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Abstract 

Turbulent natural convection boundary layers along a vertical flat plate were numerically 

simulated for non-absorbing and absorbing gases. By varying the value of absorption 

coefficient of the gas, the effects of radiative heat transfer on the velocity and temperature 

profiles of the boundary layer were investigated. A broad range of absorption coefficients, 

including very high and very low values, were covered. 

Three different turbulence models were used to predict the mean characteristics of the 

turbulent natural convection boundary layer in a non-absorbing gas: the algebraic mixing 

length model proposed by Cebeci and Khattab; the low-Reynolds-number k-e models of 

Jones and Launder, and To and Humphrey. It was observed that the Jones and Launder 

model would predict a later transition if the grids in the flow direction were more refined. 

However, when the wall functions and extra source terms in the k and e equations were 

applied only before the point of maximum velocity, this deficiency was removed. The 

model in this case was called modified Jones and Launder model. A comparison between 

the calculated results and the experimental data of Tsuji and Nagana showed that the 

modified Jones and Launder model was able to predict fairly well the natural convection 

boundary layer. 

Turbulent natural convection boundary layers in an absorbing and emitting gas were 

then calculated using the modified Jones and Launder turbulence model. The calculations 

were done for two wall temperatures; Tw = 60°C and Tw = 200°C with T^ = 25°C 

for both cases. It was observed that as the absorption coefficient of the gas increased, 

velocities and temperatures in the inner region of boundary layer increased, but turbulent 

viscosities decreased. The convective heat transfer rate also decreased. However, this 
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trend reversed at some value of absorption coefficient. It was shown that there was a 

relation between the range of influence of radiation, compared to the boundary layer 

thickness, and the type of behavior mentioned above. A comparison between the results 

for different wall temperatures revealed that , for the limiting cases of optically thin and 

optically thick gas, the normalized velocity profile uT, and normalized temperature profile 

iT, were independent of temperature difference between the wall and the medium at a 

specified Rayleigh number. The convective component of the Nusselt number became 

a function only of Rayleigh number. For the case of an optically intermediate gas a 

dependence on wall to gas temperature difference was noted. 
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Chapter 1 

I N T R O D U C T I O N 

1.1 Prel iminary Remarks 

The problem of the convection-radiation interaction may be divided into two categories: 

thermal radiation in the presence of a non-absorbing gas, and radiation into an absorbing 

and emitting gas. In the first case, the radiative heat transfer appears only as a boundary 

condition at the wall. Radiative and convective heat transfers can be computed sepa­

rately. On the other hand, when an absorbing and emitting gas is present, the radiative 

heat transfer through the gas produces a source or sink of thermal energy. The energy 

equation, and therefore the flow field are coupled with the equation of transfer of the 

radiative intensity. 

Some of very common gases like carbon monoxide, carbon dioxide and water vapor 

absorb and emit infrared radiative energy as a result of vibrational-rotational bands. It 

is important to mention that the absorptive characteristics of these gases are very strong 

even at low temperatures. Because of the presence of these gases in many daily life phe­

nomena and engineering applications, natural convection may be affected by radiation. 

For example, the flow inside a furnace is a mixed forced and natural convection in an 

absorbing and emitting medium because water vapor and carbon dioxide are present 

in the products of combustion. Other examples of this phenomenon are the cooling of 

electronic devices and heat transfer from solar collectors. Since water vapor and carbon 

dioxide are usually present in air, it may be said that all natural convection phenomena 
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Chapter 1. INTRODUCTION 2 

in atmospheric air are influenced by gas radiation. 

1.2 Descript ion of the Problem 

Natural convection flows result from the buoyancy forces imposed on the fluid when its 

density in the proximity of the heat-transfer surface is decreased as a result of heating 

processes. The buoyancy forces would not be present if the fluid were not acted upon by 

some external force field such as gravity or centrifugal force. Depending on whether the 

temperature of the fluid, T^, is lower or higher than the surface temperature, Tw, the 

flow direction will be different. These two cases are illustrated in Fig. 1.1. The governing 

equations for these two cases are basically the same except that the buoyancy term in 

the momentum equation appears with different signs; positive for a hot wall and negative 

Tw<T°° 

Figure 1.1: Natural convection along a hot (left) or a cold (right) plate. 
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w 

Tw>To 

q . r-— 

Figure 1.2: A typical element of fluid which absorbs, qT{, and emits, qTO, radiative energy 
and in general qT{ and qTO are not equal. 

There are two different modes of heat transfer between the plate and the medium; 

convective and radiative. The convective heat transfer rate is calculated by using Fourier's 

law of conduction at the wall 

qc = -Kjj)~ (1-1) 

Then, a suitable heat transfer coefficient, h, can be defined so that 

9c = h{Tw - Too). (1.2) 

On the other hand, if the gas is non-absorbing, the radiative heat transfer rate from the 

black wall may be calculated from the relation 

qT = o{Tt - O (1.3) 

In this case, two different modes of heat transfer are calculated separately. The total 

heat transfer from the wall is found by simply adding the convection and the radiation 

heat transfers. 
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However, if the gas absorbs and emits radiative energy, Fig. 1.2, the radiant energy 

which reaches an element of fluid may not be equal to the radiation that leaves that 

element. The temperature profiles, and therefore the flow field, will change due to the 

radiant energy which is absorbed or emitted by the fluid. Although it is still common 

to calculate the convection heat transfer by using Eq. 1.2, the value of heat transfer 

coefficient, h, is not the same as it was in the case of a non-absorbing gas. The two 

modes of heat transfer are not independent of each other. Convection heat transfer is 

influenced by radiative heat flux, and radiative heat transfer is a function of temperature 

distribution in the fluid and its radiative properties. Instead of Eq. 1.3, another suitable 

expression must be used to calculate radiative heat transfer. Therefore, convection and 

radiation heat transfers must be calculated simultaneously. Then, total heat transfer will 

be the summation of convective and radiative heat transfers. 



Chapter 2 

R E V I E W OF T H E L I T E R A T U R E 

A literature review has been done in order to find the extent of knowledge available in 

the field of turbulent natural convection, radiative heat transfer in a participating gas, 

and the interaction of these two modes of heat transfer. This review includes a computer 

search of papers published during the period 1986-91 and which in some way dealt with 

natural convection and gas radiation. Using the references mentioned in these papers, 

it was possible to extend the review to the early 1960s when the first studies on these 

topics appeared. 

2.1 Turbulent Natural Convection 

2.1.1 Exper imenta l Investigations 

Cheesewright [1] and Warner and Arpaci [2] presented some of the earliest experimental 

data of the velocity and temperature profiles of the turbulent natural convection bound­

ary layer. Their results showed that the analytical predictions of Eckert and Jackson [3] 

did not agree with the measured data. 

Lock and Trotter [4] measured the mean velocity and temperature profiles of a turbu­

lent boundary layer formed adjacent to a heated vertical plate immersed in water. They 

also measured the temperature fluctuations and their frequency distribution. Their re­

sults showed that the fluctuations were of the same order as the mean values. They also 

noticed the existence of two different turbulence scales; one of the order of boundary 
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Chapter 2. REVIEW OF THE LITERATURE 6 

layer thickness in the outer region and the other much smaller in the near wall region. 

Vliet and Liu [5] measured velocity and temperature profiles as well as local heat 

transfer rate for laminar, transition and turbulent natural convection of water along a 

constant heat flux vertical plate. They showed that turbulent heat transfer coefficient 

slightly decreases with length of the plate. 

Kutateladze et al. [6], Papailiou and Lykoudis [7], Cheesewright and Doan [8] and Bill 

and Gebhart [9] made further measurements of the statistical quantities and space-time 

correlations of a transient and fully turbulent natural convection boundary layer. 

Cheesewright and Ierokiopitis [10] provided the results of measurements of mean and 

fluctuating velocities that unlike the previous study [1] satisfied an integral energy bal­

ance. The measurements were done by laser-doppler anemometry techniques. Miyamoto 

et al. [11] also used laser-doppler methods as well as thermocouples in order to measure 

the turbulence quantities along a uniform heat flux vertical plate. 

An important contribution to the experimental knowledge of the natural convection 

boundary layer was given by Tsuji and Nagana [12]. They made a detailed hot-wire 

measurement of the temperature and velocity fields paying close attention to the near-

wall region. Their measurements showed that the wall shear stress increases in the plate 

height direction whereas the heat transfer rate is almost constant. Thus, there is not the 

usual analogy between heat and momentum transfer. They also showed that the velocity 

profile approaches a straight line in the region of much smaller y+ than the corresponding 

profile in the forced convection flows. Their measured data will be used to verify part of 

the numerical results obtained in this work. 

2.1 .2 Theoret ical Works 

Mason and Seban [13] numerically calculated the free convection heat transfer from ver­

tical surfaces by means of a one-equation turbulence model. 
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Cebeci and Khat tab [14] slightly modified the mixing-length model, proposed by 

Cebeci and Smith [15] for forced convection flows, and used that model for the prediction 

of turbulent free convection boundary layers. They used an algebraic expression for the 

calculation of turbulent Prandtl number, though they found that the results obtained by 

assuming a constant Prandtl number equal to 0.9 were almost the same as those obtained 

by using a variable Prandtl number. 

Plumb and Kennedy [16] applied the low-Reynolds-number k-e model, similar to 

that proposed by Jones and Launder [17], to the calculation of the turbulent natural 

convection boundary layer on a vertical, isothermal surface. The wall functions and 

wall source terms in the k and e equations were applied only between the wall and the 

point of maximum velocity. Regarding the buoyancy production of turbulence, which is 

not present in forced convection flow, they assumed that u't' oc {kt'2)1!2 and solved an 

equation for t'2 along with the other governing equations. However, they accepted that 

their proposed constant of proportionality was not a universal one since u't' may change 

sign in a flow. 

Lin and Churchill [18] also used the Jones and Launder [17] low-Reynolds-number k-e 

model to calculate the temperature and velocity fields adjacent to an isothermal, vertical 

plate. They argued that because of the local isotropy in the turbulent core of the flow, 

u't' should be equal to or at least proportional to v't'. Therefore, they used u't' oc ^ - f r 

for the buoyancy production term in the equation of turbulent energy although they 

had used u't' oc ^-f^ in the thermal energy equation. They also neglected the effect of 

buoyancy in dissipation equation. However, their final results showed that , at least for 

air, the inclusion of a buoyancy term in the k equation had a negligible effect. This effect 

increases as Prandtl number increases. 

George and Capp [19] showed that the fully developed natural convection turbulent 

boundary layer must be treated in two parts with two different length scales; an outer 
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region consisting of most of the boundary layer in which viscous and conduction terms 

are negligible and an inner region, called a constant heat flux layer, in which the mean 

convective terms are negligible. The inner region is further split in a conductive and 

viscous sublayer, directly touching the wall, and a buoyant sublayer farther away from 

the wall. By a similarity analysis it was shown that in the buoyant sublayer the velocity 

and temperature profiles depend on the cube root and the inverse cube root of distance 

from the wall respectively. 

To and Humphrey [20] developed two turbulence models for predicting free convection 

low Reynolds number turbulent flows. The first, a k-e model differed slightly from Jones 

and Launder model [17] in that the former did not have any extra terms in the k and 

e equation and a non-zero boundary condition was specified at the wall for dissipation 

rate. The second model, an algebraic stress model in which, by assuming an equilibrium 

turbulent flow, the turbulent fluxes were calculated from algebraic expressions derived 

from simplified forms of transport equations for the fluxes. Their test results from the 

k-e model showed that whether u't' oc g- or is zero, the effect of buoyant production of 

turbulence on calculations of heat transfer, mean temperature, and velocity was negligible 

although the turbulent kinetic energy maximum was decreased by 7% if buoyancy was 

neglected. Therefore, they neglected this term in the k-e calculations. When the algebraic 

stress model was used, this term was computed directly without difficulty. Their near wall 

results supported a y1^3 dependence for velocity and a y-1^3 dependence for temperature. 

Fedotov and Chumakov [21] used a transport equation for turbulent kinetic energy 

along with an algebraic expression for mixing length to calculate the turbulent viscosity. 

They modeled the buoyant production of turbulence by using the relation u't' oc (t^k)1'2 

and solving another transport equation for t'2. The important point of their work was 

that the proportionality factor they used was not constant across the boundary layer. In 

fact it could be a negative value very close to the wall to comply with the experimental 
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data. 

The performance of different turbulence models (originally developed for forced con­

vection flows) was tested for the natural convection boundary layer by Henkes and 

Hoogendoorn [22]. These models include the algebraic mixing-length model, the k-e 

model with a wall function, and a few different low-Reynolds-number k-e models. They 

also very roughly compared the predictions of different models with what they called 

the "best fit" with the experiments. Their results showed that the low-Reynolds-number 

k-e models of Lam and Bremhorst [23], Chien [24] and Jones and Launder [17] gave the 

best results in describing the velocity profiles. For Grashof numbers higher than 1011 the 

Jones and Launder model was the best. 

Henkes and Hoogendoorn [25] also compared numerically predicted wall functions 

with the previously proposed analytical ones. Their calculations showed that in the 

conductive/thermo-viscous sublayer the parameters C/j, = \fgf3ATx and ccGr"1/4 are 

suitable scaling parameters for velocity and length. For the dimensionless temperature, 

(T — Too)/AT), the similarity length was found to be £ = yNux/x. For the buoyant 

sublayer, George and Capp's [19] wall function for temperature was confirmed, but their 

wall function for velocity was not determined. Instead, the same velocity and length 

scales as for conductive/thermo-viscous sublayer were also confirmed to be suitable for the 

buoyant sublayer. George and Capp's [19] defect laws for the velocity and the temperature 

in the outer layer agreed very well with the numerical predictions. The velocity scale was 

found to be UbGr'1/16 which was close to the laminar velocity scale, Ub. Therefore, they 

concluded that the laminar velocity scale, Ub, was approximately the right velocity scale 

over the whole thickness of the boundary layer. 

file:///fgf3ATx
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2.2 Natural Convect ion Coupled with Radiation 

The most basic effects of radiation upon the other modes of heat transfer was illus­

trated by Cess [26]. He also made the first analytical investigation of the free convection 

boundary layer of a gray gas along a vertical, black and isothermal plate as a singular 

perturbation problem [27]. 

Novotny and Kelleher [28] presented an analysis for the laminar free convection 

of a gray gas at the stagnation point of a horizontal, black and isothermal cylinder. 

Novotny [29] also investigated the effect of nongrayness on the same problem. The radia­

tion term of the energy equation was formulated using the exponential wide-band model 

of Edwards and Menard [30] and the correlation of Tien and Lowder [31] for the total 

band absorption. There was no conclusion regarding the difference between the results 

obtained with gray and with nongray gas assumptions. 

Arpaci [32] made an analytical study of the laminar heat transfer from a heated 

vertical plate to a gray and nonscattering radiating gas. The integral formulation of the 

problem was considered and solved using a perturbation method. 

England and Emery [33] performed the first experimental study of the effects of ther­

mal radiation upon the laminar free convection boundary layer of an absorbing and non-

scattering gas (CO2) near a vertical, flat and constant heat flux plate. The experimental 

data were compared with the numerical solution for a gray gas both in an optically thin 

and constant-property, and in a general, case. Unlike the findings of the other investiga­

tors, their analytical and experimental investigations showed that the effect of radiation 

on the laminar free convection of absorbing gases was negligible. They also concluded 

that the free convection of gases need only be treated through the use of the optically 

thin limit. 

Audunson and Gebhart [34] investigated experimentally and theoretically the effects 
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of thermal radiation on the laminar natural convection boundary layer adjacent to a 

vertical flat surface with uniform heat flux input. In the experiment, air, argon and am­

monia were used to observe the radiation effects in non-absorbing and absorbing media. 

Theoretical results were obtained by a perturbation analysis. Their study showed that for 

non-absorbing gases the effect of radiation on convection appeared only in the boundary 

conditions and the convection transport might be formulated as a non-radiative process. 

However, the absorbing gas, ammonia, caused a strong interaction between radiation 

and convection. The presence of a radiating gas was seen to increase the convective heat 

transfer by as much as 40% and to decrease the non-dimensional temperature level by 

approximately 20%. 

Cheng and Ozisik [35] solved the non-similar momentum and energy equations for 

a constant-temperature vertical plate in an absorbing, emitting, isotropically scattering 

and gray fluid. Their parametric study showed the effects of scattering albedo, optical 

thickness and conduction to radiation parameter on temperature and velocity in the 

boundary layer and heat transfer at the wall. 

Bratis and Novotny [36], Lauriat [37, 38], Kurosaki et al. [39], Chang et al. [40], Ratzel 

and Howell [41], Desrayaud and Lauriat [42], Webb and Viskanta [43], and Fusegi and 

Farouk [44, 45] investigated the combined radiation and natural convection in enclosures 

and vertical layers. The last two papers are noteworthy. Nongray gas radiation was 

analyzed with the P-l approximation method for the radiative transfer equation and the 

weighted sum of gray gases model was used. The model postulated that the emissivity of 

nongray gases could be represented by the sum of gray gas emissivities weighted with a 

temperature-dependent factor (the gas was carbon dioxide). A k-e model was employed 

with the standard model constants and turbulent Prandtl number. 

Hood [46] studied experimentally and theoretically the turbulent natural convection 

coupled with thermal radiation in an absorbing gas adjacent to a vertical heated plate. 
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The momentum and energy equations were solved by an integral technique, with the 

radiation term modeled by two different methods; the mean beam length method, and 

the optically thin gray gas method. The experimental work consisted of measuring the 

temperature and velocity profiles at one location over a range of carbon dioxide and 

nitrogen gas compositions. 

2.3 Scope of the Present Investigation 

The review of the existing literature shows that there is still a lack of knowledge re­

garding the fundamental effects of gas absorption and emission on the turbulent natural 

convection boundary layer. Even for the case of natural convection in a non-absorbing 

gas, there is not any overall accepted turbulence model to numerically simulate the flow. 

Therefore, the purposes of this study are: 

1. To determine a turbulence model that predicts fairly well the mean characteristics 

of the turbulent natural convection boundary layer. This will be done by comparing 

the results obtained by a few different models with the most recent experimental 

data. 

2. To study the effects of gas radiation on the turbulent natural convection boundary 

layer. The effects of interest are; mean velocity and temperature profiles, heat 

transfer rate, boundary layer thickness, maximum velocity, mass flow rate, etc. 

Here it is assumed that a turbulence model that gives a good prediction in the case 

of a non-absorbing gas is also suitable for an absorbing and emitting gas. 



Chapter 3 

T H E O R Y 

3.1 Physical Mode l 

The physical model and the coordinate system are shown in Fig. 3.1. The plate tem­

perature, Tw, and the surrounding fluid temperature, Too, are considered to be constant. 

The coordinate system is so chosen that the x coordinate will be along the plate and the 

y coordinate perpendicular and outward to the plate. The boundary layer at the leading 

Figure 3.1: Physical model and coordinate system. 

13 
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edge of the plate is laminar but at some distance from the leading edge, depending on the 

fluid properties and temperature difference between the plate and medium, transition to 

a turbulent boundary layer begins. If the plate is long enough, the boundary layer may 

become fully turbulent. This part of the boundary layer is the subject of interest in this 

study. 

Unlike the more common analyses of natural convection boundary layers, in which the 

fluid is considered to transmit completely the radiative energy emitted by the plate, here 

it is assumed that the fluid elements are able to absorb and emit part of the radiation 

transmitted to them. 

3.2 Boundary Layer Equations 

For a two-dimensional, constant-property, and incompressible flow the continuity, mo­

mentum and energy equations can be written as 

du dv .„ H. 

S + 5 T 0 (31) 

du du du ldP , d u d2u. 

dv dv dv \dP , d2v d2v. 
h u 1- v— = (- v( 1 ) 

dt dx dy p dy dx2 dy2 

d6 d6 d6 k ,d2Q d26. $ S 
+ U-*Z + V7T = Z?r{!r-2 + 0-5) + -7T + dt dx dy PCp

Kdx2 dy2' PCP pCp' 

where $ and S represent viscous dissipation of energy, and any other source or sink of 

energy inside the flow respectively [47]. The viscous dissipation term, $ , is often a negli­

gible effect in natural convection flows where the velocities are very small. Gebhart [48] 

showed that the ratio of this term to the conductive term becomes important for large 

g and/or very low temperature, or very large Prandtl number. None of these conditions 
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are present in the physical phenomena considered in this study; therefore, this term will 

be simply neglected. 

The only source term in the present problem is radiation energy absorbed or emitted 

by the gas. It can be written as [49] 

„ ft _ (dqTX dqTy 
S=-V-q' = -(-te+-dy-)- (3'2) 

Using the usual boundary layer approximations, the simplified form of the governing 

equations can be expressed as 

du dv 

ox oy 

du du du _ 1 dP d2u 

dt dx dy p dx dy2 

dQ_ d0_ d&__ &l_J_dqrx dgry 

dt dx dy dy2 pCp dx dy 

As indicated in the momentum equation above, the pressure is not a function of 

transverse direction y. On the other hand, outside of the boundary layer, the pressure 

gradient is only due to gravity 

dP 

* = - ' - * • <3-4> 

Substituting Eq. 3.4 into the momentum equation results in 

du du du 1. . d2u 

Tt+Uo-x+Vd-y:=-p
{p--p)9^VW ^ 

The Taylor expansion of p about p^ gives 

P = Poo + ( ^ ) p ( * - ^oc) + g C ^ j M * - 6°°)2 + - « Poo - PW - 6°o\ 

or 

Poo - p = pfi{6 - 9^), (3.6) 
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where /5 is the coefficient of thermal expansion and is defined as: 

Sparrow and Cess [49] showed that even for an optically thick gas 

1 dqrx dd 
< n — . (3.7) pCp dx dx 

Therefore, radiation heat transfer can be considered as a one-dimensional transfer phe­

nomenon. 

The final form of the boundary layer equations can be written by combining Eqs. 3.3, 

3.5 and 3.6, and using Eq. 3.7 to neglect the radiation flux in x direction. This results in 

du dv 

dx dy 

du du2 duv n/n „ , d2u ,n „. 

d6 dud dv9 d26 1 dqr 

dt dx dy dy2 pCp dy' 

These equations are written in the conservative form which is more suitable for a numer­

ical solution. 

In Eqs. 3.8 the velocities and the temperature are instantaneous time-dependent val­

ues. If the turbulent flow is statistically steady, the instantaneous values can be consid­

ered to be the sum of a mean time-averaged and a fluctuating value 

u = U + u' 

v = V + v' (3.9) 

8 = T + f. 

Introducing the above decompositions into the Eqs. 3.8 and taking the time average 

results in the following set of time-averaged, two-dimensional, incompressible, natural 
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convection, turbulent boundary layer equations 

dU dV _ 

dx dy 

dU dU2 dUV , s d , dU s 

dT dUT dVT d . v dT _ _ 1 dqT 

^r + -5T- + ~^r = ^-BZ-K: ~ v t ) ~ dt dx dy dy Pr dy pCp dy 

In the derivation of the above equations it was assumed that 

du12 du'v' , du't' dv't' 
~^- < ~ 5 — a n d -IT" < "a—• 
ox ay ox oy 

It is seen that the time-averaged equations contain two new unknowns, the turbulent 

stress and the turbulent heat flux. Since the number of unknowns are more than the 

number of equations, the above equations do not form a closed set of equations. Solving 

this closure problem is the subject of turbulence modeling. 

3.3 Turbulence Models 

Turbulence models can be divided into two main categories. First, the models that use 

Boussinesq's proposition(1877). He suggested that the stress-strain proportionality law 

for the time-averaged turbulent flows could be represented in the same form as that for 

a Newtonian fluid in laminar flow. The concept of "turbulent viscosity" was introduced 

by this assumption in correspondence with the molecular viscosity in laminar flows 

dU 
- pu'v' = pvt—. (3.11) 

oy 

Similarly, "turbulent thermal diffusivity" and "turbulent Prandtl number" were intro­

duced to represent turbulent heat flux in terms of mean temperature variation 

dT vtdT , 
-v't = at— = -t—. 3.12 

dy atdy 
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Introducing Eqs. 3.11 and 3.12 into Eqs. 3.10 gives the new form of the boundary-layer 

equations 
dU dV n 

7T + 1T = 0 
ox oy 

dU dU2 dUV a/m m , d ,. ,dU, .„ 1oN 

-* + ftT + -dy~ = 'M - T~> + d-y[{u + UtW (3-13) 

dT dUT dVT d ., v utdT, 1 dqT 

dt dx dy dy Pr at dy pCp dy 

Different models have been proposed for calculating turbulent viscosity; including zero 

equation or otherwise called algebraic models, one-equation and two-equation models. 

The second group of models includes those which do not use the Boussinesq's assump­

tion. They provide differential transport equations for the turbulent fluxes themselves. It 

must be mentioned that the introduction of new transport equations for turbulent fluxes 

does not solve the closure problem since those equations contain other new unknowns. 

Therefore, modeling of the new unknowns in terms of the previous ones, or the mean flow 

parameters, is necessary. These models are very complicated and require considerable 

computing time. 

In this work only the first group of models is investigated. Emphasis is on the two-

equation model which now is widely used . 

3.3.1 Algebraic Mixing-Length Model 

In the algebraic models the objective is to relate turbulent viscosity to the local mean 

parameters of the turbulent flow. Prandtl(1925) was the first to propose such a relation. 

Influenced by the kinetic theory of gases, he presented his mixing-length hypothesis. Ac­

cording to the kinetic theory of gases, the molecular viscosity is proportional to the prod­

uct of the mean free path and the root-mean-square velocity of molecules. Analogously, 

in his mixing-length theory, Prandtl assumed the turbulent viscosity to be proportional 
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to the product of a mixing length and a characteristic velocity of turbulent fluctuations 

ut = lu\ (3.14) 

where I is a length scale characteristic of the size of momentum transferring eddies and 

u* is a characteristic velocity of turbulence. Prandtl assumed that the magnitude of 

the velocity fluctuations in lateral and longitudinal directions are proportional to each 

other; and those are proportional to the turbulent characteristic length scale times the 

mean-velocity gradient 

u* oc l\?£\. (3.15) 

Taking the proportionality constant as one, the Prandtl mixing-length formula for tur­

bulent viscosity could be written as 

* = Clffl- (3-16) 

In above, lm is called the mixing length of turbulent motion. There is still the question of 

how lm is to be determined? Based on the argument that the mixing length must vanish 

at the wall and that the eddy sizes are controlled by the distance from the wall, Prandtl 

introduced the following linear relation 

lm = Ky, with K = 0.4. (3.17) 

Actually, close to the wall the mixing length is smaller than that indicated by the above 

equation. Van Driest(1956) incorporated this effect by introducing an exponentially 

damping factor into the equation 

lm = Ky[l-exp(-y+/A+)], (3.18) 

y+ = ^ , A+ = 26. 
v 
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Figure 3.2: Definition of 8 in the mixing-length model. 

In the outer region of boundary layer, lm does not continue to increase, but remains 

approximately constant 

/m = A.£, with A = 0.075 - 0.09. (3.19) 

Cebeci and Smith [15] used this model to describe the turbulence in a forced convec­

tion boundary layer. The model was modified by Cebeci and Khattab [14] for a natural 

convection boundary layer. In this model 

Vi < v0 

(3.20) 

V0 < Vi 

and 8 is the y-position of U95; IE/95 — U^ = 0.05£/ma* (see Fig. 3.2). 

Cebeci and Smith also gave the following expression for the turbulent Prandtl number 
0.4[1 - exp(-y+/A+)] 

vt 

Vi = [Ky(l-exp(-y+/A+)))>\%\ 

*„ = (0.075*)a |g| 

0-t = 
0.44[1 -exp(-y+/B+)Y 

where 

J5+ = 
Pr£t 

5>(M*0),'-X. 

(3.21) 

(3.22) 
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and C! = 34.96 , c2 = 28.79 , c3 = 33.95 , c4 = 6.33 , c5 = -1.186. 

3.3.2 Two-Equat ion Models 

In a review of turbulence models, the two-equation models might be considered after 

one-equation models. However, one-equation models are not described here because of 

their limited popularity and small advantages they offer compared to the mixing-length 

model. It may be mentioned that in these types of models it is assumed that turbulent 

viscosity is proportional to a characteristic length scale times the square root of the 

turbulent energy; 

ut = l.k1/2. (3.23) 

A differential equation for k is then derived and some of the terms of that equation are 

modeled to keep the number of unknowns unchanged. On the other hand, I must be 

prescribed before the set of equations can be solved. 

The two-equation models also employ Eq. 3.23 for turbulent viscosity. Here, both the 

turbulent energy and the length scale are determined by suitable transport equations. It 

is not necessary to choose the length scale as the dependent variable of the differential 

equation. Any variable z — kmln with specified m and n might be used. Different vari­

ables have been adopted by different investigators. Kolmogorov(1942) chose a quantity 

proportional to the mean frequency of the most energetic motions, k1^2/I. Other workers 

have used the product of turbulent energy and length scale, kl, as their second dependent 

variable. The rate of turbulent energy dissipation, e = k3^2/l, has been favored by more 

workers than any other variables. The reason for this lies partly in the relative ease with 

which an equation for e can be derived and partly in the fact that e appears directly as 

an unknown in the equation for k. 



Chapter 3. THEORY 22 

High-Reyno lds -Number k-e Model 

The equation for mean kinetic energy, K = U2/2, is derived by multiplying the momen­

tum equation by U [50] 

f + ° e 4 + * £ - ̂ T - r~>+ fy% - **»+«f - <)•• <»•*> 
The equation for turbulent kinetic energy can be derived by multiplying the instan­

taneous momentum equation in the i direction by u,-(i), taking the time average of the 

resultant equation and subtracting the mean energy equation ,Eq. 3.24, from it [50] 

dk TTdk Trdk 0— d , dk _ _ —-dU ,dui , o m r , 

at + ua~x + vYy = sf™ + JpJi ~ vk) ~ uv% ~ *W?' (3-25) 

The left hand side of the above equation represents the rate of change and convection 

of turbulent kinetic energy. The terms on the right hand side represent buoyant pro­

duction or dissipation of turbulent energy, molecular and turbulent diffusion, production 

of turbulent kinetic energy through interaction with mean flow, and viscous dissipation 

of turbulent energy. This equation contains several turbulent correlations which have 

to be approximated in terms of quantities which we know or can determine. These 

approximations include [50] 

?*=--£. (3-27) 
0k 9y 

dU u'V = -vt-Q-, (3.28) 

du' 
and v{^)2 = e. (3.29) 

OXj 

When the approximated forms of the terms are introduced into the original equation, the 

final form of the equation becomes 

dk dk Trdk d .. vtsdk^ ,dU\2 „ nvtdT 
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The transport equation for isotropic dissipation e = v(du'i/dxj)2 can be obtained by 

the cartesian tensor operation u(du'i/ dxj)d / dxj on the i th component of the momentum 

equation, time averaging, and some modeling approximations [50]. The final form of the 

equation is 

S + UTX + vTy = 5»[(» + T,W + lCu"'{fl»> " C ! , e ~ C ' 5 ^ f c 1 * - (331) 

The relation between the turbulent viscosity, the turbulent kinetic energy, and the 

rate of turbulent energy dissipation can be found as; 

£3/2 £2 
vt oc k1'2^ and / oc , therefore vt oc —, 

e e 

or 

vt = C„—. (3.32) 

The turbulent Prandtl number for temperature, kinetic energy and dissipation, and 

also all the C's must be determined experimentally. Table 3.1 shows the values recom­

mended by Launder and Spalding [51] for forced convection flows and are widely used 

for free convection flows also. 

Table 3.1: The values of the constants in the k-e model. 

c. 
0.09 

Cu 

1.44 
c2t 
1.92 

o"t 
0.9 

°k 
1.0 

0"e 

1.3 

Regarding the values of Cg and C'g there are no accepted values. To and Humphrey [20] 

and Henkes and Hoogendoorn [22] argued that because of boundary layer approximations 

the buoyancy production has a small effect on the results and therefore dropped that 

term. Lin and Churchill [18] reasoned that u't' must be equal or at least proportional to 

v'V and therefore substituted dT/dx by dT/dy. Plumb and Kennedy [16] assumed that 
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u't' oc (Ait'2)1/2 and solved an equation for t'2 along with the other governing equations. 

However, they accepted that their proposed constant of proportionality is not a universal 

one for all free convection-type flows since u't' may change sign. Experimental works [12] 

clearly showed that u't' is zero or has a very small negative value near the wall. It 

increases rapidly in the positive direction near the location of the maximum temperature 

fluctuation and reaches a maximum at a location almost equivalent to the maximum 

velocity location. Numerical prediction of temperature fields showed that , in a fully 

turbulent flow near the wall, dT/dx is a small negative value and then becomes positive. 

Therefore, proportionality between u't' and dT/dx seems to be more realistic than that 

between u't' and dT/dy or (kt'2)1'2, which do not change sign across the boundary layer. 

It is noted that there is not yet any acceptable method to model the effect of buoyancy on 

the turbulent production or dissipation. On the other hand, as far as gases are concerned, 

the previous works [18, 20] showed that the effect of buoyancy on the final results were 

very small and possibly negligible. Therefore, in this work this effect is neglected; this 

means that Cg = C'g — 0. 

The above k and e equations along with the continuity, momentum and energy equa­

tions form a closed set of differential equations for turbulent flows. Since the e equation 

is an equation for rate of isotropic dissipation of turbulent energy, and the dissipation 

very close to wall is not an isotropic phenomena, the presented k-e model is called a 

high-Reynolds-number k-e model. Here, turbulent Reynolds number is defined as k2/ve, 

and is proportional to the ratio of turbulent to molecular viscosity. If one wants to use 

the high-Reynolds-number k-e model, the first computational node near the wall must 

be out of the viscous sublayer which is the low-Reynolds-number region of the flow. In a 

forced convection flow with negligible pressure gradient, it is known that close to a fixed 

wall the velocity and temperature profiles can be approximated by logarithmic wall func­

tions. These wall functions are used along with the high-Reynolds-number k-e model 
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to compute turbulent flow fields. On the other hand, as yet there is no generally ac­

cepted wall function for turbulent natural convection flows. Experimental investigations 

by Tsuji and Nagana [12] showed that there is not such a logarithmic velocity profile in 

the turbulent free convection boundary layer although their mean temperature profiles 

showed a logarithmic region in the range 30 < y+ < 200. They also concluded that the 

linear velocity profile, u+ = y+, which holds for a forced convection boundary layer in 

the range y+ < 5 does not hold even at y+ ~ 1 for the free convection flow. Therefore, a 

k-e model which covers both high and low Reynolds number regions is required. 

Low-Reyno lds -Number k-e Mode l 

Like all other turbulent models, the low-Reynolds-number k-e model was developed based 

on research results for the forced convection flows. Jones and Launder [17] suggested that 

in order to provide predictions of the flow within the viscous sublayer adjacent to the 

wall, the terms containing C's must become dependent upon the Reynolds number of 

turbulence, k2/ve, and further terms must be added to account for the fact that the 

dissipation processes are not isotropic. The complete form of their proposed model is 

S + ' K ^ " ^ ^ ^ - ' - ^ ^ 

£+"I+ "£ - > + 7)^ + ̂ < ) ' " <"<+*• <»•«> 
vt = CJp—. (3.35) 

In the above equations, the C's and the cr's retain the values assigned before (Table 3.1). 

The influence of turbulent Reynolds number is introduced by the way of the / ' s functions. 

Different versions of the low-Reynolds-number k-e model were introduced by other 

workers. They can be divided into two main categories: 
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1. First, those which use non-zero wall boundary condition for e and do not have any 

extra terms in k and e equations, D and E. 

2. The second group of models specify zero wall boundary condition for e and have 

extra terms in the k and e equations. 

The recently developed To and Humphrey model [20], which is the only model claimed 

to be developed for free convection flows, is from the first group of models described above. 

Table 3.2 illustrates the distinctions between the Jones and Launder model and the To 

and Humphrey model. 

Table 3.2: E, D, ew and / ' s functions in the To and Humphrey, and Jones and Launder 
models. 

D 

E 

C^y 

h 

h 

u 

Jones and Launder 

-Md-gr 
2W0)2 

0 

1.0 

1 - 0.3exp(-Rej) 

eXP(l+Ret/50) 

To and Humphrey 

0 

0 

M%?)2 

1.0 

(1 - Q.3exp(-Re2
t))f3 

r _ rl y+>5 
•I3 ~ Li-exp(-Re3

t) y+<5 

MKi+i£/Bo) 

According to Jones and Launder, the need for the term — 2i/(^-^)1 /2 in the turbulent 

energy equation arises from the fact that there are decisive computational advantages 

from letting e go to zero at the wall; e may therefore be interpreted as the isotropic part 
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of the energy dissipation. This new term in the energy equation indeed reduces to the 

value of energy dissipation at the wall. 

The last term on the right side of the dissipation equation is also one which does 

not appear in the high-Reynolds-number form of the model. Here there is no physical 

argument for its adoption. Its inclusion was simply in order to match the calculated 

turbulent energy profile with the experimental one. 

3.4 Radiat ion Heat Flux 

For a gray and nonscattering medium bounded between two parallel, infinite, gray and 

diffuse plates, the radiation flux is given by [49] 

qr(r) = 2B1E3(T) - 2B2E3(T0 - r ) + 2 f" aT\t)E2{r - t)dt - i P uT\t)E2{t - r)dt, 

(3.36) 

and correspondingly 

dr 
2B1E2(T) + 2B2E2(r0 - T ) + 2 H aT^E^r - t\)dt - 4 a T 4 ( r ) . (3.37) 

In above, T and T0 represent the optical coordinate and the optical thickness of the 

medium respectively; for a gray gas they are defined as: 

r = Kpy and r0 = KPL, 

where KP is the Planck's mean absorption coefficient given by: 

/o°° K\eb\d\ 
Kp 

Io° eb\d\ 

and En(i) is the exponential-integral function which is defined as: 

(3.38) 

En{t)= f1 ^e-^dfi. (3.39) 
./o 
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For a boundary-layer problem there is only one bounding plate and the other side is 

infinity (considered to be a black body). Therefore, the radiosities B\ and B2 are 

B1 = ewaT* + 2(1 - e ^ a T * £3(TOO) + /0
T~ crT\t)E2{t)dt], 

(3.40) 

B2 = cT^. 

Substituting Eqs. 3.40 into Eqs. 3.36 and 3.37 and noting that for large values of t, 

En{t) —> 0, the radiative flux equations for a boundary layer of nonscattering and gray 

medium along a diffuse and gray plate are obtained as 

qT{r) = 2ewaT*E3(r) + 4(1 - ew)E3(r) [°° aT\t)E2(t)dt + 2 f aT\t)E2{r - t)dt 
Jo Jo 

/
oo 

aT\t)E2(t - r)dt, (3.41) 

and 

dqr{j) = 2ewaTtE2{T) + 4(1 - ew)E2(r) f°° cT\t)E2{t)dt 
Jo 

+ 2 [°° aT\t)Ex(\r - t\)dt - 4aT4(r). (3.42) 
Jo 

dr 

In this study it is assumed that the plate is a black surface, ew = 1. Therefore, the 

second terms in Eqs. 3.41 and 3.42 disappear. 

It is seen that the equations for the radiative heat flux are in an integral form. There­

fore, the enrgy equation which contains the net rate of radiative heat flux as a source 

term will become an integro-differential equation. In general, the solution of an integro-

differential equation is much more difficult and time consuming than the solution of a 

differential equation. 

Different approximations were proposed to make the radiation problem a tractable 

one. One of these methods, which is called the spherical harmonics or Pjv-approximation, 

transforms the integral equation into a set of simultaneous partial differential equations. 

For detailed description of the development of the general P/v-method the reader is re­

ferred to Modest [52], and only the basic ideas are described as follows. 
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The radiative intensity, I, is expressed in terms of a two-dimensional generalized 

Fourier series by using the spherical harmonics, which are the solutions of Laplace's 

equation in spherical coordinates, and then J is substituted into the general equation of 

radiative transfer. Exploiting the orthogonality properties of spherical harmonics leads 

to an infinite number of coupled partial differential equations in the unknown position-

dependent functions. Up to this point the representation is an exact method for the 

determination of the intensity field. To simplify the problem, an approximation is now 

made by truncating the Fourier series after very few terms. The methods most often 

employed are the Px or the differential approximation, which is used in this work, and 

the iVapproximation. 

It can be shown that for a gray and nonscattering medium the Pi method leads to 

the following differential equation for the incident radiation G [52] 

V2
TG = 3(G - 4e6). (3.43) 

Once the incident radiation has been determined, the radiative heat flux and its diver­

gence can be determined from 

£ = - ^ V T G , (3.44) 

VT.qr = 4e6 - G. (3.45) 

For a one-dimensional radiation, assumed in this study, the above equations take the 

following simple forms 

~ = 3(0 - teb), (3.46) 

and -^- = 4e6 - G. (3.48) 

If Eq. 3.48 is differentiated once and Eq. 3.47 is used to substitute for the first 

derivative of G, the following differential equation in terms of radiative heat flux is 
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obtained 

Eq. 3.49 is a second order differential equation and therefore needs two boundary 

conditions. For a black wall the boundary condition for the incident radiation was shown 

to be [52] 
9 dC 

r = 0 , -^(-^)w + Gw = ^ebw, (3.50) 

and by substituting Gw and (^r)™ from Eqs. 3.47 and 3.48 into Eq. 3.50, the boundary 

condition for radiative heat flux at the wall is obtained as 

r = 0 , 2qrw - (^)w = 0. (3.51) 

On the other hand, at infinity both the radiative heat flux and its derivative are zero. 

Therefore, the second boundary condition may be written as 

r = oo , - r 1 = 0. (3.52) 
OT 



Chapter 4 

N U M E R I C A L M E T H O D 

4.1 Introduct ion 

The boundary-layer equations were solved for a semi-infinite isothermal vertical plate 

in an isothermal environment by a finite difference method. The computational domain 

was covered with uniform grids in x direction and non-uniform geometrically propagated 

grids in y direction. A very dense distribution of grids was used near the wall to cover 

the steep gradients of velocity and temperature there. The first point near the wall was 

so chosen that the value of y+ at that point would be less than one. It was observed 

that the near wall grid size could be increased, at least by a factor of two, without any 

important effect on the temperature profile. However, the velocity profile near the wall 

changed appreciably with that amount of change in the grid size. 

Although the steady state solution of the equations was required, the transient equa­

tions were used because of the inherent and useful underrelaxation effect they offer with 

small t ime steps. 

4.2 Governing Equations 

The governing equations which had to be solved for this problem are: 

• Continuity equation 

dU dV n „ , . 
o - + - 5 - = 0. 4-1 

ox oy 

31 
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• x-component of momentum equation 

dU dU2 dUV nfrn m , d .. ^dU, 

-m+^ + -af = ̂ T-T-) + ^ + ,"W' (4'2) 

• Energy equation 

dT dUT dVT= d_ u_ v^dT _ J _ i g , 
dt dx dy dy[KPr at

} dy1 pCp dy ' K ' } 

Turbulence-modeling equations 

1. Algebraic-mixing-length model 

Vi = [*»(1 - ezP(-y+M+))] 2 l f I *, < */0 
* H V °v (4.4) 

\dy 

2. Low-Reynolds-number k-e model 

uo = (0.075S)2\m u0<uh 

dk dUk dVk d ,, vt.dk, ,au,2 

m+-dx-
 + ~dy- = * K" + VM] + Vt{!y-] ~£ + D> (4'5) 

de dUe dVe d r. "t.de, . ^ ,, .9f/., „ , ne „ ,. „s 

jfc2 

* = C^U-. (4.7) 

The values of D, E, C's and CT'S as well as / ' s functions were as given in Section 

3.3.2. 

• The radiative term in energy equation might be calculated directly by the following 

integral 

dqT = Kp[2aT*E2(r) + 2 / aT^E^r - t\)dt - 4aT\r)], (4.8) 
Jo dy 

or by solving a differential equation for radiative heat flux if the differential ap­

proximation was going to be used 

http://vt.dk
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4.3 Discret izat ion M e t h o d 

The control-volume finite difference scheme of Patankar [53] was used to discretize the 

differential equations. In this method, the calculation domain is divided into a number 

of non-overlapping control volumes such that there is one control volume surrounding 

each grid point. Then, the differential equations are integrated over each control volume. 

Piecewise profiles expressing the variation of the parameter of interest between the grid 

points are used to evaluate the required integrals. The result is the discretized equations 

containing the values of the parameter for a group of grid points. The discretized equation 

obtained in this manner expresses the conservation principle for the parameter for the 

finite control volumes, just as the differential equation expresses it for an infinitesimal 

control volume. 

Fig. 4.1 shows a sample of a computational domain with the control volumes sur­

rounding the grid points. The velocities are calculated at the boundaries of each control 

volume, whereas all the scalar quantities and all properties are calculated at the grid 

points at the center of control volumes. The staggered grids is used for x-component of 

velocity, U. Therefore, the control volumes used for integrating the momentum equation 

are different from those used for other equations. 

The general form of the governing equations, except Eq. 4.9, may be written as 

d+ dV4> dV4>_ a d<t> 

m+-fc+-df- ^ ( r W + s*> (4-10) 

where the general dependent variable <f>, the diffusion coefficient 1^, and the source term 

5^, are defined in Table 4.1 for each of the transport equations. 

Eq. 4.10 has to be integrated over a control volume with dimensions Ace and Ay and 

over the time interval At 
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Figure 4.1: Distribution of grid points and control volumes in the computational domain. 

Table 4.1: The values of general variable <f), diffusion coefficient Tj, and source term Sj, 
for each transport equation. 

Transport Equation 

Continuity 

Momentum 

Energy 

Turbulent Kinetic 
Energy 

Rate of Dissipation 
of Turbulent Kinetic 

Energy 

<f> 
1 

U 

T 

k 

e 

r* 
0 

v + vt 

PT ~ <rt 

S,j> 

0 

90{T ~ Too) 
1 dqT 

pCp dy 

"*{%?-* + D 

[Cuhut{%f-C2ef2e)i + E 
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Figure 4.2: Control volumes for momentum equation (left) and all the other equations 
(right). 

,x+Ax ,y+Ay ft+M dj dU(f> dV(f) 

Jx Jy it dt dx dy 

fx+Ax ry+Ay rt+At Q QA 

I. I. I ^4)+s*]dxdyit- (4ll) 

Fig. 4.2 shows two different control volumes used for this problem; one for the momentum 

equation, and the other for all the remaining equations. Some assumptions are necessary 

in order to do this integration. These assumptions are: 

1. The transient term, -£, is considered to be constant over the control volume. There­

fore 
c+Ax yy+Ay rt+At Qfy 

>y 

fX+Ax ry+Ay ft . 

Jx J Jt YtdXdVdt = ^ * ^AxAy> (4.12) 
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where <fP and 61 represent the values of </> at times t and t -\- At respectively. 

2. The first and second convective terms are constant along the y and x directions of 

the control volume respectively, and during the time interval At. A fully implicit 

method is used here. Therefore, all values are to be regarded as the values at time 

t + At 

fx+Ax fy+Ay ft+At QJJA QyA 

L I It {fa + ~di)dxdydt = [W)i-W)i]A2/At + 
[(Vfil - (VSfJAxAt. (4.13) 

The indices n,s,e and w indicate that the variables must be calculated at the north, 

south, east or west face of the control volume. An upwind scheme is used to 

calculate the values of <f> at the interfaces of the control volume; the value of <f> at 

an interface is equal to the value of <f> at the grid point on the upwind side of the 

face. 

3. The diffusion term is considered to be constant along the z-direction of the control 

volume and during the time period At. Again a fully implicit scheme is used 

rx+Ax ry+Ay ft+At d 8<b 36 •, dS , 

ill Ty^^'^'-^W^'- (4U) 

A piecewise-linear profile is assumed for the variation of <f> between the adjacent 

grids; the value of -g at each face will be equal to the slope of this line. The value 

of diffusion coefficient, T^, is a suitable average of the values of T^ at neighboring 

points. 

4. The source term is simply integrated by assuming an average value, Sj,, over the 

control volume and during the time period 

FX+AX ry+Ay ft+At 

J J J S^dxdydt = S+AxAyAt. (4.15) 
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Often the source term is a function of the dependent variable <j> itself. Whether this 

relation is linear or not, it is always possible to linearize the relation. It is sufficient 

to express the average value Sj, as 

~S;=Sc + Sp<j>1, (4.16) 

where Sc stands for the constant part of S^, while Sp is the coefficient of <f>1. The 

appearance of (f)1 in Eq. 4.16 reveals that it is assumed that the value of <j>x prevails 

over the control volume and during the time period. 

Substituting Eqs. 4.12-4.16 into Eq. 4.11 results in the required discretized equation. 

4.4 Boundary Condit ions 

Since the fully turbulent natural convection heat transfer characteristics were the main 

concern of this work, the turbulent model was applied from the very leading edge of the 

plate. 

The boundary conditions for velocities and temperature were as given below: 

x = 0 , U — 0, and 

y = 0 , U = V = 0, and 

y — oo , U = 0, and 

The infinity in the numerical simulation was considered to be that distance from the 

plate the increase of which would not produce any important change in the final results. 

Regarding the turbulent quantities, the following boundary conditions were applied 

wherever a k-e model was used 

z = 0 , A; = e = 0, 

T = T 

T = TW, 

T = TOB. 
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y = 0 , k = 0, 

dk de n 

The value of e at the wall was dependent on the turbulent model which was used here. 

In the Jones and Launder model, ew = 0; whereas in the To and Humphrey model, 

Difficulties were observed in reaching a turbulent solution with the low Reynolds 

number k-e model. If this model were used with homogeneous boundary conditions for 

k and e at the wall and at the outer edge of the boundary layer, the solution would 

remain laminar. Usually a small amount of turbulent kinetic energy is introduced, along 

with some turbulent dissipation (balanced with shearing production of turbulence) at the 

specified transition point. The solution far downstream from the transition point would 

be independent of the amount of artificially introduced turbulent energy and even the 

location of the point of transition. However, in this work another method was used. Since 

the simple mixing-length model gives the solution in a small computational time, this 

model was first used to find an initial guess for k-e model, especially an initial distribution 

of turbulent viscosity, vt. In this way there was no need to specify any artificial turbulent 

kinetic energy and the final solution showed turbulent flow characteristics. 



Chapter 5 

RESULTS A N D D I S C U S S I O N S - I 

T U R B U L E N T N A T U R A L C O N V E C T I O N 

5.1 Introduct ion 

As mentioned in Section 2.3 one of the objectives of this work was to find a turbulence 

model that predicts fairly well the mean characteristics of the turbulent natural convec­

tion boundary layer. This chapter includes the results obtained in this investigation. 

Three different models were tried in this work: the algebraic mixing-length model of 

Cebeci and Khat tab [14]; the Jones and Launder [17], and the To and Humphrey [20] 

low-Reynolds-number k-e models. 

Since the Jones and Launder model is supported by a large amount of experimental 

data from forced convection flows, most of the efforts of the present study were spent 

investigating how this model would predict the natural convection turbulent boundary 

layer. 

The experimental data provided by Tsuji and Nagano [12] were used to compare the 

extent of accuracy of the numerical results obtained by using different models. 

5.2 A Modification of the Jones and Launder Model 

One difficulty in applying the original form of the Jones and Launder model for natural 

convection was observed when studying the effect of x-direction grid refinement on the 

final results. Fig. 5.1-a shows the variation of Nusselt number versus Rayleigh number 

39 
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Figure 5.1: Nusselt number calculated by (a) Jones and Launder model and (b) modified 
Jones and Launder model. 
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obtained by three different sizes of grids in the x direction. It is seen that as grids are 

refined, the transition point moves toward the end of the plate. In fact the solution would 

be completely laminar if the grids in x direction were refined more and more. Therefore, 

there is no grid independent behavior in this sense. 

One of the modifications that can be applied to the Jones and Launder model was first 

introduced by Plumb and Kennedy [16]. The wall terms, D and E, and the / ' s functions, 

in the equations of turbulent kinetic energy and rate of dissipation of turbulent energy 

act to damp the turbulent kinetic energy in the viscous sublayer where the molecular 

viscosity dominates. Plumb and Kennedy argued that in forced flows, the importance of 

these terms decreases as one moves toward the free stream. However, in buoyant flows, 

the maximum velocity occurs within the boundary layer, very close to the wall, and these 

terms will also influence the damping at the outer edge of the boundary layer. Therefore, 

they proposed applying these terms only in the region before the location of maximum 

velocity. Applied in this way, the model is called the modified Jones and Launder model. 

One concern may raise regarding the variation of turbulent quantities in the vicinity of 

maximum-velocity point. However, it was noted that the profiles of turbulent quantities, 

predicted by the modified Jones and Launder model, are smooth around the points 

corresponding to the maximum velocities. For a more detailed discussion and illustrative 

graphs the reader is referred to Appendix A. 

The most important difference between the original and the modified model is that 

the modified model produced a x-direction grid independent solution. Fig. 5.1-b shows 

this very clearly. This is in fact the main justification for using the modified model. 

It must be mentioned that the results obtained by these two forms of Jones and 

Launder model, for the near wall region, are almost the same at high Grashof numbers, 

and the original model can produce a fully turbulent solution. 
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5.3 Numerica l Resul t s 

Numerical results were obtained at the same conditions reported for the experimental 

data [12]. Wall and free stream temperature values of Tw = 60°C and Too = 16°C were 

used, and properties were calculated at the film temperature, (Tw + T0 0)/2, except that /3 

was defined as ^~. This was consistent with the experimental data. It must be mentioned 

that all computations with the Jones and Launder model were so done that the results 

would be a fully turbulent flow. In some cases the suitable grids in the x direction had 

to be twice as coarse as the grids used with the other models. 

Fig. 5.2 shows the velocity profiles for two different Grashof numbers. The near wall 

region of the profiles are shown in Fig. 5.3. It is seen that the mixing-length model 

predicts the highest and the sharpest maximum velocity and the smallest boundary layer 

thickness. The location and value of the maximum velocity were predicted reasonably 

well by the Jones and Launder model at low Grashof number, while at high Grashof 

number the modified form of the Jones and Launder model was preferable. None of the 

models predicted well the outer part of the profile and the thickness of the boundary 

layer; although the prediction of the Jones and Launder model is fairly acceptable. The 

relatively high velocities that the modified Jones and Launder model predicts in the outer 

region of boundary layer can be due to an overprediction of the values of the turbulent 

viscosity there. 

Regarding the near wall region, the best agreement with the experimental data was 

obtained by both forms of the Jones and Launder model. All models predicted steeper 

profiles at the wall than the experiments showed. 

Mean velocity profiles, normalized by the friction velocity uT, are shown in Fig. 5.4. 

In the turbulent forced convection boundary layer, it is well known that the relation 

U+ = y+ holds in the viscous sublayer, y+ < 5. But, as can be seen in Fig. 5.4, in 
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Figure 5.2: Comparison between experimental and calculated boundary layer velocity 
profiles; (a)Grx = 3.62 x 1010 (b)Grx = 1.80 x 10". 
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the turbulent natural convection boundary layer, because of the effect of buoyancy, this 

relation is not valid. 

Temperature profiles, 6 = (T — Too)/(Tw — T^) , for two different Grashof numbers are 

shown in Fig. 5.5. The near wall region of temperature profiles for two other Grashof 

numbers are shown in Fig. 5.6. The agreement between predicted and experimental 

values near the wall is excellent in the case of both forms of Jones and Launder model. 

The mixing-length model predicted a more gradual change in the near wall region and 

a steeper change in the outer layer. On the other hand, the To and Humphrey model 

predicted a much steeper gradient for the near wall part of the temperature profile. 

Regarding the shape of the outer layer, there is a fair agreement between the experimental 

data and the modified Jones and Launder, and To and Humphrey models. 

Fig. 5.7 shows the variation of dimensionless temperature, T+ = (Tw — T)/tT, versus 

y+ for two different Grashof numbers. A good agreement is seen between the experimental 

data and the predictions of modified Jones and Launder model. At higher Grashof 

number, this model and the original Jones and Launder model gave the same results. It 

can be shown by an analytical approach that in the viscous sublayer, which is a constant 

heat flux layer, the linear relation T+ = Pr.y+ describes the temperature profile. Both 

experimental data and computational results show this very well. 

Fig. 5.8 illustrates the variation of Nusselt number versus Rayleigh number. There 

are different empirical relations for turbulent natural convection Nusselt number. Here, 

the following relation which is in very good agreement with experimental data of Tsuji 

and Nagano is used 

Nux = 0.120(GrxPr)1/3 , GrxPr > 3.5 x 109. (5.1) 

It is seen that the mixing-length and the To and Humphrey models give a too low 

and a too high Nusselt numbers respectively. The best agreement with experimental 
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data was obtained by modified Jones and Launder model. The Jones and Launder model 

showed a late transition, whereas the modified form of this model gave a fully turbulent 

result for the whole range of interest. The results of these two models are the same at 

high Rayleigh numbers. 
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R E S U L T S A N D D I S C U S S I O N S - I I 

N A T U R A L C O N V E C T I O N C O U P L E D W I T H R A D I A T I O N 

6.1 Introduct ion 

In the preceding chapter it was shown that the modified Jones and Launder model is 

able to predict fairly well the mean characteristics of turbulent natural convection bound­

ary layers. This model was then used to investigate the behavior of turbulent natural 

convection boundary layers in an absorbing and emitting gas. 

The original form of Jones and Launder model was also tried in this investigation. 

However, the tendency of the model to give laminar solutions was even more pronounced 

than in the case of non-absorbing gases. Therefore, the modified model was preferred for 

this work. 

Since the effects of gas absorptivity were the primary concern of this investigation, 

all other properties were assumed to be constant when the absorption coefficient was 

changed. While this assumption may seem unrealistic, this ensures that all the changes 

between the two different conditions were as a result of the change in the absorption coef­

ficient of the gas. Since the absorption coefficient of a gas mixture is proportional to the 

partial pressure of the absorptive gases, it may be possible in some cases to find different 

mixtures with the same molecular properties but different absorption coefficients. 

Carbon dioxide was chosen as the absorbing gas because it is the strongest among the 

gases whose Planck mean absorption coefficients are known. By keeping all properties 

51 
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constant and changing the absorption coefficient of the gas the effects of gas absorptivity 

were investigated. It should be noted that the absorption coefficient of a gas indicates 

two important characteristics of radiative heat transfer: strength, and thickness of the 

radiative layer. A higher absorption coefficient signifies a stronger radiative heat flux and 

a thinner radiative layer. 

6.2 Laminar R e g i m e 

The numerical calculation of laminar flows is much easier and faster than that of turbulent 

flows. On the other hand, the effects of thermal radiation upon the laminar natural 

convection boundary layer of an absorbing and emitting gas are easier to understand and 

to elaborate. Therefore, if the calculated results for the laminar regime are physically 

correct, the same conclusion might be drawn for the turbulent regime. This assumption 

is supported by two facts. First, the turbulence model was able to predict the flow 

fairly well without radiation. Second, the radiation only appears as a source term in 

the thermal energy equation and it has no direct effect on the equations of turbulence 

modeling. 

The calculations of laminar flow were only done for the low wall temperature; Tw = 

60°C and Too = 2 5 ° C It should be mentioned that carbon dioxide is very absorptive at 

this temperature. The Planck mean absorption coefficient of COi at this temperature 

and atmospheric pressure is about 32m - 1 . The integral form of the radiant energy flux, 

Eq. 4.8, was used. 

Fig. 6.1 shows the velocity profiles of a laminar natural convection boundary layer 

for different values of absorption coefficients. It is seen that as the absorption coefficient 

increases, the maximum velocity and the level of velocities close to the wall increase 
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Figure 6.1: Laminar natural convection boundary layer velocity profiles in an absorbing 
and emitting gas, Grx = 5.81 x 108. 

monotonically. On the other hand, in the outer part of boundary layer the lower ab-

sorptivities correspond to the higher velocities. In fact, the thickness of this part of 

boundary layer, which may be called the radiative layer, increases as the absorptivity 

decreases. This is simply explained by referring to Fig. 6.2, which shows the net radiant 

energy input to the gas. If the gas is very absorptive, the largest part of radiant energy 

is absorbed by the gas near the wall; and farther from the wall there will be no trace 

of radiant energy emitted by the wall. However, with small absorptivity, the effects of 

radiation will be small but the range of these effects will go much farther. 

Fig. 6.3 shows the temperature profiles corresponding to the velocity profiles shown in 

Fig. 6.1. It is again seen that the temperatures near the wall increase as the absorption 

coefficient increases. However, these changes are very small in the region very close 

to the wall while farther away there are appreciable increases in temperature levels, 
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especially for higher absorption coefficients. In the outer part of boundary layer, the 

lower absorptivities correspond to the higher temperatures. 

An interesting point in Fig. 6.2 is that very close to the wall the radiative source 

term of energy equation is negative and therefore, the radiative heat flux is positive. 

This means that the gas in this region is more emissive than absorptive. This is because 

the temperature difference between the wall and the gas, in this region, is smaller than 

the difference between the gas and the medium temperature. 

The point mentioned above may seem to be in contradiction with the increase of 

temperatures close to the wall; a negative source term in the energy equation is supposed 

to decrease the temperatures whereas we see that the temperatures slightly increase as 

absorption coefficient increases, see Fig. 6.3. However, a close look at Fig. 6.2 reveals 

that the region in which the energy source term is negative is much smaller than that 

in which it is positive. It seems that the higher temperatures produced as a result of 

positive source terms are able to diffuse toward the wall and compensate the effect of 

negative source term very close to the wall. 

The variation of convective Nusselt number versus Rayleigh number is shown in 

Fig. 6.4. It is seen that , except for very small values of absorption coefficient, the convec­

tion heat transfer slightly decreases as the absorption coefficient increases. The increase 

of Nusselt numbers in the case of KP = 0.32m - 1 are very small. It can be just a compu­

tational error or a result of negative source term close to the wall. Fig. 6.5 shows that 

the radiation heat transfer decreases as the absorptivity increases. This is a well known 

fact that an absorbent gas operates like a shield against radiation heat transfer. 

A well known behavior of laminar natural convection boundary layers is their self-

similar nature. The velocity or temperature profiles for different Grashof numbers can be 

represented by a single curve if they are scaled suitably. This behavior was investigated for 

the present problem. Fig. 6.6 shows the dimensionless velocity and temperature profiles 
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for two different values of absorption coefficients. It is seen that there is a deviation from 

the classical similarity solution. 

6.3 Differential Approximat ion M e t h o d for Laminar R e g i m e 

Using the integral formulation of the radiative heat flux made the computational t ime 

very long, even for the laminar regime. It could be expected that the turbulent calculation 

would need much more time. On the other hand, the differential approximation method 

is now widely used in problems involving radiation heat transfer. Therefore, an at tempt 

to solve the present problem was made using the differential approximation method, and 

to compare the results with those already obtained by using the integral formulation of 

the radiative heat flux. 

Figs. 6.7-6.9 compare the calculated velocity profiles as well as the variation of ra­

diative heat flux for a typical laminar Grashof number, Grx — 1.23 x 109. A range of 
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absorption coefficients from high to low values are covered by these Figures. As far as 

the near wall region is concerned, good agreements between the velocity profiles obtained 

by the two different methods are seen. Regarding the outer layer, the agreement is very 

good in the case of moderate and low absorption coefficients. This agreement is fairly 

acceptable when absorption coefficient is high, Fig. 6.7. Therefore, it is concluded that 

the results obtained by using the differential approximation of radiative heat flux are 

nearly equivalent to those obtained by using the integral form of radiative heat flux. 

6.4 Turbulent R e g i m e 

Turbulent natural convection boundary layer flow in an absorbing and emitting gas was 

calculated using the modified Jones and Launder turbulence model. The calculations 

were done for two different wall temperatures, low and high, to investigate the effects 

of temperature on the final results. The differential approximation method was used for 

the calculation of radiative heat flux. 

6.4.1 Low Wall Temperature 

This section includes the results obtained for wall temperature of Tw = 60°C and medium 

temperature of T^ = 25°C. As mentioned before, gases like CO% and water vapor can 

strongly absorb and emit radiative energy even at these low temperatures. 

Fig. 6.10 illustrates the velocity and temperature profiles for a typical turbulent 

Grashof number, Grx = 4.24 X 1011. The region very far from the wall is not shown here 

because that region is only a radiative layer and very similar to that in the laminar flow, 

see Figs. 6.1 and 6.3. It is seen that, as the absorption coefficient increases the velocities 

in the boundary layer increase at least up to some values of absorption coefficient. This is 

very similar to the behavior observed in the laminar regime. But, with higher absorption 
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coefficients the velocities start becoming smaller and smaller. In Fig. 6.10 velocities 

increase as the absorption coefficient increases from KP == O.Orn-1 to KP = 1.6m_1 and 

they decrease as the absorption coefficient goes from KP = 8 m - 1 to KP = 32m - 1 . The 

value of the absorption coefficient which produces the highest maximum velocity must 

be between KP = 1.6m -1 and KP = 8 m - 1 . It seems that the velocity profile for a non-

absorbing gas is the limit of velocity profiles in an absorbing and emitting gas both for 

very high and very low absorption coefficients. When the absorption coefficient is very 

low, the effect of gas radiation is very small and therefore the boundary layer will be 

similar to a non-absorbing one (the optically thin limit). On the other hand, if the 

absorption coefficient is very high, the effect of radiation will be limited to a very small 

region close to the wall (the optically thick limit). Thus, most of the boundary layer 

does not sense any radiative heat transfer and behaves as a non-absorbing gas. Fig. 6.11 

shows that for high values of absorption coefficients the radiative heat flux vanishes at a 

small distance from the wall, inside the boundary layer. 

If we look at Figs. 6.1 and 6.2 again, it can be seen that even in the case of high 

absorption coefficients, the radiative heat flux has a non-zero value in the whole range 

of boundary layer and even beyond that. This means that the laminar boundary layer 

operates similar, but not exactly, to an optically thin layer. Clearly, this is not the case 

for a turbulent boundary layer. A turbulent boundary layer may be an optically thin, 

thick or intermediate layer based on the physical thickness of the layer and the value of 

the absorption coefficient of the gas. 

The near wall region of the temperature profiles, shown in Fig. 6.10, shows that as 

the absorption coefficient increases, temperature gradients at the wall decrease up to 

KP = 1.6m -1. This behavior is similar to that observed with laminar flow. With higher 

absorptivities, the temperature gradient at the wall starts increasing again. This can be 

related to the strong negative source term in the energy equation in this region. In fact, 
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Figure 6.11: Net radiative energy input to fluid in the turbulent natural convection of 
an absorbing and emitting gas, Tw = 60°C and Grx = 4.24 X 1 0 n . 

for very high absorptivities, this temperature gradient could be higher than that in a 

non-absorbing gas. 

Fig. 6.12 shows the variation of turbulent viscosity in the boundary layer. It is seen 

that for some values of absorption coefficients, turbulent viscosities are much smaller 

than those in a non-absorbing gas. If we look at Fig. 6.10, it will be noted that those 

values of absorption coefficients that correspond to small turbulent viscosities are those 

which produce a more flattened velocity profiles in the outer part of the boundary layer. 

Since turbulence production is a function of the amount of shear in the flow, the almost 

uniform flows produced in this region contribute less in turbulence production. Therefore, 

turbulent viscosities will be lower compared to those in a non-absorbing gas. On the 

othe hand, if the absorption coefficient is high enough so that radiation effects remain 

inside the boundary layer, turbulent viscosities may increase because of higher maximum 
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Figure 6.12: Turbulent viscosity in the natural convection boundary layer of an absorbing 
and emitting gas, Tw = 60°C and Grx = 4.24 x 1011. 

velocities and higher shear production of turbulence. 

There is another important difference between the effects of radiation on turbulent and 

laminar boundary layers. The changes in velocities and temperatures for turbulent flows 

are greater than those observed in laminar flow. This can be explained by considering 

the effect of turbulent viscosity and turbulent thermal diffusivity, which are much higher 

than the corresponding values in the laminar regime. 

The behavior of a turbulent natural convection boundary layer in an absorbing and 

emitting gas is very much dependent on the value of Grashof number. The thickness of the 

boundary layer in a non-absorbing gas is proportional to the value of Grashof number. 

Therefore, as the Grashof number increases, the boundary layer becomes an optically 

thick layer even for smaller values of absorption coefficients. Figs. 6.13-6.17 show the 

velocity, temperature, turbulent viscosity and radiative heat flux for five different Grashof 
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in absorbing and emitting gases with different absorption coefficients, Grx = 5.72 x 109. 
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Figure 6.15: Velocity, temperature, net radiative energy to fluid and turbulent viscosity 
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Figure 6.16: Velocity, temperature, net radiative energy to fluid and turbulent viscosity 
in absorbing and emitting gases with different absorption coefficients, Grx = 7.15 x 1011. 
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Figure 6.17: Velocity, temperature, net radiative energy to fluid and turbulent viscosity 
in absorbing and emitting gases with different absorption coefficients, Grx — 1.64 x 1012. 
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numbers. It is very interesting to look at the relative positions of the velocity profiles for 

KP = 1.6m -1 and KP = 8 m - 1 in each of these figures. For the lowest Grashof number, 

Fig. 6.13, the velocities for KP = 8 m - 1 are higher than those for KP = 1.6m -1. However, 

for the highest Grashof number, Fig. 6.17, the situation is reversed. The reason can be 

found by looking at the corresponding radiative heat flux profiles for KP = 8 m - 1 . For 

the lowest Grashof number the effect of radiation goes beyond the thickness of boundary 

layer, close to an optically thin layer, whereas for the highest Grashof number this effect 

only covers less than half of the boundary layer, close to an optically thick layer. 

The convection heat transfer characteristics of the boundary layer are shown in 

Fig. 6.18 in terms of the variation of local Nusselt number versus local Rayleigh number. 

It is interesting to note that the curves corresponding to the lowest and the highest values 

of absorption coefficients are the closest curves to the one for a non-absorbing gas. This 
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Figure 6.18: Local convective Nusselt number in a turbulent natural convection boundary 
layer of an absorbing and emitting gas, Tw — 60°C. 
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is in agreement to what has already been mentioned about the behavior of the boundary 

layer in a very strong and a very weak absorbent gases. As the absorption coefficient 

increases, the convective Nusselt number decreases up to some point and then, it starts 

increasing again. The value of absorption coefficient which gives the lowest Nusselt num­

ber is a function of Rayleigh number. For a Rayleigh number about 1010 the lowest shown 

Nusselt number corresponds to KP = 3.2m - 1 , whereas for the Rayleigh number equal to 

1012 it corresponds to Kp = 0.32m - 1 . For the lowest shown Rayleigh number, the Nusselt 

numbers for different values of the absorption coefficients are very close to each other. 

This is similar to what was seen before in the laminar regime. This point is actually the 

first computational point in the flow direction. The turbulence model predicts a laminar 

like behavior for this point, so the boundary layer acts as a laminar boundary layer in 

this point. 

If the Rayleigh number is very high, and the absorption coefficient is high enough, the 

Nusselt number will be independent of absorption coefficient. This is shown in Fig. 6.18 

for KP = 8 m - 1 , 1 6 m - 1 and 32m - 1 . 

The dependence of convective Nusselt number on absorption coefficient of the gas 

can be better seen by looking at Fig. 6.19. The dependence is much stronger at higher 

values of Grashof numbers. For the lower Grashof numbers, the curves approach almost 

straight line which is a characteristic of the laminar boundary layer. 

The effect of gas radiation on convective Nusselt number may be better understood 

by looking at the variation of Nucx/Nuco, where Nucx is the convective Nusselt number 

calculated by considering the effects of gas radiation. On the other hand, Nua, is the 

Nusselt number calculated when gas radiation is neglected. The Fig. 6.20 shows such 

a graph for five different Grashof numbers. The independent variable on the horizontal 

axis is called the radiation-conduction parameter and is a measure of the radiative heat 

flux to the conductive heat flux; ( = (4/cpa;2o-r/
3)/(ifcPrGr1/2) where Tf = (Tw + T^/2. 
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Figure 6.19: Variation of local convective Nusselt number versus absorption coefficient. 
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Figure 6.21: Mean convective Nusselt number in a turbulent natural convection boundary 
layer of an absorbing and emitting gas. 

It is common to plot the variation of Nusselt number versus Rayleigh number in 

terms of mean values. Fig. 6.21 shows such a graph for the present problem. The 

mean Nusselt number was defined as hL/k and the mean heat transfer coefficient, h, was 

found by integrating the local values over the length of the plate. Basically, the same 

characteristics that were observed in terms of local values can be seen in terms of mean 

values also. 

The variation of local radiative Nusselt number is shown in Fig. 6.22. It is seen that 

the radiative heat transfer decreases by increasing the absorption coefficient of the gas. 

However unlike the laminar boundary layer, in some cases the changes in the radiative 

heat transfer are smaller than the changes in convective heat transfer. This means that 

in a turbulent natural convection boundary layer, the absorptivity of the gas affects 

convective heat transfer more than the radiative heat transfer. 
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Figure 6.22: Local radiative Nusselt number in a turbulent natural convection boundary 
layer of an absorbing and emitting gas, Tw = 60°C. 

6.4.2 High Wall T e m p e r a t u r e 

Radiative heat transfer in a boundary layer is strongly dependent on the temperature 

difference between the plate and the medium. This section covers the results obtained for 

a wall temperature of Tw = 200° C and medium temperature of T^ = 25° C. A comparison 

can then be made between the results obtained with high and low wall temperatures. 

The absorption coefficients of CO2 used for the low wall temperature calculations 

were also used for the high wall temperature since the variation of absorption coefficient 

with temperature is small. Since a broad range of absorption coefficients were included 

in this investigation, each value of absorption coefficient could always correspond to some 

percent of CO% in the gas mixture. 

Fig. 6.23 shows the velocity and temperature profiles for Grx = 4.24 x 1011, the same 

Grashof number shown in Fig. 6.10 for low wall temperature. Regardless of the velocities 
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Figure 6.24: Net radiative energy to the gas in the turbulent natural convection of an 
absorbing and emitting gas, Tw — 200°C and Grx = 4.24 x 1011. 

(which are supposed to be higher) the important difference between the velocity profiles 

in these two cases is that for high wall temperature (Fig. 6.23) velocities keep increasing 

up to KP = 8m _ 1 whereas, for low wall temperature (Fig. 6.10) maximum velocities were 

seen at KP — 1.6m -1. However, the general behavior of velocity and temperature profiles 

are the same as the ones for the low wall temperature. 

Fig. 6.24 shows the variation of net radiative energy to the gas in the boundary layer. 

Comparing this Figure with Fig. 6.11, shows that although the amount of radiative heat 

flux increases with temperature, the range in which the radiation affects the boundary 

layer remains the same. Having the same behavior in velocity and temperature profiles 

for high and low wall temperatures supports this idea that the effects of radiation on 

the boundary layer are more related to the range of penetration of radiation than the 

amount of radiative heat flux. 
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It is well known that if the velocities and temperature in a non-absorbing gas, at a 

specified Grashof number, are normalized with friction velocity, uT, and friction temper­

ature, tT, and plotted versus dimensionless coordinate, y+, a unique curve can be found 

whatever the value of temperature difference between the wall and the medium. This was 

investigated for an absorbing and emitting gas. Figs. 6.25 and 6.26 show that for low and 

high values of absorption coefficients the profiles are independent of wall temperature; 

the medium temperature was kept constant. However, for medium values of absorption 

coefficients, KP = 8 m - 1 , there is a temperature dependence behavior in the region around 

the point of maximum velocity. Therefore, it is believed that , except for the optically 

thin and thick limits, the behavior of the boundary layer depends on the temperature 

difference between the wall and the medium as well as the absorption coefficient of the 

medium. 

The convective and radiative heat transfer characteristics of a boundary layer are 

illustrated in Figs. 6.27 and 6.28. Fig. 6.29 compares the variation of convective Nusselt 

number versus Rayleigh number for two different values of wall temperature. It can 

be seen that for low and high values of absorption coefficients, Nusselt number is only 

a function of Rayleigh number and absorption coefficient. On the other hand, for a 

moderate value of KP there is a small dependence on wall temperature. It is noted that in 

the graph for KP = 3 2 m - 1 the lower range of Rayleigh numbers correspond to a smaller 

boundary layer thickness and therefore an optically moderate layer. 

6.4.3 Comparison with Experimental Data 

The only experimental work found on the turbulent natural convection boundary layer 

of an absorbing and emitting gas is that was done by Hood [46]. He measured the tem­

perature and velocity profiles at one location of a constant temperature plate, over a 

range of carbon dioxide and nitrogen gas mixtures. In order to change the absorption 
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coefficient of the gas, the gas composition was controlled. The heated plate was con­

structed of stainless steel, coated with a high temperature black paint, with dimensions 

of 84cm X 38cm. The box enclosing the plate was made with an aluminum back and 

base and acrylic sheets sides and top. The dimensions of the enclosure were 1.6771 high, 

1.2771 wide and 0.8m deep. In order to obtain a turbulent boundary layer, the plate had 

a sharp leading edge exposed to the flow, and a tripping wire was used. The velocity and 

temperature profiles were obtained with a constant temperature hot wire anemometer. 

Numerical solutions were obtained for the same conditions as the experiments. The 

plate and the medium temperatures were chosen as Tw = 410° C and T^, = 55° C. All 

properties including the absorption coefficient were calculated at the film temperature; 

(Tw + Too)/2. The calculations were done for four mixtures of carbon dioxide and ni­

trogen gases; 0%CO2, 10%CO2, 50%CO2 and 75%C02. The case of 0%CO2 is actually 

pure nitrogen and therefore a non-absorbing gas. In Sec. 5.3 it was shown that the nu­

merical simulation of turbulent natural convection in a non-absorbing gas could predict 

the flow very well. Therefore, the comparison between the experimental data and the 

calculated results in pure nitrogen can be used to understand the degree of accuracy of 

measurements. 

Fig. 6.30 shows the experimental and calculated velocity and temperature profiles in 

nitrogen. The experimental velocity data show a lot of scatter. However, the predicted 

and the measured maximum velocities agree fairly with each other. On the other hand, 

the measured boundary layer thickness is much smaller than that predicted. There might 

be some concerns raised regarding the way the velocities were measured by Hood. First, 

the velocity in most part of the boundary layer was smaller than the smallest calibrated 

velocity; 0.5m/s, and an extrapolation of the calibration curve was used in this range. 

Second, hot wire measurements are usually limited to flows with velocities greater than 

0.1m/s . Therefore, it may be that the outer region of the boundary layer could not 
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be measured very accurately. Third, the turbulence intensity can affect the velocity 

measurements. Fourth, the wall proximity can affect the accuracy of measurements near 

the wall; there were no considerations regarding this effect. 

Temperature profiles in Fig. 6.30 show a fair agreement between the experimental 

data and the calculated results. One important concern about the temperature mea­

surements is that the measured temperatures, at the outer layer, approach a value much 

higher than the measured ambient temperature which was used for the calculation. It 

seems that the cross-stream depth of the enclosure used by Hood was too small to sim­

ulate the "infinity" for the boundary layer. Another boundary layer might be present at 

the opposite wall of the enclosure, between the cold wall and the hot gas. 

As a final comment on Fig. 6.30, it should be mentioned that the assumption of 

constant properties in the calculation can produce some errors in this high value of 

temperature difference. The amount of these errors is not known. 

Figs. 6.31-6.33 compare the calculated and measured velocity and temperature pro­

files in three different mixtures of carbon dioxide and nitrogen gases. It is seen that 

the predicted peak velocities are about 20% — 50% higher than those measured. The 

calculated temperatures are higher than those measured almost everywhere. The best 

agreement between the measured and the calculated temperature profiles is seen in Fig. 

6.31 for a mixture of 10%CO2 and 90%JV2. The higher temperatures predicted by the 

calculations might be a result of the gray gas assumption. It is believed that this assump­

tion overestimates the absorbing and emitting capability of the gas. On the other hand 

the Planck's mean absorption coefficient, KP, which is used in gray gas model may not be 

a suitable choice but no other model is available. Another assumption in the calculations 

is the assumption of a black wall, which did not match exactly with the experimental 

condition. The emissivity of the plate was assumed to be about 0.95. No attempt was 

made to verify this value. Regarding the uncertainty in the measured velocities and 
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temperatures, all comments following discussion about Fig. 6.30 apply here as well. In 

addition, it should be noted that the calibration of hot wire for velocity measurements 

was done in air at room temperature, whereas the measurements were performed in a 

CO2-N2 mixture over a range of temperatures. 



Chapter 7 

C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 

Numerical simulation of a turbulent natural convection boundary layer in an absorbing 

and emitting gas was the main purpose of this investigation. First, a few turbulence mod­

els were examined for the prediction of the mean characteristics of a natural convection 

boundary layers in a non-absorbing gas. Then, the most suitable turbulence model was 

used for the calculation of turbulent natural convection boundary layers in an absorbing 

and emitting gas. A brief explanation of the conclusions drawn in this work, followed by 

some recommendations for possible future work will be given here. 

7.1 Conclusions 

1. The range of Rayleigh number in which the Jones and Launder low-Reynolds-

number k-e model can give a fully turbulent flow solution is dependent on the grids 

sizes in the flow direction. For grids sizes equal to 0.35771 the Nusselt numbers 

predicted by this model were within 10% accuracy compared to the experimental 

data for Rax > 1011. 

2. If the wall functions and the extra source terms in the k and e equations of the 

Jones and Launder model are applied only before the location of maximum velocity, 

the model can predict a grid independent turbulent flow solution for Rax > 109. 

When applied in this case the model was called modified Jones and Launder model. 

89 
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3. The modified Jones and Launder model predicts fairly reasonably the mean veloc­

ity and temperature profiles of turbulent natural convection boundary layer. The 

calculated near wall velocity and temperature profiles are within 15% and 5% accu­

racy respectively. The heat transfer rates predicted by this model are within 10% 

accuracy compared with the experimental data. 

4. If the absorption coefficient of the gas is such that the radiation effects go beyond 

the thickness of the boundary layer (optically thin layer), the increase of absorption 

coefficient causes the velocities and temperatures in the boundary layer to increase 

and the turbulent viscosities to decrease. 

5. If the absorption coefficient of the gas is such that the radiation affects only part 

of the boundary layer (optically thick layer), the increase of absorption coefficient 

causes the velocities and temperatures in the boundary layer to decrease and the 

turbulent viscosities to increase. 

6. As a result of the effects of gas radiation on the boundary layer mentioned above the 

convective heat transfer rate first decreases and then increases when the absorption 

coefficient of the gas is increased. 

7. The behavior of the boundary layer depends more on the range of penetration of 

radiative energy than the amount of radiative heat flux itself. The results obtained 

for high wall temperature, and therefore higher radiative heat flux, showed almost 

the same behavior as those obtained for low wall temperature. 

8. In optically thin and thick limits, corresponding to KP < 0.32m - 1 and KP > 32m _ 1 

in this study, the profiles of the dimensionless velocity, uT, and temperature, tT, 

are only functions of dimensionless coordinate, y+, and absorption coefficient of 

the gas. Also, the Nusselt number is only a function of Rayleigh number and 
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absorption coefficient of the gas. However, for an optically intermediate layer, 

KP = 8 m - 1 , there is a dependence on the temperature difference between the wall 

and the medium. 

7.2 R e c o m m e n d a t i o n s 

1. Natural convection turbulent flows still lack a satisfactory k-e turbulence model. 

A fundamental study in this area is highly recommended. This study can be done 

by following the procedure of the development for k-e models for forced convection 

flows. The validity of model constants and wall functions originally developed for 

forced convection flows should be investigated for natural convection flows. 

2. A detailed experimental study of natural convection boundary layers in an absorb­

ing and emitting gas is necessary to support the numerical simulation. Since the 

effect of radiation goes far from the wall when the gas is a weak absorber, the exper­

imental investigations in these cases may be difficult. Therefore, the experiments 

should be limited to strongly absorptive gases. The validity of experimental data 

must be checked against the available data for the case of non-absorbing gases. 

3. It was observed that the less absorptive the gas, the thicker the boundary layer. 

Therefore, a fully two-dimensional numerical simulation of this problem is recom­

mended to justify or reject the validity of boundary layer approximations when the 

gas is a weak absorber. 

4. In this study, the gas was assumed to be gray in order to simplify the problem. The 

next logical improvement of the solutions might be the inclusion of the nongrayness 

behavior of the gas. 
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Appendix A 

The Modified Jones and Launder k-e Model 

The complete form of the Jones and Launder low-Reynolds-number k-e model, proposed 

originally for the forced convection flows, is 

dk dUk dVk d .. vt^dk^ ,dU.2 n , A , , 

at + "ST + W = d-y[{u + KW + *( * > ~e + D' (AA) 

de dUe dVe d ,. vt.de^ TJ~ . ,dU.2 _, . .e _, ,. n. 

ei + ^ + ^i = %[("+ 7.W + VUrt-e;? ~ C-M~k +
 E> ^ 

"t = CjJ^. (A.3) 

where D = — 2v(J^pi)2 and E — 2z/i/ t(f-r)2 are extra terms compared to the high-

Reynolds-number k-e model. These terms and the / ' s functions make the turbulent 

energy and turbulent viscosity to be damped in the viscous sublayer. However, in natural 

convection flows, these terms will also act in the outer region of the boundary layer. 

Therefore, a modified form of this model was used in this study. In the modified Jones 

and Launder model the wall terms, D and E, and the / ' s functions are applied only in 

the region before the location of the maximum velocity. To justify the use of the modified 

Jones and Launder model, it must be shown that the variation of all turbulent quantities 

in the vicinity of the point of maximum velocity is smooth and without discontinuity. 

The Figs. A.1-A.3 show the variation of turbulent kinetic energy, turbulent dissipa­

tion, and turbulent viscosity across the boundary layer and at different locations along 

the plate. The logarithmic scale was used for the horizontal axis to make the near wall 

region more visible. The points corresponding to the maximum velocity were marked 
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Figure A.l: The variation of turbulent kinetic energy across the boundary layer 
(Grx = 3.49 x 109 - 6.03 x 1011). 
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Figure A.2: The variation of turbulent dissipation across the boundary layer 
(Grx = 3.49 x 109 - 6.03 x 1011). 
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Figure A.3: The variation of turbulent viscosity across the boundary layer 
(Grx = 3.49 x 109 - 6.03 x 1011). 

with small circles. It is seen that the profiles of k and e are smooth and without any 

discontinuity at the points marked with the circles. On the other hand, the profiles of 

turbulent viscosity show that in the region before the maximum velocity the values of vt 

are very small compared to those in the outer layer. Therefore, even if there are small 

jumps in the profiles at the point of maximum velocity, the effect of those jumps can be 

negligible. 

The variations of extra terms D and E across the boundary layer are shown in 

Figs. A.4 and A.5. It is seen that these terms are important only in the near wall 

region and approach to zero as the points of maximum velocity are reached. 

The sum of the terms of the Eq. A.2 that contain / x and f2 is shown in Fig. A.6. It 

is again seen that , at the points corresponding to the maximum velocities, the variation 

of this sum is smooth. 
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Figure A.4: The variation of D across the boundary layer (Grx = 3.49 x 109 — 6.03 x 1011). 

2.00 

* - N 1 5 0 

£ 
00 100 

> 
> 

II 
W 0.50 

0.00 

T - - T " - ( " " F T " ! " " 1 " - P ~ " l — T - ^ l " 

Higher Grashof 
Numbers 

101 

Y (m) 
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