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Abstract

A square plate twisted by corner forces is described by classical linear theory as a saddle

surface. In an experiment, as the plate deforms to any noticeable deflection, it appears

not as a saddle surface, but as a cylindrical surface. The transformation in mode shapes

presents problems in determining material behaviour by shear in a plate twisting experi

ment. The two mode shapes can be described by either displacement or curvature of the

surface. The purpose of this work is to investigate the buckling of a square plate twisted

by corner forces by determining the bifurcation point and comparing the present FEA

work with the experimental results of Howell and other results found in literature. The

problem is examined using nonlinear finite element buckling analysis. The bifurcation

point is determined by load-displacement plots. The critical value of Gaussian curvature

at the centre of the plate is determined by the Southwell plot method. The critical value

of Gaussian curvature is found to occur before the bifurcation point. Gaussian curvature

is found to vary by an order of magnitude over the plate at bifurcation.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this work is to investigate the buckling of a linear elastic, isotropic square

plate twisted by corner forces, by determining the bifurcation point. The problem is

examined by a nonlinear finite element buckling analysis using the commercially avail

able software package ANSYS Revision 5.0. A square plate twisted by corner forces is

described by classical linear theory as a saddle surface. In an experiment, as the plate de

forms to any noticeable deflection, it appears not as a saddle surface, but as a cylindrical

surface. The transformation in mode shapes presents problems in determining material

behaviour in shear by experiment. The findings of the present FEA work can be used in

future study to develop a nonlinear relationship to account for this transformation and/or

an upper bound to the application of a plate twist experiment. The two mode shapes

can be described by either displacement or curvature of the surface. The critical value of

corner force at bifurcation is determined from load-displacement plots. The critical value

of Gaussian curvature at the centre of the plate is determined from the Southwell plot

method. There is a discrepancy in the results found in literature using different methods

of analysis and assumptions. The present FEA work is compared to the experimental

results of Howell and other results in literature.

1
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1.2 Literature Review

In 1890, Kelvin and Tait noted a transition in deformation surfaces of a square plate

twisted by corner forces but did not attempt to find the point of instability.

In 1971, Lee and Hsu[2j investigated the buckling problem numerically, using finite

difference methods and the nonlinear von K.rmán equations for plates. The critical value

of corner force at bifurcation was determined by displacement-load plots.

In 1975, Miyagawa, Hirata, and Shibuya[3] investigated the buckling problem exper

imentally and numerically, using deflection measurements in the experimental approach,

and using a polynomial deformed configuration, von Kármán theory, and stress func

tions in the numerical approach. The critical value of corner force at bifurcation was

determined by load-deflection plots.

In 1985, Ramsey[5] investigated the buckling problem analytically, using the kinematic

results of Green and Naghcli for small deformations superposed on a large deformation

of an elastic Cosserat surface, and the restricted form of the general nonlinear theory of

shells and plates of Naghdi. The critical value of twist at bifurcation was determined

from a Rayleigh quotient.

In 1991, Howell[1] investigated the buckling problem experimentally, using strain mea

surements and Kirkhhoff theory to determine curvatures. The critical value of Gaussian

curvature at bifurcation was determined by the Southwell plot.



Chapter 2

Theory

2.1 Physics of the Problem

Classical linear theory of flat plates describes deflection w of a square plate twisted by

corner forces P (figure 2.1):

U
= 2(1 —v)D

(2.1)

in terms of the surface coordinates of the plate x, y. Flexural rigidity of the plate D:

D
= 12(1_v2)

(2.2)

is a function of Young’s modulus of elasticity E, Poisson’s ratio z’, and plate thickness h.

Deflection can also be expressed in terms of twist ic of the surface:

w = ixy (2.3)

F

Figure 2.1: Square Plate Twisted by Corner Forces

3
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...... .. .. .. . ..

2 2 Saddle SurfaceFigure

Figure 2.3: Cylindrical Surface

These results (equations 2.1, 2.3) are well known in fundamental classical linear plate

theory. The plate appears as a saddle surface (figure 2.2).

However, in an experiment, as the plate deforms to any noticeable deflection, it

appears not as a saddle surface, but as a cylindrical surface with generators parallel

to a plate diagonal (figure 2.3).

The mode of the plate can be determined by the surface characteristics with either

displacement or curvature attributes. The saddle surface has equal magnitude deflections

in the four corners relative to a fixed centre. The cylindrical surface has equal magnitude

deflections in two opposite corners and zero deflection in the other two corners relative

to a fixed centre.

Curvature can be viewed on a Mohr’s circle for curvature (figure 2.4). The abscissa
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i2(). ,

a. Anticlastic Curvature b. Synclastic Curvature

Figure 2.4: Mohr’s Circle for Curvature

represents curvature ic and the ordinate represents twist ii of the surface. Principal

curvatures are ic, ic2. The saddle surface is anticlastic—the two principal curvatures

have opposite signs (figure 2.4a). Principal directions are parallel to the plate diagonals.

Principal curvatures are equal and opposite, resulting in zero mean curvature and negative

Gaussian curvature. The cylindrical surface is synclastic—curvatures in all orientations

have like signs (figure 2.4b). Principal directions are parallel to the plate diagonals. One

principal curvature is zero and the other non-zero, resulting in a non-zero mean curvature

and a zero Gaussian curvature.

Classical linear theory of flat plates neglects all quadratic terms in the Green-Lagrange

strain:

= (2.4)= vY+(uY+vY+wY) (2.5)= (2.6)= v + u, + (uu + vv + ww) (2.7)= w, + v + (uu + + ww) (2.8)7zx = U + W + (uu + vv + WZW) (2.9)

The approximation of neglecting the nonlinear terms fails to account for the defor

mation in the middle plane of the plate due to bending. Midsurface strains can only
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be neglected if the defiections of the plate are small in comparison with its thickness in

non-developable surfaces (non-zero Gaussian curvature, such as saddle shapes, spheres)

or the defiections are of the order of its thickness in developable surfaces (zero Gaussian

curvature, such as cylinders, cones)[9]. Because of this approximation, classical linear

plate theory cannot predict buckling.

2.2 Finite Element Theory

The finite element used in the analysis is an 8 node isoparametric quadrilateral shell

element. It is labeled SHELL93 in the ANSYS Revision 5.0 element library. There are

5 degrees of freedom per node: 3 translations and 2 rotations. This element includes

features of Green-Lagrange strains and Mindlin plate theory. Green-Lagrange strains

(equations 2.4—2.9) take into account midsurface strains of the plate. Mindlin plate

theory allows for transverse shear deformation. This means that a line that is straight

and normal to the midsurface before loading, is assumed to remain straight but not

necessarily normal to the midsurface after loading. Displacements u, v of a point in the

plate a distance z from the midsurface are:

u = ii—zc (2.10)

v = (2.11)

where a, /3 are small angles of rotation of a line that was normal to the midsurface before

loading and i, i are the displacements at the plate midsurface. Strains c, e.g, and shear

strains 7, 7yz, are:

= (2.12)

= (2.13)

Yxy = + , + (ii, + + ww) — z(/3 + a) (2.14)
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7yz = Wy + + (ii + iJYiYZ + ww) — (2.15)

7zx = z+wx+(z11x+t1zUx+wzwx)—a (2.16)

Strains , and shear strain y, are assumed to vary linearly through the plate thickness.

Transverse shear strains y, 7za are assumed to be constant through the plate thickness.

In the stress-strain relationship:

{a} [D] {€} (2.17)

the stress vector {o-}, the strain vector {e}, and the material property matrix for the

element [D] are defined as:

{a} L X a T T2 Tzx (2.18)

{e}
= [ x Ey 7xy 7yz 7zx j (2.19)

lu 0 0 0

ui 0 0 0
E

[D] — 0 0 0 0 (2.20)

0 0 0 0

o o 0 0 2

where f is the shear factor:

11.2, A/h2 <25
f= — (2.21)

(1.0 + 0.2, A/h2 > 25

where A is the area of the element and h is the plate thickness. The shear factor is

designed to avoid shear locking. As the element becomes thin, the A/h2 ratio becomes

large. The shear factor f is thus increased and the stiffness associated with the trans

verse shears is reduced. The correct method to avoid shear locking is through selective

integration, but ANSYS does not accommodate this. The SHELL93 element uses a 2 x 2

reduced quadrature rule.
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2.3 Plate Theory

Kirkhhoff theory is used to calculate curvatures from strain output of the finite element

software. This is to be consistent with Howell’s experimental analysis so results can be

compared. Kirkhhoff theory neglects transverse shear deformations. This means that a

line that is straight and normal to the midsurface before loading, is assumed to remain

straight and normal to the midsurface after loading.

Extensional strain e at an arbitrary point a distance z from the plate midsurface is:

= m + (2.22)

where the membrane strain 6m appears along the plate midsurface, and the curvature ic

is associated with bending strain.

Solving the above equation for the top and bottom of the plate and equating midsur

face strains gives the curvatures icr, ic1, and the twist t of the midsurface:

=

Ii
(2.23)

— El,

=

_______

where ê, € are the top and bottom surface strains of the plate respectively, and h is the

plate thickness.

Principal curvatures i, K2 from Mohr’s circle of curvatures are:

IC1, 1C2 = ± ;
C)2

+ , (2.26)

Mean curvature p. is the average of the two principal curvatures:

p. = + i) = (i + ‘2) (2.27)
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Gaussian curvature K is product of the two principal curvatures:

K =
— 1Sry (2.28)

2.4 Southwell Plot

The Southwell plot is a common method to determine the elastic buckling load of a

structural system. In experiments, there exists some imperfection in the undeformed

shape and/or applied loading. As the compressive load increases, the lowest critical load

buckling mode dominates. A linear function can be expressed in terms of applied load

and deflection by neglecting contributions from higher modes.

In 1932, Southwell considered a simply supported column with an initial imperfection

subjected to a compressive load P[6]. He expressed a linear relationship:

S 1 1
= —S+ —a (2.29)

in terms of the incremental deflection 5, the Euler load Fe,., and coefficient a. The

Southwell plot of S/P versus S gives a straight line whose slope is equal to the inverse of

the buckling load.

The Southwell plot method claims accuracy only as P —* Ps,.. Spencer[7] states that

constructing Southwell plots using K.rmn’s strut data with loads up to O.91P,., to

O.88P,., and to O.82P,. (Pa,. being defined as the critical load which Southwell obtained

by plotting Kármán’s data to O.98F,.) gives errors of 3, 5, and 25 percent respectively.

The critical load P,. is a theoretical concept and should be independent of initial de

flection. Spencer[7] showed that in buckling of a uniaxially compressed simply supported

plate, the Southwell plot begins to underestimate the critical load when:

w0/h > 0.5 (2.30)

where w0 is the initial deflection at the plate centre and h is the plate thickness.
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Analysis

The analysis was performed on a SUN SPARC workstation. The preprocessing and the

solution utilized ANSYS Revision 5.0, and the postprocessing utilized FORTRAN77 and

TECPLOT Revision 5.0.

3.1 Preprocessing

The plate is modelled with the SHELL93 8 node isoparametric shell element.

The plate material is modelled as T6061-T6 Aluminium (table 3.1) for comparison

with the experimental results of Howell{1j. Material nonlinearity, such as plasticity, is

not considered in the analysis.

The plate geometry is square with plate length to thickness ratios a/h (table 3.2) for

comparison with the experimental results of Howell[1].

The plate is meshed with square elements N per side, where N is even to provide a

node at the centre of the plate to take displacement and strain measurements—the same

location as Howell’s strain gauges [1]. There are a total of N2 elements and (3N2+4N +1)

nodes for the model.

Table 3.1: Material Constants

E 69x109 Pa
i’ 0.33

10
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Table 3.2: Plate Geometry

a/h ratio a (m) h (m)
49.2 0.1524 0.003099
63.2 0.2032 0.003216
80.3 0.2540 0.003162
96.0 0.3048 0.003175
196.7 0.6096 0.003099

w0

Cd Cc
y,v

L,

Ca Cb

uvw0 vw0

Figure 3.1: Constraints

3.2 Solution

The plate is constrained at corners Ca, Cb, Cd (figure 3.1) to zero displacement in the z

direction, to simulate the self equilibrating corner forces associated with the applied force

at corner C. These are the same constraints in the experiment by Howell[1]. To prevent

rigid body motion, additional DOF constraints are specified. The plate is constrained

at corner Ca to zero displacement in the x and y directions to prevent translation, and

constrained at corner Cb to zero displacement in the y direction to prevent rotation.

These constraints satisfy the kinematic, but not the static boundary conditions of a

plate with free edges.

When applying the Southwell plot method to find critical values, an initial hydrostatic
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pressure is applied in the positive z direction. A nominal value of hydrostatic loading is

used which produces deflections small compared to the plate thickness.

The applied force P at corner C is in the positive z direction.

These boundary conditions provide a stable post buckling response. The applied

corner force P can exceed the value at the bifurcation point Pa without the instability

of ill conditioned matrices, such as a negative main diagonal in the stiffness matrix.

Body forces, such as gravity loads, are not included in the analysis.

3.3 Postprocessing

Displacements 5,, 6 are calculated at the centre of the plate and at corner C. The

critical value of corner force at bifurcation is determined from load-deflection plot.•

Strains c3,, e, 7xy are calculated at the top and bottom surfaces at the node at the

centre of the plate using nodal point averaging in ANSYS. These values are exported to

a FORTRAN code which calculates curvatures using Kirkhhoff plate theory. The critical

value of Gaussian curvature Kr,. is determined from the Southwell plot. The Southwell

plot uses p. as the abscissa and p./K as the ordinate. The asymptotic behaviour of the

curve determines K as K/KCI. —* 1.
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Results

4.1 Deflection

The deflection for the plate with 3 pinned corners is zero at the pinned corners Ca, Cb,

Cd and a maximum at the corner with the applied force C, (figure 4.1).

The load-deflection curve of corner with the applied force C is smooth and shows no

indication of buckling (figure 4.2). The load-deflection curve of the centre of the plate

has an abrupt change in the slope at the bifurcation point Pa,..

The finite element analysis deflection of the plate centre agrees well with linear theory

(equation 2.1) for deflections less than a plate thickness (figure 4.2). The FEA deflection

of the plate corner C agrees well with linear theory for deflections less than 4 ,plate

thicknesses.

The finite element results of the plate with 3 pinned corners can be rotated to show

the characteristic surface. The plate can be rotated so the deflections of corners Ca and

C are equal, and translated so the deflection of the centre of the plate is zero. The

deflections become S/2 — S at Ca and C, and at Cb and Cd (figure 4.3), where S

and S are the deflections of the unrotated results for the centre of the plate and corner

C respectively.

The bifurcation point is where the magnitude of rotated corners Ca, C and rotated

corners Cb, Cd significantly diverge. The critical value of corner load varies slightly with

Howell’s[l] a/h ratios (figure 4.4 and table 4.1). The mesh density of 144 elements is

13
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Deflection Contour Plot
3 pInned corners at P

96 h rallo, 144 elements

level öAi

15.9459

13.9107

11.8756

9.84041

7.80525

5.77009

3.73492

1.69976

14

Figure 4.1: Deflection Contour Plot for 3 pinned corners at F,.

25

20

15

10

5

0
0

load Pa2I2Dh
30

Load-Deflection Plot
3 pinned corners

96 ajh rallo, 144 elements

5 10 15 20
deflection jh

Figure 4.2: Load-Deflection Plot for 3 pinned corners



Chapter 4. Results 15

Deflection Contour Plot
3 pinned corners (rolaled) at P,

96 h ratio, 144 elements

öih

3.44262

2.44367

1.44472

0.44577

-0.55318

-1.55213

-2.55108

-3.55003

level

I
7

6

5

4

Figure 4.3: Deflection Contour Plot for 3 pinned corners (rotated) at Pc.

sufficient to provide displacement convergence (figure 4.5 and table 4.2).

Below the bifurcation point, the magnitudes of deflection for rotated corners Ca, Cc

and rotated corners Cb, Cd are almost equal (figure 4.4). The plate is bending to a saddle

surface (figure 4.6).

Above the bifurcation point, the magnitude of deflection for rotated corners Ca, C

is decreasing, and the magnitude of deflection for rotated corners Cb, Cd is increasing.

(figure 4.4). The plate is bending to a cylindrical surface (figure 4.7).

Nondimensionalized corner force P is defined as [3]:

—
p2

Pj (4.1)

Nondimensionalized deflection is defined as [3]:

— S
h

(4.2)
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load Pa2I2Dh

30

25

20

15

10

5

0
0.0

Figure 4.4: Load-Deflection Plot for 3 pinned corners (rotated) with varying a/h ratios

Table 4.1: Critical Values from load-deflection plot

144 elements

a/h ratio P (N) P , &,

49.2 1380 26.9 4.17 4.48
63.2 870 26.0 4.32 4.52
80.3 510 25.5 4.41 4.53
96.0 355 25.1 4.45 4.55
196.7 80 24.9 4.54 4.58

Load-Deflection Plot
3 pinned corners (rotated)

144 elements
49.2a/hratio --

63.2-.- —- ... —

-- •_%_.

rotated COrnS C1, C, \\
- ----:_-— 80.3

V..———

rotated corners C,,, C1

1.0 2.0 3.0 4.0 5.0 6.0
deflection h
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Load-Deflection Plot
3 pinned Corners (rotated)

96 h ratio 256 elements

rotated corners C,, C1

Cd

25

20

15

10

5

0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

deflection h

Figure 4.5: Load-Deflection Plot for 3 pinned corners (rotated) with varying mesh density

Table 4.2: Critical Values from load-deflection plot

96 a/h ratio

elements Pc,. (N) Sa, S &, 8d

16 352 25.0 4.45 4.55
64 355 25.1 4.45 4.55
144 355 25.1 4.45 4.55
256 355 25.1 4.45 4.55



8/h

2.53851

1.81277
1.08703

0.361294

-0.364444
-1.09018

-1.81592

-2.54166

8/h

1.70502

0.081854

-1.5413 1

-3.16448

-4.78764

-6.41081

-8.03397

-9.65714
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Deflection Contour Plot
3 pInned corners (rotated) at P,,,/ 2

96 h ratio, 144 elements

level

7
6

5

4

Figure 4.6: Deflection Contour Plot for 3 pinned corners (rotated) at Pc,./2

Deflection Contour Plot
3 pInned corners (rotated) at 2 P,,

96 h ratio, 144 elements

level

8

7
6

5

4

3

2

1

Figure 4.7: Deflection Contour Plot for 3 pinned corners (rotated) at 2Pc,
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Southwell Plot
ii 1K Im] at centre of plate

-0.0200 96 alh ratio, 144 elements

-0.0150

-0.0100 10.0 Pa
.—..—...... /

/ 1.OPa
-0.0050 •..

,‘

0.lPa

-0.0000 I I
0.0000 0.0005 0.0010 0.0015 0.0020

Im1

Figure 4.8: Southwell Plot

4.2 Southwell Plot

Howell[1] determined the critical value of Gaussian curvature using the Southwell plot

method. The Southwell plot method requires an initial curvature in the structure.

The FEA Southwell plot is constructed from strains at the centre of the plate with

3 pinned corners and initial hydrostatic pressure. The Southwell plot produces parallel

lines for varying intensity of initial hydrostatic pressure (figure 4.8).

The initial hydrostatic pressure creates an initial deflection of the centre of the plate

S. The critical value of Gaussian curvature and corner force is determined

by the Southwell plot method are not affected by deflections S less than one tenth of a

plate thickness (table 4.3).

The coefficient C is defined as [5]:

C = (4.3)



Chapter 4. Results 20

Table 4.3: Critical Values from Southwell plot

96 a/h ratio, 144 elements
-o —pressure (Pa) S, PScr (N) Ps,. C

0.1 0.0000961 284 20.1 9.04
1 0.000961 284 20.1 9.04

10 0.00961 284 20.1 9.03
100 0.0961 274 19.4 9.01
500 0.478 226 16.0 8.65

for the critical value of twist ic at the centre of the plate.

For load levels less than Ps,., the Southwell plot method over or under predicts Kcj.

(figure 4.9) and C (figure 4.10) depending on the magnitude of the initial deflection.

4.3 Gaussian Curvature and Mean Curvature

The Southwell plot determines the critical value of Gaussian curvature where the slope on

the Gaussian-mean curvature plot (figure 4.11) is zero[7]. The Gaussian-mean curvature

plot is constructed from strain calculations at the centre of the plate with 3 pinned

corners and no initial hydrostatic pressure.

Gaussian curvature is zero for the undeformed plate (no initial curvature), increases in

magnitude as the plate deforms to a saddle surface, reaches a maximum value, begins to

decrease in magnitude, and after bifurcation decreases in magnitude as the plate deforms

to a cylindrical surface (figure 4.12).

Mean curvature is zero for the undeformed plate (no initial curvature) remains zero

as the plate deforms to a saddle surface, and after bifurcation increases in magnitude as

the plate deforms to a cylindrical surface (figure 4.13).

The corner load at the critical value of Gaussian curvature PK,. (tables 4.4—4.5) is

less than the corner load at bifurcation Pa,. (figure 4.12).
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Figure 4.9: Critical Value of Gaussian Curvature from Southwell plot
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Figure 4.10: Coefficient from Southwell plot
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Gaussian-Mean Curvature Plot
at centre of plate
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Figure 4.11: Gaussian-Mean Curvature Plot
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Figure 4.12: Load-Gaussian Curvature Plot
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Load-Mean Curvature Plot
at centre of plate

96 alh ratio, 144 elements
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Figure 4.13: Load-Mean Curvature Plot

Table 4.4: Critical Values from Gaussian-mean curvature plot

144 elements

load Pa2I2Dh
30

25

20 -

15 -

10 -

5

0 —
0.000

a/h ratio PK7. (N) PKC, C
49.2 1112 21.7 9.01
63.2 696 20.8 9.01
80.3 406 20.3 9.02
96.0 284 20.1 9.03
196.7 63 19.7 9.06
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Table 4.5: Critical Values from Gaussian-mean curvature plot

96 a/h ratio

elements PK,. (N) PKcr C
16 278 19.7 9.09
64 276 19.6 9.03
144 284 20.1 9.03
256 286 20.3 9.01

Gaussian curvature is a minimum absolute value at the centre of the plate, a maximum

absolute value near the corners of the plate, and varies over the plate by an order of

magnitude at PK (figure 4.14) and P (figure 4.15).

Mean curvature is a zero at the centre of the plate and varies positive and negative

values over the plate at (figure 4.16) and Pa,. (figure 4.17).

4.4 Curvature

The load-curvature plot is constructed from strains at the centre of the plate with 3

pinned corners and no initial hydrostatic pressure. Curvatures i, ,, are zero for the

undeformed plate (no initial curvature), remain zero as the plate deforms to a saddle

surface, and after bifurcation increase in magnitude as the plate deforms to a cylindrical

surface (figure 4.18).

Twist ic is zero for the undeformed plate (no initial curvature), increases in mag

nitude as the plate deforms to a saddle surface, reaches a maximum value, begins to

decrease in magnitude, and after bifurcation continues to increase in magnitude as the

plate deforms to a cylindrical surface.

The FEA twist ic, agrees well with linear theory (equations 2.1—2.3) for defiections

less than half the plate thickness, and agrees well with membrane stress theory ([4] and
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Gaussian Curvature Contour Plot
at P

96 h ratio, 144 elements

level

T:,8
6

5

4

Figure 4.14: Gaussian Curvature Contour Plot at PK,.
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Figure 4.15: Gaussian Curvature Contour Plot at P
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Figure 4.16: Mean Curvature Contour Plot at PK
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Figure 4.17: Mean Curvature Contour Plot at Pa,.
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Load-Curvature Plot
at centre of plate

96 alh ratio 144 elements

Figure 4.18: Load-Curvature Plot

equation 2.22) for defiections less than a plate thickness (figure 4.18).

Curvature ic., is a zero at the centre of the plate and varies positive and negative

values over the plate at PK (figure 4.19) and Pa,. (figure 4.20).

Twist tc, is a minimum absolute value at the centre of the plate, a maximum absolute

value near the corners of the plate, and varies over the plate by an order of magnitude

at PK (figure 4.21) and P (figure 4.22).

4.5 Midsurface Strain

The load-midsurface strain plot is constructed from strains at the centre of the plate with

3 pinned corners and no initial hydrostatic pressure. Midsurface strains
, , are zero

for the undeformed plate (no initial curvature), are equal and compressive as the plate

deforms to a saddle surface, and after bifurcation decrease in magnitude as the plate

load

FEAx1,

FEA x, K7

20

15

-10 .5 0
curvature ica2lh

5 10
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Figure 4.19: Curvature ic,.., Contour Plot at PK
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Figure 4.20: Curvature ic, Contour Plot at Fcj.
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Figure 4.21: Twist ic Contour Plot at Pjç,.
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Figure 4.22: Twist ic, Contour Plot at P.
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Figure 4.23: Midsurface Strain Plot

deforms to a cylindrical surface (figure 4.23).

Midsurface shear strain y, is zero for the undeformed plate (no initial curvature),

remains zero as the plate deforms to a saddle surface, and after bifurcation increases in

magnitude as the plate deforms to a cylindrical surface.

The midsurface of the plate is in maximum compression at the centre of the plate

and maximum tension at the edge of the plate at PK (figure 4.24) and P (figure 4.25).

Midsurface shear strain -y, is zero at the centre of the plate and varies positive and

negative values over the plate at PK (figure 4.26) and P (figure 4.27).

4.6 Fixed Plate Centre

The FEA plate buckles without an initial perturbation because of the 3 pinned corner

constraints—the same used by Howell[1j. As the plate deforms only corner C is free to
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Figure 4.24: Midsurface Strain , Contour Plot at PK
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Figure 4.25: Midsurface Strain Contour Plot at Pa,.
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Figure 4.27: Midsurface Strain -y, Contour Plot at Ps,.
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Load-Deflection Plot
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Figure 4.28: Load-Deflection Plot for fixed plate centre

deflect. The corner forces remain parallel to the z axis and are no longer normal to the

tangent plane of the centre of the plate.

Constraints which do not initiate buckling are created by fixing the centre of the plate

in 5 degrees of freedom: displacements u, v, w and rotations about the x and y axis. The

drilling rotation about the z axis is fixed by a constraint on Ca in the direction of the

y = —x diagonal. The applied corners loads are P at Ca and C and —P at C, and Cd.

The orientation of the corner forces in the fixed plate centre loading case remain

normal to the tangent plane of the centre of the plate. There is no perturbation, and the

plate is loaded beyond the bifurcation point without experiencing buckling (figure 4.28).

The critical value of Gaussian curvature remains the same for the 3 pinned corners

and the fixed plate centre loading cases (figure 4.29).

The 3 pinned corners and the fixed plate centre loading cases create membrane tension

for large deflections due to the corner forces remaining in their original orientation and

1.0 2.0 3.0 4.0
deflection h
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Figure 4.29: Load-Gaussian Curvature Plot for fixed plate centre

stretching the plate. Further study involving “follower forces” which remain normal to

the plate surface is recommended to study the effects of the added membrane tension.

34

25 -

Load-Gaussian Curvature Plot
at centre of plate

96 alhralio,l 44 elements

3 pinned corners

load Pa’I2Dh

20 -

15 -

10

5

0 -25 .50
Gaussian curvature Ka41h2

.75

4.7 Alternate Finite Element

The finite element analysis was also performed modelling the plate with the SHELL43

4 node shell element. The SHELL43 element is claimed by ANSYS to be well suited

to model nonlinear thin to moderately-thick shell structures[8]. The SHELL43 element

accommodates rotational degrees of freedom and shear deformations but since the prob

lem under consideration is highly nonlinear, the bilinear SHELL43 element would not

be expected to model the plate as well as the quadratic SHELL93 element. The plate

modelled with SHELL43 elements did not buckle for the loading case of 3 pinned corners

and no initial hydrostatic pressure. The SHELL43 element model only buckled with
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Table 4.6: SHELL43 Element Critical Values from Southwell plot

96 a/h ratio, 400 elements

pressure (Pa) P5 (N) PScr

1 0.00094 did not buckle
5 0.0047 did not buckle

10 0.0094 did not buckle
20 0.018 did not buckle
30 0.028 295 20.9
40 0.037 292 20.7
50 0.047 285 20.2

100 0.094 285 20.2
500 0.47 225 15.9

Table 4.7: SHELL43 Element Critical Values from Southwell plot

96 a/h ratio, 50 Pa hydrostatic pressure

elements P5 (N) PScr

16 did not buckle
64 did not buckle
144 285 20.2
256 285 20.2
400 285 20.2

an initial deflection greater than 0.3 plate thicknesses (table 4.6) and greater than 144

elements (table 4.7).

For the reasons of problems in buckling, the SHELL43 element was not used in the

analysis.

4.8 Non-convergence

The post buckling response for the finite element analysis of the 196.7 a/h ratioplate

with 3 pinned corners does not converge. The plate bends to a saddle surface up to
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the bifurcation point without numerical difficulties. Shear locking does not seem to be

a factor, since increasing the mesh density—decreasing the element a/h ratio—does not

rectify the problem.
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Discussions

5.1 FEA Comparison of Pc,. and PK,.

Gaussian curvature at the centre of the plate reaches a maximum absolute value K,. at

corner force The absolute value of K then begins to decrease in magnitude before

the bifurcation point Pc,. (figure 5.1).

Attempting to determine the bifurcation point by a critical Gaussian curvature cri

terion, such as the Southwell plot method, will underestimate the bifurcation point (fig

ure 5.2).

The critical Gaussian curvature point PKc,. is 80 percent of bifurcation point Pa,.

(table 5.1).

The values of K,. and PKc,. remain the same for the 3 pinned corners and the fixed

plate centre loading cases (figure 4.29). The present work uses corner forces which main

tain their original vertical direction parallel to z axis. For large defiections, the orientation

Table 5.1: Comparison of PKc, and Pc,.

a/h ratio Pc,. PKcr PKc,./Pc,.
49.2 26.9 21.7 0.81
63.2 26.0 20.8 0.80
80.3 25.5 20.3 0.80
96.0 25.1 20.1 0.80
196.7 24.9 19.7 0.79

37
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Figure 5.1: Load-Gaussian Curvature Plot
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Figure 5.2: Load-Deflection Plot
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of the forces causes tensile membrane stresses which may have an effect on the value of

PK4. Further investigation using “follower forces” which remain normal to the plate

surface is recommended.

5.2 Comparisons with Bifurcation Points in Literature

5.2.1 Howell

Howell determined the bifurcation point by experiment[1]. The constraints on the plate

in the experiment were three corners pinned and the loaded corner free to deflect with

the load applied by a constant direction tensile cable. The 3 pinned corners loading case

in the present FEA models this experimental setup. Strain gauges measured strains on

the top and bottom surfaces of the plate, and Kirkhhoff theory was used to calculate the

curvatures from the strains. The critical value of Gaussian curvature at bifurcation was

determined using the Southwell plot method.

Howell gives the bifurcation point:

= 1O.8h/a (5.1)

for the critical value of twist , at the centre of the plate.

The present FEA work using the Southwell plot method gives:

= 9.Oh/a (5.2)

The difference between the result of Howell and the FEA is mainly due to Howell’s

limit of applied corner force. Howell limited the maximum applied corner force P0hl to

avoid plastic yielding of the material. This corresponds to corner loads less than half of

FKcr (table 5.2). The Southwell Plot method only claims accuracy as the load approaches

the critical load P — Pa,. (section 2.4).
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Table 5.2: Comparison of Coefficient with Howell

a/h ratio CHohl c HoweU pHowell/p

49.2 17.85 9.01 4.8 0.18
80.3 11.07 9.02 10.0 0.39
96.0 10.61 9.03 9.9 0.39
196.7 10.25 9.06 10.9 0.43

Table 5.3: Modified Coefficient

—Howell
at Fma = 9.9

96 a/h ratio, 144 elements

pressure (N) C’
0.1 8.9

1 9.5
10 10.0

100 9.9
300 9.4
500 8.9

The magnitude of initial deflection affects the Southwell’s plot prediction of the critical

value. The initial deflection for the experiment of Howell is unknown (figure 5.3).

The Southwell plot method using Gaussian and mean curvatures only up to poe11

gives modified coefficient C’ values closer to Howell’s results (table 5.3).

5.2.2 Ramsey

Ramsey determined the bifurcation point by analytical methods[5]. The kinematic re

sults of Green and Naghdi for small deformations superposed on a large deformation of

an elastic Cosserat surface, and the restricted form of the general nonlinear theory of

shells and plates of Naghdi were used. The critical value of twist , at bifurcation was

determined from a Rayleigh quotient.
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Figure 5.3: Load-Deflection Plot

Ramsey gives the bifurcation point:

= 3.29h/a (5.3)

for the critical value of twist ic at bifurcation at the centre of the plate.

The present FEA work using the Southwell plot method gives results in equation 5.2.

The difference between the result of Ramsey and the FEA is mainly due to Ram

sey’s assumption of the Gaussian curvature behaviour. Ramsey assumed the Gaussian

curvature at bifurcation to be uniform over the plate. The present FEA work shows the

Gaussian curvature varies by an order of magnitude over the plate (figure 4.14—4.15).

5.2.3 Miyagawa, Hirata, and Shibuya

Miyagawa, Hirata, and Shibuya determined the bifurcation point by experimental and

numerical methods [3].
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In the experiment of Miyagawa et al., the critical value of corner force at bifurcation

was determined from the load-deflection plot. The plate dimension ratio varied 40 <

a/h < 120. Bifurcation occurred only at ratios a/h> 80.

Miya.gawa et al. give the bifurcation point experimentally:

= [] = 21 (5.4)

for the dimensionless corner force .

In the numerical work of Miyagawa et al., the deformed configuration of the plate was

approximated as a polynomial. Stresses in the middle of the plate were approximated

by combining von Kármn theory, an assumed stress function, and experimental results.

The relation between load and deflection was determined by minimizing the total energy

of: strain energy due to bending and twisting, strain energy in the middle of the plate

due to membrane stretching, and work done by the loads.

Miyagawa et al. give the bifurcation point numerically:

= 22.8 (5.5)

The present FEA work using load-deflection plot gives:

Pc.2. = 25 (5.6)

In the experiment of Miyagawa et al., the four loading points were applied by flat roller

bearings which simulated “follower loads” to reduce the stretching forces along the plate.

The plate material experienced plastic yielding resulting in the experimental bifurcation

point of Miyagawa et al. lower than the numerical bifurcation point of Miyagawa et al. [3].

5.2.4 Lee and Hsu

Lee and Hsu determined the bifurcation point by finite difference methods[2]. The critical

value of corner force at bifurcation was determined by the displacement-load plot.
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Lee and Hsu give the bifurcation point:

= [(12(1_v2))
p] = 21 (5.7)

for the dimensionless corner force M.

The present FEA work using load-deflection plot gives:

Mc,. = 61 (5.8)

The difference between the result of Lee and Hsu and the FEA is mainly due to the

limited model of Lee and Hsu. The mesh used by Lee and Hsu in the finite difference

scheme was not dense enough to provide convergence of M. No attempt was made to

calculate Me,. more precisely.
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Conclusions

Describing the surface of a square plate twisted by corner forces based on either dis

placement or curvature values gives different results for the critical point. The load-

displacement plot determines the bifurcation point Fe,.. The present FEA work gives

= 25. The Southwell plot based on curvature determines the critical Gaussian cur

vature point PK. The present FEA work gives Pjç,. = 20.

The present FEA work gives the coefficient for the critical value of twist at the

centre of the plate C = 9.0 from the Southwell plot. This result compares well with the

experiment of Howell taking into account the low load levels Howell used to avoid plastic

yielding of the material. Southwell plots constructed from curvature data of load levels

less than PKc,, will overpredict the calculated value of PKc,’ for initial defiections of the

plate centre between 0.001 < S,/h < 0.5.

The result of the present FEA work does not compare well with the analytical work of

Ramsey. Ramsey assumed Gaussian curvature to be uniform over the plate at bifurcation.

The present FEA work shows that the problem is highly nonlinear and Gaussian curvature

varies over the plate by an order of magnitude at and Pa,..

The applied forces in the present FEA work maintain their original orientation even

for large deflections. This will create significant tensile membrane stresses in the plate

for defiections much larger than the plate thickness. Further FEA investigation involving

“follower forces” which remain normal to the plate surface, and inclusion of nonlinear

material properties is recommended.
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