
KNOWLEDGE BASED DYNAMIC RESTRUCTURING OF

FLEXIBLE PRODUCTION SYSTEMS

By

Jianhua Cu

B.A.Sc. (Electrical Engineering) Tsinghua University, China, 1985

M.Sc. (Electrical Engineering) Chongqing University, China, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF MECHANICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September, 1994

© Jianhua Cu, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of Mh644
The University of British Columbia
Vancouver, Canada

Date cctcbr 7

DE-6 (2/88)

Abstract

This thesis addresses high level automation in flexible production systems (FPS). In

a flexible production system, for example in a dedicated FPS for fish processing, the

process components are typically organized as distinct workcells where each workcell is

responsible for a special class of production activity. Changes in production demand,

variation in raw material supply, and malfunction or failure of workcell components can

change the workload on some components in the workcell. A technique that is termed

dynamic restructuring, which enables an FPS to change its configuration automatically

to suit new situations, thereby achieving a near-optimal load distribution among system

components is developed in the thesis.

Characteristics of the restructuring problem are known to be fuzzy (both restruc

turing goal and FPS status), complex, and non-analytic. A knowledge-based method is

employed for solving this problem rather than the conventional mathematical methods.

Different types of knowledge sources are organized in a three-level hierarchy of decision

making:

• The first (highest) level determines whether there should be a restructuring oper

ation according to the current FPS status.

• The second level determines a restructuring method, in which, due to the fuzziness

of the restructuring goal, general heuristics are used.

• The third level selects an optimal action based on the current situation, employing

fuzzy logic to handle system uncertainty.

11

Various approaches of knowledge representation and reasoning are used, as appro

priate in different levels of the hierarchy. A blackboard architecture is implemented

to coordinate associated knowledge sources, which makes the entire system easily ex

pandable. Heuristics are organized in the order of their priorities, in the planning of

restructuring actions. Techniques of fuzzy associative memory are developed to evaluate

a set of possible restructuring actions from which a decision maker could pick an optimal

one. Therefore, the system is intelligent in the sense that the decision maker always

selects a proper action based on the current system status.

The FPS restructuring system is implemented in Prolog. The approach is applied

to an automated fish processing plant, in computer simulation. Several special cases

are studied through simulation experiments, to demonstrate the practical use of the

approach.

111

Table of Contents

Abstract ii

Table of Contents iv

List of Figures viii

Acknowledgment x

1 Introduction to System Restructuring 1

1.1 Demand for High-Level Automation . 1

1.2 Structure of a Hierarchical Automation System . 5

1.3 Feasibility of FPS Restructuring . 8

1.4 Characteristics of Dynamic Restructuring 10

1.5 Implementation of Dynamic Restructuring Using Machine Intelligence . 12

1.6 Objectives of the Research 15

1.7 Summary 16

2 A Theoretical Framework for Restructuring 17

2.1 Flexible Production Systems . 17

2.1.1 FPS Configuration and Layout . . . 17

2.1.2 Workcell Activity Level 19

2.1.3 Component Capacity . 19

2.1.4 Component Workload Status . 21

2.2 Formulation of Restructuring Problem . . . 22

iv

2.2.1 Performance Index . 22

2.2.2 Restructuring Requirements for Knowledge Based System . . 23

2.3 Literature Review on Background Material 24

2.3.1 Dynamic Restructuring 24

2.3.2 Knowledge-Based Design of Flexible Systems 25

2.4 Restructuring as Planning 30

2.4.1 State Space Method 31

2.4.2 Action Calculus 33

2.5 Knowledge-Based Restructuring 35

2.5.1 Workload Sharing 36

2.5.2 Component Releasing 39

2.6 Summary 41

3 Problem Solving Architecture 43

3.1 Knowledge Organization 43

3.1.1 Organization of Knowledge in a Hierarchy 44

3.1.2 Organization of Different Types of Knowledge Sources 46

3.2 Blackboard Model 47

3.2.1 Blackboard System History 47

3.2.2 Blackboard System Structure 48

3.2.3 Characteristics of a Blackboard 50

3.3 Problem Formulation in a Blackboard Architecture 52

3.3.1 Knowledge Sources 53

3.3.2 Blackboard 58

3.3.3 Control Unit 62

3.4 Functions of Knowledge Sources 64

v

3.5 Summary.

4 Heuristics and Actions

4.1 Analysis of Restructuring Procedure

4.1.1 Planning Using Blackboard

4.1.2 Heuristics for Search

4.2 Heuristics for Problem Solving

4.2.1 Heuristics

4.2.2 Usage of Heuristics

4.3 Actions

4.4 Summary

67

5 Fuzzy Decision Making

5.1 Conflict Resolution

5.2 A Fuzzy Decision-Making Structure . .

5.3 Representation of Situation

5.3.1 Fuzzy Representation of Component

5.3.2 Compound Propositions

5.4 Knowledge Representation and Reasoning

5.4.1 Rule Belief

5.4.2 Reasoning

5.5 Summary

84

84868888919798101106

6 Implementation and Case Study

6.1 A Fish Processing System

6.2 Implementation and Operation of the Restructuring System

6.2.1 Rule Bases

68

68

68

70

71

72

78

80

83

Status

107

107

109

109

vi

6.2.2 Separation of Knowledge from Reasoning Procedure 111

6.2.3 Panorama of Restructuring 111

6.3 Restructuring Due to Change of Demand 112

6.4 Restructuring Due to Change of Sharing Feasibility 118

6.5 Summary 121

7 Conclusions and Future Work 122

7.1 Conclusions 122

7.2 Main Contributions 123

7.3 Future Work 124

Bibliography 126

A Logic Programming 130

A.1 Horn Clauses 130

A.2 Syntax of Prolog 131

A.3 Resolution and Unification 131

A.4 Prolog for AT Programming 132

A.5 Non-logic Features 133

B Intended Interpretation of Prolog Predicates 134

vii

List of Figures

1.1 A Multiple Cell Production System and Its Dynamic Reconfiguration: (a)

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

Sharing (b)

3

4513182627323738

40

45

50

52

60

65

66

Before Reconfiguration; (b) After Reconfiguration.

1.2 The Component Sharing Modes: (a) Run-Time Component

Static Sharing

1.3 The Hierarchy of an FPS Control System

1.4 Semantics and Syntax in Machine Intelligence

A Flexible Production System

An Integrated System for Mechanical Design

A Reconfiguration and Scheduling System for an FMC

The State-Space Representation of Planning

The Rulebase of Component Matching for Load Sharing

The Fuzzy Associative Memory

2.7 The Rulebase of Component Matching for Component Releasing

The Hierarchy for Organization of the Restructuring Knowledge

A Model of a Blackboard System

The Blackboard Structure of the Restructuring System

A Sub-Blackboard Representing Component Capacity

An Intelligent Sensing System

The Membership Functions for Fuzzy Descriptors of Overload (a)

Undercapacity (b) of Component

and

viii

4.1 The Blackboard-Based Planning . . . 69

4.2 The Heuristic Search and Optimization 71

4.3 The Reasoning Sequence 79

5.1 Schematic Representation of Fuzzy Decision Making . 86

5.2 The Membership Functions of Component Status . . 89

5.3 Computation of the Validity Degree of Actions 103

6.1 A Model of a Flexible Production System (FPS) . . 108

6.2 A Case Study: the Simulation of a Demand Change 114

6.3 A Case Study: the Simulation of a Change of Sharing Feasibility 120

B.1 The Representation of Membership Functions 138

ix

Acknowledgment

I would like to take this opportunity to express my deep gratitude to my supervisor Dr.

Clarence de Silva for his encouragement, support, and delightful guidance throughout

the entire course of my M.A.Sc. program.

My acknowledgment should also go to my colleagues in the Industrial Automation

Laboratory for their help, discussion and comments on my research project.

The financial support by grants to Dr. C.W. de Silva from the Advanced Systems

Institute of B.C., and from the Natural Sciences and Engineering Research Council of

Canada is highly appreciated.

x

Chapter 1

Introduction to System Restructuring

This chapter introduces the work that is described in the thesis. It addresses the concept

of dynamic restructuring of flexible production systems, and the background information

that is needed to study this concept. The characteristics of system restructuring is

discussed. Based on this backdrop, machine intelligence is considered for the problem

solving, along with appropriate control techniques, and fuzzy logic is proposed here to

deal with complexity, uncertainty and the non-analytic nature of the problem.

Section 1.1 starts with a discussion of the demand for high level automation in flexible

production systems; Section 1.2 describes a hierarchical structure that is suitable for

monitoring and control of an automated system; Section 1.3 studies the feasibility of

dynamic restructuring in flexible production systems (FPS); and Section 1.4 discusses

some important characteristics of the restructuring problem in an FPS. According to

these characteristics, an approach is proposed in Section 1.5 for solving the restructuring

problem. Section 1.6 outlines the objectives of the thesis. Finally, Section 1.7 gives

concluding remarks for this chapter, which will include a brief overview of the entire

thesis.

1.1 Demand for High-Level Automation

Due to the market competition, modern production systems are developed focusing on

the two objectives: flexibility and minimum inventory, especially minimum intermediate

inventory [43, 45]. Efficient management and high level control are required for achieving

1

Chapter 1. Introduction to System Restructuring 2

these objectives.

Fluctuating supply and demand levels and the popularity of small-batch production

call for high-level flexibility and adaptability in a production system. Systems with these

characteristics can better cope with increasing quality and throughput rate demands of

the market. To respond to this challenge, highly automated systems have to be devel

oped. Such systems should be intelligent with the ability to adapt quickly to different

production operations autonomously and self-organize their structure to make them op

erate efficiently and cost-effectively [10].

In a conventional production system [45, 43, 29], workcells are linked into a fixed

architecture. Workload of components in a workcell changes correspondingly only in

response to the processing demand on the workcell, which may fluctuate due to market

factors. Some components in a particular workcell may work at a fraction of their full

capacity, while similar components in another workcell are overloaded. In order to achieve

efficient and optimal operation of the overall system, the workloads of the same type of

components should be redistributed. This “balanced” operation may be realized by

means of restructuring the workcell configurations. In order to achieve this, the workcell

boundaries should be flexible and the overall system structure variable, resulting in a

dynamic structure control system [10] (see Figure 1.1).

In Figure 1.1, suppose that the production demand for warkcell is increased, which

would make some components in the workcell overloaded. Meanwhile, suppose that there

exists a surplus in the component capacity in warkcell; for example, components A, B

in warkcell, which are of the same types as the overloaded ones in the workcell1,operate

below their full capacities. Therefore, component B may be reassigned to warkcell, so as

to fill its processing capacity requirement. Note that the original workload of component

B may be transferred to other components of the same type in workcell before assigning

B to workcell, which is known as component releasing. Component A shows another

Chapter 1. Introduction to System Restructuring 3

(a)
Dynamic Sharing
Control

Local Network

B

Cell i Cell]

A

Component

Dynamic Sharing
Control

Local Network

B

Celli Cell]

Dynamic
Sharing

Figure 1.1: A Multiple Cell Production System and Its Dynamic Reconfiguration: (a)
Before Reconfiguration; (b) After Reconfiguration.

Chapter 1. Introduction to System Restructuring 4

operation mode. It is shared between the two workcells. In this latter case, the workcells

should be scheduled cooperatively for sharing the components.

It is important to mention how the shared components work. They could be scheduled

in different operation modes as illustrated in Figure 1.2. Here, case (a) is considered as

Component A
working for
workcell I

time

(a)

Component A
working for
workcell I

Component A time
working for
workcellj —

(b)

Figure 1.2: The Component Sharing Modes: (a) Run-Time Component Sharing (b)
Static Sharing

that where A works for both workcell1 and workcell1,which is somewhat analogous

to time sharing of a computer CPU for multiple processes, resulting in slow processing

speed, but without extra intermediate inventory. It should be noted that, the processing

speed (fast or slow) or workcell activity level (high or low) are of significance. In case

(b), component A works for a workcell for a considerable long time, and then shifts

for another workcell, and then returns to the first workcell, and so on. In the second

case, there would be significant extra inventory, provided that the processes of the two

workcells are related and are constituents of a complete production activity, which is the

usual case in production. This extra inventory will degrade the system performance.

Consequently, dynamic sharing of a component, which requires switching of compo

nents in order for them to work for more than one workcell in runtime, as shown in case

Chapter 1. Introduction to System Restructuring 5

(a) discussed above, for example, is required in order to achieve system flexibility and

zero/minimum inventory.

1.2 Structure of a Hierarchical Automation System

For better understanding of dynamic restructuring from the point of view of information

exchange and control, the system in Figure 1.1 can be organized into a control hierarchy

as schematically illustrated in Figure 1.3.

High-Level
Knowledge Feedback Flexible Production

System Controller

Workcell-Level
Information to
the FPS

I

____ __

Workcell Level
Controllers

Lev

I

Component-Level
SensorySlgnats

4’

__

l(I.

Figure 1.3: The Hierarchy of an FPS Control System

Production
Demands

Intelligent
Sensor Fusion

1

FPS
Level

Information
Preprocessor

Component
Level

Component Level
Sensing

Group: 1

Component Level

cj j
Controllers I.

i- Group: 1 Environment

I I

The top level FPS controller plays the important role of management of the entire

Chapter 1. Introduction to System Restructuring 6

system. It responds to the changes of task demands and the feedback information; makes

decisions on FPS reconfiguration; and commands the low-level controllers to employ

proper components in carrying out the required taks. The task demands considered here

are assumed independent and assigned to individual workcells, which may actually be

part of a complete production task. For example, product grading and packaging may

be considered independent for separate workcells, but they may be (usually are) part of

a complete production activity, as an example, fish processing, which may include fish

head cutting, grading, and packaging. Task demand management, which is to decide

task demands for individual workcells according to the overall production requirements,

is not included in this system. However, it is important to note that the tasks assigned to

different workcells are related, and for achieving zero intermediate inventory, the workcells

should operate at a desired processing speed. The major objective of an FPS controller

is to realize the desired processing rates under the condition of current available facility

resources. In particular, if the workload of the overall system is not properly assigned

to its components, say, some are overloaded, while some of same type possess significant

capacity surplus, the system should be restructured so as to achieve uniform or balance

operation, which will result in increased system performance and reduced operating cost.

A workcell controller is the executor of an assigned task. It performs the given

task in a desired rate using designated components under control of the FPS controller,

and may include some components in a sharing mode. Components are scheduled and

controlled according to the task type and processing rate. Task planning is discussed

in Vollmann (1992) [45]. In particular, the shared components should be scheduled

in coordination with other workcells. In dedicated production systems, a fish processing

plant, for example, task planning is standardized, and the component workloads will vary

almost proportionally with the task demand, which may be represented by a processing

rate. Of course, for different tasks, component load factors, (workload/unit-task), may

Chapter 1. Introduction to System Restructuring 7

be different. For example, suppose a vision system is required for fish head cutting, and

the load factor is O.4s/unit-cutting. As a result, for a unit cutting (1 unit-cutting/sec),

a standard’ vision system should work O.4s. If the same vision system is used for fish

grading, the load factor may be lower, say, O.25s/unit-grading.

Components physically belong to workcells, but are logically grouped by their func

tions, and assigned to groups. Components in the same group are assumed to be inter

changeable and shareable (The feasibility aspect will be considered in the next section).

Even human workers could be grouped into one or more groups when they are considered

as part of a workcell in this manner. A component controller responds to commands from

the workcell level. For example, an image processing system will execute a particular job

as required, for example, to measure the gill position of a fish or to analyze the firmness

of an object such as herring roe.

The low-level sensory signals are fed back to component controllers as well as workcell

controllers for closed loop control. The component signals, together with reports from

the workcell controllers, are pre-processed by an intelligent sensing system, which will

generate information for the FPS, and will provide knowledge to the FPS controller in a

proper form, as fuzzy sets, for example.

The information between the production system and outside world takes two forms:

updating of the task demands, and interactions between components and their enviro

ment, for example in material handling and processing. Both types of information may

trigger the system for restructuring. The change of task demands, which results in the

change of component workloads, is a direct trigger for restructuring. Also an FPS may

call for a restructuring action during processing, when some components are damaged

or partially damaged and have a degraded performance. Such a damage may cause a

reduction of the component capacity, may reduce the speed of communication, and can

1This concept is used for component capacity measurement, which will be discussed in Chapter 2.

Chapter 1. Introduction to System Restructuring 8

bring about other undesireable effects.

This thesis will be centered around the restructuring controller of a flexible production

system (FPS), which will be designed to make decisions based on task demands and FPS

information, to assign proper components to a given production activity.

1.3 Feasibility of FPS Restructuring

Three points are presented here to support the concept of system restructuring. Firstly,

well developed low level automation provides the possibility of dynamic restructuring of a

system. Especially, programmability and the availability of sophisticated component level

controllers that have the necessary flexibility make some components easily be shiftable

to other jobs. Then, it will be possible for a component to shift. from one task to another,

or work in a sharing mode.

As an example, an image processing system can function differently using different

program modules. It may calculate the mean brightness to measure temperature from

an infrared image; firmness from an ultrasonic image, and colors from the separate Red-

Green-Blue (RGB) channels of a color image. It may also recognize and “measure” the

position and shape of an object. In fish processing industry, such functions are needed in

many different workcells, with different processing time requirements. Therefore, some

image systems, if they operate below full capacity, could be used for more than one

workcell to save operating costs.

Secondly, local network communication should be highly developed, which can ef

fectively support the high-level hierarchical control; provide information feedback; and

enable cooperation of shared components. For example, it is well known that automatic

guided vehicles (AGV) usually operate in a completely sharing mode.

Thirdly, one should take into consideration that some types of components in working

Chapter 1. Introduction to System Restructuring 9

site are actually mobile. Human beings, when considered as components in workcells,

can walk from one site to another. Mobile robots [19] also fall into this category. In this

case, travelling time of a component may be included as a part of the working time in

scheduling. The shifting frequency, therefore, needs to be optimized by considering the

ratio of working time and travelling time. However, this is not a major topic here. Some

robots (or human beings) can perform work, such as loading and unloading, in a sharing

mode. To generalize the feasibility representation in dynamic restructuring, the concept

of feasibility index is introduced. Two situations can be considered:

• Load sharing. In this case, a load is shared by more than one component of a

same type. The feasibility index of load sharing is determined by the type of load

and attributes of the sharing pair of components. Also, some geographical factors,

such as FPS layout, and network communication capacity should be considered as

well. A system expert may recommend a value or an algorithm to calculate the

feasibility index. This feasibility index is taken into account when an overload is to

be shared by another component, the load sharing feasibility should be considered

between the pair of components, one of which is overloaded and the other is at

below capacity.

• Component sharing. Here, a component is assigned to more than one load.

The component may work for several workcells which carry out different tasks.

The feasibility index of component sharing is slightly different from that of load

sharing. The former case happens when a component is to be released from the

system, its workload should be transferred to another component of the same type.

The second component is therefore in a mode of component sharing: it works for

more than one job. In this case, the feasibility index of component sharing is

primarily determined by the component itself, rather than a pair of components.

Chapter 1. Introduction to System Restructuring 10

In both the cases, a basic property of components which is associated with the ca

pability of sharing determines the feasibility index. In this research, it is defined as

“component shareability”. The shareability index of a component is considered as the

capability of this component to share loads, the basic factors that affect the index being

the capability of communication, its mobility, etc, of the component. The index takes

a real number in the interval [0, 1], and is usually assigned by a system expert. This

number indicates the degree of shareability of a component; in particular, “1” means the

component is completely shareable, and “0” means the component is not shareable at all.

This, then, together with geographical layout and task type, will be used for evaluating

component sharing. The feasibility of load sharing, which involves pairs of components,

also takes into consideration such factors as geographic layout and repair state of the

components.

1.4 Characteristics of Dynamic Restructuring

To develop an approach for solving the present problem, it is helpful to understand the

characteristics of the problem. From the point of view of control, the task and the

performance requirements of an FPS controller are greatly different from that of a low-

level control system [21]. It has the common characteristics of a high-level control system

as well as its own specific features.

Generally, a high-level control system is different from a low level control system in

the following aspects [7, 8, 11, 40].

• Control bandwidth and dynamic response.

The control cycle of high-level restructuring is sufficiently long that the system may

be considered to be in a steady state (normal operation) most of the time. The

steady state, therefore, is the most important consideration. What we optimize is

Chapter 1. Introduction to System Restructuring 11

the FPS operation rather than the dynamic response during the transient stage of

performing a restructuring operation.

• Intelligence and accuracy.

In general, required intelligence is high and the associated precision may be low

for decision making in a high-level system. The restructuring system should be

designed to make intelligent decisions and to deal with uncertainty of information

and knowledge.

What should be particularly stated with regards to a dynamic restructuring controller

are the following features:

• The fuzziness of the performance requirement itself (fuzzy goal).

This feature makes the goal of the control system fuzzy, resulting in the possibility

of multiple solutions. The general requirement of restructuring is to make an FPS

operate uniformly with respect to the load distribution among components, and

also to make the workcell components work close to their full, design capacity. An

example is given now to indicate how fuzziness may enter into the decision making

process of system restructuring. Suppose two components A and B are identical

and shareable. In one case, component A works at 50% of its full capacity and,

component B works at 90% of its full capacity. In another case, component A

works at 70%, and component B works at 70% as well, in which 20% workload of

B is shared by A. It is difficult to precisely determine which case is better, and

fuzziness may enter the decision making process.

• The non-analytic nature of the restructuring problem.

It is the fuzziness of a restructuring goal that leads to this second feature of the

problem. In the absence of fuzziness, if there exists an analytic cost function, for

Chapter 1. Introduction to System Restructuring 12

instance, a linear programming method could be used for solving the associated

problem. Such a method, like an optimal control design, is actually driven by a

requirement of control performance. Usually, the algorithm can be deduced from

the cost function and system constraints, such as a mathematical model. In a

restructuring problem, both the control performance and the constraints may be

fuzzy, and the problem is generally non-analytic. Therefore past experience would

be very valuable to solving the associated problem. Heuristics are very helpful in

the design of control actions, which may indirectly respond to the restructuring

requirements. The conventional, performance-index-oriented design is no longer

suitable here. Instead, a data-driven method incorporating heuristics may apply.

The complexity of knowledge sources needed for problem solving.

As a consequence of the feature mentioned above, dexterious knowledge would

be required to support the decision making in selecting a proper restructuring

action. This feature needs an open structure, in order to cope with different kinds

of knowledge sources.

1.5 Implementation of Dynamic Restructuring Using Machine Intelligence

For the characteristics that have been discussed in the previous section, it is clear that, to

implement dynamic restructuring technology in an automated process, human expertise

and past experience would be extremely useful. Specifically, a knowledge-based system

is desirable for problem solving. Therefore, in system design and implementation, one

has to primarily consider formulation of the restructuring problem, represention of the

problem solving knowledge, and the design of reasoning strategies [31].

Problem formulation is the first step toward machine intelligence [32]. Here, the

problem should be represented in a form that would enable a computer to “understand”

Chapter 1. Introduction to System Restructuring 13

it. Human beings can understand a language through semantics, but a computer cannot.

Computers recognize syntax. Everything must be represented in a certain form which

is recognizable to a computer. One such form of representation is propositional calculus

[2], in particular, the first order predicate calculus. For example, father(tom, david)

is a predicate which means that “torn is david’s father”. This is understood through

the semantics of the word father to a human being. A computer simply recognizes the

symbol father, regardless of the meaning it holds. This is illustrated in Figure 1.4.

and

Figure 1.4: Semantics and Syntax in Machine Intelligence

Suppose that the facts

father (torn , david)

father(david, catherine),

Input

Computer

Sematics

Understood by Sematicsoutput

and a definition:

Chapter 1. Introduction to System Restructuring 14

grandfather(X, Y) — father(X, Z), father(Z, Y),

are given. Then if the query “who is catherine’s grandfather” is made, its logic conse

quence will be

grandfather(tom, catherine).

The predicate grandfather could be understood by human beings since it has an ac

cepted meaning, but it is only a symbol to a computer which only recognizes the relation

definition of grandfather and father.

A simple logic programming language dealing with operation of the first order predi

cates, which is to be used throughout the thesis, is explained in Appendix A.

Knowledge representation and reasoning are the core in system design and realization.

Due to the complexity of the system, the problem solving knowledge is organized into

a hierarchy. The programmatic knowledge and detailed knowledge are considered in

different level, so as to implement hierarchical decision making. The agent then could

not be tangled into unnecessary detail at first.

Some important conditions have to be satisfied in system design. They are usually

met, but are explicitly discussed here to avoid confusion, with respect to subsequent

design procedures.

• Full knowledge of actions that change the FPS is known. This will provide the

possibility of planning the next step restructuring action, since each decision making

should be made based on the current situation. In this manner, an agent will be

able to completely predict the effects of an action.

• The agent has complete knowledge about the FPS. All the related and necessary

information should be given to the system. This includes the assumable and askable

knowledge, which, by indicating as askable, the agent may ask the user to provide.

Chapter 1. Introduction to System Restructuring 15

Therefore, “negation as failure” could be applied to the restructuring system. For

example, if there is no information about a component, it is assumed to be non

existent.

1.6 Objectives of the Research

Dynamic restructuring is a new research area, with many aspects to be studied, from

component sensing to final system integration. It is not possible to cover all the topics

in this thesis. The major objectives of the research are as follows:

• To study and develop a methodology of dynamic restructuring of a flexible produc

tion system;

• To formulate and represent the restructuring problem and associated knowledge,

and to obtain and abstract restructuring heuristics and rules on the basis of a fuzzy

measure of FPS performance;

• To develop an architecture and reasoning strategies for problem solving;

• To design a fuzzy decision making procedure for the optimization problem associ

ated with selecting proper actions in restructuring;

• To design and implement a simulation system for further research on this area, and

to use it for the simulation of a realistic FPS.

Although many other related topics are mentioned and briefly discussed in the thesis

for the sake of completeness of the design procedure, and also for providing a somewhat

complete view of solving the problem, they are not considered major objectives of the

research.

Chapter 1. Introduction to System Restructuring 16

1.7 Summary

This chapter introduced the problem of dynamic restructuring of an FPS; and discussed

the role it plays in a high level FPS automation system. The dynamic restructuring tech

nology is actually developed to meet the needs of system flexibility, minimum inventory,

and cost-effective operation.

Modularity, multitude working modes and mobility of components, together with the

highly developed local-network communication techniques, provide the feasibility of FPS

restructuring in a practical setting.

Restructuring problem is generally characterized as fuzzy, complex, non-analytic and

heuristic-oriented. These features require the use of knowledge-based techniques and

machine intelligence.

The remainder of the thesis is arranged as follows: Chapter 2 gives a theoretic frame

work for the problem solving method. Chapters 3 develops a blackboard architecture

for the restructuring problem, giving particular attention to the knowledge representa

tion and processing frameworks. Chapter 4 investigates the heuritics associated with

the problem. In Chapter 5, the use of fuzzy logic is treated as a suitable approach in

taking into account the incompleteness and non-analytic nature of the knowledge and

associated decision making. Chapter 6 discusses some implementation problems of the

approach and gives simulations of the application of the technique to an automated

fish processing plant. Chapter 7 provides some concluding remarks on the research and

proposes possible future work.

Chapter 2

A Theoretical Framework for Restructuring

In Chapter 1, the dynamic restructuring problem for a flexible production system (FPS)

is proposed as a reorganizing system that will enable near-optimal or uniform operation of

the FPS. This chapter will formulate the associated problem and discuss the methodology

to achieve the goal.

Section 2.1 introduces the representation of system configuration; and the attributes

of workcells and components. Section 2.2 formulates the restructuring problem. Then

a short literature review is given in Section 2.3. Section 2.4 discusses the possibility of

interpreting the problem of restructuring as conventional planning. Section 2.5 presents

a method of knowledge based restructuring, which includes both load sharing and com

ponent releasing. Section 2.6 concludes the chapter.

2.1 Flexible Production Systems

From the point of view of restructuring (see Figure 1.3), a flexible production system

(FPS) can be organized in a hierarchy that includes a system level, a workcell level and

a component level. Attributes related to restructuring in each level are discussed and

represented in this section.

2.1.1 FPS Configuration and Layout

Consider the multiple-workcell FPS that is schematically shown in Figure 2.1. The ith

workcell is denoted by W1 and its jth component is denoted by c. For simplicity of

17

Chapter 2. A Theoretical Framework for Restructuring 18

notation the subscript and superscript of this component notation is dropped in the

sequel, except when they are explicitly needed.

Figure 2.1: A Flexible Production System

Two attributes should be noted in the system level of an FPS: workcell configuration

and layout. Configuration of workcell W can be expressed by

CON = {cw} (2.1)

Suppose that the task demand of a particular workcell is Dw. The corresponding work-

loads L of the individual components of this workcell may be determined using a standard

task planning procedure, as expressed by the relationship

= L(Dw) (2.2)

Note that, if a component is shared between two workcells, whose status is denoted by

c’T4T, then the component is considered as a component in both workcells W and 14,.

Plant
Local Area
Network
(High Speed)

.

.

C(g,Cc,L,Ac)

Chapter 2. A Theoretical Framework for Restructuring 19

Geographic location of a workcell is also an important factor that affects restructur

ing. Usually, restructuring system favours in establishing component sharing between

workcells that are conveniently located with respect to each other. Two coordinates for

the position of workcell W on the workshop floor are denoted by Xw and Yw.

2.1.2 Workcell Activity Level

Suppose that the processing capacity of a workcell component c is C. Also, at a given

instant, suppose that the production level of a workcell is Pw and the activity level of

component c of this workcell is A. Then the following relations will hold:

If LC<C VcEW

then A (2.3)

If c W such that L> C

then AC<LC

and Pw <Dw (2.4)

Here, W denotes the set of components in a particular workcell.

2.1.3 Component Capacity

The processing capacity of the components is the resource of the system that will be

rearranged in restructuring in the FPS. Since components could be shared for carrying

out different tasks, capacities of the components of the same type should be standardized

so as to make the load transfer conveniently comparable. Using this standard component

representation, load planning in equation (2.2) can be represented by referring to the

standard component. As an example, a linear representation for load planning or capacity

Chapter 2. A Theoretical Framework for Restructuring 20

requirement planning is illustrated as below:

Consider the calculation of the capacity requirement for image processing in a cutting

workcell of a fish processing system. The workcell may consist of vision workstations,

robots and automated guided vehicles (AGV), in addition to other necessary equipment.

Given the cutting demand as x units/sec, in which the unit may be a processed item of

fish; and the standard capacity requirements for processing a unit task, which are called

planning factors, as follows:

standard vision: v sec/unit,

standard robot: r sec/unit,

standard AGV: a sec/unit,

we can calculate the capacity needed for the cutting process as:

standard vision: vx x 100%,

standard robot: rx x 100%,

standard AGV: ax x 100%.

For instance, if the speed of vision processing for a cutting task is 0.3 sec/unit, and

the processing rate demanded for cutting is 2 units/sec, then the vision capacity needed

(i.e. the load) is 60% of full capacity of a standard vision facility, say an IBMp0TM based

vision system with a SHARP GPB3TM image processing board. Different vision systems

may be expressed as a percentage referred to the IBM PCTM system as the baseline unit.

A SunSPARCTM station based vision system with Datacube MaxVideo 20TM image

processing system (which requires a host computer with VME Bus), could be faster,

and may be assigned a capacity factor 2, with respect to the baseline unit (IBMTM pc
based). Then the above vision requirement applied to a SunSPARCTM station based

system corresponds to a load of 60%/2, or 30%, a significantly low percentage of its

full capacity. In other words since the capacity of the more powerful vision system is

Chapter 2. A Theoretical Framework for Restructuring 21

double that of the baseline system, the load is halved for the same task, which should be

intuitively clear as well.

2.1.4 Component Workload Status

Next consider a group g of “similar” components which are shareable or interchangeable

within the group. The characteristics of a component c may be represented by the ordered

set [g, C, L, At], as shown in Figure 2.1. Here C L A are the capacity, workload and

activity level of component c respectively. Suppose that, at a given instant of workcell

operation, the workcell components are monitored and some are determined to operate

below capacity (under-capacity) while some others are overloaded. Then, the following

conditions hold:

If cegandL<Cthenceg (2.5)

If cEgandL>Cthenceg0 (2.6)

with

g A g = g and g0 A g = g0 (2.7)

where gu= subgroup which contains all components that operate below capacity (under-

capacity) within the component group g; g0= subgroup which contains all components

that are overloaded within g.

Note that, in general, g, Vg0 g because for some components within g, it is possible

that L = C = A. Also, even when L = C for a particular component, it is possible

that A < C for that component as a result of gross reduction of the production level F

of the workcell that contains the component, due to an overload in some other component

within the same workcell [12].

Chapter 2. A Theoretical Framework for Restructuring 22

2.2 Formulation of Restructuring Problem

The restructuring problem may be formulated as one of parameter optimization. For this

purpose, a performance index has to be defined.

2.2.1 Performance Index

The optimal restructuring problem may be expressed as

minimize J = J(,Q,A,J) (2.8)

subject to P(A)=D(j) VwEFPS (2.9)

where a is a vector of weighting parameters.

For example, a quadratic cost function could be used; thus

J = c(C
— A)2 (2.10)

with nonsymmetric weighting parameters such that

cz=a0ifL>C (2.11)

a=czifLC (2.12)

= 0 if L = 0 (2.13)

It should be noted that no activity (zero activity) is considered a desirable condition.

In other words, rather than having, say, two undercapacity components of the same type,

it is desirable to transfer the load of one component into the other and completely release

the first component. This is advantageous for reasons such as reduction in operating

costs and wear and tear. Furthermore, the component that is released of activity in this

Chapter 2. A Theoretical Framework for Restructuring 23

manner will be available for absorbing overloads from other similar components in the

FPS. It is clear that, zero-activity components do not contribute to the cost function

J, as expressed by equation (2.10). Accordingly, the optimization strategy inherently

favours the existence of zero-activity components.

2.2.2 Restructuring Requirements for Knowledge Based System

Due to the presence of fuzziness, as discussed in Chapter 1, the cost function given in

Section 2.2.1 provides only a guideline for restructuring and a rough evaluation of the re

structuring performance, but shouldn’t be considered as the entire goal of restructuring.

There are still many other factors that should be considered, such as, sharing penalty,

sharing feasibility, the geographical possibility of sharing, and so on. As an example,

sharing within a workcell is usually considered better than sharing between workcells.

Because of these reasons, in view of fuzziness of a restructuring goal, heuristics from

experienced operators could be considered as well in order to complete the requirements

for modeling a restructuring problem. This may provide an easy way to design restruc

turing strategies using past experience. In this context, some requirements that have to

be satisfied by a restructuring procedure may be stated.

These requirements are itemized below:

1. Overloads are not allowed. The load limitation of a component is its full (design)

capacity. A main purpose of a restructuring controller may be considered as the

elimination (or reduction) of overloads.

2. Reduce the operating cost of an FPS by releasing components which are greatly

under their full capacity. (For employees, hiring and firing may be considered in

this context). The judgement associated with problem is fuzzy in general. There

Chapter 2. A Theoretical Framework for Restructuring 24

might not exist a crisp standard to judge whether a component should be released.

Therefore, fuzzy decision making will be needed here.

3. Maintain the number of sharings (both load sharing and component sharing) as

low as possible, for the system reliability may weaken with increased activity of

sharing.

4. Selection of components for sharing or releasing cannot be done arbitrarily. Some

evaluation should be made in choosing an action for sharing or releasing.

5. Use any available past knowledge and experience, which may be helpful in improv

ing the knowledge base.

Thus, restructuring of components in a multiple-workcell FPS should not be carried

out using purely analytical optimization criteria alone. Certain factors or conditions

may favour some structures while objecting to some others. The factors that determine

the desirability of a particular structure of component sharing may be based on non-

analytical criteria such as what has been mentioned above. Under such conditions, a

knowledge-based approach to making the restructuring decisions would be desirable.

2.3 Literature Review on Background Material

In this section, we will present a literature survey of the background work of the present

research.

2.3.1 Dynamic Restructuring

Dynamic restructuring of flexible production system originated in the work of de Silva

(1992) [8]. It was proposed as an important concept of soft automation [9]. A framework

for the problem solving is presented in de Silva (1993b) [10]. Knowledge based system is

Chapter 2. A Theoretical Framework for Restructuring 25

developed in Cu an de Silva (1994a, b, c) [20, 21, 22] and in de Silva and Cu (1994) [12].

The problem solving architecture was established in Gu and de Silva (1994a) [20] and

the heuristics and conflict resolution method are developed in Cu and de Silva (1994b, c)

[21, 22]. An analytical framework is presented and a new evaluation method for actions,

using priority fuzzy sets, was introduced in de Silva and Gu (1994) [12]. Also, in that

paper, the concept of restructuring-feasibility index was formalized and utilized for the

optimization of restructuring.

2.3.2 Knowledge-Based Design of Flexible Systems

There are three major areas of research related to this work: 1. Integrated system design;

2. Decision support systems; 3. Expert control systems. Pertinent work in these three

areas is outlined in this section.

Computer Integrated Technology

The main research activities in production automation are concentrated in integrated

mechanical design; planning and scheduling of flexible production systems; and decision

support systems for plant design.

Leong et al. (1991) [30] described an integrated knowledge-based system for me

chanical design using a blackboard architecture. In solving a typical mechanical design

problem, they viewed the design process as being composed of a set of tasks that can be

progressively subdivided into a hierarchy of smaller tasks in the form of a tree structure,

(see Figure 2.2). These tasks are solved by a team of specialists using a distributed

problem-solving approach.

Two kinds of communication were proposed for the hierarchy; specifically, broad

casting using a blackboard, and message passing directly between two members in the

same team. In Figure 2.2, the detail mechanical design is composed of coupling design,

Chapter 2. A Theoretical Framework for Restructuring 26

Figure 2.2: An Integrated System for Mechanical Design

Chapter 2. A Theoretical Framework for Restructuring 27

shaft design, gear design, motor selection, bearing selection, etc. There are natural links

between these various knowledge sources. Leong et al designed a horizontal communica

tion structure for this system, which may be necessary but makes the entire blackboard

system not so modular and opportunistic reasoning.

The planning and scheduling system for a flexible manufacturing workcell (FMC),

described by Kovacs and Mezgar [29] is closer to the problem in the present research.

In Kovacs (1991) [29], designed FMC configurations, layouts and schedules are put into

modules of simulation and analysis for testing. System will return to carry out reconfig

uration if the design is not satisfactory. The design procedure is illustrated in Figure 2.3,

in which several modules have been identified. They are described below.

• Configuration module

Figure 2.3: A Reconfiguration and Scheduling System for an FMC

The cell configuration design has two separate steps, which can be carried out by

Chapter 2. A Theoretical Framework for Restructuring 28

iteration: the first step is to get a pre- or basic configuration which is an “average” of

several possible configurations, and the second step is the reconfiguration from this

average configuration according to the actual production tasks and manufacturing

situations.

Reconfiguration may be necessary in certain situations, for example,

— During normal operation, better adaptation to changing workloads can be

achieved by rearrangement of system elements, or regrouping of some of them.

— In the case of component failures, the operation has to be continued without

using the defective element, and with a minimal loss of production.

— New elements can be added to the system, and old elements can be discon

nected, for the purpose of system maintenance and upgrade.

Flexibility in design and operation can be guaranteed under these circumstances

through the capability of configuration and reconfiguration.

• Layout planning module

In this module the relative geographic positions of the manufacturing machines

within the workcell are specified, while the useful aspects of the material-handling

system are taken into consideration.

• Scheduling module

Once the configuration and the layout of the system are designed, the processing

time needed for each item that is produced will be known. Consequently, a task can

be scheduled. If the schedule is unsatisfactory, then modification to machines and

transportation procedure, layout changes and reconfiguration can be considered to

Chapter 2. A Theoretical Framework for Restructuring 29

improve the situation. The accepted schedule is forwarded to both the simulation

and the analysis modules.

Another configuration example is described by lizuka and Tsuji (1988) [23]. This is

an expert system for the design of a computer system configuration. It focuses on the

following two points: 1. Discussions on the effectiveness of Prolog for representation

of the interconnections between various pieces of equipment; for representation of the

system components; and for implementation of the functions of knowledge base retrieval,

and 2. System structure which emphasizes on improved maintenance of expert system.

The paper gives a good example of using Prolog to represent knowledge, especially that

of interrelationship between components, and also describes the implementation of an

inferencing mechanism.

Decision support system

Decision making is traditionally supported by operations research techniques. Its ba

sic purpose is to predict future events and choose an optimal one according to some

performance index and constraints.

The knowledge to support a decision, based on real-time data, must be able to provide

answers to the following questions [3]:

• “What happens?”: Ability to analyse a situation and identify advantageous and

problematic aspects.

• “What can happen?”: Ability to reason on the evolution of the system. It might

be possible to identify the possible descriptive patterns of the situation in future

times.

Chapter 2. A Theoretical Framework for Restructuring 30

• “What should be done?”: Ability to reason on the control actions most convenient

for improving the system operation.

Fayyad and Kass (1991) [17] described a part of the PAVE (Plant Assembly Verifica

tion Environment). PAVE is intended to support industrial engineers during the design

process and help manage the complexity of the problems which they encounter.

Expert control system

Usually a decision making system is an open loop system. Given a situation and a

task, it makes a decision. In a feedback control system, the system situation is up

dated automatically and a control decision is made periodically. Due to system delays

(inertia delay and pure delay), these decisions will interact with each other and cause

the system behave as a dynamic system response. Many authors have discussed expert

control. Some emphasize on the representation of system situation, such as system er

ror characteristics[48],and fuzzy representation of system error [6]. Some emphasize on

system structure and parameter knowledge, such as self-tuning expert system [1]. Some

others emphasize on control policy, such as, robust control, wait and see control etc.[34].

Information feedback is useful in any type of control system.

Although dynamic restructuring is a new technique in automation, its development is

more or less related to the above mentioned areas. Its application domain is associated

with flexible production systems; and its technology is based on knowledge engineering

which incorporates decision making techniques and information feedback.

2.4 Restructuring as Planning

A naive method of restructuring is to represent it as a simple planning procedure [18, 38]

of restructuring actions. Basically, the central activity of restructuring planning will

Chapter 2. A Theoretical Framework for Restructuring 31

require the following:

• An initial world (here the term “world” is used to denote a certain FPS situation)

in which overloads may exist;

• A restructuring goal (fuzzy) that typically states “There should be no component

overloads and components should operate near their design capacity,with minimal

cost and near the specified production demand “; and

• A set of actions which includes establishing or terminating a load sharing process

and releasing of an undercapacity component, or moving of a component from one

workcell to another.

The planning problem then is to find a sequence of actions which can transfer an initial

world into one in which the desired goal has been achieved [38]. Every action changes the

world to some extent, and eventually, by completing the entire set of actions, the system

will reach the final world, in which no component overloads or capacity shortages would

exist. If such a final world does not exist after all the actions have been tried, then the

restructuring planning would have failed.

2.4.1 State Space Method

One popular method of representing planning knowledge is the state space representation.

The concept is illustrated in Figure 2.4. In a state space, each node represents a list of

properties of a world; in short, every node is a certain world. An arc corresponds to an

action which changes the status of a world. Each action provides a complete specification

of how to obtain the new world from the world where this action was originated; for

example,

move(robotl, f’rom(canning), to(cutting)) : worldl = world2

Chapter 2. A Theoretical Framework for Restructuring 32

where, worldl and world2 are expressed as,

worldl:

world2:

holds(robotl, position, canning, worldl);

(other properties)

holds(robotl, position, cutting, world2);

(other properties)

Initial world

I

.
World.1.i • World.1.k

Figure 2.4: The State-Space Representation of Planning

The predicate move(robotl, frorn(canning), to(cutting)) corresponds to an action

which moves robot 1 from the canning workcell to the cutting workcell. Assuming that

the effect of this action is only to change the position of robotl, then the new world de

noted by world2 will keep all properties of worldl except for the position of robotl. The

properties are represented by the predicate hold(O, F, V, World) which has the intended

interpretation that object 0 holds the property P at value V in world World.

Action,1 Action.n

•
•
•

Chapter 2. A Theoretical Framework for Restructuring 33

Reasoning through a state space is simple. A search can be made starting from the

initial world to a final world in which desired goal is true. A plan is just the list of actions

on the path that reaches the final world (desired goal).

The major problem with the state space representation is that everything about the

world must be explicitly listed, which will require a long list of properties. Even more

serious, in the fact that, every effect of an action must be anticipated and explicitly listed,

in this approach.

Suppose that we have m groups of components which could be rearranged in an FPS,

and that each group has the same number (m) components. Then the total number of

sharing or releasing pairs of components is given by n.C = n.m(m — 1)/2. The number

of graph nodes (ignoring other restructuring actions such as moving a component) is

given by [m . m(m — 1)/2J” approximately, where d is the number of stages of action in a

plan.

Consider a small system with n = 3 (e.g., robot, vision unit, AGV), m = 5 (i.e., 5

components in each group), and d = 10 (i.e., 10 actions in a plan), the size (in number of

nodes) of the search space for breadth first or A* search is of the order of [n.m(m_1)/2]d =

(3x5x4)lo
= 6 x iO’. It is therefore almost impossible to explicitly list all the situations

and effects of actions in a graph of this size.

2.4.2 Action Calculus

Now consider reformulating the problem in order to deal with the complexity of the state

space representation for planning. We represent the world in the form of either mit (the

initial world) or do(A, W’); which means a new world that is derived by applying the

action A on world W’. This is called action calculus.

Therefore, the planning problem is to find a world W in which the desired goal is

satisfied. A typical goal for the restructuring problem may be represented as,

Chapter 2. A Theoretical Framework for Restructuring 34

7- {holds(visionl, work_load, 100%, W);

(for all components),

{holds(robot5, work_load, 100%, W);

where all the component loads are required to be at 100% of its full capacity.

Two kinds of knowledge are required in the reasoning process that achieves the goal:

the specifications of the initial world and the effects of all actions on various worlds. A

complete specification of each action will, in general, require at least one axiom or pos

tulate for each relation of the domain (i.e., each property). There are nm components

in the FPS, and suppose that each component has the six properties (group, position,

work_for, capacity, worlcioad, shareability). Hence the total number of domain rela

tions is 6n•m. The number of actions may be estimated as n.m(m — 1)/2. Accordingly,

we will need at least 6nm . nm(m — 1)/2 axioms, because all the relations have to be

stated for each action. Clearly, it is a difficult job to specify all these axioms, but it is

better than the state space method, where it is required to specify everything (state and

action) for every world.

Goal regression[38] may be employed as the reasoning procedure for system restruc

turing. In an actual situation, each action affects only a very small part of the world.

Much of the world will remain unchanged, which means most of the axioms will just state

that the properties in the new world are the same as those of the old world [39]. In this

thesis, a blackboard-based planning method will be developed to cope with the practi

cal problems associated with an extensive action space. It avoids the problem of large

dimensionality by assuming that if a property is not changed by an action, it remains

unchanged in the new world. In this manner, we will need only to specify the effects of

Chapter 2. A Theoretical Framework for Restructuring 35

the actions. Heuristics play a very important role in that method.

2.5 Knowledge-Based Restructuring

One may observe that the goal represented for planning the restructuring process, as

given in the last section, is somewhat artificial. The problem is that the actual goal

is fuzzy, and it cannot be represented by a crisp description of component loads, for

example, 90% of full capacity. Furthermore, expertise and past experience should be

used to decide the search direction rather than employing a non-heuristic search. A more

realistic framework for knowledge-based restructuring is developed in this section.

Consider a group g of shareable or interchangeable components which are associated

with a set of workcells in a flexible production system (FPS). Each workcell in this

set has an associated set of components E g. Then the knowledge-based restructuring

process may be expressed as

g(w*(c*))=R(g)®g(w(c)) Vge FPS (2.14)

Here R(g) may be interpreted as a knowledge system which evaluates the present as

sociation of components with workcells , within a group g and then modifies these

associations appropriately so as to reduce component overloading, according to some per

formance criterion. The resulting new association of components within g, now with a

set of modified workcells , is denoted by g(*(ç*)). Note that the flexible production

system is said to be restructured when the configuration of the workcells changes due

to such a modified association of components. The decision making process given by

equation (2.14) has to be executed for all groups of component within the FPS.

Basically, the changes in the association of components constitute two types of ac

tions: A component joining a workcell, or a component leaving a workcell, which will be

discussed in detail in the remainder of this section.

Chapter 2. A Theoretical Framework for Restructuring 36

2.5.1 Workload Sharing

Again, consider a group of shareable or interchangeable component g with m overloaded

components represented by the subgroup g0 and r undercapacity components represented

by the subgroup g.

In knowledge based restructuring, each overloaded component (OC) has to be matched

with an appropriate undercapacity component (UC) for load sharing. This may be ac

complished using the rulebase given in Figure 2.5. Note that a rule represented here has

the format:

IF situation THEN action WITH bf

The situation is the current status (or context) of the components, which could be

represented by a fuzzy descriptor. Therefore, the context of situation could be represented

in a Cartesian product space with dimensions equal in number to the context levels of

components. The action is a crisp action set, where each composed proposition in the

situation context may lead to one or more actions. Each implication from a situation to

an action is assigned a belief value bf, which is a representation of the corresponding to

human confidence on the particular rule.

A rulebase is a mapping from a situation space S to an action space A.

(2.15)

In particular, R(a) represents a sub-rulebase of R associated to a specific action a.

Consider the rule base given in Figure 2.5 for component matching with the objective

of load sharing. The states that a component may take are given by the set {no activity,

undercapacity, balanced, overloaded}. Even though, the condition of “no activity” (na)

may be treated as a special case of “highly undercapacity” (hu), it is desirable to define

a separate state for this condition, for example, as in the rulebase given in Figure 2.5, for

Chapter 2. A Theoretical Framework for Restructuring 37

reasons that should be clear later, in the context of component releasing. In particular,

the state of na is far more desirable than that of hu. A balanced state is said to exist

in a component when its activity is equal to its capacity (i.e., A = Ce). This is the

optimal state of component operation. The membership functions of the fuzzy resolution

levels for the two context variables OC and UC should be known in using fuzzy logic to

represent and process [7] the knowledge base given in Figure 2.5.

Context Levels
Overloaded Component Undercapacity Component

OC UC

No activity na
Highly overloaded ho Highly undercapacity hu

Moderately overloaded mo Moderately undercapacity mu
Lightly overloaded lo Lightly undercapacity lu

If OC is ho and UC is na then sharing(OC, UC) with bf 1.0.
If OC is ho and UC is hu then sharing(OC, UC) with bf = 1.0.
If OC is ho and UC is mu then sharing(OC, TiC) with bf = 0.8.
If OC is ho and UC is lu then sharing(OC, UC) with bf = 0.6.
If OC is mo and UC is na then sharing(OC, UC) with bf = 0.8.
If OC is mo and UC is hu then sharing(OC, UC) with bf = 0.8.
If OC is mo and UC is mu then sharing(OC, UC) with bf = 0.6.
If OC is mo and UC is lu then sharing(OC, UC) with bf = 0.6.
If OC is lo and UC is na then sharing(OC, UC) with bf = 0.4.
If OC is lo and UC is hu then sharing(OC, TiC) with bf = 0.4.
If OC is lo and UC is mu then sharing(OC, UC) with bf = 0.6.
If OC is to and UC is lu then sharing(OC, UC) with bf = 0.6.

Figure 2.5: The Rulebase of Component Matching for Load Sharing

In evaluating the load sharing decisions, the factors considered in the rulebase of

Chapter 2. A Theoretical Framework for Restructuring 38

Figure 2.5 are the level of overload L — A of the overloaded components and the level

of undercapacity C — A of the undercapacity components. This information is “crisp”

as obtained from sensory data of the workcell components, and has to be fuzzified using

the corresponding membership functions.

A reasoning procedure [22] using the techniques of fuzzy associative memory (FAM)

[27] is designed in prioritizing an action by considering the membership grade values

of the situations as well as the belief values of the fuzzy logic rules. The procedure is

illustrated in Figure 2.6.

Situation
Space

Figure 2.6: The Fuzzy Associative Memory

The priority value of an action is then expressed by:

PV(a) = fam(R(a))IOC, UC. (2.16)

It follows that, the priority value PV of an action a is a function of a sub-rulebase R(a)

associated with action a under the condition of the fuzzy status of OC and UC of two

sharable components.

Apart from the priority as evaluated from the overload level Loc — Ao and the

undercapacity level Cuc — Au along with the rule beliefs, the feasibility of load sharing

should also be considered. The feasibility may be expressed as a matrix; thus

F = (2.17)

Chapter 2. A Theoretical Framework for Restructuring 39

The priority value for a matching pair of components being considered for load shar

ing, has to be multiplied by the corresponding feasibility index as given by equation

(2.17) in order to arrive at a total assessment of the load sharing decision. The feasibility

values have to be suitably updated following each decision of load sharing.

Finally, the action with the highest assessment value based on the current system

situation will be selected as the correct decision for restructuring purpose.

2.5.2 Component Releasing

As noted before, an undercapacity component may be released by transferring its load

to another undercapacity component of the same type to save operation cost. But, an

undercapacity component need not be released in every load transfer process between

two undercapacity components. For example, a lightly undercapacity (lu) component

might be converted into either a moderately undercapacity (mu) component or a highly

undercapacity (hu) component in this cycle, and would be ready for sharing with an

overloaded component (regardless of whether ho, mo, or lo) in the next planning cycle

of restructuring.

The rule-based approach to load transfer between two undercapacity components

is somewhat similar to that between an overloaded component and an undercapacity

component. But the rulebase that is used would be quite different from what is given in

Figure 2.5. Consider an undercapacity component (UR) that is expected to be released

of its load and a second undercapacity component (UL) that is expected to receive the

load of the first component. An appropriate rulebase for determining the priority of

component releasing actions is given in Figure 2.7.

It should be noted that the no-activity components should not be involved here, since

it will not benefit the system operation. Specifically, an inverse action in a subsequent

step could make the decision system cycle in an endless loop.

Chapter 2. A Theoretical Framework for Restructuring 40

Context Levels
Releasing Loading

Undercapacity Component Undercapacity Component
UR UL

Highly undercapacity hu Highly undercapacity hu
Moderately undercapacity mu Moderately undercapacity mu

Lightly undercapacity lu Lightly undercapacity lu

If UR is hu and UL is hu then releasirig(UR, UL) with bf = 1.0.
If UR is hu and UL is mu then releasing(UR, UL) with bf = 0.8.
If UR is hu and UL is lu then releasing(UR, UL) with bf 0.6.
If UR is mu and UL is hu then releasing(UR, UL) with bf = 0.6.
If UR is mu and UL is mu then releasirig(UR, UL) with bf = 0.4.
If UR is mu and UL is lu then releasing(UR, UL) with bf = 0.4.
If UR is lu and UL is hu then ‘releasing(UR, UL) with bf 0.4.
If UR is lu and UL is mu then ‘releasing(UR, UL) with bf = 0.4.
If UR is lu and UL is lu then ‘releasimg(UR, UL) with bf = 0.4.

Figure 2.7: The Rulebase of Component Matching for Component Releasing

Chapter 2. A Theoretical Framework for Restructuring 41

Here too, a feasibility matrix of load transfer is used, and the application of the

fuzzy-associative memory (FAM) reasoning procedure would be given by a counterpart

of equation (2.16), as

PV(a) = fam(R(a))IUR, UL (2.18)

In the same manner as for load sharing, the decision maker in this case picks an action

with the highest assessment value.

2.6 Summary

This chapter presented a theoretical framework for restructuring a flexible production

system (FPS). Basic properties of an FPS were discussed first. In particular, the status

of a component is determined by the load (or capacity requirement) which is given by

the load planner based on task demands, and the available capacity of the component.

Usually, the component status is represented by a fuzzy descriptor, Next the restructuring

problem was formulated. The restructuring performance index, or the goal, was studied.

A quadratic cost function could be used for evaluating the restructuring results, but

for knowledge based system design, expertise and past experience would be much more

helpful, in order to cope with the fuzzy performance requirements.

A brief literature review was given. Since the dynamic restructuring is a new research

area, some related work was also presented.

The basic idea of restructuring is the planning of actions. Due to the complexity

and fuzziness of the system, conventional planning methods do not apply in general.

Heuristic-based restructuring was suggested and presented. However, in a practical de

sign, the knowledge required to complete a restructuring process is complex and found

in various forms. Knowledge representation and reasoning will be the main topics that

Ch.apter 2. A Theoretical Framework for Restructuring 42

will be addressed in the following three chapters.

Chapter 3

Problem Solving Architecture

The concept and a theoretic framework of dynamic restructuring have been discussed in

chapters 1 and 2. In this chapter, a problem solving architecture will be introduced and

applied to the dynamic restructuring problem.

In Section 3.1, the complexity and variety of knowledge sources required for FPS

restructuring are discussed. A hierarchy is considered to organize knowledge of different

levels of complexity and resolution. Knowledge sources which may be represented in a

variety of forms and in need of different reasoning strategies, will be organized in an

open architecture,using a blackboard model. Section 3.2 presents the architecture of

the blackboard model. In Section 3.3, the restructuring system is organized into the

blackboard structure. Some specific knowledge sources are discussed in Section 3.4.Some

concluding remarks are made in Section 3.5 of the chapter.

3.1 Knowledge Organization

Knowledge associated with restructuring of a flexible production system (FPS) deals

with various aspects and may be treated at different levels. In particular, the following

knowledge sources are needed:

• Knowledge about load planning, which determines the component loads correspond

ing to a given task demand. The component capacity requirements will be deter

mined according to appropriate relations between the task demands and component

43

Chapter 3. Problem Solving Architecture 44

loads.

• The operating data about the FPS which is an important source of information for

decision making. Specifically the following information should be updated:

— component type and capacity;

— component shareability;

— information associated with load sharing feasibility, such as the FPS layout;

— current component load, and the component associations with workcells.

• Knowledge needed for information pre-processing. This knowledge is needed to

evaluate the FPS data and determine values for component status and sharing

feasibility index, for the the decision making associated with system restructuring.

Component status is evaluated by comparing the required load and the available

capacity of a component. Also the updating of the index of sharing feasibility is

usually a knowledge-based process.

• Knowledge about the restructuring decision itself. This will include heuristics in

different levels of detail and resolution. Detailed selection of sharing pairs of or

releasing pairs of components should not be made before deciding whether a sharing

or releasing action is actually needed. The decision as a whole should be made after

the current FPS situation has been correctly recognized. In general, in view of the

complexity and variety of knowledge sources and due to the presence of different

levels of knowledge, a well organized structure would be strongly recommended.

3.1.1 Organization of Knowledge in a Hierarchy

In the restructuring system, knowledge of different levels is organized in a hierarchy as
shown in Figure 3.1.

Chapter 3. Problem Solving Architecture 45

Should there be
Level 1 a restructuring

Level 2 How to restructure

Selecting an optimal
Level 3 restructuring action

Figure 3.1: The Hierarchy for Organization of the Restructuring Knowledge

Level 1 decides whether there should be a restructuring action. The FPS situation,

which could be changed by the restructuring actions, should be updated and recognized

before a decision is made.

Level 2 decides how to restructure the system. Some general heuristics about load

sharing, component releasing, and some other restructuring actions are vital in restruc

turing planning, since the search space is extensive by large. Without the heuristics,

it may not be practical to find a solution. Particularly, in a data driven system, such

as an FPS restructuring system, search space could be narrowed by using heuristics for

optimization.

Level 3, which is the lowest level in a restructuring system, deals with more precise

information. A more accurate method can be used to decide the optimal restructuring

action under the guidance of level 2. It is still a fuzzy decision procedure, however, since

the restructuring system as a whole is a high level one in an automation system of the

type shown in Figure 1.3. Level 1 is developed in this chapter. Level 2 and Level 3 will

be discussed in more detail in the next two chapters.

Chapter 3. Problem Solving Architecture 46

3.1.2 Organization of Different Types of Knowledge Sources

Since the level 1 uses different knowledge sources for deciding whether to carry out a

restructuring action, it may be organized into a blackboard [16, 25] architecture. This

architecture consists of a global (shared) data region called blackboard (BB), several

knowledge sources (KS) or intelligent modules that interact with this data region, and

a control unit. The knowledge sources are not arranged in a hierarchical manner and

will cooperate as equal partners (specialists) in making a knowledge-based decision. The

knowledge sources interact with the shared data region under the supervision of the

control unit. When the data in the blackboard changes, which corresponds to a change

in context, the knowledge sources would be triggered by that in an opportunistic manner

and an appropriate decision would be made. That could result in further changes to the

blackboard data and subsequent triggering of other knowledge sources. Note that the

data may be changed by external means (for example, through a user interface) as well

as due to knowledge-sources actions.

The decision making process of the restructuring problem that was presented in the

previous sections is essentially an opportunistic one where an appropriate knowledge

source would be acting at a given time in carrying out the most appropriate action (e.g.,

information updating, load planning, restructuring decision making). It follows that a

blackboard model would be suitable for the implementation of the associated knowledge

based system. Furthermore, the following charcteristics of this level of decision making

should be noted:

• The knowledge sources may take different forms. They may include rule based de

cision making; planning procedures; information processing; or even look-up-table

updating. In a blackboard architecture, the knowledge sources can be implemented

as independent modules, so as to employ different reasoning strategies.

Chapter 3. Problem Solving Architecture 47

• The practical control mechanism of this level can be quite complex. For example,

after the system makes a sharing decision, the control may continue with another

decision if an overload remains; or may determine component loads if task demands

changed; or may establish the system activity level if some components become dis

abled. The blackboard architecture provides a mechanism of opportunistic control,

which can carry out such steps in the present application.

• The FPS information should be accessible by every knowledge source, in which

the integrated data of the overall operation of the FPS is needed for the reasoning

process. Such data may be posted on a blackboard which would be visible to all

knowledge sources.

3.2 Blackboard Model

Blackboard model is known as a powerful achitecture for constructing knowledge based

systems. As a model, blackboard system is basically modular, and employs opportunisti

cally reasoning. As a result, it provides the dexterity and flexibility to deal with diverse

kinds of knowledge, and different inferencing mechanisms. Based on this model (or con

cept), one can establish a customized blackboard framework, although there are some

common and general consideration. In order to understand the various blackboard struc

tures, it is helpful to trace the intellectual history of blackboard concepts.

3.2.1 Blackboard System History

“Blackboard” as a technical term used in the AT literature first appeared in Newell (1962)

[33]. Newell concerned with the organizational problems of programs that existed at the

time. He tried to organize subroutines independently and in a hierarchical manner.

Even though this organization had many advantages, it also had difficulties: First, it was

Chapter 3. Problem Solving Architecture 48

found difficult to communicate between subroutines; Second, the ordered subroutine calls

fostered the need for doing things sequentially; Third, the total program was organized

to do only one thing at a time. For these difficulties, it was noted [33] that they “might

be alleviated by maintaining the isolation of routines, but allowing all the subroutines

to make use of a common data structure”. This should be the rudimentary idea of a

blackboard system.

The first real blackboard system is known to be Hearsay project [16] which was

designed and implemented for speech understanding. This blackboard structure was

proposed by H. Simon (1977) [41]. Before that, Simon published a paper [16] in which

he mentioned the term “blackboard” in a slightly different context from Newell. There

his focus was on the problem-solving method: In the typical organization of a problem-

solving program, the solution effort is guided and controlled by goals and subgoals [41].

Together with Newell’s common data structure, we can visualize a prototype framework

for a blackboard system; which consists of a common data structure and employs hier

archical problem solving.

In the design of Hearsay [16], such system characteristics as hierarchically organized

data levels and opportunistic reasoning, which we now accept as integral parts of a

blackboard system, were derived from needs and constraints that were different from

those of Newell and Simon. (Accordingly, the structure of a blackboard system may be

modified slightly in order to meet different needs and constraints).

Presently, BB techniques are widely used for problem solving [25, 35, 36] and will be

increasingly popular in the future because of their attractive characteristics.

3.2.2 Blackboard System Structure

Now we consider the structure of a blackboard system at the model level. The blackboard

model is a conceptual, high-level organization of information and knowledge which are

Chapter 3. Problem Solving Architecture 49

needed to solve a problem. It is a general prescription for dynamic control of a system, and

for the use of knowledge for incremental, opportunistic problem solving. Organizationally,

the blackboard model consists of three components.

The knowledge sources (KS). The knowledge needed to solve the problem is

partitioned into knowledge sources, which are kept separate and independent.

The blackboard data structure. The data on the system state which are needed

for problem-solving (represented as objects in the solution space) are kept in a global

data store known as the blackboard. Knowledge sources can activate changes in the

blackboard, which will lead incrementally to a solution to the problem. Communication

and interaction among the knowledge sources take place solely through the blackboard.

Controller. What knowledge source should be applied, when, and to what part of

the blackboard, are problems handled by the blackboard controller.

The reasoning process associated with a blackboard has the following characteristics:

The solution to a problem is progressed one step at a time. At each control cycle any

type of reasoning step (data driven, goal driven, forward chaining, backward chaining,

etc.) can be used. The selection and the application of knowledge sources are dynamic

and opportunistic rather than fixed and preprogrammed.

The data objects on the blackboard are organized into hierarchical levels. Different

data associated with different concepts can be made distinct and organized. Kowledge

sources can be made to span two levels, with the information on one level serving as

input and the information on another level as the output. Such a system is illustrated in

Figure 3.2.

The control unit also gets information from the knowledge source (KSs), because

a KS consists of not only the domain knowledge (for problem-solving), but also the

knowledge of using that knowledge.

Therefore, a blackboard system is quite suitable for handling restructuring problems

Chapter 3. Problem Solving Architecture 50

Figure 3.2: A Model of a Blackboard System

as in the present research, as it has some beneficial characteristics for handling systems

of: 1. large solution spaces; 2. noisy and unreliable data; 3. a variety of input data and

a need to integrate diverse information; 4. many independent pieces of knowledge which

should cooperate in forming a solution; 5. need to use multiple reasoning methods; 6.

need of an evolutionary solution. These are considered as characteristics of the dynamic

restructuring system.

3.2.3 Characteristics of a Blackboard

• Complexity Management. A common technique for dealing with complexity

in a system is to divide the system into subsystems and make the relationship be

tween subsystems lessextensive, and implement the interaction between subsystems

through a higher level system.

Chapter 3. Problem Solving Architecture 51

In blackboard systems, a problem is decomposed so as to maximize the indepen
dence of the subsystems (KSs). Specificaaly no direct interaction between KSs is
allowed, and all interaction should take place through the blackboard. But we
should note that a KS may interact with more than one blackboard. It can get
the problem from a domain blackboard, and communicate theoutput to another
blackboard.

• Easy problem formulation. In a blackboard structure, both the problem and
the knowledge are partitioned, which makes the problem formation relatively easy.

Knowledge representation is separated into two parts: domain knowledge, and the
knowledge of using the domain knowledge. (how, when, or where it is to be used).
We can view a KS as a big rule,with the knowledge of using the knowledge as the
condition part and the domain knowledge as the action part of the rule.

• Flexible reasoning strategy. Ill-structured problems are characterized by poorly
defined goals and an absence of a predetermined decision path from the initial state
to a goal. For example, in a dynamic restructuring problem, given a task, we do
not have a clear goal that represents the workcell configuration for performing the
task. For example, two components of the same type could be interchanged without
affecting the system performance. The opportunistic problem-solving approach in
a blackboard system provides the capability to deal with unpredicted or unenumer
ated events.

In next section, the restructuring problem will be formulated in a blackboard archi
tecture for the first level decision making.

Chapter 3. Problem Solving Architecture 52

3.3 Problem Formulation in a Blackboard Architecture

The blackboard architecture that is used in the implementation of the FPS restructur

ing system is illustrated in Figure 3.3. There are seven knowledge sources (KS) which

represent the problem solving knowledge and four blackboards representing system in

formation which can be accessed by the knowledge sources. A control unit supervises

the system and activates a triggered KS according to its priority. There may be data

changes in the blackboard in executing of a KS. Such a change may trigger other KSs,

which may lead to more execution of KSs. The procedure will end once the data in the

blackboard satisfy the restructuring goal.

User KNOWLEDGE
SOURCES

Figure 3.3: The Blackboard Structure of the Restructuring System

Chapter 3. Problem Solving Architecture 53

3.3.1 Knowledge Sources

Knowledge is organized into seven modules with information encapsulated, except the

data from the blackboard. The modules are independent knowledge sources, each being

responsible for solving a particular problem. In particular, the KSs are:

• a user interface for interaction between man and machine;

• a load planning system;

• an FPS information updating system;

• a component status evaluating system;

• an updating procedure for load transfer feasibility;

• a restructuring decision maker; and

• an output module.

The functions of these knowledge sources will be discussed in the next section.

The KSs are represented by a frame structure as follows:

KS:

trigger-status;

priority;

input-blackboards;

function-procedure.

Here, “trigger-status” which has values “O and “off”, indicates whether the KS

could be activated. The “priority” value resolves conflicts if more than one KS is trig

gered. The priority value is not given arbitarily, but according to the problem solving

mechanism. For example, if both the KSs of “status evaluation” and “restructuring” are

Chapter 3. Problem Solving Architecture 54

triggered, the priority should be given to “status evaluation” for it should be executed

before restructuring. This is the case because restructuring module should make deci

sions based on current status of the components which is evaluated by the KS “status

evaluation”.

The “input-blackboards” provide information that could cause the triggering of the

KS “status evaluation” through the data change in one or more of these blackboards.

Hence, KS triggering could be done automatically when a blackboard is modified. The

“function procedure” is actually the action part of the KS. It is designed with encapsu

lated information so as to avoid parameter passing when it is called.

In the KS frame, each entity represents a property of a KS. From the point of view

of object-oriented design, this structure defines a template or “schema” of which a KS

is an instance. In logic representation (for Prolog), a predicate is designed for the KS

implementation: ks(K, F, V) which is intended to mean that the KS K has the property

(attribute) P at the value of V. The template is then represented by

ks(KS, trigger_status, T).

ks(KS,priority, R).

ks(KS, input_blackboard, B1).

ks(KS, input_blackboard, Ba).

ks(KS, function procedure, F).

where, KS is the name of the knowledge source, T is the value of the trigger-status (either

“on” or “off”); R is the number of the priority value; and B1, ..., B are the input-

blackboards of this KS. (The advantage having separated clauses of input blackboards

should be clear in the later design of automatic triggering.) F is the functional procedure

of the KS to be called when the knowledge source KS is activated.

Chapter 3. Problem Solving Architecture 55

There are three methods of data operation related to this template: “trigger_KS”,

“remove_trigger” and “execute_KS”, which could be designed as member functions in an

object-oriented system. Their Prolog clauses are as follows:

triggerKS(KS) —

retract(ks(KS, trigger_status, off)),

assert(ks(KS, trigger_status, on)).

removetrigger(KS) €—

retract(ks(KS, trigger_status, on)),

assert(ks(KS, trigger_status, off)).

executeXS(KS) —

ks(KS, function_procedure, F),

call(F).

where trigger_KS(KS) triggers the knowledge source KS on; remove_trigger(KS) is

the inverse action of trigger_status; and execute_KS(KS) executes the functional part

of the knowledge source KS.

The particular knowledge sources in Figure 3.3 can be represented using the KS

template as follows:

1. User interface

ks(user, trigger_status, off).

ks(user, priority, 6).

ks(user, body, user).

where the user is the entry of this KS.

Chapter 3. Problem Solving Architecture 56

2. Updating of FPS information.

ks(fps, trigger_status, off).

ks(fps,priority, 5).

ks(fps, body, fps).

where fps is the entry predicate.

3. Load planner.

ks (load.4istributing, input, demand).

ks (load_distributing, trigger.status , off).

ks(load_distributing, priority, 4).

ks(load_distributing, body, load_distributing).

where load_distributing is the entry predicate.

4. Evaluation of the component status.

ks(set_status, input, workload).

ks(set_status, input, capacity).

ks(set_status, trigger_status, off).

ks(set_status, priority, 3.5).

ks(set_status, body, update_workstatus).

where update_workstatus is the entry predicate.

5. Updating of feasibility.

Chapter 3. Problem Solving Architecture 57

ks(feasibility, input, sharability).

ks(feasibility, input,position).

ks (feasibility, trigger .status , off).

ks(feasibility, priority, 3).

ks(feasibility, body, update_feasibility).

where update_feasibility is the entry predicate.

6. Restructuring.

ks(restructuring, input, position).

ks(restructuring, input, work_for).

ks(restructuring, input, workstatus).

ks(restructuring, input, feasibility).

ks (restructuring, trigger_status, off).

ks(restructuring, priority, 2).

ks(restructuring, body, restructuring).

where restructuring is the entry predicate.

7. Output.

ks(output, input, plan).

ks(output, trigger_status, off).

ks(output, priority, 1).

ks(output, body, output).

where output is the entry predicate.

It is worth noting that this representation simply gives descriptive knowledge about

a KS. The restructuring procedure which will be implemented in the control unit is

Chapter 3. Problem Solving Architecture 58

separated. Without doubt, knowledge sources themselves could also adopt a blackboard

structure.

3.3.2 Blackboard

Common data including workcell level information and component level information are

located in the blackboard (BB), and represented by objects of workcells and components

using simple frames. The structure of a component frame is shown below:

component:

group;

position;

work-for;

workload;

capacity;

workstatus.

shareability

and a workcell frame has the following structure:

workcell:

task-type;

production-demand;

layout.

Similar to the representation of knowledge sources, the predicates component(C, F, V)

and workcefl(W, F, V) are defined for the representation of information of a component

and a workcell respectively. Here, comporient(C, F, V) means that the component C

holds the property P at the value V, and workceU(W, F, V) has the same interpretation

except W representing a workcell rather than a component. Consequently, the component

template is given by:

Chapter 3. Problem Solving Architecture 59

component(C, group, G)

component(C, position, W)

component(C, work for, WF)

component(C, workload, WL)

component(C, capacity, Cc)

component(C, workstatus, S)

component(C, shareability, N)

where C denotes a component, C is the name of a component group, say, vision, robot,

AGV etc; W indicates the workcell in which the component C is located; WF is a list of

workcells for which the component C works, and WF has the form [Wi, W2,• , Wn];

WL is a list of workloads corresponding to WF, say [30, 20,•• , 40], in which load 30

(30% of the full capacity of a standard component of the group C) is assigned to workcell

Wi, and load 20 is assigned to W2 and so on; Cc is the capacity of the component C

as a percentage with reference to a standard component; S which is a fuzzy variable,

represents the load status of component C; and N which is a real number in the interval

[0, 1] represents the shareability index of the component. For example,

component(robotl, group, robot).

component(robotl, position, cutting_cell).

cornponent(robotl, work_for, [cutting_cell]).

component(robotl, workload, [80]).

component(robotl, capacity, 100).

component(robotl, work.status, [(mu, 0.4), (lu, 0.6)]).

component(robotl, shareability, 0.9).

Chapter 3. Problem Solving Architecture 60

Note that the same property of all objects is put in a specific sub-blackboard. For

example, a sub-blackboard of capacity contains the capacity information of every compo

nent of the system. (See Figure 3.4). The KSs are sensitive to the properties of objects.

Capacity Blackboard

component(visionl, opacity, 100%).

component(robot2, opacity, 200%).

...

componert(robot3, cpacity, 100%).

component(agv5, cpacity, 50%).

Figure 3.4: A Sub-Blackboard Representing Component Capacity

Actually, they are designed to handle object properties, rather than individual objects.

The template of workcell representation is given by:

workcell(W, task_type, T).

workcell(W, demand, D).

workcell(W, layout, (X, Y)).

where W is a workcell; T is the task type that workcell W can process; D is the task

demand; and (X, Y) pair describes its geographic position on the workshop floor. An

instance is:

warkcell(cuttin_cell, task_type, cutting).

workcell(cuttin_cell, demand, 2item/s).

warkcell(cuttin_cell, layout, (150, 30)).

Also, the properties of workcells are divided into separate sub-blackboards.

There are two methods associated with the blackboard operations get_property and

modify_ property which could be considered as member functions in an object-oriented

Chapter 3. Problem Solving Architecture 61

design, such as an implementation in C++[24]. The two methods also incorporate some

incomplete knowledge treatments and automatic triggering of KSs.

get_property(O, F, V) reports the property (F) value V of object 0, and can be

implemented as follow:

get property(O, F, V) —

holds(0, F, V),!.

geLproperty(0, F, V) *—

holds(O,
-,

assumable(0, F, V).

get .property(O, F, V) i—

holds(0,_,_),

ask(0, F, V).

holds(0, F, V) — compo’nent(O, F, V).

holds(0, P, V) i— warkcell(0, F, V).

holds(O, F, V) — ks(0, F, V).

If there exists a fact that the object 0 holds the property F at the value V, then

the get_property returns this fact. Otherwise it uses the assumable default value or asks

user whether the object exists. Here, object 0 can be either a component, a workcell or

a knowledge source. Therefore, if our database is incomplete, the system will not hang.

modify..property(0, F, NV) modifies the property F of object 0 to a new value NV.

If the property does not exist, the new value will be asserted to the database. An

important side effect is that when a property BB named P is changed, associated KSs

with input from the blackboard should be triggered.

Chapter 3. Problem Solving Architecture 62

modify.property(O, F, NV) ÷—

component(O, F, V),!,

retract(component(O, F, V)),

assert(component(O, F, NV)),

trigger_KS(P).

modify.property(O, F, V) +—

assert(component(O, F, NV)),

trigger_KS(P).

trigger_KS(P) ÷—

findall(KS, ks(KS, input_blackboard, F), KSs),

trigger(KSs).

where trigger(KSs) triggers a list of knowledge sources KSs.

trigger([J).

triggerKS([HIT]) ÷—

trigger_KS(H),

trigger(T).

Therefore, the knowledge sources interact with the blackboard through the methods

given above. Conversely, The modification of blackboards will trigger certain agents

through the methods associated with the template of “ks”, for example, trigger_KS and

remove_trigger.

3.3.3 Control Unit

The control unit of a blackboard system functions as an inference engine for the descrip

tive knowledge that is represented by KSs. It monitors the system by looking for the KSs

Chapter 3. Problem Solving Architecture 63

with their trigger_status “on”; and selecting the KS of the highest priority; and finally

executing that KS.

The whole system is designed to possess opportunistic reasoning and is data driven.

A KS will be triggered when any of its input blackboards are modified, and the trigger-

status can be removed only after the KS has been executed. Several KSs may be triggered

at the same time, but the KS with the highest priority will be called first. This reason

ing strategy actually provides an open architecture when several knowledge sources are

working together, especially when the problem solving process is not very clear or the

final goal is ill defined.

A simple reasoning procedure is given below:

control *—

collect_triggered_KS(KSs),

.select_highest_PR(KSs, KS),

execute(KS),

control.

control i—

trigger([user, fps]),

control.

Here, the operation collect_triggered_KS(KSs) collects all triggered knowledge sources.

It may fail in case none of the knowledge sources are triggered, which will cause the

controller turn to the second clause, which will then trigger the knowledge sources of “User

Interface” and “Updating of FPS Information “. As an example of system operation,

suppose that the blackboard region the “Component Information” has been changed.

Then the knowledge sources “Updating of Sharing Feasibility “ and “Restructuring”

will be both triggered, and the former which has a higher priority, will be executed first.

This execution may change the blackboard (BB) of “Sharing Feasibility”, and can in turn

Chapter 3. Problem Solving Architecture 64

trigger the KS of “Restructuring” again. The execution of the KS of “Restructuring” may

cause some other blackboard regions to change. This will trigger some more knowledge

sources and consequently change the data in the associated blackboards, and so on. The

procedure will end when an execution of the knowledge sources does not result in further

changes of the BB data, and the trigger status of all the knowledge sources are off. Then,

the system will idle.

3.4 Functions of Knowledge Sources

In the architecture shown in Figure 3.3, there are senven knowledge sources (KS) which

deal with user interface, information updating, load planning, evaluating of component

status, updating of sharing feasibility, restructuring, and output. Major functions of

these knowledge sources are outlined below:

KS of user interface. This handles the input of production demands. It also

provides a function that enables a user to change the information in the blackboard. It

has the highest priority without any precondition.

KS of updating of information. This KS updates the operating information of the

FPS, including the available capacity resources, workcell activity levels, and the system

layout. It obtains data from the component level through information preprocessors and

from the workcell level through intelligent preprocessors as well. This KS has the second

priority.

Techniques of sensor fusion [5, 37, 13] could be used for this purpose. A multiple sensor

approach which is similar to the method a human would use to monitor a production

process is considered. The approach of a human is characterized by lack of accurate

sensors and process models. However, the human considers a number of different sensors

(his/her own senses), and processes the information about a variety of process variables.

Chapter 3. Problem Solving Architecture 65

Similarly, one can consider a system for the monitoring of production processes whereby

the measurement of process variables is performed by several sensing devices which feed

their signals into a processing model. A knowledge based system can be employed to

handle these possibly inaccurate and incomplete signals, and provide information to the

decision maker of FPS restructuring. (see Figure 3.5)

Sensors

This part in itself is a wide topic, and will not be studied in detail in this thesis. It

is assumed that there is such a system (KS) for later use in the simulation.

KS of load planning. This KS has a knowledge base for capacity planning [45, 4]

methods and associated transformations that determine component loads for a specified

demand (see equation (2.2)). It assigns the workload to the workcell components ac

cording to the processing demand and the capacity planning method, and then sets the

component status according to component capacity, load, and the activity level. This

KS has the third highest priority.

KS of evaluation of component status. This KS uses information, such as

capacity C, load L and activity level A of a component, and evaluates the status

Figure 3.5: An Intelligent Sensing System

Chapter 3. Problem Solving Architecture 66

of the component using equation (2.5). The degree of component overload or capacity

surplus is measured by fuzzy descriptors OC and UC, whose membership functions are

illustrated in Figure 3.6.

‘-too

1 2
(a) Lc/Ac

1.tuc

hu mulu

(b)
1

Ac/Cc

Figure 3.6: The Membership Functions for Fuzzy Descriptors of Overload (a) and Un
dercapacity (b) of Component

KS of updating of sharing feasibility. This KS obtains information about com

ponent shareability and geographic factors, and updates the sharing feasibility index.

Since this should be done before restructuring, it has a higher priority than that for KS

of restructuring.

KS of restructuring. This KS performs a procedure of deciding the most appropri

ate action against the badness of current system. Knowledge based methods employing

fuzzy logic are used in the decision making. Actually, levels 2 and 3 in Figure 3.1 will

implement this knowledge source, and is central to restructuring decision making.

KS of output (commanding of lower levels). This sends restructuring commands

to the workcell controllers which are located at a lower level. Some coordination of the

Chapter 3. Problem Solving Architecture 67

shared components should be done here. In addition, the restructuring commands might

have to be approved by system experts. This KS has the lowest priority.

3.5 Summary

Basic considerations about knowledge organization were presented in this chapter. A

three level decision making hierarchy was used for restructuring system.

1. The first level will determine whether a restructuring should be called.

2. The second level provide some general guidance about how to restructure the sys

tem.

3. The third level will select an optimal restructuring action among all the possibilities.

The first level will make the blackboard model to cooperate with different kinds of

modules for information updating, data processing, and decision making associated with

restructuring. The characteristics of a blackboard architecture, such as a common data

area and opportunistic reasoning, make it particularly suitable for organizing a high level

FPS restructuring system.

Domain knowledge is represented by objects of workcells and components. Each type

of property of the objects will occupy a sub-blackboard. Data change in the blackboard

will trigger related knowledge sources. A control unit will monitor the entire system and

repeatedly select a triggered KS that has the highest priority for execution.

This structure is suitable for bottom-up proof, particularly, when the restructuring

goal is fuzzy.

Chapter 4

Heuristics and Actions

The concept and the framework of dynamic restructuring have been presented in chapters

1 and 2, and a problem solving architecture has been developed in Chapter 3. This

chapter will study the heuristics for solving the problem. Actions, are also discussed

in detail, which change data in the blackboard system that has been described, so as

to make the blackboard evolve from the initial world to the final world in which the

restructuring goal is true. -

Section 4.1 analyzes the blackboard-based restructuring procedure; Section 4.2 devel

ops the heuristics and Section 4.3 specifies the actions of restructuring. Section 4.4 gives

a summary.

4.1 Analysis of Restructuring Procedure

Referring to the decision making hierarchy given in Figure 3.1, we note that the second

level will be called after the first level has decided to have a restructuring action. It is

very helpful to have a clear picture of the restructuring procedure in building the general

restructuring heuristics.

4.1.1 Planning Using Blackboard

As discussed in Section 2.3, general planning methods are not suitable for the restruc

turing problem which is addressed in this thesis. A practical flexible production system

68

Chapter 4. Heuristics and Actions 69

(FPS) is too complex to be represented in a reasonable size by classical planning meth

ods. As a remedy, in blackboard-based restructuring planning, the use of expertise from

domain experts and practical operators is exploited. The basic idea of blackboard-based

planning is as follows: Represent the initial world in a blackboard; and then change the

world by performing some actions until the final world (goal) is achieved, in which the

desired goal is true. This approach is illustrated in Figure 4.1.

Initial BB Intermediate BB Final BB

World 0 World 1 . . . World n

(The goal is (The goal is (The goal is
not true) not true) true)

Figure 4.1: The Blackboard-Based Planning

Note, however, that we do not specify object properties for every world in the reason

ing procedure. The system (workcells, components) situation is still represented in the

general property predicate, but without specifying the world:

holds(Object, Property, Value),

such as

component(O, F, V)

or

workcell(O, F, V).

If we assume that complete knowledge about an FPS exists and is represented in

the blackboard, then we can use “failure as negation”; that is if a particular property

cannot be found, that means the property does not exist. (i.e., not(holds(O, F, V)) is

true if holds(O, F, V) fails). Therefore, it is important that all the object properties are

Chapter 4. Heuristics and Actions 70

placed in the blackboard (or indicated as assumable and askable), and all changes of

properties are applied on the blackboard. Then an action will amount to changing the

corresponding blackboard (BB).

The present change of representation does not mean that we treat an FPS as a static

world. Instead, we implicitly assume that if an object property is not changed by an

action, then the object will still keep the old property value in the new world. Clearly,

we no longer need axioms for all situations of every action. We rather need only those

rules in which an action really changes the world. This significantly reduces the extent

of the representation space of a problem during solution.

The effects of all actions should be anticipated and specified. The corresponding

blackboard should be modified when an action is applied. It is this modification that

makes the blackboard evolve from an initial world to the final world where the the goal

is achieved.

4.1.2 Heuristics for Search

The search space of restructuring planning is potentially large, and heuristics would be

necessary for practical solution of the problem. Also, due to the fuzziness of a restructur

ing goal, multiple solutions may exist. Thus, optimization should be considered as well.

A decision for selecting a restructuring action is made on the following basis:

1. Trimming the search space by using heuristics;

2. Selecting an optimal action in the trimmed space.

Note that without the first step, the second step is not usually feasible for it is hard

to evaluate all actions in a global search space. This idea is illustrated in Figure 4.2

Here, for example, if only the actions pertaining to “component releasing” should be

considered first according to some heuristics, then only those actions in the sub-space

Chapter 4. Heuristics and Actions 71

Figure 4.2: The Heuristic Search and Optimization

indicated by the shaded area (of releasing) are of interest for further consideration. This

is what is termed second level decision making, in the present problem, the third level

is a optimization procedure that selects an action that has the highest assessment from

the sub-space. (The third level will be discussed in Chapter 5.) The same procedure as

before can be applied in all level of planning, as shown in Figure 4.2.

The next two sections will develop heuristics for restructuring and specify all possible

actions.

4.2 Heuristics for Problem Solving

In restructuring, some general guidelines should be taken into account before selecting a

detailed action. This is very helpful in the search for an optimal action in a particular

case, for example, as shown in Figure 4.2. Human expertise and past experience are

assets in developing heuristics. Note that, each heuristic will be developed for only one

case; separate cases use separate heuristics even though the conclusions might be the

same. Union is not allowed. This would be necessary for a ëlear logic expression and

according to the convention of Prolog.

0<

Chapter 4. Heuristics and Actions 72

4.2.1 Heuristics

Termination of a Load Sharing Action

Firstly, if an FPS does not work properly, the existing load sharing states should be

checked. In case a previously-overloaded component is no longer overloaded due to

changes in operating conditions,(say, the associated task demand has been dropped or

the component has been upgraded), the sharing would not be necessary and should be

terminated. Consider the following three heuristics:

Heuristic 1A: Terminating a load sharing action due to load reduction. If

there exists a load sharing state shared(OC, UC, Load), and the OC would no longer

be overloaded without this sharing, then this load sharing action should be terminated.

This may be implemented as

heuristic(A) f—

plan(shared(OC, UC, Load)),

component(OC, workload, L),

noLoverloaded(OC, L, Load),

A = terminating(shared(OC, UC, Load)).

Here plan(R) records an action R which is either shared(OC, UC, Load) a record of action

sharing(OC, UC) or released(VC, C, Load) a record of action releasing(UR, C) where

VC is a virtual component reflecting the properties of UR. not_overloaded(OC, L, Load)

is true if OC is not overloaded given loads L and Load. If all the subgoals (conditions)

are true, a command of sharing termination will be issued.

In another case, if the index of sharing feasibility between a sharing pair of components

reduces below a threshold value, the sharing should be ceased. This may happen, for

example, when the communication system of a sharing component is damaged completely

or partially, or the moving path for a shared component is no longer available.

Chapter 4. Heuristics and Actions 73

Heuristic 1B: Terminating a load sharing action due to feasibility reduc

tion. If there exists a load sharing state shared(OC, UC, Load), and the sharing fea

sibility index drops below a threshold value, then this load sharing action should be

terminated. This may be implemented as

heuristic(A) i—

plan(shared(OC, UC, Load)),

feasibility((OC, UC), I),

I < 0.6,

A terminating(shared(OC, UC, Load)).

where I is the index of sharing feasibility between the pair OC and UC; and 0.6 is the

threshold value. If the sharing feasibility value is less than 0.6, the sharing should be

terminated.

Furthermore, as given in the next heuristic, an existing sharing state should be ter

minated if either component which is being shared becomes overloaded. Then, a new,

more appropriate sharing strategy should be sought in place of the current strategy, in

order to remove the overload.

Heuristic 1C: Terminating a load sharing action due to a load increase.

If there exists a load sharing state shared(OC, UC, Load), and either OC or UC is

currently overloaded, then shared(OC, UC, Load) should be terminated. This may be

implemented as follows:

heuristic(A) —

plan(shared(OC, UC, Load)),

overload(OC, or, UC),

A = terminating(shared(OC, UC, Load)).

where overload(OC, F, UC) checks the workload status of OC and UC according to the

flag F. If either of the components is overloaded, the sharing should be disabled.

Chapter 4. Heuristics and Actions 74

Termination of a Component Releasing Action

A component releasing action also should be checked to determine whether a component

is shared with more than one load, due to that action. Similarly, if the shareability index

of the loaded component on a “component releasing” action is below a certain threshold,

or if the component has been overloaded, the component releasing action should be

terminated.

Heuristic 2A: Terminating a component releasing action due to reduction

of the component shareability index. If there exists a component releasing state

“released(VC,C,Load)”, and the component C is no longersuitable for receiving the

released load, then this component releasing action should be terminated.

Here released(VC, C) is a record of action releasing(UR, C) which released a com

ponent UR by transferring its load to component C, (Note that C would occupy in its

original task as well, and therefore, would be shared for the loads of both components).

A virtual component VC records all the properties of VC except capacity. It is expressed

by:

heuristic(A) ÷—

plan(released(VC, C, Load)),

component(C, shareability, I),

I < 0.6,

A = terminating(released(VC, C, Load)).

where I denotes the shareability of component C. If I is less than a threshold value (0.6

in this case), the component C should not be shared for the both loads. Note that the

“releasing” action actually results in a component sharing, in the sense that the record

released(VC, C, Load) represents an existence of a component sharing state for C.

Heuristic 2B: Terminating a component releasing action due to an increase

Chapter 4. Heuristics and Actions 75

of load. If there exists a component sharing state “released(VC, C, Load)”, and the

component C is currently overloaded, then this component releasing state should be

terminated. This may be implemented as follows:

heuristic(A) ÷—

plan(releasing(VC, C, Load)),

component(C, workload, L),

component(C, capacity, Cc),

sum.up(L, LD),

LD>Cc,

A = terminating(releasing(VC, C, Load)).

Here LD is the sum of all the loads assigned to component C. If LD is greater than its

capacity C, then component C should not be shared, and hence the component releasing

state should be terminated.

Component Moving

A component may be moved from a workcell to which it is assigned to another workcell.

Usually, for proper control and communication within the system, the geographic position

of the component has to be convenient for the workcell for which it now works. This

situation takes place when a component is released within its original workcell, and is

reassigned to another workcell in order to absorb an overload. One thing which should

be noted here is that, the moving action should be done preferably prior to the load

reassignment, in the practical situation, although the moving is actually caused by the

need for a reassignment. Consequently, in the restructuring report, a moving action could

be placed before the reassignment action.

Heuristic 3: Moving a component. If component C is located in workcell W,

and is working solely for another workcell Wi, then this component could be moved to

Chapter 4. Heuristics and Actions 76

workcell Wi from workcell W. The implementation of this heuristic is given below:

heuristic(A) —

component(C, position, W),

component(C, work.for, {W1{]]),

W:.AW1,

A = move(C,from(W),to(W1)).

Component Releasing

Component releasing should be considered before component sharing, because the re

leased components may be used later, in sharing. Based on human expertise, sharing of

components within a workcell is better and easier than sharing between workcells. Hence,

component releasing within a workcell is considered to be of higher priority than effect

ing a component releasing action between workcells. Also, the component shareability

should be considered in effecting a releasing action.

Heuristic 4: Releasing a component within a workcell. If there exists an

undercapacity component, and there exists another undercapacity component of the

same type in the same workcell, then one of them could be released by transferring its

load to the other one. This heuristic may be implemented as follows:

heuristic(A) *—

group(G),

groupcomponents (undercapacity, G, UCs),

best_action(UCs, A, PD, within).

where G is the group name. Here, group_component.s(F, G, UCs) groups all components

in group C into a list UCs according to the flag F which may take values “overloaded”

and “undercapacity”; and best_action(UCs, A, PD, FL) is a decision making procedure,

Chapter 4. Heuristics and Actions 77

which will be discussed in Chapter 5, for selecting the best action A which has priority

degree PD, according to flag FL which has values “within” (a workcell) and “between”

(workcells). The action A takes the form “releasing(UR, UL)” here.

Heuristic 5: Releasing a component between workcells. If there exists an

undercapacity component, and there exists another undercapacity component of the

same type in an other workcell, then one of the two components could be released by

transferring its load to the other. This heuristic may be implemented as follows:

heuristic(A) i—

group(G),

groupcomponents (undercapacity, C, UCs),

best_action(UCs, A, PD, between).

Here, the only difference from the previous one is that the flag “within” (a workcell) is

changed to “between” (workcells). This difference reflects an important consideration of

priorities of actions within a workcell or between workcells.

Load Sharing

Component overloads are considered now. For the same reasons as in releasing a compo

nent, a load sharing action within a workcell is considered to have a higher priority than

an action of component sharing between workcells.

Heuristic 6: Sharing a component within a workcell. If there exists a compo

nent overloaded, and if there exists another component of the same type that is operating

at undercapacity in the same workcell, then share the undercapacity component with

the overloaded one. The implementation of this heuristic may be as follows:

Chapter 4. Heuristics and Actions 78

heuristic(A) —

group(G),

group.components(overloaded, G, OCs),

best_action(OCs, A, PD, within).

Note that this heuristic is different from Heuristic 4 only by the flag “overloaded” in

place of “undercapacity”. The decision-making procedure will select a proper action A by

checking the status of the components. The action A takes the form sha’ring(OC, UC)

here.

Heuristic 7: Sharing a component between workcells. If there exists a

component that is overloaded within a workcell, and if there exists another component

of the same type in another workcell that is operating at undercapacity, then share the

undercapacity component with the overloaded one. This heuristic may be implemented

as follows:

heuristic(A) *—

group(G),

group_components(overloaded, C, 0Cs),

best_action(OCs, A, PD, between).

It is clear in this heuristic that, the flag is “between” instead of “within” in the previous

heuristic, so as to call for sharing actions between workcells.

4.2.2 Usage of Heuristics

The heuristics discussed in the previous sections are given different priorities in prac

tice. They are considered in the order of their priorities, in the actual operation of

Chapter 4. Heuristics and Actions 79

the knowledge-based decision making system. By reviewing the process of restructuring

planning, it should be noted that the heuristics are actually used by a mechanism that

is schematically shown in Figure 4.3.

I

Check
Status=overload

sZf
Restructuring Restructuring

Failed Succeeded

Figure 4.3: The Reasoning Sequence

Here, the heuristics denoted by 1, 2, 3, ... etc. are arranged in the order of the

priority of execution of the associated rules. Note that only when the heuristics with

higher priority have failed to solve the problem, a lower priority one can be fired. When

a heuristic succeeds, which means the blackboards may receive new data by the actions

issued by the heuristic, the first-level decision maker will review the entire problem in

the blackboard all over again. This process will end when none of the knowledge sources

S

s: success
f: failure

Chapter 4. Heuristics and Actions 80

are triggered, which actually means no data change has been made in the last step of

the restructuring process. In another words, no heuristic succeeded and no action was

issued.

4.3 Actions

Although the heuristics return various actions, they actually fall into two kinds of physical

actions:

transfer_load(OC, UC, L)

and

move...component(C, Wi, W2)

where transferioad(OC, UC, L) removes load L from OC and assigns it to UC; move...

component(C, Wi, W2) moves component C from workcell Wi to workcell W2. This

section will specify the restructuring actions by means of practical physical actions.

Load Sharing

J CC0 sharing” an undercapacity component shares the load of an overloaded compo

nent. Consequently, the load originally assigned to the second component will be shared

by the two components (of the same type). As a result, the originally undercapacity

component is now shared between its original load and the new load. This action is

represented as follows:

sharing(OC, UC) ÷—

dete’rminioad(s haring(OC, UC), Load),

transfer_ioad(OC, UC, Load),

record(shared(OC, UC, Load)).

Chapter 4. Heuristics and Actions 81

where, determin_load(sharing(OC, UC), Load) determines the load “Load” to be trans

ferred from OC to UC; and record(A) records the information of this action for further

reference in restructuring.

Component Releasing

Component releasing represents a load transfer from an undercapacity component to

another undercapacity component, with the complete load of the first component being

absorbed by the second one thereby releasing the first component. This action may be

implemented as follows:

releasing(UR, UL) €—

determin_load(releasing(UR, UL), Load),

trarisferioad(UR, UL, Load),

make.virtual(UR, VC),

record(released(VC, C, Load)).

Here, the predicate make_virtual(UR, VC) records the properties of UR, and in case

this component releasing action should be terminated, the virtual component could be

used for the intermediate state of load transfer. Note that, a virtual component is a copy

of the released component except its capacity is always set to zero. In the component

releasing process, it is a copy of Ui? in the record, and makes UR free for other use.

Terminating a Sharing or Releasing Action

Terminating a load sharing action is the inverse operation of component sharing. It may

be implemented as below:

Chapter 4. Heuristics and Actions 82

terminating(shared(OC, UC, Load))

transferioad(UC, OC, Load),

remove(shared(OC, UC, Load)).

Note that the termination of a component releasing operation is not as straightforward,

because it is not just the inverse operation of component releasing, since the released

component might already be used for other purposes. In fact, the inverse operation of

component releasing does not always exist. In such a case, a virtual component could

be used, which has all the properties (recorded when making the releasing action) of the

formerly released component UR, but with zero capacity (i.e., does not exist physically).

Thus, a virtual component represents a pure shortage of capacity, and it always seeks a

solution for its overload. The implementation is and follows:

termimating(reieased(VC, C, Load))

transfer_ioad(C, VC, Load),

remove(reieased(VC, C, Load)).

Moving a Component

Moving a component needs a specific type of action, which is denoted as mavecompoment.

Moving a component is specified as:

move(C, from(Wi), to(W2))

free(C),

move.component(C, Wi, W2).

That the component C must be a non-activity component is a precondition for actually

moving a component.

The move_cornpoment/3 action changes only the position of a component. The

transfer_ioad/3 action changes the component workloads, and also the property of

Chapter 4. Heuristics and Actions 83

work_for. If the load of a component that is dedicated to a workcell, is zero, it is

released from that workcell, at least in principle.

4.4 Summary

Restructuring of a flexible production system (FPS) was analyzed in this chapter. The

core activity in restructuring was identified as a planning procedure. A plan is a sequence

of actions from the initial world to a goal world. Heuristics play a very important role

in searching for this sequence.

Heuristics include: 1. checking whether the existing sharing states are still suitable;

2. moving a component; 3. selecting a component-releasing action and; 4. selecting a

load-sharing action. They are fired in the order of their priority.

The actions in a restructuring process include: terminating a sharing, moving a com

ponent, releasing a component and sharing a load. The main physical actions involved

are: transferload and move_component, which modify the status of a component.

Chapter 5

Fuzzy Decision Making

In previous chapters, the architecture of the knowledge-based, restructuring system has

been established. In particular, the problem solving heuristics have been developed

in Chapter 4. Clearly, there may be more than one action that could be available at a

restructuring stage when using heuristics for solving the problem. This chapter addresses

the resolution of this situation, which is known as conflict resolution. Fuzzy logic will be

used in evaluating the available actions in a stage of decision making.

Section 5.1 discusses the conflict resolution problem in a restructuring process, which

requires a decision on selecting an optimal action. Section 5.2 gives a fuzzy decision-

making structure. According to this structure, Section 5.3 presents a method for recog

nition of the status of a flexible production system (FPS), using fuzzy descriptors. Section

5.4 presents a decision-making method with emphasis on techniques of fuzzy associative

memory. Section 5.5 gives concluding remarks.

5.1 Conflict Resolution

As indicated in Figure 4.2, heuristics lead the problem solver to a sub-solution space

(shaded area), in the restructuring process. The need for conflict resolution arises in the

subsequent steps of problem solving in the sub-solution space. Since the final goal is

fuzzy, there may be more than one solution in the trimmed solution space. Optimization

should be considered for this reason. Note that, for different types of actions, the appro

priate conflict resolution method might be different, which is actually determined by the

84

Chapter 5. Fuzzy Decision Making 85

restructuring mechanism, and will be discussed in detail in the sequel.

For actions about terminating a sharing mode, the first match method [13, 14] could

be used. An action of terminating a sharing state will affect only the pair of shared

components (including virtual components), and the other components in the FPS will

not be affected. Thus, component sharings can be released in any order. In addition, the

associated heuristics have the highest priority, which means, only after all unnecessary

component sharings have been released, that other actions such as component releasing

and load sharing should be considered.

For an action of moving a component also, the first match method is suitable. Almost

the same reasons apply here, specifically, 1. moving a component does not affect other

moving actions; and 2. all moving actions will be executed before making further decisions

on releasing and sharing of components. Therefore, the sequence of executing the moving

actions will not affect the entire decision making process for restructuring.

For component releasing and sharing actions, however, the sequence of actions will

affect the decision making process of restructuring. As an example, consider four com

ponents of the same type: Cl, C2, C3, and C4. Suppose that, Cl is lightly overloaded,

C2 is moderately overloaded, C3 has a high undercapacity, and C4 has a light underca

pacity. If Cl is considered first, C3 should be suitable for sharing the overload in Cl. As

a result, C2 will not be able to find a proper partner to share its overload. The proper

match would be C4 for Cl and C3 for C2.

Generally, releasing and sharing actions do affect other releasing and sharing decisions.

It follows that an optimal match should be used for the associated conflict resolution. In

particular, the following important factors should be considered:

• The load status of the components which will be subjected to a releasing or sharing

action;

Chapter 5. Fuzzy Decision Making 86

• The belief degree of knowledge of executing such an action between this pair of

components;

• Feasibility of load transfer between the pair.

In the following sections, a fuzzy decision making system will be developed for select

ing the optimal actions.

5.2 A Fuzzy Decision-Making Structure

Two steps are considered for the fuzzy decision making process as illustrated in Figure 5.1.

System
Information System Fuzzy Decision

Situation : Decision
Recognition Making

I

Zrership Knowledge 1Functions :
L.t*Jt3I

From Real World From
Observations, Expertise
Estimation, and Theory
and Experience

Figure 5.1: Schematic Representation of Fuzzy Decision Making

Firstly, the system status should be recognized. The recognized conditions should

match the control knowledge of experts. Particularly, in a knowledge-based restructuring

system, component workload status is expressed in terms of linguistic descriptors, such

as “highly overloaded” or “lightly undercapacity”. Naturally, it may be useful then, to

measure and recognize the component status as well in a qualitative manner. Secondly,

based on the current status of the system, a set of rules may be fired to make decisions for

Chapter 5. Fuzzy Decision Making 87

selecting proper restructuring actions. A learning mechanism could be used in a feedback

loop to adjust fuzzy membership functions and the knowledge base.

Fuzzy logic [46, 28, 26] has been employed to deal with qualitative and non-crisp

concepts that are present in decision-making problems of the real world. Applications

are found in dynamic systems and control [8, 27]. The present practice in fuzzy logic

control is to consider the confidence level of the associated fuzzy-logic rules to be 100

percent. In this thesis, however, both the situation facts and human knowledge are

considered to have varying degrees of belief. A fuzzy decision is made by considering all

possibilities of a system status, with different degrees of belief. The corresponding rules

are also assumed to have different degrees of belief.

“Fuzzy membership functions” describe a mapping from real-world “physical” mea

surements to human interpretations of linguistic terms in a fuzzy descriptor. The concepts

are specific to a particular use, but should be valid for a generally recognized measure

ment range corresponding to a given attribute. The knowledge base of “decision making”

consists of rules such as those given in figures 2.5 and 2.7. The fuzzy decision maker fires

those rules whose condition parts match the present FPS state, as observed, and syn

thesizes the conclusions of those rules with associated belief values, so as to generate a

restructuring decision.

In the following two sections, the representation of system information and human

knowledge associated with the present problem will be discussed. Then, a fuzzy decision

making procedure will be designed and implemented in Prolog, which uses this represen

tation.

Chapter 5. Fuzzy Decision Making 88

5.3 Representation of Situation

5.3.1 Fuzzy Representation of Component Status

Component status is expressed by a fuzzy set [15] rather than using crisp logic, which is

based on the following reasons:

• A “crisp” sensing signal of a component indicating its status may not be accurate at

a given time, and may not be reliable. A fuzzy representation might take subjective

and qualitative considerations and past experience into account, and would be

better.

• Some information on components may be directly as fuzzy indicators, such as the

load status of a humanbeing, or quality of a piece of processed herring roe, as

provide by “intelligent” sensors.

• Human knowledge describing a component status is fuzzy by itself. In order to use

human knowledge to make decisions, the system conditions should be recognized

in a compatible manner.

The component status can be described by a fuzzy descriptor such as {highly over

loaded (ho), moderately overloaded (mo), lightly overloaded (lo), just ok (ok), lightly

undercapacity (lu), moderately undercapacity (mu), highly undercapacity (hu), and no

activity (na)}. Each value of the variable in the “universe of discourse” will have a

membership grade which represents the degree to which that value belongs to the set.

A component status is represented by the membership grades at which it belongs to a

group of fuzzy sets. For example,

Soc = {lo(O.8), mo(O.2)}.

Chapter 5. Fuzzy Decision Making 89

where Soc is a fuzzy variable representing the status of the component OC. It states

that the membership of this quantity in the fuzzy set lo is 0.8, and in mo is 0.2, and it

does not belong to any other fuzzy sets. As a result, this component is eligible to use the

rules for both states lo and ma.

Typical membership functions of component status are shown in Figure 5.2. For

example, a component of status ok means that when it is working within the crisp load

range 85 100% it operates in an “ok” state, with any possibility of displaying another

state, and when it is operating within the non-crisp edge beyond this range, there is

a possibility of displaying the characteristics of little lu or lo as well. Note that the

“capacity” and “load” are both standardized for the convenience of comparison in later

decision making.

ItStat1iS

na hu mu lu ok Ia mo ho/c1rxJK1
1.0 0.8 0.6 0.4 0.2 0.0 -.2 -.4 -.6 -. .1.0 c-L

Figure 5.2: The Membership Functions of Component Status

To provide an analytical foundation for our developments, some definitions of fuzzy

operators are given next. Using them, a “symbolic language” can be introduced, which

may facilitate further developments in the area of fuzzy-logic decision making.

Definition 1. Fuzzy operators are denoted as follows, with the given order (increase)

of precedence:

proposition

Chapter 5. Fuzzy Decision Making 90

negation —‘;

intersection fl;

union U;

(5.19)

For example, Soc—lo means the component status is “lightly overloaded” (lo). This

statement may be interpreted in two ways. First, the statement may be assigned a “va

lidity value” (say, 0.8). Then, under that particular circumstance, the level of validity of

the statement is 80%. Alternatively, one could think about of a specific “measurement”,

say e1 of the variable Soc. This measurement may represent a membership grade of

0.8, as read off the membership function of lo. (i.e., 1L10(el) = 0.8). Under the same

circumstances, the statementS00—mo may be assigned another validity value (say 0.2).

As before, then, the specific measurement e1 of Soc has a membership grade of 0.2 (or

/.Lmo(ei) = 0.2). In summary, a given fuzzy-logic statement may possess a particular

validity value under a specific circumstance, or alternatively, the membership grade at

which the measurement belongs to the fuzzy set in that statement also would be equal

to the validity value. In this manner, a given circumstance will satisfy different fuzzy

states at different validity values, or equivalently, a given measurement will have different

membership grades in different state sets (the latter being known as “fuzzification” of

a measurement). As an example, a component robotl whose workload is 60% of its full

capacity can be fuzzified to:

S0b0t1 = {lu(0.4),mu(0.6)}

A general representation for component status S is

= {m(u)} (5.20)

Chapter 5. Fuzzy Decision Making 91

The ith proposition “S is mi” has a membership grade value

iim(Sc) = (5.21)

The proposition set is expressed by:

= {w—m()} = {p(tj)} (5.22)

with

(5.23)

Note that the notation of calligraphic letters represent proposition sets. Using this

convention, the status of robot 1 can be expressed as

Srobotl = {Wrobotl_’ lu(O .8), Wrobotl4mU(O. 2)}

Members in the above set are propositions of the status of the component robot 1 with

associated validity values.

5.3.2 Compound Propositions

For both sharing and releasing of components, at least two components should be con

sidered. For example, component status of robot 1 and robot2 are factors that should be

considered for load transfer between the two components. The compound proposition

“status of robotl and status of robot2” is therefore taken into account, which is expressed

by

Srobotl flS1002.

It may be expressed in a Catesian product space with dimensions of Srobotl and Srobot2

The elements in the space represent a status of the FPS by considering only the status

of robot 1 and robot2.

Chapter 5. Fuzzy Decision Making 92

Generally a fuzzy state is given by an expression of fuzzy variables, which represent

system-status factors. A fuzzy-status expression may have the following four forms:

1. Expr : Single fuzzy variable;

2. Expr : -‘Expr;

3.Expr : ExprflExpr;

4. Expr : Expr U .Expr.

(5.24)

These are elaborated below:

Case 1: Here, the expression is a single fuzzy variable X, given by the fuzzy set

X = {si(p’:)}i=i,...,r (5.25)

Then, the fuzzy status X is expanded as a set of propositions with the validity values,

X = (5.26)

where, the statement

m = X—.s2 (5.27)

has a validity value j in a particular situation. Equivalently, if the situation is given

by a “measurement” i, then its membership grades in the various fuzzy state variables

m2 are given by imi() = ; i = 1,2,•• ,r. (j rather than IImj(ffi), is used in later

representations for simplicity. Note that is defined in the interval [0, 1]). Here, r is

the resolution [7] of a fuzzy set representing variable X; s is the ith fuzzy state of this

variable; and p may be interpreted as either a validity value of m, or the membership

grade of a measurement within a fuzzy state set as discussed before.

Chapter 5. Fuzzy Decision Making 93

Case 2: The negation is a unitary operator. It sets every proposition of the

operand to its “complement of 1”, specifically, if

X = (5.28)

then,

= (5.29)

where,

m = —‘mi (5.30)

with,

(5.31)

Case 3: The intersection fl is a binary operator. Its result is represented in the

Cartesian-product space having the dimensions of the two operands. Specifically, if

X = {mi()}ii,...,r (5.32)

and,

Y = (5.33)

then,

X fl 32 = {m’j(p’3)}i,...,r;j_i,...,p (5.34)

where,

m7=mflm (5.35)

with,

4 = min{tj, 4} or 4 = .
(5.36)

depending on whether the mm or the dot interpretation is used.

Chapter 5. Fuzzy Decision Making 94

Case 4: The union U is also a binary operator. Its result is also represented in

the Cartesian-product space having the dimensions of the two operands as in case 3.

Specifically, if

X {m(tj)}j=i,...,r (5.37)

and,

(5.38)

then,

X U Y = (5.39)

where,

m = m U m (5.40)

with,

= max{,} or = min(1u+ 4, 1) (5.41)

depending on whether the max or the “bounded sum” interpretation is used.

For example, consider the two standard components robotl, robot2. Suppose that

their workloads are about 125% and 50% of their full capacity, respectively. They are

evaluated to have the following status, according to the membership functions shown in

Figure 5.2.

Srobotl = {lo(0.75), mo(O.25)};

Srobot2 = {lu(0.85), mu(0.85)};

Then the proposition sets are:

Srobotl = {Sroôoti_-lO(0.75), Sroboj1—mo(0.25)};

8robot2 {Srobot2_+lu(0.85),S70b0t2—mu(0.85)};

The compound proposition of intersection of the two components is:

Chapter 5. Fuzzy Decision Making 95

S7060e1 F’ $robot2=

{ Sro,otilO fl Sro,,ot2—lu(0.75),

Srooti—’lO fl Sroot2—mu(0.75),

Srobotl—.mo fl Srobot2+lU(0.25),

S0b0t1—mo fl Srobot2--mu(0.25)}.

Here, the elements tell the membership degrees of the composed status. For example,

the first element means the validity degree of the statement of “robot 1 is lightly over

loaded and robot2 is at light undercapacity”, or the membership grade of the compound

proposition for the specific measurements of S0b0t1 and at that particular status,

is 0.75. The entire space represents the status of an FPS by considering the factors

S70b0t1 and Elements in this space represent all possibilities of the system status.

Any situation can be represented by this base using different degrees, which actually is a

hypersurface in an n + 1 dimensional space (n variables and an extra dimension for the

validity value or membership grade).

To develop a procedure for the computation of compound propositions in Prolog, the

following operators are defined for use with fuzzy logic operations.

op(300,xfy,’—). %attribute of an object.

op(35O, xfy,—). %fuzzy proposition.

op(400, fy, —‘). %fuzzy negation.

op(45O,yfx, n). %fuzzy intersection.

op(500,yfx, U). %fuzzy union.

op(550, xfx, —*). %fuzzy implication.

op(600, xf, with). %rule belief.

Chapter 5. Fuzzy Decision Making 96

Here, op(P, R, N) defines an operator N at the level of precedence P and associated

operand relation R. In R, f stands for the operator, and x and y stand for the operands,

where x means it may contain only operators of lower precedence than that of f, and y

may contain operators of the same level of precedence of f. Note that, operator symbols

may be changed in actual coding. Here only the logic relations are shown.

Then, a compound situation of component status may be implemented by the pred

icate .situatiorz.(E, 8) in which E is a fuzzy expression and $ is the evaluated situation

set.

.situatiori(O X, S) ÷—

holds(O,X,FS),

expand(O X, FS, S).

.situation(-iX, S) —

3itUation(X, Si),

expand.not(Si, S).

situation(X fl Y, S) —

.situation(X, Si),

.situation(Y, S2),

expand..and(Si, S2, S).

situation(X U Y, S) —

.situation(X, Si),

situatio’n(Y, S2),

expand.or(Si, S2, S).

The predicates: expand, exparid.not, expand.and, expand_or, are implementations

of the four cases discussed in equations (5.26), (5.29), (5.34), and (5.39).

Chapter 5. Fuzzy Decision Making 97

The usage of this predicate is illustrated by considering the following example: Sup

pose that, there are two components with workloads given by:

component(agvl, workstatus, [(mo, 0.8), (lo, 0.3)]).

component(agv2, workstatus, [(hu, 0.5), (mu, 0.7)]).

A query is issued for the situation by considering component status of agvl and agv2.

?-situatiori(agvl wo’rk.status fl agv2 i-.. wo’rkstatus, 5).

The answer would be:

S =[(agvl warkstatus—mo fl agv2 warkstatus—hu, 0.5),

(agvl workstatus—mo fl agv2 ‘—i warkstatus—mu, 0.7),

(agvl workstatus—lo fl agv2 warkstatus—fhu, 0.3),

(agvl warkstatus-+lo fl agv2 workstatus—mu, 0.3)]

where, S is the expanded space with elements representing all the possibilities of the

situation.

5.4 Knowledge Representation and Reasoning

After recognizing the system status, a reasoning procedure has to be carried out through

a set of rules (knowledge) in order to make a decision. A typical fuzzy-logic rule is of the

form:

IF situation THEN action

A rule base gives a mapping from a situation set to an action set, as denoted by

(5.42)

Chapter 5. Fuzzy Decision Making 98

Then, for a given context (or situation) 5, the corresponding action set is obtained as

A=RoS (5.43)

where R= rule base; S = system situation represented in a situation space; == =

mapping relation; o = composition operator; and A= an action set.

An action set for restructuring is a set of crisp logic actions. The basic idea of fuzzy

decision making is to evaluate all possible actions in the set and select the optimal one.

For example, an action set of “load sharing” may contain:

{sharing(visionl, vision2);

sharing(visionl, vision4);

sharzng(vzsion3, vision4)}.

Note that only one action can be chosen at a time. The fuzzy decision maker evaluates

the priority degree of every action according to the current system situation, and then

chooses the action with the highest assessment value, which comes from the priority

degree and load transfer feasibility index.

5.4.1 Rule Belief

Given a particular situation, different people may make different decisions. It should

be clear that different people have different belief degrees in their decision-making rules.

It is the belief degree that provides the possibility of learning, so as to make a better

decision.

In dealing with uncertainty, the membership grades of a fuzzy set and the belief

factors of a rule could be considered similarly. They represent the same concept: every

statement has a degree of belief; a membership grade represents a validity level of a

proposition (fact) and a rule belief factor represents a confidence level of a rule. There is

Chapter 5. Fuzzy Decision Making 99

no absolutely exact measure of situations in the world, and as a result, the recognition

of the world is fuzzy. Also, there is no absolute truth; human knowledge evolves through

learning and modification. When a rule is used for making a decision, its belief degree

should be considered so as to give a confidence degree to the decision.

Consider the fuzzy-logic rule

IF A THEN B (5.44)

The decision based on this rule will vary due to several factors [14].

1. If the situation of A is different, then the decision will be different even if the

membership functions of A and B are unchanged and the rule itself is unchanged.

2. If the definition of the fuzzy variable A changes, then the decision will also change

even if the system data that is measured by A is unchanged and also B and the

rule itself are unchanged.

3. If the definition of the fuzzy variable B changes, then the decision will also change

even if the other aspects (as in 1 and 2 above) are unchanged.

4. If the validity of the rule itself changes, then the decision based on the rule should

change even if other aspects (as in 1, 2, and 3 above) remain unchanged.

Note that in case 1, it is the “existing fact” (say A) about the situation that has

changed. This is not a case of “learning” however. In case 2, it is our understanding of

the fuzzy variable A that has changed. This may be modeled by changing the membership

function of A (i.e., A(a)). This may result from learning, new knowledge, expert opinion,

etc. In case 3, it is our understanding about the fuzzy variable B that has changed. This

may be modeled by changing the membership function of B (i.e., uB(b)). This too may

result from learning, etc. Finally, in case 4, it is the “level of belief” of the rule itself

Chapter 5. Fuzzy Decision Making 100

that has changed. The definitions of A and B and also the measurement of A may

remain unchanged. Here as well, the change may be a result of the learning of new facts,

expertise, experience, etc. This may be modeled by assigning a “belief degree” to the

rule, which may be adjusted on the basis of new knowledge.

Situation recognition (A(a)), and action set B (crisp logic) have been discussed for a

restructuring system in the previous sections. The rule beliefs will be further addressed

by using an illustrative example. Consider again the sharing match example in Section

5.1. Suppose we have a rule base of the form:

If X is lo and Y is hu then sharing(X,Y).

If X is mo and Y is hu then sha’ring(X, Y).

If X is lo and Y is lu then sha’ring(X, Y).

We should be able to match Cl (lo) with C3 (hu) since we have such a rule in

the rulebase (rule 1). In actual decision making, however, it is better to match Cl

with C4 (rule 3), which is at light undercapacity, and C2 should be matched with C3

(rule 2). Clearly, the three rules do not have the same weights, and they actually have

different degrees of belief. We know that there would be a wastage of capacity if a lightly

overloaded component is matched with a highly undercapacity component, and hence,

this rule (rule 1) should be given a low belief degree. The other two rules will have higher

priority in the decision making process. Consequently, the correct result can be deduced

from the modified rulebase as shown below:

If X is lo and Y is hu then sharimg(X, Y) with belief 0.7.

If X is ma and Y is hu then .sharing(X, Y) with belief 0.95.

If X is lo and Y is lu then sharing(X, Y) with belief 0.9.

To facilitate the use of the concept of “rule belief”, the following definition is given.

Definition 2. A fuzzy rule is an implication from a composed fuzzy situation to an

action with a belief factor;

Chapter 5. Fuzzy Decision Making 101

R : p(EXP) —+ a with bf (5.45)

where, with is defined as an operator having a precedence level higher than that of

implication; p is a compound situation of a fuzzy expression EXF (a value of EXP); a

is an action; and bf is the belief degree of the rule.

For example, the rule base given above can be expressed as

X-lo fl Y-+hu —+ sharing(X, Y) with 0.7.

X-mo fl Y—+hu —* sharing(X, Y) with 0.95.

X—lo fl Y-du —* .sharing(X, Y) with 0.9.

The belief degrees might be changed consequently, as the operators or experts find that

the rules need to be modified. A learning procedure may be implemented to automatically

change the belief values based on new knowledge or information. (see Figure 5.1)

Next, to elaborate how rule beliefs affect decision making, let us explore the com

bination of the membership degrees of facts (context) and rule beliefs in the reasoning

process to make a decision.

5.4.2 Reasoning

As discussed before, fuzzy decision making requires a combined consideration of the

membership grades of the context variables (which depend on their membership functions

and current measurements) and rule beliefs. The objective is to select an action with

highest validity degree. The key point here is to decide the “validity degrees” of the

action set.

In general, each composed proposition in a situation context is associated with one

or more actions (in the rule base). All associations with an action are counted together

in determining the “validity degree” of this action.

Chapter 5. Fuzzy Decision Making 102

Definition 3. Fuzzy associative memory: All rules associated with an action are

fired simultaneously, and will contribute their beliefs toward the overall validity degree

of the action. This is expressed as

VD(a) = FAM(R(a) : BXP—*A) (5.46)

where, VD(a) means the “validity degree” of an action a which is a specific value of the

action variable (action set) A; FAM stands for “fuzzy associative memory”, which is a

function that computes the “validity degree” from the rule base according to the current

situation expressed by EXF (which provides the membership grades of the situation);

and R(a) is the instantiation of the rulebase (R: EXF A), for the specific action a.

FAM could be designed in two ways: “validity degree” (or “priority degree”) of an

action is either the maximum value or sum of contributions from all situation elements

through corresponding rules (See Figure 2.6). If the summation is used for FAM, the

“max-mm” operation in equations (5.36) and (5.41) should be replaced by the “plus-dot”

operation, for consistency. Figure 5.3 gives a decision making procedure for selecting an

optimal component pair for sharing or releasing.

Note that, in Figure 5.3, the long arrows with bfs may be chains of rules obtained by a

proof procedure, as well as direct rules. The decision making procedure is implemented by

the predicate deci.sion(E, A) which selects an action A with the highest priority degree

from all possible actions according to the situation expressed by E and the installed

decision-making knowledge (rules):

Chapter 5. Fuzzy Decision Making 103

Membership Rule Belief
Grades Context Values

Validity Degree
of an Action

Figure 5.3: Computation of the Validity Degree of Actions

decisiom(E, -) 4—

situaion(E, S),

fam(S, A, VD),

assessment(A, VD, V),

V>0.5,

assert(action(A, V)),

fail.

% computation of validity level.

% set threshold value at 0.5.

% store a might-be action.

% find all possible actions.

decision(., A) —
optimaLaction(A),

retractall(action(_,)).

use the stored actions.

where V > 0.5 sets a threshold value for the assessment level of acceptable actions.

fam(S, A, VD) is the implementation of equation (5.46); assessment(A, VD, V) eval

uates the action A by the assessment value V from its validity level and the feasibility

index; and the optimal_action(A) selects an action A corresponding to the highest pri

ority degree. These procedures are shown below:

Chapter 5. Fuzzy Decision Making 104

fam([], -, 0).

fam([(EX, G)IT], A, VD) —

EX —* A with BF,!, % find a rule.

fam(T, A, VDT),

VD is max(VDT, C * BF). % “max” may be replaced by plus.

fam([1T], A, PDT)

fam(T, A, FDT). % no rule, no contribution.

Here, if there is a rule that matches a situation proposition, than the rule is fired.

Its belief value BF is multiplied by the validity value G of the situation proposition,

and contributed to the validity degree VD of action A according to the fuzzy inference

method. If there is no rule for the current situation proposition, the VD of the action is

retained for further firing rules. The end condition is that the situation space is empty,

which corresponds to zero validity value.

optimaLactiorz.(A) —

findall(X, actiori(X, .), As),

best(As, A,.).

Now an example is given to illustrate the decision making process. Suppose that we

have a database in the blackboard of FPS component status.

Chapter 5. Fuzzy Decision Making 105

component(v’isioril, workstatus, [(hu, 0.8), (mu, 0.3)]).

component(vision2, wo’rkstatus, [(lu, 0.9), (mu, 0.1)]).

component(vision3, work.status, [(mu, 1.0)]).

component(vision4, warkstatus, [(hu, 0.8), (mu, 0.3)]).

component(robotl, wo’rkstatus, [(hu, 0.6), (mu, 0.4)]).

component(robot2, warkstatus, [(lu, 0.9), (mu, 0.1)]).

component(robot3, workstatus, [(mu, 1.0)]).

component(rabot4, workstatus, [(mu, 1.0)]).

component(agvl, workstatus, [(lu, 0.8), (mu, 0.2)]).

component(agv2, workstatus, [(hu, 0.7), (mu, 0.3)]).

compoment(agv3, workstatus, [(ma, 0.7), (lo, 0.3)]).

component(agv4, workstatus, [(ma, 0.7), (lo, 0.3)]).

component(agv5, workstatus, [(hu, 0.7), (mu, 0.3)]).

component(agv6, workstatus, [(lu, 0.8), (mu, 0.2)]).

Here, for example, agv3 is overloaded, and a component is sought for sharing. The

action set is:

{sharimg(agv3, C)}CEAGV

where AGV is a group name. This can be accomplished by the query:

?-decisiom(agv3 warkstatus fl C wo’rkstatus, sharing(agv3 , C)).

C = agv5

Note that the “plus-dot” operation (of fuzzy logic) is applied in this decision maker.

All possible actions can be observed by examining the dynamic database “action/2”. For

example:

Chapter 5. Fuzzy Decision Making 106

action(sharing(agv3, agvl), 0.60).

action(sharing(agv3, agv2), 0.65).

action(sharing(agv3, agv5), 0.65).

action(sharing(agv3, agv6), 0.60).

The data in the blackboard will be modified once the selected action is executed. A

new decision will be made based on a new database.

5.5 Summary

This chapter presented a decision making method for selecting an optimal action in the

third level of the restructuring system. A structure was discussed in which two steps

were considered: situation recognition and rule synthesis.

Fuzzy logic was used for representing the component status. A general method for

situation representation was presented and implemented in Prolog. In decision making,

all rules associated with an action were fired simultaneously. The combined consideration

of situation validity level and rule belief have been employed in the assessment of an

action. The action with the best assessment value (which is a product of the priority

value and the feasibility index) was selected as the final decision.

Chapter 6

Implementation and Case Study

Thus far in the thesis, the methodology of knowledge-based restructuring of a flexible

production system has been developed. The present chapter will give some practical

applications of the developed approach.

Section 6.1 will describe a model of an automated fish processing plant, which is in

troduced here as a case study. Section 6.2 will discuss some implementation problems,

and give a panorama of problem solving. In the remainder of the chapter, several restruc

turing cases will be given, in which the simulation results will be graphically illustrated.

Finally, a short summary of the chapter will be given.

6.1 A Fish Processing System

Figure 6.1 shows a model of an automated fish processing plant. There are three workcells

in the system: a fish head cutting workcell, a fish grading workcell, and a packaging

workcell which have three types of interchangeable component: vision stations, robots,

and AGVs (Automated Guided Veicles). It is assumed that the processing activity level

of each workcell is determined by the components of these types. In other words, the

capacity of the above mentioned components is a bottleneck for the production activity

of the plant. Under normal production conditions, the components are assigned to the

workcells as follows:

• Cutting workcell: Visioni, Vision2, Roboti, AGV2, AGV5;

107

Chapter 6. Implementation and Case Study 108

Task demands and component loads:

Robot AGV Vision Component
Staon Shift

IL1/4
Component Current Capacity Load
Undercapacity Load Shortage Transter

Vision lVision 4 Robot lACy 5 AGV 2 Cvhng
Demand

Vi&on2 Robot 2 AGV3AGV4 Grading
Demand

Vision 3Robot 3Robot 4 AGV I AGV S Packaging
Demand

FPS configurations:

1’
I

I

C) Cutting (Z)Machine

iIf’_ (\1
a

__;

“3á 4

_

I

I Packaging I
Machine I

flHiIHiI IIIILIL[LiIii1fl

Figure 6.1: A Model of a Flexible Production System (FPS)

Chapter 6. Implementation and Case Study 109

• Grading workcell: Vision4, Robot4, AGV1, AGV6;

• Packaging workcell: Vision3, Robot2, Robot3, AGV3, AGV4.

The normal operating conditions, which may be considered as the initial stage for

restructuring, is illustrated by the chart of Figure 6.1, in which, the dotted and the solid

areas indicate the capacity and the load, respectively, of a component. The component

loads are assigned according to the process demand (task demands) by the load planner.

The demand levels are assigned to be 100% in this stage of normal operation, as shown in

the figure. Therefore, the loads in the normal production stage are actually representative

of the load planning factors.

6.2 Implementation and Operation of the Restructuring System

6.2.1 Rule Bases

In the fuzzy decision making level, rulebases of load sharing and component releasing

are given in an object level, which means that the rules are designed separately from the

decision making procedure. The rule base of load sharing is represented as:

Chapter 6. Implementation and Case Study 110

OC—ho fl UC-+na —* .sharing(OC, UC) with 0.9.

OC-ho fl UC-hu —* sharing(OC, UC) with 1.0.

OC—ho fl UC-mu —, sharimg(OC, UC) with 0.9.

OC-ho fl UC-+lu —* sharing(OC, UC) with 0.7.

OC-mo fl UC-ina —* sharing(OC, UC) with 0.9.

OC-mo fl UC-Jiu —* sharing(OC, UC) with 0.9.

OC-mo fl UC—÷mu —* sharing(OC, UC) with 0.7.

OC-mo fl UC-lu —* sharing(OC, UC) with 0.7.

OC—lo fl UC-+na —, sharing(OC, UC) with 0.6.

OC-1o fl UC—+hu — sharing(OC, UC) with 0.6.

OC-lo fl UC—mu —+ sliaring(OC, UC) with 0.7.

OC-lo fl UC-lu —* sharing(OC, UC) with 0.7.

Note that there are two preconditions for the rules: 1. OC UC; 2. OC and UC are

of a same type. There are several methods to check the preconditions, one of which is to

check the two components before calling the rule, another one is to add the preconditions

as bodies of the rules in Prolog. The rulebase for component releasing is shown below:

UR-hu fl UL—hu —* releasimg(UR, UL) with 1.0.

UR-hu fl UL-mu — releasing(UR, UL) with 0.9.

UR-hu fl UL-lu —, releasing(UR, UL) with 0.7.

UR-mu fl UL-hu —+ releasing(UR, UL) with 0.7.

UR-mu fl UL—mu —* releasimg(UR, UL) with 0.6.

UR-mu fl UL-lu — ‘releasing(UR, UL) with 0.6.

UR-lu fl UL-hu —* releasing(UR, UL) with 0.6.

UR—lu fl UL-+mu —* releasing(UR, UL) with 0.6.

UR—lu fl UL-lu —* releasing(UR, UL) with 0.6.

Chapter 6. Implementation and Case Study 111

The same preconditions apply here. Note that, the component property in the above

rules is implicitly “the component status”.

6.2.2 Separation of Knowledge from Reasoning Procedure

As the rule bases show, the knowledge about dynamic restructuring is represented inde

pendently of the use of the knowledge which is implemented by the inference engine, for

example, fuzzy associative memory (fam). The same is true of the knowledge sources

and the control unit in the first-level decision making; and also the heuristics and the

search drive restructuring in the second level. This kind of separation has the advantages

that the system could be expanded easily, and the reasoning procedure could be modified

for different requirements. The fact that the knowledge is represented in a descriptive

manner makes the knowledge-based system quite different from conventional programs.

6.2.3 Panorama of Restructuring

Restructuring begins at the first level (Figure 3.1) by checking the system status and

deciding whether to call for a restructuring action. Basically, the blackboard system is

activated by the changes of data which typically are a change in the task demand or a

change in the status of FPS operation. These changes usually trigger the load distributing

and system evaluating knowledge sources, so as to update the current component loads,

load-transfer feasibility indices and component status. Any of these data changes will

definitely call for a check to determine the possibility of restructuring.

Selecting an action is a procedure of search. Due to complexity of the problem and

fuzziness of the final goal, normal search methods are not practical here. Heuristics are

developed, which trim the search space, and limit the search space to only one kind of

actions at a restructuring stage. For actions (of the same kind) in a trimmed space, a

fuzzy decision maker provides the optimal decision.

Chapter 6. Implementation and Case Study 112

After an action has been selected, the load to be transferred in the action will be

determined. Then the action is executed, and the corresponding sharing and releasing

relations will be recorded. This execution may make further changes in the blackboard,

and in turn trigger some more knowledge sources, and the control will return to the

blackboard (the first level).

This cycle repeats until the decision maker failed to pick an acceptable action. (A

threshold of assessment value should be set for actions.) In this case, a reporting proce

dure (KS of “output”) will be called. If there is no component overloaded, the system is

desirable. This may mean to satisfy two conditions: 1. no component is overloaded; 2.

no undercapacity pair could provide a component release — components work close to

their full capacity. Consequently, the system restructuring succeeds. If there is still an

overload, clearly, the restructuring has failed. To show the practical application of the

approach, some restructuring case studies will be considered in the following sections.

6.3 Restructuring Due to Change of Demand

Any change to the demands causes the KS of “Load Planning” to trigger. This KS

will be executed in the subsequent control cycle. It will then change the blackboards of

“Workcell Information” and “Component Information”, which will trigger the knowledge

sources of “Updating of Sharing Feasibility” and “Restructuring”. Due to the preset

priorities, the KS of “Updating of Sharing Feasibility” will be fired first to modify the

BB of “Sharing Feasibility”. After all the presettings are made, the FPS will be restruc

tured according to the information in the blackboard. The KS of “Restructuring” may

change the blackboards of “Workcell Information” and “Component Information”, and

also may post restructuring commands on the blackboard. Restructuring feasibility will

be checked. The change in the information about the workcells and components may

Chapter 6. Implementation and Case Study 113

trigger some knowledge sources to confirm that the load has been properly distributed.

The change of restructuring commands will trigger the output KS. Finally, the system

will become idle again, for steady operation of the FPS.

As an example, suppose that the cutting demand drops by 40% due to a reduction

in the raw material supply, (say at the end of a fishing season), and the grading demand

is increased by 50% in order to reduce an existing backlog. Only the fish of high grade

are packaged, and the low grade fish may be used for canning. Therefore, suppose that

according to the current market demand, the packaging load is maintained at the previous

level.

The conditions due to these changes in task demand are shown as “Phase II Transi

tion” in Figure 6.2. Clearly, Robot2, AGV3, and AGV4 will be overloaded, resulting in

a capacity shortage. Also Visionl, Vision4, AGV2, and AGV5 now operate well below

their full capacity. The component status is updated as follows:

component(robot4, workstatus, [(lu,1)]).

component(visionl, workstatus, [(mu,O.8),(hu,O.6)]).

component(vision4, workstatus, [(mu,O.8),(hu,O.6)]).

component(robotl, workstatus, [(lu,O.8),(mu,1)]).

component(agv2, workstatus, [(mu,O.8),(hu,O.6)]).

component(agv5, workstatus, [(mu,O.8),(hu,O.6)]).

component(vision3, workstatus, [(ok, 1)]).

component(robot3, vorkstatus, [(ok, 1)]).

component(agvl, workstatus, [(ok,1)]).

component(agv6, workstatus, [(ok,1)]).

component(vision2, workstatus, [(ok,1)]).

component(robot2, workstatus, [(io,i)]).

Chapter 6. Implementation and Case Study 114

Phase I:

AGV VW Ccopcmt
Sttk. 521*

I :i ,‘

Con41enl CU.Te Cpfty Load
Capacy Lo Sht2g2 Traf2r

V1 Y4 P.Obd I AGVS SV2 Cdli,.

Q 0

I111
.2 fl212 AGVI*GV*

r
j;::j ij

IJjjfl[
Csw,3 Mdli! R.2214 CCVI CCCI

Pkaging
M.hina

\I i:j::j ,)

(lion! R*bol! Mobolli CCVI CCVI Pod.g..g

Phase Transition: (cutting -40%, grading +50%, packaging 0%)

tiinii11111TL1
Cdo.II C.io,,* RObot ¶ MCVI CMVI Cot,.’. Vii,, 2 RObot I CCV S AGVA ClOut,1

o I Grodi.9

“‘ ‘.J’ Mot1non]j i

Phase III: (Restructrured)

I Pk.gk,g
Me

t[1h1flJfl[LflJfli
M.o,,l Roboll AliVe Oh,0 %tootI2 Robot! MCVI nOVA AMY! G..do,

Domed D.’o.’,d

(.,,b.
•g1,2• (i

(+ +

MhiOfl I Robot S Robot A CCVI CCVI P.C..go,g

I PekCin

Figure 6.2: A Case Study: the Simulation of a Demand Change

Chapter 6. Implementation and Case Study 115

component(agv3 workstatus, [(mo,O.75),(lo,O.25)]).

component(agv4, workstatus, [(mo,O.75),(lo,O.25)]).

This representation uses the predicate component which is declared in Section 3.

The value of the workstatus is a fuzzy set. For example, [(mo, 0.75), (lo, 0.25)] in

component(agv4, workstatus, [(mo, 0.75), (lo, 0.25)]) means agv4 is moderately overloaded

(mo) with a belief degree of 0.75, and lightly overloaded (lo) with a belief degree of 0.25.

Sharing feasibility is checked for pairs of component in a group of sharable compo

nents. Here, factors such as component reliability, geographical position of the compo

nents, and operating cost, will be considered. The following feasibility matrix is used

here:

roboti robot2 robot3 robot4

roboti 0.00 0.92 0.90 0.81

robot2 0.92 0.00 0.95 0.85

robot3 0.90 0.95 0.00 0.90

robot4 0.81 0.85 0.90 0.00

The matrix gives the feasibility values of sharing workloads between pairs of robot.

An example is that the feasibility value of sharing a workload between robot 1 and robot2

is 0.92 in a scale of [0, 1].

Now, the KS of “Restructuring” is triggered. The following are some intermediate

results showing the decision making procedure:

(1). Component releasing action.

FIND undercapacity components of vision: [visioni ,vision2,vision3,vision4]

To find all possible actions for visioni within workcells.

action: releasing(visionl ,vision4)

Chapter 6. Implementation and Case Study 116

priority= 0.538

feasibility = 0.9

assessment = 0.48

To find all possible actions for vision2 within workcells.

To find all possible actions for vision3 within workcells.

To find all possible actions for vision4 within workcells.

action: releasing(vision4,visionl)

priority= 0.538

feasibility = 0.9

assessment = 0.48

The best action is releasing(vision4,visionl); assessment = 0.48

This action can be executed!

Load (transferred) for action releasing(vision4,visionl) is: 36.0

*** execute action:releasing(vision4,visionl)

Here, the procedure shows how the restructuring planner makes a decision using

the heuristic of releasing a component within a workcell. A group of undercapacity

vision stations is found, and then the possible actions of releasing a vision station are

assessed. This is done by mutipling the sharing feasibility value by the priority value,

which is obtained by using the technology “fuzzy associative memory”. A threshold

value that is appropriate for this type of actions is 0.4. Note that, the threshold value

depends on the definition of membership function of priority. Finally, an action will be

selected for executing, if its assessment value is higher than the treshold. In this case,

the releasing(visiom4 , visionl) is chosen. The load of the to-be-released component will

be transferred to the other one.

(2). Component sharing action.

Chapter 6. Implementation and Case Study 117

FIND all overloaded components of robot: [robot2]

To find all possible actions for robot2 between workcells.

action: sharing(robot2, 1)

priority = 0.4

feasibility = 0.92

assessment = 0.368

action: sharing(robot2 ,robot4)

priority = 0.4

feasibility = 0.855

assessment = 0.342

The best action is sharing(robot2,robotl); assessment = 0.368

This action can be executed!

Load (transferred) for action sharing(robot2,robotl) is: 20.0

*** execute action: sharing(robot2,robotl)

This is similar to the decision making process that was used for component releasing.

The differences are: 1. The threshold is set to a much lower value (here, it is 0.2), because

any overloaded component should be shared; 2. The load to be transferred is determined

by the work status of both components.

Similar procedures are used for other actions. At the end, none of the actions will be

executed since their assessment values would below the threshold value. Then the planner

will check the blackboard, calculate the cost function, and report the restructuring result:

PLANNING RESULT

plan: releasing(vision4 ,visionl)

plan: releasing(agv5 , agv2)

plan: sharing (robot2 ,robot 1)

Chapter 6. Implementation and Case Study 118

plan:shifting(agv5,from(cutting) ,to(grading))

plan: sharing(agv4 , agv5)

plan: sharing(agv3 ,agv5)

Restructuring succeeds; The cost function is: J0.729.

The final result of restructured system is illustrated as Phase III in Figure 6.2.

6.4 Restructuring Due to Change of Sharing Feasibility

An example is given now to show how the feasibility values can affect the restructuring

results. The same three-workcell fish processing system as in the previous case study, and

the same initial (normal) operating conditions are used here. This time, however, suppose

that Robot 1 is partly damaged (say, its network-communication system is operating at a

reduced speed). Consequently, its sharability is assumed to be reduced, as shown in the

feasibility matrix below:

roboti robot2 robot3 robot4

roboti 0.00 0.28 0.27 0.24

robot2 0.28 0.00 0.95 0.85

robot3 0.27 0.95 0.00 0.90

robot4 0.24 0.85 0.90 0.00

The feasibility change is considered when the planner selects a robot for sharing the

load of Robot2. The decision making procedure is outlined below:

FIND all overloaded components of robot: [robot2]

To find all possible actions for robot2 between workcells.

action: sharing(robot2 ,robotl)

priority = 0.4

Chapter 6. Implementation and Case Study 119

feasibility = 0.276

assessment = 0.11

action: sharing(robot2 , robot4)

priority = 0.4

feasibility = 0.855

assessment = 0.342

The best action is sharing(robot2,robot4); assessment = 0.342

This action can be executed!

Load (transferred) for action sharing(robot2,robot4) is: 20.0

*** execute action: sharing(robot2 , robot4)

The above procedure is quite similar to the previous one, but with a different result,

since the sharing feasibility of the pair (robot2, robotl) has been reduced. As a result,

the second action, .sharing(robot2, robot4), is chosen instead of sharing(‘robot2, robotl).

The final result is shown in Figure 6.3, and the output is given below:

PLANNING RESULT

plan:releasing(vision4,visionl)

plan: releasing (agv5 , agv2)

plan: sharing (robot2 , robot4)

plan: shifting(agv5 ,from(cutting) ,to (grading))

plan: sharing(agv4 , agv5)

plan: sharing(agv3 , agv5)

Restructuring Succeeds; The cost function is: J0.777.

The higher value of the cost function for this second case is justifiable in view of the

degraded performance of a workcell component. Also, note that the final outcome (Phase

III of Figure 6.3) now is somewhat different from what was realized in the previous case

Chapter 6. Implementation and Case Study

(‘?_
EE +

,ts__I I:L_)

pit AGV l/talon Cponent
Station shift

Cernponent Current Capacity Load
Capacity Load Shortage Transfer

thU1
V&onleamt* O.bOIIA005 *002 CU*,g

Phase II Transition: (cutting -40%, grading +50%, packaging 0%)

ttiLIjLjJIj[I[I1
014012 Robot? AGO) AGV* 0,0*119 0*0110 Robots 00*014 *001 01002 P1010)11)

0and

tiiiiil 1111111
SOlon Robot loGy, *004 *000 01.0100 VoanO Robots 50*00* *001 *00)

tii• ii
Veal, 00*001 01405) 01000

s

___ ___

EL +) I
— i,) I — I ,

120

Phase I:

ti
V00t101D0114 000001*000 0140*? 0400)

0.11)1*

7

pn0p

‘r

tii[Li1111111
Roan? Robot? 0*03*004 01.* 9.000 Robot? 50000* *0010 *00)

I Pankagoo
tdaul*oe

— 2

EL +)
-- --,

Phase Ill: (IRestructrured)

1?‘
I Pachiging

MaeStRo

-

/11

Figure 6.3: A Case Study: the Simulation of a Change of Sharing Feasibility

Chapter 6. Implementation and Case Study 121

(Phase III of Figure 6.2) for the same starting and transition conditions, which is a direct

result of the change in feasibility parameters of component sharing.

6.5 Summary

A full view of restructuring of a flexible production system was given, which explained

the mechanism of decision making of dynamic restructuring. Computer simulations were

given to demonstrate the application of the method to a fish processing system. What

should be particularly mentioned is that, since the fuzziness of a goal was introduced, the

restructuring system acquired some tolerance to non-desirable situations, so as to avoid

too frequent restructuring.

Chapter 7

Conclusions and Future Work

This chapter will give a summary of the thesis. The main contribution of the research will

be highlighted. It will also indicate some possible work for future study on the present

topic.

7.1 Conclusions

A novel method for use in the high-level automation of production systems — dynamic

restructuring of flexible production systems — has been developed in this thesis. The

problem has been formulated as one of reassociating components to workcells, in order to

deal with changes in system operating conditions. Uniformity and optimality of process

operation is targeted in this manner, through system restructuring. The fuzziness of a

restructuring goal, which results in multiple solutions, is particularly emphasized. This

feature determines the use of data-driven proofs and the requirement of optimization in

problem solving.

A three level decision making system is proposed by considering fuzziness, complexity

and non-analytical nature of the problem. The problem solver makes programmatic

decisions and detailed decisions in different levels, thereby making the system direct,

reliable, somewhat modular, and capable of utilizing different methods of knowledge

representation and reasonings.

The first level adopts a blackboard architecture, in which different types of knowledge

sources are employed for updating of system information, evaluation of system status

122

Chapter 7. Conclusions and Future Work 123

and decision making for restructuring. The independence of knowledge sources provides

a dexterity or flexibility in knowledge representation, and enables the use of various

reasoning methods. Therefore, the system is readily extendable and maintainable. The

mechanism of opportunistic reasoning is quite helpful in coping with complexity and

variety of system operating conditions.

Heuristics for different cases are developed in the second level in which an inference

engine directly applies heuristics, according to their order of priority.

The third level makes the most detailed decisions on selecting a specific action using

fuzzy sets and associated technologies. Both the system status and the restructuring

knowledge (rules) are evaluated with respect to a validity degree or belief value. The

fuzzy decision making is based on the assessment of actions which uses techniques of

fuzzy associative memory.

Knowledge is represented separately from the reasoning procedure which uses that

knowledge. Also, different reasoning strategies are employed for different cases. Black

board system provides opportunistic reasoning so as to adapt the system to various,

unexpectable events. In the second level of decision making for restructuring, an ordered

search is quite suitable. This method, together with the third-level decision making, gives

a practical and somewhat optimal approach in selecting actions for system restructuring.

The dynamic restructuring system has been implemented in Prolog. Case studies

have been presented that applies the technique to a flexible fish processing system, in

computer simulation. The results were found to be quite encouraging.

7.2 Main Contributions

The main contribution of the research is in the development of a new technique that will

assist in high-level automation of flexible production systems. In particular, a technique

Chapter 7. Conclusions and Future Work 124

for dynamic restructuring of flexible production systems has been developed. From the

methodology development to detailed implementation, the thesis emphasizes on emula

tion of human problem solving through the means of advanced technologies in artificial

intelligence, control engineering, and fuzzy logic. In particular, the following contribu

tions have been made:

1. Formulated and represented the dynamic restructuring problem;

2. Developed or identified proper problem solving methods, by considering special

characteristics of the problem;

3. Developed a problem solving architecture;

4. Successfully adopted blackboard techniques to the dynamic restructuring problem;

5. Abstracted effective heuristics for the restructuring problem;

6. Designed a fuzzy decision making system for the restructuring; and

7. Implemented the developed techniques through computer simulation of an indus

trial process, demonstrating their use in high-level automation.

7.3 Future Work

Not addressing the complement research on related knowledge sources (KS), such as

sensing and capacity planning, the developed approach for dynamic restructuring still

needs to be improved in several ways.

A learning mechanism could be used for training rule belief values for better decision

making in selecting a proper action. A basic idea would be to give a full set of rules

in which those practically impossible (to human) rules are initially assigned zero belief

Chapter 7. Conclusions and Future Work 125

degrees. Therefore, adding rules and retracting rules may be incorporated as changes in

belief values. Fuzzy neural networks could be employed for this purpose.

Since fuzzy membership functions are represented as trapezoids (see figure B.1) by

specifying the four corners in the form of a list in Prolog, it is difficult to have a universal

representation of arbitrary membership functions in this format. Fuzzy logic operations

could be represented in C code to avoid this limitation of Prolog.

System integration is another major project which has to be carried out in any practi

cal implementation of the approach. Component sharings should be scheduled properly,

and hand-shaking signals and other communication should be well planned and designed.

The transfer of the developed technology to appropriate industries is also an important

aspect of this research, which needs to be carried out.

Bibliography

[1] Aström, K.J. and B. Wittenmark, (1989), Adaptive Control, Addison-Wesley, Read
ing, Mass.

[2] Bench-Capon, T.J.M., (1990), Knowledge Representation: an Approach to Artificial
Intelligence, Academic Press, San Diego, CA.

[3] Campbell, J.A. and J. Cuena, (1989), Perspective in Artificial Intelligence, Ellis
Howwood Ltd, GB.

[4] Chang, T.C., (1990), Expert Process Planning for Manufacturing, Addison-Wesley
Publishing Company.

[5] Chryssolouris, G., M. Dpmroese, and P. Beaulieu, (1992), Sensor synthesis for con
trol of manufacturing processes, ASME Trans. Engineering for Industry, Vol. 114,
ppl58.

[6] de Silva, C.W., A.G.J., MacFarlane, (1989), Knowledge-Based Control with Appli
cation to Robots, Springer-Verlag.

[7] de Silva, C.W., (1991a), Fuzzy information and degree of resolution within the
context of a control hierarchy, Proc. IEEE IECON’91, Vol.2, pp1590-95.

[8] de Silva, C.W., (1992), Research laboratory for fish processing automation, Interna
tional Journal of Robotics and Computer-Integrated Manufacturing, Vol. 9, pp49-60.

[9] de Silva, C.W., (1993a), Soft automation of industrial processes, Engineering Appli
cations of Artificial Intelligence, Vol. 6, pp. 87-90.

[10] de Silva, C.W., (1993b), Knowledge-based dynamic structuring of process con
trol systems, Proc. Fifth International Fuzzy Systems Association World Congress,
Seoul, Korea, Vol.11, pp1137-1140.

[11] de Silva, C.W., (1993c), Hierarchical processing of information in fuzzy logic control
applications, Proc. 2nd IEEE Conference on Control Applications, Vancouver, BC,
Vol.1, pp. 457-461.

[12] de Silva, C.W., and J. Gu (1994), An intelligent system for dynamic sharing of
workcell components in process automation, Engineering Applications of Artificial
Intelligence (In Press).

126

Bibliography 127

[13] de Silva, C.W., (1994a), Intelligent Control: Fuzzy Logic Applications, CRC Press,
Boca Raton, FL. (To be published).

[14] de Silva, C.W., (1994b), Automation Intelligence, Engineering Applications of Arti
ficial Intelligence, Vol.7, 1994 (In Press).

[15] Dubois, D. and H. Prade, (1980), Fuzzy Sets and Systems. Academic Press, Orlando,
FL.

[16] Engelmore, R.S. and T. Morgan (1988) (eds), Blackboard System, Addison-Wesley,
Reading, Mass.

[17] Fayyad, K.E. and R. Kass, (1991), Task dependency modeling to support assembly
plan design, Proc. IEEE 7th Conference on Al Application, pp2i2-2i6.

[18] Ceorgeff, M.P. (1987), Planning, in J. Allen, J. Hendler and A. Tate (eds), Readings
in Planning, Morgan Kaufmann, San Mateo, CA, 2:359-400.

[19] Gruver, W.A., (1994), Intelligent robotics: an applications overview, IEEE Trans.
on Industrial Electronics, Feb. 1994.

[20] Cu, J. and C.W., de Silva, (1994a), A procedure for dynamic sharing of compo
nents in multiple-workcell process plants. Proc. 199 American Control Conference,
Baltimore, MD, Vol. 1, pp. 289-93.

[21] Cu, J. and C.W. de Silva (1994b), Dynamic restructuring of flexible production
systems. Proc. IFAC Symp. on Intelligent Components and Instruments for Control
Applications , Budpest, Hungry, pp.71-76.

[22] Cu, J. and C.W. de Silva (1994c). Fuzzy decision making in variable-structure control
systems. Proc. ASME’94 Congress, Chicago, IL. (In press).

[23] lizuka, Y. and H. Tsuji, (1988), A computer system configuration design expert
system: IDEA/C, Proc. International Workshop on Al for Industrial Application,
pp442-447.

[24] Jaeschke, R., (1993), C++ : An Introduction for Experienced C Programmers, CBM
Books, Horsham, PA.

[25] Jagannathan, V., R. Dodhiawala and L.S. Baum (eds) (1989), Blackboard Architec
ture and Applications, Academic Press, Boston.

[26] Janko, W.H., M. Roubens, and H.J. Zimmermann, (eds) (1989), Progress in Fuzzy
Sets and Systems, Kiuwer Academic, Boston.

Bibliography 128

[27] Kosko, B., (1992), Neural Networks and Fuzzy Systems: A Dynamic Systems Ap
proach to Machine Intelligence, Prentice Hall, Inc., NJ.

[28] Kosko, B., (1993), Fuzzy Thinking : The New Science of Fuzzy Logic, Hyperion,
New York.

[29] Kovacs, G. and I. Mezgar, (1991), Expert systems for manufacturing cell simulation
and design, Engineering Application of Artificial Intelligence, Vol.4, pp417-424.

[30] Leong, K.T., S.K. Sim, and Y.W. Chan, (1991), BESMED: a blackboard knowledge-
based approach to integrate mechanical design, Engineering Application of Artificial
Intelligence, Vol.4, pp205-220.

[31] Levesque, H.J., (1986), Knowledge representation and reasoning, in Annual Review
of Computer Science, 1:255-87.

[32] Luger, C.F. and W. A. Stubblefield, (1992), Artificial Intelligence : Structures and
Strategies for Complez Problem Solving, Benjamin/Cummings Pub. Co., Redwood,
CA.

[33] Newell, A., (1962), Some problems of the basic organization in problem-solving
programs, Proceedings of the Second Conference on Self-Organizing Systems, pp393-
423, Spartan Books.

[34] Nicholson, H., B.H., Swanick, (eds) (1985), Self-Tuning and Adaptive Control: The
ory and Applications, Peter Peregrinus Ltd, New York.

[35] Pang, G.K.H, (1989), A blackboard system for the off-line programming of robots,
Journal Intelligent Robotic Systems. Vol. 2, pp. 425-44.

[36] Pang, G.K.H, (1991), A framework for intelligent control, Journal Intelligent Robotic
Systems. Vol. 4, pp. 503-12.

[37] Pau, L., (1989), Knowledge representation approaches in sensor fusion, Automatica,
Vol. 25, pp. 207-14.

[38] Poole, D., A. Mackworth, and R. Goebel, (1993), Computational Intelligence : A
Logical Approach, Department of Computer Science, University of British Columbia,
(draft).

[39] Reiter, R., (1991), The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression, in V. Lifschitz (Ed.),
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, Academic Press, pp. 359-380.

Bibliography 129

[40] Saridis, G.N., (1977), Self-Organizing Control of Stochastic Systems, M. Dekker,
New York.

[41] Simon, H.A., (1977), Scientific discovery and the psychology of problem solving,
Models of Discovery, Reidel, Boston, MA.

[42] Sterling, L. and E. Shapiro, (1986), The Art of Prolog: Advanced Programming
Techniques, The MIT Press.

[43] Tempelmeier, H., H., Kuhn, (1993), Flexible Manufacturing Systems : Decision
Support for Design and Operation, Wiley, New York.

[44] Turner, R., (1984), Logics for Artificial Intelligence, Haisted Press, New York.

[45] Vollmann, T.E., L.B. William, and D.C. Whybark, (1992), Manufacturing Planning
and Control Systems, Business One Irwin, 3rd Edition.

[46] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, Vol. 8, pp. 338.

[47] Zadeh, L.A. and 3. Kacprzyk, (eds) (1992), Fuzzy Logic for the Management of
Uncertainty, Wiley, New York.

[48] Zhou, Q.J. (1985). The robustness of an intelligent controller and its performance.
Proc. lEE International Control Conference, Vol. 1, pp. 429-33.

Appendix A

Logic Programming

Prolog which stands for PROgramming in LOGic is an implementation language of logic

representation and reasoning of knowledge using first order predicates. Essentially, Prolog

allows the writing of programs as sets of “Horn Clauses” [42, 44] (see next section for a

definition), and executes these programs by means of resolution, applied in a top-down

manner, the effect of which is similar to the operation of a goal driven system, using a

depth-first search strategy.

A.1 Horn Clauses

Horn Clauses are a subset of first-order predicate calculus. They are sentences in clausal

form but which contain at most one literal on the left hand side (LHS). In particular,

the following are all Horn Clauses:

Clausel: P +— QflR

Clause 2: P —

Clause 3:

Clause 4: 0

Horn Clauses are important to logic programming because they are much more com

putationally tractable than full clausal forms. Consequently, there is a strong incentive

to sacrifice the expressiveness of full clausal forms to achieve these computational gains.

130

Appendix A. Logic Programming 131

A.2 Syntax of Prolog

1. Conjunction of predicates is written as a comma ‘,‘;

2. Disjunction of predicates is written as a semicolon ‘;‘;

3. All clauses end with a period ‘.‘;

4. Constants and predicate names begin with a lower case letter;

5. Variables begin with an upper case letter;

6. Parameters to predicates are enclosed in brackets and separated by commas;

7. Lists of terms are written in square brackets and the terms are separated by com

mas;

8. The symbol 9’ is used to separate the tail of a list.

A.3 Resolution and Unification

When a query is issued, the system tries to prove the goal (the query) by a process of

search and unification. Prolog selects clauses by trying them in the order they appear

in the database, and evaluates the clauses in the body of the Horn Clause from left to

right.

For example, suppose that we have the database:

father(tom, david).

parent(david, mary).

grandfather(X, Y) — father(X, Z),parent(Z, Y).

Appendix A. Logic Programming 132

If the query is 7-father(Who, david), the first clause will match the query by unifying

Who to torn, so as to give an answer Who = torn. If “who is mary’s grandfather” is

the query, i.e., ?-grandfather(Who,mary), the third clause will be called to achieve the

goal by instantiating Y to mary and unifying X to Who. Note that X and Who are

still free variables, but if either of them is fixed to a constant, the other one should also

be fixed to the same value. Now the predicates in the body of the third clause will be

verified from left to right: father(X, Z) will match father (torn, david) by instantiating

X to torn and Z to david. Thus, all variables will be instantiated. The second predicate

in the body of the third clause will be instantiated to parent(david, mary) which will

succeed since it exists as a fact. Finally, the goal will be achieved by Who = torn.

In general, unification has the following forms:

1. A free variable unifies another free variable;

2. A free variable unifies a constant (numeric or symbolic), which is known as instan

tiating a variable to the constant;

3. Two identical constants always unify.

A.4 Prolog for AT Programming

Prolog provides a means to represent knowledge independent of the use of that knowledge.

Only the logic relations are represented by a set of Horn clauses, whereas deductive

reasoning is implemented by a built-in inference engine. As an example, a member of a

list can be described as follow:

member(X, [XT]).

mernber(X, [HIT]) — X L H,member(X,T).

Appendix A. Logic Programming 133

The first clause gives an instance that if X is a head of a list, it is a member of the

list; the second clause completes the description: if X is not the head of a list, but is a

member of the tail, it is still a member of the entire list.

A.5 Non-logic Features

As a practical programming language, Prolog has some non-logic features. Specifically,

it provides the following:

1. Input and output, which are necessary for user interface;

2. Database operations, which assert new knowledge to a database or retract old

knowledge from the database;

3. Controls, which may cut (!) a branch in the search path or force a search to fail

(fail);

4. Negation, which can be implemented as a failure of proof using “cut” and “fail”.

not(P) — P,!,fail.

not(P).

Non-logic features make Prolog powerful in practical programming. However, abuse

of these features may weaken the advantages of logic programming.

Appendix B

Intended Interpretation of Prolog Predicates

Some important Prolog predicates developed in the dynamic restructuring system are

listed below with intended interpretations.

X—S1flY-.S2—--+A: This is an objective level rule, which means A is the conclusion

under conditions that component X has status Si and component Y has status

S2.

R with B: True if the rule R has the belief degree B.

ask(O, P, V): Asks the user the value V of property P of Object 0.

assessment(A, VD, V): Provides an assessment value V of action A where VD (va

lidity value) is one factor, and another one being the feasibility index is obtained

from the blackboard.

assumable(O, P, V): True if object 0 holds the default value V for property P.

belief_calculate(X, S, P): True if P is the membership grade of X belonging to a fuzzy

set S, which has the shape defined by [A, B, C, D], as explained in the predicate

memiunction/2.

best(As, A, PD): True if A is the best (in terms of priority or validity value) in the

set As, where PD is the priority value of A.

i34

Appendix B. Intended Interpretation of Prolog Predicates 135

best_action(CL, A, PD, Flag): To find the best action A for all components in a list

CL according to the flag Flag, where PD is the priority degree of action A, and

Flag takes values “within” a workcell or “between” workcells.

centeroid(P, MF, A, M): True if A and M are area and the first moment of a fuzzy

quantity P, where MF is the corresponding membership functions of P.

collect_triggered..ES(KSs): True if KSs is a list of all triggered knowledge sources.

combine(X, L, LN): True if LN is the combined list of X and a list L, where X and

the elements of L and LN take the form (fuzzySetName, membership Grade). If

X already exists in L, use “max” interpretation to merge X into L. Otherwise,

append X to L.

component(O, P, V): True if V is the value of property P of component 0. (a black

board)

control: Blackboard controller.

decision(E, A): To select an action A with the highest assessment value from all pos

sible actions under the situation expressed by E, and using the installed decision

making knowledge (rules).

defuzzify(PD, FL, PDV): True if PDV is the crisp value obtained through defuzzi

fying the fuzzy variable PD using membership functions FL.

determineioad(A, LD): Determines the load LD which is to be transferred in carry

ing out the action A.

distance((A,B), D): Calculates the distance D between the workcells A and B.

evaluate_workstatus: Functional procedure of the KS “evaluating component status”.

Appendix B. Intended Interpretation of Prolog Predicates 136

executeJ(S(KS): Executes a knowledge source KS.

expand(N, V, CT): Fuzzy variable N which has value V is expanded into a set of

propositions CT.

expand...and(A,B,Z): True if Z is the result of the fuzzy conjunction of A, and B.

expand_not(A, B): True if B is a set of negative elements of A.

expand_or(A,B,Z): True if Z is the result of the fuzzy union of A, and B.

fam(S, A, VD): Calculates the validity value VD of the action A under conditions of

S which is a proposition set in which all propositions are treated as parallel.

feasibility(P, V): True if V is the feasibility index of load sharing of a pair of com

ponents F, which has the form (Cl, C2) where Cl and C2 are components of the

same type. (A blackboard)

fps: Functional procedure of the KS “updating of system information”.

free(C): True if component C is load free.

fuzzify(V, MF, F): F is a fuzzy value obtained through fuzzification of the crisp value

V based on a fuzzy descriptor of which the membership functions are MF.

get_property(O, P, V): To report the value V of property P which is associated with

object 0. It may instruct a user to complete the information of an object if the

property value is required but not given in the database.

group(G): True if G is a group of components.

Appendix B. Intended Interpretation of Prolog Predicates 137

group_components(S, T, CL): True if CL is a list of all the components of type T

which have the status S, where S is a flag indicating “overloaded” or “undercapac

ity” conditions.

heuristic(A): True if A is an action deduced from heuristics.

holds(O, P, V): True if object 0 holds property P at value V.

ks(KS, P, V): True if V is a value of property P associated with a knowledge source

KS.

load_distributing: Functional procedure for the KS “workload planning”, which gen

erates the capacity requirements for the overall FPS.

make_virtual(RC, VC): Makes a virtual component VC which is a copy of all prop

erties of the component RC, but with zero capacity.

mem_function(N, L): True if L is the membership functions of a fuzzy descriptor N.

L is in the form of [(fuzzySetName, [A, B, C, Dj)IOthersets] where A, B, C, and

D are points which define the shape of the membership function of a fuzzy set

named fuzzysetname. In particular, A corresponds to the beginning point of this

set, B to the first point where its membership grade value is 1, C to the last point

where its membership grade value remains 1, and D to the last point of this set.

(see Figure B.1)

modify_cell_property(W, P, V): Changes the value of property P to V, which is

associated with the workcell W, and triggers the knowledge sources which have

inputs from this property blackboard.

modify_comp_property(O, P, V): Changes the value of property P to V, which is

associated with component 0, and triggers the knowledge sources which have inputs

Appendix B. Intended Interpretation of Prolog Predicates 138

0

Figure B.1: The Representation of Membership Functions

from this property blackboard.

move(C, from(W), to(W1)): Moves the component C from workcell W to workcell

Wi.

move_component(C, W, Wi): Moves component C from workcell W to workcell Wi.

(physical action)

not_overloaded(OC, L): True if component OC is not overloaded when the loads L

(a list) are assigned to it.

op(P, R, N): Defines an operator N at precedence level F, and an associative relation

R, where R has the form of xf, fx and xfx with f standing for operator and

for operand. Note that x may be replaced by y which can contain operators of the

same level as F, while x can contain operators of lower precedence only.

optimal_action(A): True if A has the highest assessment value in the current database.

output: Functional procedure of the KS “output of restructuring plans”.

overload(Ci, F, C2): True if Cl and/or C2 are overloaded according to the flag F

which takes the values “and” / “or”.

plan(P): True if P is an action in the restructuring plan (A blackboard)

Appendix B. Intended Interpretation of Prolog Predicates 139

possible_actions(C, Flag): Finds and stores in a dynamic database all possible actions

which can be applied to component C according to flag Flag, which has the values

“within” and “between”.

record(R): True if R is a recorded, sharing status reached due to a restructuring action.

releasing(C1, C2): Releases the component Cl by transferring its load to component

C2.

released(VC, C2, Load): True if Load is the load transferred from a released compo

nent to C2, where VC is a virtual component, recording properties of the released

component.

remove(R): Removes a record R.

remove_KS_trigger(KS): Sets the trigger status of the knowledge source KS to “off”.

remove_zero_degree(S1, S2): True if S2 is the remaining part of the fuzzy value 51

after its all zero-grade elements are removed.

report_cost_function: Calculates the cost function of the restructuring system, and

reports the value.

report_restructuring_failur(C): True if component C is overloaded.

report_restructuring_plan: Reports the designed restructuring plan.

restructuring: Functional procedure of the KS “restructuring”.

select_highest_PR(KSs, KS): True if KS is the knowledge source with the highest

priority among the knowledge sources KSs.

sharing(OC, UC): Shares load from component OC by component UC.

Appendix B. Intended Interpretation of Prolog Predicates 140

shared(OC, UC, Load): True if Load is the load shared by UC, which is originally

assigned to OC.

situation(X, CT): True if CT is the expanded context of the fuzzy status X.

sum_up(L, LD): True if LD is the summation of the elements of the list L.

terminate(R): Terminates a recorded relation R which has been either a “released/3”

or a “shared/3”.

transferioad(C1, C2, L): Transfers the load L from component Cl to component

C2. (a physical action)

trigger(KSs): Triggers all knowledge sources in the list KSs.

trigger_KS(KS): Sets the trigger status of the knowledge source KS to on.

trigger_property(P): Triggers the knowledge sources which have an input from the

blackboard of property P.

update_feasibility: Functional procedure of the KS “updating of sharing feasibility”.

user: Functional procedure of the KS “user interface”.

workcell(W, P, V): True if V is the value of property P of workcell W (A blackboard).

