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ABSTRACT

The thesis studies dynamics and control of a two-link flexible manipulator, free to undergo
planar translational and slewing maneuvers, through numerical simulation. To begin with,
kinematics and kinetics of the system are investigeted, for a general N-link system undergoing
planar motion, leading to the nonlinear, nonautonomous and coupled equations of motion.
obtained using the Lagrangian procedure. A parametric study follows to assess the influence
of system variables on the dynamical response and particularly on the positioning error of the
payload. A joint based non-collocated algorithm, using the Feedback Linearization Technique
(FLT) that accounts for the complete nonlinear dynamics of the system, is proposed for the
tip control. The results are useful in the design of the ground based flexible, mobile servicing
systems which are gradually appearing on the industrial scene and are likely to be more common

in the future.
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Chapter 1

INTRODUCTION

1.1 Preliminary Remarks

The continuously evolving technology of robotic joint actuators coupled with the introduction
of direct drive systems have led to a rapid increase in speed and payload capacity of ground
based manipulators. As a result, the flexibility of previously considered rigid links have become
increasingly significant. Due to rigidity requirements, present generation of robotic manipula-
tors [1], [2] are normally restricted in their load carrying capacity to approximately 5-10 % of
their own weight. For example. the Cincinatti-Milicron T3R3 robot weighs about 2000 Kg but

can carry a payload of only about 20 Kg. If a controller is designed to account for the:

o flexibility of the links:
o flexibility of the joint actuator systems;
o flexibility of the base structure of the manipulator;

o effects of gravity;

then, in principle, it may be possible to increase the payload/robot weight ratio as well as the
manipulator speed for a given mass and positioning requirements. There are other obvious

advantages in accounting for the manipulator’s flexible character:

¢ Cheaper drive components can be used since less power is required to move the lighter
structural components, assuming equivalent accelerations and payload capacity to the

rigid link design.



o Safer operation in case of collision, since lighter components are used.

o Added weight reduction due to simpler actuator and structural design. This is a result
of the reduced power requirement. Now the direct drive actuators can easily be adapted
thereby eliminating the need for gears. This also results in reduced backlash and improved

actuator linearity.

e Increased structural compliance due to flexibility in the links. End effector compliance
is very important in standard pick and place maneuvers involving delicate assembly op-
erations. Flexible links can provide this compliance in a very simple and cost effective

manner.

Suprising as it may seem, interest in the ground based mobile, flexible manipulators. ac-
counting for the gravitational effects, is relatively recent and the associated literature rather
scarce. With this as background and the above mentioned benefits as motivation, a reasonably
general model of the ground based mobile flexible manipulator is considered for study to gain

some insight into its dynamical performance and control.

1.2 A Brief Review of the Relevant Literature

A challenge introduced by the flexibility consideration is so immense that, as pointed out before,
research in this area was initiated only in the past decade and the accumulated literature
is quite limited, particularly with respect to the ground based systems. This, of course, is
understandable as for most industrial applications, links and joints were essentially rigid; hence
flexibility was never an issue, at least for the intended objectives.

On the other hand, for space applications, where weight is always a major governing factor,
flexible structural members in the forms of solar panels, antennas and beams were introduced
relatively earlier. However, now the structures, such as the Canada Arm aboard the Space
Shuttle [3], operate in the microgravity environment with an entirely different class of problems.

Modi [4], Chan [5] and Mah [6] have reviewed this literature at a considerable length.



Studies aimed at dynamics and control of ground based mobile, flexible, multi-link manip-
ulators, accounting for gravity, are indeed rare. However, there have been some investigations
concerning tip control of a single flexible link [7], [8]. Almost all commercial robots use colo-
cated control (the position sensor located at the joint actuator where the generalized force is
applied), as then it is easier to maintain stability of the controlled system. With noncolocated
position sensing, stable control is extremely difficult to chieve. In that sense Binford and Can-
non’s contribution is noteworthy [9]. They successfully demonstrated tip-position control of a
single flexible link manipulator (fixed at one position, i.e. not mobile) using noncolocated (po-
sition sensing at the tip rather than at the joints where generalized forces are applied) control
strategy.

Several different procedures have been studied to control single and multi-link manipulators.
They include: Linear Quadratic Regulator [LQR, [5]]; variable structure or sliding mode control
[10]; model following adaptive techniques [11]); and pole placement, selftuning control [12]. In
most cases, their applications are limited to stationary manipulators in general, with two links
if rigid and a single link when flexible. Rovner and Franklin [13] incorporated variation of
the payload mass in their formulation and applied a selftuning regulator approach to adaptive
control of a flexible single link manipulator. Although accurate noncolocated tip control was
achieved it was found to be quite sensitive to modeling errors. Modeling and control of robots
with rigid links but elastic joints have also received some attention [14].

The thesis takes a small step in this neglected area of dynamics and control of earth-based

mobile flexible manipulators accounting for gravitational forces.

1.3 Scope of the Investigation

In general earth-based mobile, flexible, multilink manipulators, with flexible joints and sup-
ported by a flexible base, present a formidable problem in dynamics and control. Rapid and
accurate control of the payload using non-colocated position sensing add to the challenge. The

thesis considers a simplified planar model of such a system to gain insight into the complicated



dynamics involved, effect of parametric changes, and develop an effective control strategy.

To begin with a mobile manipulator, with an arbitrary number of Euler-Bernoulli beam-
type links and joints with torsional flexibility, supported by a mobile flexible base is considered.
The manipulator carries an arbitrary point payload, and is free to undergo translational as well
as slewing maneuvers in the vertical plane. The continuum system deformations, also in the
vertical plane, are discretized using admissible functions in conjunction with time dependent
generalized coordinates. The governing nonlinear, nonautonomous and coupled equations of
motion are obtained using the Lagrangian procedure.

As can be expected, the governing equations are not amenable to any closed-form solution. A
special case of two-link manipulator is considered and a numerical code written for its dynamical
analysis and control.

A parametric study follows to help appreciate the effects of system variables and slew maneu-
vers on the dynamical response. It also suggests a need for control under critical combinations
of system parameters and initial conditions. Finally, a noncolocated control strategy is devel-
oped for the payload trajectory tracking and its effectiveness is assessed over a range of slewiug
time histories.

The thesis ends with some concluding comments and recommendations for possible extension

of the study.



Chapter 2

FORMULATION OF THE PROBLEM

Most general purpose commercial robots, such as the one shown in Figure 2.1, have 4 - 6
degrees of freedom. Normally the base, joints and links are treated as rigid distributed mass
structures. In reality, this is an approximation. To make the positioning and tracking of the
payload accurate to within a prescribed tolerance, designers are required to considerably over
design the structural and drive components to make the end-tip position sufficienly predictable.
This results in a prohibitively excessive robot weight combined with meager payload capacity

and slow slewing response.

One approach to overcome these undesireable elements would be to reduce, significantly,
the total mass of each element but retain its structural integrity through an acceptable factor
of safety with respect to mechanical stresses based on maximum loads. This would result in a
lighter and faster manipulator. If the control strategies are modified to include the flexibility
effects of the links, the base and the joints in the dynamical equations, then the manipulator

can be made to position the payload as accurately as before.

With this as background, the development of the formulation starts with a mathematical
mode] for an earth based flexible, mobile, manipulator. The model aims at realistic measures
of time and effort, yet remains sufficiently comprehensive to capture essential features of the
system. Reference frames and generalised coordinates are selected to describe the state of the
system. Deformations of continuous flexible members are presented by discrete modal functions.
The kinetic and potential energy expressions are derived and the governing equations of motion

obtained using the Lagrangian procedure.
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Figure 2.1: A commercial general purpose six degrees of freedom robotic manipulator



2.1 System Model

Consider a mobile manipulator with an arbitrary number of Eulerian beam-type members,
interconnected to form an open chain geometry, carrying a point payload mp. The two-link
version of this general configuration is schematically presented in Figure 2.2. The joints J; are
considered to have torsional rigidity as well as damping. Translation motion of the mobile base.
treated as a point mass, is also represented realistically through inclusion of the linear stiffness
and viscous damping. The system is free to undergo translational and slewing maneuvers as
well as link deformations in the vertical plane (plane of the paper).

The model is carefully selected so as to retain essential features of a robotic manipulator.
particularly with reference to the elastic character of the base, joints and links. The emphasis

is on the fiexibility effects on the payload trajectory and its control.

2.2 Reference Frames, Generalized Coordinates and Maneuvers

The manipulator shown in Figure 2.2 is assigned local reference base coordinates and generalized
coordinates as described here in more detail.

The elasticity of the base and the mechanisms at the joints will affect the performance and
accuracy of the manipulator by permitting oscillations about the nominal specified slew angles.
As a result the base support flexibilities are modeled by straight linear springs and velocity
(viscous) dampers. The position of the base C.M., and hence joint 1, is located w.r.t. and
projected onto the inertial reference frame Fy by the vector § whose z and y components are
defined by p; and p,.

The joint flexibility is modeled by a linear torsional spring with a velocity damper. Flexible
rotations of the links are described by the joint angle, 6;, and the specified rotations designated
as, B;, where 1 is the link number; a;, the angle that the local reference frame F}, associated
with the link ¢, makes with the previous reference frame F;_;, in this case about the Z;_; axis;

and f; is the specified slew at the joint ¢ measured between the link ¢ and the X,_; axis at the
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Figure 2.2: A schematic diagram of the mobile, flexible two-link manipulator.



location of the joint i. The actual joint angle at 7 is 6; and is measured the same way as the 3;

with definitions as follows:

a; = by

ay = 0+ qp;

where ¢, is the angle of link 1 at the tip of link 1 measured in the local frame Fj. For the
Lagrangian formulation the generalized coordinates are 6,, 6, p,, and p,.
The links are assumed to be Euler-Bernoulli beams and their deformations are modeled by
spatial modal functions together with time dependent generalized coordinates,
m
vi(z.1) = Y ¢4j(2)6i5(t),
1=l
where ¢;; represents the 7** mode for the i** link while 6;; (t) is the j* generalized coordinate
associated with the ¢** link. m is the number of modes used in the discretization process.
Theoretically, the summation should extend to infinity, however, in practice only a small number
of modes are generally used, depending upon the situation. In fact, in the reported literature,
most investigators consider the effect of only the first mode since it normally dominates the
response.
As can be expected, for rapid convergence to the true response, the selected modal functions
®i;j(z) should satisfy all geometric and natural boundary conditions. This, of course, is often
difficult and for complex structures virtually impossible. Fortunately, the modes satisfying the

following conditions do present an acceptable set [14], [15], {16], [17] of admissible functions as:
e they are able to describe any link profile;

o they are differentiable over the system domain and to the degree of the differential equa-

tions modeling the dynamics;

o they satisfy at least the geometric boundary conditions of the slope and deflection at the

ends of the link.



In general, functions that satisfy the above conditions are orthogonal with respect to one an-
other. This property may be used to advantage in deriving the equations of motion. This is

illustrated in the following secion.

2.3 Natural Modes of a Bar in Bending Vibration

2.3.1 Modal functions

The translating flexible manipulator under consideration has infinite degrees of freedom. The
method of assumed modes effectively transforms the gbverning partial differential equations
into a set of ordinary differential equations. The choice of available modal functions is also
large. Modes for beams with various combinations of end conditions are possible candidates.
One might consider the use of unconstrained modes incorporating time varying boundary con-
ditions {7]. In this study, to minimize the complexity, cantilever modes of an Eulerian beam
are used as admissible functions for the manipulator links. The effects of rotary inertia and
shear deformation, which become significant for large deflecions and high frequencies [14]. are
neglected here. For a cantilever beam with free end (no tip-mass),

662 (EI( )____dzy(:c t)) = —171(2)———62y(x’t)

where:

EI(z) = flexural ridgidity of the beam;
m(z) = mass per unit length at any point z;
y(z,t) = transverse displacement solution subject to given bounday conditions

reflecting the manner in which the ends are supported.

If the beam is assumed uniform, E is a constant and the governing differential equation reduces

to

By 20
at+60’

10



where

. _ EI

a =
m
For a simple cantilever beam, the boundary conditions are zero displacement and slope at the

fixed end and zero shear force and moment at the free end. More specifically:

dy
y(©=0; heo=0;
d2_y| =0: d3_y| _
d:z:2 lz=L = \ d.’L’3 z=L =

The equation of motion can now be solved by the method of separation of variables. y =
&(x)-6(t), where ¢ (z) depends only on the spatial coordinate z and § (t) depends only on time.

The new set of equations to be solved has the form:

d? , d?6
ﬁ—ﬂ“@:O; and m+w6=0;
where:
2 2
4 _ mw? Wt
A ElI ~— a2

The general solution to these equations is given by:

¢(z) = CisinfBz + Cycosfz + Cssinh fz + C4cosh Bz ;

6(t) = Cssinwt+ Cgcoswt .

Now the modal function ¢(z) has the form

. s ] sin Bl + sinh 8I
¢ (z) = (sin Bz — sinh Bz) cos Al & cosh Al (cos Bz — cosh fz)),
where
cosBlcosh Bl = -1 .
Here:
2 2
4 _ T W,
g = ElI ~ %’

11



EI
m’

E] = flexural rigidity of the beam ;
m = mass of the beam per unit length ;
w = circular frequency ;

!l = length of the beam .

The transcendental characteristic equation yields infinite set of eigenvalues 3;. Inserting these
values into the equation for ¢ (z) gives the desired modes. which are orthogonal and self-adjoint.
The presence of a payload at the tip of the terminal arm would introduce shear boundary

condition. The characteristic frequency equation now modifies to
cosfBlcosh Bl +1= %ﬂﬁ (sin Bl cosh 31 — cos Blsinh 31),

with the form of the modal function & () remaining the same as before. The first six roots of

the new characteristic equation are summarized in the table below for four payload conditions:

Ze o | 1 | 2

ml

[}

(B1), || 1.88 | 1.25 | 1.08 | 0.87

(81), || 4.70 | 4.03 | 3.98 | 3.95

(8), || 7.86 | 7.13 | 7.10 | 7.08

(Bl), | 11.0 | 10.3 | 10.2 | 10.2

(BU)s || 14.1 | 13.4 | 13.4 | 13.3
(Bl || 17.3 | 16.5 | 16.5 | 16.5

2.3.2 Modal integrals

The modal integrals are associated with the kinetic and potential energy evaluation of the
system. They represent integration of dynamical quantities over the system domain. As pointed
out before, orthogonal character of the modes simplify calculation of the energies and hence

derivation of the equations of motion.

12



The modal integrals are defined as follows:

b

®; = /M ¢£j(z)dmi=/0 ¢i; (z) m(z) dz;
L

o5, = [ h@dmi= ["d@)m(@)ds;
N

dxi; = / ¢,~j(:z:):z:,~dm,-=/o z;m(z)dz

o £i(2)
eny = 30, [ ( i )

Normalizing with respect to the length of the beam (i.e. length of the manipulator arm) gives:

®; = M;®:
$si; = -Mid)g‘ij;
Oxij = Mili®yj:
bpi; = (gll?)iq)Dij:
where:
¢t = link number:
J = mode number;
z = la:.';
dz = ldz';
0< » <l
0< # <1
m;(z) = m; = uniformly distributed mass of the link i;
M; = total mass of the link 7;
5 = [ 6 d"
s = | ¢ &)
Py = [) 1 z'¢y; (z') dz'; ]

13



— (k1! /0 ' ((sin (k1); 2’ + sinh (k1);2") + C; (cos (I), 2’ + cosh (1), z')) da"

sin (kl); + sinh (kl);
cos (kl); + cosh (ki)

!
®pi;

¢; =

These normlized integrals may be evaluated by numerical integration and may be used for a
manipulator link with constant flexural rigidity and mass distribution along its length. Values of
the integrals as affected by the number of modes used in the discretization process, for m, = 0,

are summarized in the table below:

No. of MODES MODAL INTEGRALS
®; Sis Xis Dis
1 0.78299 | 1.00000 | 0.568830 | 12.3620
2 0.43393 | 1.00000 | 0.090762 | 485.510
3 0.25442 | 1.00000 | 0.032425 | 3806.30
4 0.18172 | 1.00000 | 0.016450 | 14606.0
5 0.14147 | 1.00000 | 0.009985 | 39956.0
6 0.11569 | 1.00000 | 0.006669 | 89096.0

Note, the integrals involving products of different modes are not presented here as they
vanish due to the orthogonality condition. However, this is not always true for m, # 0 because

the modal functions for a cantilever beam with tip mass are not necessarily orthogonal.

2.4 Kinematics

To derive the governing equations of motion it is necessary to evaluate the kinetic and potential
energies of the system. For this we require the position and velocity vectors for the elemental
mass, dm,, in Link 1.

Tﬁe fundamental kinematic expressions for displacement and velocity are developed in this
section. Two approaches are reviewed to aid in choosing a technique best suited for the intended

purpose. The first approach utilizes homogeneous transformation matricese [18], [19] to obtain

14



the position and velocity of dm; with respect to and projected onto the inertial reference frame.
The second approach [5], [6] employs vector methods to arrive at the same end result. By
direct experimentation, it became appearant that for simpler systems such as the present two
link manipulator, derivation of the equations of motion is considerably easier through the use
of homogeneous transformation matrices. This is because the vector method creates a large
number of redundant terms which eventually cancel out in the final set of the differential
equations. However, it should be noted that the vector method provides a relatively simpler
form of the equations of motion for a general system of N flexible links that are mobile and
operate under the influence of gravity.

The various reference frames, and generalized coordinates are selected to specify orientation
of the system as shown in Figures 2.2 and 2.3. Note, the two diagrams are similar except
that the latter is a bit simpler; and while using the homogeneous transformations the local
coordinate vector 5 is changed to g. The various reference coordinate systems Fy, Fy, F and
F3 are local frames describing the kinematic specifications of the elemental mass segments of
each link with respect to (w.r.t.) and projected onto the respective local frame. Fp is the base
or inertial reference frame. Fj represents the local coordinate frame for link 1 whose origin is
coincident with the C.M. of the mobile base as well as the centroid of joint 1, and is fixed to
link 1 so that the link is aligned with the X;-axis of the local frame. F; is the local coordinate
frame for link 2 with the origin coincident with the centroid of joint 2 and the same conditions
apply as for the previous link. F3 is the local coordinate frame for the payload mass M,, which
is considered to be a point (i.e. negligible rotational inertia). In the local coordinate frame the

position vector §; locates the mass element dm; which is defined in terms of its components
P=[ziu]-

Note that the choice of reference coordinate frames located at the joints facilitates the use of

cantilever modal functions. This makes the derivation and computation simpler.

Since the X; axis is aligned with the rigid body neutral axis of the link, the transverse

15
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Figure 2.3: Reference frame and generalized coordinates used in the mathematical modeling of
the mobile flexible two link manipulator system.
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deflection and rotation of a mass element dm; in the link 7 are defined as:
m
vi(zi,t) = ¢ij(2)6i(1) ;
1

j=

0 (] — /
3—1 =Y dii()éii(t) -

j=1

(i, t)

As an example, joint 2, located at the tip of link 1, is displaced by an amount y;, and rotated
through o, w.r.t. the frame F;.

Before determining the kinetic and potential energies, the displacement and velocity of the
elemental mass dm; must be established w.r.t. the inertial reference frame Fy. The displacement
of dm; is first determined w.r.t. and projected onto the local frame, by the vector g;. Through
a series of homogeneous transformations (i.e. Hg;), it is transferred to the inertial frame. The

position vector of the mass element dm; on the link ¢ with respect to the inertial frame is given

by .
7i = Hoip; .
where:
Hy; = Rol Pi )
0 0 O ‘ 1
Ry: = rotation matrix (3 x 3) for the transformation from the local frame F; to the
inertial frame F;
P; = position vector to the origin of the local frame F; w.r.t. the

inertial frame.

Determination of the transformation matrix Hyp; is accomplished by postmultiplying the Jocal
transformation matrices, H;_; ;, in the consecutive order from the inertial frame to the frame
F, in question. The position vectors to the mass element dm; are defined as follows:

Ci -5 0|p: 2

51 C1 0fpy )]

0 0 1]0 0

0 0 0|1 /J\1



5 G 0)py S Co 0|y ()

2 = HoaHi2p; = ;

0 0 10 0 0 10 0
0 0 of1 0 0 0)1 1

where:

i = link or reference frame number ;

C; = cosq; ;

S; = sina; ;

L = length of link 7 ;

o = Xin d1(2 = h)éi(t) = 30 é15615(2)

x; = distance along the link ¢ (or the X;-axis) from joint ¢ ;

yi(z:) = transverse deflection of link ¢ at position z; .

Inserting the required variables, differentiating w.r.t. time and multiplying the appropriate
matrix elements, the absolute velocities are obtained for the mass elements dm,, dm,, as well
as mp:
~216151 — 151 = 116:C1 + P,
216,C1 + $1C1 = 116,191 + py
0
0

v
[l

—Z3G12512 — Y2512 — ¥2612C12 — 116151 — 91, 51 — ¥1,6:C1 + P2
22612C12 + 92C12 — Y2612512 + 116151 — §1,C1 — 41,6151 + By
0

v
"

0
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~(l2é12 — 41,512 — Y, 612C12 — 6151 — 91,51 — ¥, 6:1C1 + =
+(l2612 + 9, )C12 — Y, 612512 + 116151 — §1,C1 — 41,6151 + By
0
0

In the next section the use of vector method is demonstrated to identify its strength and
weaknesses. Although it is a somewhat complex approach on one hand, it also offers some
intuitive insight into the various kinematic terms contributing to the overall system equations.
For the present study of the moving two link manipulator, homogeneous transformations are

used directly. on a term by term basis. as it is far more efficient.

2.5 Kinetics

Alternatively. in the vector form, the generalized position and velocity of the elemental mass

dm; in an open chain of coordinate systems may be presented as:

o= Pi+pi;
Fi o= P4 (G X B+ P

It should be noted that all the above vector variables must be projected onto the inertial
reference frame Fy. This implies that all vectors stated in terms of the local reference frame F;
must be transformed by a series of consecutive rotational transformation matrices. Consider
Figure 2.4 for a representation of the open chain of coordinate systems with flexible links.
With the position and velocity of each elemental mass dm; determined, the kinetic energy T
and potential energy U of the system can be derived by integrating over the total mass M of
the system as a whole.

The kinetic energy [20], [21} for the mobile flexible manipulator can be represented as:
O
T = % / F.FdM
2Jm

2 1 ..
ZE/M'ﬁ'ﬁdmf

=1

19



Figure 2.4: Schematic of the open chain of coordinate systems representing infinitessmal flexible
mass elements dm; in the local and the inertial reference coordinate frames
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2
1 = - o = Sy S % 7 5
= 3 /M (Pi + (& x pi) + py) - (Bi + (& X i) + B )dm
=1 ¢

Y P .
= ZA[a((ﬁ‘ﬁ:’)-k(@xﬁ',-)-(é;xp’,-)+p‘i.p~i)

i=1

+(B; - (@i X Pi)P; - i + (&i X f3) - pi)dmy

= Tomt + Tcmr +Tmv + Tuy

where:
Temr = 3TN, fu, b pidmi
= total translational K.E. of the C.M. of the system;
Temr = 3T S (@ x 50 - (@ x pi)dmi

- TN, 10T,

= total rotational K.E. of the C.M. of the system w.r.t. the local frames;
Tmv = T 3w, Fi Fidmi

= total K.E. w.r.t. the local frames;
Tun = Ty [y (B~ (& X BOFi - 5+ (@ X 5i) - pi)dm

= angular momenta terms for the system:

I = instantaneous inertia matrix w.r.t. the local frames.

The kinetic energy Tc mT describes a nominal value associated with the C.M. of each frame w.r.t.
and p.o.t. the inertial frame. The energy Tcpp is the rotational kinetic energy associated with
the instantaneous inertia measured in each frame. Kinetic energy arising from modal vibration
in the flexible links is described by Thasy. Energy Tyy represents the coupling between the
various degrees of freedom within the manipulator system as a whole.

It should be noted that, when evaluating 7' for the Lagrangian procedure, all vector pa-
rameters must ultimately be projected onto the inertial frame Fy through a series of rotational
transformations. The vector method offers good intuitive insight into the nature of the various
contributors to the total kinetic energy. However, it is more labour intensive compared to the

homogeneous transformation procedure. It leads to numerous redundant cross-terms in the
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differential equations of motion which ultimately cancel. Hence the homogeneous transform

method was used to derive the kinetic energy for the specific case in study (Appendix A). How-

ever, in the following sections vector method is used to determine the form of the generalized

equations of motion for an open chain of N flexible links.

2.5.1 Kinetic Energy for the N-Link System

The nature of the vector method and its extension to a multi-degree of freedom system of M

links is demonstrated in this section. The expression obtained in the previous section for the

kinetic energy, T, can be further transformed into a general expression for an N link manipulator

system as follows:

T =

%/M F.FdM

N ..
Zg/Mlﬁ'-ﬁ'dmi:

1=

A:'
1 — - - = - - - =
Ei/m (B +(&: X §5) + 7;) - (Pi + (&i X py) + py)dm, ;

i=1

N 1, - - ..
E/M[5((]71"13;')+(¢3ix[&)-(6,~xp’,-).{.p'i.p:.)
=1 i

+(P; - (@i X Bi)B; - B + (@i X B:) - 5i)dm; .

If the local frame mass element position vector is changed from 5 to ( to indicate that the

body being integrated over is a flexible cantilever beam, then the kinetic energy expression

takes the following form;

T =

N
ST

=1

N
1/, - - [ - ~
E [5 (Pi 'Pi) M; +p; - (wo,iX/ ¢idm; +/ C;dm;)
M; M;

=1

l - —- 1 - - o l > S
+ §“’<JT.Jiwo.i+ 3% ‘/Mi (i x¢;dm; + 3 /M i G 'Cidmi] .

This can be rewritten in pure summation form by making the following substitutions:

Goi = G1+Ta+--+3;;
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= Rood] + Ron&y + -+ + Rojd

% = do+@+dr+ct i
= Roofg + Roafy + Rooy + -+ + Rojoad_; ;
i
= EROJ—I‘:":{—I ‘
=1
where:
Roo = Identity matrixI ;
Ro; = Rotation transformation matrix from the inertial frame to the local link frame. ¢ ;
@ = Position vector describing the origin (;f the frame 7 w.r.t. and p.o.t.
the previous frame i — 1 in the chain :
d; = Position vector describing the origin of the frame ¢ w.r.t. the previous frame
but p.o.t. the inertial frame ;
P; = Position vector of the origin of frame 7 w.r.t. and p.o.t. the inertial frame ;
4,;;' = The position vector of the elemental mass dm; w.r.t and p.o.t. local frame ¢ ;
(i = The position vector of the elemental mass dm; w.r.t. and p.o.t. the
inertial frame ;
J; = Angular velocity vector of frame ¢ w.r.t. and p.o.t. the previous local
frame:i -1
&o; = Angular velocity vector of frame ¢ w.r.t. and p.o.t. the inertial frame.

The total kinetic energy of the system then becomes:

N N 1 i
T = Z = %2 Y Roj-13i-1- )_Roj-13j-1| m;
=1 =1 |j=1 j=1
N
Z: Z zl:R'OJ—IL‘)iXR'O / CIdml + RO,:/ C,dm,
= = J—
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B~
.Mz

() g

=1

..
i
—-

-

+;

Ko —
.Mz

1 1=1

-
il

‘ . = 7 1. 7 = =
;R.o,j_]u)j-R,o’i/Ml CixCi m; +§E/Ml C."Ci m; .

Carrying out the required algebraic manipulations the generalized kinetic energy equation can

be further reduced to the following form:

N
1, - - 1 77,4 - - 1
T = 5 (M7 +28,] + 507 [13+28: + $3] + 53 @i
i=1
where:
E,-N=1 m; Z,N=2 mi --- mpn
M = Ei]\_l_2 my E,Nﬂ m; -+ My
| mn my =+ mp |
= Global rigid body mass matrix for the total system;
LI ZhL o I
I = Zi)izli Zﬁzli o+ In
| I I, e Iy
= Global rigid body inertia matrix for the total system ;
YN Roic1$1ixRo oy + -+ + Rono1B1ux Ropo1d,
& YN Roi-181ixRood + -+ -+ + Ron-181.XRo 13,
1 = . ’

R'O.n-l anx R'0,051 + Ro,n—l an X RO,n—] 511

= A time dependent inertia vector ;
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<

€1

g -
Zt:l RO,i—] q)2i
N -

El=2 R’O,i-—l D,

RO,n—l 62n

Global momentum vector ;

Z{Y—:] Ro.i-] $3i
YN, Roj-1®3;

RO,n—‘l QI?u\

Global angular momentum vector ;

Ry 0a;
Ro.13

| RO.n-lé'm i

Global velocity vector for local reference frames ;

Ro,0uh
Ry, 10

| R'O,n—l‘:’.n i

Global angular velocity vector for local reference frames ;

25



5li = / -:'d"lt 1
M,
®, = / idm; ;
M,
§3i = / iijdmxa
M,
@y = [ G-Cami= [ |G dmi;
M, '
I; = Instantaneous inertia matrix of the link subsystem ¢ w.r.t. the

local reference frame 7 .

In the global kinetic energy equation, T, the bracketted part of the first expression contains the
linear momentum terms. The bracketted part in the second expression contains the angular
momentnum terms. The third expression contains the kinetic energies as measured in the local

reference frames.

2.6 Potential Energy
The following three sources are the sole contributors to the potential energy of the mobile

flexible two link system:

e gravitational field ;
e strain energy of the flexible links ;

e linear elastic strain energy of the joints ;

resulting in:

U=Ug+UL+Uy.

The gravitational potential energy for the twolink flexible manipulator is given by

2
UG=—Z/ g Fdm, ,

=1
where:
g = gravitational acceleration;
r; = position vector of the element mass dm; w.r.t. the inertial frame.
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The strain energy due to bending is given by
0? 3
v =3 [fEn g
i=1

where:

(EI); = bending stiffness of the link ¢ ;
0%y;/0z? = curvature of the link i .

The potential energy stored within the flexible joints is

UJ—Z k(ﬂl )$

=2
where:
k; = torsional stiffness of the joint ¢ ;
B: = specified slew angle of the joint ¢ ;
6; = response angle at joint 2.

Details of the potential energy expressions are given in Appendix B.

2.6.1 Potential Energy for the N-Link System

The required potential energy terms Ug, Ur, U descibed above can be generalized to N links

utilizing the orthogonality properties of the modal functions:

le = - Z g . i",'dm{ )
i=1

1=1 j=i

= —E'zRo.i-l [5« z:mj+Ri-1.i‘i;1i:| ;

UL = 22/ (EI)tay‘)zdt,

z—l

= -ZFK&.,

c—l

Uy = 221:([3,—0)2

i=1
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where:

- -

b1 P2 Paz - Pam
P21 Pizz Piz - P

_Qiml Qt'm2 Qim3 e q’tmm_

Global stiffness matrix in bending associated with link 7 ;
b1
b2
biz | -

gl

(=2
-
]

6!7“.

= Global generalized coordinate vector associated with link 4 ;

L
b = /()(E])@%(z)#ﬁ.(z)dz;

0;; = generalized coordinate associated with the jth mode of link i ;i =1,...,m ;
¢ij(z) = spatial admissible function associated with mode j of link i ;
oii(z) = __azzzz(z) ;
g€ = gravitational acceleration field vector ;
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m, = total mass of link associated with local frame j ;

k; = torsional spring rate of joint ¢ ;

(Bi - 6;)

angular deflection between the joint ¢ and link ¢, and is dependent on joint stiffness.

The remaining parameters were defined in the previous sections.

2.7 Governing Equations of Motion

The nonlinear differential equations of motion for the mobile two-link flexible manipulator were
derived using the Lagrange equation,
d ( BT) or oaU

=) -3+ z5—=Uk,
dt \0gx/ 9q;. Ogu @

where k = 1,...,n, ; T and U are the total kinetic and potential energies, respectively g, and
Qr are the generalized coordinates and the generalized forces, respectively; and n, is the total

number of generalized coordinates.

Specifically, the generalized coordinates are defined as follows:

pr = Xx-component of the base position vector p ;
py = Y-component of base position vector p ;
6; = joint angle of link 1 ;

62 = joint angle of link 2 ;

61; = generalized coordinate associated with the j** mode of link 1,
where j = 1,...,m ;

62; = generalized coordinate associated with the j** mode of link 2,

where j = 1,...,m.

29



The specified time varying slewing coordinates are:

[§;, = mobile base translation vector ;
f1 = slew angle at joint 1 ;
B2 = slew angle at joint 2.

The governing equations of motion may be written as:

i(Q_T_)_a_T+?_LL_Q .
di a‘ik aq}c 6qk =Yk
fo+fro-fr+fir = @;
Di+fro-fr+fu = @
D(g,t)§+ F(§,q.t) = Q.

Here D is the symmetric positive definite time varying inertia matrix for the system: and F
represents the non-linear vector containing all the cross influence force terms that are generally
associated with centripetal and coriolis accelerations. They are functions of velocity and not
-a.cceleration of the generalized coordinate vector §¢ Q denotes the generalized force vector
containing the input joint control torque values. For the generalized modal coordinates the
associated generalized forces in the vector Q must be equal to zero since it is assumed that
the individual modes of each link cannot be controlled externally. A sumnmary of the nonlinear

differential equations is presented in Appendix C.

2.7.1 Equations of Motion for the N-Link System

The kinetic and potential energy expressions for a general system with N flexible links were
presented earlier:

T = 29 [M7+28)) + 207 [15+ 28, + & +%£:‘I’4i ;

1=1

N
U = -g-) Roin

i=1 j=i i=1

&y mj+ Ri-1,i‘1>1i] +3 S OTKiE + 3 > ki(Bi- ).
i=1
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Using the Lagrangian procedure, the governing equations of motion can be obtained, as shown
before, from the following equation:

d (0T aT ou
i (55) ot o

where T and U are the global kinetic and potential energies of the system; with g and Q as
the generalized coordinates (i.e. joint angles, flexural modes) and the associated generalized
forces (i.e. forces, torques). Making a substitution for the bracketted expressions to simplify

the equations gives:

T, 1o
by + =aThy + = 2‘1’41’

T= 7

N | ==

l-—]

where:

by, = Mv+29,;

by = IS+28,+&;.

Performing the required algebra leads to the generalized equations of motion for the flexible

N-link system:

1 ov ovT\ - d [ b b
= (L e+ (= =] -2
Qs 2 [(dt (3qk> aqk) 1+V (dt (3(jk) aqk>

d (93T ST\ - db b
—[— ] -=—1]b =T 2 2
+(dt(aqk) o) 5 (& (32) -5

av ocT - 100  -T aaz
o5 T g 3 T° e
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N N =T
d (8% a<1>4,~) 18 (08T -
+Z(d,( ) ]+2Z(aqu'6'

Ik Iqk =

~r 08 R i1 z -
K, —|-g- 2 a z D,
+ 0] ,qu) g [ Bax (a; My + Py

k=i

0% & 88, 13 9(8:-6,)°
1= - K ey ki—.'_ .
+ Ro,i-1 (qu l;mk+ o )] +22 o

i=1

This can be further expanded and then simplified into the more recognizable form. For
the present, it is sufficient to say that since all the terms are clearly defined, an algebraic
algorithm may be formulated for the N-link, flexible, mobile manipulator. This algorithm may
then be integrated with a symbolic algebraic manipulation software, such as MATHCAD or

MATHEMATICA [22], to automatically produce the complete system of differential equations,

which can be numerically solved with graphical output through a single command operation.

32



Chapter 3

DYNAMICAL RESPONSE

The dynamic equations of motion derived in the previous chapter are nonlinear, nonau-
tonomous, and coupled. They are not amenable to any known closed form solutions without
considerable simplification. To retain the subtleties of the response characteristics, the equa-

tions are integrated numerically over a range of system parameters and prescribed maneuvers.

3.1 The Numerical Approach

The numerical code is in VS FORTAN77 language and is so written as to isolate the effects of
various system parameters such as the number of modes used, inertia and flexibility properties
of the links, end-tip trajectory tracking, maneuvers, etc. The numerical solution is obtained
using the IMSL Version.10 [37] differential equation solver subroutine called DIVPAG and the
MTSG system subroutine GEARB. Both subroutines utilize Gear’s method [36] to solve initial
value problems of ordinary differential equations with greatly varying time constants (i.e. stiff
systems). DIVPAG appears to be a relatively slower program with limited capability. On the
other hand, the GEARB routine is more versatile and can tackle more difficult situations while
giving reliable results. For the mobile flexible two-link manipulator under study, the structural
frequencies are in the range of 0.5-100 Hz depending upon the link and joint parameters as well

as the number of modes used.

A flow chart for the translating flexible two-link manipulator simulation code is presented

in Figure 3.5.
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Figure 3.5: Flowchart for the earth based translating flexible twolink manipulator dynamics

simulation program.
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3.2 Definition of the Program Variables

The following is a summary of the program state variables, output data variables, and their

corresponding symbolic notations. This list should be referred to in conjunction with the

simulation plots that follow:

BETA1
THETA1
BETA2
THETA2
BP3

P3
BP3X
P3X
BP3Y
P3Y
BPX
PX
BPY

PY

DLi(j)

B#1 = specified joint angle for link 1

6; = joint angle response for link 1

B2 = specified joint angle for link 2

f; = joint angle response for link 2

85, = specified position vector for the manipulator tip or payload w.r.t.
the inertial frame

P3 = position vector to the manipulator tip (payload) w.r.t. the inertial frame

Bp,, = X-component of 3z,

psz = X-component of f3

3y, = Y-component of 8z,

P3y = Y-component of j;

3p, = X-component of the specified base (joint 1) position vector in
the inertial frame

pr = X-component of the base (joint 1) position vector response in
the inertial frame

Bp, = Y-component of the specified base (joint 1) position vector in
the inertial frame

py = Y-component of the base (joint 1) position vector response in
the inertial frame

6;; = generalized co-ordinate associated with the mode j of the link i.

35



3.3 Numerical Data used in the Simulation

As a first step many simulation runs were carried out with different parameters and under vary-
ing slewing conditions until an average parametric configuration was established about which
certain parameters can be varied so that the differences in the resultant response characteristics
may be observed.

In the following simulation. the physical system that is modelled is constructed from 0.05m x
0.05m x 5.0m long square aluminum links. When not specified explicitly, the link cross-section
and mass distribution are considered uniform, with the joints assumed massless. The payload

is considered as a point mass.

The following parameter values represent the nominal configuration mentioned above:

(ET); = 3.0 x 10* [N -m?] = flexural stiffness of link 1
(ET), = 3.0 x 10* [N -m?] = flexural stiffness of link 2

my = 20.0 [Kg] = total mass of link 1

my; = 20.0 [Kg] = total mass of link 2

L = 5.0 [m)] = total lenght of link 1

Iz = 5.0 [m] = total lenght of link 2

mp = 00.0 [/ g) = total mass of the manipulator base
mp = 00.0 [Kg) = total mass of the manipulator payload
k. =1.0x 104 "ﬂl] = stiflness of the base in the x-direction
k, =10x10* % = stiffness of the base in the y-direction
Ky =10x10* |Xm = stiffness of joint 1

ko =10x10* [E2] = stiffness of joint 2

[ =1.0 - a] = damping constant in the x-direction
¢ =10 WN;] = damping constant in the y-direction
) = 1.0 x 104 ;%‘;] = damping constant of joint 1

¢ =1.0x10* r%’"g] = damping constant of joint 2 .
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g = 0.0 [f;] = gravitational acceleration.
Xo (1) = starting specified inertial X-coordinate of slew trajectory at the manipulator tip, 6.9m

Yo (i) = starting specified inertial Y-coordinate of slew trajectory at the manipulator tip, 6.9m
Xo (f)= final specified inertial X-coordinate of slew trajectory at the manipulator tip, 6.9m

Yo (f) = final specified inertial Y-coordinate of slew trajectory at the manipulator tip, 6.9m
T,s = total specified excursion time of slew trajectory at a constant velocity

N,, = number of modes used in the simulation to estimate flexural dynamics of the links, 2

In the initial simulation runs, most of these values were kept constant. The parameters with

different values are identified in the captions under the plots.

3.4 Simulation Results and Analysis: Tip Trajectory Tracking

For a planned system simulation with a wide variation in parameter values and initial conditions
would result in, literally. enormous amount of information. Therefore, a more concise yet
rational approach is adopted. Only the typical results useful in establishing trends are presented
here. -

The following group of simulation response plots are intended to establish characteristics of
the time dependent variables in terms of the manipulator tip and joint trajectory tracking for
the basic parametric configuration mentioned above. Information concerning the effect of the
number of modes used in the simulation model is also explored.

In the following example, the manipulator payload, i.e. the end effector (tip of link 2),
is required to follow a prescribed trajectory. The trajectory is taken to be a straight line
and the payload as well as the base mass are considered zero. The tip starts at the global
coordinate [ Xo(%),Yo(4),0] and is required to follow a straight line at a constant velocity to
reach the global coordinates | Xo (f).Yo(f),0] in precisely T\s seconds. The manipulator base

is required to be stationary at the origin.
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Kinematically, the global slewing coordinates of the manipulator are calculated in prescribed
increments of the distance, at each time-step, along the slew trajectory, in global coordinates.
Using the inverse kinematic equations of the manipulator, the joint angles are calculated at
each time-step and are used to provide the joint control torques, @,,, Qp,+ Qo and Qg,, via

the following PD type control equations:

Qe = (Be=po)ke+ (Be = px) o s
Qp, = By=p)ky+ (By—py) ey ;
Qo = (Bi—6)kr+ (51— 6)

Qo = (B-6)ka+ (B2-6)ecz.

C1:

The torques are then used to drive the system equations which, when solved numerically, vield
generalized coordinate solutions for the time interval in question. For each simulation run,
there are 4 frames within each group. and they are identified by the suffix letters (A). (B), (()
and (D).

The data used in the first simulation run are specified in Figures 3.6, 3.7, 3.8. Figure
numbers with suffix letter (A) represent time strobed figures of the manipulator at specific time
intervals (Figure 3.6). The slew trajectory is shown as the solid line while the actual path of
the end tip is indicated by the dashed line. The simulation time interval T,, is set to 4 seconds
so that the lead or lag of the tip relative to the desired trajectory can be clearly observed.

Figure numbers with suffix letter (B) represent the slew trajectory superimposed onto the
actual end-tip path vs time, but separated into the X and Y components in global coordinates
as shown in Figure 3.7.

Figure numbers with suffix (C) represent the slew joint angles superimposed onto the actual
joint a-ngle trajectories vs time, plotted for each joint. The slew angles are calculated from the
inverse kinematic relations mentioned before which in turn are based on the required slew

trajectory of the manipulator tip in global coordinates.
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The top two plots of figure numbers with suffix (D) represent the slew trajectory superim-
posed onto the actual path or motion of the base but separated into the X and Y components
in global coordinates as indicated on the plots (Figure 3.9). The bottom two plots of the same
figure represents the generalised modal coordinates vs time. Each graph represents the super-
position of the same modal coordinate from each link, so that the dynamic coupling may be

easier to observe.

This first run can be perceived as basic test of the dynamic response of the flexible 2 link
manipulator without payload. The traverse time from start to finish, from [6.9, 6.9, 0.0] to [1.0,
1.0, 0.0] is 4 seconds at a constant velocity. There is no ramping of speed at either ends leading
to lag at the start and overshoot at the end (Figure 3.6). This is mostly due to the phase
mismatching between the two joint angles. Note, the maximum deviation of the tip occurs
at the start of the slew maneuver. This is due to the fact that the joint 2 slew rate is twice
that of joint 1. Link 2 also has an advantage of greater effective inertial leverage over link 1.
The manipulator tip then settles into the slew trajectory with progressively smaller oscillations
about the norm. This is due to the viscous damping at the joints and the base. Since the slew
rate is relatively small, the overshoot and excursion at the end are essentially negligible. The

starting excursion of the tip can be more clearly seen in Figure 3.7.

Figure 3.8 shows that eventhough the manipulator tip may deviate from the required tra-
jectory, the joint angles follow the commanded profile quite closely. This is the first hint of the

problem involved in controlling the tip by judicious application of the joint torques.

In the next two sets of simulation runs all conditions are maintained the same as before
but the traverse period is reduced to 2 and 1 second respectively (Figures 3.10, 3.11, 3.12, 3.13
and Figures 3.14, 3.15, 3.16, 3.17). As expected, an increase in the slew velocity by two fold

increases the tip excursions significantly.

With the 1 second traverse period the tip excursions become very large. Even the joint
angles are starting to show significant departure from the calculated slewing angles. Obviously,

a sophisticated control strategy would be required to maintain the desired trajectory.
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Figure 3.6: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(6.9,6.9,0)m to (1, 1, 0)m in 4s.
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the joint angles as well as the flexible generalized coordinated during a straightline tip maneuver
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Figure 3.10: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(6.9,6.9,0)m to (1, 1, 0)m in 2s.
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of the manipulator tip during a straightline tip maneuver from the inertial coordinate (6.9, 6.9,
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Figure 3.14: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from' the inertial coordinate
(6.9,6.9,0)m to (1, 1, 0)m in 1s.
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Figure 3.17: (D): Comparison between specified (8, and f,,) and actual (p, and p,) position of
the joint angles as well as the flexible generalized coordinated during a straightline tip maneuver
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Keeping all the parameters constant, the above simulations were repeated but with the
direction of the translational maneuver reversed: the manipulator tip moving from (1.0,1.0)
to (6.9,6.9)m. The traverse time is 4 seconds. Note, the manipulator tip trajectory signature
is quite different (Figures 3.18, 3.19, 3.20, and 3.21). The main feature appears to be the
dominance of low frequency excursions which are further emphasized in Figures 3.23, 3.24, and
3.25 where the maneuver time is reduced to 2s. Again it is evident that a more sophisticated
control strategy is required to achieve the desired performance.

Response results were also obtained by systematically varying the trajectory length, orien-
tation, speed and direction. In general, they showed similar trends with the main conclusion
as above. With an increasing speed of maneuvers. a sophisticated control procedure will be

required to track the trajectory precisely.
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Figure 3.18: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(1, 1, 0)m to (6.9, 6.9, 0)m in 4s.
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of the manipulator tip during a straightline tip maneuver from the inertial coordinate (1, 1,
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(6.9,6.9,0)m in 4s.
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Figure 3.21: (D): Comparison between specified (8;, and 4,,) and actual (p, and p,) position of
the joint angles as well as the flexible generalized coordinated during a straightline tip maneuver
from the inertial coordinate (1, 1, 0)m to (6.9, 6.9, 0)m in 4s.
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Figure 3.22: (A): Time strobe position plot of 2 link flexible manipulator with stationary base,
using two modes for each link, during a straightline tip maneuver from the inertial coordinate
(1, 1, 0)m to (6.9, 6.9, 0)m in 2s.
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Figure 3.23: (B): Comparison between specified (5, and 8,,) and actual (ps, and ps, ) position
of the manipulator tip during a straightline tip maneuver from the inertial coordinate (1, 1,
0)m to (6.9, 6.9, 0)m in 2s.
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Figure 3.24: (C): Comparison between specified (8; and ;) and actual (6; and 6,) position of
the joint angles during a straightline tip maneuver from the inertial coordinate (1,1, O)m to
(6.9,6.9,0)m in 2s.
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the joint angles as well as the flexible generalized coordinated during a straightline tip maneuver
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Chapter 4

CONTROLLED DYNAMICAL RESPONSE

4.1 Preliminary Remarks

A relatively general formulation for studying the behaviour of a mobile two link manipulator
was presented earlier in Chapter 2. Its dynamical response characteristics were studied during
tracking of a straight line trajectory at predetermined speeds using the classical colocated
proportional-derivative (PD) linear feedback technique applied to the rigid body generalized
coordinates. The results suggested a need for a more effective control procedure that would
account for the system nonlinearity and coupling better. The next logical step would be to
implement a nonlinear control on the system.

One approach to the problem would be application of the sliding mode proceedure [23] .
If the right hand side of a differential equation is discontinuous around a hypersurface and if
the trajectory of the solution points toward the discontinuity, then it is reasonable that the
trajectory eventually slides along the hypersurface. Control laws can be derived that will force
the manipulator to follow a specified trajectory defined by these surfaces. This is accomplished
by an optimal choice of sliding surfaces. A major problem with this approach pertains to
unmodelled dynamics which usually results in high frequency oscillations of the manipulator
as it slides along the surface. This is a direct consequence of the switching nature of the
controller. Furthermore, the manipulator joints are subjected to high reversing torque impulses
which are required for this method to work properly. This is not always practical with many
electro-mechanical actuators. Some researchers have improved the controller performance using
a filtering process with a high bandwidth for the sliding variable [24] [25]. In an alternate

approach, the sliding mode approach is incorporated into an adaptive PD feedback controller

61



leading to the zero velocity error. The sliding mode controller elliminates the nonzero position
errors.

Of course, as is often done, one may proceed to linearize the governing equations.This is
accomplished by considering an incremental deviation of the state vector from its operating
point at each sampled instant of time. The equations of motion are modified to reflect this

change. Re-arranging, one has two sets of equations:

o The first group resembles the original set of non-linear equations describing the large

motion of the manipulator.

¢ The second group of equations describe the incremental deviation of the state vector from

the large motion at each sampled point in time.

From the second group we get a linearized model by neglecting the second and higher degree
terms of the delta state vector. This can be rearranged to form a set of state equations thereby
obtaining the linearized system state matrix about a given operating point [39], [40]. However.
for flexible manipulators, control strategy based on linearized system models has often proved
to be inadequate. Actual dynamics of the robot arms often deviated significantly from that
predicted by a linearized approach.

A solution, proposed by Freund [27], uses the state feedback to decouple the nonlinear
system in such a way as to make arbitrary pole placement possible. However, this method
is difficult to apply to systems with more than three degrees of freedom. In a subsequent
modification, by first simplifying the equations of motion and then strategjcally partitioning
them, Freund [28] showed that the method could be extended to systems with more than three
degrees of freedom.

A promising technique that may provide adequate control for both rigid as well as flexi-
ble manipulators is a form of inverse method based on the Feedback Linearizations Technique
(F LT)I. It was first investigated by Beijczy [30]. Singh and Schy [31] as well as Spong and
Vidyasagar [32] [33] used the FLT to formulate robust control proceedures for rigid manipula-

tors. The method was later applied to the control of robots with flexible joints by Spong [29].
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Modi and Karray [34] [35] extended the FLT to include structural flexibility and applied it to
the proposed space station based mobile manipulator modeled by Chan [5].

The FLT is sometimes referred to as the computed torque technique, which in effect is a
special case of the FLT. This is because the technique feeds back the rigid body state vector
to calculate the foreward rigid body dynamics of the system and uses the resultant generalized
forces to drive the manipulator according to the required trajectory. The effect of this is to
linearize the system such that only a linear compensator is required to obtain the required
system output. There are certain advantages to this approach: the control algorithm is quite
simple and the linear compensator is easy to implement. The proceedure is schematically
described through a block diagram in Figure 4.26.

As can be expected, the method has some limitations just as other control proceedures. It
relies on the accurate knowledge of the system model and structural parameters for robustness
in the rigid degrees of freedom. Furthermore, another disadvantage is, knowledge of the flexible
generalized coordinates is necessary for determination of the control torques and forces. In
practice, the problem can be readily overcome by introducing strain gauges to gain information

concerning the first few modes.

4.2 Feedback Linearization

The Feedback Linearization Technique (FLT), as applied to a nonlinear rigid body system. is

reviewed here. Consider a system governed by

D (g t)q +F (‘-]..r, ‘-l‘r,t) =q (qn q‘rst) ) (4.1)

where §; represents the generalized coordinate vector for the rigid system and § (fj‘,,(j‘r,t) is
the nonlinear generalized force/torque control vector. Taking the control torque time history

as:
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q (4-d1)

\

D (,t) ¥+ F (§.8:.1) ; (4.2)

B+ K (Bo- ) + K, (B ) 5 (43

i

where 5,, ﬁr, and 3, denote the trajectory related desired acceleration, velocity and displace-

ment, respectively, leads to the linear closed loop control equation as

o
-

.étr ‘-; = ﬂr + K\‘ (lgr - qr) + Kp (ﬁr - (-ir) . (44)

n

This can be rewritten as_

€+ K&+ K, g=0, (4.5)

where € = /.3.", - 3’,, €= 5,, - t}',.. and &€= §, — § are the acceleration, velocity, and displacement
errors, respectively. Note, the error is driven towards zero in an asymptotic manner given the
correct choices for the position and velocity gain matrices.

If we choose td decouple the system such that each individual degree of freedom can be tuned
separately then a suitable choice would a diagonal matrix. The feedback gain matrix K, will
have diagonal elements equal to .412 This is directly proportional to the speed of response and
will thus determine the response time of the generalized coordinate g;. Similarly, the feedback
gain matrix Ky may have diagonal elements equal to 2w;, which will make the jth generalized
coordinate response critically damped. In general, therefore, the larger the value of w; the more

robust will be the response.

4.3 Control Implementation

Implementation of the FLT begins with the appropriately partitioned system mass matrix D.

The equations of motion are arranged into the groups of rigid and flexible degrees of freedom,
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the former related to p;, py, 61, 02 generalized coordinates while the latter to the flexible

coordinates é;; (zi,t). Rearranging these into a matrix format gives

e

D,y Dg é’r Fr Q-
(4.6)

+
it

Dy i Da || & Fy Qs

where: Drr(g;) is the 4 x 4 system mass submatrix representing base translational and joint
rotational degrees of freedom: Dyt (G, Gr) is a 4 x 2m submatrix that represents the coupling
between the rigid and the flexible generalized coordinates; Dy, = D is a 2m x 4 submatrix:
and Dg(qr) is 2 2m x 2m submatrix that represents only the flexible degrees of freedom.
Here m is the number of modes used to represent the link deflections. F. (é’r.fj’f.(fr.q"f) and
Ff ((.j’,,(.j’f,(j’,,(ff) are 4 x 1 and 2m x 1 vectors representing the remaining coupled nonlinear
forcing terms. Q. and 1 are the control forces supplied by the actuators. In general it would
“be impractical to control the modal degrees of freedom associated with the manipulator links.
In that case Q— ¢ is set to zero. Thus 6,. is required to control the rigid degrees of freedom
directly and the flexible degrees of freedom indirectly.

To design the controller, the next step is to rewrite the submatrices in equation (4.6) in such
a way as to determine Q, and to linearize the closed-loop system. This can be accomplished

quite readily as follows. Putting éf = 0, equation (4.6) becomes:

Drra‘r + Drf‘:i‘f + F‘r = Qr ) (4-7)

Did, +Dgds+Fr = @y =0 (4.8)
From Eq. (4.8),

5} = —DEIDfra‘r - DElﬁf . (4.9)



Substituting from Eq. (4.9) into Eq. (4.7) gives

Drr(:i'r + Dt (-DEIDﬁ'ér - ngff) + Fr = Qr ’

(D - DyD7'Dy) §, + (F. - DyDg'Fy) = G- . (4.10)
Putting:
D = Dn-DyD;'Dy; (4.11)
F = F, -DyDg'Fy; (4.12)
gives
D i+ F=03.. (4.13)

This represents the rigid body generalized force vector similar to the original differential equa-
tions of motion and is a function of all the generalized coordinates. Since it is a complete
equation, it includes the effects of all the generalized coordinates. Applying the FLT Eq. (4.13)

gives the control effort as

GeGip@ndpt) = D (@ dpt)+ F (@i ddnt) (4.14)
where:
g = ¥; (4.15)
Vo= B+KB-8)+ KB - 35 (4.16)
¢y = -Di'Dg¥-Dg'Fr; (4.17)
& = B,-§; (4.18)
& = B -¢q . (4.19)
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The control effort thus becomes

-

G, = DB,+F+D K& +Kpé) . (4.20)

Note, the control effort consists of two components:

‘:

LT

Q-.r,nl = ﬁ’r"" H (421)
D

Q-.r,pd

(K.& + K, &) . (4.22)

The first one is the nonlinear feedback component Q-.,_,ﬂ. It cancels the effects of the nonlinear
torque/force disturbances on the joint and base actuators resulting from the system dynamics.
The effectiveness of this part of the controller is strictly dependent on the closeness of the
dynamical equations to the actual manipulator dynamics being mmodeled. The second omne 1s
the linear proportional/derivative feedback component Q-',,pd. It ensures robust behaviour with
respect to the errors €, and €. which may arise as a result of imprecise modeling of the actual
manipulator dynamics. Of course, in practice this is always the case and the linear controller
is therefore always included to improve performance.

In order to determine the control effort, evaluation of the FLT variable arrays 13 and F is
necessary, which in turn requires the knowledge of ¢y and q’ - With this in mind, two different

proceedures, Quasi-Open Loop Control (QOLC) and Quasi-Closed Loop Control (QCL(’), are
suggested by Modi et al. [34].

4.3.1 Quasi-Open Loop Control

If the situation is such that most or all of the generalized variables are not amenable to direct
measurement, then these variables must be determined using the nearest approximation to the
real system being controlled. In this scheme, the central idea is to evaluate the generalized modal

coordinates in an off-line parallel integration procedure, i.e. the dynamics of §; is computed
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without the use of ¢;. However, ¢y is governed by the specified trajectory, B, ﬁ,, ﬁ, and the

dynamics may be obtained from Eq. (4.17):

i = B, ; (4.23)

7;(@) = -Dg(Bedr)Ds(Bry )V - D (B:, @) Fe(Ber Ber Gty Gr) - (4.24)

Solution to Eq. (4.24) results in two rewards. Firstly, it allows the observation of the ap-
prozimated behaviour of the modal coordinates and its derivatives, i.e. gy, t.j'j, and é'f, off-line
without the need for direct measurement. Furthermore, it allows for the off-line computation
of the control effort , for the rigid degrees of freedom. Figure 4.27 presents a block diagram
for the Quasi-Open Loop Control scheme. The procedure would demand considerable amount
of computational effort to solve the equations. Also, the method does not fully linearize the

control system since it utilizes estimated values.

4.3.2 Quasi-Closed Loop Control

On the other hand. if the situation is such that most of the generalized coordinates are available
for measurement than this approach is probably a better one. Here, the rigid and flexible degrees
of freedom are both utilized and calculated simultaneously at each control interval, as shown

by the following equations:

-

i = ¥; (4.25)

;) —Dg' (G, dr)De(dr, @)V — Dg" (Gr, @r)Fe(Gr» Grr Gpr s, G ) - (4.26)

Note, F'} is now a function of ¢, and q’, rather than §, and ,(.7,., and that the control action
of the PD controller is now on a linearized system. This is true if the system model is ezact
but in practice this is never the case. Robust behaviour, about the desired trajectoy, of the
contolled output is mostly dependent on the linear controller part of Eq. (4.16) and the arrays

Ky and K. This approach is represented in a block diagram form in Figure 4.28. A bit more
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Figure 4.27: Block diagram for the quasi-open loop control of the two-link flexible manipulator.
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computation is involved here than in the previous scheme but this disadvantage is more than
offset by the increased precision and robustness in the controlled degrees of freedom. Also the

QCLC is less sensitive to system uncertainties than the QOLC.

4.4 Application of the Quasi-Closed Loop Control to the Mobile Flexible Two-link

Manipulator

The implementation of the QOLC as opposed to the QCLC using the existing program is
radically different. The QOLC requires major modifications to the program since it involves a
secondary double integration scheme. On the other hand, the QCLC involves minimal additions
and revisions. Now the program remains much the same as before but with the addition of a
modified control subroutine called FRCFC2, which calculates the required control effort based
on the desired trajectory generated by the subroutine INVKB2. The main purpose of FRCF(C2
is to rearrange and then partition the mass matrix D, to evaluate 13 and %‘, and then calculate
the control effort J,. Since the rigid degrees of freedom can be made to follow the desired
trajectories precisely. the main interest now is to track the flexible degrees of freedom trajectory
with accuracy. The present study is limited to the QCLC of a moving, ground based, flexible,

two-link manipulator.

4.4.1 Stationary Manipulator in Zero Gravity Field Without Payload

All the physical parameters and dynamic constants of the manipulator are kept essentially the
same as in the earlier study to facilitate a meaningful comparison between the two control
schemes. The joint stiffnesses are purposely reduced here by an order of magnitude to illustrate
the effects of a highly flexible joint drive system. The duration of the maneuver is in the range

1.0 - 2.0 seconds. Numerical values used in the simulation are listed below:

cr = 1000 N/m/s
Cy = 1000 N/m/s
Lo = 1000 N-m/rad/s
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Figure 4.28: Block diagram for the quasi-closed loop control of the mobile manipulator under
study.
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e = 1000 N-m/rad/s

(EI); = 30000 N-m?
(EI); = 30000 N-m?
k: = 1000 N/m

ky = 1000 N/m

k, = 1000 N-m/rad
k; = 1000 N-m/rad
L = &m

I = 5m

my = 20 Kg

my = 20Kg

mg = 0

mp = 0

Note, the gravitational field is purposely set to zero initially to observe the system dynamics
without any outside influence. The joint, base, and link flexural stiffnesses are set fairly low in
order to emphasize their effects. In a practical system, the above parameters may correspond
to a manipulator constructed from standard .05m x .05m x 5m square solid aluminum bar
sections. Only the first two cantilever modes are used to save simulation time and cost. A
preliminary study showed that the use of additional modes does not appreciably change the
payload tracking characteristics.

In this set of simulations results (Figures 4.29, 4.30, and 4.31), the base is held stationary
and the payload is required to follow a rather complex trajectory described by the solid line
curve in Figure 4.29. The actual trajectory traced by the payload is indicated by the dash
line. The frozen positions of the links at successive time-steps are also included (time-strobe
overlays). As shown in Figure 4.29, the manipulator starts the trajectory from the positive X-
axis. It is appearant that the PD control is rather inadequate. The tracking errors are indeed

quite large. This can be seen, more clearly, from Figures 4.30 and 4.31 where p3,, ps, 61, and
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6, are plotted against their desired trajectory counterpart. There is as much as 6 meters of
following error between p3. and By,,; 4 meters between p3, and pa,; 0.5 radians between 3, and
61: and 0.3 radians between $, and 6;. The combined effect of these leads to a large phase lag

between the desired and actual payload load positions as observed in F igure 4.29.

Having observed the dynamic response of the manipulator to sinusoidal trajectory tracking
in the presence of the PD control, the next step was to assess effectiveness of the FLT. This
is shown in Figures 4.32, 4.33, and 4.34. Note, there is a major improvement in the tracking
behaviour of the manipulator tip. The maximum deviation from the desired trajectory is about
0.5 meter. It occurs at the beginning and at the end of the travel where the peak acceleration
takes place. Of course, these perturbations are primarily due to the flexible character of the
cantilever links. This can be verified by analyzing Figures 4.33 and 4.34. Plots of 6, 6,. Pa-
and p, vs time clearly show that there is no detectable deviation from the desired trajectories,
suggesting that the only source of the discrepancy must be the flexible degrees of freedom over

which there is no direct control at this level.

4.4.2 Mobile Manipulator in Zero Gravity Field Without Payload

Figures 4.35, 4.36, and 4.37 show the tracking characteristics of the manipulator under the
PD control with the base now free to move. All other parameters have the same values as
before.

The base is made to follow a sinusoidal desired trajectory of amplitude 5 meters in both the
-X and +Y directions at a driving frequency of 1.0 radians/second. The first thing to note is
that the tracking error is not as great as when the base was stationary under the same control
scheme. Furthermore, the tip phase lag is considerably less. This suggests that the nature of

the base motion will have considerable effect on the tip tracking efficiency.

Figures 4.38, 4.39, and 4.40 show the tracking characteristics of the mobile manipulator

under the FLT control.
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Figure 4.29: (A) Time history response of the manipulator showing the tip and the link postions
in the presence of PD control with the base held fixed
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As before, considerable improvement in the tracking efficiency of the manipulator is ap-
parent. The rigid degrees of freedom have virtually no detectable tracking error as observed
earlier. One point of interest is the vibrational characteristics of the first two flexible degrees
of freedom of the modal coordinates. Comparing Figures 4.31, 4.37 with Figures 4.34, 4.40.
considerable difference in the frequency content of the waveforms is noticeable. With the PD
control the high frequency oscillations of the first and second modal coordinates fade rapidly
leaving only the deflection brought about by the nominal motions. On the other hand. with the
FLT control, the high frequency contributions dominate the response. This situation would be

greatly improved by structural damping.

The set of Figures 4.41. 4.42, and 4.43 as well as Figures 4.44, 4.45, and 4.46 show response
of the system as it performs a full three quadrant slewing maneuver. The intent here is to
explore a different maneuver profile while keeping the system parameters unchanged. The
desired trajectories are chosen to best observe the effects of a constant gravitational field as
well as the inclusion of a payload at the tip of the manipulator. as described in the following

section.

Figure 4.41 shows the inadequacy of the simple PD controller in the presentce of relatively
low joint stiffnesses. However, the FLT controller proves its superiority even though the spring
and damping constants are left unchanged (Figure 4.44). Note that the tip follows the required
trajectory quite closely save for the deviations that occur due to the link vibrations, which
cannot be directly controlled. Furthermore, a large torque required for the maneuver through

three quadrants completed in 2s adds to the discrepancy.

Again the slow damping oscillatory motion of the first and second cantilever modes is noted
in Figure 4.46, which appears to be assosciated with the FLT control. Consider the fundamental
cantilever mode of both the links. Since the coefficient of stiffness and the mass per unit length
are equal for both links, the natural frequencies are also equal. As a result both links are locked
into synchronous oscillation but out of phase by 180 deg. This effect appears to be independent

of the manipulator configuration but remains superimposed on the deflection created by the
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motions of the rigid degrees of freedom. These oscillations are a consequence of the fundamental
mode coupling between the links. Second mode effects are not observed because they are small,
at least by an order of magnitude. This suggests that to minimize modal response of the links.
they should be designed to avoid the frequency coupling. This can be achieved quite readily by

selecting the flexural stiffness appropriately.
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Figure 4.41: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base held fixed doing a full three quadrant slewing
maneuver
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4.4.3 Stationary Manipulator in Non-Zero Gravity Field Without Payload

Figures 4.47, 4.48, and 4.49 show the response of the stationary manipulator using PD control
and under the influence of a gravitational acceleration of 9.8m/s2. The results may be directly
compared with those shown in Figures 4.41, 4.42, and 4.43. It is evident that the joint stiffnesses
are insufficient to carry the two links through the full maneuver range when gravity is present
(Figure 4.47). Note, in Figures 4.47 and 4.49, the effect of gravity offsets the base and the entire
manipulator down as far as 0.3 meters below the origin. The effect is better seen in Figures
4.41 and 4.43.

Next, the FLT control is applied in the same situation as above. Figures 4.50. 4.51, and
4.52 show, as before, that the rigid degrees of freedom are instantly brought into line with the
desired trajectories. Of course, this happens since we have full knowledge of all the structural
parameters as well as all of the degrees of freedoms. The base deflection is no longer a dominant
factor in the manipulator tip deviation from the desired trajectory due to gravity. The major
contribution comes from the flexible degrees of freedom. The plots of the flexible coordinates
6717 and 63; in Figure 4.52 indicate the level of the contribution. Note, where the initial peak
deflections occur. they combine in such a manner as to create the greatest deviation from the
desired trajectory. It may be pointed out that the overshoot at the end of the slewing maneuver

was absent when the gravitational acceleration was neglected.

4.4.4 Mobile Manipulator in Non-Zero Gravity Field Without Payload

Keeping all the parameters the same as in the previous sections, the effect of a moving base is
observed in a nonzero gravity field. Figures 4.53, 4.54, and 4.55 illustrate effectiveness of the
PD control as the mobile manipulator undergoes the previous slew maneuver. Corresponding
results for the FLT control are presented in Figures 4.56, 4.57, and 4.58. The payload in both
the cases is absent.

Note, the base motion is almost enough to carry the twolinks over the top dead centre during

the PD control. Also, the acceleration of the base delays the tip and stretches out the track
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path which is further away from the desired trajectory then in the previous simulation (Figure
4.47). Comparison of the mobile manipulator response results with those for the stationary case
in the previous section show favourable agreement. The exceptions are the modal coordinates.
They tend to exhibit greater excursions for the mobile manipulator case. This trend is also

observed in the FLT control data.

4.4.5 Mobile Manipulator in the Gravity Field With Payload

Finally, the attention is turned to the most general case that accounts for the mobile character
of the manipulator, operating in the gravitational field, and carrying a payload (Figures 4.56,
4.57, and 4.58). The gravity field is taken as 9.8 m/s% the FLT control is active; the base starts
in the fourth quadrant and is moving in the direction as shown in Figure 4.59. The payload 1s
3.0 kg.

The response is basically as expected. In Figure 4.61 the response plots of 617 and 6y,
show a measure of damping effect on the fundamental mode. The higher order vibrations are
suppressed somewhat (compared to those observed in Figure 4.58), although the peak deviation
from the desired trajectory is slightly higher in the presence of a payload. As well, the frequency
of the vibration of the first mode of link 2 has decreased by about a factor of 1.5 while the
vibration frequc;ncy in link 1 has gone up by about the same amount. A larger overshoot is
noted for this case, at the end of the slewing maneuver, then with any other simulation results
obtained so far (Figure 4.59).

The response of the second modal coordinate for both the links is somewhat surprising (62
and 6,2 in Figures 4.58 and 4.61). Firstly, the frequency of vibration of link 2 is slightly higher
than that of link 1. Secondly, the maximum deviation is less than that observed in the previous

section where the payload was zero.
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Figure 4.47: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of PD control with the base held fixed doing a full three quadrant slewing
maneuver in a nonzero gravity field
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Figure 4.50: (A) Time history response of the manipulator showing the tip and the link positions
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maneuver in a nonzero gravity field
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Figure 4.55: (C) Graphs of (from top left figure clockwise) 3,, & p., By, & py, 611 & 623, 612 &
22, VS time [seconds] for the moving flexible 2 link manipulator under PD control in nonzero
gravity field.
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Figure 4.56: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base translating as shown doing a full three quadrant
slewing maneuver in a nonzero gravity field
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Figure 4.57: (B) Graphs of (from top left figure clockwise) 8,,, & pa., Bps, & p3y, By & 6y,
B2 & 6, VS time [seconds] for the moving flexible 2 link manipulator under FLT control in

nonzero gravity field.
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Figure 4.58: (C) Graphs of (from top left figure clockwise) B,, & pz, By, & py, 611 & 631, 612 &
622, VS time [seconds] for the moving flexible 2 link manipulator under FLT control in nonzero
gravity field.

108



1
10.0

2.0

I
—-2.0

|
—6.0

—10.0

—10.0

Figure 4.59: (A) Time history response of the manipulator showing the tip and the link positions
in the presence of FLT control with the base translating as shown doing a full three quadrant
slewing maneuver in a nonzero gravity field with payload
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Chapter 5

CONCLUDING REMARKS

5.1 Summary of Results and Conclusions

Developed in this thesis is a general formulation for investigating planar dynamics and control
of a ground based mobile flexible two-link manipulator. This formulation is also applicable to
the space station based systems involving flexible slewing appendages that can be modelled as
cantilever beams. Two methods were considered for the development of the dynamical equations
of motion. The first approach uses homogeneous transformations while the second employs
vector analysis to arrive at the kinematic relations for the manipulator, and then the kinetic
and potential energies of the system. The use of homogeneous transformations resulted in
considerably less effort and proved to be efficient. A computer code is developed for integration
of the highly nonlinear, nonautonomous and coupled equations of motion representing a stiff
system. 'Validity of the formulation and the program was assessed through analysis of simple
cases. This involved graphical representations of the manipulator in stick figure form showing
the configuration and location of the manipulator at discrete time intervals. Although the
amount of information that can be obtained through a systematic parametric study is enormous,
the focus is on results that may help in establishing trends. In general, the approach is to select
a set of realistic parameters representing a highly flexible physical system and subject it to
various slew maneuvers and control strategies. The objecctive was to gain some insight into

the effectiveness of the control procedures.
During the simulation, it became evident that the system can become unstable with certain
parameter values and manipulator configurations. This was also affected by the damping of the

rigid degrees of freedom. Of course, to avoid numerical instability it was essential to set the
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error tolerance below the critical value (10~3 in the present study). The system stiffness also
proved to be an important parameter in governing its stability. Under certain combinations
of joint and structural flexibilties and slew maneuvers the tip trajectory error was found to be
excessive even in the presence of the FLT control. The manipulator flexibility influences the

end tip payload position by superimposing a high frequency component over the rigid response.

A major influence on the response of the manipulator is the time history of the slew maneu-
ver. Maneuvers involving high acceleration rates led to greater vibration of the flexible degrees
of freedom. This effect was more pronounced due to abrupt changes in velocity at the beginning
or the end of a slew maneuver. However, the effect was greatly minimized through introduction
of a smooth sinusoidal maneuver profile. The choice of two modes was found to be adequate
in representing the tip dynamics. As expected, the presence of payload tended to reduce the

vibratory response in the flexible degrees of freedom.

A promising new approach in the nonlinear control of systems is the Feedback Linearization
Technique (FLT). The method is straightforeward and the control algorithm in its basic form
is simple. For control of a highly nonlinear system such as the mobile flexible manipulator
considered here, this approach looks very promising. If all of the state variables are known
and used in the control algorithm (Quasi-Closed Loop Control (QOLC)), the rigid degrees
of freedom, which are colocally controlled, can be made to follow the desired trajectory with
considerable accuracy. The effect of the FLT is to decouple the rigid degrees of freedom from
one another and from the flexible ones such that the coupling effects on the rigid body dynamics
are eliminated. The converse, of course, is not true since we cannot directly control the flexible
degrees of freedom. The flexible body dynamics is thus susceptible to dynamic influence from
the rigid degrees of freedom. Hence, the manipulator tip tracking error is strictly due to the
combined stuctural flexibility of the links. This fact implies that we require a secondary level

of control to deal with the flexible modes:

There are certain aspects which need attention for implementation of the FLT in a practical

situation. Demand on computational power is the major one. Fortunately, the computer
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technology has made over years, and continues to make, spectacular advances. With parallel
processing architecture, Irea.l time implementation of control. even for a complex system. may
be within reach. Control of the rigid degrees of freedom requires precise knowledge of the
correct structural parameters of the manipulator so that an accurate model may be derived
for the controller. Furthermore, sensor information for the flexible degrees of freedom must be
obtained for the controller. This would require additional filter circuits and other additional
hardware. One way to circumvent this problem is to use Quasi-Open Loop Control (QOL(")
which utilizes sensor feedback information of the rigid degrees of freedom and calculates the
predicted flexible degrees of freedom to be used by the main controller algorithm. This. however.
would require additional computational power. .Thus success of the FLT is largely depeudent

on the advances in the computer and software technologies.

5.2 Comments About the Numerical Simulation

There are a number features regarding the simulation program that are worth commenting
on, particularly for its future use in studying dynamics and control of mobile flexible manipu-

lators with payload and operating in the gravity field enviornment:

e The program can be used to simulate the links with as many as six modes. Additional
modes can be accomodated simply by making the appropriate changes in the relevant
subroutines. Only two modes were used in the present study because it offered desireable
trade off between the simulation speed and faithful representation of the flexible system
dynamics. The mode numbers used can be changed through the PARAMETER state-
ments, using the global ALTER editor command, as described at the beginning of the
MAIN routine.

e The program can be used in any system envoirnment that supports the ANSI standard

FORTRAN77 assembler language. For use in the UBC-MTSG enviornment, just issue
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the commands stated at the start of the MAIN routine, but first be sure to CREATE the
required files as stated. To run in the UBC-UNIXG enviornment, the basic assembler and

link commands must be modified.

The program can be joined with the dynamical models of other systems and then simulated
simultaneously as one single unified system. The dynamic model of the manipulator.
contained in the subroutine FCN and used by the MTSG’s integration subroutine GEARB
(or IMSL’s DIVPAG), may be easily modified by adding the extra terms to the mass
matrix D, the forcing vector F and the over all system state vector V. Subsequently.
the manipulator must be dynamically synthesized with the connecting system via the

generalized force vector Q .

A useful feature for a highly flexible systems under the influence of externally induced
steady state force fields (such as the gravitational field), which has the effect of preloading
the system to assume a state of 'deflected’ static equilibrium, is the MTSG subroutine
HYBRIDI (or the IMSL library subroutine DNEQNF). In general, its purpose is to find
the zero of a system in N variables by a modification of the Powell Hybrid Method.
Objective here is to evaluate the initial conditions of all the generalized coordinates of the
system in static equilibrium under the influence of the gravity. The reason for this is to
start the slewing maneuver of the manipulator from a ’true’ static equilibrium condition.
In other words, now the velocity and acceleration of the generalized coordinates, both
flexible and rigid, are zero. Note, however, that the IMSL subroutine DNEQNF works
flawlesly with this program. On the other hand, HYBRID1 has not been shown to work
properly with this code and requires a certain amount of debugging before use. As a result
it has been COMMENTED out and deactivated. This, however, does not seriously effect
the results because the stiffness coefficients are relatively high and the slew maneuvers
are fast and therefore the generalized forces are high enoigh to dominate any effects of

nonzero initial conditions.
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¢ In the subroutine FCN, which contains the dynamical equations of motion of the manip-
ulator, the forcing vector F is segmented into its basic contributing components and then
summed at the end. This greatly facilitates studying the effects of each of the components
on the dynamical response of the manipulator simply by blanking certain terms or combi-
nations of terms. Amongst other things, one may study what effect inaccurate modelling

will have on the stability and robustness of the FLT control of the manipulator.

5.3 Recommendations for Future Work

The intention of this thesis is to present a relatively general formulation, based on a model
of contemporary interest, which will provide some insight into the dynamics and control of
the complex and highly nonlinear ground based, mobile, flexible, twolink manipultor. The tip
tracking of moving flexible manipulators have yet to be studied in sufficient detail, especially
under the FLT control. This is a new area of research which promises robust, eflicient, control of
highly nonlinear systems. To investigate this as well as other areas of interest a few suggestions

are listed below:

o Extension of the model to three dimension would improve its verstility through application
to a large class of systems. Inplane and out-of-plane degrees of freedom, including torsion
of the manipulator links, would enhance the usefulness of the model significantly. The

FLT control of such systems would represent an important advance in the field.

e The problem of computational time and cost is a major consideration when performing
dynamical simulations of complicated nonlinear systems with large numbers of degrees
of freedom. Development of a parallel processing enviornment would go a long way in

increasing the speed and the real time implementation of the FLT.

¢ Robust control of the rigid degrees of freedom is strongly dependent on the accuracy of
the model. There is considerable scope for parametric studies in this area. As mentioned

earlier, the model subroutine FCN is structured to facilitate the investigation of the effects
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of incorrect modelling of the manipulator being controlled. The effect of inaccurate model

on the tip trajectory is an important avenue for future study.

o There is a considerable scope for detailed parametric study to assess the influence of;

— structural properties;

differential equation solver parameters;

time histories of slew trajectories:

FLT control parameters;

payload mass;

gravitational acceleration.

e In order to minimize vibration of the flexible links, it is suggested that a secondary con-
troller be built into the base and the joints. Its purpose would be to superimpose, on the
main controller action, a secondary damping action to improve tracking of the manipula-

tor’s tip trajectory. This approach can be easily tested using the existing program.

o In the problem formulation chapter. two methods of deriving the dynamical equations of
motion were suggested. One employed the use of homogeneous transformation, a more
direct method. The other relies on the vector approach, an appearantly more general,
less direct and more labour intensive method. It would be useful to investigate the pros
and cons of these two, as well as other approaches. The comparison may be in terms
of efficiency of derivation and compatibility with commercially available softwares, to

expedite as well as synthesize derivation and simulation processes.

o End effector compliance and force control during pick/place operations of industrial robots
is a very important area in robotic design [38], particularly if high speed, delicate and
precise operations are involved. This would involve introducing constraint relations. Such

studies, though challenging, should prove to be equally satisfying.
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Appendix A

KINETIC ENERGY EQUATIONS

Following are the total kinetic energy expressions for the earth based flexible manipulator links
1 and 2 in terms of their physical parameters and generalized coordinates:
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Total kinetic energy of the system is given by

T = Th+ T

The contribution of payload mass mp and of the mobile base mpg are included, in the

simulation code, by adding the effect of the point mass to the inertia terms for link 2 and for

the base. The joint mass is assumed negligible with respect to the mass of the links.
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Appendix B

POTENTIAL ENERGY

The total potential energy expressions for the two-link manipulator can be written as:

LINK 1

, - 2 Ml
Uy = E ‘I)Dljélj + > 95
1=1

m
+9C, Z 1,015 + gmypy.

=1
LINK 2
m
Uy = Y ®02j6%; + gma (1151 + 3,Ch) + gmap,
=1
1 m
+§g771212512 +9Cy2 E ®,;62;5.
i=1
where
U = U+0;

= Total flexural and gravitational potential energy of the system .
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Appendix C

EQUATIONS OF MOTION

The various contributions to the governing differential equations from the inertia, gyroscopic.

centripetal, coriolis and other forces as well as their coupling effects are summarized below:
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fu,e, 0;

Jui6 0:

fuap. 0;

Jvzp, gma;

fvao g ((m?l2 C12 = 512 El‘l’uéz,) + my (LG -y, 51)) ;

i=
Sva61s g (¢f,k (mzl2 Ci2 — 512 21 ‘1’2152;) + ¢1,km201)
=

fu,0, g (mzl2 Ci2 - 512 224’2;62,) ;

i=
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ftasy, = 9C12%P2k + 2@ poibok.

The various time dependent terms of the system mass matrix can be deconvoluted from the

acceleration /force expressions summarized below:

szPz = +Pz- (mz)
+5y (0)
. l
+, ((m2 2512 + Ci2 Z¢2J62J) -ma (LS + L Cl))
I=1

. 91
+61, (_¢11rm251 ( —22512+ Crz 2%1621))

i=1

. myl
+6; ( ( 228+ 61224’21521)) ;
7=1

szpy = +ijz(0)

+5y (m2)
- 771212
+6, Ciz - 5122‘1’2,523 + my (LG =y, 51)
7=1
. I
+617 (¢;,r (m2 22012 - 512 Z ‘1’2;52]) + ¢1,rmzcl)
7=1
+6; (mz 2C12 - 512 Z ‘1’2]52])
7=1
+52r (Cl2q’2r)
l
fp.8, = ( (m2 222 612+ C1z Z ‘1’21521) -mg (LS + yhcl))
=1
mglg
(( Ci2 - 512 2%1621) + ma (LG -y, 51))
1=1
mold & mal
( 22 4 Z‘hzﬁz,) +2—— 2 2(hCe + yllsz))
=1

(mz yll + 12 -2 Z ®,625 (LS; - Y, Cz))

j=1
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mol2 & myl - .
+61, éi,r (( 22 4 E¢S2162J) T2 —— (LC2 + y,, 52) - zq)zjts'zj (LhS2 - yl,('z)))

Jj=1 ji=1

l
+61r (d’l]'r (7"'211 + (21:'?_26'2 - 52 Z:d)gj62j)))

j=1

mpld & l
(( 22 4 zészjazj) 22 (1,Cy + w, S2) - 2%62] (hSy - yz,Cz))

1=1 J=1
+62r (¢X2r + (I>2r (IICZ + Y, 32)) )

mal
IDy6ys ( — D,k ( 226, + 01224’2162,) - ¢1,k51m2)
=1
mal
( bk ( 2201, - S, 2‘1’2152;) + d>1,kC'17n2)
=1

L,
(¢llk (7712 2cv _ 52 Z ¢2J62J))
Jj=1

myl2 & b m l
(¢ Ik (( 2 2‘1’52;52]) = )" @2;655 (1152 — i, C2) + 2 2 (hCy + yz,bz)))

j=1

mold & , n2l; e
¢1T ('bll- ( 2 24’32:'631') + @k (7 2 C; -5 24’2152.)))

=1 J=1

1
+61r ( ILhir (¢11km2 + ¢l,k (m2 202 -5, ZQZJézj)))

=1

. mali & l
+62 (¢§,k ( X Y 21) + bk (m; 20, - 8, Z‘I’zjbzg))

=1 i=1

=1

+32r (¢;1kq)X2r + ¢11k¢2r02) 3

) mol m
D6, = +bz (- ( 22515+ 0122‘1’2,1‘52;'))
=1

l
(mg 2C12- 5123 ‘1’2;62,))
m;l2 i m212
+6lr ¢ll"‘ —= Z QS2J62_, + ¢l;r C2 - S2 Z Q2_762]

myl2 & myl
( 224+ <I>52,62,) —22 (4Cy + w, 52) - 2‘1’2152; (hS2 - yzlcz))

J=1 i=1

i=1
1=1 j=1
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+6, (m;l% + iq)sﬁ&%j)
5=1
+b2r (P x2r);
IDyby = 4P (—P2k512)
+y (+P2:C12)
+61 (+®x2k + B2k (WC2 + 31, 52))
+617 (®2x61,-C2 + ), P x2k)
+6, (®x2k)

+b2, (Ds2k) ;

These separate terms are then combined to form a complete set of differential equations

follows:

IDipz + fD2p: + fTDyp. + fTD2p: = fTip: = ITop. + frp. + fUnp.
IDipy + fD2py + FTDypy + fTD2p, = fTipy = fTopy, + furp, + fUap,
[0, + fD,6, + fTDy6, + fTD26 — fTi0, = fTo0, + fune, + fune
foisin + fDo60 + fTDy 61y + STD26 — FTi60 = FTos0 + fUnsy, + U6y,
ID16, + fDy6, + fTDy6, + fTDs60, — fTh6, = fTae, + fUr6, + fune,

fD]ﬁgk + fD252k + fTD]&gk + fTD262k - fT]Jgk - fT262k + fU;&gk + fUz&gk

Qp=i
pr:
Qo,;
Q645
Qo
Qsys

The above equations can be represented in a compact form using the vector notation as

-

fo+fro-fr+fv = @,

ie. Di+fmp-h+fu = 0,

-

or Da‘+f = Q.

as

This equation can be rewritten in the following form and solved numerically using a state space

based integration algorithm:

a = D! (é—f)
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