
COMPUTER AIDED DESIGN OF DEVELOPABLE SURFACES

By

Brian E. Konesky

B.A.Sc. (Mechanical Engineering) University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

MECHANICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1993

© Brian E. Konesky, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Mechanical Engineering

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

Date:

Abstract

The design of objects employing developable surfaces is of engineering importance because

of the relative ease with which developable surfaces can be manufactured. The problem

of designing developable surfaces is not new. Two space curves, defining the edges of the

surface, are first created, then a set of rulings are constructed between the space curves

under the constraint of developability. A problem with existing algorithms for designing

developable surfaces is the tendency to introduce non developable portions of the surface;

areas of regression.

A more reliable solution to the problem of creating a developable surface is proposed.

The key to the method is to define the developable surface in terms of a normal direc

trix. The shape of the normal directrix defines the shape of the developable surface.

Algorithms are defined to compute the shape of a normal directrix from a pair of space

curves. A non-linear optimization technique was implemented to further refine the shape

of the developable surface, but failed to yield satisfactory results. Other algorithms were

also created to intersect adjacent developable surfaces and to generate the flat plate lay

outs. The algorithms were implemented using the C++ programming language and the

AutoCAD CAD package. Recommendations for further work are given.

11

Table of Contents

Abstract

List of Tables ix

List of Figures x

Nomenclature xiii

Acknowledgement xvii

1 Introduction

1.1 Areas of Application

Naval Architecture

Aerospace

Manufacturing

Textiles

1.2 Definitions and Terminology

1.3 Methodologies

1.3.1 Kilgore’s Solution

1.3.2 Nolan and Clement Computer Approach .

1.3.3 Normal Directrix Approach by Dunwoody .

1.4 New Approach Research Objectives

2 Splines 14

1

1122335581012

111

2.1 Types of Splines Chosen.14

2.2 Uniform Parametric, Geometric and Non-Rational Continuity Requirements 18

2.3 Uniform Non-Rational Tension Catmull-Rom Spline 21

2.4 Uniform Non-Rational Beta-Spline 24

3 Creation of a Normal Directrix from Two Space Curves 30

3.1 Modern Approach Utilizing a Single Normal Directrix 31

3.1.1 Constraints Governing Modern Approach 32

3.1.2 Alignment of End Generators 33

Change in Angle With Respect to Unit Motion of a Control Vertex 34

The Alignment Process and the Concept of Mobility 36

3.1.3 Analysis of Results 38

Mobius Strip Demonstrating Flexibility 38

Controlling Alignment with Mobility 39

Problems arising when Surface has Small In and Out-of-plane Cur

vature 41

3.2 Constraints Defining Modified Conventional Approach (Modified Nolan’s

Approach) in Order to Create a Normal Directrix 42

3.2.1 Offset of Normal Directrix 47

3.2.2 Allowment of Different Number of Control Vertices 48

3.2.3 Present Problems with Current Solution and Improvisation Imple

mented 49

3.3 Utilizing Modified Conventional Approach to Approximate a Single Direc

trix 50

3.3.1 Equations Yielding Approximated Normal Directrix 52

3.3.2 Results and Present Problems 53

iv

4 Optimization of a Normal Directrix 60

4.1 Objective 60

4.2 Optimization Function 60

4.2.1 Integral Chosen to Minimize and Simplex Parameters Used . 64

4.2.2 Present Problems 66

4.3 Downhill Simplex Method 67

4.3.1 Explanation of The Downhill Simplex Method . . 68

4.3.2 Results and Present Problems 69

4.4 Examples 69

4.4.1 Example of Single Surface with Conical Properties 69

4.4.2 Example of UBC Series Demonstrating Present Problems 70

5 Intersection of Developable Surfaces and Flat Plate Layout 73

5.1 Intersection of Developable Surfaces 73

5.1.1 Derived Equations Yielding Intersections of Surfaces 74

5.1.2 Results and Present Problems 77

Conical Type Surface Tested 77

Criterion of Phantom Surfaces 78

5.2 Flat Plate Layout 80

5.2.1 Derived Equations giving Flat Plates Dimensions and Interplate

Angles 80

5.2.2 Format of Output 81

6 Choice of Computer Language and CAD Program 83

61. Computer Language Chosen 83

6.1.1 OOP - Object Oriented Programming 84

6.1.2 Portability to Different Platforms 85

V

6.1.3 C++: Classes and Features

Class vector

Class matrix

Class Curve and Surface

Class ODE

6.2 Computer Platform Selected

6.2.1 PC 386/486 Environment

6.2.2 Computer Language Selection in this Platform

6.3 CAD Program Selected

6.3.1 CAD Program Environment and Open Architecture

6.3.2 Present Limitations

85

85

90

91

93

94

95

95

96

96

97

7 Demonstration Examples

7.1 Developable Mobius Strip

7.2 Simple Conical Developable

7.3 Arctic Fishing Vessel

7.4 UBC Series Fishing Vessel

8 Conclusions and Recommendations

8.1 Conclusions

Normal Directrix from Two Space Curves

Intersection of Developable Surfaces and Flat Plate Layout . .

Implementation

8.2 Recommendations

Bibliography 108

Appendices 110

98

98

100

100

100

105

105

105

106

106

107

vi

A Mathematical Notation for Partial Differentiation 110

B Derivation of Developable Surface 111

B.1 Constraints which Define the Developable Surface 111

B.2 Proof Using Constraints 113

C Derivation of Rate of Rotation of Generator Differential Equation 115

D Tension Catmull-Rom Spline 122

D.l Phantom point, P(O), at 0 123

D.2 Phantom point, P(1), at n 125

E Beta-Spline 127

E.l Phantom point, P(0), at 0 128

E.2 Phantompoint,P(1),atn 131

F Derivation of Normal Directrix Control Vertices 134

G Modified Conventional Approach Derivation 139

H Relating the Space Curves to the Developable Surface 142

I Intersection of Developable Surfaces 146

J Derivation of Flat Plates 151

K O.D.E. Class, Adaptive Step Size and Runge-Kutta Method 153

L Non-Linear Optimization Downhill Simplex Method 155

M Codelisting 160

vi’

M.1 Class Tools Used.160

M.1.1 vector.h 160

M.1.2 matrix.h 161

M.1.3 develop.h 162

M.1.4 ode.h 164

M.L5 vector.cpp 165

M.1.6 ma.trix.cpp 169

M.L7 solve.cpp 175

M.1.8 develop.cpp 179

M.1.9 ode.cpp 194

viii

List of Tables

5.1 Flat plate data.82

L.1 Values of variables used for Simplex Method 157

ix

List of Figures

1.1 Developable Surface Single Chine Hull 2

1.2 Manual method of generating developable surfaces 3

1.3 F117A stealth fighter 4

1.4 Definitions of Terminology of a Developable Surface 5

1.5 Kilgore’s Method of Creating a Developable Surface 6

1.6 Kilgore’s Manual Graphical Solution 7

1.7 Nolan’s Vector Description of Computer Solution 9

1.8 Normal Directrix Approach by Dunwoody 11

2.1 First Three Levels of Parametric Continuity 19

2.2 Comparing Geometric and Parametric Continuity 21

2.3 Catmull-Rom Splines 25

2.4 Beta Splines 29

3.1 Derivation of Developable Surface 33

3.2 Vector Locations and Corresponding Angles 34

3.3 Control Vertices and End Phantom Point 37

3.4 Robustness of Modern Approach Showing Mobius Strip 39

3.5 Mobius Strip 40

3.6 Modern Approach Showing Full Mobility of All Points 41

3.7 Provision Made for When Surface Very Near Flat 42

3.8 Relating Modified Conventional Approach Space Curves and Normal Di

rectrix 43

x

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3

4.4

4.6

4.7

Developable Surface Failure

Developable Surface success, tolerance 0.001 .

44

48

50

53

54

55

56

57

58

59

61

65

67

68

70

71

72

5.1

5.2

5.3

5.4

5.5

74

• . . . 78

• • . • 79

80

81

6.1 Computer Platform Selected Initially

7.1 Developable mobius Strip

94

99

In-plane and out-of-plane components

Positional Offset of Normal Directrix

Fanning Occurring When Developable Surface Nearly Flat

Conic-Like Section with Flatness Tolerance Specified at 0.001

Conic-Like Section With No Flatness Tolerance Specified

Developable Surface Procedure Comparison, tolerance 0.00 1

Developable Surface success, tolerance 0.01

Developable Surface Procedure Comparison, tolerance 0.01

Developable Surface success, tolerance 0.1

Developable Surface Procedure Comparison, tolerance 0.1

Relating the Distance Between Space Curves and Surface . .

Area calculated under space curves

Possible inherent failure due to certain geometry

Analogy of a Simplex For The Downhill Simplex Method . .

4.5 Conical-like developable surface

Intersection of Three Developable Surfaces

Conical-type Surfaces Intersections

Conical-type Surfaces Intersections

Flat plate layout derivation

Developable surface and flat plate layout

xi

7.2 Conical-type Surfaces Intersections 101

7.3 Arctic Vessel Conventional Approach 102

7.4 Arctic Vessel Modern Approach 103

7.5 UBC series Vessel Conventional Approach 104

B.1 Derivation of Developable Surface 111

B.2 Derivation showing normal is invariant along a generator . . 112

C.l Vector locations and corresponding angles 115

G.l Orientation of Space Curves and Directrix 139

1.1 Intersection of Three Developable Surfaces 146

L.l Analogy of a Simplex for the Downhill Simplex Method 156

xii

Nomenclature

45j,j Dirac Delta Function.

0 Out of Plane Rotation of G’ With Respect to G.

Change in Angle of Generator With Respect to Unit Motion of a Parameter De

scribing Directrix.

Rate of Change of Angle of Generator With Respect to Motion of Parameter De

scribing Directrix.

In Plane Rotation of G’ With Respect to G.

a Parameter Describing Distance Along Generator.

4a Incremental Position Along Generator.

C: A Control Vertex that is Being Solved For.

f(u) Position Along Left Adjacent Space Curve.

Tangent Vector Along Left Adjacent Space Curve.

Curvature Vector Along Left Adjacent Space Curve.

g(v) Position Along Right Adjacent Space Curve.

Tangent Vector Along Right Adjacent Space Curve.

XIII

Curvature Vector Along Right Adjacent Space Curve.

. The Developable Surface Generator Vector.

dg:ri
Change of Position of Generator With Respect to Motion of Parameter Describing

Directrix.

d2gen
Rate of Change of Generator With Respect to Motion of Parameter Describing

dadt
Directrix.

dgen
The Generator Slope Vector.

Normal Vector For Left Adjacent Space Curve.

Normal Vector For Right Adjacent Space Curve.

n(t) Normal Vector From Surface

‘it Number of Control Vertices For Normal Directrix.

n Number of Control Vertices For Left Adjacent Space Curve.

n, Number of Control Vertices For Right Adjacent Space Curve.

N Unit Normal Vector.

p(t) Point On the Directrix.

The Directrix Tangent Vector.

-

--- The Directrix Curvature Vector.

s Scalar Value Along Generator

xiv

q(t, s) Point on Surface Determined by Parametric Values t and Scalar s

t Independent Parametric Variable Describing Position Along Directrix.

T Unit Directrix Tangent Vector.

Change of Position of Unit Tangent With Respect To Motion of Parameter De

scribing Directrix.

u Dependent Parameter Describing Position Along Left Adjacent Space Curve.

Incremental Position Along Left Adjacent Space Curve.

v Dependent Parameter Describing Position Along Right Adjacent Space Curve.

Incremental Position Along Right Adjacent Space Curve.

xv

A. Einstein

Keep it simple:

as simple as possible,

but no simpler

ENGINEERING

The scientist analyzes what is.

The engineer creates what has never been.

The engineer scientist analyzes what is

Imagines what should be

Creates what has never been

Analyzes the results of the creation.

By Gunnar Schienius

xvi

Acknowledgement

I would like to express my sincere thanks to Dr. A. B. Dunwoody for his enthusiastic

support, supervision and direction on this project.

I would also like to acknowledge the financial support from the NSERC of Canada

whose financial support made this project possible.

xvii

Chapter 1

Introduction

1.1 Areas of Application

Developable surfaces form a special class of surfaces which are very useful in many prac

tical situations. Developable surfaces have many applications. A few applications are

cited below.

Naval Architecture Up until recently in history ship hulls were made of various types

of wood, which could be easily worked into any desired shape. “The hull of continuous,

homogeneous, testable sheet material is inherently stronger and lighter than the structure

of small pieces of wood. If a skin of sheet material can be designed for low labour cost in

construction, simple tools, and economy in repair, its engineering superiority and eventual

economic advantage make it at once preferable to planks” [15]. To lower the labour cost

in construction and repair even further, the skin of sheet material must be developable.

At the same time, the hydrodynamic performance of the hull must be competitive with

that of the best possible in compound hull construction [15]. Making the construction

surface developable was therefore a desired criterion if possible.

Figure 1.1 below shows a developable surface single chine hull of a fishing vessel.

Figure 1.2 demonstrates how some manufacturers today create developable surface

hulls for fishing vessels.

1

Chapter 1. Introduction 2

Aerospace Today’s modern aircraft are more complex in design and cost savings in

manufacturing is crucial. Aircraft fuselages, wings and other smaller components can

be produced by developable surfaces if considered in the design stage. One of the most

recent “high-tech” declassified aircraft is the “wobblin-gobblin”, ie. the “Fl 1 7A”, (see

figure 1.3) which has a low radar profile signature by using flat plates, is yet another

example of using developable surfaces in an ingenious manner.

Manufacturing In the area of manufacturing two new areas involving the developa

bility criterion are in the application of peripheral milling and rolling. Each pass of an

end mill cutting peripherally follows a developable surface.

Figure 1.1: Developable Surface Single Chine Hull

Chapter 1. Introduction 3

Figure 1.2: Manual method of generating developable surfaces

Another area is in the application of rolling. Developability must also hold for this

process.

Both of these applications will not be discussed but only cited as other examples

where developable surface criterion must hold due to the geometry of the application.

Textiles Another example of developability is in the textile industry. Clothing is

manufactured from fiat material and folded to conform to the appropriate geometry.

Sails for sailing vessels is yet another application where developability must hold.

1.2 Definitions and Terminology

The developable surface is a subset of the class of ruled surfaces. The definitions of a

ruled surface and a developable surface are as follows:

Ruled Surface: A ruled surface is defined as “The locus of a line, called a generator,

Chapter 1. Introduction 4

Figure 1.3: F117A stealth fighter

whose direction is determined by successive values of a parameter, moving continuously

along a curve (a directrix) and intersecting that directrix at an angle other than zero.” [15].

Developable Surface:

A developable surface,also defined by Kilgore and from Kreysig, is ‘A ruled surface

having the same tangential plane on one and the same generator” [15].

Figure 1.4 below illustrates the terms introduced similar to the definitions presented

by G.D. Aguilar[2j. The directrix must lie in the surface and that each plane tangential

to the surface must also be tangential to the directrix.

It must also be noted that with two space curves a ruled or compound surface may

exist but no developable surface may be possible. Another theorem should also be noted

that, “If two space curves lie in any developable surface, they lie in one and only one such

surface” [15]. If the generators do not intersect anywhere, then the surface is developable.

Chapter 1. Introduction 5

Space Curves

Figure 1.4: Definitions of Terminology of a Developable Surface

In figure 1.4 the areas where the generators overlap are known as areas of regression. The

boundary of an area of regression outlined in figure 1.4 is called the edge of regression

[71.

1.3 Methodologies

All existing methodologies for the design of developable surfaces start with the definition

of two edges of the surface. Then, a set of generators is fit between those edges to define

a developable surface.

1.3.1 Kilgore’s Solution

The general method of matching developable surfaces to desired curves is an arduous

task. The method assumes that the developable surface is either conical, cylindrical, or

a combination of both. So, one tries a succession of surfaces until one is found to fit

Generator or Ruling

Edge of Regression

Chapter 1. Introduction 6

approximately. If the designer cannot find an exact solution his usual solution is to alter

the original curve to fit the surfaces haphazardly [151. See figure 1.5.

Kilgore’s Technique

\‘

Figure 1.5: Kilgore’s Method of Creating a Developable Surface

Kilgore examined this unique art and proposed a method for direct generation of

developable surfaces from given beginnings. This method provides a manual graphical

solution of surfaces to fit the curves, rather than to require alteration of the curves to fit

the surfaces.

Kilgore’s manual graphical solution is described in his paper[15] as well as a compre

hensive description of the procedure is given in the Principles of Naval Architecture[1 11.

A sample manual graphical procedure is displayed below which was extracted from

the Principles of Naval Architecture[ll]. See Figure 1.6.

One can see that manual graphical solutions are only as accurate as the skills and

precision of the naval architect. This poses problems in error of the final solution as to

its accuracy.

z n -v I n
i

c-
fl 0 ‘1 z > r n x -I rn n -I C rn

p
ç
n r p
‘ a r

-p I I

I n
oq I-

, CD -
a

cm 0 W
I

CD C)

‘1 C n 0 S 0

1
1

C .4 I, 0 3 0 I 4

I
-4

Chapter 1. Introduction 8

This led to implementing a mathematical solution once computers had evolved to

the point where it was a viable alternative. The first computer solutions which had a

moderate success were those by Nolan [17] and Clements [7].

1.3.2 Nolan and Clement Computer Approach

One of the first well known published works involving a computer-aided approach to

developable surface design was by T. J. Nolan [17]. In his paper he emphasized that a

mathematical approach utilizing a computer proved to yield a substanitial increase in

speed and precision for calculating a developable surface. Nolan noted that an infinite

number of surfaces can be found to span the curves but the developable surface is unique

in that it requires the minimum strain energy of flexture and that in a developable surface

bending is restricted to nonintersecting axes lying in the surface so that section moduli

and bending stresses are minimized for any given radius of curvature. As a result, a

developable surface can be formed elastically from a plane sheet, while the surface fitting

the same pair of curves but having compound curvature must undergo a costly plastic

forming process. Nolan defines a developable surface as, “a developable surface spanning

a pair of curves in space may be defined as the locus of straight lines or “rulings” which

represent the line of contact of a plane which is tangent to the surface. The rulings are

neutral axes of bending and must not intersect within the surface” [17].

Nolan’s approach utilizes a Theilheimer spline interpolation and a vector represen

tation to create a mathematical description for a developable surface. The approach is

relatively simple, involving a representation of the tangents, normals and rulings in vec

tor form. He iteratively solves his mathematical model to yield a zero angle for the cross

product of the two normals of the space curves. See figure 1.7.

Nolan’s vector approach calculates the normal of each space curve as N1 = 1? x T1,

and N2 = R x T, where R is the ruling and T1 is the tangent calculated at that point

Chapter 1. Introduction 9

Cuef(u

xp(t)

eg(v)

Ni

Figure 1.7: Nolan’s Vector Description of Computer Solution

along space curve 1 and T2 is the tangent calculated at a point on space curve 2. He then

uses one of the constraints of a developable surface, namely that N1 x N2 = 0.

This approach is moderately successful in that for very simple surfaces it may yield

a resulting developable surface. However, all too often the rulings either cross or “fan”

yielding an unrealistic or nonusable surface. Also, the Theilheimer spline interpolation is

not of parametric form resulting in singularities which may occur in a three dimensional

representation of the surface.

Clement’s Solution to the problem was published approximately ten years later uti

lizing cubic spline functions, again in non-parametric form[7]. He states, “Between each

pair of chine lines that ruled surface generated which has the same tangent plane at all

df
du

nerator
9=(9;f)

Targent
Plane

Chapter 1. Introduction 10

points of each generator or ruling line. A procedure based on the multiconic development

of a surface is used to modify the given chine lines to ensure that no ruling lines inter

sect at a point within the surface. The result is a developable surface” [7]. In addition,

Clement’s approach generated tables of offsets. This approach, like Nolan’s, also had

problems arising at singularities and generators crossing in areas of regression on the

surfaces.

1.3.3 Normal Directrix Approach by Dunwoody

The approach taken by Dunwoody is unique in that it defines a developable surface by

means of a normal directrix and an initial generator. The directrix is modelled by a

parametric cubic spline; initially a uniform non-rational B-spline was used. Information

about the spline in the parametric form is the position in space at a parametric value t,

its tangent and its curvature. A start generator direction is also needed.

The differential equation derived must retain the constraints which define a devel

opable surface. Refering to figure 1.8 to show the geometry, the following constraints are

shown and the resulting differential equation is formed. Details of the proof can be seen

in appendix B of this thesis.

From figure 1.8 the following vector definitions are in order:

= generator vector (1.1)

= derivative generator vector (1.2)

= directrix tangent vector (1.3)

= directrix curvature vector (1.4)

= step increment (1.5)

Chapter 1. Introduction 11

AT

g /÷AT

g + AT

‘h
dp÷dpATT

E+EAT
dt dt2

Figure 1.8: Normal Directrix Approach by Dunwoody

Three constraints are necessary for a surface to be developable. They are stated as

follows using the above nomenclature:

1. The normal directrix and generator vectors must be perpendicular.

dp
g

Differentiation with respect to t yields

g

2. The vector is of unit length.

77=’.

Differentiation with respect to t yields

Chapter 1. Introduction 12

-;g

3. The normal is invariant along a generator.

(_;
X g) - = 0

Combining the constraints yields the following differential equation describing the

next consecutive generator:

(;-‘\-
g_

16
dt — 1dp dp

dt dt

Integrating this differential equation using such integration routines as Runge-Kutta

fourth order forces a solution to be output. This approach will yield a particular solution.

From this stage of the analysis, given a directrix and a starting generator of unit length,

a unique developable surface results from the differential equation described above.

There are limitations with this technique. It is not yet in a form which would prove to

be of any practical use. Further constraining is necessary in order to control the behavoir

of the developable surface.

This approach is where the present research project started and expanded implement

ing new terminology and concepts which will be presented in detail.

1.4 New Approach Research Objectives

The new approach research objectives were based on expanding the work initiated by

Dunwoody utilizing the normal directrix approach. This approach is unique in that it

Chapter 1. Introduction 13

will always yield a solution. In this state, however, it is not very useful from a practical

engineering view point since it does not match two space curves. This leads to the

research objectives presented in this thesis to further refine this technique.

• The first research objective was to develop an algorithm in order to find a normal

directrix such that the resulting developable surface lay close to two space curves,

representing desired edges of the developable surface.

• Another research objective was to create an algorithm to intersect developable

surfaces and to generate the flat plate layouts and angles.

• The final objective was to implement these algorithms using a modern computer

language and a popular CAD package in order to assess the practicality of the

approach.

Chapter 2

Splines

This chapter is included because the material covered on splines contains the necessary

background in order to derive the additional tools and equations for developable surfaces.

The two types of splines discussed in this chapter were selected because of their particular

characteristics which proved to be useful for a designer.

2.1 Types of Splines Chosen

When considering using a mathematical representation for space curves one can classify

them as of either parametric or non-parametric form. Non-parametric forms are used

extensively in various fields of mathematics and engineering. Non- parametric curves can

be further categorized as either explicit or implicit. The explicit non parametric form is

usually expressed in the following form:

y = f(x)

where,

x = independent variable

f(x) = function of independent variable

y = dependent variable

14

Chapter 2. Splirzes 15

In this form multiple-valued or closed curves cannot be expressed. To overcome this

form, one usually uses the implicit form of the non parametric curve in the following

typical form:

f(x,y) —0

where,

f(x,y) = A function of both x and y

One typically calculates a point on the curve by calculating the roots of the equation.

The approach can sometimes prove to be fairly computationally expensive. Implicit

formulation is a very common form of non-parametric polynomials. Many formulations

used in engineering require higher than third order thereby making computations even

more expensive when solving for roots of the equation.

The non-parametric implicit formulation presents difficulties when being applied in

defining such three dimensional objects as ship hull curves and surfaces. One typical

problem that arises is when a vertical slope is encountered along the curve or surface

resulting in an infinite numerical value. An infinite number cannot be used in a numerical

calculation when using a computer. Another problem arising in non parametric implicit

form is that the positions are not distributed evenly along the curve or surface. This

poses a problem when trying to present the curves or surfaces graphically on computers

[19].

Parametric curves solve the problems presented above and are suitable for represent

ing closed curves and curves with multiple values of an independent variable. Parametric

curves are also axis independent. Parametric curves replace the use of geometric slopes

Chapter 2. Splines 16

(which may be infinite) with parametric tangent and curvature vectors, which are never

infinite. In parametric form a curve is usually represented by a piecewise polynomial.

Each segment of the curve is given by three functions x(t), y(t), z(t), which are polyno

mials in the parameter t. [12] For example:

F(t) = [x(t),y(t),z(t)]

After determining that parametric curves would be used in this work, the order and

desired characteristics of the polynomials were investigated. Considering the types of

applications and desired flexibility of the types and characteristics of curves desired, a

fairly exhaustive investigation of various types of splines was conducted. Special cubic

polynomials derived in the format pioneered by Barsky[3], DeRose[9], Forrest, Coons,

Bezier and furthered by others were decided upon.

The initial stages of development of the Basis functions to taylor the desired behaviour

of the splines yield cubic polynomials. Cubic polynomials are most often used because

lower-degree polynomials give too little flexibility in controlling the shape of the curve,

and higher-degree polynomials can introduce unwanted “wiggles” and also require more

computation. No lower-degree representation allows a curve segement to interpolate (pass

through) two specified end points with specified derivatives at each endpoint. Given a

cubic polynomial with its four coefficients,

eg.

f.’_ 43 j2x,1—a, +VX +c+

four knowns are used to solve for the unknown coefficients. For example, the four

knowns might be the two endpoints and the derivatives at the endpoints. Other knowns

might be slopes or additional points[12]. It should also be noted that parametric cubics

Chapter 2. Splines 17

are the lowest-degree curves that are nonplanar in 3-D (three dimensions). You can see

this by recognizing that a second-order polynomial’s three coefficients can be completely

specified by three points and that three points define a plane in which the polynomial

lies. Higher-degree curves require more conditions to determine the coefficients and can

“wiggle” back and forth in ways that are difficult to control. The parametric curves used

in this thesis are given in terms of their degree n, which is fixed at 3.

Much research has been done by such modern pioneers as Barsky[3j, who developed

Basis functions, and appropriate nomenclature on the various levels and types of curve

continuities. No detailed analyses of the derivation of the splines used in this thesis will

be discussed in substantial detail since this work has already been done by such authors

as those previously cited. Only enough explanation of the nomenclature used in this

thesis to familiarize the reader with the concepts and characteristics of the various forms

of the splines used will be discussed.

Another point to mention is that local control of the 3-D curves was desired so that

a curve segment is completely controlled by only four control vertices; therefore, a point

on a curve segment can be regarded as a weighted average of these four control vertices.

The parametric splines used in this thesis are preseilted in the following form:

a1 a2 a3 a4 F_1

b1 b2 b3 b4 F,
P(i + t)

= 3 i (2.1)

C1 C2 C3 C4

d1 d2 d3 d4

Chapter 2. Splines 18

where,

P(t) = [x(t), y(t), z(t)j (2.2)

and

Point = P(t) = [t3 t2 t i] [] [(2.3)

Tangent T(t) = = [3t2 2t 1 0] [} [] (2.4)

Curvature = C(t) = &t)
= [6t 2 0 0] [1 [1 (2.5)

2.2 Uniform Parametric, Geometric and Non-Rational Continuity Require

ments

One of the important properties discussed in such fields as finite elements and computer

aided geometric design is of the mathematical techniques of shape representation. It is

termed continuity. Continuity can be described as the highest level of differentiation

which is continuous [3]. The types of continuity can be further categorized. Four types

of continuity are considered in this analysis. Each type of continuity will be explained

briefly. The types of continuity chosen can be expanded but only two of what was thought

to be generally the most useful were selected at this stage of the research.

The first type of continuity requirement considered is whether or not the splines used

in the analysis are either uniform or non-uniform. Since the splines are parameterized,

and uniform parametric splines can be expressed in a pseudo standard format, these

types of splines appeared to be a likely choice. Non- uniform splines are not able to be

expressed in the format that was adopted in this reseach at this time.

Another type of continuity requirement which was desired was parametric continu

ity [18]. Parametric continuity can be explain quite briefly with the aid of Figure 2.1. If

the nt1 derivative vector of two cubic curve segments are equal (ie. their direction and

Chapter 2. Splines 19

magnitudes are equal) at the segments’ join point, the curve has nthdegree continuity in

the parameter t, or parametric continuity[12]. One would then state that if the direction

and magnitude of [P(t)] through the th derivative are equal at the join point, the

curve is called C’ continuous. Figure 2.1 shows a curve segment S joined to three differ

ent curves with three different degrees of continuity ascertained by the superscript above

the C. One should note that a parametric curve segment is itself everywhere continuous;

the continuity of concern here is at the join points[12j.

IC2

x(t)

Figure 2.1: First Three Levels of Parametric Continuity

If two curve segments join together, the curve has GO geometric continuity. If the

directions (but not necessarily the magnitudes) of the two segments’ tangent vectors are

equal at the joint point, point the curve has G’ geometric continuity. In computer- aided

design of objects, G1 continuity between curve segments is often required. G’ continuity

means that the geometric slopes of the segments are equal at the join point. For two

tangent vectors TV1 and TV2 to have the same direction, it is necessary that one be

a scalar multiple of the other. We then state the relationship that TV1 = k . TV2 with

k> 0 [3j[12j

y(t)

Chapter 2. Splines 20

One should note that in general, C’ continuity implies G’, but the converse is gen

erally not true. G’ continuity is generally less restrictive than is C1, so curves can be

G1 but not necessarily C1. However, visually, join points with C1 continuity will appear

just as smooth as those with C’ continuity as can be seen in Figure 2.2.[12j.

In Figure 2.2 curve segments Q,, Q, Q join at the point P2 and are identical except

for their tangent vectors at P2. Q, and Q2 have equal tangent vectors , and hence are

both G’ and C’ continuous at P2. Q, and Q have tangent vectors in the same direction

but Q has twice the magnitude , so they are only G’ continuous at P2[12]

Another type of continuity which one may desire is Rational Continuity [13]. Rational

continuity can be simply defined for “general rational cubic curve segments as ratios of

polynomials:

— X(t) — Y(t) — Z(t)
2 6

— 147(t)’ — 147(t)’
z(

— 147(t) .)

where X(t), Y(t), Z(t) and W(t) are all cubic polynomial curves whose control points

are defined in homogeneous coordinates. We can also think of the curve as existing in

homogenous space as:

Q(t) = [X(t)Y(t)Z(t)TV(t)] (2.7)

As always, moving from homogeneous space to 3 space involves dividing by W(t).

Any non rational curve can be transformed to a rational curve by adding W(t) = 1 as a

fourth element” [12].

No splines were used in this thesis at this stage which included Rational continuity.

In future work this type of continuity requirement may be implemented if requested. For

further reading one may refer to either Barsky and Hohmebar [13] or Foley [12j

Chapter 2. Splines 21

y(t)

ç,P

Figure 2.2: Comparing Geometric and Parametric Continuity

2.3 Uniform Non-Rational Tension Catmull-Rom Spline

The uniform non-rational Tension Catmull-Rom spline was chosen because it exhibits

severa’ useful features the designer may require [8] [91. First, it is an interpolating

spline, meaning that the curve passes through the points (control vertices). Second, it

is in parametric form, meaning that it does not encounter singularities, only variations

of vector magnitudes. Third, it exhibits desired parametric and geometric continuity

requirements. Fourth, it has a global tension parameter which can further control the

shape of the desired curve.

The uniform non-rational Tension Catmull-Rom spline is easiest described in vector

matrix form. In this form it is a relatively simple task to imbed into a program. The

vector-matrix format is in a form in which not only the position along the curve can

Chapter 2. Splines 22

be calculated but also the tangent, curvature and other vector specific relations desired.

This vector-matrix format is now almost a standard form in which these types of splines

are presented.

This pseudo-standard form shows that the spline has a local influence of the control

vertices as any chosen position. At any one particular location along the curve the control

vertices are only influenced by the previous one and the next two. This is shown in the

“[P]” vector of the vector-matrix form. The “[P]” vector shows that at a particular

position along the curve the only infuence is from P_1,P, P:+iandPj+2.

Taking into account the end conditions of the splines also had to be considered. The

approach taken was to create Phantom points. Given the control vertices vector below,

Phantom end conditions were formulated. Detailed analysis of the derivation can be

referred to in the appendices D.1 D.2. The vectors located below show the indexing of

the control vertices and how end conditions are treated (phantom points).

Pi-1

Pi

Pi+1

Pi+2

For the initial condition P0 the control vertices vector has the following form D.l:

Chapter 2. Splines 23

Pi

Pi

Pi+1

i+2

For the end condition P,_1 the control vertices vector is in the following form D.2:

Pi

Pi

Fi+1

Pi+1

The following page shows the vector-matrix form of the uniform non-rational Tension

Catmull-Rom spline. The spline is parameterized with respect to the parametric variable

t and has a global tension variable, 6.

—2.0/3 4.0 — 2.0/3 2.0/3 — 4.0 2.0/3

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/3 —2.0/3
P(t) = t3 t2 t’ 1

—2.0/3 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Chapter 2. Splines 24

Pi-1

Pi

Pi+1

Fi+2

= Tension parameter

To give the reader a good comparison as to the behaviour of the Tension Catmull

Rom spline the following figures are included. The first figure, figure 2.3(a) shows the

spline with a tension value of 0.5 shown relative to interconnected line segments. For

the tension Catmull-Rom spline with a value of 0.5 this defaults to a traditional cardinal

spline.

The next figure, Figure 2.3(b) shows little difference but is relaxing the spline tension

when given a tension value of 1.0.

Finally the Tension Catmull-Rom spline in Figure 2.3(c) shows how it nearly contours

to the inter-connected line segments shown in the figure. If the tension parameter is given

a value of 0.0 then it becomes line segments.

2.4 Uniform Non-Rational Beta-Spline

The uniform non-rational Beta-spline was chosen to provide other useful features. First,

it is an approximating spline meaning that the curve passes near, not through, the control

vertices. It also exhibits the convex-hull property which is also shared by the B-spline [18]

and the Bezier [4] spline. Second, the Beta-spline is derived parametrically so it too does

Chapter 2. Splines 25

(a) Tension at 0.5 Catmull-Rom (b) Tension at 1.0 Catmull-Rom

(c) Tension at 0.1 Catmull-Rom

Figure 2.3: Catmull-Rom Splines

Chapter 2. Splines 26

not have any singularities occur. Third, it also retains desired parametric and geometric

continuity requirements. And, fourth, it has global bias and tension parameters which

further enable the designer to better adjust the spline [3].

The vector-matrix form of the Beta-spline is shown on the following page:

P(t) t2 t’ 1]

—2.0/3? 2.0(132 + i3? + /3? + j3) —2.0(132+/3? +/31 + 1.0) 2.0

1 6.0/3? —3.0(132 + 2.0/3? + 2.0/3?) 3.0(132 + 2.0/3?) 0.0

—6.0/3? 6.0(/3? — /3k) 6.0/3k 0.0

2.0/3? (132 + 4.0,3? + 4.0/3i) 2.0 0.0

Pi-1

Pi

Pi+1

= i3 + 2.0/3? + 4.0/3? + 4.O/3 + 2.0

= Bias

/32 = Tension

Chapter 2. Splines 27

Like the Tension Catmull-Rom spline the Beta-spline exhibits the same localized

control vertices influence. Again, if one were to choose a particular position along the

curve the closest control vertex would only be influenced by the preceding one and the

next two, eg. [P_1,P, P+i, P÷21.

Taking into account the end conditions of the spline also had to be considered in

the same fashion as the Catmull-Rom spline. The same approach was taken to create

the Phantom points. Given the control vertices vector below, Phantom end conditions

were formulated. Detailed analysis of the derivation can be referred to in the appen

dices E.1 E.2.

The initial condition control vertices vector for the Beta-spline at P(O) is:

(P2+4.O3?+4.OI31)P1+2.oP+i
6—2.Of3

Fi

Pi+1

The end condition control vertices vector for the Beta-spline at P(n-l) is:

Pi-1

Pi

Pi+1

2.013?P2+(4.0+4.0/31+/32)Pt-i-i
3—2.0

Chapter 2. Splines 28

The first of the Beta-spline figures shown below reveals the spline compared to inter

connected line segments. The first figure, figure 2.4(a) shows the curve near the control

vertices, exhibiting the characteristics of an approximating spline. The bias is at 1.0 and

the tension is at 0.0. With these values the Beta-spline degenerates to a B-spline, which

exhibits first and second order parametric continuity.

The next figure, figure 2.4(b), shows the Beta-spline with a Bias of 1.0 and a tension

at 25.0. At these values one can see how this spline can also resemble inter-connected

line segments if the tension value is increased substantially more.

In figure 2.4(c) one can see how the curve behaves if the tension parameter is given a

negative value of about -0.05.

Finally, if the bias is changed, as in figure 2.4(d), to a value of 1.5 and the Tension is

left at a value such as 0.0 the curve exhibits the following behaviour

These figures shown above try to give the reader some idea of the capabilities of these

type of splines and how one can use the features each spline possesses. These are but a

few of the types of splines which are now being developed. Each of these types of splines

has features which the reader should be aware of in order to maximize the benefits they

have to offer.

Chapter 2. Splines 29

(a) Bias 1.0 Tension 0.0 Beta (b) Bias 1.0 Tension 25.0 Beta

(c) Bias 1.0 Tension -0.05 Beta (d) Bias 1.5 Tension 0.0 Beta

Figure 2.4: Beta Splines

Chapter 3

Creation of a Normal Directrix from Two Space Curves

The normal directrix approach will always yield a smooth developable surface in the

vicinity of the normal directrix, so long as the normal directrix is itself smooth. Unfor

tunately, it is not always clear what shape the normal directrix should take in order that

the resulting surface should meet the requirements of the designer. With respect to the

requirements of the designer, the definition of a developable surface from two edges is

superior. The objective of the present work is to create an algorithm which will shape a

developable surface to lie close to a pair of edge curves. The developable surface will be

specified in terms of a normal directrix in order to ensure that the surface is smooth. It

is not expected that the developable surface will contain the two edge curves, only that

it will be close to the two curves.

The creation of a normal directrix from two space curves follows from these criterion:

1. A normal directrix can be computed for any developable surface by starting at one

point on the first generator, then constructing a curve which lies within the surface

and is perpendicular to all generators. In addition, extra construction tools, in the

form of differential equations, were created in order to better control the normal

directrix solution.

2. Once a normal directrix has been computed, it can presumably be smoothed out to

yield a smoother developable surface without departing greatly from the original

equation.

30

Chapter 3. Creation of a Normal Directrix from Two Space Curves 31

3. Nolan’s approach of matching the cross products between the generator and the

tangents to each of the edge curves can be expressed in terms of a differential

equation.

4. The curve of the normal directrix can also be expressed as a differential equation,

to be solved in conjunction with the differential equation for the set of generators.

5. If the normal directrix is to be described by a spline with n control points, then

the values for those n points can be computed to yield a spline which lies close to

the normal directrix derived from the differential equations.

The approach taken to try to match a developable surface to two edge curves re

sulted in formulae modelled by differential equations. The differential equation version

of the conventional method, named the modified conventional approach, created by Dun-

woody and Konesky was used as an initial guess in order to utilize additional differential

equations to solve for directrix control vertices.

3.1 Modern Approach Utilizing a Single Normal Directrix

A normal directrix can be computed for any developable surface by starting at one point

on the first generator, then constructing a curve which lies within the surface and is

perpendicular to all generators. This very powerful technique was created by Dunwoody

which is termed in this thesis as the modern approach. In addition, extra construction

tools, in the form of differential equations, were created in order to better control the

normal directrix solution.

This modern approach, given a normal directrix and a start generator position, will

always force a developable surface to be created. This solution is underconstrained,

however, and further refinement was deemed necessary in order to better control the

Chapter 3. Creation of a Normal Directrix from Two Space Curves 32

behaviour of the function.

The formulation is in vector differential equation form and uses the ODE class integra

tioll routine which implements Runge-Kutta 4th order. Constraints for this developable

surface differential equation are given in the next subsection. For a more thorough anal

ysis one can refer to Appendix B for the derivation.

3.1.1 Constraints Governing Modern Approach

The differential equation developed by Dunwoody [10] termed the modern approach in

volves three constraints which define a developable surface. They are as follows:

1. The generator must be of unit length

ie.

2. The vector normal is invariant along a generator

ie.

(gx).=0

3. Vectors must be perpendicular

ie.
dg dp_ d2p
dt dt dt2

g

The three constraints can be seen in Figure 3.1 below in vector form.

Using the three constraints which define a developable surface yields the differential

equation in simplified form:

d (. “dg
— dt2 g, P

dt —

\dt dt)

Chapter 3. Creation of a Normal Directrix from Two Space Curves 33

g

‘1Illi:
dt dt dt2

Figure 3.1: Derivation of Developable Surface

This equation works fine as is but further constraining is necessary in order to make

this solution practical. For example, given the theory presented so far we can generate a

developable surface along a normal directrix given an initial generator position. However,

more realistically, one would also want the surface to end up in alignment with a desired

final generator position. We now move to the next stage in the development of alignment

of the end generators.

3.1.2 Alignment of End Generators

Once a normal directrix has been computed, it can presumably be smoothed out to yield

a smoother developable surface without departing greatly from the original equation. In

addition, a much more realistic and desireable condition is where the user gives a normal

directrix, a start generator position and a final generator position and the configuration

adjusts itself to conform to the newly added constraints.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 34

Change in Angle With Respect to Unit Motion of a Control Vertex

The problem was approached by looking at the problem using the perspective of observing

the location of the directrix, the position of the generator and separate the vectors into in-

plane and out-of-plane components. Another differential equation was formulated which

accumulated information of the rate-of-rotation of a generator with respect to motion

of the control vertices along the normal directrix . This formulation, as will be shown,

proves to be very useful in storing information about the surface and how to correct

accordingly to match the end generator. Figure 3.2 shows the relation of the original

directrix and the corrected directrix as well as the amount of change that is necessary.

— ___. ———Original
Directrix

Modified
Directrix

Figure 3.2: Vector Locations and Corresponding Angles

A detailed analysis of the derivation of the differential equation can be referenced in

Appendix C if the reader wishes to look further. A brief summary of the highlights of the

derivation is needed here in order to familiarize the reader with new concepts which are

being introduced with the theory and the nomenclature of the user controllable design

variables.

The angle Theta, herein referred to as 9, is the out-of-plane rotation of G’ with

respect to G. The angle Phi, is herin referred to as 4’, and is the in-plane rotation of G’

N’

T

Chapter 3. Creation of a Normal Directrix from Two Space Curves 35

with respect to G. The variable “a” is a parameter describing a directrix control vertex

component.

The rate of rotation of a generator with respect to changes in one of the parameters

of the directrix curve is written as:

dadt

The desired expression is the rotation of a generator with respect to changes in one

of the parameters of the directrix, which is written as:

dO
da

The desired expression can be defined in terms we can derive, namely:

= -•N (3.2)

where, N is the unit normal defined as: (3.3)

N = Txg (3.4)

but, (3.5)
ddO — d(dg

N 36dtda — dt”da

rewriting gives, (3.7)

d28 — d2g dN
38dadt — dadt dt dt

Using numerous identities and proofs, the user can look at the derivation in detail in

Appendix C, the resulting differential equation which contains both the in and out-of

plalle components result in the following formulation:

—

39dadt
— (“)

.)

Chapter 3. Creation of a Normal Directrix from Two Space Curves 36

Using several identities and constraints that have already been presented the final

form simplifies down to the following relation:

O(x) &p
dadt — (2 (3.10)

\dt dt’

The Alignment Process and the Concept of Mobility

The alignment process involves a summation of the term from t 0.0 to t = N-i.

The summation can be written in equation form as follows:

dadt {6—1.O}

2 d2p
1N—1
4!dt

= 1N—1 (X) dadt{5}
dt (3 11

Jo dadt Jo
\dt dt’

dadt{5+1.O}

dadt {6+2.O}

where is defined as:dadt

a bcd

efgh

= 3.0t2 2.Ot 1.0 0.0 (3.12)

i j k 1 6+1.0

m n o w 6+2.0

Chapter 3. Creation of a Normal Directrix from Two Space Curves 37

The alignment process may take several passes, ie. from 0 to N-i, a correction, then

from 0 to N-i, etc.

The procedure will be described and the successive passes usually reduce the error by

one decimal place per pass (ie. iteration).

After the first accumulation of information along the spline from t = 0 to t = N

1, a few constraints are added. The first desired constraint of the movement of the

control vertices is that the end control vertices can only move in the direction along each

corresponding end generator. The second from the end control vertices are constrained

to move both in the direction of the end generators and in the direction of the start

and end tangent vectors respectively. Both ends are calculated in the same way, so for a

better understanding only the t=0.0 and t=l.0 end conditions will be explained.

At t = 0.0 the control vertex located here only has the freedom to move in the

direction of the starting generator. The end condition constraints are also influenced by

the phantom end conditions in addition to depending upon the type of spline being used.

For this analysis the degenerated version of the Beta spline to a B-spline will be used.

I
Pantom
Point

Figure 3.3: Control Vertices and End Phantom Point

At the end of the spline the end two control vertices of the summed terms have to

Chapter 3. Creation of a Normal Directrix from Two Space Curves 38

be modified because of the phantom end condition constraints. The end control vertices

are influenced by the following condition which describes only the B-spline criterion:

2F2 — P1. From this relation we have to add again to itself for the P2 control vertex

of information and subtract of the P2+’ component from itself. This is in essence the

technique which is applied to the end conditions of the control vertices for each type

of spline being used.

The concept of mobility is quite simple and provides a further constraining on the

behaviour of the alignment process. Each control vertex of are assigned a mobility

value, which is a constant. A mobility value of 1.0 means that the corresponding

vertex has full mobility and that it is free to adjust that control vertex as governed by

the equation. At the other extreme a mobility value of 0.0 indicates that the vertex

is not to be moved during each iteration of the alignment process.

3.1.3 Analysis of Results

Many tests were done with the modern approach and then it was incorporated as a

foundation to build upon. The approach was found to be very robust but specifically

controlling its behaviour became the dominant problem. It was also noted to have one

major instability. This occurred when the plate was very close to being perfectly flat.

This was not deemed to be a very major problem since if the plate was flat, a solution

existed already, thereby, no need of the modern approach would be required.

Mobius Strip Demonstrating Flexibility

As an example which demonstrates both the flexibility of the modern approach ie. the

control vertices were not permanently fixed in position, (NB. only the end conditions

were given a hard constraint). One challenge was to create a developable mobius strip.

The mobius strip is a geometric anomally in that its edges are infinitely continuous, ie.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 39

if one was to follow an edge it would continue infinitely along the surface travelling along

both sides. For clarity, the reader should refer to Figure 3.4 in this chapter.

Figure 3.4: Robustness of Modern Approach Showing Mobius Strip

In order to create the developable mobius strip the very end control vertices were

fixed. As mentioned earlier a new concept was introducted. This concept was termed

mobility and is explained in ‘the next section below with figures included to help clarify

the explanation.

Controlling Alignment with Mobility

The concept of mobility was developed as a first tool to control the behaviour of the

modern approach. It can simply be defined as local weighting of the change in angle

with respect to unit motion of each control vertex. Each control vertex has information

recorded about it by the function described in equation 3.10. When a mobility value of

1.0, unity, is assigned the class entity which retains the information about a particular

vertex has 100% freedom to reposition the location of that particular vertex. In contrast,

a mobility of 0.0, indicates that the vertex is not permitted to be moved at all. We can

use a range of values for each vertex ranging from 0.0 to 1.0 if we wish to “fine tune” or

Chapter 3. Creation of a Normal Directrix from Two Space Curves 40

more accurately control the behaviour of the iterative solving procedure in order to align

with the end generator.

The example of the developable mobius strip shown previously and now shown in

two views in figure 3.5 was constructed with 6 control vertices. Each control vertex

was assigned a mobility. The first and last vertex were given a mobility of 0.0, ie. no

movement allowed, and the other four were given full mobility of 1.0, ie. full freedom to

be corrected.

(b) Developable mobius strip view 2

Figure 3.5: Mobius Strip

The developable mobius strip was one of the first examples where mobility was neces

sary to create a specific type of shape. The same 6 control vertices used to construct the

mobius strip were all initially given mobility of 1.0, and run to see what type of solution

would result. The resulting figure 3.6, demonstrates what type of solution results when

(a) Developable mobius strip view 1

Chapter 3. Creation of a Normal Directrix from Two Space Curves 41

no constraining is implemented.

Figure 3.6: Modern Approach Showing Full Mobility of All Points

One should note that figure 3.6 is a valid solution. The end generators do align with

the same line that passes through both the start and end generator positions. Clearly

one can see that if “hard” constraints are not given, more than one solution can result.

This provided us with insight in furthering the design analysis in that more than one

solution could result; an entire family of solutions is possible with the single directrix

approach unless further constraining is included.

Problems arising when Surface has Small In and Out-of-plane Curvature

In the modern approach a problem arises when the surface has small in and out-of-plane

curvature , ie. the surface is almost flat. This problem is located where the alignment

process takes place. When the accumulated values of the change in angle with respect

to motion of the control vertices is very near zero, a subsequent calculation involves

Chapter 3. Creation of a Normal Directrix from Two Space Curves 42

dividing the present angle that the end generator makes with the desired end generator.

This results in division of a floating point value with one which is very near to zero. If

the plate is very close to being flat the computer being used to do the analysis will yield

a floating point error due to division by zero.

A tolerance or threshold value was implemented which would make the resulting

floating point operation equal to zero if the total in and out-of-plane curvature was less

than 1.0 x 10_b. This was deemed necessary in order to improve the robustness of the

algorithm. This results in the modern approach to accomodate when the surface is very

near flat when initialized. A sample is shown in figure 3.7 where the surface is flat and

a corresponding correct solution results.

H
Figure 3.7: Provision Made for When Surface Very Near Flat

3.2 Constraints Defining Modified Conventional Approach (Modified Nolan’s

Approach) in Order to Create a Normal Directrix

Nolan’s approach of matching the cross products between the generator and the tan

gents to each of the edge curves can be expressed in terms of a differential equation.

Nolan’s approach can give good approximations of developable surfaces. This approach

expressed in differential equation form and with additional constraints could be used as

an approximation for creating a close fitting normal directrix.

Before a normal directrix can be computed, it must have information as to where

Chapter 3. Creation of a Normal Directrix from Two Space Curves 43

it should be located relative to two space curves that contain a developable surface.

Information in the form of modelling the Conventional Approach by differential equations

lead to the formulation of Normal Directrix Control Vertices. This material is presented

with the Modern Approach Utilizing a Single Normal Directrix because it is used to derive

the normal directrix control vertices.

In figure 3.8 the two outer space curves, referred to as f(u) and g(v), are used in

defining the modified conventional approach. In this approach the first two of the three

constraints stated by Nolan [17] are exactly the same. The third definition is also used

but is modified to include an additional term is formulated in order to determine where

along the generator the normal directrix should lie. These steps are now explained in

more detail.

Ni

Cuef(u)

Cueg(v)

Figure 3.8: Relating Modified Conventional Approach Space Curves and Normal Direc
trix

Tangent
Plane

In figure 3.8 the first two constraints are graphically shown stating that each space

Chapter 3. Creation of a Normal Directrix from Two Space Curves 44

curve must have each tangent vector perpendicular to its normal. Also, the cross-products

between the generator and the tangents to each space curve must be parallel to each other.

We can express the first two constraints for each space curve as follows:

dg
— X gen
dv

Figure 3.9: In-plane and out-of-plane components

The third relationship is derived from the out-of-plane components and the in-plane

components leading to their next respective locations along the space curves. The third

relationship is stated in equation 3.16 and is explained here below.

dt —

(genxni)
du

where t

and ii;;

= —Xgen
du

= (g(v)—f(u))=(g—f)

(3.13)

(3.14)

(3.15)

Out of

d2
—

— dt
— dg

(gen X n2) .

(3.16)

Chapter 3. Creation of a Normal Directrix from Two Space Curves 45

The numerator dot product relation in equation 3.16 represents the out-of-plane com

ponent. The denominator relation represents the in-plane component. Only magnitudes

are needed since direction is constrained to being along each space curve’s tangent and

normal vectors. At a particular position along the space curve the out-of-plane direction

is located along the normal vector and curvature vector. For example, on the space curve

f(u), i and are in the directions of out-of-plane curvature. For in-plane curvature

one can relate the resulting cross product of the generator, §, with the normal, i,

to get a vector in the appropriate in-plane direction. The tangent vector of curve f(u),

and the vector, lie in-plane. From these relations a ratio of just the magnitudes

would be simplest to equate with respect to the next parametric calculation along the

space curve since the directions are constraints in the formulations. These relations are

then equated to two space curves. By equating these relations to two space curves a

known developable set of generators (or rulings) can be first approximated. The equat

ing of the ratio of out-of-plane curvature to in-plane direction for two space curves f(u)

and g(v) in equaton 3.16 is written as the definition just described. One should note that

equation 3.16 is close to the equivalent approach described by Nolan.

We now take into consideration a different number of control vertices for all of the

space curves,and an approximated position of where the normal directrix should lie.

We now show the key equations which yield the final result in the modified conven

tional approach. For a more comprehensive derivation of this refer to appendix G.

Initially we need to set up the three space curve relationships:

p(t) = (1 — a)f(u) + ag(v) (3.17)

From the two space curves, f(u) and g(v), the generator is found as follows:

Chapter 3. Creation of a Normal Directrix from Two Space Curves 46

= (g—f) (3.18)

Equation 3.17 is then differentiated with respect to t in order to establish a differential

equation for the normal directrix intersection with the generator. Differentiating yields:

dp dfdu dgdv da
= (3.19)

Using the definition that, . = 0 and using this on equatioll 3.19 results in the

following:

dp df du dg dv

__da

= (3.20)

The normals of each space curve is also calculated using the following relationships:

= df
(3.21)

= x gen (3.22)

Relating the out-of-plane curvature with the in-plane curvature of the two space

curves as mentioned previously we get:

_;: = . (3.23)

(gen x ni). (gen x n2).

Including the relationship of non-equal number of control vertices for the space curves:

Chapter 3. Creation of a Normal Directrix from Two Space Curves 47

dv — 2n
(1

nt du
3 24

dt
—

2ri,,dt

Rearranging these relationships to solve for , and ij gives the following relation:

—1

d2f

du
—

+
(genxni).—

325
dt — 2n 2n (.)

dv2

—-(genxn2).—
dv

dv — 2n ndu
326dt

— t ndt

—.--- du dg
—s dv= (l—a)—.gnj+a--.gen..

(3.27)
gen gen

3.2.1 Offset of Normal Directrix

One feature which was found useful for the designer to have as a variable to adjust is

the initial positional offset of the normal directrix. This relation is shown again here as

equation 3.28:

p(t) = (1 — a)f(u) + ag(v) (3.28)

By allowing the initial position offset, a, of the normal directrix to be adjusted the

user may be able to further fine tune the surface to desired specifications. If this is not

of any concern it defaults to the parametric value, 0.5, which is the midpoint between

the two space curves.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 48

f(u)

g(v)

Figure 3.10: Positional Offset of Normal Directrix

3.2.2 Allowment of Different Number of Control Vertices

During the initial design stages one criterion was noted, namely that the number of

control vertices for each space curve and the normal directrix may be desired to be

different from each other. This was noted and a further relationship was established

which allows for different control vertices for any of the curves. The relationship is

presented as follows:

= The number of control vertices of the normal directrix.

= The number of control vertices of one space curve.

= The number of control vertices of another space curve.

Given the variables shown above and the two differential parametric index parameters,

and , a very simple equation can be stated as follows:

Chapter 3. Creation of a Normal Directrix from Two Space Curves 49

1.0 du 1.0 dv 1.0
=

— (3.29)

Equation 3.29 states that each parametric differental variable, and , contributes

one-half times its total number of control vertices. Ignoring the total number of control

vertices for every curve results in the equation being written as:

+ 1.0 (3.30)

The resulting relationship for the space curves is as follows:

= (331)
dt flj ndt

Further reading detailing the derivation can be referred to in G.

3.2.3 Present Problems with Current Solution and Improvisation Imple

mented

Tests including equation 3.16 proved promising. One problem noted, is shown in Fig

ure 3.11 below when the surface is close to becoming flat. A phenomenon which we

termed “fanning” occurs where the out-of- plane component becomes very small relative

to the in-plane-component yielding undesirable characteristics. This is shown below in

Figure 3.11. One can see from Figure 3.11 that intuitively if a plate is close to becoming

flat, the generators should lie nearly perpendicular to the tangent vectors of each space

curve, resulting in square flat plates for a flat surface. This problem was noted and ad

dressed by incorporating an out-of-plane tolerance which would default to parallel lines

when the surface fell below the user-specified tolerance. This is a temporary solution and

further research is being directed to address this problem in future work.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 50

Figure 3.11: Fanning Occurring When Developable Surface Nearly Flat

For a more detailed example showing where this phenomenon occurs in practice see

the examples in Chapter 7, entitled “Demonstration Examples”. The three examples

cited were a simple conical developable, an arctic series fishing vessel, and the UBC

series fishing vessel.

3.3 Utilizing Modified Conventional Approach to Approximate a Single Di

rectrix

If the normal directrix is to be described by a spline with n control points, then the

values for those n points can be computed to yield a spline which lies close to the normal

directrix derived from the differential equations. From the equations 3.25, 3.26 and 3.27,

the intersection location along the generators can be calculated. The desired number

of control vertices for the normal directrix is still to be determined and may vary. The

number of desired normal directrix control vertices is specified by the variable

From the above mentioned relationships another differential equation is needed in

order to solve for the location of the normal directrix control vertices. The relationship

was found to be in the form of finding the minimum for an equation relating the normal

directrix in terms of an error. This relation relates p(t), the known spline, and r(t), the

spline control vertices we wish to solve for, is as follows:

N—i
error = Ip(t)—r(t)I2dt (3.32)

Chapter 3. Creation of a Normal Directrix from Two Space Curves 51

We then differentiate equation 3.32 with respect to the control vertices and solve for

the relation to determine a minimum. This is shown as follows:

Oerror
= 2

JN1

3- (p(t) — r(t)) dl (3.33)

N—2

=
YJ

.

‘(p(j+s)-r(j+s))dS (3.34)
0

= 0 (3.35)

Details of the analysis can be seen in Appendix F. The initial relation showing the

equation is as follows:

T

8ij—1 Cj_1

=

[A]
s2

[. 1] [A] dS (3.36)

6ij+1 S cj+1

8ij+2 1 C3+2

Cj_1 6ij—1

C2 N—2 —1
N—2 1 ‘5ii

= [(ii)] r(j+s) [3 2 s 1] [A] d3.37)

Cj+l 5ij+1

C,2 5ij+2

Chapter 3. Creation of a Normal Directrix from Two Space Curves 52

3.3.1 Equations Yielding Approximated Normal Directrix

Collecting equations 3.25, 3.26, 3.27, equation 3.37 and presenting them below shows

how all of the variables are sequentially coupled and integrated using the class ODE

(Ordinary Differential Equation) solver.

______ —1

d2

du
—

+
(genxn1).—

3 38
dt — 2n 2n .)

dv2

(genxn2).—
dv

dv — 2-i,, ndu
339dt — nt ndt

-

du g dv
cia — (1 — a)— gen + a— gen

(3 40)
d1

Cj_1 sij—1

C, N—2
—1

N—2 1

= [(ii)] yj r(j+s) [3 2 [A] d3.41)

Cj+1 sij+1

45ij+2

In the computer program all of the terms are collected as the ODE solver integrates

from 0.0 to N-L The algorithm tested concluded to be quite robust. No singularities

would occur. There are still, a few problems that have to be addressed which still affect

the solution.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 53

3.3.2 Results and Present Problems

Combining the equations above and integrating using the ODE class to generate the gen

erators for the developable surface and the control vertices for the normal directrix yields

the developable conical-like shape shown as an example in Figure 3.12. The directrix

shown in the figure has actually two directrices. Both happen to coincide exactly for this

example. One directrix follows exactly as the surface is being integrated. The other

directrix results from solving for the normal directrix control vertices.

Figure 3.12: Conic-Like Section with Flatness Tolerance Specified at 0.001

The next figure shows the same conical-like shape without a flatness tolerance speci

fied. The problem of fanning is apparent at both ends. Note how the two directrices are

different. The one which looks invariant is the control vertices which have been solved

for and have an additional constraint of having to be perpendicuar to the end generators.

The directrix which appears to follow the surface more exactly is the one which relates

the apparent tangent with the current generators.

The following figures display the modified conventional approach used to approximate

Chapter 3. Creation of a Normal Directrix from Two Space Curves 54

Figure 3.13: Conic-Like Section With No Flatness Tolerance Specified

the normal directrix control vertices which is then used by the modern approach. The

examples cited are hull sections of the UBC Series fishing vessel.

In figure 3.14 is an overlayed closer comparison of the two methods with the current

configurations.

In Figure 3.15 both versions appear to give better results. The modified approach has

the tolerance set higher , 0.01, and displays the fanning problem near the stern being

reduced.

In figure 3.16 is an overlayed closer comparison of the two methods with the current

configurations.

In Figure 3.17 both versions appear to give even better results. The modified approach

has the tolerance set higher , 0.1, and displays the fanning problem near the stern is

almost eliminated.

In figure 3.18 an overlayed closer comparison of the two methods with the current

configurations is shown.

Chapter 3. Creation of a Normal Directrix from Two Space Curves 55

(a) UBC Series Surface (main deck chine and
chine 1) body plan

(b) UBC Series Surface (main deck chine and
chine 2) profile

Figure 3.14: Developable Surface Procedure Comparison, tolerance 0.001

Chapter 3. Creation of a Normal Directrix from Two Space Curves 56

(a) UBC Series Surface (main deck chine and
chine 1) modified approach body plan

(c) UBC Series Surface (main deck chine and
chine 1) non-optimized body pian

(b) UBC Series Surface (main deck chine and
chine 2) modified approach profile

(d) UBC Series Surface (main deck chine and
chine 2) non-optimized profile

Figure 3.15: Developable Surface success, tolerance 0.01

Chapter 3. Creation of a Normal Directrix from Two Space Curves 57

(a) UBC Series Surface (main deck chine and
chine 1) body pian

(b) UBC Series Surface (main deck chine and
chine 2) profile

Figure 3.16: Developable Surface Procedure Comparison, tolerance 0.01

Chapter 3. Creation of a Normal Directrix from Two Space Curves 58

(a) UBC Series Surface (main deck chine and
chine 1) modified approach body plan

(b) UBC Series Surface (main deck chine and
chine 2) modified approach profile

(d) UBC Series Surface (main deck chine and
chine 2) non-optimized profile

(c) UBC Series Surface (main deck chine and
chine 1) non-optimized body plan

Figure 3.17: Developable Surface success, tolerance 0.1

Chapter 3. Creation of a Normal Directrix from Two Space Curves 59

(a) UBC Series Surface (main deck chine and
chine 1) body pian

(b) UBC Series Surface (main deck chine and
chine 2) profile

Figure 3.18: Developable Surface Procedure Comparison, tolerance 0.1

Chapter 4

Optimization of a Normal Directrix

4.1 Objective

Once the modern approach was deemed fairly stable the next criterion were then ap

proached and listed as follows:

• To better match a developable surface defined by a normal directrix to a pair of

space curves.

• To create an optimization function which is the mean square distance from each

space curve to the nearest point on the surface.

• To derive an equation to evaluate the mean square distance.

• To utilize a robust non-linear optimization technique to minimize the integrated

mean square distance.

4.2 Optimization Function

Calculation of the normal distance between a point on a space curve and the devel

opable surface, see Figure 4.1, can be obtained by three definitive relationships. This

will be described and derivation of the first form of solution will be shown below:

• The first relation is that the normal, n(t), of the surface is equal to the cross product

60

Chapter 4. Optimization of a Normal Directrix

Figure 4.1: Relating the Distance Between Space Curves and Surface

dp
of the tangent,

--

and the generator, g(t).

-

dp
n(t)=xg(t)

61

• The second relation states that any position on the surface can be calculated, q(t, .s)

by moving along the directrix, p(t) and then along the generator, g(t):

q(t,s) =p(t) +sg(t)

• The third relation builds on the previous statement by further stating that the

closest point from the surface to a point in space would be a specified distance, 1,

mace
curves

De
Jves to
surface

developable
surface

dlrectrix

Chapter 4. Optimization of a Normal Directrix 62

normal to the surface along the normal vector, n(t):

r(u) = q(t,s) + ln(t)

Substituting the second relation into the third yields:

r(u) =p(t)+sg(t)+ln(t)

The third relation above is the combined total of the previous two and can now be

differentiated with respect to the independent variable t in order to create a differential

equation which can solved.

Differentiating yields the following:

drdu —ds —dl dp dg dn
—g(t)—n(t) = (4.1)

We also have two other known relations which can be substituted, namely:

-

fU
__.\

— 1dp
(42)

dt

di dt

= (4.3)

From these three relations we can solve for three equations and three unknowns, with

the unknowns being the following dependent differentials:

• The differential dependent parametric position along a space curve

du
dt

The second form involves using the three definitive relations and continuing to find

relations yielding direct solutions without solving simultaneous equations.

A more detailed derivation for both of the forms can be found in Appendix H.

Starting with the differential relation:

drdu ds dl
- g- n

Taking the dot product with vector g:

(Jdu ds

_

dl

_

g) —
g • g — g

This simplifies to the following:

ds
di

=
dt di di

= g+sg+lg

(du

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Chapter 4. Optimization of a Normal Directrix 63

• The differential scalar dependent position along the generator g(t)

ds
di

• The differential scalar dependent position along the normal n(t)

dl
di

We then solve for the following relation:

4E -i--cit dt. dt dt

-‘-i (4.4)
cit dty dty dty

dt dtz dtz dtz

dr
dux —g —n

dr
duy —gy fly

dr
duz —g —n

Chapter 4. Optimization of a Normal Directrix 64

Similarly, dot product with n, (4.10)

and simplifying yields: (4.11)

dl (dr ..idu
— = I—n I— (4.12)
dt du dt

Similarly, dot product withy (4.13)

(E - 414
du dt) dt — dt dt

S
dt dt di di

Simplifying yields: (4.15)

i . —

-. (s g + 1 n)
du

di (
4.16

du di

4.2.1 Integral Chosen to Minimize and Simplex Parameters Used

The key parameter chosen to calculate, the distance from a point on a space curve to

the closest point on a surface, has to be further related to a function which describes the

entire surface. Calculation of a least squares approximation for the area under the curves

was chosen. One can refer to figure 4.2 for a visual representation of the area under the

curves. By collecting a history of distances between the space curves and the surface,

one can calculate the total area. Ideally, this would be zero. An equation in this form

would work with the Downhill Simplex Method of Multidimension.

The distance along the curve, the arc length, was calculated as follows: The arclength,

was calculated for both curves in calculations.

= jbdr
(4.17)

b

= I Iv(t)Idt (4.18)
Ja

&

= f v(t)dt
Ja

d pt

Ja
v(r)dr=v(t)

d pt

= dtfa
Iv(r)Idr = Iv(t)I

dS = v(t)dt

Area
= J F2 Idh1 I

2 d12]
dt[1j+l2

Chapter 4. Optimization of a Normal Directrix 65

Alec
Und
O.xve

developable
surface

dlrecfrlx

Figure 4.2: Area calculated under space curves

dS
dt

Let h1 and h2 be arc lengths for

The resulting least squares type

(4.19)

(4.20)

(4.21)

(4.22)

the two space curves r1 and r2 respectively.

approximation for the total area would be:

(4.23)

Chapter 4. Optimization of a Normal Directrix 66

From equation 4.23 the area between the space curves and the developable sur

face is the function to be minimized. This is accomplished by using the equations for

, 4, and for each space curve. These totalled together sum to be the degrees of

freedom for the non-linear optimization method model. The non-linear optimization

method used is the Downhill Simplex method. This is discussed later in this chapter.

By solving all the differential equations’ independent and dependent variables from

the start of the developable surface to its end, the non-linear optimization function can

attempt to minimize equation 4.23.

Another key point is that the dependent and independent variables sum to give ten

degrees of freedom. The nonlinear optimization method also needs ten different solutions

to start with. This problem was solved by moving one control vertex degree of freedom

from the directrix by unit length. From these initialization procedures the Downhill

Simplex method was able to start solving these equations.

4.2.2 Present Problems

Both approaches stated above describing solving for the dependent variables will pro

duce solutions for surfaces which do not have major changes in the rate of change of

the curvature and the direction of the curvature. If the rate of change of the out-of -

plane curvature with or without contribution by the in-plane curvature is very large, and

changing in direction, the modern approach may have difficulty in the alignment process

when trying to conform to the surface. Cases may arise, as shown in figure 4.3, where a

corresponding normal on the surface which should match a position on the space curve

will not occur. This may be due to the constraint that both the space curves and the

surface are of finite length and the corresponding normal on the surface will point to

an out-of-bounds position. One other possibility is that a localized change in curvature

orients itself midway during the iteration process and another normal of infinite length

Chapter 4. Optimization of a Normal Directrix 67

occurs.

The first method of matching the modern approach to two space curves can also fail

at a prior stage when calculating the inverse of the matrix. Reasons for a non - solution

are generally for the same reasons.

DIsonce L
I frornspocel

eto

normal

Figure 4.3: Possible inherent failure due to certain geometry

4.3 Downhill Simplex Method

Many non-linear optimization methods as cited by Jacoby [14] would be possible to

implement, but, a more suitable and generally more stable and robust method, the

Simplex method [16], was chosen. A major reason for this preference was the description

cited in Press [20], which briefly described its multidimensional capablities.

Chapter 4. Optimization of a Normal Directrix

4.3.1 Explanation of The Downhill Simplex Method

68

A brief description of the Downhill Simplex Method in Multidimensions is presented here

to help clarify its use. A simplex is the geometrical figure consisting, in N dimensions,

of N + 1 points (or vertices) and all their interconilecting line segments, polygonal faces,

etc. [20] In three dimensions, it is a tetrahedron, as can be seen in figure 4.4.

Downhill Simplex Method

(a)

)C
(b)

(C)

Figure 4.4: Analogy of a Simplex For The Downhill Simplex Method

The downhill simplex method has three parameters which define the moving behaviour

of the simplex. These parameters are mentioned here because changes in their values

Chapter 4. Optimization of a Normal Directrix 69

may be necessary. The three parameters are defined by Nelder [16] as a, 6, and
.

These parameters correspond to: reflection, contraction and expansion. The reflection

parameter, a, is a positive constant, which is a scalar multiplication constant which

mirrors the point through the simplex. The contraction parameter, 3, is a constant

which values lie between 0 and 1. It is a ratio of the distance of the point relative to

the simplex centroid. The expansion coefficient, , is greater than unity and it is a ratio

of the current point to the centroid with a point along the line joining the point to the

centroid. For a more detailed explanation refer to Nelder [16]. For detailed coded form of

the Downhill Simplex Method, programming and tests performed, refer to Appendix L.

4.3.2 Results and Present Problems

As stated previously, surfaces which resemble close to developable surfaces to begin with

will be more likely to have a solution that closely matches the original space curves. Below

are two examples which demonstrate both simple and difficult solutions encountered.

4.4 Examples

A few examples are shown in this section to help explain the various phenomenon of the

results of the theory created this far in the research.

4.4.1 Example of Single Surface with Conical Properties

The first example demonstrates how the non-linear optimization can successfully solve a

free-form surface with conical properties. Shown below in figure 4.5 are two views of a

conical like surface.

Note that due to the symmetry of the object in figure 4.5 the generators also follow

symmetrically along the surface.

Chapter 4. Optimization of a Normal Directrix 70

(a) Conical-like developable surface view 1 (b) Conical-like developable surface view 2

Figure 4.5: Conical-like developable surface

4.4.2 Example of UBC Series Demonstrating Present Problems

The UBC Series vessel was posed as the immediate goal to make into a developable ship

series. In figure 4.6 the surface tested was using the 1st and 2nd chine as the space

curves.

As seen in figure 4.6 the optimized version had difficulty with the adjustments due to

the in-and-out-of-plane curvature that results from this type of surface.

Referring to figure 4.7 both versions appear to give moderately successful results. The

modified approach has the tolerance set low , 0.001, and displays the fanning problem

near the stern.

Chapter 4. Optimization of a Normal Directrix 71

(a) UBC Series Surface (Chine 1 and 2) non-
optimized

(b) UBC Series Surface (Chine 1 and 2) opti
mized

(c) UBC Series Surface (Chine 1 and 2) com
parison

Figure 4.6: Developable Surface Failure

Chapter 4. Optimization of a Normal Directrix 72

(a) UBC Series Surface (main and chine 1)
modified approach body plan

(main and chine 1)

(b) UBC Series Surface (main and chine 2)
modified approach profile

(d) UBC Series Surface (main and chine 2)
optimized profile

(c) UBC Series Surface
optimized body plan

Figure 4.7: Developable Surface success, tolerance 0.001

Chapter 5

Intersection of Developable Surfaces and Flat Plate Layout

Once developable surfaces have been created, it is necessary to define the edges of those

surfaces by intersection with adjacent surfaces.

An additional consideration is once the bounded developable surface has been created

a flat plate layout is necessary. A derivation of the solution is also presented here.

5.1 Intersection of Developable Surfaces

Once the developable surfaces have been created there is the requirement that they must

intersect without gaps or spaces between them. Shown below is the vector representation

for initial conditions of the surfaces and their orientation relative to each other. In

figure 5.1 we see the various vectors that are dependent upon each other. We can show

the vectors dependence on each other as follows:

Figure 5.1 presents the independent parametric variable I. The two dependent para

metric variables are u and v. The independent space curve is p(t); one dependent space

curve which is a function of u is f(u); the other dependent space curve is g(v), which is

a function of v. The curves p(t), f(u) and g(v) are normal directrices representing the

developable surface of interest, and the adjacent surfaces on each side. The intersection

curves joining two developable surfaces are r1 which is relating f(u) and p(t) and the

other intersection curve r2 relates g(v) and p(t).

A detailed derivation of the equation used to calculate the intersection of the devel

opable surfaces are located in Appendix I

73

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 74

A

gft:

4

72

p(\X*/ ...•
S b(k dh

h(v)

Figure 5.1: Intersection of Three Developable Surfaces

5.1.1 Derived Equations Yielding Intersections of Surfaces

Derivation of the equations used to calculate the intersection of the developable surfaces

are as follows:

r1 = Pt + it (5.1)

dr1 dp dg ds1
—k- = +sit--+--gt (5.2)

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 75

•. + (E

dt
gt—

-

dt —

dg gt’dp

dp d)

-

- S

S

4. Igu Idfu
du

— df df

drdu
-

dr1

duQfu
dg

u du-;u- = + S2 — + fJ

But,

= f + s2ugu, and

s2ugu = — f

and, r1 = p+sg

Substituting gives,

dfdf

du(dhdh

d2f
u du

=
dt

_S2u)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 76

/ —s __..

(dp

du_

+it+-
du

—— (5.15)
dt ‘—

1df df d2f
—.——-..(pt+sitgt _fu))

-- ---i

(5.16)
dt — du dt

r2 = Pt + S2tgt (5.17)
- -

dr2 — dp dgt ds2
--- —

+ + —— gt (5.18)

—k /_ /____.

dp (d1i dgt (dh

!__•

ã._xv) +S2r

cit — /___.
(5.19)

(dIi
g Ija x g)

I____. \

dg YtIdp
(5.20)

•

Id2p
dt

E\
(5.21)

r2 = h + (5.22)

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 77

dr2 — dr2dv
523dt — dvdt

dr2
= (5.24)

r2 h +s1 (5.25)

r2 — (5.26)

r2 p + sä (5.27)

dr2 dh dv (dh dh d2h
= (5.28)

(
Idt 2tdt dvdv J

(dh d1z d2h
—1i)

dgdgdv
530

dtdvdt

5.1.2 Results and Present Problems

The intersection of developable surfaces was tested and proved to be fairly stable when

well behaved surfaces were created.

Conical Type Surface Tested

An example shown in figure 5.2 displays very tightly intersecting surface without any

problems. The intersection algorithm needs N + 2 surfaces when designing for N surfaces.

In the next subsection the algorithm is shown using what we term phantom surfaces.

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 78

Criterion of Phantom Surfaces

The criterion of phantom surfaces was introduced to provide a secure mechanism for

preventing interconnecting surfaces from having “cracks” or “leaks”. The conical-type

surfaces presented in figure 5.2 show surfaces which have been created using the modified

approach. These all appear to be developable but only the inner two have been con

firmed as developable using the modern approach. The two outside surfaces were used as

phantom surfaces in order to provide an intersecting edge that the inner two could use.

Looking at the figure 5.3c) and figure 5.3d), these two surfaces use the modern approach

and yield aligned surfaces with the intersection algorithms. The cracks will be more

evident when looking at the ARCTIC series of fishing vessel or the UBC series vessel.

Figure 5.3c) and figure 5.3d) are shown to display the phantom surfaces

IC
I

(a) Conical-type surfaces view point (1,1,1)

\\\\\\\
(b) Conical-type surfaces front view

Figure 5.2: Conical-type Surfaces Intersections

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 80

5.2 Flat Plate Layout

In order to convey the information of a developable surface into a useful form, the fiat-

plate-layout was created so the user can essentially use this output as a template.

5.2.1 Derived Equations giving Flat Plates Dimensions and Interplate An

gles

Once a developable surface has been created, the shape and position of the consecutive

segments that make up the developable surface need to be known. Below is the derivation

of the algorithm used to provide the information of the shape of the segments in the x

y plane and the angle and rate of change of bending of the segments relative to each

previous one. For a more detailed explanation of the derivation one should refer to

Appendix J

/
!2 Lht

dt

dt

Figure 5.4: Flat plate layout derivation

The resulting differential equation is used to find the new tangent and corresponding

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 81

(a) 3-D view of developable mobius strip (b) Corresponding flat plate layout

(5.31)

Figure 5.5: Developable surface and flat plate layout

The flat plate layout corresponding to the numbered plates in figure 5.5 has data

listed in table 5.1.

point on the x-y plane where the next point of the plate is located:

12a q \dt2 dt) dt UP

=

5.2.2 Format of Output

The example of the flat plate layout for the developable mobius strip can be seen in

figure 5.5

Chapter 5. Intersection of Developable Surfaces and Flat Plate Layout 82

Plate no. Parametric value out of plane angle (deg)

0 0.00 4.641389 0.975138

1 0.25 13.924170 8.451800

2 0.50 23.206951 19.508427

3 0.75 32.489716 27.889669

4 1.00 32.115269 21.843246

5 1.25 29.928911 13.160947

6 1.50 38.130260 19.531147

7 1.75 56.255440 60.359379

8 2.00 55.513470 41.122555

9 2.25 34.989170 8.168997

10 2.50 21.341158 3.404501

11 2.75 14.529543 2.682558

12 3.00 12.068573 6.007172

13 3.25 9.672798 13.691539

14 3.50 10.510071 9.681314

15 3.75 15.940498 9.440858

16 4.00 18.051476 19.695953

17 4.25 12.895594 21.226387

18 4.50 7.738149 11.441552

19 4.75 2.579468 4.393825

20 5.00 -0.016314 0.398113

Table 5.1: Flat plate data

Chapter 6

Choice of Computer Language and CAD Program

When this thesis work was initiated, one of the objectives was to initially create generic

tools in a very portable modular language and then apply them to a well established

open ended CAD package that is used throughout industry. At the present stage of the

work both objectives seem to have been met.

6.1 Computer Language Chosen

The choice of which computer language to program was based on a number of design

constraints. The language chosen should be flexible in case the method of design had to

be altered. The three designs considered were:

• Top-down structured design

• Data-driven design

• Object-oriented design

Of these three types of design, data-driven design was initially dropped because of the

nature of the design tool. Because of the financial constraints on the project and the

software languages available on the platform chosen, the top-down structured design was

initiated. This was then taylored into a modular top-down structured design. After

the release of a popularly supported compiler for the platform was chosen, the design

was then switched to an object-oriented design. The language initially chosen was ANSI

C, best supported at the initial time of development by Microsoft for the PC platform.

83

Chapter 6. Choice of Computer Language and CAD Program 84

Later, after an initial attempt with Walter Bright’s, Zortech C++, the switch was made

to Borland’s C++, which proved to have excellent support tools, a good development

environment and better technical support.

6.1.1 OOP - Object Oriented Programming

When it was realized that a true portable object-oriented language was available, the

design was taylored using influences from OOP, object oriented programming, OOD,

object oriented design, and OOA, object oriented analysis. First a definition of each is

in order:

• OOP Object-Oriented Programming

Object-oriented programming is a method of implementation in which programs

are organized as cooperative collections of objects, each of which represents an

instance of some class, and whose classes are all members of a hierarchy of classes

united via inheritance relationships [5].

• OOD Object-Oriented Design

Object-oriented design is a method of design encompassing the process of object

oriented decomposition and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design [5].

• OOA Object-Oriented Analysis

Object-oriented analysis is a method of analysis that examines requirements from

the perspective of the classes and objects found in the vocabulary of the problem

domain [5)

Chapter 6. Choice of Computer Language and CAD Program 85

6.1.2 Portability to Different Platforms

One major consideration when doing software development for an application is the

standardization and portability of the code being developed. Up until a few years ago, one

of the most standardized and portable languages was ANSI C. Now with more features

and better type checking, ANSI C++ appears to be the successor.

Porting some of the sample computer code mentioned below to different compilers

and to different computer platforms proved to be a very simple and straight forward task.

Very little problems were encountered. The sample compilers tested were Borland C++

3.1 and Zortech C++ 3.0. The platforms tested were DOS based PC platforms and the

SUN SPARC UNIX platform. No major problems were encountered.

6.1.3 C++: Classes and Features

The language chosen to best implement the work being done was the C++ language. This

language proved to be very much more than just a superset to the C language. Many of

the class features, when used in its entirety, better shape the programming environment

into a true object oriented program and design. A little explanation is presented in the

next sections as to how the tools were used to better inform the reader as to the approach

taken.

Class vector

*iaclude <iostream.h>

*ifndef _VECTOR_

*define _VECTOR_

en direction { I, Y, Z };

class matrix;

Chapter 6. Choice of Computer Language and CAD Program 86

class vector {

mt n;

static jut default_length;

float *eleent;

public:

vector0 {ndefault _length; ele.entnev float En ; };

vector(int din) {ndi;eleentnew float[n];};

vector(int di., float x);

vector(coast vectorl v

vector0;

static void set_default(jut n){default_length=n;};

static void set_default 0{default_length3;};

float& operator[J(mt 1) {return ele.ent[i];};

float operator[J(int i) coast {return eleent[i] ;};

friend mt size(const vectort v) { return v.u;};

vectort operator=(float x);

vector& operator(const vectork v);

vector& operator(const .atrix& a);

friend vector operator+(const vectori a, coast vector& b);

vector& operator+(coast vectork a);

friend vector operator—(const vectork a, const vector& b);

vectorl operator—(const vector& a);

friend vector operator*(const vector& v, float a);

friend vector operator*(float a, coast vector v);

friend float operator*(const vector& a, const vectort b); II dot product operator

friend vector operator*(const matrixk a, coast vectork b);

vector& operator*(float a);

vectort operator*(const vector& a); II e1e.entby—element nltiplication

friend vector operator/(const vectork v, float a);

friend istrea.& operator>>(istreamk, vector&);

friend ostrea.k operator<<(ostreamk, const vector&);

*endif

The class vector is the name of a class which enables the user to use N dimensional

vectors for calculations. A C++ feature, termed operator overloading enables the user

to write equations almost exactly as one would write them by hand.

Chapter 6. Choice of Computer Language and CAD Program 87

Included below is the vector.h class header file which shows how the class is initially

designed. Some explanation is in order at this stage to clarify to the reader these basic

features which are used throughout the development of other classes used in developing

the various design tools.

Looking at the listing of the class vector.h, the compiler directives, #ifndef _VECTOR_

and #define NECTOR_ are compiler directives which will not enable redeclarations. Be

low is an optional enum direction { X, Y, Z }; which enables the user to declare X as a

0, Yas land Zas 2.

The next line class matrix; declares the matrix class before class vector.h can be

declared, thereby, enabling class matrix to be used inside the vector.h class.

On the next line below is the class declaration class vector {, which assigns a class

name. The next line, since it does not have any member access control stated as private:,

protected:, or public:, then the members of a class declared with the keyword class are

private: by default.

The next line, whose member access control is public: shows some very interesting

features of C++. The first constructor, depicted by vector() (n=3; element=new dou

ble[n]);, which shows a default size, n, for the class to allocate memory. vector() is an

operation which is empty of a type. This case is where the type is hidden and some

mechanism must be provided for a user to initialize variables of that type. Located on

the next line is, vector(int dim) n=dim; element=new double[n], which is a constructor of

type double. Moving down one line, vector(const vector & v), is a copy constructor. “A

copy constructor for a class vector is a constructor that can be called to copy an object

of class vector that is, one that can be called with a single argument of type vector. A

copy constructor is generated only if no copy constructor is declared”. The next line,

iector() delete element;;, is contains what termed a destructor. A destructor automati

cally deallocates dynamic memory when a class goes out of scope. Moving to the next

Chapter 6. Choice of Computer Language and CAD Program 88

line contains one possible case of operator overloading. The line, doubleF_4 operator[](int

i)returri element[i];;, enables the programmer to use the [] operator with the vector class.

For example, the following code fragment would look like:

main()

{

vector x;

x[0] = 0.0;

x[1] = 1.0;

x[2] = 2.0;

cout<<x[0] <<“ “<< x[1] << “ “ << x[2] <<‘\n’;

}

There is also another form of the operator [] which implements the named const.

There is also the following code fragment which resides inside of class vector. It is in

the following form, float operator[](mt i) const{returri element[i];};. This is necessary

since the compiler complains when several operations are done successively and invoke

temporary storage variables. For example:

vector x,y,z,a,b,c,d;

.x,y,z,a,b,c,d . . .get assigned values

Chapter 6. Choice of Computer Language and CAD Program 89

then

x (y*z) *a* (b*c) *d;

cout<<x;

The above list of code shows how the operator jj is used as well as the << stream

operator is overloaded to standard output for the class vector. Syntactically this code is

much simpler and far more legible to the reader. This code is simple and easy to follow

thereby leaving the details of implementation to the compiler.

Another note one should make is that the declarations of mt n; and double *element;

are private inside class vector. Therfore, any queries of these variables must be done by

a member function within classvector. So, for example, in order to find the size ii of a

declared class of type vector, one has to invoke either friend mt size (vector éY v)return

v.n;; or mt size ()return n;; in order to access items from the private section of the class.

The next three lines of code depict three types of operator overloading one could

encounter when developing classes. The first operator, vectorJ operator_—(vectoré4 v);,

equates two classes of type vector, this member function also utilizes the *this pointer,

which is a special reserved pointer used in C++. The details of how the information is

passed is left for the reader to investigate. The second operator, vectors operator=(const

matrix& a);, equates two objects of class type vector and matrix. This enables an equat

ing of classes of different types. The next example operator,friend vector operator *(const

vectors a, const vectors b);, requires a friend to be declared. This code is optional since

the same feature could be invoked by the following, vectors operator*(vector a);.

Chapter 6. Choice of Computer Language and CAD Program 90

Class matrix

In the listing below, the matriz.h class header file implements the vector.h class.
tinclude <vector .h>

tinclude <iostream.h>

#ifndef ..AATRIX_

idefine _JIATRII_

class matrix {

tnt nr, nc;

float **element;

public:

matrix(int rows, mt columns);

matrix(const matrixi a);

matrix(const vectork a);

matrixfl;

matrix& operator(float x);

matrixi operator(const matrix*);

float* operatorfl (tnt i) {return element[i] ;};

coast floata operatorS (hit i) coast {return element[i] ;};

vector row(int i);

friend 1st n..rows(const matrixi a){return a.nr;};

friend tnt n_coluns(const matrixt a){return a.nc;};

vector column(int i);

friend matrix exp(const matrixt a);

friend matrix element_mult(coast matrixi a, const matrixi b);

friend vector diagonal(const matrixi a);

friend matrix operator+(const matrix& a, coast matrix tb);

friend matrix operator-(const matrixt a, coast matrixi b);

friend matrix operatore(const matrixi a, coast matrixi b);

friend vector operator*(const matrixt a, coast vectort b);

friend matrix operators(const matrixt a, float b);

friend matrix operatox*(float a, coast matxix& b) {retunt baa;);

friend matrix transpose(coast matrixk a);

friend matrix solve(const matrixi a, coast matrixt b, float adet N1JLL);

friend matrix identity(int);

friend matrix inverse(coast matrix& a, float* detNULL);

friend istreamk operator>>(istreama, matrixi);

Chapter 6. Choice of Computer Language and CAD Program 91

friend ostreant operator<<(ostreaak, const satrixa);

friend hit operator<(const .atrix&, conat •atrixt);

friend zatrix abs(const aatrix&);

I;

*endif

One can see the similarity between class vector and class matrix and how they can

interact.

Class Curve and Surface

tinclude “matrix .h”

tinclude <fstream .hpp>

*ifndef _CURVE_

tdefine _CURVE_

class Curve{

mt n;

char splinetype;

vector epoint;

static matrix SB;

public:

void sptype (char what) {splinetypewhat ;

char typeofsplineO{return splinetype;};

int sizeO{return n;};

CurveO{n5; splinetype ‘1’; point = new vector[51;};

Curve(int nua){nnum; splinetype’l’; point = new vector[n];};

Curve(Curvek a);

CurveO{delete[n] point;};

void realoc(int na);

vectork operator El (hit i){return point Ii) ;};

Curvet operator(Curvet c);

vector operatorO(double t);

vector tangent(double t);

vector curvature(double t);

double deriv_2c(double t, hit i);

double deriv_c(double t, mt i);

Chapter 6. Choice of Computer Language and CAD Program 92

static void initbasis(char sptype’2’, double b11.0, double b20.0);

static atrix BEB;

tendif

tifndef _SURt

*define _SURF_

class Surface{

private:

Curve *leftedge, erightedge;

Curve *directrix;

Surface *leftsurf, *rightsurf;

public:

Surface(Curve *leftedge, Curve trightedge, Surface *leftsurf,

Surface *rightsurf,int ncontrolpntss,double step7.0,

double outpO.0S,iut surfnol);

void Rightsiuit(Surface trights);

void Leftsinit(Surface Clefts);

double Optiaize(double toleranceo.2, mt itermax = 250);

void Develop(void);

void Developt (void);

void Developtl(void);

void Drav_3d(int gemtoso,double step7.0,int surfnol);

void Draw_33d(int gennosO,double stepfl.O,int surfnol);

void Draw..3id(int genno5O,double stepfl.0,int surfnol);

void Drav.2d(int gennoso,double steopfl.0,int surfnol);

SurfaceO;

Surface(Surfacet s);

SurfaceR operator(Surface& s);

1;

tendif

*ifndef _FILELISTS_

Idefine _FILELISTS_

tinclude <fstrea. hpp>

class Filelisto{

public:

Chapter 6. Choice of Computer Language and CAD Program 93

ofstrea. file;

Filelisto *next;

ofstrea.k operator[](iut n);

class Filelisti{

public:

ifstream file;

Filelisti *next;

ifstream& operatorlj (jut a);

*endif

The following classes, Curve arid Surface also implement vector and Curve. These

sort of implementations were able to make the code more legible and apply the testing

of Developable Surface modules much earlier in the design cycle.

Class ODE

*ifndef _ODE_

*define _ODE_

*iaclude “vector .h”

class dynamic_system {

private:

double time, step_size;

vector state;

vector error_scale;

vector (ederivative) (double, vector&);

public:

dynamic_system(vector (*)(double, vector&), double start_time,

vectork initial_state, vector *error_scaleO);

double& whenO;

void resetO;

double& operatorO(int i);

vector operator() (double t);

vector step(double delta);

Chapter 6. Choice of Computer Language and CAD Program 94

‘-

=

I I I I I

\\

Figure 6.1: Computer Platform Selected Initially

void rk(double tO, double& del_t, double ti, vectorl x,

vector (sf)(double t, vectort x), vectork err_scale);

#endif

The above code class ode, ordinary differential equation solver, also shows another

useful combination of class building to contribute to a library of useful class tools.

6.2 Computer Platform Selected

Chapter 6. Choice of Computer Language and CAD Program 95

6.2.1 Pc 386/486 Environment

The development of the theory for this thesis and the validation via progranmiing was

implemented on a PC. The PC, personal computer, platform was decided upon because

it is the most popular and inexpensive platform in use for almost every application today.

The PC is primarily an opened ended architecture in which a wide variety of hardware

can be interfaced. With PCs becoming faster and less expensive every year most of the

speed constraints of the thesis programs were relaxed. At the present state of the thesis

researçth and design, the programs execute fast enough to become interactive. Commercial

viability should be considered.

6.2.2 computer Language Selection in this Platform

At the start of this thesis the computer language chosen was the C programming language.

This language proved to be sufficient for initial implementations. Further development

of computer languages, such as C++, proved to offer much more sophisticated features

and modularity of code that would offer more efficient development cycles. This proved

correct and the theory, code, test, development cycle time was greatly reduced.

Many other features of the C+++ language also proved invaluable towards imple

menting the theory. One of the most used features of the C++ language was the use

of operator overloading. This enabled vector calculus equations to be written in code in

almost the same convention one would use when writing by hand. Other features which

were discussed above all contributed to more legible code and as a collection of useful

tools which other applications would ensue.

Chapter 6. Choice of Computer Language and CAD Program 96

6.3 CAD Program Selected

During the course of development of the theory a decision was made as to whether or

not writing a computer platform independent CAD package should be undertaken. After

assessing the existing CAD packages used on several computer platforms, the conclusion

was that one would be wiser to develop the special code to an existing CAD package. The

CAD package chosen was assessed as the most popular and efficient to develop upon. This

CAD package was AutoCAD. During the course of development of the theory, ongoing

assessment was done on AutoCAD’s market position and development tools. This proved

to be benefitial to this project as well as it reflected upon us how strong a commercial

product this was in the CAD market as well as their desire to move to other hardware

platforms.

AutoCAD was reviewed and concluded to be the most popular CAD package in in

dustry and contained the best development design tools out of all of the CAD packages

surveyed. Initial development started with AutoCAD release 10 on the 386 personal com

puter. This proved to be frustrating and fell short of our expectations and requirements.

The release of AutoCAD release 11 and 12 proved to answer most of our questions and

solve most of our earlier problems. Now pending publishing of this thesis ongoing devel

opment is being done towards commercialization of developable surfaces as a third party

developer package. Much effort is needed in order to create user interactive tools sophis

ticated enough to ensure useful interactive CAD tools that the user would find intuitive

to use.

6.3.1 CAD Program Environment and Open Architecture

The CAD program environment using AutoCAD ADS development tools proved to be

what was needed for developable surfaces. The ADS development tools are C language

Chapter 6. Choice of Computer Language and CAD Program 97

calls which are registered and loaded as applications for AutoCAD. The ADS develop

ment tools have proved to be of high quality and as an open architecture to build and

expand upon the existing tools contained in AutoCAD. This open architecture has en

abled AutoCAD features and newer releases to grow very rapidly. The writing of ADS

development tools in ANSI C language has also enabled AutoCAD to be ported to other

platforms very quickly and easily with minimal effort when compared to other languages.

6.3.2 Present Limitations

So far the present limitations of AutoCAD and ADS development tools are few. Some awk

wardness has occured when implemented AutoCAD ADS applications tools with some of

the C++ modules. True C++ OOD, OOP techniques can be affected by some of the

C functions and how the ADS environment is structured which limits some of the C++

design. Future releases of AutoCAD and ADS tools will probably evolve into C++ classes

and methods. Existing design changes are being implemented quite easily into the Auto

CAD ADS environment. Autodesk has been very supportive and provided encouragement

for our ongoing research and development implementing C++ to ADS.

Chapter 7

Demonstration Examples

In this chapter there are four example sections which display the benefits and problems

still facing the present design. The first section describes the power and flexibility of the

base module which, when unconstrained, can create more difficult geometric anomalies

in computational geometry.

The other sections show more realistic applications and the difficulties that arise

trying to “best fit” two or more space curves to the exact geometry desired. One must

be made aware that from any two or more space curves, a developable surface may not

exist; only a closest fitting one may be a solution. The reader should be made aware that

this is a design tool, and it should also provide the user with feedback as to what type

of geometries are potentially developable.

7.1 Developable Mobius Strip

The first example figures shown below in figure 7.1, which were presented in chapter 3,

show the flexibility of the base module, given freedom to solve the geometric problem

when working from a directrix and two generators only.

This geometric anomaly is interesting to view and cite as an example and perhaps as

mathematical art, but provides no potential commercial benefit to the industrial designer.

The next few sections exemplify more practical examples in commercial areas such as

manufacturing. When “harder” constraints are involved new problems arise. Examples

could have been cited where these design algorithms would prove to the reader that they

98

Chapter 7. Demonstration Examples 99

(a) Developable mobius strip view 1 (b) Developable mobius strip view 2

Figure 7.1: Developable mobius Strip

Chapter 7. Demonstration Examples 100

work very well, but, they would also prove to be misleading. This thesis was presented

in a very objective engineering manner which shows both the positive and negative sides

inherent in design.

7.2 Simple Conical Developable

A simple conical developable surface was created in order to verify and check compliance

with known developable surfaces, fanning and intersection of surfaces.

Shown above 7.2 are surfaces which intersect and verify results.

7.3 Arctic Fishing Vessel

7.4 UBC Series Fishing Vessel

Referring to figure 7.5 the ubc series was found to be the most difficult to model since the

bow contains compound curvature hull form in certain regions from station 0 to station

2.0.

Chapter 7. Demonstration Examples 101

(c) Conical-type surfaces view point (1,1,1) (d) Conical-type surfaces front view

(a) Conical-type surfaces view point (1,1,1) (b) Conical-type surfaces front view

Figure 7.2: Conical-type Surfaces Intersections

Chapter 7. Demonstration Examples 102

(a) ARCTIC vessel view point (1,0,0)

(c) ARCTIC vessel view point (0,0,1)

(b) ARCTIC vessel view point (0,4,0)

(d) ARCTIC vessel view point (-1,-1,0.2)

Figure 7.3: Arctic Vessel Conventional Approach

Chapter 7. Demonstration Examples 103

(a) ARCTIC vessel view point (1,0,0) (b) ARCTIC vessel view point (0,-1,0)

J// ‘I’ll!

\\\\‘\‘\‘ \

(c) ARCTIC vessel view point (0,0,1) (d) ARCTIC vessel view point (-1,-1,0.2)

Figure 7.4: Arctic Vessel Modern Approach

Chapter 7. Demonstration Examples 104

(a) UBC series vessel view point (1,0,0) (b) UBC series vessel view point (0,-1,0)

(c) UBC series vessel view point (0,0,1) (d) UBC series vessel view point (-1,-1,0.2)

Figure 7.5: UBC series Vessel Conventional Approach

Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The research objectives were

• to develop an algorithm in order to find a normal directrix such that the resulting

developable surface lay close to two space curves representing desired edges of the

developable surface.

• to create an algorithm to intersect developable surfaces and to generate the flat

plate layouts and angles.

• to implement these algorithms using a modern computer language and a popular

CAD package in order to assess the practicality of the approach.

Normal Directrix from Two Space Curves

An algorithm was created to compute a normal directrix for a developable surface from

a pair of space curves. Differential equations were derived for defining a set of generators

lying between the space curves, similar to the approaches taken by Nolan and Clements.

The set of generators were used to compute a normal directrix, which was approximated

by a parametric spline.

To ensure that the rulings between the ends of the space curves were also generators

of the developable surface, the tangents at the ends of the space curves were aligned

so that the cross-products between the end rulings and the two tangents at each end

105

Chapter 8. Conclusions and Recommendations 106

were co-linear. The control verticies of the normal directrix were adjusted so that the

developable surface started from one end of the normal directrix aligned with the opposite

end generator.

The algorithm created yielded undesireable fluctuations in generator direction when

the surface was nearly flat. A threshold limit for the curvature was used, below which

the generator direction was held constant. Practical examples with hard-chine ship hulls

demonstrated the robustness of the approach.

A non-linear optimization technique, the downhill simplex method, was implemented

to further refine the shape of the developable surface. Limited success was achieved.

Intersection of Developable Surfaces and Flat Plate Layout

An algorithm was derived to define the edges of a developable surface by intersection

with adjacent developable surfaces. The method proved to be robust, with the exception

when two adjacent developable surfaces are nearly co-planar.

Differential equations were also derived for creating a flat plate layout of a developable

surface, including axes of bending and plate curvatures.

Implementation

The C++ programming language was used to implement the algorithms. This enabled an

object-oriented and modular approach, for example 3-D space curves were implemented

as a class of objects with member functions such as position, tangent and curvature as

a function of the independent parameter. As a class of objects, details of the implemen

tation of curves were transparent to or isolated from the rest of the program. Other

features of this programming language enabled the main program segments to be written

clearly and concisely in a mathematical format.

Chapter 8. Conclusions and Recommendations 107

AutoCAD was selected as the host CAD package because of its wide acceptance,

multiple platforms and development tools. Only preliminary steps have been taken to

date to incorporate the algorithms and code developed directly into the CAD package.

8.2 Recommendations

• Alternate approaches to the threshold limit on curvature should be considered.

• Drop non-linear optimization for adjustment of the shape of the normal directrix.

• Implement a threshold limit for the shape of the intersection between adjacent

surfaces when nearly co-planar.

• Implement non-uniform rational beta spline and non-uniform rational tension Catmull

Rom spline when they are available.

• A basic set of algorithms should be implemented including

— creating a normal directrix from two space curves,

— intersection of adjacent developable surfaces,

— generation of flat plate layout and

— direct interactive control of the shape of a normal directrix.

Bibliography

[1] R. A. Adams. Calculus of Several Variables. Addison-Wesley Publishers, 1987.

[2] Glenn D. Aguilar. Definition of Developable Surfaces with High Level Computer

Graphics. In Proceedings at the Pacific Northwest Section of the Society of Naval

Architects and Marine Engineers, pages 1 — 21, January 1987.

[3] B.A. Barsky. Computer Graphics and Geometric Modeling Using Beta-Splines.

Springer-Verlag, 1988.

[41 P. E. Bezier. Numerical Control-Mathematics and Applications. John Wiley & Sons,

1972.

[5] G. Booch. Object Oriented Design with Applications. Benjamin Cummings, 1991.

[6] W.E. Boyce and R.C. DiPrima. Elementary Differential Equations and Boundary

Value Problems. John Wiley & Sons, 1977.

[7] J.C. Clemens. A Computer System to Derive Developable Hull Surfaces and Tables

of Offsets. Marine Technology, 18(3):227 — 233, July 1981.

[8] T.D. DeRose and B.A. Barsky. Geometric Continuity and Shape Parameters

for Catmull-Rom Splines (Extended Abstract. Proceedings of Graphics Interface,

(27):57 — 64, May - June 1984.

[9] T.D. DeRose and B.A. Barsky. Geometric Continuity, Shape Parameters, and Ge

ometric Constructions for Catmull-Rom Splines. ACM Transactions on Graphics,

7(1):1 — 41, January 1988.

108

Bibliography 109

[10] A. B. Dunwoody. Computer Aided Design of Developable Surfaces. not yet pub

lished, 10, 1989.

[11] editor E.V. Lewis. Principles of Naval Architecture, 2nd ed. Volume 1,2,3, Society

of Naval Architects and Marine Engineers, 1989.

[12] J.D. Foley, A. VanDam, Steven K. Feiner, and John F. Hughes. Computer Graphics

Principles and Practice. Addison-Wesley Publishing Company, 1990.

[13] M.E. Hohmeyer and B.A. Barsky. Rational Continuity: Parametric, Geometric,

and Frenet Frame Continuity of Rational Curves. ACM Transactions on Graphics,

8(4):335 — 359, October 1989.

[14] S.L.S. Jacoby. Iterative Methods for Nonlinear Optimization Problems. Prentice

Hall, 1972.

[15] U. Kilgore. Developable Hull Surfaces. Fishing News (Books) Ltd., 1967.

[16] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer

Journal, 7:308 — 313, 1965.

[17] T.J. Nolan. Computer-Aided Design of Developable Hull Surfaces. Marine Tech

nology, 233 — 242, April 1971.

[18] J.C. Beatty R.H. Bartels and B.A. Barsky. An Introduction to Splines for Use in

Computer Graphics and Geometric Design. Morgan Kaufmann Publishers, 1987.

[19] D. F. Rogers. B-Spline Curves and Surfaces for Ship Hull Definition. Society of

Naval Architects and Marine Engineers, 1977.

[20] S.A. Teukolsky W.H. Press, B.P. Flannery and W.T. Vetterling. Numerical Recipes

in C. Cambridge University Press, 1988.

Appendix A

Mathematical Notation for Partial Differentiation

Notation used throughout is that which is defined in the text by Adams[1.

Notation example:

p = f(x,y,z) where x = x(t) y = y(t) z = z(t)

We can then say:

p = F(t) = f(x(t),y(t),z(t))

where we can regard p as a function of the single variable t.

Since p depends on t through both of the variables of f, the chain rule for has

three terms:

dp — a7 dx
+

op dy
+

dz
dt Oxdt 9ydt Ozdt

The use of the straight “ d” denotes derivatives of only one variable.

For example:

The Derivative means F’(t)

• op a
while means f1(x,y,z) = —f(x,y,z)

rIO

Appendix B

Derivation of Developable Surface

B.1 Constraints which Define the Developable Surface

The definitions presented below were from previous work and on going research.

.i!LtT

g g+.JT

g

dt dt dt2

Figure B.1: Derivation of Developable Surface

Vectors Must Be Perpendicular

d d d

(g+ T)(+LT) 0

= 0)

dg dp
(+g = 0)

dg dp
—

cPp

dt dt — dt2
g

111

Appendix B. Derivation of Developable Surface 112

Vector g is of Constant Length

dg

The Normal is Invariant Along a Generator

b
a

x(r,t) g(t)

r
p(t)

t

Figure B.2: Derivation showing normal is invariant along a generator

x(r, t) = p(t) + rg(t) where r is a scalar

dx dp dg
=

dx
b= -;--=g

ar
dp dg

n = normal=x=(+r)xg

dp dg
= (-jjxg)+(r--xg)

Appendix B. Derivation of Developable Surface 113

dp dg
But (- x g) x g) ze. are parallel

therefore (x g). = 0

B.2 Proof Using Constraints

dg_ (.g)dp
dt (2)dt

Let B be the constant we need to satisfy:

dg — B
dt dt

CONSTRAINTS

1. Vectors must be of unit lentgth.

g•=O==g•B=0

2. Normal is invariant along a generator.

(gx). 0

=(gx).B = 0

Identity: A. (B x C) = B. (C x A)

B5.(gx) = 0

Bg.(x) = 0

Appendix B. Derivation of Developable Surface 114

3. Vectors must be Perpendicular.

dg dp — d2p
dt dt —

B
— d2p

“dt dt’ — dt2
g

(2.
— _dt2 g
-

\dt dt

therefore: =
—

g) dp
dt (.)dt

Appendix C

Derivation of Rate of Rotation of Generator Differential Equation

This derivation also includes some new terminology.

A differential equation is derived which calculates the rate of rotation of a generator

with respect to changes in one of the parameters of the directrix curve.

NN’
Theta

Phi

Directrix

Figure C.1: Vector locations and corresponding angles

The angle Theta, herein referred to as 0, is the out of plane rotation of G’ with respect

toG.

The angle Phi, is herein referred to as , and is the in plane rotation of G’ with

respect to G.

The variable a is a parameter describing directrix.

The rate of rotation of a generator with respect to changes in one of the parameters

115

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation 116

of the directrix curve is written as:

d20
dadt

The desired expression is the rotatior of a generator with respect to changes in one

of the parameters of the directrix, which is written as:

dO
da

This desired expression can be defined as:

da da

where, N is the unit normal defined as:

N Txg

therefore,

£4 --(.N
dtda — dt\da

giving,

d28 — d2g dg dN
dadt — dadt dt dl

From the derivation of a developable surface:

\dt2

dl
Vdt dt

where T is of unit length:

T = dt

/.4R
Vdt dt

therefore,

dadt da da /
Vdt dt Vdt dt

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation 117

The second term in the above equation disappears because the derivative of a constant

is zero.

therefore,

— (g)dT
dadt

Vdt dt

(C.2)
dadt \da Jdt dt

One of the next terms to define is the first term of the second part of

= çT + ON
da

where,

dT
= _—— g

aa

combining gives,

— (. g) T + ON (C.3)

One of the next terms to define is the second term of the second part of

Using the differentiation product rule on one of the definitions:

N=Txg

yields,

dN /dT ‘\ / dg’\
—- =

x g) + x (C.4)

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation 118

Combining Equation C.3 and Equation C4 to form the second part of equation C.1,

(—(.g)T+oN). ((xg)+(Tx))
=

(_ . g) (T. (4 x g)) + ((_z
. g) (T. (T x +

9(N.(xg))+6(N.(Tx))

several terms drop out of Equation C.5:

0 (N. (Txff))

= BT, hence, T x T
dt

Another term also drops out:

o(N.(x))

Using Identity A. (B x C)

(4JZ(g xN)),butT

resulting in -- T

since, T remains

One other term drops out:

(—.g) (T.(Tx))

but
dt

Therefore

dg dN
da dt

Using a vector triple products dot

= 0 since,

= 0

= B.(CxA)

= gxN

unit

0,

length

= BT, resulting in (T x T) = 0

and

/dT ‘\(IdT
——g) T.—jj-xg

cross identity

da dt —

(C.5)

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation 119

IdT ‘\ IdT
= -_.g)-.(gXT)

using the fact that N = T x g

fdT ‘\ IdT
=

da dt

Then,

d20
— (g) (dT

N +
(dT (dT

N
dadt

—

da) da gj dt

-

da — da’ 1da
Vdt dt

Using the quotient rule for derivatives:

dT V di di \. dadt) dt \. dt dt) dadt di

da
\dt di

/ ,12
d2

dadt dt dp
=

__

dt dt dt dt)

- t’_(dadtdt).N
da /4.4z (dt

The second term drops out because N = 0

Therefore

UI
N \dadt

da —

Vdt di

dl’ d1
N•— = N..1 di

dt
Vdt dt

but Using quotient rule

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation

(2
\dt di

\cit di

(-— dadt dt2)

\dt dt

— ‘dt2) dadt

\di di

120

— V dt di dt2) di \. dt di) dt2 dt
IV

(dd
\dt dt

d2— dt2

Vdt dt

(.& /— \di2 di)

(E.& dt
\di di)

Again, the second term drops

(ç.N)

Vdt di

dp
out because — N = 0

dt

(.
dadi g

/2.42
Vdt dt

dTN
dt

dTN
dt

dT
da

dT
a

d20
dadt

d20
dadt

(.& /
dadi dt) dp

—

(42 at
‘di di)

-‘-.N1•g)— i..dt2 J ‘dadi
(
\dadi g di2

(.
\dadi

Vdi di

Combining terms yields,

(42.2’ (1
\di di) di di

Using Identity: (A. C)(B. D) — (A. D)(B. C)

= (A x B) . (C x D) yields,

(X • (N x g)

(x)gxN

But, A•(BxC)=(CxA).B

— \.di2 di
— 3

(&
di di)

d2p
dadt

Appendix C. Derivation of Rate of Rotation of Generator Differential Equation 121

d29

— dt2 dt)
—

. (C.6)
dt dt)

Appendix D

Tension Catmull-Rom Spline

The Catmull-Rom Spline matrix with a tension parameter, /3, is shown below. The

phantom point end conditions are shown on the following pages.

—2.0/3 4.0 — 2.0/3 2.0/3 — 4.0 2.0/3

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/3 —2.0/3
P(t) = u3 u2 u1 1

—2.03 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Pi-’

Pi

Pi+1

/3 = Tension parameter

122

Appendix D. Tension Catmull-Rom Spline 123

D.1 Phantom point, P(O), at 0

—2.0/3 4.0 — 2.0/3 2.0/3 — 4.0 2.0/3

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/3 —2.0/3
P(t) = 0.0 0.0 0.0 1.0

—2.0/3 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Pi-1

Pi

= Fl_i

Fi+i

Fl+2

P1-1

P1

0.0 1.0 0.0 0.0 = Fl__i

Pi+i

Fl+2

Appendix D. Tension Catmull-Rom Spline 124

—2.0/3 4.0 — 2.0/3 2.03 — 4.0 2.0/3

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/3 —2.0/3

F(0) = 0.0 0.0 0.0 1.0

—2.0/3 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Fi

Pi

Fi+1

i+2

Appendix D. Tension Catmull-Rom Spline 125

D.2 Phantom point, P(1), at n

—2.0/3 4.0 — 2.0/3 2.0/3 — 4.0 2.0/3

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/3 —2.0/3
P(t) = 1.0 1.0 1.0 1.0

—2.0/3 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Pi-’

Pi

Pi+1

Pi+2

Pi-’

Pi

0.0 0.0 1.0 0.0 = Fi+2

Pi+1

Appendix D. Tension Catmull-Rom Spline 126

—2.0/3 4.0 — 2.0/9 2.03 — 4.0 2.09

1 4.0/3 2.0/3 — 6.0 6.0 — 4.0/9 —2.0/3
P(1) = 1.0 1.0 1.0 1.0

—2.0/3 0.0 2.0/3 0.0

0.0 2.0 0.0 0.0

Pi-1

P1

Pi+1

Pi+1

Appendix E

Beta-Spline

P(t)
= [2 1 1]

—2.0/3? 2.0(132 +/? +i3? + /9i) —2.0(132 +i3? +/3i + 1.0) 2.0

6.0/3? —3.0(132 + 2.0/3? + 2.0/3?) 3.0(132 + 2.0/3?) 0.0

(5
—6.0/3? 6.0(/3?

—
6.0/3k 0.0

2.0/3? (/32 + 4.0/3? + 4.O/3) 2.0 0.0

P1-1

P1

Pi+1

= 132 +2.0/3?+4.0/3?+4.0/3i+2.0

= Bias

/32 Tension

127

Appendix E. Beta-Spline 128

E.1 Phantom point, P(O), at 0

P(t) = [0.0 0.0 0.0 1.0]

—2.O/3 2.0(/32 + /3 + i? + i3i) —2.0(,62 + /? + /3 + 1.0) 2.0

6.0/9 —3.0(/92 + 2.09 + 2.0/3?) 3.0(132 + 2.0/3?) 0.0

S
—6.0/3? 6.0(13?

—

/3) 6.03 0.0

2.0,6? (/32 + 4.0/3? + 4.0/3k) 2.0 0.0

Pi-1

Pi

=Pi-1

Pi+1

Fi+2

S =/32+2.0/3?+4.0,B?+4.0i91+2.0

40

Appendix E. Beta-Spline 129

Pi-1

1.0 Pi

g 2.0/3 (/32 + 4.0/3 + 4.0/3k) 2.0 0.0 =

i+1

Pi+2

— (/32 + 4.O/9 + 4.O/31)P + 2.0P÷1
(6—2.O,8)

Appendix E. Beta-Spline 130

P(0) = [0.0 0.0 0.0 1.0]

—2.O/3 2.0(132 + i? + I? + /3k) —2.0C82 + /? + th + 1.0) 2.0

1 6.0/3? —3.0(132 + 2.0/3? + 2.0/3?) 3.0(82 + 2.0/3?) 0.0

S
—6.0,3? 6.0(13? — /3) 6.0,3 0.0

2.0/3? (/32 + 4.0/3? + 4.Ofli) 2.0 0.0

(I32-I-4.OI3?+4.o31)P1+2.oP1i

S—2.O3?

Pi

Pi+1

Appendix E. Beta-Spline 131

E.2 Phantom point, P(1), at n

P(t) = [1.0 1.0 1.0 1.0]

—2.0,6 2.0(/32 + /3 + /? + 3) —2.0(132 + /? + i3 + 1.0) 2.0

1 6.0/3 —3.0(132 + 2.0/3 + 2.0/3?) 3.0(/32 + 2.0/3?) 0.0

S
—6.0/3 6.0(/3

— /3i) 6.0/3k 0.0

2.03 (/32 + 4.0/3? + 4.0/3k) 2.0 0.0

Pi-1

Pi

= Pi+2
Fi+1

Fi+2

S = /92+2.0/3+4.0/3?+4.0th+2.0

Appendix E. Beta-Spline 132

Pi-’

1.0 Pi

0.0 2.0/3 (4.0/3? + 4.0/3k + /32) 2.0 = Pi+2

Fi+1

i+2

— 2.0/3F, + (4.0/3? + 4.06 + f32)P11
i+2

8—2.0

Appendix E. Beta-Spline 133

P(1) = [1.0 1.0 1.0 1.0]

—2.0/3? 2.0(/32 + i? + i? + /3) —2.0(/32 + /? + /3 + 1.0) 2.0

6.0/3? —3.0(/32 + 2.0/3? + 2.0/3?) 3.0(/32 + 2.0/3?) 0.0

45

—6.0/3? 6.0(/3? — /3k) 6.0/3k 0.0

2.0/3? (/32 + 4.0/3? + 4.03) 2.0 0.0

Pi-1

P1

Fi+1

2.Of3?1’ + (4.O+4.O31+P2)P11
6—2.0

Appendix F

Derivation of Normal Directrix Control Vertices

It was found necessary to solve for a desired number of normal directrix control vertices

from two space curves. The two space curves must be the same type of splines as the

normal directrix in order to minimize the complexity of calculations. The number of

control vertices of each space curve can be different from each other as well as both

numbers can be different than the desired number of normal directrix control vertices.

In order to solve for the normal directrix control vertices we solve a relation involving

p(t), our known spline, r(t), the spline we wish to solve for, in the following error equation:

error
= 1N-1

Ip(t) — r(t)12 dt (F.1)

where we wish to minimize the integral and solve for the Contro Vertices, C:

öerror
= 2

JN1
- (p(t) — r(t)) dt (F.2)

N—2 ld (+s)

=
dC,

(p(j+s)—r(j+s))dS (F.3)

= 0 (F.4)

J’ dp(j+ s)
pj + s)dS

=
2j’

dp(j+s)
. r(j + s)dS (F.5)

134

Appendix F. Derivation of Normal Directrix Control Vertices 135

where the the above terms are defined below in vector form:

Ci-’

Ci
p(j + s) = 3 2

.
[A] (F.6)

Ci+1

Ci+2

6ij—1

ãp(j+s)

= [2 1] [A] (F.7)

Where A refers to the 4 x 4 spline basis matrix and 6 is the Dirac delta function.

Using the identity (BA)T = ATBT expanding for triple products (ABC)T =

CT (AB)T = CTBTAT we get the following relation:

T

ãerror

=

[A]T [3 2

C2
dS (F.8)

s

1 C2

Appendix F. Derivation of Normal Directrix Control Vertices 136

1
N—2

= f r(j + s) [3 2 s 1] [A] dS (F.9)
0

‘5ij+1

ij+2 j
Simplifying some of the terms yields the following form

T

F j_’l 1 r 1
Co I

ôerror N2 1

[3 2 S 1] dS[A] (F.lO)ac = I [A]f
3=01 I

I 5ij+l I I [I
CN1]

Sij+2j [1

T

‘5ijl
— 76541 r 1

N_i 1 L 43I I I

Ic0 I
iii I I

1 1 1 1 I
5432 I

= I I [A]T I [A] I

j
(F.11)

j=0 . I

61j+2
1 1 1 1432

N—2

= (i,j)1’ (F.12)
j=0

Appendix F. Derivation of Normal Directrix Control Vertices 137

Co

where 1’ (F.13)

CN1

N—2

= (i,j) [1’] (F.14)
j=o

5ij—1

N—2 1

r(j+s) s 1] [Al dS (F.15)

5ij+1

8ij+2

(F.16)

‘5i3—1

N—2
—1

N—2 1
[Fj = [(ii)] j r(j+s) [3 2 1] [Al dS (F.17)

sj+1

6ij+2

Once the control vertices have been solved for, the desired end condition constraints

must be invoked. Namely:

Co = Po+(Ci—Fo)g*g (F.18)

CN = PN+(CN1—PN).g*g (F.19)

Appendix F. Derivation of Normal Directrix Control Vertices 138

where P are space curve control vertices and C are solved for control vertices.

Also,

(P1 - F0)
(F.20)

= IF’—P01
(FM — PN)

(F.21)gN
= FM—FoI

Appendix G

Modified Conventional Approach Derivation

A few trials of the normal directrix method yielded results which were very dependent

upon the initial position of the normal directrix when trying to match the normal directrix

method developable surface to two space curves. Further testing revealed that if a good

initial guess of a normal directrix could be achieved to match to two space curves, then

little optimization or correction is necessary and a closest developable surface could be

found.

Below is a figure relating the variables used in the derivation of solving for an initial

normal directrix control vertices given the control vertices of two space curves.

I.t)g(v)

Figure G.1: Orientation of Space Curves and Directrix

139

Appendix G. Modified Conventional Approach Derivation 140

From Figure G. 1 f(u) and g(v) refers to the space curves and p(t) refers to the normal

directrix. We relate these as follows:

p(t) = (1—a)f(u)+ag(v) (G.1)

Using partial fraction expansion from equation G. 1 we get:

= (g—f)

dfdu
= (l_a)T

dgdv .da
+ a--- + gen

(G.2)

(G.3)

From Figure G. 1 we also calculate the normals at these points, namely:

nl = ---Xgenan
dg

= j—Xgen

(G.4)

(G.5)

Now, relating the out-of-plane curvature with the in-plane curvature of the two space

curves we get the following:

-;
dt

X n1). —
du

Also, relating the number of control vertices between the three curves and how

and are related we have:

Rearranging, gives:

1.0

dv — 2n
10

dt —
nt du

— 2n dt
(G.8)

= I 211 Idv

(gen x n2). —

dvi

(G.6)

1.0 du

2n dt
1.0 dv

+-
(G.7)

Appendix G. Modified Conventional Approach Derivation 141

Rearranging, Equation G.6 to solve for and and gives:

. —1

d2f
i• II

du t nt (genxni).1 II
S

(G.9)
d2g II
fl2

-IIdg I
(genxn2).—)dv’ /

dv — 2n,, ndu
(G.1O)-

df d dg
da (1—a)1.gen+aj---.gen

dt
(G.11)

Appendix H

Relating the Space Curves to the Developable Surface

Two forms were developed:

1. The first sets up the relations and solves for the equations

2. The second calculates the parameters directly

The First Approach

There are primarily three constraints which determine the distance from a point on

the developable surface to the closest point on a space curve.

They are as follows:

n(t)
dp(t)

x g(t)

q(t, s) = p(t) + sg(t)

r(u) = q(t, s) + ln(t)

where,

n(t) is the normal of the directrix,

q(t,s) is a determinable point on the surface,

resulting in the determination of the corresponding location along the space curve.

There are three variables in which we need to solve for for a corresponding value of

t, which is the key parameterized variable. In order to solve for these we try to solve the

problem in terms of a differential equation relating the variables u,s,l, to t. This is done

42

Appendix H. Relating the Space Curves to the Developable Surface 143

by partial differentiation of the function r(u). The differential equation is with respect

to t is as follows:

drdu dp dg ds dn dl
=

Rearranging into a useful form,

drdu ds dl dp dg dn
-g--n =

There are only three unknowns to solve for given the initial conditions relating each

space curve to the developable surface:

1) At t = 0.0, 11 = 0.0 and 12 = 0.0

2) At t = 0.0, ul = 0.0 and u2 = 0.0

3) At t = 0.0, q(0.0,sl) rl(0.0) and q(0.O,s2) = r2(0.0)

4) si = (q(0.0, si)
—

p1(0.0)) g(t)

s2 = (q(0.0, s2)
—

p2(0.0)) g(t)

and,

and can be evaluated,

dg - (Y)dp

dt -

\dt dtJ

dn — 1d2p 1dp dg
— Xgj+X

Three unkowns are then solved for each space curve and the developable surface.

144

This approach uses the same definition but only differs after the follow differential

equation has been derived.

drdu ds dl
- g- n

ds dl— g g — n g

R +s +1411
dty dty dty

dL x

dot product withy

(dp’du

1\ dt) dt
_.; ;;
— dt dt+Sdt dt +ldt dt

(11.10)

(H.11)

Appendix H. Relating the Space Curves to the Developable Surface

F
I dux —g X

L

I
duy —gy fly

duz —g nz

The Second Approach

du
dt

ds
dt

dl
dt

Taking the dot product with vector g:

—

(du
dt

g +s-
dn

g +l-

This simplifies to the following:

ds (...I’du

Similarly, dot product with n,

and simplifying yields:

dl (j’\du

=

Similarly,

(11.1)

(11.2)

-ï (H.3)

(11.4)

(11.5)

(H.6)

(H.7)

(11.8)

(11.9)

Appendix H. Relating the Space Curves to the Developable Surface 145

Note perpendicular

vector relationships

Forum = g

;_
dt dt — dt2

g

—

dt dt

but, identity:(A x B) C

therefore, x

Simphfyrng:

/ —..
1 .12

= xg
dt

(;.;+x

dt

(CxA)B
/ —.-. _—.—.\ —s.

(dp dp\dg
=

dt

iç I=

= i•_
_.g+l

(BXC)A

(11.12)

(H.13)

(11.14)

(11.15)

(11.16)

(H.17)
dt

(H.18)

(11.19)

(H.20)

x g (H.21)IT

(11.22)

(11.23)
d12

(11.24)

(11.25)

(11.26)

(
&

but Identity:(A x B) C

(c _;therefore, — x Y) .

(;
du) dt

yielding:

dt2—
x g

- —

dp dp
— dt dt dt2

..12
I P —• g —‘-• fl

(dp dp d2p
/ — .—.—.

._.(sg +ln))
du =

(dr dp’\

Appendix I

Intersection of Developable Surfaces

Once the developable surfaces have been created there is then the requirement that

they must intersect without gaps or spaces between them. Shown below is the vector

representation of the initial conditions and their orientation relative to each other. In

Figure 1.1 we see the various vectors in which their dependence to each other will be

shown as follows:

V

Figure 1.1: Intersection of Three Developable Surfaces

4U

t

dr1
dt

146

Appendix I. Intersection of Developable Surfaces 147

As shown in Figure 1.1 the independent parametric variable is t. The two dependent

variables are u and v. There are three developable surface control vertices with all func

tions of the independent variable t. The independent space curve is p(t); one dependent

space curve which is a function of u is f(u); the other dependent space curve is g(v),

which is a function of v. The intersection curves joining two developable surfaces are r1

which is relating f(u) and p (t) and the other intersection curve r2 which relates g (v) and

p (t).

Derivation of the equations used to calculate the intersection of the developable sur

faces are as follows:

= p+si: (1.1)

dr1 dp dg dsit
=

- + si -- + -- g (1.2)

dr1 (df---_xg = 0 (1.3)

= (1.4)

dp (df dg (df
L -— gj +s1-- X

ds1 \ / (15)

d2p.
- -

16dt
— dt (.)

dt di

d2f
d — —

!. (17du du
uju w
dt du

r1 = f +s2ugu (1.8)

Appendix I. Intersection of Developable Surfaces 148

dridridu
(1.9)

dr1 du dg dsu)
(Ho)+ S2u— + g—

dtdt du du du

dr df - du (dhdfu dg ds2U

u du du du— —
+ S2u — + (1.11)

Since is perpendicular to the last term drops out (1.12)
du

Substituting gives, (1.13)

dr1 df du df df ‘‘ df

=

du

— _- (—

(1.14)• — — S2u

But, (1.15)

r1 = f,4 + s2ugu, and (1.16)

2ugu = — fu (1.17)

and, r1 = p + s1tg (1.18)

Substituting gives, (1.19)

dffudu(dhdh

d2f- (1.20)
u du du

du(dh4fu

d2f
= _.(ri_fu)) (1.21)

du(dh

d2f
= — _.T_T.(P+s1_fU)) (1.22)

(;du

(1.23)

dgdgdu
(1.24)----.i

= P + (1.25)

Appendix I. Intersection of Developable Surfaces 149

dr2
dt

dr1 (dhv
I\d

r2 = h+si

S1,j9.j = (1.39)

— ; ds2
—

=0

— dp (dh
— dt idv

dp Idh —

•.

dg
+S2t

dg
+S2-;-.

(dh —

Idh -

I\d x
ds2i
dt

dg
dt

dg
dt

r2

dr2
dt

dr2
dt

dr2 dh
dt dv

(1.26)

(1.27)

+ (x (1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

—

X g,

d2p — —

— •iti•Yt dp
dtdp dp

dt dt

d2h —

— —-•g dh
-

dv dv

= h+si

dr2 dv
dv dt

dv I dh dg dsi
= + s + g,

dv (dh dh dg dh ds2 dh
=

Since . = 0 the last term drops out
dv

Substituting for gives,

r2 = p+S2tTh (1.40)

Appendix I. Intersection of Developable Surfaces 150

dr2dh

dv(dhvdI

= . -— .
- (1.41)

dv(dhvd1

d2h
= — (r2 — h0)) (1.42)

dv(dh0d’

d2h
= (1.43)

(dg

dv
+

+ .

--

(1.44)

— (p + S2

dgdgdv
- (1.45)

Appendix J

Derivation of Flat Plates

Once a developable surface has been created, the shape and position of the consecutive

flat plates that make up the developable surface need to be known. Below is a simple

derivation of the algorithms used to provide the information of the shape of the plates in

the x-y plane and the angle and rate of change of bending of the plates relative to each

previous one.

In order to show the relations we need to define the various vectors in the two different

spaces.

In the first space we are in a three dimensional system with the following termns:

The vector tangent at a point along the directrix is defined as . The vector curvature

at a point along the directrix is defined as . The vector generator at a point along the

3 dimensional directrix is defined as 93d.

In the second space we are in a two dimensional system with the following terms:

The vector tangent at a point along the directrix is defined as . The vector curva

ture, to be integrated to find the next tangent, is defined as
.

The vector generator at

a point along the 2 dimensional directrix is defined as g2d.

Since we are resolving the desired information in the 2 dimensional x-y plane, the

normal, n, is obviously n = (0,0, 1).

Setting up the differential equation we intend to solve, we resolve the vector relation

ships into either in-plane or out-of-plane components. The following differential equation

151

Appendix J. Derivation of Flat Plates 152

uses the existing definition of the differential equation defining the calculation of a gen

erator and relates that as the in-plane component which defines the first term of the

differential equation. The out-of-plane component is just resolving the out of plane cur

vature of the directrix and the three dimensional generator from the three dimensional

system.

The resulting differential equation is used to find the new tangent and corresponding

point on the x-y plane where the next point of the plate is located:

2 /2dq ‘d±2 dt)dt dp

= () +-g3d g2d

Appendix K

O.D.E. Class, Adaptive Step Size and Runge-Kutta Method

Previous attempts at using different numerical integration methods proved that a fair

amount of processing overhead takes place when making a function call to a numerical

integration subroutine. Arguments must be pushed onto the stack, a call is then executed,

a return is then implemented concluded with the parameters of the stack being removed.

Instead of this traditional approach, the numerical integration function was placed

“inline”. This technique is used in such languages as C++ and declared as an “inline”

function. One may argue that this is sacrificing “modularity”. It is, but when more than

one function call is being made, like in a loop, then using an “inline” function shows

considerable gains in speed, smaller executable files, and less functional overhead.

Evaluating the Initial Value Problem (I.V.P.):

y’=f(x,y) where y(x0)=y0

Runge-Kutta formula involves a weighted average of values of f(x,y) taken at different

points in the interval:

Xfl X XnI1

The fourth-order Runge-Kutta is written in one of the classical forms as follows:

h
Yn+i = y, + + 2(m2 + m3) + m4)

153

Appendix K. O.D.E. Class, Adaptive Step Size and Runge-Kutta Method 154

where m1 = f(x,y)

m2 = f(x + + hmi)

m3 = f(x + i-h, y, + hm2)

m4 = f(x + h,y + hm3)

The sum (ml+2m2+2m3+m4)can be interpreted as an average slope. m1 is the slope at

the left-hand of the interval, m2 is the slope at the midpoint using the Euler formula to

go from x to x + , m is a second approximation to the slope at the midpoint. Finally,

m4 is the slope at Xr, + h using the Euler formula and the slope m3 to go from x to

x + h.

This is a very accurate formula (halving the step size reduces the local formula error

by the factor it is not necessary to compute any partial derivatives of f.
Another note should be mentioned, that if f does pj depend on y, then:

m1 = f(x)

1
m2 = m3 = f(x + h)

m4 = f(x + h)

and the equation reduces to that of Simpson’s rule when evaluating the integral of y’

=f(x):

Yn+1 — Yn = [f(n) + 4f(x + h) + f(x + h)]

Simpson’s rule has an error proportional to h5 which is in agreement with error in

Runge-Kutta formula [6].

Appendix L

Non-Linear Optimization Downhill Simplex Method

The Downhill Simplex Method is a non-linear optimization tool for multidimensional min

imization problems, ie. finding the minimum of a function of more than one independent

variable. The original paper citing this method can be found by the authors Nelder and

Mead [16]. A more recent overview with code samples can be found in Press [20]. A

quick overview of the method and code implemented is presented here and mentioned

briefly in Section 4.3.1 in this thesis.

A simplex is the geometrical figure consisting, in N dimensions, of N + 1 points

(or vertices) and all their interconnecting line segments, polygonal faces, etc. In three

dimensions it is a testrahedron, not necessarily the regular tetrahedron. The algorithm

is supposed to then make its own way downhill through the geometrical configuration of

an N - dimensional topography, until it encounters an (at least local) minimum [20].

The downhill simplex method must be started with N + 1 points defining an initial

simplex. It then starts and takes a series of reflections, contractions and expansions. Each

one of these is assigned a variable: cv, reflection; /3, contraction; y, expansion. The first

variable, a, is a positive constant, which is a scalar multiplication constant which mirrors

the point through the simplex. The second variable, /3, is a constant which values lie

between 0 and 1. It is a ratio of the distance of the point relative to the simplex centroid.

The third variable, y, is greater than unity and it is a ratio of the current point to the

centroid with a point along the line joining the point to the centroid.

In figure L.1 illustration a) shows the variable a being implemented in the algorithm.

155

Appendix L. Non-Linear Optimization Downhill Simplex Method 156

Illustration b) shows both reflection and expansion. Illustration c) shows a contraction.

Downhill Simplex Method

(a)

(b)

(c)

Figure L.1: Analogy of a Simplex for the Downhill Simplex Method

A few trial runs were done varying the three variables, c, , -y and are listed in the

table L.1 below.
*define ALPHA 0.9

*define BETA 0.4

*define GA11IA 1.9

*define GET_PSUW for (j0;j < ndi.;j++) { for (i0,sii.0.0;i<mpts;i++)\

su + pLi] [j]; psu[j]su;}

Appendix L. Non-Linear Optimization Downhill Simplex Method 157

a/37

202 4

2 1
3 3

1.0 4.0

1.0 2.0

0.9 0.4 1.9

Table L.1: Values of variables used for Simplex Method

void si.plex(double **p,double *y,iat ndia,double ftol,double (efunk) (double *),

hit *nfunk, hit nan)

{

mt i,j,k,ilo,ihi,hthi,apts—ndiatl,rnnout;

mt coiuttO;

double ytry,ysave ,sua,rtol,*psua;

pent = new double[ndia];

for(i0; i < ndia; i++)

psna[EfrO.O;

double aaotry(double ** ,double * ,double * ,int,double (*)(double *),

mnt,int *,double);

*nfunkO;

GET_PSUM

for (;;) {

iloO;

ihi = y[O]>y[1J ? (inhil,O) (inhiO,1);

for (i0;i<apts;i++) {

if (y[i] < ylio]) ioi;

if (yti) > ytihi)) {

inbiihi;

ihii;

}

else if (y[i] > y[hthi))

Appendix L. Non-Linear Optimization Downhill Simplex Method 158

if (1 ihi) inhii;

}

rtol2.0*fabs(y[ilui)—y[ilo])/(fabs(y[ihi])+fabs(y[ilo)));

if (rtol < ftol){

break;

}

if (enfunk > unx){

coutW’\nToo zany iterations in SINPLEI\n”;

goto runout;

}

ytrya.otry(p ,y ,psu.,ndia,funk,ihi,nfunk,-ALPRA);

if(ytry C 0.001) tol = 0.0000000000001;

cout<<”\nl

if(kbhitO) goto runout;

if (ytry <S yEilo]){

ytrya.otry (p ,y ,psu.,ndia,funk, liii ,nlunk ,GMIKO;

if(ytry C — .001) tol = 0.0000000000001;

cout<<”\n2: “<<ihi<<’\n”;

if(kbhit()) goto runout;

}

else if (ytry > y[inlti]) {

ysavey[ihi];

ytryamotry(p,y,psia,ndi.,funk,thi,nfunk,BETA);

if(ytry < 0.001) tol = 0.0000000000001;

cout<<”\n3: “<<ihi<<”\n”;

if(kbhit()) goto runout;

if (ytry > ysave) {

for (i0;iCapts;i++) {

if (i ilo) {

for (j0;j<ndi.;j++){

psu.Ej)0.S*(p[i] fj]+p[ilo] [JU;

ph) [j]psla[j);

}

y[iJ(*funk) (psusO;

if(kbhitO) goto runout;

}

}

*nfunk + ndia;

GET_PSUM

Appendix L. Non-Linear Optimization Downhill Simplex Method 159

}

}

:i

runout: rmtouto;

delete pens;

}

double asotry(double **p,double *y,double tpsns,int ndia,

double (*funk)(double *),jnt thi,int *nfuDk,double fac)

{

Ant j;

double fad ,fac2,ytry,*ptry;

ptry = new double[ndiml;

facl(1 .O-fac)/ndi.;

fac2facl-fac;

for (j0; j<ndia; j++) ptry[j]psus[j) *facl—p[ihi] fj)*fac2;

ytry(sfinik) (ptry);

if (ytry < yfihi]) {

yEthi]ytry;

for (j0;j<ndia;j++) {

psua[j1 += ptry[j]—p[ihi] [j);

p[ihil [jfrptry[jl;

}

}

delete ptry;

return ytry;

}

tundef ALPHA

*undef BETA

tundef GAMMA

Appendix M

Codelisting

M.1 Class Tools Used

M.1.1 vector.h

*tnclude <iostreea.h>

*ifndef _VECTOR_

*define _VECTOR_

enun direction { I, Y, Z };

class zatrix;

class vector {

lat n;

static mt default.lengtb;

float selenent;

public:

vector() {ndefault_length; elementnew float [n) ;};

vector(int din) {ndia;elenentnew float[n];};

vector(int din, float x);

vector(coast vectort v);

vectorQ;

static void set_default(int n){default_lengthn;};

static void set..AefaultO{default_length3; };

float& operatorEl(tnt i) {return elesent[i];};

float operator[](mnt i) coast {retnrn eleaent[i] ;};

friend tnt size(const vectork v) { return v.n;};

vectort operator(float x);

vectort operator(const vectork v);

160

Appendix M. Godelisting 161

vectork operator(const matrixk a);

friend vector operator+(const vectort a, const vectort b);

vectort operator+(const vectort a);

friend vector operator—(conat vectort a, coast vectort b);

vectort operator—(coust vectort a);

friend vector operators(const vectort v, float a);

friend vector operators(float a, const vectort v);

friend float operators(const vectork a, const vectort b); II dot product operator

friend vector operators(const matrixi a, coast vectort b);

vectort operator*(float a);

vectort operatorn(const vectort a); II elaent—by—eleaent multiplication

friend vector operator/(const vectort v, float a);

friend istreant operator>>(istreaak, vectort);

friend ostresat operator<<(ostresat, coast vector&);

tendif

M.1.2 matrix.h

tinclude <vector .h>

#include <iostream.h>

tifndef _NATRIX_

*define _MATRII_

class matrix {

mt nr, nc;

float **element;

public:

matrix(int rows, mt columns);

matrix(const matrixi a);

matrix(const vectort a);

‘matrixO;

matrixt operator(float x);

matrixi operator(const matrixi);

float* operatorO (hit i) {return element[i] ;};

coast floats operator [1 (tnt i) coast {retuxa element Li););

vector row(int i);

friend hit n_rows(const matrixi a){return a.nr;};

Appendix M. Codelisting 162

friend mt n_coluns(const matrix* a){return a.nc;};

vector column(int i);

friend matrix exp(const aatrixk a);

friend matrix elaent_ault(conat matrixi a, const .atrixt b);

friend vector diagonal(const matrixt a);

friend matrix operator+(conat matrix& a, const matrix a);
friend matrix operator—(const matrixk a, cost matrixt b);

friend matrix operators(const matrixk a, cost matrixi b);

friend vector operator*(const matrixk a, cost vectort b);

friend matrix operator*(const matrix& a, float b);

friend matrix operator*(float a, cost matrixi b) {return b*a;};

friend matrix transpoae(conat matrixt a);

friend matrix solve(const matrix& a, cost matrix& b, float edet NULL);

friend matrix identity(int);

friend matrix inverse(const matrixk a, floats detJULL);

friend istream& operator>>(istream&, matrix&);

friend ostreaak operator<<(ostream&, cost matrixi);

friend mt operator<(cost matrixi, cost matrixi);

friend matrix abs(const matrix&);

#endif

M.1,3 develop.h

tinclnde ‘matrix .h”

tinclude <fstream hpp>

*ifndef _CURVE.

#defInc _CURVE_

class Curve{

hit n;

char splinetype;

vector *point;

static matrix BB;

public:

void aptype (char what) {splinetypenhat ; };

char typeofsplineO{return splinetype ;};

Appendix M. Codelisting 163

tnt sizeO{return n;};

CurveO{n5; splinetype ‘1’; point = new vector[5];};

Curve(int nua){n=nus; splinetype’l’; point = new vector[n];};

Curve(Curve& a);

CurveO{delete[n] point;};

void resloc(int nun);

vectork operator[] (mt i){return point[iJ ;};

Curvet operator=(Curve& c);

vector operator() (double t);

vector tsngent(double t);

vector curvature(double t);

double deriv_2c(double t, mt i);

double deriv_c(double t, mt i);

static void initbasis(char sptype’2’, double b11.0, double b20.0);

static aatrir EBB;

tendif

*ifndef _SURF_

tdefine _SURF_

class Surface{

private:

Curve eleftedge, erightedge;

Curve *directrix;

Surface *leftsurf, *rightsurf;

public:

Surface(Curve *leftedge, Curve srightedge, Surface eleftsurf,

Surface *rightsurf ,int ncontrolpnts5 ,double step&T .0,

double outpo.05,int surfnot);

void Rightsiuit(Surface trights);

void Leftsinit(Surface Clefts);

double Opttnize(double toleranceo.2, tnt iter.ar = 250);

void Develop(void);

void Developt (void);

void Developtl(void);

void DraIL3d(int genneso,double stepl.0,mnt surfnol);

void Draw_33d(int gennoso,double stepl .0, tnt surfnol);

void Draw_3id(int genno5o,double step7.0,tnt surfnei);

Appendix M. Codelisting 164

void Draw_2d(iat genno=5O,double steop7.O,int surfao=1);

surfaceO;

Surface(Surface& s);

Surfacet operator(Surface& s);

Sendif

tifudef _FILELISTS_

Idefhte _FILELISTt

tinclude <fstreaa.hpp>

class Filelisto{

public:

ofstreaa file;

Filelisto *nezt;

ofstreaat operatorO(int tO;

class Filelisti{

public:

ifstream file;

Filelisti tusit;

ifstreamt operatorlj(int n);

tendif

M.1.4 ode.h

*ifndef _ODE_

*define _ODE_

tinclude “vector .h”

class dynamic_systa {

private:

double time, step_size;

vector state;

vector error_scale;

vector (ederivative) (double, vectort);

Appendix M. Codelisting 165

public:

dynaic_syste.(vector (*)(double, vectort), double start_time,

vectort initial_state, vector *error_scaleo);

doublet whenfl;

void resetO;

doublet operatorD(int i);

vector operator() (double t);

vector step(double delta);

void rk(double to, doublet del_t, double ti, vectort z,

vector (*f)(double t, vectort x), vectort err_scale);

tendif

M.1.5 vector.cpp

tinclude <ioatreaa.h>

tinclude <process .h>

S include <atrix h>

const char SP = ‘

static inline mt sin(int a,iut b)

{

return a>b?a:b;

}

mt vector: :default_length = 3;

vector::vector(iut dim, float initial_value)

{

ndim;

eleaentnew float [it];

for(int i0; i<n; i++)

elaent[i] = initial_value;

}

vector::vector(const vectort a)

Appendix M. Codelisting 166

{

n = a.n;

element = new float[n);

for(int 1=0; i<n; 14+)

element [1) a element [ii;

}

vector : :vector()

{

delete element;

}

vectort vector: : operator(float r)

{

for(float* te.pele.ent+n-t ;temp>element ; teep——)

*tempx;

return ethis;

vectort vector::operator(const vectort v)

{

1f(nn.n){

delete element;

nn n;

elementnew float [n];

}

for(Int 1=0; i<n; j++)

element [1] n element [1];

return ethjs;

}

vectort vector::operator(const aatrix& a)

{

if(n!n.rows(a)){

delete element;

nn_rows (a);

element = new float [n);

I

for(int 1=0; i<n; j++)

Appendix M. Codelisting 167

elaent [i] = &• ele.ent fi] [0];

return *this;

}

vector operator+(const vectort a, const vectort b)

{

vector teap(a);

for(int i0;i<.in(a.n,b.n) ;i++)

tep.elesent[i] + b.eleaent[i];

return teap;

}

vector operator—(const vectort a, const vectort b)

{

vector temp(a);

for(int i0;i<ain(a.n,b.n) ;i++)

te.p.element[i] —= b.eleaent[i];

return teap;

}

vector operator*(const vector iv, float a)

{

vector b(v);

for(int iv.n—1;i>0;i——)

b.eleaent[i] *= a;

return b;

}

vector operators(float a, const vectori v)

{

vector b(v);

for(int in.n—1;i>0;i——)

b.eleaent[i] s a;

return b;

}

float operator*(const vectori a, const vectori b)

{

float tempo.O;

Appendix M. Codelisting 168

for(int i’ain(a.n,b.n)—l;i>O;i——)

temp + a.eleaent[i]sb.ele.ent[i];

return teap;

}

vector operator/(const vectort v, float a)

{

vector b(v);

for(int in.n—1;i>0;i——)

b[i] / a;

return b;

}

vectort vector::operator+(const vectort a)

{

for(int 1min(n,a.n)—1;i>0;i——)

element[i] + a.element[i];

return *thjs;

}

vectort vector::operator—(const vectort a)

{

for(int izmin(n,a.n)—1;i>O;i——)

element [1] —= a. element Li.];

return *thjs;

}

vectort vector: :operatorn(float a)

{

for(int in—1;i>0;i——)

ele.ent[i] *= a;

return ethis;

}

vectork vector::operatorn(conzt vectort a)

{

for(int imin(n,a.n)—1;i>=O;i——)

ele.ent[i] fl a.ele.ent[i];

Appendix M. Codelisting 169

return ethis;

}

istreamk operator>>(istrea.& input, vectort a)

{

for(int j0;i<a.n;i++)

input>>a clement Li];

return input;

}

ostream& operator<<(ostresmk output, conat vectort a)

{

for(int i0;i<a.n—1;i++)

output << a.element[i] << SP;

output << a.element[a.n—i1;

return output;

}

M.1.6 matrix.cpp

#include <matrix .h>

Siuclude <iostream.h>

tinclude <process .h)

matrix::matrix(int rows,int columns)

{

nccolumns;

nrrows;

elementnew float * Ens];

for(int 1=0; i<nr;i++)

elesentli] = new floatlnc];

}

matrix::matrix(const matrix& a)

{

mt i,j;

nc = a.nc;

nr = a.nr;

Appendix M. Godelisting 170

element = new float * [nr];

for(i0; i<nr; i++){

element[i] = new float[nc];

for(j0; j<nc; j++)

element [ii fjfra[il U];

}

}

matrix::matrix(const vectort a)

{

mt i;

nc = 1;

nr = size(a);

element = new float *[nr];

for(i0; i<nr; j++){

element[i] = new floattnc];

element[i][O] = a[i];

}

}

matrix:: matrix()

{

for(int i0;i<nr;i++)

delete element[i];

delete element;

}

matrixt matrix::operator(float x)

{

for(float** te.ptelement+nr—1 ; templ>element ; tempt——)

for(float* temp2*tempt+nc—1 ;temp2>fltempl;teap2”)

*temp2x;

return *this;

}

matrixt matrix::operator(const matrixk a)

{

for(int i0;i<nr;i++){

for(int j0;j<nc;j++)

Appendix M. Codelisting 171

clement [ii [ii = a. element [i] [ii;

}

return *this;

}

vector matrix: :row(int i)

{

vector out(nc);

for(int j0; j<nc; j+)

out[j] = element[i][j1;

return out;

vector matrix: :column(int 1)

{

vector out(nr);

for(int j0;j<nr;j++)

outiji = elementEjiti);

return out;

}

vector diagonal(const matrix La)

{

vector out(a.nr<a.ncra.nr:a.nc);

for(int 1=0; i<size(out); i++)

out[i) = a[i] Li);

return out;

}

matrix element_mult(const matrix La, const matrixt b)

{

matrix result (a.nr,a.nc);

for(tht i0; i<a.nr; i++)

for(int j0;j<a.nc;j++)

result Ci] Cj] = a[i] [j]*b[i] Li];

return result;

matrix operator+(const matrixt a, const matrixk b)

{

Appendix M. Codelisting 172

aatriz te.p(a.nr,a.nc);

for(int 10;i<a.nr;i++){

for(int j0;j<a.nc;j++)

te.p . ele.ent [1] [j) = a. eleaent [1] [j]+b .elaent [1) [jI;

}

return te.p;

}

aatrix operator—(const •atrix& a, const .atrixk b)

{

.atrix teap(a.nr,a.nc);

for(int 1=0; i<a.nr;i++){

for(int j0;j<a.nc;j++)

te.p.element[i] [ii = a.element[iJ [jl—b.elesent[i1 [ii;

}

return teap;

}

aatrix operators(const aatrix& a, conat ntrixk b)

{

aatrix teap(a.nr,b.nc);

for(int 10;i<a.nr;i++){

for(int j0;j<b.nc;j++){

float total = 0.0;

for(int k0;k(a.nc;k++)

total + a.eleaent[i) [k]*b.eleaent[kJ [ii;

te.p.eleaent[i1 [jitotal;

}

}

return temp;

}

vector operators(const matrix& a, const vectork b)

{

vector result (n_rows (a));

resulto.0;

for(int i0;i<size(result) ;i++){

for(const float *tap_a& (a[i] [01), *teap_bb . eleaent ; teap_b<b . ele.ent+b . n ; te.p_a++,te.p_b++)

result [1] +fltap_a*tteap_b;

Appendix M. Codelisting 173

}

return residt;

}

istreaa& operator>>(istreaak input, •atrix& a)

{

for(int i0;i<a.nr;i++){

for(int j0;j<a.nc;j++)

input >> a[i][jl;

}

return input;

}

ostrea& operator<<(ostream& output, coast aatrix& a)

{

for(int i0;i<a.nr;i++){

for(int j0;j<a.nc—i ;j++)

output << a[i][jJ << ‘

output << a[iJ[a.nc—i] << ‘\n’;

}

return output;

}

.atrix transpose(const ntrix& a)

{

satrix te.p(a.nc,a.nr);

for(int i0; i<a.nc;i++){

for(int j0;j<a.nr;j++)

temp.element[il fjfra.elementlj] Li];

}

return te.p;

}

aatriz iclentity(int a)

{

satrix te.p(a, a);

for(int i0;i<a; i++){

for(int j0;j<a;j++){

te.pEi] [j](ij)?i.O:O.O;

Appendix M. Godelisting 174

I

return teap;

I

satrix operator*(const aatrixk a, float b)

{

tnt i,j;

satrix te.p(a);

for(i0; i<a.nr; j++){

for(j0; j<a.nc;j++)

temp.element[il[j] *= b;

I

return teap;

}

tnt operatorfl(const aatrix* a, const ratrix* b)

{

tnt i,j;

for(i0; i<a.nr;i++){

for(j0; j<a.nc;j++){

if(a[i] [j)>bfiJ [ii)

retuni(0);

I

I

return(i);

}

satrix abs(const aatrix& a)

{

.atrix teap(a);

tnt i,j;

for(i0; i<te.p.nr; i++){

for(j0; j<te.p.nc ;

if(teap[i] [ii <0.0)

teap[iJ[j) = —teap[i][jJ;

I

I

return te.p;

Appendix M. Codelisting 175

}

M.i.T solve.cpp

S include <fstream . hpp>

Sinclude <stdlib.h>

tinclude “matrix .h”

coast double TINY = i.Oe-35;

inline void error(char * message) {cerr < message;exit(1);};

inline double abs(double & a) {

return a<0.0?—a:a;

matrix solve(matrix&a, matrix& b, double *det)

{

double *ptemp;

if(a.nr!=a.nclla.ncgb.nr)

error(”matrix::solve Attempted operation on incompatible matricies\n”);

matrix c(a);

double *scale;

if(det !=IULL)*det=1 .0;

scale = new double[a.nr);

for(int i=0;i<a.nr;i++){ 1/loop over all rows, finding the largest

double largestO.0; I/element in each row for implicit scaling.

for(int j0;j(a.nr;j++){

double tempabs (c . element [i] [j]);
if(temp>largest)

largestte.p;

}

if(largesto .0)

error(”matrix: :solve singular matrix\n”);

scale[i]1 .0/largest;

}

for(int j0;j<a.nr;j++){ I/loop over all columns

for(i0;i<j;i++){ I/solve for the elements of the upper triangular

Appendix M. Codelisting 176

double sum = c.elementLi][j]; If matrix.

for(int k0;k<i;k++)

sun —= c . element Li] [k] *c . element I:k] U];

c . element Li] [j] = sum;

}

double largest = 0.0;

mt imaxj;

for(ij;i(a.nr;i++)(I/solve for the elements of the lover triangular

double sum = c.elementfi]Lj]; I/matrix.

for(int k0;k<j ;k++)

sum —= c . element Li] [k]*c .element Uk] Li];

c . element Li] Li] = sum;

double temp=scaleLi]*abs(sum); I/keep track of the largest element.

if(temp>largest){

largest = temp;

imax=i;

}

}

if(imax!=j){ f/if necessary, interchange rows.

ptemp = c.elementLj]; //IOTE: this row interchange method depends on

c.elementLj] = c.element[imsx]; f/the method of storing the matrix.

c.elementLimax] = ptemp;

ptemp = b.elementLj]; f/Interchanging rows of the RES matrix now

b.elementLi] = b.elementLimax]; I/relieves the necessity of tracking the

b.elementLimax] = ptemp; f/row interchanges for later use.

if(det!=NULL)*det = (*detl.0)?—l.0:l.0;

scale Limax] ncale Li];

}

if(c .elementLi] Li]0.0)

c .element Li] Li]TIIY;

double temp = 1.0/c.elementfi]Lj];

for(ij+i ; i<a .nr; i++)

c.elementLi]Li] n temp;

} f/The LU decomposition in now complete.

if(det !IULL){

for(i0;i<a.nr;i++) f/Calculate the determinant of the matrix.

*det * c.elementLi]Li];

}

Appendix M. Codelisting 177

for(j0;j<b.nc;j++){ I/Solve for each colr of the b matrix.

mt ii = —1;

for(i0; i<a.ur;i++){ //Forwsrd substitution.

double sum = b[i] [j);

mt k;

if(ii>—1)

for(kii ;k<i ;k++)

sum —= c.ele.ent[i] [k)eb[k) U];

else if(su.O.O)

iii;

b[i] [j]sum;

}

for(ia.nr—i;i>0;i——){ f/Back substitution.

double sum =

for(mnt ki+i;k<a.nr;k++)

sum —= c.element[i][k]tb[k][j];

b[i] Li] = sum/c.elaent[i] [i];

}

}

delete scale;

return b;

}

matrix inverse(matrixk a, double* det)

{

matrix b = solve(a, identity(a.nr), det);

return b;

}

double det (matrixka)

{

double *ptemp;

double deter = 1.0;

matrix c(a);

double Sscale;

scale = new double[a.nr];

Appendix M. Codelisting 178

for(int i0;i<a.nr;i++){ i/loop over all rows, finding the largest

double largesto.0; i/element in each row for implicit scaling.

for(int j=O;j<a.nr;j++){

double te.pabs (c . element Li) U));

if (temp>largest)

largesttemp;

}

if (largest 0 .0)

return 0.0;

scale Li) =1.0/largest;

}

for(int j=0;j<a.nr;j++){ //loop over all columns

for(i0;i<j;i++){ i/solve for the elements of the upper trianguJLar

double sum = c.elementLi)Lj); // matrix.

for(int k0;k<i;k++)

sum —= c .elementLi) Lk]ec.elementLk) Li];

c.elementLi)[j) = sum;

}

double largest = 0.0;

mt i.marj;

for(ij;i<a.nr;i++){ i/solve for the elements of the lower triangular

double sum = c . element Li) U); //matrix.

for(int k0;k<j ;k++)

sum —= c . element Li) Lk) Cc. element Uk) U);

c.elementUi)Uj) = sum;

double tempscaleLi)eabs(sum); //keep track of the largest element.

if(temp>largest){

largest = temp;

imaxi;

}

}

if(imaxj){ //if necessary, interchange rows.

ptemp = c.elementLi); /iIOTE: this row interchange method depends on

c.elementUj) = c.elementLimax); //the method of storing the matrix.

c.elementLimax) = ptp;

deter(deterl .0)?—1 .0:1.0;

scale Lims-x)scale Li);

}

Appendix M. Codelisting 179

if(c .ele.ent[j] [j]0.O)

c eleent [j] [j]TIIY;

double temp = 1.O/c.ele.ent[j][j];

for(i=j+1 ;i<a.nr; j++)

c.ele.ent[i][j] *= temp;

} f/The LU decomposition in now complete.

for(i=O;i<a.nr;i++) f/Calculate the deterninant of the natrix.

deter * c.element[i][i];

return deter;

}

M.1.8 develop.cpp

///////////////,///

// Class Curve C++ //

// Modified Aug 8, 1992 by Brian Konesky, error noted deriv_2c If

tinclude <nath.h>

tifdef __ZTC__

#include <fstrean.hpp>

telse

*include <fstrean.h>

Sendif

Sinclude “vector .h”

finclude “natrix .h

Sinclude “develop.

satrix Curve: :BB(4,4);

natrix Curve: :BBB(4,4);

void Curve::realoc(int nu)

{

delete En] point;

point new vector[nu);

}

Curve::Curve(Curve& a)

{

Appendix M. Codelisting 180

na

splinetypea. splinetype;

point= new vectortn];

for(int 1=0; i<n; i++) point[i]a.point[i];

}

Curvet Curve::operator(Curvek c)

{

i:f(n ! c.n){

delete[n] point;

nc.n;

splinetypec splinetype;

point = new vector[n];

}

splinetypec. splinetype;

for(int 1=0; i<n; i++)

point[i]c[i);

return *this;

}

vector Curve::operatorfl(double t)

{

mt t2;

double t3 ,bbo ,bbl ,bb2 ,bb3;

vector p;

natrix pi(4,3),tt(1,4),c2(1,31,cc(1,4);

bbO = BB [0] [0] +BB [1] [0] +BB[2] [0] +BB[3] [0];

bbl = BB[0] [1]+BB[1] [1]+BB[2] [1]+BB[3] [1];

bb2 = BB[0] [2]+BB[1] [2]+BB[2] [2]+BB[3] [2];

bb3 = BB[0] [3] +BB [1] [3]+BB[2] [3]+BB[3] [3];

t2(int)floor(t);

t3t—(double)t2;

if(t == n — i){

t3 = 1.0;

t2 = n — 2;

}

tt [0] [0] t3*t3*t3;

tt [0] [1]t3*t3;

Appendix M. Codelisting 181

tt[0] [2]t3;

tt[0] [3]1.0;

if(splinetype ==

tf(t2 == 0){

pi[O] [0)point[t2] [0];

pi[0] [1]point[t2] [ii;

pi[0] [2]point[t2] [2);

}

else {

pi[0] [O]point [t2—1] [01;

pi[0] [1]point[t2—1] [1);

pi[0] [2]point[t2—1] [2];

}

if(t2 == a — 2){

pi[3] [0]izpoiat[t2+1] [0];

pi[3] [1]point[t2+1] [1];

pi[3] [2]point [t2+1] [2];

}

else {

pi[3] [0]’oint[t2+2] [0];

pi[3] [1]point[t2+2] [1];

pi[3] [2]point [t2+2] [2];

}

}

else if (splinetype == ‘2’) {

if(t2 == 0){

pi[O][O] = ((poiat[t2][0])e(1.0 — BB[3][1])

—(point[t2+1] [0])*BB[3] [2])/BB[3] [0];

pi[0][i] = ((point[t2][1])*(1.0 — BB[3][i])

—(point[t2+1] [1])eBB[3] [2])/BB[3] [0];

pi[O][2] = ((point[t2][2])*(1.0 — BB[3][1])

—(point[t2+1] [2])*BB[3] [2])/BB[3] [0];

}

else{

pi[0][0] = point[t2—i][0];

pi[O][i] = point[t2—1][1];

pi[0] [2] = point [t2—1] [2];

}

if(t2 == a — 2){

Appendix M. Codelisting 182

pi[3][O] = ((point[t2+1][O])*(1.O — bb2)

— (point[t2] [O])*bbl

— (point[t2—1] [O])tbbO)/bb3;

pi[3][i] = ((point[t2+i][1])s(1.O — bb2)

— (point[t2] [i])*bbi

— (point[t2—i] [1])*bbo)/bb3;

pi[3][2] = ((point[t2+1][2])*(1.O — bb2)

— (point[t2] [2])*bbi

— (point[t2—1] [2])*bbo)/bb3;

}

else{

pi[3] [0] = point [t2+2] [0];

pi[3] [1] = point [t2+2] [1];

piE3] [2] = point [t2+2) [2];

}

}

else {

if(t2 == 0){

pi[0] [0]((point[t2] [O])*2—(point[t2+1] [0]));

piE0] [1]((point[t2] f1])*2—(point[t2+1] [1]));

piE0] [2]((point[t2] [2])s2—(point[t2+1] [2]));

}

else {

piEO] [0]point[t2—i] [0];

pi[0] [i]pointft2—i] [1];

pi[O] [2]point[t2—1] [2];

}

if(t2 = n — 2){

pi[3] [0]((pointtt2+1] [0])s2—(point[t2] [0]));

pi[3] [1]((point [t2+1] [1])*2—(point [t2] [1]));

pi[3] [2]((point Et2+1] [2])*2—(point [t2] [2]));

}

else {

pi[3] [0]point[t2+2] [0];

pi[3] [1]point[t2+2] [1);

pi[3] [2]point[t2+2] [2];

}

}

p1 [1] [0] point [t2] to];

Appendix M. Codelisting 183

pi[2] [O]point[t2+1] [0];

pi[i] [l]point[t2] [1];

pi[2] [l]=point[t2+l] [1];

pill) [2]9oint[t2] [2];

pi[2) [2]=point[t2+l] [2];

cc = tt*BB;

c2 = cc*pi;

p[0]c2[O] [0];

p[l]c2[0] [1];

p12] c2 [0] [2];

return p;

}

vector Curve: :tangent (double t)

{

tnt t2;

double t3 ,bbo ,bbl ,bb2 ,bb3;

vector tang;

satrix pi(4,3),tt(l,4),c2(l,3),cc(l,4);

bbO = BB[0] [O]+BB[l] [0]+BB[2] [0]+BB[3] [0];

bbl = BB[0] [l]+BB[1] [l]+BB[2] [l]+BB[3] [1];

bb2 = EBb] [2]+BB[1] [2]+BB[2] [2]+BB[3] [2];

bbS = EBb] [3]+BB[1] [3]+BB[2] [3]+BB[3] [3];

t2=(int)floor(t);

t3t-(double)t2;

if(t == n —

t3 = 1.0;

t2 = it — 2;

}

tt [0] [0] 3. 0*t3ets;

tt[0] [l]2.0*t3;

tt[0] [2]l.0;

tt[0] [3]0.0;

if(aplinetype ==

if(t2 ==

pi[O] [0]potnt[t2] [0];

pi[0] [l]point[t2] [1];

pi[0] [2]point[t2] [2];

Appendix M. Codelisting 184

}

else{

pit0] [0]point[t2—1] to];

pit0] [1]—point[t2—i] Li];

pi[O] [2]point[t2—i1 [2];

}

if(t2 == n — 2){

pit3] [0]pointtt2+i] tO];

p1(3] [i]point[t2+i] [1];

pit3] [2]point[t2+i] [2];

}

else {

p1(3] [O]point[t2+2] tO];

pi[3] [i]=point[t2+2] Li];

p1(3] [2]point[t2+2] [2];

}

}

else if (splinetype ==

if(t2 == O){

pi[O][O] = ((point[t2][O])*(i.O — BB[3][i])

—(point[t2+i] [O])*BB[3] [2])/BB[3] [0];

pi[O][i] = ((point[t2][i])*(i.o — BB[3][i])

—(point [t2+i] [1])*BB[3] (2]) /BB [3] [0];

pi[O][2] = ((point[t2][2])e(i.0 — BB[3][i])

—(point(t2+i] [2])*BB[3] [2])/BB[3] [0];

}

else{

pitO] [0] = point (t2—i] (0];

p1(0] [1] = point (t2—i] [1];

p1(0] (2] = point [t2—i] [2];

}

if(t2 = n — 2) {

pi[3][O) = ((point[t2i-1]tO])s(i.O — bb2)

— (point [t2] [0])*bbi

— (point(t2—i] [0])sbbO)/bb3;

pi[a](i] = ((point[t2+i](i])s(i.0 — bb2)

— (point[t21 [i])*bbi

— (point[t2—i] (i])*bbo)/bb3;

pi(3](2] = ((point(t2+i](2])s(i.0 — bb2)

Appendix M. Codelisting 185

— (point[t2] [2])*bbl

— (point[t2—l][2])*bbo)/bbs;

}

else{

p113] [0] = point [t2+2] 10];

p113] [1] = point [t2+2] [1];

p113] [2] = point [t2+2] 12];

}

}

else{

if(t2 == 0){

p1 [0] [0] ((point [t2] [0]) *2—(point [t2+l] [0]));

p1 [0] [1] ((point [t2] [1])s2—(point [t2+l] [1]));

p110] [2] ((point [t2] [2])*2—(polnt [t2+l] [2]));

}

else {

p110] [0]point [t2—1] [0];

p110] [l]point[t2—l] It];

p110] [2]point[t2—l] [2];

}

if(t2 == n — 2){

p113] [0]((point[t2+t] [0])*2—(point[t2] [0]));

pi[3] [t]((point[t2+l] [1])*2—(point[t2] [1]));

pi [3] [2] ((point 1t2+l] [2]) *2— (point [t2] [2]));

}

else {

p113] [0]point[t2+2] [0];

p113] [l]point[t2+2] [1];

p113] 12]point[t2+2] [2];

}

}

pill] [0]point[t2] [0];

p112] l0]pointlt2+l] [0];

pill] ll]point[t2] Ii];

p112] ll]pointlt2+l] [1];

pill] 12]pointlt2] [2];

p1(2] 12]point[t2+1] [2];

cc = tt*BB;

c2 = cc*pi;

Appendix M. Codelisting 186

tang[0)c2[0] [0];

tang [1] c2 [0] [1];

tang [2] c2 [0] [2];

return tang;

}

vector Curve: :curvature(double t)

{

mt t2;

double t3,bb0,bbl ,bb2,bb3;

vector curv;

natrix pi(4,3),tt(1,4),c2(1,3),cc(1,4);

bb0 = BB[0] [0]+BB[1] [0]+BB[2) [0]+BB[3] [0];

bbl = BB[0] [1]+BB[1] [1]+BB[2] [1]+BB[3] [1];

bb2 • BB[0] [2]+BB[1] [2]+BB[2] [2]+BB[3] [2];

bb3 = BB[0] [3]+BB[1] [3]+BB[2] [3]+BB[3] [3];

t2(int)floor(t);

t3t—(double)t2;

i±(t == n —

t3 = 1.0;

t2 = n — 2;

}

tt[0] [0]6.0st3;

tt[O] [1]2.0;

tt[O] [2]0.0;

tt[0] [3]0.0;

if(splinetype == ‘1’)

{

if(t2 == o){

pi[O] [0]point[t2] [0];

pi[0] [1]point[t2] [1];

pi[0] [2]point[t2] [2];

}

else {

pi[0] [0]point[t2—1] [0];

pi[0] [1]point[t2—1] [1];

pi[0] [2]point[t2—1] [2];

}

Appendix M. Codelisting 187

if(t2 == n — 2){

pi[3] [OF’point[t2+1] [0];

pi[3] [1]point[t2+i] [1];

pi[3] [2]point[t2+i] [2];

}

else {

pi[3] [Ofrpoint[t2+2] [0];

pi[a] [1]point[t2+2] [1];

pi[3] [2]point[t2+2] [2];

}

}

else if (splinetype == ‘2’)

{

if(t2 == 0)

{

pi[0J[0] = ((point[t2][0])*(i.0 — BB[3][i])

—(point [t2+1] [0])sBB[3] [2])/BB[3] [0];

pi[0][t] = ((point[t21[1])*(1.0 — BB[3][1])

—(point[t2+i] [1])sBB[3] [2))/BB[3] [0);

pi[0][2] = ((point[t2][2])*(1.0 — BB[3][1])

—(point [t2+1] [2])CBB[3] [2])/BB[3] [0];

}

else

{

pi[0][0] = point[t2—1][0];

pifO] [1] = point [t2—i] [ii;

pi[0][2] = point[t2—1][2];

}

if(t2 == n — 2)

{

pi[3)[O] = ((point[t2+1][0])*(i.0 — bb2)

— (point [t2) [0))sbbi

— (point[t2—1] [0])ebbo)/bb3;

pi[3][1] = ((point[t2+i][i])*(1.0 — bb2)

— (point[t2] [1])sbbi

— (point[t2—1] [1))sbbO)/bba;

pi[3][2] = ((point[t2+i)[2))*(1.0 — bb2)

— (point[t2] [2])*bbi

Appendix M. Codelisting 188

— (point [t2—1) [2))*bbO)/bb3;

}

else

{

pi[3] [0] = point [t2+2) [0];

pi[3] [1] = point [t2+2] [1];

pi[3][2] = point[t2+2][2];

}

}

else

{

if(t2 == 0){

pi[0] [0] ((point [t2] [0]) *2— (point [t2+1] [0]));

pi[0] [1] = ((point [t2] Li])*2—(point [t2+i] [1)));

pi[0] 12]((pointEt2] [2))*2—(point[t2+i] [2]));

}

else {

pi[O] [0)point[t2—i] [0];

pi[0] [i]point[t2—i] [ii;

pi[0] [2]point[t2—i] [2];

}

if(t2 == n — 2){

pi[3] [0)((point[t2+i] [0])*2—(point[t2] [0]));

pi[3] [i]((point [t2+1) [1)) *2— (point [t2) Li]));

pi[3) [2] = ((point [t2+1] [2)) *2— (point [t2] [2)));

else {

pi[3] [0]point[t2+2] [0];

pi[3] [i]point[t2+2] [1);

pi[3] [2]point[t2+2] [2);

}

}

pi[i] [0]point [t2] [0];

pi[2] [0]point[t2+i] [0);

piLl] [l]point[t2] [1];

Appendix M. Codelisting 189

pi[2) [1)i:point[t2+1) [1];

piLl) [2frpoint [t2) [2);

pi[2) [2)=point[t2+1) [2);

cc = tt*BB;

c2 = cc*pi;

cnn 10) c2 [0) [0);

cun[1)=c2[0) [1);

cun[2)c2[0) [2);

return curT;

}

double Curve: :deriv_2c(double t, mt 1)

{

jut t2;

double t3,deriv;

natrix tt(l,4),cc(1,4);

t2(int)floor(t);

t3t- (double)t2;

tf(t == a —

t3 = 1.0;

t2 = a — 2;

}

if(i C (t2—1) II i > (t2+2)) return 0.0;

tt[0) [0]3.0*t3.t3;

tt[0) [1]2.0et3;

tt[0] [2fr1.0;

tt[0] [3fr0.0;

cc = tt*BB;

if(splinetype == ‘2’)

{

if(t == t2 && t 0.0 U t ! n—2)

{

cc[0) [0]cc[0) [1);

cc[0) [2]cc[0) [3);

}

if(i == t2 — 1) deny = cc[0][0];

Appendix M. Codelisting 190

else 11(1 == t2) den, = cc[O][1]+(t20.O?2.0*cc[O][O]:O.0)+

(t2n—2?—cc[0] [3] :0.0); I/Was t2n—2, Bug caught Aug 8,1992

else if(i t2 + i) deny = cc[0][2]+(t20.0’?—cc[0][0]:0.0)+

(t2n—2?2.O*cc[0] [3] :0.0); I/Was t2n—2, Bug caught Aug 8, 1992

else if(i == t2 + 2) deny = cc[0][3];

else deny = 0.0;

}

else if(splinetype == ‘1’)

{

jf(1 = t2 — 1) deny = cc[0][0];

else if(i = t2) deny = cc[O][1] +(t20.O?cc[O][0]:O.O);

else if(i == t2 + 1) deny = cc[0][2] + (t2n—2?cc[0] [3] :0.0);

else itCi == t2 + 2) deny = cc[0][3];

else deny = 0.0;

}

else

{

if(t == t2 U t 0.0 U t n-2)

{

cc[0] [0]cc[0] [1];

cc[0] [2]cc[0] [3];

}

i:f(± == 12 — 1) deny = cc[0][0];

else if(i == t2) deny = cc[0][1]+(t2flO.0?2.Oscc[0][0]:0.0)

+(t2n—27—cc[0] [3] :0.0);

else if(i == t2 + 1) deny = cc[0][2]+ (t20.0?—cc[0] [0] :0.0)

+(t2n—2?2.O*cc[0] [3] :0.0);

else ±1(1 == t2 + 2) deny = cc[0][3];

else deny = 0.0;

}

return deny;

}

double Cunve::deniv..c(double t, mt 1)

{

jut t2;

Appendix M. Codelisüng 191

double t3,deriv;

atrix tt(1,4),cc(1,4);

t2(int)floor(t);

t3t—(double)t2;

if(t == n —

t3 = 1.0;

t2 = — 2;

}

if(i < (t2—1) II i > (t2+2)) return 0.0;

tt [0] [0] t3*t3*t3;

tt[0] [1]t3*t3;

tt[0] [2]t3;

tt[0] [3]1.0;

cc = tt*BB;

if(splinetype == ‘2’)

{

if(i t2 — 1) deny = cc[0)[0);

else if(i t2) deny = cc[0][1] +(t20.0?2.0*cc[O) [0] :0.O)+(t2u—2?—cc[O] [3] :0.0);

else if(i t2 + 1) deny = cc[0J[2] + (t20.0?—cc[0)[0]:0.0)+(t2u—2?2.0*cc[0][3]:Q.O);

else if(i == t2 + 2) deny = cc[0][3);

else deny = 0.0;

}

else if(splinetype == ‘1’)

{

if(i == t2 — 1) deny = cc[0][0J;

else if(i t2) deny = cc[0][1] +(t2O.O?cc[Q][O]:O.O);

else if(i == t2 + 1) deny = cc[0J[2] + (t2n—2?cc[0] [3] :0.0);

else if(i == t2 + 2) deny = cc[0][3);

else deny = 0.0;

}

else

{

if(i t2 — 1) den, = cc[0][0];

else if(i == t2) den, = cc[0][1] +(t2O.O?2.O*cc[O][O]:O.O)+(t2—2?—cc[O][3]:O.O);

else if(i == t2 + 1) deny = cc[0J[21 + (t20.0?—cc[0]f0):0.0)+(t2u—2?2.0*cc[0][3]:0.0);

else if(i == t2 + 2) deny = cc[0][3];

else deny = 0.0;

}

Appendix M. Codelisting 192

return dent;

}

void Curve: :initbasis(char spitype, double bi, double b2)

{

double del;

if(spltype ‘1’)

{

BB[0][0) -bi;

BB[0][1) 2.0—bi;

BB[0][2] = bl—2.0;

BB[0][3] bi;

BB[1] [0] = 2.0*bl;

BB[1][1] = bl—3.0;

BB[1][2] = 3.0—2.0*bl;

BB[1][31 = —bi;

BB[2][0] —bi;

BB[2][1] = 0.0;

BB[2][2] = bi;

BB[2][3] 0.0;

BB[3][0] 0.0;

BB[3][1] = 1.0;

BB[3][2] = 0.0;

BB[3][3J = 0.0;

}

else if(spltype == ‘2’)

{

del = (b2)+(2.0*(bl)s(bl))+(4.0*(bl)*(bl))+(4.0*(bl))+2.0;

BB[0] [0] = —2.0*(bl)*(bl)*(bl)/del;

BB[0][1) = 2.0*((b2)+((bl)*(bl)*(bl))+((bl)*(bl))+(bl))/del;

BB[0] [2] = —2.0*((b2)+(bl)*(bl)+(bl)+1.0)/del;

BB[0][3] 2.0/del;

BB[1][0] = 6.0*((bl)*(bl)*(bl))/del;

BB[1][1] = 3.0*((b2)+2.0*((bl)*(bl)*(bl))+2.0*((bl)*(bl)))/del;

BB[1][2] 3.0*((b2)+2.0*((bl)*(bl)))/del;

BB[1][3] = 0.0;

BB[2][0] = —6.0$((bl)*(bl)*(bl))/del;

Appendix M. Codelisting 193

BB[2][1] = 6.0*((bl)*(bl)*(bl)—(bl))/del;

BB[2][2] = 6.05(M)/del;

BB[2][3] = 0.0;

BBI3][O] = 2.0S(bl)*(bl)*(bl)/del;

BB[3]11] = ((b2)+4.0s((bl)s(bl))+4.0*(bl))/del;

BB[3]12] = 2.0/del;

BB[3][3] = 0.0;

}

else

{

del = (b2)+(2 .0*(bl)*(bl))+(4.0*(bl)*(bl))+(4.0s(bl))+2 .0;

BB[0] 10) = 2.0*(bl)*(bl)*(bl)/del;

EB[0] Ii) = 2.0t((b2)+((bl)*(bl)*(bl))+((bl)*(bl))+(bl))/del;

BB[0] 12] = —2.0*((b2)+(bl)*(bl)+(bl)+1.0)/del;

BBEO][3] = 2.0/del;

BB11]10] = 6.0*((bl)*(bl)*(bl))/del;

BB11][1] = 3.0*((b2)+2.0*((bl)*(bl)*(bl))+2.0*((bl)*(bl)))/del;

BBI1)[2) = 3.0*((b2)+2.0*((bl)S(bl)))/del;

BB[1][3] = 0.0;

BB[2][0] = —6.0S((bl)*(bl)*(bl))/del;

BB[2][1] = 6.0*((bl)*(bl)*(bl)—(bl))/del;

BB[2][2] = 6.0*(bl)/del;

BB[2][3] = 0.0;

BB[3][0] = 2.0*(bl)s(bl)*(bl)/del;

BB[3][1] = ((b2)+4.0*((bl)*(bl))+4.0*(bl))/del;

BEla] 12] = 2.0/del;

BB[3][3] = 0.0;

}

BBBBB;

}

ofstreea& Filelisto: :operatorlj (hit a)

{

Filelisto ste.pthis;

for(; a>0; a-—) teap = te.p—>aext;

return te.p—>file;

}

Appendix M. Codelisting 194

ifstreaat Filelisti: :operatorfl (tnt 11)

{

Filelist i ttespthis;

for(; n>O; n--) te = te.p->next;

return teap—>file;

}

M.1.9 ode.cpp

tiuclude “ode.h”

inline double abs(double a){

return a<O.O?-a:a;

}

dynamic_systea: :dynaaic_systea(vector (sf)(double, vectort), double start_time,

vectort initial_state, vector terrors)

state (initial_state) ,error_scale (errorsO?init ial_state: terrors)

{

t iaentart _t iae;

step_sizeO.O;

if (errorsO){

for (tat isize(state)—1;i>0;i——)

error_scale[i] = 1.Oe-4;

}

derivativef;

}

doublet dynamic_systea: : when()

{

return time;

}

void dynaaic_systea: :reset()

{

tiaeO.O;

}

doublet dyneaic_systea: :operatorfl(int i)

Appendix M. Codelisting 195

{

return state[i];

}

vector dynamic_system: :operatorO(double new_time)

{

if(step_sizeo .0)

step_sizeabs(new_time—tiae)/2 .0;

rk(time,step_size,new_tiae,state,derivative,error_scale);

timenew_tiae;

return(state);

}

vector dynamic_system: :step(double delta)

{

if(step_sizeo .0)

step_stzedelta/2 .0;

rk(time,step_size,time+delta,state,derivative,error_scale);

time + delta;

return state;

}

Index

Aerospace, 2

Alignment of End Generators, 33

alignment process, 36

Allowment of Different Number of Con

trol Vertices, 48

Arctic Fishing Vessel, 100

Areas of Application, 1

AutoCAD, 96

Barsky, 17

Basis functions, 16

C++ Classes, 85

CAD Program Environment, 96

CAD Program Selected, 96

Change in Angle With Respect to Unit

Motion of a Control Vertex, 34

Class Curve, 91

Class matrix, 90

Class ODE, 93

Class Surface, 91

Class vector, 85

Clement, 9

Code Portability to Different Platforms,

85

Computer Language Chosen, 83

concept of mobility, 38

Conical Type Surface, 77

Constraints Defining Modified Conven

tional Approach (Modified Nolan’s

Approach) in Order to Create a

Normal Directrix

lan’s Approach) in Order to Create a

Normal Directrix, 42

continuity, 18

Controlling Alignment with Mobility, 39

Creation of a Normal Directrix from Two

Space Curves, 30

Demonstration Examples, 98

dependent parametric variables, 73

Derived Equations Yielding Intersections

of Surfaces, 74

develop.cpp, 179

develop.h, 162

Developable Mobius Strip, 98

developable mobius strip, 39

developable surface, 4

directrix, 4

196

Index 197

Downhill Simplex Method, 67

Dunwoody, 10

Dunwoody and Konesky, 31

Equations Yielding Approximated Nor

mal Directrix, 52

explicit non parametric form, 14

F117A stealth fighter, 2

fanning, 49

flat plate equation, 81

Flat Plate Layout, 80

flat plate layout, 81

geometric continuity, 19

in-plane curvature, 46

independent parametric variable, 73

Integral Chosen to Minimize, 64

Interplate Angles, 80

Intersection of Developable Surfaces, 73

Intersection of Developable Surfaces and

Flat Plate Layout, 73

Kilgore’s Manual Graphical Solution, 6

least squares approximation, 64

Manufacturing, 2

matrix.h, 161

Methodologies, 5

Mobius Strip, 38

Modern Approach Utilizing a Single Nor

mal Directrix, 31

Naval Architecture, 1

new approach, 12

Nolan, 8

non parametric implicit formulation, 15

non-equal number of control vertices, 46

non-uniform curves, 18

Normal Directrix Approach, 10

normal directrix control vertices, 50

ode.cpp, 194

ode.h, 164

Offset of Normal Directrix, 47

OOA - Object-Oriented Analysis, 84

OOD - Object-Oriented Design, 84

OOP - Object-Oriented Programming, 84

Open Architecture, 96

Optimization Function, 60

Optimization of a Normal Directrix, 60

out-of-plane curvature, 46

parametric continuity, 18

parametric curves, 15matrix.cpp, 169

Index 198

PC 386/486 Environment, 95 Uniform Non-Rational Beta-Spline, 24

phantom, 78 Uniform Non-Rational Tension Catmull

Phantom Surfaces, 78 Rom Spline, 21

phantom surfaces, 77 Utilizing Modified Conventional Approach

PNA, 6 to Approximate a Single Direc

trix
rate-of-rotation of a generator with re

Directrix, 50
spect to motion of the control ver

tices along the normal directrix vector.cpp, 165

ntrol vertices along the normal direc- vector.h, 160

trix, 34

rational continuity, 20

ruled surface, 3 -

Simple Conical Developable, 100

Simplex Parameters Used, 64

small in and out-of-plane curvature, 41

solve.cpp, 175

Splines, 14

Textiles, 3

The Downhill Simplex Method, 68

threshold, 42

tolerance, 42

Types of Splines Chosen, 14

UBC Series Fishing Vessel, 100

uniform curves, 18

