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ABSTRACT

The thesis studies dynamics and control of a two-link flexible manipulator, free to undergo

planar translational and slewing maneuvers, through numerical simulation. To begin with.

kinematics and kinetics of the system are investigeted, for a general N-link system undergoing

planar motion, leading to the nonlinear, nonautononious and coupled equations of motion.

obtained using the Lagrangian procedure. A parametric study follows to assess the influenc.e

of system variables on the dynamical response and particularly on the positioning error of the

payload. A joint based non-collocated algorithm, using the Feedback Linearization Technique

(FLT) that accounts for the complete nonlinear dynamics of the system. is proposed for the

tip control. The results are useful in the design of the ground based flexible, mobile servicing

systems which are gradually appearing on the industrial scene and are likely to be more common

in the future.
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Chapter 1

INTRODUCTION

1.1 Preliminary Remarks

The continuously evolving technology of robotic joint actuators coupled with the introduction

of direct drive systems have led to a rapid increase in speed and payload capacity of ground

based manipulators. As a result, the flexibility of previously considered rigid links have become

increasingly significant. Due to rigidity requirements, present generation of robotic manipula

tors [1], [2] are normally restricted in their load carrying capacity to approximately 5-10 % of

their own weight. For example. the Cincinatti-Milicron T3R3 robot weighs about 2000 Kg but

can carry a payload of only about 20 Kg. If a controller is designed to account for the:

• flexibility of the links:

• flexibility of the joint actuator systems;

• flexibility of the base structure of the manipulator;

• effects of gravity;

then, in principle, it may be possible to increase the payload/robot weight ratio as well as the

manipulator speed for a given mass and positioning requirements. There are other obvious

advantages in accounting for the manipulator’s flexible character:

• Cheaper drive components can be used since less power is required to move the lighter

structural components, assuming equivalent accelerations and payload capacity to the

rigid link design.
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• Safer operation in case of collision, since lighter components are used.

• Added weight reduction due to simpler actuator and structural design. This is a result

of the reduced power requirement. Now the direct drive actuators can easily be adapted

thereby eliminating the need for gears. This also results in reduced backlash and improved

actuator linearity.

• Increased structural compliance due to flexibility in the links. End effector compliance

is very important in standard pick and place maneuvers involving delicate assembly op

erations. Flexible links can provide this compliance in a very simple and cost effective

manner.

Suprising as it may seem, interest in the ground based mobile, flexible manipulators. ac

counting for the gravitational effects, is relatively recent and the associated literature rather

scarce. With this as background and the above mentioned benefits as motivation, a reasonably

general model of the ground based mobile flexible manipulator is considered for study to gaimi

some insight into its dynamical performance and control.

1.2 A Brief Review of the Relevant Literature

A challenge introduced by the flexibility consideration is so immense that, as pointed out before.

research in this area was initiated only in the past decade and the accumulated literature

is quite limited, particularly with respect to the ground based systems. This, of course, is

understandable as for most industrial applications, links and joints were essentially rigid; hence

flexibility was never an issue, at least for the intended objectives.

On the other hand, for space applications, where weight is always a major governing factor,

flexible structural members in the forms of solar panels, antennas and beams were introduced

relatively earlier. However, now the structures, such as the Canada Arm aboard the Space

Shuttle [3], operate in the microgravity environment with an entirely different class of problems.

Modi [4], Chan [5] and Mah [6] have reviewed this literature at a considerable length.
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Studies aimed at dynamics and control of ground based mobile, flexible. multi-link manip

ulators, accounting for gravity, are indeed rare. However, there have been some investigations

concerning tip control of a single flexible link [7], [8]. Almost all commercial robots use cob

cated control (the position sensor located at the joint actuator where the generalized force is

applied), as then it is easier to maintain stability of the controlled system. With noncolocated

position sensing, stable control is extremely difficult to chieve. In that sense Binford and Can

non’s contribution is noteworthy [9]. They successfully demonstrated tip-position control of a

single flexible link manipulator (fixed at one position, i.e. not mobile) using noncolocated (po

sition sensing at the tip rather than at the joints where generalized forces are applied) control

strategy.

Several different procedures have been studied to control single and multi-link manipulators.

They include: Linear Quadratic Regulator [LQR, [5]]; variable structure or sliding mode control

[10]; model following adaptive techniques [11]; ard pole placement, selftuning control [12]. In

most cases, their applications are limited to stationary manipulators in general, with two links

if rigid and a single link when flexible. R.ovner and Franklin [13] incorporated variation of

the payload mass in their formulatioi and applied a selftuning regulator approach to adaptive

control. of a flexible single link manipulator. Although accurate noncobocated tip control was

achieved it was found to be quite sensitive to modeling errors. Modeling and control of robots

with rigid links but elastic joints have also received some attention [14].

The thesis takes a small step in this neglected area of dynamics and control of earth-based

mobile flexible manipulators accounting for gravitational forces.

1.3 Scope of the Investigation

In general earth-based mobile, flexible, multilink manipulators, with flexible joints and sup

ported by a flexible base, present a formidable problem in dynamics and control. Rapid and

accurate control of the payload using non-colocated position sensing add to the challenge. The

thesis considers a simplified planar model of such a system to gain insight into the complicated
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dynamics involved, effect of parametric changes, and develop an effective control strategy.

To begin with a mobile manipulator, with an arbitrary number of Euler-Bernoulli beam-

type links and joints with torsional flexibility, supported by a. mobile flexible base is considered.

The manipulator carries an arbitrary point pay]oad, and is free to undergo translational as well

as slewing maneuvers in the vertical plane. The continuum system deformations, also in the

vertical plane, are discretized using admissible functions in conjunction with time dependent

generalized coordinates. The governing nonlinear, nonautonomous and coupled equations of

motion are obtained using the Lagrangian procedure.

As can be expected, the governing equations are not amenable to any closed-form solution. A

special case of two-link manipulator is considered and a numerical code written for its dynamical

analysis and control.

A parametric study follows to help appreciate the effects of system variables and slew maneu

vers on the dynamical response. It also suggests a need for control under critical combinations

of system parameters and initial conditions. Finally, a noncolocated control strategy is devel

oped for the payload trajectory tracking and its effectiveness is assessed over a range of slewiiig

time histories.

The thesis ends with some concluding comments and recommendations for possible extension

of the study.
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Chapter 2

FORMULATION OF THE PROBLEM

Most general purpose commercial robots, such as the one shown in Figure 2.1, have 4 - 6

degrees of freedom. Normally the base, joints and links are treated as rigid distributed mass

structures. In reality, this is an approximation. To make the positioning and tracking of the

payload accurate to within a prescribed tolerance, designers are required to considerably over

design the structural and drive components to make the end-tip position sufficienly predictable.

This results in a prohibitively excessive robot weight combined with meager payload capacity

and slow slewing response.

One approach to overcome these undesireable elements would be to reduce, significantly,

the total mass of each element but retain its structural integrity through an acceptable factor

of safety with respect to mechanical stresses based on maximum loads. This would result in a

lighter and faster manipulator. If the control strategies are modified to include the flexibility

effects of the links, the base and the joints in the dynamical equations, then the manipulator

can be made to position the payload as accurately as before.

With this as background, the development of the formulation starts with a mathematical

model for an earth based flexible, mobile, manipulator. The model aims at realistic measures

of time and effort, yet remains sufficiently comprehensive to capture essential features of the

system. Reference frames and generalised coordinates are selected to describe the state of the

system. Deformations of continuous flexible members are presented by discrete modal functions.

The kinetic and potential energy expressions are derived and the governing equations of motion

obtained using the Lagrangian procedure.
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2.1 System Model

Consider a mobile manipulator with an arbitrary number of Eulerian beam-type members,

interconnected to form an open chain geometry, carrying a point payload nip. The two-link

version of this general configuration is schematically presented in Figure 2.2. The joints J are

considered to have torsional rigidity as well as damping. Translation motion of the mobile base.

treated as a point mass, is also represented realistically through inclusion of the linear stiffness

and viscous damping. The system is free to undergo translational and slewing maneuvers as

well as link deformations in the vertical plane (plane of the paper).

The model is carefully selected so as to retain essential features of a robotic manipulator,

particularly with reference to the elastic character of the base, joints and links. The emphasis

is on the flexibility effects on the payload trajectory and its control.

2.2 Reference Frames, Generalized Coordinates and Maneuvers

The manipulator shown in Figure 2.2 is assigned local reference base coordinates and generalized

coordinates as described here in more detail.

The elasticit of the base and the mechanisms at the joints will affect the performance and

accuracy of the manipulator by permitting oscillations about the nominal specified slew angles.

As a result the base support flexibilities are modeled by straight linear springs and velocity

(viscous) dampers. The position of the base C.M., and hence joint 1, is located w.r.t. and

projected onto the inertial reference frame F0 by the vector whose x and y components are

defined by p and p.

The joint flexibility is modeled by a linear torsional spring with a velocity damper. Flexible

rotations of the links are described by the joint angle, 8, and the specified rotations designated

as, j, where i is the link number; cr,, the angle that the local reference frame F, associated

with the link i, makes with the previous reference frame F2_1, in this case about the Z_1 axis;

and /3 is the specified slew at the joint i measured between the link i and the X_1 axis at the

7



Figure 2.2: A schematic diagram of the mobile, flexible two-link manipulator.
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location of the joint i. The actual joint angle at i is 8 and is measured the same way as the t3

with definitions as follows:

=

= 62+cl;

where is the angle of link 1 at the tip of link 1 measured in the local frame F1. For the

Lagrangian formulation the generalized coordinates are 81, 82, p, and Py.

The links are assumed to be Euler-Bernoulli beams and their deformations are modeled by

spatial modal functions together with time dependent generalized coordinates,

t) = Ø1(x)6(t).

where k, represents the th mode for the ii” link while 5j3 (I) is the j generalized coordinate

associated with the th link. n is the number of modes used in the discretization process.

Theoretically, the summation should extend to infinity, however, in practice only a small number

of modes are generally used, depending upon the situation. In fact, in the reported literature,

most investigators consider the effect of only the first mode since it normally dominates the

response.

As can be expected, for rapid convergence to the true response, the selected modal functions

jj(x) should satisfy all geometric and natural boundary conditions. This, of course, is often

difficult and for complex structures virtually impossible. Fortunately, the modes satisfying the

following conditions do present an acceptable set [14], [15], [16], [17] of admissible functions as:

• they are able to describe any link profile;

• they are differentiable over the system domain and to the degree of the differential equa

tions modeling the dynamics;

• they satisfy at least the geometric boundary conditions of the slope and deflection at the

ends of the link.

9



In general. functions that satisfy the above conditions are orthogonal with respect to one an

other. This property may be used to advantage in deriving the equations of motion. This is

illustrated in the following secion.

2.3 Natural Modes of a Bar in Bending Vibration

2.3.1 Modal functions

The translating flexible manipulator under consideration has infinite degrees of freedom. The

method of assumed modes effectively transforms the governing partial differential equations

into a set of ordinary differential equations. The choice of available modal functions is also

large. Modes for beams with various combinations of end conditions are possible caiiclidates.

One might consider the use of unconstrained modes incorporating time varying boundary con

ditions [7]. In this study, to minimize the complexity, cantilever modes of an Eulerian beam

are used as admissible functions for the manipulator links. The effects of rotary inertia and

shear deformation, which become significant for large deflecions and high frequencies [141. are

neglected here. For a cantilever beam with free end (no tip-mass),

02
(El

02y(x,t)’\
— dy(x,t)

(x)
8z2 ,i —m(a

where:

El (x) = flexural ridgidity of the beam

m(x) = mass per unit length at any point x;

y(x,t) = transverse displacement solution subject to given bounday conditions

reflecting the manner in which the ends are supported.

If the beam is assumed uniform, LI is a constant and the governing differential equation reduces

to

02y 204y+a —i=O,

10



where

2 El
a = —

m

For a simple cantilever beam, the boundary conditions are zero displacement and slope at the

fixed end and zero shear force and moment at the free end. More specifically:

dyy(O)=O; I=o=O;

d2y d3y
!x=L0 xLO

The equation of motion can now be solved by the method of separation of variables. y =

(x).6(t). where (x) depends only on the spatial coordinate x and 6 (t) depends only on time.

The new set of equations to be solved has the form:

and

where:

.2 ,2
[34 — m4

El 2

The general solution to these equations is given by:

(x) = Cjsint3x+C2cos8x+C3sinh5x+C4coshi3x

6(t) = C5sint ±C6coswt

Now the modal function 0(x) has the form

sin 131 + sinh 31
(x) = (sin 3z — sinh i3x)

— cos 31 + cosh/31
(cos /3x — cosh 3x),

where

cos3lcoshi3l = —1

Here:

—

— El a2’
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2 El
a = —;

in

El = flexural rigidity of the beam

m. = mass of the beam per unit length

= circular frequency

1 = length of the beam

The transcendental characteristic equation yields infinite set of eigenvalues Inserting these

values into the equation for (x) gives the desired modes. which are orthogonal and self-adjoiiit.

The presence of a payload at the tip of the terminal arm would introduce shear bouiidarv

condition. The characteristic frequency equation now modifies to

cosi3lcosh 3i + I !id (sin /3lcosh dl — cosj3lsinh :31),
in

with the form of the modal function (x) remaining the same as before. The first six roots of

the new characteristic equation are summarized in the table below for four payload conditions:

0 1 2 5

(3i) 1.88 1.25 1.08 0.87

(/31)2 4.70 4.03 3.98 3.95

(,8l)3 7.86 7.13 7.10 7.08

(/31)4 11.0 10.3 10.2 10.2

(/31)5 14.1 13.4 13.4 13.3

(/31)6 17.3 16.5 16.5 16.5

2.3.2 Modal integrals

The modal integrals are associated with the kinetic and potential energy evaluation of the

system. They represent integration of dynamical quantities over the system domain. As pointed

out before, orthogonal character of the modes simplify calculation of the energies and hence

derivation of the equations of motion.
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The modal integrals are defined as follows:

=
fij(x)m(x)dx;

= f j(x)dm = jj(x)m(x)dx;

Xij
=

xm(x)dx;

Dij = (EI)j (d2&x)2dx

Normalizing with respect to the length of the beam (i.e. length of the manipulator arm) gives:

=

=

4Xij =

(EI)
4Dij

= 2l

where:

i = link number

j = mode number;

x = lx’;

dx = ldx’;

x

O x’ <1;

m (x) = rn = uniformly distributed mass of the link i;

M = total mass of the link i;

=
j

(x’) dx’;

=

j
dj (x’) dx’;

=

j
x’q (x’) dx’;
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= — (kl) j ((sin (kl) x’ + sinh (kl) x’) + c (cos (kl)3 x’ + cosh (kl) ‘)) di’:

— sin (kl)3 + sinh (k1)

— cos(kl)3+cosh(kl)

These norrnlized integrals may be evaluated by numerical integration and may be used for a

manipulator link with constant flexural rigidity and mass distribution along its length. Values of

the integrals as affected by the number of modes used in the discretization process, for in = 0,

are summarized in the table below:

No. of MODES MODAL INTEGRALS

4
/ F F

ij Sj Xj D23

1 0.78299 1.00000 0.568830 12.3620

2 0.43393 1.00000 0.090762 485.510

3 0.25442 1.00000 0.032425 3806.30

4 0.18172 1.00000 0.016450 14606.0

5 0.14147 1.00000 0.009985 39956.0

6 0.11569 1.00000 0.006669 89096.0

Note, the integrals involving products of different modes are not presented here as they

vanish due to the orthogonality condition. However, this is not always true for ni 0 because

the modal functions for a cantilever beam with tip mass are not necessarily orthogonal.

2.4 Kinematics

To derive the governing equations of motion it is necessary to evaluate the kinetic and potential

energies of the system. For this we require the position and velocity vectors for the elemental

mass, drn1, in Link i.

The fundamental kinematic expressions for displacement and velocity are developed in this

section. Two approaches are reviewed to aid in choosing a technique best suited for the intended

purpose. The first approach utilizes homogeneous transformation matricese [18), [19] to obtain

14



the position and velocity of dm with respect to and projected onto the inertial reference frame.

The second approach [5], [6] employs vector methods to arrive at the same end result. By

direct experimentation, it became appearant that for simpler systems such as the present two

link manipulator, derivation of the equations of motion is considerably easier through the use

of homogeneous transformation matrices. This is because the vector method creates a large

number of redundant terms which eventually cancel out in the final set of the differential

equations. However, it should be noted that the vector method provides a relatively simpler

form of the equations of motion for a general system of N flexible links that are mobile and

operate under the influence of gravity.

The various reference frames, and generalized coordinates are selected to specify orientation

of the system as shown in Figures 2.2 and 2.3. Note, the two diagrams are similar except

that the latter is a bit simpler; and while using the homogeneous transformations the local

coordinate vector is changed to 5. The various reference coordinate systems F0, F1. F2 aiid

F3 are local frames describing the kinematic specifications of the elemental mass segments of

each link with respect to (w.r.t.) and projected onto the respective local frame. F0 is the base

or inertial reference frame. F1 represents the local coordinate frame for link 1 whose origin is

coincident with the C.M. of the mobile base as well as the centroid of joint 1, and is fixed to

link 1 so that the Link is aligned with the X1-axis of the local frame. F2 is the local coordinate

frame for link 2 with the origin coincident with the centroid of joint 2 and the same conditions

apply as for the previous link. F3 is the local coordinate frame for the payload mass M, which

is considered to be a point (i.e. negligible rotational inertia). In the local coordinate frame the

position vector fl locates the mass element dm which is defined in terms of its components

1T= [xj,yj]

Note that the choice of reference coordinate frames located at the joints facilitates the use of

cantilever modal functions. This makes the derivation and computation simpler.

Since the X axis is aligned with the rigid body neutral axis of the link, the transverse

15
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deflection and rotation of a mass element drn in the link are defined as:

y(x,t) =

cj2(xj,t) = = Ej(x)bjj(t)

As an example, joint. 2, located at the tip of link 1, is displaced by an amount y1 and rotated

through a11 w.r.t. the frame F1.

Before determining the kinetic and potential energies, the displacement and velocity of the

elemental mass dm must be established w.r.t. the inertial reference frame F0. The displacement

of dm, is first determined w.r.t. and projected onto the local frame, by the vector . Through

a series of homogeneous transformations (i.e. H01), it is transferred to the inertia) frame. The

position vector of the mass element dm1 on the link i with respect to the inertial frame is given

byi.

where:

H0,1= ( R0,1 p.1

0 0 1)

R0, = rotation matrix (3 x 3) for the transformation from the local frame F3 to the

inertial frame F2

= position vector to the origin of the local frame F w.r.t. the

inertial frame.

Determination of the transformation matrix H0,3 is accomplished by postmultiplying the local

transformation matrices, H3_1,,, in the consecutive order from the inertial frame to the frame

F2 in question. The position vectors to the mass element drn3 are defined as follows:

Cl —S1 0 p

—
— S1 C1 0 p, Yi

= Ho,1p1 =

0 0 1 0 0

0 001 1

17



C1 —Si 0 p C2 —S2 0 ‘1

-.
— S1 Ci 0 py 52 C2 0 Y11 Yi

r2 =H0jH1,2p2=

0 0 10 0 0 10 0

0 0 01 0 0 01

where:

i = link or reference frame number

cosc

= sinaj

= length of link i

= = =

xi = distance along the link i (or the X-axis) from joint i

yj(zj) = transverse deflection of link i at position x

Inserting tile required variables, differentiating w.r.t. time and multiplying the appropriate

matrix elements, the absolute velocities are obtained for the mass elements din1, din2, as well

as lnp:

—x191S1
— thS-1 — yj61C’ ±j32-

-. x18C1 + yiC’i — Y16151 +J)y
TI =

0

0

— Y2512 —y2à12C12 —11Ô1S1
— Si —y11Ô1C1+

x212C12 +‘2C’i2
— Y212SI2 +1161S1 —

—
y11Ô1S1 + j

r2

0

0
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2— Y12 )S12 Y12 2 — 1161 SI — 51 — yi1 61 C1 + j3

+(12ã12 + 12)C12 — yj2à12S12 + 116151 — 11C1 —y1261S1 + ,
Tp =

0

0

In the next section the use of vector method is demonstrated to identify its strength and

wealnesses. Although it is a somewhat complex approach on one hand, it also offers some

intuitive insight into the various kinematic terms contributing to the overall system equations.

For the present study of the moving two link manipulator. homogeneous transformations are

used directly, on a term by term basis. as it is far more efficient.

2.5 Kinetics

Alternatively, in the vector form, the generalized position and velocity of the elemental mass

dm in an open chain of coordinate systems may be presented as:

=

=

It should be noted that all the above vector variables must be projected onto the inertial

reference frame F0. This implies that all vectors stated in terms of the local reference frame F

must be transformed by a series of consecutive rotational transformation matrices. Consider

Figure 2.4 for a representation of the open chain of coordinate systems with flexible links.

With the position and velocity of each elemental mass dm determined, the kinetic energy T

and potential energy U of the system can be derived by integrating over the total mass M of

the system as a whole.

The kinetic energy [20], [21] for the mobile flexible manipulator can be represented as:

T
= 21M

= 2JM,2
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Figure 2.4: Schematic of the open chain of coordinate systems representing infinitessmal flexible
mass elements dm in the local and the inertial reference coordinate frames

N

N1
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=

=

x)•15Jdin2

= TCMT+TCMR+TMv+THH

where:

‘7-’ 1 N r - -

ICMT = i= JM 7)2 7)jU?flj

= total translational K.E. of the C.M. of the system;

TCMR = f1(’ x 5) (c x )din,

= 1

= total rotational K.E. of the C.M. of the system w.r.t. the local frames;

‘p N
‘MV = Jji, P P

= total K.E. w.r.t. the local frames;

THH =

= angular momenta terms for the system:

I = instantaneous inertia matrix w.r.t. the local frames.

The kinetic energy TCMT describes a nominal value associated with the C.M. of each frame w.r.t.

and p.o.t. the inertial frame. The energy TCMR is the rotational kinetic energy associated with

the instantaneous inertia measured in each frame. Kinetic energy arising from modal vibration

in the flexible links is described by TMV. Energy THH represents the coupling between the

various degrees of freedom within the manipulator system as a whole.

it should be noted that, when evaluating T for the Lagrangian procedure, all vector pa

raineters must ultimately be projected onto the inertial frame F0 through a series of rotational

transformations. The vector method offers good intuitive insight into the nature of the various

contributors to the total kinetic energy. However, it is more labour intensive compared to the

homogeneous transformation procedure. It leads to numerous redundant cross-terms in the
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differential equations of motion which ultimately cancel. Hence the homogeneous transform

method was used to derive the kinetic energy for the specific case in study (Appendix A). How

ever, in the following sections vector method is used to determine the form of the generalized

equations of motion for an open chain of N flexible links.

2.5.1 Kinetic Energy for the N-Link System

The nature of the vector method and its extension to a multi-degree of freedom system of

links is demonstrated in this section. The expression obtained iii the previous section for the

kinetic energy, T, can be further transformed into a general expression for an N link manipulator

system as follows:

T
= 2JM

=

=

=

+( .
(c x fli) + ( x ) jdm.

If the local frame mass element position vector is changed from to ( to indicate that the

body being integrated over is a flexible cantilever beam, then the kinetic energy expression

takes the following form;
N

T=T1;

=

+ + J çxdm1+
2 IM cdmi]

This can be rewritten in pure summation form by making the following substitutions:

O,i = 1 + 2 + + j;
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= R0,0 + R0,1+ +R0,1;

= ao+a1+a2+•+a1;

= + R0,1 + R02a+ . . . +

=

j=1

where:

Ro•o = Identity matrix I

R0,1 = Rotation transformation matrix from the inertial frame to the local link frame. i

= Position vector describing the origin of the frame i w.r.t. and p.o.t.

the previous frame i — 1 in the chain

= Position vector describing the origin of the frame i w.r.t. the previous frame

but p.o.t. the inertial frame

= Position vector of the origin of frame i w.r.t. and p.o.t. the inertial frame

= The position vector of the elemental mass dm, w.r.t and p.o.t. local frame i

= The position vector of the elemental mass dm w.r.t. and p.o.t. the

inertial frame

= Angular velocity vector of frame i w.r.t. and p.o.t. the previous local

frame i — 1;

= Angular velocity vector of frame i w.r.t. and p.o.t. the inertial frame.

The total kinetic energy of the system then becomes:

T =

i=1 i=1 j=1 j=1

N

[roi_i_i.
+

Ro,1J
‘ui)]
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[()T

()]
• Ro,1f +

Carrying out the required algebraic manipulations the generalized kinetic energy equation can

be further reduced to the following form:

T= !T [ivw+22]+ {I:+2L +3]

where:

in1

rv1 —

inN

Global rigid body mass matrix for the total system;

N
N

t=1 i t=2 1 11

i
= i=2’i :=2’i Ifl

Ill In •.. In

= Global rigid body inertia matrix for the total system

+ +R0,_1xR0,11_1t

Ei=2Ro,1_1L1xR0,0a1+ +

+R0,11_14111xR0,_111

= A time dependent inertia vector
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Ro,_121

R0,_12n

Global momentum vector

i=2 RQ_j3)

[ R0,1_

Global angular momentum vector

Ito,0

R0,12
v=

I’

Ro,nj

Global velocity vector for local reference frames

R0,p42
L) = •

Global angular velocity vector for local reference frames
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= IM, cdm

2i
= fM’

=

4j
= J drn

= j dm;
M1

= Instantaneous inertia matrix of the link subsystem i w.r.t. the

local reference frame i

In the global kinetic energy equation, T, the bracketted part of the first expression contains tlw

linear momentum terms. The bracketted part in the second expression contains the angular

inomentnuin terms. The third expression contains the kinetic energies as measured in the local

reference frames.

2.6 Potential Energy

The following three sources are the sole contributors to the potential energy of the u1oi)il

flexible two link system:

• gravitational field

• strain energy of the flexible links

• linear elastic strain energy of the joints

resulting in:

U=UG±UL+UJ.

The gravitational potential energy for the twolink flexible manipulator is given by

=

where

= gravitational acceleration;

= position vector of the element mass dm1 w.r.t. the inertial frame.
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The strain energy due to bending is given by

- UL = j(EI)(4)2dx

where:

(EI) = bending stiffness of the link i

= curvature of the link i

The potential energy stored within the flexible joints is

Uj = kC132_8)2

where:

k, = torsional stiffness of the joint i

= specified slew angle of the joint i

= response argle at joint i.

Details of the potential energy expressions are given in Appendix B.

2.6.1 Potential Energy for the N-Link System

The required potential energy terms tG, 1L Uj clescibed above can be generalized to N links

utilizing the orthogonality properties of the modal functions:

U0 =

—

J jdm

= —•R0_1 mj + R_1,11
j=i

UL
=

=

Uj
=
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where:

i11 i12 ‘I13 4i1rn

K1
(P21 4i22 i23 i2m

em1 irn2 4:m3

= Global stiffness matrix in bending associated with link i

6i1

6i2

=

6777,

= Global generalized coordinate vector associated with link i

ijk j(EI)1(x)(x)dx;

= generalized coordinate associated with the jth mode of link i ; i = 1, ..., m

= spatial admissible function associated with mode j of link i

l. — ô2k (x)
413(x)

— Ox2

= gravitational acceleration field vector;
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= total mass of link associated with local frame j

torsional spring rate of joint i

(i3,
—

6) = angular deflection between the joint i and link i, and is dependent on joint stiffness.

The remaining parameters were defined in the previous sections.

2.7 Governing Equations of Motion

The nonlinear differential equations of motion for the mobile two-link flexible manipulator were

derived using the Lagrange equation,

d IOT’\ ÔT öU
— -——- ) —

— + — = Qkdt \ aqk J dqk dqk

where k = l,...,nq ; T arid U are the total kinetic and potential energies, respectively qk and

Q k are the generalized coordinates and the generalized forces, respectively; and flq is the total

number of generalized coordinates.

Specifically, the generalized coordinates are defined as follows:

p = x-comnponent of the base position vector

py = y-component of base position vector ;

= joint angle of link 1;

= joint angle of link 2

s1j = generalized coordinate associated with the th mode of link 1,

wherej=l rn;

= generalized coordinate associated with the jt1 mode of link 2,

wherej=l m.
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The specified time varying slewing coordinates are:

= mobile base translation vector

= slew angle at joint 1;

= slew angle at joint 2.

The governing equations of motion may be written as:

d /OT\ T 0(1
—j-)—--+---- =Q,;d oqj oqk oqk

fD+fTD-fT+h’ =

=

= Q

Here D is the symmetric positive definite time varying inertia matrix for the system: and c
represents the non-linear vector containing all the cross influence force terms that are generally

associated with centripetal and coriolis accelerations. They are functions of velocity and not

acceleration of the generalized coordinate vector denotes the generalized force vector

containing the input joint control torque values. For the generalized modal coordinates the

associated generalized forces in the vector must be equal to zero since it is assumed that

the individual modes of each link cannot be controlled externally. A summary of the nonlinear

differential equations is presented in Appendix C.

2.7.1 Equations of Motion for the N-Link System

The kinetic and potential energy expressions for a general system with N flexible links were

presented earlier:

T =

=
N

+ R;_1A1]+
N

+
N

— 9)2
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Using the Lagrangian procedure, the governing equations of motion can be obtained, as shown

before, from the following equation:

d IOT\ ÔT OU
) —

+ =
at \oqk I oqk oqk

where T and U are the global kinetic and potential energies of the system; with qi and Qk as

the generalized coordinates (i.e. joint angles, flexural modes) and the associated generalized

forces (i.e. forces, torques). Making a substitution for the bracketted expressions to simplify

the equations gives:

where

fr1 = M+22;

b2 =

Performing the required algebra leads to the generalized equations of motion for the exible

iV-linld system:

1 (d (ôcT’\
- —T I d (o \ o

Qk =
-

b + V

j-- -

(d (&T’\ aT\
— —T (d (2” 0b2

+1—1-----i-—————,b2+w iIi—di \ ôqk / 8qk) di 9q/ dq

0T. rô •T0b2
+ b1 + ——b2+ v +
‘9qk l9qk l9qk Oqk
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+TK1)
[ORti;t_i

(i7nk+Li)

+R0,1(+]+k°’

This can be further expanded and then simplified into the more recognizable form. FOr

the present, it is sufficient to say that since all the terms are clearly defined, an algebraic

algorithm may be formulated for the N-link. flexible, mobile manipulator. This algorithm may

then be integrated with a symbolic algebraic manipulation software. such as MATHCAD or

MATHEMATICA [22], to automatically produce the complete system of differential equations.

which can be numerically solved with graphical output through a single command operation.
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Chapter 3

DYNAMICAL RESPONSE

The dynamic equations of motion derived in the previous chapter are nonlinear, nonau

tonomous, and coupled. They are not amenable to any known closed form solutions without

considerable simplification. To retain the subtleties of the response characteristics, the equa

tions are integrated numerically over a range of system parameters and prescribed maneuvers.

3.1 The Numerical Approach

The numerical code is in VS FORTAN77 language and is so written as to isolate the effects of

various system parameters such as the number of modes used, inertia and flexibility properties

of the links, end-tip trajectory tracking, maneuvers, etc. The numerical solution is obtained

using the IMSL Version.lO [37] differential equation solver subroutine called DIVPAG and the

MTS(; system subroutine GEARB. Both subroutines utilize Gear’s method [36] to solve initial

value problems of ordinary differential equations with greatly varying time constants (i.e. stiff

systems). DIVPAG appears to be a relatively slower program with limited capability. On the

other hand, the GEARB routine is more versatile and can tackle more difficult situations while

giving reliable results. For the mobile flexible two-link manipulator under study, the structural

frequencies are in the range of 0.5-100 Hz depending upon the link and joint parameters as well

as the number of modes used.

A flow chart for the translating flexible two-link manipulator simulation code is presented

in Figure 3.5.
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3.2 Definition of the Program Variables

The following is a summary of the program state variables, output data variables, and their

corresponding symbolic notations. This list should be referred to in conjunction with the

simulation plots that follow:

BETA 1 = = specified joint angle for link 1

THETA1 = 0 = joint angle response for link I

BETA2 = 132 = specified joint angle for link 2

THETA2 = 62 = joint angle response for link 2

BP3 = ,‘3 = specified position vector for the manipulator tip or payload w.r.t.

the inertial frame

P3 = J3 = position vector to the manipulator tip (payload) w.r.t. the inertial frame

BP3X = ‘3Px = X-component of /33

P3X p3 = X-component of3

BP3Y = ;3 = Y-component of 3

P3Y = p Y-cornponent of3

BPX = ‘3Z’ = X-component of the specified base (joint 1) position vector in

the inertial frame

PX = = X-component of the base (joint 1) position vector response in

the inertial frame

BPY = = Y-component of the specified base (joint 1) position vector in

the inertial frame

PY = py = Y-component of the base (joint 1) position vector response in

the inertial frame

DLi (j) = 6jj = generalized co-ordinate associated with the mode j of the link i.
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3.3 Numerical Data used in the Simulation

As a first step many simulation runs were carried out with different parameters and under vary

ing slewing conditions until an average parametric configuration was established about which

certain parameters can be varied so that the differences in the resultant response characteristics

may be observed.

In the following simulation. the physical system that is modelled is constructed from 0.O5mx

0.05m x 5.Om long square aluminum links. When not specified explicitly, the link cross-section

and mass distribution are considered uniform, with the joints assumed massless. The payload

is considered as a point mass.

The following parameter values represent the nominal configuration mentioned above:

(El)1 = 3.0 x i04

(El)2 = 3.0 x

= 20.0

= 20.0

11 =5.0

12 =5.0

mB = 00.0

= 00.0

k =1.0x104

k =1.0x104

K1 = 1.0 x i04

k2 =1.0x104

C2, =1.0

C3, =1.0

c1 =1.0x104

C2 =1.0x104

[iv . 7fl2]

[N in2]

[Kg]

[Kg]

[in)

[in]

[Kg]

[Kg]

[N
I
[N
I
[N.,i
j rod

[ rod

[N
I ?fl/S

IN
I7

lrad/s
[N.m
I rod/s

= flexural stiffness of link 1

= flexural stiffness of link 2

= total mass of link 1

= total mass of link 2

= total lenght of link 1

= total lenght of link 2

= total mass of the manipulator base

= total mass of the manipulator payload

= stiffness of the base in the x-direction

= stiffness of the base in the y-direction

= stiffness of joint 1

= stiffness of joint 2

= damping constant in the x-direction

= damping constant in the y-direction

= damping constant of joint I

= damping constant of joint 2.
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g = 0.0 gravitational acceleration.

X0 (i) starting specified inertial X-coordinate of slew trajectory at the manipulator tip, 6.9m

Y0 (i) = starting specified inertial Y-coordinate of slew trajectory at the manipulator tip, 6.9m

X0 (f)= final specified inertial X-coordinate of slew trajectory at the manipulator tip, 6.9iii

Yo (f) = final specified inertial Y-coordinate of slew trajectory at the manipulator tip, 6.9m

T8 = total specified excursion time of slew trajectory at a constant velocity

Nm = number of modes used in the simulation to estimate flexural dynamics of the links, 2

In the initial simulation runs, most of these values were kept constant. The parameters with

different values are identified in the captions under the plots.

3.4 Simulation Results and Analysis: Tip Trajectory Tracking

For a planned system simulation with a wide variation in parameter values and initial conditions

would result in, literally, enormous amount of information. Therefore, a more concise yet

rational approach is adopted. Only the typical results useful in establishing trends are presented

here.

The following group of simulation response plots are intended to establish characteristics of

the time dependent variables in terms of the manipulator tip and joint trajectory tracking for

the basic parametric configuration mentioned above. Information concerning the effect of the

number of modes used in the simulation model is also explored.

In the following example, the manipulator payload, i.e. the end effector (tip of link 2),

is required to follow a prescribed trajectory. The trajectory is taken to be a straight line

and the payload as well as the base mass are considered zero. The tip starts at the global

coordinate [Xo (i) Yo (i) 0] and is required to follow a straight line at a constant velocity to

reach the global coordinates [X0 (f) . V0 (f) 0 J in precisely seconds. The manipulator base

is required to be stationary at the origin.
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Kinematicaliy, the global slewing coordinates of the manipulator are calculated in prescribed

increments of the distance, at each time-step, along the slew trajectory, in global coordinates.

Using the inverse kinematic equations of the manipulator, the joint angles are calculated at

each time-step and are used to provide the joint control torques, Q, Q, Qe1 and Q2, via

the following PD type control equations:

= (/3—p)k+ (&_i3)c

= (/3—p],)k+ (/v—Jy)’

Qe1 = (i3 — 9)k1 + ( — 6]) c1:

Qe2 = (i32—62)k2+(i2_Ô2)c2

The torques are then used to drive the system equations which, when solved numerically, yield

generalized coordinate solutions for the time interval in question. For each simulation run,

there are 4 frames within each group. and they are identified by the suffix letters (A). (B), ((‘)

and (D).

The data used in the first simulation run are specified in Figures 3.6, 3.7. 3.8. Figure

numbers with suffix letter (A) represent time strobed figures of the manipulator at specific time

intervals (Figure 3.6). The slew trajectory is shown as the solid line while the actual path of

the end tip is indicated by the dashed line. The simulation time interval T3 is set to 4 seconds

so that the lead or lag of the tip relative to the desired trajectory can be clearly observed.

Figure numbers with suffix letter (B) represent the slew trajectory superimposed onto the

actual end-tip path vs time, but separated into the X and Y components in global coordinates

as shown in Figure 3.7.

Figure numbers with suffix (C) represent the slew joint angles superimposed onto the actual

joint angle trajectories vs time, plotted for each joint. The slew angles are calculated from the

inverse kinematic relations mentioned before which in turn are based on the required slew

trajectory of the manipulator tip in global coordinates.
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The top two plots of figure numbers with suffix (D) represent the slew trajectory superim

posed onto the actual path or motion of the base but separated into the X and Y components

in global coordinates as indicated on the plots (Figure 3.9). The bottom two plots of the same

figure represents the generalised modal coordinates vs time. Each graph represents the super

position of the same modal coordinate from each link, so that the dynamic coupling may be

easier to observe.

This first run can be perceived as basic test of the dynamic response of the flexible 2 link

manipulator without payload. The traverse time from start to finish, from [6.9, 6.9, 0.0] to [1.0,

1.0. 0.0] is 4 seconds at a constant velocity. There is no ramping of speed at either ends leading

to lag at the start and overshoot at the end (Figure 3.6). This is mostly due to the phase

mismatching between the two joint angles. Note. the maximum deviation of the tip occurs

at the start of the slew maneuver. This is due to the fact that the joint 2 slew rate is twice

that of joint 1. Link 2 also has an advantage of greater effective inertial leverage over link 1.

The manipulator tip then settles into the slew trajectory with progressively smal]er oscillations

about the norm. This is due to the viscous damping at the joints and the base. Since the slew

rate is relatively small, the overshoot and excursion at the end are essential]y negligible. The

starting excursion of the tip can be more clearly seen in Figure 3.7.

Figure 3.8 shows that eventhough the manipulator tip may deviate from the required tra

jectory, the joint angles follow the commanded profile quite closely. This is the first hint of the

problem involved in controlling the tip by judicious application of the joint torques.

In the next two sets of simulation runs all conditions are maintained the same as before

but the traverse period is reduced to 2 and 1 second respectively (Figures 3.10, 3.11, 3.12, 3.13

and Figures 3.14, 3.15, 3.16, 3.17). As expected, an increase in the slew velocity by two fold

increases the tip excursions significantly.

With the I second traverse period the tip excursions become very large. Even the joint

angles are starting to show significant departure from the calculated slewing angles. Obviously,

a sophisticated control strategy would be required to maintain the desired trajectory.
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Figure 3.6: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(6.9, 6.9, O)m to (1, 1, O)m in 4s.

40



C
-

- I
7

//
F

- o

/7 C
I I I I I ó

C C Qa CD C1 0

-

4 I

/
/

I -/2
1’

I I I I I C
o o 0 0 0 0o CD 0

Figure 3.7: (B): Comparison between specified and and actual (p and p3k) position
of the manipulator tip during a straightline tip maneuver from the inertial coordinate (6.9, 6.9,
O)m to (1, 1, O)m in 4s.

41



0
C-)

- CD
- -

Cs2
I,

‘ I
II / -

I I
II /

1/ -

C2

cz

/ -

_CD
‘4 0
r

_______________________ _______________

0
I I 1 — a

c\ 0 CD
o o a c d

I I
-c

-\\ -

ci.

SE
\\\

C% C%

‘ I -aI I
I I
I I

______________________

0
I I I I — ó

0 C’ CD CD 0
— a a

Figure 3.8: (C): Comparison between specified (3 and /32) and actual (9 and 82) position of
the joint ang’es during a straightline tip maneuver from the inertial coordinate (6.9, 6.9, O)m
to (1, 1, O)m in 4s.

42



o
(D O

-
—

.
(D

(D
q

,
—

—
•

(D

o
o ;

,-
o -S

-$

.
-
.
O

.
. (
D

j.
0
-

—

clq

0
-

C
l)

(
D

(D
O

-S
—

.-
.

0
.1

2
-

0
.0

8
-

0
.0

4
-

0
.0

0
AA

ñAf
lAR

A
A

n
A

A.

0.
12

-

0.
08

-

0.
04

-

0
.0

0
-

—
0.

04

—
0.

08

-
FJy\

j\,/yy
yyyy

yl
0.

0
I

I

0
.8

1.
6

TI
M

E
,

sI
I

I

2.
4

3.
2

4.
0

‘w
.v

.i
’1

y
4v
’
I
v

v
—

0.
04

—
0.

08

0
.2

4

0
.1

6

0
.0

8

(x
H

F
’

0.
00

—
0.

08

—
0.

16

6
1

2
,mI

6
2

2
1

J

I
I

I

0.
0

0.
8

1.
6

2.
4

3.
2

4
.0

T
IM

E
,s

0
.1

5
-

0
.1

0
-

ã2
1

,
m

]

0.
05

0
.0

0

—
0.

05

—
0.

10

0.
0

0.
8

1.
6

2
.4

3.
2

4
.0

TI
M

E
.

s

.
I

—
I

I
I

I

0.
0

0.
8

1.
8

2
.4

3.
2

4.
0

T
JM

E
,s

3
.9

0



C

Figure 3.10: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(6.9, 6.9, 0)m to (1, 1, 0)m in 2s.
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Figure 3.14: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from’ the inertial coordinate
(6.9, 6.9, O)m to (1, 1, O)m in Is.
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Figure 3.17: (D): Comparison between specified (j3 and /3) and actual (p and py) position of

the joint angles as well as the flexible generalized coordinated during a straightline tip maneuver
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Keeping all the parameters constant, the above simulations were repeated but with the

direction of the translational maneuver reversed: the manipulator tip moving from (1.0.1.0)

to (6.9, 6.9)m. The traverse time is 4 seconds. Note, the manipulator tip trajectory signature

is quite different (Figures 3.18, 3.19, 3.20, and 3.21). The main feature appears to be the

dominance of low frequency excursions which are further emphasized in Figures 3.23, 3.24, and

3.25 where the maneuver time is reduced to 2s. Again it is evident that a more sophisticated

control strategy is required to achieve the desired performance.

Response results were also obtained by systematically varying the trajectory length, orien

tation, speed and direction. In general, they showed similar trends with the main conclusion

as above. With an increasing speed of maneuvers, a sophisticated control procedure will 1w

required to track the trajectory precisely.
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using two modes for each link, during a straightline tip maneuver from the inertial coordinate
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Figure 3.22: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(1, 1, O)rn to (6.9, 6.9, O)m in 2s.
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Chapter 4

CONTROLLED DYNAMICAL RESPONSE

4.1 Preliminary Remarks

A relatively general formulation for studying the behaviour of a mobile two link manipulator

was presented earlier in Chapter 2. Its dynamical response characteristics were studied during

tracking of a straight line trajectory at predetermined speeds using the classical colocated

proportional-derivative (PD) linear feedback technique applied to the rigid body generalized

coordinates. The results suggested a need for a more effective control procedure that would

account for the system nonlinearity and coupling better. The next logical step would be to

implement a nonlinear control on the system.

One approach to the problem would be application of the sliding mode proceedure [23]

If the right hand side of a differential equation is discontinuous around a hypersurface and if

the trajectory of the solution points toward the discontinuity, then it is reasonable that the

trajectory eventually slides along the hypersurface. Control laws can be derived that will force

the manipulator to follow a specified trajectory defined by these surfaces. This is accomplished

by an optimal choice of sliding surfaces. A major problem with this approach pertains to

unmodelled dynamics which usually results in high frequency oscillations of the manipulator

as it slides along the surface. This is a direct consequence of the switching nature of the

controller. Furthermore, the manipulator joints are subjected to high reversing torque impulses

which are required for this method to work properly. This is not always practical with many

electro-mechanical actuators. Some researchers have improved the controller performance using

a filtering process with a high bandwidth for the sliding variable [24] [25]. In an alternate

approach, the sliding mode approach is incorporated into an adaptive PD feedback controller
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leading to the zero velocity error. The sliding mode controller elliminates the nonzero position

errors.

Of course, as is often done, one may proceed to linearize the governing equations.This is

accomplished by considering an incrementa] deviation of the state vector from its operating

point at each sampled instant of time. The equations of motion are modified to reflect this

change. Re-arranging, one has two sets of equations:

• The first group resembles the original set of non-linear equations describing the large

motion of the manipulator.

• The second group of equations describe the incremental deviation of the state vector from

the large motion at each sampled point in time.

From the second group we get a linearized model by neglecting the second and higher degree

terms of the delta state vector. This can be rearranged to form a set of state equations thereby

obtaining the linearized system state matrix about a given operating point 139], [40]. However.

for flexible manipulators, control strategy based on linearized system nioclels has often proved

to be inadeciuate. Actual dynamics of the robot arms often deviated significantly from that

predicted by a linearized approach.

A solution, proposed by Freund [27], uses the state feedback to decouple the nonlinear

system in such a way as to make arbitrary pole placement possible. However, this method

is difficult to apply to systems with more than three degrees of freedom. Iii a subsequent

modification, by first simplifying the equations of motion aiid then strategically partitioning

them, Freund [28] showed that the method could be extended to systems with more than three

degrees of freedom.

A promising technique that may provide adequate control for both rigid as well as flexi

ble manipulators is a form of inverse method based on the Feedback Linearizations Technique

(FLT). It was first investigated by Beijczy [30]. Singh and Schy [31] as well as Spong and

Vidyasagar [32] [33] used the FLT to formulate robust control proceedures for rigid manipula

tors. The method was later applied to the control of robots with flexible joints by Spong [29].
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Modi and Karray [34] [35] extended the FLT to include structural flexibility and applied it to

the proposed space station based mobile manipulator modeled by Chan [5].

The FLT is sometimes referred to as the computed torque technique, which in effect is a

special case of the FLT. This is because the technique feeds back the rigid body state vector

to calculate the foreward rigid body dynamics of the system and uses the resultant generalized

forces to drive the manipulator according to the required trajectory. The effect of this is to

linearize the system such that only a linear compensator is required to obtain the required

system output. There are certain advantages to this approach: the control algorithm is quite

simple and the linear compensator is easy to implement. The proceedure is schematically

described through a block diagram in Figure 4.26.

As can be expected, the method has some limitations just as other control proceedures. It

relies on the accurate knowledge of the system model and structural parameters for robustness

in the rigid degrees of freedom. Furthermore, another disadvantage is, knowledge of the flexible

generalized coordinates is necessary for determination of the control torques and forces. In

practice, the problem can be readily overcome by introducing strain gauges to gain information

concerning the first few modes.

4.2 Feedback Linearization

The Feedback Linearization Technique (FLT), as applied to a nonlinear rigid body system. is

reviewed here. Consider a system governed by

D(r,t) + U (kr,r,t) (r,r,t), (4.1)

where Q represents the generalized coordinate vector for the rigid system and (q,.,.,t) is

the nonlinear generalized force/torque control vector. Taking the control torque time history

as:
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= ; (4.2)

+ K (ir — + K ( — r) ; (4.3)

where , and J,. denote the trajectory related desired acceleration, velocity and displace

ment, respectively, leads to the linear closed ioop control equation as

(4.4)

This can be rewritten as,

€±K±K= 0, (4.5)

where = — . ë.= L —
.. and ë= ,. — . are the acceleration, velocity, and displacement

errors, respectively. Note, the error is driven towards zero in an asymptotic manner given the

correct choices for the position and velocity gain matrices.

If we choose tO decouple the system such that each individual degree of freedom can be tuned

separately then a suitable choice would a diagonal matrix. The feedback gain matrix K will

have diagonal elements equal to . This is directly proportional to the speed of response and

will thus determine the response time of the generalized coordinate qj. Similarly, the feedback

gain matrix K may have diagonal elements equal to 2w, which will make the jth generalized

coordinate response critically damped. In general, therefore, the larger the value of w3 the more

robust will be the response.

4.3 Control Implementation

hnplementation of the FLT begins with the appropriately partitioned system mass matrix D.

The equations of motion are arranged into the groups of rigid and flexible degrees of freedom,
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the former related to Px’ p, 6i, 6 generalized coordinates while the latter to the flexible

coordinates 6jj (x1, t). Rearranging these into a matrix format gives

Dif Fr

...

-I- •.. = ... (4.6)

Dfr Dif qf PI

where: Drr () is the 4 x 4 system mass submatrix representing base translational and joint

rotational degrees of freedom: Drf(rif) is a 4 x 2m submatrix that represents the coupling

between the rigid and the flexible generalized coordinates; Dfr = D is a 2m x 4 submatrix:

and Dif (flj) is a 2m x 2m submatrix that represents only the flexible degrees of freedom.

Here in is the number of modes used to represent the link deflections. F,. and

j are 4 x 1 and 2in x I vectors representing the remaining coupled nonlinear

forcing terms. ,. and j are the control forces supplied by the actuators. In general it would

be impractical to control the modal degrees of freedom associated with the manipulator links.

In that case Q is set to zero. Thus is required to control the rigid degrees of freedom

directly and the flexible degrees of freedom indirectly.

To design the controller, the next step is to rewrite the submatrices in equation (4.6) in such

a way as to determine aid to linearize the closed-loop system. This can be accomplished

qiite readily as follows. Putting j = 0, equation (4.6) becomes:

Drr.+Dri+r = Qr; (4.7)

Dfr + Dffj + Ff = =0. (4.8)

From Eq. (4.8),

= —D1D— D11f. (4.9)
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Substituting from Eq. (4.9) into Eq. (4.7) gives

Drrr + Drf (_D1Dfrr D1c) + =

(Drr — DrfD’Dfr) + (Pr — DrfD1f) = . (4.10)

Putting:

D = DrrDrfD’Dfr (4.11)

= Pr—DrfDf; (4.12)

gives

D+FQr. (4.13)

This represents the rigid body generalized force vector similar to the original differential equa

tions of motion and is a function of all the generalized coordinates. Since it is a complete

equation. it includes the effects of all the generalized coordinates. Applying the FLT Eq. (4.13)

gives the control effort as

= (,j,t)+ , (4.14)

where:

(4.15)

= r+Kv(L r)+lCp($rr) ; (4.16)

= —D’D — (4.17)

= &r; (4.18)

= ji.—. (4.19)
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The control effort thus becomes

= D r+ + D(Kvr+Kpr). (4.20)

Note, the control effort consists of two components:

D13r+F ; (4.21)

Qr,pd = D(Kvër+Kpë’r). (4.22)

The first one is the nonlinear feedback component Qr.ni. It. cancels the effects of the nonlinear

torque/force disturbances on the joint and base actuators resulting from the system dynamics.

The effectiveness of this part of the controller is strictly dependent on the closeness of the

dynamical equations to the actual manipulator dynamics being modeled. The second one is

the linear proportional/derivative feedback component ‘,pd• It ensures robust behaviour with

respect to the errors E,. and . which may arise as a result of imprecise modeling of the actual

manipulator dynamics. Of course, in practice this is always the case and the linear controller

is therefore always included to improve performance.

In order to determine the control effort, evaluation of the FLT variable arrays D and F is

necessary, which in turn requires the knowledge of and j. With this in mind, two different

proceedures, Quasi-Open Loop Control (QOLC) and Quasi-Closed Loop Control (QCLC), are

suggested by Modi et ai. [34].

4.3.1 Quasi-Open Loop Control

If the situation is such that most or all of the generalized variables are not amenable to direct

measurement, then these variables must be determined using the nearest approximation to the

real system being controlled. In this scheme, the central idea is to evaluate the generalized modal

coordinates in an off-line parallel integration procedure, i.e. the dynamics of 4 is computed
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without the use of Q.. However, öj is governed by the specified trajectory, •8 /r and the

dynamics may be obtained from Eq. (4.17):

= L ; (4.23)

= D (/‘r. f )Dfr(/r, qf)v — D1(/r, f )Fç(/3r,/3r, qf, ) . (4.24)

Solution to Eq. (4.24) results in two rewards. Firstly, it allows the observation of the ap

proxi?nated behaviour of the modal coordinates and its derivatives, i.e. j, j, and j, off-line

without the need for direct measurement. Furthermore, it allows for the off-line computation

of the control effort 7r for the rigid degrees of freedom. Figure 4.27 presents a block diagram

for the Quasi-Open Loop Control scheme. The procedure would demand considerable amount

of computational effort to solve the equations. Also, the method does not fully linearize the

control system since it utilizes estimated values.

4.3.2 Quasi-Closed Loop Control

On the other hand. if the situation is such that most of the generalized coordinates are available

for measurement than this approach is probably a better one. Here, the rigid and flexible degrees

of freedom are both utilized and calculated simultaneously at each control interval, as shown

by the following equations:

(4.25)

qf(qf) = . (4.26)

Note, Ff is now a function of and rather than 3,. and /r, and that the control action

of the PD controller is now on a linearized system. This is true if the system model is exact

but in practice this is never the case. Robust behaviour, about the desired trajectoy, of the

contolled output is mostly dependent on the linear controller part of Eq. (4.16) and the arrays

K and K. This approach is represented in a block diagram form in Figure 4.28. A bit more
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computation is involved here than in the previous scheme but this disadvantage is more than

offset by the increased precision and robustness in the controlled degrees of freedom. Also the

QCLC is less sensitive to system uncertainties than the QOLC.

4.4 Application of the Quasi-Closed Loop Control to the Mobile Flexible Two-link

Manipulator

The implementation of the QOLC as opposed to the QCLC using the existing program is

radically different. The QOLC requires major modifications to the program since it involves a

secondary double integration scheme. On the other hand, the QCLC involves minimal additions

and revisions. Now the program remains much the same as before but with the addition of a

modified control subroutine called FRCFC2, which calculates the required control effort based

on the desired trajectory generated by the subroutine INVKB2. The main purpose of FRCFC2

is to rearrange and then partition the mass matrix D, to evaluate D and , and then calculate

the control effort a,.. Since the rigid degrees of freedom can be made to follow the desired

trajectories precisely, the main interest now is to track the flexible degrees of freedom trajectory

with accuracy. The present study is limited to the QCLC of a moving, ground based, flexible,

two-link manipul.ator.

4.4.1 Stationary Manipulator in Zero Gravity Field Without Payload

All the physical parameters and dynamic constants of the manipulator are kept essentially the

same as in the earlier study to facilitate a meaningful comparison between the two control

schemes. The joint stiffnesses are purposely reduced here by an order of magnitude to illustrate

the effects of a highly flexible joint drive system. The duration of the maneuver is in the range

1.0 - 2.0 seconds. Numerical values used in the simulation are listed below:

c = 1000 N/rn/s

c = 1000 N/rn/s

= 1000 N-m/rad/s
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1000 N.m/Tad/s

(El)1 = 30000 N-rn2

(El)2 = 30000 N-rn2

= 1000 N/rn

= 1000 N/rn

= 1000 N-m/rad

k2 = 1000 N-rn/rad

‘1 = 5m

‘2 = 5m

= 20 Kg

7722 = 20 Kg

= 0

mp 0

Note, the gravitational field is purposely set to zero initially to observe the system dynamics

without any outside influence. The joint, base, and link flexural stiffnesses are set fairly low in

order to emphasize their effects. In a practical system. the above parameters may correspond

to a manipulator constructed from standard .05m x .05m x 5m square solid aluminum bar

sections. Only the first two cantilever modes are used to save simulation time and cost. A

preliminary study showed that the use of additional modes does not appreciably change the

payload tracking characteristics.

In this set of simulations results (Figures 4.29% 4.30, and 4.31), the base is held stationary

and the payload is required to follow a rather complex trajectory described by the solid line

curve in Figure 4.29. The actual trajectory traced by the payload is indicated by the dash

line. The frozen positions of the links at successive time-steps are also included (time-strobe

overlays). As shown in Figure 4.29, the manipulator starts the trajectory from the positive X

axis. It is appearant that the PD control is rather inadequate. The tracking errors are indeed

quite large. This can be seen, more clearly, from Figures 4.30 and 4.31 where p, p3y, , and
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62 are plotted against their desired trajectory counterpart. There is as much as 6 meters of

following error between p and ‘3P3x 4 meters between P3y and p,; 0.5 radians between and

8; and 0.3 radians between 132 and 62. The combined effect of these leads to a large l)hase lag

between the desired and actual payload load positions as observed in Figure 4.29.

Having observed the dynamic response of the manipulator to sinusoidal trajectory tracking

in the presence of the PD control, the next. step was to assess effectiveness of the FLT. This

is shown in Figures 4.32, 4.33, and 4.34. Note, there is a major improvement in the tracking

behaviour of the manipulator tip. The maximum deviation from the desired trajectory is about

0.5 meter. It occurs at the beginning and at the end of the travel where the peak acceleration

takes place. Of course. these perturbations are primarily due to the flexible character of the

cantilever links. This can be verified by analyzing Figures 4.33 and 4.34. Plots of 6, 82. p3.

and p vs time clearly show that there is no detectable deviation from the desired trajectories,

suggesting that the only source of the discrepancy must be the flexible degrees of freedom over

which there is no direct control at this level.

4.4.2 Mobile Manipulator in Zero Gravity Field Without Payload

Figures 4.35, 4.36, and 4.37 show the tracking characteristics of the manipulator under the

PD control with the base now free to move. All other parameters have the same values as

before.

The base is made to follow a sinusoidal desired trajectory of amplitude 5 meters in both the

-X and +Y directions at a driving frequency of 1.0 radians/second. The first thing to note is

that the tracking error is not as great as when the base was stationary under the same control

scheme. Furthermore, the tip phase lag is considerably less. This suggests that the nature of

the base motion will have considerable effect on the tip tracking efficiency.

Figures 4.38, 4.39, and 4.40 show the tracking characteristics of the mobile manipulator

under the FLT control.
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Figure 4.29: (A) Time history response of the manipulator showing the tip and the link postions
in the presence of PD control with the base held fixed
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b

Figure 4.32: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base held fixed
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Figure 4.35: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base translating as shown.
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As before, considerable improvement in the tracking efficiency of the manipulator is ap

parent. The rigid degrees of freedom have virtually no detectable tracking error as observed

earlier. One point of interest is the vibrational characteristics of the first two flexible degrees

of freedom of the modal coordinates. Comparing Figures 4.31, 4.37 with Figures 4.34, 4.40.

considerable difference in the frequency content of the wavefonus is noticeable. With the PD

control the high frequency oscillations of the first and second modal coordinates fade rapidly

leaving only the deflection brought about by the nominal motions. On the other hand, with the

FLT control, the high frequency contributions dominate the response. This situation would be

greatly improved by structural damping.

The set of Figures 4.41. 4.42, and 4.43 as well as Figures 4.44, 4.45, and 4.46 show respons

of the system as it performs a full three quadrant slewing maneuver. The intent here is to

explore a different maneuver profile while keeping the system parameters unchanged. The

desired trajectories are chosen to best observe the effects of a constant gravitational field as

well as the inclusion of a payload at. the tip of the manipulator. as described in the following

section.

Figure 4.41 shows the inadequacy of the simple PD controller in the presentce of relatively

low joint stiffiiesses. However, the FLT controller proves its superiority even though the spring

and damping constants are left unchanged (Figure 4.44). Note that the tip follows the required

trajectory quite closely save for the deviations that occur due to the link vibrations, which

cannot be directly controlled. Furthermore, a large torque required for the maneuver through

three quadrants completed in 2s adds to the discrepancy.

Again the slow damping oscillatory motion of the first and second cantilever modes is noted

in Figure 4.46, which appears to be assosciated with the FLT control. Consider the fundamental

cantilever mode of both the links. Since the coefficient of stiffness and the mass per unit length

are equal for both links, the natural frequencies are also equal. As a result both links are locked

into synchronous oscillation but out of phase by 180 deg. This effect appears to be independent

of the manipulator configuration but remains superimposed on the deflection created by the
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Figure 4.38: (A) Time history response of the manipulator showing the tip and the link postions
in the presence of FLT control with the base translating as shown
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Figure 4.39: (B) Graphs of (from top left figure clockwise) /3P3x & /3p & P3y, /3 & 81, /32
& 82, VS time [seconds) for the moving flexible 2 link manipulator under FLT control
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motions of the rigid degrees of freedom. These oscillations are a consequence of the fundamental

mode coupling between the links. Second mode effects are not observed because they are small,

at least by an order of magnitude. This suggests that to minimize modal response ol the links.

they should be designed to avoid the frequency coupling. This can be achieved quite readily by

selecting the flexural stiffness appropriately.
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Figure 4.41: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base held fixed doing a full three quadrant slewing
maneuver
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Figure 4.44: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base held fixed doing a full three quadrant slewing
maneuver
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4.4.3 Stationary Manipulator in Non-Zero Gravity Field Without Payload

Figures 4.47, 4.48, and 4.49 show the response of the stationary manipulator using PD control

and under the influence of a gravitational acceleration of 9.8m/s2. The results may be directly

compared with those shown in Figures 4.41. 4.42, and 4.43. It is evident that the joint stiffnesses

are insufficient to carry the two links through the full maneuver range when gravity is present

(Figure 4.47). Note, in Figures 4.47 and 4.49, the effect of gravity offsets the base and the entire

manipulator down as far as 0.3 meters below the origin. The effect is better seen in Figures

4.41 and 4.43.

Next, the FLT control is applied in the same situation as above. Figures 4.50. 4.51, and

4.52 show, as before, that the rigid degrees of freedom are instantly brought into line with the

desired trajectories. Of course. this happens since we have full knowledge of all the structural

parameters as well as all of the degrees of freedoms. The base deflection is no longer a dominant

factor in the manipulator tip deviation from the desired trajectory due to gravity. The major

contribution comes from the flexible degrees of freedom. The plots of the flexible coordinates

and 6 in Figure 4.52 indicate the level of the contribution. Note. where the initial peak

deflections occur, they combine in such a manner as to create the greatest deviation from the

desired trajectory. It may be pointed out that the overshoot at the end of the slewing maneuver

was absent when the gravitational acceleration was neglected.

4.4.4 Mobile Manipulator in Non-Zero Gravity Field Without Payload

Keeping all the parameters the same as in the previous sections, the effect of a moving base is

observed in a nonzero gravity field. Figures 4.53, 4.54, and 4.55 illustrate effectiveness of the

PD control as the mobile manipulator undergoes the previous slew maneuver. Corresponding

results for the FLT control are presented in Figures 4.56, 4.57, and 4.58. The payload in both

the cases is absent.

Note, the base motion is almost enough to carry the two links over the top dead centre during

the PD control. Also, the acceleration of the base delays the tip and stretches out the track
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path which is further away from the desired trajectory then in the previous simulation (Figure

4.47). Comparison of the mobi]e manipulator response results with those for the stationary case

in the previous section show favourable agreement. The exceptions are the modal coordinates.

They tend to exhibit greater excursions for the mobile manipulator case. This trend is also

observed in the FLT control data.

4.4.5 Mobile Manipulator in the Gravity Field With Payload

Finally, the attention is turned to the most general case that accounts for the mobile character

of the manipulator, operating in the gravitational field, and carrying a payload (Figures 4.56.

4.57, and 4.58). The gravity field is taken as 9. n/s2; the FLT control is active; the base starts

in the fourth quadrant and is moving in the direction as shown in Figure 4.59. The payload is

3.0 kg.

The response is basically as expected. In Figure 4.61 the response plots of 6i and 62

show a measure of damping effect on the fundamental mode. The higher order vibrations are

suppressed somewhat (compared to those observed in Figure 4.58). although the peak deviation

from the desired trajectory is slightly higher in the presence of a payload. As well, the frequency

of the vibration of the first mode of link 2 has decreased by about a factor of 1.5 while the

vibration frequency in link 1 has gone up by about the same amount. A larger overshoot is

noted for this case, at the end of the slewing maneuver, then with any other simulation results

obtained so far (Figure 4.59).

The response of the second modal coordinate for both the links is somewhat surprising (512

and 22 in Figures 4.58 and 4.61). Firstly, the frequency of vibration of link 2 is slightly higher

than that of link 1. Secondly. the maximum deviation is less than that observed in the previous

section where the payload was zero.

96



0

0
C\2

Figure 4.47: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base held fixed doing a full three quadrant slewing
maneuver in a nonzero gravity field
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Figure 4.53: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base translating as shown doing a full three quadrant
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Figure 4.56: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base translating as shown doing a full three quadrant
slewing maneuver in a nonzero gravity field
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Figure 4.57: (B) Graphs of (from top left figure clockwise) /3 & P3x, /3p3y P3y, i3 & 6,
132 & 62, VS time [seconds] for the moving flexible 2 link manipulator under FLT control in
nonzero gravity field.
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Figure 4.59: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base translating as shown doing a full three quadrant
slewing maneuver in a nonzero gravity field with payload
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Chapter 5

CONCLUDING REMARKS

5.1 Summary of Results and Conclusions

Developed in this thesis is a general formulation for investigating planar dynamics and control

of a ground based mobile flexible two-link manipulator. This formulation is also applicable to

the space station based systems involving flexible slewing appendages that can be modelled as

cantilever beams. Two methods were considered for the development of the dynamical equations

of motion. The first approach uses homogeneous traimforinations while the second employs

vector analysis to arrive at the kinematic relations for the manipulator, and then the kinetic

and potential energies of the system. The use of homogeneous transformations resulted in

considerably less effort and proved to be efficient. A computer code is developed for integration

of the highly nonlinear, nonautonomous and coupled equations of motion representing a stiff

system. Validity of the formulation and the program was assessed through analysis of simple

cases. This involved graphical representations of the manipulator in stick figure form showing

the configuration and location of the manipulator at discrete time intervals. Although the

amount of information that can be obtained through a systematic parametric study is enormous,

the focus is on results that may help in establishing trends. In general, the approach is to select

a set of realistic parameters representing a highly flexible physical system and subject it to

various slew maneuvers and control strategies. The objecctive was to gain some insight into

the effectiveness of the control procedures.

During the simulation, it became evident that the system can become unstable with certain

parameter values and manipulator configurations. This was also affected by the damping of the

rigid degrees of freedom. Of course, to avoid numerical instability it was essential to set the
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error tolerance below the critical value (10—3 in the present study). The system stiffness also

proved to be an important parameter in governing its stability. Under certain combinations

of joint and structural flexibilties and slew maneuvers the tip trajectory error was found to be

excessive even in the presence of the FLT control. The manipulator flexibility influences the

end tip payload position by superimposing a high frequency component over the rigid response.

A major influence on the response of the manipulator is the time history of the slew maneu

ver. Maneuvers involving high acceleration rates led to greater vibration of the flexible degrees

of freedom. This effect was more pronounced due to abrupt changes in velocity at the beginning

or the end of a slew maneuver. However, the effect was greatly minimized through introduction

of a smooth sinusoidal maneuver profile. The choice of two modes was found to be adequate

in representing the tip dynamics. As expected, the presence of payload tended to reduce the

vibratory response in the flexib’e degrees of freedom.

A promising new approach in the nonlinear control of systems is the Eeedback Linearization

lechnique (FLT). The method is straightforeward and the control algorithm in its basic form

is simple. For control of a highly nonlinear system such as the mobile flexible manipulator

considered here, this approach looks very promising. If all of the state variables are known

and used in the control algorithm (Quasi-closed Loop Lontrol (QOLC)), the rigid degrees

of freedom, which are colocally controlled, can be made to follow the desired trajectory with

considerable accuracy. The effect of the FLT is to decouple the rigid degrees of freedom from

one another and from the flexible ones such that the coupling effects on the rigid body dynamics

are eliminated. The converse, of course, is not true since we cannot directly control the flexible

degrees of freedom. The flexible body dynamics is thus susceptible to dynamic influence from

the rigid degrees of freedom. Hence, the manipulator tip tracking error is strictly due to the

combined stuctural flexibility of the links. This fact implies that we require a secondary level

of control to deal with the flexible modes.

There are certain aspects which need attention for implementation of the FLT in a practical

situation. Demand on computational power is the major one. Fortunately, the computer
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technology has made over years, and continues to make, spectacular advances. With parallel

processing architecture, real time implementation of control, even for a complex system. may

be within reach. Control of the rigid degrees of freedom requires precise knowledge of thc

correct structural parameters of the manipulator so that an accurate model may be derived

for the controller. Furthermore, sensor information for the flexible degrees of freedom must be

obtained for the controller. This would require additional filter circuits and other additional

hardware. One way to circumvent this problem is to use Quasi-open Loop Lontrol (QOL(’

which utilizes sensor feedback information of the rigid degrees of freedom and calculates th

predicted flexible degrees of freedom to be used by the main controller algorithm. This, however.

would require additional computational power. Thus success of the FLT is largely dependent

on the advances in the computer and software technologies.

5.2 Comments About the Numerical Simulation

There are a number features regarding the simulation program that are worth commenting

on, particularly for its future use in studying dynamics and control of mobile flexible mamlipu

lators with payload and operating in the gravity field enviornment:

• The program can be used to simulate the links with as many as six modes. Additional

modes can be accomodated simply by making the appropriate changes in the r&evant

subroutines. Only two modes were used in the present study because it offered desireable

trade off between the simulation speed and faithful representation of the flexible system

dynamics. The mode numbers used can be changed through the PARAMETER state

ments, using the global ALTER editor command, as described at the beginning of the

MAIN routine.

• The program can be used in any system envoirnment that supports the ANSI standard

FORTRAN77 assembler language. For use in the UBC-MTSG enviornment, just issue
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the commands stated at the start of the MAIN routine, but first be sure to CREATE the

required files as stated. To run in the UBC-UNIXG enviornment, the basic assembler and

link commands must be modified.

• The program can be joined with the dynamical models of other systems and then simulated

simultaneously as one single unified system. The dynamic model of the manipulator,

contained in the subroutine FCN and used by the MTSG’s integra.tion subroutine GEAR B

(or IMSL’s DIVPAG), may be easily modified by adding the extra terms to the mass

matrix D. the forcing vector and the over all system state vector . Subsequently.

the manipulator must be dynamically synthesized with the connecting system via the

generalized force vector Q

• A useful feature for a highly flexible systems under the influence of externally induced

steady state force fields (such as the gravitational field), which has the effect of preloading

the system to assume a state of ‘deflected’ static equilibrium, is the MTSG subroutine

HYBRID I (or the IMSL library subroutine DNEQNF). In general, its purpose is to find

the zero of a system in N variables by a modification of the Powell Hybrid Method.

Objective here is to evaluate the initial conditions of all the generalized coordinates of the

system in static equilibrium under the influence of the gravity. The reason for this is to

start the slewing maneuver of the manipulator from a ‘true’ static equilibrium condition.

In other words, now the velocity and acceleration of the generalized coordinates, both

flexible and rigid, are zero. Note, however, that the IMSL subroutine DNEQNF works

flawlesly with this program. On the other hand, HYBRID1 has not been shown to work

properly with this code and requires a certain amount of debugging before use. As a result

it has been COMMENTED out and deactivated. This, however, does not seriously effect

the results because the stiffness coefficients are relatively high and the slew maneuvers

are fast and therefore the generalized forces are high enrnigh to dominate any effects of

nonzero initial conditions.
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• In the subroutine FCN, which contains the dynamical equations of motion of the manip

ulator, the forcing vector is segmented into its basic contributing components and then

summed at the end. This greatly facilitates studying the effects of each of the components

on the dynamical response of the manipulator simply by blanking certain terms or combi

nations of terms. Amongst other things, one may study what effect inaccurate modelling

will have on the stability and robustness of the FLT control of the manipulator.

5.3 Recommendations for Future Work

The intention of this thesis is to present a relatively general formulation, based on a model

of contemporary interest, which will provide some insight into the dynamics and control of

the complex and highly nonlinear ground based, mobile, flexible, twolink manipultor. The tip

tracking of moving flexible manipulators have yet to be studied in sufficient detail, especially

under the FLT control. This is a new area of research which promises robust, efficient, control of

highly nonlinear systems. To investigate this as well as other areas of interest a few suggestions

are listed below:

• Extension of the model to three dimension would improve its verstiity through application

to a large class of systems. Inpiane and out-of-plane degrees of freedom, including torsion

of the manipulator links, would enhance the usefulness of the model significantly. The

FLT control of such systems would represent an important advance in the field.

• The problem of computational time and cost is a major consideration when performing

dynamical simulations of complicated nonlinear systems with large numbers of degrees

of freedom. Development of a parallel processing enviorument would go a long way iii

increasing the speed and the real time implementation of the FLT.

• Robust control of the rigid degrees of freedom is strongly dependent on the accuracy of

the model. There is considerable scope for parametric studies in this area. As mentioned

earlier, the model subroutine FCN is structured to facilitate the investigation of the effects
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of incorrect modelling of the manipulator being controlled. The effect of inaccurate model

on the tip trajectory is an important avenue for future study.

• There is a considerable scope for detailed parametric study to assess the influence of;

structural properties;

— differential equation solver parameters;

— time histories of slew trajectories;

— FLT control parameters;

— payload mass;

— gravitational acceleration.

• In order to minimize vibration of the flexible links, it is suggested that a secondary con

troller be built into the base and the joints. Its purpose would be to superimpose, on the

main controller action, a secondary damping action to improve tracking of the manipu]a

tor’s tip trajectory. This approach can be easily tested using the existing program.

• In the problem formulation chapter. two methods of deriving the dynamical equations of

motion were suggested. One employed the use of homogeneous transformation, a niore

direct method. The other relies on the vector approach, an appearantly more general,

less direct and more labour intensive method. It would be useful to investigate the pros

and cons of these two, as well as other approaches. The comparison may be in terms

of efficiency of derivation and compatibility with commercially available softwares, to

expedite as well as synthesize derivation and simulation processes.

• End effector compliance and force control during pick/place operations of industrial robots

is a very important area in robotic design [38], particularly if high speed, delicate and

precise operations are involved. This would involve introducing constraint relations. Such

studies, though challenging, should prove to be equally satisfying.
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Appendix A

KINETIC ENERGY EQUATIONS

Following are the total kinetic energy expressions for the earth based flexible manipulator links

1 and 2 in terms of their physical parameters and generalized coordinates:

LINK 1

= !f vdm1
2 jj1

= +91X1?61J

+

?fl

— (S1j+ C1j3)

(S
- C’i) (6 miii +

( +

LINK 2

T1 = JVd7fl2

m12m212 • 1
= 12 + l2 E4X2j62j +

.

4S2j62j

+ri2E ‘Isij6

+ m2 (Qii + ‘i )
2 +

+
+

+(12e111 2623 + (La12+2623) (ie +
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+ y1Ô1 — a12 (11e1 + s2

— (l2.+)(s12—c12)

12 E4)2j62j (S1213y + C12i3)

—m2 (11e1 + ) (S1 —

—m2yj1O(S1 + C1j3).

Total kinetic energy of the system is given by

T = T+T2.

The contribution of payload mass mp and of the mobile base mB are included, in the

simulation code. by adding the effect of the point mass to the inertia terms for link 2 and for

the base. The joint mass is assumed negligible with respect to the mass of the links.
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Appendix B

POTENTIAL ENERGY

The total potential energy expressions for the two-link manipulator can be written as:

LINK I

=

+
lThlç

+gC1 1j6j+ gm1py.

LINK 2

?fl

U2 = I)D2j6L + gm2(11S1+ yj1C1)+ gm2py

+gm2l2S12 + gCvi242j62j.

where

U = Ui+U2

= Total flexural and gravitational potential energy of the system.
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Appendix C

EQUATIONS OF MOTION

The various contributions to the governing differential equations from the inertia, gyroscopic.

centripetal, coriolis and other forces as well as their coupling effects are summarized below:

rn m

fTD1p1 = 8 (ici
— — 2Ô1C1

fTDip =
—

fTD161 = (2 S13611j + (S1
—
C)

- (s;+ C)
(ml

-

fTDIk = —9l(Sl-l-CJ31)4lk;

fTD1O2 = 0;

fTDl62k = 0;

fTD2p =
—

(l2.
+ 22i) i2i2

+12(12s12 E 2j2j C12 2i62i)

—m2 (e1c1(i1o1 + —

fTD2p = — (th-12 + > i2i2

12 (al2cl2262+ sI22o2a)

—m2 (ô1s1 (Q1ó1 + + + yi1Ci)
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fTD2e2 (
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= 212 S2j62j62j + Yl1 E2j62j + Y11 oJ 2

(m212j=1 1 j=1

+Yl161’2 ——C2 —

(l1o1+y1i) (— 2C2 2j62j + S2
j=1

771212
+—-—s2 (i1e1 +

rn2l m

— (S12y + C12p)(12 + E 2i62)

+12 2j62j (S12f’ —

fTD262k = 2k (a1 (i1S2 + yj1â2C2)— à2S2 (io + Y11) — 12 (S12Jy +

fT1p

fT1

fT1s1 i (Sj3 — 4ij6ij — (S1 + C1j)
2 E•i6i

m
(l1a

j=1 j=1

—
i9 (S1j3 + CIbX)41k;

fT1 0;

fTl62k 0;

fT2p 0;

fT2p

m2l2
fr2e1 — (S12 + Ci2x)(12 + 2i62)

j=1

m

+ (S12J — C12o)12

j=1

— (S1j3 + C1j3) (i1o1 + m2
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+ (S — C)ni2y1181;

fT2slk I1k81m2 (y1ê1 — (Sj3 +

+12 4262 (11kÔ1c2
— i1k (52ê1y11 + (i1o1 + ) C2 + (S12j1.— C12j)))

j=1

+
(,‘

+ 2i623)
3=1

(1k (C2y11è— (S12j+ C12j3) — S2 (i1ô + Y11)) +I1k81S2);

fT2e2
(m212

= 12 + 2i62i) (c2y,1é— S2 (i11 + — (S12y +c12))
j=1

in

l2 2j62j (S2Ô1y11 + C2 (11ô1 + + (S12J) — Ci2j));
j=1

fT2s2k 12S2k62k

+Q122k (&yi1C2 s2 (11o1 + — (S12j+C12p))

fu 0;

fu1 gin1;

m111
fu1e1 = g (__c1 1

3=1

fulslk = 2D1kb1k + gCI4lk;

fu1e2 0;

fuIs2k 0:

fu2p 0;

fu2p gni2;

f/in
= g !C12

— S12 2b2)+ m2(11C1— Y11 Si))
j=1

m

fu2olk = g (‘
(m212

Cl2 — s12 22i) + iikm2C1)uk

( ?fl2l2C
—fue2 = g

j=1
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fu2s2k = gC12k+2D2k62k

The various time dependent terms of the system mass matrix can be deconvoluted from the

acceleration/force expressions summarized below:

fr2p = +j3(m2)

+(O)

m212+o1 +c12 2j62j) — m2(liSj +

m212
+i (_iirm2s(__s12 + C12 2i62i))

j=1

— (__si2÷ci22i62i));+62 ( rn212 n

fD2 = +(O)

+j, (rn2)

/
(l2+o1 f,c12 —s122b2)+ m2(11C1 — Y1Si))

\\

+61r(
2
C12— sl22i2i) +iirm2Ci)

12
+62 (—f-c12 — S12 262i)

\ j=1

+‘52r (C’1242r);

m212
m

fD2e1 = +x (— (sl2 + C12 2i62) — m2 (lS + iCi))
\ j=1

11m
+j; — S12 2ab2i) + m2(11C1— Y11S1))

2=1

+8
2l

+ + 29!! (11C2 + yi,S2))

+61(

m2 + i) —2 2j2j (11S2 — Y11C2))
3=1•
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+1r ( I ((711272
rn

— + S2ii) + (11C2 +i1S2)— 6i(1152
— Y1 (2)))

j=1j=1

fl12l2
(lIr (711211 + (_-__c2— s2

j=1

12 m
2’\ m212

+02 ((9+S236

31
2j) + (11C2 + yt, S2) — 2j2j (1152

— yt, C2))

+t2r (x2r + 2r (11C2 + Yl, S2))

fD26lk =

(_!
(m212

S12 + C12 2b2)
— 1!k51hh12)l,k

j=1

+ (+ (l2C —

11k 2 12 S12 2i62i) + 1kC17fl2)

m

+o, (I1k (m2l2CY
— 52 4)2i62i))

j=1

+o1 ( (Q1’+ ‘S2J6)
—

2j62j (1152 — yj,C2)+ !?212 (11C2 + Y1152)))

+i, (ir (øik (%- + S2j6j + P11k —C2— S2262J)))
) (111212

j=1

+1r

(‘1r ( , (rnic
— S2 2i2J)))‘P1,k7fl2 + k1,k

31

( I (rn2 ) +
(i

+62 11k + S2’5 —IC2 — 52 42h23))
31 j=1

+b2r (,k4X2r + 4Pj,k42fC2)

fD2o2 = + (— (m2l2SCE6))

j=1

+Py
(+ (rn212

——C12 — S12 423 623))
3=1

rn11m2 2
+ES2j62

12 ?fl

2)

m
+ (11C2 + yl, S2) — E2j62j (11S2 — Y11C2))

j=1

( I (nl2l
m

) +
(mi2 rn

+1r lir + :S2j6 ljr C2— E
3=1
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2

+82

+
4S2J6)

+62,.(4x2);

fD2S2k = +j.(—2kS12)

+j (+C)

+81 (+4x2k + 2k (11C2 + yi, S))

+61T (42k1irC2 + ‘11r4X2k)

+82(4x2k)

These separate terms are then combined to form a complete set of differential equations as

follows:

fD1 + fD2p + fTD,p + fTD2p — fT1p — fT2p1 + fu1p1 + fu2p1 = Qp;

fD,’py + fD2py + fTD1p + fTD2, — fT1p — fT2p + fU1p + fu2p = Qpy

fD1e1 -- fr2e1 + fTD,91 + fTD29 — fT1e1 — fT2e1 + fu,e1 + fu2e1 = Qe,

fDl6lk + fD2slk + fTDlslk + fTD26lk — fTlolk — fT2olk + fulolk + fU2Sjk = Qslk;

fD 62 + fD2e2 + fTD12 + fTD2e2 — fT12 — fT22 + fu12 + fu2e2 = Qe2;

fDl62k + fD2o2k + fTDlS2k + fTD2s2k — fTls2k — fT2S2k + fuls2k + fu2s2k =

The above equations can be represented in a compact form using the vector notation as

fD+fTD-fT+fu =

i.e. D+r—ir+?j =

or D+f =

This equation can be rewritten in the following form and solved numerically using a state space

based integration algorithm:

= D1(_1).
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