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ABSTRACT

A relatively general formulation for studying the nonlinear dynamics and control

of spacecraft with interconnected flexible members in a tree-type topology is devel-

oped. The distinctive features of the formulation include the following:

(i) It is applicable to a large class of present and future spacecraft with flexible

beam and plate type appendages, arbitrary in number and orientation.

(ii) The members are free to undergo predefined slewing maneuvers to facilitate

modelling of sun tracking solar panels and large angle maneuvers of space

based robots.

(iii) Solar radiation induced thermal deformations of flexible members are incor-

porated in the study.

(iv) The governing equations of motion are highly nonlinear, nonautonomous and

coupled. They are programmed in a modular fashion to help isolate the effects

of flexibility, librational motion, thermal deformations, slewing maneuvers,

shifting center of mass, higher modes, initial conditions, etc.

The first chapter of the thesis presents a general background to the subject and

a brief review of the relevant literature on multibody dynamics. This is followed by

the kinematics and kinetics of the problem leading to the Lagrangian equations of

motion. The third chapter focuses on methodology and development of the computer

code suitable for parametric dynamical study and control.

Next, versatility of the general formulation is illustrated through the analysis

of five spacecraft configurations of contemporary interest: the next generation of

multi-purpose communications spacecraft represented by the INdian SATellite II (IN-
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SAT II); the First Element Launch (FEL) and the Permanently Manned Configuration

(PMC) of the proposed Space Station Freedom; the Mobile Servicing System (MSS)

to be developed by Canada for operation on the Space Station; and the Space Flyer

Unit (SFU) to be launched by Japan in mid-nineties. In the FEL study, the attention

is directed towards interactions between the librational and vibrational dynamics.

During the PMC investigation, effects of the thermal deformation and orbital eccen-

tricity are introduced and the microgravity environment around the station center

of mass explored. The MSS study assesses pointing errors arising from inplane and

out-of-plane maneuvers of the robotic arms. The SFU represents a challenging con-

figuration to assess deployment and retrieval dynamics associated with a solar array.

Parameters considered here include symmetry, orientation and duration of the de-

ployment/retrieval maneuvers.

Results of the dynamical study clearly shows that, under critical combinations

of parameters, the systems can become unstable. Obviously, the next logical step is

to explore control strategies to restore equilibrium. To that end, feasibility of the

nonlinear control based on the Feedback Linearization Technique (FLT) is explored

with reference to the INSAT II and the MSS. Results show the procedure to be quite

promising in controlling the INSAT II over a range of disturbances, including the

thermal effects. Application of the control to the MSS reduced the pointing error

induced by robotic arm maneuvers significantly.

The amount of information obtained through a planned parametric analysis of

the system dynamics and control is indeed enormous. More significant results are

summarized in the concluding chapter together with a few recommendations for future

study.
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1. INTRODUCTION

1.1 Preliminary Remarks

Ever since the launching of the first satellite Sputnik in 1957, there is a general

trend towards larger and more complex spacecraft designs. This is as a consequence of

the ever increasing demand on spacecraft capabilities in telecommunications, weather

forecasting, surveillance, remote sensing and others. Most of the designs can be

identified as consisting of a main body with appendages attached to it. The main

body can be rigid or flexible whereas the appendages in the form of solar arrays,

antennas, robotic arms, etc. are usually flexible. The following few examples of

contemporary spacecraft illustrate this point:

(i) The European Space Agency's L—SAT (Large SATellite system, Olympus,

Figure 1-1 ), launched in 1989, represents a new generation of communications

satellite. It has two solar panels, each 25 m in length, connected to a central

body.

(ii) To better understand the behaviour of flexible structures in space and their

control, the NASA's Langley Research Centre once designed an Orbiter based

experiment called COFS (Control Of Flexible Structures). Its first phase,

called SCOLE (Structural COntrol Laboratory Experiment, [1]), involved lab-

oratory simulation of a flexible configuration as shown in Figure 1-2 followed

by flight verification on board the Shuttle. The experimental setup consists

of a mast around 40 m in length, with its one end attached to the shuttle.

At the other end, there is an asymmetrically mounted reflector plate-type

antenna, 22.8 m in diameter.

(iii) The U.S. led Space Station Freedom, scheduled to be completed around 1998,
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Figure 1 - 1^The European Space Agency's L-SAT (Olympus) launched in 1989.
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Figure 1-2^SCOLE configuration showing the main components: shuttle, mast,
and plate-type reflector antenna.
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will have a main truss of 155 m in length. Equipment attached to the truss

includes habitat, command and other modules, power generation equipment

and system control assembly, stinger and resistojet, photovoltaic (PV) arrays,

PV array and station radiators, etc. (Figure 1-3 ).

The space dynamicists have traditionally relied mostly on mathematical tools to

design spacecraft. Ground based experiments have been of limited value due to prac-

tical difficulty in simulating environmental forces (gravity gradient, magnetic, free

molecular, solar radiation, etc.) and structural flexibility. This has led to increasing

dependence on numerical methods, particularly with larger and more complex space-

craft configurations. A general formulation applicable to a large class of systems is

always attractive although it usually demands more time and effort. On the other

hand, once the governing equations are established and the associated integration pro-

gram is operational, it becomes a powerful versatile tool. Several, relatively general,

approaches for multibody dynamics simulation have been developed. In general, they

treat systems of interconnected rigid/flexible bodies of tree-type topology. As can be

expected, each approach has its own special features. Some of them are touched upon

below:

(i) Treetops, developed by Singh et al. [2], is based on Kane's method in formu-

lating the equations of motion. Deformations are described by a modal set

which satisfies the kinematic boundary conditions. It has the capability to

carry out numerical linearization and control simulation.

(ii) ALLFLEX, designed by Ho et al. [3,4], formulates the equations of motion

using Ho's direct path method [5] in conjunction with the Lagrangian or

Newtonian approach. Substructure modal data are obtained through a fi-

nite element program. Besides control simulation capability, the program has
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a provision to accept subroutines accounting for the environmental distur-

bances.

(iii) DISCOS (Dynamic Interaction Simulation of COntrols and Structures) is an

industry standard software for multibody dynamics simulations. The equa-

tions of motion are derived using Lagrange's approach. The program has

several features of both the Treetops and ALLFLEX.

A measure of the program efficiency is the order of the algorithm, nx, where n

is the number of degrees of freedom and x is the index of the order. Physically,

the order relates to the computational time. As the number of degrees of freedom

doubles, the execution time is expected to increase by 2' times. Obviously, a small

index is desirable. The order of the Treetops is not revealed in literature whereas

ALLFLEX and DISCOS have orders of n 2 and n3 . Recent developments in DISCOS

have reduced the order to n for some special cases [6].

These three programs are described as easy to use and portable among comput-

ers. A number of users would not agree with this assertion. Experience suggests

that making a program operational and applicable to a problem in hand often in-

volves enormous time and effort. Perhaps the major limitation is their 'black-box'

character which makes any enlighten variations virtually impossible. Thus one is left

with a feeling of a bystander pulling levers and collecting massive output of numbers

rather than actively participating in the investigation. There are two other aspects

to consider:

(i) Besides portability of the program, its size is a critical factor in determining

whether the program can be executed on a new machine. The limitation on

size is particularly important in time-sharing computer systems.

(ii) To take advantage of the feature that allows user-supplied subroutines, one
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has to have a thorough understanding of the formulation procedures and pro-

gram architecture. Unfortunately, this information is not provided because of

the proprietary considerations. Even when available, their thorough under-

standing would entail substantial effort and time.

This being the case, considerable interest exists in the community of space dy-

namicists and control engineers to develop efficient, relatively general formulations,

applicable to a class of systems of contemporary interest, and associated algorithms

that are user-friendly. The present thesis takes a small step in that direction.

1.2 A Brief Review of the Relevant Literature

Over the past thirty years, the amount of literature accumulated on the subject

of spacecraft dynamics is literally enormous. It can be classified into four broad cat-

egories: formulation; dynamics and control; environmental effects; and experimental

validation. The thesis is primarily concerned with the first three aspects: formula-

tion, dynamics and environmental effects (thermal); hence, the focus of the review is

in these areas. Likins [7], Modi et al. [8-10], Roberson [11], and Markland [12] have

provided excellent overview of the subject. Theses by Lips [13], Ibrahim [14], Chan

[15] and others have also reviewed relevant aspects at great lengths to acquaint an

interested researcher with the status of the field.

Perhaps year 1965 marked the beginning of interest in the multibody formula-

tion methodology. Early literature was limited to rigid spacecraft with hinged joints.

Hooker and Margulies [16] derived the attitude equations for n rigid bodies intercon-

nected to form a topological tree configuration. The formulation was based on the

Newton-Euler approach and accounted for dissipative and elastic joints. This prob-

lem was also studied by Roberson and Wittenburg [17] who introduced the idea of

system-graph, which made the implementation of the equations on a digital computer
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easier.

Roberson [18] later extended the study to interconnected nonrigid bodies where

translational motion between the members was allowed. Ho [5] considered a tree-

type topological configuration with the end bodies flexible. He selected the direct path

method and derived the equations using both the Newton-Euler as well as Lagrangian

procedures. The latter formulation was found to be faster from the mathematical

point of view as the lengthy procedure to eliminate the constraint forces and torques

was not necessary. To overcome this drawback of Newton-Euler method, Hooker

[19] has shown that it is possible to use Ho's method together with Newton-Euler

approach to derive equations of motion in which constraint forces and torques do not

appear explicitly.

By introducing path and reference matrices that describe the topology of n-body

configurations, Jerkovsky [20] presented the equations of motion for both tree-type

and closed-loop configurations. A comparison with the multibody formulations by

Roberson and Witterburg [17], Hooker [21], Ho [5], and several others was also given.

Hughes [22] derived the equations of motion for a chain of flexible bodies with

terminal members rigid. The Newton-Euler approach was used and the resulting

equations were linear in the angular rates as well as elastic deformations. The equa-

tions were tailored for control system design.

Kane and Levinson [23] compared the pros and cons of different formulation tech-

niques such as Newton-Euler method, D'Alemberts' principle, Hamilton's canonical

equations and Lagrangian procedure. They then introduced what is referenced as

"Kane's method" using two classes of quantities known as "partial angular veloci-

ties" and "partial velocities." The authors have concluded that "Kane's method"

leads to the simplest equations.
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Using the Lagrangian procedure, Modi and Ibrahim [24] presented the general

equations of motion for studying librational and vibrational dynamics of a large class

of spacecraft during deployment of flexible members. The equations accounted for the

gravitational effects, shifting center of mass, changing rigid body inertia, appendage

offset and transverse oscillation. Appendages with variable mass density, flexural

rigidity, and cross-sectional area along its length can also be accommodated.

For a maneuvring spacecraft, the general equations of motion were obtained by

Meirovitch and Quinn [25] using the Lagrangian approach in conjunction with the

component mode synthesis. In order to improve computational efficiency, a pertur-

bation approach was then applied. This resulted in a set of equations governing the

rigid-body motion (unperturbed system), and a system of time-varying linear equa-

tions for small elastic motions as well as deviations from the prescribed rigid-body

maneuver (perturbed system).

Vu-Quoc and Simo [26] studied the dynamics of satellites with flexible components

by referring the motion directly to the inertial frame. In order to avoid numerical

problems associated with ill-conditioned matrices, the dynamics of far field (attitude

motion) and near field (elastic deformations) were treated separately through intro-

duction of a rotationally-fixed floating frame.

Recent contributions in multibody formulation include studies by Keat [27] using

the velocity transform method, Huston [28] employing Kane's method, and Kurdila

[29] relying on Maggi's approach. Unlike the earlier studies, the emphasis here is on

the numerical efficiency rather than methodology.

The literature on spacecraft control is primarily concerned with two aspects: at-

titude control and vibration control. Contributions in the attitude control field have

been reviewed by Roberson [11] whereas Balas [30], and Meirovitch and Oz [31] have
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provided overviews of the vibration control problems. A few studies aimed at control

algorithms for flexible spacecraft are briefly touched upon here.

Flexible spacecraft, being a distributed parameter system, needs to be discretized

to study the associated dynamics and its control. The discrete system can be trans-

formed further into the modal-space using modal matrices. Meirovitch and Oz [32]

have found that the control as applied to the transformed system (modal-space con-

trol) is more efficient than that applied to the discrete system ("actual space" con-

trol). Subsequent contributions by the same authors [33-35] study application of the

modal-space control to different spacecraft configurations.

Balas [36] examined the undesirable effects of applying control to a flexible struc-

ture discretized by a limited number of modes. This effect, known as spillover, results

in the excitation of unmodeled modes. Using modal-space control, the author [37,

38] has derived the conditions under which spillover effect can be eliminated. The

idea was later extended to attitude stabilization of flexible spacecraft [39]. Balas has

also discussed advantages of the Direct Velocity FeedBack (DVFB) procedure [40];

however, implementation of the DVFB was found to be quite involved.

Wie and Bryson [41] modeled flexible space structures using single-input single-

output transcendental transfer functions. The models were simple enough for poles

and zeroes to be determined analytically. The results were then used in the pre-

liminary controller design. Wie [42] applied this approach to Control of Flexible

Structures (COFS—I) mast flight system . Chu et al. [43] employed the same idea

in modeling and designing the Space Station attitude controller. Using multi-input

multi-output transfer functions and numerical algorithms, Kida et al. [44] designed

the controller of flexible spacecraft with constrained and unconstrained modes.

Goh and Caughey [45] explored the idea of stiffness modification in vibration
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suppression of flexible structures. The control scheme guaranteed global stability by

virtue of the positive definite rate of energy decay. The implementation required not

the conventional actuators but rather transducers which converted strain into control

signals and then into electronic damping. This was considered to be a favourable

feature.

In understanding the problem at a fundamental level and progressively making

it more complicated to approach a real-life situation, the study by Reddy et al. [46]

concerning attitude and vibration control of plate-like platform is particularly useful.

Equally informative are the contributions by Yedavalli [47] and Sundarnarayan et al.

[48] on the robustness of controllers for Large space Structures (LSS) applications.

In general, the studies pertaining to environmental influence on spacecraft dy-

namics and control are relatively few; however, contributions on solar radiation ef-

fects are not lacking. Among them, research by Modi et al. [49-541, Beletsky and

Starostin [55], Goldman [56], Yu [57], Frisch [58,59], Tsuchiya [60,61], and Bainum

et al. [62-66] are worth-mentioning.

Modi and Brereton [49] studied the planar librational stability of a slender flex-

ible satellite under the influence of solar heating. Using the quasi-static solutions

describing a thermally flexed configuration and the concept of integral manifold, the

authors developed charts as functions of initial conditions and eccentricity showing

limiting stability of the satellite. In general, thermal heating was found to decrease

the size of the stability region.

A similar approach was adopted by Modi and Flanagan [50-52] to study the in-

fluence of solar radiation pressure on gravity oriented satellites at different altitudes.

It was observed that the solar radiation was a significant disturbance except at low

altitudes (less than 1000 km) where aerodynamic drag became dominant. Introduc-
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ing the solar parameter proportional to the satellite length, the difference between

material reflectivity and transmissivity, offset of the center of pressure, etc., stability

charts were obtained which clearly indicated the effect of solar radiation. The sig-

nificance of the solar parameter was two-fold. On the one hand, the stability region

decreased as the parameter value increased. On the other hand, for a given initial

condition, there existed a value of the solar parameter for which librational motion

was minimum. By a judicious choice of the solar parameter, the authors [53] showed

that solar radiation can be utilized to damp the librational motion effectively.

Modi and Kumar [54] studied the solar heating effect on gravity oriented satel-

lites with flexible plate-type appendages. Employing the integral manifold concept,

stability charts were obtained. Appendage flexibility was found to cause a substantial

reduction in the size of the stability region. The destabilizing influence was particu-

larly severe in presence of the solar radiation pressure and orbit eccentricity. Similar

problem was also studied by Beletsky and Starostin [55]. The emphasis was on the

existence and stability of symmetrical and nonsymmetrical periodic solutions. The

problem was solved by both the analytical (Volosov-Morgunov averaging method)

and numerical means.

Using a quasi-static approach, Goldman [56] studied the influence of solar heating

on the dynamic stability of a satellite. Equilibrium position of the booms in the

presence of differential heating was determined without consideration of the transverse

deformations. The simulation results helped to confirm that solar heating contributed

to the anomalous behavior of the Naval Research Laboratory's Gravity Gradient

Satellite 164.

Yu [57] investigated thermally induced vibration of spacecraft booms with a tip

mass. The problem was formulated using Hamilton's principle. In absence of damp-
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ing, the motion of the boom was found to be stable if pointed away from the sun.

Viscous-fluid damper incorporated into the tip mass also proved to be effective in

suppressing thermal flutter. However, the results are controversial: using other ap-

proaches, Jordan [67] and Augusti [68] concluded that the boom motion was stable

only when pointed towards the sun.

Frisch [58] studied coupled nonplanar transverse and torsional vibration of booms.

Numerical simulation results helped to explain the anomalous behaviour of several

three-axis-stabilized satellites with long extendable booms. The results showed that

thermally induced vibration can be eliminated by increasing torsional rigidity of the

boom. The author also presented approaches based on finite element and finite dif-

ference methods to include thermal effect in multibody formulations [59].

Tsuchiya analyzed the effect of thermally induced appendage vibration on a spin-

ning satellite [60], and a satellite with a rotor [61]. The criteria for appendage res-

onance were derived. Amplitudes of the vibrational and nutational motions were

determined by the method of averaging. Numerical simulation of the system near the

resonance was also presented.

Krishna and Bainum examined the effects of solar radiation pressure on the rigid

and flexible modes of a beam [62] and a square plate [63]. The dynamical response

indicated that induced rigid body response was more significant than the flexible

motion. Control laws based on linear quadratic Gaussian technique were found to be

effective in providing both shape and orientation control. The authors [64-66] later

extended the study to include thermal deformation of the structure. In general, the

effect of solar radiation pressure acting on structures undergoing thermal deformations

was found to be relatively more important.

Sikka et al. [69] studied the static problem of thermal deformation. The tem-
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perature distribution and curvature produced in long, solid circular and rectangular

cross-section cylinders were obtained using approximate analytical methods such as

the least-square fitting. Modeling a lattice-type space structures using finite element

method, Lutz et al. [70] carried out a thermoelastic analysis of the structural mem-

bers. Although thermal moments were found to be very small, thermal axial forces

induced significant mechanical bending in the structure.

1.3 Scope of the Present Investigation

With this as background, this thesis presents a relatively general formulation

particularly suitable for studying dynamics of evolving structures such as the Space

Station. In essence, it is a Lagrangian formulation based on the direct path method.

The emphasis is on the applicability of the formulation to study complex dynamics

of large space structures using relatively simple mathematical models to gain better

physical understanding of interactions between librational dynamics and flexibility.

The formulation has the following distinctive features:

(i) It is applicable to an arbitrary number of lumped masses, beam and plate type

structural members, in any desired orbit, interconnected to form a tree-type

topology.

(ii) It takes into account slewing of solar panels and transverse vibrations of the

bodies. Thus, it is possible to study the complex system dynamics due to in-

teractions between librational motion, transverse vibration, and slewing ma-

neuvers.

(iii) The shift in the centre of mass due to transverse vibrations and slewing ma-

neuvers is incorporated in the formulation.

(iv) The formulation accounts for the thermal deformation of both beam and plate
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type appendages explicitly. Effect of the free molecular environment can be

introduced quite readily through generalized forces.

(v) The governing nonlinear, nonautonomous and coupled equations are pro-

grammed in such a way that the effects of flexibility, librational motion,

thermal deformation, slewing maneuvers, shifting c.m., higher modes, initial

conditions, etc. can be isolated easily.

The thesis can be divided into four parts: relatively general formulation of the

problem; program implementation; numerical simulation; and control study.

The problem formulation begins with the study of kinematics of a spacecraft with

interconnected flexible bodies. The discretization of elastic deflection and evaluation

of the thermal deformation are discussed next, leading to the expressions for kinetic

and potential energies. Using the Lagrangian procedure, general equations of motion,

applicable to a large class of systems, are obtained.

The second part discusses implementation of the equations of motion into com-

puter codes. It briefly describes transformation of the equations into a form suitable

for numerical analysis and develops associated algorithm. The emphasis is on the

methodology that results in algorithms which are both easy to program and debug.

Validity of the program is first established through comparison of dynamical simu-

lation results, for two particular configurations, obtained by Ng [71] and Chan [15].

The convergence of the numerical solution is also demonstrated.

In the third part, response simulation of four distinctively different spacecraft

configurations of contemporary interests is carried out. The objective here is to

study complex interactions between librational and vibrational dynamics, flexibility

and initial disturbances. Effects of thermal deformations are also discussed. The

amount of information obtained is literally enormous; however, for brevity, only some
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typical results useful in establishing trends are presented here.

The next logical step is to explore effectiveness of a control strategy applicable

to such a formidable class of problems. The last part studies the control using the

feedback linearization approach to selected spacecraft models.

The concluding chapter summarizes more important results and presents recom-

mendations for future studies. An overview of the thesis layout is shown in Figure 1-4
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Parametric Studies
* First Element Launch (FEL)
* Permanently Manned Configuration (PMC)
* Mobile Servicing System (MSS)
* Space Flyer Unit (SFU)

Dynamics and Control of Orbiting Flexible Systems:
A Formulation with Applications

Problem Formulation
• Kinematics
• Elastic & Thermal Deformations
• Kinetics
• Lagrangian Formulation

Numerical Implementation

• Numerical Integration Subroutine
Computation Flowchart
Subroutine FCN

• Program Implementation
• Program Verification

Nonlinear Control
• Feedback Linearization Technique
* Quasi Open-loop Control

Quasi Closed-loop Control
• Application to Indian Satellite II

and MSS

Figure 1 - 4^The layout of the thesis showing the four major parts of the present study.



2. FORMULATION OF THE PROBLEM

2.1 Preliminary Remarks

From the literature review, it is apparent that the the Newton-Euler method and

the Lagrangian approach are more commonly used procedures in the dynamical for-

mulation of multibody systems. The Newton-Euler method is based on the principle

of angular momentum whereas the Lagrangian approach relies on the system energy.

Attractive features of the Newton-Euler method include relatively less time and ef-

fort as well as more compact form of the governing equations. This also makes the

Newton-Euler method computationally more attractive. However, the method has

two major drawbacks:

(i) It requires the introduction and subsequent elimination of the constraint

forces.

(ii) The principle of angular momentum has to be applied at the centre of mass

of the system; hence, for a system with shifting center of mass, its application

can lead to inaccuracies.

In the present study, due to the complex character of the system, the elimination

of constraint forces is indeed quite involved. Also, due to the thermal deformations

and transverse vibrations of the appendages, the centre of mass is shifting. Appli-

cation of the Newton-Euler method is, therefore, not particularly attractive. On the

other hand, Lagrangian approach does not suffer from these limitations. Further-

more, Silver [72] has shown that, at least for ground based robot manipulators, the

Lagrangian formulation with a proper choice of generalized coordinates can be numer-

ically as efficient as the Newton-Euler approach. However, the Lagrangian procedure

has its own undesirable features —it involves enormous amount of algebra leading to
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lengthy equations of motion. This is especially true in the case of multibody systems

where position vectors are represented as a product of a matrix (e.g. A) and a vector

(say, U). Differentiation of either A or U is not difficult to handle; however, differen-

tiation of the product of AU would involve enormous amount of algebra, especially

when second derivative is required. Fortunately, with the advent of computers and

refined softwares, the problem is manageable. The user supplies the derivatives of A

and U and let the computer evaluate the derivatives of products by numerical means.

This approach is appealing in cases where closed-form solution to the problem does

not exist and a numerical simulation is the only alternative. In the present case, the

governing equations of motion are expected to be highly nonlinear, nonautonomous,

and coupled; hence, closed-form solution is not expected to exist. The Lagrangian

procedure is therefore selected to assure accuracy of the governing equations.

This chapter can be divided into four sections: kinematics, substructure defor-

mations, kinetics, and the Lagrangian formulation. The kinematics begin with a

discussion of the system geometry and reference coordinate systems used to identify

the deformed configuration. The spatial orientation of the system as described by

a set of orbital elements and modified Eulerian rotations is presented next, together

with the solar radiation incidence angles. Finally, the shift in the center of mass

due to deformations, and associated rotation matrices, are discussed. In the follow-

ing section, determination of thermal and elastic deformations of substructures are

explained and application of the assumed mode method to represent elastic defor-

mations examined. The kinetics of the problem deals with evaluation of the kinetic

and potential energies. Using the Lagrangian procedure, the governing equations of

motion are finally derived.
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2.2 Kinematics of the Problem

2.2.1 Configuration selection

The system model selected for study consists of flexible bodies connected to form

a branched geometry: central body B, is connected to bodies Bi (B1,... , Bar). In

turn, each Bi is connected to bodies (Bo, . . . , Bi,„,) as shown in Figure 2-

1. Altogether, there are Ni (= I 1 ni) Bi bodies. The number and locations of

bodies are kept arbitrary so that the configuration can be used to study a large class of

present and future spacecraft. For instance, to simulate the European Space Agency's

Olympus (L—SAT, Figure 1-1), the satellite's central rigid body and two solar panels

are represented by bodies B, and Bi, respectively. As for the SCOLE configuration

mentioned earlier, the dynamic simulation may be performed treating the Orbiter,

mast and reflector antenna as bodies .13,, Bi , and Bi,j, respectively. When applied

to the proposed Space Station Freedom, the central body B, may simulate the main

truss of the Space Station with the modules, power generation equipment and system

control assembly treated as lumped masses. The stinger, station radiators, PV arrays

and radiators are represented by bodies Bi.

2.2.2 Coordinate system

Consider the spacecraft model in Figure 2-2 . The centres of mass of the unde-

formed and deformed configurations of the system are located at C i and Cf. , respec-

tively. Let XQ ,YQ ,ZO be the inertial coordinate system located at the earth's centre.

Attached to each member of the model is a body coordinate system helpful in defining

relative motion between the members. Thus reference frame F e is attached to body

B, at an arbitrary point O. Frame Fi , with origin at 0i, is attached to body Bi at

the joint between body Bi and Bc . In addition, for defining attitude and solar radi-
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ation incidence angles, a reference frame is located at Cf such that the axes Xp , Yp ,

and zp are parallel to X,, K, and Z,, respectively. Note, an arbitrary mass element

dmi on body Bi can be reached through a direct path from 0, via Oi. 0,, in turn, is

located with respect to the instantaneous center of mass Cf and the inertial reference

frame, Fo . Thus motion of dmi caused by librational and vibrational motions of B,

and Bi can be expressed in terms of the inertial coordinate system. Similarly, frame

Fij is attached to body Bi j and has its origin (Oij) at the joint between Bi and Bij .

The relative position of Oi with respect to 0, is denoted by the vector di whereby

di defines the position of 0,,j relative to O i .

The location of the elemental mass of the central body, dm,, relative to 0, is

defined by a series of vectors. p L indicates the undeformed position of the element.

Thermal deformation of the element is represented by T c . Finally, the transverse

vibration of the element, 6,, shifts the element to the end position. Similarly, pi, ,

and Si define the location of the elemental mass dmi, in body Bi, relative to Oi. For

the elemental mass dmi j of body Bi,j , its position relative to is defined by p-i ,j ,

ri ,j , and Si,j.

Orientation of the coordinate axes Xi,Y„Zi and X,^j relative to X,,Y,,Z,

is defined by the matrices Ci and CU./Li, respectively such that

^Up = tic =ui =^)14^ (2.1)

where iti j is the matrix denoting the motion of body Bi ,j relative to body Bi.

(k = p, c, i, or i, j) is the column vector representing the unit vectors in the corre-

sponding coordinate axes; for instance,^=^k,}T. It should be noted that the

thermal deformation and transverse vibration of B, and Bi result in the time-varying

characteristics of Ci and Ci j , respectively.
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2.2.3 Position of spacecraft in space

Consider a spacecraft with its instantaneous centre of mass at Cf negotiating

an arbitrary trajectory about the centre of force coinciding with the homogeneous,

spherical earth's centre. At any instant, the position of Cf is determined by the orbital

elements p, i , co, 6, R,,, and 0. Here, p is the longitude of the ascending node; i,

the inclination of the orbit with respect to the ecliptic plane; w, the argument of the

perigee point; 6, the eccentricity of the orbit; RC1Z , the distance from the center of

the earth to Cf ; and 0, the true anomaly of the orbit. In general, p, i , w, and 6, are

fixed while Rem and 0 are functions of time (Figure 2-3 ).

As the spacecraft has finite dimensions, i.e. it has mass as well as inertia, in

addition to negotiating the trajectory, it is free to undergo librational motion about its

center of mass. Let X„ Y„ Z, represent moving coordinates along the orbit normal,

local vertical, and local horizontal, respectively. Any spatial orientation of Xp ,Yp ,Zp

with respect to X,,Y8 ,Z, can be described by three modified Eulerian rotations in

the following sequence: a pitch motion, '0, about the Xs-axis giving rise to the first

set of intermediate axes Xi ; a roll motion 0 about the Z 1 -axis generating the

intermediate axes X2,Y2 ,Z2 ; and finally, a yaw motion, A, about the Y2-axis yielding

Xp ,Yp ,Zp (Figure 2-4 ). From the figure, it can be seen that the librational velocity

vector, cD, is given by,

=^sin A + (e 1 .p) cos cos A]i p +^— (a + 1p) sin cbj

cos A + (e + '0 cos 0 sin A] kp ,^ (2.2)

where e represents the orbital rate of the spacecraft.
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Figure 2-3^Orbital elements defining position of the center of mass of spacecraft.
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2.2.4 Solar radiation incidence angles

Position of the spacecraft with respect to the sun is defined by the solar radia-

tion incidence angles, Op', or,, and Op'. They are defined as angles between the unit

vector, ft, representing the direction of solar radiation, and the Xp , Yp , and Zp axes,

respectively (Figure 2-5 ).

With reference to the moving coordinate system X s , Ys , Zs , the unit vector it

can be written as

=^{—al cos^a2 sin 0] j, + [a l sin^a2 cos 9] k,

= Nis + b23 + b3 k8 ,^ (2.3)

where:

a l = cos p cos co + sin q cos i sin co ;

a2 = cos p sin co — sin p cos i cos co ;

a3 = sin p sin i .^ (2.4)

Now, in terms of the coordinates Xp ,Yp ,Zp :

is = — sin Op + cos q sin Ajp + cos cos Aizp ;

js = (cos 0 cos O)ip + (cos 0 sin O. sin A — sin 0 cos A)jp

+ (cos 0 sin cos A + sin 1p sin A) kp ;

ks = (sin 0 cos 0.)ip + (sin 0 sin sin A + cos cos A) jl,

+ (sin 0 sin q cos A — cos sin A)
^

(2.5)

Hence, substituting from Eq. (2.5) into Eq. (2.3), it can be rewritten as

= cos Ox + cos 0Y5 + cos qP^P P^P P
= ;T1 tt-

P 13
(2.6)
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where:

pT = {cos Op , cos Ov cos q5z} •p ,^P

cos 0' = b i (cos sin 0 cos A + sin '0 sin A) b2 (sin ,tp sin q cos) — cos sin A)

• b3 cos 0 cos A ;

cos 0v = bi cos cos 0 b2 sin '0 cos 0 — b3 sin 0 ;

cos 0z = b i (cos '0 sin 0 sin A — sin cos A) b2 (sin sin 0 sin A + cos cos A)

▪ b3 cos 0 sin A .^ (2.7)

It can be seen that the angles are functions of both the orbital elements (p, i, co) and

the libration angles (0, 0, A). Using Eq. (2.1), the solar radiation incidence angles

with respect to coordinate frames attached to 13,, Bi and Bi ,j bodies can be obtained:

Oc — Op (2.8a)

Ot t^(C)2' OP (2.8b)

= (C j)T Op (2.8c)

where^0i and ki are defined similar to q  as above.

2.2.5 Shift in the center of mass

The centre of mass of the spacecraft is the reference point to describe the space-

craft libration and orbital motion. For a rigid system, where the centre of mass

remains stationary, it can be determined easily; however, this is no longer true for

a flexible system. The general expression describing a shift in the centre of mass is

derived below.

Consider the spacecraft in Figure 2-2. Here, Ci and Cf represent the centres of

mass of the undeformed and deformed configurations of the system, respectively. The
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Rcm = —U R, dm, + E[f Ri dmi
mc^rni =1 mi,jI _rii ,j drn i,d} ,^(2.10)

ni

vector^which denotes the position of Cf relative to C i , represents the shift in

the instantaneous centre of mass of the spacecraft due to its deformation. This vector

will be necessary in evaluation of the kinetic and potential energies of the system.

From the figure, with reference to Xp ,Y-p ,Zp axes, the vectors from the center of

the earth to elemental mass dmc , dmi, and dmi,i represented by Pc , Ri , and

respectively, can be written as:

Rc = Rcm CL.„ —^pc + Tc be

= Rcni — Clm —^+ di + q(pi^Si) ;

Ri = Rcm —^+ di +^ fi,j Si,j) . (2.9)

Taking moment about the centre of force gives

where M is the mass of the spacecraft. Substituting Eq. (2.9) into Eq. (2.10) yields

1
Ccm = m^{ Pc + 7-c + Sc Chnc E[f {di C, [pi + + Si] dm i

TlIc^ 2=1^Mi
ni

+ E f {di+ Ci ^fi,i Siii1} dm i^, (2.11)f

where:

Clem =0":7-2, + Ccm ;

CIL, =position vector of C i , the centre of mass of the undeformed

spacecraft, relative to 0,,

CIL =position vector of Cf relative to C i ;

ni =number of Bi bodies attached to body Bi;

N =number of Bi bodies;
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ni

M =total mass of the spacecraft; rn, E [m i +

Since

LC"c77, = m^
c

{ dmc
N

i= 1
krnific(0i) f CFfii

rni

i=
}{mi,j [fic(Or) + CFiji (0i j)1 + f CUP"i j dini 5j }] ,

mid

(2.12a)

an can be simplified as
1

64 dm,

+ E [{ mi[1--,(00 + 6,(0i)]+ f CFV-i + dmi

i=1^ mi
ni

,j [J---,(oi)+ sc ow + cf(fi (oi ,j )+ si(oij))]

f qi[( 111 ,i^Iti,jTi,j RAJ] i,j}]^(2.12b)
mi 

where 7k(0/) and 4(00 (k c,i; 1 i or i, j) represent 1--k and 6k, respectively,

evaluated at the coordinates of Oi; and U is the unit matrix. Equation (2.11) is the

general expression valid for both rigid as well as flexible systems; however, for a rigid

system, Eq. (2.12a) is adequate.

2.3 Elastic and Thermal Deformations

2.3.1 Background

Evaluation of the kinetic and potential energies requires expressions for the system

deformation. In the past, considerable effort has been directed to this end; hence, it

would be appropriate to briefly review the relevant literature.
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For a multibody system, two distinct approaches have been popular to estimate

elastic deformations: the Finite Element Method (FEM) and Substructure Synthesis

Method (SSM). In the FEM, the system is first subdivided into finite elements with

degrees of freedom at the nodes. Using the local degrees of freedom as generalized

coordinates, the mass and stiffness matrices of the element can be derived readily.

Applying the boundary conditions for the system and compatibility requirements

between adjacent elements, the system mass and stiffness matrices can be assembled

from the corresponding matrices of the elements. The system modes can then be

evaluated numerically using finite element subroutines such as NASTRAN.

In the SSM, the system's flexural motion is represented in terms of the compo-

nents' dynamics. The first step is to obtain the series of admissible functions, by

solving the eigenvalue problem for each component, representing its elastic defor-

mation. These functions are referred to as "component modes" by Hurty [73], who

pioneered the SSM approach. It should be pointed out that the FEM can be used in

deriving the component modes. Compared to the FEM, the subsubstructure eigen-

value problem can represent a tremendous saving in the computational effort. This is

especially true when the components are geometrically similar or uniform elements.

In the latter category, analytical solutions for beam and plate type elements are avail-

able. The second step is to assemble the component admissible functions in such a

way that each component does not vibrate as an independent body but rather as a

part of the system. Hurty [73] implemented this idea by enforcing geometric compat-

ibility between adjacent elements at pre-selected points. Subsequent research in the

SSM is aimed at selection of the substructure modes and improvements in geometric

compatibility at internal boundaries.

Craig and Bampton [74] used the FEM to obtain the component shape functions.
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Geometric compatibility between elements can be satisfied easily by selecting appro-

priate boundary conditions for components. Benfield and Hruda [75] derived the

component admissible functions based on free boundaries. Geometric compatibility

is then enforced by applying inertial and stiffness loadings at internal boundaries.

MacNeal [76] selects hybrid modes to represent component elastic motions, i.e. the

modes are evaluated by assuming the boundaries to be free, fixed, or free in one

part and fixed in the rest. The advantage of this approach is the generality of the

boundary conditions under which the component modes are calculated. Using the

same approach, Rubin [77] includes the contribution of residual modes to improve

accuracy of the system elastic deformation.

Hughes [78] suggested another approach in obtaining the component modes. He

distinguished two kinds of component modes: "unconstrained" and "constrained."

In the former category, the component mode of a substructure is calculated without

imposing any restriction on the adjacent body. The component modes obtained by

Hurty [73], Craig and Bampton [74], Benfield and Hruda [75], MacNeal [76], and

Rubin [77] belong to "unconstrained" category. In contrast, "constrained" modes

of a component are derived by holding the adjacent body stationary. Hughes [79]

pointed out that "unconstrained" modes are commonly used in the study of flexible

aircraft whereas "constrained" modes are often used for flexible spacecraft. Defining

"modal identities " which are integrals of mode shapes relating to linear and angular

momentum, Hughes [79] has shown the existence of relations between these integrals

of "constrained" and "unconstrained" modes. These identities can be used to assess

the influence of each substructure on the system. Using a spacecraft with a rigid

central body and flexible appendages, Hablani [80] studied the convergence of both

"constrained" and "unconstrained" modes. He concluded that as the rigid portion

increases, the convergence of "constrained" and "unconstrained" modes improves.
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For "constrained" modes, the contribution to system dynamics comes from the first

few modes whereas the importance of "unconstrained" modes is usually not ordered

by frequency.

The next question confronting space dynamicists is the number of modes required.

Traditionally, high frequency modes are dropped; however, Hablani [80] and Hughes

[81] have pointed out that frequency alone is not a sufficient condition in modal

truncation unless the modes are "constrained" . Hughes [81] recommended using

"modal identities" of linear and angular momentum as criteria. Similarly, Hughes

and Skelton [82] studied, besides frequency consideration, completeness of inertial

indices, controllability and observability of component modes in modal truncation.

Another approach, adopted by Gregory [83], is the application of Moore's [84] internal

balancing theory. The objective here is to transform the state-space form of the

system's equations of motion into the balanced form such that the controllability

and observability grammians are equal and diagonal. Generalized coordinates which

have small diagonal elements are least controllable or observable; hence, they can

be discarded. Using the same idea, Spanos and Tsuha [85] reduced the model order

obtained by Hurty et al. [73-77]. The effectiveness of the approach was illustrated

through the dynamical study of the Galileo spacecraft.

The SSM discussed so far, though computationally less intensive than the FEM,

still involves considerable effort. It stems from the three steps required: component

modes derivation, geometric compatibility satisfaction, and model order reduction.

Visualizing the SSM from another perspective, Meirovitch and Hale [86,87] simpli-

fied the procedure further. The SSM can be regarded as a Rayleigh-Ritz procedure

applied to the "intermediate" substructure. The difference between an actual and

"intermediate" substructure lies in geometric compatibility: the former is geomet-
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rically compatible along the boundaries with the adjacent elements; whereas the

latter satisfies geometric compatibility at a limited number of points on the internal

boundaries. The convergence of the intermediate substructure to the actual one is

guaranteed by the Rayleigh-Ritz method provided the admissible functions form a

complete set. The convergence can be achieved by: (i) increasing the number of ad-

missible functions; (ii) confirming to the requirement of geometric compatibility; and

(iii) implementing both (1) and (ii) simultaneously. This point of view suggests that

it is theoretically correct to use any admissible functions, such as polynomials, pro-

vided they satisfy the kinematic boundary conditions and constitute a complete set.

Considering a plate-type problem, Meirovitch and Hale [86,87] illustrated the idea

by showing the convergence of eigenvalues using low-order polynomials as admissible

functions. The results agree with those obtained using 36 terms of the transcendental

functions as admissible functions. The same idea was applied to a truss-like structure

by Meirovitch and Kwak [88]. Here, the authors pointed out an inconsistency in the

Rayleigh-Ritz theory: individual admissible function has to satisfy all the boundary

conditions although the solution is based on the linear combination of the admissible

functions. Using this argument, the authors presented a method to select the admis-

sible functions. These are called "quasi-comparison functions" which differ from the

admissible functions in that the former satisfy only some of the natural boundary

conditions. However, when synthesized they result in a faster convergence.

2.3.2 Substructure equations of motion

Yu [57] has shown that the equation for transverse vibration of a thermally flexed

appendage is given by

a4wb 02 Mt^02 w b
Mb (̂7x4X4^02 + mb 8t 2

= 0,^(2.13)
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with the appropriate boundary conditions. For instance, for a beam cantilevered at

x = 0 and free at x = /b, the boundary conditions are:

Wb = ^

^

OX =-- 0^at x = 0 ;
02 wb

axe^

53wb amb
EIb^ + m: . Erb  ax3^OX

+  ̂= uA at X = it, .

Here EIb is the bending stiffness of the beam; mb, the mass per unit length of the

beam; and MP, the thermal bending moment given by

Mt . 
Area 

Ea tT(x, y, z)z dA ,

where T(x,y, z) is the difference between the ambient temperature and the temper-

ature at a point on the appendage with coordinates (x, y, z); and a t is the thermal

expansion coefficient of the beam material. The integral is over the cross sectional

area of the appendage. For a thermally deformed plate, Johns [89] has shown that

the equation of motion is given by

a2 wp
DV4wP 

1 v 
172 71lvin-P^

P ate^ = 0 ,^(2.14)t— 

where V is the Laplacian; mp , the plate mass per unit length; D and v are the flexural

rigidity and Poisson's ratio, respectively; and Mr, the thermal bending moment of

the plate defined similar to M. For a cantilevered plate with the built-in edge at

x = 0 and free edges at x = 1p , y = +wp/2, the boundary conditions are given by:

Mx = 0,

My = 0,

wP = 
OwP

= 0
Ox

OMx 
2

OM
xY = 0,

Ox^ay
amy am^ 2 ^xY = 0,ay^ax

(mxy)i — (mxy)2

(m.y) i — (mxy)2

at x^0 ;

= 0^at x = /p ;

= 0 at y = ±wp/2 ;

where subscripts 1 and 2 refer to values of the twisting moment, Mxy , on the sides

awb
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forming the corner.

The analytical solution for Eqs. (2.13) and (2.14) is difficult to obtain even when

possible. The problem is overcome by first assuming that the thermal and elastic de-

formation are independent, i.e. the solution for thermal deformation can be obtained

independent of the elastic displacement, and vice versa. The thermal deformation

function is obtained as a solution of the heat balance equation, for a beam or a plate,

with the assumption that the element is not undergoing any transverse vibration.

Similarly, elastic deformation is represented by admissible functions obtained from

the beam or plate equation without thermal deformation.

It should be pointed out that the longitudinal vibrations, torsional oscillations

and foreshortening effects are purposely not considered in the formulation. This does

not imply that they are difficult to incorporate or negligible. The formulation even

without these effects is indeed quite challenging. The main objective is to assess

the influence of thermal deformations which is anticipated to be dominant compared

to the parameters mentioned above. Further complication of the problem, it is felt,

will only mask appreciation of interactions between librational dynamics, flexibility,

thermal effects and initial conditions.

2.3.3 Thermal deformations

Modi and Brereton [49] obtained the heat balance equation of an appendage under

the influence of the solar radiation. The time constant of the equation was found to

be very small for most appendage materials; hence at each orientation, the appendage

was assumed to attain the steady state instantaneously. The steady state solution

showed that the shape of the centreline of a thermally flexed appendage is given by:

1* 
= —ln [cos (—

/*
)] cos e ;
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—6z = —ln [cos (-11 )1 cos Oz ; (2.15)
/*^1*

where

/*b
tab kbbb^qsas ) 3 /4 (8 — €b)

(2.16)
as atqs 4iEbatab^7rebat) — eb ) •

Here 6y , 6z represent deflections in the Y and Z directions, respectively; Ov and Oz

are solar radiation incidence angles in the appendage reference Y and Z directions,

respectively; 97 is the distance along the appendage axis from the centre point; and

lb, the thermal reference length of the appendage, is a function of the solar radiation

intensity (TO, Stefan-Boltzman constant (U t ), appendage dimension (ab , bb), and

appendage physical properties (as , at , Eb, kb). For common appendage materials

such as steel or beryllium copper, lb is found to be over 100 m.

Evaluation of the kinetic and potential energies involves integration of Eq. (2.15).

However, the transcendental character of the equation makes the integration difficult.

Ng and Modi [90] showed that the solution to Eq. (2.15) can be approximated to a

parabolic form as follows:

6v^2( ^cos OY •

6z

2
= () 2 COS Oz (2.17)

The difference between Eqs. (2.15) and (2.17) is found to be negligible^3%) for

< 0.6, which corresponds to an appendage of up to 60 m in length. Thus, in a

number of situations, Eq. (2.17) can be used without incurring significant error.

Similar to Eq. (2.17), Krishna and Bainum [66] used an approximate parabolic

solution to describe the deflection of a thermally flexed plate,

where

bz
1* 

= 
2 

—
/* 

cos Oz , (2.18)
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t,
1* =

atAT •
(2.19)

Here 6, is the deflection of the plate; /p*, the thermal reference length of the plate; t e ,

the thickness of the plate; and AT (= T7 — T2), the temperature difference between

the top (T1) and bottom (T2) of the plate, is obtained by solving numerically the heat

balance equations:

Ebo t(Tt + 21) = a s q, ;

EbOtT24 
k b= (Ti — T2) •
t c

Equations (2.17) and (2.18) are used in the formulation to represent thermal

deformations of beams and plates, respectively. For instance, the thermal deformation

of body Bi (say, a beam), Ti, and of body Bid (say, a plate), tid , are given by,

=^cos,
2 \ /17

^

(xi )^q^— cos o, " (xj ) 2 f}T
2 V:

2

2

X* ^COS Of j^.
2^1i,7

=- {0 , 0 , — (2.20)

2.3.4 Transverse vibrations

The transverse vibration of the substructures can be obtained by the SSM. How-

ever, as pointed out by Meirovitch et al. [86-88], convergence of any set of admissible

functions to the actual solution is guaranteed by Rayleigh-Ritz procedure provided

the admissible functions satisfy the kinematic boundary conditions and form a com-

plete set. With this in mind, the vibrational displacements of beam-type elements

are represented in terms of modes of the Euler-Bernoulli beams For body Bc , the

admissible functions used are similar to those of a free-free beam [91],

(x)^cosh(Or5--, ) cos(Or) — -yr isinh(Or ) + sin(Pr x )] ,
lb^lb^lb^lb
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r = 1,2,...^(2.21)

where f3r/b is the solution of the equation

cosh(Pr) cos(13r) — 1 = 0 ,

and -yr is given by

yr — 
sin(i3r) + sinh(Or)

—cos(pr) + cosh(pr) •

For Bi and Bi,j, cantilevered modes are selected,

Or (x) = cosh(f3r —
x

) — cos(Or —, ) — -yr {si11h(f3r —
x

) — sin(f3r x )]
lb^tb^lb^lb

r = 1, 2, .. . (2.22)

where Or is the solution of the equation

cosh(/3r) cos(O r) + 1 = 0 ,

and -yr is given by
= sin(Or) — sinh(/3r)

cos(13r) — cosh(13r) •

Using Eqs. (2.21) and (2.22), the transverse vibrations of a beam-type substructure

in its reference Y and Z directions, vb and w b , respectively, can be written as:

n

V =^Pr (t)Or (x)
r=1
n

wb =^Qr(t )Or (x);
^ (2.23)

r=1

where Pr(t) and Cr(t) are the generalized coordinates associated with vibrations in

the Y and Z directions, respectively; and Or (X) is the admissible function.

The equation of motion for a plate of length /p and width wp (aspect ratio ar =
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/p/wp ) undergoing transverse vibration is given by [92]

04w^94w^04w^02w

Ox4 
+ 2 ox2ay2 ay4 D at2 = 0 ,

where D = Eh3 112(1 — v 2 ). The boundary conditions are given by:

(1) Simply supported along edge x = 1p

w(x, y) = 02 w(x, y)
 = nOx 2

(2.24)

at^x = /p ;

(ii) Clamped along edge x = 1p

w(x,Y) = 
Ow(x,y)

= 0^at^x = /p ;

(iii) Free along edge x = 1p

02W(X , y^02W(X, y)
^ + V \ ^=0^at^x = /pOx2^ay2

Except for plates with at least two opposite edges simply supported, the solution

to Eq. (2.24) is difficult to obtain, even when possible. Approximate solutions have

been reported by numerous researchers and reviewed by Leissa [93]. In general, the

approximate solution does not satisfy completely either the boundary conditions or

the governing differential equation.

Warburton [94] put forward an approximate solution by assuming the displace-

ment to be,
m

wP(x, y ) = E^Hs ' t (t)cbs (x)1P t (y) •^(2.25)
s=1 t=1

The shape functions for opposite edges that are fixed-free and free-free are given by:

(i) Fixed at x = 0 and free at x = 1p

Os(x) = cos(P 8 —
x

) — cosh(Ps—
x
) 73 [sin ps (-

1 ) — sinh(P 8 —x )]/p^1P^ 1P
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s = 1, 2, 3, ...^(2.26)

where
s= sin /3 3 — sinh /3 8

cos /3 8 — cosh /3 8
and^cos /3 3 cosh 3 8 = — 1 .

(ii) Free at x = 0 and free at x = /p

(x) = sin [3 8 ( -1;x — -2-1 )]^-ys sinh [/3 8 ( — )]

s = 1, 3, 5, .. .^(2.27a)

sin 1 /3 8^1^1
where^

-ys = sinh 8^
and^tan —

2/
3 8 — tank —

2/
3 8 = 0 ;

1 /3

and^Os (x) = cos [Os ( — )] + ys cosh [Os ( —
/^2p

s = 2, 4, 6, . . .^(2.27b)

— sin 1 )3 8^1^1
with^78 = ^2^and^tan —,3 8 + tanh — /3 8 = 0 .

sinh1 /3 8^2^2

Note that rigid body rotation of the plate is not considered in (ii). It should be

pointed out that the shape functions of (i) satisfy the boundary conditions completely

whereas those of (ii) are only approximate.

In order to overcome the shortcoming of the approximate solution. Gorman

[95] introduced the method of superposition to solve the plate equation. The idea is

similar to the SSM. The original plate problem is treated as a combination of building

blocks. Each building block is a plate problem where the solution is readily available.

The solutions of these building blocks are then synthesized. Finally, the constants in

the individual building block solutions are constrained so as to satisfy the boundary

conditions of the original plate problem. This results in a set of algebraic equations

where the nontrivial solution gives the natural frequencies and mode shapes desired.

Gorman [96] tabulated the results for different boundary conditions. For a cantilever
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plate, for instance, the shape functions are found by three building blocks such that:

w(x, y) =^(x, y) + w2(x, Y) + w3(x, Y) ;
^

(2.28)

where

wl (x, Y) =
^Fim^ y

^ (cosh P„ 
x 

+ 9b ,m, cos 7 
x

„ ) sin 
M71

Oa^m=1,3,5 - 'm^ 2 wP

m=km+2

00 

9

E m^x^y
(Cosh m —(P ci ,m cosh 7,—

/
) sin — —

M71

2 wP

with On , m, = [var2 (m7/2) 2 —^cosh/3m + eb,m [var2 (7n7/2) 2 + -y2 ] cos'}',

[(1 — v)a2r (mir/2) 2 Pm2 sinh

0 d,m
^[—(1 — v)agm7/2) 2 +^sinh7m

= ar0! (m7/2) 2 ;

7m, = a, VA! — ( m7r/2) 2^or^ar V(m7/2) 2 — A! ;
k *

w2 (x, y) =^
En

(sinh On—
/^

Ob,n sin 7'n x )cos mr—
wn=0,1^'n

with ect,n = [var2 (n,702 — ,Th2]

Obn = ^

on[_ (1 — 0 D apr2 ( (sinh inn) h2h  : n + 0

7n[(1 — v)agn70 2 + -y,i] cos 'yn

n=14+1 ovc,n
^On 7 Th

00 En^x^X^Yo-2 ] +:00, nsd h, [nvosani :2 (hn 77rn) —2 +) cos ] n: ri n7 n—
w ; ;

^IP ^1P^P

ec,n = [var2(m1 )2 — ,Th2]p sinh Pn — 9d , n [— va2, (n7) 2 + 72 ] sinh 'Yn ;

On[ — ( 1 — ii)agn7 ) 2 + 1%2 ] cosh On

Ob,m, =
7m [(l — v)a,!,(m7/2) 2 + -y72,2] sin7,

Ocon = [va2, (m7r/2) 2 —^cosh Om + 9d ,m [vcer2 (m7/2)2 +72] cosh 7,, ;

0m [( 1 _ o cer2(m7/ 2 )2 _ 0m} sinh P,^-

ed,n =
'Yn [— ( 1 — v)agn7r)2 oi] cosh7n
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Nn = (1/ar )\/(arA,) 2 (n7r) 2 ;

Yn = (liar ) /(arAe)2— (n7r) 2^or^War )1/( 777 ) 2 (arAe) 2 ;
k *

Ep 
[cos ofp ( 1 — x—

1
)

p=0 (7 + )3
P

) cos 'yp
P

^cosh Pp (1 — —
x

)] COS p71- —Y
cos^ -yp

cosh /4^1P
oo — Ep

^[cosh -yp (1 —
p= 4+1

(7
P
2 — pp2 ) cos h eyp

cosh -yp

cosh Pp cosh P
p (1 — 

1
—
P
 )] cosp7r—Y ;

Pp = (liar) \/(arAe) 2 + (P7 ) 2 ;

'Yp = ( 1 Iar)V(arAe) 2 — (P702^Or^(1/Ctr) V (P7 ) 2 (arAe) 2

Here, A, represents the eigenvalues of the plate. The values of k: (i = in , n, p)

are the maximum integral values of i such that [A 2e — (m7r) 2 ], [(arAe)2 (nir)21,

and Rcer A e ) 2 — (p7r) 21 are positive. The general solution of Eq. (2.28) satisfies some

of the boundary conditions already. However, there are three additional boundary

conditions to be satisfied: (i) zero bending moment at y = wp; (ii) zero slope at

x = 0; and (iii) zero bending moment at x = /p . The Fourier coefficients Eni , En ,

and Ep are determined by constraining the overall solution to satisfy these three

boundary conditions simultaneously. It is achieved in the following manner. First,

the number of terms (say k) in w i , w2 and w3 are selected. Using the boundary

conditions, three equations with 3k unknowns are obtained. Since En,,, En , and Ep

are Fourier coefficients, one can make use of the orthogonality conditions to obtain

3k — 3 equations. Let Eq. (2.28) be rewritten in a form

w(x, y)^Emf m(13m, 7,i ) sin
2 W

-Y-
n=0,1 

En f n(Pn, 7n) cos n7r
m=1,3,5^

-Y—

w3 (x,y) =

with
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+ E Epfp (Op ,-yp ) cos xr .
p=0

Multiplying the equation by sin iry/2w and integrating over 0 to 1 would eliminate

Eni for m 0 1. This procedure can be repeated 3k times to obtain 3k equations.

Finally, the coefficient matrix of dimension 3k x 3k in terms of Ern , En , and Ep

is obtained. The matrix equation can then be solved to determine the eigenvalues

and eigenvectors. Note, since the method gives a solution that satisfies the plate

differential equation and all the boundary conditions, it can be regarded as exact.

The next question is the accuracy of the approximate solution. Leissa [93] studied

the convergence of eigenvalues obtained by different researchers using Rayleigh-Ritz

method and concluded that in general the accuracy deteriorates as the number of

free edges increases. Also, accuracy is further affected by the existence of a diagonal

symmetry such as in the case of square free-free plate. These observations are verified

in Table 2-1 . Here, a comparison is made between the first five eigenvalues obtained

by Warburton (approximate) and Gorman (exact) for cantilever and free-free plates.

It can be seen that the approximate solution predicts the eigenvalues with good

accuracy for the cantilever plate; however, this is no longer true for free-free plates.

Despite the accuracy of Gorman's solution, it is not readily available. Consider-

able amount of numerical work, as outlined above, has to be performed first. Also,

complexity of the solution makes programming task much more difficult. In view

of this, Warburton's approximate shape functions are adopted in the formulation.

It should be pointed out that, if higher accuracy in admissible functions is desired,

Gorman's solution can always be accommodated in the general formulation at the

expense of programming effort and computing cost.

Using Eqs. (2.23) and (2.25), Si and Si ,j (say, for a beam and a plate, respectively)
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Table 2-1^A comparison between Warburton [94] approximate and Gorman [96]
exact eigenvalues of cantilever and free-free plates.

CANTILEVER PLATE
Mode l/w = 1 l/w = 1.5 l/w = 2
1st W 3.52^(5) 3.52^(5) 3.52^(5)

G 3.46^(S) 3.44^(S) 3.42^(S)
2nd W 9.32^(A) 13.41^(A) 17.61^(A)

G 8.36^(A) 11.43^(A) 14.50^(A)
3rd W 22.03^(5) 22.03^(5) 22.03^(S)

G 21.09^(5) 21.32^(5) 21.28^(5)
4th W 28.52^(5) 40.65^(A) 50.60^(A)

G 27.06^(S) 38.70^(A) 47.32^(A)
5th W 31.69^(A) 56.78^(S) 61.69^(S)

G 30.55^(A) 53.06^(5) 59.76^(5)

FREE-FREE PLATE
Mode l/w = 1 l/w = 1.5 l/w = 2
1st W 13.86^(A) 20.79^(A) 22.38^(S)

G 3.29^(A) 4.91^(A) 5.31^(5)
2nd W 19.36^(5) 22.38^(5) 27.72^(A)

G 4.81^(S) 5.29^(S) 6.49^(A)
3rd W 24.73^(S) 47.80^(S/A) 60.59^(S/A)

G 6.11^(5) 11.38^(S/A) 14.34^(5/A)
4th W 35.97^(S/A) 50.37^(5) 61.69^(S/A)

G 8.56^(S/A) 12.45^(S) 21.92^(S)
5th W 61.69^(5/A) 61.69^(S/A) 89.54^(5)

G 15.23^(S/A) 21.17^(A) 24.98^(A)

W: Warburton's results^G: Gorman's results
(S) Symmetric mode^(A) Antisymmetric mode
(S/A) Symmetric-Antisymmetric mode

can be written as,

n

= {o,^(t)01(xi) ,^Q;(t)0 7z(Xi)I T ;

r=1^ r=1
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m n

Sij = 0 , 0, EE^(00:si,j(Xi,j)01,j(Y i,j)} T •
^(2.29)

s=1 t=1

2.4 Kinetics

2.4.1 Rotation matrices

Matrix^as defined in Eq. (2.1) denotes orientation of the frame F, relative to

the frame F. Two rotation sequences are needed to determine q: the first one,

C ci 'r , defines the rigid body orientation of F, with respect to F, whereas the second

one, Cci 'f , defines the rotation of frame F, relative to Fc due to elastic and thermal

deformations of the body Bc . A modified Eulerian rotation of the following sequence

is selected: a rotation Oxr, about Xe-axis, followed by 0 yr c about Ye-axis, and finally

Ozrc about Zc-axis, i.e.,

Cr =
cos 9;,
sin Orz'c[

— sin OL
cos OL

00 1

0 0 1

cos a[^
0

^0 sin Orcy
1^0

1. — sin Oyr, 0 cos Ourc

1 0 0
x 0 cos O'x', — sin Oxr,

0 sin 611x', cos O'x'c

[cos Oyrc cos Ozrc sin Oxrc sin Oyrc cos Ozr, — cos Oxrc sin OL
= cos Brc sin OLsin Br sinsin Br sin Ozr, + cos Oxr, cos Br

— sin OrYc^ sin Oxrc cos Oyrc

cos Oxrc sin Elyrc cos Ozrc + sin Oxr, sin Ozrc

^

cos Oxrc sin^sin Ozrc — sin Oxr, cos Ozr,
cos Or cos Orx,^Yc

Similarly,
[cos Of cos Of sin OL si n tgc^ccos Ol — cos Olc sinO lyc^zc

Cic, = cos Of sin Of sin Of sin Of sin Of + cos Of cos Ofyc^zc^x,^yc^zc^xc^zc
— sin 9- c^sin Of cos OfYc

(2.30a)
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2 '

7r
— •O 'x'c

 

^cos Olc sin Ofc^zc^xcos Of + sin Ofc sin OlcY 

^

cos 9 sin By ^Of — sin Of cos Ofxc^Yc^zc^xc^zc
cos OSc cos Bye

  

(2.300

and

 

Ci = cr x

The choice of the rotation sequence is somewhat arbitrary because the multiplication

of rotation matrices is commutative for small rotations; however, as pointed out by

Hughes [97], the concern is the location of the singularity. For the sequence selected,

the singularity is located at O yrc = 7r/2 or Otcc = 7r/2. If this leads to a problem, it is

easy to select another rotation sequence with minor changes to the computer program.

Note that BSc , Bye , and Olc are functions of the thermal and elastic deformations of

Be. Consider the spacecraft model in Figure 2-6 with a beam type central body

attached to another body at coordinates (dxe , dvc , dzc ). Initially, in absence of any

deformations:

Or = 0Yc

O'z'c = 0 .^ (2.31a)

With the inclusion of thermal and elastic deformations, 0.1 c , Bye , and Olc can be

evaluated using Eqs. (2.20) and (2.29):

ofc =
7F

2 '

Of = — s Qc
(0 dYc'

Yc^le
 dx Ixc =dxcr=1

dc cos cb cz ;

=^(t) dOr 
1^dx c--d xcr=1^c^c

(1X c cos cbg . (2.31b)
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m n

s=1 t=1
n (t)^dx

1^dx —d Otc(dyc)^cos og ;
,^,

H 1,^d,
(t)^de^dxc

'Cfr:(dxc) --- 1yc=c1 —^cos

s=1 t=1
Ofe = —Y

If B, is a free plate, then the appropriate expressions would be:

(2.31c)

As for qj , which is the orientation matrix of frame Fij relative to Fc , it is expressed

as the product of^and qj , i.e.

^cF = cF^.
lj^1^lj

where CI  is defined similar to Ci in Eq. (2.12) with subscripts xe, ye,

by xi, yi , and zi , respectively.

2.4.2 Kinetic energy

The kinetic energy, T, of the spacecraft is given by

(2.32)

z, replaced

T= 1 { f 
Rc

•Re dm,c +
1-i

• dmi + 
ni

•.Rij drni ,j]^, (2.33)
2 me^ j=1 m j=i rni,j

where R,, P i , and Ri j are obtained by differentiating Eq. (2.9) with respect to time:

-hc = itcm — afc m, — Ccm + T c + Sc + co x [—CL, —^+ Pc + Tc 6c1
•

Ri = Rem, — ucm, — Ccm + di + q(4 i + 6i ) +^+ 6i)

+Co x [—Clm —^+ di + q(fii + + 6i)] ;

= Rcm — acj — a icm + di +

ri,i^8i,j)^+ i,j)

+ cv x [—Olm — Ccm + di +

j^Ti,j^6i,j)] •^ (2.34)
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(a)

(b)

Figure 2 - 6^An illustration of the Eulerian rotation.
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Substituting Eq. (2.34) into (2.33), the kinetic energy expression can be written

in the form

^T = Torb Tcm Th^Tt^Th,jr Th,t Thm Tjr,t Tjr,v

1 —TT
t4.) -Lsys W + CDT Hays

1
= Torb Tsys + ,TTh fisys

^2^Y8^—
(2. 35)

where C4.) is the libration velocity vector; L ys , the inertia matrix; _L ys , the angular

momentum with respect to the Fc frame; 1C4FIsys c-4.), the kinetic energy due to pure

rotation; and C4.) 27-/sys , the kinetic energy due to coupling between rotational motion,

transverse vibration, and thermal deformation. Lys represents the kinetic energy

contributions due to various effects with the subscripts involved defined below:

orb^orbital motion;

cm^centre of mass motion;

h^hinge position between body B, and Bi or between body Bi and Bij;

jr^joint rotation due to elastic and thermal deformation;

t^thermal deformation;

v^transverse vibration.

For instance, Tt ,,„ refers to the contribution of kinetic energy due to the rate of thermal

deformation and transverse vibration velocity. Details of the kinetic energy expression

are given in Appendix I. The evaluation of the integrals require a priori knowledge

of pk  Tk , 4, and dk (k = c, i, or i, j); hence, the configuration and location of each

body must be specified before the evaluation can proceed. The matrix L ys , which

represents inertia of the system, is time-dependent and consists of several components,

Lys = Icm + Ih + Ir + I t +

+ Ih , r + Th,t + Ih , v + Tr,t + Ir ,v + It , v ,^(2. 36)
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where the subscripts cm, h, t, and v have the same meaning as before. Subscript

r denotes contribution from the rigid body component. For example, I r , t represents

contribution to the inertia by the rigid component and thermal deformation.

The angular momentum vector, Lys , can be written as

1-1,y, = licm + Hh^Ht^+ Hh,r

Hkt Hh,v+ Hr,t + Hr,v Ht,v^(2. 37)

with the subscripts defined as before. Similar to L ys , FI,y, is a time-dependent

quantity. The details of Isy, and Tins are given in Appendix I.

2.4.3 Potential energy

The potential energy, U, of the spacecraft has contribution from two sources:

gravitational potential energy, Uy , and stain energy due to transverse vibration and

thermal deformation, Ue ,

U = Ue + Uy .

The potential energy due to gravity gradient is given by

Uy =^dm,^dm,^dmi
ite^

f c

R,^
f

^

U^R•^R• •
j

i=1^j=1 mi,j^i'3

Substituting the expressions for R,, Ri , and Rij from Eq. (2.9), and ignoring the

terms of order 1//4m and higher, Uy can be written as

U = PeM ^tr [Is s ] +^/^,^(2.38)
—

g^2/cm^Y^

3//e
2RL^Y

where^is the gravitational constant and [ represents the direction cosine vector of

Rem with reference to Xp ,Yp ,Zp axes. From Figure 2-4, / is given by

/ = (cos sin cb cos A + sin sin A)i, + cos cos 0,
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+ (cos /P sin q sin A — sin cos A)k, .^(2.39)

The strain energy expression for a beam and a plate are [24]:

D
fAp{(aa2:2P) 2 + 2 v (952:: 302:12P )

2
+2(1 — V) (

a
a2WP) dAp ;
xay

1 f {EI„ ( a 2Wb ) 2 -4- EI„( a2Vb ) 2
2^

} dib ;i b^ax2^ax2

Ue,plate =

Ue,beam

(a2wp) 2

ay2

(2.40)

where D and v are the flexural rigidity and Poisson's ratio of the plate, respectively;

and Elyp and EIzz are the bending stiffness of the beam about Y and Z axes,

respectively. By specifying the configuration of each body constituting the system,

the strain energy can be evaluated. For instance, a system with bodies 13,, Bi beams

and Bi j plates, the strain energy expression can be written as

r a 2^12 r a2
Ue = —2 fic {EI,,yy[ ax2 ((T,) z + 0,M] + EI,,„1:,u;i ((7-,) y + (6

1 2
)y) ] } dl,

N 1
 i^

a2

xi+ E [-2^{EIi,yy [,., 2 ((ri), + (6
ai=1^i

) z ) ]
2 52

Eii,zz[
v
 + (8i) )]

Y^

2
+^

a ((Ti)
2x i

2 A.̂ {[;7. 22 + (oi,i)z)] 2j (("Ti,i)z
j=1

r^a2
((Ti,j)z

02
[ax 2 (Si,i)z)i [a 2^((r,j)z

Yi,j
( 6i,i)z)]

+ L a2
991 2̂ ((Ti i)z^( 6i,j)z)1 2

02^ 2
+ 2(1 — Vi,j) [^

u^
((Ti,j)z^(Si,j) z )]^dAi,j]

,3Yi,i

where (m)y (Sk) y and (7-k) z (6k) z (k = c, i, or i, j) are the Y and Z components

of Tk + 8k, respectively.
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2.5 Lagrangian. Formulation

Using the Lagrangian procedure, the governing equations of motion can be ob-

tained from

d t OT \ _ OT OU
dt‘ 04 ) Oq^aq Fq

where q and Fq are the generalized coordinate and generalized force, respectively.

The number of generalized coordinates depends on the system configuration, i.e., the

degrees of freedom involved. For instance, consider a central beam-type body Be ,

undergoing general librational motion, with N beams (body Bi) attached to it. In

turn, let each Bi body be attached to ni plates (Bi,3 bodies). Then q will be

q = Rem , 9, IP, 0, A,^Qic'e, Pi e , Q iri ,

with:^rc = 1 , • • • I nre ;

ri = 1, .^, nri ;

s = 1,...,n, ;

t = 1,^, nt ;

where nre and nri denote the number of modes used to represent the transverse

vibration of Be and Bi , respectively; and n s and n t represent the number of modes

of transverse vibration of Bi j in the plate reference X and Y directions, respectively.

The total number of generalized coordinates is now given as

Ng = 5 + 2 x n rc + 2 x (N x nri ) +^x ns x nt)
N

where
i=1

In general, the effect of librational and vibrational motion on the orbital motion

is small unless the system dimension is comparable to Rcm [98,99]. Hence, the orbit



can be represented by the classical Keplerian relations:

h2
Rcm =^

E COS 9)

Rc2 771. 9 = h ;^ (2.41)

where h is the angular momentum per unit mass of the system, A, is the gravitational

constant, and E is the eccentricity of the orbit. Therefore, q and Ng would reduce to:

q =^0, A, Pcc ,^Pii, Q iri,^;

^Ng = 3 + 2 x n„ + 2 x (N x nri )^x ns x nt)

Here Prcc, Qrt P i ^t, and H::; are the nondimensional values Pcrc11,, Q crc11,,

Q iri//i, and Hisjiki , respectively. In parametric studies of spacecraft dy-

namics, dimensionless parameters and independent variable are desirable. For in-

stance, simulation results using time as the independent variable from t = Tinitiai to

t T final are applicable for a particular orbit only. In contrast, using true anomaly

as the independent variable, simulations for 9 = Oinitia/ to 9 = 9 final are valid for

similar orbits at different altitudes. In the present study, all masses and lengths are

nondimensionalized by the characteristic mass and length, respectively. As the sim-

ulation results are independent of the characteristic mass and length, their choice is

arbitrary. Variables with a dimension of time, such as frequencies, are nondimension-

alized by the orbital rate at the perigee point, G. As for the time derivatives, their

true anomaly counterparts are obtained using the following relations:

^d^d

^

dt^dB
d2^d2^2€ sin 9  d

^

dt 2^d92^1 + E cos 0 de

where Eq. (2.42b) is derived from Eqs. (2.41) and (2.42a).

(2.42a)

(2.42b)



oil K.
K

Mlib,vib
A" CA Ka[Mlib

1\4 1Tib,vib^Mvib^1 q1 Cq1 Kq1

• • •

nv qnv qnv

Q,p
Q4
Qa

• • •

Qqi

Qqnv

The general equations of motion can now be written as:

or M(q)q" C (q, q', 0) K (q, 0) = Q(0) ; (2.43)

where primes denote differentiation with respect to the true anomaly; n, is the total

number of vibrational degrees of freedom such that Ng = 3 + nv . Here M is a non-

singular symmetric matrix of dimension Ng x Ng . The entries in M come from second

order terms of d I clO(OT 0q 1 ). C is a Ng x 1 vector representing the gyroscopic terms

of the system. They come from two sources: from the Coriolis terms of d/c/O(8T/0q 1 )

and from 017 0q. K, also a Ng x 1 vector, denotes the stiffness of the system. Its sole

contribution is from (OU 00. 0, the generalized force vector of dimension Ng x 1, is

evaluated using the virtual work principle. Note, nonlinear entries in M together with

nonlinear and time varying components of 0, K, and Q result in a set of coupled,

nonlinear, and nonautonomous equations of motion.
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3. NUMERICAL IMPLEMENTATION

3.1 Preliminary Remarks

The computer code required to simulate a general system of interconnected flex-

ible bodies is expected to be complicated and lengthy. In implementing such a com-

puter program, the following points must be taken into consideration:

(i) Each computer has a constraint on the acceptable program size beyond which

its execution is at a suboptimal speed. This limit on size is especially stringent

in time-sharing systems.

(ii) The numerical integration subroutine determines, to a certain extent, the

speed of execution and accuracy of the numerical solution. The ideal fast,

higher-order subroutine is based on the multi-value method.

(iii) The architecture of the code is critical in program management and debug-

ging. A computer code with simple and easy to follow algorithm is always

desirable.

With the advances in computer technology, the importance of the first point

has diminished; however, the other two aspects remain critical for the success of a

multibody simulation program.

The chapter begins with a discussion of the numerical integration subroutine

and program flowchart. This is followed by details of the program and subroutine

structures. The emphasis is on the effort required by the user, the architecture and

algorithm of the computer code that facilitates simulations of a large class of space-

craft.
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3.2 Numerical Integration Subroutine

In order to solve the equations of motion numerically, they have to be first rear-

ranged into a set of first order ordinary differential equations. Consider Eq. (2.43), a

set of N second order differential equations, which can be rewritten as

qll = m --1 (00(0)— C (q, q1 , 0) — K (q, 0)}

= F (q, q', 0) .^ (3.1)

Now let

then

(3.2)

which represents a set of 2N first order differential equations to be integrated numer-

ically.

The subroutine IMSL:DGEAR is chosen to perform the numerical integration of

the equations of motion. The advantages of this subroutine include: (a) automatic

adjustments of the iteration step-size and order of the iteration formulae; (b) user-

supplied or numerical evaluation of the system Jacobian matrix; and (c) user selected

integration methods (Adams or Gear method). The latter feature is particularly

appealing as the two methods complement each other. Adams method is particularly

suitable for non-stiff equations whereas Gear method handles stiff systems efficiently

[100,101].

In order to understand the program architecture, a little background on the

methodology of numerical integration is appropriate. Consider Eq. (3.2) with gn,

as the solution at the nth integration interval (T), such that 0 = nT . Two methods,

one-value or multi-value, can be used to obtain g m . The former uses onl y gn_ i while
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the latter uses k previous values^, -g7i — k . The advantage of the multi-value

method over the one-value approach is in the accuracy and reliability of the solution;

however, the multi-value method has a disadvantage in the execution speed.

The multi-value method consists of three stages: prediction, error test and correc-

tion. Given iion_ 1 ,^, gn — k , the predicted value of gn , denoted by gn,,o , is obtained by

a linear interpolation method. An error test is then performed on gn , 0 to determine

whether the error is within the user-specified tolerance. A negative result of the test

prompts the corrector formula to determine a refined value gn , i which is subjected to

the error test again. The error test and correction procedures are repeated rn, times

until satisfies the tolerance giving gn

3.3 Computational Flowchart

The flowchart showing computational steps involved for multibody simulation is

presented in Figure 3-1 . The input phase requires the user to supply the following

information:

(i) orbital elements p, i, w (used for the determination of solar radiation incidence

angles), and eccentricity, c;

(ii) simulation period and IMSL: DGEAR parameters such as tolerance, method,

initial step size, etc.;

(iii) inclusion/exclusion of thermal deformation effects;

(iv) initial conditions representing disturbances.

This is followed by the calling of the subroutines MODEL and MODE which are

briefly explained below.

Subroutine MODEL

The subroutine reads in the data relating to the system configuration. The data
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Call IMSL : DGEAR

Numerical
Integration

117 
/ Output /

V
Increment T

Orbital
Elements

System
Configurations

Substructures
Physical Properties

Environmental
Disturbances (Y/N)

Simulation
Period^0 -> T(final)

IMSL:DGEAR
Parameters

 

STOP

 

Figure 3- 1^Flowchart showing numerical approach to multibody dynamics sim-
ulation.
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include:

(i) number of Bi and Bi j bodies;

(ii) number of modes for beam and plate shape functions;

(iii) geometry of each body: rigid body, flexible beam or plate-type appendage;

(iv) for body Bk: mass (mk), length (/k), length/width ratio (r k) , thermal length

ratio (L), and stiffness (wk);

(v) principal and cross-product of inertias of body Bk:^(IYY)k, (izz)k)

(Ixy )k, (Ixz )k, and (/yz)k;

(vi) orientation of Tic with respect to the orbital axes, of Fi w.r.t. Fc , and Fij

w.r.t. Fi ;

(vii) location of Oi relative to 0,, and of Oi relative to Oi.

Note that Bs can be either a rigid body, free-free beam or completely free plate

whereas Bi and B, j can be rigid bodies, cantilevered beams, cantilevered plates or

combinations of them. For a parametric study, all quantities in (iv) and (v) are

introduced in dimensionless forms.

Subroutine MODE 

Once the geometry of each body is known, the modal integrals for each body

can be determined. These integrals, which are used in the evaluation of kinetic and

potential energies, include:

rCu
(C) dC

f Cu(
 (Or (0) 2 dC

Cl

_ f" d2 Or (C)^;
5^j_4-1 Ck2

s^f"^d2 (C) 
4°76 ' =^OW^dC

—C1
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Cu
4. 3 = f COr (C)dC ;

= f C 2 Ch(C)dC ;
— Ct

f61 ClOr (() d^ s (()
(1

4b7 's = ^d(^d(—

The limits of the integrals are either (-0.5 < < 0.5) for free-free shape functions

or (0 < C < 1) for the cantilevered case. The first four integrals ((VC, , 403', and

4.4) are used in the evaluation of the kinetic energy expressions. For instance, using

Eq. (2.20) and (2.29) to evaluate Tt,, in Eq. (2.35), 44 would be required. The

last three integrals are used in the evaluation of strain energies as can be seen from

Eq. (2.40). For plate type appendages, the integrals for shape functions in both X

and Y directions are evaluated.

After executing the subroutines MODEL and MODE, the program begins the

numerical integration of the equations of motion which are coded in the subroutine

FCN. At the completion of each integration step, the program can evaluate the ener-

gies of the system if such information is desired. Let the solution p-n_ i at 0 (n —1)T

be known. The determination of gn can proceed as indicated in Figure 3-2 . The

importance of the subroutine FCN is now apparent; it is required at every prediction

or correction step. Hence, it would be useful to understand in greater details the

architecture of FCN.

3.4 Subroutine FCN

3.4.1 Background

In general, evaluation of the kinetic and potential energies is straightforward;

however, determination of their derivatives is not necessarily so. For instance,

1 ^1Tv = 
2
— f

c
 (5 lc • dm, + 

2
- ^[f (cps'i) • (cps'i ) dmi

i=1m
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-1/

Prediction : Call FCN, Y r1 , 0

Fail

Correction : Call FCN, Y_ n,m

Pass

Figure 3-2^Flowchart of a numerical integration subroutine.

d
dO aq'

(CF,Pi,i 8ii7) • (q,jiti,Ai)dmi ji;
3=1 rni,3

f^ae,^d^dm,
^dO aq'^dO aq'

+E[f { (crei +c i7s:/). a(c(*+(c18:)
i=i^

aq'^d9 a 
6:)

qi
d a(q 

ni

(3.3a)

dmi
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ni

{(CfijttijO lii^Ci
c^-7/^°(Cittijaiii) 

Oqi
7=1 m.L 73

ddmi
de NI (3.3b)

  

At first glance, numerical evaluation of Eq. (3.3b) does not seem to be much more

difficult than that of Eq. (3.3a). Only the number of terms has increased from 3 to

9. The problem lies in a dramatic increase in vector dot products, multiplications

between matrices and between matrices and vectors. In evaluating Tv according to

Eq. (3.3a), 3 dot products, 1 product of matrices and 2 multiplications between a

matrix and a vector are required. The respective numbers of operations in Eq. (3.3b)

for evaluating dId0(0T,1 OV) are 6, 7, and 13. Obviously, the increase in the effort

required for the operations is phenomenal. Although the operations can be executed

manually, the resulting computer codes for Eq. (3.3b) are lengthy and hence demand

considerable effort to manage and debug. An effective way to evaluate derivatives of

113y3, andand Hsys is therefore necessary. One such approach is presented next. The

idea is to assemble terms in Eq. (3.3b) in stages, each according to a simple algorithm.

The significant advantage of this approach is that the user is only required to perform

simple differentiation and supply this information to the program.

3A.2 Definitions of new operators

Consider matrices A, B and vectors C, D such that

an^a1 2 a13 bil b12 b13
A =

=

a21
a 31

[

Ci

C2 }
C3

a22
a32

a23
a33

= [am] ; B =

D =
_

b21[
b31

di

d2
d3

b22

b32

;

b23
b33

[bk i] ;
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Four operations on these matrices and vectors are defined:

(an bil + a21 b21 a31b31)
(anbil a22b21 a32b31)
(a13b11 a23 b21 a33b31)
(an biz + a21 b22 a31b32)

T(A,B) = (an biz a22 b22 a32 b32 )
(a13 b12 a23 b22 a33 b32 )
(an b13 a21 b23 + a31 b33 )
(a12b13 a22 b23 a32 b33 )
(a i3 b13 a23 b23 a33 b33 )_

= [vm ] , m = 1,^,9; (3.4a)

all [bk l ]
r(A, B) = an [bkl]

a31 [bkl]

a 1 2 [bkl ]
a22 [bkl]
a32 [bkl]

a13 [bkl]
a23 [bkl ]
a33 [bkl]

[-Yrnn]
^

m = 1,^,9; n = 1,. ••,9;^ (3.4b)

(b21a31 — b31a21) (b3ia11 — b11a31) (bnan — bmaii)
(b21a32 — b31a22) (b31a12 — 191032) (bnan — b21a12)
(b21a33 — b31 a23 ) (b31a13 — b 11 a33 ) (b11 a23 — b21a13)
(b22 a31 — b32 a21 ) (b32 a 11 — b12 a31 ) (b12 a21 — b22a11)

A(A,B) = (b22a32 — b32a22) (b32a12 — b12a32) (b12a22 — b22a12)
(b22a33 — b32a23) (b32a13 — b12a33) (b12a23 — b22a13)
(b23 a31 — b33 a21 ) (b33 a11 — b13 a31 ) (b13 a21 — b23an)
(b23a32 — b33a22) (b33a12 — b13a32) (b13a22 — b23a12)
(b23a33 — b33a23) (b33a13 — b13a33) (bi3a23 — b23a13)_

= [Amn] m = 1,^,9; n = 1,^, 3; (3.4c)

C142

ci d3
c2 d1

C2 d2

C2 d3

c3 d i

C3 d2

C3 d3 -

e(C , D) =
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E9k=1 Akl Ok
v.9
La k= 1 Ak2U

D
k^•

E 91c= 1 Ak3 ek

Using these operators, Tt ,,, It ,,, and -It ,, can be written as:

A(A, B) o 0(C, D)

= [Gm] ,^m = 1,^, 9;
^ (3.4d)

where T, r, A, and 0 have the dimensions of 9 x 1, 9 x 9, 9 x 3 and 9 x 1, respectively.

The next step is to operate r, A, and T with O giving:

vkek ;
k=1

[

4,171keek

k

E9k= 07kOk

(3.5a)

(3.5b)

(3.5c)

T(A, B) o Co(C, D) =

r(A, B) o e(C, D)

E
EE

9k=i72k 0 k

9k175kOk

9k=f78kOk

E 9k=173 k Ok

E9k=176kOk

E9k=179kOk

Tt ,,„ = fT(U, U) 0 e(7,',6c1 ) dmc
mc

+ E [f T(q, c?) o 0(rft,SD dmi
i=1 mi
ni

+ E^.1) o^dmi,j]
j=1 rni,j

= f {2T (13 U) o 0(7fc , 6,)U
mc
- r(u, u) 0 [0(7c, 6c) + 0(6c, 'Tc)] dmc

N+ [f {2T(q, q) 0 0(-fi, sou
i=i^rni

- r(q, q) o [clef, 6i) + (Si, ;7=i)i} dmi

ni

+ E [f {2T(cu.ti, j , C?j ,u,,, i ) 0^ojiyu

- r(cui i cuL i j )^+^dmi,j]
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Htm = f
mc

 {A(U, U) o [0(rfc, Sc) + 0(8c , i-D1 dm,

+^ [f {A(q,^o^+ 0(6i,j)i} dmi
i=1^977'i

ni+ E^{ A (q, ipi, j,^0 [e^S'ij )^dmi,j]
j.i

The expressions appearing in Eqs. (I-1), (I-2), and (I-3) are rewritten in terms of

the new operators in Appendix II. For example, consider Eq. (3.3b), which can be

expressed as:

d 0T,
dO aq'

= Lc T(U, U) o 6',)} dm,de Oqi

+^f -d-T(q,cp 0 -P-0(4 sii )
i=1 Limi ( de^Dv

d 0
T(q,^o -5179 -570(S li , ei )} dmi

n

.{^ j) 0 -670(8ii ,8ii)

^

a^_ _

mz,3

d a^e, c ,
0 --(-1,3 ,-; t9^dmi, (3.6)

Merit of the new operators is not quite apparent through a direct comparison of

Eqs. (3.3b) and (3.6); however, there are two subtle advantages. First, once rotational

matrices q and are determined, all the required T, F, and A operations

can be easily programmed using simple algorithms. Similarly, all the required 0

operations can be coded once the position vectors are determined. The evaluations of

Tsys , Lys , fins and their derivatives is just a matter of assembling the appropriate

T, F or A with the suitable O. The second advantage is best illustrated using the

expressions of I r., It , and I,:

Ir = f {T(u,u) 0 e(pc, Pc)u — r(u,u) 0 o(pc, fic)} &Tic
mc
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+E^{T(q, cD 0 e(pi, -fix - r(q, o^mi
i=1
ni

+E f^CicApi,j) o
j.1

— o^dmi,j] ;

It ={T(U,U) o^— r(u, u) e(T--,,,-01 dm,
n7,c

+E [fm 
{T(cF, cD 0^;ix - r(q, o^dmi

i=1
ni

+E f^60-ii,Tii)u
j=1

—r(q itt i^0 e(Tii , ,T-ii )} dmi ,j1 ;

= f {T(u,u) 0(6c , 6 c )U — r(u, o 0(6c , 6,)} dm,f
+E [f {T(q, cD 0 e(Si, Si)U — r(q, c,..) 0 8(6i, Si)

i=1
ni

+E f {T(cu.tij , CLi fti,j) o
i=1

- r(czp i , j , c f,. ;ii i , j ) 0 e(sii , 6,j )} dm i ,] •^(3.7)

Note, the same 1' and r operations are used in each expression. This results in a

significant saving of the computational effort.

3.4.3 Subprograms in FCN

Figure 3-3 shows the flowchart for subroutine FCN. Contributions of the various

subprograms are briefly explained below.

Subprogram DIRANG 

The subroutine evaluates the angular velocities (.7.) of Eq. (2.2), direction cosines
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Parallel Processing
Feasible

Subprogram SLEW

L^

Subprogram
KINENE

Subprogram
INEMAT

Subprogram
ANGMOM

Subprogram
POTENE

Evaluate Y'

YES Subprogram
CNTROL

Subroutine FCN

Subprogram DIRANG

Subprogram SOLROT

Subprogram VECTORSubprogram RMAT

Subprogram
GBNIFOR

Assembly of
Equations of Motion

Figure 3-3^Flowchart of the subroutine FCN.
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/ of Eq. (2.39), and their derivatives. These include OcD10q, OcD10q 1 , dIcle(OColOqi),

and &Dia (q = 0,0, and A). These derivatives are evaluated manually and then

programmed into the subroutine. In evaluating dcD/c/O, it is further separated into

two parts: one contains v", 0", and A" while the other contains the coupling among

'0 1 , 0', and A'. This procedure is necessary in the assembly of the system mass matrix.

Subprogram SOLROT

The objective of the subroutine is to evaluate the solar radiation incidence angles

(0-e , and ki), the rotation matrices (q and q j ) and their derivatives. To

illustrate, the procedure for evaluation of ik and Cf is explained below:

(i) Using the orbital elements and libration angles as input, :;15, as given by

Eq. (2.7) is calculated. The derivatives (00,10q, 01c , dlc10(00,10q'), and

are evaluated based on the explicit coded expressions.

(ii) Oxe , Oye , and 0,c are evaluated using Eq. (2.31). Note that depending on

the configuration of 13,, the subroutine selects the correct expression from

Eqs. (2.31a), (2.31b), and (2.31c).

(iii) The rotation matrix as given by Eq. (2.30) and its derivatives are deter-

mined next. Again, explicit expressions for the derivatives are coded for this

purpose.

The same procedure is repeated for q2 and Ow using Eq. (2.8a) and (2.30), re-

spectively. Finally CF  is determined from Eq. (2.32) and substituted into Eq. (2.8b)

to give the required 02,j.

Subprogram SLEW

In this subroutine, Ajj, j , and qi are coded explicitly. Using and its

derivatives from subroutine SOLROT, the subprogram then evaluates^and
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the associated derivatives.

Subprogram RMAT

The subprogram evaluates all the necessary T, r, and A matrices given by

Eq. (3.4a), (3.4b) and (3.4c), respectively. These matrices are shown in Table 3-1

. The alphanumeric name in the first column identifies the array in the computer

program; and its location in the array is denoted by the subscript of T, r, or A.

For instance, A(U, Cr) is represented by R93i(4) in the program. The required

derivatives for each operation are:

ay OT d ar dT
T :

Oq^8q'' de Oq'^de
ar dr

:

Oq^dO
OA OA d OA dA

Although there are a number of operations involved, they all can be executed

using similar algorithms. Besides, the derivatives of the operators do not require any

manual effort. For instance,

OA(CF, CF)^OCF^OCF 
A( 

Oq
i , Cfl A(CF, 

Oq
i )aq

with OCF/Oq provided by the subroutine SOLROT.

Subprogram VECTOR

The subroutine evaluates all the required 0 column matrices as given by Eq. (3.4d).

Table 3-2 represents their complete list. Each 0 column matrix occupies a unique

position in the program which is indicated by its array name in the first column and

its array position in the subscript of O. For instance, DDij(3) refers to 0(di,

A :
aq^Oq'^dO Oq'^d0
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Table 3-1^List of 1', A, and r operations executed in subroutine RMAT

R91c T I (U, U)

R91i T i (Cr, Cr) T2(Cr, q) T3(U, Cr)
T4 (q, q) T5 (U, C?)

R91ij T i(Cr , (q, i mi,i)') T2(Cr ,C4u,i, j) T3(q , (q PU)')
T4 (C, CF jpi,j)

R91 j T i((q,iiii,iY , (^,,ptli,i) i ) T2((q, pi, V , CF,ikti,i) T3(U , (Cil-ii,i) i )
T4(C,iiti,i,q,,jili,j) T5 (U, C i pi,j)

R99c r i (u, U)
R99i r i (q, cn r2(u, q)
R99ij ri(q, qj iii,j)
R99j ri(cuti J , cutij ) r2 (u, c4, i , j )
R93c A i (U, U)
R93i A i (Cr, Cr) A2 (Cr, q) A3 (U, Cr)

AM, q) A5 (U, q)
R93ij Ai (Cr,^,.iiii, V) A2(Cr, qii-ti,i) A3(C?, (CULLi)')

A4(C i ĵp,i,j)

R93j A i ((q jp,i,j)', (CULi,in A2 ((qjiti, j) i , CULL j) A3 (U, (CULL j) 1 )

A4 (q, ji-ti,j, CU-1U) A5 (U, CF,i iti, j)

fk, gk, and hk are defined as follows:

fk^Pk &ink ;
•

mk mk

gk - f Tk amk ;
mk mk

hk = 1^Sk d'ink ;
mk Lk

where k = c, i, or i, j. The required derivatives include 00140010V , d1c10(00 Oq i ),

and de/dB. Only the derivatives of dk , gk , hk, 'fk, and 6k (k c, i, or i, j) are calcu-

lated beforehand and coded. Using this information, the subroutine is able to evaluate
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Table 3-2^List of all the 0 operations executed in subroutine VECTOR

CMC 01(0cm, Ccm, ) 02(C/cm, Ccrn) 03(Ccm, Ccra) 04(Ccm, Ccm)

DDi 01(cl'i, di ) 02 (d2, di) 03(di, di) 04(di, di)

DDij 401(di, dij ) 02(cei, di,j) 03(di,di,j) 04(di, di,j)

DD j 01(d2,j,di,j) 02(dij, cii,j) 03(di,j, di,j ) 04(di,j, di,j)

DFi ei(di, ii) 02 (di, fi)
D Fij 01(d2, fi,j) 02(4 fi,j)

DF j ei(cei,j, fi,j) 02(di,J, fi,j)

DGi 01(d2, g2) 02(d2, -gi) 03(di, .--gii) 04(di, gi)
DGij 01 (d2, yi,j) 02 (d2, ji,j) 03 (di, Yi,j ) 04(di, gi,j)

DGj 01(d2,.7, g2,.7) 402(di,j, ji,j) 03(di ,j, pl ,i ) 04(di ,j, .0 i,j)

D Hi 01(d2, Wi ) 02(d2, hi) 03(di, h li) 04(4 hi)

D Hij 01(d, Wij ) 02(4 hid) 03(di, hi, j) 04(di, hi^)
DH j 01(di,j,h/i ,i ) 02(di,j,hi,j) 03(di,j,14,9) 04(di,j,hi,j)

RRc 01(Pc, Pc)
RRi el (Pi, Pi)
RRj el (Pi,j, Pi,j)
RTc e1(fic,t-c1) 02(t, Pc) 03 (Pc, Tc)

RTi e1(Pi,7f2) 02(T', Pi) 03(Pi, Ti)
RT j e1(Pi,j,71,9) e2 (71,j, Pi,i) e3(fii,i, Ti,i)

RV c ei(fic,ec) 02(61c, Pc) 03 (loc, 6c)
RV i el (Pi, 61 ) 02 ( 62, Pi) 03(-0i,6i)
RV j ei(Pi,j, 67,9) 02(61,9, Pi,j) 03(Pi,9 , 62,9)
TT c 01(T- , TD 02('T., 'Tc) 03(Tc, '7- ) (1)4(Tc) 'fc)
TTi e1 (f',J1) 02(ft,7i) 03 (Ti, Ti) 04 (Ti, Ti)
TT j 01(71,i, 'T,i) 02(71,i, ri,j) 03(Ti,9,71,9) 04(T2,9,T2,9)
TV c e1(t.,61c) 02('T.,6c) 03(tc, 61c ) 04(Tc, 6c)
TV i e1(f',6i) 02(T2, 6i) 03(ti,6D 04(T-i, Si)
TV j 01(T2 ,9 , e2111,j, (52,9) e3(Ti,9, (5i,j) 04 ( T2 ,9 , 6i, )

VVC 01(81c, (51c ) 02(ec,6c) 03(6c, 6c) 04(6c, 6c)
VVi 01(6"A) 02(67, 6i) 03(6i, 6i) 04(6i, 6i)
VVj el (62,j , 61i ,j ) 02(61i,j , 6i,J) 03(6i,i, 6i,j) 04(62,i, oi,i)
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all the required derivatives. Take 0(di, di,j)/aq as an example, it can be evaluated

as:
a^_490(di,d

i
^d, -^ad.i)= 0(^,di .)+0(di , ^z73 ).aq^ag^aq

The 0 vector for the shift in the centre of mass is evaluated in two stages. First,

61,, and their derivatives are determined using Eq. (2.12). Now, the procedure

as explained earlier is used to evaluate O.

Subprogram KINENE

The evaluation of aTsys laq and dIdO(OTsys laq i ), where Lys is given by Eq. (2.35),

is the objective of this subroutine. In order to facilitate the assembly of system mass

matrix, did9(5Tsy3 /0V) is separated into components of double derivative and cou-

pling among velocities (Coriolis effect). The evaluation is done using 'I' and 8 oper-

ations as given in Eq. (3.5a). A portion of the computer program for the assembly of

aTsys lOq is presented in Appendix II.

Subprogram INEMAT

Here, the mass inertia matrix^ofof the system, as given by Eq. (2.36), is as-

sembled using the operation between F and 0 in Eq. (3.5b). In addition, the two

derivatives, 0I sys /0q and dIsys idO, are also evaluated. Appendix II shows the source

code for the assembly of Lys .

Subprogram ANGMOM

This subroutine evaluates angular momentum fins given by Eq. (2.37) and the

related derivatives including OH,sys iOq, 01-/sys ik, d/d0(01-/sys /OV), and dilsys IdO.
Similar to dC,Vd61 , dfisys IdO is separated into two parts with one consisting of the

double derivative terms and the other the Coriolis terms. The evaluation is just

a matter of assembly of A and 0 operations in Eq. (3.5c). The source code for
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calculation of Hsys is listed in Appendix II.

Subprogram POTENE

The subroutine calculates the DU/aq term in Lagrange's equation. Here U repre-

sents sum of the gravitational potential energy and the strain energy. The former is

evaluated using Eq. (2.38) while the latter with Eq. (2.40). Depending on the beam

or plate type appendage, the subroutine selects the correct expression for calculating

the strain energy derivative.

Subprogram GENFOR

This subroutine calculates the generalized force based on user-supplied explicit

expressions. For instance, the generalized force for the Space Station can be the

actuator output, solar pressure disturbance, aerodynamic drag, astronaut motion,

etc.

Subprogram CNTROL

If a control study is undertaken, this subprogram would calculate the desired

controlled states and control effort using the Feedback Linearization Technique.

Assembly of equations of motion

After the execution of the aforementioned subprograms, the next step is to as-

semble the equations of motion in the form of Eq. (3.2). From Eq. (2.35), the kinetic

energy of the system, T, is given by

T = T„^
Y

b + Ts s +
2
1 oTis 

Ys
 + Hsys •

Taking the derivative with respect to q and q' gives:

T aTsys^a H sysaT aTsys ^ risyso + fins] 6-)T ^
aq^aq^aq L^L aq^aq

(2.35 )

(3.8)
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OT^.911,sys + awl' [is _ .4_, + fisyd +LDTallaqs,y, 
aq' (3.9)

Note since the Keplerian relations (Eq. 2.41) are assumed to be valid, Tor t) does not

contribute to the equations of motion; hence, it is discarded in the differentiation.

Differentiating Eq. (3.9) with respect to B gives

d OTd aT,sy^d aDT=^s ^ [Lysw + Hsys ]d0 aq'^d0^dB aq '
&DT dins _ T dc-i) dHsys i dcDT aH,sys
8q' [ d0 w j'sYs d0^d0^d0 aq ' + (DT d aHsYs 

d0 aq'

which can be separated into the first and second order components:

d aT ) = Oi( d aT,ys ) d ac-oT
Q1 

( 
d0 aq'^dB aq' ) + d0 aq' [ sYs

+ OcDT r dins , i. + c i 'D +: 01.sYsi d0 )] dHsys m^u.) + J.,„„ s (t.Ji dalaq' L d0^d0^.1
dC)T )aHsys _T aHsys .+ 01( d0^aq'^d0 aq' '^

(3.10a)

O2 U(0 aq'
OT ) 

= 02
( 
d0 aq'
d aT,y3 ) +a

aq' I_
c-DT FT 

s
 ys02(d6.

c10 )
 + 02 ( dHasys  )]

(ddcp eT ) 0 ..F1:97 
+ 02^ (3.10b)

Here 0 1 and 02 represent the first and second order components of the function

in parenthesis. Equation (3.1) can now be assembled with ease. M is given by

Eq. (3.10b) and Q by the subroutine GENFOR. C is the sum of Eqs. (3.8) and

(3.10a), and K is given by OU/aq of the subroutine POTENE. Using a suitable

matrix inversion subroutine, M -1 can be calculated; hence, -4" can be obtained. It

is then rearranged in the form of Eq. (3.2) and ready for the numerical integration.

Finally, a few general comments concerning implementation of the computer pro-

gram are appropriate.

(i) To help assess validity of the computer code, the program checks for the
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symmetric character of M at every integration step. Any indication of non-

symmetric entries in M would halt further execution.

(ii) The program requires minimal effort in terms of explicit differentiation by the

user. Only subroutines DIRANG, SOLROT, and VECTOR require the user

to supply explicit expressions of differentiation which, in general, are simple.

In evaluating the potential and kinetic energies, no further differentiation

effort is required from the user.

(iii) Each subroutine is programmed with simple and repetitive algorithm. This

feature greatly aids in the debugging process of the program.

(iv) The modification of the program can be undertaken quite easily due to its

modular architecture. This is particularly useful if other shape functions are

desired. One just has to replace the subroutine MODE with the new shape

functions, while the rest of the program remains intact.

(v) Although the source code is being programmed for sequential execution pur-

pose, the code can always be modified for parallel execution if it is supported

by the hardware. This would result in a potential saving in execution time.

The possibility of parallel execution exists at two places. First, it can be

implemented in processing RMAT and VECTOR subroutines. Second, the

subroutines KINENE, INEMAT, and ANGMOM can be executed simultane-

ously.

3.5 Program Functions

The usefulness of the computer program is not limited to simulating runs for any

initial conditions; the program also serves as a powerful tool to study the effect of

flexibility, librational motion, thermal deformation, shift in c.m., slewing maneuvers,
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etc. For instance, in order to investigate the thermal effect, one has to supply the

appropriate index for the thermal parameter in the input of the main program: '0'

for exclusion and '1' for inclusion of the thermal effect. If '0' is assumed, the program

would essentially set all components of Tsys , Lys , and fins associated with the

thermal effect to zero, i.e.

Tsys = Torb + Tem -I- Th Tjr + Tv + Th,ir Th,t) Tir,v ;

Lys =lc, -F1h^-F1h,r^+^;

Hsys = Hcm, Hh Hjr + Hv Hh,jr + + Hh,v + Hr,v •

A second run is then made with index '1' which can be compared with the previous

result to reveal the effect of thermal deformations. Similar procedure can be used to

study the effect of shifting c.m. and slewing maneuvers.

The effect of flexibility and higher modes is assessed by manipulating input to

the subroutine MODEL. In order to study the effect of flexibility, one first needs to

obtain simulation results for the rigid body case. This can be achieved easily by

putting flexible degrees of freedom for each body to be zero. The higher mode effects

can be studied by carrying out simulation runs with an increasing number of assumed

modes. Once again, this number is supplied at the subroutine MODEL input phase.

The program can also be used to study gyroscopic effect and the influence of

the choice of shape functions. Unlike the aforementioned cases, these studies require

minor modifications to the program. To isolate the gyroscopic effect, C in Eq. (3.1)

is set to zero; whereas to study the choice of shape functions, one has to replace

subroutine MODE with a new set of admissible functions.
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3.6 Program Verification

In modelling a system of such complexity, an obvious question concerning its

validity arises. In absence of similar equations obtained independently by others, two

avenues are available:

(1) check energy and angular momentum functions;

(ii) comparison with particular cases if reported in literature.

Both methods are pursued here. A check on the energy variation is performed

first. An arbitrary rigid satellite with the following nondimensional inertia diadic is

chosen:

Isys =
2719.8^0^0

0^10.53^—13.14 .
0^—13.14 2717.2

  

The satellite is aligned in the gravity gradient stabilized orientation, i.e. the maximum

inertia, 1-Ix , is about the orbit normal. Assuming the nondimensional gravitational

potential energy at 9 = 0 and 0 = Of be denoted by U0 and Uf, respectively, SU =

Uf — Uo . Similarly, ST = Tf — To is the difference in the nondimensional kinetic

energy of the satellite at 0 = 0 and 0 = Of. The variation of SU and ST for the

satellite subjected to three different librational disturbances is shown in Figures 3-4

to 3-6. Two simulation runs were carried out for each initial condition. In the first

case, denoted by the solid line in each plot, e 0 0 and C, -) as given by Eq. (2.2) is used.

In contrast, the second case, represented by the dotted line, is a fictitious physical

situation with the orbital rate assumed to be zero, i.e., the orbital frame is stationary

(e = 0). With this assumption,

= [— 0' sin A + 0' cos 0 cos A] ip + [A' — sin 0] 5 p

+ [0 1 cos A + Vi cos 0 sin A] kp .^ (3.11)
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Figure 3-4 shows the system response and energy variation for an initial pitch

displacement of 1° (Figure 3-4a) and pitch velocity disturbance of 0.03 (Figure 3-4b).

The figure shows that although there is no visible difference in the librational response

for both the cases, the energy variation is different. Note that, the magnitude of ST

and SU are immaterial, instead, it is the trend that is useful. In 0 = 0 case, the

system is conservative as ST + SU is zero; however, this is not true for 0 0 0 case. It

can be regarded as only quasi-conservative.

For an initial condition in the roll degree of freedom (0 0 = 1° in Figure 3-5 a

and eo = 0.2 in Figure 3-5b), Figure 3-5 shows that the two cases have different

librational responses as well as energy variations. Once again, only the fictitious

system is conservative. Similar observation can be made for the response associated

with an initial yaw displacement of 1° (Figure 3-6 a) and yaw rate of 0.02 (Figure 3-

6b).

In theory, both the cases should be conservative. The lack of conservation of

energy for 8 0 0 case is attributed to the assumption that the Keplerian relations,

Eq. (2.41), are valid. For a rigid satellite, the total energy of the system as given by

Eqs. (2.34) and (2.35) is:

and

1 -^- ^heM^/eT U = —M fee • Ric^tr [I, I
m, 2RL^Ys

F —
1

(DT^+^ T Is
2^Ys^2./IL^vs

ST + SU =I^— I2^f sys f^o sys o

3ite  (-T I^-^-T I+^1^1 „To )2/iL f sYs 
1 f — o 

Y

(3.12)

(3.13)

In the 0 0 0 case, the first three terms of Eq. (3.12) are forced to be constants by the

assumption of the Keplerian relations; hence, it is not surprising that the change in
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Figure 3-4^Librational response and energy variation of a rigid satellite sub-
jected to an initial pitch disturbance: (a) O. = 1°; (b) zY„ = 0.03.
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Figure 3 - 5^The effect of roll disturbance on a rigid satellite libration and energy
variation: (a) 0,, = 1°; (b) 0 1,, = 0.2.
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energies as given by Eq. (3.13) is not zero. Even though this implies that the system

is not truly conservative, Eq. (2.41) is not a poor assumption. With the first three

terms in Eq. (3.12) of several orders of magnitude higher than the remaining two,

the percentage change in total energy (ST + SU)/(T U) is hardly significant. For

the present satellite orbiting at 300 km altitude, the change is less than 10 -8 %. The

conclusion from this study is that energy variation can be used to verify the computer

code by setting the orbital rate to zero.

Next, a comparative study with two cases reported in the literature was under-

taken. Ng [90] studied the librational and vibrational dynamics of a gravity-gradient

stabilized satellite with two thermally flexed appendages (Figure 3-7 ). The present

formulation can handle this model by treating the rigid central body to be B, and

the two appendages as body Bi (i = 1, 2). Using the data in Table 3-3 for a satellite

in a 90-minute orbit, the present formulation gives results identical to those obtained

by Ng [90].

A set of typical response plots are presented in Figure 3-8 . Here, the generalized

coordinates P1 and P2 correspond to the inplane vibration of B 1 and B2 in the first

mode, respectively. The initial condition applied is (P1) e = 0.05 and the satellite is

taken to be orbiting in an eccentric orbit with 6 = 0.2.

The second model used for verification is based on the two arm flexible manipula-

tor as reported by Chan [15]. Here, the space station is treated as a rigid body (B e )

whereas the robot arms (B 1 and B1 , 1 ) are taken to be cantilever beams supported on

a mobile base (Figure 3-9). As the present formulation does not account for trans-

lational motion of any member, the base was considered stationary. The numerical

values used in the simulation are listed in Table 3-4 . A 100-minute circular orbit is

assumed in the simulation. The two formulations gave almost identical results (Figure
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Table 3-3^Spacecraft data used to assess accuracy of the present formulation

Central Body (Be)

  

me^=^42,000 kg _ -
lc^= 10 m

(_Tzx ) c^=^100,000 kg m 2

(iyy ) c^= 400,000 kg m 2

(Izz ) c^= 400,000 kg m 2

Upper and Lower Appendages (B 1 and B2) 

m1^m2^10 kg^(Ixx)i^=^(1-xx)2^0
/2^= 100 m^(Iyy)i^= (402^33,333 kg m 2

f2^=^0.003 Hz^(Izz )i^=^(rzz)2^33,333 kg m 2

Local Vertical

Upper Appendage (B2)

Central Body (Be )

Lower Appendage (B1)

Figure 3-7^The spacecraft model used to assess accuracy of the present formu-
lation.

Orbit
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A typical response obtained by the present formulation simulating
the spacecraft model studied by Ng [90]. The results showed perfect
agreement.
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Figure 3-9 Schematic diagram of the space station based MSS studied by Chan
[15]: (a) coordinate systems; (b) design configuration. It is used here
to assess validity of the present general formulation.

87



Table 3-4^Data of the space station based MSS studied by Chan [15]

Space Station (Be) 

me = 240,120 kg
/,^=^115.35 m

8 x 10 5 kg m 2
2.67 x 10 8 kg m 2
2.67 x 10 8 kg m 2

Upper and Lower Appendages (B 1 and B2) 

mi^mi,i^=^10 kg^(1-xx)1^("xx)2^0
11^=^1_ Li^=^100 M^(Iyy)1^=- \-yy, 2^33,333 kg m2

fi,i^=^0.003 Hz^(1-,,,)1^(izz)2^=^33,333 kg m2

3-10 ). Minor discrepancies may be attributed to the modified cantilevered modes

assumed by Chan [15].

The generalized coordinates for this model are:

.
q =^, A ,^Qri /2'6 Q1,1 '

r = 1,^, nri ;

where nri represents the number of modes selected. In Figure 3-10, using only one

mode and with the initial condition being applied inplane ((n o = 0.05), only 0, Pi

and P 1 1 are excited.--1,

A study of convergence in terms of the number of shape functions required is

appropriate here. Four simulations are performed using one, two, three and four

modes to represent beam vibrations of the MSS configuration. The results are shown

in Figure 3-11 . For simplicity, the following discussion uses symbols I, II, III, and IV

to indicate simulations and the associated number of modes. In general, irrespective

of the number of modes chosen, the trend in response remains essentially the same.

Discrepancies appear in the phase and amplitude.
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Figure 3-10 A comparison between the MSS response obtained by Chan [15] and
the present formulation.
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Figure 3-11 Dynamics of the MSS using one, two, three, and four assumed modes
in the simulations: (a) librational response.
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Figure 3-11 Dynamics of the MSS using one, two, three, and four assumed modes
in the simulations: (b) the first mode vibrational response.
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in the simulations: (c) the second mode vibrational response; (d) the
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The convergence of the libration angles is shown in Figure 3-11a. Comparing I

and II, the following observations can be made:

(i) convergence of the pitch response, both in phase and amplitude, is signifi-

cantly improved with an increase in the number of modes.

(ii) roll angle is essentially identical for both simulations;

(iii) although the yaw response has the largest amplitude, the difference in yaw

response is confined to the phase only.

Simulation III shows a dramatic improvement in the pitch response prediction, both in

phase and amplitude. As expected, the roll response continues to display insignificant

discrepancy, while the phase error in the yaw is markedly reduced. With four modes

(simulation IV), the librational response appears to have converged to the true value.

The convergence of the first mode response (P1, Q 11 , P1 ,1 and 9 11 1 ) is shown in

Figure 3-lib. Similar to the pitch response, a comparison between I and II shows

discrepancies both in phase and amplitude. However, the deviations become smaller

with the inclusion of the third mode; and finally become negligible in simulation IV.

Figure 3-11c shows the convergence of the generalized coordinates (PL Q 21 , /1 1 and

Q 2 ) associated with the second mode. A comparison between II and III shows er-

rors in phase and amplitude. The situation improves with the addition of the fourth

mode; however, the error still persists suggesting that higher modes are necessary to

achieve better convergence. Finally, Figure 3-11d compares response of the gener-

alized coordinates associated with the third mode (Pt Q 31 , /1 1 and 931 1 ) using 3

and 4 modes in the simulation. The discrepancy between the two cases indicates the

necessity to include higher modes for improving convergence to the true dynamics

From the simulation results it can be concluded that, in general, both rigid and

flexible dynamics converge as the number of modes in the simulation increases. Hence
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the cantilever modes, used here as admissible functions, can predict the system dy-

namics with accuracy. In the present case, convergence of the librational degrees

of freedom and the first generalized coordinates (generalized coordinates associated

with the first mode) need at least three modes in the simulation. Convergence of

the second generalized coordinates is only marginally improved with addition of the

fourth mode and the convergence of the third generalized coordinates would certainly

require higher modes.

Table 3-5 compares the CPU time required in the four cases. The number of

equations increases from 14 (for one mode, Nq = 7) to 38 (with four modes, Nq = 19),

with the CPU time required showing an increase of 34 fold. The enormous rise in

the computational effort is attributed to the stiff equations associated with higher

modes; hence, there is a tradeoff between accuracy and CPU time. In the present

study, without sacrificing the physics of the- problem, one mode is always assumed

in the simulation. Higher accuracy, if necessary, can always be obtained using more

modes and hence requiring more computational effort.

Table 3-5 Comparison of CPU time required using one, two, three and four
assumed modes in the simulation of the MSS

No. of Modes Nq CPU time sec * CPU/CPUref**
1 7 5,540.11 1.000
2 11 28,347.89 5.122
3 15 88,155.92 15.912
4 19 189,525.45 34.210

* based on VaxStation 320
**CPUref represents the time required using 1 mode
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4. PARAMETRIC STUDIES

4.1 Preliminary Remarks

The objective of this chapter is to illustrate versatility of the relatively general

formulation. To this end, dynamic simulations of five spacecraft models, of contem-

porary interest, were carried out. The three models are related to the proposed Space

Station. It should be pointed out that the station is an extremely complex, highly

flexible platform with diverse interconnected structural elements (beam, plate, shell,

etc.) It will have a size of the soccer field. Of course, such a gigantic structure can-

not be carried to the operational altitude in its entirety. It will be constructed in

stages through integration of modular subassemblies extending over 30 flights of the

Space Shuttle. Thus the proposed Space Station represents an evolving structure with

time dependent geometry, inertia, flexibility, damping, and other properties during

its constructional phase. Of course, the Space Station will operate in presence of a

variety of disturbances induced by the environment, on board operations and interac-

tions with the Shuttle flights. Thus each stage of its development would represent a

challenging dynamical problem in design, dynamics, stability and control. Here, the

dynamics of the FEL (First Element Launch) configuration, the PMC (Permanently

Manned Configuration), and the on board MSS (Mobile Servicing System) which will

assist in construction and operation of the station, are investigated at some length.

Next generation of communications satellites represent a large class of configura-

tions of significant importance. After all the revolution in communication is the gift

of the space age that has affected the entire world. A rather novel design of the

INdian SATellite II (INSAT II), the multipurpose Indian communications satellite to

be launched this year, is considered for study here. Finally, dynamics of the SFU
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(Space Flyer Unit), a Japanese experiment to be launched in 1993, is studied during

deployment and retrieval of the solar arrays.

The amount of information obtained is enormous and only a sample of it is pre-

sented here in a condensed form. However, it does suggest trends, and lays foundation

for the design and development of control strategies.

4.2 First Element Launch

The United States led Space Station Freedom program is currently in the design

and development phase. The backbone of the station is the power boom. It is essen-

tially a truss structure to which modules, equipment and subsystems are attached.

There are five major modules (two Habitat, two Laboratory and one Logistics) clus-

tered around the geometric centre of the power boom. The subsystems include the

photovoltaic (PV) arrays and the associated power generation equipment, anten-

nas, Attitude Control Assembly (ACA), Reaction Control System (RCS), and Mobile

Remote Manipulator System (MRMS). Solar and stellar sensors, satellite servicing

provisions, Orbital Maneuvring Vehicle (OMV), and shuttle berthing ports are some

examples of the user equipment. In order to maximize solar energy input, the PV ar-

rays can undergo predefined rotation via alpha and beta joints. Total power generated

by each pair of PV array is 18.75 kW. Heat rejection of the station is achieved by two

station radiators and four PV array radiators whereas waste disposal is accomplished

by the resistojet located at the end of the stinger.

As pointed out before, the Space Station will be constructed utilizing around

thirty Space Transportation System (STS) flights [102,103]. The first flight would

result in construction of the First Element Launch (FEL) configuration. It will have

an overall length of 60 m and a mass of 17,680 kg. Major equipment installed in the

FEL configuration includes two PV arrays, an alpha joint, fuel storage tanks, stinger
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and resistojet, avionics, and RCS.

The design configuration of the FEL would be such that the axial directions of

the power boom and PV arrays are parallel to the orbit normal and local vertical,

respectively. It should be pointed out that, in general, the design configuration is

not identical to the equilibrium configuration. The FEL is simulated here by the

power boom, a free-free beam, with lumped masses representing the alpha joint, fuel

storage tanks, avionics, and RCS. The stinger and the resistojet are treated as a

cantilever beam and point mass, respectively. The PV arrays and PV array radiator

are represented as cantilevered plates. Figure 4-1 shows the coordinate system used

in the numerical simulation. Considering only the first mode of vibration for the

flexible elements, the generalized coordinates and the degrees of freedom are:

,1^1,,—1 r)1 pl^1^1B:4q=0, 0, A, c^1 Q^1^1 .
c

Ng = 10 .

The numerical data used in the simulations are obtained or estimated from the NASA

reports [102,103] and are summarized in Table 4-1 . The nondimensional inertia diadic

of the system is found to be,

^

1.1715^0^—0.1088
Isys =^0^9.2108^0

^

—0.1088^0^9.5538

Consider first the rigid body dynamics of the FEL. Here, the power boom as well

as the attached appendages are assumed to be rigid. The equilibrium configuration

of the FEL corresponds to: We = 0°, ce = 0.74°, and A, = 0°, which is different from

the design configuration (power boom along the orbit normal, solar panels parallel

to the local vertical). Hence the system, even in absence of any external or internal

disturbance, would exhibit some motion as shown in Figure 4-2. Introduction of an
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Figure 4-1^Configuration of the FEL used in the numerical simulation: (a) co-
ordinate systems; (b) design configuration.
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Table 4-1^Physical parameters of the major components of the FEL

Power Boom (Body Bc ) Stinger (Body B1)

lc 60 m /1 26.7 m
me 15,840^kg 270 kg

1.936^Hz
m1-1 xl x)1

0.5^Hz
(1-xx)c 0.15 x106 kg-m2 f( 0
(-Tyy)c
(1-zz) c

4.37 x 106
4.28 x 106

kg-m2

kg-m2 (1-1-zYYz))11
64,160
64,160

kg-m2

kg-m2

PV Radiator (Body B2) PV Array (Body Bi, i = 3,4)

/2 11.5^m /i 33 m
m2 450^kg mi 444^kg

0.1^Hz f 0.1^Hz
(1-xx)2 50^kg-m 2 (rxx)i 1,332^kg-m2

(402 19,837^kg-m2 (40i 161,172^kg-m2

(1-zz)2 19,887^kg-m2 (Izz)i 162,504^kg-m2

initial disturbance of 0.1° in pitch, roll or yaw only accentuates the unstable response

and the system starts to tumble in less than one orbit (Figure 4-3 ).

Defining

Izz IXX= T
lyy

= 0.91 ;

1"xx — ibty
A 2 = T

izz

= —0.84;

Kane et al. [104] have shown that stable motion is possible if and only if K1 < 0 and

K2 > —K1. This confirms unstable orientation of the FEL and points to the need of

a suitable control.

The effect of flexibility on the system response is shown in Figures 4-4 to 4-8.
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^
Librational response of the rigid FEL showing the inherent unstable
character of its orientation.

For better appreciation of the response, the vibration degrees of freedom are plotted

in terms of the tip deflection of the centerline. Using Eq. (2.23), the tip deflections 61

and SL of a beam element (e.g. Bk) in Yk and Zk directions, respectively, are given

by:

13T(t)01,(1k);

Q rk(t )O lk. ( 1 k) •
^ ( 4 . 1)

r=1

For a plate element Bk, the displacement is a function of both the Xk and Yk coordi-

nates. Defining and EYk to be the tip displacements of the line Yk = 0 and Xk = 0,

respectively, and using Eq. (2.25), and EZ are then given by

n

k = E TIV(t)OUlk)Ot(o) (4.2a)
s= 1 t= 1
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m n

= E^Htt(t)oz(0)0t(wk)
t=1

(4. 2 b)

Note that, for a cantilever plate, since ¢4(0) = 0, EYk, is identically zero. For instance,

61 of Figure 4-4 represents the tip deformation of B2 (station radiator) of the line

Yk = O. The range of the deformation plotted is —0.5 x 10 -5 cm and +0.5 x 10 -5 cm.

Figure 4-4 shows response of the system initially in the design configuration. This

result can be used as a reference for other cases with initial disturbances. Here, devi-

ation from the equilibrium configuration serves as a disturbance to the system. Even

with such a small disturbance, the system gradually undergoes unstable librational

motion. The periodic oscillations of the flexible degrees of freedom in the direction of

the local horizontal (Scz, E3 , and €T) or the orbit normal (Si) indicate their non-zero

equilibrium position. On the other hand, the other degrees of freedom (sg, Si', and

€D, which are parallel to the local vertical, have zero equilibrium position. Due to

the coupling effect with librational and vibrational degrees of freedom, their response

amplitudes gradually increase with time.

The effect of the power boom disturbance is shown in Figure 4-5. In Figure 4-

5a, the power boom is initially deformed in the first mode with a tip deflection of

1 cm in the local vertical direction ((/31,) 0 = 0.826 x 10 -4 ). Even with this small

disturbance, the pitch response is excited significantly with high frequency harmonics

of 0.02° in amplitude. Similar trend is observed in the roll response. Although the

amplitude is lower than that in the pitch response, the roll motion is excited at

a higher frequency. Under this initial condition, the power boom is expected to be

vibrating symmetrically about the local vertical; hence, it is not surprising to see that

S' and roll have similar response trend with the distinct beat phenomenon present.

Modi and Ng [105] have investigated the beat phenomenon of a gravity-gradient
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oriented satellite with two appendages. It is found that the beat is caused by the

differential gravitational torques acting on the two appendages. In the present case,

the beat response is attributed to asymmetrical loading on the power boom coupled

with the gravitational disparity. As the arrays and the stinger become smaller, the

beat gradually disappers (not shown). Compared to Figure 4-4, the yaw response

remains unchanged. The flexible element experiencing the largest deflection is the

stinger. Its maximum amplitude is about 3 cm in the local vertical direction.

In Figure 4-5b, the power boom is initially disturbed in the local horizontal direc-

tion ((Q 1 ),, = 0.826 x 10 -4 ). Since this initial condition gives rise to predominantly

symmetrical motion about the local horizontal, the yaw motion is excited with high

frequency harmonics. However, as can be expected, both pitch and roll remain essen-

tially unexcited. Compare to Figure 4-5a, the beat phenomenon is no longer present

in the power boom or rigid body response. Also, note that in Figure 4-5a, the maxi-

mum value of S is about 0.1 x 10 -3 cm when excited by the initial disturbance in IT,

direction; whereas in the present case, sg is an order of magnitude higher when the

same disturbance is applied in the Ze direction. These show the directional charac-

teristics of the FEL power boom: given the response in direction B when disturbed in

direction A, one cannot predict the response in direction A when disturbed in direc-

tion B. Once again, the stinger experiences the largest deflection with an amplitude

of 5 cm in the orbit normal direction. Note that the PV array response has the same

amplitude as the previous case; however, now the low frequency component is more

pronounced.

Response of the system with the stinger subjected to an initial disturbance is

shown in Figure 4-6 . The stinger is deformed initially in the first mode of a cantilever

beam with a tip deflection of 1 cm in either the local vertical direction ((,P1),, =
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0.1872 x 10 -3 , Figure 4-6a) or along the orbit normal ((Q 11 ) 0 = 0.1872 x 10 -3 ,

Figure 4-6b). Similar to the power boom disturbance case, Figure 4-6a shows that

both pitch and roll responses have high frequency harmonics although the roll motion

is hardly noticeable. Also, the initial condition has no effect on the yaw response at

all. As for the power boom, it is slightly excited with a peak amplitude of about

0.005 cm in the local vertical direction. The excitation of other flexible members are

also small: 0.25 cm for EZ and 0.5 cm for E3 and ET. Figure 4-6b shows that disturbance

along the orbit normal has very little impact on librational and vibrational motions of

the system. Compared to Figure 4-4, the librational response remains essentially the

same. The effect on the power boom is again minor while amplitudes of the PV array

and radiator vibrations are one and three orders of magnitude smaller, respectively.

Also, analogous to the power boom response of Figure 4-5, (5T has a peak amplitude

of only 0.1 x 10 -4 cm when excited by the initial condition on Qi whereas 6f is two

orders of magnitude higher when excited by the initial disturbance of P.

Figure 4-7 shows the influence of PV array and radiator disturbance on the system

response. In Figure 4-7a, the PV array radiator is initially deflected in the first mode

of a cantilever plate with a tip deflection of 0.5 cm ((H 21 ' 1 ) 0 = 0.2485 x 10 -3 ). Note,

both roll and yaw responses are hardly affected. Pitch response shows low frequency

harmonics of a small amplitude. The excitation of the power boom and the stinger is

also small: the peak amplitudes of and sy being only 0.25 x 10 -4 cm and 0.02 cm,

respectively. The only flexible member that shows noticeable deformation is the PV

array with a peak amplitude of about 0.25 cm. With the same initial disturbance

applied to the PV array ((H 1 ' 1 ) 0 = 0.866 x 10 -4 ), Figure 4-7b shows response results

similar to those observed in Figure 4-6a: the rigid body dynamics as well as power

boom and stinger motions are virtually absent. However, it is of interest to note a

degree of similarity in the response trends of (5'. and E3 (or €T) in Figure 4-4b, where
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the initial condition corresponds to Ocz = 1 cm. This points to the coupling of power

boom vibration in the local horizontal direction with the PV array deformation.

In summary, Figures 4-1 to 4-7 demonstrate that flexibility effects on the FEL

response cannot be overlooked. A small disturbance applied to any flexible member

can affect the rigid body motion significantly. The power boom disturbance in the

local vertical direction is the most critical one as the resulting high frequency modu-

lated pitch and roll responses would require high bandwidth controllers. Furthermore,

with the power boom or the stinger subjected to a given magnitude of disturbance,

its direction is critical in predicting the rigid body as well as vibratory responses of

other components.

4.3 Permanently Manned Configuration

4.3.1 Dynamic response

The PMC will be established after fifteen STS flights. It will be 115 m in length

and 160,972 kg in mass. The major difference from the FEL configuration is an ad-

ditional pair of PV arrays and their radiator, two station radiators, and the modules.

The two pairs of PV arrays are expected to provide a total power of 37.5 kW for the

station. The orientation of the PMC will be similar to that of the FEL: the power

boom is aligned with its axis parallel to the orbit normal; the axial directions of radi-

ators (station and PV arrays) and the stinger are parallel to the local horizontal; and

the PV arrays in stationary mode have their axes parallel to the local vertical. The

coordinate systems for the numerical simulation are shown in Figure 4-8 . Here the

PMC is idealized as a free-free beam (power boom) supporting the stinger modelled

as a cantilever beam and eight cantilever plates representing arrays and radiators (4

PV arrays, 2 PV array radiators and 2 station radiators). Considering only the first
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mode of vibration, the generalized coordinates and the number of degrees of freedom

are:

q =^ Pl, ,^p 1 ni al"^u1,1
--L 2

^H"1
 , -14_/1

^"-1,1 H
1 ' 1^Hu1, and " ,•,^,^ 9 

Ng = 15 .

The numerical data for the components are the same as before except for the power

boom and station radiators and are summarized in Table 4-2 .

To begin with, the rigid body dynamics of the PMC is considered. The equilib-

rium configuration of the PMC is found to be at oe = 0°, q5e = —0.002°, and A, = 0°.

Even in the absence of any disturbance, the PMC exhibits some librational motion as

shown in Figure 4-9. An initial displacement of 0.1° in pitch, roll or yaw is applied.

Like the FEL, Figure 4-10 shows that the PMC is inherently in an unstable orienta-

tion. However, unlike the FEL, librational disturbances result in different response

trends. Figure 4-10a shows that an initial pitch disturbance results in a relatively

gradual librational instability with the pitch, roll, and yaw amplitudes reaching 10°,

7°, and 5°, respectively, at the end of one orbit 90 min). With an initial roll dis-

placement, Figure 4-10b shows that the divergence sets in much faster. Actually, the

PMC starts to tumble after one orbit when the yaw angle reaches —110° although the

pitch and roll angles (34° and 29°, respectively) are still less than 90°. Finally, with

an initial yaw disturbance, Figure 4-10c shows that the response is similar to that in

the pitch disturbance case; however, the magnitudes in roll (39°) and yaw (22°) are

significantly higher. The nonclimensional inertia diadic of the PMC is found to be

0.6706^0^0.0046
Lys =^0^13.4346^0

0.0046^0^13.2783
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Power Boom (Body Be )

lc

fi
( IX X C

c
(Izz)e

(Ixz)c

115 m
- 154,583 kg
- 0.193 Hz
- 1.44 x 106 kg-m2

- 43.26 x 10 6 kg-m2

43.26 x 10 6 kg-m 2

0.18 x 10 5 kg-m 2

Stinger (Body B 1 ) Station Radiator (Body Bi, i = 2, 3)

   

26.7 m
270 kg
0.5 Hz
3,844 kg-m 2

64,160 kg-m2

64,160 kg,m 2

11.5 m
1,395 kg
0.1 Hz

ti^0
61,496 kg-m 2

- 65,340 kg-m 2

PV Radiator (Body Bi, i = 4,5) PV Array (Body Bi, i = 6, ... 9)

- 11.5 m
- 450 kg

0.1 Hz
50 kg-m 2

19,837 kg-m 2
- 19,887 kg-m 2

• 33 m
444 kg
0.1 Hz

• 1,332 kg-m 2
161,172 kg-m 2

• 162,504 kg-m 2

Table 4-2
^

Physical parameters of the major components of the PMC

giving K1 = 0.94 and K2 = —0.961. Although these values are similar to those of the

FEL (KJ. = 0.91 and K2 = —0.84), the trend of the libration responses for the two

cases are different. This points to the difficulty in predicting response trends based

on K1 and K2 values only.

The system response of the PMC with the inclusion of component flexibility is

shown in Figures 4-11 to 4-14. For conciseness, only the response of one station
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^
Libration response of the PMC due to deviation from the equlibrium
configuration.

radiator (B2), PV array radiator (B 4 ) and PV array (B 6 ) are plotted. The system

behaviour indicates some similarities as well as dissimilarities with the corresponding

FEL responses.

Figure 4-11 shows response of the system initially in the design configuration.

The motion ensues due to deviation of the system orientation from its equilibrium

configuration. Note, the pitch motion is essentially unexcited. Although the roll and

yaw degrees of freedom are excited, their amplitudes increase very slowly. Unlike

the FEL, only the power boom vibration in the local horizontal direction (6) and

the station radiator (q) have non-zero equilibrium positions. In the power boom

response, the component in the local vertical direction (6g) is hardly excited. The

stinger experiences a peak vibrational amplitude of about 0.1 x 10 -5 cm. Note that,

unlike the FEL, the stinger is stiffer than the power boom and hence has the highest
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number of oscillations per unit time.

Next, the system is subjected to an initial disturbance corresponding to the power

boom deformed in the first mode with a tip deflection of 1 cm. With the initial de-

flection in the local vertical direction, (P 1,),, = 0.4348 x 10 -4 , Figure 4-12 shows

the system response over 0.02 orbit. Note that similar to the FEL, the power boom

disturbance in the local vertical direction excites the libration motion with high fre-

quency modulations superposed on it. Yet, unlike the FEL, only the pitch motion is

excited in the present case, with a considerably lower frequency due to a more flexible

power boom. Also, the beat phenomenom no longer exists since the powerboom is

now loaded symmetrically. The stinger, though excited, vibrates predominantly in

the local vertical direction with a magnitude of 0.6 cm peak-to-peak. Other flexible

components oscillate with frequencies of the power boom vibration. Even with this

small initial disturbance, the PV array radiators experience a large deflection with a

peak amplitude of 2.5 cm. In Figure 4-12b, response of the PMC is to an initial dis-

turbance in the local horizontal direction ((Q 1 ),, = 0.4348 x 10 -4 ). In the FEL case,

yaw is the only librational motion excited. Here, only the pitch response is present

with a negligible amplitude. The stinger and the PV array radiator responses are

also small with peak amplitudes of 0.01 cm and 0.1 cm, respectively. It is interesting

to note that both the station radiators and PV arrays have similar response trends

but with different amplitudes: 1 cm for the station radiators and 2.5 cm for the PV

arrays, although the latter are more massive.

The focus is now turned to the stinger disturbance. The initial condition of the

stinger is identical to that of Figure 4-6. The system behaviour may be expected to

be similar to that observed for the FEL case. Yet, since the PMC is about ten times

as heavy as the FEL, the forced response to the stinger disturbance is expected to be
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Figure 4-1 2 The influence of the power boom initial tip displacement of 1 cm on
the PMC response: (b) displacement in the local horizontal direction,
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smaller in magnitude. Figure 443 a verifies these predictions. With the initial stinger

disturbance in the local vertical direction, the figure shows that the PMC is pitching

about the orbit normal at a higher frequency. However, the amplitude is considerably

smaller than that for the FEL case. The power boom, PV array and radiator oscillate

with maximum amplitudes of 0.003 cm, 0.1 cm and 0.05 cm, respectively. These

values are about an order of magnitude smaller than the corresponding ones in the

FEL case. Note that the stinger response in the orbit normal direction attained a

maximum amplitude of 0.001 cm in the FEL case, whereas now the same degree of

freedom is hardly excited. The response of the PMC with initial stinger disturbance

in the orbit normal direction is shown in Figure 4-13b. Similar to the FEL, the

librational motion is unaffected by the stinger disturbance. The PMC librates as if no

initial condition was applied to the system (other than deviation from the equilibrium

orientation, Figure 441). Likewise, the power boom and the stinger deformations in

the local vertical direction are excited slightly. The response trends of the PV array

and radiator are also similar to those in the FEL case; however, the amplitudes of

the response in the PMC case are considerably smaller. In the FEL configuration,

the maximum array displacement was 0.05 cm whereas it is only 0.01 cm in the PMC

case.

The flexibility effects of the station radiator, as well as PV array and radiator

are shown in Figure 4-14. In Figure 4-14a, an initial tip displacement of 0.5 cm is

applied to one of the station radiators ((H 12-1 ),, = 0.2485 x 10 -3 ). As can be seen, this

disturbance has no influence on the librational response of the PMC. For the power

boom, the response 8: is identical to EZ in Figure 4-12b where the initial condition

was applied to This illustrates the coupling of Q 1 and 11 21-1 degrees of freedom.--c
The peak amplitude of the power boom motion is found to be 0.002 cm. As expected,

the forced oscillation of the stinger is predominantly in the direction parallel to the
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radiator disturbance, i.e. along the orbit normal. Since the stinger is stiffer than

the power boom, the amplitude of the stinger motion is only 0.0005 cm. It should

be pointed out that since E2 is perpendicular to eft or E6 , the PV array and radiator

should not be excited. However, since is excited gradually, the coupling effect

induces the response €,T and 66. At the end of 0.02 orbit, the magnitudes of vibration

are 0.001 cm and 0.2 cm for the PV array and radiator, respectively.

The disturbance is now applied to the PV array radiator with a tip deflection of

0.5 cm ((H1,1)0 = 0.2485 x 10 -3 , Figure 4-14b). Similar to the FEL, the PV array

radiator disturbance has minor effect on the librational motion. It is interesting to

note that sg exhibits the same response trend as that of €,T in Figure 4-12a. Once

again, this shows the coupling between PV array radiator and the power boom de-

formation in the local vertical direction. The forced oscillation of the stinger is now

predominantly in the local vertical direction, which is the same as the direction of ETI.

The station radiator response is insensitive to the PV array radiator disturbance; and

is identical to the corresponding response in Figure 4-11 in absence of an external

disturbance. The PV array is now vibrating with a peak amplitude of 0.1 cm. The

response trend is similar to that of the PV array radiator in Figure 4-14c where an

initial disturbance is now applied corresponding to the array tip deflection of 0.5 cm

((H 16-1 ) 0 = 0.866 x 10 -4 ). Other observations are similar to those made during the

discussion of Figures 4-14a and 4-14b. Namely, the initial condition on PV array lead

to only minor libration of the PMC. The distinct response trend of the power boom

again appears in the S. The stinger response, with its characteristic high frequency

harmonics, vibrates with a peak amplitude of about 0.005 cm in the local vertical

direction. Once again, the station radiator is insensitive to this particular initial

condition.
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Figures 4-12 to 4-14 show that, as in the case of the FEL, the rigid body motion

is sensitive to the deformations of the flexible members. Even for the same flexible

member, different directions of excitation results in different librational response. Due

to the relatively large mass and inertia of the power boom, even its small excitation

induces large deflections of the arrays and radiators. The stinger, which has the

largest stiffness among all the flexible components, excites librational and vibrational

responses with high frequency modulations. Disturbances applied to the radiator or

array, in general, have little influence on the rigid body motion of the system as well

as flexible deformations of the power boom and stinger.

4.3.2 Thermal deformation and eccentricity

With a large surface area of over 1,500 m 2 , it is important to investigate the effect

of thermal deformation of the flexible members. The simulation here considers only

the differential heating of the PV arrays, which have a total area of over 790 m 2 and

are facing the sun at all times. Since no reliable data on the physical properties of

arrays are available, the value of L: is assumed to be 0.01 (i = 6, ... , 9) where

LZ = 1 i/17

and /:, the thermal reference length, is as given by Eq. (2.19). Thermal reference

length can be visualized as the radius of curvature of the thermally deformed ele-

ment. A large /7, and hence small L:, implies little thermal deformation effect. An

assumed value of Lz = 0.01 corresponds to /7 = 3,300 m, which represents little

differential heating of the arrays. Even with this small L: value, the effect on the

PMC response is not negligible as shown in Figure 4-15. Here, there is no initial

disturbance applied to the system, i.e. the excitation is purely due to deviation from

the equilibrium configuration. A comparison with Figure 4-11 would be appropriate.
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Since the PV arrays deform in planes parallel to the orbital plane, the pitch motion is

strongly affected. At 0.2 orbit, the pitch angle attains a magnitude of —10° and is still

increasing. Most of the flexible generalized coordinates, except those corresponding

to deformations in the orbit normal direction, are also affected. In general, thermal

deformations of the PV arrays induce larger response. The stinger and the PV array

radiators experience the highest increase in deflections.

As the space station will be orbiting in a near circular orbit (6 = 0.02), Figure 4-16

studies the effect of eccentricity. With the system initially in the design configuration,

a comparison with Figure 4-11 shows that both pitch and roll responses are affected.

As for the flexible degrees of freedom, a small eccentricity does not produce any

noticeable change in their response.

Figures 4-15 and 4-16 illustrate that both thermal deformation and eccentricity

affect the pitch response. However, thermal deformations, even of a small magnitude,

also influence response of the flexible members.

4.3.3 Velocities and accelerations

One of the stated missions of the space station is to provide microgravity environ-

ment for the purpose of scientific research. As stated in the NASA report [106], the

objective of the station is to provide a 1 — 10 pg environment in some portion of the

Laboratory Module. Furthermore, a drift rate, apart from the orbital rate (0), below

0.005 °/s (0.872 x 10 -4 rad/s) is desired. Using the data obtained for Figures 4-11 to

4-16, variations of angular velocities (co x , coy , coz ) and angular accelartions (ax , ay ,

az ) about the X,,Y,,Z,-axes and power boom accelerations (ag, an at the system

c.m. are plotted. Note, Eq. (3.11), where the orbital rate is assumed to be zero, is

purposely used to calculate angular velocities isolated from any effect of the orbital

rate. The angular accelerations expressed as pg/m can be interpreted as the pg level
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at 1 m from 0,, the origin of the X,,Y,,Z,-axes. For instance, a x = 1 ii,g/m implies

that a point at 1 m along the IT, or Zcaxis experiences an acceleration of 1 fig due to

the angular acceleration about the X,-axis. Assuming the microgravity experiment

workspace to be about 10 m from 0,, a 1 — 10 pg/m environment would therefore

require the angular acceleration about any axis to be less than 1 ttg/m. Finally, the

power boom accelerations, expressed in terms of microgravity, are evaluated at the

centre of the boom using the following expressions:

4( 9) = 1'c1 ( 9 )0( 0 ) ;
4(8) = C(19)0RO) ; (4.3)

since only one mode is considered in the boom vibration to illustrate the methodol-

ogy. Of course, the formulation and the program are quite general and can readily

accommodate desired number of modes.

The dynamic response of the PMC in the design configuration was shown in

Figure 4-11. The corresponding velocity and acceleration variations are presented in

Figure 4-17. Note, the only disturbance being that corresponding to a small deviation

from the equilibrium configuration (i,b, = 0, = 0.002°, and A, = 0), the resulting

response is extremely small. Obviously, a word of caution is in order in the analysis

of such virtually insignificant numbers. Stability of the numerical procedure and

truncation error may lead to noise. What is important is to recognize that all the

responses, even in the presence of 'noise', are within the permissible limits. Thus,

this can serve as a reference while assessing influence of the initial disturbances.
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Figure 4-18 illustrates velocity and acceleration variations for the PMC subjected

to an initial power boom or stinger disturbance. Figure 4-18a corresponds to the case

shown in Figure 4-12a, where the power boom is initially given 1 cm tip deflection in

the local vertical direction. Even with such a small disturbance, the resulting angu-

lar velocities and accelerations approach or exceed the specified limit. For instance,

maximum cox and ax attain values of 0.004 °/s and 500 pg/m, respectively. The

microgravity level near the power boom centre is over 1,000 pg. When the initial

disturbance is applied in the local horizontal direction, the magnitudes of both ve-

locities and accelerations are about one order smaller (Figure 4-18b); however, the

accelerations still exceed the design limit. Once again, angular velocity and acceler-

ation about the Xc-axis are largest with magnitudes of 2 x 10 -4 °/s and 10 µg/m,

respectively. The boom acceleration results in a microgravity level exceeding 1,000 µg

in the local horizontal direction.

Figure 4-13 showed that the influence of the stinger disturbance on the PMC

response is small; hence, it is reasonable to expect the corresponding angular velocities

and accelerations to be small. The prediction turned out to be correct; however, they

are not negligible when the disturbance is applied in the local vertical direction. Under

this condition, Figure 4-18c illustrates that the maximum drift rate is 0.0025 °/s about

the Xc-axis but the maximum angular acceleration has an amplitude of 300 pgim

about Y0-axis. The microgravity level due to the boom accelerations reaches a value

of 6 ag in the local vertical direction. When the same stinger disturbance is applied

in the out-of-plane direction, both the velocities and accelerations stay within the

allowable limit (Figure 4-18d). Now the maximum angular velocity (0.3 x 10 -6 °/s)

and acceleration (0.01 p,g/m) are about Z 0-axis, while the boom vibration results in

0.02 µg acceleration.
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Effects of station radiator, PV array and radiator disturbances on the PMC dy-

namics were presented earlier in Figure 4-14. The corresponding velocity and accel-

eration variations are shown in Figure 4-19 . Since the station radiator disturbance

has virtually no effect on the PNIC response (Figure 4-14a), the resulting velocities

and accelerations are indeed small as shown in Figure 4-19a. Here, the maximum

angular velocity, which is about the Ze-axis, is only 3 x 10 -7 °/s. The maximum

angular acceleration, which is about the X e-axis, is only 0.02 µg/m. Note also the

beat type variations of velocity and acceleration about the Ye-axis. The maximum

acceleration at the power boom centre is about 1µg and acts in the local horizontal

direction. From Figure 4-14b, an initially deformed PV array radiator results in very

small amplitudes of libration and vibration. Yet, the corresponding angular veloci-

ties and accelerations arising from such a disturbance barely meet the desired limit

(Figure 4-194 Although the magnitude of power boom acceleration is only 0.5 jig,

the maximum angular velocity and acceleration, which are about Xe-axis, have mag-

nitudes of 1 x 10 -4 °/s and 10 itg/m, respectively. For the disturbance arising from

the PV array, Figure 4-19c shows results to be relatively favorable compared to those

in Figure 4-19b. Angular velocities and accelerations about the IT, and Ze-axes are

about an order of magnitude smaller and the microgravity level at the boom centre

is only 1µg. On the other hand, ax is about an order of magnitude higher than that

in Figure 4-19b, and exceeds the specification.

As shown in Figure 4-15, the PV arrays subjected to even a small amount of ther-

mal deformation can have a significant impact on the PMC response. The influence

of thermal deformation on velocities and accelerations is shown in Figure 4-20a. A

comparison with Figure 4-17 shows that the thermally deformed PV arrays have a

significant influence on the angular velocities and accelerations about the X, and Ye-

axes. Without the thermal deformation, the maximum cox and ax are 1 x 10 -8 0 /s
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and 3 x 10 -4 p,g respectively. With inclusion of the thermal deformation, the

corresponding maximum magnitudes are 0.02 °/s and 10 p,g/m, an increase of over 5

orders. The wz and a z remain essentially unchanged while the microgravity level at

the boom centre increases slightly.

The velocity and acceleration variations in an eccentric orbit (€ = 0.02) are shown

in Figure 4-20b. Recall from Figure 4-16 that eccentricity effects are limited to pitch

and roll responses only. Indeed, Figure 4-20b shows that the power boom acceleration

remains unchanged with a maximum value of 0.03 pg. As for angular velocities and

accelerations, those about X, and Ye-axes show a large increase as compared to those

in Figure 4-17 while w z registers only a small increase. Comparing with the thermal

deformation case (Figure 4-20a), the eccentricity influence is about an order smaller;

the maximum wx and ax in eccentric orbit are 0.002 °/s and 0.3 p,g/m, which are

still within the permissible limit.

The results of Figures 4-17 to 4-20 provide valuable information pertaining to

the velocity and microgravity environment of the PMC. The results indicate that the

requirements on velocity and acceleration are stringent. With the system initially in

the design configuration, the velocity and microgravity level stay within the design

limit. However, even with a small disturbance applied to any flexible member in

the local vertical or local horizontal direction, the system velocities and accelerations

easily reach or exceed the acceptable value. A little thermal deformation of the

PV arrays gives rise to angular velocities and accelerations above the specifications.

On the other hand, a small orbit eccentricity does not adversely affect the system

performance.
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4.4 Mobile Servicing System

On board the space shuttle is a remote manipulator system designed mainly for

satellite retrieval and release. A similar system, known as Mobile Servicing System

(MSS), is planned for the Space Station. The MSS is essentially a two link ma-

nipulator attached to a mobile base which traverses along the station power boom.

The functions of the MSS would not be limited to satellite retrieval and release. In

fact, it is expected to be the workhorse for the station's construction, maintenance,

operation, and future evolution.

The MSS, being flexible in the links as well as the joints, is an extremely compli-

cated system to study. Chan [15] has investigated in details the dynamics and control

of the MSS; however, the study is limited to the inplane maneuver case. The objec-

tive here is twofold: (i) to demonstrate versatility of the computer program through

simulation of systems with slewing Bij bodies; (ii) to explore system dynamics dur-

ing general inplane (IP) and out-of-plane (OP) maneuvers of the manipulator. The

following assumptions are used in the present study to have some appreciation of the

complex system dynamics:

(i) joint flexibility is assumed to be negligible as compared to the link flexibility;

(ii) since the formulation does not consider translational motion, the MSS base is

assumed to be stationary; however, the MSS can still be placed at an arbitrary

position on the power boom;

(iii) in order to isolate effects of slewing maneuvers on the librational dynamics,

the station is assumed to be a rigid body and in the stable gravity gradient

orientation.

The numerical values used in the simulation correspond to those employed by

Chan [15] and are listed in Table 4-3 .
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= 1,800 kg (1-xx)1 = (ixx)2 = 101 kg m2

= 7.5 m (iyy ) 1 = (iyy) 2 = 33,750 kg m 2

= 0.03 Hz (Izz)]. = (./zz)2 -.= 33,750 kg m 2

m1^= mi.o.
= /Li

fl
^

= f1-4

Table 4-3^Data of the space station based MSS used in the simulation

Space Station (Be ) 

me = 240,120 kg^ = 8 x 10 5 kg m2

/,^= 115.35 m
^(40^2.67 x 10 8 kg m2

(/„),^= 2.67 x 108 kg m2

Upper and Lower Links (B 1 and B

The simulation is based on a 100 minute orbit using the coordinate systems

shown in Figure 4-21 . Considering only the first mode of vibration, the generalized

coordinates are:

q=0,0, A, Pi, Q 11. , /3 1 1 , and Q 1 hence, Ng = 7 .

It is desirable to undertake a slewing maneuver with zero velocity and acceleration

at the beginning and the end of the maneuver. The present simulation uses a sine-

ramp function which has the required characteristic:

{am,0 I Tsi — (am /27) sin(2701T,i) for 9 < Tsi ;asi =
am^for > Tsi .

(4.4)

where a s / and am are the slew angle and its maximum value, respectively; T s/ is

the slewing period; and 0 is the true anomaly. Effect of the slewing period on the

system response is shown in Figures 4-22 to 4-24. Here, the lower link is assumed to

undergo a 180° maneuver in 5, 7.5, and 10 minutes. For each of the slewing periods,

performance of the system is compared when subjected to two distinct maneuvers:

the OP (out-of-plane) and IP (inplane) maneuvers. In the former case, the maneuver
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is about the Y1 , 1 -axis resulting in the link traversing in a plane normal to the orbital

plane. In contrast, the link rotates about the Z 1 , 1 -axis and travels in the orbital plane

in the latter case.

The system response when subjected to a 5-minute maneuver of the lower link is

shown in Figure 4-22. For the OP maneuver, all the libration degrees are excited with

the yaw amplitude increasing most rapidly. With such a fast maneuver, the flexible

links experience large deflections during the maneuver. The maximum deflections

for the upper and lower links are 33.3 cm and 9.5 cm, respectively. With the IP

maneuver, Figure 4-22b shows that only the pitch librational motion is excited with

a slightly higher amplitude than that of the OP case. In addition, the pitch response

shows high frequency modulations corresponding to the flexible member's frequency.

The flexible members experience unacceptably high tip deflections of 62.4 cm and

17.0 cm for the upper and lower links, respectively.

As the maneuver time increases from 5 to 7.5 minutes, Figure 4-23 shows im-

provements in the system response. With the OP maneuver (Figure 4-23a), the yaw

motion is still significant; however, maximum tip deflections of the upper and lower

links have decreased to 11.4 cm and 3.4 cm, respectively. Similarly, the IP maneuver

case shows reductions in tip deflections to 19.2 cm and 4.6 cm, for the upper and lower

links, respectively. Notice also the disappearance of the high frequency modulations

in the pitch motion (Figure 4-23b).

As the maneuver period is increased to 10 minutes (Figure 4-24), further reduc-

tions in tip deflections is apparent. After 0.25 orbit, Figure 4-24a shows that the yaw

amplitude reaches 6.6°. This is lower than that observed before (8.2° for 5-minute

maneuver and 7.2° for 7.5-minute maneuver); however, it is still significantly higher

than the pitch or roll motion. The maximum tip deflections for the upper link is
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6.3 cm and only 1.8 cm for the lower link. For the IP maneuver, there is no signif-

icant reduction in the pitch motion (Figure 4-24b). In contrast, the maximum link

deflections reduce to 7.9 cm (upper link) and 1.9 cm (lower link).

Simulation results in Figures 4-22 to 4-24 indicate that the OP maneuver results

in relatively smaller tip deflections of the links. However, it excites a large amplitude

yaw motion. Since the primary function of a manipulator is to position a payload

at a desired location, it would be useful to investigate the resulting pointing errors

due to the maneuver. A suitable reference for measuring the error would be the

orbital frame, X,,Y,,,Zs . With this as reference, errors due to flexible deflections as

well as rigid body libration must be accounted for. The 180° maneuver as before is

considered. With respect to X,,Y,,Z, axes, the tip of the manipulator ideally (i.e.,

in absence of librational and flexibility errors) travels from a point with coordinates

(0; —7.5 m, 7.5 m) to the destination with coordinates (0, 7.5 m, 7.5 ni). Let the

coordinates of the manipulator tip be (s s , sy sz ) and define the errors in distance to

be Sx , Sy , and Sz in Xs , Y,, and Z, directions, respectively, then

= Ss ;

Sy = 7.5 — sy ;

Sz = 7.5 — Sz ;

and^St„ = .\/51^51^.^ (4.5)

Using the results in Figures 4-22 to 4-24, Figure 4-25 shows the variation of

errors with maneuver time and path. The results of Figure 4-25a corresponds to the

maneuver of Figure 4-22. Notice that Sx , Sy , and Sz are, in general, oscillatory due to

vibratory character of the link response. For the rigid body motion, the mean values

of Sx , Sy , and Sz are not necessarily constant. For the OP maneuver, effect of the
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large yaw motion can be seen in the rapidly increasing amplitude of Sx . At the end of

0.25 orbit, Sx has a mean value of over 1 m with an oscillatory contribution of 14.5 cm

peak-to-peak (p-p) superposed on it. Due to small amplitudes of pitch and yaw, Sy

and Sz variations remain fairly constant with p-p amplitudes of 16.4 cm and 25.6 cm,

respectively. For the IP maneuver, since the yaw motion is not excited, Sx remains

zero. However, the large link deflections result in prohibitively large magnitudes of

Sy and Sz with p-p amplitudes of 82.3 cm and 132.6 cm, respectively. Although the

OP maneuver results in smaller errors in the Y, and Z s directions, it leads to a large

error in the Xs direction. At the end of 0.25 orbit, the manipulator is 103.4 cm off the

target and the error is still increasing. On the other hand, the IP maneuver results

in a mean error of 40.9 cm.

As the maneuver time increases to 7.5 minutes (Figure 4-25b), there is a significant

improvement in Sy and Sz for both the maneuvers. The p-p amplitudes of Sy and

Sz have reduced to 1.3 cm and 2 cm, respectively whereas the corresponding values

are 16 cm and 25.8 cm for the IP maneuver. However, the yaw motion for the OP

maneuver remains large resulting in a large error in the orbit normal direction; hence,

Stot attains a magnitude of 94.4 cm after 0.25 orbit. In the IP maneuver case, the

mean value of the total error has dropped from 40.9 cm to 14.7 cm. As the maneuver

time further increases to 10 minutes (Figure 4-25c), the IP maneuver error shows

further improvement. The difference in the p-p amplitudes of Sy and Sz between the

two maneuvers is now relatively small. For instance the p-p amplitude of Sy is 0.5 cm

for the OP maneuver and 3.3 cm for the IP slew case. The major difference between

the two cases is the large amplitude of Sx resulting from the yaw motion in the OP

maneuver. Consequently, the mean pointing error in the IP case is only 9.5 cm at the

end of 0.25 orbit compared to 86 cm for the OP slew.
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The manipulator is now moved 50 m in the X, direction from the central body's

c.m. The effect of this offset on the system performance is shown in Figures 4-26

and 4-27 . Using a 10-minute maneuver, Figure 4-26 shows that the OP case results

in increase in pitch and roll amplitudes; whereas the yaw response remains the same

as before. The maximum tip deflections also increase for both the links; from 6.3 cm

to 10.4 cm for the upper link and from 1.8 cm to 3.1 cm for the lower link. These

observations remain valid, in general, for the IP maneuver; the pitch motion increases

in amplitude and so does the flexible links.

Due to the increased librational motion, the pointing accuracy deteriorates for

both the IP and OP maneuver cases (Figure 4-27). For the OP maneuver, since the

yaw motion is unaffected by the manipulator offset, the pointing error in X3 direction

remains the same as before. With the increase in the pitch motion, the variation of Sy

and Sz is similar to Sx , i.e. the absolute mean values of Sy and Sz increase with time.

Also, the increase in the link deflections results in larger p-p amplitudes of Sy and Sz .

In the present case, they amount to 5 cm and 5.5 cm, respectively. Similar trends of

Sy and Sz variations can be observed for the IP maneuver. It is interesting to note

that the p-p amplitudes for Sy and Sz , 3 cm and 2.7 cm, respectively, are smaller

than those for the OP maneuver. However, this is not enough to offset the effect

of rigid body motion. At the end of 0.25 orbit, both maneuvers have poor pointing

accuracy; the IP maneuver is 95.9 cm off the target whereas the OP maneuver has

an error of 126.7 cm.

Effect of increased link stiffness on the system performance is studied in Figures 4-

28 and 4-29 . The links are assumed to have the stiffness doubled and the lower link

is undergoing a 180° maneuver in 5 minutes. With this fast maneuver, a comparison

between Figures 4-22 and 4-28 shows that there is no apparent improvement in the
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librational response. The main advantage is the significant reduction in amplitude

of the flexible link vibrations. For the OP maneuver, the maximum deflection of the

upper link is only 5.9 cm whereas it was 33.3 cm before. Even for the IP maneuver,

the original deflection was 62.4 cm for the upper link but, with the stiffness increased,

it is now reduced to only 8 cm. Thus the benefit of the increased stiffness is larger

for the IP maneuver. This point is further illustrated in the pointing accuracy plot

(Figure 4-29). The errors in the local vertical and local horizontal directions have

reduced significantly for both the maneuvers. Originally, for the OP case, the p-p

amplitudes for Sy and Sz were 16.4 cm and 25.6 cm, respectively. With the stiffness

increased, both these values have dropped to 0.5 cm. Similarly, there is a sharp

reduction in the p-p amplitude of Sy and Sz for the IP maneuver. For instance, Sz

was 132.6 cm before and is only 4.7 cm with the stiffness of the link doubled. Since

the librational response is hardly changed, the OP maneuver still suffers from the

large error in the orbit normal direction. At the end of 0.25 orbit, the OP maneuver

has a total error of 101.4 cm. The IP maneuver has now a reduced error of 9.5 cm,

which was obtained before only with a 10-minute slew.

A summary of the maximum tip deflections and pointing error at the end of 0.25

orbit is presented in Table 4-4 .

4.5 Space Flyer Unit

The Space Flyer Unit (SFU) is an unmanned, reusable and free-flying platform

for multipurpose use. The SFU is developed by a consortium of Japanese government

agencies including the Institute of Space and Astronautical Science, the National

Space Development Agency, and the Ministry of International Trade and Industry

[107]. The unit is scheduled to be launched in early 1993. The SFU consists of an

octagonal shaped central body which includes eight modules of scientific experiments.
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Table 4-4^System performance vs. type of the maneuver and its period

Maneuver
Period

Maneuver
Type

Maximum
Upper Link

Deflections (cm)
Lower Link

Pointing Error
at 0.25 Orbit (cm)*

5 minutes Out-of-plane 33.3 9.5 103.4

In-plane 62.4 17.0 40.9

7.5 minutes Out-of-plane 11.4 3.4 94.4

In-plane 19.2 4.6 14.7

10 minutes Out-of-plane 6.3 1.8 86.0
In-plane 7.9 1.9 9.5

10 minutes** Out-of-plane 10.4 3.1 126.7

In-plane 11.8 3.1 95.9

5 minutes*** Out-of-plane 5.9 1.8 101.4

In-plane 8.0 1.9 9.5

* Mean pointing error for the inplane case
** Manipulator located at 50 m from Oc
*** Stiffness of the links doubled

Two solar array pedals (SAPs), each 9.7 m x 2.4 m, are deployed at either end of

the central body. The SAPs, besides generating power, are used for the High Voltage

Solar Array (HVSA) experiment. The objectives of the experiment are to determine:

(1) dynamical characteristics of the unit during deployment and retrieval of the

flexible SAPs;

(ii) the upper limit of the voltage generated which would be free from surface

breakdown, power drain through space plasma, and enhancement of the aero-

dynamic drag.

Here, the present formulation is used to simulate the dynamics of the SFU during

deployment and retrieval of the pedals. To this end, modifications to the present

formulation are necessary to account for (i) time varying component mass and stiffness

and (ii) rate of change of mode shape.
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Recall that from the Lagrangian formulation, the governing equations of motion

are given by

d ( OT^UT ou r,
dO^qr'^= u

in absence of any generalized forces. The terms, OT/aq and OU/Oq, remain the

same as before except that the mass and stiffness are functions of deployment and

retrieval strategies. The term dIdO(OTIOV) can be written into the first and second

order components, 01(d/c/9(OT/Oql) and 02(dIdO(OT 10V), as given by Eq. (3.10).

To account for the rate of change of mass (m'), the first order component is now

rewritten as:

n ( d OT) n ( d °Lys )^d OCDT
 rI s(.7) + Hays]

—1 ydo00 — —1 c10 Oq' ) + dO Oq' l 'Y
(9COT r dins^0+ 1 ( dHsys )i+ ^ [^Co- +1, ,s0i( dw )NI da^Y^dO^de Li

+ 01 ( dCoT )0I-Isys + T d OHsys +
^

( OT)^
(4.6)dO ) Oq'^dO Oq'^m^q'' )

Note that, except for the last term, 0 1 is essentially the same as before except that

the mass is a function of time. Similarly 02 term is given by Eq. (3.10b) with mass

as a variable.

In the assumed mode method, flexural displacement (6) and velocity (S') are given

by

6 =^q,(0)0,(C);
r=1
nr

= E q7,(0)or«)
r=1

where qr and Or are the generalized coordinate and mode shape, respectively. With

the inclusion of deployment/retrieval , Ibrahim [14] has shown that the velocity of
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flexural displacement is modified to include the variation of mode shape, i.e.

Thr

8/^E( q 17.(0)0,(C) + q,(0)0 17.(()) ;^ (4.7)
r=1

where 4(0 is the rate of change of mode shape and is given by

0,-(C) = 00,(C) 
0(

Incorporation of Eqs. (4.6) and (4.7) into the present formulation makes it pos-

sible to study deployment/retrieval effects on the dynamics of the SFU. The unit is

idealized as a rigid central body (B e ) with two deployable cantilevered plates (B 1 and

B2 ) attached. Assuming a 90-minute orbit, the simulation is based on the data given

in Talbe 4-5 and using the coordinate system as shown in Figure 4-30. Considering

only the first mode of the SAP vibrations, five generalized coordinates are required

to describe the system dynamics:

,^, A ,^

,1

The same data-set is used in the retrieval study except that the two columns of data

are interchanged. For instance, the length of the SAP before and after retrieval would

be 9.7 m and 3 m, respectively. Ideally, simulations should be based on SAP length

from 0 m to 9.7 m. However, this would make the governing equations of motion

extremely stiff initially and hence would require a lot of computational effort. It is,

therefore, assumed that the pedal remains rigid until 3 m of its deployment. Even

with this simplification, the natural frequency of the array would reach a high of

1.93 Hz.

The planned deployment/retrieval strategy of the SAPs can be separated into

three stages as summarized below:
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Table 4-5^Data of the SFU used in the simulation

Main Body (Body Bc )

Before Deployment^After Deployment

/,^=^4.9^ 4.9
mc^3,964.8^3,886^kg
(-rxx)c^ 7,839.2^7,524^kg-m2
(-Tyy)c^ 4,410.0^4,410.0^kg-m2
(1-zz)c^6,079.2^5,764^kg-m2

Solar Array Pedal (Body Bi , i = 1, 2)

Before Deployment After Deployment

/i = 3 9.7 m
mi = 17.6 57 kg
fi = 1.934 0.185 Hz
(rxx)i = 20 20 kg-m2
(40i 68.7 2,321 kg-m2
(izz)i = 69 2,331 kg-m2

(1) The SAPs are deployed in 15 minutes with the longitudinal axis parallel to

the local vertical, i.e., one SAP points toward the earth while the other away

from the earth.

(ii) The SFU then undergoes a 90° roll so that the longitudinal axes of the SAPs

are aligned with the orbit normal.

(iii) At the end of the mission, the SAPs are retrieved with the SFU in the same

orientation as in (ii). The retrieval time is also 15 minutes.

Contingency plans are also drafted in the event that either SAP fails to deploy

or retrieve.

The parametric analysis presented here aims at studying the dynamical response
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of the SFU during the deployment/retrieval of the SAPs. Since it is assumed that the

pedal length varies from 3 to 9.7 m instead of 0 to 9.7 m, the deployment/retrieval

time is adjusted to 10 minutes. The deployment velocity is taken to be constant.

Figure 4-31 shows the system response during the deployment of the SAP. With

the SAPs deployed in the nominal orientation, the SFU response is shown in Figure 4-

31a. Since the SAPs are deployed in the inplane direction, only pitch motion is

excited. Although the SFU remains stable, it undergoes a large amplitude pitch

motion reaching a minimum of —63°. As the SAP becomes more flexible during

deployment, the tip deflection increases too; however, the SAPs hardly oscillate. As

soon as the deployment terminates, the pedals start to vibrate with a peak-to-peak

amplitude of about 0.0025 cm. Figure 4-31b studies the feasibility of an alternative

deployment strategy. Here, the SFU undergoes a 90° roll before the deployment, i.e.,

the SAPs are deployed in the out-of-plane direction. Advantages of this strategy are

obvious. The pitch libration has a considerably smaller amplitude with a minimum

of —5.8°. At the end of the deployment, the SAPs vibrate at amplitudes about two

orders smaller than the corresponding ones in Figure 4-31a. The only disadvantage

with this strategy is that both roll and yaw are also excited; however, their amplitudes

are of the order 10 -5 even after 0.5 orbit.

Even if one SAP fails to deploy, the SFU remains stable under asymmetric deploy-

ment (Figure 4-32). Here, only B2 is assumed to deploy successfully. In Figure 4-32a,

B2 is deployed in the direction towards the earth. The figure shows that both the

librational and vibrational responses remain essentially the same as if both pedals

were deployed. In contrast, when only B2 is deployed in the out-of-plane direction,

the SFU response is different from that in Figure 4-31b. Although the pitch motion

has reduced its minimum amplitude to —2.6° from —5.8°, the roll and yaw ampli-
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tudes increase significantly (Figure 4-32b). With both the pedals deployed, the order

of magnitude of roll and yaw is about 10 -5 at the end of 0.5 orbit. With only B2

deployed, roll and yaw attain values of —12.9° and —2.7°, respectively, over the same

period. The response trend of the SAP vibration also changes. At the end of the

deployment, the SAP oscillates with a peak-to-peak amplitude of 0.0002 cm. This

value, though small, is about one order higher than that in the case with both the

SAPs deployed.

Figure 4-33 shows the system response during the SAPs retrieval. The effect of

retrieval time is studied here. In Figure 4-33a, a 5-minute retrieval period is assumed.

Even with this fast retrieval, the SFU remains stable with a maximum pitch angle of

6°, which is about the same in magnitude as the deployment case. The roll and yaw

angles remain small but are considerably larger than those during the deployment. At

the end of 0.5 orbit, their amplitudes are —0.0013° and —0.0005°, respectively. As the

SAPs are becoming more and more rigid with the progress of retrieval, it is reasonable

that they attain lower deflection (-0.5 x 10 -5 cm) during retrieval and oscillate with

a peak-to-peak amplitude of less than 10 -7 cm afterwards. With the retrieval time

increased to 10 minutes, Figure 4-33b shows that the libration response remains

unchanged. Furthermore, the SAP vibration retains the same response trend and

has about the same minimum deflection (-0.64 x 10 -5 cm). Even with the retrieval

time further increased to 20 minutes, the pitch and SAP responses remain the same;

however, the roll and yaw degrees of freedom are no longer excited (Figure 4-33c).

As seen before, the SFU remained stable for inplane or out-of-plane deployment of

the SAPs. This is no longer true for the SAP retrieval. Although out-of-plane retrieval

of the SAPs has no adverse effect on the SFU dynamics, the inplane retrieval tends

to destabilize the system. Figure 4-34a shows that with a 5-minute inplane retrieval,
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the SFU starts to tumble almost immediately (after 0.0004 orbit). Over the same

period, the tip deflections of the SAPs are over 50 cm. As the retrieval time increases

to 10 minutes, Figure 4-34b illustrates that the system remains unstable although the

onset of tumbling motion has been delayed to 0.008 orbit. Recall from Figure 4-31a

that in the inplane deployment, both SAPs vibrate with the same magnitude but in

opposite directions. Now both the SAPs deflect with different amplitudes. B 1 , which

points away from the earth, has a tip deflection of over 50 cm at the end of 0.01 orbit.

B2 , which points towards the earth, deflects only 10 cm at 0.01 orbit. As can be seen

from Figure 4-33, the appendages softens during retrieval. It is apparent that during

the inplane retrieval case, the degree of SAP softening is higher and different for the

two SAPs due to difference in the gravitational torque. This softening effect coupled

with higher pitch rate result in large deflections of the SAPs; however, further studies

are needed to confirm this observation. As the retrieval time is further increased to

20 minutes, the system remains stable until 0.13 orbit (Figure 4-34c). Once again,

B1 experiences a considerably larger deflection than B2. At the end of 0.02 orbit, the

tip deflections for B1 and B2 are 40 cm and 6 cm, respectively.

When only one of the SAPs is deployed, its retrieval is found to be a difficult

task. Whether the maneuver is performed out-of-plane or inplane, the system remains

unstable for either B1 or B2 retrieval. A typical response plot is shown in Figure 4-35.

Here, B2 is retrieved in the out-of-plane direction. Figure 4-35a corresponds to a 5-

minute retrieval which clearly indicates that the system experiences large amplitudes

of pitch, roll, and yaw motions. In less than 0.02 orbit, the SFU becomes unstable

and starts tumbling. Note also the large deflection of B2. As the retrieval time is

increased to 10 minutes, the SFU manages to maintain its stability until about 0.03

orbit (Figure 4-35b). The duration of stable motion further increases to 0.05 orbit

when the retrieval time is increased to 20 minutes (Figure 4-35c).
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A summary of the SFU stability subjected to various deployment/retrieval con-

dition is presented in Table 4-6 . The results suggest that inplane or out-of-plane

retrieval of the single SAP and inplane retrieval of both the SAPs require some con-

trol effort. Without that, it is apparent from Figures 4-34 and 4-35 that the retrieval

can be successfully performed only if it is carried out at a very slow rate.

Table 4-6^Summary of SFU stability with respect to deployment/retrieval pe-
riod and orientation

DEPLOYMENT
Deployment

Direction*
Array(s)
Deployed

Deployment
Period (min.)

Stability

IP B1 & B2 1 0 Stable
OOP B1 & B2 10 Stable

IP B1 or B2 1 0 Stable
OOP B1 or B2 10 Stable

RETRIEVAL
Retrieval
Direction*

Array(s)
Retrieved

Retrieval
Period (min.)

Stability

IP B1 & B2 5 Unstable
OOP B1 & B2 5 Stable

IP B1 & B2 10 Unstable
OOP B1 & B2 10 Stable

IP B1 & B2 20 Unstable
OOP B1 & B2 20 Stable

IP B1 or B2 5 Unstable
OOP B1 or B2 5 Unstable

IP B1 or B2 10 Unstable
OOP B1 or B2 10 Unstable

IP B1 or B2 20 Unstable
00P B1 or B2 20 Unstable

* OOP — out-of-plane deployment/retrieval
IP — inplane deployment/retrieval
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4.6 Closing Comments

Since there are numerous combinations of system parameters and initial condi-

tions of interest, the dynamical study presented in this chapter is in no way complete.

The objective here is to demonstrate the versatility of the general formulation through

the parametric analysis of four different spacecraft models. They represent a wide

variety of situations: (i) arbitrary orientations in circular or elliptic orbit; (ii) en-

tirely flexible structure; (iii) spacecraft with a large number of interconnected bodies;

(iv) thermally deformed members; (v) slewing members; (vi) deployable/retrievable

elements; and their combinations. Although the present formulation has been modi-

fied to simulate the SFU deployment/retrieval only, its implementation for a general

case is rather straightforward.
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5. NONLINEAR CONTROL

5.1 Preliminary Remarks

Versatility of the general formulation in studying dynamics of a variety of space-

craft configurations was demonstrated in Chapter 4. The next logical step is to

implement a control algorithm suitable for the general equations of motion which are

nonlinear, coupled and nonautonomous.

Nonlinear control has received considerable attention in the robotics research,

particularly during the past decade. Control strategies based on linearized system

models have been found to be inadequate. The working conditions of robot arms

often deviated from those predicted by linearized approaches. One possible solution

was put forward by Freund [107]. The idea is to use the state feedback to decouple the

nonlinear system in such a way that an arbitrary placement of poles is possible. The

technique, however, was found to be difficult to apply to systems with more than three

degrees of freedom. Freund [108] subsequently showed that by careful partitioning of

the equations of motion, the procedure can be extended to systems with more than

three degrees of freedom. However, the approach did involve simplification of the

equations of motion.

Slotine and Sastry [109] applied the sliding mode theory to the control of robot

manipulators. Consider a differential equation with the right-hand side discontinuous

around a hypersurface. If the trajectory of the solution points toward the discon-

tinuity, it is plausible that the trajectory eventually slides along the hypersurface.

By a suitable choice of sliding surfaces, control laws can be formulated to force the

manipulator to travel along a specified trajectory defined by the surfaces. However,

unmodelled dynamics usually results in high frequency oscillations of the manipulator
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as it slides along the surface. Slotine [110,111] improved the performance by using a

filtering process with a high bandwidth for the sliding variable. Slotine and Li [112]

also incorporated the sliding mode control in an adaptive PD feedback controller. The

idea is to utilize the PD controller to give zero velocity error. The nonzero position

errors are then eliminated through the sliding mode controller.

Inverse control, based on the Feedback Linearization Technique (FLT), was first

investigated by Beijczy [113] and used by Singh and Schy [114] for rigid arm control.

Spong and Vidyasagar [115,116] also used the FLT to formulate a robust control

procedure for rigid manipulators. Using the FLT and given the dynamics model

of the manipulator, the controller first utilizes the feedback to linearize the system

followed by a linear compensator to achieve the desired system output. At times,

the method is also referred to as the Computed Torque Technique which is, to be

precise, is a particular case of the FLT. Spong [117] later extended the method to the

control of robots with elastic joints. Advantages of this approach are twofold: (i) the

control algorithm based on the FLT is simple; and (ii) the compensator design, based

on a feedback linearized model, is straightforward. Recently, Modi et al. [118,119]

extended the technique to include structural flexibility for a model of an orbiting

manipulator system studied by Chan [15]. The technique is found to provide adequate

control for both rigid as well as flexible manipulator.

The study in this chapter is based on the FLT as applied to the INdian SATellite

II (INSAT II) and the MSS. The chapter begins with an introduction to the FLT.

To begin with, the method is utilized to control the rigid INSAT II. Next, the more

realistic situation of flexibility is tackled. Both, the quasi-open loop and quasi-closed

loop control strategies are discussed. This is followed by the application of the quasi-

closed loop control to the flexible INSAT II subjected to disturbances from librational

motion, flexibility and thermal deformation of the appendages. Finally, the control

strategy is implemented to improve pointing accuracy of the Out-of-Plane (OP) ma-
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neuver of the MSS.

5.2 Feedback Linearization Technique

Consider a rigid system given by

1\4 (qr, t)g;^F(qr, 4r, t) = Q(qr, 4r, t)
^

(5.1)

where qr denotes rigid generalized coordinates and (qr , , qr, is the nonlinear control.

Let the control have the form

Q(qr , 4r , t) = M(qr ,t)V F(qr , qr , t) ,^ (5.2a)

where v = (qr)d Kv((4r)d — 4r) + KP((gr)d qr)
^

(5.2b)

with (qr)d, (qr)d, and (qr )d representing the desired displacement, velocity and ac-

celeration, respectively. The nonlinear control when substituted into (5.1) results in

a linear closed-loop system,

gr = ;

^ (5.3a)

or (47-)d — 4.7. +Kv((gr)d — qr) + Kp((qr)d qr) = 0 .^(5.3b)

Since e (qr ) d — qr denotes the displacement error, Eq. (5.3) can be rewritten as

.e+ K,,Ce +Kp e= O.^ (5.4)

The function of Kv and Kp is now obvious; they are position and velocity gains to

insure asymptotic behaviour of the closed-loop system. A suitable candidate for Kp

and Kv would be diagonal matrices of the form

-2

Kp =

 

[2Coi
Kv =

2Dn

 

W2
(5.5)
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leading to a globally decoupled system with each generalized coordinate behaving as

a critically damped oscillator. For attitude control of a rigid spacecraft, Kp and Kv

are 3 x 3 matrices for pitch, roll, and yaw degrees of freedom. In general, a larger

value of c:;"),,, gives rise to a faster response of the n-th generalized coordinate.

As an example, the FLT is applied to the INSAT II. The satellite, designed by the

Indian Space Research Organization (ISRO), is scheduled to be launched this year.

INSAT II is a telecommunications satellite orbiting at the geosynchronous orbit. The

main body itself has the dimensions of 1.7 m x 1.8 m x 1.9 m. It has two flexible

components attached to the main body. An array extending to 9 m collects solar

energy to power the electronic components onboard. A 15 m solar boom attached on

the opposite end is used to counterbalance the torque produced by the solar radiation

pressure exerted on the array and the main body. The simulation carried out here

is based an the data presented in Table 5-1 and employs the coordinate systems of

Figure 5-1 .

In the simulation, the main body is taken to be rigid whereas the solar array

and boom are considered to be either rigid or flexible cantilevered plates and beam,

respectively. The equilibrium configuration coincides with the design configuration,

i.e., e = qe = A e = O. To begin with, the array and boom are considered to be

rigid. Figure 5-2 shows the libration response for initial displacement and velocity

disturbances. In Figure 5-2a, the satellite is initially given a displacement of 1° in

pitch, roll, and yaw. The simulation results show that the satellite is in an inherently

unstable orientation. At the end of 1/2 orbit, the amplitudes are 5.4 ° , —1.9°, and

26.1° for pitch, roll, and yaw, respectively. In Figure 5-2b, the satellite is given an

initial velocity of 1 rad/rad in the direction of pitch, roll, and yaw axes. Once again,

the initial condition leads to unstable motion of the satellite with pitch, roll and yaw
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Main Satellite (Body Bc)

1.7 m
1,035 kg
718 kg-m 2
1,960 kg-m2
1,810 kg-m2

Solar Array (Body Bi)^Solar Boom (Body B2)

9 m /2 15 m
60 kg 7n2 5 kg
0.29 Hz 1W

2 0.32 Hz
50 kg-m2 (ixx)2 2
207 kg-m2 (Iyy)2 300 kg-m2
257 kg-m2 (Izz)2 300 kg-m 2

Table 5-1^The INSAT II data

exceeding 90° in less than 1/2 orbit. The controlled response of the satellite subjected

to the same initial disturbances is shown in Figure 5-3 . For simplicity, let

Kp = Kp I ,^Kv = Kv I ,

where I is the identity matrix. It is required that

(4;-)d = (qr)d = (qr) = 0 •

Since the satellite's main purpose is for telecommunications, the pointing error should

not be greater than 0.1 ° . Three sets of control gains which would give critically

damped response, are compared here: (i) Kp = 36 x 104 , /-C, = 1.2 x 103 ; (ii) Kp =

64 x 104 , K, = 1.6 x 10 3 ; and (iii) Kp = 100 x 104 , I-C, = 2.0 x 10 3 . With an

initial displacement of 1 ° in each direction, these gains are capable to reduce the

error to about 0.1° in less than 2 minute (or 0.001 orbit). The critically damped
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response is shown in Figure 5-3a. Since the same set of gains are applied to the

librational degrees of freedom, the response is identical in pitch, roll, and yaw. In

general, the larger the Kp , and hence Kv , , the faster the response. The errors at

the end of 0.001 orbit are 0.11°, 0.04°, and 0.01°, for Kp = 36 x 104 , 64 x 104 , and

100 x 104 , respectively. Figure 5-3b shows the critically damped response with an

initial condition of 1 rad/rad in the pitch, roll, and yaw. With Kp = 36 x 104 , the

librational amplitude increases to a mere 0.04 ° and then decreases to 0.009 ° at the

end of 0.001 orbit. The corresponding values for Kp = 64 x 104 are 0.03° and 0.002°

whereas for Kp = 100 x 104 , they are only 0.02° and 0.001°, respectively.

Even though the response for each degree of freedom is identical, the control

effort for each generalized coordinate is different due to differences in inertia. For

the controlled response of Figure 5-3a, variations in the effort about the three axes,

denoted by Q0 , Q0, and QA, are shown in Figure 5-4 a. Since the inertia about the

pitch axis is considerably smaller than that for the roll or yaw, the control torque Q.

is the smallest among the three. For Kp = 36 x 104 , an initial torque of —0.06 Nm is

required which reaches a peak of 0.01 Nm before the magnitude finally decreases with

the pitch attitude. A similar trend can be observed in the Qo variation: an initial

—0.24 Nm effort gradually reaches a peak value of 0.04 Nm before the magnitude

finally decreases. At the end of 0.001 orbit, the pitch and roll efforts required are neg-

ligible. Since the inertias about roll and yaw axes differ by about 5%, the magnitude

and time history of control torque Q, are similar to those of Qo.

The control effort variation corresponding to the response in Figure 5-3b is shown

in Figure 5-4b. Although the controlled response in Figures 5-3a and 5-3b are dif-

ferent, the corresponding effort time histories for the two cases are similar. For

Kp = 36 x 104 , initial torque values of —0.007, —0.027, and —0.028 Nm are required
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for pitch, roll, and yaw control, respectively. Subsequently, the torque decreases

steadily such that at the end of 0.001 orbit, the effort required is negligible.

One disadvantage of the FLT is the difficulty in predicting the torque requirement.

From Eq. (5.2), it is apparent that the control torque has two components with one

a linear function of the gain and states. The second component, which depends on

the equations of motion, is a highly nonlinear function of the states. In general,

the larger the gain, the faster the response; however, this does not necessarily imply

higher control effort. For instance, for Kp = 36 x 104 , the direction of QA is clockwise;

however, the direction changes when Kp is reduced by four orders (not shown).

5.3 Control Implementation Procedures

In general, dynamics of a flexible spacecraft with qr and qf corresponding to

librational and vibrational generalized coordinates, respectively, is governed by

Mrr FrMrfl {qr {Qr
(5.6)

Mfr mff qf Ff Qf

Here Mrr (qr ) is a 3 x 3 submatrix for the librational degrees of freedom; M rf(qr , qf),

of dimension 3 x Nq — 3, represents the coupling between the rigid and flexible gen-

eralized coordinates; Mfr = MrfT ; Mff(qf ) is a Nq — 3 x Nq — 3 submatrix for

the flexible degrees of freedom only. Fr and Pf are 3 x 1 and Nq — 3 x 1 vectors,

respectively, representing first and second order coupling terms. Assuming only the

librational degrees of freedom to be observable, the control force Q f is not applicable

and hence set to zero. The objective is to determine Qr such that the closed-loop

system is linearized. Rewriting Eq. (5.6) into two sets of equations and with Q f = 0

gives:

Mrr6r +Mrf6f + Pr = Qr;
^

(5.7a)
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(5.7b)1\44 + 1\ 4ff 4' ,f‘ Ff = 0 ;

which can be solved for qr and qf :

f\46, + = (2 , ;

= _mff-1mfr6. - mff-lpf

where:^= Mrr MrfMff iMfr

= Fr — MrfMiC iFf

(5.8a)

(5.8b)

As in the case of Eq. (5.2), a suitable choice of Qr would be

C2r(qr,g1,4r,4f,t)=M(qr,41,01) +P(qr,g1,4r,4f,t),

with U = (41.)d + Kv((dr)d 4r) + Kp((qr) d — qr)

Now the controlled equations of motion become:

gr = ;^ (5.9a)

mff-lpf^ (5.9b)

Note that

Qr = (6.)d^+ fq(Kv 6 + Kp e)

which can be visualized as a combination of two controllers: primary (0 rp ) and

secondary (Q r,^ ), where

Qr,p = M(gr) d + F ;
^ (5.10a)

Qr,s = M(Kve + Kp e) .^ (5.10b)

The function of the primary controller is to offset the nonlinear effects inherent in the

rigid degrees of freedom; whereas the secondary controller ensures robust behaviour

against the error.
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To evaluate the control effort (2r required, a priori information of M and F is

needed. In turn, calculation of M and F requires the knowledge of qf and 4.f. To

this end, two schemes, Quasi-Open Loop Control (QOLC) and Quasi-Closed Loop

Control (QCLC), are suggested by Modi et al. [118].

5.3.1 Quasi-open loop control

In this scheme, the flexible coordinates are evaluated off-line, i.e. integration of

Eq. (5.9b) is performed independently and with q r substituted with (4r )d. The main

advantage of the scheme is a reduced computation effort. Under this scheme, discrep-

ancies between the calculated and actual flexible coordinates would exist. Hence, the

success of the scheme depends on the robustness of the controller.

5.3.2 Quasi-closed loop control

Under this scheme, both the rigid and flexible coordinates are evaluated simulta-

neously, i.e. Eqs. (5.9a) and (5.9b) are integrated concurrently. The disadvantage of

the scheme is a relatively large computational effort as compared to the QOLC. On

the other hand, the QCLC is less sensitive to system uncertainties.

Block diagrams for both the control schemes are shown in Figures 5-5a and 5-

5b. Implementation of the QCLC into the present formulation is straightforward.

The program can remain as it is with the inclusion of the subprogram CNTROL.

The function of the subprogram is to partition the M matrix and then evaluate the

M and E. In contrast, the QOLC scheme requires considerable modification of the

program codes. With this in mind, the present study is limited to the QCLC of the

flexible INSAT II only.
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5.4 Application of the Quasi-closed Loop Control to INSAT II

With only the first mode of vibration in the system discretization process, the

generalized coordinates for simulation are:

qr = P2

u1,1

A
N = 6 .

Q12- ,

Figure 5-6 shows system response of the INSAT II subjected to the same initial

disturbance as in Figure 5-2a. With this initial condition, flexibility does not appear

to have any influence on the librational motion as pitch, roll and yaw responses remain

the same as in Figure 5-2a. Similarly, the librational disturbance hardly excites the

flexible motion  of the appendages. Maximum tip deflection of the solar array or boom

is of the order of 10 -6 cm.

Control is now applied to the system using the same three sets of gains as in

Figure 5-3. For the librational response, integration of Eq. (5.9a) is essentially the

same as that of Eq. (5.3a). For the same initial conditions, the controlled librational

response would be identical to that in Figure 5-3a. The controlled response accounting

for appendage flexibility is shown in Figure 5-7 . Note, each control gain setting affects

the vibrational behaviour differently. In general, application of the control results in

higher initial vibration amplitudes. For K p = 100 x 104 , the peak amplitude of the

array and boom are 0.054 cm and 0.073 cm, respectively, an increase of over four

orders. As the control effort diminishes with attitude, the amplitude of vibration

decreases; however, the rate of decay is minimal.

Figure 5-8 shows the control torque variation to give the desired rigid body re-

sponse. Comparing with Figure 5-4a, the time history and the magnitude of the
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control torque qo is almost the same as before. For Kp = 100 x 104 , an initial

torque of —0.067 Nm is required as compared to —0.061 Nm for the rigid spacecraft.

However, flexibility has some influence on Q cb and QA. Since the beam vibration in

the local vertical direction (4) is about the roll axis, Q o can be expected to be af-

fected. Similarly, both the array and beam vibrations in the local horizontal direction

(ET and SD are expected to influence QA. It is, therefore, reasonable that the control

torques Qo and QA both oscillate at high frequencies to compensate for the vibration.

The general trend for Q tp is the same for both rigid and flexible configurations of the

satellite. In fact, in the present case, flexibility actually aids in reducing the maxi-

mum torque. For Kp = 100 x 104 , — 0.235 Nm is needed for a rigid satellite but only

—0.151 Nm is required when flexibility of the appendages is accounted for. On the

other hand, the appendage flexibility results in higher QA. For Kp = 36 x 10 4 , initial

torque for yaw control is 0.329 Nm in the present case as compared to -11236 Nm for

the rigid spacecraft. Note that flexibility results in the reversal of the torque direc-

tion. As the vibration magnitude is gradually damped through control, the torque

required also decreases. Again, as the vibration amplitude diminishes at a slow rate,

so do the control torques Qo and QA.

The effect of reduced stiffness of the flexible members is shown in Figure 5-9. Here,

both the array and boom stiffnesses have been reduced to 10% of the design value. For

the same initial librational disturbance, the rigid body response remains essentially

unaffected by the flexibility. The array and boom vibration, however, have increased

by about two orders. Note also that, with the beam natural frequency reduced ten

times, it is now close to that of gravitational disturbance resulting in the beat response

in 4. For the same three sets of control gains, the librational response was again

observed to be the same as in Figure 5-3a. The corresponding vibrational behaviour

is as shown in Figure 5-10. The controllers again have a significant influence on the
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appendage motion leading to a significant increase (over four orders) in vibration

amplitude. For Kp = 100 x 10 4 , the peak amplitude of ET, (I and S2 are 3.1 cm,

4.5 cm and 4.3 cm, respectively. The values are about two orders of magnitude

higher than the corresponding ones with the design stiffnesses (0.054 cm, 0.073 cm,

and 0.071 cm). The time histories of Qv, and Q cy are similar to those observed for

the design case (i.e. without any reduction in stiffness), except for the amplitude

modulation which now occur at lower frequencies (Figure 5-11 ). However, QA now

oscillates at constant amplitude because ET and S2 do not exhibit any sign of decay.

For Kp = 100 x 10 4 , QA varies in the range of ±0.207 Nm.

The performance of the controller under thermal disturbances on the array and

boom is next investigated. Figure 5-12 shows the response of the satellite induced by

the thermal deformations of the array and boom. The rigidity of the array and boom

is again taken to be 10% of the design value. Thermal reference length parameters, LI
(for the array) and 14' (for the boom), are chosen to be 0.22% and 0.13%, respectively.

With these values, maximum tip deflections of the array and boom due to thermal

effect would be 1 cm. As can be seen, thermal deformations totally change the

librational response of the satellite, with the pitch and roll most severely affected.

In less than 0.5 orbit, the satellite starts to tumble (the pitch angle reaches —90°).

The fast deterioration of the attitude is due to large amplitudes of array and boom

vibrations. Without thermal deformation, the maximum displacements are 0.2 x 10 -5

and 0.1 x 10 -4 cm for the array and boom, respectively. These values increase to 1.7

and 3.6 cm in the presence of thermal deformations (from the deformed equilibrium

state). With the inclusion of an initial libration disturbance of 1° in pitch, roll,

and yaw, Figure 5-13 shows that the system response is almost identical to that of

Figure 5-12.
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Control is next applied to the case of Figure 5-13, i.e. thermal effect coupled with

initial disturbance. Application of the control would once again result in the same

librational response as in Figure 5-3a. The vibrational dynamics of the controlled

satellite is shown in Figure 5-14 . Note, the response trends of the appendages are

essentially the same as in Figure 5-10 indicating dominant influence of the controllers

to offset the effect of thermal deformations. A typical control torque variation is

shown in Figure 5-15 . As the attitude of the satellite increases rapidly without

control, it is reasonable that larger control torques are needed to force the satellite

into the desired trajectory. The increase is approximately 5% for Qo and Q0 , and

about 15% for QA. For instance, QA increases from ±0.207 Nm to ±0.237 Nm for

Kp = 100 X 104 .

The maximum control effort required for the cases studied is summarized in Ta-

ble 5-2 .

5.5 Application of the Quasi-closed Loop Control to MSS

In Section 4.4, the performance of the Mobile Servicing System (MSS) during the

robotic arm maneuver was discussed. The pitch, roll, and yaw motion excited by

the Out-of-Plane (OP) maneuvers, resulted in poor pointing accuracy of the robot

arm as compared to the InPlane (IP) maneuver. It is apparent that to improve the

performance of the OP maneuver, the attitude of the MSS has to be first controlled.

The objective here is to assess effectiveness of the QCLC as applied to the attitude

control of the MSS.

The control gains selected in the present study are Kp = 1.0 and Kv = 2.0.

As will be pointed out later, even such small gains are capable of improving the

system performance significantly. To assess effectiveness of the controller, the error

is purposely allowed to build up over an arbitrary duration before implementing the
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Table 5-2^Summary of maximum Q0, Q0, and QA required for the cases studied

Gain Qo Nm* 1^Qo Nm* 1^QA Nm*

Rigid array & boom (0 0 = 00 = A o = 1°)
Kp = 36 x 10 4 , Kv = 1.2 x 103 -0.023 -0.088 -0.089
Kp = 64 x 10 4 , Kv = 1.6 x 103 -0.040 -0.154 -0.155
Kp = 100 x 104 , Kv = 2.0 x 103 -0.061 -0.235 -0.236

Rigid array & boom (0 10 = Of) = A ic, = 1)
Kp = 36 x 10 4 , Kv = 1.2 x 103 -0.005 -0.017 -0.018
Kp = 64 x 104 , Kv = 1.6 x 10 3 -0.006 -0.022 -0.023
Kp = 100 x 104 , Kv = 2.0 x 10 3 -0.007 -0.027 -0.028

Flexible array & boom (00 = cho = Ao = 1°)
Iip = 36 x 10 4 , Kv = 1.2 x 10 3 -0.025 -0.061 +0.124
Kp = 64 x 10 4 , Kv = 1.6 x 10 3 -0.044 -0.102 +0.215
Kp = 100 x 104 , Kv = 2.0 x 10 3 -0.067 -0.151 +0.329

Flexible array & boom (10% rigidity & 00 = o = A = 1 ° )
Kp = 3.6 x 104 , Kv = 1.2 x 103 -0.024 -0.075 ±0.080
Kp = 64 x 10 4 , Kv = 1.6 x 103 -0.042 -0.130 ±0.138
Kp = 100 x 104 , .Kv = 2.0 x 103 -0.064 -0.198 ±0.207

Flexible array & boom (10% rigidity, thermal effect & 00 = 00 = A o = 1°)
Kp = 36 x 104 , Kv = 1.2 x 103 -0.025 -0.077 ±0.117
Kp = 64 x 104 , Kv = 1.6 x 103 -0.044 -0.133 ±0.173
Kp = 100 x 104 , Kv = 2.0 x 103 -0.067 -0.202 ±0.237

* + and - signs represent counterclockwise and clockwise directions,
respectively; ± denotes equal magnitudes for both directions.

control. In the present case, the operation of the controllers is assumed to begin at

half-way of the maneuver. For instance, during a 10-minute maneuver, the controller

is turned on 5 minutes after the commencement of the maneuver.

Figure 5-16 shows the controlled system performance for a 5-minute OP ma-

neuvers. The controller is turned on 2.5 minutes after the robotic arm begins the
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maneuver. The controlled attitude response is shown in Figure 5-16a. A comparison

with the uncontrolled case (Figure 4-22) is appropriate. With application of the con-

trol, there is no noticeable improvement in the pitch and roll response because their

magnitudes are small already. On the other hand, the relatively large yaw angle is

damped quite effectively. At the end of 0.25 orbit, the yaw angle is only —1.1° as

compared to 8.2° for the uncontrolled case. Note, influence of the controller on the

appendage vibration is rather small (Figure 5-16b). The peak deflections of the upper

and lower links are 35.9 and 9.4 cm, respectively. The corresponding values are 33.3

and 9.5 cm for the uncontrolled system. Since the inertias of the MSS about the pitch

and roll axes are of the order 108 kg m 2 , even a small error in pitch or roll requires a

large control effort. Similarly, although the inertia about the yaw axis is about three

orders of magnitude smaller, the relatively large error in the yaw angle demands a sig-

nificant control torque. The peak torques Qo (4, QA are —34.5, 12.1, and 25.5 Nm,

respectively (Figure 5-16c). The pointing accuracy has improved remarkably with the

application of the control (Figure 5-16d). With the yaw attitude damped, the error

in the orbit normal direction (Sx ) no longer increases progressively as in Figure 4-25.

Instead, Sx oscillates about a mean value of —15 cm with 30 cm p-p amplitude. At

0.25 orbit, the mean error is 25.7 cm with 9.8 cm p-p superposed. This is a significant

improvement compared to the errors for the uncontrolled system which are 103.4 and

40.9 cm for OP and IP maneuvers, respectively.

With the maneuver time increased to 10 minutes, the performance of the MSS

improves significantly (Figure 5-17). Here, the controller is turned on 5 minutes

after the slewing maneuver begins. The attitude errors at 0.25 orbit are only 0.054°,

—0.027°, and —0.862 ° for pitch, roll, and yaw, respectively (Figure 5-17a). These

values are smaller than those in a 5-minute maneuver (0.103°, —0.058°, —1.05° for

pitch, roll and yaw). Comparing with Figure 4-24, the control effort results in a
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slight increase in p-p amplitude of the robot arm vibration. For instance, without the

attitude control, the maximum deflections for the upper and lower links were 6.3 and

1.8 cm, respectively. These values increase to 6.4 and 2.0 cm with the application of

the control (Figure 5-17b). For a longer maneuver period, the peak control torque

values are smaller (Figure 5-17c). With a 10-minute maneuver, the maximum values

of the torques Q,p, Q cb, and Qx (-7, 3, and 5.7 Nm) are about 20% of those for a

5-minute maneuver (-34.5, 12.1, and 25.5 Nm). Obviously, these savings are due

to smaller excitation in attitude. Similarly, reduced attitude errors are sufficient

to improve the pointing accuracy and offset the minor increase in link deflections.

Once again, the control of the yaw angle helps stabilize the error in the orbit normal

direction, Sx . At 0.25 orbit, the arm is only 14 cm from the target as compared to

86 cm for the uncontrolled case (Figure 5-17d).

Figure 4-26 shows that the MSS performs poorly when the robotic arm is located

50 m from the station centre of mass. Even with a 10-minute maneuver, the system

attains a —0.55° pitch, 0.03° roll and 6.5° yaw in 0.25 orbit. Consequently, the arm

is already 126.7 cm from the target in 0.25 orbit (Figure 4-27). Figure 5-18 clearly

demonstrates effectiveness of the controller, even for a 5-minute maneuver. Here, the

attitude error is reduced to only 0.013° in pitch, —0.016° in roll and —0.8° in yaw

at 0.25 orbit (Figure 5-18a). Again, the flexible motion of the arm is not adversely

affected by the control torques. For instance, without attitude control, the maximum

deflections for the upper and lower links are 33.4 and 9.6 cm, respectively. With

attitude control, the corresponding values are 34.5 and 9.2 cm (Figure 5-18b). Since

the controlled response for pitch and roll angles is different from that without any

arm offset, the controlled torques Q,0 and Qo are expected to be different for the

two cases. In contrast, the controlled yaw response is the same, with or without

offset implying that Qx should be similar in both the cases. This is substantiated
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by the control effort profiles in Figure 5-18c. Peak torques for Q0 , Q0, and QA are

—74.3, —175.8 and 24.5 Nm as compared to —34.5, 12.1 and 25.5 Nm when there

is no offset. Without the attitude control, the errors Sx Sy, and Sz increase with

time (Figure 4-27). This is no longer true in the presence of control. The errors

are periodic with mean values of —10.6, —78.5, and —14.6 cm for Sx , Sy , and Sz,

respectively. At the end of 0.25 orbit, the mean pointing error of the arms is 82.6 cm

with a p-p fluctuation of 8.3 cm. This error is larger than that for the case without

the manipulator offset (25.7 ± 4.9 cm). This is due to the relatively large error in the

local vertical direction, Sy in the present case. The robot arm points towards and

away the earth before and after the maneuver, respectively. Consequently, there is a

shift in centre of mass in the local vertical direction. Without the manipulator offset,

this shift is negligible. However, this is no longer true when there is a manipulator

offset. Thus, it is important to recognize that, even in presence of the attitude control,

influence of the manipulator offset is still significant.

To determine advantages, if any, of longer maneuver period in the presence of

arm offset, the maneuver is now increased to 10 minutes in Figure 5-19. Note that,

the controlled pitch and roll responses in Figure 5-19a are no longer similar to those

in the 5-minute maneuver (Figure 5-18a). At the end of 0.25 orbit, the pitch, roll,

and yaw errors are —0.085°, 0.023°, and —1.43°, respectively. These relatively large

errors do not imply the ineffectiveness of the controller. Rather, it suggest lack of

sufficient time to damp the attitude response in 0.25 orbit. Comparing the results

with those in Figure 4-26, it is apparent that the controller once again does not have

a significant influence on the arm vibrations (Figure 5-19b). In fact, the maximum

deflection of the lower link reduced to 2.5 cm with attitude control (3.1 cm without

attitude control). The biggest advantage of a longer maneuver period is the reduced

demand on the control torques (Figure 5-19c). Maximum torques, though higher
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than those without the offset case, are significantly lower than those for a 5-minute

maneuver. Here, peak Q v) , Q0, and QA are —22.6, —47.9 and 7.5 Nm, respectively.

Since the attitude errors remain large at 0.25 orbit, the pointing accuracy (Figure 5-

19d) is still poor compared to the case of a 10-minute maneuver without link offset.

However, compared with Figure 5-18, the smaller p-p error together with a smaller

control effort justify the use of a longer maneuver period.

Of course, implementing control at the beginning of the maneuver would restrict

any librational motion as shown in Figure 5-20a. Here, a 5-minute maneuver of the

robot arm is assumed. Comparing Figures 5-16b and 5-20b, the control strategy

has little effect on the flexible motion of the links. When the libration error is not

allowed to build up, the effect on the control torques is two-fold. On the one hand,

less control effort is needed to drive a large error to zero. On the other hand, a larger

control torque is necessary to maintain zero libration error. Consequently, depending

on the dominance of these two effects, the peak control torques required might be

larger or smaller. A comparison between Figures 5-16c and 5-20c show that with

the control strategy implemented early, smaller Q,0 and Q0 are needed whereas Qx

increased from 25.5 Nm to 32.1 Nm. With the elimination of the libration error,

the positioning accuracy would definitely improve as shown in Figure 5-20d. At the

end of 0.25 orbit, the mean error is only 18.9 cm as compared to 25.7 cm when the

controller was implemented half-way through the maneuver.

With the inclusion of a 50 m offset of the manipulator, the controller imple-

mented at the beginning of the maneuver once again helps eliminate the libration er-

ror (Figure5-21a) and improve the positioning error (Figure 5-21d). Once again, the

control strategy has negligible influence on the flexible motion of the links (Figure 5-

21b). Compared with the case when the control was implemented half-way through
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Table 5-3^Summary of the system performance for the controlled MSS with out-
of-plane maneuver

Peak Control Effort (Nm) Maximum Deflections (cm) Pointing Error
at 0.25 Orbit (cm)*Qo Qo Upper Link Lower Link

Control Implemented Half-way through the Maneuver
5-minute maneuver
-34.5 12.1 25.5 35.9 9.4 25.7 ± 4.9 (103.4)
10-minute maneuver
-7.0 3.0 5.7 7.8 2.0 14.0 ± 1.6 (86.0)

5-minute maneuver & 50 m offset
-74.3 -175.8 24.5 37.1 10.1 82.6 ± 8.3 (139.7)
10-minute maneuver & 50 m offset
-22.6 -47.9 7.5 11.7 2.6 83.8 ± 1.2 (126.7)

Control Implemented at the Beginning of the Maneuver
5-minute maneuver
-3-1.8 10.7 32.1 36.1 9.5 18.9-± 11.3 (103.4)
5-minute maneuver & 50 m offset
-61.4 -213.0 31.5 37.3 9.5 81.7 ± 7.4 (139.7)

* Pointing error for the uncontrolled case are indicated in parentheses

the maneuver, the peak torque Qo is now reduced to -61.4 Nm from -74.3 Nm. On

the other hand, peak Qo and QA increase by about 20% to -213 Nm and 31.5 Nm,

respectively (Figure 5-21c).

The maximum control effort required and the pointing errors for the six cases

studied are summarized in Table 5-3 .

5.6 Closing Comments

The FLT has been found to be effective in controlling the attitude motion of the

rigid INSAT II. The performance with three sets of control gains is compared. With

the satellite initially disturbed by 1 ° in pitch, roll, and yaw, the gains are found to
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be adequate in reducing the attitude error to the design limit in about 2 minutes. In

general, the rate of response is directly proportional to the magnitude of the control

gains. With the inclusion of flexibility in the satellite model, the QCLC was found

to be effective. Even in presence of relatively large initial attitude disturbances, the

control scheme works remarkably well. The inclusion of thermal deformations of the

array and beam does not adversely affect the controller's performance. As expected,

although larger control torques are needed, the equilibrium attitude of the satellite is

again restored in less than 2 minutes.

The QCLC is also effective in controlling the attitude of the space station and

hence the accuracy of the MSS. Even with a 5-minute maneuver and an offset location

of the manipulator (from c.m. of the station), the controller continues to be effective

in damping the slew excited attitude motion. In turn, the pointing error of the arm

diminishes significantly. Considering the large inertia of the space station, the control

effort required is reasonable. In the presence of an offset, the controllers performance

remains essentially unaffected except for larger control torques. In general, a longer

the maneuver period results in smaller control effort and p-p amplitude of the arm

vibration.

From practical considerations, it would be useful to study effectiveness of the

controller subjected to constraints and system uncertainties. The gains and desired

trajectory are selected arbitrarily in the present simulation. A more systematic ap-

proach in making these selections is needed. Also, as seen before, the control effort

may oscillate at high frequencies implying a need for high bandwidth. Although the

FLT is promising, these issues are among many which remain to be resolved.
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6. CONCLUDING REMARKS

6.1 Conclusions

A relatively general Lagrangian formulation for studying the dynamics of space-

craft with interconnected flexible bodies forming a tree-type topology is presented.

The formulation is applicable to a large class of systems negotiating arbitrary orbits

and having any desired orientation in space. Each member is free to undergo trans-

verse vibration, slewing maneuvers and thermal deformations. The governing equa-

tions are highly nonlinear, nonautonomous, and coupled. In general, implementation

of these equations into a comprehensive computer code requires enormous amount of

effort This is minimized by defining three new operators. The computer program

is structured in a modular form permitting assessment of the effects of shifting c.m.,

flexibility, thermal deformations, shape functions and higher modes. Validity of the

computer program is established through extensive comparison with particular cases

studied by Ng [90] and Chan [15]. Convergence of the beam shape functions has also

been established.

Versatility of the formulation is then demonstrated through its application to

four spacecraft models of contemporary interest: the First Element Launch (FEL)

and Permanently Manned Configuration (PMC) of the proposed U.S. space station

Freedom; Mobile Servicing System (MSS) under development by Canada; INSAT--

II, a multipurpose communications satellites of India; and Japan's Space Flyer Unit

(SFU). Simulation results provide insight into the interactions between librational and

vibrational dynamics, slewing maneuvers, thermal deformations, orbit eccentricity,

deployment and retrieval, etc. The focus is on results which help establish trends.

The concept of nonlinear control using the Feedback Linearization Technique (FLT)
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is discussed next. Effectiveness of the procedure to control rigid as well as flexible

modes of the INSAT II is explored. Control of the satellite in the presence of thermal

deformation is also demonstrated. The technique is then applied to the control of

space station attitude during MSS maneuvers. Once again, the FLT has proved to be

effective in controlling the attitude of the station. More important conclusions based

on the parametric and control studies are summarized below:

(i) The FEL's nominal orientation is neither in equilibrium nor stable. Even

with a very small initial pitch, roll, or yaw disturbance, a rigid FEL starts

to tumble in less than 1 orbit. With the inclusion of member flexibility,

the FEL's librational and vibrational responses become highly coupled. In

general, even a small disturbance to a flexible member results in significant

rigid body motion. Initial condition an the power boom is undesirable as

it leads to pitch and roll responses with high amplitudes and frequencies.

Furthermore, response results show the power boom and stinger dynamics to

be quite sensitive to the disturbance direction.

(ii) As in the case of the FEL, the PMC of the space station is also in a nominally

unstable orientation. Unlike the FEL, due to the relatively large inertia of the

power boom, the system is less susceptible to disturbances from the arrays

and radiators. However, even a small disturbance applied initially to the

power boom can result in significant librational and vibrational motions.

(iii) In general, both eccentricity and thermal deformation of the PV arrays can

affect the PMC pitch motion. Furthermore, thermal deformations influence

flexible response of the system.

(iv) The study of the PMC's velocity and acceleration profiles indicate that in

absence of any disturbance, the system velocity and microgravity distribution
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stay within the design limits. However, even with a small disturbance in the

local vertical or local horizontal direction, the design limits are easily violated.

The presence of a small orbit eccentricity does not adversely affect the system

performance; however, even small thermal deformation of the PV arrays result

in velocity and acceleration beyond the acceptable values.

(v) As expected, the MSS study shows that longer the maneuver period, smaller

the response amplitude both for rigid and flexible degrees of freedom. In

general, an out-of-plane (OP) maneuver excites a smaller flexible motion than

the corresponding inplane (IP) case. However, this advantage is offset by the

3 dimensional rigid body motion excited. Increasing the link stiffness results

in only a small reduction in the librational response. On the other hand, the

vibration response diminishes significantly. Offset of the MSS location from

the system c.m. is detrimental to the spacecraft performance.

(vi) The excitation of roll and yaw responses during the OP maneuver results in a

poor pointing accuracy. Even increasing the maneuver period or link stiffness

does improve the situation significantly. The OP maneuver is feasible only if

the system libration is controlled.

(vii) The SFU study shows that the spacecraft remains stable under both sym-

metric and asymmetric deployment of the Solar Array Pedals (SAPs) The

parametric study also shows that the OP deployment has the advantage over

the IP extension as the excitation is smaller.

(viii) The retrieval of the SAPs may pose some problems. The symmetric OP

retrieval poses no difficulty. However, if only one SAP is retrieved, the space-

craft becomes unstable even when the retrieval time is increased. The SAP

retrieval in the IP direction is found to be undesirable. Regardless of symme-
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try and period of retrieval, the spacecraft starts to tumble in a short time.

(ix) Feedback Linearization Technique (FLT) for attitude control of highly non-

linear systems appears promising. The method is straightforward and the

control algorithm is simple. For the control of the rigid INSAT II, the effort

required is minimal.

(x) For the control of flexible spacecraft, Quasi-Closed Loop Control (QCLC)

based on FLT, performs well. In general, flexibility of the solar array and

boom does not have significant influence on the control effort. Flexibility

implies that controllers of higher bandwidth are needed especially for the roll

and yaw control of the INSAT II. Even if appendages are thermally deformed,

the controllers remain effective. In general, larger control torques are needed

for the satellite with thermally deformed appendages.

(xi) The control of the space station during MSS maneuvers using the QCLC

is again proved to be feasible. The controllers are effective in damping out

attitude motion induced by OP maneuvers of the robotic arms. In turn, the

pointing accuracy of the robotic arms improve significantly. Even the offset

of robotic arms does not adversely affect the performance of the controllers

except that larger control torques are required. In general, the longer the

maneuver period implies smaller control effort required and p-p fluctuations

of the pointing errors.

6.2 Recommendations for Future Work

The formulation presented in this thesis is relatively general; however, there is a

scope for improvement. A few features that would enhance its general character and

implementation efficiency include the following.
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(i) As pointed out in Chapter 3, there are two areas in subroutine FCN which

can be executed in parallel resulting in a substantial saving in computational

time and cost. If parallel processing facility is available, the computer code

should be modified to take its advantage.

(ii) The convergence of the beam shape functions is shown in Figure 3-11. It

would be useful to study the convergence of the shape functions of cantilever

plates. The formulation accounts for transverse vibration, thermal deforma-

tions, and slewing maneuvers of the members. Other possible member motion

not accounted for includes longitudinal vibration, translational motion, and

torsional oscillations. As pointed out in Chapter 4, the present formulation

was tailored to facilitate the deployment/retrieval study of the SFU. A for-

mulation that accounts for deployment/retrieval of arbitrary members would

be useful.

(iii) As shown in Table 2-1, shape functions based on Warburton [94] are inad-

equate for modeling free-free plates. Incorporation of Gorman [96] shape

functions in the general formulation is one alternative. Another option would

be to use quasi-comparison functions put forward by Meirovitch and Kwak

[88].

(iv) Thermal deformation of flexible members is the only environmental distur-

bance considered in the thesis. This is because it affects both high as well

as low altitude spacecraft. However, for spacecraft at high altitude, solar

radiation pressure effect may also be significant whereas at lower altitudes,

aerodynamic drag may become significant. Inclusion of these two environ-

mental disturbances would add to make the versatility of the formulation.

The dynamics and control studies of the five spacecraft configurations, though
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comprehensive, are not complete. Obviously, there are numerous system parameters

and countless possibilities for initial conditions (disturbances) that can be studied.

Some of the simulations which are likely to be enlightening are indicated below.

(i) As the nominal orientations of the FEL and PMC are unstable, active control

is necessary. It would be useful to investigate the feasibility of alternative

orientations with respect to the control effort. The effect of slewing maneu-

vers of PV arrays on the dynamics of the FEL and PMC is likely to be of

importance.

(ii) The study of the MSS presented in thesis is based on a gravity stabilized and

rigid space station. Performance of the MSS under different orientations of

the flexible space station is not easy to predict. Only a detailed investigation

into orientation and flexibility effects can provide the insight needed.

(iii) The deployment/retrieval profile of the SFU assumed constant velocity. The

stability study of the SFU under the influence of more efficient profiles would

be a logical extension to the present study.

(iv) Control based on the FLT is promising; however, it needs to be further ex-

plored. In particular, a more systematic approach to select the controller

gains and desired trajectory is needed. Furthermore, performance of the con-

troller in the presence of logical constraints needs attention. The problems of

robustness and bandwidth will have to be addressed. Investigations aimed at

the FEL, PMC, and SFU would result in important and timely contributions

to the field. It would be particularly useful to investigate performance of the

QCLC algorithm in the presence of deploying or retrieving members.
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Appendix I:^Details of 1-18y„ I , and fisys

The details of the various components that make up Tsy, of Eq. (2.35) are given

below:

1^•^•
Torb = —

2 
M Rcm, • Rcm
1^n. c.,f•^c.,f•

Tern = —1V-L L' CM • L'2

Th = —
1
E Li . ai dmi

2 i=1

ni

3= fm2 ,3 ]

(ai + Clii) • ( i + C lij) dmi ,j ;

1 NTir = ...E I d( pi + T-i + 6.0 • q(pi + T-i + 60 dmi
i=1 mi

+ E f { qdii + ^+ ^+ +
j=1 m'i,j

{^ ]qClii +^+^+ ij +(q JAL j CZ JILL j)(15ij T-^6i,j)} dmi , i

N

• (C ipist- ii) dmi j1

N
= O c • Oc drnc f (C) • (C .Si) dmi

nlc
ni

i=1 mi
j,

(C4U,i,j6ij) • (CZpi,j6ij) drni ,j
j 1

Th,jr = E [f iii • qcoi +  + 6i ) dm,i + E I. { iii + q}
1 mi= i^

ni

3=1 ri. '2,3

{qClii + (OZilii,i + CZ jiti, j)(pii + Tip + oij)} drni ,ji
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T= — f 4.--c • ,t-c cn, + —E2
1 1

mc 2 i=1
[19ni (q4-- i ) • (q't- )dm,



Th ,t
i=1[1:
^i) dmi E^(di + qdii) • (C4aist- ij) dm i

ni

j=1 mij

Th,v = • (Cf^dmif . •^i 3^1^J•(di^CF di •) • (C jF lc. • -) dm' •
N

i=
i

f i q(iji + Ti + Si) • (Cm) dmi + E f . .{dfdi,[
j=1 mz,3

+^+ CULL' ) (Pi.; + Tii
^ 1(Cf,i ,aisiii) dmi ,j

ni

Tjr ,v = E [f q(pi + Ti +Si) • (q6i ) dmi E f {qdi,
i=1

 

Tii SO}^dmi

c • Sc Cintc^f^. (q i ) dmi
i=1

7

Tt = Lc

 

ni

mi,i 
(q,i,ai,j+ii) • (q, j,Lti,;(50^.^ (I — 1 )

The system inertia, Lys , is given by Eq. (2.36) and is the sum of the following

components:

'cm = M [Ccm • Ccrn U CCM CCM] ;

^Ih = E [f {di diU —^dmi + E^{ (di + qdii ) • (di +
i=i ma

^— (di + qdij )(di^dmi,j]

Ir =
me

N

+ E [j {(crpi) • (qiox - (crpi)(crpi)} dmi

ni

+ E^pii) • (qpi, ipii )u
j=1

i= 1

7

Pc • PcU — Pc -Pc} dmc
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]

— (q j it i , i pii )(CUL i jpii ) } dm i ,i ;

It= f { 7f, • i-c U —^dm,

+E [f {(qT-i) • (qi-ou - (qi-i)(qT-i )} dm i

i=1
ni f

• E
mi,i

— dmij] ;

Iv = f {6, • SOU — ScSc} dm c
911c

+ [f { (cm) • (q4i )u - (cm)(q6i)} dmi
i=1
ni

+ E^{(cuLi jsij ) • (cuL igij)u
j=1 rni,j

jOij)(q,^jOij)} d'ati ,j];

= E [./ {2di • (CF pi)U — di(Crfii) — (qpi)dil dmi
i=1 mi

ni

+E f {2(di + qdii ) • (culi,Jpii)u - (di + qdii )(cu.tigii )
j=1 rni,j

— jpij)(di qdij)} Chni ,j]

= E [f {2di • (Crfi)U — di(qT-i) —^dmi
i=i

ni

+E f {2(di + qdij) • (q, i tti,i'T-ii)U — (di + C ic. dii )(CU.twij )
j=i rni,j

—(CFstisrij)(di qdji) dmi,j] ;

Th,t, = E[I {2di • (C icA)U — di(q6i) — (CP5i)dil dmi
i=1

Mc
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f { 2(di qdij) • (C4tti,j6ii)U . — (di +^jOii)
j=i

— qdji)} dmi,j] ;

{2p, TcU — pcTc — tcpc } dm,

+ [f
m

 {2(qpi) • (m-ou - (cpi )(qm - (qT-i)(criii) dmi

i=1^i
ni

+E f {2(c? jitupii) •^-

- dmi,j] ;

Ir,v = Lc {2fic • 6,15 — pc s, — scp-c } dm,

+ E [f {2(q fii) • (Ci 6i)U — (C i, pi ) (q6i ) — (q6i)(C ilii)} dmi

ni

+E f {2(q, Ji-oii ) • (cu,i joix -
j=1. rni,j

—(CULL^jpii)} dmij ]

{21-, • 6,15 — Tcsc — Oc'f, dm,

+ [I {2( Ti) • (qoi )u - (q'T-i)(q6,) — (q6i)(q1-i)} dm i

i=1
ni

+E^{2(cu.ti^• (CU.ti,j6ii)U —
j=1

— j p i, iSii) ( C41.1i , j Tii ) dMi,j] •^ (I — 2)

Here U is the unit matrix.

The components that contribute to Lys , the system angular momentum vector,

= Lc

= Lc
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Ht = f (7t, 
X
 +,)dmc E [f (C; Ti x

me 
ni

+ E f x^ •,
j=i mi,j

are shown in Eq. (2.37) and their details are as follows:

Hcm = —M[Ccm x cm] ;
ni

Hh = EL/ (di x ;:/i)dmi^f (di +^x (di +
i=i mi^j=i

Air =E[1 (Pi "Ti + Si) x q(pi^+ Si) dmi
i=1 mi

ni

+E f {qdii +^+ 6ii )}
J=1

x^ CZjiti,j)(fiii^6ij)}

H„ = f(8, X (5. c) dm, + [f (qSi6i x^6i)

• 

dmi
771c^ i=1

72,i

+E f^x
J=1 mi,j

Hh,jr = E[ J. di X^(pi +^(52; ) dmi

i=1 mi
ni

+ E f di x+Tij 6ij)}dmi,ii
j=1 mi,j

ni

Hh,r =E[f^x dmi + f fczpigii x + qdii )} dmi ,j]E mi^mi,J

h,t = E [I
i=1 mi

(Crfi x di + di x

ni

+E f ^x +
J=1 mi,J
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= [f (qai x + di x q6i) dmi
i=1 mi

ni

+ E^{q, ;Auk.; x (di+ qaii )
j=1 Mi,j

+ (di + qdii) X (q j ij)} drnij] ;

= f (pc x dm, + E [f (qpi x cF-9;) dmi
m,^i=i rni

ni

+Ei x 
j=1 rni,j

Hroi = f (pc x dritc E [f (qpi x cF;50 dmi
m,^i=i

ni

+Ei (CicA itupij x^dmi,-];
j j=i

(Tc 
X Sc + 6, x c) dm, 

+ 
E [f (qti x q&; + q(59; x^dmi
i=i mi

ni

+Ei^x
j=1

+ CICAlli, j6ij X (q, JAI, j+ii)} drnij 1̂ (I — 3)

Ht,v
 

fmc
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Appendix II: Representation of Tsy „ Lys , and Lys in terms
of the New Operators

In terms of operators T and 0, the components of T,y, in Eq. (I-1) can be written

as follows:

1T,,, = — 2MT(U,U) o e(Ccni ,^;

Th =^[f T(U, o e(di , di ) dmi
i=1

ni

+ {T(U, U) o e(cri,dD 2T(U,^o 0(d2,
j=i

T(q, CD 0 e(dii ,

Tjr = 
1
2

^T(Cr, Cr) 0 e((fii + Ti + Si ) / ( Pi + Ti+ Si)) dmii=1 Li 

ni

+E f {T(cr, Ci') 0 coii , dii )
j=1 f

+ 2T(Cr, (q,itti,j)') 0 e(dii , (p-ii + ,7=ii + Sii ))

]

+ T((Cfjiti,iY, (q,illi,i) i ) o e((pii + -iii + Oii), (Ai +i-ii + Oii )) dmi ,j ;

Tt = fmc
1
^T(U^ NU) o ^7f- ) dm, + E j T(q, CD o 001,11) dmi

1^[

i=1 mi

T(Cf jp,i , j, C4Lti , j) 0 O( , Tti) drni ,i ;

1T„ = 
2 fmc

T(U ,
 U) 00(6'c , S'c ) dm, + 1^[f T(q, CD o^dmi

i=1
ni

+E f^citti,J) 0 e(siij ,^dmi,i ;

ni

+E
j=1
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N

Th,jr = E f T(U, Cr) o e(di , (pi + Ti + Si )) dm i

i=1^nni
ni

+E i {T(U, Cr) o e(d i , di,)
j=1 mj,j

+ T(U, (C4u,i, .0') 0 Co(d i , (fiij + •ii + Sij))

]

+ T(q, Cr) 0 e(d iii , (fiii + 7fij + Sii ))} dmi ,i

N

=Th,t — E f T(U, q) o 0(d'i, Ti) dmi
i=1 mi

ni

Th,

]

+ T(q, CULi , j) 0 e(Cii, Ili)} d'ini,i

[ rni
i T(U, CD o e(di , OD dmi
i=1  

{T(U,^o 0(di ,

Tir,t =

+ T(q, C ip,i,j) 0 0(crii ,6ii )} dm i ,i1
N [f r(cr,q) 0 sa((pi + 1 i + 8i), Ti) dmi
i=1 mj

ni

+E^{T(Cr, CUti,j) o e(d ij ,T1i )
j= 1 mi,i

 

+ T((q,j1-11,J)', q, j ,Lii,j) 0 eqpii +Tij+^dmi,i

[f T(Cr,^°^+^Si) dmi
J= 3. rni

ni

+E f {T(Cr, C4u,i,j) o
j=1

Tjr,v

3= frni,3
{T(U, qpi,j) o (di,



]

+ T ( (qj iti, j Y, CUt i, i ) o 6 ( (Pij +i-Z? + Sij ) , Pii ) 1 dmi,j

N
Tt,v =^T(U, U) 0 0( 7f- ,S1c ) dm c + E [f T(q, C) o 0(72 7 O') dm i

mcf^ i=1 mi
ni

+ E f^T(qii,,,, j , qJ p,i, j ) 0 0 ('T-tj , 6ij ) dm i ,j .
j=1 mi,i

(II — 1)

The components of inertia Lys in Eq. (I-2) can be written in terms of the oper-

ators T, 1-1 , and 0:

'cm = —m- [r(u, u) 0 e(ccm , c cm )u

—r(u, u) 0^Gem)] ;

Th, = E [f {T(U,U) 0 g(di, di)U — r(u, o e(di , di)} dmi
im

ni

+ { [T(u, U) 0 g(di , di) + 2T(U, CD 0 g(di , dii )
j=1

+ T(q, CD 0 e(dij, dii)]U — [c(u, u) 0 e(di, di)

+ 21-1 (U, CD 0 0(di, dij) + r(q, CD 0 o(dii , dii)] dm i ,j ]

Ir = f {T(U,U) o 0(pc , fic )U — r(u, u) 0 coc , pc )} dm c
mc

• E[ f {T ,^0 (10i, 100U — r(q, CD 0 e(pi, pi)} dm i

i=1 rni
ni

+ E j {T(culi,J, q,p,i, J ) 0 e( fiii , fiii )u
j=1

—r(cuLi c4u, i , j ) 0 c(Pii , fiij )} dmi ,j] ;

f {

• 

TM, U) 0 0(7f,, T-c )U — r(u,u) 0 Cl(i-c ,T-c )} dm c

+ E 
[fm

^CD o^-fiyu - r(q, cD 0 ecti ,^dmi
i=1
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f j, CULL j) 0 0(Tii, Tii)U
j=i

- ,j) 0 o(Tii , Tij )} drni ,d ;

Iv = T(U, U) 00(6c , 6,)U — r(u,^o 0(6,, .5 c)} dm,
me

+E [ f {T(Cf,^o0(&, &)U — r(q, cp 0 co((5i , Si)} dmi

i=1.

ni

+E f^cf,pi,j) 0 e(k,62i ) u
j=1

- r(cut i^J) 0 o(sii , sij )} dm i ,j] ;

= E [f {2T(U, CD 0(di , pi)U
i=1

- [r(U, CD o 0(di, pi) 11 (g, U) o e(pi , di)] dm i

ni

+E f {2 [T(U, CU-4, j) 0 e(di,^+ T(q, c4u, i , j ) 0 o(dii , p-ii )]u
j=i

- [r(u, cutij ) 0 so(di,^+ r(q, cuL i j ) 0 so(dii , p-ii )

+ o 0(pii, di) + r(cut i , j , cp 0 e(pii, dii)]} dmi,j] ;

N

^

t = E [f {2T(U,^o 0(di ,
i=1

- [r(u,^o e(di, Ti) r(q,u) 0^di)] dm i

ni

+E f {2 [T(U, CUti,j) 0 e(di, ti) T(q, CUzi,j) o e(dii,
i=1

o^Tij,^_- [r(U, cuz i^r (e , CF^) o A(d^)

r(CUti,j,U) 0 e(fij, di) r(cuL i J , q) 0^dij)]}

^= E [f { 2T(U,^0 0(di, 6i)U
i=1

- CD o e(di, 6i) r(q,u) o 0(6i, di)] dm i
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Ir,v =

ni

+E f {2 [T(U, CZ pui,j) e(di,^+ T(q,^e(dij, sii )ju
j= 1

- [11 (U, CULL j) 0 e(di)6ij) r(q, czpi j ) 0 c(dii ,sij )

+ r(cuLii ,u) o 0(6.ii, di) + r(q JAL j , cp 0 e(sii , dii)] dmi,j] ;

= f {2T(u, u) coc, 'fc )U — r(u,u) [e(fic,tc) + (fc Pc)]} dmc
mc

N

+E [f {2T(q, CD o 0(5i, t-i)U
i=1 mi

- r(c, cn 0^+ cl(f, pi)] dmi

ni

+ E f {2T(CUzi, j , C4tti,j) o^tii)U
j=1 mi,j

- r(C4tti,j,^.1) o [(-3(pij,Tij) +^Aid} dmi ,j];

{2T(U, U) 0 e(fic , c)U — r(U, U) 0 [e(fic , o) + 00c , pc)] dmc

+ {2T(q, CD o 0C/3i, SOU
i=1 mi

- r(q, cn 0 [0 (fii, Si) + 0020pi) ] } dmi
ni

+E f {2T(C4tti,j, CUti,j) o e(fijj, Sii )U
j=1

- j, cul i , j) [e(pij,Oij) + e(Oij, pij)i} dm i ,j];

= f {

• 

2T(U , U) o (tc , 6 c )U — r(u, u) o [e(tc , Sc) +^c,tcd} dmcmc

E [f+ {2T(q,^SOU
i=1

- r(q, cn [eo-i , Si) + e(Oi, ti)] dmi
ni

+E f {2T(q j, CZ j) o
j=1 

f
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— r(q^\ 0^+ 0(8^d^j p,i , j / o [(^,^_ij, Yid^. (II — 2)

Similarly, the angular momentum components of fi ns as given in Eq (I-3) can

be represented by using operators A and 0:

Hcm, = —M[A(U,U) o CI(C,,,,C,,,)];

171h E[f
i=1

ni

+E {A(U,U) o e(di, di) A(U,^o 0(di ,
j=1 rnij

▪ A.(C,U) 0 e(dij,^A(q^o g(dii,^dmi

HST= i[j A(q, Cr) 0 g(Cfii^+ Si), (pi + + 6i)) dmi
i=1

ni

+E^{A(g, cr) o
 cof

^
ii, did)

i

▪ A(q jp,i,j, Cr') 0^62i), dii )

A(q,^o^(pad +Tad +

▪ A(q^(qiiti,in o 13((pii Tij^(pii Tii bid

Ht =^A(U,U) o 0(1-,,77D dm,
me

A(U, U) o e(di, di ) dmi

+E A(q, o^dmi
mi

ni

+E A(q^o (Tij,

j=1 9fli,j

—
77-1, 

A(U,U) o 0(6,, 6',) dm,
c

+E [f A(q,^o 0(6i, 64j ) dmi
i=1 rni
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ni

+E f^0(6ii, S'j ) dm i ,j ]
j=i

A(U, Cr) o e(di, (Pi + + Oi )) dmi

ni

+E f {A(u, Cr') 0 e(di, (Pi^+ Si)) dmi
j=1 mi,i

• A(U, (CZ ipi,j)') o 0(4^+ 6ii))} drni,j]

Hh,r = E [f
i=1 mi

A(q , U) 0 ( -pi, di ) dm i

ni+ f {A(C4ai,j,U) 0 e(fiii, di )
j=3.

A(CZ^j,^o^crii)} dmi ,j]

Hh ,t = ^[f
m

 {A(q,u.^di) + A(U,^o e(di ,^dmi
i=1^i

ni

+E f {A(cuii, ; ,-u) 0^di)A(q^o^crij)
J=1 
f

+ A(U, CULi,j) o e(di,^A(q, CULi,j) o e(dii,^dmi,j] ;

^

A(q,U) 0 e(pi, di) + A(U,^0 e(di , 6";)} dmi

ni

+E f {A(cu.ii, j ,u) 0 c(Sii , di ) + A(CZ i pi,j, CD 0 0(6ii, crij )
j=1 mij

+ A(U, CU.ti,j) 0 0(di, blij) A(q, C4ai,j) 0 e(dii,^dmi,j]

N

Hr , t = f A(U, U) 0 e(fic , ;7--D dmc E [f A(q,^0 e(pi , ;fp dmi
mc^ i=1

ni

+E f^J) 0 e( fiii , f1j ) dmi
j=1
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Lc
+ ^[f A(q, q) o [0(T-i, Si) + 0(6i ,^dmi

i=1 mi
ni

i=^i,j

A(U, U) o [0(1-c , 6 /c ) + 0(6,, 1-- )] dm,

A(C i^Cup,,,j) o [0(;fii, 6 1ii ) 0(6ii,2j )] dmi,j]

Hr,v = I A(U, o e(fic , 6 1c ) dm, + E [f A(q,o ^e(pi, dmi
rn,^ i=1

ni

+ E^A(C4ai,j, C ijp,i,j) o e(pii, 6 1ij ) dmi,j]
j=1

t,v

( II — 3)
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Appendix III: A Sample of the Computer Program for the
Evaluation of a^llTsys Ia Isys and Brsys

It is impractical to list the whole computer program here as it is over 5,000 lines.

Instead, the objective is to illustrate simple algorithms required to assemble aTsys /aq,

Isys and _ans . In so doing, only arrays that are used are declared in the DIMENSION

statements. The actual program would require additional arrays to accomodate the

evaluation of other derivatives of Lys , Isys and Hays . The array names are the same

as those in Tables 3-1 and 3-2. A few points that may help understand the notations

used are as follows:

(i) The R91, R99, and R93 arrays have the following structures:

R99: R99c(m, n, p), R99i(m, n,,p,i), R99ij (mi n, p, AR99j(m,n,,p, j);

R93: R93c(m, n, p), R93i(m, n, p, i), R93ij(m,n,p, j),R93j(m,n,p, j);

where m (for R91) and m, n (for R99 and R93) refer to U rn , y n n , and Anz,n)

respectively, in Eq. (3.4); p is the subscript of T, F, and A in Table 3-1; i and

j denote body Bi and Bi ,j , respectively.

(ii) In order to save the array space, each B i ,j body is identified by the numbers

k and Jcon(k). For instance, consider a system with two Bi bodies (B 1

and B2 ) such that B 1 has three Bi ,j bodies attached (B1,1, B1,2, and B1,3)

while B2 has only B2,1 attached. Without any identification numbers, the

minimum array size for, say R91j, would be R91j(9, 5, 2, 3) where the third

and fourth dimensions are for identifying Bi and its associated Bi J. Using

the identification number so that k = 1, 2, 3, 4 for B1,1, B1,2, B1,3, and B1,4,

respectively; Jcon(1) = Jcon(2) = Jcon(3) = 1 and Jcon(4) = 2, each Bi ,3

remains unambiguously identified but the minimum array for R91j would be
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R91j(9, 5, 4) resulting in a saving in the array size.

(iii) The arrays for 0 operation have the similar structure as T operation. Using

DH as an example,

DH: DHi(m,p,i); DHij(m,p,j); DHj(m,p,j);

where m identifies Om of Eq. (3.4d); p is the subscript of 0 in Table 3-2; i

and j denote body Bi and Bi, j , respectively.

(iv) The generalized coordinates, q, are each assigned a number mq (mq = 1,... ,

Nq). The first three, mq = 1,2, 3, are for the librational degrees of freedom,

IP, 0, and A, respectively. The rest (mq = 4, ... , Nq) are for vibrational

degrees of freedom.

(v) The prefix Q in the array name represents the (0Iaq) of the array; hence,

one more dimension is required to identify the differentiation with respect

to the generalized coordinate qmq . For instance, QR91i(m, 3, i, mq ) refers to

&um/aging of T3 (C i l , C ie ).

(vi) It should be pointed out that, for simplicity, derivative arrays have the addi-

tional dimension of length Nq in the sample program here. This length can

be shortened by recognizing the fact that not all arrays are functions of all

generalized coordinates.
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Sample subroutine to calculate OTsys /Oq

C
C^The array QKe represents the T{sys} derivative

C

Subroutine KINENE(QKe)

Implicit Real*8(a-h,o-z)
C

C^First declare the common blocks
C

Common /No/^N, Nj, Nq, Jcon(Nj)
C

C^Rmc, Rmi, Rmj are the masses of body Bc, Bi, and Bij,.
C^respectively
C

Common /Ratio/ Rmi(N), Rmj(Nj)
C

Common /CM/ CMc(9,4),^QCMc(9,4,Nq)
C

Common /DD/ DDi(9,4,N),^QDDi(9,4,Nq,N),
2^DDij(9,4,Nj), QDDij(9,4,Nq,Nj),
3^DDj(9,4,Nj), QDDj(9,4,Nq,Nj)

Common /DF/ DFi(9,2,N),^QDFi(9,2,Nq,N),
2^DFij(9,2,Nj), QDFij(9,2,Nq,Nj),
3^DFj(9,2,Nj), QDFj(9,2,Nq,Nj)

Common /DG/ DGi(9,4,N),^QDGi(9,4,Nq,N),
2^DGij(9,4,Nj), QDGij(9,4,Nq,Nj),
3^DGj(9,4,Nj), QDGj(9,4,Nq,Nj)

Common /DH/ DHi(9,4,N),^QDHi(9,4,Nq,N),
2^DHij(9,4,Nj), QDHij(9,4,Nq,Nj),
3^DHj(9,4,Nj), QDHj(9,4,Nq,Nj)

Common /RR/ RRc(9,1),

2^RRi(9,1,6),
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C

3 RRj(9,1,4)

2

Common /RT/ RTc(9,3),^QRTc(9,3,Nq),

RTi(9,3,N),^QRTi(9,3,Nq,N),

3 RTj(9,3,Nj),^QRTj(9,3,Nq,Nj)

2
Common /RV/ RVc(9,3),^QRVc(9,3,Nq),

RVi(9,3,N),^QRVi(9,3,Nq,N),
3 RVj(9,3,Nj),^QRVj(9,3,Nq,Nj)

C

2

Common /TT/ TTc(9,4),^QTTc(9,4,Nq),
TTi(9,4,N),^QTTi(9,4,Nq,N),

3 TTj(9,4,Nj),^QTTj(9,4,Nq,Nj)
C

2
Common /VV/ VVc(9,4),^QVVc(9,4,Nq),

VVi(9,4,N),^QVVi(9,4,Nq,N),
3 VVj(9,4,Nj),^QVVj(9,4,Nq,Nj)

2

Common /TV/ TVc(9,4),^QTVc(9,4,Nq),
TVi(9,4,N),^QTVi(9,4,Nq,N),

3 TVj(9,4,Nj),^QTVj(9,4,Nq,Nj)
C

2

Common /R91/ R91c(9),

R91i(9,5,N),^QR91i(9,5,Nq,N),
3 R9lij(9,4,Nj),^QR9lij(9,4,Nq,Nj),
4 R91j(9,5,Nj),^QR91j(9,5,Nq,Nj)

C

C^Declare matrices QKe and the temporary matrices QK
C^QK(m,n) (m=1,...11; n=1,Nq), refers to the m-th term
C^derivative in Eq. (I-1)

For instance, QK(1,iq) for T{cm}', QK(2,iq) for T{h}',
C^and so on

Real*8 QKe(Nq), QK(11,Nq)
C

Data Hf/0.5d0/
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C

C^Initialize the arrays QKe and QK

C

Do 7010 iq=1,Nq

QKe(iq)=0.d0

7010 Continue

C

Do 7012 iq=1,Nq

Do 7012 in=1,11

QK(in,iq)=0.d0

7012 Continue

C

C^Evaluate all terms for body Bc

C

Do 710 iq=1,Mqi

Do 710 i1=1,9

QK(1,iq) =QK(1,iq)-Hf*R91c(i1)*QCMc(i1,1,iq)

QK(4,iq) =QK(4,iq)+Hf*R9 -1c(i1)*QTTc(i1,1,iq)

QK(11,iq)=QK(11,1q)+Hf*R91c(i1)*QTVc(i1,1,iq)

710 Continue

Do 714 i =1,N

Do 714 iq=1,Nq

Do 714 i1=1,9

C

C^Proceed to Bi bodies

C

QK(2,iq) =QK(2,iq)+Hf*R91c(i1)*QDDi(i1,1,iq,i)

QK(3,iq) =QK(3,iq)+Hf*QR91i(i1,1,iq,i)*(RRi(i1,1,i)

2^+RTi(i1,3,i)+RVi(i1,3,i)

3^+TTi(i1,4,i)+VVi(i1,4,i)+TVi(i1,4,i))

4^+Hf*R91i(i1,1,i)*(QRTi(i1,3,iq,i)

5^+QRVi(i1,3,iq,i)+QTTi(i1,4,iq,i)

6^+QVVi(i1,4,iq,i)+QTVi(i1,4,iq,i))

QK(4,iq) =QK(4,iq)+Hf*(QR91i(i1,4,iq,i)*TTi(i1,1,i)

2^+R91i(i1,4,i)*QTTi(i1,1,iq,i))
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QK(5,iq) =QK(5,iq)+Hf*QR91i(i1,4,iq,i)*VVi(i1,1,i)

QK(6,iq) =QK(6,iq)+QR91i(i1,3,iq,i)*(

2^DFi(i1,1,i)+DGi(i1,2,i)+DHi(i1,2,i))

3^+R91i(i1,3,i)*(QDFi(i1,1,iq,i)

4^+QDGi(i1,2,iq,i)+QDHi(i1,2,iq,i))

QK(7,iq) =QK(7,iq)+QR91i(i1,5,iq,i)*DGi(i1,1,1)

2^+R91i(i1,5,i)*QDGi(i1,1,iq,i)

QK(8,iq) =QK(8,iq)+QR91i(i1,5,iq,i)*DHi(i1,1,i)

2^+R91i(i1,5,i)*QDHi(i1,1,iq,i)

QK(9,iq)=QK(9,iq)+QR91i(i1,2,iq,i)*(

2^RTi(i1,1,i)+TTi(i1,3,i)+TVi(i1,3,0)

3^+R91i(i1,2,i)*(QRTi(i1,1,iq,i)

4^+QTTi(i1,3,iq,i)+QTVi(i1,3,iq,i))

QK(10,iq)=QK(10,iq)+QR91i(i1,2,iq,i)*(RVi(i1,1,i)+VVi(i1,3,i))

2^+R91i(i1,2,i)*QVVi(i1,3,iq,i)

QK(11,iq)=QK(11,iq)+Hf*(QR91i(i1,4,iq,i)*TVi(i1,1,i)

2^+R91i(i1,4,i)*QTVi(i1,1,iq,i))

714 Continue

C

C^QKe for all the generalized coordinates are evaluated if Bij

C^body does not exist

C

Do 718 iq=1,Nq

Do 718 in=1,11

718 QKe(iq)=QKe(iq)+QK(in,iq)

C

C^Now execute the same procedures for Bij bodies provided

C^they exist

C
If(Nj .eq. 0)Go to 810

C

C^Initialize the temporary arrays

C
Do 8020 jq=1,Nq

Do 8020 jn=1,11

QK(jn,jq)=0.d0
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8020 Continue

C

Do 822 j =1,Nj

Do 822 jq=1,Nq

Do 822 j1=1,9

i=Jcon(j)

QK(2,jq) =QK(2,jq)+Hf*(

2^(Rmj(j)/Rmi(i))*R91c(j1)*QDDi(j1,1,jq,i)

3^+2.d0*(QR91i(j1,5,jq,i)*DDij(j1,1,j)

4^+R91i(j1,5,1)*QDDij(j1,1,jq,j))

5^+QR91i(j1,4,jq,i)*DDj(j1,1,j)

6^+R91i(j1,4,i)*QDDj(j1,1,jq,j))

QK(3,jq) =QK(3,jq)+Hf*(QR91i(j1,1,jq,i)*DDj(j1,4,j)

2^+R91i(j1,1,0*QDDj(j1,4,jq,j)

3^+2.d0*(QR9lij(j1,1,jq,j)*(DFj(j1,2,j)

4^+DGj(j1,4,j)+DHj(j1,4,j))

+R91ij(j1,1,j)*(QDFj(j1,2 i jq,j)

6^+QDGj(j1,4,jq,j)+QDHj(j1,4,jq,j)))

7^+QR91j(j1,1,jq,j)*(

8^RRj(j1,1,j)+RTj(j1,3,j)+RVj(j1,3,j)

9

^

^+TTj(j1,4,j)+VVj(j1,4,j)+TVj(j1,4,j))

+R91j(j1,1,j)*(QRTj(j1,3,jq,j)+QRVj(j1,3,jq,j)

1^+QTTj(j1,4,jq,j)+QVVj(j1,4,jq,j)+QTVj(j1,4,jq,j)))

QK(4,jq) =QK(4,jq)+Hf*(QR91j(j1,4,jq,j)*TTj(j1,1,j)

2^+R91j(j1,4,j)*QTTj(j1,1,jq,j))

QK(5,jq) =QK(5,jq)+Hf*(QR91j(j1,4,jq,j)*VVj(j1,1,j)

2^+R91j(j1,4,j)*QVVj(j1,1,jq,j))

QK(6,jq) =QK(6,jq)+QR91i(j1,3,jq,i)*DDij(j1,2,j)

2^+R91i(j1,3,0*QDDij(j1,2,jq,j)

3^+QR91j(j1,3,jq,j)*(DFij(j1,1,j)

4^+DGij(j1,2,j)+DHij(j1,2,j))

5^+R91j(j1,3,j)*(QDFij(j1,1,jq,j)

6^+QDGij(j1,2,jq,j)+QDHij(j1,2,jq,j))

7^+QR91i(j1,2,jq,i)*DDj(j1,3,j)

8^+R91i(j1,2,j)*QDDj(j1,3,jq,j)
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9^+QR9lij(j1,3,jq,j)*(

DFj(j1,1,j)+DGj(j1,2,j)+DHj(j1,2,j))

1^+R91ij(j1,3,j)*(QDFj(j1,1,jq,j)

2^+QDGj(j1,2,jq,j)+QDHj(j1,2,jq,j))

QK(7,jq) =QK(7,jq)+QR91j(j1,5,jq,j)*DGij(j1,1,j)

2^+R91j(j1,5,j)*QDGij(j1,1,jq,j)

3^+QR91ij(j1,4,jq,j)*DGj(j1,1,j)

4^+R91ij(j1,4,j)*QDGj(j1,1,jq,j)

QK(8,jq) =QK(8,jq)+QR91j(j1,5,jq,j)*DHij(j1,1,j)

2^+R91j(j1,5,j)*QDHij(j1,1,jq,j)

3^+QR91ij(j1,4,jq,j)*DHj(j1,1,j)

4^+R91ij(j1,4,j)*QDHj(j1,1,jq,j)

QK(9,jq) =QK(9,jq)+QR9lij(j1,2,jq,j)*DGj(j1,3,j)

2^+R91ij(j1,2,j)*QDGj(j1,3,jq,j)

3^+QR91j(j1,2,jq,j)*(
4^RTj(j1,1,j)+TTj(j1,3,j)+TVj(j1,3,j))

5^+R91j(j1,2,j)*(QRTj(j1,1,jq,j)

6^+QTTj(j1,3,jq,j)+QTVS(j1,3,jq,j))

QK(10,jq)=QK(10,jq)+QR9lij(j1,2,jq,j)*DHj(j1,3,j)

2^+R91ij(j1,2,j)*QDHj(j1,3,jq,j)

3^+QR91j(j1,2,jq,j)*(RVj(j1,1,j)+VVj(j1,3,j))

4^+R91j(j1,2,j)*QVVj(j1,3,jq,j)

QK(11,jq)=QK(11,jq)+Hf*(QR91j(j1,4,jq,j)*TVj(j1„j)

2^+R91j(j1,4,j)*QTVj(j1,1,jq,j))

822 Continue

C

C^Hence QKe for all the generalized coordinates are evaluated

C

Do 828 jq=1,Nq

Do 828 jn=1,11

828 QKe(jq)=QKe(jq)+QK(jn,jq)

C
810 Continue

Stop

End

270



Subroutine to calculate the Lys of the system

C
C^The I{sys} of the system is denoted by the 3X3 array Imat

C^The common blocks, except for R99, are the same as KINENE

C^and are omitted here

C

Subroutine INEMAT(Imat)

Implicit Real*8(a-h, o-z)

C

C^Common /R99/ R99c(9,9),^R99i(9,9,2,N),

2^R99ij(9,9,1,Nj), R99j(9,9,2,Nj)

C

Real*8^Imat(3,3)

C

C^Set up the temporary matrices

C^In Eq. (I-2), each component has two terms

C^The first one is a scalar product times the unit matrix

C^The second one is the product of two 3X3 matrices

C^The scalar product is stored in Sc(m)

C^(m=1,...,11) for the m-th term in Eq. (I-2)

C^Am(m,n,p)=Sc(m)X the unit matrix

C^Bm(m,n,p) is the second term of each component

C^Dm(m,n,p) (m=1,...,4) are the dummy matrices

C

Real*8 Am(11,3,3), Bm(11,3,3), Dm(4,3,3), Sc(11)

C

C^First, initialize the matrices

C

Do 5000 i1=1,11

5000 Sc(i1,1)=0.d0

C

Do 5002 i2=1,3

Do 5002 i1=1,3

5002 Imat(i1,i2)=0.d0

C

Do 5004 i2=1,3

271



Do 5004 il=1,3

Do 5004 in=1,11

Am(in,i1,i2)=0.d0

5004 Bm(in,i1,i2)=0.d0

Do 5006 i2=1,3

Do 5006 i1=1,3

Do 5006 in=1,3

5006 Dm(in,i1,i2)=0.d0

C

C^First start with body Bc to calculate the first term

C

Do 500 il=1,9

Sc(1) =Sc(1)-R91c(i1)*CMc(i1,4)

Sc(3)=Sc(3)+R91c(i1)*RRc(i1,1)

Sc(4)=Sc(4)+R91c(i1)*TTc(i1,4)

Sc(5) =Sc(5)+1191c(i1)*VVc(i1,4)

Sc(9) =Sc(9)+R91c(i1)*RTc(i1,3)

Sc(10)=Sc(10)+R91c(i1)*RVc(i1,3)

Sc(11)=Sc(11)+R91c(i1)*TVc(i1,4)

500 Continue

C

C^Now proceed the calculation for Bi bodies

C

Do 502 i =1,Ni

Do 502 i1=1,9

Sc(2) =Sc(2)+R91c(i1)*DDi(i1,4,i)

Sc(3)=Sc(3)+R91i(i1,4,0*RRi(i1,1,i)

Sc(4)=Sc(4)+R91i(i1,4,i)*TTi(i1,4,i)

Sc(5)=Sc(5)+R91i(i1,4,i)*VVi(i1,4,i)

Sc(6)=Sc(6)+2.dO*R91i(i1,5,0*DFi(i1,2,i)

Sc(7)=Sc(7)+2.dO*R91i(i1,5,i)*DGi(i1,4,i)
Sc(8)=Sc(8)+2.dO*R91i(i1,5,i)*DHi(i1,4,i)

Sc(9) =Sc(9)+R91i(i1,4,i)*RTi(i1,3,i)
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Sc(10)=Sc(10)+R91i(i1,4,i)*RVi(i1,3,i)

Sc(11)=Sc(11)+R91i(i1,4,i)*TVi(i1,4,i)

502 Continue

C

Do 504 i1=1,3

Do 504 in=1,11

504 Am(in,i1,i1)=Sc(in)

C

C^Second, the calculation of the second term for Bc

C

Do 506 i2=1,3

Do 506 i1=1,3

Do 506 i3=1,9

C

ia=(i1-1)*3+i2

Bm(1,i1,i2) =Bm(1,i1,i2)-R99c(ia,i3)*CMc(i3,4)

Bm(3,i1,i2) =Bm(3,i1,i2)+R99c(ia,i3)*RRc(i3,1)

=Bm(4,i1,i2)+11.99c(ia,i3)*TTc(i3,4)

Bm(5,i1,i2) =Bm(5,i1,i2)+R99c(ia,i3)*VVc(i3,4)

Bm(9,i1,i2) =Bm(9,i1,i2)+R99c(ia,i3)*RTc(i3,3)

Bm(10,i1,i2)=Bm(10,i1,i2)+R99c(ia,i3)*RVc(i3,3)

Bm(11,i1,i2)=Bm(11,i1,i2)+R99c(ia,i3)*TVc(i3,4)

506 Continue

C

C^Repeat the calculation of the second term for Bi

C

Do 508 i =1,N

Do 508 i2=1,3

Do 508 i1=1,3

Do 508 i3=1,9

ia=(i1-1)*3+i2

Bm(2,i1,i2) =Bm(2,i1,i2)+R99c(ia,i3)*DDi(i3,4,i)

Bm(3,i1,i2) =Bm(3,i1,i2)+R99i(ia,i3,1,0*RRi(i3,1,i)

Bm(4,i1,i2) =Bm(4,i1,i2)+R99i(ia,i3,1,i)*TTi(i3,4,i)

Bm(5,i1,i2) =Bm(5,i1,i2)+R99i(ia,i3,1,i)*VVi(i3,4,i)
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Dm(1,i1,i2) =Dm(1,i1,i2)+R99i(ia,i3,2,i)*DFi(i3,2,i)

Dm(2,i1,i2) =Dm(2,i1,i2)+R99i(ia,i3,2,i)*DGi(i3,4,i)

Dm(3,i1,i2) =Dm(3,i1,i2)+R99i(ia,i3,2,i)*DHi(13,4,1)

Bm(9,i1,i2) =Bm(9,i1,i2)+R99i(ia,i3,1,i)*RTi(i3,3,i)

Bm(10,i1,i2)=Bm(10,i1,i2)+R99i(ia,i3,1,i)*RVi(i3,3,i)

Bm(11,11,i2)=Bm(11,i1,i2)+R99i(ia,i3,1,i)*TVi(i3,4,i)

508 Continue

Do 510 i =1,N

Do 510 i2=1,3

Do 510 i1=1,3

Bm(6,i1,i2)=Dm(1,i1,i2)+Dm(1,i2,i1)

Bm(7,i1,i2)=Dm(2,i1,i2)+Dm(2,i2,i1)

Bm(8,i1,i2)=Dm(3,i1,i2)+Dm(3,i2,i1)

510 Continue

C

C^Evaluate I{sys} for the system Bc and Bi bodies

C

Do 512 12=1,3

Do 512 i1=1,3

Do 512 in=1,11

Imat(i1,i2)=Imat(i1,i2)+Am(in,i1,i2)-Bm(in,i1,i2)

512 Continue

C

C^Proceed if Bij is not zero

If(Nj .eq. 0)Go to 600

C

C^Initialize the matrices

C

Do 6000 j1=1,11

6000 Sc(j1)=0.d0

C

Do 6002 j2=1,3

Do 6002 j1=1,3
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Do 6002 jn=1,11

Am(jn,j1,j2)=0.d0

Bm(jn,j1,j2)=0.d0

6002 Continue

C

Do 6004 j2=1,3

Do 6004 j1=1,3

Do 6004 jn=1,4

6004 Dm(jn,j1,j2)=0.d0

C

C^Begin the first term calculation for Bij bodies

C

Do 602 j =1,Nj

Do 602 j1=1,9

i=Jcon(j)

Sc(2) =Sc(2)+(Rmj(j)/Rmi(i))*R91c(j1)*DDi(j1,4,i)

2^+2.d0*R91i(j1,5,i)-*DDij(j1,4,j)

3^+R91i(j1,4,0*DDj(j1,4,j)

Sc(3) =Sc(3)+R91j(j1,4,j)*RRj(j1,1,j)

Sc(4)=Sc(4)+R91j(j1,4,j)*TTj(j1,4,j)

Sc(5)=Sc(5)+R91j(j1,4,j)*VVj(j1,4,j)

Sc(6)=Sc(6)+2.d0*(R91j(j1,5,j)*DFij(j1,2,j)

2^+R91ij(j1,4,j)*DFj(j1,2,j))

Sc(7)=Sc(7)+2.d0*(R91j(j1,5,j)*DGij(j1,4,j)

2^+R9lij(j1,4,j)*DGM1,4,j))

Sc(8)=Sc(8)+2.d0*(R91j(j1,5,j)*DHij(j1,4,j)

2^+R91ij(j1,4,j)*DHj(j1,4,j))

Sc(9)=Sc(9)+R91j(j1,4,j)*RTj(j1,3,j)

Sc(10)=Sc(10)+R91j(j1,4,j)*RVj(j1,3,j)

Sc(11)=Sc(11)+R91j(j1,4,j)*TVj(j1,4,j)

602 Continue

Do 604 j1=1,3

Do 604 jn=1,11

604 Am(jn,j1,j1)=Sc(jn)

C

C
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C

C^Then, calculate the second term for Bij

C

Do 606 j =1,Nj

Do 606 j2=1,3

Do 606 j1=1,3

Do 606 j3=1,9

i =Jcon(j)

ja=(j1-1)*3+j2

Bm(2,j1,j2) =Bm(2,j1,j2)

2^+(Rmj(j)/Rmi(i))*R99c(ja,j3)*DDi(j3,4,i)

3^+R99i(ja,j3,1,i)*DDj(j3,4,j)

Dm(1,j1,j2) =Dm(1,j1,j2)+R99i(ja,j3,2,i)*DDij(j3,4,j)

Bm(3,j1,j2) =Bm(3,j1,j2)+R99j(ja,j3,1,j)*RRj(j3,1,j)

Bm(4,j1,j2) =Bm(4,j1,j2)+R99j(ja,j3,1,j)*TTj(j3,4,j)

Bm(5,j1,j2) =Bm(5,j1,j2)+R99j(ja,j3,1,j)*VVj(j3,4,j)

Dm(2,j1,j2)_ =Dm(2,j1,j2)+R99j(ja,j3,2,j)*DFij(j3,2,j)

2 +R99ij(ja,j3,1,j)*DFj(j3,2,j)

Dm(3,j1,j2) =Dm(3,j1,j2)+R99j(ja,j3,2,j)*DGij(j3,4,j)

2^+R99ij(ja,j3,1,j)*DGj(j3,4,j)

Dm(4,j1,j2) =Dm(4,j1,j2)+R99j(ja,j3,2,j)*DHij(j3,4,j)

2^+R99ij(ja,j3,1,j)*DHj(j3,4,j)

Bm(9,j1,j2) =Bm(9,j1,j2)+R99j(ja,j3,1,j)*RTj(j3,3,j)

Bm(10,j1,j2)=Bm(10,j1,j2)+R99j(ja,j3,1,j)*RVj(j3,3,j)

Bm(11,j1,j2)=Bm(11,j1,j2)+R99j(ja,j3,1,j)*TVj(j3,4,j)

606 Continue

Do 608 j2=1,3

Do 608 j1=1,3

Bm(2,j1,j2)=Bm(2,j1,j2)+Dm(1,j1,j2)+Dm(1,j2,j1)

Bm(6,j1,j2)=Dm(2,j1,j2)+Dm(2,j2,j1)

Bm(7,j1,j2)=Dm(3,j1,j2)+Dm(3,j2,j1)

Bm(8,j1,j2)=Dm(4,j1,j2)+Dm(4,j2,j1)

608 Continue
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C

C^Hence, the matrix Imat is calculated

C

Do 610 j2=1,3

Do 610 j1=1,3

Do 610 jn=1,11

Imat(j1,j2)=Imat(j1,j2)+Am(jn,j1,j2)-Bm(jn,j1,j2)

610 Continue

C

600 Continue

Stop

End



Sample subroutine to calculate H,y, of the system

C

C^The H{sys} of the system is represented by the array Hvec

C^The common blocks, except for R93, are the same as KINENE

C^and are omitted here

C

Subroutine ANGMOM(Hvec)

Implicit Real*8(a-h, o-z)

C

Common /R93/ R93c(3,9),^R93i(3,9,5,N),

2^R93ij(3,9,4,Nj), R93j(3,9,5,Nj)

C

C^Set up the matrix Hvec and temporary matrix Hv

C^Hvec(n) (n=1,2,3) refer to the X, Y, and Z components,

C^respectively

C^Hv(m,n) (m=1,...,12; n=1,3) refers to the contribution

C^from the m-th term in Eq. (I-3)

C^For instance, Hv(m,n) for H{cm}, Hv(2,n) for 11{11} and so on
C

Real*8 Hvec(3), Hv(12,3)

C

C^Initialize the matrices

C

Do 3000 i1=1,3

Hvec(i1)=0.d0

3000 Continue

C

Do 3002 i1=1,3

Do 3002 in=1,12

Hv(in,i1)=0.d0

3002 Continue

C

C^Start with Body Bc

C

Do 300 i2=1,9

Do 300 il=1,3
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Hv(1,i1) =Hv(1,i1)-R39c(il,i2)*CMc(i2,3)

Hv(4,i1) =Hv(4,i1)+R39c(il,i2)*TTc(i2,3)

Hv(5,i1) =Hv(5,i1)+R39c(i1,i2)*VVc(i2,3)

Hv(10,i1)=Hv(10,i1)+R39c(i1,i2)*RTc(i2,1)

Hv(11,i1)=Hv(11,i1)+R39c(il,i2)*RVc(i2,1)

Hv(12,i1)=Hv(12,i1)+R39c(il,i2)*TVc(i2,3)

300 Continue

C

C^Proceed to the Bi bodies

C

Do 302 i =1,N

Do 302 i2=1,9

Do 302 i1=1,3

Hv(2,i1) =Hv(2,i1)+R39c(il,i2)*DDi(i2,3,i)

Hv(3,i1) =Hv(3,i1)-R39i(il,i2,2,i)*(RRi(i2,1,i)

2^+RTi(i2,3,i)+RVi(i2,3,i)

3^+TTi(i2,4,i)+VVi(i2,4,i)+TVi(i2,4,0)

Hv(4,i1) =Hv(4,i1)+R39i(il,i2,4,i)*TTi(i2,3,i)

Hv(5,i1) =Hv(5,i1)+R39i(il,i2,4,i)*VVi(i2,3,i)

Hv(6,i1) =Hv(6,i1)+R39i(il,i2,3,i)*(

2^DFi(i2,2,i)+DGi(i2,4,i)+DHi(i2,4,0)

Hv(7,i1) =Hv(7,11)-R39i(i1,i2,5,i)*DFi(i2,1,i)

Hv(8,i1) =Hv(8,i1)+R39i(il,i2,5,i)*(-DGi(i2,2,i)+DGi(i2,3,i))

Hv(9,i1) =Hv(9,i1)+R39i(il,i2,5,0*(-DHi(i2,2,i)+DHi(i2,3,i))

Hv(10,i1)=Hv(10,i1)+R39i(i1,i2,4,0*RTi(i2,1,i)

Hv(11,i1)=Hv(11,i1)+R39i(il,i2,4,0*RVi(i2,1,i)

Hv(12,i1)=Hv(12,i1)+R39i(il,i2,4,i)*TVi(i2,3,i)

302 Continue

C

C^Hvec calculated if Bij does not exist

C

Do 304 i1=1,3

Do 304 in=1,12

Hvec(i1)=Hvec(i1)+Hv(in,i1)
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304 Continue

C

C^Proceed if Nj is not zero

C

If (Nj .eq. 0)Go to 400

Do 4000 in=1,12

Do 4000 11=1,3

4000 Hv(in,11)=0.d0

Do 402 j =1,Nj

Do 402 j2=1,9

Do 402 j1=1,3

1=Jcon(j)

Hv(2,j1) =Hv(2,j1)+R39c(j1,j2)*(Rmj(j)/Rmi(i))*DDi(j2,3,1)

2^+R391(j1,j2,5,1)*(DDij(j2,3,j)-DDij(j2,2,j))

3^+R391_(j1,j2,4,i)*DDj(j2,3,j}

Hv(3,j1) =Hv(3,j1) -R391(j1,j2,2,1)*DDj(j2,4,j)

2^+(R391j(j1,j2,3,j)-R391j(j1,j2,2,j))*(
3^DFj(j2,2,j)+DGj(j2,4,j)+DHj(j2,4,j))
4^-R39j(j1,j2,2,j)*(RRj(j2,1,j)+RTj(j2,3,j)+RVj(j2,3,j)

5^+TTj(j2,4,j)+VVj(j2,4,j)+TVj(j2,4,j))

Hv(4,j1) =Hv(4,j1)+R39j(j1,j2,4,j)*TTj(j2,3,j)

Hv(5,j1) =Hv(5,j1)+R39j(j1,j2,4,j)*VVj(j2,3,j)

Hv(6,j1) =Hv(6,j1)+R391(j1,j2,3,1)*DDij(j2,4,j)

2^+R39j(j1,j2,3,j)*(

3^DF1j(j2,2,j)+DGij(j2,4,j)+DH1j(j2,4,j))

Hv(7,j1) =Hv(7,j1) -R39j(j1,j2,5,j)*DFij(j2,1,j)

2^-R391j(j1,j2,4,j)*DFj(j2,1,j)

Hv(8,j1) =1-117(8,j1)+R39j(j1,j2,5,j)*(DGij(j2,3,j)-DGij(j2,2,j))
2^+R391j(j1,j2,4,j)*(DGj(j2,3,j)-DGj(j2,2,j))

Hv(9,j1) =Hv(9,j1)+R39j(j1,j2,5,j)*(DHij(j2,3,j)-DHij(j2,2,j))

2^+R391j(j1,j2,4,j)*(DHj(j2,3,j)-DHj(j2,2,j))

Hv(10,j1)=Hv(10,j1)+R39j(j1,j2,4,j)*RTj(j2,1,j)

Hv(11,j1)=Hv(11,j1)+R39j(j1,j2,4,j)*RVj(j2,1,j)

C

C
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Hv(12,j1)=Hv(12,j1)+R39j(j1,j2,4,j)*TVj(j2,3,j)

402 Continue

C

C^Calculate Hvec for the whole system

C

Do 404 j1=1,3

Do 404 jn=1,12

Hvec(j1)=Hvec(j1)+Hv(jn,j1)

404 Continue

C

400 Continue

Stop

End
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