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Abstract 

This thesis investigates the mechanics and dynamics of boring operations. The mechanics of 

boring operations deal with the prediction of cutting forces as a function of tool geometry, work 

material properties, and cutting conditions such as feed rate, radial depth of cut, and cutting speed. 

The dynamics of the process involve the modeling of interactions between the structural dynam­

ics of a long, slender boring bar, with boring process mechanics. Evaluation of forces allows the 

prediction of static deflection errors, torque and the power required from the machine tool. Evalu­

ation of the dynamic stability of the process leads to the prediction of the chatter vibration free 

feed rate, spindle speed, radial depth of cut, and tool geometry. 

The thesis shows that boring forces are strongly dependent on the tool nose geometry, side 

cutting edge angle, radial depth of cut, feed rate and cutting speed. The chip thickness distribution 

along the curved edge of the tool is rather complex. The chip close to the nose is thin, and 

becomes thicker along the curved edge as the radial depth of cut increases. The chip thickness dis­

tribution is also affected by the feedrate. 

It is proposed that cutting forces are modeled as a function of total chip area and cutting coef­

ficients. The chip area is divided into several distinct geometric regions, and the center of each 

area is identified. Friction and tangential cutting forces are formed at each region. Cutting forces 

are modeled at each region, and summed up to find the resultant friction and tangential cutting 

forces. Using an equivalent friction or lead angle, the friction force is projected in the radial and 

feed directions. This model allows the prediction of cutting forces in all three Cartesian direc­

tions. The influence of tool setting errors for boring heads having multiple inserts are also consid­

ered in the general model. Several experimental results are compared with the predictions based 
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on the proposed mathematical model. The predictions are shown to have errors varying between 

2% and 15%. The proposed model contributes to the improved prediction of boring mechanics. 

The fundamental mechanism behind chatter vibrations in boring process is also investigated. 

It is shown that the cutting coefficients, i.e. process gain, and directional factors, are dependent on 

the feed rate, radial depth of cut, tool geometry, and cutting speed. While the tool geometry and 

speed may be kept constant, vibrations modulate radial depth of cut, and leads it to be a time-

varying process input parameter. This is the fundamental non-linearity in the process, which dif­

fers from milling operations. The dynamic process is modeled in both frequency and time 

domains. However, the process non-linearity varies significantly during the process, preventing 

the application of classical linear chatter stability laws to the boring process. It is shown that the 

time domain modeling also suffers, mainly due to the digital integration of a significant number of 

tool deflection waves left on the boring surface. 

iii 



Table of Contents 

Abstract ii 

Table of Contents iV 

List of Tables vii 

List of Figures viij 

Acknowledgment xiii 

Nomenclature xiv 

1. Introduction 1 

2. Literature Review 5 

2.1.Overview 5 

2.2. Boring Force Models 5 

2.3. Chatter Stability Analysis in Boring 9 

2.4.Summary 19 

3>. Force Prediction in Boring 

3.1. Introduction 20 

3.2. Mechanics of Boring 22 

3.2.1.Boring Bar with one Insert 22 

3.3. Force Prediction in Boring 26 

3.3.1.Mechanistic Model 26 

iv 



3.3.1.1. Uncut Chip Area and Cutting Edge Contact Length Calculation 26 

3.3.1.2. Experimental setup 31 

3.3.1.3. Cutting Coefficient Identification 37 

3.3.1.4. Experimental Verification of the Mechanistic Model 55 

3.3.2. Orthogonal to Oblique Transformation Method 63 

3.3.2.1. Orthogonal Cutting Test and Identification of Oblique Cutting 

Parameters 63 

3.3.2.2. Prediction of the Oblique Cutting Forces 65 

3.3.2.3. Experimental Verification of the Method 66 

3.3.2.4. Experimental Verification of Orthogonal to Oblique 

Transformation Method 75 

3.4.Summary 76 

4. Process Faults in Boring 

4.1 .Introduction 77 

4.2.Mechanics of Multiple Inserted Boring Bar 79 

4.3.Insert Runout in Radial and Feed (Axial) Directions 81 

4.4. Deviation of the Boring Head from the Hole Center 86 

4.5. Experimental Setup 89 

4.6. Mechanistic Model Verification 91 

4.6.Experimental Verification of the Mechanistic Model for Process Faults 92 

4.8.Summary 99 

5". Dynamic Modeling of Boring and Chatter Stability 

5.1.Introduction 100 

5.2.Dynamic Characteristics of the Boring Process 105 

5.2.1. Regenerative Effect in Boring 105 

5.2.2. Dynamic Cutting Force Prediction 114 

v 



5.2.3. Wave Generation on the Surface 117 

5.3.Chatter Stability 126 

5.3.1. Analytical Approach for Stability Solution 126 

5.3.2. Chatter Stability Prediction in Time Domain 140 

5.3.2.1. Tool Dynamics Model 145 

5.3.3.Simulation and Experimental Results 147 

5.3.3.1 .Experimental Results: 152 

5.3.3.2. Time Domain Simulation Results: 160 

5.4.Summary 162 

6. Conclusions 163 

Appendix-A 166 

Appendix-B 177 

Appendix-C 178 

Bibliography 181 

vi 



List of Tables 

3.1 :Edge cutting force coefficients for the Valenite CCGT432-FH insert 41 

4.1 :Experiments with runout in feed and radial directions; and are the radial depth of cuts of 

insert 1 and insert 2. 93 

5.1 :Simulation parameters selected from the conducted chatter tests 105 

5.2 :Prediction of the radial force considering the specified vibration history 134 

- Modal Parameters of the Boring Bar Structure for the First Set of Experiments 

5.3 :Modal parameters in radial direction 152 

5.4 :Modal parameters in tangential direction 152 

5.5 :Modal parameters in feed direction 152 

5.6 :Experimental results of the first set 153 

- Modal Parameters of the Boring Bar Structure for the Second Set of Experiments 

5.7 :Modal parameters in radial direction 155 

5.8 :Modal parameters in tangential direction 155 

5.9 :Modal parameters in feed direction 155 

5.10 :The results of the Second set of experiments 156 

vii 



List of Figures 

1.1: Schematic illustration of boring process 1 

2.1: Geometries of orthogonal and oblique cutting 8 

2.2 :Chatter stability lobes 13 

2.3 Schematic illustration of the boring process 14 

2.4 :Boring bar with flat surface 15 

2.5 Regeneration of waves with different phase angles 16 

2.6 Relationship between the process damping and relief angle 17 

2.7 :Model of dynamic boring process presented in Zhang's thesis 18 

3.1 :Single point cutting tool with corner radius and chip breaking groove 21 

3.2 Schematic illustration of force directions in boring process 23 

3.3 definition of the forces, cutting and geometrical parameters in boring process; friction force 

distribution along the cutting edge contact length 24 

3.4 :Spiral path of boring tool, 25 

3.5 :Four different uncut chip area configurations defined with depth of cut a, feed rate, c and 

corner radius of the tool R 27 

3.6 :Uncut chip area calculation for the 1st configuration and the definition of the regions 

29 

3.7 :Other uncut chip area configurations considered in the area calculation model 30 

3.8 :Workpiece-Al 6061-T6 used in the experiments 32 

3.9 Schematic illustration of the experimental setup for force calibration 33 

3.10 determination of the average tangential force value based on the collected data, V=75[m/ 

min], c=0.155[mm/rev], a=0.25[mm] 34 

3.11 :Kennametal CPMT-32.52 K720 coated insert and A12-SCFPR3 steel shank boring bar 35 

viii 



3.12 :ValeniteCCGT432-FH Carbide PVD coated diamond insert with A-SCLPR/L boring bar 36 

3.13 :Chip thickness variation along the corner radius of the tool 38 

3.14 :Friction force distribution along the cutting edge 39 

3.15 :Tangential, radial and feed force vs chip contact length 40 

3.16 investigation of the dependency of the edge cutting forces on the cutting speed ; Material: 

Aliminum 6061-T6, Tool: Kennametal CPMT-32.52 K720 coated insert 42 

3.17 determination of the centroid of region 1 46 

3.18 :The Effective lead angle prediction 47 

3.19 :Investigation of the variation of the effective lead angle modification factor 48 

3.20 investigation of the Effective lead angle variation 49 

3.21 :Graphical representation of the predicted-modified effective lead angle 50 

3.22 -.Deviation of the effective lead angle along the cutting edge contact length 52 

3.23 :Variation of the modification factor with the cutting edge contact length for a < R and 

a>R 53 

3.24 :Friction force verification for a < R 56 

3.25 :Friction force verification for a > R 57 

3.26 :Tangential force verification for a<R and a > R 58 

3.27 :Effective lead angle verification for a<R and a > R 59 

3.28 :Radial force verification for a<R and a > R 60 

3.29 :Feed force verification for a<R 61 

3.30 :Feed force verification for a > R 62 

3.31 Evaluation of the oblique cutting parameters for three regions of the uncut chip area 70 

3.32 :Geometry of boring tool 71 

3.33 :Valenite CTPGPL-16-3C tool holder and TPC-322J-VC2 insert 72 

3.34 Experimental setup for the verification of the Orthogonal to Oblique Transformation Method 

73 



3.35 :Oblique tangential F r radial Fr and feed force Fy directions in each region and, dyna­

mometer axes directions 74 

3.36 :Comparison between the measured and predicted tangential, radial and feed forces using 

the orthogonal to oblique transformation method 75 

4.1 :Radial and axial (feed) runouts on a two-insert Valenite boring head 78 

4.2 :Force diagram of a boring bar with four inserts 80 

4.3 :a-) Configuration 1: The amount of material removed from the workpiece when the radial 

runout of insert 1 is greater than 0 (er > 0) and feed runout of insert 2 is greater than feed 
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Chapter 1 

Introduction 

Boring is a machining operation used to enlarge internal bore diameters of holes. Typical 

examples can be listed as engine cylinders, bearing mounting locations, inner surfaces of bearing 

rings, and gears. The holes are first opened either by drilling, or during the fabrication of blanks, 

using forging or casting technology. Depending on the size of the workpiece and hole diameter, 

either turning machines or large boring centers are used to carry out boring operations. Small 

parts, such as bearing rings and gears, can be mounted on the spindles of regular CNC lathes. The 

boring operation can be carried out with a single point tool mounted on a slender boring bar. The 

boring bar is attached to the tool carriage or turret, and linearly fed towards the hole of the rotating 

part mounted on the spindle chuck (Figure 1.1). Large workpieces, such as engine blocks, are 

mounted on a table. The boring bar is attached to the non-rotating spindle, and the circular 

motion is either provided by the contouring actions of the spindle carriage or table drives. Some 

machines, such as vertical lathes, have rotating tables. 

Figure 1.1: Schematic illustration of boring process 

1 
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The boring bars are usually very flexible, due to large overhang length (L) to diameter ratio 

(D). The boring bar can be considered as a large cantilevered beam with cutting forces applied at 

the free end. The cutting force magnitude depends on the work material's hardness and the area of 

the metal chip cut instantaneously. The direction of the cutting force depends on the tool geome­

try, and feed rate and radial depth of cut in boring operations. The slender boring bar elastically 

deflects under the excitation of the cutting force, which leads to changes in the chip area; hence 

the magnitude and direction of the cutting forces. In summary, the process has a closed loop 

dynamic system which may be stable or unstable depending on the process parameters, such as 

depth of cut and feed, and structural dynamics of the boring bar at its free end. 

When the process is stable, the system does not experience any vibrations, and this remains a 

desired operation. However, the cutting forces cause static deflection of the boring bar which 

may be larger than the tolerance of the hole surface. If the process is modeled mathematically, it 

may be possible to select a suitable tool geometry, boring bar cross section, and radial depth of cut 

and feed-rates, which do not violate the tolerance of the part due to static deflections. 

When the process is unstable, the structural modes of the boring bar are excited leading to 

self-excited chatter vibrations. The magnitude of the vibrations grows exponentially until the tool 

jumps out of the cut or breaks. Boring operations fail when chatter occurs, since this leads to poor 

surface finish and damage to the cutting tool. Chatter stability depends on the structural dynamics 

of the boring bar, the direction of dynamic cutting forces which are in turn dependent on the tool 

geometry, the work material hardness, radial depth of cut, feed rate and surface speed of the work-

piece. If the process is modeled mathematically, it may be possible to avoid those cutting condi­

tions that lead to unacceptable chatter vibrations before the part is machined. 

Although a significant amount of research has been conducted on general cutting mechanics 

and dynamics, boring has been studied less than conventional operations such as orthogonal cut­

ting and milling. Unlike the dynamics in orthogonal cutting and milling operations, the dynamics 
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of the boring process are quite non-linear. The process gain and directions of excitations depend 

on the process input parameters, such as feed when the system vibrates. 

This thesis presents time domain mathematical modeling of the boring process, with or with­

out the presence of chatter vibrations. The thesis is organized as follows: 

Previous research is reviewed in Chapter 2. The modeling of cutting forces with tools having 

a nose radius and inclination angle is surveyed. The time and frequency domain modeling of gen­

eral cutting operations, as well as boring operations that were limited, is surveyed. The funda­

mental difficulties in modeling the boring operations are highlighted in Chapter 2. 

The chip geometry, the identification of force magnitude and directions, and process mechan­

ics are modeled in Chapter 3. The chip area is evaluated by dividing the chip into several geomet­

ric regions. It is assumed that the force is acting at the centroid of the chip area. The friction 

force is identified as a function of tool geometry and chip area, and it is resolved in the feed and 

radial directions. The tangential force is modeled as a function of chip area. Methods for both 

mechanistic and oblique cutting mechanics are presented in modeling the process mechanics. 

When the part is large, holes may be opened directly with a rotating boring head plunging 

into the hole. The boring heads usually have an even number of multiple inserts which are distrib­

uted symmetrically. The symmetrical distribution cancels the radial forces, which minimize the 

radial deflections. However, it is not possible to place inserts accurately on the boring head. 

Inserts may have radial and axial deviations, which lead to uneven chip loads for each insert. As 

a result, the cutting forces are not uniform and the radial forces are not canceled completely. 

These are called process faults, and they are modeled in Chapter 4. 

The dynamics of the boring process are presented in Chapter 5. The closed loop dynamics of 

the boring process and the source of its fundamental non-linearity are discussed. The difficulties 

of solving boring chatter stability are highlighted. A time domain solution for boring chatter is 

presented briefly, and the difficulties involved in modeling the process physics are discussed. 



4 

The thesis is concluded with a brief summary of contributions, difficulties in modeling the 

boring process, and recommended future research. 



Chapter 2 

Literature Review 

2.1. Overview 

In this chapter, a literature review of the boring process is presented. Existing force prediction 

models are briefly discussed, followed by the recent developments of the chatter stability theory 

in metal cutting. 

2.2. Boring Force Models 

Generally, the mechanics of cutting processes are geometrically evaluated with two basic cut­

ting process models, namely, orthogonal and oblique cutting (Figure 2.1). The difference between 

the two processes can be described with the orientation of the tool cutting edge with respect to the 

velocity vector of the process. In orthogonal cutting, the velocity vector is perpendicular to the 

cutting edge of the tool. This makes the cutting geometry simple due to its two-dimensional geo­

metrical structure. Merchant [3] presented the basics of general 2-D orthogonal cutting mechan­

ics. On the other hand, in oblique cutting, the cutting edge of the tool has an inclination angle i 

with the velocity vector (Figure 2.1). Oblique cutting has a three dimensional nature, thus, the 

relations between the cutting geometry and forces are more complicated. The most common geo­

metrically complex cutting operations are usually defined with the aid of oblique cutting geome­

try. 

In the past, extensive research has been devoted to the prediction of the cutting forces in 

machining, showing that the cutting forces could be defined as proportional to the uncut chip area 

A and width of cut b. The conventional formulation can be expressed as, 

5 



Chapter 2. Literature Review 6 

F, = K + F,e = KtA + Kteb 

Fr = Frc + Fre = KrcA + Kreb (2-D 
Ff=Ffc + Ffe = KfcA + Kfeb 

where Ftc, Frc and F^c are cutting force components associated with shearing during the 

machining process. On the other hand, F(e, Fre and Fye are the edge cutting force components 

caused by the rubbing on the cutting edge and do not have any contribution to the shear deforma­

tion in the cutting process. 

The orthogonal to oblique transformation method proposed by Armarego [22-23] is one of 

the methods used to predict the cutting forces in the boring process. In this method, the oblique 

cutting forces are predicted based on an existing orthogonal cutting database. If the data base has 

been previously developed, there is no need to perform any further calibration test. In this method, 

first the orthogonal cutting tests are performed in order to determine the orthogonal cutting 

parameters for a specific tool and workpiece pair. These parameters are then transformed to the 

oblique cutting geometry under specific rules [2]. The details of this method are explained in 

Chapter 3. This method is practical, and saves time by not requiring the performance of tests if the 

database has already been developed for the workpiece-tool pair intended to be used in the boring 

operation. However, it requires that the cutting mechanics of the tool be exactly defined with the 

oblique cutting geometry along the cutting edge. In other words, the tool should have a sharp cut­

ting edge and a flat rake face. 

At present, most boring tools are manufactured with a nose radius and special chip breaking 

grooves along the cutting edge. Sometimes, the cutting geometry of these tools cannot be mod­

eled with the existing oblique cutting models. For the force prediction of these tools, the mecha­

nistic modeling approach is employed. Cutting force coefficients are empirically estimated for a 
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specific cutter geometry and workpiece material, relating force to the cutting parameters (i.e., 

depth of cut, feed rate and cutting speed) and other geometrical properties of the tool. 

One of the first cutting mechanics models is the one proposed by Kronenberg [5]. In this 

model, the tangential force Ft is proportional to the uncut chip area A. The radial and feed forces 

(Fr, Ff) are proportional to the tangential force. 

where Kx, K2 and K3 are the cutting coefficients that are functions of the tool geometry, tool 

and workpiece material, and cutting parameters. In this model, the corner radius of the tool is not 

considered. 

Hallam and Allsopp [6] proposed a method in which the uncut chip area is calculated by an 

integration method, which considers the depth of cut, feed rate, and corner radius of the tool as 

inputs. In this model, the cutting coefficients are assumed to be constant. The dependency of the 

cutting forces on the depth of cut showed good agreement with the experimental data, however , 

the model did not accurately predict the cutting forces as functions of feed rate. 

Sabberwal [9] later proposed that tangential and friction forces are proportional to the uncut 

chip area and the cutting coefficients are not constants but a function of the chip thickness. 

where b0, bx, dQ and d{ are empirical contants. Based on this method, a force prediction 

model for boring process has been developed by Subramani et. al.[16]. Sutherland et al. [17] mod­

ified the model presented by Subramani, including the cutting speed and the effect of tool geome­

try in the prediction of the cutting coefficients (Eq. 2.4). 

K.A 

(2.2) 
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Kfr = d0ady2hd3 

(2.4) 

where, an and V are the normal rake angle of the tool and cutting speed, respectively. 

Orthogonal cutting geometry 
Chip 

Workp 

Oblique cutting geometry 
Chip-flow angle 

Workpiece 

Tool 

Flank 
face 

ing edge 
ination angle 

Figure 2.1 : Geometries of orthogonal and oblique cutting 
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2.3. Chatter Stability Analysis in Boring 

This section examines the background related to chatter stability of the boring process. 

In boring operations, the length to diameter ratio of the boring (L/D) bar (Figure 2.3) is usu­

ally large and any dynamic force variation can easily excite the structure due to its low dynamic 

stiffness. If the cutting force is in resonance with one of the natural frequencies of the boring 

structure, vibrations become significant in determining surface finish quality. Any change in 

length to diameter ratio (L/D) has a substantial effect on the dynamic stiffness and the system 

stability. A steel shank plain boring bar can usually be used up to the value of 4.5-5 length to 

diameter ratio (L/D) for chatter free machining. However, for the large (L/D), cutting conditions 

are limited for a stable cutting process. 

Significant research efforts have been made in finding a method to increase the stability of 

the boring process. One of the approaches which researchers have been interested in is to increase 

the dynamic stability of the structure using passive vibration control techniques [36, 37]. In this 

technique, the vibration of the boring bar structure is absorbed using springs and dashpots. The 

forces generated by the passive vibration components tend to decrease the magnitude of vibra­

tion. By means of this method it is possible to increase the stable operation range up to length to 

diameter ratios (L/D) of 5.5-6.0. The method of using passive vibration absorbers is commonly 

used by boring bar manufacturers. 

Passive vibration, on the other hand, has limitations in terms of system stability in large 

length to diameter ratios (L/D). Using an active dynamic observer makes it possible to perform a 

stable boring operation up to the length to diameter ratios (L/D) of 9 by supressing bar vibrations 

[24, 25, 26]. In these applications, a piezoelectric actuator is used as an active dynamic absorber 

and optimal control is applied to the system for the control of boring bar motion. 

These techniques help to increase the stability of the structure for a specific application, how­

ever, due to some configuration problems and their high cost it cannot be applied to all boring 

operations. 
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This study focuses on the investigation of chatter stability due to self-excited vibrations. The 

main cause of self-excited chatter is the regenerative effect introduced by Tobias [29], [30], Tlusty 

[4] and Men-it [7]. If there is a relative vibration between the cutting tool and the workpiece, the 

tool leaves a wavy surface behind. In the next revolution, the tool encounters this wavy surface 

and removes material with a time-varying uncut chip area [29]. Periodic variation of the uncut 

chip area causes a variation in cutting forces. Thus, the structure is excited and chatter vibrations 

take place. 

Regenerative effect is caused by the phase shift between the waves generated on the cut sur­

face (Figure 2.5). This phase shift can be defined as a function of spindle period T, and chatter 

frequency coc. 

e = mc-2nk (2.5) 

where k is the integer number of the waves on the cut surface in one full revolution. Figure 

2.5 shows the variation of the chip thickness depending on the phase angle 8 between the succes­

sive undulations. Zero phase angle produces constant chip thickness, hence, there is no regenera­

tive effect, even though the system still has vibrations. When the phase angle e becomes n [rad], 

an extreme case of wave regeneration occurs. The oscillation of the chip thickness causes the 

forces to vary with its period, leading to unstable cutting conditions. The nonlinearity of the 

regeneration can be recognized when the tool jumps out of the workpiece [31]. 

There are some factors that increase the system stability. Among these factors, process damp­

ing which is caused by the time-varying relief angle due to vibrations is important in low cutting 

speeds [33, 34, 35]. Figure 2.6 shows a tool moving to the right while it is oscillating. It should be 

noted that for low cutting speeds the lengths of the generated waves become short, causing the 

flank face of the tool to touch the cut surface. This creates a positive damping effect in the process 

due to the rubbing occuring on the flank face of the tool. In contrast, when the length of the wave 

is longer (as occurs at high cutting speeds) the relief angle of the tool becomes larger. In such a 
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case, the flank face does not come into contact with the surface and, hence, does not contribute to 

the damping of the system. As the modeling of process damping is rather difficult, its effect is not 

included in the analytical and time domain stability solution in this study. 

System stability is investigated and the force variation of a machining system, torque, bend­

ing moment and surface finish can be obtained in time domain solution whose pioneering work 

was introduced by Tlusty [11, 32]. The other advantage of the time domain simulation of the pro­

cess is that it is possible to investigate the nonlinearities of the process, such as the jumping of the 

tool from the workpiece and process faults. 

Chatter stability has been commonly expressed with stability lobe diagrams (Figure 2.2), 

which show the boundary between the stable and unstable cutting conditions in the form of axial 

depth of cut limit versus spindle speed (Figure 2.2). Tobias [30], Tlusty and Polacek [4] predicted 

this borderline considering the regenerative effect in a multi-degree of freedom system. 

Research dedicated to the stability analysis of the boring process is rarely found in the litera­

ture. This may be because the dynamics of the boring process are rather complex compared to 

other machining processes. 

One of the first attempts to solve the stability problem in boring is the one by Zhang [18, 19]. 

His Ph.D. thesis analyzed the stability for two conditions; 1- The cutting condition with no over­

lapping, 2- The cutting condition with overlapping. In both cases, the critical stiffness of the bor­

ing bar is investigated under spiral cutting conditions, which are not representative of the boring 

process. In his model, for the purpose of facilitating the solution of stability analysis, equivalent 

width of cut and chip thickness are considered as system parameters instead of the direct use of 

depth of cut and feed rate (Figure 2.7). Dynamic chip load is calculated as, 

A = b(h0-h(t) + nh(t-T)) (2.6) 

where b, h0, h(t), h(t-T) and |J, are the width of cut, intended chip thickness, current chip 

thickness, the chip thickness at the previous tool position and overlapping factor, respectively. 
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Kuster et. al. [12] proposed a time domain solution model for the boring process. In the 

model they predicted the forces in three directions (i.e. tangential, radial and feed directions). 

They did not take into account the nonlinearity of the interactions between the current and previ­

ous tool positions and all possible uncut chip area configurations depending on the previous tool 

positions. They investigated the stability limit by considering the vibrations in three directions of 

the boring bar; However, the presented experimental results to support the prediction of the stabil­

ity limit were poor. 

S. Jayaram et al. suggested an analytical solution to the boring process [27]. In their model, 

the nose radius of the tool is not considered, and vibrations in the radial direction are neglected, 

even though they have the most significant effect in regenerative chatter in the boring process. In 

this model the boring bar is assumed to vibrate in the feed direction. However, it has been per­

ceived from the transfer function measurements that the boring bar is relatively stiffer in the feed 

direction. In the model the boring process is analyzed in the same way as in the turning process. 

Good accuracy in the prediction of stability is presented; however, this validation is unrealistic 

since the dynamics of turning and boring processes are different. 

E.W. Parker investigated boring stability with a boring bar having rectangular cross-section 

[28]. The tool is attached to the tip of the boring bar with a ring and arranged at different angular 

position on the bar (Figure 2.4). Stability of the structure for different angular tool positions was 

investigated considering the model as a two-degree of freedom mass, spring damper system. The 

stability of the boring bar system shows dependence on the angular location of the tool on the ring 

of the bar and the optimum angular position of the tool was found. 
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Figure 2.2 : Chatter stability lobes 
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Figure 2.5 : Regeneration of waves with different phase angles 



Chapter 2. Literature Review 17 

Figure 2.6 : Relationship between the process damping and relief angle 
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Figure 2.7 : Model of dynamic boring process presented in Zhang's thesis [18] 
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2.4. Summary 

There has been very little research presented in the literature, which provided successful pre­

diction of chatter stability in boring. Neither time domain nor frequency domain models were suc­

cessful in even modest prediction of chatter stability in boring operations. 



Chapter 3 

Force Prediction in Boring 

3.1. Introduction 

Most boring tools used in industry are specially designed and manufactured with a nose 

radius, chip breaking grooves, a side cutting edge angle, side and back rake angles (Figure 3.1). 

The aims of these are to increase dimensional accuracy, to improve surface finish quality, and to 

extend the life of the tool in order to prevent failure. Prediction of the cutting forces and chatter 

vibrations enables the engineer to set the design parameters of the machine tool, cutting parame­

ters, and fixture in an optimal fashion so that productivity can be increased by minimizing the 

machining cost per piece. Selecting inappropriate cutting parameters may cause damages on 

machine tool components, early tool wear and tool breakage, chipping, and poor surface finish 

quality, all of which are undesirable in manufacturing. 

One such method is to predict the cutting forces from an orthogonal cutting database using 

Orthogonal to Oblique Transformation Method [1]. Although this method is practical, it is not 

applicable for tools that have a chip breaking groove on the cutting edge. This is because the 

transformation can only be implemented for tools with a sharp cutting edge and flat rake face. 

Once an orthogonal cutting data base is developed for a tool-workpiece pair, orthogonal cutting 

parameters can be transformed to other complex tools (whose cutting geometry can be character­

ized as oblique cutting). Thus, the need for calibration of each tool geometry is eliminated, and 

cutting forces can be predicted without performing any new experiments. This transformation is 

performed in a special manner that requires certain assumptions, which will be explained in detail 

in the following sections. 

20 
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The second method for force prediction is the Mechanistic Identification Method, which has 

a simple formulation and results in accurate prediction for tools having complex cutting edge 

geometry. One of the drawbacks of the mechanistic approach is that more experimental data is 

needed to take the effect of all cutting and geometrical parameters on the cutting forces into 

account. Correlations between the parameters and cutting force coefficients are identified for each 

tool geometry. 

In the first part of this chapter, a mechanistic modeling approach for the prediction of the cut­

ting forces in the boring process is described. The majority of this study lies in the prediction of 

the cutting force coefficients and effective lead angle for both stable and unstable cutting condi­

tions. The methodology behind this approach is discussed. In the model, the expressions of the 

cutting force coefficients are estimated based on experimental data. Then, the model is experi­

mentally validated. 

Chip br 

Figure 3.1 : Single point cutting tool with corner radius and chip breaking groove 

The second part of this chapter deals with the force prediction by utilizing the Orthogonal to 

Oblique Transformation Method. The identification of the cutting force coefficients based on the 
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orthogonal cutting database and its application to tools with a nose radius are described in detail. 

Accuracy in the prediction of the cutting forces is experimentally investigated. 

3.2. Mechanics of Boring 

The boring operation is performed in two different ways, depending on the machine type: 1-

the boring bar rotates and is linearly fed into the workpiece with feed rate c, while the workpiece 

remains stationary; 2- The workpiece rotates as the boring bar makes a linear move into the work-

piece with the feed rate c. The versatility of the operation can be increased with different types of 

boring bar and machines. In this chapter, a boring bar with a single insert under the second cutting 

condition, (described above), is considered. 

3.2.1. Boring Bar with one Insert 

Figure 3.2 illustrates a schematic of the boring operation with a single insert. In this process, 

forces can be resolved into two components (Figure 3.3), namely the tangential force Ft, which 

acts perpendicular to the uncut chip area, and the friction force Fj-r, which is the sum of the forces 

acting perpendicular to the cutting edge. The direction of the friction force for each angular differ­

ential element varies along the cutting edge contact length due to the nose radius, and is defined 

with effective lead angle tyL, which is the angle between the directions of the friction and the feed 

forces. 

Radial and feed forces (F r and Fy) are obtained by projecting the total friction force Fjr into 

the radial and feed directions. The X, Y and Z directions are referred to as the tangential, radial 

and feed directions, respectively (Figure 3.2). 

F

x = Ft 

Fy = Fr = FfrS™<bL 

FZ = F f = F f r C 0 S $ L 

(3.1) 
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In the process, the combined linear motion of the boring bar with the feed rate per revolution 

and rotation of the workpiece causes the insert to travel along a spiral path. It is reasonable to 

assume that the pitch of this spiral is equal to the feed rate c. If the workpiece hole is rolled out 

onto a plane, the path followed by the insert can be shown in Figure 3.4. At any point on the path 

traveled, the distance between the current and preceding positions of the insert is equal to the feed 

rate c. L is equal to the circumference of the workpiece hole. 

n 

*- Tangent ia l force 

fr »~ Rad ia l force 

R »- F e e d force 

Figure 3.2 : Schematic illustration of force directions in boring process 
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Figure 3.3 : Definition of the forces, cutting and geometrical parameters in boring process; 
friction force distribution along the cutting edge contact length Lc 
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3 

Figure 3.4 : Spiral path of boring tool, L = nD 
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3.3. Force Prediction in Boring 

3.3.1. Mechanistic Model 

The mechanistic model approach relates the cutting and geometrical parameters (i.e. depth of 

cut a, feed rate c, cutting speed V, corner radius of the tool R, side cutting edge angle yL, end cut­

ting edge angle y c) to the cutting forces. The basic force equation can be expressed as, 

F = KA (3.2) 
2 

where K and A are the cutting coefficient ([N/mm ]), which is also known as the propor-

tionality constant in the literature, and the uncut chip area ([mm ]), respectively. In this expres­

sion, K is not considered as a constant, but rather, as a function of cutting and geometrical 

parameters [9, 13, 14, 15, 16 and 17]. For the prediction of the cutting forces, the uncut chip area 

and the cutting coefficient need to be determined. In this study, two different inserts, with speci­

fied geometry, are employed, and cutting force coefficients have been investigated within the 

desired range of cutting parameters. The effect of the tool geometry is considered in the calcula­

tion of the uncut chip area. It should be noted that in the mechanistic modeling approach the cut­

ting coefficients are predicted separately for each different workpiece-tool pair. 

3.3.1.1. Uncut Chip Area and Cutting Edge Contact Length Calculation 

In the boring process, the uncut chip area varies as a function of the depth of cut a, feed rate 

c, side cutting edge angle yL and end cutting edge angle y c • For the uncut chip area calculation, 

four main different configurations (Figure 3.5) and nine various tool-workpiece interferences can 

be defined with respect to the cutting parameters (i.e. a, c and R)[23]. However, the most com­

mon case encountered in boring applications is when the feed rate is less than the nose radius of 

the tool, due to the feed rate limitations for the given workpiece and cutting tool. Therefore, this 

study considers only five of nine interferences mentioned. 
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Uncut material 

a < R a n d c < R a > R a n d c < R 

Figure 3.5 : Four different uncut chip area configurations defined with depth of cut a, feed rate, 
c and corner radius of the tool R 



Chapter 3. Force Prediction in Boring 28 

Figure 3.5 also illustrates the relative positions of the insert at successive revolutions of the 

workpiece in four different configurations. Notice that the material left behind (uncut material) 

depends on the feed rate c and corner radius R and is expected to be large when the feed rate c is 

much greater. The uncut material also determines the surface finish quality. While large corner 

radii R and small feed rates c create good surface, small corner radii and large feed rates c cause 

the cut surface to be rough. 

The uncut chip area model contains five inputs, a [mm], c [mm/rev], R [mm], yL [Deg] and 

yc [Deg]. From these inputs, only the side cutting edge angle yL may have a negative value that 

defines the straight side edge of the tool to have an earlier contact with the workpiece rather than 

the coiner of the tool at the begining of cutting. The uncut chip area is calculated by discretizing 

the uncut chip area into small differential elements (Figure 3.6). The calculation is executed sepa­

rately for regions defined in the uncut chip area. In the following, the calculation of the uncut chip 

area A and cutting edge contact length Lc are explained for only the first configuration. 

For Region 1, the uncut chip area of each differential element is approximated by subtracting 

the area of the triangle A0BB,, from the area of the circular ring sector A0DD, 

AOBBM = O.5|0fl|I.|Ofl'|I.sin8l. (3.3) 

AODD,i = °-59<*2 <3-4> 

A\,i-AODD',i~AOBB',i (3-5) 

The total area of region 1 is calculated as a subtotal of the area of each differential element as, 

n 

^ i = £ A U (3-6) 
i = l 

Region 2 is assumed to be a rectangle, although one side of it (i.e. side KE) has a slight curva­

ture caused by the corner radius of the previous tool position. Its area can be approximated as, 

A2 = \MG\\KM\ (3.7) 
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Region 3 is a simple triangle and its area is calculated as, 

A 3 = 0.5|tfM||LM|sinY£ (3.8) 

Finally, total uncut chip area is found by adding together these areas for each region. 

A = Ax +A2 + A3 (3.9) 

The cutting edge contact length is calculated by considering only Region 1 and 2. Region 3 

does not have any contribution to the total contact length. The total cutting edge contact length is, 

Lc = Lcl+Lc2 (3.10) 
n 

where L C [ is the contact length of Region 1 and equal to L c l = ^ | D D ' | ( (n is the number 

of element in Region 1). Similarly, Lc^ is the contact length of Region 2 and equal to the length of 

MG. 

The uncut chip areas A and cutting edge contact lengths Lc are calculated with the same 

manner for other configurations shown in Figure 3.7. 

Figure 3.6 : Uncut chip area calculation for Configuration 1 and the definitions of 
the regions 
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y < 0, a > R Sin(yL) ^ ^ ^ ^ M | n i II 111 (, 1 1 

Figure 3.7 : Other uncut chip area configurations considered in the area calculation model 
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3.3.1.2. Experimental setup 

Calibration tests have been conducted with Aluminum 6061-T6 disks (Figure 3.8) on a Hard-

inge Superslant turning center that has a high precision positioning accuracy of 0.0005 [mm]. A 

Kistler 9257A three axis dynamometer, which has a maximum 5000 [N] measurement capacity in 

each direction, has been used for the force calibration. For the use of the boring bar on the 

machine a special tool holder had to be designed (Figure 3.9). The force signals were sampled at 

1000 [Hz] and amplified by Kistler 5010B1 Dual Mode Charge Amplifiers prior to being digitized 

by data acquisition software CutPro-MALDaq. One thousand data points were collected in one 

second and the average value of this data is used in the development of the mechanistic model 

(Figure 3.10). 

Two different inserts have been used in the experiments: 

- Kennametal CPMT-32.52 K720 coated insert with A12-SCFPR3 steel shank boring bar 
o 

with 0 side cutting edge angle yL (Figure 3.11) 
o 

- Valenite CCGT432-FH 80 Carbide PVD coated diamond insert with A-SCLPR/L boring 

bar with -5° side cutting edge angle yL. 

In the experiments, in order to avoid chatter vibrations, the boring bar was clamped onto the 

tool holder with a short length to diameter ratio (L/D=2.5). Specifications of the inserts and bor­

ing bars are shown in Figures 3.11 and 3.12. 

Two sets of experiments for each insert were conducted with different combinations of the 

cutting parameters within the ranges of 0.05-0.19 [mm/rev] feed rate c, 75-275 [m/min] cutting 

speed V, 0.25-3.25 [mm] depth of cut a. The first set of experiments was used to determine the 

empirical constants in the equations for the estimation of the cutting force coefficients. The sec­

ond series of experiments were carried out to further examine the validity of the mechanistic 

model. 
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25 [mm] 

Figure 3.8 : Workpiece-Al 6061-T6 used in the 
experiments 
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Figure 3.9 : Schematic illustration of the experimental setup for force calibration 
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V=75 [m/min] c=0.155 [mm/rev] a=0.25 [mm] 
801 1 1 1 1 1 1— i r 

Measured tangential force, F 

Measured-average tangential force, R 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time [sec] 

Figure 3.10 : Determination of the average tangential force value based on 
the collected data, V=75[m/min], c=0.155[mm/rev], a=0.25[mm] 
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Figure 3.12 : Valenite CCGT432-FH 80° Carbide PVD coated diamond 
insert with A-SCLPR/L boring bar 
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3.3.1.3. Cutting Coefficient Identification 

In this section, the development of the mechanistic force model is described in detail, 

i-) Identification of the Edge Cutting Force Coefficients: 

Tangential and friction cutting forces Ftc, F^rc are assumed to be proportional to the uncut 

chip area A [9], 

This expression leads to the definition of the cutting force coefficients. Previous researchers 

reported that these coefficients vary with chip thickness h, cutting speed V, and geometrical 

properties of the tool, such as the side rake angle, the back rake angle and the relief angle [9, 16 

and 17]. In this study, the previously proposed models have been modified such that cutting 

parameters, a, c, and V and the associated cutting edge contact length Lc, the uncut chip area A, 

and centroid of the uncut chip area geometry Q are used in the prediction of the cutting force 

coefficients and forces for the selected inserts (i.e. Kennametal CPMT-32.52 K720 and Valenite 

CCGT432-FH). In addition, the effective lead angle § L is predicted in order to find the direction 

of the friction force F^r. Then, the radial and feed forces (Fr and Fj) are calculated as compo­

nents of the predicted friction force. 

Instead of chip thickness h, the depth of cut a and feed rate c are used in the model. This is 

because the cutting edge is an arc, due to the corner radius of the insert, rather than a straight line 

as in milling and orthogonal plunge turning. Hence, the chip thickness is not a constant but varies 

along the cutting edge contact length (Figure 3.13). 

(3.11) 

F, (3.12) 
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In the mechanistic modeling approach, the tangential cutting force coefficient Ktc is assumed 

to be a function of A [mm ] and V [m/sec], whereas the friction cutting force coefficient Kjrc is 

implemented as a function of the cutting edge contact length Lc and cutting speed V. It is pro­

posed that the friction force is strongly dependent on the cutting edge contact length Lc, as the 

friction cutting force is generated by the friction on the cutting edge. 

Cutting forces on the tool during machining consist of two components, which are the actual 

and the edge cutting forces [1] (Eq. 3.13). The actual cutting forces (Ftc and Ffrc) are induced by 

shearing on the shear zone. The edge cutting forces (Fte and Ffre) are caused by rubbing and 

ploughing on the cutting edge and do not contribute to the cutting process. The edge cutting force 

components are functions of the cutting edge contact length Lc and the edge cutting force coeffi­

cients (Kte and Kfre) that represent the force for unit cutting edge contact length (i.e. l[mm]). 

Ft = Ftc + F(e = KlcA + KteLc (3.13) 

Ffr = V i + Ffrc2

 + V = V A + V A + KfreLc (3-14) 
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where Ax and A 2 are the uncut chip areas of Region 1 and Region 2 (Figure 3.14). Ftc, 

Fy r C i and Ffrc are assumed to be proportional to the uncut chip area A. Unlike Ft , Fj-r is con­

sidered as having two components acting in two separate regions of the uncut chip area, Region 1 

and 2 (Figure 3.14) The reason for this separation is that for a small depth of cut the corner radius 

has a significant effect on the direction and magnitude of the friction force distribution. On the 

other hand, for large depths of cut, the straight edge of the insert, on which the magnitude and 

direction of the friction force distribution are constant, is predominant in the cutting operation. 

For comparatively large depths of cut, the direction of the total friction force <j)L tends to approach 

the side cutting edge angle Y/ of the insert. In such a case, the magnitude ratio of F r /Fy 

decreases. For example, if the side cutting edge angle yt is zero, friction force Fyr does not con­

tribute to Fr from Region 2, when a is selected larger than the nose radius R. 

Distribution of the Friction Force 

Figure 3.14 : Friction force distribution along the cutting edge 

In order to determine the edge cutting force coefficients Kte, Kre and Kfe, 24 experiments 

have been conducted at constant 1.5[mm] depth of cut and 150[m/min] cutting speed but varying 
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feed rate c from 0.025 to 0.19 [mm/rev]. Thereafter, linear regression was performed between the 

calibrated forces and the cutting edge contact length Lc. The following describes the method for 

predicting the edge cutting forces and their corresponding coefficients. 
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Figure 3.15 : Tangential, radial and feed force vs chip contact length 

Performing linear regression leads to the following tangential force equation (Eq. 3.15). The 

first term on the right hand side corresponds to the actual tangential force component Ftc, and the 

second term is the tangential edge cutting force component Fte. 

F, = 2438.5LC-4721.4 [N] Lc> 1.9556[mm] (3.15) 

where, Lc is the cutting edge contact length. This equation is valid only when Lc is equal to 

and greater than 1.9556 [mm], which corresponds to zero feed rate for a=1.5 [mm] depth of cut. 
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c = 0 [mm/rev] refers to the rubbing process on the cutting edge. Substitution of 

Lc = 1.9556 [mm] into the Eq. (3.15) gives F(e for the given a (1.5 [mm]) and zero feed rate. 

(3.16) 
F<e = V = 1.9556 = 4 7 - 4 1 ^ 

The tangential edge cutting coefficient Kte is determined dividing Fte by the total cutting 

edge contact length Lc 

F r N i KT=-£ = 24.24 — 
L [_mm_ 

(3.17) 

Kte represents the tangential rubbing force per unit cutting edge contact length Lc. Follow­

ing the same procedure, the radial and feed edge cutting forces Fre and Ffe and corresponding 

edge cutting force coefficients Kre and Kfe are found as follows. 

Table 3.1: Edge cutting force coefficients for the Valenite CCGT432-FH insert 

Expression 

. ^ . = 2438.5Lt.-4721.4 

Measured edge 
cutting forces 

Ffe' Fre> Ffe 
i [N] 

47.41 

Chip contact 
length, Lc 

[mm]' 

r9556 

Edge cutting 
]i force coefficients 

[N/mm] 

Expression 

. ^ . = 2438.5Lt.-4721.4 

Measured edge 
cutting forces 

Ffe' Fre> Ffe 
i [N] 

47.41 

Chip contact 
length, Lc 

[mm]' 

r9556 24.24 
Fr = 417.74LC-800.40 16.53 1.9556 8.45 
Ff = 933.47LC-1779.9 45.58 1.9556 24.79 

As the friction force F^r is the compound of Ff and Fr, its edge cutting force and coefficient 

is calculated as follows. 

fre = 1 
2 2 

Fre + Ffe (3.18) 

Kf — *JK fe + K re — v / r e _ ^ fe + K re = 26.1928[Mmm ] (3.19) 

As can be noted that Lc does not change significantly with feed rate c, thus the effect of the 

c on edge cutting forces is negligible. The dependence of the edge cutting forces on the cutting 

speed V has also been investigated with a series of experiments. In these experiments, depth of 

cut was taken constant 1.0[mm] but various feed rates, within the range of 0.015 to 0.14 [mm/ 
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rev], at three different cutting speeds V (75, 150 and 250 [m/min]), were employed. This investi­

gation has been carried out with a Kennametal tool, and therefore, the edge cutting force coeffi­

cients cannot be compared with those presented above for the Valenite insert. The results are 

shown below in Figure 3.16. As noticed, the edge cutting forces at three different cutting speeds 

have almost the same magnitude and can be assumed to be independent of the cutting speed. 

V=150[m/min] a=1 [mm] 

0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

0 0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

0 0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

V=75[m/min] a=1[mm] V=150[m/min] a=1[mm] 

0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

0 0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

110 
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~a T3 
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20 
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V=250[m/min] a=1[mm] 

0 0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

V=75[m/min] a=1[mm] V=150[m/min] a=1[mm] 

0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

0 0.02 0.06 0.1 0.14 
Feed Rate, c [mm/rev] 

Figure 3.16 : Investigation of the dependence of the edge cutting forces on the cutting speed V; 
Material: Aliminum 6061-T6, Tool: Kennametal CPMT-32.52 K720 coated insert 

ii-) Identification of the Cutting Force Coefficients for Valenite CCGT432-FH Insert 
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Experimental calibration tests showed that Ktc and Kfrc change exponentially with uncut 

chip area A, cutting edge contact length Lc and cutting speed V. This variation can be repre­

sented with the following equations. 

Ktc = / 0 A V 2 (3.20) 

Kfrc, = e LcV Kfrc2 = e Lc2

V (3-21) 
where, b 0 , b v b2, niQ, mx, m2, n0, nx and n2 are empricial constants, and estimated using the 

least squares method based on the experimental data (See Appendix C). For least squares esti­

mates, cutting coefficients calculated from the experimental data were used. After processing the 

data, the following equations were obtained. 

Ktc = ^.9477A-0.0853v-0.2750 ( 3 2 2 ) 

K f r C i = /1965 L c -0.6737 y _o.4210 ( 3 . 2 3 ) 

„ 9.6152. -0-0241 0.7597 - . . 

Kfrc2 = e Lc2

 v (3-24) 
Once the friction cutting force coefficients KfrCi and Kjrc^, the uncut chip area A and cutting 

edge contact length Lc are determined, the radial Fr and feed forces Ff are predicted as compo­

nents of the friction force Ffr. However, this requires that the friction force direction, which is 

defined with the effective lead angle § L , to be known. The prediction of the effective lead angle 

consists of two steps. As mentioned above, the uncut chip area A is divided into two regions and 

the friction cutting force p has been expressed separately (FfrCi and FfrCi), for each region for 

an accurate prediction. 

In the above equations, the cutting force coefficients change inversely as functions of the 

uncut chip area A, cutting edge contact length Lc, and cutting speed V. The variations of the cut­

ting force coefficients with uncut chip area and cutting edge contact length represent the effects of 

the tool geometry on the cutting forces. The relationship between the cutting force coefficients 
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and, the uncut chip area A and cutting edge contact length Lc is nonlinear, due to the corner 

radius of the tool and the chip breaking groove along the cutting edge. On the other hand, the 

decrease of the cutting force coefficients with cutting speed is induced by the reduction in the 

maximum shear strength of the material at high speeds. The material tends to soften and shear 

strength diminishes at high speeds, causing the cutting forces to lessen. As noted, the effect of 

each parameter in the equations of each cutting force coefficient is different. For the depths of cut 

which are larger than the corner radius R, the effect of the cutting edge contact length on the fric­

tion cutting force coefficient is not as significant as compared to the case in which the depth 

of cut is less than R. This may be because the straight side of the tool dominates the cutting pro­

cess for the larger depths of cut. Thus, the friction cutting force coefficient Ay r C j does not change 

much with the depth of cut, due to the homogeneity of the friction force distribution on the 

straight side of the tool. 

Since the friction force acts perpendicular to the cutting edge and is also proportional to the 

uncut chip area for each differential element along the cutting edge, it can be predicted by assum­

ing that each component of the friction force passes through the gravity center of each related 

region (Figure 3.18). The friction force component of each region is added up vectorially, and the 

total friction force Fjr is obtained. It should be noted that these vectorial friction force compo­

nents are presented with the notation F*y r i, F*yrj (Figure 3.18) and are not identical to the ones in 

the Eq. (3.14). Fyr) and Fj in Eq. (3.14) are the components contributing from each region to the 

total friction force, and do not have vectorial meanings. 

The determination of the centroid of the uncut chip area is shown in the following equation, 

as an example. The calculation is executed with respect to the origin of the corner radius C 2 for a 

given tool position (Figure 3.17). 
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n 

i = 1 (3.25) 

where A-, 0,-, and AT are the area of a differential element, angular position of the differen­

tial element and the total area of the region, respectively. 

Based on the definition of the friction force direction, the regional lead angle <t>L in Region 2 

can be assumed to be equal to the side cutting edge angle yt of the tool along the straight line of 

the cutting edge. The total effective lead angle is determined from the sum of two friction force 

vectors (Figure 3.18). 

After processing the data, analysis has shown that there were certain discrepancies between 

measured and predicted effective lead angles based on the above approach (Figure 3.14). This 

may be because the friction force F^r is not really acting perpendicular to the cutting edge. This 

could be caused by the chip breakage groove along the cutting edge, or the assumption of the per­

pendicularity of the friction force to the cutting edge is not accurate. The difference between the 

measured and predicted effective lead angle (j)L has been investigated with two sets of 5 experi­

ments, varying the cutting edge contact length Lc and cutting speed V (Figure 3.20). This inves­

tigation has revealed that the effective lead angle shows linear variation with V and Lc. Hence, it 

can be tuned in the calculation with a modification factor Km that is also a linear function of Lc 

and V. 

where § L * is the predicted effective lead angle based on the regular procedure described 

above and § L is the final modified-predicted effective lead angle. For the same five experimental 

conditions, the variation of the modification factor Km depending on the cutting speed V and the 

(3.26) 
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cutting edge contact length Lc is depicted in Figure 3.19. Graphical representation of the modi-

fied-predicted effective lead angle 0L is shown in (Figure 3.21). 

Figure 3.17 : Determination of the centroid of region 1 
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Figure 3.19 : Investigation of the variation of the effective lead angle 
modification factor Km; Km v.s V and Lc 
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Figure 3.20 : Investigation of the Effective lead angle variation; § L v.s 
Lc and V 
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With the information obtained from the above investigation, the modification factor can be 

represented with the following expression. 

Km = q0 + q1Lc + q2V (3.27) 

where q0, qx and q2 are the empirical constants and determined for the conditions a < R and 

a > R separately from the experimental data by performing the least squares method. This results 

in the following linear equations. 

Kmi = 1.0743 - 0.3567(10)_3LC + 0.9763(10)~V , for a<R (3.28) 

Kmi = - 0.0163 + 0.6299LC + 0.0013 V , for a > R (3.29) 

The above identified modification factors show that, for a<R, the effective lead angle <\>L 

has an almost constant deviation along the cutting edge contact length (i.e. the effects of Lc and 

V are negligible) (Eq. 3.28) . However, for a >R the deviation has a strong dependence on Lc 

and V. This may arise from the nature of the chip flow. For a<R, the chip attempts to flow 

towards the center of the corner radius with an almost constant deviation. However, along the 

straight edge, the chip is forced to flow away, towards the outside of the contact in the radial 

direction and with a continuously diverging friction force, causing the chip to curl. The diver­

gence of the chip exhibits a continuous increase along the cutting edge and reaches a maximum at 

the end of the contact length. A schematic representation of the directional variation of the friction 

force is shown in Figure 3.22. It should be noted that the cutting edge contact length in Eq. (3.29) 

is the total contact length including Region 1. 

The variations of the modification factors Km^ and K are presented in Figure 3.23 for 

0.25...0.8 [mm] and 0.8..3.25 [mm] range of the depth of cuts a, 0.1 [mm/rev] of constant feed 

rate c and 150[m/min] of constant cutting speed V. In these figures, the variation of the modifi­

cation factors is examined changing cutting edge contact length Lc only. In the figures, the modi­

fication factor K for the condition a < R decreases insignificantly with the cutting edge contact 
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length Lc. The effect of Lc on Km^ is less than 1%, and is therefore negligible for the condition 

a<R. On the other hand, the modification factor Km^ for the condition a > R exhibits strong 

dependence on the cutting edge contact length Lc varying from 1.0 to 2.57 for 0.8... 3.25[mm] 

depth of cut range. The reason behind this has been explained in the previous paragraph. 

Region 1 

* L 6 > ( l ) L 5 > ( t ) L 4 > ( t ) L 3 = ( l ) L 2 = ( t ) L 1 

Figure 3.22 : Deviation of the effective lead angle <\>L along the cutting edge contact length 
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Figure 3.23 : Variation of the modification factor Km with the cutting edge contact 
length for a < R and a > R 
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It would also be possible to predict the effective lead angle through the direct use of cutting 

parameters, a, c and V. The goal of developing this approach is to find a generalized cutting 

force prediction model, so that the cutting forces can be predicted for both stable and unstable cut­

ting conditions . Detail of this will be presented in chapter 5. 

Once the above procedure has been completed, the radial and feed force predictions are made 

based on the predicted friction force F^r and effective lead angle <])L as follows. 

Fr = Ffrsm$L 

Ff=FfrcosQ>L 

(3.30) 

Radial and feed actual cutting force components become, 

Prc = Fr-Pre (3-3D 

Ffc = Ff-Ffe (3.32) 

Corresponding cutting force coefficients are obtained as, 

Krc = *f (3.33) 

Kfc = F-f (3.34) 

iii-) Cutting Force Coefficients of Kennametal CPMT-32.52 K720 

Using the procedure presented above, the cutting force coefficients and effective lead angle 

modification factor for Kennametal CPMT-32.52 K720 insert have been obtained as follows. 

„ 8.0428 .-0.1696t/-0.2512 O C N 

Ktc = e A V (3.35) 

v 1.1522 T -0-6093 0.2189 , 
Kfrc{ = e Lcx

 v (3-36) 

„ 9.3082, 0.0541 0.5470 
Kfrc2 = e Lc2

 v (3-37) 

The effective lead angle modification factors, 
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Km = 1.2963 + 0.0604L -0.0006V, a<R (3.38) 

Km = -0.4138 + 0.7021LC + 0.0025V, a >R (3.39) 

Edge cutting force coefficients were determined by performing the linear regression method 

shown in Section 3.3.1.3. 

Kte = 13.777 [N/mm], Kre = 13.036 [N/mm], Kfe = 19.572 [N/mm], Kfre = 23.516 [N/ 

mm] 

It can be noted that the trend of the variation of the cutting force coefficients and the effective 

lead angle modification factor depending on the parameters (i.e. cutting edge contact length Lc, 

cutting speed V, uncut chip area A) is similar to the ones for the Valenite insert, but only the 

empirical constants of these parameters are different. This is caused by the difference between the 

geometry of the two tools. The differences are; 

- The Valenite tool has a 5° side cutting edge angle yl while the Kennametal insert's is 0 ° . 

- The Valenite tool has a 7° relief angle, while the Kennametal tool's is 11°. 

- The forms of the grooves on the two inserts are different. 

All differences were considered in the determination of the empirical constants by perform­

ing the least-squares method. 

3.3.1.4. Experimental Verification of the Mechanistic Model 

In order to validate the mechanistic model, a different set of experiments was conducted 

under different cutting conditions from those used for the implementation of the mechanistic 

model expressions. 

The presented model in the previous sections (3.3.1.1, .... 3.3.1.3) results in good force pre­

diction with under 10% absolute average error, for both Valenite and Kennametal inserts. The tan­

gential force Ft and friction forces for a < R (Fy r l) and a > R (Ffr2) are predicted with 99.5% , 

93.5% and 98.4% correlations, respectively. The results of cutting force prediction for the Valen-
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ite insert are presented in the following figures. Cutting conditions and prediction results are also 

shown in the tables in Appendix A. 

Figure 3.24 : Friction force verification for a < R 



Chapter 3. Force Prediction in Boring 57 

Border lines of -10[%] and 10[%] error 
Reference line of 0 [%] error 

145 

135 

125 

I 115 

£ l 0 5 
o 

£ 95 

I 85 

T3 
O 

T 3 

CD 

75 

65 

55 

45 

35 

25 

I I ! I I I i ' T V ™T~ —y 1 - 7 
/• , - * v jr : v 

/ • . 

jr : * y ,'••-<> •JS 
• / * 

Xls 1* : X / %<' X 
00 / : / 

X - 'X ' jT 

X%o'l/ : L 
- >V • • . . . . . 

0 / , ' / 
/ * X . . . . . . 

• S •* . . . . . . 

/ S o / ; ; ; ; ; ; 
/ o' s$ 
* y . . . . . . . . 

* X\ 

Jr * S 
/• * • 

* s 1 1 i t i i i i i i i 
25 35 45 55 65 75 85 95 105 115 125 135 145 

Measured Friction force F f r [N] 
350 

c o 

T 3 
CD 

o 
T 3 
CD 

1_ 
CL 

3301-

310 

290 

270 

250 

230 

210 

190 

170 

150 

• 1 1 • 

• 

• y r • 
/ • 

/ • 

/ .: A 

/ : • 
/ • 

• / 
V / >• j r 

• > r : 

• 

• 

/ 0 * * 
• 

• 

- s 

* * * 
/ w * 

• 
• 

!> 

150 170 190 210 230 250 270 290 310 330 350 
Measured Friction force F f r [N] 

Absolute average error [%]=6.41 

Figure 3.25 : Friction force verification for a > R 



Chapter 3. Force Prediction in Boring 58 

Border lines of -10[%] and 10[%] error 
Reference line of 0 [%] error 

• v • • * 
• 

0 
• 

• 
• 

0 
or 

* 
. ' 0 

0 
or 

So 

> 
* • 

> 
* • 

/ A 

C 

< 

• s * 

'/* 

_l I 1_ _l I I l_ 
20 40 60 80 100 120 140 160 

Measured tangential force F [N] 

1 I 

, ' ' o 

• 
• • 

> • • 
• 

• 
S oS 
(S :f. 

0. 
• y 

• • • • 
* 

* 0,' 0 / 

S 0 
0,' 

yT • • • y V, 
s > 
* yT • • • y V, 

175 200 225 250 275 300 325 350 375 400 425 450 475 500 
Measured tangential force F [N] 

Abso lu te average error [%]=6.11 

Figure 3.26 : Tangential force verification for a<R and a > 



Chapter 3. Force Prediction in Boring 59 

Border lines of -10[%] and 10[%] error 
Reference line of 0 [%] error 

<D 55 
O ) c 
CO 

"O 
CO 
® 50 
CD 
> 

T5 
CD 

! £ 
CD 4 5 

y 4 
0 • • 

• 
• 

<>y' 
* 

4* 

/ 0 

* > 

0 

o ,'' 
* 

0 

/ 
/ * 

• 
* 

• 

y ' * * • y 

0 / 
o / 

y ' * * • y 

0 / 
o / 

Abso lu te average error [%]=3.96 | 

35 40 45 50 55 60 65 

Measured effective lead angle (j). [Deg] 

Measured effective lead angle 4 [Deg] 

Figure 3.27 : Effective lead angle verification for a<R and a > R 



Chapter 3. Force Prediction in Boring 60 

55 

50 

45 

Border lines of -10[%] and 10[%] error 
Reference line of 0 [%] error 

CD 

« 40 
"D 
CO 

TD 
CD 

I 35 
CD 

30 

25 

H 

mm 
• • • • • 

mm ̂^ ^ ^ ^ J Absolute average error [%]=7.02 
25 

60 

30 35 40 45 
Measured radial force F [N] 

50 55 

55 

50 

45 

.« 40 
TJ CO i— 
T3 

a 3 5 
o 

TD 
CD 

30 

25 

20 

4* 4* • 

4* 4* 4* 4* 4* 4* 
0 

y • 4* • 

4* 
4* 

0 

:ym/ y • y • / : 4* y * y 4* 
/ • 4* M 

y (, 

/ ,''o / 
o.' / 

y 

A 
/i '' 

4* 
' 0 y : 

/so,*' 0 

$y<$> 

y • 
4* 

> ^ 0 y • 
4* 

> ^ 0 

^ ^ ^ ^ Absolute average error [%]=7.76 

20 25 30 35 40 45 50 
Measured radial force F [N] 

55 60 

Figure 3.28 : Radial force verification for a < R and a > R 



Chapter 3. Force Prediction in Boring 61 

Border lines of -10[%] and 10[%] error 
Reference line of 0 [%] error 

Measured feed force Ff [N] 

Figure 3.29 : Feed force verification for a < R 
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3.3.2. Orthogonal to Oblique Transformation Method 

As mentioned in the earlier section, another method for predicting cutting force coefficients 

and forces in boring operations is to apply the Orthogonal to Oblique Transformation Method, as 

suggested in [1], [22] and [23]. The important parameters of the tool, which influence the force 

prediction and chip flow in the boring process, are the corner radius R, side cutting edge angle Y;, 

end cutting edge angle yc, back rake angle ap and side rake angle (Figure 3.32). Among these 

parameters, rake angles have an important effect on controlling the direction of the chip flow and 

strength of the tool tip. Positive values of the rake angles reduce the cutting forces and tempera­

ture created on the tool. The corner radius of the tool causes oblique cutting parameters to change 

around the cutting edge. The effects of these parameters on the cutting forces can be examined 

with the Orthogonal to Oblique Transformation Method. The corner radius R also contributes to 

this process by making the tool tip stronger; It also has an effect on the surface finish quality. A 

larger corner radius results in a better surface finish, with less unwanted material left on the cut 

surface. 

3.3.2.1. Orthogonal Cutting Test and Identification of Oblique Cutting Parameters 

In the prediction of the cutting forces of a tool which has an oblique cutting geometry, the 

orthogonal cutting force coefficients Ktc, Kte, K^c, K^e and cutting parameters, such as chip ratio 

rc, friction angle Pfl, shear angle <|)c, shear stress xs, are identified for the specified workpiece-

tool pair by performing orthogonal cutting tests. These parameters are then transfered to the 

oblique cutting geometry and cutting forces are predicted based on the method proposed in 

[1],[2], [22] and [23]. This is the fundamental concept of the Orthogonal to Oblique Transforma­

tion Method. 

Orthogonal cutting tests are carried out with a tool which has specific rake and relief angles. 

In the tests, the workpiece rotates while the tool is fed linearly into the workpiece with the speed 

of the feed rate c [mm/rev]. The experimental setup is illustrated as in Figure 3.34. In orthogonal 

cutting tests, a tube material is utilized, instead of the shaft workpiece. It should also be noted that 
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the approach angle of the tool is supposed to be zero, in order for the process to be defined as 

orthogonal cutting. Tests are performed with varying feed rates c, at constant cutting speed V 

and width of cut b (corresponding to tube thickness). After the completion of the tests, linear 

regression is performed on the measured tangential and feed forces for the identification of the 

cutting and edge cutting force coefficients Ktc, Kte, K^c, K^e. This regression yields, 

Ft = Ktcbh + Kteb (3.40) 

Ff = Kfcbh + Kfeb (3.41) 

where b and h are the width of cut and chip thickness, which is equal to the feed rate c. 

Later, the value of other parameters rc, (3a, §c and xs for each orthogonal cutting test are deter­

mined with the following equations [2]. 

rc - A (3.42) 

Pfl = ar+atan^ (3.43) 

( r.cos(a„) \ 

0C = atanN-S r-̂ — (3.44) 
U - r c s i n ( a r ) J 

T = [F/ccos(<|)c)-F/csin((|)c)]sin(<|)c) 
s bh 

where hc and ar are the cut chip thickness and the rake angle, respectively. Once the above 

parameters are obtained for each experimental condition, their calculated average values are used 

in the transformation method. These average values of the orthogonal cutting parameters devel­

oped at different cutting speeds V, rake and relief angles \\ir of the tool constitute the orthog­

onal cutting data base. For any tool whose cutting geometry can be defined as oblique cutting, this 

data base can be used for the force prediction without conducting any further calibration test. 
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Orthogonal cutting parameters, shear stress xs, friction angle (3a, and chip ratio rc have 

already been identified by Ren [21] for carbide tools and P20 steel material as functions of feed 

rate c and cutting speed V. Correlations are given as follows. 

TS = 507.0 + 1398.76c + 0.327 V (3.46) 

Pa = 33.69- 12.16c-0.022 V (3.47) 

rc = 0.227 + 2.71c + 0.00045 V (3.48) 

where feed rate c , cutting speed V , shear stress TS and friction angle Pa are in the units of 
N 

[mm/rev], [m/min], and [Deg], respectively. Edge cutting coefficients Kte, Kre and Kfe 

mm 
have also been identified by Ren as presented in the following. 

Kte = 0.1199(10fV-0.1487V+76.85 (3.49) 

Kfe = 0.1366(10)~V-0.2007 V+97.98 (3.50) 

Kre = KteSin(i) (3.51) 

where V and / are the cutting speed and oblique angle, respectively. 

3.3.2.2. Prediction of the Oblique Cutting Forces 

Once orthogonal cutting parameters are obtained, they are transferred to the oblique cutting 

geometry with the following assumptions [2]. 

1- The orthogonal shear angle is equal to the normal shear angle in oblique cutting.tyc = 

2- The normal rake angle in oblique cutting is equal to the rake angle in orthogonal cutting 

3- The chip flow angle is equal to the oblique angle n_ = i 

4- The friction coefficient (3a and shear stress xs are the same in both orthogonal and oblique 

cutting for a given cutting condition. 

Oblique tangential, radial, and feed cutting forces acting on the tool and cutting force coeffi­

cients are expressed in terms of cutting and geometrical parameters (i.e. width of cut b, chip 
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thickness h, oblique angle i, oblique shear angle § n , shear stress xs, friction angle (3„ and nor­

mal rake angle an). 

Cutting forces are expressed in the general form of, 

Ft = Ktcbh + Kteb (3.52) 

Fr = Krcbh + Kreb (3.53) 

Ff = Kfcbh + Kfeb (3.54) 

where oblique cutting force coefficients are defined as, 

X . cos(B -cc„) + tam'tanr|sinB„ 
Ktc = • \ • (3.55) 

x sin(6 - a ) 
KfC = ^ i r — • < = ( 3 - 5 6 ) 

J C sin (p COS l I 2 2 2 
A / C O S ((|)„ + P„-a„) + tan r)sin p„ 

x. cos(P„-a„)tan/-tanrisinP„ 
Krc = • 1 • (3.57) 

Y" /̂cos (())„ +P„ - a„) + tan Tisin Pn 

In general, Kte and are determined in the evaluation of the orthogonal cutting test 

results. Because there is no radial force component measured in orthogonal cutting tests, Kre is 

not known. However, experimental investigations have shown that the radial cutting edge force 

F(e is very small and therefore negligible in the transfomation method. 

3.3.2.3. Experimental Verification of the Method 

Selecting an insert (Valenite CTPGPL-16-3C) with a nose radius, a sharp cutting edge, a flat 

rake face (Figure 3.33), the Orthogonal to Oblique Transformation Method can be described for 

the boring process as follows. In this study the same uncut chip area configurations as in the 

mechanistic model has been considered, and a necessary force prediction program has been devel­

oped. Only the first configuration is presented in this section in order to demonstrate the proce­

dure. The uncut chip area is divided into three regions (Region 1, 2 and 3, Figure 3.31). Region 1 
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then is discretized into equal angular segments 6; in order for the transformation method to be 

applied. The reason for the discretization of the uncut chip area is that the oblique cutting geome­

try parameters vary in Region 1 along the cutting edge, due to the corner radius of the tool. How­

ever, in Region 2, the uncut chip area is uniform, and the oblique cutting parameters do not 

change with location. Thus, Region 2 is not discretized, but considered as one element in the eval­

uation. Similarly, Region 3 is considered as a whole element. For the selected Valenite tool, the 

back rake angle ap and side cutting edge angle yt are zero, hence, the cutting in Region 2 and 3 

cannot be characterized as an oblique cutting because there is no inclination angle between the 

cutting velocity vector and cutting edge of the tool. In such a case, the cutting process in Regions 

2 and 3 is described as an orthogonal cutting , although the cutting in Region 1 is still oblique. 

The uncut chip area and the oblique cutting geometry parameters for each discretized element 

are calculated with the following equations derived from the geometrical relations [2]. 

- REGION 1 

- Uncut chip area, At Eq. (3.5) 

- Approach angle \yr = jQ, where j is the counter of differential elements and 9 is the angu­

lar increment of each differential element. 

- Orthogonal angle cc0 = atan(tanayCos\|/A.+ tanapsin\|/r), where â -, ap and \(/r are the 

side rake angle, back rake angle and side relief angle respectively. 

- Oblique angle i = atan (tan a p cos \j/ r + tanOySin\|/r), 

- Normal rake angle an = atan (tan oc0 cos z'), cc0 is orthogonal rake angle. 

- Chip ratio Eq. (3.48) 
r cos (x 

- Normal shear angle (j)„ = atan— — , a„ is the normal rake angle. 
l - r c s i n a M 

- Friction angle Eq.(3.47) 

- Normal friction angle Pn = atan (tan Pa cos/) 

- Shear stress xs Eq. (3.46) 
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Substituting the necessary parameters into Equations (3.55), (3.56) and (3.57) tangential, 

radial, and feed cutting force coefficients, Ktc, Krc and Fyc for each differential element are 

determined. 

As can be noticed, the oblique cutting parameters change around Region 1 due to the varia­

tion of the approach angle \\ir. Oblique radial and feed forces in Region 1 do not match the direc­

tions of the dynamometer (Y and Z) and need to be projected into dynamometer directions in 

order to obtain the total global forces in the three directions (Figure 3.35). For each differential 

element, oblique tangential, radial, and feed forces are expressed as, 

Then, the total forces in the dynamometer directions are calculated by adding together the 

forces acting on each differential element. 

N 

(3.58) 

F. xl (3.59) 

N 

F, 2 [F A .sinO,.)-F r l > , .008(6,.)] (3.60) 

i= 1 

N 

F. ^[F / 1,.cos(0,.) + F r l .s in( e . ) ] (3.61) 

i = 1 

-REGION 2 

For Region 2 the same equations are used in the force prediction except the following. 

- Uncut chip area Eq.(3.7) 

- Approach angle \[/r = -yL, yL is the side cutting edge angle of the tool. 
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Cutting forces in the dynamometer directions are found similarly. 

69 

Fx2 = Ft2 

Fy2 ~ Ff2sin(-yL)-Fr2COS(-yL) 

Fz2 = Ff2COS(-yD + Fr2sin(-Y0 

(3.62) 

(3.63) 

(3.64) 

-REGION 3 

- Uncut chip area Eq. (3.8) 
Y/ 

- Approach angle \\fr = -— 

For this region the edge cutting force components are assumed to be zero due to the zero con­

tact length. Cutting force components are obtained by using the same equations presented above. 

(3.65) 

Ft3 = KteA3 

Fr3 = Kre*3 

= KfeA3 

These oblique cutting forces contributed by region 3 are obtained as, 

Fx3 = Ft3 

F

y3 = F / 3sin(-Y L/2)-F r 3cos((-Y L)/2) 

Fz3 = F / 3cos((-YL)/2) + F r 3sin(-Y L/2) 

The total forces in dynamometer directions, X, Y and Z are found as, 

Fx = Fx\ + Fx2 + Fx3 

FY = Fy\ + Fy2 + Fy3 

FZ= ^ 1 + ^ 2 + ̂ 3 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 
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Figure 3.31 : Evaluation of the oblique cutting parameters for three regions of the uncut 
chip area 
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S i d e rake ang le 

Figure 3.32 : Geometry of boring tool 
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Tool holder 

Clamp screw 

Figure 3.33 : Valenite CTPGPL-16-3C tool holder and TPC-322J-VC2 insert 
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Figure 3.34 : Experimental setup for the verification of the Orthogonal to Oblique 
Transformation Method 
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Figure 3.35 : Oblique tangential Ft, radial Fr and feed Fj force 
directions in each region and, dynamometer axes directions 
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3.3.2.4. Experimental Verification of Orthogonal to Oblique Transformation Method 

For the verification of the method, 7 experiments were conducted with the material P20 mold 

steel shaft by using a Valenite TPC 322J Uncoated VC2 grade CTPGL-16-3 C Left-hand tool 

holder at different cutting speeds and depth of cuts, but with constant 0.05[mm/rev] feed rates. 

The specifications of the tool and tool holder are given in Figure 3.33. For the calibration, the 

experimental setup was the same as the one used in the development of the mechanistic model, 

except for the tool holder and workpiece. The experimental results are shown below in Figure 

3.36 (The cutting conditions, the measured and the predicted forces are also presented in a table in 

Appendix B). Tangential force is predicted with under 10% average error; however, prediction 

error in radial and feed forces rises to 25% in some cases. 
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Figure 3.36 : Comparison between the measured and predicted tangential, radial 
and feed forces using the orthogonal to oblique transformation method 
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3.4. S u m m a r y 

In this chapter, a mechanistic force prediction model has been developed for two inserts with 

a corner radius and grooves for chip breakage. This development allows for the force prediction 

of stable and unstable cutting conditions. The mechanistic model requires a vast amount of cutting 

data for each new cutter geometry, and, more importantly, the data cannot be generalized for 

application to other tools, as there is no explicit relationship between the tool geometry, cutting 

conditions, and the cutting force coefficients. The mechanistic model approach does not provide 

any physical insight into the process, such as shearing stress, or friction in the process. In the sec­

ond part of the chapter, an orthogonal to oblique transformation method is utilized for the force 

prediction in the boring process. For the verification of this method, a previously developed 

orthogonal cutting database has been used. Once the orthogonal cutting data base is developed, 

this method does not require any further experiments for the force prediction. Both methods are 

experimentally verified with good accuracy. 



Chapter 4 

Process Faults in Boring 

4.1. Introduction 

Process faults are the most common problem associated with the use of multiple-inserted 

tools, causing the loss of accuracy in machining operations such as milling and boring. The main 

advantage of using a multiple-inserted boring bar is that the workpiece can be machined with a 

high feed rate, which is the number of insert times the desirable feed rate for one insert (Nxc ). 

High feed rates result in increased productivity in manufacturing. Because the inserts are arranged 

with symmetrical angular positions on the boring head, the forces on the inserts in the X and Y 

directions cancel each other, and the total force in these directions becomes zero. Hence, it is pos­

sible to obtain better tolerances with multiple-inserted bars with a large operational length-to-

diameter ratio (L/D). 

Process faults in the multiple-inserted boring process are defined as any deviation of the bor­

ing head from the hole center, as well as insert runout. As mentioned in the previous chapter, the 

boring process is performed on an existing hole produced by preceding processes such as drilling 

and punching. In other words, boring is usually at least the second process applied to a workpiece. 

If the boring operation is not performed on the same machine as the one used for the previous 

operation, the center of the boring head and the hole should be aligned for an accurate process. In 

any case, if the boring head has a deviation, the depth of cut varies continuously around the rota­

tional axis. Presumably, the cutting forces will also follow this depth of cut variation. 

Although tool manufacturers produce very precise multiple inserted tool holders, the inserts 

may contain offsets in the radial and feed directions when they are secured through tightening of 

the insert screw. This is called insert runout. In this case, the insert having a radial offset rotates 

77 
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with a larger radius with respect to the axis of the boring head, hence removing more material 

than the other inserts. Similarly, the insert having an offset in the feed direction moves into the 

workpiece ahead of the other ones and removes more material (Figure 4.1). 

CD 

o 
o" 
3 

Figure 4.1 : Radial and axial (feed) runouts on a two-insert Valenite boring head 

In this chapter, process faults in the boring process are investigated and cutting forces are pre­

dicted by employing the mechanistic model developed in Chapter 3. A Valenite boring head (Fig­

ure 4.1) with two inserts (the same insert as the one used in the implementation of the mechanistic 

model in Chapter 3) has been utilized in the experiments for the verification of the force predic­

tion. 
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4.2. Mechanics of Multiple Inserted Boring Bar 

In the multiple-inserted boring process, each insert has three cutting force components, tan­

gential, radial, and feed forces (Ft, Fr and Fy). In the evaluation of the mechanics of multiple-

inserted boring bars, the tangential and radial forces are combined to give a resulting force FR • (/ 

is the insert number). The direction of FR for each insert changes with the rotation of the spindle 

and produces the total force in the X or Y directions. The total feed force acting on the bar is the 

summation of the feed forces on each insert. 

Here, the equations of the total force in the X and Y directions are derived by considering a 

boring head with four inserts. They can later be generalized for any boring head that has a differ­

ent number of inserts. Referring to Figure 4.2, 

0 is an angle to define the direction of FR •, 

0 = 90-P (4.1) 

where P is the rotation angle of the boring head in the clockwise direction. The direction of 

the resultant force FR • for each insert is determined with the following equations (4.2) and (4.3). 

a, 3 = 0 + atan 
(Fr \ 

F 
(4.2) 

tt2,4 = a t a n 

V '2,4 J 
-0 (4.3) 

where the indices 1, 2, 3 and 4 imply the insert numbers. The total forces in the X and Y direc­

tions are calculated as, 

Fx = F^cosa, + F^cosaj - F^3cosa3 - F^cosa 4 (4.4) 

Fy = FR sin aj - FR sin a 2 - FR sin a 3 + FR sin a 4 (4.5) 

Ideally, Fx and Fy are expected to be zero for cutting conditions without any process faults, 

because the resulting forces FR • on each insert should be equal and cancel each other for any 
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given cutting parameters. Process faults produce force differences on the inserts causing a peri­

odic variation in the total force in the X and Y directions (Fx, F ). The period of Fx and Fy is 

equal to the period of the spindle (T = 60/n), where n is the spindle speed in [rpm]. 

Cutting torque and power are obtained based on the tangential force Ft on each insert as, 

N 

(4.6) 
2 Ld' t 

i= 1 

1000 
(4.7) 

i= l 

where D is the diameter of the hole in [mm], N is the number of inserts on the boring bar, n is 

the spindle speed in [rpm] and Ft • is the tangential force on i th insert. 

/ Ro ta t i on a n g l e 

Figure 4.2 : Force diagram of a boring bar with four inserts 



Chapter 4. Process Faults in Boring 81 

4.3. Insert Runout in the Radial and Feed (Axial) Directions 

When the inserts on the boring head have runout in the radial or feed directions (or both), the 

amount of material being removed by each insert becomes different. This causes an unbalance in 

the total force in the X or Y direction. If there were no insert runout, the total force measured in 

the X or Y direction would be expected to be zero, as the tangential and radial cutting forces (Ft, 

Fr) acting on each insert are equal and in opposite directions, thus canceling each other (Figure 

4.5). 

For the Valenite boring head intended to be used in this study, there are more than 12 possible 

uncut chip area configurations to be considered, depending on which insert has the offset in the 

radial or feed directions. For example, one of the offsets may be on the first insert as the second 

one is on the second insert, or one insert may have both radial and feed offsets at the same time. In 

this study, only two configurations, which are defined in detail below, are considered. The condi­

tions of these configurations are as follows. 

Configuration 1: Runout in the feed direction is on the first insert and greater than the 

desired feed rate for one insert ê > c, where c is in the unit of [(mm/rev)/insert]), andrunout in 

the radial direction is greater than zero, er > 0, and is on the second insert (Figure 4.3). 

Configuration 2: Runout in the feed direction of the first insert is less than the desired feed 

rate for one insert, £y< c, where c is in the unit of [(mm/rev)/insert]), and runout in the radial 

direction of the second insert is greater than zero, zr > 0 (Figure 4.4). 

The corresponding uncut chip areas are illustrated in Figures 4.3 and 4.4. These uncut chip 

areas also represent the amount of material removed by each insert. As can be seen from these fig­

ures, the uncut chip area has rather an irregular shape due to the runouts (er and Ey). The uncut 

chip area A and cutting edge contact length Lc for each insert are calculated in a similar fashion 

as performed in Chapter 3, Section 3.3.1.1 in order to predict the forces. 

In the process faults model, the depth of cut a is defined with the depth of cut of the insert 

that has the radial runout er. The phase difference between the inserts is T/N in time and 2n/N 
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in angular position, where N is the number of inserts on the boring head and Tis the period of one 

revolution. If a Valenite boring head with two inserts is considered, the phase becomes T/2 and 

7t in time and angular position, respectively. 

When there are more than 2 inserts on the boring head, the number and complexity of the 

uncut chip area configurations increase depending on the distribution of the runout among the 

inserts. In such a case, for an accurate force prediction model to be achieved, each single uncut 

chip area configuration needs to be defined based on the inserts' runouts and their corresponding 

directions. 
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Figure 4.3 : a-) Configuration 1: The amount of material 
removed from the workpiece when the radial runout of insert 1 is 
greater than 0 (er > 0) and feed runout of insert 2 is greater than 
feed rate (8y > c), b-) Uniform uncut chip area for the condition 

without any insert runouts. 
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Figure 4.4 : Configuration 2: The amount of material removed from the 
workpiece when the radial runout of insert 1 is greater than 0 (£,. > 0) and 

feed runout of insert 2 is less than feed rate (ef < c) 
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Figure 4.5 : Valenite boring head with twin cutter; Runout in radial and feed (axial) directions; 
The amount of material removed by each insert is shown by the shaded area in the bottom right 

part of the figures 
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4.4. Deviation of the Boring Head from the Hole Center 

As explained in the introduction, the boring operation is performed in conjuction with other 

processes. Consequently, the centers of the boring head and the hole, which is produced in the 

preceding operation, need to be aligned for an accurate process. When the center of the boring 

head has a deviation with respect to the hole center, the depth of cut varies around the rotational 

axis of the boring head. The uncut chip area A and the cutting forces (Ft, Fr and Fj-) follow the 

same variation in the relationships formulated in Chapter 3 (Eq. (3.13), (3.14), ( 3.22), (3.23) and 

(3.24)). The depth of cut reaches a maximum when the tool reaches the clockwise rotational posi­

tion of, 

where Ax and Ay are the deviations in X and Y directions. The depth of cut variation caused 

by these deviations occurs only in the first pass of the boring process, after which the centers of 

the boring head and hole align. The depth of cut for each insert is different at each angular loca­

tion around the spindle axis because of misalignment and insert runouts (Figure 4.6). Depending 

on the magnitude of the misalignment, the configuration of the uncut chip areas of each insert 

may not be constant, and may jump to another configuration during the revolution. In other 

words, the configurations of the uncut chip areas could be different at rotational increments in the 

simulation. Once this happens, the simulation process must be able to select the corresponding 

configuration so that the uncut chip area A, effective lead angle § L , cutting force coefficients 

(Ktc, Kfrc, Krc and Kfc) and forces (F(, Fr and F A can be calculated accurately. 

P = P.-7C (4.8) 

where (3; is the angle where the depth of cut a is the minimum and calculated as, 

(4.9) 
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As previously mentioned, the deviation of the boring head affects the force variation only 

during the first pass. If the deviation is large compared to the intended depth of cut a, the force 

variation caused by the runouts and the deviation may cause the system to forced vibrations. 

Figure 4.6 : Schematic illustration of the deviations Ax, Ay of the boring head from the 
hole center 
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Figure 4.7 : The depth of cut variation caused by deviations Ax, Ay (a is the 

intended depth of cut) 
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4.5. Experimental Setup 

The experimental setup used for the force calibration consists of components similar to those 

used for data collection in the mechanistic model development in Chapter 3. The same insert 
o 

(i.e.Valenite CCGT432-FH 80 Carbide PVD coated diamond insert) for which the mechanistic 

model was developed has been used in the experiments for the verification of the force prediction 

in the presence of runouts in the radial and feed directions. Two Valenite CCGT432-FH inserts 

were attached to a Valenite boring head (Figure 4.1). The experiments were conducted on a 

FADAL VMC-2216 machining center (Figure 4.8). A Kistler 9255B-605027 3 axis dynamometer, 

Kistler charge amplifiers, and CutPro-MalDAQ data acquisition software, were used to generate, 

amplify, and digitize the force signals. The total resulting and feed forces were measured in the X, 

Y and Z directions, respectively. 

In the preparation of the experiments, the dynamometer and vise were first mounted on the 

table of the FADAL machining center. Then the hollow cylindrical workpiece, which is the same 

as the one used in the development of the mechanistic model in Chapter 3 (See Figure 3.7), was 

held on the vise. The runouts of the boring head were measured using the dial gauge with 

0.01 [mm] precision. During the experiments, the workpiece is stationary but the boring head 

rotates and moves into the workpiece at the speed of feed rate, c [(mm/rev)/insert]. The signals 

produced by the dynamometer were amplified by charge amplifiers and sent to the data acquisi­

tion software . 
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Figure 4.8 : Fadal VMC-2216 Machining Center 
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4.6. Mechanistic Model Verification 

Force variation has been simulated around the rotational axis and experimentally verified for 

the case in which the boring head has only runouts in the radial and feed directions (er and 8y). 

However, the case in which runouts and deviation are considered together was only simulated, not 

validated. 

The cutting forces were predicted as a function of the uncut chip area A, cutting edge contact 

length Lc, and cutting speed V, in the mechanistic model developed in Chapter 3. As stated ear­

lier, the mechanistic model also has the ability to predict the cutting forces for the case in which 

the uncut chip area does not have a uniform but rather an irregular and complex shape. The 

shapes of the uncut chip area become irregular with the incorporation of insert runouts (i.e. er and 

Ef) and deviation of the boring head from the hole center (Ax and Ay). The uncut chip area A 

and cutting edge contact length Lc need to be calculated for the force prediction. Force prediction 

considering the runouts of the inserts is executed in the following order. 

- Angular increments for one full revolution are set for the force simulation. 

- The uncut chip areas (Ax and A 2 ) are calculated separately for each insert (insert 1 and 

insert 2). This calculation is performed in the same way as in the development of the mechanistic 

model. 

- Centers of gravity of the uncut chip areas corresponding to each insert, Gx and G 2 , are 

determined in the way presented in Chapter 3, Eq.(3.25). 

- The modification factor Km is predicted using Eq. (3.28) and (3.29). 

- Effective lead angles (J)L for each insert are predicted based on the calculated Gx , G2 and 

Km Eq. (3.26). 

- Cutting edge contact lengths of each insert (LC [ and L C J are calculated using the method 

in Chapter 3, Section 3.3.1.1. 

- Tangential cutting force coefficient Ktc and tangential force Ft are predicted (Eq.(3.13) and 

(3.22)). 
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- Friction cutting force coefficients KfrCi, Kjrc^ and friction force Ffr are predicted (Eq. 

(3.14), (3.23), (3.24)). 

- Radial and feed forces,Fr and Fy, are calculated with Eq. (3.26) and (3.30). 

- Total resulting cutting forces in the X and Y directions, Fx and Fy, at each angular incre­

ments are predicted with Eq. (4.4) and (4.5). 

Due to the rotation of the spindle, the amplitude of the resulting forces varies with the same 

period of the spindle, T. 

4.7. Experimental Verification of the Mechanistic Model for Process Faults 

For the verification of the mechanistic model, experiments were conducted with different 

insert runouts in both radial and feed directions. The cutting conditions were selected so that the 

uncut chip area of the inserts stays in the two configurations mentioned in section 4.3. In these 

selections, the radial and feed runouts were distributed separately (i.e. radial runout was on the 

first insert while the feed runout was on the second insert or vice versa). Four experiments were 

conducted under the conditions specified in section 4.3. 

Figure 4.13 shows the simulated total force Fx in the X direction when the boring head has 

both runouts in the radial and feed directions er and 8y, and deviations defined by Ax and Ay. 

Note that when the deviation increases the peaks of Fx shift to the right and the left. This can be 

explained as follows: the uncut chip area for each insert has an irregular shape, due to the radial 

and feed runouts. When the deviation of the boring head is also included, the variation of the 

depth of cut of each insert is affected, and the engagement of the inserts with the workpiece vary 

in the depth of cut direction as shown in Figure 4.7. The uncut chip areas of each insert have sim­

ilar irregular shapes. Since there is no linear relationship between the cutting force and depth of 

cut variation, the effect of the deviation may reflect the force variation as positive and negative 

shifts as shown in Figure 4.13 (i.e.the maximum peak of the force diagram shifts to right-hand 

side while the minimum peak moves to the left, with an increase of the boring bar deviation). 

When deviations in both directions are zero (Ax = 0 and Ay = 0), the total force in the X direc-
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tion Fx makes its minimum at the rotational position of 64° while it has its maximum value at 

244° angular position. Note that there is a 180° phase shift between the two peaks for this condi­

tion. When both Ax and Ay are set to 0.05[mm], Fx has its maximum and minimum at the posi­

tions of 60° , and 250°. The angular phase shift is 190° in this case. Similarly, for the deviations 

of Ax = 0.10 [mm] and Ay = 0.10 [mm], the maximum and minimum forces are on angular 

positions of 57° and 256°, increasing the phase shift to 199°. This investigation states that, the 

deviation of the boring head changes the amplitude of the total force in the X direction (Fx) as the 

phase shift between the maximum and minimum forces increases. 

The conditions in which the experiments were performed for the verification of the force pre­

diction are shown in the following Table 4.1. The results of this investigation are presented in Fig­

ures 4.9, 4.10, 4.11 and 4.12. As seen, for the first three tests, the forces were predicted with a 

good accuracy of under 10% error. However, in the last test the error is over 10%. This may be 

due to a mistake made at the stage of the measurement of runouts. As a result of this experimental 

verification, it can be stated that the mechanistic model can be used for the force prediction of a 

cutting condition that generates an irregular and complicated uncut chip area shape. 

Table 4.1: Experiments with runout in both feed and radial directions; ax and a2 are the radial 
depth of cuts of insert 1 and insert 2. 

Exp. # V [m/min] c [mm/rev-insert] 8 f [mm] 8 r [mm] a-|[mm] &2 [mm] 

1 150 0.0600 0.09(insert 2) 0.20 1.485 1.285 

2 100 0.0700 0.12(insert 2) 0.10 1.830 1.730 

3 175 0.0550 0.14(insert 2) 0.18 1.100 0.920 

4 225 0.0900 0.055(insert 1) 0.25 0.870 1.120 

where a{ and a2 are the depth of cuts of the insert 1 and 2, respectively. As stated earlier, in 

the model, the intended depth of cut and radial runout are considered with respect to the insert that 

has the largest depth of cut. In other words, if the depth of cut of the insert 2 is greater than the 



Chapter 4. Process Faults in Boring 94 

depth of cut of the insert 1, i.e. a2 > ax, the intended depth of cut is assumed to be a2 and radial 

runout er, which is calculated as er = a2 - ax, is on the insert 2, or vice versa. It should be also 

noted that the radial and feed (axial) runouts are on different inserts in the above experimental 

conditions. 
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Figure 4.9 : Resulting force in X direction Fx and Feed force Fj prediction for the condition 
of ax = 1.485[mm], a2 = 1.285mm] , er = 0.20[mm], £ f = 0.09[mm] , 

c = 0.06[mm], V = 150[m/min] 
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The amount of material removed by each insert 

Insert 1 

Figure 4.10 : Resulting force in X direction Fx and Feed force Fy prediction for the condition 
of «j = 1.830[mm], a2 = 1.730mm] , er = 0.10[mm], Ef = 0.12[mm] , 

c = 0.07[mm], V = 100[m/mm] 
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Figure 4.11: Resulting force in X direction Fx and Feed force Fj prediction for the condition 
of ax = 1.1 [mm] , a2 = 0.92[mm] , Er = 0.18[mm], 8y = 0.14[mm] , 

c = 0.055[mm], V = 175[m/min] 
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Figure 4.12 : Resulting force in X direction Fx and Feed force Fy prediction for the condition of 
ax = 0.870[mra], a2 = 1.12mm] , 8 r = 0.25[mm], 8y = 0.055[mm], c = 0.09[mm], 

V = 225 [m/min] 
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Predicted Fx (Runouts:8r , 8 f ) 
Li.': Predicted Fx (Runouts:8r,Sf + Deviations: Ax ,Ay) 

Rotational Angle [Deg] 

Figure 4.13 : The variation of the total force in X direction when considered the process 
has insert runouts in radial and axial directions, and deviation in both X and Y 

directions.er = 0.1 [mm], 6y = 0.12 [mm], V = 100 [m/min], 
a = 1.83 [mm],c = 0.07 [(mm/rev)/Insert], Axj = 0[mm], 

AJC 2 = 0.05 [mm],Ajt3 = 0.10 [mm], Ay{ = 0 [mm], L\y2 = 0.05 [mm] and 
Ay3 = 0.10 [mm] 
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4.8. Summary 

In this chapter, the effects of process faults on cutting forces have been investigated. Using 

the mechanistic model developed in Chapter 3, the cutting forces have been predicted for the ver­

ification of only two uncut chip area configurations. This validation also shows that, in the mech­

anistic model, relating the cutting forces not only to cutting parameters, but also to the geometry 

of the uncut chip area allows the prediction of cutting forces for a cutting condition that causes the 

material to be removed with an irregular uncut chip area shape. 



Chapter 5 

Dynamic Modeling of Boring and Chatter Stability 

5.1. Introduction 

Chatter vibrations are an undesirable phenomenon in machining operations. If uncontrolled, 

they result in poor surface finish and dimensional accuracy, may damage machine tool compo­

nents, cause early tool wear, chipping and failure of the cutting tool and generate undesirable 

noise. Various factors cause vibrations in machining. Vibrations are categorized as forced or self-

excited. 

Forced vibrations can be generated by unbalanced rotating components of the machine tool, 

and backlash in the transmission gear. Chatter vibrations are self-excited vibrations induced by 

the regenerative effect, which can be explained with a simple orthogonal cutting process such as 

plunge turning (Figure 5.1). In this process, the tool moves into the rotating workpiece mounted 

between the chuck and the tail stock, with the feed rate of c which is also equal to the intended 

chip thickness hQ. The workpiece tends to oscillate under the feed force Fy, due to its flexibility 

in the feed direction. The relative vibrations between the tool and the workpiece generate waves 

on the cut surface. In the following pass, the tool encounters a wavy surface and removes a chip 

with time-varying thickness, h . Since the feed force is proportional to the uncut chip area, it (the 

feed force) follows the same periodic variation and excites the structure, causing chatter vibra­

tions. 

The regenerative effect is caused by the phase difference £ between two successive revolu­

tions. If the phase difference is zero, as encountered when the frequency of the spindle speed 

n [rev/sec] and the chatter frequency have an integer ratio, self-excited force and chatter vibra-

100 
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tions may not be generated. The relationship between the spindle speed n and chatter frequency 

coc is expressed with the following equation. 

60co. c 
C = N+±- (5.1) 

n 2n 

where the chatter frequency coc is in [Hz] and the spindle speed n is in [rev/min]. N is the 

integer number of waves and E/2n is the fraction of a wave. When the phase angle e is zero, the 

chip thickness does not vary even though there are still vibrations taking place. The most drastic 

variation in chip thickness occurs when the phase angle becomes 180° (Figure 5.1). 

In the model, the feed force Fy is expressed as a linear function of the width of cut b, chip 

thickness h, and the feed force cutting coefficient Kp assuming that the cutting coefficient does 

not vary significantly for the selected range of the cutting parameters and is constant. In reality, 

the cutting force coefficient is not constant, but a function of the instantaneous chip thickness and 

cutting speed [9]. This approach has been modified in Chapter 3, and cutting coefficients have 

been established as exponential functions of the uncut chip area A, cutting speed V, cutting edge 

contact length Lc and centroid of the uncut chip area. At high speeds, the material being cut tends 

to soften due to excessive heat, and the shear stress decreases causing the forces to lessen. How­

ever, for the low speed range, the variation of the cutting force with the cutting speed and the chip 

thickness may be negligible, as considered in Equation (5.2). This approach simplifies force pre­

diction modeling and system stability analysis. 

The dynamic variable of the orthogonal cutting system is the chip thickness h(t) that incor­

porates the vibrations of the tool at current and previous revolutions, y(t) and y(t - T) Eq(5.4). 
F/r) = KjA(t) (5.2) 

A(t) = ah{t) (5.3) 

h(t) = h0-y(t)+y(t-T) (5.4) 
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where a, hQ and A are the depth of cut, the intended chip thickness and the uncut chip area, 

respectively. 

ho " 
V 

Dynamic-uncut chip area 

Static-uncut chip area 

- i 

h h 

Tool 

Tool n e=o 
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Figure 5.2 shows a block diagram representation of the chatter vibrations, in which all the 

dynamic parameters of the system are presented in the Laplace domain. In the model, the input of 

the system is the intended chip thickness hQ and the output is the current vibration y(s). The 

vibration of the tool during the previous revolution is represented with a delay term, 
—s T 

e y(s) = Ly(t-T), where T is the period for one full revolution. The stability is analyzed 

based on the frequency response method. The mathematical derivations yield the following equa­

tion, (5.5) [4]. 

a u m = 2tf/?(a>c) ( 5 - 5 ) 

where aUm is the maximum allowable critical depth of cut for the stable cutting condition, 

and G(coc) is the real part of the transfer function of the structure 0(s). As it is difficult to model 

the nonlinearities of the system, such as process damping, the tool jumping out from the work-

piece, dependency of the cutting force coefficients on cutting parameters, and multiple regenera­

tion, the chatter stability is examined based on the linear stability theory introduced by 

Tobias[30], Tlusty[4] and Merrit[7]. Nonlinearities of the process can only be taken into account 

when a time domain simulation method is used. One of the disadvantages of the time domain 

solution method is that the process is considered with small time increments, and therefore 

requires a long time to compute a result. On the other hand, analytical modeling is considerably 

faster and is preferred in practice. 

In the past decades, extensive research has been devoted to the chatter problem in machining, 

but detailed work on chatter stability in boring has been rare. This may be because the tool used in 

the boring process is a single point cutting tool with a corner radius, such that the cutting geome­

try in the boring operation is more complicated compared to other machining operations. 

In this chapter, the dynamic characteristics and the regenerative effect in the boring process 

are presented in detail. The stability solution of the boring process in both frequency and time 
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domains is discussed from all perspectives, based on the information introduced in the following 

sections. 

y0(s) 

K f a 
Ff(s) 

Ms) y(s) 

y(s) 
Inner Modulation 

Outer Modulation 

Figure 5.2 : Block diagram of the regenerative chatter vibrations in orthogonal cutting 
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5.2. Dynamic Characteristics of the Boring Process 

5.2.1. Regenerative Effect in Boring 

The regenerative effect in the boring process is different from the one in milling and turning 

processes. The boring bar structure is significantly stiffer in the feed direction, which aligns with 

the boring bar axis. Chatter vibrations are therefore caused mainly by flexibility in the radial and 

tangential directions (Figure 5.4). For the purpose of conceptual evaluation, the boring bar struc­

ture can be modeled by two orthogonal single degree of freedom systems in the radial and tangen­

tial directions. A schematic illustration of the boring bar structure is shown in Figure 5.5. 

The position of the tool in the boring operation is defined with only the current instantaneous 

vibration y(s) in the radial direction. 

a(s) = a0 + y(s) (5.6) 

where a(s) and a0 are the instantaneous dynamic and intended radial depths of cut. The next 

position of the tool in the feed direction will be ahead of the previous position by the amount of 

the feed rate c. Due to the phase angle, only the periodic uncut chip area interactions, which 

depend on the tool positions in the successive revolutions, produce the regenerative effect. The 

regenerative effect in boring can be explained with Figure 5.6. The figure depicts the simulated 

tool positions by assuming sinusoidal chatter vibrations with 0.1 [mm] amplitude. In the simula­

tion, only one period of sinusoidal path, which also implies the generation of one wave, is consid­

ered. The parameters for the simulation have been selected from experiments conducted under the 

conditions defined in Table 5.1. 

Table 5.1: Simulation parameters selected from the conducted chatter tests 

Depth of Cut, a [mm] Feed Rate, c[mm /rev] Cutting Speed, V[m/min] 

0.8[mm ] 0.10 225 

Spindle Speed, n [rpm] Measured Chatter Freq. [Hz] Measured Phase Angle, 8 [Deg] 

2228 771 274.7 
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Figure 5.6 shows 6 full and a fraction of the 7th revolutions. As it can be noticed that the 

depth of cut a and the uncut chip area A have different but periodic variations at each revolution, 

due to the phase angle 8 between two successive revolutions. The difference in depth of cut vari­

ation at each revolution continues until the number of revolutions times phase angle adds up to 

360°; when the subtotal of the fractions of the waves e/27t becomes one full wave (one period, 

2TT ). The depth of cut variation for each revolution is then repeated in the same fashion. This sec­

ond periodic repetition is illusrated in Figure 5.7, with the surface roughness measurement of a 

workpiece on which the chatter test was performed with another specified cutting condition 

(depth of cut a=0.75[mm], feed rate c=0.12[mm/rev], cutting speed V=184[m/min], spindle speed 

n=1650[rpm]). In this test, the chatter frequency is measured as coc= 849.7 [Hz] and the phase 

angle is obtained as E S 324° using Equation (5.1). The surface roughness measurement is per­

formed with a surface roughness analyzer. It should be noted that the measurement has been car­

ried out on a linear reference path in the feed direction (or on the same angular position of the hole 

circumference). In other words, the tool positions shown in the figure are taken on this line. In this 

test, the process is expected to have a different depth of cut variation in each period of the first 10 

revolutions, due to a 324° phase angle. After 10 revolutions, the phase angle completes itself to 

360° (or 0°) , and the same depth of cut variations seen in the first 10 revolutions will be 

repeated. The determination of the number of the revolution N (corresponds to 10 in the above 

example) when the phase angle e becomes zero, and the corresponding phase angles at each rev­

olution, are shown in the following algorithm (Figure 5.3). This algorithm determines wave gen­

eration characteristics based on spindle speed n [rpm], and measured chatter frequency coc. It is 

therefore assumed that the test has been conducted under specific cutting conditions, and the chat­

ter frequency coc has been determined from FFT of the measured force (or acceleration) data. 

Using Eq.(5.1), the phase angle e, which is assumed to be the initial phase angle at the 1st revolu-
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tion of the process with chatter vibrations, is first calculated. Then, the phase angle e at each rev­

olution is found. This regeneration process keeps repeating itself until the end of cutting. 

Input: Phase angle, 8 

Calculate: the phase angle in each 
revolution. 
E , = j.e 

Yes 

8 = 8 : 

i = floor(8j /360) 
8 = 8 n - i.360° 

Find: The remainder (CC) after the 
division of 8 into 360° 

j=j+1 

This algorithm finds the total number of revolution N for the completion 
of the phase angle to 360 [Deg] (i.e. after N revolutions the tool will 
start the (N+1)th revolution in the phase angle of 1st revolution. After 
N+1 Jth revolution, the same depth of cut (or uncut chip area) variation 
perceived in the first N revolutions will be repeated upto 2N th 
revolution. 

Figure 5.3 : Algorithm for the determination of the phase angle for each revolution 

At each instantaneous position of the tool, the uncut chip area may have an irregular and 

complex form, due to the corner radius of the tool. For example, if the tool is frozen at each revo­

lution when it reaches a reference line, the corresponding uncut chip area takes the forms shown 

in Figure 5.6. The amount of material removed by the tool at each revolution differs, and may 

have a complicated form in some cases. 
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So far, the significant differences between regeneration of the waviness in boring and, turning 

and milling have been highlighted. The following question ensues: Do the vibrations in the tan­

gential direction influence the regeneration of the waviness in addition to those in the radial direc­

tion? As it can be recognized from the transfer function measurement (Figure 5.4), the boring bar 

in the tangential direction is as flexible as in the radial direction. However, its contribution to the 

depth of cut variation is comparatively smaller than that in the radial direction. Consequently, the 

influence of vibrations in the tangential direction can be assumed to be negligible in the evalua­

tion of the regenerative effect in boring. 

The influence of the tangential displacements can be examined with Figure 5.8. Considering 

the boring bar with the tangential and radial vibrations (Ax and Ay), the total depth of cut varia­

tion is found to be, 

where a, ad, Ay, Ax, R and Aat are the intended depth of cut [mm], dynamic depth of cut 

[mm], the displacement of the tool in radial direction [mm], the displacement of the tool in tan­

gential direction [mm], the radius of the hole [mm] and the variation of the depth of cut caused by 

the displacement of the tool in tangential direction, respectively. 

The influence of the displacements in the tangential direction on the depth of cut variation 

can be examined with an example. Ax = 0.1 [mm] displacement in the tangential direction, when 

the radius of the hole is 40 [mm], leads to 1.25 x 10 [mm] depth of cut variation, Aat. How­

ever, the same displacement in the radial direction has a direct effect on the depth of cut variation 

with the same magnitude. Therefore, it is reasonable to neglect Aat in order to simplify the prob­

lem. 

ad = a + Ay + Aat (5.7) 

The portion of the tangential displacement in depth of cut variation is, 

(5.8) 



Chapter 5. Dynamic Modeling of Boring and Chatter Stability 109 

x 10" Transfer function in radial direction 
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x 10"6 Transfer function in tangential direction 
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7 Transfer function in feed direction 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Frequency [Hz] 

Figure 5.4 : Transfer function of the boring bar in tangential, radial and feed direction 



Figure 5.5 : Boring bar structure with two spring-mass and damping models of a single degree 
of freedom system 
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Figure 5.6 : Regeneration of the waviness in boring process 
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Surface Roughness Measurement 

Surface finish 
with chatter marks 

Surface roughness 
analyzer 
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Tool positions 
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Figure 5.7 : Surface rougness measurement of the workpiece, a =0.75 [mm], c=0.12[mm/rev], 
V=184[m/min], n=1650[rpm], coc s 849.7 [Hz], e = 324 [Deg 
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Figure 5.8 : The effect of the tangential vibrations in the regeneration of the waviness 
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5.2.2. Dynamic Cutting Force Prediction 

The uncut chip area has a uniform shape during rigid cutting conditions. However, it varies 

drastically and may have an irregular and complicated form when the tool begins to vibrate (Fig­

ure 5.9). In some cases, more than three revolutions before the current one may need to be taken 

into consideration for the uncut chip area calculation and radial force prediction. Chapter 3 

described the calculation of the uncut chip area, considering its exact geometry for cutting condi­

tions with free chatter vibrations. The radial force was obtained as an exponential function of the 

cutting parameters Eq. (5.9). The prediction of the radial force requires the uncut chip area to be 

separated into two regions for more accurate results (Figure 3.15). Regions 1 and 2 are defined on 

the corner radius and the straight side of the tool, respectively. Based on the equations derived in 

Chapter 3, the radial force is determined as a component of the friction force. 

Fr = FfrSin(Q>L) 

Fr = [K^Al+K^A2 + K^(LCi + LC2)]Sin^L) 

„ r, 8.1965 T -0.6737 T/-0.4210. . . 9.6152 T -0.0241 T/-0.7597. . „ , r r . . 

Fr = [(« Lc, v LC2 V )A2 + Kfre(LCi + LC2)]sm(<\>L) (5.9) 

The radial cutting force is found as, 

Frc = Fr-KreLc (5.10) 

Then, the radial cutting force coefficient is obtained by dividing Frc into A. 
(5.11) 

Variations in the depth of cut for stable and unstable cutting conditions are not equivalent in 

terms of the uncut chip area and force variation, due to the nonlinearities of the process caused by 

the corner radius of the insert R. As explained in the previous section, cutting force variations are 

completely dependent on the instant interaction between the current and previous tool positions at 

the same angular position of the hole circumference. Using the mechanistic model presented in 
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Chapter 3, the friction force is predicted based on the uncut chip area geometry, rather than by 

using the cutting parameters directly. This consideration was achieved by taking the contact 

length Lc of the tool with the workpiece into the derivation, and assuming that the total friction 

force passes through the centroid of each related region (Region 1 and 2). This approach ade­

quately covers the complication of the uncut chip area geometry encountered in unstable cutting 

conditions, and enables the prediction of the cutting forces with good accuracy. 

In Figure 5.9, the graphical representation of the dynamic friction force distribution along the 

cutting edge contact length Lc and uncut chip area variation are shown in comparison to those in 

the regular static case. The friction force is distributed proportionally to the uncut chip area of 

each differential element along the cutting edge contact length. The figures at the bottom (5.9-bl 

and b2) show how much error could occur between the direct use of the cutting parameters (static 

base) and use of the uncut chip area geometry (dynamic base) for the same depth of cut variation 

in the prediction of the effective lead angle (j)L. 

In the figure, indices s and d represent static and dynamic instances. Figure 5.9a shows a reg­

ular static uncut chip area form, in which the current and previous tool positions are the same. In 

this case, the chip thickness is reduced towards the tip of the tool, while its elemental effective 

lead angle increases with respect to the center of the corner radius. The friction force distribution 

conforms to the chip thickness reduction, which varies proportionally to the uncut chip area of 

each differential element along the cutting edge contact length. The friction force has the same 

magnitude at each differential element, and the elemental effective lead angle is the same on the 

straight side of the uncut chip area. Aditionally, the interaction of two positions that represent the 

dynamic variation of the depth of cut generates the uncut chip area 3 (Figure 5.9b). For this case, 

if the static model is considered, the effective lead angle and the total friction force, § L _ S , Fjr_s 

will be over-predicted (Figure 5.9-bl). Consequently, the radial and feed forces ( F r _ s and F j _ s ) 

will be over-predicted as well. Figure 5.9-b2 shows the actual friction force distribution and the 

total friction force Frr_d with corresponding effective lead angle § L _ d - Presumably, the error 
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varies depending on the current interaction of the tool positions. Another schematic comparison is 

illustrated in Figure 5.9-c, in which the current tool position interacts with the tool position of the 

second revolution before the current one. This interaction produces the uncut chip area 4. Similar 

to this last case, when the current depth of cut becomes greater than the previous one, the total 

friction force Fy r and effective lead angle (])L are under-predicted when the static-based model is 

considered. 

i i Stable cutting condition i • Unstable cutting condition 

U J 
Distribution of the dynamic-friction force along the cutting edge 

a-) b-) c-) 

Figure 5.9 : The uncut chip area variation for unstable cutting condition; s 
and d imply the static and dynamic cutting conditions. 
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5 . 2 . 3 . W a v e G e n e r a t i o n o n t h e S u r f a c e 

The number of waves left on the cut surface between subsequent revolutions is simply calcu­

lated withEq. (5.1). 

60 o v e 
N = c-- — 

n 2n 

In the boring process, the surface waviness shows different characteristics depending on the 

phase angle e and the chatter frequency coc. The number of waves left on the cut surface should 

be equal to N + — after a cutting operation. However, when counted, it was found to be different 
2n 

than expected. This can be explained as follows. 

Depending on the interactions of the tool positions that are functions of the phase angle e, 

different undulated patterns are created on the cut surface. This is explained in Figure 5.11, which 

shows the simulated surface finish for a wave period of 12 successive revolutions with the follow­

ing system parameters: rc=1650 [rpm], D=31.5 [mm] (Diameter of the hole), a = 0.1[mm], 

e = 275°, coc = 770 [Hz] 

The period and length of a wave are calculated as, 

T = -L LT= ^2%RT (5.12) 
u)„ 60 
'c 

where R is the radius of the circular hole and n is the spindle speed in [rpm]. 

In the first revolution, the tool reaches maximum depth at point-1 on its sinuosidal route 

(Figure 5.11 and 5.12). Having completed one full revolution, the tool moves inside the work-

piece with the feed rate and reaches the maximum depth again, which is Lp [mm] ahead of the 

previous depth, at point 2 in the same period. Lp is the distance between two successive depths 

(in rotational direction) and defined as, 

e<7t=>L = eRT 
p (5.13) 

e > TC => L p = (2n-e)RT 
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Other geometrical identification parameters may be ct, L-, aj and a 2 , which identify the 

exact positions of the depths, and the inclination of the wave pattern created on the surface finish 

(Figure 5.12). These identification parameters can be determined with the algorithm illustrated 

with the flow charts (Figure 5.13 and 5.14). In these algorithms, the exact phase angle for each 

revolution is defined with respect to the phase angle in the first revolution. The tool makes the 

maximum depth when the period angle reaches to — for each revolution. Based on this defini­

tion, the angle 0, which indicates the distance of the tool depth Ln from the beginning of the 

period, is introduced, where n implies the number of revolutions. The positions of the tool depths 

in the feed direction are calculated with the following equation (5.14). 

where R is the radius of the hole. Once, Ln and cn are calculated, the depths are grouped and 

installed as a row of a matrix (as vectors) so that the inclination angles of the wave grooves can be 

obtained by using the specific elements of the vectors (Figure 5.12). Two inclination angles on the 

surface finish that describe the route of the tool with respect to the edge of the workpiece are 

defined as, 

cn = (n-l)c + (5.14) 

(5.15) 

(5.16) 

where i is the group number, q is the element number of each vector. Hence, L ' 9+1 ' U1 L„ and 

c are the second and first elements of any position vector defined by a group matrix. 
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Figure 5.10 : Definition of the depth positions with 0 

The process continues as formulated and produces the illustrated patterns for the given 

parameters. When counted, the number of waves is usually higher than expected because the tool 

depths are arranged in grooves, which are seen as waves. 

In addition to the first one, two more examples exposing different patterns can be depicted for 

different parameters (Figure 5.15 and 5.16). 
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Figure 5.11 : Wave generation, phase angle 8 = 275°, chatter frequency coc = 770 [Hz], 
black and white dots show the depths the tool make in the first 6 revolutions 
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group 1 

Figure 5.12 : Identification of the surface finish geometrical parameters. Black dots show the 
depths created by the tool in its sinusoidal vibration; n = 1650[rpm] ,D = 31.5 [mm], 

e = 275°, coc = 770[Hz] 
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Input: Phase angle, s 
Feed rage, c 
Length of the period, L T 

Circumference of the hole, C 

Calculate: the phase angle in each 
revolution. 
8 n = n.s 

n =n +1 

Figure 5.13 : Depth position determination algorithm in each wave period 
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Input: L n for each revolution 

Set: Flag = 0 
i = 1 

group 

Figure 5.14 : Flow chart to group the deeps for the identification of the inclination angles 
and ct2. 



Figure 5.15 : Simulated wave generation on the surface finish under the contidion of phase 
angle e = 170°, chatter frequency coc = 770 [Hz]; Black dots show the depths. 
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Figure 5.16 : Simulated wave generation on the surface finish under the contidion of phase 
angle 8 = 90° , chatter frequency coc = 770 [Hz] 
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5.3. Chatter Stability 

5.3.1. Analytical Approach for Stability Solution 

This section presents an analytical approach for the dynamic boring process, in which the 

regenerative effect is modeled considering only the vibrations in the radial direction. 

As detailed in the preceding sections, the geometry and dynamics of the regenerative effect in 

boring are different. Nonlinear variation of the radial force with the instantaneous radial vibration, 

and the preceding vibration history of more than one revolution, makes the modeling of chatter in 

the boring process more difficult than other existing models, such as milling and turning. The 

main consideration in the analytical solution is how the nonlinear dynamic characteristic parame­

ters, namely radial cutting force coefficient Krc, and uncut chip area A, are involved in the 

dynamic boring model. The first stage has been to make certain assumptions that will facilitate the 

analysis, and linearize the relation between the parameters Krc, A, and Lc, which are employed 

in the radial force prediction and the vibration of the boring bar y. The following assumptions are 

made to simplify the process. 

- The amplitude of the chatter vibrations is assumed to be within a range of %10 of the 

intended depth of cut a. 

- The radial cutting force coefficient Krc is determined with Equation (5.11) and is assumed 

not to change and remain constant for the given range of the vibration amplitude. Only the influ­

ence of the uncut chip area variation is considered in the radial force variation. 

- The uncut chip area calculation is simplified with the following linear equation, [10] 

A = ca (5.17) 

where c and a are the feed rate and depth of cut. Based on the assumptions made above, the 

chatter vibrations in the boring process can be represented with the following block diagram, in 

which three gain factors, Kl, K2, and K3, are used to linearize the dynamic uncut chip area vari­

ation (Figure 5.17). The input of the system is the intended radial depth of cut a0. yx, y2 and y 3 
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are the vibrations measured on the same angular position of the hole circumference, in the current, 

previous, and the second revolution before the current one, respectively. The dynamic depth of cut 

ax is obtained by adding the current vibration yx to the intended depth of cut a 0 (Eq.(5.6)). In 

this case, the vibration direction into the workpiece is taken as positive. The effect of the previous 

vibrations (y2 and y3) on the uncut chip area variation are considered with the linear relation pre­

sented in Equation (5.18). In the model, gain factors Kx, K2, and K3 are supposed to be tuned 

throughout the depth of cut range with small segments. For each segment, 20 different combina­

tions of the tool vibrations within the vibration amplitude range (10% of the depth of cut) are con­

sidered, and the corresponding uncut chip areas are calculated. Based on the calculated uncut chip 

areas and the expression (5.18), linear regression has been performed for the identification of the 

gain factors. 

A = c[K1(a0-y1) + K2(a0-y2) + K3(a0-y3)] (5.18) 

A = KlAl+K2A2 + K3A3 (5.19) 

In this evaluation, the dynamic uncut chip area A is determined based on the vibration his­

tory of two preceding revolutions considered by the gain factors Kx, K2, K3, and the aspect of 

the static behaviour of the process, in which the uncut chip area is approximately calculated with 

Equation (5.17). The geometrical representation of the evaluation is indicated in Figure 5.17. It 

should be noted that Ax, A2, and A3 are the corresponding static uncut chip areas for the depth of 

cuts ax, a2, and a3. 
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] Stable cutting condition i Unstable cutting condition 

Figure 5.17 : Illustration of the uncut chip areas in Eq. (5.18) 
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Figure 5.18 : Block diagram representation of the boring process 
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The dynamic chip area can be written in Laplace domain as follows. 

A(s) = c i K ^ a ^ - y ^ - K ^ a ^ - y ^ - K ^ a ^ - y ^ s ) ] } (5.20) 

The dynamic uncut chip area produces the dynamic radial cutting force with the following 

expression. 

Frc(s) = KrcA(s) (5.21) 

The radial cutting force induces vibration on the boring bar, 

y(s) = Frc(s)^(s) (5.22) 

where d>(̂ ) is the transfer function of the system, which is implemented based on the 

dynamic characteristics of the boring bar structure obtained by performing impact hammer tests 

(Figure 5.19). For the conceptual evaluation, the structure with a single mode can be considered 

with the following transfer function (Eq. (5.23)). The implementation of the transfer function is 

explained in detail in the next section. 

1 / m 

Frc(s) s

2

 + 2C,(nns + cô  

Substitution of A(s) and Frc(s) into Equations (5.21) and (5.22) yields, 

(5.23) 

y(s) = -<sT -2iT 
Kx-K2e -K3e 

cKr®(s) (5.24) 

The previous vibrations, y2 and y3, are defined with delay terms in the model. The resulting 

transfer function between the vibration of the structure y(s) and intended depth of cut a0 can be 

obtained as follows. 

y(s) = 

a0(s) 

Kx-K2 - £ 3 ] cKrc<S>{s) 

1 + -sT -2sT 
Kx-K2e -K3e 

(5.25) 
cKWs) 

The characteristic equation of the above transfer function is, 
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l + \K1-K2e-sT-K3e~2sT cKr*(s) = 0 

131 

(5.26) 
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Figure 5.19 : Transfer function measurement using the impact hammer test 
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After the linearization of the system, the stability of the process can be examined with the fre­

quency response method, which is performed by replacing s with ;'to in the transfer function of 

the system. The magnitude and phase angle of the transfer function (())(/to)) can be illustrated by 

graphical plots that provide significant insight. 

The block diagram representation of Eq. (5.22) is shown in Figure 5.20. The input of the sys­

tem is sinusoidal radial force Fr(s), and the resulting output is the radial displacement of the 

structure y(s), which differs from the input waveform only in amplitude and phase angle . 

Fr(s) 

Transfer function 
in radial direction 

Radial force $.(s) 
y(s) 

Radial vibration 
Figure 5.20 : Block diagram representation of Equation (4.23) 

The transfer function is described in the frequency domain as, 

<D(/co) = G+jH (5.27) 

where G is the real and jH the imaginary part of the transfer function. From the characteris­

tic equation of the transfer function (Eq. 5.26) the critical borderline of feed rate value is obtained 

as, 

C l i m ~ Kr[G(K1 - K2cos(0)cT) - K3cos(2acT)) - H(K2sin(wcT) + K3sin(2(HcT))] ( 5 ' 2 8 ) 

clim is the maximum allowable critical feed rate for a cutting condition with free chatter 

vibration. 

Phase angle of the structure \|/ is, 

tf(cri) sm(arT)(K7 + 2^cos((D,7/)) 
tany = ——°- = v c / v 2 ^ v c " (5.29) 

G ( c o c ) [-K l+K2cos((£>cT) + K3cos(2d)cT)] 
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Equation (5.1) is expressed in the form of, 

tocT = 2nN+z (5.30) 

where Q)c and T are the chatter frequency in [rad/sec] and period of the one full revolution. 

Substituting Eq. (5.30) into Eq. (5.29) yields, 

sm(z)[K2 + 2A"3cos(e)] 
\|/ = atan (5.31) .[- Kx + K2cos(z) + K3cos(2e)] 

Equation (5.31) is a nonlinear and requires an iterative solution to find the phase angle e. 

The variation in the radial cutting force coefficient in the presence of chatter vibrations is 

investigated with the following parameters: depth of cut, a = 0.7[mm], feed rate, 

c = 0.1 [mm/rev] and cutting speed, V = I50[m/min]. 

The displacements of the tool for five successive revolutions were considered to be in the 

range of %10 of the depth of cut, a, (i.e. T-0.07 [mm]). av a2, a3, aA, and a5 are the instant 

depth of cuts of the current, previous, third, fourth, and fifth revolutions at the selected 8 positions 

of a wave period as shown in Figure 5.21. The corresponding vibrations are shown with the same 

indices with the notation of y. For the selected tool positions, calculated uncut chip areas A, cut­

ting edge contact lengths Lc, predicted radial cutting forces Frc and its coefficients Krc, are 

shown in Table 5.2. Figures 5.22 and 5.23 depict the corresponding uncut chip area shapes, (i.e. 

the amount of material removed by the tool) at the selected 8 positions of the 5th revolution of the 

simulated process. As can be noticed, the uncut chip area A varies drastically at these particular 

positions of 5 sucessive revolutions during each revolution. 

Figures 5.24, 5.25 and 5.26 show the actual values of the parameters determined, based on 

the mechanistic model and their average values calculated by considering only the static nature of 

the process (second assumption). These average values are determined for the test conditions 

given above. As can be seen in the figures, the error between the predicted dynamic radial cutting 

force coefficients Krc and average values may go up to 20[%] in some cases. 
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Table 5.2 : Prediction of the radial force considering the specified vibration history 

POINT-1 POINT-2 POINT-3 POINT-4 POINT-5 POINT-6 POINT-7 POINT-8 

a 1 [mm] 0.6345 0.6673 0.7264 0.7577 0.77 0.7322 0.6641 0.63 

a 2 [mm] 0.7211 0.7601 0.7661 0.7427 0.7018 0.6396 0.6381 0.6953 

a 3 [mm] 0.7678 0.739 0.6805 0.6468 0.6302 0.6615 0.7295 0.7695 

a 4 [mm] 0.686 0.644 0.6318 0.6518 0.6909 0.7563 0.765 0.7119 

a 5 [mm] 0.6308 0.6552 0.7123 0.7481 0.7688 0.7444 0.6773 0.6317 

L c [mm] 0.5852 0.5932 0.9344 1.3840 1.4312 1.2760 0.9728 0.6823 

A [mm 2 ] 0.0251 0.0266 0.0489 0.0878 0.1338 0.1317 0.0710 0.0303 

Predicted K r c [N/mm 2] 394.31 343.27 331.95 381.49 391.63 385.43 410.59 413.55 

Predicted F r c [N] 9.88 9.14 16.25 33.51 52.39 50.77 29.16 12.52 

Predicted F r [N] 14.83 14.15 24.15 45.21 64.49 61.55 37.38 18.29 

Predicted V [Deg] 29.27 26.82 31.88 43.76 52.10 49.60 41.91 32.37 

Predicted K f r c [N/mm 2 ] 631.44 625.71 460.68 353.57 345.68 373.46 448.37 569.38 

Predicted F f r c [N] 15.82 16.65 22.55 31.06 46.25 49.19 31.84 17.24 

Predicted F f r [N] 30.33 31.36 45.72 65.37 81.73 80.82 55.96 34.15 
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— 1st Revolution 

— . — . 2nd Revolution 

— — — — 3th Revolution 

— . 4th Revolution 

5th Revolution 

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Length of a period [mm] 

Tangential (rotational) direction 

Figure 5.21 : Dynamic radial force simulation, a=0.7 [mm], amplitude of the 
vibration=0.07[mm] 
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Position-1 Position-2 

a, 0.6345 [mm] 
a2 0.7211 [mm] 
a 3 0.7678 [mm] 
a4 0.6860 [mm] 
a5 0.6308 [mm] 

a1 0.6673 [mm] 
a 2 0.7601 [mm] 
a 3 0.7390 [mm] 
a4 0.6440 [mm] 
a5 0.6552 [mm] 

Position-3 Position-4 

0.7264 [mm] 
a2 0.7661 [mm] 
a 3 0.6805 [mm] 

a4 0.6318 [mm] 

a5 0.7123 [mm] 

a1 0.7577 [mm] 
a2 0.7427 [mm] 
a3 0.6468 [mm] 
a4 0.6518 [mm] 
a5 0.7481 [mm] 

Figure 5.22 : The uncut chip area variations at the positions 1, 2, 3 and 4 
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Pos i t ion-5 

a , 0.7700 [mm] 
a 2 0.7018 [mm] 
a 3 0.6302 [mm] 
a 4 0.6909 [mm] 
a 5 0.7688 [mm] 

P o s i t i o n - 7 

a . , 0.6641 [mm] 
a 2 0.6381 [mm] 
a 3 0.7295 [mm] 
a 4 0.7650 [mm] 
a 5 0.6773 [mm] 

Pos i t ion -6 

a , 0.7322 [mm] 
a 2 0.6396 [mm] 
a 3 0.6615 [mm] 
a 4 0.7563 [mm] 
a 5 0.7444 [mm] 

Pos i t i on -8 

a 1 0.6300 [mm] 
a 2 0.6953 [mm] 
a 3 0.7695 [mm] 
a 4 0.7119 [mm] 
a 5 0.6317 [mm] 

Figure 5.23 : The uncut chip area variations at the positions 5, 6, 7 and 8 
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Figure 5.24 : The Variation of the radial cutting force coefficient and 
uncut chip area for the specified vibration history (Table 5.2) 
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coefficients for the given vibration history in Table 5.2 
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Figure 5.26 : The Variation of the total radial force for the vibration 
history in (Table 5.2) 

5.3.2. Chatter Stability Prediction in Time Domain 

This section presents the development of the digital simulation method for the boring process 

which is to predict the occurrence of chatter vibrations. The time domain model enables us to 

understand aspects of the regenerative effect and chatter, with a good insight into the dynamic 

behaviour of the boring bar structure. It is also possible to consider the nonlinearities of the pro­

cess in chatter vibrations. One of the nonlinearities is the tool jumping out of the cut, due to vibra­

tions with large amplitude. In this case the cutting forces become zero for a short period. The 

second nonlinearity is caused by the nature of the cutting geometry of the boring process. As 

explained in detail in the preceding sections, when the tool vibrates, the uncut chip area varies 

drastically due to the corner radius of the tool, and more than three revolutions may be involved in 

the evaluation of the parameters necessary for the force prediction. All possible nonlinear interac­

tions of the tool positions are considered in the time domain solution. 
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The block diagram of the time domain solution model is shown in Figure 5.27. The model 

consists of 3 sub-models, namely a chip load geometry model, a tool dynamics model in radial 

direction, and a force model. The inputs of the model for simulation are: the radial depth of cut a, 

feed rate c, and cutting speed V. Based on these inputs, the uncut chip area A, cutting edge con­

tact length Lc, and effective lead angle (j)c, which are the necessary parameters for the radial force 

prediction, are determined. From these parameters, the friction cutting force F^rc and edge cutting 

force components Fjre are first predicted. Radial force is then calculated from the total predicted 

friction force F^r, and the effective lead angle § L . Eventually, the radial force generates vibra­

tions, changing the radial position of the tool (depth of cut). This process continues with the spec­

ified order. 

The steps of the time domain solution can be summarized as follows. 

- The workpiece is considered to be rolled out, like a rectangular block, and discretized with 

small elements. In this discretization, the elements are selected small enough relative to the corner 

radius of the insert. 

- Based on the exact kinematics of the boring process, the position of the insert and corre­

sponding coordinates defining the cutting edge are calculated and subtracted from the coordinates 

of the workpiece surface profile. 

- The simulation starts with the above evaluation for the inputs, which are, depth of cut, feed 

rate, and cutting speed. Depending on these inputs, the uncut chip area, cutting edge contact 

length, and effective lead angle, which are necessary for the prediction of the radial force, are 

determined by utilizing the mechanistic model presented in Chapter 3. 

- The predicted radial force excites the structure and generates vibrations, and these vibra­

tions are calculated. 

- For each time-increment, the position of the tool (the current depth of cut), the uncut chip 

area A, the cutting edge contact length Lc, and the effective lead angle § L , are updated, based on 

the calculated vibration and current interaction between the insert and workpiece surface profile. 
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Figure 5.29 illustrates a scheme of the simulation, showing the amount of material being removed 

from the workpiece for an instant of time. As can be noticed in the figure, the fourth revolution 

before the current one is being taken into account for the determination of the simulation parame­

ters and the radial force prediction. 

- The workpiece surface profile is updated after the evaluation of the tool displacement at 

each time-increment. 

- The process continues in the specified course for each increment of the workpiece rotation. 

The detailed algorithm steps of the time domain simulation is illustrated in Figure 5.28. 

FORCE MODEL 

Lc(t) 

Depth of cut 

Feed rate + 

Cutting s p e e d V 
TOOL DYNAMICS MODEL 
IN RADIAL DIRECTION , 

8y(t) sin <hL(t) 

Figure 5.27 : Block diagram of time domain simulation model 
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(jumping out of the workpiece) 

\ 
U p d a t e : Parameters: A, L c and 

• • 

C a l c u l a t e : The cutting forces and 
vibration. 

time domain solution model 



Chapter 5. Dynamic Modeling of Boring and Chatter Stability 

Figure 5.29 : Illustration of the tool position for an instant of time in time domain 
simulation 
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5.3.2.1. Tool Dynamics Model 

Using the experimental modal analysis method [2], the transfer function of the structure is 

obtained in the following form. 

m = m= y ^Klhl 
vv > f(s) la 2 .„ 

(5.32) 

where n is the total number of modes in the system and k represents each of these modes, a 

and P are the parameters derived based on the following equation. 

A second order system is represented in Laplace domain as, 

= = \t™ 
F(s) 2 2 

The partial fraction expansion of the transfer function can be written in the following order. 

Us) = — + = - a + P * z (5.33) 
s-sx s-s* / + 2C(0„5 + co„ 

where the residues are, 

r = a +jv r* = a-jv 

and 5j and s2 are the complex conjugate roots of the characteristic equation of the transfer 

function. 

sl = -&n+j(Qd s2 = - C c o „ _ / ( O d 

The parameters, a and p are expressed as, 

a = 2 ( C t o n a - w d v ) p = 2a (5.34) 

Having performed the impact hammer test, the measured data is processed in CutPro (modal 

analysis software) for the determination of the dynamic characteristics of the boring bar system 

structure. The outputs of this process are: the damping ratio C,, natural frequencies con, equivalent 

stiffness k and mass m of each mode of the structure, and the residue values (r and r*) shown 
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above. Using these parameters, the transfer function of the structure is built based on the Eq. 

(5.32). 

To obtain the time domain solution, the nested programing method is conducted and the 

transfer function of the structure in radial direction Eq. (5.32) is modified into the state space rep­

resentation with the observable canonical form [8]. The displacement in the radial direction can 

then be expressed as, 

Y(s) = k$Fr(S)-2&J(s)] + \[aFr(s)-(i)2

nY(S)] (5.35) 
s s 

State variables are defined as follows, 

X^s) = ±[aFr(s)-(02

nY(s)] (5.36) 

X2(s) = i[BF r(j)-2Ca) By(j)+X 1(5)] (5.37) 

The Eq.(5.35) can be written as, 

Y(s) = X2(s) (5.38) 

Substituting Eq. (5.38) into Eq.(5.36) and (5.37) leads to the state and output equations in a 

vector-matrix form as follows. 

*1 0 2 
+ p 

X>2 I x2 a 
(5.39) 

Y = X2 (5.40) 

Fourth order Runge Kutta equation is used in the numerical integration of the process [20]. 

The general equation of Runge Kutta is presented as, 

Xk+ 1 = Xk + \(kl + 2k2 + 2k3 + h) (5-41) 



Chapter 5. Dynamic Modeling of Boring and Chatter Stability 147 

The slopes of each state variable equation are defined as follows. 

k \ , 1 = W- « f e + aFr) 

k2,l = h{-^l{X2 + l k l , l } + a F r ) 

k3,l = h{-®l[X2 + i\k2,l)+aFr) 

*4>1 = h(-(a2

n(X2 + k31) + aFr) 

where h is the time interval. The first value of the state variable is obtained as,. 

1 = Xh + i + 2 h i + 2K i + h, i) (5-42) 

Similarly, the slopes for the second state variable X2, 

kh2 = /i(^i-2CconX2 + f3Fr) 

h 2 = + \h i) " 2<x(x2 + \klt 2) + PF r ) 

h, 2 = + \k2> + [-2^n[x2 + \k% 2)) + PF r ) 

k4>2 = h((Xl + k3tl)-2ti(on(X2 + k3f2) + ^Fr) 

Finally, the second state variable that is also equal to the radial vibration (Eq. 5.40)) is 

accomplished with the following equation. 

(5.43) 

5 . 3 . 3 . Simulation and Experimental Results 

In order to investigate the stability's dependence on the cutting parameters, and verify the 

time domain solution model, two series of experiments were performed. For each test, the initial 

surface of the workpiece was cleaned and the diameter set to the desired specification. Chatter 
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vibrations during the test were detected by means of accelerometers (PCB 353B11 SN 65847, SN 

68836 and Kistler SN C128797) and a microphone attached to the boring bar and to the turret of 

the lathe. Acceleration signals were amplified by charge amplifiers (Kistler-Type 5114), and later 

digitized by data acquisition software CutPro-MalDAQ. 

In these experiments, the boring bar was first mounted on the turret with a critical length, in 

order to catch a critical border between the stable and unstable cutting conditions within the spec­

ified cutting parameter ranges. If the boring bar is held on the turret with a short length, the sys­

tem may be stable for all cutting conditions; if it is mounted with a long length, only unstable 

cutting conditions would be observed. 

In the first set of experiments, workpieces with 32.14 [mm] hole diameter were employed, 

the depth of cut was selected less than corner radius of the tool (a < 0.8 [mm]), and the feed rate 

was kept constant for all conditions with the value of 0.1 [mm/rev]. At the beginning, a high cut­

ting speed was chosen, and gradually reduced by varying the depth of cut until the critical border 

of cutting speed was observed. As seen in Table 5.6, there is a certain chatter vibration stability 

border between the cutting speeds 112.5 and 125 [m/min]. The effect of the depth of cut in this 

critical border seems to be insignificant. However, it has a notable effect on the system stability 

for cutting conditions with larger depth of cut ranges. In the second set of experiments, both the 

depth of cut and the feed rate were changed, and the system stability showed dependency not only 

on the depth of cut, but also on the feed rate (Table 5.10). 

Linearizing assumptions expect system stability to remain independent of the radial depth of 

cut, which is the input of the system. However, results of the experiments conducted so far have 

contradicted this expectation, showing dependence of the system stability on radial depth of cut. 

In the experiments, in order to have the identical analysis for the system stability, the hole 

diameter of the workpiece was kept the same. Different hole diameters may affect the stability as 

regards process damping, even though the cutting parameters (depth of cut, a, feed rate c and 

cutting speed V) are the same. The process tends to damp due to the friction associated with the 
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tool flank face and workpiece interference as a result of the short waves left on the cut surface 

(Figure 5.30). For a different hole diameter D, but the same cutting speed V, spindle speed n [rpm] 

will be different. At each revolution, the phase angle e (for the same chatter frequency coc and 

cutting speed V) varies. Hence, due to the different phase angle for the same cutting condition (i.e. 

the same depth of cut, a, feed rate c and cutting speed V), the depth of cut variation will not be 

the same. Consequently, the experiments performed with a different hole diameter may not be 

identical. The relation between the integer number of waves, spindle speed, chatter frequency, and 

phase angle, is expressed with the Eq. (5.1) 

Figures 5.34 and 5.35 show time domain simulation results for experiments 1 and 17 in the 

first series of experiments (Table 5.6). Both simulation results exhibit unstable cutting conditions, 

even though no chatter is expected for the condition of experiment 1. Note that the radial vibra­

tions in experiment 1 are even more severe. This may be explained as follows. The radial cutting 

force changes inversely with the cutting speed V, based on the mechanistic model expression pre­

sented in Chapter 3. Thus, the lesser cutting speed V produces more cutting force, which causes 

large displacement on the boring bar structure. On the other hand, friction on the rake face of the 

tool increases with low cutting speed. This additional friction causes extra damping in the process 

and prevents chatter vibrations. Furthermore, if the process tends to vibrate, the length of the 

wave becomes short at low speeds, and rubbing between the flank face of the tool and wavy sur­

face also contributes to damping of system (Figure 5.30). 

The wave length becomes shorter at low cutting speeds. The flank face of the tool is then in 

continuous contact with the material surface, adding an extra positive damping (known as process 

damping) effect to the system. As can be seen in Figure 5.30, with short waves the relief angle of 

the tool may be zero, whereas with long waves it is greater than zero, and has no significant effect 

on the damping of the system. Modeling process damping is difficult, and is therefore not 

included in the time domain simulation model. 
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The results of the second set of experiments are presented in Table 5.10 and Figure 5.33. 

These experiments were conducted at various cutting speeds (from 75 to 175[m/min]), depths of 

cut (from 0.25 to 2.5[mm]), and two feed rates (0.075 and 0.125[mm/rev]). As can be noticed, 

there is a certain stability border of depth of cut at 100[m/min] of cutting speed. After reaching 

100 [m/min] cutting speed, the system exhibits unstable cutting conditions regardless of the depth 

of cut and feed rate. The effect of the feed rate is also seen in the figures. For a feed rate value of 

0.075 [mm/rev] feed rate the system has no chatter vibrations until the depth of cut reaches 

1.25[mm]. However, the maximum allowable depth of cut is 0.65[mm] when the feed rate is set 

to 0.125[mm/rev]. These series of experiments show that the system stability of a boring process 

depends on both depth of cut and feed rate.. 

Figure 5.30 : The relation between the length of generated waves and process damping 
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Fy • Fr (Radia l force) 

Fz >- Ff (Feed force) 

Figure 5.31 : Experimental setup-Chatter tests 
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5.3.3.1. Experimental Results: 

- Modal Parameters of the Boring Bar Structure for the First Set of Experiments 

Table 5.3 : Modal parameters in radial direction 

Mode# Freq. [Hz] Damping Ratio [%] Residue (Real) Residue (Im) Stiffness [N/m] Mass [kg] 

1 483.02 9.33 1.026623E-05 -2.784654E-04 5.473229E+06 0.5942 

2 753.03 2.62 3.041659E-05 -4.995113E-04 4.737671 E+06 0.2116 

Table 5.4 : Modal parameters in tangential direction 

Mode# Freq. [Hz] Damping Ratio [°/<j Residue (Real) Residue (Im) Stiffness [N/m] Mass [kg] 

1 665.67 2.26 7.90253E-06 -5.778915E-04 3.62E+06 0.2069 

Table 5.5 : Modal parameters in feed direction 

Mode# Freq. [hk] Damping Ratio[% ] Residue [Real] Residue [Im] Stiffness [N/m] Mass [kg] 

1 432.82 10.59 1.082661E-05 -4.111103E-05 3.326233E+07 4.497 

2 754.56 2.49 5.757860E-06 -1.490884E-05 1.590511E+08 7.076 
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Table 5.6 : Experimental results of the first set 

Exp.# V [m/min] n [rpm] C [mm/rev] a [mm] D[mm] Result 8 [Deg] C0C [H ] 

1 75 743 0.10 0.75 32.14 Nochatter 

2 100 990 0.10 0.30 32.14 Nochatter 

3 100 990 0.10 0.60 32.14 Nochatter 

4 75 743 0.10 0.30 32.14 Nochatter 

5 87.5 867 0.10 0.60 32.14 Nochatter 

6 87.5 867 0.10 0.30 32.14 Nochatter 

7 112.5 1114 0.10 0.30 32.14 Nochatter 

8 112.5 1114 0.10 0.60 32.14 Nochatter 

11 125 1238 0.10 0.30 32.14 Nochatter 

9 225 2228 0.10 0.75 32.14 Chatter 273.5 771 

10 125 1238 0.10 0.50 32.14 Chatter 243.3 798 

12 175 1733 0.10 0.60 32.14 Chatter 261.2 772 

13 175 1733 0.10 0.30 32.14 Chatter 223.8 769 

14 150 1486 0.10 0.60 32.14 Chatter 239.2 784 

15 150 1486 0.10 0.30 32.14 Chatter 239.2 784 

16 225 2228 0.10 0.30 32.14 Chatter 225.0 766 

17 250 2476 0.10 0.60 32.14 Chatter 263.5 773 

18 275 2724 0.10 0.60 32.14 Chatter 282.3 762 
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Figure 5.32 : The results of the first set of experiments 
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- Modal Parameters of the Boring Bar Structure for the Second Set of Experi­

ments 

Table 5.7 : Modal parameters in radial direction 

Mode# Freq. [Hz] Damping Ratio [%] Residue (Real) Residue (Im) Stiffness [N/m] Mass [kg] 

1 764.53 2.40 -9.42390E-07 -1.264124E-04 1.900543E+07 0.8236 

Table 5.8 : Modal parameters in tangential direction 

Mode# Freq. [Hz] Damping Ratb [%] Residue (Real) Residue (Im) Stiffness [N/m] Mass [kg] 

1 764.51 3.43 -6.59550E-06 -1.574528E-04 1.526302E+07 0.6615 

Table 5.9 : Modal parameters in feed direction 

Mode# Freq. [Hz] Damping Ratio[%] Residue (Real) Residue (Im) Stiffness [N/m] Mass [kg] 

1 281.23 9.52 -1.16473E-07 -1.266268E-07 7.009194E+09 2244.8153 

2 1369.57 7.84 3.06011E-07 -1.73772E-06 2483663312 33.5402908 
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Table 5.10 : The results of the second set of experiments 

Exp.# V [m/min] n [rpm] C [mm/rev] 3 [mm] Result S [Deg] C0 C [Hz] 

1 175 754 0.075 0.6 Chat ter 212.9 774 

2 175 1869 0.125 0.75 Chat ter 247 .3 769 

3 175 775 0.075 0.9 Chat ter 220.6 770 

4 175 1763 0.125 1.5 Chat ter 196.4 780 

5 150 700 0.075 0.5 Chat ter 185.1 776 

6 150 687 0.075 1 Chat ter 215.4 774 

7 150 665 0.075 1.5 Chat ter 203.0 771 

8 150 491 0.125 0.25 Chat ter 209.7 774 

9 150 497 0.125 0.5 Chat ter 115.2 773 

10 150 487 0.125 1 Chat ter 134.5 766 

11 125 596 0.075 0.5 Chat ter 294.8 773 

12 125 585 0.075 0.75 Chat ter 175.4 775 

13 125 571 0.075 1 Chat ter 290 .0 769 

14 125 1160 0.075 1.5 Chat ter 260 .7 768 

15 125 641 0.125 0.75 Chat ter 252.2 766 

16 125 557 0.125 1 Chat ter 223.6 767 

17 125 623 0.125 1.5 Chat ter 173.9 763 

18 112.5 527 0.075 0.5 Chat ter 280.8 771 

19 112.5 517 0.075 0.75 Chat ter 323.1 766 

20 112.5 504 0.075 1 Chat ter 214 .3 761 

21 112.5 489 0.075 1.25 Chat ter 267.2 764 

22 112.5 471 0.075 1.5 Chat ter 293 .5 760 

2 3 112.5 399 0.125 0.5 Chat ter 121.8 767 

24 112.5 394 0.125 0.75 Chat ter 179.1 765 

2 5 112.5 386 0.125 1 Chat te r 216.4 763 

26 112.5 377 0.125 1.5 Chat ter 41.1 761 

27 100 866 0.075 0.45 N o Chat ter 

28 100 840 0.075 0.55 No Chat ter 
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Exp.# V [m/mln] n [rpm] C [mm/rev] 3 [mm] Result £ [Deg] C0 C [Hz] 

29 100 813 0.075 0.65 No Chat ter 

30 100 783 0.075 0.8 No Chat ter 

31 100 748 0.075 1 No Chat ter 

32 100 711 0.075 1.25 No Chat ter 

33 100 669 0.075 1.65 Chatter 122.7 762 

34 100 776 0.125 0.4 No Chat ter 

35 100 802 0.125 0.55 No Chat ter 

36 100 767 0.125 0.65 No Chat ter 

37 100 740 0.125 1 Chat te r 311.4 763 

38 100 703 0.125 1.25 Chat te r 311.4 760 

39 100 662 0.125 1.65 Chat te r 154.4 755 

40 100 569 0.125 2.5 Chat ter 201.2 745 

41 87.5 464 0.075 0.5 No Chat ter 

42 87.5 455 0.075 0.75 No Chat ter 

4 3 87.5 443 0.075 1 No Chat ter 

44 87.5 429 0.075 1.5 Chat te r 156.1 761 

45 87.5 341 0.125 0.5 NoChat te r 

46 87.5 336 0.125 0.75 N o Chat ter 

47 87.5 329 0.125 1 No Chat ter 

48 87.5 321 0.125 1.5 No Chat ter 

49 87.5 295 0.125 1.75 Chat te r 48 .8 748 

50 75 498 0.075 0.5 No Chat ter 

51 75 488 0.075 0.75 No Chat ter 

52 75 472 0.075 1 N o Chat ter 

53 75 365 0.075 1.25 Chat te r 29.6 767 

54 75 453 0.075 1.5 Chat te r 143.0 758 

55 75 324 0.125 0.5 No Chat ter 

56 75 320 0.125 0.75 No Chat ter 
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Exp.# V [m/m in] ll [rpm] C [mm/rev] 3 [mm] Result 8 [Deg] CO c [Hz] 

57 7 5 312 0 .125 1 Cha t t e r 3 3 2 . 3 764 

58 7 5 2 9 5 0 .125 1.5 Cha t t e r 2 6 8 . 5 751 

59 7 5 256 0 .125 1.25 Cha t t e r 2 3 6 . 3 758 
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Figure 5.33 : Results of the second set of experiments 
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5.3.3.2. Time Domain Simulation Results: 
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Figure 5.34 : Time domain simulation result, Set-1, Test#17, a=0.6[mm], V=250[m/min], 
c=0.1 [mm/rev], n=2476[rpm] 
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Figure 5.35 : Time domain simulation result, Set-1, Test#l, a=0.75[mm], V=75[m/min], 
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5.4. Summary 

This chapter described the self-excited chatter vibrations originating from the regenerative 

effect and the dynamic characteristics of the boring process in detail. The mechanism of wave 

regeneration in the boring process differs from other models and has a nonlinear nature, due to the 

dynamic characteristics of the boring process. In this chapter, an approach for the analytical solu­

tion of the chatter stability was presented, but not experimentally validated. A time domain solu­

tion model was also implemented to predict cutting forces and chatter stability limits. Only radial 

vibrations were taken into account in the time domain solution, since vibrations in the tangential 

direction do not have a significant effect in wave regeneration. A time domain simulation model 

was experimentally examined, and some discrepancies were noticed between predicted and 

experimentally observed cutting conditions, which were most likely due to the effects of process 

damping. The time domain solution model is capable of considering the nonlinearity of the pro­

cess, such as the loss of tool contact caused by chatter vibrations during machining. On the other 

hand, the time domain simulation model can be used for the static process force prediction, if the 

vibrations are neglected. 
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Conclusions 

This thesis investigates the dynamics of boring operations. The mechanics of boring opera­

tion deal with the prediction of cutting forces as a function of tool geometry, work material prop­

erties and cutting conditions such as feed rate, radial depth of cut, and cutting speed. The 

dynamics of the process involve the modeling of interactions between the structural dynamics of a 

long, slender boring bar with boring process mechanics. Evaluation of forces allows the predic­

tion of static deflection errors, torque and the power required from the machine tool. Evaluation 

of dynamic stability of the process allows the prediction of chatter vibration free feed rate, spindle 

speed, radial depth of cut, and tool geometry. 

The thesis shows that boring forces strongly depend on tool nose geometry, side cutting edge 

angle, radial depth of cut, feed rate and cutting speed. The chip thickness distribution along the 

curved edge of the tool is rather complex. The chip is thin close to the nose, and becomes thicker 

along the curved edge as the radial depth of cut increases. The chip thickness distribution is also 

affected by the feed rate. 

The mechanics of boring are investigated. The shape of the chip is modeled as a function of 

tool nose radius, side cutting edge angle, radial depth of cut, and feed rate. The chip area is 

divided into regions. One of the regions is the nose radius area where the chip starts with zero 

thickness and increases as a function of nose radius and feed. Along the straight inclined edge, 

the chip thickness is constant and the chip area is defined by a rectangle. The area of each region 

and its center of gravity is evaluated. The cutting pressure along the edge of the tool is identified, 

using either orthogonal to oblique cutting transformation, or mechanistically calibrated force 

coefficients. Oblique transformation uses the shear stress, shear angle and friction coefficient of 
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the material identified from orthogonal machining tests. They are mapped to oblique or curved 

cutting edge at digitized regions. The differential cutting pressures are summed up along the cut­

ting edge, which leads to total cutting forces in each region. Alternatively, the cutting forces at 

each region are evaluated using mechanistically identified cutting coefficients which relate the 

chip area or contact length to the cutting force magnitudes. The cutting forces in all regions are 

summed up to find resultant friction and tangential cutting forces. Using an equivalent friction or 

lead angle, the friction force is projected in the radial and feed directions. The model allows the 

prediction of cutting forces in all three Cartesian directions. 

When the boring bar with multiple inserts is used, the chip load distribution to all inserts is 

modeled. The radial and axial setting errors of the inserts are integrated with the process mechan­

ics model. 

A significant number of experiments have been conducted in the boring of Aluminum 6061 

alloy. It is shown that the predicted and measured cutting forces are in good agreement with the 

predictions provided by the proposed mechanics models. The predictions are shown to have errors 

varying between 2% to 15%. The proposed model contributes to the improved prediction of bor­

ing mechanics. 

The fundamental mechanism behind chatter vibrations in boring is also investigated. It is 

shown that the cutting coefficients, i.e. process gain, and directional factors, are dependent on the 

feed rate, radial depth of cut, tool geometry, and cutting speed. While the tool geometry and 

speed may be kept constant, vibrations modulate radial depth of cut, leading to time-varying pro­

cess input parameter. The vibrations of the tool in the radial direction change the effective radial 

depth of cut. The tool travels over the previously machined surface marked by the vibrations gen­

erated during the previous revolutions. The changes in the chip area become very abrupt and sig­

nificant, difficult to track even in the time domain. The changes in the chip area affect cutting 

force coefficients (e.g. process gains) and directional factors (e.g. strength of modal parameters in 

each direction). This is the fundamental non-linearity in the process, which differs from milling 
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operations. The author presents the block diagram model of the process in the frequency domain, 

and illustrates the nonlinear influence of process changes. In addition, the process is simulated in 

the time domain. However, it is shown that even the time domain modeling suffers, mainly due to 

the digital integration of a significant number of tool deflection waves left on the boring surface. 

Future work should focus on the development of an improved time domain solution for chat­

ter in the boring process. If a more simple tool geometry is used, it may be possible to minimize 

the drastic nonlinear changes in the cutting coefficients and directional factors, which may lead to 

the approximate solution of chatter stability in the frequency domain. 



Appendix A : Experimental Results of The Mechanistic Model Verification 

Friction force verification for a < R 

Exp# c [mm/rev] a [mm] V [m/min] Measure Fjr[N] Predicted Fjr [N] Error [%] 

1 0.0600 0.7750 112.5 51.02 60.40 -15.52 

2 0.1700 0.6500 155.0 72.06 72.92 -1.17 

3 0.1800 0.4500 180.0 57.65 56.06 2.82 

4 0.1000 0.5500 190.0 47.24 48.14 -1.86 

5 0.1650 0.5500 220.0 58.99 56.34 4.70 

6 0.0650 0.4750 230.0 35.37 30.59 15.61 

7 0.1850 0.6750 250.0 68.92 64.85 6.28 

8 0.0725 0.7750 270.0 47.88 43.94 8.97 

9 0.1350 0.4250 235.0 44.99 38.49 16.89 

10 0.0675 0.7250 252.5 45.29 41.37 9.47 

11 0.1375 0.3250 97.5 47.19 54.88 -14.01 

12 0.0580 0.5600 114.0 41.43 38.79 6.81 

13 0.1110 0.6660 152.0 58.15 61.24 -5.05 

14 0.1400 0.7770 123.0 75.79 66.71 13.62 

15 0.1200 0.6000 156.0 56.57 51.51 9.81 

The absolute average error [%]=8.83 
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Friction force verification for a > R 

Exp# c [mm/rev] a [mm] V [m/min] Measured f r̂ [N] Predicted F r̂ [N] Error [%] 

1 0.0400 2.3750 85.0 103.60 118.94 14.80 

2 0.1300 1.5650 100.0 137.20 144.48 5.30 
3 0.1450 0.8650 120.0 80.30 87.28 8.70 
4 0.0700 3.1000 130.0 170.67 168.15 -1.47 
5 0.0750 1.8750 135.0 111.63 109.40 -2.00 
6 0.1600 1.6500 145.0 156.34 144.73 -7.43 
7 0.0550 0.9500 165.0 52.86 52.43 -0.82 
8 0.0900 1.0000 170.0 65.20 65.49 0.44 
9 0.1100 2.2500 200.0 139.74 134.17 -3.98 
10 0.0375 3.1000 205.0 101.66 118.71 16.78 
11 0.0550 2.1500 210.0 85.08 95.63 12.41 
12 0.0775 1.2500 240.0 74.78 66.25 -11.42 
13 0.0925 1.9500 137.5 118.18 124.79 5.60 
14 0.0575 2.1500 142.5 111.97 107.88 -3.65 
15 0.1275 2.7750 127.5 205.79 212.94 3.47 

16 0.0465 1.3500 217.5 57.78 61.33 6.14 
17 0.1150 1.4500 195.0 95.72 94.64 -1.14 
18 0.1500 3.0000 87.5 304.90 309.10 1.37 
19 0.0825 2.3000 187.5 118.98 122.25 2.75 
20 0.0950 1.2750 262.5 75.72 70.91 -6.35 
21 0.1085 3.1000 152.5 175.90 198.08 12.61 
22 0.0666 1.7350 172.5 77.85 89.83 15.39 

23 0.1475 2.3750 185.0 168.54 170.48 1.15 
24 0.0825 1.4750 125.0 98.38 95.88 -2.54 

25 0.1330 1.3330 188.0 101.58 96.46 -5.04 

26 0.1440 1.6660 222.0 109.78 113.91 3.76 

27 0.0444 1.8880 177.0 70.27 83.27 18.50 

28 0.1666 2.0000 88.0 210.86 228.58 8.40 

29 0.0888 1.8300 266.0 98.81 92.81 -6.08 

30 0.0600 2.0000 181.0 96.03 98.87 2.96 

The absolute average error [%]=6.41 
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Tangential force verification for a < R and a > R 

Exp# c [mm/rev] a [mm] V [m/min] Measured Fj [N] Predicted FJ [N] Error [%] 

1 0.0400 2.3750 85 149.72 166.00 10.87 

2 0.1300 1.5650 100 228.07 236.29 3.60 

3 0.0600 0.7750 112.5 78.51 77.12 -1.78 

4 0.1450 0.8650 120 132.24 147.12 11.25 

5 0.0700 3.1000 130 263.07 270.56 2.85 

6 0.0750 1.8750 135 177.37 179.47 1.18 

7 0.1600 1.6500 145 282.52 265.75 -5.94 

8 0.1700 0.6500 155 128.63 122.83 -4.51 

9 0.0550 0.9500 165 77.56 81.38 4.91 

10 0.0900 1.0000 170 111.99 112.46 ' 0.41 

11 0.1800 0.4500 180 100.07 91.64 -8.43 

12 0.1000 0.5500 190 70.97 72.46 2.11 

13 0.1100 2.2500 200 251.90 250.66 -0.49 

14 0.0550 2.1500 210 135.49 156.12 15.23 

15 0.1650 0.5500 220 98.67 97.54 -1.15 

16 0.0775 1.2500 240 111.71 116.34 4.14 

17 0.1850 0.6750 250 119.20 121.77 2.16 

18 0.0450 0.3500 260 33.74 33.11 -1.87 

19 0.0725 0.7750 270 65.12 74.22 13.96 

20 0.0925 1.9500 137.5 197.48 211.93 7.32 

21 0.0575 2.1500 142.5 163.38 170.79 4.54 

22 0.1275 2.7750 127.5 361.39 368.23 1.89 

23 0.0465 1.3500 217.5 86.06 95.50 10.97 

24 0.1150 1.4500 195 169.18 176.44 4.30 

25 0.1500 3.0000 87.5 493.83 484.04 -1.98 

26 0.0825 2.3000 187.5 199.28 214.51 7.64 

27 0.1350 0.4250 235 59.25 68.62 15.82 

28 0.0675 0.7250 252.5 67.30 68.48 1.76 

29 0.0950 1.2750 262.5 136.10 131.73 -3.21 

30 0.1085 3.1000 152.5 326.84 349.67 6.98 
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Exp# c [mm/rev] a [mm] V [m/min] Measured Fj [N] Predicted ^ [N] Error [%] 

31 0.0666 1.7350 172.5 129.12 149.25 15.59 

32 0.1475 2.3750 185 322.18 328.29 1.90 

33 0.1375 0.3250 97.5 64.95 66.38 2.20 

34 0.0825 1.4750 125 159.11 156.98 -1.34 

35 0.0444 1.8350 102.5 119.03 136.00 14.26 

36 0.0580 0.5600 114 50.33 58.63 16.48 

37 0.1110 0.6660 152 84.80 94.00 10.85 

38 0.1330 1.3330 188 176.11 182.59 3.68 

39 0.1440 1.6660 222 221.96 226.59 2.09 

40 0.0444 1.8880 177 113.50 127.96 12.73 

41 0.1666 2.0000 88 354.18 363.62 2.67 

42 0.0888 1.8300 266 165.30 172.09 4.11 

43 0.1400 0.7770 123 115.55 130.40 12.85 

44 0.1200 0.6000 156 82.54 90.44 9.57 

45 0.0600 2.0000 181 160.09 157.68 -1.51 

The absolute average error [%]=6.11 
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Effective lead angle prediction for a < R 

Exp# c[mm /rev] a[mm ] V[m/min ] Measured \_ [Deg] Modified-Predicted ^ •_ [Deg] Error[%] 

1 0.0600 0.7750 112.5 37.47 37.78 0.81 

2 0.1700 0.6500 155.0 46.70 46.98 0.58 

3 0.1800 0.4500 180.0 58.30 58.23 -0.12 

4 0.1000 0.5500 190.0 48.55 50.25 3.49 

5 0.1650 0.5500 220.0 55.48 52.37 -5.61 

6 0.0650 0.4750 230.0 49.40 53.40 8.09 

7 0.1850 0.6750 250.0 46.13 46.52 0.85 

8 0.0725 0.7750 270.0 41.42 38.62 -6.76 

9 0.1350 0.4250 235.0 57.48 58.49 1.75 

10 0.0675 0.7250 252.5 42.83 40.82 -4.71 

11 0.1375 0.3250 97.5 62.87 63.92 1.67 

12 0.0580 0.5600 114.0 52.07 48.16 -7.49 

13 0.1110 0.6660 152.0 48.19 44.48 -7.70 

14 0.1400 0.7770 123.0 41.89 39.71 -5.22 

15 0.1200 0.6000 156.0 46.00 48.09 4.55 

The absolute average error [%]=3.96 
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Verification of the effective lead angle for a > R 

Exp# c [mm/rev] a [mm] V [m/min] Measured L [Deg] Modified-Predicted T* L[Deg] Error[%] 

1 0.1300 1.5650 100.0 21.25 17.34 -18.41 

2 0.0700 3.1000 130.0 11.35 9.85 -13.15 

3 0.1600 1.6500 145.0 20.18 16.88 -16.38 

4 0.0900 1.0000 170.0 30.79 26.07 -15.33 

5 0.1100 2.2500 200.0 13.05 14.11 8.11 

6 0.0550 2.1500 210.0 14.38 15.81 9.91 

7 0.0775 1.2500 240.0 23.26 24.21 4.08 

8 0.0925 1.9500 137.5 15.42 15.66 1.57 

9 0.0575 2.1500 142.5 13.99 15.04 7.52 

10 0.1275 2.7750 127.5 11.36 10.44 -8.08 

11 0.0465 1.3500 217.5 25.36 23.03 -9.18 

12 0.1150 1.4500 195.0 22.27 20.23 -9.16 

13 0.0825 2.3000 187.5 13.45 14.16 5.23 

14 0.0950 1.2750 262.5 24.05 24.03 -0.11 

15 0.0666 1.7350 172.5 16.10 18.12 12.53 

16 0.1475 2.3750 185.0 12.60 12.63 0.23 

17 0.0825 1.4750 125.0 17.47 19.28 10.34 

18 0.1330 1.3330 188.0 21.01 21.06 0.27 

19 0.1440 1.6660 222.0 18.54 18.09 -2.44 

20 0.0444 1.8880 177.0 14.72 17.41 18.31 

21 0.1666 2.0000 88.0 15.17 13.66 -9.96 

22 0.0888 1.8300 266.0 18.85 18.24 -3.24 

23 0.0600 2.0000 181.0 15.86 16.40 3.36 

The absolute average error [%]=8.12 
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Radial force verfication for a < R 

Exp# c [mm/rev] a [mm] V [m/min] Measured Fr [N] Predicted Fr [N] Error [%] 

1 0.0600 0.7750 112.5 36.74 30.29 -17.57 

2 0.1700 0.6500 155.0 53.07 52.86 -0.39 

3 0.1800 0.4500 180.0 47.70 51.55 8.07 

4 0.1000 0.5500 190.0 36.09 36.09 0.01 

5 0.1650 0.5500 220.0 46.42 46.94 1.13 

6 0.1850 0.6750 250.0 46.75 47.85 2.35 

7 0.0725 0.7750 270.0 29.07 27.29 -6.11 

8 0.1350 0.4250 235.0 32.46 39.14 20.59 

9 0.0675 0.7250 252.5 28.13 27.34 -2.79 

10 0.1375 0.3250 97.5 48.84 46.49 -4.81 

11 0.0580 0.5600 114.0 30.59 31.13 1.75 

12 0.1110 0.6660 152.0 45.65 39.94 -12.52 

13 0.1400 0.7770 123.0 44.54 47.47 6.56 

14 0.1200 0.6000 156.0 37.05 42.14 13.71 

The absolute average error [%]=7.02 
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Radial force verfication for a > R 

Exp# c[mm /rev] a[mm ] V[m/min ] Measured F r [N] Predicted F r [N] Error[% ] 

1 0.1300 1.5650 100.0 49.73 43.17 -13.19 

2 0.0700 3.1000 130.0 33.57 28.85 -14.06 

3 0.0550 0.9500 165.0 29.79 24.24 -18.63 

4 0.0900 1.0000 170.0 33.37 28.85 -13.56 

5 0.1100 2.2500 200.0 31.56 32.80 3.93 

6 0.0775 1.2500 240.0 29.54 27.24 -7.79 

7 0.0925 1.9500 137.5 31.42 33.78 7.49 

8 0.0575 2.1500 142.5 27.06 28.07 3.71 

9 0.1275 2.7750 127.5 40.53 38.69 -4.54 

10 0.0465 1.3500 217.5 24.75 24.06 -2.80 

11 0.1500 3.0000 87.5 58.49 47.66 -18.52 

12 0.0825 2.3000 187.5 27.68 29.98 8.30 

13 0.0950 1.2750 262.5 30.86 28.95 -6.21 

14 0.1475 2.3750 185.0 36.78 37.38 1.64 

15 0.0825 1.4750 125.0 29.53 31.73 7.44 

16 0.1330 1.3330 188.0 36.42 34.76 -4.56 

17 0.1440 1.6660 222.0 34.91 35.46 1.58 

18 0.1666 2.0000 88.0 55.19 54.13 -1.92 

19 0.0888 1.8300 266.0 31.93 29.12 -8.79 

20 0.0600 2.0000 181.0 26.25 27.98 6.60 

The absolute average error [%]=7.76 
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Feed force verfication for a < R 

Exp# c [mm/rev] a [mm] V [m/min] Measured F f [N] Predicted F f [N] Error [%] 

1 0.0600 0.7750 112.5 47.94 41.08 -14.31 

2 0.1700 0.6500 155.0 50.01 46.81 -6.39 

3 0.1800 0.4500 180.0 29.46 22.44 -23.81 

4 0.1000 0.5500 190.0 31.86 28.76 -9.75 

5 0.1650 0.5500 220.0 31.93 31.90 -0.08 

6 0.0650 0.4750 230.0 19.91 20.13 1.11 

7 0.1850 0.6750 250.0 44.94 44.72 -0.48 

8 0.0725 0.7750 270.0 32.95 37.35 13.36 

9 0.1350 0.4250 235.0 20.69 18.88 -8.76 

10 0.0770 0.3000 242.5 12.27 9.96 -18.82 

11 0.0675 0.7250 252.5 30.34 34.39 13.35 

12 0.0580 0.5600 114.0 23.85 27.53 15.45 

13 0.1110 0.6660 152.0 40.83 41.00 0.43 

14 0.1400 0.7770 123.0 49.66 58.45 17.72 

15 0.1200 0.6000 156.0 35.79 36.34 1.55 

The absolute average error [%]=9.69 
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Feed force verification for a > R 

Exp# c [mm/rev] a [mm] V [m/min] Measured F f [N] Predicted F f [N] Error [%] 

1 0.1300 1.5650 100.0 127.87 137.88 7.83 

2 0.0700 3.1000 130.0 167.33 165.66 -1.00 

3 0.0550 0.9500 165.0 43.66 46.49 6.46 

4 0.0900 1.0000 170.0 56.01 58.79 4.96 

5 0.1100 2.2500 200.0 136.13 130.10 -4.43 

6 0.0775 1.2500 240.0 68.70 60.39 -12.11 

7 0.0925 1.9500 137.5 113.92 120.14 5.46 

8 0.0575 2.1500 142.5 108.65 104.17 -4.12 

9 0.1275 2.7750 127.5 201.76 209.40 3.78 

10 0.0465 1.3500 217.5 52.21 56.42 8.05 

11 0.1500 3.0000 87.5 299.24 305.40 2.06 

12 0.0825 2.3000 187.5 115.71 118.52 2.42 

13 0.0950 1.2750 262.5 69.15 64.74 -6.38 

14 0.1475 2.3750 185.0 164.48 166.33 1.12 

15 0.0825 1.4750 125.0 93.84 90.47 -3.59 

16 0.1330 1.3330 188.0 94.83 89.98 -5.12 

17 0.1440 1.6660 222.0 104.08 108.25 4.00 

18 0.1666 2.0000 88.0 203.51 222.08 9.12 

19 0.0888 1.8300 266.0 93.51 88.12 -5.77 

20 0.0600 2.0000 181.0 92.37 94.83 2.66 

The absolute average error [%]=5.022 
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Appendix B: Experimental Results of The Orthogonal to Oblique Transformation Method 

Orthogonal to oblique transformation method tangential, radial and feed force verifications 

Tangential force verification 
Exp. # V [m/min] c [mm/rev] a [mm] Measured Ft [N] Predicted Ft [N] Error [%] 

1 240 0.050 1.000 203.626 184.106 -9.586 

2 150 0.050 0.500 106.207 112.656 6.072 

3 150 0.050 0.750 152.219 154.959 1.800 

4 150 0.050 1.250 224.270 238.594 6.387 

5 100 0.050 1.500 301.647 291.984 -3.203 

6 100 0.050 1.750 346.888 335.193 -3.372 

7 115 0.050 0.625 126.027 138.553 9.940 

Radial force verification 
Exp. # V [m/min] c [mm/rev] a[mm]: 1 Measured Fr [N] Predicted Fr [N] Error [%] 

1 240 0.050 1.000 87.825 68.770 -21.696 

2 150 0.050 0.500 75.737 73.340 -3.165 

3 150 0.050 0.750 99.956 79.238 -20.727 

4 150 0.050 1.250 82.262 79.230 -3.686 

5 100 0.050 1.500 111.172 85.900 -22.732 

6 100 0.050 1.750 115.137 85.900 -25.393 

7 115 0.050 0.625 96.351 82.090 -14.801 

Feed force verification 
Exp. # V [m/min] c [mm/rev] a [mm] Measured Ff [N] Predicted Ff [N] Error [%] 

1 240 0.050 1.000 134.309 107.200 -20.184 

2 150 0.050 0.500 60.718 62.944 3.666 

3 150 0.050 0.750 109.580 95.680 -12.685 

4 150 0.050 1.250 154.594 145.700 -5.753 

5 100 0.050 1.500 238.613 183.000 -23.307 

6 100 0.050 1.750 279.764 209.000 -25.294 

7 115 0.050 0.625 88.636 83.380 -5.930 



Appendix C 

-Determination of the Emprical Contants in Mechanistic Model 

Least squares method: 

Ktc = /0AV2 (6.1) 

\og(Ktc) = logO*0) + * i l o g ( A ) + b2log(V) (6.2) 

The terms are redefined as follows. 

K = log(Ktc) C = l o g ( A ) D = \og(V), (6.3) 

K = b0 + blC + b2D (6.4) 

b0, bx and b2 in Eq. (6.4) should be selected such that the square of distances between the 

predicted curve and measured data are minimized. The deviation between the points and curve is, 

dt = Kt - O 0 + blCi + b2Dt) l<i<n (6.5) 
n 

2 
Hence, ^ d i is minimized. 

i = 1 

f(b0,bvb2) = d2 + d2

2 + d2

3 + +d2

n = £ [Ki-(b0 + blCi + b2Di)]2 (6.6) 

i = 1 

The numbers Kt, Ci and D{ are all constants. The partial derivatives of the / are, 

J £ = -2 2 [Ki-(bQ + blCi + b2Dt)] (6.7) 
9*0 

i = l 

J £ = - 2 £ C ^ . - O Q + ^ Q + ^ D . ) ] (6.8) 

i = l 
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(6.9) 

»= 1 

When both partial derivatives are set to zero, the following linear equations are obtained. 

n n 

E** = 2 ( * 0 + * i C , + v > * ) 
i = 1 j = 1 

(6.10) 

i = i i = i 

(6.11) 

i = 1 / = 1 

(6.12) 

We can solve these three equations for b0, bx and b2. The resulting curve Ktc = eb°AblVb2 

always minimizes the sum of the squares of the deviations. 

The equations can be expressed in matrix form. 

n n 1 C, Dt~ h 
X Kfi • I ^ c) CtDt 

i= 1 i= 1 
Dt Cpt D] b2 

n Kt 
n "l C,. Dt 

* 0 

T= X Kfi • z = s ^ c] cpi 
, w = h 

i = l Kpi i — 1 
Dt Cpi D] b2 

(6.13) 

(6.14) 

W = ZlT (6.15) 
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VQ U\ 

The resulting curve Ktc = e A V always minimizes the sum of the squares of the devia­

tions. 
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