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ABSTRACT

Important industries such as construction, mining, and forestry make use of heavy-duty

hydraulic machinery with manipulators usually controlled manually by expert human

operators. The hand controls that operate most articulated machines today do not take

advantage of recent developments in robotics and control technology. There are thousands

of industrial hydraulic machines in existence that can potentially benefit from improved

computer-assisted controls such as the ones which are under development at UBC.

To control such manipulators properly, however, precise link parameters should be

known in advance in order to obtain inverse kinematics, Jacobians, and inverse dynamics

used in various control algorithms. Accurate measurement of link parameters is made

possible by using calibration techniques. The theme of this thesis involves calibration

(measurement) of kinematic and dynamic parameters of hydraulic manipulators.

In the category of kinematic calibration, we have presented and experimented with

a new algorithm and instrumentation for automatic measurement of the geometric

parameters of such robotic manipulators when forming mobile closed-chains. The

contribution of the work proposed here, in the face of a large literature in kinematic

calibration, is that there is no need for joint and end effector sensing of the manipulator.

Instead, an external linkage-type sensing instrument, called "calibrator" has been

introduced. One end of the calibrator is attached to the manipulator endpoint, while

the other end is attached to a passive task fixture which is a spherical joint fixed to

the machine's chassis. A special hierarchical identification algorithm using iterative

least-squares technique has been developed based on link-by-link movement of the

manipulator, starting from the end effector. By using the joint angle sensory data from
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Abstract

the calibrator, all the geometric parameters of the moving link, as well as the kinematics

of the actuator and the task fixture, were identified for a Caterpillar 215B excavator.

In the area of dynamic calibration of hydraulic machines, a new methodology

for the dynamics of a complex hybrid open-closed chain hydraulic manipulator was

derived based on the Newton-Euler formulation. It was shown by simulation that

neglecting the dynamics of the minor links (hydraulic actuators) may dramatically

underestimate the forces/torques applied to the joints/links. By measuring the joint

positions and the oil pressures inside the hydraulic actuators and applying the proposed

dynamic equations, we attempted to calibrate the dynamic parameters (inertias, friction

forces/torques, and transducer offsets) of both major and minor links of a typical hydraulic

manipulator, the UBC Caterpillar 215B excavator. Simulation results showed that with

the current accuracy of the sensors and transducers, it was not possible to obtain a

good estimate of the parameters. The poor estimates of the individual parameters of

the UBC hydraulic manipulator confirmed the simulation indications. Nevertheless,

the estimated torques/forces obtained from the calibrated parameters appeared to be

closer than the ones calculated from the existing nominal model to the actual measured

torques/forces of the actuators. Although the formulation was much more mathematically

and computationally involved, the complete model predicted the actuator forces/torques

better than both reduced and nominal models.

There are a number of potential advantages of the calibration techniques developed

in this work over the existing methods in the literature. The techniques have the

potential of being industrially feasible, fast, inexpensive, automatic with minimum human

involvement and engineering supervision, and ready to apply on-site.
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Chapter 1

GENERAL

1.1 Introduction

Satisfactory performance and ability to control any piece of machinery depends largely

upon having accurate information, or model, about that system and its various structural

components, including its kinematics and dynamics. It becomes crucial when such a

powerful model-based controller as the one in Figure 1 takes on the control which leads

to performance superior to control not based on carefully-constructed machine models.

The information necessary to construct a model for this type of controller may come

from the data supplied with the equipment by the manufacturer or can be determined

from experiments. However, not a single machine in the world is perfectly built nor

remains unchanged forever / . Even for the most sophisticated robots being used in research

laboratories, one should never rely totally on nominal design specifications supplied by the

manufacturers since the final product may vary slightly due to manufacturing tolerances,

mounting errors, misalignment, and possible shipping/handling damages. Besides, some

other external and internal factors may affect the machine characteristics such as

component modifications or changes, link and joint flexibility and compliance, overloads,

backlash in gear train, fluid compressibility (in hydraulic actuators), temperature changes,

friction effects, wear, aging, etc. Machine calibration is a process that is used to correct

For example, it is common in the forestry industry for a distributor to substantially modify a base
machine with a variety of non-standard links and instruments.
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Figure 1: A hybrid position/force feedback controller.

these parameter changes in order to improve the accuracy of the machine's model such

that the desired performance in its control is achieved.

1.2 Robot Calibration

The theme of this work is to make a (hydraulically actuated) robotic manipulator build an

internal model of its own structure, that is, to calibrate itself, autonomously. Autonomous

robot calibration is defined as an automated process that determines the model parameters

by only using the robot's internal sensors [4]; however, we may add some accessories

in the form of external sensors and links for convenience and special purposes. This

type of robot calibration results in some modifications in the robot position/force control

software rather than suggesting changes to the design of the robot or its control system.

By the above description, robot calibration would be a discrete event and as such is

different from, for example, adaptive control (of robots) where model identification



is carried continuously and controller parameters are adjusted in accordance with the

identified changes [31].

1.2.1 Calibration Levels

Robot calibration may be divided into the following three major levels:

1. calibration of kinematics, which is needed to obtain good estimates of link

lengths and of locations of joint axes through measuring the robot joint angles

and the corresponding endpoint position and orientation,

2. calibration of dynamics, which is necessary to build appropriate inertial models

of mass, center of mass, and moment of inertia for the robot links; this

involves measuring joint/link external torques and forces while moving the links

with different velocities and accelerations. This level of calibration requires

a knowledge about the kinematics of the manipulator obtained from Level 1

calibration,

3. calibration of actuators, which is required to construct accurate models of

actuators for joint torque control; in the case of hydraulic actuators, the calibration

problem is to find accurate parameters used in the mathematical relationships

between the input currents (or voltages) to the servovalves and the output oil

pressures and flows in the actuators.

For the purposes of our research, we have considered only the first two levels in this

work, i.e., kinematic and dynamic calibration of robotic manipulators in general, and

hydraulic manipulators in specific. Level 3, i.e., hydraulic calibration of actuators is

rather more involved and will be left for future work.
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1.2.2 Calibration Steps

In general, the calibration process at any level consists of four steps:

1. modeling, in which a number of suitable functional relationships between different

inputs and outputs of the system should be established,

2. measurement, which is the data collection process from the actual robot that

relate the inputs of the model to the outputs.

3. identification, which is the mathematical process of using the data collected to

identify the coefficients in the model,

4. correction, in which the new (or corrected) model is implemented in the

position/force control software of the machine.

As far as the subject of this research is concerned, we will address the first three steps

of calibration in the following chapters and leave the latter for a future investigation.

1.3 Motivation and General Objective

Important industries such as forestry, mining, agriculture, and construction make use of

heavy-duty equipment controlled by human operators. Examples of such equipment are

excavators, cranes, combine harvesters, log-loaders, and feller-bunchers. However, the

hand controls that operate most of these articulated machines today are inefficient, need

experienced operators, and do not take advantage of recent developments in robotics and

control technology, which in turn, do not let us make use of the ultimate capabilities

of such powerful machines.

Over the past four years, an engineering team in the University of British Columbia

(UBC) has implemented a new set of controls using a computer to assist the operator

4



in coordinating a log-loader converted version of a Caterpillar 215B excavator, with its

bucket replaced by a grapple. Some significant improvements in task time and accuracy

for novice operators have already been reported [33]. Now, the capability to specify

new machine designs that take advantage of novel sensor/vision technology, computer

hardware and software advances, and new efficient controllers is under development.

There are virtually thousands of industrial machines in existence today that could

benefit from improved computer-assisted controls. Significant productivity improvements

in building the next generation of such fully computerized machines as well as retrofitting

existing equipment with coordinated controls is expected in the near future. The UBC

teleoperation project is now investigating conversion of these types of industrial machines

into task-oriented human-supervisory control system with a minimal change in the original

design.

As was discussed earlier, in order to apply new control strategies (similar to

the one shown in Figure 1) to such converted hydraulic machines and obtain better

overall performance, a key element is the ability to accurately and rapidly identify

the machine parameters including the kinematics and dynamics of their manipulators 2 .

In brief, the objective of this research is to develop some convenient and efficient

calibration tools, both in algorithm and hardware, for autonomous accurate measurement

of kinematic and dynamic parameters of a wide range of existing industrial hydraulic

mechanisms. However, the tool thus developed will be applicable for machines ranging

from anthropomorphic dimensions to machines such as large grapple yarders, log-loaders,

feller-bunchers, excavators, and cranes.

Since the identified parameters of a single machine may vary from time to time

because of aging and some other external factors, recalibration of that machine through

2^In Figure 1, for example, computing inverse kinematics A and Jacobian J requires kinematic
parameters, and calculating inverse dynamics M -1 requires both kinematic and dynamic parameters.
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the developed algorithms can guarantee the required efficient performance.

1.4 Scope of Present Work

Throughout this research, it has been attempted to generalize, as far as possible, the

methodology introduced and developed for calibration of robotic manipulators although

our primary interest has been focussed on heavy-duty hydraulic manipulators and the

simulations, experiments, and verification of our theoretical work have all been done on

a typical mobile hydraulic system, i.e., an excavator. This machine, in its original form,

is being used extensively in forestry and construction industries and incorporates many

aspects of an industrial robot; therefore, we can easily extend our derivations and results

to a large number of robotic systems as well as all other mobile hydraulic machines like

feller-bunchers and log-loaders.

This thesis is organized as follows: Chapter 2 introduces the candidate machine, a

Caterpillar 215B excavator, which has been used as our experimental testbed at UBC. Its

bucket has been replaced by a grapple to hold logs firmly and move them from one place

to another. The kinematics of this machine, including its nominal geometric parameters,

and also the nominal inertial parameters for its major and minor links have been listed

in that chapter. There, it will be explained that such hydraulic manipulators, unlike

conventional robots, are of closed-chain types and need special care and formulation

when modeling them.

Kinematic parameters of a robot connect the robot's joint angles as inputs to its

endpoint position and orientation as outputs through a highly nonlinear relationship.

Differential calculus is employed to obtain a suitable form of equations to solve for

the unknowns. Then, to calibrate those parameters, the robot should assume a number
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of different configurations, and the joint angles and the corresponding position and

orientation of the endpoint should be measured at each position. Usually, the number of

data points thus obtained well exceeds the number of unknown parameters to be identified

due to unavoidable noise that exists in any measurement process. Finally, the unknown

kinematic parameters will be determined by using an iterative least-squares technique.

However, some problems will arise in the design of heavy-duty hydraulic manipulators

with coordinated controls. Since these machines are generally supposed to work in

natural unstructured environments such as forests and mines, which are hazardous to their

sensitive instrumentation (especially the sensors), they may be unable to use conventional

joint angle resolvers. The problem of kinematic calibration of such manipulators will be

discussed in Chapter 3. A novel external linkage, termed "calibrator", which consists

of a number of links and joints with sufficient joint-angle sensors, is introduced and the

kinematic equations for the new model thus obtained are written using the concept of

closed mobile kinematic chains. This helps us to eliminate the measurement of endpoint

position and orientation [41 which is time consuming, expensive, and usually not very

accurate. Later in this chapter, the simulation and experimental results obtained from the

UBC excavator will be discussed and the two conventional (using joint angle sensors)

and proposed methods will be contrasted.

Dynamic calibration of hydraulic manipulators is another issue in this investigation.

Almost any link in such a typical machine forms a closed kinematic chain with the two

other proximal links because they are interconnected through hydraulic actuators which

usually consist of cylinders and pistons. The problem of formulating the dynamics of

manipulators with such closed-chains has been a major issue in the field of robotics in

recent years. By using Newton-Euler formulation, one can obtain a linear relationship

between the vector of inertial parameters and the joint torques.
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In Chapter 4, we have successfully derived a linear formulation for the dynamics of

hydraulic manipulators including the coupled dynamics of their actuators. An optimal

digital filter has been applied to the joint angle readings to calculate noiseless velocities

and accelerations. These quantities are used as variable coefficients in the dynamic

equations of motion. Later, we have shown, through simulation and experiment, that

ignoring the dynamics of minor links would produce large errors in the identified inertial

parameters, and therefore, would give inaccurate estimates of the control forces and/or

torques.

Finally, in Chapter 5, conclusions obtained from simulations and experiments of the

proposed calibration methods are outlined. Some suggestions and guidelines for future

work are also presented.

1.5 Contributions

A number of contributions to the field of robot calibration may be found in this

investigation that can be summarized as follows:

In the kinematic calibration context,

1. the kinematic relationships were formulated in order to obtain a model for

calibration, independent of joint angle variables, thus eliminating the need to

measure them via resolvers;

2. the need for measuring the endpoint position and orientation through complicated

hardware and software as well as joint angles was removed by designing and

introducing an external sensing linkage to the existing manipulator and fixing its

other free end to the ground in order to obtain a closed mobile kinematic chain;

8



3. a special hierarchical algorithm was developed for the combined mobile system

that identifies the kinematic parameters of the major links one by one from the

most distal link to the base link of the manipulator;

4. we also could calibrate the geometric parameters of minor links, i.e., the hydraulic

actuators;

5. the whole process was tested for the first time on a hydraulic manipulator.

In the dynamic calibration context,

1. the dynamics of a class of closed kinematic chains formed by a cylinder-and-

piston hydraulic actuator and two robot links was investigated, and a model was

developed to include the inertial and friction effects of the former. Obtained

through the Newton-Euler formulation, this model describes a linear relationship

between the dynamic parameters of the coupled major and minor links and the

vector of control forces/torques, and has all the dynamic properties of an open

chain model;

2. experiments were carried out for the first time on a hydraulic machine, using

the combined model, to identify the enhanced vector of unknown inertial and

friction parameters.

Throughout this work, it is assumed that a robotic manipulator is made up of rigid

mechanical links and one-degree-of-freedom joints.
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Chapter 2

A HEAVY-DUTY HYDRAULIC MANIPULATOR

2.1 Introduction

A wide range of heavy-duty hydraulic machines have been designed and built around

the world. They are being used in various industries to pick up and move, carry, push,

or pull heavy objects, dig or fill holes, etc. To perform those functions properly, they

usually have manipulators which are actuated hydraulically.

Although different in appearance and/or function, many aspects of hydraulic machines

are similar to those of industrial robots (in fact, some heavy-duty robots take advantage

of hydraulic manipulators as their arms). For example, they are mobile and they have

rigid links connected to each other by revolute or prismatic joints. One major difference

is that for conventional robots with revolute joints, the rotary actuators are usually

mounted on the joints, while for hydraulic manipulators, the joints are usually free and

the command forces are applied directly to the links by cylindrical hydraulic actuators.

These manipulators form a hybrid class of open- and closed-kinematic-chain robots which

offer higher loading capacities and more rigidity [21.

2.2 The Experimental Machine

Calibration of the kinematic and dynamic parameters of the Caterpillar 215B excavator

was studied in this work. This typical machine is used in such primary industries as
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forestry, mining, and construction. It is basically modeled as a large system consisting of

two subsystems: a complex hydraulic actuation system, and a rigid multibody mechanism

[41]. It is a mobile three-degree-of-freedom (3—DOF) manipulator with an additional

movable end effector, namely the bucket. Its schematic diagram is shown in Figure 2.

The bucket is used both to excavate and to carry loads.

Figure 2: Schematic of a typical excavator with -bucket".

The main structure of the machine, including the cabin, rotates about the vertical

axis 1 called the swing axis (Figure 2), and is actuated by a hydraulic motor through

a gear train. Boom and stick are two other links whose axes of rotation are nominally

parallel to each other (axes 2 and 3 in Figure 2). The swing, boom, and stick serve to

position the bucket. The bucket itself rotates about axis 4 which is in the same plane

as the boom and stick. These three links are powered by hydraulic cylinders. The use

of hydraulic cylinders, however, restricts the motion of the links due to the added joint

angle limitations [33].
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For picking up, holding, handling, and placing heavy objects such as logs, one may

replace the bucket by a grapple. Figure 3 shows the same excavator with a grapple as

its end effector. Here, axes 4, 5, and 6 determine the orientation of the end effector;

but, only the latter (axis 6) is hydraulically powered. The other two can pivot freely;

therefore, the manipulator has six degrees of freedom, four of which are powered DOF's.

Figure 3: Schematic of a modified excavator having "grapple" instead of "bucket".

2.3 Link Specifications

The links of the manipulator consist of: 1) swing, 2) boom, 3) stick, and 4) grapple. They

are called major links. These links, like many ordinary robots, are serially connected to

each other by revolute joints and form an open kinematic chain. To the first 3 joints,

i.e., joints 1, 2, and 3, are attached position resolvers to measure the relative angular

displacement of the two adjacent links. There is some slight flexibility and deflection

12



a 34 [cm]
d 11 [cm]

grapple

stick

4

boom

0 2

Figure 4: Plan view of the excavator with grapple, showing the swing parameters.

due to the material and weight of the links and joints. However, it is so small that, for

our working accuracy, we can assume them to be basically rigid.

As was mentioned earlier, each link has its own nominal kinematics and dynamics. In

the following, we will give some relevant data for the geometric and inertial parameters

of the links which are necessary for control purposes. The parameter values are obtained

from the manufacturer specification sheets, or are measured (estimated) manually. A

number of illustrations and tables have been included for more clarification.

2.3.1 Geometric Parameters

cabin (swing): It is the first link of the manipulator which holds the cabin and

the boom and swivels about a vertical axis connected to the base. A plan view of the

machine with special emphasis on the swing is shown in Figure 4. The distance between

the boom axis and the swing axis is shown as well. This, however, is not very accurate

since there was no readily available data from the manufacturer for the values of a and

d, and it was difficult to measure them by tape very accurately. We, however, still keep

them for reference.

13



boom cylinder rod pin

The swing is actuated by a rotary hydraulic motor through a gear train; therefore,

there exists some backlash in the system. This feature causes the swing to behave

exactly like a conventional robot link; i.e., the control torque can be applied directly to

the link's axis of rotation.

Boom: the boom is the anatomical equivalent to the upper arm of the human body.

It is the second link in the machine which is attached to the cabin at one end, and to the

stick at the other end. The two connecting joints are revolute, nominally horizontal, and

parallel to each other. The shape and some nominal values of the geometric parameters

of the link are shown in Figure 5.

stick cylinder rod pin

Lit = 5.190 [m] , L2 = 2.000 [m] , L3 = 3.790 [m] ,^= 2.443 [m]

y = 37.0 [Deg.]

Figure 5: Schematic diagram of the "boom".

The boom is powered by a cylindrical hydraulic actuator which consists of a pair

of cylinders (attached to the cabin) and a piston (connected to the boom). It is capable

of generating a high force to handle heavy loads. There is no torque, except friction,

applied to the boom axis. Instead, there is a large force at the boom piston rod pin

14



stick cylinder rod pin boom pin

bucket cylinder rod pin
(not used)

bucket linkage pin (not used)

due to the hydraulic pressure and the weight of the actuator. There is, however, another

force at the stick cylinder rod pin due to the pressure inside the stick's actuator (not

shown in the figure).

Stick: the third major link in the manipulator is the stick which holds the grapple

through a revolute joint while connected to the boom through another joint. It is similar

to the forearm of the human body. A schematic diagram of this link, along with some

nominal values of the geometric parameters, is shown in Figure 6.

grapple pin

L = 1.800 [m] , L
2
 = .720 [m] , L

3
 = 2.425 [m] , y = 35 [Deg]

Figure 6: Schematic diagram of the "stick".

Like the boom, it is actuated by a cylindrical hydraulic jack. The pressure force in

the cylinder is applied through the piston rod pin (shown in Figure 6). This force is also

applied to the boom through a cylinder rod pin (shown in Figure 5). Two more pin holes

exist in the stick which are usually used for connecting the bucket attachments. The

bucket and its corresponding linkages, however, were not used in calibration experiments.

Grapple: the grapple is the forth and last element of the hydraulic manipulator and
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stick pin (unactuated)
.1-- grapple pin

(unactuated)
L =1.134 [m]

grapple

is used as the end effector of the manipulator. It is analogous to the human hand. As

shown schematically in Figure 7, it has three degrees of freedom around its three axes of

rotations which, on the whole, determine the orientation of the endpoint. However, only

joint 6 is powered hydraulically in this machine and the other two joints are unattached

and free to rotate around their corresponding axes. In this sense, the grapple can be

compared to a 2—DOF pendulum.

Joints 4 and 5 are not actuated, and Joint 4 in this link is connected to the stick

while joint 6 grabs the objects within its fingers.

Figure 7: Schematic Diagram of the -grapple".

2.3.2 inertial Parameters

In the case of geometric parameters, the required data may be obtained from the

manufacturer or can be measured manually, although manual measurement may not be

accurate for such parameters as joint twist angles. When dealing with inertial parameters
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of a manipulator's links, such as masses, centers of masse, and moments of inertia,

we find that it is much more challenging to have relevant estimates of even a few of

those parameters.

Generally, it is very difficult, and in some cases impossible, to detach the links and

measure the inertial parameters by precision instruments. The manufacturers of such

hydraulic machines usually cannot provide accurate estimates of the links' centers of

mass or the moments of inertia. We need more comprehensive data on such parameters.

The only inertial data available for the UBC excavator are tabulated in Table 1

[41]. They are gross estimates of the actual parameter values obtained either from

the manufacturer or from a number of rough measurements. Figure 8 shows a local

coordinate frame which is attached to the center of gravity of a general link i and is in

the direction of the principal moments of inertia of the link.

Figure 8: Local coordinate frame attached to the C.G. of link i.
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Table 1 Nominal inertial parameters for the major links.

parameters swing
(link 1)

boom*
(link 2)

stick**
(link 3)

grapple
(link 4)

M (kg) 8031 1830 688 -

k; , x (m) -1.05 -2.30 -0.90 -

1(1, y (m) 0.04 -0.2 -0.10 -

k; , , (m) -0.50 0.00 0.00 -

kw , , (m) 0.35 2.90 0.90 -

k;+1 , y (m) -0.12 -0.20 -0.10 -

ki ,. 1 ,. (m)  0.50 0.00 0.00 -

Ixx (kg-m2) 8000 100 10 -

Iyy (kg-m2) 8000 15400 600 -
.^Izz (kg-m2 ) 15700 15400 600 - 

* Includes boom, boom hydraulic lines, boom cylinders and rod end pins, stick cylinder and head end pin
** Includes stick and stick hydraulic lines.
— data not available.

2.4 Actuator Specifications

The hydraulic actuators, as well as the major links, have their own kinematics and

dynamics although these do not have direct contributions to load manipulation; hence,

we refer to them as minor links. There exist two different types of hydraulic actuators in

our manipulator. The swing, as was mentioned earlier, is powered by a rotary hydraulic

motor which applies a direct torque to its axis of rotation (like conventional robots). The

boom and the stick, on the other hand, are actuated by hydraulic jacks.

A typical hydraulic jack is powered by hydraulic oil and consists of a cylinder and

a single- or double-action piston. The actuator interconnects two adjacent manipulator

links by forming a closed-chain. The triangular mechanism thus obtained will have one

prismatic and three revolute joints and is almost rigid, although the hydraulic oil is

compressible and the hydraulic hoses have some compliance, and the joints and links
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AB = l c = 1.447 [m]

BC = I (variable)

CD = I bo = 2.000 [m]

DA = I St = 0.625 [m]

may be deflected slightly under load.

Some relevant information about a number of geometric and inertial parameters of

such links obtained from the manufacturer or direct measurements is given below.

2.4.1 Geometric Parameters

Hydraulic-Motor (and the gear train): it rotates the cabin about the swing axis

through a gear train with a reduction ratio of 307:1. There is no other geometric

specification available. However, we do not need more data on this actuator.

Boom's actuators: two identical hydraulic jacks are used to actuate the boom. They

are symmetrically located on the sides of the boom and connected to the lower link

(cabin). Figure 9 shows a schematic diagram and the nominal geometric specifications

for one of the actuators.

Figure 9: Nominal geometric parameters for the boom actuators.
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B
^C

A

AB = I c = 1.799 [m]

BC = I^(variable)

CD = I st = 0.720 [M]

DA = I bc= 2.444 [m]

Figure 10: Nominal geometric parameters for the stick's actuator.

Stick's actuator: it is a single hydraulic jack with its cylinder connected to the

boom. The geometry and nominal parameters for this actuator are given in Figure 10.

2.4.2 Inertial Parameters

There is no existing manufacturer data available for the inertial parameters of the

actuators, such as mass, center of mass, and moment of inertia for the cylinder or piston

individually. The combined link-plus-actuator parameter values may be found in Table 1.

2.5 Sensors

Three different types of sensors have been installed on the various elements of the

machine to obtain the required data for calibration purposes. These are:

1. Pressure transducers, to measure the pressures at the cylinders. Their accuracy

is ±0.5% of the full scale (from 0 to 5000 psi);
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2. Linear transducers, to measure the piston movement of the hydraulic actuators.

Their accuracy is within ±2 millimeters in the workspace;

3. Resolvers, which are used to track the position of each link with respect to the

its previous link. The accuracy of the resolvers is ±-0.1°.

A VME bus computer system is used on-board to control the manipulator automatically

and to sample data at a maximum rate of 50 Hz. The system has

1. a 12 bit A/D card to sample the pressure transducers,

2. a 12 bit A/D card to sample the linear transducers.

3. a 14 bit R/D (Resolver to Digital) card to read the resolvers.
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Chapter 3

KINEMATIC CALIBRATION

3.1 Introduction

As discussed in Chapter 1, robot calibration is essential for model-based control of

robots and teleoperators since the kinematic and dynamic parameters are used to build

a robot model, which, for control purposes, should be as close as possible to the actual

system in order to obtain good estimates of the applied torques and/or forces. Up to

now, autonomous calibration of robot dynamics has basically been achieved, although

the kinematics must be assumed to be given (see, for example, [1]). Thus, in order to

identify the inertial parameters in a truly autonomous system, one needs first to calibrate

the kinematics of the manipulator.

Our emphasis in this chapter is to introduce and develope a method to measure the

kinematic parameters of a robot in general, and a hydraulic teleoperator in particular,

with minimum human involvement.

3.2 Previous Work

Kinematic calibration is a process by which all kinematic model parameters of the robot

manipulator are identified given a set of pose measurements. It consists of finding a

more accurate geometrical relationship than the nominal one between the joint sensor

readings and the actual position of the end effector; then, the robot positioning software
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is changed according to this new relationship identified. Typically, researchers have

viewed the manipulator as a positioning device, i.e., an open-loop kinematic chain. In

this way, by changing the position of the end effector in a three—dimensional (3D) space

and measuring its position and orientation as well as the robot joint angles, calibration

is made possible.

The measurement of a 3D trajectory with high accuracy, high bandwidth, and large

displacement is still difficult to achieve. In the past, the task of kinematic calibration

involved labor-intensive apparatus and procedures. Especially machined calibration

fixtures with precision points were employed, for example, by Hayati and Roston [12] and

Veitschegger and Wu [38] which required that the operator manually guide an insertion

tool. Whitney et al. [40] used a model including nongeometrical errors, such as gear

train backlash, joint and link flexibility, gear runout, etc., and a least squares numerical

search algorithm on measurements obtained from a manually operated theodolite. This

procedure, using theodolites, is very accurate and applicable over a wide range of robot

workspace; however, it is not automatic, and therefore, it is tedious, time consuming,

and requires much human involvement and experience. Also, its error model is highly

nonlinear and, unfortunately, the definition of geometrical parameters to be identified

(six for each link) is rather unusual and is related to the measuring instruments. Judd

and Knasinski [15] also used theodolite for their measurements and considered mainly

nongeometrical errors. They proposed error models that can be used for identification

with a common least-squares procedure. Roth et al. [31] gave an overview of robot

calibration discussing modeling, measurement, identification, and correction issues, but

no mathematical or experimental developments and results were presented.

A number of investigators have considered applying computer-directed data

acquisition systems for automatic robot calibration. For example, Puskorius and
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Feldkamp [29] used a stereo camera system mounted on the end effector of their

robot. This method, however, has a fairly low accuracy compared to other methods,

and the cameras mounted on the end effector can interfere with robot operations [29].

Stone and Sanderson [35] employed an ultrasonic range sensor to measure the position

and orientation of the endpoint in real-time. This type of sensor is fairly accurate and

automatic. Along each Cartesian axis, the resolution reached 0.1 mm and sampling rate

was about 50 Hz [35]. One drawback of this system is its very limited workspace

area of operation making it unsuitable for general endpoint tracking [1]. The other

disadvantage is the sensitivity of sound speed in the air to temperature and humidity.

Because of changes in outdoor conditions, sensor calibration will be required several times

during measurements, or robot calibration should be done in a very carefully controlled

laboratory. Also, since the sonic source is fixed to the moving object, problems can

occur with reflection of the ultrasonic waves on the machine structure. As a result,

this method is not suitable for calibration of heavy-duty hydraulic manipulators in an

uncontrolled outdoor environment.

More sophisticated instruments for endpoint tracking have also been developed. One

such instrument is a laser tracking system which appears to have sufficient bandwidth,

large displacement, and high accuracy, with resolution of 1:100,000 reported [20]. But

currently such a method can only be used for linear motions of the end effector. Various

research is in progress to develop 3D measurement laser systems, but motion speed

seems to be limited [20].

Infrared 3D measurement systems have been used by Hollerbach and Bennett [13]

and An et al. [1]. These are based on a stereoscopic analysis, using two cameras, of the

location of six infrared light-emitting diodes (IRED's) on a 2' x 2' square frame fixed to

the endpoint. Each diode can be sampled at 400 Hz, and the spatial resolution is 1:4000
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with accuracy of about 1 mm at a distance of 2 meters. By switching on and off of

these diodes sequentially, six fixed points of the end effector can be located accordingly,

allowing the absolute position and orientation of the square frame to be calculated. The

whole system needs accurate calibration by itself, and is sensitive to light reflections as

well ( hence not suitable for outdoors). Also, the low resolution directly influences the

accuracy so that, according to the authors, the calibrated parameters were not as accurate

as the nominal ones [1].

All of the techniques already discussed have been used for robot kinematic calibration,

and have some important common features. They may be summarized as follows:

1. They have been applied to conventional robots and therefore are suitable for such

systems. A more convenient method for kinematic calibration of large hydraulic

manipulators should be devised in order to take the calibration problems of such

systems into account.

2. They require the position and orientation of the endpoint to be measured by

an external measurement system which is usually complicated, expensive, and

needs engineering supervision. The extra equipment often introduces some

serious problems and difficulties to the calibration procedure such as bandwidth,

accuracy, workspace limitations, inconsistency in data readings, and need for

a highly controlled environment for the calibration process (e.g., well-equipped

laboratories). Besides, these types of sensors, by themselves, should be calibrated

very accurately just before or during the robot calibration procedure itself.

3. They definitely need robot joint sensors to measure the joint angles simultaneously

in real-time.

A number of problems may arise, however, in applying such existing calibration methods

25



to hydraulic manipulators. These will be discussed in the next section.

3.3 Problem Statement

Although heavy-duty hydraulic manipulators and teleoperators have many similarities to

conventional robots, including joints and links, and the same control strategies applicable

to robots, due to several reasons they cannot be simply calibrated in the same way as the

robots are. If we look at an industrial hydraulic machine which is going to be used as

an efficient computerized teleoperator, we will easily find some or all of the difficulties

that one should face in the early stages of the calibration process. For example, the

cylindrical actuators of hydraulic manipulators form minor closed-chains with the major

links (see Figures 9 and 10). In order to calculate the dynamic forces applied to the

manipulator links, we have to identify the kinematics of the minor closed-loops as well.

Below are given some other problems one faces in the calibration of such manipulators.

3.3.1 Endpoint Sensing Problem

The calibration procedure must be economic and industrially feasible, at least, at the

level of modifications to be done on the machine since hydraulic machines are often

modified in the field. It means that calibration should be able to be performed on site

with minimum human supervision and specialized skill. Therefore, any type of sensitive

measurement instrument which may be affected by the ambient conditions or need

highly skilled operators should be avoided. Secondly, calibration must be done within

a reasonable time. It is not feasible to take several days to calibrate a single hydraulic

machine. Hence, those calibration techniques that make use of endpoint sensors, which

themselves require calibration right before the actual calibration procedure, are unlikely
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to be practical (for example, IRED's or camera systems). Thus, none of the calibration

techniques discussed in Section 3.2 are in fact suitable for our purposes.

Fortunately, a number of investigators (e.g., [4] and [5]) have recently developed a

new method which provides the basic requirements for calibration of hydraulic machines.

If the manipulator is viewed as a closed-chain device to interact at its both ends with

the environment, it is not necessary to monitor and sense the endpoint, and autonomous

calibration is then made possible. As Bennett and Hollerbach state, "if a manipulator

is formed into a mobile closed kinematic chain, then its joint angle readings alone are

enough to identify the kinematic parameters" [5]. It means that when the endpoint of a

manipulator is attached to a known task fixture, and the manipulator assumes a number

of poses, there will be enough consistency equations [5] to solve for the kinematic

parameters.

As an example, suppose that the end effector of a four-degree-of-freedom (4–DOF)

robot is attached to a fixed ball joint (a 3–DOF task) that provides a mobile chain. Then,

if the closed-loop assumes n different configurations, the joint angle readings alone are

sufficient to write 3n loop position equations in order to identify all of the kinematic

parameters as well as the transformations from the robot base to the contact point (task).

This technique is quite general and is equally applicable to both conventional robots

and hydraulic manipulators.

3.3.2 Mobility Problem

Now, imagine that we have an n—DOF manipulator which forms a closed kinematic

chain when its endpoint is attached to an t—DOF task fixture. In order for the chain to

have a general spatial mobility, we know from classical kinematics that

n t > (3.1)
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For example, in order for the closed-chain to have a total mobility of 1, with a 0—DOF

task fixture (or simply "task"), the robot must be redundant; i.e., it should have at least

7 degrees of freedom. It happens when the robot hand is locked to another robot hand

or to the ground. In this case, by moving only one joint (or link) at a time, all other

joints assume a new position and orientation in the space spontaneously. If this robot

had more than 7 DOF's, the number of links that could be moved arbitrarily would be

equal to the mobility of the closed-chain.

According to inequality (3.1), a 3—DOF point contact task fixture can be employed

as a constraint only if the manipulator has at least 4 DOF's. Hydraulic machines usually

have 4 to 6 DOF's (see Figures 2 and 3); therefore, a passive' point contact can be used

as the task fixture. For instance, when the 6—DOF experimental machine shown in Figure

3 is attached to a ball joint, the degree of mobility (DOM) in the closed-chain thus formed

will be (6+3)-6=3. It means that three links of the manipulator can be moved arbitrarily

while the other three should assume spontaneous configurations in the space. Now, if the

4—DOF excavator in Figure 2 forms a closed-chain with the same task, then the DOM

for the system will be (4+3)-6=1. Here, only one link is free to move and the remaining

have to follow particular trajectories in the space. For a conventional robot, this probably

does not cause any significant problem since the links are rather light and the driven

joints can be back-driven (e.g., in direct drive arms) or freed up using a clutch (e.g., in

the case of gear-driven servos) while the driving joints are moving in the workspace.

In the case of heavy-duty hydraulic manipulators, however, the situation is quite

different. They usually have very heavy links and the hydraulic power cannot be easily

turned off by detaching the oil hoses from the actuators, or by turning off the hydraulic

pumps. Even if we did so, tremendous forces/torques would be required to hold the heavy

1^By passive we mean that the task may not have any sensor attached to it and therefore, its coordinates
need not be sensed during the calibration process.
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links in position. This is the case for the excavator of Figure 2. For the experimental

machine in Figure 3, as was mentioned in Chapter 2, only four links out of six (i.e., links

1, 2, 3, and 6) are hydraulically powered, and the other two links, i.e., links 4 and 5, are

free. Therefore, if only one powered link should move at a time, in order to maintain

the mobility of the closed-chain, we need at least (6+1)4(4-3)+31=3 free links in the

loop. Having already two free links belonging to the manipulator, the chain requires at

least one extra link to maintain mobility.

In general, suppose that a manipulator has n DOF's, and its endpoint is attached to a

task fixture with t DOF's. If we wish to have a m—DOM closed-chain, from inequality

(3.1), the degrees of freedom required for the task fixture would be

t = (6 + rn) — n^ (3.2)

When the manipulator has p hydraulically actuated links, which naturally cannot move

freely in the closed-chain, the DOF's of the manipulator will decrease by p; therefore

t^(6 + nt) — (n — p)^ (3.3)

But we wish to move d powered links simultaneously in the closed-chain, with d s in. It

means that the DOF's of the manipulator, i.e., n-p, will increase by d, or

t = (6 +^— [(n — p) d]^ (3.4)

Usually, the task fixtures have 3 or less DOF's, i.e., t s 3. Therefore, in order to maintain

m DOM's for the closed-chain while moving d powered links, we may need 1 more links

to be attached to the task fixture, which can be obtained from Eq. (3.4),

/ = (6 + nt) — [(n — p) d t]^ (3.5)

with

d < ni^ (3.6)
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According to Eq. (3.5), we thus need at least 1 extra link for the UBC experimental

machine and 3 links for the excavator. These additional serial links need not be heavy

at all, and should be attached to the endpoint from one end, and to the task from the

other end. Of course, any new link introduced to the closed-chain must have its own

joint sensor (e.g., resolver for a revolute joint and linear transducer for a prismatic joint).

In this way, the problem of mobility for the hydraulic manipulators can be solved with

minimum provisions and expenses.

3.3.3 Joint Sensor Problem

Another major problem with a hydraulic manipulator is the attachment of joint

sensors. A hydraulic machine is normally built to work in highly unstructured hazardous

environments such as forests, mines and mountains. If it is converted to a computer-

coordinated teleoperator (or telerobot), then in order to control the machine, joint position

information in real-time will be needed. However, joint angle sensing systems on these

machines, including the joint sensors, the connections to the sensors, and the wires

linking them to controlling computers are vulnerable to mechanical damage (e.g., shock,

vibration, abrasion, etc.) and electrical defects (e.g., welding repairs, short circuits due

to moisture, etc.) in hostile environments. Such sensors and their decoding electronics

also introduce substantial extra cost and complexity to the system. Therefore, some

other sensing systems would be desirable in place of traditional joint sensors used in

conventional robots.

Mulligan et al. [26J suggest a convenient model-based vision system mounted in

a safe place on the cab. It eliminates the use of the joint sensors by taking real-time

images of the links and comparing them to a predefined kinematic model of the links

and computing the relative angular and/or linear positions of the joints accordingly.
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The model can be established by calibrating the manipulator applying the closed-chains

concept. In this case, the manipulator links need not have any joint sensors; instead, the

joint sensors of the attached links, which provide mobility for the closed-chain, can be

employed in the calibration process. We name this extra serial linkage "the calibrator"

[17] because it actually calibrates the manipulator by using its own sensors. We still

may assume our proposed method of calibration to be autonomous since the only human

involvement in the whole process is limited to attaching one end of the calibrator to

the end effector and the other end to the ball joint which is fixed to the ground, or

preferably, to the machine's base.

For a manipulator with unsensed joint angles, we require a special identification

algorithm to solve for the unknown parameters. In the following sections, we show that

the closed-chain kinematic equations for a manipulator contain joint position variables

which are not sensed except for the calibrator's; the joint positions should somehow be

eliminated from the model formulations. It requires that the manipulator be remodeled

and a new calibration procedure be introduced.

3.4 Model

As mentioned in Chapter 1, the goal of the kinematic calibration is to improve

the accuracy of the kinematic model of the manipulator. In this section, we will

construct a global model for error identification2 . This model depends on the choice of

parameters used to describe the manipulator geometry and on the possible consideration

of nongeometric errors. The error model is written in a linearized form so that it can

be directly exploited in the identification process.

This expression is used because the nonlinear model can be substituted by a difference equation which
reflects the error in the parameters. See Eq. (3.31).
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3.4.1 Geometric Parameters

Geometric parameters are those that reflect all aspects of the apparent geometry that

exists between two successive rigid links. Using the geometric parameters, one must

locate the link and its corresponding coordinate frame with respect to its preceding link.

A number of different approaches exist for developing a geometric model of the

manipulator. For example, the Complete and Parametrically Continuous (CPC) modeling

convention has been proposed by Zhuang and Roth [42] which introduces eight redundant

link and joint parameters for a revolute joint. The kinematic model obtained by using

CPC parameters is almost linear when the manipulator assumes a series of particular

poses. Nevertheless, this model has not become popular among other researchers partly

because of the number of parameters used and the redundancy in parameters.

The most common method for defining the geometric parameters of a manipulator is

the procedure proposed by Denavit and Hartenberg [6] which is based on homogeneous

transformation matrices. This procedure consists of establishing coordinate systems on

each joint axis. If Joint i has the axis of rotation (or translation) zi_i, and Joint i+1 has

the axis of rotation (or translation) zi, the coordinate frame of Link i can be determined

and established according to the following three rules [8]:

1. The axis lies along the axis of motion of the ith joint.

2. The xi axis is normal to the 41 axis, and pointing away from it.

3. The yi axis completes the right-handed coordinate system as required.

The basic Denavit-Hartenberg (D-H) representation of a rigid link depends on four

geometric parameters (in contrast with the eight CPC parameters) associated with each

link. These four parameters describe any revolute or prismatic joint. For the time being,
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joint i+1^link i+1

XI

joint i

Figure 11: Establishing link coordinate systems based on the modified D-H parameters.

we shall assume axis^to be the axis of movement for link i+/. Referring to Figure

11, the four basic D-H parameters are defined as:

Oi the joint angle from the xi..1 axis to the x'i axis measured about the 4_1 axis

according to the right-hand rule.

di the distance from the origin of the (i-1)th coordinate frame to the intersection of

the 41 axis with the x'i axis along the^axis.

ai the offset distance from the intersection of the 41 axis with the x'i axis to the

origin of the ith coordinate frame along the x'i axis. Naturally, ai is the length

of the common normal between the zi_i axis and the z'i axis.

ai the offset angle from the 41 axis to the z'i axis measured about the x'; axis

using the right-hand rule.

Using the definition of D-H parameters for each link, a homogeneous transformation

matrix can be defined which relates the ith coordinate frame to the (i-1)th coordinate
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frame. A homogeneous transformation matrix is a 4x4 orthogonal matrix whose 3x 3

upper-left submatrix reflects the orientation of the ith coordinate frame with respect to

the (i-1)th coordinate frame, and the first three elements of its fourth column indicate the

xyz position of the ith frame origin with respect to the origin of the (i-1)th frame. The

first three elements of the fourth row of this matrix are zero and the fourth element of

this row is set to 1. The 4x4 homogeneous transformation "Ai from link i to link i-/

can be defined by the D-H convention given in Figure 11 as:

= T rans(zi_ i , di) Rot(zi_ i , 0i) Trans(xi, a i) Rot(xi, ai) (3.7)

where the notation Rot(xi, 0i) indicates a rotation about an axis xi by an angle 0i, and

Trans(xi, aj) indicates a translation along an axis xi by distance ai.

One major problem may arise, however, with the basic D-H parameter definition

when two successive revolute joints in a general manipulator are nominally parallel

[10]. In the case when the axes of the joints are exactly parallel, there are theoretically

an infinite number of common normals with the same length between the two joints.

The D-H parameter ai can represent any of those lines. Now, if there exists a slight

misalignment in the plane formed by the 41 and zi joint axes, the length of the common

normal ai can assume virtually any positive value which is not continuous as the axes

become misaligned. In this case, small geometrical errors do not lead to small variations

of the parameters and therefore, the coefficients in the geometric model do not vary

proportionally with the degree of the misalignment. This may create a serious numerical

instability in the identification algorithm.

A number of investigations have already been conducted to modify the D-H

parameters so that the two consecutive parallel links can be treated as a special case

with different formulations (see, for example, [10], [11], [40], and [39]). Because of its
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convenience and simplicity, we have chosen the modification suggested by Veitschegger

and Wu [39] and shown in Figure 11.

Suppose that the two axes of rotation 41 and zi are nominally parallel but with

a slight misalignment. Then, with the basic D-H coordinate definition, we may still

maintain the z'i joint axis parallel to the 41 axis and establish the i'th coordinate frame

as before. Now, we realize that the actual zi axis has been slightly twisted about

the virtual y'i axis (which is not shown) by an angle Without this link twist, the

nonparallelism must be compensated by artificial modification to the values of the length

ai and the offset di of the ith link even if they were initially correct.

As stated earlier, the four basic D-H parameters are theoretically necessary and

sufficient to define any coordinate frame, and the twist angle seems to be a redundant

parameter. However, this parameter will only be used for successive nominally parallel

rotational joint axes, and in this case, it is substituted for the joint offset length di if we

construct the coordinate frames from lower links to higher ones, or di,' if vice versa.

Hence, we are allowed to fix the dependent translation di (or di,1) and to consider in the

identification algorithm that it keeps its nominal value and is thus error free. In other

cases, the twist angle ,L3i is simply set to zero. The homogeneous transformation matrix

"Ai defined in Eq. (3.7), thus, may be modified as:

1-1 Ai = T ran .s(zi_ i , d i ) Rot(zi_ i , i ) x

Trans(xi, ai) Rot(xi, 64) Rot(y i ,/ii )^(3.8)

If we expand the right hand side of Eq. (3.8) using the homogeneous transformation

matrices and D-H parameter definition explained earlier, we will get
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0^0^0
0^1^0^0
0^0^1^di

0^0^0^1

cos Oi^— sin Oi^0^0
sin Oi^cos Oi^0^0

0^0^1^0
0^0^0^1

 1^0
0^1
0^0
0^0

0^ai
0^0
1^0
0^1

x

0^0 cos /1,^0^sin /I, 0
0^cos ai^— sin ai^0
0^sin ai^cos ai^0

^0 ^1^0

^

—sin^0^cos
0
0

(3.9)

0^0^0^1 0^0^0 1

or in concise form

- C13.00— Sa.Sf3.S0^—Ca.S0 S73.00+ Sa.C13.S0 a.00 -

A = C,3.S0+ Sa.S,13.00^Ca.00
—Ca.S,13^Sa

Sa.03.00
C a.0

a.SO (3.10)

0^0 0 1

where C and S stand for cos and sin functions respectively. In Eq. (3.10), all the

subscripts and superscripts have been omitted for convenience. Note the orthogonality

of the columns in Eq. (3.10). Also note that for nonparallel revolute joints, the twist

angle is equal to zero and we get the familiar homogeneous transformation matrix [8]

- CO —Ca.S0 Sa.S0 a.00 -

A SO
0

Ca.00
Sa

—Sa.CO a.S0 (3.11)

0 0 0 1

It should be mentioned that for a revolute joint, the joint variable is 0 while for a

prismatic one, 0 is constant and d becomes the joint variable. Since the manipulator with

which we are dealing has revolute joints, from now on we can assume without losing

generality that the joint variable is 0 and proceed to derive the equations for revolute

joints. Of course, the method developed here can easily be extended to the manipulators

with prismatic joints.
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3.4.2 Nongeometric Parameters

As depicted in the previous section, geometric parameters can be affected by errors

in their nominal values. But other error sources are present in a manipulator structure.

A number of researchers have called them nongeometric parameters or nongeometric

error sources (see, for example, [31], [4], and [30]). The nongeometric parameters are

focussed at a joint and reflect errors between the true and measured joint angles. The

error sources that are suspected to have the most significant effect on the accuracy of

our measurement in this work are joint flexibility, link flexibility, looseness and play of

the joints in hydraulic manipulators arising from lifting heavy loads, joint angle offset,

and temperature effect.

According to the results presented in the literature (e.g., [40] and [15]), flexibility

in the joints and in the links of conventional robots, among the other nongeometric

parameters, causes the highest error (between 8% to 10%) in the endpoint position and

orientation. Link flexibility is usually less than joint flexibility. There is unfortunately

no significant research on the effects of joint/link flexibility in hydraulically actuated

manipulators. It is reasonable, however, to assume that the error due to joint flexibility

should not exceed the amount claimed for the conventional robots, because the hydraulic

actuators form closed chains with the machine links, and therefore, the joints and links are

usually stronger and more rigid compared to those of robots [2]. Modeling of joint and

link flexibility is quite involved and requires detailed analysis of the structural elements

forming the manipulator, which is out of the scope of this work and therefore will not

be considered here. However, we will see in the following sections that joint flexibility

in the calibrator is responsible for much of the errors in the identified parameters.

Looseness and play in the joints, like backlash, are probably some of the most

difficult error sources to identify. Fortunately, the contribution of backlash to the global
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error is only between 0.5% to 1.0% [30], and we expect the same amount of contribution

for the joint looseness and play -3 . These parameters are rather random and hard to model.

The joint angle offset is one of the easiest nongeometric parameters to identify and

is related to the actual joint angles O'i and the measured D-H joint angles Oi by

6); — 0, + o icin (3.12)

From the nongeometric parameters, we will consider only the joint angle offset in the

global kinematic model since its modeling is simple and the error in the identified

parameters will be dramatic if it is neglected.

Thermal expansions can affect the manipulator mechanical structure. However, in

the accuracy range we are working with, temperature does not contribute any significant

error to the identified parameters. Of course, the accuracy of the resolvers may be

affected by temperature changes as well. The net effect is a slight drift in joint angle

readings which normally changes nonlinearly with the temperature. However, the whole

calibration process can be carried out in a span of a few minutes during which drastic

temperature changes are unlikely to occur. The result is that the readings of the resolvers

may have a different but constant drift. This drift is inherently included in the joint offset

angles of Eq. (3.12) and will be identified in the calibration process.

3.4.3 Manipulator Kinematics

A manipulator is formed when a number of individual links are subsequently

connected to each other through revolute or prismatic joints. For two consecutive links

i and i+1, the homogeneous transformation matrix 41'41, which specifies the location

of the (i+/)th frame with respect to the (i-1)th coordinate system, is the product of the

3^Although we have found that these nongeometric parameters have contributed much more errors than
expected to our measurements (see Section 3.8).
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and

[0 pll I

)

'A, [0,0,0,11 T^(3.17)

two successive coordinate transformation matrices "Ai and iAi,/,

=^Ai. iAi+ ,^ (3.13)

For multiple chained links of a manipulator, the homogeneous matrix °T,,, which

specifies the location of the nth coordinate frame with respect to the base coordinate

system, is the chain product of successive coordinate transformation matrices of "Ai,

and is expressed as [8]

°T„ = • . n-1 A, = H Ai (3.14)
i=

Or

0 Tn —
[ Xn

0
Yn

0
Zn
0 Pn1 {011^

°N
0:^1 (3.15)

where 0=[0, 0, 0], and

[xn) yt, Zn ] = Rtt

Pn =

orientation (or rotation) matrix of the nth coordinate system

established at link n with respect to the base coordinate system.

It is the upper left 3 x3 partitioned matrix of °Tn.

position vector which points from the origin of the base

coordinate system to the origin of the ith coordinate system.

It is the upper right 3x 1 partitioned matrix of °Tn.

By combining Eqs. (3.14) and (3.15) using Eq. (3.8), we will get [5]

Rn H Hot ( zi_ , Oi ) Rot (xi, ) Rol (yi,^(3.16)
i=i
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where the first three elements of the column vector [0, 0, 0, 1] T are the coordinates

of the origin of the nth link frame with respect to itself. From Eqs. (3.16) and (3.17)

we see that the rotation matrix °11„ and the position vector pn are functions of the

link kinematic parameters 0,, Oiqff, o„ ai, and d, (or 3,) for i=1 n. From the above

parameters, only 0, varies significantly in time and the others are almost time invariant

and can be assumed constant. Thus, we may define a row vector that contains all of

these constant kinematic parameters as

^- 1 
= [0,?-11 , ai, ai, d,^(or /i)]^(3.18)

Therefore, from Eqs. (3.16) and (3.17) we obtain

^° R„ = G(0, 0)^ (3.19)

and

^Pit = f(ti, Cb)
^

(3.20)

where the underlined general variable x is a row vector of the kinematic parameters

xi's from 0 to n.

Now, if a general N—DOF manipulator forms a closed kinematic chain by attaching

its endpoint to a passive point task (or a ball joint), we realize from Eq. (3.16) that

the rotation matrix °RN which determines the orientation of the endpoint with respect to

the base coordinate frame is unknown, since the point task is passive; but, the endpoint

position vector pN in Eq. (3.17) is fixed in space when the manipulator assumes any

arbitrary configuration j. Therefore, when the closed-chain is at the jth configuration,

by rewriting Eq. (3.17) for the subchain from the Nth link to the (i+ /)th link, we

may obtain [17] the position of the endpoint (point task) with respect to the ith link

coordinate system as

[ i Pjiv , I]
T

 =^4.-1.guik [0,0,0, (3.21)
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i
FY N

i-1)^i-
rzN

. cos Oz — — 1 siy„ . sin Oji

Sj Sin a
:X N • •N 

. COS 0Y 

+ di

(3 .24a)

(3.24b)

(3.24c)

and for the subchain formed from the Nth link to the ith link,

—1 J I]^ft.^-^Ak [0, 0, 0, 1[ T (3.22)

From Eq. (3.20), we know that the endpoint position vector Hpii with respect to the

ith link coordinate frame is generally a function of the joint angle variables Oki and link

parametric vectors (Oen, k, ak, dk, 13k) for k=i N. The homogeneous transformation

matrix "Ati contains the ith joint angle variable^which we assume to be unknown

(or unmeasured). Using Eq. (3.8), we can rewrite Eq. (3.22) as

T{ i'piN , 1] =T ralis(zi_ i , di).Rot (zi_ 1 , 0!) x

(NTrans(xi, ai).Rot(xi, a ).Rot(xi, fli) ft
k =----/+,

[0, 0, 0, 1} T

k —

(3.23)

The vector equation (3.23) consists of three algebraic equations for the Cartesian

components of the position vector Hpii. If we expand the first two matrices of the

right hand side of Eq. (3.23), and name the three scalar components of the resultant

vector of the remaining terms as s, sy , and sz, we obtain the following three algebraic

equations

The s vector is a function of the joint variables 0,,/ to ON and link parameters tp, to

N . To eliminate 01 from Eqs. (3.24a and b), we square these equations and add them

together to get simple relations for the jth measurement point as

PIN
1 2 i-1 s 2—1 

y2 N
+ (3.25a)
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i s +^ (3.25b)

where the superscript j has been dropped for clarity.

Eqs. (3.25) are the kinematic model for a general manipulator and will be used in

the identification process. From these equations we learn that

• the components of the s vector contain the higher link joint variables 0,+11 to OW,

some of which may change with j during the identification process; They must

therefore be sensed while the other unsensed joints in the whole chain, except

the ith joint, must be kept fixed. Given a manipulator without any joint angle

sensors, we need an extra linkage, the calibrator, with sensed joints to provide

the sensory information to be used in Eqs. (3.25).

• the components of the s vector also contain all the unknown parameters of the

currently moving link as well as a number of unidentified parameters for the

distal links (including the calibrator parameters).

• the calibration procedure, therefore, must start from the most distal link of

the original manipulator by moving it while locking the other links of the

manipulator. Note that the joint angle of the currently moving link does not

appear in the proposed kinematic model (Eqs. (3.25)).

• since for a closed kinematic chain with a point task fixture, the task position

vector components in Eqs. (3.25) are fixed but unknown, they should be identified

along with the manipulator link parameters.

• from Eq. (3.25a), however, only the norm of the task position vector in the xy

plane (not its x and y components) with respect to the (i-1)th link coordinate

frame can be identified.
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• the z component of the task (endpoint) position vector with respect to the (i-1)th

coordinate frame in Eq. (3.25b) is dependent on the ith link offset length d,, and

therefore, only their difference can be identified at the ith identification stage.

• since at each stage of calibration, the number of unknown parameters in Eqs.

(3.25) well exceeds the number of equations, different manipulator poses and

measurements are required to determine these parameters robustly if there is

some random noise in the sensor readings. For example, link i should assume

Mi different poses (then j=1, 2, ^ M,).

3.4.4 Actuator Linkage Kinematics

Every individual cylindrical hydraulic actuator forms a 1—DOM closed kinematic

chain with the adjacent manipulator links. In Figure 12, joint D, which connects the

manipulator's (i-1)th link to the ith link, is a simple revolute joint whose movement

is always known through a sensor or, in our case, through the proposed identification

technique, i.e., Eqs. (3.25). The cylinder and the piston joints A and C, however, can

be simple revolute joints if the axes of A, C, and D are parallel to each other. When

there is a slight misalignment between any two of them, the joints for the actuator must

be ball joints in order to allow motion and to prevent excessive stresses. In every case,

a local base coordinate frame can be established on joint A (or C) and attached to the

cylinder (or piston). Then, by applying Eqs. (3.25) to the endpoint C (or A) one may

identify the D-H parameters for this closed-chain by measuring the changes in length Ip .

If joints A and C are 3—DOF ball joints, the triangle ACD will become a spatial

closed-chain, and as a result, two more joint angle sensors will be required to identify

the geometric parameters. In the case that all joints are parallel, the triangle ACD will

always be on a single fixed plane, and Eqs. (3.25) can be simplified to the well-known
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B
^C
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link i-1

AB=l c

BC = I P

CD = I 
u

DA = I

Figure 12: The kinematics of a cylindrical hydraulic actuator.

triangle equation for the jth measurement point, as

1p = 1/1 .71^1 — 21 u 11 cos^lc (3.26)

where

= 0
^,d off
^

(3.27)

and 0, is the measured or previously identified angle for the ith joint. From Eqs. (3.26)

and (3.27), only the joint angle 0, and the link displacement 1p needs to be known or

measured in order to identify the constant parameters.

3.5 Measurement

As discussed in Section 3.5.3, Eqs. (3.25) constrain us to follow a special hierarchical

measurement procedure and identification algorithm somewhat different from the standard

calibration methods that exist in the literature (see Sections 1.2 and 3.2), since

conventional robots usually have their own joint sensors which can easily be used
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stick
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tball joint^three-link
calibrator
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for calibration purposes. In contrast, we have assumed that the hydraulic manipulator

lacks such sensors. By reformulating the standard kinematic equations, we have derived

a special model that requires some other sensing device, like the proposed calibrator, to

identify the manipulator kinematic parameters.

Figure 13: The calibrator designed for machine calibration.

3.5.1 The Calibrator

The minimum number of calibrator links needed to form a mobile closed-chain may

be calculated from Eq. (3.5). However, since the manipulator joint angles are not sensed

and the task fixture is assumed to be passive, the calibrator shown in Figure 13 must

have at least three orthogonal4 joint axes in order to identify all the kinematic parameters

of a general n—DOF manipulator; therefore 1=3. For the hydraulic machine described

They should be orthogonal because with parallel joint axes, the workspace of the manipulator's
endpoint in the closed-chain will be limited to certain planes, and not all the link parameters can be
identified then.
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in Chapter 2 and shown in Figure 3, the number of DOF's is n=6, out of which four

links (1, 2, 3, and 6) are hydraulically actuated (see Section 2.3); i.e., p=4. Only one

link at a time is allowed to move; therefore, d=1. The task selected is a ball joint,

i.e., t=3. Using Eq. (3.5), the degrees of mobility for the combined system will be

m=3+[(6-4)+1+3]-6=3. Without losing generality, we may lock joints 5 and 6 of the

manipulator for the convenience of our experiment; in this case, the manipulator will

have three powered links 1, 2, and 3 (p=3) and one passive link 4 (n=4). If we freeze

all links except link 4, then d=0, and the degree of mobility will be reduced to 1. If link

4 is fixed and one of the powered links moves, d=1 again and the degree of mobility

for the closed-chain will be 1.

Theoretically, one degree of mobility in the closed-chain is sufficient for calibration

purposes. In practice, however, because of the size of the heavy-duty manipulators and

their workspace, and also because of the magnitude of forces and torques applied by

them, we need to build strong and relatively large calibrators for machine calibration.

This may cause the calibrator to be rather heavy, especially since the joints and links are

required to be as rigid as possible to avoid introducing any additional bias and disturbance

to the kinematic model we have developed 5. It is thus better to have more than one

degree of mobility in the closed-chain by increasing the number of sensed links in the

calibrator. Usually 2 DOM's are enough if all of the calibrator joints are orthogonal.

Another advantage of having a more than 1—DOM closed-chain is that the workspace

for the calibrator will be enhanced, which is crucial for any identification process in

general, and especially for the identification of the calibrator parameters. This is because

the planes or spatial surfaces that the joints describe would then be increased and

therefore, more points in the 3D workspace can be measured accordingly. The net

In fact, these large torques caused our first prototype of the calibrator joints and links to deflect and,
in some cases, to break.
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result is that the system of nonlinear equations which are to be solved for the unknown

parameters will become well-conditioned.

In our experiments, we chose to use the grapple (i.e., joint 6 in Figure 7) as an

additional joint by attaching a resolver to its axis of rotation. This provision does not

limit the generality of the method. From now on, we assume that the calibrator consists

of four links (r=4), i.e., links 5, 6, 7, and 8 in Figure 13.

Figure 14: The combined hydraulic machine and the calibrator during the kinematic calibration process

3.5.2 Measurement Procedure

The measurement process, which consists of reading the joint sensors of the calibrator

while the manipulator links assume different poses, although simple, requires strict

adherence to the following procedures:

1. Attach one end of the calibrator to the manipulator endpoint (the grapple) and the

other end to a ball joint installed on a stationary point of the machine, as shown
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in Figure 14. Also, install the linear position sensors on the cylindrical actuators.

2. Start the measurement process by moving the most distal link of the manipulator

(the nth joint) to Mn different poses while freezing all other links, and read the

calibrator joint angles [On+1, ^, On+d in to [0n+1, ^ Oni-r]M" as well as the

displacements of the actuator pistons.

3. Freeze the currently moving link and start moving the next proximal link i and

collect the data for that link as in step 2; i.e., read the calibrator joint angles [On+1,

^ , On+,.] 1, to [On+i„ On .fr imi and the linear displacement for the piston.

4. Repeat step 3 until i=1; i.e., until the first link of the manipulator have been

moved and the calibrator joint angle data [On+1,   n+r]i 1 to [011+11   0n+rr 1 I

and actuator linear displacements have been recorded.

3.6 Identification

3.6.1 Differential Relations

Similar to Eq. (3.20), the direct kinematic model of Eqs. (3.25) gives a nonlinear

relationship for the endpoint alternate position vector i-1vivi.vpx2 +py2)1/2, pz iT m terms

of the vectors of kinematic parameters and joint variables 0 as

1 1
1:11 = [N/13 + 14, Pzi = (3.28)

Or

r = f (0,^p') = [0, Or^ (3.29)

where the subscripts and superscripts have been omitted for simplicity, and^=

[AT nof f ,T a TqT T d 7^The row vector a T , for example, represents the D-H

parameters (ai, ai+ i, ^, aN). The calibration is based on iteration of the linearized
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^

direct kinematics (3.29) around initial estimate vectors O and^of real vectors 0 and

,. This method is common among many researchers (for example, [29], [38], and [1]).

From differential calculus, the first variation At- of the endpoint location corresponding

to variations in the link parameters (so, AO off, Act, A/3, Ad, Ad, Ap') is given by

Of^Aoof f
Or at9 "1 '1- ao^—^Oa

Ao+

aa^Of^Of ,
Ti; 1+ as ^-0 + V`A (3.30)

or in a more compact form as
AO^-

A0 0 f

Ar , Of^Of^Of[ Of Of Of Of Act
A/3 =COQao^ao off^da (9,3 Op'Oa ad Ad
Ad

(3.31)

This method of solving for Or is usually called Newton's iteration method [14]. Each

matrix J, = 4f in Eq. (3.31) represent a Jacohian with respect to the particular kinematic

parameter vector w. The first Jacobian in Eq. (3.31) is simply the normal manipulator

Jacobian. In order to solve Eq. (3.31) for the parameter variations, one should first find

the Jacobian matrices for the equation.

3.6.2 Jacobian Calculation

The derivation of the Jacobians may be performed in a variety of ways. The most

straightforward method is to calculate the Jacobians either analytically or numerically. By

using symbolic manipulation softwares, one may obtain the exact closed-form solutions

for the Jacobians. This can be done once for a particular kinematic chain and stored

for subsequent uses.

In this work, however, we have chosen to calculate the Jacobians numerically by

applying the finite-difference technique. This method of determining Jacobians has been
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=^
h

fi(x^hey)
 — .1i(x) 

discussed in detail in [14]. Here, we briefly mention that for a function f of a single

variable x, the finite-difference approximation to f '(x) is given by

a
^f(x + h)- f(x) ^ (3.32)

where h is a small quantity named step size, and la-f (x)1.0(h) for h sufficiently small.

In the case when we have a multivariable function F : M , it is reasonable to use

the same idea to approximate the (i,j)th component of the Jacobian J(x) by the forward

difference approximation

(3.33)

where ei denotes the jth unit vector. This is equivalent to approximating the jth column

of J(x) by

a =
F(x hey) — F(x)

(3.34)

 

where again II — (J(x)) II= 0(h) for h being sufficiently small. It can easily be

shown [14] that if the finite-difference step size h is chosen properly, the quadratic

convergence of the Newton's method is retained. Also, for most problems, Newton's

method using analytic derivatives of the Jacobians and Newton's method using properly

chosen finite differences are virtually indistinguishable [14].

3.6.3 Iterative Parameter Estimation

There are at most four D-H parameters and two position parameters to be identified

for each link. It means that, theoretically, we need three data points to use in Eqs. (3.29).

However, in order to reduce the noise effect from the measurements, a large number of

manipulator poses and configurations for each link (preferably in the whole workspace)

are required to determine those parameters robustly. Combining all the Jacobians and
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error vectors Ar, in Eq. (3.31) for M poses of the ith link into a single equation,

we obtain

or more compactly

-^-
Ai'

Arm

Ci
C 2

C AI

Acbi (3.35)

b, = D• 0c, (3.36)

An estimate of the parameter errors is provided by minimizing

which gives

S (i) — Di^(bi — Di Acpi) (3.37)

where

r (3.38)

= ri,mcas — ri,comp (3.39)

But, from Eq. (3.31), ri, meas =ri is always equal to zero (since the kinematic chain is

closed), therefore

(3.40)

Finally, the guess at the parameters is updated as

4 fly^( old^ (3.41)

Since this is a nonlinear estimation problem, this procedure is iterated until the variations

A oi approach zero and the parameters 0, have converged to some stable values ([10], [1],

[4], and [5]). Of course, at each iteration step, the Jacobians and ri, comp are evaluated

from Eq. (3.34) and (3.29) with the current parameters.
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In practice, however, during the course of the iterative search, an intermediate

singular parameter set may be found which makes the matrix (Di TDi) singular even

though the real mechanism may not have a physical singularity. Simulations ([5] and

[17]) show that this situation is very common when the initial guess is not close to

the true solution. Since this singularity is a part of the numerical algorithm, it may be

avoided by the modified minimization criteria

LS' = LS + A:AO ?' AO (3.42)

where the index i has been omitted for simplicity. LS' minimizes both the endpoint

tracking error it and the variation in kinematic parameters z . In brief, this criteria

is minimized [14] by using the singular value decomposition (SVD) of the matrix D,

zeroing singular values that are less than p percent of the maximum singular value, and

then implementing the generalized (pseudo) inverse from the SVD matrices. The value

of p implicitly gives A, and it is set to a high value (e.g., 5%) initially and reduced

once convergence occurs.

Minimizing LS' in Eq. (3.42) for the ith link gives [14]

= (DTD + AI) D T Or (3.43)

Iterative applications of Eq. (3.43) result in the Levenberg-Marquardt algorithm [14].

The free parameter A determines the trade-off between a straight Newton iteration and

a much slower gradient descent technique.

3.6.4 Identifiable versus Unidentifiable Parameters

Figure 15 shows the coordinate frames from the base link to the last link of the

closed-chain formed by the manipulator and the calibrator. The manipulator links consist

of the cabin, the boom, the stick, the grapple swing, and the grapple itself (i.e., links
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1 to 5). Links 6, 7, and 8 belong to the calibrator. Because of the limitations stated

in Section 3.5.1, we require a 4—link calibrator to have 2 DOM's in the closed chain.

We, therefore, consider link 5 as part of the calibrator. This assumption is made for the

convenience of our experiments and will have no effect on the generality of the proposed

method. Only joints 5, 6, 7, and 8 are sensed in the identification process, and although

joints 1, 2, and 3, belonging to the manipulator, have joint sensors, they are used for

reference purposes. Joint 4 is the only joint that remains unsensed all the time.

Z 0

 

x7
z 7

8 8

Y 7

  

z 8

8

  

Y 8
Y 3

Figure 15: Establishment of the coordinate systems for the links of the closed-chain.

The measurement process starts from the last link of the manipulator (Link 4 in

our case) and proceeds towards the proximal links. The identification method is also

a hierarchical process that begins from the same link (i.e., link 4 which connects the

grapple to the stick) and proceeds inwards. The following is a discussion about the

parameters that can be identified at each stage.
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When moving Link n (4): Eqs. (3.25) indicate that theoretically all the kinematic

parameters for the calibrator and for the nth link can be identified simultaneously at this

stage. In practice, however, there are some severe limitations in selecting identifiable

parameters. One problem is that, having a closed kinematic loop, it is impossible to

determine the actual link lengths only by measuring the joint angles. At least one length

measure is required as a scale factor; otherwise, there will be a trivial solution which

will satisfy any set of joint angle data. Also, oN and 43N (N=8 in our case) determine

the orientation of the last link which can be taken arbitrarily. Anyhow, dn cannot be

identified at this stage because, according to Eq. (3.25b), it is linearly dependent on the z

coordinate of the endpoint (ball joint) position vector with respect to Link n-1 coordinate

system. As a result, only pz, „—dn is identifiable at this stage.

Another problem is that matrix D in Eq. (3.43), which contains the link parameters

from the Nth link to the nth link is usually nonsingular but ill-conditioned since the nth

link of the manipulator can move only on a single plane resulting in a limited range

of movements. Thus, although all the kinematic parameters from Link N to Link n

are theoretically identifiable, some may be quite sensitive to measurement noise. In

fact, since in the Levenberg-Marquardt search algorithm, all the singular values less

than p percent of the maximum singular values are set to zero to obtain convergence,

certain parameters will be close to being linearly dependent upon the other parameters

for a particular joint angle data set. We and a number of other researchers [41 have

experienced this situation during the simulations.

Fortunately, the calibrator can be calibrated once in a laboratory and be kept in a

secure place for later use. Therefore, its parameters are known in advance and there is

no need to constantly recalibrate the calibrator when the main objective is to calibrate

a manipulator. Consequently, we have decided to fix some parameters belonging to the
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calibrator whose identified values are suspected to be poor. Here is the list of identifiable

parameters from Link 8 to Link 4:

Link 8: No parameter is identifiable,

Link 7: 07°ff.

Link 6: 06°ff.

Link 5: 05°ff, 05, a5, d5.

Link 4: 04, a4.

When moving Link i: At this stage, the other links of the manipulator, including

the adjacent higher link i+1, are locked, but the fixed angle Ofixi+) between Link i

and Link i+1 is to be identified. Also, as was stated in the case of the nth link, di

is linearly dependent on 13,, i; therefore it cannot be identified at this stage. However,

di+i is identifiable now if the two joints i and i-/ are not nominally parallel. A list of

identifiable parameters for the (i+1)th and ith links is given below:

Link i+1: Ofixi+i (which is locked), d1+1 (if Joint i is not parallel to Joint i-/),

Link i : ai, ai,^(if Joint i is parallel to Joint i-/).

In the case of the particular machine shown in Figure 15, we can identify the following

parameters:

Link 3: 0fix3, a3, a3, /33.

Link 2: 02, a2, /32, d2.

When moving Link 1: The D-H parameters of the first link in any manipulator are

determined with respect to the base coordinate frame 0. This reference frame, however,

can be located anywhere on the first joint axis zo; thus d1 may be taken arbitrarily (for

example, d1=0). Also, the base coordinate frame can have any direction on the first joint

axis zo. On the other hand, the orientation of the task coordinate frame on the ball joint

can be freely chosen because the task is unsensed. We may take z task parallel to zo with
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xo perpendicular to ztask; therefore 0P)', task=0. In this way, the identifiable parameters

for the second and the first links at this stage will be:

Link 2 : x2 (which is locked), d2 (if joint / is not parallel to Joint 0).

Link 1: 01, al.

Task : 0/4, task, Pz, task•

3.7 Simulation Results and Discussion

To examine the suitability and effectiveness of the proposed method for general calibration

purposes, a number of simulations have been performed on the nominal model of the

UBC hydraulic machine and calibrator. The D-H parameters of the machine and the

calibrator for the major and minor links are given in Tables 2 and 3 respectively.

Table 2 Nominal D-H parameters for the UBC hydraulic machine and calibrator.

Joint No. ooff

(deg.)
0,

(deg.)
a

(m)
d

(m)
/3

(deg.)
0 0.0* 0.0* -2.160 0.840 -
1 - -90.0 0.340 0.000* -
2 27.81 0.0 5.180 -0.110 0.0
3 80.61 0.0 1.800  0.0001 0.0
4 42.9 -90.0 0.000 10.0001 -
5 0.0 90.0 0.000 1.134 -
6 0.0 -90.01 0.0001 0.000 1 -
7 0.0 90.01 0.0001 2.9941 -
8  89.31 0.0* 3.5051 .0821 0.0*

* arbitrary parameter.
1- unidentifiable parameter (fixed).

manipulator fixed-joint angle B.
undefined parameter.
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Table 3 Nominal kinematic parameters for the minor links of the UBC hydraulic machine.

Minor Link doff 11 lu 4
(actuator) (deg.) (m) (m) (m)

Swing-Boom unknown 0.625 2.000 1.423
Boom-Stick unknown 2.444 0.720 1.799

Figure 16: Experimental trajectories of the manipulator links

used in simulations when only Link 3 (stick) is active.

For obtaining data, Joint 4 (which belongs to the manipulator and is unsensed) was

locked with an arbitrary angle of 04=42.9°, which was measured manually. Then, each

joint of the machine, from Joint 3 to Joint 1, was moved successively one at a time, and

the joint angles of the manipulator (joints 1, 2, 3, and 5) were read from the corresponding

resolvers (Figures 16 to 18). Then, using the nominal D-H parameters of the machine

and the calibrator in Table 2, the absolute joint angles of the calibrator for joints 6, 7, and
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Figure 17: Experimental trajectories of the manipulator links used

in simulations when only Link 2 (boom) is active.

8 were simulated by numerical inverse kinematics techniques. In the following section,

effects of various factors on the final identified parameters will be discussed.

3.7.1 Effect of Actuator Drift

No actuator is perfect. Hydraulic actuators frequently have leakage, and the viscosity

of hydraulic oil changes with temperature. As a result, there will be a drift at the

endpoint of each link which is actuated by a hydraulic jack (see Figures 16(b), 17(c),

18(b), and 18(c)).

In the identification algorithm developed, Eq. (3.25), it is assumed that the local

position vector H pN is fixed as long as the ith joint is moving and joint angle data is
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Figure 18: Experimental trajectories of the manipulator links used in

simulations when only Link 1 (swing) is active.

Table 4 Identified D-H parameters — simulation for the effects of actuator drifts.

Joint No. No. or
Iterations

ofix
(deg.)

a
(deg.)

a
(m)

d
(m)

11
(deg.)

0 - - 0.0* -2.160 0.908 -
1 5 - -90.0 0.306 0.000* -

2 11 -27.0 0.0 5.188 -0.110 0.0

3 6 80.7 0.0 .1 797 0.000t 0.0

+ at the respective stage of calibration.
* arbitrary parameter.
t not identified (fixed).

being obtained from the calibrator. However, because of the drift effects, this assumption

may not be valid anymore. Table 4 shows the identified parameters for the manipulator
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and the calibrator under such a condition. Comparing these with the parameters in

Table 2, we see that the normal drift of the hydraulic actuators does not contribute any

significant error to the identified kinematic parameters, and the proposed identification

procedure is fairly robust to this phenomenon. The maximum error belongs to do (0.068

m) which is identified as the last parameter, and which therefore, carries the numerical

and measurement errors from the previously calculated parameters of the distal joints.

This is the limit of the accuracy in the identified parameters one can expect for this

particular machine.

3.7.2 Effect of Joint Sensor Accuracy

The error in the identified parameters may also be affected by joint sensor accuracy,

which is ±-0.1° . Table 5 shows the identified parameters considering both sensor accuracy

limitations and actuator drifts. As evident from the table, the accuracy of the calibrator

sensors proportionally altered a and /3 parameters. It is shown [17] that with the accuracy

of the calibrator sensors within ±0.05°, one should expect a maximum relative error of

2.5% in al, while the relative error in al due to actuator drift and actual joint sensor

accuracy of AA° is about 10%. This indicates that about half of the error obtained here

is due to the sensor accuracy. As a result, the sensor accuracy factor further reduces the

overall accuracy of the identified parameters and we should not expect more accurate

results when identifying the actual system.

3.7.3 Effect of Joint Flexibility

Joint flexibility and misalignment of joint sensors may contribute considerable error

to the identified parameters. In Section 3.4.2, we mentioned that joint flexibility has

the highest effect amongst the nongeometric parameters (about 10% of the total error

60



Table 5 Identified D-H parameters — simulation for the

combined effects of sensor accuracy and actuator drift.

Joint No. No. or
Iterations

ofix
(deg.)

a
(deg.)

a
(m)

d
(m)

li
(deg.)

0 - 0.0* 0.0* -2.161 0.913 -
1 7 - -90.1 0.298 0.000* -
2 14 -26.8 0.2 5.199 -0.100 -0.2

3 6 80.7 0.0 1.796 0.000t 0.0

+ at the respective stage of calibration.
* arbitrary parameter.
t not identified (fixed).

Table 6 Identified D-H parameters — simulation for the

combined effects of joint flexibility and actuator drift.

Joint No. No. or
Iterations

Ofix
(deg.)

(I
(deg.)

a
(m)

d
(m)

3
(deg.)

0 - 0.0* 0.0* -2.163 0.758 -
1 12 - -96.7 0.513 0.000* -

2 20 -31.1 13.4 4.992 0.728 -7.4

3 8 83.2 -0.7 1.770 0.000t 0.0
+ at the respective stage of calibration.
* arbitrary parameter.
t not identified (fixed).

in conventional robots). If the joints are not rigid enough, or there is some backlash

or looseness in the joints, the identified parameters may not be even as good as the

nominal ones. To examine these effects, using the simulated data, we have added to

the sensor readings of the calibrator a few degrees in the form of a random variable at

some certain positions of the joints which we suspect to be under high stresses due to

the calibrator's weight. The random variable is given by a normal distribution function

with zero mean and the standard deviation of 1. Table 6 gives the magnitudes of the

identified parameters for this case.
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From the table, we realize that the error is dramatically higher than the previous

cases and propagates from the last link to the first link very rapidly. As a result, the

joints of the calibrator must be designed very accurately and must be built using high

quality material in order to be as rigid as possible. Otherwise, we should not expect a

significant improvement in the parameters from the calibration process.

It is also worth noting that the number of iterations required to identify the unknown

parameters for a particular joint increases dramatically as the data gets noisier and the

assumed kinematic model deviates from the actual system (compare Tables 4 to 6 with

each other).

3.8 Experimental Results and Discussion

3.8.1 Major Links

Initial values for the major link D-H parameters are listed in Table 2 as joint numbers

1, 2, ..., 8, and were obtained from the nominal design parameters or by manual tape

measurements (see Chapter 2). The initial values for the location of the endpoint (task)

with respect to the (i-1)th coordinate frame, i.e., "pN in Eqs. (3.25), were found using

the nominal D-H parameters in direct kinematics relationships. These values serve in the

search algorithm as initial estimates. Then, by using the calibrator sensory data obtained

from link-by-link movements of the machine, the new D-H parameters for the links were

identified successively. The results of the calibration for the link trajectories of Figures

16 to 18 are presented in Table 7.

A number of different initial conditions were tried, but the iterations always ended

up with the same results shown in Table 7 but with different iteration indices, indicating

a global minimum. From the table, we realize that the number of iterations increases
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Table 7 Identified D-H parameters for the UBC hydraulic machine and calibrator.

Joint No. No. or
Iterations

ow
(deg.)

a
(deg.)

a
(m)

d
(m)

13
(deg.)

0 - 0.0* 0.0* -2.122 0.623 -
1 8 - -84.5 0.011 0.000* -
2 18 -31.31 -4.7 5.485 0.001 -2.0
3 11 84.21 -3.6 1.868 0.0001 -1.3
4 20 40.71 -92.5 0.069 0.0001 -
5 - 8.6 95.0 -0.028 1.137 -
6 - 4.2 -90.0t 0.0001 0.000t -
7 - 0.7 90.01 0.0001 2.994t -

8 - 89.31 0.0* 3.5051 .0821 0.0*
+ at the respective stage of calibration.
* arbitrary parameter.
t unidentified parameter (fixed).

manipulator fixed-joint angle 9/h .
undefined parameter.

rapidly as the identification proceeds from Link 3 to link 2 although the number of

unknown parameters to be identified is the same for both links (6 parameters). It means

that the error in the identified parameters of the previous links do not allow the kinematic

equations for the lower links to converge rapidly even though the initial parameters for

those links are close to actual ones. This error comes from inconsistent noisy sensory

data. Therefore, the number of iterations can be interpreted as an indirect measure for

validating the accuracy of the experimental data if the nominal parameters are close

to the actual ones (compare these with the number of iterations in Table 4). For the

fourth and the fifth links, however, more iterations are required to get the solution, since

the number of unknown parameters is 10. In the case of the first link, although the

number of unknown parameters is the same as that of the second or the third link, the

more straightforward offset length d is to be identified instead of the twist angle d in
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E (AtaSkpO

2=1 (3.44)RMS =

trigonometric functions.

The calibration indicates that neighboring joint axes 2 and 3 are not exactly parallel,

and that joint axes 1 and 2, and 3, 4, and 5 are not perpendicular to each other respectively.

The joint axes 4 and 5 also do not intersect (a4=.069 m and a5=-0.028 m). However,

the identified values seem to have exaggerated the magnitudes of the real parameters

even though we are aware that the machine parameters are not perfect at all, and, for

instance, the joint axes are not quite parallel or perpendicular to each other. Therefore,

it may be concluded that there should be sources of noise and disturbance in the system

which have not been modelled in the kinematic equations. The effects of a number of

such error sources have already been simulated in Section 3.7.

In comparing the calibrated parameters to the initial (nominal) parameters, one

statistical measure is the root mean square (RIVE) position error of the manipulator end

effector with respect to the task coordinate frame, defined as [1]

where the summation is over M arm positions, and

task jtask j^task j
Pn^Pn,meas^P71,Comp (3.45)

and task
Ir
., i n meas and taskpin, comp are the measured and computed position vectors

respectively. Another measure is the percent variance accounted for (VAF), essentially a

scaled version of the mean squared error [1]

E (A task p o 2

J=1

) 2
task J task —

Pn,ateas^P^,z, as

VAF  = x 100%^(3.46)

where task—
p11,111(11.5 

is the mean of all the measured data.
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Unfortunately, we did not have appropriate measurement devices to determine the

exact position and orientation vectors of the arm's end effector with respect to the task

frame. Consequently, the only remaining independent measurement method was using

the absolute distance between the two points even though this method in general does not

reflect the endpoint location accuracy, and in some cases can be completely misleading 6 .

In order to evaluate the accuracy of the identified parameters, we manually tape-

measured 19 absolute distances from the grapple endpoint and the stick endpoint to the

ball joint (task frame). At the same time, we read the joint angle sensor outputs for the

manipulator and for the calibrator. Then, using the nominal and the identified models,

we calculated jjpjj for both models. The results of such distance measurements for the

stick endpoint are shown in Figure 19. Also, the RMS and VAF distance errors for the

nominal and identified parameters are listed in Table 8.

We may note from the figure that the distance error for the nominal model is less than

that of the identified model and decreases for the identified model when the manipulator

stretches its arms. Also, from Table 8, the RMS and VAF parameters from the manipulator

side (using the manipulator sensory data) for the nominal model are much better and more

consistent than those for the identified model. The RMS and VAF from the calibrator

side, on the other hand, appear to act in favor of the identified parameters since these

parameters have been obtained from the sensory data of the calibrator and should thus be

more compatible with the calibrator than with the manipulator. These evidences indicate

that the nominal parameters should be closer than the identified parameters to the actual

parameters. Also, we learn from the simulation results in Section 3.7 and from Figure

19 that the sources of the errors in the calibrated parameters are most probably flexible

joints and/or misaligned sensors of the calibrator.

6^For example, two lines with equal lengths in a plane may be 90 ° apart.
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Figure 19: Comparison of the stick endpoint distance to the task frame.

Table 8 Distance error comparison between the nominal and identified models.

sensor
readings from manipulator side from calibrator side

end link -4 stick grapple stick grapple

nominal model RMS=.036 m
VAF=99.86%

RMS=.066 m
VAF=99.74%

RMS=.026 m
VAF=99.92%

RMS=.038 m
VAF=99.91%

identified
model

RMS=.162 m
VAF=98.32%

RMS=.217 m
VAF=98.69%

RMS=.021 m
VAF=99.95%

RMS=.038 m
VAF=99.91%

Applying Eqs. (3.44) and (3.46) to find the RMS for the end point position (not

distance) error of the identified model relative to the nominal model, we get:

RMS=0.212 m for the stick endpoint from the manipulator side,

RMS=0.256 m for the grapple endpoint from the manipulator side,
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RMS=0.542 m for the stick endpoint from the calibrator side,

RMS=0.000 m for the grapple endpoint from the calibrator side.

These values for the RMS parameter are better indications of the end point position errors

than those in Table 8. Since the RMS for the stick endpoint from the calibrator side is

about twice the RMS for the stick from the manipulator side, one may suspect that one

or more joints/sensors in the calibrator may not have been working properly.

In the next section, we consider the nominal model to behave like the actual system,

and will correct the identified parameters by comparing the simulation and experimental

outputs of the calibrator sensors, omitting the portions of the data that are suspected

to be corrupted by bad sensor readings and/or joint flexibility, and reidentifying the

kinematic parameters.

3.8.2 Improving the Major Link Identified Parameters

In order to find which joint in the calibrator is more flexible and which sensor

is misaligned or not working properly, we have simulated the outputs of the calibrator

sensors, this time using the sensory data from the manipulator joints. The arm trajectories

are the same as those used before to obtain the current identified model. Figure 20(a),

for example, shows the joint angles of the stick when the first, the second, and the forth

joints of the manipulator have been locked. The simulated versus experimental joint

angles for Links 4 to 6 have been given in Figures 20(b) to (d), and those for Links

7 and 8 are shown in Figures 21(a) and (b). There is good agreement between the

simulated and the actual sensor readings for Joints 7 and 8 (Figure 21) as those joints

are located at the elbow of the calibrator arms (Figure 13) where there is almost no

torque or moment acting on them.
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Figure 20: Errors in the simulated and actual sensor outputs for Joints 4 to 6.
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Figure 21: Errors in the simulated and actual sensor outputs for Joints 7 and 8.

Now, by inspecting Figures 20(c) and (d), we find that there is a large discrepancy

between the actual and the simulated sensor readings for Joints 5 and 6. Joint 6 is

connected to a relatively long yoke frame of aluminum which bends under applied

moments, and Joint 5 actually belongs to the grapple which is always hydraulically

powered. A relatively large moment from Joint 6 is still required to rotate Joint 5 about

its axis although we have assumed that this joint is free to rotate at all times. By

comparing Figures 20(c) and (d) with Figure 20(a), we see that the regions in which the

error gets larger correspond to higher stick angles, i.e., when the stick moves inwards

and passes a certain amount. In such a region, because of a certain spatial configuration

the arms make, the joint moments increase very rapidly. On the other hand, when the

stick moves outwards, the two arms of the calibrator will stretch in the space and, as

a result, the moment due to the gravity forces of the calibrator links will be gradually
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Table 9 Reidentified D-H parameters for the UBC hydraulic machine and calibrator.

Joint No. No. or
Iterations

ooff

(deg.)
0

(deg.)
a

(m)
d

(m)
11

(deg.)
0 - 0.0* 0.0* -2.122 0.699 -
1 8 -86.2 0.401 0.000* -
2 17 -31.2  -2.1 5.312 -0.059 -3.4
3 11 77.5* 0.2 1.848 0.000t -2.8
4 20 41.91 -92.5 0.069 0.0001 -
5 - 8.6 95.0 -0.028 1.137 -

6 - 4.2 -90.01 0.0001 0.0001 -

7 - 0.7 90.01 0.000t 2.9941 -

8 - 89.31 0.0* 3.5051 .0821 0.0*
at the respective stage of calibration.

* arbitrary parameter.
t unidentified parameter (fixed).
t manipulator fixed-joint angle 0;r".

undefined parameter.

relieved. This corresponds to the low error regions in the figures.

We removed the erroneous portions of the sensor readings from all the sensory

data and re-identified the manipulator parameters as listed in Table 9. From the results,

the D-H parameters appear more reasonable and closer to the real parameters of the

system. There is a slight improvement in the endpoint position with respect to the base

coordinate frame. The error in a has been largely reduced while the error in 11 has

increased. This seems to suggest a trade-off between these two sets of parameters. Also,

the length parameters have become closer to the actual values. In particular, the errors

in ai and di have considerably been reduced compared to the previously identified al

and di parameters in Table 7.

We have recalculated the RMS and VAF parameters for the corrected model. The

results are listed in Table 10 for the absolute distance of the stick and the grapple endpoints
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Table 10 Distance error comparison between the previously identified and the re-identified models.

sensor
readings from manipulator side from calibrator side

end link —› stick grapple stick grapple
reidentified

model
RMS....101 m
VAF=98.87%

RMS=.125 m
VAF=99.07%

RMS=.021 m
VAF=99.95%

RMS=.038 m
VAF=99.91%

previous
model

RMS=.162 m
VAF=98.32%

RMS=.217 m
VAF=98.69%

RMS=.021 m
VAF=99.95%

RMS=.038 m
VAF=99.91 %

from the task frame. The RMS parameter values for the end point position error of the

re-identified manipulator model relative to the nominal model are given below:

RMS=0.153 m for the stick endpoint from the manipulator side,

RMS=0.205 m for the grapple endpoint from the manipulator side,

RMS=0.373 m for the stick endpoint from the calibrator side,

RMS=0.000 m for the grapple endpoint from the calibrator side.

The improvement in the parameter values of the re-identified model is evident from the

table and from the RMS values given for position errors.

We have also simulated the stick and the grapple endpoint trajectories for a number

of different manipulator poses using the nominal and the re-identified models. Figures

22 and 23 show the xyz components of the stick and the grapple endpoints respectively.

From the figures, the re-identified model behavior is now very similar to that of the

nominal model. The error components of the stick and the grapple endpoints for the

re-identified model with respect to the nominal model are shown in Figures 24 and 25

respectively.

3.8.3 Minor Links

To calibrate the kinematic parameters of the minor links, i.e., the actuator parameters
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Figure 22: Trajectory components of the stick endpoint for the nominal and the re-identified models.
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Figure 23: Trajectory components of the grapple endpoint for the nominal and the re-identified models.
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Figure 24: Absolute error components of the stick endpoint for the re-identified model.
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Table 11 Identified versus nominal parameters for minor links.

minor
link

type of
model

type of
0

•eff
(deg.)

/i
(m)

lc
(m)

/u
(m)

swing to
boom

measured - unknown 0.625 1.447 2.000

identified
02 meas -78.6 0.658 1.434 1.974

'
2, comp -56.9 0.545 1.210 2.000*

boom to
stick

measured - unknown 2.444 1.799 0.720

identified 3,
mess 10.3 2.725 2.116 0.724

03, comp 5.0 2.444* 1.801 0.766
* unidentified parameter (fixed).

shown in Figure 12, we will employ Eqs. (3.26) and (3.27) to solve for a simple planar

triangle although we know that the triangle is actually a spatial mechanism which needs

a more complicated model similar to Eqs. (3.16) and (3.20). In Eqs. (3.26) and (3.27),

the link joint angle th and the piston displacement 1p are required to identify the ith

minor link parameters. //, can be measured by a linear transducer. Oi, however, may

be measured by link joint sensors, or in our case, by computing Eqs. (3.25) for each

link position successively. The identified parameters for the two minor links of the

manipulator are listed in Table 11.

When we tried to use the computed joint angles 04 comp in the identification algorithm,

we realized that the method is not stable, and that there is no global minimum for the set

of parameters used. This is partly because the joint angles 644 comp have been obtained

from the identified parameters of the manipulator links which are erroneous to some

extent, and which therefore carry the errors in those parameters as well as the errors

in the calibrator sensors to the new sets of equations used to identify the minor link

parameters. This causes the single set of equations (3.26) for M data points to become

76



inconsistent and, as a result, unstable. Also, in Section 3.6.4, we mentioned that at least

one length parameter is required to have a nontrivial solution for a set of closed-chain

parameters. Although the incremental piston lengths measured by the linear transducer

may serve as the length requirement, they cannot guarantee a global minimum when the

length/joint angle data is noisy and inconsistent. By fixing one of the length parameters,

we can guarantee that there will always be a global minimum towards which the system

of equations converges.

From Table 11, we realize that the identified parameters obtained using measured

(sensed) joint angles 0 meas are generally closer to the actual parameters than those using

computed joint angles 04 comp . On the other hand, our ultimate goal in calibrating the

minor link parameters is to find the piston displacements /pi according to Eq. (3.26) for

different joint angles For this reason, we used both identified models and simulated / pi

for a number of different manipulator poses and measured the actual piston displacements

at the same time. The RMS and VAF parameters for the two sets of minor links are

given in Table 12.

Table 12 Error parameters for the minor links of the manipulator.

Swing-Boom Boom-Stick

02, meas 02, comp 03, meas 03, comp

RMS (m) 0.0004 0.003 0.002 0.027

VAF% 99.99  99.91 99.98 97.12

As indicated by the table, both RMS and VAF parameters for Swing-Boom linkage

are very good. In particular, when using the joint angle sensory data (02, meas), the results

are excellent, which indicates that there is almost no error in the identified parameters.

The RMS and VAF parameters for Boom-Stick linkage, on the other hand, are an order
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of magnitude worse than those for Swing-Boom closed-chain. That is because the axis

of rotation of the stick was not completely parallel to the boom axis (see Table 9 for

the identified parameters), and as a result, the stick's actuator had to rotate about three

different axes while the stick was stretching in or out. In fact, since the base of the

linear transducer was mounted on the cylinder and its sensor was mounted on the piston,

because of the twist action of the piston with respect to the cylinder, it was anticipated in

advance that the sensory data would not be quite reliable, and that we should not expect

very good results from the identification process. However, the identified parameters

obtained from 0i3, meas are still reliable enough to be used in the dynamic calibration

part of this thesis.
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Chapter 4

DYNAMIC CALIBRATION

4.1 Introduction

The design of a hydraulically actuated manipulator is based on the concept of hybrid

open- and closed kinematic chain mechanism. Because of its closed mechanism, this

group of manipulators has several advantages over the conventional open-chain type

[2]. They generally have smaller positioning errors due to the non-cantileverlike

configuration and consequently have greater positioning ability, as compared to the

open-chain type. Therefore, they are basically assumed to be rigid links in dynamic

formulations. Furthermore, these types of mechanisms provide higher force/torque and

greater payload handling capability for the same number of actuators.

There are several reasons why one may be interested in knowing the exact values of

the dynamic parameters for such a manipulator. As discussed in Chapter 1, the degree

of uncertainty in inertial parameters and joint friction torques/forces is an important

factor in judging the robustness of model-based control strategies such as feedforward

control, computed torque technique, and resolved acceleration position/force control [1].

For simulation purposes, one must have those parameter values as accurate as possible

in order to better analyze the behavior of the actual machine under control. Unlike

conventional robots, the joint friction in heavy-duty hydraulic manipulators has been

shown [33] to be comparable to the applied hydraulic torques/forces to the joints and

thus cannot be neglected in dynamic equations. Also, for machine diagnostics and
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safety-checks, especially for heavy-duty teleoperators, a good knowledge of link centers

of mass, for example, can determine whether the machine is about to tip over. Usually,

accurate values of the dynamic parameters of the links of a hydraulic manipulator are

unknown even to the manufacturer (see Chapters 1 and 2). Thus, it is usually up to the

manipulator programmer to devise a method for obtaining good estimates of the link

inertial and friction parameters.

Unfortunately, these parameters cannot be measured manually as easily as kinematic

parameters because a "manual method" is not industrially feasible. For instance,

imagine that a link of a heavy-duty machine be completely disassembled, weighed

for mass, counterbalanced for center of mass, and swung for moment of inertia [3].

Besides requiring a lot of time and intensive human involvement, this procedure

introduces considerable measurement difficulties. Counterbalance points have to be

referred somehow to the joint axes, while some components of inertia are difficult to

determine by pendular motion [1].

CAD modeling of the links [21] is another approach where densities of materials

can be combined with computerized geometric information' to estimate the inertial

parameters. Again, this method requires intensive human involvement, and is subject

to modeling errors [13].

The approach we present in this work, in contrast, emphasizes a hydraulic manipulator

calibrating itself, i.e., automatic calibration of all the inertial parameters (the mass, the

center of mass, and the moment of inertia) of each rigid body major or minor link, and

all the friction forces/torques and the pressure transducer offsets of each joint using direct

pressure sensing of the hydraulic actuators. The Newton-Euler dynamic equations are

then used to express the measured forces in each hydraulic cylinder and the measured

It is usually only available to the manufacturers.
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torques at each actuated joint in terms of the product of the measured movements of

the rigid body major and minor links and the unknown link inertial parameters and the

generalized friction forces. The only required sensing is one component of either the

joint torque or the actuator force, measured from oil pressure transducers. This lack

of full force/torque sensing makes it impossible to find all the inertial parameters of

the major and minor links. These missing parameters, however, have no effect on the

control of the arm since they do not appear in the dynamic formulations. The proposed

algorithm was tested on the UBC experimental hydraulic manipulator. The simulation

and experimental results are given in this chapter.

4.2 Previous Work

To incorporate the dynamic behavior of a robot arm into the control system, a large

number of researchers have utilized a rigid body model as the basis for identifying

the dynamic parameters of the mechanism. For dynamic calibration of open-chain

manipulators, Mayeda et al. [24] lumped the inertial parameters of each link into the

coefficients of a closed-form Lagrangian dynamics formulation. By sensing torques from

only one joint at a time, they could identify the coefficients of the equations. The inertial

parameters for each link, however, are redundant and susceptible to numerical problems

in estimation. On the other hand, their link-by-link estimation algorithm becomes noisier

from transmission of dynamic effects of distant links to the proximal measuring joints.

Also, for efficient dynamics computation, the recursive dynamics algorithms require the

link parameters explicitly as initial estimates.

Mukerjee and Ballard [25] suggested an identification procedure for rigid robots to

deduce the inertial and friction parameters from the measured reaction forces at the joints
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by incorporating full force-torque sensors at each joint. Instrumenting each robot link

with full force-torque sensing seems impractical for industrial hydraulic manipulators

and even for conventional robots, and is actually unnecessary given joint torque sensing

about the rotation axes. Also, they did not address the issue of unidentifiability of some

inertial parameters such as the mass and the center of mass for the first link of the robot.

Khali et al. [16] used a Lagrange formulation in presenting an identification model

for link inertial parameters. They addressed the unidentifiability of some parameters, and

used it to regroup the dynamic parameters and simplify computation.

Armstrong et al. [3] measured the inertial properties of a PUMA 560 robot by

counter-balancing the disassembled parts. This is an alternative approach to inertial

estimation problem, but as mentioned before, it is very tedious and impractical for

hydraulic machines. Also, the cross terms of inertia matrix cannot be identified in this

way.

Khosla [18] developed a link estimation algorithm using Newton-Euler formulation.

Working with CMU DDArm II, he was also able to verify the algorithm by experiments.

Slotine and Li [34] developed a manipulator control algorithm which included on-line

adaptation for rigid body link and load inertial parameters obtained from Lagrange-Euler

formulation. Deriving closed-form equations for hydraulic actuator dynamics through

Lagrange-Euler formulation is a difficult task, and computing the lengthy equations thus

obtained is time consuming and may not be applicable for on-line control purposes. Since

the inertial parameters of the links do not change significantly once the manipulator is

assembled or reassembled, an off-line procedure as discussed in this chapter would be

preferred in practice. Only the load parameters need to be estimated on-line.

An et al. [1] applied the Newton-Euler equations and presented an experimental

method of estimating load and link inertial parameters of the MIT DDArm using a rigid
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body model. They measured motor currents to obtain joint torques, and measured joint

positions to derive joint angular velocities and accelerations. However, they did not

include the joint friction torques in their linear formulations in terms of the vector of

link inertial parameters. Our identification procedure in this thesis is very similar to their

work except that we have enhanced the unknown inertial vector by accounting for the

minor link parameters, pressure transducer offsets, and joint friction forces/torques.

Seeger and Leonhard [32] presented an off-line procedure for estimating the friction

forces and inertial parameters in small sets of the robot workspace using test motions

that allowed to reduce the general model to a few identifiable parameters. The friction

torque at each joint was modelled as a function of joint velocity and position that were

identified at a set of fixed positions by measuring the input current (representing the

gravitational and frictional loads) at several constant velocities.

There has not been as much previous work done in the more challenging area of

dynamic calibration of closed-chain mechanisms, especially on hydraulically actuated

manipulators. The reason is that although closed link mechanisms have various practical

advantages, the theory of their dynamics has not been as extensively studied as that of

the open chains partly because of their highly coupled dynamics.

Luh and Zheng [22] proposed to replace the inverse dynamics problem of closed

kinematic chains with the computed dynamics of the open link tree structure mechanisms

subjected to unknown additional joint torques using the Lagrange multipliers. Kleinfinger

and Khalil [19] also developed a comparable computational scheme. Solving for Lagrange

multipliers, however, added more difficulties to the complicated closed-form formulations.

Do and Yang [7] employed the Newton-Euler approach to study the inverse dynamics of

a class of platform-type of manipulating structures. Applying the Lagrangian approach,

Nguyen and Pooran [28] derived the dynamics of 2—DOF and 3—DOF closed-chain
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manipulators.

Nakamura and Ghodoussi [27] proposed a computational scheme of the dynamics

of the closed link mechanisms with revolute joints. The method did not require the

computation of the Lagrangian multipliers, but needed the Jacobian matrix of the function

which described the passive joint angles in terms of the actuated ones. No experimental

implementation of the method was reported nor were explicit derivations for prismatic

joints presented either.

4.3 Estimation Procedure

4.3.1 Newton-Euler Formulations for a Major Link

To derive equations for identifying the unknown inertial and friction parameters of

each link, the coordinate systems in Figure 26 are used to relate different coordinate

frames and vectors. 0 is assumed to be an inertial or base coordinate system, which is

fixed in space with gravity pointing along the —z axis. P is the force reference coordinate

system at the ith joint of the manipulator, and is rigidly attached to the ith major link. Q

represents the principal axis of the rigid body link located at the center of mass of the

ith major link. We arbitrarily choose the x axis of Q to be along the largest principal

moment of inertia, and the z axis along the smallest one. In the following derivations,

all vectors are initially expressed in the base coordinate system 0.

We may transfer all the external forces f,,j and torques^from neighboring joints

j's exerted on the ith link in Figure 26 to the force coordinate system P and replace them

by a resultant force f, and a resultant torque n, at that joint,

f, (4.1)
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Link i+/

Figure 26: Coordinate origins and location vectors for dynamic identification.

2.,
ni =

>
 ni,i + s x fw

where the operator "x" denotes vector cross-product.

(4.2)

The mass, location of the center of mass, moments of inertia, and orientation of

the body (a rotation PRQ from the principal axes Q to the force reference frame P) are

related to the motion of the link and the external forces and the torques applied on the

link by the Newton-Euler equations:

f nig = inr^ (4.3)

n—cxf=I-E., x (L.))
^

(4.4)

where the indices have been dropped for convenience, and

m = the mass of the link,
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g = the gravity vector = [0, 0, —9.81 misec2],

r = the acceleration of the center of mass of the link,

c = the location of the center of mass relative to the force coordinate frame P,

I = the moment of inertia tensor about the center of mass,

w = the ith link absolute angular velocity vector,

cv = the ith link absolute angular acceleration vector.

To formulate an estimation algorithm, the force and torque at P must be expressed in

terms of the product of known (or identified) geometric parameters and unknown inertial

parameters. The acceleration of the center of mass, r, is related to the acceleration of

the force reference frame p by [36]

P-----P-1-,1)xcd-wx(wxc)
^

(4.5)

Substituting (4.5) into (4.3), gives

f^— log^x Inc w x(wx rnc)
^

(4.6)

and substituting (4.6) into (4.4) gives

n =^w x (Iw)+ mcx(wxc )+

inc x (w x (L.) x c)) Inc x — rnc x g^(4.7)

Although the terms c x^x c) and c x^x (w x c)) are quadratic in the unknown

location of the center of mass c, they can be eliminated [1] by expressing the moment

of inertia tensor about the force coordinate origin, I, instead of about the center of mass

I. To do so, we may rewrite Eq. (4.7) in a matrix form as

n =^w x (1w) + rn RcTc) 1 — (cc1)1 ,1)-f-

w x (in Rcrc)1 — (ccr) w)^x p — me x g^(4.8)
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where 1 is a 3 x 3 identity matrix. Using the three-dimensional version of the parallel

axis theorem [36]

I = 1 + In Rcr c) 1 — (cci],^(4.9)

Eq. (4.8) is then simplified as [1]

n = Li; w X (LA)) + !Tic x - rtic x g^(4.10)

One may realize that all the vectors are now expressed in the force coordinate system

P, so that the quantities c and I are constant.

In order to formulate the above equations as a system of linear equations in a matrix

form, the following notations are used:
0 —wz wy Cx

w x c = wz 0 cy = [w x lc^(4.11)
— WY 0 Cz

Ixx
ixy

Ixx -

lxy
Wx^Wy^WE 0^0 0

IW = 0^Wx^0 Wy^WE 0 Ixz =_- [ow] Ixz (4.12)
0^0^wx 0^Wy

Iyy YY

Iyz [gz

zz

where
IXX

= I = Ix y

ixz

IXY^IX'l
iyy^yz^ (4.13)
Iy z^izz

Using the definitions in (4.11) and (4.12), Eqs. (4.6) and (4.10) can be rewritten as

a single matrix equation in the force coordinate frame P as [1]

    

- g] [Wx]^[4-0x]Px]^[0]3x6
[01 3x1^[(g - ji) x] 3 ,(3^[64.41)]^[wx][c.,,]

(4.14)

    

87



cylinder rod

link i

or in a linear compact form

wi = Ai ¢i^ (4.15)

where wi is a 6 element wrench vector at point P combining both the external force

and torque vectors applied to the ith major link, A, is a 6 x 10 matrix containing the

known kinematics of the link, and (pi is the vector of the 10 unknown inertial parameters

for the ith major link.

Figure 27: Forces, torques, and location vectors applied to a major link from the adjacent links

4.3.2 Newton-Euler Formulations for Chained Links

The ith major link in Figure 27 is attached through revolute joints Pi and Pi,/ to

the (i-1)th and the (i+1)th major links respectively. It is actuated by the ith hydraulic

jack (minor link) via a spherical joint Pi, p , and actuates the (i+1)th link by the (i+1)th

hydraulic jack through another spherical joint P,,,. All the forces and torques applied to
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this link in Figure 27 belong to the neighboring joints and are expressed in the ith link

force coordinate frame Pi. They can be obtained from the forces and torques expressed

in their own force coordinate frame by simple rotation matrices Ri's. For example, the

force and torque at the neighboring joint Pi +1 are obtained from that joint's force f1+1

and torque ni.fi as

=^fi+1^ (4.16)

^n o+ , — —R, n i+ ,^ (4.17)

Replacing the force ei,i+1 and the torque n' 0+1 in Eqs. (4.16) and (4.17) with a force

and a torque at the origin of the ith link force coordinate frame Pi, we get

or more compactly

fi,i+i^[ ^• 0
[si x] R, R, [

Wi i+i — — Ti wi+,

(4.18)

(4.19)

where

Ri the rotation matrix rotating the (i+1)th link force coordinate system to the ith

link force coordinate frame,

si a vector from the origin of the ith link force coordinate frame to the (i+1)th

link force coordinate system,

w1,l the wrench (vector of forces and torques) at the ith joint due to the forces

and torques applied at the jth major (or minor) joint, expressed in the P, force

coordinate frame,

Ti a 6x 6 wrench transmission matrix.
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Using Eqs. (4.19) and (4.15) for the resultant of all the external forces and torques

acting on the ith link at point Pi, we get

wi,i = Ai Oi^wp,^we, Ti wi+ ,,i+ ,^(4.20)

where the superscripts and subscripts P and stand for the piston and the cylinder

respectively, and wp, for example, is the ith actuator (minor link) force applied at Joint

Pi,p and with respect to the Pi,p force coordinate frame.

^

The same formula can be applied to^in Eq. (4.20), up to the last link's

wrench vector^Rewriting w i,i in Eq. (4.20) in terms of the link parameters from

i to n, we will get

W^ (/)j^T^ri we')
^

(4.21)

where

H T k
^ (4.22)

k=i

and Vi,i=1 (1 is a 6x6 identity matrix). Since there is no hydraulic cylinder attached

to the last link n, wc„ = 0.

In Eq. (4.21), all the matrices V and T contain the already known kinematics of

the corresponding links, and the vectors contain the inertial parameters of the major

links, which should be identified. The wrench vectors w p , and w t., for minor links,

however, must be determined in terms of their corresponding unknown inertial vectors.

To accomplish this, a proper model for the hydraulic actuator is required.

4.3.3 Newton-Euler Formulations for a Minor Link

The ith hydraulic actuator in Figure 28 consists of a cylinder and a piston with

hydraulic oil inside the cylinder. We may consider the piston and its attachments as
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Link i-1 Link i

oil in
t A h

T

N
Cylinder

oil out

A r^4
7)

Piston

i,p

Rod

piston rod

cylinder^411

Figure 28: Modeling a hydraulic actuator as a cylinder and a piston.

one separate link, and the cylinder, its attachments, and the hydraulic oil inside it as

another separate link2 . By following the same methodology used to obtain the major link

dynamic equations, we can find the wrench vectors vcr (.,_ and wp , in terms of hydraulic

forces at both ends of the piston head in Figure 29.

z •
f n •
91, P

X • -411111--)-
1,P

Figure 29: Forces and torques acting on the various elements of the ith hydraulic actuator.

Although the center of gravity for the oil volume inside the cylinder slightly changes with the
displacement of the piston head, we take it to be constant since the weight of the oil is much less
than that of the cylinder.

91



In Figure 29, the cylinder and piston force coordinate frames are attached to points

Pi-1,c and Pi,p respectively, with their x axes along the center-line of the assembly. The

z axes for both of the coordinate frames can arbitrarily be taken parallel to the z axis

of the ith major link since the rotation about the center-line is allowed and redundant

(because of the spherical joints). Furthermore, the torques at both ends of the actuator

are due to pure friction effects for the same reason. As a result, we may only maintain

the frictional torques n„ ,_, a ri,c and n, = np ,ric about the main axes of rotation z,
— Ps

and set the others equal to zero; i.e.,

n x^=^= n yp, = 0
^

(4.23)

Now, using the same concept in Eq. (4.20) for the cylinder and the piston links of the

ith actuator shown in Figure 29, we obtain

w,„ =^0'; + ri) W Pet
^ (4.24)

where

wpci=the wrench vector of forces and torques applied on the piston head at point 1 3 1 , p ,

and with respect to the P i , p, force coordinate frame.

Tik=a transmission matrix for the ith actuator which transmits the P,, p, force

coordinate frame to the P ,p( force coordinate frame,

Ai c=the kinematics matrix for the cylinder of the ith actuator defined in Eq. (4.14),

oic=the unknown inertial matrix of the cylinder.

On the other hand, we can apply the same equation as (4.24) for the piston of the ith

actuator to have

w =A i^ — Ti wpc,^ (4.25)
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zi„ =[ 0 0 0 0

[0 0^1^0
— 7; 0 lAii) oPi^(4.30)

Combining Eqs. (4.24) and (4.25) to eliminate wp ,,, we get

= A z̀ . (p`i ri^— wp ,)^(4.26)

where

Ti:/`^PY1 (4.27)

is a transmission matrix from Pi,p force coordinate system to^force coordinate

frame. Rewriting (4.26) in a matrix form gives

fx -

fy

fx-
fy

fz [^[0]
0 Act [

11
s

,

,x]^[1]

[

0 0

(4.28)

n, _
CI-1 pi/

where [1] is a 3x3 identity matrix, [0] is a 3x3 zero matrix, and

1 . =^]^1 0 1
'^

[1
xj^[1] .1

1 0 0 0 0 0
O 1 0 0 0 0
O 0 1 0 0 0
O 0 0 1 0 0
O 0 —si 0 1 0
0 Si 0 0 0 1

(4.29)

  

s'1 is simply the absolute distance between the cylinder and piston pins at each time

and can be computed from Eq. (3.26).

In order to obtain the force components of the wrench vector w p ,, first consider the

fifth row of the matrix equation (4.28) to find
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Then, consider the sixth row of the equation to obtain

0 0 0 0

1 0 0 0

4,-

-si-r[Ai^
n z,i

fypi =40

[0 (4.31)

Now, in obtaining an equation for L we may note from Eq. (4.25) that the first row

of the transmission matrix Tic/P is simply equal to [1 0 0 0 0 0 because there

is no rotation between P,,p and P,,1, force coordinate frames. Also, the first element of

the wrench vector wp is

^r pc  =^"

^.off
^

(4.32)

where

^o r, 8^

h,^—1 r.f
^

(4.33)

and

Ah = the area of the piston on the head side,

A, = the area of the piston on the rod side,

Ph = the hydraulic pressure on the piston head side,

Pr = the hydraulic pressure on the piston rod side,

ffrk = the friction force in the opposite direction of motion of the piston, and

f off = the net offset force due to the offset readings of the pressure transducers.

Then, consider the first row of the matrix equation (4.25) to obtain

hp^[1 0 0 0 0 0 [A i:
^

(4.34)

Substituting Eqs. (4.30), (4.31), and (4.34) in Eq. (4.25) and rearranging for w i„ , we get

^

wp, = V: A: Wi. — f:^ (4.35)
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where

 

0 0 0 0^0^0 1 0 0 0^0^0
0 0 0 0^0 7̂1 0 1 0 0^0^-sir

0 0 0 0 — ^0 0 0 1 0 4
0 0 0 1^0'^0 0 0 0 1^o'^0
o o o o^0^o o o 0 o^0^0
0000 0^00000^0^0

  

v: (4.36)

  

Ai
[^

0
0 $ $2x20

(4.37)

I 20X

(4.38)

and^
Tyres^ •ric^foil —

0
^ (4.39)

0
fru-

-tip ,

Using Eqs. (4.37) and (4.38) in Eq. (4.26), we can write for the wrench vector w e

T: wp ,

where

(4.40)

v i = {16x6 (4.41)

Substituting (4.35) for wp , in (4.40) and rearranging, we finally obtain

T:

where

(4.42)

1^0^0^0^(1^0^0^0^0^0^0^0^-

^—..^0^0^0^0^0^t0^1^0^0^0 1

^

s^ —7

v:' 0^0^1^0^4-^0^0^0^(1^0^1
7^0 (4.43)

0^0^0^0^d^0^0^0^0^0^d^0
0^0^0^0^0^0^0^0^0^0^0^0
0^0^0^0^0^0^0^0^0^0^0^0
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Equations (4.35) and (4.42) are written in terms of the known kinematics of a

hydraulic actuator, the unknown vectors of cylinder/piston inertial parameters and friction

forces, and the measured values of cylinder pressures.

4.3.4 Global Newton-Euler Equations for a Hydraulic Manipulator

Using Eqs. (4.35) and (4.42) in Eq. (4.21) for the net forces and torques applied at

the ith joint, and rearranging the equation after some manipulations and simplifications,

one may obtain

W, , , =^V,,j
^0J+

n

,,j Tji) V") Vi, j -1T^_ 1 V") A' O f
J

=i

^>..:1/4 (V,^— Vi^ (4.44)
i=i

where V,,i_1=-0. A representative term in the third summation in Eq. (4.44) can be

rewritten as V, j _, (T j TI; — 'Ir). However, the subtraction in the parentheses1

is simply equal to zero (except for j=i) since both terms represent a transmission of

Pj43 force coordinate frame to Pf_i force coordinate system through different paths of

the closed-chain (T1 TPJ through the ith joint path, and T'1 via the ith hydraulic

cylinder-piston actuator).

We may redefine the terms within the remaining summations as

Utd Vt Ai

Z i , = (V, r V' + VI^J r_ , V") A (4.45)
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and rewrite Eq. (4.45) in a more compact form as

Or

= X io^• X

'Ps

n _
— Lio fb (4.46)

W fa = [ • •^X „ LJ

die _

(4.47)

where

Ui,^Z 6 X 3 0 (4.48)

= [
0/ I
(Ti o x

(4.49)

T1 6 x 6 =TZ (4.50)

Eq. (4.47) is linear in the unknown parameters, but the left-hand side contains a full

force-torque vector, i, at each major joint. In a hydraulic manipulator, each individual

link is powered either by a rotary actuator (e.g., cabin rotation) or by a cylinder-piston

actuator (e.g., boom or stick). For a joint with a rotary actuator, there is no hydraulic

jack (f = D, and usually only the torque about the joint axis zi can be measured (we

define it as Ti). For a major link which is powered by a hydraulic jack, there is no

torque on the joint in the zi direction except the friction torque (we define it as r" .

Consequently, from the six elements of the wrench vector only the last element

can be considered in the identification process, and therefore, only the sixth (last) row

of Eq. (4.47) will be used for identification purposes. Furthermore, from Eq. (4.39),
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fric (4.53)Toff
J

iT

12 x 1

OP. Oc (4.54)II ( j —1
friclipi

fric
Ti cu ff

J= [

fric 17'
35x 1

only the first element fiPress is sensed (measured), and the other elements are unknown

frictions and transducer offsets (Eq. (4.39)) which have to be identified. If we assume

constant dry friction at the joints, then

fric)^sign ()1/;rel ^{ fricfric^ c(or Ti^ (or T jr -.1
^fr ic (4.51 . )

  

where Virgil is the relative velocity between any two successive major or minor links.

By multiplying both sides of Eq. (4.47) by [0 0 0 0 0 1], maintaining the measured

force or torque at the left-hand side, and including all the unknown friction and offset

torques and forces in the vector of unknown inertial parameters, we finally get

•

cb;{,near ^jj
J i • •^K id^• •^Ki,„ (4.52)

fimeas •where^is the torque (for rotary actuator) or the force (for cylinder-piston actuator)

applied to the ith joint (link), Ki, is a 1 x 12 row vector (with rotary actuator) or a 1 x 35

row vector (for cylinder-piston actuator), and yi is a 12x 1 or 35x 1 column vector of

combined unknown link inertial parameters, joint frictions and transducer offsets defined

as

for a rotary actuator, and

for a cylinder-piston actuator.

Equation (4.52) gives the pressure force for the ith link. If the manipulator has a

total number of n links, we will get
K 1 , 1 1( 1 , 2 • •^• K I ,n Kn,,, -

0 K2,2 • • K 2 ,„_ K2,,, 1/ '2
falC S •

•
•
• • (4.55)

0 0 • • K11- 1,1f — I K ,, — , ,11 'n —1

0 0 0 K -
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or more compactly

fimas K^(4.56)

This equation is linear in the unknown parameters. For the UBC hydraulic manipulator

with a cabin (a rotary actuator), a boom, and a stick (cylinder-piston actuators), teas

is a 3 x / generalized measured force/torque vector, K is a 3x(12+35+35) matrix of

known kinematics, and is a (12+35+35)x1 vector of unknown dynamic parameters

which should be identified.

4.3.5 Estimating the Link Parameters

Equation (4.56) represents the dynamics of the manipulator for one sample point. As

with kinematic identification in Chapter 3, Eq. (4.56) is augmented using m data points:

f =
f(1)

f(m)

meas

K =
K(1)

•
•
•

K(m)
(4.57)

Unfortunately, one cannot apply simple least-squares estimation

Oestlatate — (KT K)^KT f^(4.58)

because KT K is not invertible due to rank deficiency from restricted degrees of freedom at

the proximal links and the lack of full force-torque sensing. Some dynamic parameters are

completely unidentifiable, while some others can only be identified in linear combinations.

Two different approaches have been used by other researchers (e.g., [1]) to solve the

above rank deficient problem. The simplest is ridge regression [23] which makes KT K

invertible by adding a small number ,\ to the diagonal elements

= (KT K + I KT f (4.59)

The estimates are nearly optimal [23] if A«Amin KT K, where Amin is the smallest

non-zero eigenvalue of KT K . This method has partly been explained in Chapter 3.
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Another approach expresses the dynamics in terms of a reduced set of dynamic

parameters that are independently identifiable and allow the application of direct least-

squares technique in (4.58). This reduced set can be generated, for example, by

examination of the closed form dynamic equations for linear combinations of parameters

using Lagrange-Euler formulation. For the complete model of the hydraulic manipulator

introduced in Eq. (4.56), however, it is difficult to obtain a closed form solution.

Another technique is singular value decomposition (SVD) of matrix K, which is a less

complicated method, yielding [9]

K = UEVT (4.60)

where 1,1=diaglo- i l, and U and VT are orthogonal matrices. For each column of V

there is a corresponding singular value o-i which, if not zero, indicates that the linear

combination of parameters, V i T II), is identifiable. The unidentifiable parameters will have

zero singular values associated with them [1]. Since K is a function only of the geometry

of the manipulator and the commanded movement, it can be generated exactly by

simulation before conducting any experiments. For completely unidentifiable parameters,

the corresponding columns of K can be deleted without affecting f. For parameters

identifiable in linear combinations, all columns except one in a linear combination can

also be deleted. The resulting smaller K T K matrix is now invertible, and Eq. (4.58)

can be used to estimate the reduced set of parameters. In the work presented here, for

example, we have used a built-in function in a MATLAB program which automatically

reduces a rank deficient matrix to a full rank matrix using SVD technique.

4.4 Simulation Results and Discussion

Throughout this chapter, we have assumed that the manipulator consists of the following
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links only: "swing" (cabin), "boom", and "stick", with the grapple detached from the

manipulator since it is neither sensed nor controlled by any actuator. Also, from the

results obtained in Chapter 3, we have learned that the nominal kinematic parameters for

the major and minor links are more accurate than the identified parameters. Consequently,

we have used the nominal parameters of the links to build the various elements of the

K matrix in Eq. (4.56). The joint angles of the major links are simply measured by

resolvers attached to each joint. The angular velocity and acceleration of each link, then,

can be derived through successive differentiations of the angular position.

4.4.1 Complete Model versus reduced Model

By complete model we mean a model of the manipulator links that includes the

dynamics of the actuators. By reduced or incomplete model we mean a dynamic model

comprised the manipulator's major links only. Other researchers (e.g., [33] and [41])

have considered only the reduced model of hydraulic actuators primarily because there

has been no complete model available to them. They have also assumed that the dynamics

of the minor links do not have any significant effects on the performance of the whole

system. The purpose of this simulation is to demonstrate the effect of neglecting the

minor link dynamics on the predicted pressure forces/torques.

Figures 30 to 32 show simulated trajectories for the swing, the boom, and the stick

of the UBC hydraulic manipulator. We used these trajectories to build the K matrix of

Eq. (4.56). The hypothetical dynamic parameters for the major and minor links of the

manipulator (the complete model) are given in Table 13. The values of these parameters

attempted to be as close as possible to those of the UBC hydraulic machine, given in

Table 1. The values for friction torques and forces are not known for that machine

and therefore are set equal to zero in the Table. By using Eq. (4.56), we obtained
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Figure 30: Simulated trajectory of the "swing".
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Table 13 Hypothetical dynamic parameters of a hydraulic machine for simulations.

param.
Link 1 Link 2 Link 3
swing cylinder piston boom cylinder piston stick

m 8031* 100* 100t 1830* 100* 100t 688*
.^mc, 8433* 50* 50* 4209t 50* 50* 6191

MC Y -321* 0* 0* 366t 0* 0* 69t
mcz 4016* 0* 0* 0* 0* 0* 0*
I, 8000* 10* 10t 100* 10* 10* 101.
Imo, 0* 0* Ot Ot Ot 0* Of
In 0* Ot 0* 0* Ot Ot 0*
1,, 8000* 100* 100* 15400* 100t 100* 600*
I, 0* 0* Ot 0* Ot 0* 0*
IQ 157001 100* 100t 15400* 100t 100* 600t

Tfric 04 - - - - 04
T or fff 0* - - 0* - - 0*

/nc - 0* - - 0* -
nefi* - Of - - of - -

nofric.. - - 0* - - 0* -

—: parameter not defined.

*: unidentifiable parameter. t: linearly identifiable parameter. 1: fully identifiable parameter.

Units: m (Kg), me (Kg.m), I (Kg.m2), f (N), T (N.m), n (N.m).

the forces/torques for the three links of the manipulator with and without considering

the minor link dynamics (Figure 33). From the figure, we realize that a large error in

force/torque prediction results, especially for the proximal links, if we simply ignore the

dynamics of the minor links in heavy-duty hydraulic manipulators.

4.4.2 Identifiability of Dynamic Parameters

There are three categories of dynamic parameters: fully identifiable, identifiable in

linear combinations, and completely unidentifiable. Into which category a parameter falls
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depends on the manipulator's particular geometry [1]. As stated in Section 4.3.5, we

may use singular value decomposition of the simulated K matrix, Eq. (4.60), for the

UBC hydraulic manipulator (shown in Figure 3, without the grapple) to classify those

parameters. For a complete model, the 31 unidentifiable parameters in Table 13 are

marked with "*", the 24 linearly identifiable ones are marked with "f", and the 27 fully

identifiable parameters are marked with "t".

From the table, we realize that some link parameters are unidentifiable because of

the restricted motion of the corresponding links and the lack of full force-torque sensing

at each joint. For the first link (cabin), rotation is only possible about its z axis; therefore,

it is obvious that Ito /9„ and lyy are unidentifiable because they have no effect on joint

torque. Since the gravity vector is parallel to the z axis, cz is also unidentifiable. If only

torque about the z axis can be sensed, then all inertial parameters for link 1 become

unidentifiable except /zz. In a multi-link manipulator, however, some parameters can only

be identified in linear combinations because they appear in linear combinations with other

parameters. As we will see in the following sections, this partial identifiability and the

difficulty of analysis become worse as the number of major and minor links are increased.

4.4.3 Effect of Sensor Accuracy

The accuracy of the sensors used to measure the angular positions of major links is

within ±0.1°, and the accuracy of the pressure transducers is within ±25 psi (see Section

2.5). For a rotary hydraulic actuator, the applied torque TPre3 on the output shaft can

be determined [33] from

Tv' = by (Pp — P,) (4.61)

where

Pp = hydraulic pressure on the pressure side [psi],
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Ps = hydraulic pressure on the suction side [psi],

Cq = flow coefficient (a constant) = 0.089, and

Rg = gear ratio = 307:1.

Using Eq. (4.61) to estimate the net torque error for the cabin's rotary actuator, we obtain:

cabin: ±[0.089*307*(25+25)] = ±1400 N.m

Using Eq. (4.33) to estimate the net force errors for the boom's and the stick's actuators,

we get:

boom: ±[{(piston head area: 31.8)*25+(rod end area: 19.92)*25}*.453*9.81] = ±5700 N

stick: ±[(23.75*25+14.13*25)*.453*9.81] = ±4200 N

We added uniform random noise models with maximum amplitudes within the

accuracy range of the resolvers (±-0.1°) and pressure transducers (calculated above) to

the values shown in Figures 30 to 33. Then, we re-identified the dynamic parameters for

the manipulator of Table 13. These parameters, as denominators, are tabulated in Table

14 for the complete model and in Table 15 for the reduced model.

Comparing the calibrated parameters for the complete model in Table 14 (the

denominators) with the original parameters in Table 13, we see that almost all the

identified parameters contain large errors. This indicates that the dynamic parameters are

very sensitive to the accuracy of the position and force/torque sensors. To show this, we

calibrated the parameters when the accuracy of the pressure transducers were assumed to

be five times better than the current one ( i.e., within ±5 psi). Those calibrated parameters

are also shown as numerators in Tables 14 and 15 for complete and reduced models

respectively. The error in this case, however, is much less (10 to 100 times) than the

error for the accuracy of ±25 psi. Although some parameters still contain considerable

errors, some others, such as friction forces/torques, are now close to the actual ones and

therefore are reliable. Obviously, if no noise is injected to the sensors, the error in sensor
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Table 14 Identified dynamic parameters of a hydraulic machine with sensor errors (complete model).

param.
Link 1 Link 2 Link 3
swing cylinder piston boom cylinder piston stick

m 0* 5.4e5 1.3e5
0* 3600 -13700

27e-g- 0*-4.1e61 -2.1e61 -479001

mcx 0* -28000
-5.10

-74000 -3.9e5
3.20

-1200 1500 -7500
1.5e5-14e51.- -161001 157001

mcY 0* -3.8e5 -7700
-3730

2.0e5 80
55001

38
-5201

-5600
..".10 -2.7e51 1.0e5

mcz 0* 0* -4.6e5
3.4-0 0

-1800 400 1200
9T0(-11-467001 251001

/xx 0* 0* 3.3.9e5
0* 0* 0* -4200

-Tgin0.-5.6e61

I 0* 0* -2.9e5
2.0e6

-1.9e5
-i71-0

-34006200
0*-1.3e51 807001

Ix., 0* -1.0e5
-7570 0* -6.0e5

-5.7e61 01
-1900

2-§50.
-900

-102001
Iyy 0* 0* 0* 0* 4800

4710 0* 0*

/yx 0* 0* -38900 5.0e5 4200
 0* 600

-T10 -4.2e61 -380001 -167001

ix., -77600
0* 1.4e5

0 * -7600
0 * 78004.I0 -1.2e6f -610001 -1.3e51

rfric -198 _ - 38100
-Th;-51 - 150

55201 54001

T or f°8 -322
- _ 9.8e6

- - -900
11401 -4.2e71 -129001

45300 -800
-173001 --9.4e5

nafric -72800 _ 36_
-248001 -1.3e6

n fn'P - - 0* - - 540
-82501

-: parameter not defined.

*: unidentifiable parameter. t: linearly identifiable parameter.^fully identifiable parameter.

Units: m (Kg), me (Kg.m), I (Kg.m2), f (N), r (N.m), n (N.m).

Note: Numerator and denominator data for transducer accuracy within ±5 psi and ±25 psi respectively.
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Table 15 Identified dynamic parameters of a hydraulic machine with sensor errors (reduced model).

parameter swing boom stick

m (Kg) 0* 1400
380t

mcx (Kg.m) 0* 1900 540
284001* 200*

MCY 0* 160 24
1400* 440*

mc 0* -34
840*

Ix, (Kg•m2) 0* -540
3100 1.

kg 0* 310 -120
3600* 800*

In -70 -140
40* 1900*

1,, 0* 0* 0*

./.,,z 0* 220 -50
-3900* 500*

izz
16500 700 630

21400t 28300t 810*

Tfric (N.m) -13 9 19
1100* 100* -10W

T°8 or fff 17 -7600 -114
450* -3.3e51 -6500*

*: unidentifiable parameter. t: linearly identifiable parameter. $: fully identifiable parameter.

Note: Numerator and denominator data for transducer accuracy within ±5 psi and -.L-25 psi respectively.

readings tends to zero and again we obtain the same error-free parameters for the major

and minor links as the ones tabulated in Table 13.

By comparing the identified parameters in Table 15 with the original parameters in the

2nd, 5th, and the 8th columns of Table 13, one may realize that the error in the individual

parameters of the reduced model is much less than that of the corresponding parameters
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for the complete model. This justifies our previous claim that the identifiability and

the difficulty of analysis become worse as the number of (major and/or minor) links

are increased. In fact, although matrix K is nonsingular for both complete and reduced

models, it is still ill-conditioned. Some parameters, especially for the complete model,

are very sensitive to measurement noise although they are theoretically identifiable. Since

in SVD technique, all the singular values less than a specific amount are set to zero to

obtain convergence, certain parameters happen to be close to being linearly dependent

upon the other parameters (especially for the complete model in which the links act on

each other through open- and closed-chains). Typically, the friction torques/forces which

are external and totally decoupled parameters, and also the inertial parameters for the

last link (the "stick" can move faster than the other links) have been identified more

accurately than the other parameters.

The simulation results, however, imply that we should not expect better or indeed

even fair estimates of the dynamic parameters with the current accuracy of the pressure

transducers (±25 psi) for the UBC hydraulic machine.

4.5 Measurement Procedure

To calibrate the dynamic parameters of a manipulator, we first specify a number of

different trajectories for the manipulator links in the form of joint positions (dd), velocities

(Od), and accelerations (fi(j). Measurement procedure consists of moving various links

of the manipulator on the specified trajectories and measuring the vector of actual

joint positions, velocities, and accelerations, and calculating the vector of actuator

torques/forces. The latter is done by measuring the oil pressures inside the hydraulic
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actuators3 .

In our experiment, joint position is measured by a resolver, and joint velocity and

acceleration are calculated by successive differentiation of the joint position since there

is no tachometer or accelerometer attached to manipulator. As a result of successive

differentiations, a significant amount of noise can be generated, especially for the angular

acceleration, which deteriorates the accuracy of the parameter estimates. partially filtering

out the velocity and acceleration outputs will reduce the noise level, but we may lose

the higher frequency dynamics of the system. To overcome this noise problem, we

have used a dynamic programming (optimal) filter [37] for smoothing and estimating the

derivatives of the joint positions. The method, in brief, uses a least-squares estimate of

the experimental data and weighting factors applied to the first and second derivatives

(see [37] for more details).

The obtained joint trajectories are then fed into a numerical algorithm which computes

the matrix of manipulator kinematics, K. The K matrix along with the measured vector

of applied torques/forces is used in another numerical algorithm to give the vector of

unknown dynamic parameters. The whole measurement and identification algorithm is

shown in Figure 34.
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Figure 34: Measurement and identification procedure for dynamic calibration.

In fact, the transducers are somewhere between the servovalves and the hydraulic actuators, and
measure the pressures inside the actuators through hydraulic hoses, which naturally have compliance
and therefore, introduce more error to the already erroneous pressure readings.
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4.6 Experimental Results and Discussion

Link estimation was implemented on the UBC hydraulic manipulator shown in Figure

3 (without the grapple). As discussed in Section 4.1, the ideal rigid body dynamics

with friction forces/torques and pressure sensor offsets is a good model for this arm. A

set of insufficient and inaccurate data obtained from the manufacturer specifications is

available for the manipulator (Tables 1 and 13). They can serve as a point of comparison

for the estimation results.

For the estimated results presented, 1664 data points were sampled at the frequency

of 50 Hz while the manipulator was executing 5 sets of different trajectories shown

in Figure 35. The velocities and accelerations were calculated and filtered for the data

points. We then applied both the proposed complete dynamic model and the existing

reduced dynamic model to calibrate the identifiable parameters of the UBC hydraulic

manipulator (the identifiable and unidentifiable parameters were obtained through singular

value decomposition of matrix K in the previous section).

Typical results are shown for the complete model in Table 16 and for the reduced

model in Table 17. Parameters that cannot be identified because of constrained motion of

the links or lack of full force/torque sensing are denoted by "0*". For example, the first

nine parameters of the first link (cabin) are not identifiable because this link has only one

degree of freedom about its z axis. These nine parameters, however, contribute nothing

to the dynamic equations of motion of the manipulator and thus can be arbitrarily set to

zero. The fully identifiable parameters are marked by "t", and the linearly identifiable

parameters are denoted by "t" in Tables 16 and 17. From the tables, it can be seen

that there is a sizeable discrepancy between the nominal parameters in Table 13 and the

identified parameters. Most of the estimated parameters are even far from being realistic.
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Table 16 Identified dynamic parameters of the UBC hydraulic manipulator (complete model).

param.
Link I Link 2 Link 3
swing cylinder piston boom cylinder piston stick

m 0* 5.2e51 -6.5e5t 0* 3840* -602001 0*
mcx 0* -2.1e6* 2.1e6* 1.5e6t 3300* -3300* -351001
MC Y 0* 88400* 41000* -7.7e5t 10300* -6900* -24800t
mcz 0* 0* -1.1e6* 0* 2100* 22700* 430*
/xx 0* 0* 5.2e5t 0* 0* 0* -4100t

In' 0* -2.3e6t -2.7e6t 5800t 0* -10900t
1, 0* -1.1e6t 0* -7.8e5* Ot 235001 -12100*
/yy 0* 0* 0* 0* -2.5e5t 0* 0*
/yz 0* 0* -8.8e5t 9.4e5* -83001 0+ -11100*
/z,  -2.6e6t 0* -4.0e6t 0* 25500t 0* 29500t

rfric 14700* - - -17700t - - 3900*
T or fff -1300* - - -5.4e6* - - 2900t
Pc - -2.1e5* - - -31500* - -
'irk - 1.5e5t - - -10600* - -

nitric _
- 0* - - 22000$ -

—: parameter not defined.

*: unidentifiable parameter. t: linearly identifiable parameter. t: fully identifiable parameter.

Units: m (Kg), me (Kg.m), I (Kg.m2), f (N), T (N.m), n (N.m).

This, however, was expected because from the simulation results in Section 4.4.3 we

learned that good estimates for the individual parameters may not be possible due to the

low accuracy of the existing sensors.

Although the identified values of the individual parameters are not close to the actual

ones, and therefore, do not have any physical meaning at this point, we may still get good

results when exploiting them to predict torques/forces of the actuators since we have

used a curve-fitting technique to estimate pseudo-dynamic parameters. To verify this, the

measured torques/forces for a completely different set of experimental data are compared
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Table 17 Identified dynamic parameters of the UBC hydraulic manipulator (reduced model).

parameter swing boom stick
m (Kg) 68701

mcx (Kg.m) -22200t 600*
mcy 0* -2950* -278*
mcz 0* -285*

Ix, (Kg•m2) -15200t
liy -61100* -8600*
In -45500* -1600*
lyy 0* 0*
lyz -14900* -4100*
_t„ -146000t -151000t -490*

TfriC (N.m) 13200* 2030* 530*
Toff or rff 980* -95700* 180*

*: unidentifiable parameter. t: linearly identifiable parameter. $: fully identifiable parameter.

to the torques/forces computed from the above three sets of parameters (nominal,

complete, and reduced models) using the measured joint kinematic data in Figure 36. It

can be noticed from Figure 37 that the complete model predicts the torques/forces better

than the other two models, and in general, the estimated torques/forces obtained from

the complete or reduced model match the measured torques/forces much more closely

than those obtained from the existing (nominal) model. The RMS (defined in Eq. (3.44))

for the error between the measured and the estimated joint torques/forces obtained from

different models are given as:

cabin:RMScompiete = 3720 N.m

RMSreduced = 4720 N.m

RMSnominai = 12200 N.m
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boom:RMScompkw = 5860 N

RMSreduced = 5500 N

RMSnominai = 39200 N

stick:RMScompiete = 8700 N

RMSreduced = 11900 N

RMSnominai = 14600 N

From the above RMS values we see that the errors in the estimated torques/forces of the

complete model are almost within the accuracy of the sensors we derived in Section 4.4.3.

This comparison, on the whole, verifies qualitatively that for control purposes the

estimated parameters are in fact more accurate than the modelled parameters. Yet, one

cannot form conclusions about the absolute accuracy of the estimates on the basis of

the plots in Figure 37 since they only indicate that one can predict the joint torques

or link forces well.

Depending on what the purpose of calibration is, one may use the predicted

forces/torques from the identified model (whatever the values of the individual parameters

are) in a flight simulator, or one may update only the friction forces/torques for

maintenance purposes while fixing all the known and constant link inertial parameters.

Of course, if the purpose of obtaining the estimates is to improve controller performance,

the best test for verifying the reliability of the estimates is to actually test them in a

robot controller.
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Figure 36: Position trajectories of the three links of the UBC manipulator (experimental).
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Chapter 5

CONCLUSION

There are many heavy-duty manipulator-like machines in primary industries that are now

being manually operated by experienced operators. Many of them work in potentially

hazardous environments. Computer-assisted control of such hydraulic manipulators is

now available which has the potential to improve operator safety and to increase

productivity.

There are many different reasons why one may be interested in determining the

various parameters of hydraulic manipulators. Accurate modeling of robotic manipulators

is important for control purposes. One needs to know the accurate kinematic and dynamic

parameters of such manipulators in order to exploit them in direct and inverse kinematic

formulations (e.g., in resolved motion/force controller, or in a hybrid position/force

feedforward controller), or to estimate the inertial parameters of the manipulators. A

good knowledge of arm parameters is also useful for simulation purposes, and failure

analysis and detection of the manipulator.

Unfortunately, one cannot totally rely on the link specifications supplied by the

manufacturer of such machines because of assembly errors, manufacturing tolerances,

aging of the machine, and also because many hydraulic manipulators are modified by the

distributors and even by the end-users. As a result, measurement or calibration of link

parameters would be necessary to obtain a more realistic model of a manipulator.

There was a major emphasis in this research on building accurate manipulator models.

The objectives of this work were to develope means for the calibration of both kinematic
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and dynamic parameters of major and minor links of heavy-duty hydraulic manipulators,

although the methodology developed here can be equally applied to any type of robotic

manipulator. We sought model building methods which are not only accurate, but also

convenient and which do not demand significant human involvement. The ideal method

would be one that allows the robotic manipulator to calibrate itself.

In the following sections, we will briefly summarize the various issues of the

calibration techniques we used to measure the kinematic and dynamic parameters of the

UBC hydraulic manipulator.

5.1 Kinematic Calibration Issues

In this area, we presented an efficient, fast, and inexpensive procedure and instrumentation

for kinematic calibration of both major and minor links of heavy-duty hydraulic

manipulators based on the modified Denavit-Hartenberg link parameters. The procedure

does not require much human involvement or engineering supervision, and can be

carried out on-site. The solution technique involves iteration of the linearized kinematic

equations. One important aspect of the proposed method of calibration is that, by using

an external linkage with its own joint sensors, there is no need to sense the arm joint

angles and endpoint location with complicated sensing devices. The added linkage, the

calibrator, provides all the sensory data required for the calibration procedure. Another

contribution is the concurrent identification of the minor links with the major links using

the same sensory data from the calibrator.

Simulation results indicate that the iterative least squares method with Levenberg-

Marquardt algorithm is almost insensitive to the initial parameter estimates. One

important reason is that, in contrast to the other identification techniques, our proposed
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hierarchical algorithm solves a limited number of unknown parameters each time rather

than identifying all the parameters in a single run. At the same time, we found that the

identification method is robust to the natural drifts of the arms and white noise in the

sensors. Also, if the accuracy of the resolvers are within commercial ranges, e.g., -±0.1°,

the calibrated model can still be close to the actual model with errors in the identified

parameters to be usually less than 5%.

For the first time, experimental results in autonomous kinematic calibration were

obtained for a typical heavy-duty hydraulic manipulator. In terms of the RMS errors and

VAF statistical measures, the calibrated parameters fit the calibrator data better than did

the nominal (initial) parameters. The probable reason for the discrepancy between the

actual endpoint measurements and the results from the simulation of the identified model

is errors in the calibrator data. The current design and accuracy of the system is simply

not yet good enough for kinematic calibration. We actually feel that the nominal values

of the parameters for both major and minor links are more correct, and provide a test

for the calibrator system rather than vice versa. In every case, the proposed calibration

procedure worked well given the experimental measurements, but these measurements

have limited accuracy as indicated by independent measurements.

Aside from the current accuracy limitations of the calibrator, we feel that the approach

we have offered holds promise for the future, especially on the calibration of hydraulic

machinery. A new version of the calibrator is now being built that has more degrees of

freedom, and is lighter, more rigid, and more accurate.

5.2 Dynamic Calibration Issues

In this category, a new methodology for the dynamics of a complex hybrid open-closed
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chain hydraulic manipulator was derived based on the Newton-Euler formulation. It

was shown, by simulation, that neglecting the dynamics of the minor links (hydraulic

actuators) may overestimate or underestimate the forces/torques applied to the joints/links

of the arm by a factor of two or more.

By measuring the joint positions and the oil pressures inside the hydraulic actuators

and applying the proposed dynamic equations, we attempted to calibrate the dynamic

parameters (inertials, friction forces/torques, and transducer offsets) of both major and

minor links of a typical hydraulic manipulator. Simulation results showed that with the

current accuracy of the sensors and transducers, it was not possible to obtain a good

estimate of the parameters. The poor estimates of the individual parameters of the UBC

hydraulic manipulator confirmed the simulation indications. Nevertheless, when in the

simulations the accuracy of the pressure transducers was increased 5 times, a considerable

improvement in parameter estimates of 10 to 100 times was observed, and when the

error in the readings was set to zero, the identified parameters became error-free. This

is promising for future experiments upon installing more accurate sensors.

We found that the estimated torques/forces from the identified models are closer

than the ones calculated from the existing nominal model to the actual measured

torques/forces of the actuators. Although the formulation was much more mathematically

and computationally involved, the complete model predicted the actuator forces/torques

better than both reduced and nominal models. On the other hand, because of its fewer

interconnected links and unidentifiable or linearly identifiable parameters, the reduced

model appeared to calibrate the individual parameters more accurately than did the

complete model.

There are numerous potential advantages of this movement-based estimation

procedure over manual measurement techniques such as weighing and counterbalancing
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individual links. The former is automatic, faster, more economic, and more convenient

than the latter. Even assuming that there are possible errors in the sensors or kinematic

variations due to inaccurate parameter knowledge, the importance of the dynamic

estimation of the link parameters is still emphasized. The reason is that the controller

must deal with the manipulator kinematics and dynamics and the sensor calibration as

they exist, and to some extent the estimated model, although far from the actual model,

will accommodate the model variations and sensor errors (as proved by better estimation

of actuator torques/forces).

New pressure transducers with a five-fold improvement accuracy will be available

to us in the near future to re-calibrate the arm parameters. It is hoped that much better

estimates of the dynamic parameters can be obtained by using the new sensors.

5.3 Further Issues

There are many issues surrounding the topics in this thesis that require further study.

The followings are some of those issues:

In the kinematic calibration area:

• it is desirable to optimize the workspace of the calibrator. It can be done by

optimizing the design of the calibrator (e.g., the degrees of freedom required, the

type of links/joints, and the dimensions of the calibrator links) for a certain class

of hydraulic manipulators (e.g., excavators, feller-bunchers, log loaders, etc.).

• we experienced a lot of noise coming from unmodelled nongeometric sources

such as joint flexibility in the calibrator. Since these sources of noise can

easily contaminate the calibration results and may not be removed by using

conventional filters such as least-squares techniques, one may consider including
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a noise model in the kinematic formulations for such dominant nongeometric

parameters using appropriate techniques.

In the dynamic calibration area:

• we found that the pressure readings would not be reliable with the transducers

being located far from the actuators. The effects of hydraulic compliance were

completely ignored in the dynamic formulations. It would be desirable if we

consider the dynamics of the hydraulic components of the manipulator, and

established a relationship containing the voltages to the servovalves as inputs

and the joint motions and the end effector forces as outputs. In this way we could

identify the dynamics of the hydraulic components and the structural elements of

the manipulator at the same time. This general system identification, however,

is a very difficult one, but restricted versions of this problem may be tractable

and quite useful.

• it appeared to us that a number of minor links cannot have sufficient excitations

because of the nature of the links (e.g., cylinders or pistons) to give a good

estimate of their dynamic parameters. Therefore, it is recommended to investigate

some other versions of dynamic formulations (e.g., Lagrange approach) or

calibration procedures to identify those link parameters.

• the dynamic formulations proposed are potentially capable of calibrating both

the kinematic and dynamic parameters of a typical robotic manipulator using the

external calibrator device. In this case, the kinematic and dynamic calibration

can be sequentially performed starting from the end effector. In the future, one

may consider performing the full calibration process using this technique by

modifying the calibrator, e.g., in weight, joint types, and sensor installations.
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