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ABSTRACT 

The accuracy of interior residual stress measurements using the layer-removal, hole-

drilling and ring-core methods was enhanced in two ways. In the first way, the mathematical 

method for calculating residual stresses from the measured strains was made more robust by 

applying an inverse solution method based on Linear Inverse Theory. This approach 

eliminates the two main weaknesses of the existing method, stress solution sensitivity to strain 

measurement errors and not obeying equilibrium. Optimal smoothing is introduced as an 

effective method for reducing sensitivity to strain data errors. With the proposed method, 

stress equilibrium can be easily enforced. Both experimental and theoretical results show that 

the inverse solution method stabilizes the calculation procedure and it is an effective and 

reliable method for determining residual stresses in a material. 

The second way of enhancing residual stress measurement is to develop a new residual 

stress measurement technique. The new technique, called ring-hole drilling, overcomes the 

limitations of strain sensitivity to subsurface stresses of the hole-drilling and ring-core 

methods. By moving the strain gauges from the material surface to the interior, the overall 

strain sensitivity of the ring-hole drilling method is increased to double that of the ring-core 

method, and about four times that of the hole-drilling method. The experimental 

measurements made with ring-hole method correspond very closely with theoretical 

expectations determined using finite element method. The results show that ring-hole drilling 

is a practical method for evaluating residual stresses in a material. 
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NOMENCLATURE 

c»e = circurnferential stress in a cylinder 

aa = axial stress in a cylinder 

E = modulus of elasticity 

v = Poisson's ratio 

e'g = circumferential strain reliefs 

tt 

ea = axial strain reliefs 

^(r) = combination of circumferential and axial strain reliefs 

A(r) = combination of circumferential and axial strain reliefs 

r = inner cylinder radius 

ra = initial inside radius of a cylinder 

rb = outer cylinder radius 

R = general radius for evaluating the integral 

j = index for each data point 

dj = jth datum 

gj = jth kernel function 

m = unknown model function 

I m ||2 = model norm 

<Xj = expansion coefficients 
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r = n x m matrix 

df0 = produced jth datum 

%2 = statistical variable 

Sj = standard deviations 

<J> = objective function to be minimized 

u. = Lagrange multiplier 

sa = diagonal matrix 

Pj = power series function 

lj = piecewise linear function 

A, B = calibration coefficients for infinitesimal relieved strains 

A, B = calibration coefficients for strain guage area relieved strains 

a, b = normalized form of the calibration coefficients A, B 

CTmax
 = maximum principal residual stress 

cfnun = minimum principal residual stress 

sr = radial strain reliefs 

8 = relieved strain measured by the strain gauge rosette 

8h = average strain over the strain gauge grid area corresponding to the applied 

hydrostatic stress 

8S = average strain over the strain gauge grid area corresponding to the applied 

shear stress 

81 = strains measured by the strain gauge 1 



strains measured by the strain gauge 2 

strains measured by the strain gauge 3 

angular coordinate of the radial mid axis of the strain gauge measured 

counterclockwise from the maximum principal stress 

angle measured clockwise from gauge 3 to the maximum principal stress 

direction 

generalized hole radius 

straight hole radius 

strain gauge main radius 

hole depth 
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1. INTRODUCTION 

1.1 Residual Stresses 

Residual stresses are locked-in stresses, which exist in a material without the presence 

of any external load. They are commonly induced by manufacturing processes that involve 

non-uniform plastic deformation, for example, rolling, drawing, extrution and bending. 

Residual stresses can also be produced by the non-uniform dimensional changes involved in 

processes such as welding and casting. Subsequent installation and assembly procedures can 

also be a source of residual stresses, for instance by tightening bolts or by press fitting 

components [1]. 

Residual stresses profoundly affect material performance. Tensile residual stresses are 

generally detrimental and can greatly accelerate material failure due to fatigue and stress 

corrosion. They can cause significant dimensional change when stressed material is added or 

removed. Conversely, compressive residual stresses are generally beneficial and are often 

induced deliberately [2]. For example, metal components are often shot-peened to increase 

their fatigue life. Also, glass is often 'tempered' to increase its working strength. 

Due to their significant effects, residual stresses must be taken into account in 

engineering design. A good understanding of residual stress in a material can reduce the need 

for excessive safety factors, and promote economical and safe design. Accurate residual 

stress measurement is therefore a basic requirement. 
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Conventional methods for measuring stresses due to applied loads are not suitable for 

measuring residual stresses. In typical methods, the applied stresses are evaluated indirectly 

by comparing the current strain state with the zero strain state (by removing or applying 

external loads). However, there are no external loads in the case of residual stresses. Thus, 

specialized stress measurement methods are needed. 

1.2 Residual Stress Measurement Methods 

Many different methods for measuring residual stresses have been developed in the 

past. They can be divided into two main categories: 

1. non-destructive methods 

2. destructive methods. 

1.2.1 Non-Destructive Methods 

The main non-destructive methods for measuring residual stresses are X-ray, neutron 

diffraction and ultrasonic. These methods are attractive because they do not cause any 

damage to the specimen. They therefore can be used for production quality control. 

However, the required equipment is costly, especially in the case of neutron diffraction, where 

a nuclear reactor is needed. The measurement accuracy is also fairly modest. 

The X-ray method [3] uses an X-ray beam to irradiate a metal so that the distance 

between the crystallographic planes can be measured. This distance is changed by the state of 



3 

stress of the material. Since the X-ray can only penetrate a few micrometers into a metallic 

material, the X-ray method is limited to measuring surface stresses. It is often used to 

estimate a material fatigue life and crack propagation. 

Based on an analogous principle, the neutron diffraction method [4] transmits neutrons 

throughout the thickness of the metal material. Unlike the X-ray method, which can only 

measure surface residual stresses, neutron diffraction can determine residual stresses 

throughout the thickness. However, due to the weak sources of neutrons, this method has 

modest accuracy. In addition, the method has restricted practical application because it 

requires the availability of a nuclear reactor. The measurement cost is correspondingly high. 

The ultrasonic method [5] is based on the small dependence of sonic wave speed on 

the residual stresses in a material. The change in wave speed is proportional to the average 

residual stress. Since the ultrasonic method measures only the average stress, significant 

stress gradients cannot be identified. 

1.2.2 Destructive Methods 

The most common destructive techniques for measuring residual stresses are the layer-

removal method, the hole-drilling method and the ring-core method. These methods are 

based on the fact that removal of stressed material disturbs the stress equilibrium, resulting in 

measurable deformations in the remaining material. These methods have the advantages of 

low cost and greater accuracy compared with non-destructive methods. The disadvantage is 
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the damage to the specimen. As a result, destructive methods are suitable only for mass 

production or where loss of the specimen can be tolerated. 

The layer-removal method [6] is a well-established technique for measuring residual 

stresses in planar or cylindrical components. In this method, one or more strain gages are 

used to measure the strain changes caused by the removal of successive layers of stressed 

material from elsewhere in the specimen. The original residual stresses existing in a specimen 

can then be calculated from the measured strains. In planar specimens, the layers can be 

removed as shown in figure 1.1.(a). In cylindrical specimens, the layers can be removed as 

shown in figure 1.1. (b). Typically, layer removal involves almost complete destruction of the 

specimen. 

Fig 1.1 Layer-Removal Method. 
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Layer-removal involves almost complete strain relief, and is potentially the most 

accurate method of all destructive methods for measuring residual stresses. However, a 

weakness of this method is that the equations for calculating the subsurface stress distribution 

contain differential quantities and the evaluation of these quantities creates calculation errors 

due to noise contained in the strain data. The method is also quite time-consuming. 

The hole-drilling and ring-core methods are the most common destructive methods for 

measuring residual stresses. Both involve local removal of stressed material and measurement 

of the strain relief in the adjacent material surface. Since the removal of the material is 

relatively small and often tolerable, these methods are sometimes described as 'semi-

destructive'. 

The hole-drilling method [7] involves drilling a small hole, typically 0.040-0.200 inches 

(1-4 mm) in diameter and depth, and measuring the surface strains around the hole by using a 

specially designed strain gage rosette (see figure 1.2 (a)). The original residual stresses can 

then be calculated from the measured strains. This method is limited by its sensitivity since 

only about 25 percent of the strain is relieved by drilling a hole. Thus, great care must be 

taken with the measurements to achieve an acceptable accuracy. 

Another method similar to hole-drilling is the ring-core method [7]. In this method, a 

0.600-6.000 inches (15-150 mm) diameter ring core is machined (see figure 1.2 (b)), and the 

relieved strain on the surface of the material remaining inside the ring is measured. 
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The ring-core method is more sensitive than the hole-drilling method because it 

involves almost complete strain relief. The disadvantage of the ring-core method is that the 

size of the ring is relatively large. It causes much more damage than the hole-drilling method. 

Fig 1.2 Hole-Drilling and Ring-Core Methods. 
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Despite their simplicity and popularity, both the hole-drilling and the ring-core 

methods are relatively insensitive to the stress variations in the interior. This occurs because 

the strain gauges are placed on the material surface, far away from the location of the interior 

stresses. In recent years, there has been growing interest in identifying the details of the 

subsurface stresses. This study focuses on ways of improving the interior stress evaluation 

capabilities of destructive residual stress measurement methods such as layer removal, hole-

drilling and ring-core. 

1.3 Previous Work 

The discussion here focuses on the three most common destructive methods the layer-

removal method, the hole-drilling method and the ring-core method. These three methods 

form the basis of all the research work presented in this thesis. 

1.3.1 Layer-Removal Method 

As shown in figure 1, the layer-removal method can be used with either planar or 

cylindrical specimens. The most common application is for cylindrical specimens, and is 

known as Sachs' boring-out method. In 1927, Sachs introduced thick cylinder theory to 

relate the residual stress in each removed layer to the change diameter of the remaining part. 

In this theory, the relationship between the residual stresses originally present in the cylinder 

and the measured strains is expressed in terms of a differential equation, referred to as Sachs' 

equation [8]: 
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°e (r) = 
l-v2 2r cir 2r 2 

(1.1) 

where UQ if) is the circumferetial stresses in a cylinder, E is the modulus of elasticity, v is 

it II 

Poisson's ratio, n> is the outer radius of the cylinder and ^(r) = s6 + V£a(r) is a 

combination of the circumferential and axial strain relieves measured at the outside surface 

when the boring-out has reached an inner radius r. However, numerical evaluation of the 

differential quantity is an inherently unstable process, and so the accuracy of the stress 
dr 

calculation is significantly compromised. Also, the differential solution method does not 

ensure that stress equilibrium is obeyed. 

In 1953, Lambert [9] expressed residual stresses in a cylinder in terms of an integral 

equation. He described a solution method in terms of Legendre polynomials which was too 

computationally intensive for routine work at that time. Also, the published method is slightly 

in error because the Legendre polynomials do not retain their orthogonality properties after 

layers have been removed. 

Dodd [10] experimentally verified Sachs' boring-out method. In his experiment, Dodd 

bored out a cylinder in seven steps and measured the strain changes on the outside surface of 

the cylinder. He also calculated the original residual stresses by using Sachs' method. In 

addition, he pointed out that Sachs' method fails to ensure stress equilibrium. 



9 

In 1989, Hung [11] developed a data-acquisition system which greatly accelerated 

Sachs' boring-out method. By using the system, he was able to obtain the stress profile in a 

cylinder within few hours. However, the equations that Hung used to calculate residual 

stresses were Sachs' differential equations, and so his calculations were still sensitive to strain 

measurement errors and do not necessarily obey equilibrium. 

1.3.2 Hole-Drilling Method 

The hole-drilling method was first introduced by Mathar in 1932. He used a 

mechanical extensometer to measure the displacements around a circular through-hole in a 

thin plate [12]. In 1950, Soete and Vancrombrugge replaced the mechanical extensometer 

with electrical strain gages, and improved the ease of measurement and the accuracy of the 

method [13]. 

In 1956, Kelsey [14] described a procedure for using the hole drilling method to 

measure non-uniform residual stresses. In his research work, instead of using through holes 

he used blind holes which eliminated the limitations of the method to thin plates. In 1966, 

Rendler and Vigness developed a standardized rosette [15]. Through their work, the hole 

drilling method became a systematic and easily reproducible procedure. The A S T M E837 

standardized hole drilling rosette was typically defined. 

The theoretical development of the hole drilling method continued. In 1978, Bijak-
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Zochowski [16] identified that the increment of the strains on the surface not only depends on 

the stresses that exists in the increment depth but also depend on the geometry changes due to 

the deepening of the hole. 

In 1981, Schajer [17] provided the first generalized finite element analysis of the hole 

drilling method, including tabulations of all calibration coefficients. Continued in 1988, he 

published a detailed investigation on using the hole-drilling method for determining residual 

stress variation with depth, and provided the required finite element calibrations [18]. 

1.3.3 Ring-Core Method 

In parallel with the development of the hole-drilling method, the ring-core method 

was introduced by Milbradt [19] in 1950 as a more sensitive alternative to the hole-drilling 

method. In his investigation, an annular ring was milled concentrically around a wire 

resistance gauge which was mounted within the ring. An additional small central hole was 

made to guide the tool for cutting the ring. Milbradt compared the ring-core and the hole-

drilling methods, and concluded that the ring-core method involves almost full stress 

relaxation while the hole-drilling method only involves about 25 percent stress relaxation. 

Gunnert [20] advanced the ring-core method by using foil strain gauge rosettes. Wolf 

and Bohm later used a small end mill mounted eccentrically in a cutting head to machine the 

annular ring. They also determined the minimum needed depth of the ring to achieve 100 

percent stress relaxation [21]. Continued, in 1988, Bbhm, Sttlcker and Wolf introduced a 
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standardized strain gauge rosette termed a ring-core rosette [22]. Since then, the ring-core 

method was open to wider application. However, because of the greater amount of machining 

involved, the ring-core method is less popular than the hole drilling method. 

1.4 Objectives and Overview 

The objective of this research is to improve the interior stress evaluation capabilities of 

layer removal, hole-drilling and ring-core methods. The work follows two main approaches, 

improved mathematical methods for computing residual stresses from the measured strains, 

and improved methods for making strain measurements that are more sensitive to the interior 

stresses. 

Currently, two problems exist in the layer-removal method. First, the calculations of 

the method is based on solving Sachs' differential equations, which is a process sensitive to 

strain measurement errors. Second, the method does not guarantee that stress equilibrium is 

obeyed. A different calculation approach is developed in the first part of this study to 

eliminate these problems. 

The approach taken is to reformulate Sachs' differential equation (equation 1.1) into 

the form of an integral equation. This change avoids the problem of having to evaluate the 

strain derivatives and allows other mathematical solution methods to be used. An inverse 

solution method based on Linear Inverse Theory [23] is used to solve the integral equation. 

The advantages of this method is that it provides a more stable procedure for evaluating the 
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integral equation. Also, stress equilibrium is easily enforced. The first part of this thesis 

describes and explains the application of the inverse solution method and examines different 

integral solution results as well as comparing them with Sachs's results. 

A new residual stress measurement technique, Ring-Hole Drilling, is introduced in the 

second part of this study to improve the sensitivity of the measured strains to the interior 

stresses. The new method combines aspects of both the hole-drilling and ring-core methods. 

It involves drilling a central hole and then a surrounding annular ring. The new method 

overcomes the interior stress resolution limitations of the previous two methods by moving 

the strain gauges from the specimen surface into the central hole. In this way, the relieved 

strains are measured in an area much closer to the location of the desired interior stresses. 

Measurement sensitivity and stress resolution are thereby greatly increased. 

The second part of this thesis describes the proposed ring-hole method in detail. The 

sensitivity of the new method is compared with that the hole-drilling and the ring-core 

methods. Experimental measurement of the strain sensitivity of the method is compared with 

numerical results. 
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2. IMPROVED LAYER-REMOVAL CALCULATION METHOD 

This chapter describes the physics and governing equations for typical layer-removal 

methods. It goes on to develop some mathematical techniques that are effective in solving the 

governing equations. The objectives of these techniques are to achieve as realistic as possible 

residual stress solutions that are stable in the presence of measurement errors, and to enforce 

stress equilibrium. 

2.1 Layer-Removal Method 

The layer-removal method is a widely used method for measuring residual stresses in 

planar or cylindrical components. In this method, one or more strain gauges are attached to a 

material surface. They are used to measure the strain changes caused by the removal of 

successive layers of stressed material from elsewhere in the specimen. The original residual 

stresses existing in the specimen can then be calculated from the measured strains. 

Figure 2.1. (a) shows the application of the layer removal method to a planar specimen. 

The strain gauges are attached on the top surface and the material is removed layer by layer 

from the bottom surface. Figure 2.2.(b) shows the application of the layer removal method 

for a cylindrical specimen. The strain gauges are placed on the outer surface of the cylinder 

and the material is removed from the inside. Alternatively, the strain gauges can be placed on 

the inside surface and the material removed from the outside. 
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strain gauges strain gauges 

layers to be 
removed 

r layers to be 
removed 

(a) (b) 

Fig 2.1 Layer-Removal Method. 

Since the removal of the material covers the entire surface, the various layer-removal 

methods involve almost complete strain relief. They are the most accurate and the most 

destructive of the various methods for determining interior residual stresses. 

2.1.1 Differential Equation Solution 

The Sachs' boring-out method [8] is the most commonly used layer removal method. 

It involves successive cutting out of layers of material from the interior of a cylindrical 

specimen, and measuring the resulting strain changes on the outside surface using strain 

gauges. Removal of each interior layer releases the residual stresses that were contained in 

that layer and redistributes them throughout the remaining material. The relieved 

circumferential and axial strains are measured after each bore by the strain gauges. 

Differential equations based on thick cylinder theory, called Sachs' equations [8 ] , are then 

used to determine the original residual stresses that were contained in the cylinder. The 
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equations for calculating circumferential and axial stresses in a cylinder from the measured 

strains as the cylinder is bored-out from the interior are: 

<r<>(r) = 
\-v' 

f 1 2 

I 2r 

d¥(r) 

dr 

rl + r 2  

2r2 Y(r) (2.1) 

f _2 

l - v 2 V 2r 

r 2 - r 2 dA(r) 

dr 
A(r) (2.2) 

where, Y(r)=ff;(r) + v » » (2.3) 

A(r) = VEg (r) + e a (r) (2.4) 

ae(r) and aa(r), are respectively the circumferential and axial stresses at radius r. E is modulus 

of elasticity , v is the Poisson's ratio and r b is the outer radius of the cylinder. T(r) and A(r) 

are strain quantities combining the circumferential and axial strain reliefs measured at the 

outside surface when the boring-out has reached an inner radius r. 

Two problems exist when determining residual stresses using equations 2.1 and 2.2. 

eft* dA 
The first is that equations 2.1 and 2.2 can be evaluated only i f and — are determined. 

dr dr 

This is done either numerically or graphically. However, ^(r) and A(r) are measured only at a 

discrete set of cylinder radii r, corresponding to the sequence of radii in the boring out 

dy dA 

operation. Then and — can only be approximately determined. This approximation is 
dr dr 
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very prone to errors. Moreover, when the strain measurements contain experimental errors, 

dA 
the estimation of and — will be further degraded. The combination of insufficient and 

dr dr 

d¥ dA 
erroneous strain measurements yields poor estimates for and — . Thus, the accuracy of 

dr dr 

the calculations of a e and aa are therefore significantly compromised [23]. 

The second problem in the solution method is that it does not ensure that stress 

equilibrium is obeyed. In order to be in equilibrium, the following conditions must be 

enforced: 

Equation 2.6 can be transformed into the format of equation 2.5 using the enclosed area 

A = nr1 as the independent variable. With this change in variable, equation 2.6 becomes: 

(2.5) 

(2.6) 

(2.7) 

Conformity to equilibrium equations 2.5 and 2.6 is not guaranteed in the presence of 

measurement and discretization errors. 
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2.1.2 Integral Equation Solution 

An alternative approach can be taken that largely overcomes the shortcomings of using 

equations 2.1 and 2.2 for evaluating residual stresses. Integration of equations 2.1 and 2.2 

gives [9]: 

where, R is the general radius used for evaluating the integral. These are Volterra equations 

of the first kind. Notice that, equations 2.8 and 2.9 can also be derived from stress 

equilibrium (see appendix). 

In most integral equations, the unknown terms are on the left side and the known 

terms appear within the integrals on the right. Such problems are called forward problems and 

can be solved by direct integration. However, in equations 2.8 and 2.9, the known quantities 

^(r) and A(r) appear on the left, while the unknown stress functions ae(R) and aa(R) are 

inside the integrals on the right. This feature significantly complicates the solutions of 

equations 2.8 and 2.9 since they cannot be simply integrated. Such equations are called 

inverse problems. Linear Inverse Theory can be used to solve inverse problems of the type of 

equations 2.8 and 2.9. 

(2.8) 

(2.9) 
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2.2 Linear Inverse Theory 

Linear Inverse Theory is a set of mathematical techniques to extract information about 

physical properties of objects or systems from experimental observations that appear in 

integrated form [24]. Usually, the observations consist of tabulations of measurements, or 

"Data". The results are numerical values representing the physical or statistical properties of 

the problem. These properties are called model parameters. The relationship between the 

model parameter and the data is called the Model. A model can be based on physical or 

statistical relationships. For example, to determine the density of the liquid contained in a 

bottle based on the measurements of the mass and the volume of the liquid [24], there are two 

Data, mass dm and volume dv and one unknown model parameter, density mi. The statement 

that density times volume equal mass will be the Model and can be written in vector form as 

dv mi = dm. 

Considering equations 2.8 and 2.9, the Data are the strain measurements ^(r) and A(r) 

and the Models are the stress distributions Oe(R) and oa(R). Since equations 2.8 and 2.9 are 

linear inverse problems, linear inverse theory is a suitable method for solving these equations. 

The advantage of using this method is that the model construction process allows the 

incorporation of constraints that the model has to satisfy such as the stress equilibrium 

condition. More importantly, the constructed model is fairly stable with respect to data 

errors. 
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The primary goal of solving an inverse problem is to construct a model from the 

observed data. Most experiments can provide only a limited amount of discrete data while 

most models are continuous. Therefore, a nonuniqueness exists, so that many models may fit 

the same set of data. However, most of these models are unrealistic. They typically contain 

results that oscillate around a central trend. A unique model with minimal oscillations can be 

achieved by requiring that the model norm is minimized. The norm is the mathematical 

abstraction of the length of a vector. When applying experimental data, a weighted norm can 

be used to accommodate different types of data with different measurement accuracies. The 

general procedures for obtaining a minimum norm model solution from both accurate and 

inaccurate data are explained in this chapter. 

2.2.1 Minimum Model Norm Solution from Accurate Data 

When constructing a model from accurate data, equation 2.8 and 2.9 can be written in 

general form as [23]: 

o 
(2.10) 

j =1,2,3,--N. 

Equation 2.10 is a Fredholm equation of the first kind, where, dj is the jth datum, gj is the jth 

kernel function, (gj,m) is the inner product (or the generalization of the dot product), m is 

the unknown model function and x is an independent variable. For example, in the case of 
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equation 2.8, d represents the measured strain quantity r- *P(r), m represents the stress 
1 - v 

-2r 
Ce, g corresponds to the factor —z z- and x corresponds to radius r. Notice that gj is 

assumed known or can be determined from physical knowledge of the problem. In this case, 

gj is assumed to be a set of linearly independent elements. 

Construction of a Model with a minimum model norm from accurate data involves 

minimization of the model norm ( || m ||2 ) subject to the data constraint. The minimization 

can be achieved in practice by assuming that the model can be expressed as a linear 

combination of the kernel functions [25]: 

N 

(2.11) 

where a.j are the unknown expansion coefficients to be determined. Substitute m into 

equation 2.10: 

(*j.2,a,8j) = di J = ----N. (2.12) 
j 

or written as: 

N 

i = 1,2,3,--N. (2.13) 
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This system of equations can be written in matrix form: 

where 

Ta = d (2.14) 

r, 7 = (g„gj)= \ g,(x) gj(x) dx (2.15) 
J o 

Since T is a symmetric and positive definite matrix, T _ 1 therefore exists, and a can be 

determined as: 

a = T 1 d (2.16) 

Since <Xj and gj are known quantities, the model with minimum model norm from accurate data 

can now be recovered from equation 2.11. 

2.2.2 Minimum Model Norm Solution from Inaccurate Data 

Most experimental data are contaminated with errors. Therefore, when attempting to 

construct a realistic model, it is desirable that the model should concentrate on the underlying 

physical information, and try to ignore data errors. This means that the data to which the 

model corresponds, called the produced data, are not exactly the same as the experimental 

data. The difference between the produced data and the experimental is called the misfit. 

Typically, the produced data can be considered as a "smoothed" form of the experimental 

data. The objective is that the produced data should contain much smaller errors than the 

original experimental data. 
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The data errors are not individually known. However, it can be assumed that they are 

independent variables, with a normal distribution, zero mean and standard deviations Sj. With 

such errors, an appropriate value for the misfit is given by the chi-squared statistic [23]: 

standard deviation of jth datum and is used to normalize the data, x 2 1S a statistical variable 

whose expected value is approximately equal to N the number of data for N > 5. If 

X 1 « N , the data are over fitted. The models have more structure than the true model and 

these structures are artifacts of the noise contained in the data. Conversely, if x 2 » N , the 

data are poorly fitted. The information contained in the data about the model is lost. The 

models display less structure than the true model. Consequently, the optimum model should 

satisfy the requirement that the model reproduces the data with x 2 misfit close to N. 

A model from inaccurate data can be constructed by minimizing the model norm 

subject to the misfit criterion. The objective function to be minimized is expressed by O as 

(2.17) 

where, dj is the observed datum, d?ro is the produced datum by the model and Sj is the 

[25]: 

(2.18) 
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where, u, is the Lagrange multiplier which trades off between the model norm and the misfit 

criterion. From equations 2.10, 2.11. 2.12. 2.13. 2.14 and 2.15, the model norm m and 

data d?rocan be written in matrix form: 

m - (m, m) 

N N 
= aTTa (2.19) 

g = Ta (2.20) 

where, ctT is a transpose. Therefore, equation 2.18 also can be written in a matrix form: 

O = aT Ta + M (\\sd (d - Ta)f - N) (2.21) 

where, Sa is a diagonal matrix whose elements are (sd ) •• = — . When minimizing equation 
SJ 

2.21 with respect to parameters a and |x, a system of equations is obtained as: 

( 1 ^ 
r + - s 

V v J 
a - d (2.22) 

and 1 = N (2.23) 
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where S is also a diagonal matrix whose elements are = sj. This matrix augments the T 

matrix. Equation 2.26 can be solved iteratively by finding the value of the Lagrange multiplier 

u. that gives the required misfit = N and the corresponding a. The model from inaccurate 

data can then be recovered in the same way as before from equation 2.11. 

Equation 2.22 is very similar to equation 2.14 for the case where model fits the 

experimental data exactly. The data misfit is associated with the term —S. In general, all 

experimental data are contaminated with error, and so equation 2.26 is a more appropriate 

choice than equation 2.14. Use of equation 2.22 requires an estimate of the standard 

deviation of the measurement errors, Sj. In the limiting case where Sj —> 0, there is no data 

misfit, and equation 2.22 becomes the same as equation 2.14. As the standard deviation of the 

measurement error increases, the data misfit and the associated data smoothing increases. The 

X2 = N criterion provides a convenient method for identifying the optimal smoothing 

required. 

2.2.3 Using Different Functions 

With a different approach, the stresses in equation 2.10 can be expressed as a linear 

combination of the other functions such as polynomials or piecewise linear functions. For 

example, when using polynomials, the kernel functions in equation 2.11 will be replaced by the 

polynomials. When fitting data exactly, the procedures listed in equations 2.11 to 2.18 is 

unchanged. However, the T matrix will be formulated by the kernels and the polynomials: 
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r ; * = (gj, pk) = f gj(x) Pk(x) dx (2.24) 
J o 

In this case, T is typically not symmetric. If requiring misfitting the data, replace kernel 

function gj with polynomials pj in equations 2.19, 2.20 and 2.21. The smoothing equation 

2.22 then becomes: 

T + - S (r r ) _ 1 p\ a = d (2.25) ) 

where, Pjlc =[pJlPk)= Pj(x) pk(x) dx 
Jo 

(2.26) 

Equation 2.25 corresponds to equation 2.22, and becomes exactly the same if Pj(x) = gj(x). 

It can be solved in the same way by iteratively finding the value of the Lagrange multiplier \i 

that gives the optimum misfit and the corresponding a. 

In the following chapter, practical examples of the use of equation 2.14, 2.22 and 

2.25 are presented for solving the integral equation 2.8 and 2.9 governing residual stress 

measurements by the layer removal method. The characteristic features of some particular 

choices of the functions in equation 2.11 will be explored. 
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3. INVERSE SOLUTIONS 

This chapter describes a procedure for solving integral equations 2.8 and 2.9 using 

Linear Inverse Theory. Several important practical characteristics of the solution are 

explored. They include: 

1. how well the solution determines the stress results when the given strain data are 

"exact". 

2. how stable the solution is in the presence of strain measurement errors. 

3. how smoothing can be used to reduce sensitivity to strain data errors. 

4. how much the stress results are distorted by the use of smoothing. 

To explore these characteristics effectively, it is convenient to use synthetic data rather 

than measured data. The synthetic data are created by starting with an assumed stress 

distribution and then using equations 2.8 and 2.9 in a forward calculation to determine the 

corresponding strains. These strains are then used as the basis for an inverse calculation to 

determine the associated stresses. Finally, the effectiveness of the inverse calculation is 

assessed by comparing how well the calculated stresses reproduce the original assumed 

stresses. 

In this chapter, synthetic data are used to explore the above four characteristics of the 

proposed linear inverse calculations. Several variations of these calculations are presented, 
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each with slightly different computational features. An application to practical laboratory data 

is also discussed. 

3.1 Solving Integral Equations from Synthetic Data 

Most experimental measurements contain unknown errors. When determining stresses 

from experimental strain readings, it is difficult to test the stability of the solution since the 

data errors are not known. To simplify the process, a set of synthetic data is generated and 

applied. The synthetic data used here are based on the experimental results of Dodd [10]. He 

measured the strain changes on the outside surface of a solid aluminum alloy cylindrical 

specimen, 1.5 inches in radius, caused by successive boring out of material from the central 

part of the cylinder. The cylinder was bored successively 7 times at the radii r = [0.455, 0.65, 

0.85, 1.05, 1.15, 1.25, 1.35 ] inches. Seven sets of strain readings corresponding to the 

cylinder radii for circumferential and axial strains were measured. 

The synthetic data are generated by choosing a function as a stress distribution: 

«9(r) = i - — (3.i) 

and integrating it through the domain. This function provides a straight line which has the 

property of zero integral over the cross-section. Equilibrium is therefore obeyed. 

Based on the number of experimental data points, 7 synthetic data were created 

corresponding to the radii of the boring operation done by Dodd. An extra datum dj = 0 and 
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kernel function gj = 1 was obtained from the equilibrium equation 2.5. In this way, the set of 

8 data listed in table 3.1 was generated. 

Table 3.1 Synthetic Data 

Radius of Bored Out Cross Section Synthetic Strain Data 
(inches) (di) 

0 0 
0.455 -0.14119352 
0.65 -0.26201550 
0.85 -0.40992908 
1.05 -0.57647059 
1.15 -0.66540881 
1.25 -0.75757576 
1.35 -0.85263158 

3.1.1 Solution Using Kernel Functions 

Equation 2.8 is first solved by assuming that the stress is a linear combination of the 

kernel functions. The first step is to reformulate equation 2.8 to a standard inverse integral 

form as equation 2.10. To achieve this, a Heaviside Unit Step function is introduced to the 

kernel functions. The standard inverse form is written as: 

djir) = [gj(r) mir) dr (3.2) 
Jo 

where, j is the index corresponding to each cylinder radius at the point of boring, dj(r) is the 

jth strain datum, gj(r) is the corresponding kernel functions and m(r) is the circumferential 

stress model to be determined. These parameters correspond to: 
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dj(r) = - ^ y Y(r) (3.3) 
1 l-v2 

g j ^ ^ - ^ H i r - r ; ) (3.4) 

m(r) = ae(r) (3.5) 

Notice that a Heaviside Unit Step function is contained in each kernel function. Therefore, 

the kernels are step functions as shown in figure 3.1 
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Figure 3.1 Kernel Functions. 
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For the case where the strain data are exactly fitted, equation 2.16 is used to obtain 

the coefficients ctj. Following the steps that listed in chapter 2 from equation 2.11 to 2.16, a 

minimum norm solution (see figure 3.2) is obtained. 
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Figure 3.2 Stresses from Kernel Functions with No Smoothing and No Data Errors. 

Figure 3.2 shows a plot of the stress profile produced by the kernel function solution. 

The model originally used to generate the synthetic data, labeled Actual Stress, is also 

plotted. It can be seen that the produced stress oscillates about the actual stress. The 

staircase shape is caused by the assumption that the stress profile is a linear combination of the 
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step kernels. In figure 3.2, equilibrium is obeyed because the stress profile possesses a zero 

integral across the cylinder radius. 

The effect of strain measurement error was simulated by corrupting the strain data by 

adding random errors to each of the seven non-zero strains in Table 1. These data errors were 

randomly selected to be in the range of ± 1 % of the maximum strain data. Ten such data 

sets were produced. Notice that the resulting relative errors in the early strain data is much 

greater than ± 1 % because these strain data are much smaller than the maximum strains. 
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Figure 3.3 Stresses from Kernel Functions with Data Errors. 
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Figure 3.3 shows the ten solutions obtained from the corrupted data and the stress 

obtained from the ideal data. It can be seen that the solutions from the corrupted data 

fluctuate about the ideal solution. Each corrupted solution still obeys stress equilibrium. This 

requirement to obey equilibrium helps stabilize the calculated stress results. 

Smoothing can be used to reduce the effect of the data errors. The added random 

errors in the +1% range correspond to a standard deviation of 0.58 %. The coefficients ctj 

that form the stress solution were found by iteratively solving equation 2.22 to find the 

Lagrange multiplier u. that gives the optimal misfit specified through equation 2.17 and 2.23. 

Figure 3.4 shows the smoothed stress calculation for the same 10 corrupted strain data 

sets used in figure 3.3. Equilibrium is still obeyed. It can be seen that the range of the 

produced stresses in figure 3.4 is significantly smaller than in figure 3.3. However, this 

reduced effect of strain data error is also accompanied by a small overall distortion of the 

produced stresses. This can be seen in figure 3.4 by the ideal produced stress (no smoothing 

no data errors) no longer being in the centre of the results from the 10 corrupted strain data 

sets. This is to be expected because the smoothing is achieved through a deliberate misfit 

between the given strain data and the produced stresses. 

Figure 3.5 illustrates more clearly the distortion introduced by the smoothing 

procedure. The figure shows the stresses produced from ideal data (no errors), both with and 
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without smoothing. The shifts in the produced stresses with smoothing in figure 3.5 

correspond to the median shifts observed in figure 3.4. 
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Figure 3.4 Stresses from Kernel Functions with Smoothing and Data Errors. 
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Figure 3.5 Stresses from Kernel Functions with Smoothing but No Data Errors. 

Figures 3.2 to 3.5 all show that the proposed integral solution is an effective method 

for calculating the stresses corresponding to the measured strain data. The reliability of this 

calculation is enhanced by the automatic enforcement of stress equilibrium. The smoothing 

introduced by using deliberate data misfit reduces the effect of random data errors, but also 

slightly distorts the underlying solution. This behavior is common to all smoothing methods. 

In the calculation method presented here, the amount of smoothing is chosen to give the 
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statistically optimal balance between random error reduction and preservation of the 

underlying solution. 

The results in figures 3.2 to 3.5 give a useful picture of the stress profile 

corresponding to the given strain data. However, the staircase shape of the lines is unrealistic. 

This staircase shape comes from the choice of the kernel functions gj(r) as the basis functions 

in equation 2.11. In the following section, some alternative basis functions will be explored 

that can give smoother, more realistic stress results. 

3.1.2 Solution Using Power Series 

The series expansion in equation 2.10 in terms of the kernel functions is 

mathematically convenient, but is not the only possibility. In fact, any set of independent 

functions that span the function space can be used. An obvious possibility is a power series. 

N 

(3.6) 

where (3.7) 

These functions are shown in figure 3.6. Unlike the kernel functions, the polynomials are 

smooth curves. 
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Figure 3.6 Plot of Polynomials. 

The application of the power series functions changes the formulation of T matrix of 

equation 2.15. T becomes the inner products of the kernels and power series functions. In 

this case, equation 2.24 is used to determine the T matrix. The result is listed in table 3.2. 

Table 3.2 T Matrix 

1.0000 0.4540 0.3062 0.2242 0.1664 0.1328 0.1030 0.0712 
0.6681 0.3033 0.2046 0.1498 0.1112 0.0887 0.0688 0.0476 
1.0670 0.4844 0.3267 0.2393 0.1775 0.1417 0.1099 0.0760 
1.6694 0.7579 0.5112 0.3743 0.2778 0.2217 0.1719 0.1188 
2.7451 1.2463 0.8406 0.6155 0.4567 0.3646 0.2827 0.1954 
3.7197 1.6887 1.1390 0.8340 0.6189 0.4940 0.3831 0.2648 
5.4545 2.4763 1.6702 1.2230 0.9076 0.7245 0.5618 0.3883 
9.4739 4.3010 2.9009 2.1242 1.5763 1.2583 0.9757 0.6744 
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The T is a non-symmetric and almost singular matrix. This is reflected in the very high 

condition number of the matrix. The condition number of a matrix is defined here as the ratio 

of the largest and the smallest eigenvalues. Since the smallest eigenvalue of the T matrix is 

almost zero, the condition number of the T matrix tends to infinity. By comparison, the 

condition number of the T formulated by only the kernel functions equals 547. The near-

singularity of the matrix results in an unstable solution. The various stress parameters have 

become infinitely unrealistically large. 

The Singular Value Decomposition (SVD) method [24, 25, 26] is a powerful approach 

for dealing with an almost singular matrix. Using SVD, the T matrix is decomposed into three 

n x n matrices: a column-orthogonal matrix U, a diagonal matrix W with positive or zero 

elements, and a row orthogonal matrix V: 

T = U W V (3.8) 

In this particular case: 

u = 

0.0827 0.9504 0.1626 -0.0436 -0.2398 -0.0547 0.0138 -0.0289 
0.0552 0.0173 -0.1544 0.0171 0.0183 0.3097 -0.0568 -0.9344 
0.0882 0.0713 -0.0707 0.0345 0.2935 0.0875 0.9419 -0.0036 
0.1380 0.0302 -0.0879 0.3082 0.2755 -0.8592 -0.0402 -0.2481 
0.2270 0.1451 -0.5348 0.6878 0.0610 0.3036 -0.1440 0.2277 
0.3076 0.1216 -0.5836 -0.6519 0:3007 -0.0472 -0.1468 0.1041 
0.4510 0.0431 0.5508 0.0527 0.6193 0.2338 -0.2206 0.0404 
0.7834 -0.2295 0.0842 -0.0284 -0.5499 -0.0785 0.1299 -0.0171 
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W = 

14.3657 

0 

V = 

0.8418 -0.4893 0.1946 -0.0121 0.0334 -0.1115 0.0109 -0.0173 
0.3821 0.3370 -0.6159 -0.4523 -0.1676 0.2942 -0.1448 0.1446 
0.2578 0.6645 0.2803 -0.0477 0.5113 -0.3214 -0.1798 -0.1186 
0.1888 0.1729 -0.3055 0.8476 -0.1952 -0.0517 -0.283 0.0437 
0.1401 0.3401 0.5998 0.0639 -0.4468 0.4348 0.122 0.312 
0.1118 0.2181 -0.1868 0.0596 -0.2057 -0.4346 0.8171 0.0504 
0.0867 0.0056 -0.1123 0.2557 0.5513 0.6364 0.4289 -0.1468 
0.0599 0.1114 0.0602 -0.0404 -0.3540 0.1098 0.0045 -0.9173 

Notice that the diagonal matrix W has only one non-zero element here. Since U, V are 

orthogonal, their inverse are equal to their transposes. The inverse of diagonal matrix W is 

also a diagonal matrix whose elements are the reciprocals of the elements Wj. Therefore, the 

inverse T is: 

r _ 1 = v diag 
\WJJ 

u 1 (3.9) 



By applying SVD, it has been shown that — can be replaced by zero if w, =0 [26]. 
Wj 

In the present case, there is only one non-zero element in the inverse W and is: — = 0.0696. 

Using equations 2.16, 3.8 and 3.6, a set of stress parameters is obtained. Table 3.3 lists the 

solutions from the direct matrix calculation and from the solution using SVD. It can be seen 

that the stress obtained from SVD is much more realistic than that from the direct method. 

However, stress equilibrium is not obeyed since all the stress parameters are negative. The 

application of SVD has greatly stabilized the solution. However, the problem is so ill-

conditioned that even SVD is not sufficient to achieve a useful result. Therefore, it can be 

concluded that a power series is not an appropriate set of basis functions to be used to solve 

equation 2.8. 

Table 3.3 Stresses from Different Calculation Methods. 

Cylinder Radius Stress from direct method Stress from SVD 
(inches) xlO 1 5 

0 0.4302 -0.0857 
0.455 -0.5569 -0.1006 
0.65 -1.0832 -0.1097 
0.85 -1.4321 -0.1222 
10.5 -0.9005 -0.1392 
1.15 0.1304 -0.1502 
1.25 2.0602 -0.1635 
1.35 5.3199 -0.1796 

Some improvement could be expected by using Legendre polynomials instead of a 

power series. However, the improvement may not be sufficient because the orthogonality 

properties of the Legendre polynomials are lost when the inner product with the kernel 

functions is formed. 



40 

3.1.3 Solution Using Linear Functions 

The third approach is to express the stresses in equation 2.10 as a combination of 

piecewise linear functions 

where, whenj = 1 

and whenj >1 

N 

'1 = 1. 

(3.10) 

(3.11) 

The linear functions are plotted in figure 3.7. These linear functions are used with equation 

2.24 to determine the T matrix. Using equation 3.10, 2.14 and 2.16, a minimum norm 

solution (see figure 3.8) is obtained. 
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Figure 3.7 Linear Functions. 
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Figure 3.8 shows a plot of the stress profile produced by the linear function solution 

and also the actual stress. It can be seen that the linear function solution exactly coincides 

with the actual stress. The "exact" result is to be expected because the "actual" solution is a 

linear function of exactly the same type as the basis functions, and there are no data errors. 

Cylinder Radius, inches 

Figure 3.8 Stresses from Linear Functions with No Data Errors. 

The effect of strain measurement errors was simulated in the same way as before by 

adding randomly selected errors in the range of ± 1 % of maximum strain data to each of seven 

non-zero strains in Table 1. Ten stress profiles were produced from the corrupted data. 
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Figure 3.9 shows the ten stresses from the corrupted data and the stress from the ideal 

data. It can be seen that the stresses in figure 3.9 from the corrupted data oscillates about the 

ideal stress. Each corrupted stress profile still obeys stress equilibrium. Comparing with 

figure 3.3 where the stresses are produced from the same type of data but are kernel function 

solutions, the stresses in figure 3.9 fluctuate more about the ideal stress. This shows that in 

this case the linear function solutions are more sensitive to errors than the kernel function 

solutions. 
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Figure 3.9 Stresses from Linear Functions with Data Errors. 
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Smoothing is introduced by using 0.58 % of standard deviation corresponding to the 

range of +1% random maximum data errors. Equation 2.25 is used to find the coefficients 

Oj to form the optimum stress. 
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Figure 3.10 Stresses from Linear Functions with Smoothing and Data Errors. 

Figure 3.10 shows ten smoothed stress solutions calculated from the same strain data 

sets used in figure 3.9. Stress equilibrium is still obeyed. It can be seen that the range of the 

smoothed stresses is much smaller than that in figure 3.9. Figure 3.10 also shows the 

smoothing has created some distortion. This distortion is shown more clearly in figure 3.11, 
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where, smoothing is applied to uncorrupted data. This corresponds to the median case in 

figure 3.10. Also, for a comparison, figure 3.11 shows the corresponding solution from figure 

3.5 using kernel functions. It can be seen that smoothing introduces similar distortion to both 

kernel function and piecewise linear function solutions. 

Cylinder Radius, inches 

Figure 3.11 Solutions from Both Kernel Functions and Linear Functions. 
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The piecewise linear functions have the advantage of avoiding the unrealistic steps that 

occur with the kernel function solution. This advantage comes at the cost of some loss in 

stability. The piecewise linear solutions are locally more sensitive to strain measurement 

errors than the corresponding kernel function solutions. However, with appropriate 

smoothing, the piecewise linear solution provides a satisfactory solution. 

3.1.4 Section Conclusion 

This section has shown a method of applying synthetic data to solve equation 2.8. By 

applying synthetic data, the stability of the solution from each different basis function was 

explored. A good picture of the characteristics of the various basis functions was developed. 

The information obtained in this section will be used in the next section where the various 

solution methods will be applied to practical laboratory data. 

3.2 Application of Laboratory Data 

In this part of the chapter, laboratory data obtained by Dodd [10] are used as an 

example of applying linear inverse theory solving equation 2.8. Stresses obtained by Dodd 

using Sachs' method are also shown for comparison with the inverse solution. 

The experimental data obtained by Dodd relate to the same boring operation that was 

used for generating the synthetic data. He measured the strain changes on the outside surface 

of a solid aluminum alloy cylindrical specimen, 1.5 inches in radius, caused by successive 
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boring out of the central part of the material. The circumferential and axial strain readings and 

the corresponding stresses of Sachs solution calculated by Dodd are listed in table 3.4. 

Table 3.4 Laboratory Strain Readings and Sachs' Results 

Radius of Bored Circumferential Axial Circumferental 
Out Cross Section Strains Strains Stresses 

(inches) (micro strain) (micro strain) (ksi) 
0 0 0 

0.455 -1245 -1427 4.50 
0.65 -2753 -3027 1.79 
0.85 -4183 -4957 0.02 
1.05 -6219 -7352 -3.34 
1.15 -7428 -8421 -6.56 
1.25 -8262 -9176 -9.21 
1.35 -8807 -9630 -10.01 

Applying the inverse method to the strain readings, integral equation 2.8 is solved by 

the same procedure used for the synthetic data. It is assumed that the experimental data 

contain the range of ±l%of random maximum data errors. This corresponds to 0.58 % 

range of standard deviation for smoothing. When using kernel functions as the basis 

functions, stress profiles were obtained for the non-smoothed data and for the smoothed data 

[27]. 

Figure 3.12 shows the non-smoothed and smoothed inverse solutions from the 

experimental strain data. The staircase shape of the inverse solutions is caused by the step 

kernel functions. As may be expected, the smoothed solution is more evenly spaced than the 

non-smoothed solution. Figure 3.12 also shows the solution determined by Dodd using 
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Sachs' method, equation 2.1. In this particular case, the stress is smoothly varying and the 

results from the two methods are similar. However, the inverse solutions obey stress 

equilibrium. 
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Figure 3.12 Inverse Kernel Function Solutions. 

Non-smoothed and smoothed inverse solutions were also obtained using the piecewise 

linear basis functions. Figure 3.13 shows the two inverse solutions from the same 

experimental strain data used for determining the stresses in figure 3.12. It can be seen that 

the two inverse solutions from the linear functions are different from each other especially in 
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the first part of the graph. The inverse solution is realistic only in the presence of smoothing. 

The Sachs solution is more similar to the smoothed solution. 

0.0 0.5 1.0 

Cylinder Radius, inches 
1.5 

Figure 3.13 Inverse Linear Function Solutions. 

Figure 3.14 shows the Sachs solution and the inverse smoothed solution for both 

kernel and linear functions. It can be seen that in this case the two smoothed solutions and the 

Sachs solution are very closely matched. This is to be expected because the actual 
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circumferential stress varies smoothly. The even sequence of the Sachs solution points 

suggests that Dodd had manually added significant smoothing during his stress calculation. 
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Figure 3.14 Comparison of Solution Methods Using Dodd Data. 

Both the kernel function and piecewise linear functions in figure 3.14 obey stress 

equilibrium. This constraint is not guaranteed when using the Sachs method. The lack of 

enforcement of equilibrium by the Sachs method is evident in figure 3.14 by the fact that all 

but one of the Sachs stresses lie below the piecewise linear solution. 
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3.3 Chapter Conclusion 

This chapter described a practical procedure for solving integral equation 2.8 using 

Linear Inverse Theory. Synthetic data were generated and used to illustrate how to determine 

the corresponding stresses. The stability of these solutions in the presence of data errors was 

also investigated. A method of optimal smoothing was shown to be effective in reducing the 

sensitivity to data errors. However, the smoothing also slightly distorted the results. Finally, 

the experimental data were also applied to demonstrate the practical use of the inverse 

method. The results from both the synthetic data and the experimental data showed that 

including smoothing, the inverse method is an effective and reliable method for determining 

residual stresses. In addition, all the inverse solutions obey stress equilibrium which the Sachs 

solution may fail to satisfy. 
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4. HOLE-DRILLING AND RING-CORE METHODS 

The first part of this thesis, Chapters 2 and 3, focused on ways to improve the 

mathematical method for computing residual stresses from the measured strains. The second 

part of the thesis, Chapters 4 and 5, will focus on improving the residual stress measurement 

methods so that they are more sensitive to the interior stresses. 

A new residual stress measurement technique, Ring-Hole Drilling, is introduced in this 

part of the thesis to improve the sensitivity of the measured strains to the interior stresses. 

The existing hole-drilling and ring-core methods have the disadvantage of being relatively 

insensitive to the interior stresses because the strain gauges are placed on the material surface. 

The new method combines aspects of both the hole-drilling and ring-core methods. However, 

it overcomes the interior stress resolution limitations of the two methods by moving the strain 

gauges from the specimen surface into the interior. 

The mathematical theory of ring-hole drilling is similar to that of hole-drilling and ring-

coring. This chapter summarizes the theoretical background of the hole-drilling and ring-core 

methods. It goes on to discuss the stress sensitivity of the two methods. 
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4.1 Hole-Drilling and Ring-Core Methods 

The hole-drilling and ring-core methods are the most common methods for measuring 

residual stresses. Both involve local removal of stressed material and measurement of the 

resulting strain relief in the adjacent material surface. Figure 4.1 shows both the hole-drilling 

and ring-core methods. 

(a) Hole-Drilling Method (b) Ring-Core Method 

Figure 4.1 Hole-Drilling and Ring-Core Methods. 



53 

4.2 Hole-Drilling 

The hole-drilling method involves drilling a small hole, typically 0.040-0.200 inches (1-

5 mm) in diameter and depth, in the centre of a specially designed strain gauge rosette 

attached to the surface of the stressed material (see figure 4.1(a)). Strain measurements are 

then taken as the hole depth is increased by small increments. The original residual stresses 

can then be calculated from the measured strains. 

The hole-drilling method can be used for uniform and non-uniform residual stress 

measurements. In many cases, the residual stress can be assumed to be uniform through the 

depth of the material. This assumption greatly simplifies the calculation procedure. However, 

often the stresses are quite non-uniform. In that case, a more complex, non-uniform stress 

calculation is required. 

4.2.1 Uniform Residual Stress 

The relationship between the measured relieved strain and the originally existing 

residual stresses is [13, 17]: 

£ r = A((Tmax + C7 m i n ) + ^ ( c r ^ -0" m i n ) cOS2^ (4.1) 

where, er is the measured relieved radial strain, Omax and Omu, are the maximum and minimum 

principal residual stresses respectively, y is the angular coordinate measured anticlockwise 

from the maximum principal stress direction. A and B are the calibration coefficients to be 

determined. 
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Equation 4.1 can be inverted to obtain the magnitude and direction of the two 

principal stresses in terms of the measured strains: 

^max» ^min 
?x + g3 _ yj (2e2-si-e3)2 + (gt - g 3 ) 2 

AA + 4B 
(4.2) 

3 = — arctan 2 S2 Si "h £̂  
£L — £3 

(4.3) 

where 81, 82 and 83 are the radial strains measured by the strain gauges showed in figure 4.1 

and P is the angle measured clockwise from gauge 3 to the maximum principal stress 

direction. 

For a thin wide plate subjected to uniform stress, the coefficients A and B in equation 

4.1 can be determined as [2]: 

A = -
IE 

(4.4) 

B = - l+v 
2E 

4 
l + v 

a_ 
2 (r\ - 3 (4.5) 

where ra is the hole radius and r is the generalized radius and r < ra. A and B obtained in this 

way refers to strains measured at a point at the centre of the strain gauge. However, the 
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strains actually vary over the entire strain gauge area. For more accurate residual stress 

calculation, an integration over the strain gauge area is needed [29]. The coefficients 

calculated in this way are designated as A and B , and differ from A and B by up to 20%. 

The preceding calculation of A and B or A and B is often not practical because most 

test objects are machine parts and structures and they are rarely thin or flat. Therefore, a 

shallow "blind" hole is used for testing residual stresses in the material. For the blind hole test, 

equation 4.1 still applies, but wih slightly different values of A and B [2]. However, the 

determination of A and B for the blind hole is more complex. It requires either experimental 

or finite element calibrations. 

In most cases, experimental calibration of A and B is accomplished by a tensile or 

compressive test on a separate specimen. The test involves installing a strain gauge rosette on 

the specimen surface, subjecting the specimen to a known uniform stress field and measuring 

the rosette strains before and after hole drilling. The coefficients A and B can then be 

calculated from the measured strains [15]. This type of experimental calibration has the 

advantage of being conceptually simple. Its main disadvantage is that the calibration must be 

repeated for every different set of geometric parameters of the materials [15]. 

The application of the finite element calculations to residual stress measurement 

simplifies the numerical calibration coefficients A and B. The finite element calibration is 

more general and covers a wide range of measurement conditions. The results match 
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experimental calibrations well. Therefore, the finite element calibration is widely accepted and 

used. 

The theoretical approach for the finite element calibration is based on the 

superposition of the stresses in the material [17]. Assume that the boundary of the material is 

sufficiently far from the hole so the effects of drilling a hole can be neglected at the boundary. 

The initial stresses at the hole are further assumed to be uniform so there are no shear stresses 

at the hole surface. 

-4. c a tz 

\ J 

Figure 4.2 Superposition of the Stresses to Find the Strain Relaxation due to Hole-Drilling. 

Figure 4.2 shows a schematic of the stress state in a specimen both before and after 

hole-drilling. Figure 4.2(a) shows the stresses existing before hole-drilling. These stresses 

are indicated at the hole surface. Equal and opposite stresses are shown in figure 4.2(b), 

corresponding to the stresses relieved by the hole-drilling. Figure 4.2(c) shows the sum of the 

stresses in figures 4.2(a) and 4.2(b). This latter diagram shows the stress state after hole-

drilling. The displacements around the hole caused by the stresses in figure 4.2(b) can be 
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modeled by the finite element method. These displacements can then be numerically 

integrated over the active strain gauge area to simulate the measured strains [29]. 

Substituting the calculated strain and the known stresses in equation 4.1, the coefficients A 

and B can be determined. 

The coefficients A and B can be explicitly determined from equation 4.1 [17, 30]. To 

obtain A , apply a hydrostatic stress cw = Omin = 1, which gives: 

A = ^ (4.6) 
2 

where 8h is average strain over the strain gauge grid area corresponding to the applied 

stresses. Coefficient B can be calculated by applying a shear stress C W = - dnun = 1: 

B = E s (4.7) 
2cos2x 

where e„ is the average strain corresponding to the shear stresses and y is the angle between 

the strain gauge mid radial axis and the principal stress direction. 

The values of the calibration coefficients A and B depend on the geometry of the hole 

and the strain gauge and the specimen material properties, Poisson's ratio and modulus of 

elasticity. To avoid determining A and B for each material, the material property 
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dependency must be eliminated. This can be achieved by introducing two dimensionless 

calibration coefficients a and b [17]: 

a = (4.8) 
1 + v 

b = 2EB (4.9) 

Equation 4.1 and 4.2 can be written in terms of these two dimensionless constants: 

( 1 + V / ) q ("max + Omin) + ( ° m a x ~ ^ -
£ = V- / " V- max - m m / + ^ v^rnax ^mm/ c o s 2 ? , ^ 1 Q ) 

£ (gt+ g2) T Wfr*2 -*1 + (gj ~ g3)2

 M i n 
(1 + v) 2 a 2 6 

By normalizing the hole radius r and depth h with respect to the strain gauge mean radius rm, 

the calibration coefficients a and b become approximately proportional to the square of the 

normalized hole radius [17, 18]. Figure 4.3 shows the variation of a and b vs. normalized 

hole depth for a normalized hole radius of r/rm = 0.5 [17]. The corresponding values of A 

and B for a given material can be determined through equations 4.8 and 4.9. Residual 

stresses can then be evaluated from equation 4.2 by substituting the coefficients A and B . 
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-0.8 

Figure 4.3 Calibration Coefficients for the Hole-Drilling Method for ra/rm = 0.5. 

4.2.2 Non-Uniform Residual Stress 

In many cases, the residual stress are non-uniformly distributed through the material. 

The stress non-uniformity complicates the residual stress calculation. Of the various available 

calculation methods, the Integral method is the most general [18]. 

When using the Integral method, the strains measured during the hole drilling are the 

cumulative result of relieving the residual stresses originally existing at all depth locations 
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within the total hole depth. The individual contributions of the stresses at each depth location 

to the total measured strains are identified and the individual stresses are calculated from these 

total strain measurements [16, 18]. 

4.3 Ring-Core Method 

The ring-core method is similar to hole-drilling, but with an opposite configuration. 

Hole-drilling involves drilling a hole in the centre of a strain gauge rosette. Ring-core drilling 

involves milling a ring-core around the outside of a strain gauge rosette. The ring-core is 

typically 0.600-6.000 inches (15-150 mm) in diameter and depth. The relieved strains are 

measured by strain gauges attached on the top surface of the core (see figure 4.1(b)). The 

original residual stresses can then be calculated from the measured strains in the same way as 

with the hole-drilling method. 

The ring-core method has higher sensitivity than the hole-drilling method because it 

involves almost complete strain relief. However, the sensitivity to interior stresses is also 

quite modest. The theoretical calculations of the ring-core method are similar to the hole-

drilling method. A complete theoretical approach was given by Wolfgang et al. and other 

researchers [22, 31]. 

4.4 Strain Sensitivity of the Hole-Drilling and Ring-Core Methods 

The strain sensitivity of the hole-drilling and ring-core methods is defined as the 

relieved strain per unit residual stress. Larger strain sensitivity is desired so that the strain 
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measurement errors do not significantly affect the calculation results. The strain sensitivity, is 

quantified through the calibration coefficients a and b . Larger calibration coefficients result 

in higher strain sensitivity, and hence greater resistance to the effects of strain measurement 

errors. 

The strain sensitivity of the hole-drilling method is low. The main reason is that the 

material underneath the gauges is subjected only to partial strain relief. In the case of the ring-

core method, the material under the gauges experiences complete strain relief. The 

corresponding maximum value of the calibration coefficients are: 

a = — - = 0.54 for v = 0.3 (4.12) 
1 + v 

b = l + v = 1.3 for v = 0.3 (4.13) 

The maximum value of coefficients for hole-drilling is much lower, they only can reach half of 

that of the ring-core (see figure 4.3). 

Low strain sensitivity of the hole-drilling method diminishes the reliability of the 

calculated residual stresses. This is because low strain sensitivity reduces the size of the 

measured strains relative to that of the strain measurement errors. In the past, many 

researchers have tried to improve the sensitivity of the two methods by modifying the size and 

the shape of the hole for the hole-drilling and by modifying the size and the shape of the ring 

core for the ring-core method [32, 33]. However, the improvements that can be achieved by 
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these mehods are limited because the essential problem of both methods is that the strain 

gauges are located on the surface of the material and are too far away from the interior 

stresses. In the next chapter, a new method, ring-hole drilling, will be introduced in detail. 

The new method overcomes the low sensitivity of both hole-drilling and ring-core methods 

and is a practical method for measuring residual stresses. 
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5. RING-HOLE DRILLING 

This chapter introduces in detail a new residual stress measurement method, Ring-

Hole Drilling. The existing hole-drilling and ring-core methods have the disadvantage of 

being insensitive to interior stresses because the strain gauges are placed on the material 

surface, far from the interior. The proposed method overcomes this limitation by moving the 

strain gauges from the surface to the interior of the material. This chapter describes the 

proposed method and its theoretical background. It also demonstrates that the new method is 

a practical technique for measuring residual stresses in a material. 

5.1 Ring-Hole Drilling 

Ring-hole drilling involves drilling a small hole at the desired test location, inserting 

strain gauges in the hole and milling an annular ring incrementally around the hole. Figure 5.1 

shows a cross-section view of the ring and the hole made during ring-hole drilling. The strain 

changes caused by milling the annular ring are then measured by the strain gauges, from which 

the residual stresses that originally existed in the material can be calculated. 

The theory of ring-hole drilling is similar to that of the hole-drilling and the ring-core 

methods described in Chapter 4. It differs only in the numerical values of the calibration 

coefficients a and b . These coefficients can be determined by either experimental or finite 

element procedures. Both procedures are described in this chapter and the results of the two 

methods are compared. 



Figure 5.1 Cross-Section of the Ring and the Hole of Ring-Hole Drilling. 
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5.2 Finite Element Calibration Method 

Calculation of the calibration coefficients a and b using the finite element method is 

based on a superposition of the stresses in the material [17]. Assume that the boundary of the 

material is sufficiently far from the hole and ring that their effects can be neglected at the 

boundary. The initial stresses in the material are further assumed to be uniform so there are 

no shear stresses at the hole surface. 

J J 

(a) (b) (c) 

(d) (e) C D 

Figure 5.2 Superposition of the Stresses to Find the Strain Relaxation 

Caused by Milling a Ring. 

Figure 5.2 shows a schematic of the stress state in a specimen both before and after 

cutting a hole and a ring. Figure 5.2(a) shows the stresses existing at the hole location before 

drilling the hole. If the hole is drilled, and conceptually the original stresses are replaced at the 



66 

hole boundary, then there will be no stress change in the surrounding material. Figure 5.2(c) 

shows the stress state existing after the hole drilling. By superposition, the difference between 

the stress states before and after hole drilling is represented by Figure 5.2(b). Here, the 

opposites of the original residual stresses are applied at the hole boundary. This case 

corresponds to the deformations resulting from hole drilling. 

A similar discussion applies to figures 5.2(d)-(f). Figure 5.2(d) corresponds to the 

stresses that exist after hole drilling but before ring milling. Figure 5.2(f) corresponds to the 

stresses that exist after hole drilling and ring milling. Figure 5.2(e) is the case of particular 

interest because it corresponds to the deformations measured during ring milling. The stress 

states in figure 5.2(c) is the same as in Figure 5.2(d). The only difference between the two 

diagrams is that the second one explicitly shows the stresses at the ring location, while the first 

does not. 

The deformations caused by ring milling can be calculated by doing a finite element 

analysis of the structure in Figure 5.2(e). The stresses on the loaded faces of the ring need to 

be determined first by doing a separate finite element analysis of the structure in Figure 5.2(b) 

and then adding the original residual stresses from Figure 5.2(a). The displacements 

determined in this way can then be numerically integrated over the active strain gauge area to 

evaluate the measured strains [29]. By substituting these strains and the original residual 

stresses in equation 4.1, the coefficients a and b for Ring-Hole drilling can then be 

determined. 
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5.3 Finite Element Results 

Figure 5.3 shows the finite element mesh used for the ring-hole drilling calculations. It 

has 994 nodes and 941 elements. The depth of the ring is adjusted during various calculations 

by assigning a near zero elastic modulus to the elements within the desired ring depth. Due 

to symmetry, only half of the material need be meshed to complete the calculations [18]. 

Figure 5.3 The Finite Element Mesh Used for Strain Relaxation Calculations. 
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Figures 5.4 and 5.5 show some example finite element calculations of the calibration 

coefficients a and b for ring-hole drilling. These two graphs illustrate the effect of three 

fundamental factors that influence the relieved strains. They are: ring depth, ring inner 

diameter and strain gauge depth. Figure 5.4 illustrates the influence of the first two of these 

factors for a fixed strain gauge depth of 0.156". As may be expected, both calibration 

coefficients increase with increase in ring depth. From consideration of St. Venant's principle 

[34], it may be expected that the influence of cutting the ring should be felt over a depth 

similar to the wall thickness. This can be seen clearly for coefficient a, where a rapid change 

in value occurs for small ring diameters. The change occurs over increasingly large depth 

ranges for the larger ring diameters. The curves for b do not show this behavior so clearly. 

This is because they are also greatly affected by the material at the bottom of the hole which 

stiffens the surrounding area and inhibits full strain relief. As a result, the various b curves do 

not closely approach their theoretical assympotic value of 4. This stiffening effect is less 

prominent on calibration coefficient a . 

Figure 5.5 shows the influence of strain gauge depth on the calibration coefficients 

a and b for a fixed ring inner diameter of 0.75". Again, as may be expected from St. 

Venant's Principle, the greatest variation in the coefficients is expected when the ring depth is 

similar to the strain gauge depth. As before, calibration coefficient a shows this behavior 

most clearly. Its value rises rapidly at small ring depths when the strain gauges are near the 

surface. The coefficient rises at greater ring depths when the strain gauges are fixed deeper in 
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the hole. Again, the stiffening effect of the material at the bottom of the hole is apparent. The 

deeper the strain gauges go, the nearer they get to the stiffened region at the bottom of the 

hole, and the smaller the value of a becomes. Calibration coefficient b behaves in generally 

the same way as coefficient a, but the trends are again masked by the stiffening effect of the 

material at the bottom of the hole. 

From Figures 5.4 and 5.5, it can be concluded that ring-hole drilling increases the 

calibration coefficients a and b dramatically. The graphs show that the maximum values of 

a and b reach about 2 and 3.5 respectively. These values represent an increase in a and b 

of 270% and 170% respectively when compared with the ring-core method, and more than 

double these factors when compared with the hole-drilling method. The main reason for the 

high values of the two calibration coefficients is the stress concentration created by the 

presence of the hole. The strain gauges measure the corresponding strains. The measured 

strain sensitivity is therefore much greater than the ring-core method. The strain gauges also 

measure almost the entire relieved strains, and therefore they provide a much greater strain 

sensitivity than the hole-drilling method, when only a small fraction of the relieved strains are 

measured. 
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5.4 Ring-Hole Cutting Equipment 

An end-mill device was designed and built to do the material cutting required for the 

ring-hole method. Figure 5.6 shows a photograph of the device and figure 5.7 shows a 

schematic cross-section. The device consists of an air-turbine driving a small end-mill. This 

air-turbine is mounted in an eccentric housing that can be rotated so that the turbine orbits 

around a circular path to mill the ring. The degree of eccentricity can be adjusted to change 

the radius of the ring. 

Referring to Figure 5.7, the end-mill device consists of a high-speed air-turbine drive 1 

mounted inside an eccentric cylinder 3 which in turn is mounted inside the inner micrometer 5 

and secured by the hexagon bolt 2. Vertical motion of the turbine is achieved by the relative 

rotation between inner micrometer 5 and outer micrometer 6. The pusher 7 is used for 

tightening the micrometer thread to remove any "play" in the system. The pusher 7 is bolted 

together with the second worm gear 8 which is fixed with the housing of a four point contact 

ball bearing 9. The bearing has a split inner ring to eliminate any looseness in the bearing. 

The worm gear and the upper part of the device are driven by the motor 10. The entire device 

is mounted on the base fixture 12 and can be adjusted to the centre of the desired hole 

location by the adjustment bolts 11. 

Notice that figures 5.6 and 5.7 show different supporting units. The supporting unit 

shown in figure 5.6 is specifically designed to accommodate the test specimen used in this 
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study. The supporting legs shown in figure 5.7 are designed for general-purpose use. They 

have the advantage of having easily adjustable heights using the adjusting nuts 13. The 

supporting legs can be adjusted to different heights when used on non-flat surfaces. 

Figure 5.6 Photograph of the End-Milling Device. 



# Item # Item 
1 high Speed air turbine drive 9 four point contact ball bearing 
2 hexagon bolt 10 motor 
3 eccentric cylinder 11 adjusting bolt 
4 worm gear 1 12 device base 
5 inner micrometer 13 adjusting nuts 
6 outer micrometer 14 supporting legs 
7 pusher 15 milling cutter 
8 worm gear 2 16 micrometer head 

Figure 5.7 Cross-Section of the End-Milling Device. 



75 

A ring-hole drilling measurement starts by adjustment of the micrometer 5 so that the 

air turbine 1 together with the tip of the milling cutter 15 are centred relative to the centre of 

four point contact ball bearing 11 (axis A). The vertical height is adjusted so that the drill tip 

just touches the surface of the specimen. The height adjustment is achieved by rotating outer 

micrometer 6 while holding the inner micrometer 5 still. Drilling the hole proceeds by 

incrementally lowering the inner micrometer 5, thereby causing the drill tip to move 

downward. The hole diameter adjustment is achieved by turning the micrometer head which 

drives the upper worm gear 4 so that the centre of the air turbine rotates around the centre of 

the eccentric cylinder (axis B). 

After drilling the hole, a strip of 5 strain gauges, as shown in figure 5.8, is attached 

around the hole surface. This strip is half of a strip often strain gauges type 125MW made by 

Measurements Group, NC [35]. The hole diameter of 0.308 inches was chosen to match the 

0.160 inches spacing of strain gauges so that when installed in the hole the gauges are equally 

spaced at 60° intervals around the centre hole. A specially designed jig was made to install 

the strain gauges. Figure 5.9 shows the cross-section of the jig. 

The procedure for installing strain gauges by using the jig shown in figure 5.9 involves 

rolling the strain gauges around the rubber tube 3, coating both the specimen and strain gauge 

with M-Bond 610 adhesive [36], inserting the jig and strain gauge into the centre hole of the 

specimen, curing the specimen and strain gauges at 125 0 C in an oven for 6 hours. 



Figure 5.8 Strain Gauge Strip. 

# Item 
1 adjusting nut 
2 pusher 

3 rubber tube 
4 inserting bolt 

Figure 5.9 Cross-Section of Strain Gauge Insertion Jig. 
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After attaching the strain gauges onto the surface of the centre hole, the annular ring is 

milled around the centre hole by the end-mill device. The milling procedure for the ring is 

similar to that for the hole. First, the upper micrometer head 16 is adjusted so that the end-

mill tip is in position to cut the desired ring diameter. The vertical height is then adjusted by 

turning the micrometer 6 and holding the micrometer 5 still as for drilling the hole. Each 

increment is accurately measured by the inner and outer micrometer. 

5.5 Experimental Verification 

An experiment was conducted to verify the theoretical results from the finite element 

calculation shown in figures 5.4 and 5.5. The objectives of the experiments were: 

1) to demonstrate the practicality of using ring-hole drilling for residual stress 

measurement. 

2) to determine how well finite element calculations can predict the actual a and b 

A T6061 aluminum bar, with dimensions 4 x 2 x 13 inches, was used for the 

experiment. These dimensions were chosen so that the boundaries of the bar would be 

sufficiently distant from the ring-hole that the cutting would not significantly disturb the 

applied stresses. Figure 5.10 shows the arrangement of the specimen. The centre-hole was 

first drilled and the strain gauge strip was installed in it. Four additional single strain gauges 

were attached to the top and bottom surfaces of the sample to monitor the bending loads. 

The holes on each side were used to locate the specimen on the machine base to ensure 

repeatable positioning. 
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Figure 5.10 Photograph of the Ring-Hole Drilling Specimen. 

The experiment was performed using the Tinius Olsen compression machine shown in 

figure 5.11. The specimen was subjected to a sequence of compressive loads from zero to 

60,000 lbs., in 10,000 lbs. increments. Unwanted bending strains were monitored using the 

four additional strain gauges shown in figure 5.10. The specimen loading was adjusted by 

inserting shims at the ends of the specimen until the strains measured by the four strain gauges 

differed by less than 10%. The effects of the remaining bending strains were accounted for 

mathematically. 



79 

Figure 5.11 Specimen Loaded in a Tinius Olsen Compression Machine. 

A centre hole was first drilled into the material. An annular ring was then milled 

successively in 22 depth increments, each increment being about 0.020 inches. Milling was 

done by the milling device shown in figures 5.6 and 5.7. After milling each increment, the 

specimen was subjected to a range of compressive loads from zero to 60,000 lbs, and the 

corresponding strains were recorded. The measured response of the strain gauges per unit 

load was determined from the gradient of the measured strain versus load. This procedure 

greatly reduces the effect of random strain measurement errors and eliminates the effect of any 

existing residual stresses in the material. 
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After milling the annular ring, the calibration coefficients a and b for a ring-hole 

drilling were calculated using the method described by Rendler and Vigness [15]. The results 

of the experiment are shown in figure 5.12. For comparison, the finite element results 

corresponding to the particular ring diameter and the strain gauge depth used in the 

experiment are also shown in the graph. 

-2.00 -I ' 1 ' 1 ' 1 ' \- ' 1 
0.00 0.10 0.20 0.30 0.40 0.50 

Ring Depth, inches 

Figure 5.12 Comparison of the Experimentally Determined Calibration Coefficients with 

Theoretically Predicted Values. 

The results in figure 5.12 show excellent agreement between the numerically 

calculated calibration coefficients and their values determined by experiment. The differences 



81 

between experimental results and theoretical predictions are typically less than 2%. The 

experimental results confirm that the theoretical prediction of the calibration coefficients of 

ring-hole are accurately applicable. In addition, the experimental work confirms ring-hole 

drilling using a milling device such as the one shown in figures 5.6 and 5.7 is a practical 

method for measuring residual stresses in a material. 

5.6 Chapter Conclusion 

This chapter introduced a new residual stress measurement method, Ring-Hole 

Drilling. By moving the strain gauges from the material surface to the interior, the proposed 

method overcomes the limitation of strain insensitivity to subsurface stresses of the hole-

drilling and ring-core methods. The overall strain sensitivity of the ring-hole method is about 

double that of the ring-core method, and about four times that of the hole-drilling method. 

Experimental measurements made with the ring-hole method correspond very closely with 

theoretical expectations determined using the finite element method. The difference between 

the two results was typically less than 2%. 

Like the existing methods, the theoretical approach of the ring-hole drilling is also 

based on the superposition of the stresses in the material. Finite element calculations show 

that the ring diameter, the ring depth and the strain gauge depth are the three important 

parameters affecting the calibration coefficients. 
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6. CONCLUSION 

This thesis presents a study of methods for improving the accuracy and spatial 

resolution of residual stress measurements. This study has focused on two main approaches, 

improvement of the mathematical methods used for computing residual stresses from the 

measured strains, and improvement of the techniques used for making strain measurements 

that are more sensitive to the interior stresses. These investigations showed how the two 

approaches have significantly improved the accuracy of residual stress measurements by the 

layer-removal, hole-drilling and ring-core methods. 

Two problems exist in the layer-removal method when calculations are based on 

solving Sachs' differential equations. Firstly, this approach is sensitive to strain measurement 

errors because of the differential terms. Secondly, equilibrium is not obeyed. The first part of 

this thesis demonstrated that these two problems are solved by using Linear Inverse Theory to 

obtain a stress solution. 

The inverse solution method based on Linear Inverse Theory provides a more stable 

procedure for evaluating the residual stresses. To apply the method, Sachs' differential 

equation is reformulated into the form of an integral equation. This change avoids the 

problem of having to evaluate the strain derivatives. By applying the inverse method, stress 

equilibrium is easily enforced. The first part of this thesis describes the physics and governing 
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integral equations for typical layer removal methods. It then explains the application of the 

inverse solution method and compares different integral solution results. 

To investigate the stability of the inverse solution, a set of synthetic data were 

generated and applied. Three functions, kernel functions, power series functions, and 

piecewise linear functions were chosen as the basis functions of the solution. Several 

important practical characteristics of the inverse solution were explored. Experimental data 

were also applied to the problem to demonstrate the practical use of the inverse method. The 

main findings from the investigations were: 

1. When the strain data are "exact", the inverse solution method provides good stress 

results when used with kernel functions and piecewise linear functions. The piecewise 

linear functions are preferable since they produce relatively smooth curves. In contrast, 

the kernel functions generate unrealistic staircase shapes. However, both solutions obey 

stress equilibrium. The power series solution is numerically ill-conditioned and gives 

very unstable results. 

2. In the presence of strain measurement errors, kernel functions produce the most stable 

results. Piecewise linear function solutions are more sensitive to strain data errors. 

However, equilibrium is always obeyed. 

3. Smoothing can be introduced to the solution to reduce sensitivity to strain measurement 

errors. This is done by applying a deliberate data misfit. The size of the misfit and the 

resulting smoothing is chosen to give the statistically optimal balance between random 
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error reduction and preservation of the underlying solution. The results show that 

optimal smoothing effectively reduces the solution strain sensitivity for both kernel 

function and piecewise linear function solutions. For a kernel function solution, the 

steps of the staircase became more evenly spaced, while for linear function solutions the 

curves become smoother. 

4. The stress results are distorted by the use of smoothing. The reduction of the effects of 

the strain measurement errors comes at the cost of a small overall distortion of the 

produced stresses. The reason is that the smoothing is achieved through a deliberate 

misfit between the given strain data and the produced stresses. 

The second part of the thesis introduced a new residual stress measurement technique, 

ring-hole drilling. The new method combines aspects of both the hole-drilling and ring-core 

methods. It overcomes the interior stress resolution limitations of the previous two methods 

by moving strain gauges from the material surface to the centre hole. The results of the 

investigation show that by using ring-hole drilling, strain sensitivity can be improved 

significantly. The increased strain sensitivity reduces the effects of the strain measurement 

errors on the residual stress calculations. 

The strain sensitivity is quantified through the calibration coefficients a and b . 

Larger calibration coefficients result in higher strain sensitivity, and hence greater resistance to 

the effects of strain measurement errors. In this study, evaluation of a and b was first 

accomplished by the finite element method and then by experimental measurement. The finite 



85 

element results show that the ring diameter and the strain gauge depth are two important 

parameters affecting the value of the calibration coefficients. 

In summary, the main contributions of the second part of the study for ring-hole 

drilling are: 

1. The values of the calibration coefficients a and b are increased significantly compared 

with the ring-core method. The maximum value of a is increased from 0.54 to 

approximately 2, and the maximum value of b from 1.3 to approximately 3.5. The 

relative increase in calibration coefficients for the hole-drilling method is even larger. 

The hole-drilling calibration coefficients are only half of the corresponding ring-core 

values. 

2. Finite element calculations are verified as an effective way of determining the values of 

the calibration coefficients a and b for the ring-hole drilling method. The experimental 

measurements showed that the differences between the finite element results and the 

experimentally determined values is typically less than 2%. 

3. Ring-hole drilling is demonstrated as a practical method for measuring residual stresses 

in a material. The experimental procedure showed that ring-hole drilling can easily be 

achieved in practice by using a specially designed end-mill device. 

In conclusion, the work presented in this thesis greatly improves the interior stress 

evaluation capabilities of layer removal, hole-drilling and ring-core methods. Through this 
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study, these commonly used destructive residual stresses measurement methods have become 

more accurate, more reliable and more practical to use. 
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APPENDIX 

Layer-Removal Governing Equations 

1. Circumferential Stress Derivation 

Initially assume that the axial stresses are zero. When a bored-out section of radius r 

is removed from the cylinder, the stress contained in that bored-out section must be 

redistributed in a way such that force equilibrium is maintained. From thick-wall cylinder 

theory: 

a"0(R) = C + 
D_ 

R2 

o-"AR) = C- D_ 

R2 

where C and D are constants. The boundary conditions are: 

ar(r) = -cr r (r) a"r(rb) =0 

Application of these boundary conditions yields: 

C = D = 
r - n ~J2 J i r r>> 

Substitution of these results into equation Al gives: 

Or{R) = a0(R) = -or(r) o 2 

r 
R2 

rR2 +r2^ 

\r2 - rb

2j • ^ 7 
(R2-rb

2) 
l r 2 - r 2 ) 

From Hooke's law, the associated circumferential strain is: 

Ese(rb) = <j"e(rb) 

Ee"0(rb)= -or(r) 
r 2 r 2 \ 

\r2 - rb

2j 

A l 

A2 

A3 
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The radial stress ar (R) and the circumferential stress Oe(R) must obey equilibrium. In polar 

co-ordinates, the equilibrium condition is: 

A ° ( R ) ~ — J R — 

Integrating this equation and applying the condition ar (rb) = 0 gives: 

J o-0(R)dR = -ror(r) A4 

Equation Al is then inverted to give aXf) and substituted into equation A4. After 

rearranging, the relationship between the circumferential stress and the measured 

circumferential strain at the outer radius is: 

2r Crb 

Ee0(rb) = - ^ - Y | o-g(R)dR AS 

The axial strain due to a circumferential stress can be determined from generalized Hooke's 

law Ee'a = - vog: 

Eea(rb) = -^ j\(R)dR A6 2 2 

2. Axial Stress Derivation 

Consider circumferential stresses are zero, the axial stress can be derived in the similar 

way from equilibrium. The relationship between axial stress and the axial strain is: 

£8^) = - ^ \\a(R)RdR A7 
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and the relationship between the axial stress and the circumferential strain is: 

Ese{rb)=-4^ \cra(R)RdR A8 
rb ~ r Jr 

3. Layer Removal Integral Equation 

Consider both the axial stress and the circumferential stress exist at the same time, the 

measured strain results for the previous two cases can be added together since the system is 

linear elastic. The summation of equations A5 and A8 is: 

1 - v v ' rb r jr 

and the summation of equations A6 and A7 is: 

T ~ ~ ~ 2 ( £ a( r &) + ve'eirt)) = \\(R) R dR 
1 - v v ' rb -r2 J r 

Grouping the constants: 

¥(#•) = ee (rb) + vea (rb) A(r) = sa (rb) + ve"0(rb) 

Equation A9 and A10 become: 

A9 

A10 

E -2r P 
Y(r) = -y-^-y oe(R) dR A l l 

1 - ^ h -r \ 

i - v 2 - f i -
- «a(R) R E A(r) = -=-?— I crQ(i?) R dR A12 
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4. Sachs' Differential Equations 

Differentiate both sides with respect to r, the analytical solutions, termed Sachs' 

differential equations for circumferential and axial stresses are: 

E 

l-v' V 2r dr 2rA 
A13 

o-a(r) 
2 2 

1-v 2 
2r 

dKjr) 

dr Mr) A14 


