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Abstract

A square plate twisted by corner forces is described by classical linear theory as a saddle
surface. In an experiment, as the plate deforms to any noticeable deflection, it appears
not as a saddle surface, but as a cylindrical surface. The transformation in mode shapes
presents problems in determining material behaviour by shear in a plate twisting experi-
ment. The two mode shapes can be described by either displacement or curvature of the
surface. The purpose of this work is to investigate the buckling of a square plate twisted
by corner forces by determining the bifurcation point and comparing the present FEA
work with the experimental results of Howell and other results found in literature. The
problem is examined using nonlinear finite element buckling analysis. The bifurcation
point is determined by load-displacement plots. The critical value of Gaussian curvature
at the centre of the plate is determined by the Southwell plot method. The critical value
of Gaussian curvature is found to occur before the bifurcation point. Gaussian curvature

is found to vary by an order of magnitude over the plate at bifurcation.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this work is to investigate the buckling of a linear elastic, isotropic square
plate twisted by corner forces, by determining the bifurcation point. The problem is
examined by a nonlinear finite element buckling analysis using the commercially avail-
able software package ANSYS Revision 5.0. A square plate twisted by corner forces is
described by classical linear theory as a saddle surface. In an experiment, as the plate de-
forms to any noticeable deflection, it appears not as a saddle surface, but as a cylindrical
surface. The transformation in mode shapes presents problems in determining material
behaviour in shear by experiment. The findings of the present FEA work can be used in
future study to develop a nonlinear relationship to account for this transformation and/or
an upper bound to the application of a plate twist experiment. The two mode shapes
can be described by either displacement or curvature of the surface. The critical value of
corner force at bifurcation is determined from load-displacement plots. The critical value
of Gaussian curvature at the centre of the plate is determined from the Southwell plot
method. There is a discrepancy in the results found in literature using different methods
of analysis and assumptions. The present FEA work is compared to the experimental

results of Howell and other results in literature.
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1.2 Literature Review

In 1890, Kelvin and Tait noted a transition in deformation surfaces of a square plate
twisted by corner forces but did not attempt to find the point of instability.

In 1971, Lee and Hsu[2] investigated the buckling problem numerically, using finite
difference methods and the nonlinear von Kirman equations for plates. The critical value
of corner force at bifurcation was determined by displacement-load plots.

In 1975, Miyagawa, Hirata, and Shibuya[3] investigated the buckling problem exper-
imentally and numerically, using deflection measurements in the experimental approach,
and using a polynomial deformed configuration, von Kérman theory, and stress func-
tions in the numerical approach. The critical value of corner force at bifurcation was
determined by load-deflection plots.

In 1985, Ramsey[5] investigated the buckling problem analytically, using the kinematic
results of Green and Naghdi for small deformations superposed on a large deformation
of an elastic Cosserat surface, and the restricted form of the general nonlinear theory of
shells and plates of Naghdi. The critical value of twist at bifurcation was determined
from a Rayleigh quotient.

In 1991, Howell[1] investigated the buckling problem experimentally, using strain mea-
surements and Kirkhhoff theory to determine curvatures. The critical value of Gaussian

curvature at bifurcation was determined by the Southwell plot.
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Theory

2.1 Physics of the Problem

Classical linear theory of flat plates describes deflection w of a square plate twisted by

corner forces P (figure 2.1):
P

= mwy (21)
in terms of the surface coordinates of the plate z, y. Flexural rigidity of the plate D:

w

ER3
D= = (2.2)

is a function of Young’s modulus of elasticity E, Poisson’s ratio v, and plate thickness h.

Deflection can also be expressed in terms of twist x of the surface:

w = KTy (2.3)

"
a8

e

Figure 2.1: Square Plate Twisted by Corner Forces
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Figure 2.3: Cylindrical Surface

These results (equations 2.1, 2.3) are well known in fundamental classical linear plate
theory. The plate appears as a saddle surface (figure 2.2).

However, in an experiment, as the plate deforms to any noticeable deflection, it
appears not as a saddle surface, but as a cylindrical surface with generators parallel
to a plate diagonal (figure 2.3).

The mode of the plate can be determined by the surface characteristics with either
displacement or curvature attributes. The saddle surface has equal magnitude deflections
in the four corners relative to a fixed centre. The cylindrical surface has equal magﬁitude
deflections in two opposite corners and zero deflection in the other two corners relative
to a fixed centre.

Curvature can be viewed on a Mohr’s circle for curvature (figure 2.4). The abscissa
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Knt Knt
K K Kn K3 K Kn
a. Anticlastic Curvature b. Synclastic Curvature

Figure 2.4: Mohr’s Circle for Curvature

represents curvature k, and the ordinate represents twist s, of the surface. Principal
curvatures are ki, k2. The saddle surface is anticlastic—the two principal curvatures
have opposite signs (figure 2.4a). Principal directions are parallel to the plate diagonals.
Principal curvatures are equal and opposite, resulting in zero mean curvature and negative
Gaussian curvature. The cylindrical surface is synclastic—curvatures in all orientations
have like signs (figure 2.4b). Principal directions are parallel to the plate diagonals. One
principal curvature is zero and the other non-zero, resulting in a non-zero mean curvature
and a zero Gaussian curvature.

Classical linear theory of flat plates neglects all quadratic terms in the Green-Lagrange

strain:
€z = U+ %(u: +v2 + w?) (2.4)
€& = v+ %(u;‘; +v) +wl) (2.5)
€ = w,+ %(uz +v2 +w?) (2.6)
Yoy = Vz+ Uy + (Usly + vy + wew,) (2.7)
Yor = Wyt v+ (Uyus + vyv; + wyw,) (2.8)
Yoz = Uz + We + (UpUp + Vo0, + wows) (2.9)

The approximation of neglecting the nonlinear terms fails to account for the defor-

mation in the middle plane of the plate due to bending. Midsurface strains can only
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be neglected if the deflections of the plate are small in comparison with its thickness in
non-developable surfaces (non-zero Gaussian curvature, such as saddle shapes, spheres)
or the deflections are of the order of its thickness in developable surfaces (zero Gaussian
curvature, such as cylinders, cones)[9]. Because of this approximation, classical linear

plate theory cannot predict buckling.

2.2 Finite Element Theory

The finite element used in the analysis is an 8 node isoparametric quadrilateral shell
element. It is labeled SHELL93 in the ANSYS Revision 5.0 element library. There are
5 degrees of freedom per node: 3 translations and 2 rotations. This element includes
features of Green-Lagrange strains and Mindlin plate theory. Green-Lagrange strains
(equations 2.4-2.9) take into account midsurface strains of the plate. Mindlin plate
theory allows for transverse shear deformation. This means that a line that is straight
and normal to the midsurface before loading, is assumed to remain straight but not
necessarily normal to the midsurface after loading. Displacements u, v of a point in the

plate a distance z from the midsurface are:
u = U-—za (2.10)
v = 7—2z0 (2.11)

where a, B are small angles of rotation of a line that was normal to the midsurface before

loading and %@, ¥ are the displacements at the plate midsurface. Strains €, €, and shear

strains Yuy, Yyz, Yzz are:

1

€& = T+ -2-(?17:. + 72 +w?) — za, (2.12)
1

& = U, + E(U: + 52 4+ wl) — 2B, (2.13)

Yoy = Vot Uy + (Uslly + T2y + wowy) — 2(Bs + o) (2.14)
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Yz = Wy+7;+ (UyT, + 5,0, + wyw,) — B (2.15)
Yoz = T+ We + (Bl + V0 + w,w,) — o (2.16)
Strains e, €, and shear strain -y,, are assumed to vary linearly through the plate thickness.

Transverse shear strains 4,,, 7., are assumed to be constant through the plate thickness.

In the stress-strain relationship:

{c} = [D]{e} (2.17)

the stress vector {c}, the strain vector {€}, and the material property matrix for the

element [D] are defined as:

T
{0'} = [az O'y sz 'ryz TzzJ (2'18)
T
{G} = lez Ey ’Ya:y 'sz 'YzzJ (219)
(15 0 0 0|
v 1 0 0 0
D %g__ 1-v
D] = 15|00 % 0 o0 (2.20)
0 0 O l% 0
(00 0 0 iz|

where f is the shear factor:

; 1.2, A/h? < 25
1.0 +0.2:4,, A/h? > 25

25h2?

(2.21)

where A is the area of the element and h is the plate thickness. The shear factor is
designed to avoid shear locking. As the element becomes thin, the A/A? ratio becomes
large. The shear factor f is thus increased and the stiffness associated with the trans-
verse shears is reduced. The correct method to avoid shear locking is through selective
integration, but ANSYS does not accommodate this. The SHELL93 element uses a 2 x 2

reduced quadrature rule.
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2.3 Plate Theory

Kirkhhoff theory is used to calculate curvatures from strain output of the finite element
software. This is to be consistent with Howell’s experimental analysis so results can be
compared. Kirkhhoff theory neglects transverse shear deformations. This means that a
line that is straight and normal to the midsurface before loading, is assumed to remain
straight and normal to the midsurface after loading.

Extensional strain €, at an arbitrary point a distance z from the plate midsurface is:
€ = €m + 2K (2.22)

where the membrane strain ¢, appears along the plate midsurface, and the curvature &
is associated with bending strain.
Solving the above equation for the top and bottom of the plate and equating midsur-

face strains gives the curvatures ., £, and the twist s,y of the midsurface:

€& —e

ke = 2 (2.23)
e€ — ¢

o = 5 (2.24)
ab b

oy = I (2.25)

where €, €® are the top and bottom surface strains of the plate respectively, and h is the
plate thickness.

Principal curvatures x;, k£, from Mohr’s circle of curvatures are:

_ 2
K1, Kg = ”"2”" i\/("“ > "") + K2, (2.26)

Mean curvature p is the average of the two principal curvatures:

b= et 1) = 301+ 52) (2.27)
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Gaussian curvature K is product of the two principal curvatures:

K = Kzky — K3, = K1Ka (2.28)

2.4 Southwell Plot

The Southwell plot is a common method to determine the elastic buckling load of a
structural system. In experiments, there exists some imperfection in the undeformed
shape and/or applied loading. As the compressive load increases, the lowest critical load
buckling mode dominates. A linear function can be expressed in terms of applied load
and deflection by neglecting contributions from higher modes.

In 1932, Southwell considered a simply supported column with an initial imperfection

subjected to a compressive load P[6]. He expressed a linear relationship:

1 1

in terms of the incremental deflection §, the Euler load P., and coefficient a. The
Southwell plot of §/P versus § gives a straight line whose slope is equal to the inverse of
the buckling load. |

The Southwell plot method claims accuracy only as P — P,.. Spencer[7] states that
constructing Southwell plots using Karmin’s strut data with loads up to 0.91P., to
0.88P,, and to 0.82P. (P, being defined as the critical load which Southwell obtained
by plotting Karman’s data to 0.98 P, ) gives errors of 3, 5, and 25 percent respectively.

The critical load P, is a theoretical concept and should be independent of initial de-
flection. Spencer(7] showed that in buckling of a uniaxially compressed simply supported

plate, the Southwell plot begins to underestimate the critical load when:
wo/h > 0.5 (2.30)

where w, is the initial deflection at the plate centre and 4 is the plate thickness.
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Analysis

The analysis was performed on a SUN SPARC workstation. The preprocessing and the
solution utilized ANSYS Revision 5.0, and the postprocessing utilized FORTRANTT7 and
TECPLOT Revision 5.0.

3.1 Preprocessing

The plate is modelled with the SHELL93 8 node isoparametric shell element.

The plate material is modelled as T6061-T6 Aluminium (table 3.1) for comparison
with the experimental results of Howell[l]. Material nonlinearity, such as plasticity, is
not considered in the analysis.

The plate geometry is square with plate length to thickness ratios a/h (table 3.2) for
comparison with the experimental results of Howell[1].

The plate is meshed with square elements N per side, where N is even to provide a
node at the centre of the plate to take displacement and strain measurements—the same
location as Howell’s strain gauges(1]. There are a total of N? elements and (3N2+4N +1)

nodes for the model.

Table 3.1: Material Constants

E 69x10° Pa
v 0.33

10
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Table 3.2: Plate Geometry

a/hratio a(m) h(m)
49.2 0.1524 0.003099
63.2 0.2032 0.003216
80.3 0.2540 0.003162
96.0  0.3048 0.003175
196.7  0.6096 0.003099

w=
Ca C.
»v
L.x,u
2 Ca Ch
7, A
u=v=w=0 v=w=0

Figure 3.1: Constraints

3.2 Solution

The plate is constrained at corners C,, Cy, Cy (figure 3.1) to zero displacement in the z
direction, to simulate the self equilibrating corner forces associated with the applied force
at corner C.. These are the same constraints in the experiment by Howell[1]. To prevent
rigid body motion, additional DOF constraints are specified. The plate is constrained
at corner C, to zero displacement in the z and y directions to prevent translation, and
constrained at corner C} to zero displacement in the y direction to prevent rotation.
These constraints satisfy the kinematic, but not the static boundary conditions of a
plate with free edges.

When applying the Southwell plot method to find critical values, an initial hydrostatic
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pressure is applied in the positive z direction. A nominal value of hydrostatic loading is
used which produces deflections small compared to the plate thickness.

The applied force P at corner C. is in the positive z direction.

These boundary conditions provide a stable post buckling response. The applied
corner force P can exceed the value at the bifurcation point P, without the instability
of ill conditioned matrices, such as a negative main diagonal in the stiffness matrix.

Body forces, such as gravity loads, are not included in the analysis.

3.3 Postprocessing

Displacements §,, 6. are calculated at the centre of the plate and at corner C.. The
critical value of corner force at bifurcation is determined from load-deflection plot.
Strains €, €, vy are calculated at the top and bottom surfaces at the node at the
centre of the plate using nodal point averaging in ANSYS. These values are exported to
a FORTRAN code which calculates curvatures using Kirkhhoff plate theory. The critical
value of Gaussian curvature K. is determined from the Southwell plot. The Southwell
plot uses u as the abscissa and u/K as the ordinate. The asymptotic behaviour of the

curve determines K, as K/ K., — 1.
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Results

4.1 Deflection

The deflection for the plate with 3 pinned corners is zero at the pinned corners C,, Cb,
Cq and a maximum at the corner with the applied force C, (figure 4.1).

The load-deflection curve of corner with the applied force C. is smooth and shows no
indication of buckling (figure 4.2). The load-deflection curve of the centre of the plate
has an abrupt change in the slope at the bifurcation point P, .

The finite element analysis deflection of the plate centre agrees well with linear theory
(equation 2.1) for deflections less than a plate thickness (figure 4.2). The FEA deflection
of the plate corner C. agrees well with linear theory for deflections less than 4 plate
thicknesses.

The finite element results of the plate with 3 pinned corners can be rotated to show
the characteristic surface. The plate can be rotated so the deflections of corners C, and
C. are equal, and translated so the deflection of the centre of the plate is zero. The
deflections become 6./2 — 6, at C, and C., and —6, at Cy and Cy (figure 4.3), where §,
and 4, are the deflections of the unrotated results for the centre of the plate and corner
C. respectively.

The bifurcation point is where the magnitude of rotated corners C,, C. and rotated
corners Oy, Cg significantly diverge. The critical value of corner load varies slightly with

Howell’s[1] a/h ratios (figure 4.4 and table 4.1). The mesh density of 144 elements is

13
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Deflection Contour Plot

3 pinned comers atP_,
96 a/h ratio, 144 slements

15.9459
13.9107
11.8756
9.84041
7.80525
5.77009
3.73492
1.69976

= k) W o Uh O -1 00

Figure 4.1: Deflection Contour Plot for 3 pinned corners at P,

Load-Deflection Plot
2 3 pinned comers

Ig:dPal2Dh , 96 afh ratio, 144 elements ,
25 |

20}

15

10}

sl

o [ 5 3 e 2 re re e e 3 n r e e 4 4

0 5 10 15 20
deflection &h

Figure 4.2: Load-Deflection Plot for 3 pinned corners
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Defiection Contour Piot
3 pinned comers (rotated) atP_
96 a/h ratio, 144 slements

3.44262
2.44367
1.44472
0.44577
-0.55318
-1.55213
-2.55108
-3.55003

=R W R WL

Figure 4.3: Deflection Contour Plot for 3 pinned corners (rotated) at P

sufficient to provide displacement convergence (figure 4.5 and table 4.2). '
Below the bifurcation point, the magnitudes of deflection for rotated corners C,, C.
and rotated corners Cj, Cy are almost equal (figure 4.4). The plate is bending to a saddle
surface (figure 4.6).
Above the bifurcation point, the magnitude of deflection for rotated corners C,, C.
is decreasing, and the magnitude of deflection for rotated corners C,, Cy is increasing.
(figure 4.4). The plate is bending to a cylindrical surface (figure 4.7).

Nondimensionalized corner force P is defined as{3]:

— Pa?
P = 5D (4.1)
Nondimensionalized deflection é is defined as[3]:
= &
6= % (4.2)
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Load-Deflection Plot
. 3 pinned comers (rotated)
load Pa“/2Dh
- 4delements  orahmio . .
[ ‘N =7
A P - .
30t N et
[ rotated corners C, C, \:M.0, , "‘, //// 80.3
! NN s No6.0
25 | / g~.f'y/
[ /,%J rotated corners C,, C,
g
i ¥
20 - lf,:/.,
s /
[ 4
15 {'
[ 4
10|
linear theory
st
o'....l...l. [P NS SR R
0.0 1.0 20 30 4.0 5.0 6.0
deflection &h

Figure 4.4: Load-Deflection Plot for 3 pinned corners (rotated) with varying a/h ratios

Table 4.1: Critical Values from load-deflection plot

144 elements

a/h ratio Py (N) P, 64 6. &b, 04
49.2 1380 26.9 4.17 4.48

63.2 870  26.0 4.32 4.52
80.3 510 255 441 4.53
96.0 355 251 445 4.55

196.7 80 249 4.54 4.58
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l.oad-Deflection Plot
3 pinned comers (rotated)
load Pa?/2Dh 96 a/h ratio
25 L rotated corners C,,C, =
20 -
15
10|
[ linear theory
sk
o.L...l....l..;l....l...-l....l
0.0 10 20 3.0 4.0 5.0 6.0
deflection &h

Figure 4.5: Load-Deflection Plot for 3 pinned corners (rotated) with varying mesh density

Table 4.2: Critical Values from load-deflection plot

96 a/h ratio
elements P, (N) _}3,_.,. bay 8 by, b4

16 352  25.0 4.45 4.55
64 355 256.1 445 455
144 355 25.1 445 4.55

256 355 25.1 445 4.55
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Defiection Contour Plot
3 pinned comers (rotated) at P/ 2
96 a/h ratio, 144 elements

level oh
8 253851
7 1.81277
6 1.08703
5 0.361294
4 0364444
3 -1.09018
2 -1.81592
1 -2.54166

Figure 4.6: Deflection Contour Plot for 3 pinned corners (rotated) at P /2

Defiection Contour Plot
3 pinned comers (rotated) at2 P,
98 a/h ratio, 144 elements

g s

0.081854
~1.54131
-3.16448
-4.78764
-6.41081
-8.03397
9.65714

- ) W o U O~ 00

Figure 4.7: Deflection Contour Plot for 3 pinned corners (rotated) at 2P.,
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Figure 4.8: Southwell Plot
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Howell[1] determined the critical value of Gaussian curvature using the Southwell plot

method. The Southwell plot method requires an initial curvature in the structure.

The FEA Southwell plot is constructed from strains at the centre of the plate with

3 pinned corners and initial hydrostatic pressure. The Southwell plot produces parallel

lines for varying intensity of initial hydrostatic pressure (figure 4.8).

The initial hydrostatic pressure creates an initial deflection of the centre of the plate

83. The critical value of Gaussian curvature K, and corner force is Ps, determined

by the Southwell plot method are not affected by deflections 60 less than one tenth of a

plate thickness (table 4.3).

The coefficient C is defined as[5):

(4.3)
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Table 4.3: Critical Values from Southwell plot

96 a/h ratio, 144 elements

=0

pressure (Pa) s, Pse (N) Ps, C
0.1 0.0000961 284 20.1 9.04
1 0.000961 284 20.1 9.04
10 0.00961 284 20.1 9.03
100 0.0961 274 19.4 9.01
500 0.478 226 16.0 8.65

for the critical value of twist x at the centre of the plate.
For load levels less than Ps,,, the Southwell plot method over or under predicts Kg.,

(figure 4.9) and C (figure 4.10) depending on the magnitude of the initial deflection.

4.3 Gaussian Curvature and Mean Curvature

The Southwell plot determines the critical value of Gaussian curvature where the slope on
the Gaussian-mean curvature plot (figure 4.11) is zero[7]. The Gaussian-mean curvature
plot is constructed from strain calculations at the centre of the plate with 3 pinned
corners and no initial hydrostatic pressure.

Gaussian curvature is zero for the undeformed plate (no initial curvature), increa.,ses in
magnitude as the plate deforms to a saddle surface, reaches a maximum value, begins to
decrease in magnitude, and after bifurcation decreases in magnitude as the plate deforms
to a cylindrical surface (figure 4.12).

Mean curvature is zero for the undeformed plate (no initial curvature) remains zero
as the plate deforms to a saddle surface, and after bifurcation increases in magnitude as
the plate deforms to a cylindrical surface (figure 4.13).

The corner load at the critical value of Gaussian curvature Pk, (tables 4.4-4.5) is

less than the corner load at bifurcation P (figure 4.12).
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Figure 4.9: Critical Value of Gaussian Curvature from Southwell plot

Coefficient
cH from Southwell Plot
20 - at centre of plate
96 a/h ratio, 144 elements
s
0.0
- 10.0Pa
1.0Pa
10 *.:../‘ ....................................................................
0.1Pa
5 -
o " " 4 " { " " 4 n 1 " " 4 4 | . " " " 1
0.0000 0.0005 0.0010 0.0015 0.0020
Bim?)

Figure 4.10: Coefficient from Southwell plot
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Gaussian-Mean Curvature Plot
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Figure 4.12: Load-Gaussian Curvature Plot

22



Chapter 4. Results 23

Load-Mean Curvature Plot
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Figure 4.13: Load-Mean Curvature Plot

Table 4.4: Critical Values from Gaussian-mean curvature plot

144 elements

a/h ratio Pk (N) Pke C

49.2 1112 21.7 9.01
63.2 696 20.8 9.01
80.3 406 20.3 9.02
96.0 284 20.1 9.03

196.7 63 19.7 9.06
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Table 4.5: Critical Values from Gaussian-mean curvature plot

96 a/h ratio
elements Pge (N) Pge C

16 278 19.7 9.09
64 276 19.6 9.03
144 284 20.1 9.03
256 286 203 9.01

Gaussian curvature is a minimum absolute value at the centre of the plate, a maximum
absolute value near the corners of the plate, and varies over the plate by an order of
magnitude at Pk (figure 4.14) and P, (figure 4.15).

Mean curvature is a zero at the centre of the plate and varies positive and negative

values over the plate at Pk (figure 4.16) and P, (figure 4.17).

4.4 Curvature

The load-curvature plot is constructed from strains at the centre of the plate with 3
pinned corners and no initial hydrostatic pressure. Curvatures &, &, are zero for the
undeformed plate (no initial curvature), remain zero as the plate deforms to a saddle
surface, and after bifurcation increase in magnitude as the plate deforms to a cylindrical
surface (figure 4.18).

Twist x;y is zero for the undeformed plate (no initial curvature), increases in mag-
nitude as the plate deforms to a saddle surface, reaches a maximum value, begins to
decrease in magnitude, and after bifurcation continues to increase in magnitude as the
plate deforms to a cylindrical surface.

The FEA twist k., agrees well with linear theory (equations 2.1-2.3) for deflections
less than half the plate thickness, and agrees well with membrane stress theory ([4] and
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Figure 4.14: Gaussian Curvature Contour Plot at Px.r
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Figure 4.15: Gaussian Curvature Contour Plot at P,
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Figure 4.16: Mean Curvature Contour Plot at Pk,
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Figure 4.17: Mean Curvature Contour Plot at P,
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equation 2.22) for deflections less than a plate thickness (figure 4.18).
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Figure 4.18: Load-Curvature Plot
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Curvature x. is a zero at the centre of the plate and varies positive and negative

values over the plate at Pk, (figure 4.19) and P, (figure 4.20).

Twist kzy is a minimum absolute value at the centre of the plate, a maximum absolute

value near the corners of the plate, and varies over the plate by an order of magnitude

at Pxo (figure 4.21) and P., (figure 4.22).

4.5 Midsurface Strain

The load-midsurface strain plot is constructed from strains at the centre of the plate with

3 pinned corners and no initial hydrostatic pressure. Midsurface strains e, €, are zero

for the undeformed plate (no initial curvature), are equal and compressive as the plate

deforms to a saddle surface, and after bifurcation decrease in magnitude as the plate
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Figure 4.19: Curvature x, Contour Plot at P,
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Figure 4.20: Curvature x, Contour Plot at P,
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Figure 4.21: Twist k£, Contour Plot at Pk,
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Figure 4.22: Twist k., Contour Plot at P,
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Figure 4.23: Midsurface Strain Plot

deforms to a cylindrical surface (figure 4.23).

Midsurface shear strain ., is zero for the undeformed plate (no initial curvature),
remains zero as the plate deforms to a saddle surface, and after bifurcation increases in
magnitude as the plate deforms to a cylindrical surface.

The midsurface of the plate is in maximum compression at the centre of the plate
and maximum tension at the edge of the plate at Pk, (figure 4.24) and P, (figure 4.25).

Midsurface shear strain <., is zero at the centre of the plate and varies positive and

negative values over the plate at Pk, (figure 4.26) and P., (figure 4.27).

4.6 Fixed Plate Centre

The FEA plate buckles without an initial perturbation because of the 3 pinned corner
constraints—the same used by Howell[1l]. As the plate deforms only corner C, is free to
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Figure 4.24: Midsurface Strain ¢, Contour Plot at Pk
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Figure 4.25: Midsurface Strain e, Contour Plot at P,
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Figure 4.26: Midsurface Strain ,, Contour Plot at Pk,
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Figure 4.28: Load-Deflection Plot for fixed plate centre

deflect. The corner forces remain parallel to the z axis and are no longer normal to the
tangent plane of the centre of the plate.

Constraints which do not initiate buckling are created by fixing the centre of the plate
in 5 degrees of freedom: displacements u, v, w and rotations about the z and y axis. The
drilling rotation about the z axis is fixed by a constraint on C, in the direction of the
y = —z diagonal. The applied corners loads are P at C, and C, and —P at Cj and Cj.

The orientation of the corner forces in the fixed plate centre loading case remain
normal to the tangent plane of the centre of the plate. There is no perturbation, and the
plate is loaded beyond the bifurcation point without experiencing buckling (figure 4.28).

The critical value of Gaussian curvature remains the same for the 3 pinned corners
and the fixed plate centre loading cases (figure 4.29).

The 3 pinned corners and the fixed plate centre loading cases create membrane tension

for large deflections due to the corner forces remaining in their original orientation and
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Figure 4.29: Load-Gaussian Curvature Plot for fixed plate centre

stretching the plate. Further study involving “follower forces” which remain normal to

the plate surface is recommended to study the effects of the added membrane tension.

4.7 Alternate Finite Element

The finite element analysis was also performed modelling the plate with the SHELL43
4 node shell element. The SHELL43 element is claimed by ANSYS to be well suited
to model nonlinear thin to moderately-thick shell structures[8]. The SHELL43 element
accommodates rotational degrees of freedom and shear deformations but since the prob-
lem under consideration is highly nonlinear, the bilinear SHELL43 element would not
be expected to model the plate as well as the quadratic SHELL93 element. The plate
modelled with SHELL43 elements did not buckle for the loading case of 3 pinned corners
and no initial hydrostatic pressure. The SHELL43 element model only buckled with
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Table 4.6: SHELL43 Element Critical Values from Southwell plot

96 a/h ratio, 400 elements

=0

pressure (Pa) b, Pse (N) Pg,
1 0.00094 did not buckle

5 0.0047  did not buckle

10 0.0094 did not buckle

20 0.018 did not buckle

30 0.028 295 20.9

40 0.037 292 20.7

50 0.047 285 20.2

100 0.094 285 20.2

500 0.47 225 15.9

Table 4.7: SHELL43 Element Critical Values from Southwell plot

96 a/h ratio, 50 Pa hydrostatic pressure

elements Pg, (N) Ps.
16 did not buckle
64 did not buckle
144 285 20.2
256 285 20.2
400 285 20.2

an initial deflection greater than 0.3 plate thicknesses (table 4.6) and greater than 144
elements (table 4.7).
For the reasons of problems in buckling, the SHELL43 element was not used in the

analysis.

4.8 Non-convergence

The post buckling response for the finite element analysis of the 196.7 a/h ratio plate

with 3 pinned corners does not converge. The plate bends to a saddle surface up to
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the bifurcation point without numerical difficulties. Shear locking does not seem to be

a factor, since increasing the mesh density—decreasing the element a/h ratio—does not

rectify the problem.
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Discussions

5.1 FEA Comparison of P, and Pk,

Gaussian curvature at the centre of the plate reaches a maximum absolute value K. at
corner force Pk... The absolute value of K then begins to decrease in magnitude before
the bifurcation point P (figure 5.1).

Attempting to determine the bifurcation point by a critical Gaussian curvature cri-
terion, such as the Southwell plot method, will underestimate the bifurcation point (fig-
ure 5.2).

The critical Gaussian curvature point Pk, is 80 percent of bifurcation point P
(table 5.1).

The values of K and Pk, remain the same for the 3 pinned corners and the fixed
plate centre loading cases (figure 4.29). The present work uses corner forces which main-

tain their original vertical direction parallel to z axis. For large deflections, the orientation

Table 5.1: Comparison of Pk and P

a/h ratio P, Pke Pke / Per
49.2 26.9 21.7 0.81
63.2 26.0 20.8 0.80
80.3 25.5 20.3 0.80
96.0 25.1 20.1 0.80
196.7 249 19.7 0.79
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Load-Gaussian Curvature Plot
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Figure 5.2: Load-Deflection Plot
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of the forces causes tensile membrane stresses which may have an effect on the value of
Pgc. Further investigation using “follower forces” which remain normal to the plate

surface is recommended.

5.2 Comparisons with Bifurcation Points in Literature

5.2.1 Howell

Howell determined the bifurcation point by experiment[l]. The constraints on the plate
in the experiment were three corners pinned and the loaded corner free to deflect with
the load applied by a constant direction tensile cable. The 3 pinned corners loading case
in the present FEA models this experimental setup. Strain gauges measured strains on
the top and bottom surfaces of the plate, and Kirkhhoff theory was used to calculate the
curvatures from the strains. The critical value of Gaussian curvature at bifurcation was
determined using the Southwell plot method.

Howell gives the bifurcation point:
ka = 10.8h/a (5.1)

for the critical value of twist x at the centre of the plate.
The present FEA work using the Southwell plot method gives:

ka = 9.0h/a (5.2)

The difference between the result of Howell and the FEA is mainly due to Howell’s
limit of applied corner force. Howell limited the maximum applied corner force PHowell ¢4
avoid plastic yielding of the material. This corresponds to corner loads less than half of
Pk (table 5.2). The Southwell Plot method only claims accuracy as the load approaches
the critical load P — P, (section 2.4).
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Table 5.2: Comparison of Coefficient with Howell

a/h ratio CHowell ¢ Poov"  pHouell | Per

49.2 17.85 9.01 4.8 0.18
80.3 11.07 9.02 10.0 0.39
96.0 10.61  9.03 9.9 0.39
196.7 10.25 9.06 109 0.43

Table 5.3: Modified Coefficient

-Howell

at P_0° =99
96 a/h ratio, 144 elements
pressure (N) C'
0.1 8.9
1 9.5
10 10.0
100 9.9
300 94
500 8.9
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The magnitude of initial deflection affects the Southwell’s plot prediction of the critical

value. The initial deflection for the experiment of Howell is unknown (figure 5.3).

The Southwell plot method using Gaussian and mean curvatures only up to PHowell

gives modified coefficient C’ values closer to Howell’s results (table 5.3).

5.2.2 Ramsey

Ramsey determined the bifurcation point by analytical methods[5]. The kinematic re-

sults of Green and Naghdi for small deformations superposed on a large deformation of

an elastic Cosserat surface, and the restricted form of the general nonlinear theory of

shells and plates of Naghdi were used. The critical value of twist x at bifurcation was

determined from a Rayleigh quotient.
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Figure 5.3: Load-Deflection Plot
Ramsey gives the bifurcation point:
ka = 3.29h/a (5.3)

for the critical value of twist x at bifurcation at the centre of the plate.
The present FEA work using the Southwell plot method gives results in equation 5.2.
The difference between the result of Ramsey and the FEA is mainly due to Ram-
sey’s assumption of the Gaussian curvature behaviour. Ramsey assumed the Gaussian
curvature at bifurcation to be uniform over the plate. The present FEA work shows the

Gaussian curvature varies by an order of magnitude over the plate (figure 4.14-4.15).

5.2.3 Miyagawa, Hirata, and Shibuya

Miyagawa, Hirata, and Shibuya determined the bifurcation point by experimental and

numerical methods|3].
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In the experiment of Miyagawa et al., the critical value of corner force at bifurcation
was determined from the load-deflection plot. The plate dimension ratio varied 40 <
a/h < 120. Bifurcation occurred only at ratios a/h > 80.

Miyagawa et al. give the bifurcation point experimentally:

— Pd?

for the dimensionless corner force P,,.

In the numerical work of Miyagawa et al., the deformed configuration of the plate was
approximated as a polynomial. Stresses in the middle of the plate were approximated
by combining von Kirmaén theory, an assumed stress function, and experimental results.
The relation between load and deflection was determined by minimizing the total energy
of: strain energy due to bending and twisting, strain energy in the middle of the plate
due to membrane stretching, and work done by the loads.

Miyagawa et al. give the bifurcation point numerically:

P, =228 (5.5)

The present FEA work using load-deflection plot gives:

P, =25 (5.6)

In the experiment of Miyagawa et al., the four loading points were applied by flat roller
bearings which simulated “follower loads” to reduce the stretching forces along the plate.
The plate material experienced plastic yielding resulting in the experimental bifurcation

point of Miyagawa et al. lower than the numerical bifurcation point of Miyagawa et al.[3].

5.2.4 Lee and Hsu

Lee and Hsu determined the bifurcation point by finite difference methods[2]. The critical

value of corner force at bifurcation was determined by the displacement-load plot.
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Lee and Hsu give the bifurcation point:

— (12(1 — v?))7 a2 B
- = [wﬁpla =21 (5.7)

=

for the dimensionless corner force M.

The present FEA work using load-deflection plot gives:
M., =61 (5.8)

The difference between the result of Lee and Hsu and the FEA is mainly due to the
limited model of Lee and Hsu. The mesh used by Lee and Hsu in the finite difference
scheme was not dense enough to provide convergence of M,,.. No attempt was made to

calculate M, more precisely.
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Conclusions

Describing the surface of a square plate twisted by corner forces based on either dis-
placement or curvature values gives different results for the critical point. The load-
displacement plot determines the bifurcation point P.. The present FEA work gives
P, = 25. The Southwell plot based on curvature determines the critical Gaussian cur-
vature point Pk.. The present FEA work gives Pxo = 20.

The present FEA work gives the coefficient for the critical value of twist at the
centre of the plate C = 9.0 from the Southwell plot. This result compares well with the
experiment of Howell taking into account the low load levels Howell used to avoid plastic
yielding of the material. Southwell plots constructed from curvature data of load levels
less than Pk, will overpredict the calculated value of Pk, for initial deflections of the
plate centre between 0.001 < §,/h < 0.5.

The result of the present FEA work does not compare well with the analytical work of
Ramsey. Ramsey assumed Gaussian curvature to be uniform over the plate at bifurcation.
The present FEA work shows that the problem is highly nonlinear and Gaussian curvature
varies over the plate by an order of magnitude at Pk and P..

The applied forces in the present FEA work maintain their original orientation even
for large deflections. This will create significant tensile membrane stresses in the plate
for deflections much larger than the plate thickness. Further FEA investigation involving
“follower forces” which remain normal to the plate surface, and inclusion of nonlinear

material properties is recommended.
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