

d2 d3

 

12

The expressions for the radial width of the second pass are :

i2 -1^22-1

d22 =^+ ki(^x,)^<^< /, – —dr )
k=1^ k=1

^-dr

d^12-1

^— ^<^x, < + /2 )
k=1

The length of the workpiece for the two passes :

dr

kJ.
A2 = 11 -1- 12

5.1.3 Case 3: s 1 < dr < dr„,..

The radial width of first pass can be obtained by one of the following two relations:

^21 -1^ 21-1

di ,^(di – (d2 – dr)) + ki(E^<^Xk < li)
^k=1^ k=1
^it -1^ ti -1

d21 = (d3 — (d2 — dr)) — k2^(xk – /1)^(ll <^Xk < 11 + 12)
^k=1^ k=1

where

d22 = d2 — dr
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60̂
•(E s th Nk )

Z At 21-1

k=1

d2— d1

11
d2 d3

12

The radial width of the second pass is:

die = d2 —^(0 <^< /1 + 1 2)

^
(5.9)

k=1

The length of the workpiece for the two passes :

= 11 + 12

2 = 11 + 12

5.1.4 Evaluation of Cost

Feed per tooth for a constant tool radius can be obtained from the tooth breakage

constraint from the following relations:

Stij = Smax
^ (d

Or^st,i = g(c1,2 )
^

(d > R)

Smax g(dii)^cl,
sin(cos -1 (1 — Ti9)

The feed calculated from the above formula is reduced until it satisfies the torque con-

straint. Eqs. (5.4), (5.6) and (5.7) can then be used to find that spindle speed within

the power constraint which gives the minimum machining cost. The cost character-

istics for a rectangle, triangle, an equilateral triangle, a symmetric and an unsymmetric

generalized workpiece are shown in Figs. (5.4), (5.5), (5.6), (5.7) and (5.8) respectively.

These cost characteristics are for a two pass milling operation when the speeds and the

—1

k=1 
X k

k 1

k2
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dl =d2=d3=20,I1=30,12=20

0
^

8
^

16
^

24

Max. radial width of first pass in mm

Figure 5.4: Cost Characteristics of a Rectangle
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dl =d3=0,d2=20,11 =30,12=20

0
^

8
^
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^

24

Max. radial width of first pass in mm

Figure 5.5: Cost Characteristics of a Triangle
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dl=d3=0,d2=20,I1=11.547,12=11.547

Pass 1

Pass 2

X
T. cos t

Max. radial width of first pass in mm

Figure 5.6: Cost Characteristics of an Equilateral Triangle
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dl =1 0,d2=20,d3=1 0,11 =30,12=30

0
^

8
^

16
^

24

Max. radial width of first pass in mm

Figure 5.7: Cost Characteristics of a Symmetric Generalized Workpiece
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dl =10,d2=20,d3=1 5,11 =30,12=20
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Figure 5.8: Cost Characteristics of an Unsymmetric Generalized Workpiece
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d1=20,d2=20,d3=20,11=30,12=20

Max. radial width of first pass in mm

Figure 5.9: Cost Characteristics of a Rectangle (varying tool diameter)
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d1=0,d2=20,d3=0,11=30,12=20

4^8^12^16^20^24

Max. radial width of first pass in mm

Figure 5.10: Cost Characteristics of a Triangle (varying tool diameter)



Chapter 5. Optimization of Multi-Pass Milling Operations^ 68

dl =0,d2=20,d3=0,11=11.54,12=11.54

4
^

8
^
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^
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^
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^

24

Max. radial width of first pass in mm

Figure 5.11: Cost Characteristics of an Equilateral Triangle (varying tool diameter)
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dl =10,d2=20,d3=10,11=30,12=30

0
^

4^8^12
^
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^
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^

24

Max. radial width of first pass in mm

Figure 5.12: Cost Characteristics of a Symmetric Generalized Workpiece (varying tool
diameter)
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dl =10,d2=20,d3=15,11=30,12=20
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Max. radial width of first pass in mm

Figure 5.13: Cost Characteristics of an Unsymmetric Generalized Workpiece (varying
tool diameter)
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feeds are selected in an optimal manner. Three different cutter radii are used and the

axial depth of cut is kept constant for simplicity.

In the above discussion a tool of constant radius has been used for all values of dr . In

actual practice, a tool with a diameter equal to the larger of the two values of d,. and dq

is capable of machining both the parts at a lower cost. This feature is included in graphs

(5.9), (5.10), (5.11), (5.12) and (5.13).

The machining costs for single pass operations for a few workpiece geometries are

listed in table (5.1). The following conclusions can be drawn from the above mentioned

data :

• Single pass operations should be preferable to multi pass milling operations pro-

vided the chatter limit is not encountered during the single pass operation.

• The cost increases at a faster rate with increasing radial widths for smaller radial

widths.

• The cost decreases at a much slower rate with decreasing radial widths for larger

radial widths.

• The machining cost for an area with larger radial widths will be less than that of

an equal area with smaller radial widths.

• It is preferable to first machine the area with largest radial widths of cut within

the chatter limit and take the remaining area in next passes.

• The cost of machining is highest when the whole area is divided in two equal halves.
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Workpiece geometry d1 d2 d3 11 12 Cost in cents
Unsymmetric generalized 10 20 15 30 20 2.208859

Symmetric generalized 10 20 10 30 30 2.708165
Unsymmetric triangle 0 20 0 30 20 2.036704
Equilateral triangle 0 20 0 11.54 11.54 0.660608

Rectangle 20 20 20 30 20 2.122573

Table 5.1: Machining costs for single pass milling operations

5.2 Evaluation of Centre to Centre Tool Traverse Distance

The machining time is dependent on the centre to centre tool traverse distance. This

distance is a function of the workpiece geometry and the tool radius. The accurate

evaluation of this distance is important for a realistic path planning and machine control.

The detailed mathematics required to evaluate the centre to centre tool traverse distance

is included in this section for the sake of completeness.

5.2.1 Case 1 :d*min <^s2

From the geometry of Fig. (5.14), the following relations can be obtained:

= Z3 = Z4 = Z5 = /9 1^(5.10)

L6 = 90 —

pq = sin L6

pq^Rsin(90 — 0 1 )

pq^R cos 0 1 (5.11)

as^d2 — (d1 + dr)

qa = R — pq^ (5.12)

qa
sin L5

nq
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Figure 5.14: Geometry for Centre to Centre Tool Traverse Distance

qa
sin 0 1
R2 + nq2

xn2
^

one —R2

nq

on2

= (5.13)

(5.14)

(5.15)

Using the above relations, we obtain:

xn2

xn2

xn2

R2 + nq
2 — R2

(  qa  )2
sin 0 1 

( R — R cos 01 )2

sin 0 1

R — R cos 9 1
xn = sin 0 1

xn = R(
1 — cos 0 1
^ )sin 0 1

where

91 = tan-1(
d2 — dl  )

11
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Similarly

ym =-- R(
1 — cos 92
^)sin 92

(5.16)

where

82 = tan -1 ( d2 -- d3 )12 

The total centre to centre distance moved by the tool for the first pass is:

L1 = A i + xn + ym^ (5.17)

where
4 4

Ai = 
t̂an 81 + tan 92

5.2.2 Case 2: s2 < di. < si

From Fig. (5.14), it is clear that the centre to centre tool traverse distance for the first

pass is:

Li =-- A i + xn + R^ (5.18)

where

Ai . 4̂ + 12tan 8 1

The centre to centre distance moved by the tool for the second pass for all the three cases

is:

L2 = A2 + 2R

A2 = 11 --IF 12



Chapter 6

Optimal Cutting Direction for N-sided Polygonal Surfaces

The selection of cutting direction is an extremely important issue which has a considerable

effect on a machining process. Tool wear is dependent on the tooliworkpiece engagement

time which is directly influenced by the selection of direction of tool motion. The cutting

direction also determines the geometry of the machining surface and hence the other

parameters like machine feed and spindle speed. The influence of workpiece geometry,

spindle speed and machine feed on cost was discussed in the preceding chapters. In this

chapter the selection of the best cutting direction for minimum machining cost for an

N-sided polygon is discussed.

6.1 Mathematical Formulation

Let

y:)
^

i =1,2,3,...n^ (6.1)

be the n vertices of an n-sided convex polygon.

The equation of n edges of the polygon can be obtained from the following expressions:

y — y, = nii (x — x,)

i = 1,2,3,...n

where

Yi Yi+ imi =
xi —

i = 1,2,3, ...(n — 1)

75
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Figure 6.1: Geometry of a Generalized 6-sided Polygon (Top view)

It is assumed that the tool centre to centre workpiece length l e is traversed in p sampling

intervals and the distance traversed in the jth sampling interval is x3 .

then

la = E x ;

^ (6.2)

also

= 4, + 2R9^(6.3)

where

^Lax
^is the maximum workpiece length in a given direction

^Ra^is the cutting tool radius

The cutting tool can be represented by the equation of a circle as follows:

_^(y gi)2 =

j = 1,2,3, ...p^1
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Figure 6.2: Cutting Direction 9 (Top view)

where

(h,, gi) are p 1 tool centres for p sampling intervals

Our aim, as before, is to determine the cutting parameters such as spindle speed and

feed for each sampling period and to evaluate the machining cost. The machining cost can

then be obtained for a range of cutting directions and the cutting direction which gives

the minimum machining cost is finally selected. The cutting direction is defined as the

angle which the direction of tool traverse makes with the positive x-axis as shown in the

Fig.(6.12). As the tool traverses the length la , the swept angle of cut changes continously.

It is, therefore, necessary to determine the swept angle of cut for each sampling interval.

This can be accomplished geometrically and is discussed below.

The points of engagement and disengagement of the tool with the workpiece lie on the

edges of the workpiece. There can be a maximum of 2n points of intersection between

a circle and n straight lines. Out of all the points of intersection only two points of

intersection which fall on the boundary of the workpiece represent the entry and exit
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points. The angle these two points subtend at the centre of the circle is the swept angle

of cut for a particular position and the moving direction of the tool.

let

be the cutting direction

(x:, y:)^be the vertices of the polygon in the new coordinate system

(1 3 , g 13 )^be the tool centres in the new coordinate system

i = 1,2,3,...n

j = 1,2,3,...p+ 1

The mathematical formulas for coordinate transformation are derived in appendix A.

The maximum width of the workpiece dmax perpendicular to the cutting direction 8
is the largest of the following distances:

abs(y:— y:+1 ) i = 1, 2,3,... (n — 1)

abs(y:— y:+2 ) i = 1, 2, 3, . . . (n — 2)

abs(y: — y:+3 ) i= 1, 2, 3, . . . (n — 3)

abs(y: — y:+(n_ i) )
^

i = 1

The maximum workpiece length / max in the 8 direction is the largest of the following

distances:

abs(x: — x:+i ), i = 1, 2, 3, . . . (n — 1)

abs(x: — x:+2 ), i = 1, 2, 3, . . . (n — 2)
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T
d3

A

Figure 6.3: Swept angle for a 5-sided Symmetric Polygon

abs(x: — x: +3), i = 1,2,3,...(n — 3)

a b.5 ( — X n^i = 1

let

^, ), (a, 12 , Y2 )
^

be the coordinates corresponding to the maximum width

^(4, di), (c'2, d'2)
^

be the coordinates corresponding to the maximum workpiece length

^

Re^be the tool radius for the 9 direction^ (6.4)

Re =^ (6.5)

The coordinates of the tool centre at the start of machining (WI , gl) can be determined
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from the expressions:

h'1 = c11 — R

hi= Cl2 - R
b'b'1^2 

g1 = 2

The subsequent tool centres can be obtained from the following relations:

3 -1

hj =^E Xk
k=-1
3 -1

h; = hi — E Xk
k=1

g
1

j = 2,3,4,...p+1

Two relations for^and 14 are for two sides of the workpiece.

The points of intersection between the tool and the workpiece edges can be obtained

from the following relations:

 

—Pi +^— 4cea
/2i-1 - 2ai

i = 1,2,3,...n

—^4(347

^

11/2i^2ai

^

i^1,2,3,...n

 

where

ai

= 2m:b: — 2m:g'j — 2h3.

= (1):) 2 (g li ) 2 + (14) 2 — 2b:g'j — RB

= 1 + (m:)2
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b: = y i — mix i

Y: Y:+1 
xi — —,:+1

i = 1,2,3,...n

Out of these 2n points of intersection, a pair of points which lie on the boundary of the

polygon and fall in the cutting region are selected. These two points correspond to the

entry and exit positions.

let

(e' . f)3 3 be the coordinates of the entry point

be the coordinates of the exit point

The distance between these two point is:

De^\^f^j)2
L6 3 (6.6)

The angle these two points subtend at the centre of the tool is the swept angle of cut.

This is shown in Fig. (6.3). The swept angle can be obtained from the cosine law of

triangles as follows:

cos 
( 2R2e — DI)

Once we know the swept angle of cut for a particular sampling interval, we can

find the optimal feed, spindle speed and cost by making use of the optimization strategy

described earlier. Costs for all the sampling intervals can be summed to obtain the total

cost of machining at a cutting direction of O.

This procedure has been used to compute costs for a range of angles from 0 degree

to 180 degrees. The graphs between cutting direction and the cost for a few shapes are

shown in Figs. (6.4)-(6.11).
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dl =10,d2=20,d3=15,11=30,12=20

Cutting direction in degree

Figure 6.4: Cost characteristics for a 5-sided Unsymmetric Polygon
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dl =1 0,d2=20,d3=15,11 =30,12=20
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Figure 6.5: Cost characteristics for a 5-sided Unsymmetric Polygon
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dl =1 0,d2=20,d3=1 5,11 =30,12=20

40^80^120^160^20C

Cutting direction in degree

Figure 6.6: Cost characteristics for a 5-sided Unsymmetric Polygon
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d1=10,d2=20,d3=10,I1=30,12=30

Cutting direction in degree

Figure 6.7: Cost characteristics for a 5-sided Symmetric Polygon
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dl =10,d2=20,d3=10,I1=30,12=30
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i^I^I^I^1
120^160 20C

Cutting direction in degree

Figure 6.8: Cost characteristics for a 5-sided Symmetric Polygon
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dl =10,d2=20,d3=10,11 =30,12=30

0^40^80^120^160^20C

Cutting direction in degree

Figure 6.9: Cost characteristics for a 5-sided Symmetric Polygon
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d1=0,d2=20,d3=0,11=30,12=20

Cutting direction in degree

Figure 6.10: Cost characteristics for a Non-equilateral Triangle
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d1=0,d2=20,d3=0,11=30,12=20
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Cutting direction in degree

Figure 6.11: Cost characteristics for a Non-equilateral Triangle
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dl =0,d2=20,d3=0,11=30,12=20

Cutting direction in degree

Figure 6.12: Cost characteristics for a Non-equilateral Triangle
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dl =0,d2=20,d3=0,11=11.54,12=11.54

Cutting direction in degree

Figure 6.13: Cost characteristics for an Equilateral Triangle
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dl =0,d2=20,d3=0,11 =11.54,12=11.54

Cutting direction in degree

Figure 6.14: Cost characteristics for an Equilateral Triangle
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dl =0,d2=20,d3=0,I1=11.54,12=11.54
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Figure 6.15: Cost characteristics for an Equilateral Triangle
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6.1.1 Analysis of Results

The following conclusions can be drawn from the computational results:

1. Symmetric workpieces give symmetric graphs with small computational errors.

2. When the tool radius is slightly larger (R = 0.554.) than the maximum radial

width encountered during machining; the cutting directions of 0 degree and 180

degree are the optimal directions for all the workpieces.

3. When the tool radius is twice (R = dn.) or thrice as large (R = 1.54,„x ) as the

maximum radial width encountered during machining; the cutting direction of 90

degree is the optimal direction for all the workpieces.

4. The results are dependent on the tool diameter and workpiece geometry.

5. The graphs for larger tool diameter with respect to the maximum radial width

encountered during cut are shifted upwards. In other words, the cost increases for

the selection of larger cutters.

6.1.2 Conclusions

This chapter describes a general method of evaluating the best cutting direction for a

workpiece of known geometry. Even though the results have been obtained for only a

few workpieces under certain site specific conditions, the method is valid for almost any

workpiece geometry. A change in the assumptions and site specific conditions would alter

the results. Software based on the proposed mathematical formulation can be developed

which would give the best cutting direction for any set of conditions and any workpiece

geometry.
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Appendix A

Coordinate Transformation

Let the coordinate system X -Y be rotated by an angle of 9 degrees. The new coordinate

system is X' - Y' represented by X' and Y' axis. The coordinate (x, y) in the old system

is (x', y') in the new sytem. The line joining the origin with the coordinate (x, y) make

an angle of a. The coordinates (x, y) and (x', y') can be mathematically related by the

following equations (see Figs. 6.5- 6.9):

A.0.3 From Old to New

9 < 1
0 < a

a = tan' -Y
x

y = p sin a

y 
P = sin a

/Y = p sin(a - 0)

x' = p cos(a - 0)

9 < I
8 > a

a = tan -1 -Y
x

97



y

P

Y i

X
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= p sin a

y ,
sin a

= — p cos(2 — (a — 0))

= psin(2 — (a — 0))

8 = 12

0 < a

Ix = y

yI = X

0 = 7r

0 < a

I
Y = — y

Xi = - x

A.0.4 From New to Old

0 < 1
0 < a

tan(a — 8) =

a =

Y 1 =
p

P =

y =

Y 1

x'

tan -1 y '  0
x'

sin(a — 0)

Y1 

sin(a — 9)
p sin a

x = p cos a
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<

9 > a

tan(7; — (0 — a))

—
2 

— (0 — a)) = abs(tan -1 (

a^— 2 abs(tan -1 ( -7))

p
^sin(; — (0 — a))

p = ^
sinq — (0 — a)

y^p sin a

x = p cos a

B = 22
< a

y

y =

—Y

X^-X

< a



Figure A.1: Coordinate Transformation:8 < 1,8 < a
Y

x

•
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Figure A.2: Coordinate Transformation:8 < I, 8 >



fe,—......—..^yg .--.....■.0.1

Figure A.3: Coordinate Transformation:0 = 1,0 > a

(::------- 2

1 ..„...,■44
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Figure A.4: Coordinate Transformation:0 > ;1 ,6 > a
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Figure A.5: Coordinate Transformation:0 = 7r, 8 > a
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Pseudo-code for single pass milling operations

;Inputs:

Geometrical parameters of workpiece^d2, d3 , 11 , /2

Economic parameters^:Ch, Ct , Tct

Tool life constant and exponents^m, n, p, q

Machine constraints^:Pmax,14

Cutting constants^ :Ks, ri

Range of cutter radii^:Rtnin) 'Lax

Small increment in cutter radius^:AR

Range of spindle speeds^:Vnun, Vmax

Cutting conditions^ :smax, a

Tool material properties^:o-max, etc.

Milling type^ :Upmilling or downmilling

Sampling interval^ :At

;Outputs: 

Cutter radius and Machining cost^:R, Cpmin

;Variables: 

Bigk — Rma7A-RR"lin
^ ;Number of steps to cover the range

of cutter radii

103



d2 — Ch 

1 11

k2 = d2 — d3 
12

Pmao(• 75 4, 106 )
C .a

Rt = Rm" ,T Rmin ;Increase in radius after which

the number of teeth change

;Radial width slope upto length

;Radial width slope after length

;Power constraint constant
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i = 0 to Bigk^ ;Loop for range of radii

R(i 1) =^iAR^;Next cutter radius

if Rmin < R(i 1) <^Rt)^;Selection of cutter teeth

then

z = 2

if ( -1?-mt. + R t ) < R(i + 1) < (Rmin + 2Rt)

then

z = 3

if (Rm.+ 2Rt ) R(i +1) < (Rm. + 3Rt)

then

z = 4

if R(i + 1) > (R„,,„ 3Rd )

then

z = 6

L(i 1) = 6R(i 1)^ ;Flute length
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Tmax = .75 * 106 * Prn-"R( s+ ' )^;Maximum allowable Torque

Cp = 0.0^ ;Initialize the process cost

x = 0.0^ ;Initialize total tool traverse distan

Delta= 500^ ;Arbitrary number for sampling

;intervals

j = 1 to Delta^ ;Loop for sampling intervals

if x < 11^;Evaluation of radial depth of cut

then

d(j) =

else

d(j) = d2 — k2 (x — 11 )

03 (j) = cos -1 (1^Rd(a( +3)1) )^ ;Swept angle of cut

if d(j) = 0

then

d(j) = 2

31 if R(i + 1) > d(j)

then

st(i) = ssin(;:(j))

else

st(j) = sma.

^7 (1) = Kaaz (2 )

F=(j) = 7(j)[(1 — cos(205(j))) + ri(2 46.(.7)

;Initial radial depth for triangle

;Feed per tooth

;from tooth breakage constraint

Cutting force constant

sin(20 5 (j)))] ;Average cutting forces
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Fib) = -6)(7'1(1 — cos( 20.(j))) ( 2 080) — sin( 20.(i)))]

Fx(j) = 7(i)[ri( 2 03(i) — sin( 2080))) — (1 — cos( 20.(i)))]

_EVA = -Y(7)tri( 1 — cos(209(i))) (208(j) — sin( 203(j)))]

FR(j) = VF2 +
M(j) = FR(j)(gi + 1) —

T(j) = -Yd(i)

0-(j) = piR(+ 1 ) . 1u(i)Vm(i)2 + T(i) 2

if crU) < Cfmax

then

goto 41

else

smax = smax — 0.01

goto 31

41 if Tmax > T(j)

then

goto 51

else

Srnas Smax — 0.01

goto 31

;for upmilling

;Average cutting forces

;for downmilling

;Resultant cutting force

;Resulting moment on the cutter

;Resulting torque

;Shank stresses

;Shank breakage constraint

;Check torque constraint

;Reduce maximum feed

;Calculate feed again

;Torque constraint check

;Calculate equivalent feed

;Reduce maximum feed

;Calculate feed again

0 I • \^st(j)d(j) 
Ni-1-1)08(i)

Nmax(j) = 2 71-VA(7-1-2 1 )

;Equivalent feed per tooth

;Range of



= 27,-vR(:+1) ;r.p.m.

AN = 100

61 Omega=integer value of -Arma° —1‘1""'AN

rmax • — _62L
PIV^(3 StO,Z

;Maximum r.p.m. allowed by

;Power constraint

;Initial increment for r.p.m.

;Upper limit of the index

for r.p.m. optimization loop
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k = 0 to Omega

N(k 1) =^kAN

while Nmaxp > N(k 1)

N(k + 1) = N(k + 1) — 1

2rR(i+1)N(k+1) (k + 1) =
60

Th (k + 1) = 60000*R(i+1)41.(j)
V(k+1)

s0000.n(i+i)(22- -0.(3)) Te (k + 1) -=^V (k+1)

;Loop for optimization of r.p.m.

;Next spindle r.p.m.

;Power constraint check

;Reduce spindle r.p.m.

;Spindle peripheral velocity

;Heating time in ms

;Cooling time in ms

smallx(k 1 )
^ ;Ratio of total cycle time to

actual cutting time per cycle

Er (k + 1) = 39 log(Tc (k + 1)) — 23 log(Th (k + 1)) + 37.5 ;Range of thermal strain

X(k 1) = Er(k 1 )(N(k+i).x6somali(k-1-1) )4^ ;Thermal fatigue parameter
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Tak 1) = 0̂2:(.j) X(k+1)ntSeq (j)nV(k+1)Paq ;Tool life

ChTtACp(k + 1) = (Ch 71,+1
)^T

/(-1-
c
1)

 )At ;Process cost for one interval

if k > 1 then^ ;Search of optimum r.p.m.

if ACp(k + 1) > ACp(k) then^;by comparing the cost

if AN > 1 then^ ;with the previous value,

Nmax N(k + 1)^ ;narrowing the speed range,

Nmin N(k — 1)^ ;setting new limits for r.p.m

AN =^ and new r.p.m. increment

goto 61^ ;New upper limit of loop index

else

Nmin = N(1)

AN = 1

if k = 0 then

ACman ACp(k + 1)^ ;Initialization of minimum cost

Nmino N(k 1)^ ;Initialization of optimum r.p.m.

if AC(k + 1) < AC,„„ then^Comparison with previous minimum cost

AC,,,in = AC(k + 1)^ ;New minimum cost

N„,,„. = N(k + 1)^ New optimum r.p.m.

next k^ ;Try the next r.p.m.
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Cp = Cp ACmin^ ;Summation of costs

AX(i) = st(j)16̀1(Tino z pt^ ;Distance moved

x = x As(j)^ ;Total tool traverse distance

if x > l l + 12 then^ ;Check whether the

goto 91^ ;whole workpiece is machined

else

81 next j^ ;Next sampling interval

91 Cp,..(i + 1) = Cp^;Cost with the selected radius

next i^ ;Next tool radius

;Plot Cpm, for different cutter radii R(i 1)

;stop

end
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Pseudo-code for two-pass milling operations

;Inputs:

Geometrical parameters of workpiece^d2, d3, 4,12

Economic parameters^:Ch, Ct,Tct

Tool life constant and exponents

Machine constraints^:Pmax

Cutting constants

Range of maximum radial width^:d7 min7 di.maa

for the first pass

Small increment in maximum

radial width of first pass

Tool geometry^ :R, z

Range of spindle speeds^:Vmin, Vmax

Cutting conditions^ :smax, a

Tool material properties^:amax, etc.

Milling type^ :Upmilling or downmilling

Sampling interval^ :At

;Outputs: 

Maximum radial width of^CPmsn

first pass and Machining cost

110
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;Variables: 

Bigk = drma.

31^d2 dl

32 = d2 — d3

L^d2 -d1 
—

d2 -d3 k2—

Pm..(.75*106 ) 

K sa

;Number of steps to cover the range

of max. radial width of first pass

;Geometric

;constants

;Radial width slope upto length d i

;Radial width slope after length 1 1

;Power constraint constant

i = 0 to Bigk^;Loop for range of maximum

radial width of the first pass

dr (i + 1) = dr„,„ + iAdr^;Next maximum radial width

of the first pass

L = 6R^ ;Flute length
Truax = . 75 * 106 * P. (=+1)  ;Maximum allowable Torque

Cp = 0.0^ ;Initialize the process cost

x = 0.0^ ;Initialize total tool traverse distance

flag = 1^ ;Initialization of pass number

Delta= 1000^;Arbitrary number for sampling intervals

j = 1 to Delta^;Loop for sampling intervals
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;Case 1

if 4,, < dr (i + 1) < 82

then
d (i+1) 

Al =^ka

A2 = 11 + 1 2

;Length of first pass

;Length of second pass

if x < 4(i+1) and flag= 1

then

d(j) = kix

if dr(ki+1) < x < a l and flag= 1

then

d(j) = k2 (x^dr (ki1+1) )

if x <^dr(kii+1)) and flag= 2

then

d(j)^+ ki x

;Radial depth of first

;pass of machining

;Radial depth of second

if (11^dr(kil-1-1) < x < (A 2^dr(ki2+1) ) and flag= 2 ;

d(j) d2 — dr (i + 1)^ ;pass of machining

if x > (A2^dr(ki2+1) ) and flag= 2

then



kl < x < A i and flag= 1if d,(i-1-1)
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d(j)^(d2 — dr (i + 1)) — k2 Ex — (li + 4(12: 1) )}

;Case 2

if 82 < dr (i + 1) <

then
dr (i-F1) ,

/2Al —^1-k1

A2 = 11 + 12

if x < 4(1+1) and flag= 1

then

d(i) = ki x

then

d(j) = dr(i + 1) — k2(x —

if x < (11^dr (kli+1) ) and flag= 2

then

d(j) = d1 ki x

;Length of first pass

;Length of second pass

;Radial depth of first

;pass of machining

;Radial depth of second

if x^dr(i+i)
) and flag= 2

d(j) d2 — dr (i + 1)^ ;pass of machining
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;Case 3

if .9 1 < dy.(i + 1) < d,..

then

Ai = 11 + 12^ ;Length of first pass

A2 - 11 + 12^ ;Length of second pass

if x < 11 and flag= 1

then

d(j) =d1 — (d2 — dr (i + 1)) + kix^;Radial depth of first

if /1 < x < A i and flag= 1

then

d(j) = d3 — (d2 — dr (i + 1)) — k2 (x — li) ;pass of machining

if x < A2 and flag= 2

then

d(j) = d2 — dr (i + 1)

if d 1 = d2 = d3

if x < A i and flag= 1

then

d(j) = dr (i + 1)

;Radial depth of second

;pass of machining

;Rectangular workpiece

;Radial depth of first

;pass of machining



3rnax

31 if R > d(j)

then

st(j) = sui(46.(7))
else

st(i) =

7(i) = K„azwat(j)2 

;Feed per tooth

;from tooth breakage constraint

Cutting force constant
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if x < A2 and flag= 2^ ;Radial depth of second

then

d(j) = d2 — cl,(i + 1)^ ;pass of machining

08 (j)= cos -1 (1 — 14)^;Swept angle of cut

if d(j) = 0^ ;Initial radial depth for triangle

then

d(j) = 2

Fx(j) = -y(j)[(1 — cos(20,(j))) r i (20.(j) — sin(20,(j)))] ;Average cutting forces

Fib) = 7(j)[r i (1 — cos( 20.(1))) ( 20.(j) — sin(20.0)))] ;for upmilling

Fx(j) 7(j)[ri( 20.(j) — sin( 20.(i))) — ( 1 — cos(20.(j)))} ;Average cutting forces

Fy(i) = "Y(2)[ri( 1 — cos( 20.(j))) ( 20.(j) — sin( 20.(3)))] ;for downmilling

FR(j) -= VF2 +^ ;Resultant cutting force

M(j) = FR(i)(L
^ ;Resulting moment on the cutter

T(i) =7d(j)
^ ;Resulting torque
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u(3) = pi2R,M(j)VM(j) 2 TW 2

if Q(j) < umax

then

goto 41

else

Smax = Smax — 0.01

goto 31

;Shank stresses

;Shank breakage constraint

;Check torque constraint

;Reduce maximum feed

;Calculate feed again

41 if Tmax > T (i)^ ;Torque constraint check

then

goto 51^ ;Calculate equivalent feed

else

Smax = Smax 0.01^ ;Reduce maximum feed

goto 31^ ;Calculate feed again

S eq()) = 
at(i)d(7)

313)

Nmax(i) ^

Nmin (•) — v2;

;Equivalent feed per tooth

;Range of

;r.p.m.

Nmax,(i) = 06:3(7)1.^ ;Maximum r.p.m. allowed by

;Power constraint

AN = 100^ ;Initial increment for r.p.m.

61 Omega=integer value of Nma'a-NNmin ;Upper limit of the index

for r.p.m. optimization loop
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k = 0 to Omega^ ;Loop for optimization of r.p.m.

N(k +1)^+ LAN^ ;Next spindle r.p.m.

while Nma.,, > N(k + 1)

N(k +1) = N(k +1) —1

V(k + 1) .= 211RN61(3k+i)

600004444j) Th (k + 1)^v(h+i)

600004, R(271--0.4.i))Tc(k + 1) = ^V(k+1)

smallx(k + 1) = ^

;Power constraint check

;Reduce spindle r.p.m.

;Spindle peripheral velocity

;Heating time in ms

;Cooling time in ms

;Ratio of total cycle time to

actual cutting time per cycle

E,.(k + 1) = 39log(Tc (k + 1)) — 23 log(Th(k 1)) + 37.5 ;Range of thermal strain

X(k + 1) = E,.(k 1)(N(k+i)*x6somall(k-14)).12,^;Thermal fatigue parameter

TL (k + 1) = 462,,(37 ) X(k-1-1)mSegniqk+1)Pa9^
;Tool life

ACp(k + 1) = (Ch   ^ )At^;Process cost for one interval
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if k > 1 then^;Search of optimum r.p.m.

if ACp(k + 1) > ACp (k) then ;by comparing the cost

if AN > 1 then^;with the previous value,

Nmaz = N(k + 1)^;narrowing the speed range,

N„,,,, = N(k — 1)^;setting new limits for r.p.m

AN —and new r.p.m. incrementio

goto 61^ ;New upper limit of loop index

else

Nmin = N(1)

AN = 1

if k 0 then

ACTnin ACp (k + 1)^;Initialization of minimum cost

Nmin. = N(k +1)^;Initialization of optimum r.p.m.

if AC(k + 1) < AC,,,„ then Comparison with previous minimum cost

ACT„,„ = AC(k 1)^;New minimum cost

Nminc, = N(k + 1)^New optimum r.p.m.

next k^ ;Try the next r.p.m.

Cp Cp + 0 Cmin^;Summation of costs

Ax (i ) = 8t(i)N60mina z At^;Distance moved

x = x Ax(j)^;Total tool traverse distance

if x > .A i and flag= 1 then^;End of first pass

flag= 2^ ;Start of second pass
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x = 0^ ;Initialization of tool traverse distance

if x > A2 and flag= 2 then^ ;End of second pass

goto 91

next j^ ;Next sampling interval

91 Cp„„,ji + 1) = C,^ ;Cost with the selected radius

next i^ ;Next maximum radial width for

;first pass

;Plot Cp„„„, for maximum radial widths dr (i + 1)

;of first pass

stop

end



Appendix D

Pseudo-code for optimal cutting direction

;Inputs: 

Geometrical parameters of workpiece^d2, d3 , /1 , /2

Economic parameters^:Ch, Ct,Td

Tool life constant and exponents^rn, n, p, q

Machine constraints^ Vi

Cutting constants^ :K,,r1

Range of cutting orientations^:em..) Borax

Small increment in cutting orientation :At9

Tool geometry^ :z

Number of sides of polygon^:BigL

Co-ordinates of one vertex^:x(3), y(3)

Shape of workpiece^ :Shape

Range of spindle speeds^:Vmtn) Vmax

Cutting conditions^ :smas, a

Tool material properties^:Amax, etc.

Milling type^ :Upmilling or downmilling

Sampling interval^ :At

;Outputs:

Cutting direction^ :0, Cp,„„

and Machining cost

120
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;Variables: 

Bigk = Integer of

Pmax(.75*106 )El^
Kitt

;Prescribing the coordinates of polygons ;

if shape = 1 then^ ;Five sided polygon

x(1) + x(3)

x(2) = x(3)

x(3) = x(3)

x(4) = l l + /2 + x(3)

x(5) = 11 + / 2 + x(3)

Y(1) = d2 + y(3)

y(2) = d1 + y(3)

Y( 3 ) = Y( 3 )

y(4) = y(3 )

y(5) = d3 + y(3)

if shape = 2 then^ ;Three sided polygon

x(1) = 11 + x(3)

Borax Bmin 

oe ;Number of steps to cover the range

of cutting orientations

;Power constraint constant
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x(2) = x(3)

x(4) = 11 + /2 + x(3)

x(5) = ll + /2 + x(3)

y(1) d2 + y(3)

y(2) = y(3)

Y( 3 ) = Y( 3 )

i = 0 to Bigk

Od(i + 1) °min iA0

0(i + 1) . lrOd(i+1)0+ 

di„,„ = 0.0

lmax = 0.0

;Loop for range of cutting

orientations

;Cutting orientation in degrees

;Cutting orientation in radians

;Maximum workpiece width

;perpendicular to cutting direction

;Maximum workpiece length

;along cutting direction

L = 0 to BigL^;Loop for transformation of co-ordinates

a(L) tan -10)^;Angles of lines through origin

;and vertices in radians
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P(L) — si4a(L(1),

;Transformation of vertex co-ordinates

if 0(i + 1) < 1 and O(i -I- 1) < a(L) then

y'(L) = P(L) * sin(a(L) — 9(i + 1))

if 0(i + 1) < li and 0(i +1) > a(L) then

y'(L) = —P(L) * sin(9(i + 1) — a(L))

if 0(i + 1) < 1- then

x'(L) = P(L) * cos(abs(a(L) — 0(i + 1))

if 0(i + 1) = I then

x'(L) = y(L)

y'(L) = x(L)

if 9(i + 1) > 2 and 0(i + 1) < r then

if 12(-- > (0(i + 1) — a(L)) then

y'(L) = —P(L) * cosg- — (0(i + 1) — a(L)))

x'(L) = P(L) * sing — (9(i + 1) — a(L)))

;Lengths of lines joining

origin and vertices
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if 0(i + 1) > z and 0(i + 1) < it then

if ; < (8(i + 1) — a(L)) then

y'(L) = —P(L) * cos(0(i 1) — a(L) —

x'(L) = —P(L) * sin(0(i + 1) — a(L) —

if 8(i + 1) = 7r then

y'(L) = —y(L)

x'(L) = —x(L)

;Maximum workpiece width and length

if L > 1 then

y20(L) = abs(y'(L) — y'(L — 1))

x20(L) = abs(x'(L) — x'(L — 1))

if y20(L) > d„nax then

dmax = y20(L)

bi = y'(L)

b2 = y'(L — 1)

x'(L)

a2 = xi(L — 1)

;Co-ordinates corresponding

.to the maximum width

if x20(L) > /max then

/„„„ = x20(L)

4 = xPrime(L)
^ ;Co-ordinates corresponding

4 = xl(L — 1)^ ;to the maximum length
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if L > 2 then

y21(L) = abs(y'(L) — y'(L — 2))

x21(L) = abs(x'(L) — x'(L — 2))

if y21(L) > dma. then

dmax = y21(L)

bl = y'(L)

14 = y'(L — 2)

di = x'(L)

a2 = x'(L — 2)

if x21(L) > Las then

= x21(L)

e1 = x'(L)

e2 , x 1 (L — 2)

if shape = 1 then

if L > (BigL — 2) then

y22(L) = abs(y'(L) — y'(L — 3))

x22(L) = abs(x'(L) — x'(L — 3))

if y22(L) > dm. then

dmaz = y22(L)

1/1 = y'(L)

b12 = yi(L — 3)

al = x'(L)
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a2 = x'(L — 3)

if x22(L) > /mai then

/max = x22(L)

cii = x'(L)

4 = x'(L — 3)

if shape = 1 then

if L > (BigL — 1) then

y23(L) = abs(y'(L) — y'(L — 4)) ;

x23(L) = abs(x'(L) — x'(L — 4)) ;

if y23(L) > dmax then

dmax = y23(L)

bii. = y'(L)

1/2 = y'(L — 4)

al = x'(L)

a2 = x'(L — 4)

if x23(L) > /mar then

/,,„,„ = x23(L)

cI = x'(L)

c ='^x'(L — 4)2

next L

Ra(i + 1) = dlaz^;Tool radius for full immersion
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R(i + 1) = 1.1* Ro (i + 1)^;10 percent tolerance
9i(2 + 1) _ 61 6z

if ei < c'2 then

114(i + 1) = c'i — R(i + 1)

else

14(i + 1) = c'2 — R(i + 1)

19 (i + 1) = 14(i + 1) + 1„,„x + 2R(i + 1)

;Slope of edges of polygon

L = 1 to BigL

if L < Big L then

sden(L) = x'(L + 1) — x'(L)

snum(L) = y'(L + 1) — y'(L)

else

sden(L) = x'(1) — x'(L)

snum(L) = y 1(1) — y'(L)

;Denominator in slope expression

;Numerator in slope expression

if abs(sden(L)) < abs(1) then

m'(L) = 200^ ;Edge is perpendicular to cutting direction

if abs(snum(L)) < abs(1) then^;Edge is parrallel to cutting direction
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m/(L) = 0

if abs(sden(L)) > abs(1) then

if abs(snum(L)) > abs(1) then

mi(L ) = sZenum(C,L))

b'(L) = y'(L) — mf(L) * x'(L)^;y intercept for edges

next L

L(i + 1) = 6R(i 1)^;Flute length

= .75 * 10 6 * 1:"R(1+1) vl

Cp = 0.0

Delta= 1000

s ti = 0.02

= 200

x = at Niz60

;Maximum allowable Torque

;Initialize the process cost

;Arbitrary number for sampling intervals

;Initial feed

;Initial speed

;Initial distance moved

Tmaz

j = 1 to Delta^;Loop for sampling intervals

h'i (j) = 14(i + 1) + x

= 91(i + 1 )

3 = —1000

f; = 1000

countp = 0.0

;Subsequent co-ordinates of tool centre

;Initialization of y co-ordinate of exit point

;Initialization of y co-ordinate of entry point

;Counter of entry and exit points
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;Points of intersection

L = 1 to BigL

if m'(L) = 200 then

bh(j) = —2 * gii (j)

chp(j) = (x'(L)) 2 (h'j (j)) 2 (g (j))2 — R(i 1) 2 —

2 * xi(L) * h/i (j)

ah(j) = 1

disc(j) = bh(j) 2 — 4* ah(j) * chp(j)

ko = 1 to 2^ ;Loop for entry and exit points

if m'(L) 200 then

if disc(j) > 0 then

if ko = 1 then

9p(ko) =
-bh(j)+"disc(2) 

hp(ko ) = m'(L) * gp(1) b'(L)

else

9p(ko) —
-bh(i)--Vcfisc(j)

2*ah(j)

hp(ko ) = m'(L) * gp(ko )d- b'(L)

if m'(L) = 200 then

if disc(j) > 0 then

if ko = 1 then

gp(ko ) = x'(L)
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hp(ko)^--bh(J)+^diac(j)
2

else

9134( 1c.)^x'(L)

hp(ko ) -1'k-0- N/disco)

if disc(j) < 0 then

gp(ko ) = 1000000

hp(ko ) = 1000000

gp(ko ) = integer of gp(ko )

hp(ko ) = integer of hp(ko )

if L < Big L then

if x'(L) > x'(L + 1) then

fxlim = x'(L)

sxlim = xi(L -I- 1)

else

fxlim = x'(L 1)

sylim = x'(L)

if y'(L) > y'(L + 1) then

fylim = y'(L)

sylim = y'(L + 1)

else

fylim = yi(L + 1)

sylim = y'(L)

;Upper and lower

;limits of abscissas for edges

;Upper and lower limits

;of ordinates for edges

if L =BigL then
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if x'(L) > x'(1) then

fxlim = x'(L)

sxlim = x'(1)

else

fxlim = x'(1)

sxlim = x'(L)

if y'(L) < y'(1) then

fylim = Y l ( 1 )

sylim = y'(L)

else

fylim = y'(L)

sylim = yl(1)

if gp(k,,)> (j) then^ Check for entry

if m'(L) 200 and m'(L) L 0 then^;and exit points

if gpint(ko ) < fxlim and gpint(k„)> sxlim then

if hpint(ko ) < fylim and hpint(kc,)> sylim then

if abs(hp(ko ) — (m'(L) * gp(k0 ) b' (L))) < 2 then

countp = countp + 1 ;Increase the count by one

if hp(k,,) >^then

vij = hp(ko )^ ; Update the

= gp(ko )^ ;exit point
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if hp(ko ) < f; then

f; = hp(ko )^ ;Update the

e'i = gp(ko )^ ;entry point

goto 28

if gp(ko ) > 11,;(j) then

if m'(L) = 200 then

if gpint(ko ) = f xlim and gpint(ko ) sxlim then

if hpint(ko ) < fylim and hpint(ko ) > sylim then

countp countp 1

if hp(ko ) > v; then

hp(ko )

u?
3

if hp(ko ) < u", then

= hp(ko)

e, gp(ko)

goto 28

if gp(ko ) > 114(j) then

if m'(L) = 0 then

if gpint(ko ) < fxlim and gpint(ko) > sxlim then

if hpint(ko) fylim and hpint(ko ) sylim then

countp countp + 1
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if hp(ko ) >^then •

= hp(ko )

= gp(ko )

if hp(ko ) < ,f; then

= hp(ko )

eij gp(ko )

next ko

next L

if countp = 0 then

glp(j) = 0.0

hlp(j)^0.0

g2p(j) = 0.0

h2p(j) = 0.0

;No tool workpiece

;engagement

if countp = 1 then

glp(j) = 0.0

hlp(j) = 0.0

g2p(j) = 0.0

h2p(j) = 0.0

;Tool just touches

;the workpiece but no

;cutting

if countp > 1 then ;Entry and exit points

glp(j) =

hlp(j) =
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g2p(j) =

h2p(j) = f;

dp(j) = V(glp(j) — g2p(j)) 2 (hlp(j) — h2p(j)) 2

exper(j)^2 *-11i.-f-Z--111;(i) 2 

;Distance between entry

and exit points

0,(j) = cos -1 (exper(j))^ ;Swept angle of cut

if Os (j) = 0 then

next j

d(j) = R(i + 1)(1 — cos(08 (j)))

if d(j) = 0

then

d(j) = 2

31 if R > d(j)

then

st(i)

else

st(j) = sma.

1, (1) = K.a;: (3)

;Radial width

;Initial radial depth for triangle

;Feed per tooth

;from tooth breakage constraint

Cutting force constant

Fx(j)^7(j)[(1 — cos(20.(j))) ri(20.(j) — sin( 20.(j)))1 ;Average cutting forces

Fy(j)^'Y(j)[ri(1 — cos( 20.(j))) — ( 20.(j) — sin( 20.(j)))] ;for upmilling
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Fz(j) = -y(j)[ri(20.(i) — sin( 20.(i))) — ( 1 — cos (20.(j)))] ;Average cutting forces
Fy(j) = 7(i)[ri(1 — cos( 20.(j))) ( 20.(i) — sin (20.(j)))] ;for downmilling

FR(j) = VF2^ ;Resultant cutting force
M(j) = FR(j)(L —^ ;Resulting moment on the cutter
T(j) = 'yd(j)^ ;Resulting torque

5(j) = pi2R,^ M(j)VM(j)2+ T(j) 2
^

;Shank stresses

if Q(j) < Grmax^ ;Shank breakage constraint
then

goto 41^ ;Check torque constraint
else

Smacc = Smaz — 0.01^ ;Reduce maximum feed
goto 31^ ;Calculate feed again

41 if Tmaz > T(j)

then

goto 51

else

Smax = sm. — 0.01

goto 31

;Torque constraint check

;Calculate equivalent feed

;Reduce maximum feed

;Calculate feed again



Seq0^at (7 )d(i)
 i. 3

;Equivalent feed per tooth

Nmax(i) vm2.-r
Nmin (j) = ^ ;r.p.m.

;Range of
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) .6t()z^ ;Maximum r.p.m. allowed byNniaxp(i 

;Power constraint

AN = 100^ ;Initial increment for r.p.m.

61 Omega=integer value of Nnial-NNnwn ;Upper limit of the index

for r.p.m. optimization loop

k = 0 to Omega^ ;Loop for optimization of r.p.m.

N(k + 1) = Nmin + LAN
^;Next spindle r.p.m.

while N,„„, > N(k + 1)^;Power constraint check

N(k + 1) = N(k 1) — 1^;Reduce spindle r.p.m.

V(k + 1) = 2R-RN(k+1)
60 ;Spindle peripheral velocity

Th(k + 1 ) = 60000*R42,(j) 
V(k+ 1)

Tc (k + 1) = s0000.R(2,95.(;)) 
v(k+i)

;Heating time in ms;

;Cooling time in ms
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smallx(k + 1) =^ ;Ratio of total cycle time to

actual cutting time per cycle

.E,.(k + 1) = 39log(Tc (k + 1)) — 231og(Th(k + 1)) + 37.5 ;Range of thermal strain

X(k + 1) = Er (k + 1 )(N(k+1)*znall(k-l-ly

71L(k + 1) = 02.(7) x(k-I-1)", Seq (3)°V(k-1-1)Pa 9

ct^chTACp(k + 1 ) = (Ch _L Tdk+i) + Ti( + 1
ct

)1
)At

;Thermal fatigue parameter

;Tool life

;Process cost for one interval

if k > 1 then

if ACp(k + 1) > ACp(k) then

if AN > 1 then

if ACp (k + 1) > ACp (k) then

if AN > 1 then

Nmax = N(k 1)

Nmin = N(k — 1)

AN _ AN
10

goto 61

else

Nmin = N(1)

AN = 1

if k = 0 then

;Search of optimum r.p.m.

;by comparing the cost

;with the previous value,

;by comparing the cost

;with the previous value,

;narrowing the speed range,

;setting new limits for r.p.m

and new r.p.m. increment

;New upper limit of loop index
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OCmin = OCp(k+1)^ ;Initialization of minimum cost

Armin. N(k 1)^ ;Initialization of optimum r.p.m.

if AC(k + 1) < AC„„„ then^Comparison with previous minimum cost

AC„,in = LIC(k + 1)^ ;New minimum cost

Nmino = N(k + 1)^ New optimum r.p.m.

next k^ ;Try the next r.p.m.

Cp = Cp ACmin^ ;Summation of costs

Axu) st(j)N6Lninoz  A t^ ;Distance moved

X == X + AX(i)^ ;Total tool traverse distance

if x > (18 (i + 1) — R(i + 1)) then^;Machining finished

goto 91

next j^ ;Next sampling interval

91 Cp„,,,(i + 1) = Cp^;Cost with the selected radius

next i^ ;Next cutting direction

;Plot Cp,nin for cutting directions Od(i + 1)

stop

end
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