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ABSTRACT 

A combined software and hardware package has been developed which coordinates 

the activities of a Unimation P U M A 560 industrial robot and an O R A C C N C training 

lathe in a Flexible Manufacturing Cell environment under the supervision of a D E C V A X 

11/750 computer. The hardware component is used to provide an intermediate interface 

between the V A X 11/750 software and the standard manual controls of the O R A C lathe. 

The interface to the P U M A robot is strictly software oriented and makes use of the 

Supervisor communication protocol provided by the robot's V A L II controller. 

The software package has been designed as a hierarchial, multi-tasking system to 

facilitate modular development and a logical division of labour. The hierarchy consists of 

three main levels, with the individual machine controllers providing the lowest level. At 

the middle layer is a number of subprocesses which execute on the V A X 11/750 and are 

each responsible for the direct supervision of one machine controller. This supervision 

involves both sending commands and receiving status messages in the native language of 

the individual controllers. A t the top layer of the hierarchy is a single process which is 

responsible for the overall coordination of the workcell activities. 

Each subtask in the hierarchy communicates with its vertical neighbours through a 

series of communication protocols and command vocabularies developed for that pur­

pose. Each subtask is also provided with a structured interface to the operator's console. 

This interface is implemented by a separate V A X process that provides a status window 

environment for each machine that is active in the cell, but also intercepts text messages 

and prompts so that they may be displayed to the operator one at a time. 

n 



Two different software packages have been developed for the top layer of the hierarchy. 

The ORCAM package is dedicated to the task of automatically manufacturing turned 

components from a CAD database. The FMC package provides a flexible interface to 

each of the supported machines and may be used to supervise any number of user-defined 

tasks. 
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Chapter 1 

INTRODUCTION 

Production automation is the engineering discipline concerned with the application 

of mechanical, electronic, and (more recently) computer based systems to the control 

and operation of manufacturing equipment [10]. This is a dynamic technology which was 

born during the industrial revolution (circa 1770), when simple production machines were 

designed to perform tasks previously done by manual labor. During the early stages of 

development the major emphasis was on increased productivity, which led to the evolution 

of manufacturing procedures and machines. In the last two decades, changing market 

trends coupled with a dramatic increase in the use of computerized controls in the form 

of C N C machining centers, industrial robots, and automatic guided vehicles, has caused 

a shift in emphasis to include greater flexibility as well as productivity. 

1.1 H i s t o r i c a l Perspective 

Perhaps the most traditional symbol of automation is the mechanized flow line. 

Chronologically, this was the first major example of automated production to appear. 

It's origin can be traced to the work of Henry Ford in the manufacture of automobiles 

[10]. His advances in assemblyline mass-production techniques led to the development of 

1 



Chapter 1. INTRODUCTION 2 

fixed-automation transfer lines. These lines consist of several machines or workstations 

each performing a specialized operation, with workpieces being transferred from station 

to station in a serial fashion. A well balanced transfer line is characterized by short 

production times and fast output, but also by extreme inflexibility to product alteration. 

The level of automation utilized in early transfer lines was limited to plugboard con­

trollers which could perform a fixed sequence of operations, and copying machines in 

which a stylus moved on a master part and produced a replica. The rapid growth of the 

aircraft industry in the late 1940's created an increased need for complicated parts with 

contoured surfaces. The high degree of accuracy required coupled with relatively small 

batch sizes made these parts difficult and costly to produce on conventional machines. 

Iii 1948 the U.S. Air Force started a research program that led to the development of the 

first Numerical Control (NC) milling machine by the MIT Servomechanism Laboratory 

in 1952 [11]. Simultaneous control of three axis was performed using numbers stored 

on punched binary tape as setpoints. This method of control provided far more accu­

racy than the previous plugboard control, removed the need to tie up the machine while 

making a master part, and introduced a level of flexibility suitable for medium volume 

production. 

The expansion of digital computer technology in the 1960's led to the development 

of Direct Numerical Control (DNC) systems which were designed to replace hardware 

components typically duplicated in individual NC controllers with a sophisticated central 

computer. The most successful form of DNC has been the Behind-Tape-Reader (BTR) 

interface which leaves the conventional NC controller intact, except for the tape reader 

which is replaced by a telecommunication fine to the DNC computer [10, 11]. Programs 

stored in the central computer are downloaded to individual NC machines upon demand. 
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The advent of minicomputers and microprocessors with their increased computational 

ability, smaller physical dimensions, and reduced costs, has largely nullified the driving 

force behind D N C systems. Current systems are characterized by an architecture known 

as Computer Numerical Control ( C N C ) in which much of the hardwired circuitry of early 

N C systems is replaced by a microprocessor imbedded directly into the controller of each 

machine. 

Simultaneous with the advances in C N C systems was the development of the industrial 

robot. The definition of an industrial robot given by the Robotics Industries Association 

(RIA) is a "reprogrammable, multifunctional manipulator designed to move material, 

parts, tools, or special devices through variable programmed motions for the performance 

of a variety of tasks" [7]. The first commercial robot was manufactured in 1961 [11], but it 

was not unti l the late 1970's, when significant improvements in repeatability and accuracy 

were made, that industrial robots became commonplace in the manufacturing industry. 

Ear ly robots were typically programmed by physically guiding them through the desired 

motion under manual control while positions were recorded for eventual play-back. As 

with N C machines, the ability to define positions in terms of numerical coordinates, 

without the use of the physical robot, greatly enhances the flexibility of modern robots, 

making them suitable for batch production. 

Concurrent with the technological advances in N C machining and robotics were ad­

vances in manufacturing philosophy. Group technology is now widely used as a means 

of identifying and grouping components into part families to take advantage of similari­

ties in design and manufacture. B y arranging production equipment into manufacturing 

cells responsible for specific part families, a significant reduction in part handling may 

\ 
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be achieved. In contrast to the traditional process-type plant layout, other advantages 

are lower set-up times, less in-process inventory, and shorter lead times [10]. 

1.2 Current Research 

The next logical step in the development of production automation has been the 

marriage of the group technology concept with the advanced robot and C N C systems. 

This marriage capitalizes on the reprogrammable nature of these systems to produce a 

manufacturing environment that's both productive and highly flexible. This structure 

uses a central computer to coordinate and monitor the activities of a number of indi­

vidual machine controllers. The actual activities are generated on the central computer 

using off-line programming techniques and are not rigidly fixed as in hard-automation. 

This structure is known as a Flexible Manufacturing Cell ( F M C ) and has provided the 

backbone for an explosion of research into the factory of the future. 

Recent advances in the areas of force control and robot accuracy have resulted in 

the development of a similar structure denoted as a Flexible Assembly Cel l ( F A C ) . The 

ultimate goal of production automation is the operation of a number of manufacturing 

and assembly cells under the supervision of a central computer. This architecture is 

known as a Flexible Manufacturing System (FMS) and must also incorporate a materials 

and tool handling system. Recent pilot studies into F M S have resulted in various degrees 

of successes and failures [9, 17, 14]. Analysis of these results are currently refining the 

structure of F M S so that it may serve as a vehicle for the parallel growth of C A D 

and C A M . This structure wil l pave the way for Computer Integrated Manufacturing 
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(CIM) ; the coordinated participation of computers in all phases of manufacturing: design, 

planning, manufacture, control, assembly, and testing. 

1.3 Research Objective 

Research into N C machining techniques started at U B C in the late 1970's with the 

purchase of two N C mill ing machines. This equipment was supplemented in 1983 with 

the purchase of an O R A C C N C training lathe and a P U M A 560 industrial robot. These 

acquisitions provided the impetus for two independent studies into off-line programming. 

The research into off-line programming of the O R A C lathe resulted in the O R A C A P 

software package; an interactive programming package which produces O R A C N C code 

from a geometric description of the part [13]. The original research into off-line program­

ming of robots culminated in an interactive package called A U T O P which automatically 

generates robot trajectories for a welding workstation [5]. Later research expanded the 

off-line programming capabilities to include optimized 2-D trajectories [6]. 

Al though the O R A C A P package includes an option for downloading programs to the 

O R A C lathe over a serial line, it does not provide any means for init iating or monitoring 

the actual machining process. The A U T O P package used to generate the welding trajec­

tories does not provide any capabilities for communicating with the robot controller. In 

order to allow these off-line programming capabilities to be utilized in a manufacturing 

environment it was necessary to develop a means of communicating with, and controlling 

the activities of, each of the two machines. 

This thesis describes the development of a supervisory control package for the V A X 

11/750 computer that supports the integration of C A D data into an actual manufacturing 
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environment. This work had the specific objective of combining the P U M A 560 robot 

and the O R A C CNC lathe into a functioning F M C under the supervision of the VAX. 

Additional design requirements called for the flexibility to allow other manufacturing 

equipment to be added to the cell at a future date, and the modularity to support future 

use in the ongoing research into robotic assembly using force control. 



Chapter 2 

SYSTEM OVERVIEW 

This chapter describes the overall structure of the supervisory control system devel­

oped for the VAX 11/750. The structure is introduced by giving some general guidelines 

from the literature that apply to the design of any manufacturing control environment. 

The specific factors affecting the VAX implementation are then discussed while outlin­

ing the chosen architecture. The details of the actual software and hardware required 

to interface and control the ORAC lathe and PUMA 560 robot are provided in later 

chapters. 

2.1 General Structure of an FMC 

The application of computers to the manufacturing industry has advanced at a phe­

nomenal rate in the past twenty years, but it has not always been a pleasant experience. 

Many manufacturers have been left with nothing more than a high priced conversation 

piece as a result of their attempts to apply computer technology. A number of different 

architectures have been tried over the years with mixed results. Today, with the prolif­

eration of small powerful computers, the hierarchial computer structure has become the 

7 
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most effective and efficient arrangement for implementing computer control in manufac­

turing [10]. This structure supports a distributed control effort that results in balanced 

response times, and more manageable software. 

The Flexible Manufacturing Cell is, by its very nature, a hierarchial computer system 

with at least two levels. The individual machine controllers represent the lowest level of 

the hierarchy and must be capable of supporting bidirectional communications with the 

higher levels. Both the machine and process states have to be available to the central 

computer on a continuous basis to allow logical decisions. The control effort at this level 

should be autonomous and each controller is ideally responsible for only one device or a 

group of closely related devices. This control effort, however, may require an awareness 

of the state of other machines and some horizontal communication may also be necessary 

at this level. 

Despite the recent advances outlined in the preceding chapter, many NC machine 

tools and robots are still being developed primarily as stand-alone units. Depending 

on the level of intelligence embedded in each controller, an additional level of computer 

control may be required to provide the necessary communication capabilities. These 

interfaces should be designed such that the manual control and data entry functions 

remain operational and accessible in the event of a breakdown in the network. 

Another factor affecting the number of hierarchial levels required in an F M C imple­

mentation is the number of machines being supervised. Unlike the machine controllers, 

computers at higher levels of the hierarchy are responsible for more than one device. 

To be truly productive and flexible, these higher levels must be organized to support 

the simultaneous operation of all machines. Numerous techniques, including prioritized 

interrupts and event-based multitasking, are available to support this function, but it is 
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essential that the computer's processing speed be matched to the rate at which events 

are likely to occur. If interrupt priorities are not balanced with respect to time spans, 

deadlocks may result and device synchronization may become impossible [9]. 

Counteracting the desire for well distributed control is the reality that each node 

must be capable of vertical communication with layers both above and below. Although 

local area networks (LAN's) have received a lot of attention lately, the task of linking 

the computers of different manufacturers is still a costly and questionable undertaking. 

The prime consideration in computer based manufacturing control, be it FMC, FMS, 

or CIM, is flexibility. The key to this flexibility is a modular software design [14]. A 

modular design provides for gradual implementation and testing of components that will 

ultimately operate as a total system. By using formalized procedures for the sharing 

and transportation of data, new modules may be added with minimal disruption to the 

existing system. A modular design also allows the software component to take advantage 

of the same hierarchial structure as applied to the hardware component. 

The design of manufacturing equipment is still very individualistic and various levels 

of status information and command capabilities are provided. Recent efforts to establish 

the Manufacturing Automation Protocol (MAP) developed by GM as an industry stan­

dard for communications among manufacturing equipment have not met with widespread 

acceptance. Until a standard is accepted, intermediate software translators (referred to 

as data pumps by Lambourne [12]) must be used to integrate these machines into the 

FMC environment. These modules represent an intermediate layer in the supervisory 

control system; communicating with the low level machine controllers on one hand, and 

the cell management software on the other. By developing a standard protocol for the 
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interface to the cell management level, the addition of future machines is simplified and 

added flexibility is gained. 

The generic supervisory control system can therefore be seen to operate on three levels; 

high or supervisory level, middle or machine translation level, and low or hardware control 

level. Each level performs a specific task based on information received from adjacent 

levels. Communications between individual levels are governed by specific protocols 

that specify both the format and content of the information communicated. In general, 

commands are directed from top to bottom, while status information flows upward. 

Communication rates are highest at the lowest level, and diminish as one moves up the 

hierarchy. 

The system also has a monitoring function that is not restricted to any one level. 

Software at all levels of the hierarchy collect data that is of importance to the system 

operator, and may be required to make decisions based on information that only the 

operator can supply [14]. The design of the operator interface is therefore not a t r ivial 

matter. If all operator interactions are funnelled through one layer the logical confinement 

of data within modules is lost, and the protocols for vertical communications become 

overburdened. However, if all levels communicate directly with the operator, some means 

of controlling the order and placement of messages must be implemented. 

2.2 Design of Generic V A X / M a c h i n e Interface 

One of the first tasks in designing any hierarchial software system is the logical division 

of labour. The distribution of tasks in the V A X implementation was directly affected 

by the requirement to support a number of different workcell objectives; machining, 



Chapter 2. SYSTEM OVERVIEW 11 

assembly, and welding. This requirement dictated that the characteristics of individual 

machines should be hidden from the cell management software. By confining the majority 

of the monitoring and control to the middle layer, the supervisory software is presented 

with a simplified, more uniform status interface. This design streamlines the creation of 

new cell management packages by reducing the amount of software that would have to 

be duplicated in each package. 

A uniform status reporting mechanism also simplifies the addition of new machines 

into existing cell management packages. Because all messages have the same syntax, a 

single module may be used to translate the status of any number of machines. Unfortu­

nately, the command passing mechanism is not quite as simple. Most computer based 

equipment will likely have a file transfer feature, but the majority of functions will be 

highly dependant on the type of machine. Although some massaging of the command 

syntax may be performed by the middle layer software, a truly uniform interface to the 

cell management layer is prohibited. Consequently, each supervisory level package will 

have to be embodied with the appropriate command syntax for the new machine. 

In addition to being independent of the cell management package being used, the 

software responsible for communicating with an individual machine should also be inde­

pendent of the physical link to the machine. By writing this software as a device driver, 

the actual communication channel may be assigned at run time. This technique allows a 

machine to be relocated without affecting the operation of the software. It also allows the 

addition of an identical machine without requiring the duplication of software modules. 
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Once the modular structure is defined, the implementation must be addressed. As 

noted in the preceding section, the design of an F M C should support simultaneous con­

trol. This was not essential for the two-machine turning workcell under consideration, 

but was considered as a design objective to enhance future use. 

The two techniques commonly used to handle asynchronous communications over a 

number of different data channels are interrupts and multitasking. If interrupts are to 

be used effectively, the number of interrupt priority levels must match the number of 

competing events. The V A X / V M S operating system supports user interrupts on all I /O 

channels through the Asynchronous System Trap ( A S T ) routines, but all requests are 

assigned the same priority. Once an interrupt handler is entered the user process is said to 

be in A S T mode and all other user interrupts for that process are blocked. User interrupts 

may also be blocked by the system during the execution of certain System Services, such 

as the Queue 1/ O W i t h Wait (QIOW) routine which is used by the Fortran compiler to 

perform all read requests. 

Due to the large number of I /O requests and other System Service calls required, 

the single priority user interrupt proved to be an ineffective means of implementing the 

F M C software, even for two machines. It was therefore necessary to implement the V A X 

portion of the supervisory control system as a multitasking hierarchy. This technique 

provides the best means of ensuring that each machine receives balanced attention. The 

V M S system uses a combination of assigned priorities, outstanding I /O requests, and 

time slicing to determine the amount of processing time that a given task receives. This 

combined precedence prevents a task that is waiting for an input message from blocking 

the execution of other active tasks, but also ensures prompt response once the required 

input is received. 
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The division of tasks utilized in the VAX- to -Mach ine interface is shown in Figure 2.1. 

Each separate process executing on the V A X is represented in the figure by a divided box 

with two labels. These two labels distinguish between the name of the process—the upper 

label—and the name of the software being executed by the process—the lower label. The 

process name is used both by the operating system and by other cooperating processes 

to determine the source of interprocess communications. Because a single software image 

can be executed within the context of any number of processes, the control of identical 

machines can be accomplished by running the driver under two different process names, 

as shoAvn by the dashed lines in Figure 2.1. Each machine is therefore referenced by its 

process name (which must be unique) rather than by its brand name. 

A t the root of the multitasking hierarchy is the parent process which executes the 

cell management image. This software is responsible for the coordination of the overall 

activities of the cell. The distribution of commands and status information to and from 

the machine level is accomplished through a separate subprocess for each machine. These 

subprocesses are created and assigned names by the parent process as the need arises. 

The subprocess name, physical I /O channel, and driver image to be assigned to each 

machine are all read from a data file to facilitate modifications and additions. 

A t the present time there are two different cell management packages available, 

O R C A M and F M C . These two packages differ mainly in the way that the cell activ­

ities are determined. The O R C A M package determines the order and magnitude of these 

activities directly from a C A D database, while the F M C package expects the sequence 

of events to be defined by an external program. Both of these packages are described in 

detail in Chapter 5. 
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Each machine driver subprocess is embodied with the particular characteristics of the 

machine and handles all of the direct communications. It is responsible for establishing 

communication with the machine controller, guiding the operator through the initializa­

tion sequence, overseeing the execution of commands received from the parent process, 

and maintaining a constant record of the machine's state. Because each machine has 

unique capabilities, each subprocess is also responsible for the detection and handling of 

errors. The corresponding error message and available recovery options are reported to 

the operator directly by the subprocess. The cell management software is informed of 

the error condition only if the recovery attempts fail to correct it. 

2.2.1 Communication Channels 

As shown in Figure 2.1, the different layers of the supervisory control system com­

municate in different ways. Communications between the middle layer and the machine 

control layer take place over physical paths, with at least one RS-232C serial line being 

used for each machine. The middle and top layers both reside on the VAX 11/750 so 

communications between these layers take place over internal data paths. These paths 

are realized by the creation of logical I/O devices known as mailboxes. This method of 

interprocess communication was chosen for the following reasons: 

• The structure of each message is user defined so that all types of data may be 

transmitted, either as binary numbers or as ASCII coded character strings. 

• The same I/O routines that axe used for serial lines may be used for mailboxes by 

specifying the correct logical unit number. 

• Messages may be read on either an interrupt or polled basis. 
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• The size of each mailbox may be individually assigned based on the maximum 

number of messages it wi l l have to buffer. 

When a process reads a mailbox message, the source of the message may be obtained 

directly from the V A X I /O routines. This allows a number of processes to write to 

the same mailbox without requiring an identifier in the actual message. The parent 

process takes advantage of this by using one mailbox to receive status messages from all 

of the subprocesses. Commands are transmitted to the individual driver subprocesses by 

placing them in the appropriate mailbox. 

One additional mailbox that is not shown in Figure 2.1 is the termination mailbox. 

This is a special mailbox which the V M S operating system uses to notify the parent 

process if any of its created subprocesses terminate unexpectedly. This termination 

mailbox, and all other communication mailboxes, must be created and assigned a name 

by the parent process prior to the creation of the subprocesses. The termination mailbox 

name is then passed to the V M S system service as each new subprocess is created. 

As illustrated in Figure 2.1, the communication mailboxes are given the same name as 

the associated subprocesses. These mailbox names are specified as the default input and 

output devices when the subprocess is created. This action causes the V M S system service 

routine to equate these device names to the process specific logical names S Y S S I N P U T 

and S Y S S O U T P U T . These logical names allow the subprocess software to be written 

independent of actual mailbox names. 

This independence is extended to the physical channels used to communicate with 

the machine controllers by setting up an additional logical name which points to the 

appropriate V A X terminal line. This logical name is created by the parent process and, 
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unlike those generated by the VMS system services, it is not process specific. Conse­

quently, a unique name must be used for each subprocess. This uniqueness is generated 

by concatenating the characters "_TTY" to the subprocess name. This format makes it 

easy for each subprocess to access the correct I/O channel. 

2.2.2 Status Messages 

Table 2.1 lists the syntax of the four status messages that a machine driver subprocess 

may transmit to the parent process. The Startup message indicates that the subprocess is 

starting the initialization sequence and is the first message to be transmitted. The Ready 

message is transmitted after the initialization sequence is completed and indicates that 

the subprocess is ready to accept commands from the parent process. When a command 

is received it is translated and the corresponding machine actions are initiated. If all of 

the requested actions are successful, the Completed message is sent to the parent process. 

If an irrecoverable error is detected, the Error message is sent to the parent process along 

with the corresponding error number. As noted earlier, the syntax of the commands 

transmitted from the parent process to the subprocesses are machine dependant, and 

will be described separately for each machine driver. 

2.3 Design of Operator Interface 

The information that must be transmitted to the operator can be broken down into 

three categories; status, informational messages, and prompts. The status information 

comes primarily from the individual subprocesses and reflects the current state of both 

the machine and its controller. These state variables can generally take on a limited 
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Table 2.1: Machine Driver Status Message Syntax 

Startup 

Ready 

Completed 

Error <error number> 

number of values and are well suited to a status line format in which each variable is 

assigned a particular position on the screen. This format allows the operator to scan the 

information rapidly at his own discretion, ensures that the most recent data is displayed, 

and prevents the display device from becoming cluttered with repetitive messages. 

Informational messages and prompts are transmitted by both the parent process and 

the individual subprocesses. These messages are of variable length and content, and are 

best suited to a dialogue format rather than a menu structure. Both of these data types 

generally require the immediate attention of the operator and should therefore not be 

overwritten. One way of obtaining this protection is to use separate display windows for 

each source. Recent studies into attention theory have shown that this approach often 

results in both delayed and incorrect responses [4]. Ideally, all operator prompts should 

be displayed in one location and should be queued so that they may be serviced one at 

a time. 
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In order to handle these varying data types, it was decided to design the operator 

interface using an individual status window for each machine, and a combined mes­

sage/prompt window to be used by all processes. These windows are generated using 

the Screen Management ( S M G ) services provided by V M S and are therefore indepen­

dent of the actual terminal used. The S M G routines treat each window as if it were a 

separate vir tual I /O device and assign it a unique identity number when it is created. 

A l l operations on the window are then performed by referencing this identity number. 

Once a window is created the S M G routines may be used to map the window to any 

portion of the actual output device, but it is up to the application software to ensure 

that previously pasted windows are not overwritten. 

In a multitasking environment this window tracking is best performed by a separate 

task that implements all of the actual screen updates based on requests received from 

the other processes. In this way individual tasks do not have to be aware of each other's 

existence, and can simply request that a window be created in the next available location. 

This method was adopted for the supervisory control package, with the screen control 

task being created as a subprocess by the parent cell management process. 

When deciding how to interface the screen management subprocess to the existing 

software structure, the following design criteria were used: 

• The status windows associated with the individual machines should remain acces­

sible for writing at all times. 

• Each process should be able to gain exclusive control of the window used for mes­

sages and prompts. This type of access is necessary to prevent unanswered prompts 

from being overwritten, and to allow multiple line messages to be transmitted with­

out interference from transmissions by other processes. 
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The VMS multitasking facility accommodates resource sharing through the Lock Man­

agement routines. These routines allow each process to request access to any supported 

I/O device in a number of different modes. If the request cannot be granted immedi­

ately, the process is placed in a queue until the device is available. Unfortunately, the 

lock management routines do not recognize the virtual windows created by the SMG 

services. A lock request to a display device therefore results in the entire display being 

dedicated to the requesting process. 

To provide the desired separation of status and informational messages, the operator 

interface uses two different mailboxes as shown in Figure 2.2. Both of these mailboxes 

are created by the screen management subprocess and always have the same names. 

The SMG-hdplx mailbox is used to receive both status and control messages from the 

cooperating processes. It is set up as a unidirectional channel and is never written to 

by the SMG process. This mailbox is to remain available at all times and should not 

be used as the target of a lock request. The SMG-fdplx mailbox is used to receive 

all informational messages and prompts from both the parent process and the machine 

drivers. This mailbox is used as a bidirectional channel with all of the the operator's 

responses being passed back to the requesting process through the same mailbox. Each 

process should use the lock management routines to gain exclusive access to this mailbox 

before sending any messages. 

The software necessary for performing the screen management utilities is located in 

the executable image SMG.exe. This software has been written as a general purpose 

operator interface and may be used for a variety of purposes. It operates on a 12 key­

word command set which allows cooperating processes to create and write to a number 

of different windows. Each process may create up to four windows which are number 
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sequentially from 1-4. These windows are owned by the creating process and may not 

be written to by other processes. These windows may be used as is for displaying lines 

of text, or they may be subdivided into as many as 15 sub windows for displaying sta­

tus information. In addition to these private windows, the SMG process maintains a 

single shared window which may be read from or written to by any of the cooperating 

processes. This window is referenced as window 0 and may not be subdivided by any 

process. When a process writes to this window the SMG software automatically appends 

the first 5 characters of the process name to the message before displaying it. This allows 

the operator to easily identify the source of the message or prompt. 

The syntax of the 12 commands recognized by the SMG process is shown in Table 2.2. 

Keywords are shown in capital letters while variable parameters are indicated by a de­

scription of the required value enclosed in angle brackets. A choice between a number 

of valid keywords is indicated by a list of the keywords separated by vertical bars and 

enclosed in braces. 

All processes must create their private windows by issuing the CREATE command. 

This command defines the size of the window and assigns a process specific identity 

number. The window will be enclosed by a border which may contain an optional label 

centered on either of the four sides. Once a window is created it may be subdivided using 

the CREATE_SUB command. Subwindows may only span one row, therefore its size is 

completely defined by the length parameter. This subwindow is assigned an additional 

identity number and may be placed anywhere within the main window by specifying the 

starting row and column. If the optional label parameter is supplied, the text is displayed 

to the left of the specifed window location. This label is only written once, when the 

window is created, and is not protected from overwriting by other windows. 
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Table 2.2: Screen Management Command Syntax 

CREATE <window> <rows> <columns> {TOP|BOTTOM|LEFT|R IGHT} <label> 
CREATE-SUB <window> <subwindow> <row> <column> <length> <label> 

PUSH <window> {UP|DOWN} <column> <space> 
PASTE <window> <row> <column> 

UN PASTE <window> 
REMOVE <window> 

WRITE-SUB <window> <subwindow> <text> 
WRITE <window> {NORMAL|REVERSE} <advance> <text> 

RING_BELL <window> 
CLEAR <window> 
BATCH <window> {ON|OFF} 

READ <window> <timeout> <prompt text> 

Created windows do not become visible until they are pasted to the screen by either 

the PUSH or PASTE command. The PUSH command allows a window to be placed in 

the next available location starting at either the top or bottom of the screen. The column 

parameter may be used to specify the starting column for windows that are less than 

80 characters wide. The space parameter determines how many blank lines will be left 

between the pasted window and its nearest neighbour, and defaults to zero if omitted. 

The PASTE command allows a process to specify an actual screen location for a window. 

This command forgoes the overwrite protection offered by the SMG process and should 

be used with caution. 
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The UNPASTE command is used to make a pasted window invisible. This command 

has the same effect regardless of which command was used to paste the window. Unpasted 

windows may still be written to and will reflect all updates when pasted back to the 

screen. The REMOVE command deletes the definition of the specified window from 

memory and makes it unaccessible. If the window is currently pasted to the screen it is 

automatically removed prior to deletion. 

The WRITE.SUB command is used to write a status string to the specified subwin-

dow. Both the window and subwindow must have already been created. The shared 

window is not subdivided and can't be accessed by this command. The remaining five 

commands are used to change the content of informational windows and may specify 

either a previously created private window or the shared window supplied by SMG. The 

RING_BELL and CLEAR commands are self explanatory. The WRITE command may 

be used to display a fine of text in either normal or reverse video. The Advance parame­

ter determines how many fines the cursor will advance after the message is printed, and 

may be set to zero to leave the cursor at the end of the message. The BATCH command 

may be used to group a number of messages together and have them displayed all at once 

rather than one at a time. 

The READ command is used to send a prompt to the operator. The prompt text is 

displayed in the specified window, the terminal bell is rung, and the cursor is positioned 

at the end of the message. If the operator does not respond to the prompt before 

the Timeout period, the terminal bell is sounded again. All characters entered by the 

operator, up to and including the carriage return, are then written to the SMG-fdplx 

mailbox. As noted above, it is up to the requesting process to gain access to this mailbox 

prior to sending the READ command. 
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ORAC LATHE INTERFACE 

3.1 ORAC CNC Lathe 

The O R A C lathe is a small 2-axis microprocessor controlled N C training lathe suitable 

for turning aluminum and other soft metals. The 0.37 K W A C main drive provides 

continuously variable spindle speeds up to 2000 rpm. The 20 m m bore spindle comes 

fitted with a manually operated, 3-jaw chuck. The standard self-centering, external grip 

chuck jaws can accommodate bar stock up to 40 mm in diameter. The longitudinal 

and cross slides ride on ballbearing leadscrews that have maximum travels of 350 mm 

and 95 mm, respectively. Each leadscrew has a pitch of 2 mm and is driven by a 200 

step/revolution D C stepper motor; providing a single-axis resolution of 0.01 mm. 

The O R A C C N C microprocessor is capable of performing both linear and circular 

interpolation. The velocity profiles required to trace the contour are sent to the cor­

responding drive units as two variable frequency pulse trains. The drive units amplify 

these T T L level control signals and drive the stepper motors in open-loop control, with 

no position or velocity feedback. The inaccuracies inherent in open-loop control make it 

an unusual choice for an N C contouring machine, but it has proven sufficient for the low 

accuracy work required of training systems such as the O R A C lathe. 

25 
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Unlike the early D N C systems, the complete sequence of motions required to machine 

a particular part must be entered into the O R A C lathe's system memory prior to exe­

cution. This sequence must be coded in the native O R A C programming language; an 

operation normally performed via the N C function keys located on the front panel. In 

contrast to the cryptic codes utilized by early N C machines, the O R A C programming 

system provides a structured english-like language consisting of 17 instructions, including 

D O loops and subroutine C A L L s . (A complete description of the programming language 

may be found in the O R A C Programming Instruction and Maintenance Manual [8].) 

Each instruction is stored in system memory as a separate page, which may contain up 

to nine lines of information. Each page occupies one of the 99 blocks of available memory. 

The lack of a file management system, however, Hmits the O R A C system to one part 

program at a time, regardless of the number of pages it uses. 

To facilitate repeat operations, O R A C N C programs may be stored and retrieved 

from either the buil t- in minicassette recorder, or an external computer via an RS-232C 

serial communications line. Programs transmitted over the serial line axe coded as A S C I I 

text files with standard control characters to delimit the program, the individual pages, 

and the parameters within a page [13]. The serial interface is configured as Data Ter­

minal Equipment and supports the D S R / D T R hardware handshaking lines. Software 

handshaking is not supported. The baud rate for serial transmission may be selected 

from the keypad to be either 300, 1200, or 2400 baud. 

The O R A C programming language utilizes a standard X - Z coordinate system to 

define tool positions. The positive sense of these two axes is rigidly defined to the 

directions shown in Figure 3.1. The origin, however, is floating and may be set anywhere 

in the X - Z plane. Common practice is to set the origin at the intersection of the spindle 
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Figure 3.1: Coordinate Axis of ORAC Lathe 

axis and the undamped end of each new workpiece. This allows programs to be written 

independent of the actual clamping position. The coordinates for a given tool location 

may be specified either with respect to the floating origin—absolute mode, or with respect 

to the previous tool position—incremental mode. 

The floating zero utilized on the ORAC lathe is not merely for programming conve­

nience. The lack of any feedback devices (absolute or incremental) on the X and Z axis 

leadscrews means that the ORAC microprocessor has no way of determining the position 

of the toolpost with respect to the fixed spindle head. Each time the lathe is turned 

on, or a new NC part program is loaded, the microprocessor must be told where the 

program origin is with respect to the current slide positions. The Z axis zero point is set 

by facing the end of the workpiece with a reference tool, and then setting the internal 

Z axis counter to zero. The X axis zero is set by entering an accurate measurement of 
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a turned diameter. The internal X axis counter is then set equal to the corresponding 

radius. 

The above procedure sets the floating zero with respect to a single tool. Depending 

on the geometry of a given part, more than one tool may be required to complete the ma­

chining operation. Each motion command in the O R A C programming language accepts 

a number between 1-9 to indicate which tool is to be used. (Tool number 0 is reserved 

for the reference tool used to set the floating zero point.) In order to produce an accurate 

part, the C N C microprocessor must know the location of the cutting edge of each tool. 

The geometries of tools 1-9 are recorded as offsets from the cutting edge of the reference 

tool, in both the X and Z directions. Once the offsets are recorded into memory, a new 

part program may be executed by simply resetting the floating zero point with tool 0. 

The current offsets may also be numerically edited to account for known amounts of tool 

wear. As with O R A C programs, the tool offsets may be stored on the minicassette unit 

for later retrieval. Unlike programs, however, the tool offsets cannot be transmitted over 

the RS-232C interface to an external computer. 

The standard O R A C lathe comes equipped with a quick-change toolpost and holder 

capable of holding only one tool at a time. Whenever the N C program calls for a new 

tool, the microprocessor stops the spindle and the X and Z axes at their current position. 

The new tool number is displayed on the screen, indicated by a flashing cursor. The 

operator must then replace the current tool holder with the appropriate tool. Program 

execution is resumed by pressing the spindle start key followed by the axis start key. 

The O R A C hardware provides four program accessible digital outputs and four digital 

inputs. The four solid state relay outputs are labelled A to D, and may be individually 

opened or closed via the A U X O instruction. The four voltage sensing inputs are labelled 
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E to H. The AUXI instruction may be used to pause execution of the NC program until 

a specified combination of presence and absence of input signals is attained. However, 

these input signals cannot be explicitly read or used as interrupts. 

3.2 Pneumatic Tool Changer 

In order to facilitate automatic operation and repeatable tool placement, a pneumatic 

tool changer was designed and mounted by Mr. Robert Moore of the Mechanical En­

gineering Department. The tool changer incorporates a rotating tool turret capable of 

holding four tools, one on each side. As shown in Figures 3.2 and 3.3, the tool turret 

is activated by two pneumatic pistons. The clamp piston raises or lowers the turret to 

disengage or engage the eight locking pins which mate the turret with the base. When 

in the lowered position, the turret is rigidly clamped to the base and may be used for 

machining. In the raised position, the turret may be rotated clockwise 45 degrees at a 

time by extending and retracting the rotate piston. The position of each piston is con­

trolled by a 1/8 inch four-way two-position valve activated by a 24 V DC spring return 

solenoid. 

The tool changer uses five micro-switches to provide feedback on the current position 

of the tool turret and the two pistons. Holes have been drilled in the bottom of the 

tool turret in patterns which allow the first three micro-switches to provide a binary 

representation of the angular position of the tool turret when in the clamped position. 

The fourth micro-switch is always closed when the tool turret is clamped, and open when 

the turret is in the raised position. The fifth micro-switch is open whenever the rotate 

piston is fully retracted, and closed otherwise. 
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SECTION A-A 

Figure 3.2: Pneumatic Tool Changer Assembly Drawing 
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Figure 3.3: Tool Changer Pneumatics 

The current turret position is also indicated by numbers stamped into the top face 

of the turret. These numbers range from 1 to 8 and indicate the current position by the 

number closest to the operator. Figure 3.2 shows the turret in position 1. Although the 

turret maj' be clamped in all eight positions, only the odd numbered positions provide a 

tool angle suitable for machining. The ORACAP off-line programming package for the 

ORAC lathe assumes that the tool turret will contain the following tools [13]: 
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Position 1 right-hand turning/facing tool for finish cuts 

(also used as the reference tool) 

Position 3 left-hand turning/facing tool 

Position 5 threading tool 

Position 7 right-hand turning/facing tool for rough cuts 

3.3 Factors Influencing Design of Interface 

The O R A C lathe is typical of many C N C machine tools in that it has been developed 

as a stand-alone unit with a predominantly manual interface. It has not been designed 

with the upwards communication channels necessary for unmanned operation. The stan­

dard configuration limits the microprocessor to accepting commands from the manual 

keyboard only, and to displaying status information on the buil t- in C R T only. The 

use of the serial communication port is l imited to a D N C Behind-Tape-Reader interface 

accepting programs only. 

Grieve and Smith [9] have suggested that the minimum state variables necessary to 

completely define the state of a C N C machine tool are: 

• cycle on/off 

• spindle on/off 

• slide hold on/off 

• chuck closed/open 
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• guards closed/open 

• component position correct/incorrect 

• tool condition acceptable/not acceptable 

If, as with the ORAC lathe, these axe not provided by the CNC microprocessor, then an 

intermediate programmable interface is necessary. 

The ORAC lathe is essentially a black box closed system, which made the acquisition 

of even the minimum machine state difficult. The spindle is equipped with a digital 

encoder which permits both its speed and on/off state to be sensed. The X and Z 

axes, however, are not equipped with any feedback devices. The position "sensing" for 

these axis is performed in software by ROM based circuits embedded on multi-layered 

printed circuit boards, with limited access points. The guards and standard chuck are 

not automated, and therefore are not equipped with any sensing elements. 

The manufacturers of the ORAC lathe were unwilling to provide adequate documen­

tation to facilitate deciphering of the major hardware and software components. The 

large investment of time and funds which would be required to manually decode and 

modify the circuitry to provide a complete machine state sensing and an expanded serial 

port interface was determined to be outside the scope of this research project. 

It was therefore decided to implement a programmable hardware interface which 

would duplicate the standard ORAC keypad. This hardware would provide the VAX 

software with access to the lathe's standard menu-driven user interface. The current menu 

level, however, would have to be inferred from the keys previously pressed. The hardware 

interface would also be responsible for the control and sensing of the pneumatic tool 
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changer. Because the O R A C C N C microprocessor does not report the tool requirements 

or the program execution status over the B T R serial line, this information must be 

communicated to the hardware interface by the N C program. This communication is 

accomplished by setting and/or clearing the appropriate auxiliary digital outputs. 

A t the time this research was initiated there was only one commercially available 

automatic chuck that was small enough to fit the O R A C ' s spindle. This chuck utilized 

high pressure air to both activate the chuck jaws and to hold them in place while the 

chuck was spinning. The stroke of the pneumatic actuator used to do this was so small 

that the chuck required three different sets of jaws to cover the full range of diameters 

machineable on the O R A C lathe. The high price and inflexibility of this chuck made it 

unsuitable for use in the proposed F M C . It was therefore decided to proceed under the 

assumption that an automatic chucking device would be designed in-house as a separate 

project, and that the hardware would eventually have to control this device as well. (This 

device has since been designed and tested, but has not been implemented due to the lack 

of a proper sized motor.) 

Two possibilities existed for interfacing the necessary hardware with the control soft­

ware executing on the V A X 11/750 computer. In addition to the standard RS-232C 

serial I / O ports, the V A X 11/750 architecture provides a 32-bit T T L level parallel I /O 

port. Use of the parallel port to directly control the hardware had the advantages of 

requiring less intelligence at the hardware level and faster transmission rates. However, 

the relatively large distance between the two machines, about 130 feet, created the dis­

advantage of high cabling costs. This distance was also outside the acceptable range 

for T T L level voltages and would require the control signals to be boosted to a higher 

voltage level for transmission. 
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Use of the RS-232C serial port to communicate with the interface had the disadvan­

tages of requiring a UART (Universal Asynchronous Receiver/Transmitter) and associ­

ated hardware, as well as slower transmission rates. However, this option would result 

in lower initial cabling costs, and would allow later expansion of the control features of 

the interface without requiring additional cabling between the two machines. 

Another factor influencing the choice of communications was the desire to adhere 

to the hierarchical design of the overall software system. As noted in Chapter 2, the 

close-to-machine functions provided by the hardware interface should ideally operate 

in an autonomic manner. This autonomy could be provided in software by creating a 

separate subprocess on the VAX, or it could be provided by designing an intelligent, 

microprocessor based hardware interface. As noted by Grieve, if too many autonomous 

subsystems are implemented at higher levels of the hierarchy, there is a great risk of 

creating a control environment that is top-heavy and difficult to implement and debug 

[9]. It was therefore decided to delegate the majority of the monitoring and control 

functions to a microprocessor based interface which would act upon commands received 

from the VAX software over the same serial line as used for downloading ORAC programs. 

After looking at several single-board microprocessor based control systems, it was 

decided to build a complete interface from scratch based on the ZILOG Z8671 MCU 8-bit 

single-chip microcomputer. This 40 pin self-contained computer provided the following 

attractive features: 

• An onboard full duplex UART providing TTL level serial I/O communications 

which can be operated in either an interrupt or polling mode. One of two on-chip 

timer/counters provides the bit rate for eight different hardware selectable baud 

rates, thus minimizing the need for external circuitry. 
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• 2K of R O M preprogrammed with a B A S I C / D E B U G interpreter complete with an 

interactive line editor and debugger for quick and easy program development. The 

interpreter also provides a complete interface to machine language routines for oper­

ations requiring fast execution or features not directly supported by B A S I C / D E B U G 

• 32 I /O lines configurable under software control to provide t iming signals, status 

signals, 4 prioritized maskable hardware interrupts, parallel I / O with or without 

handshake control, and/or an expanded address/data bus for interfacing external 

program and data memory. 

• Automat ic execution of programs stored in external R O M on power-up or reset 

without entering the B A S I C / D E B U G monitor. 

3.4 Hardware Interface 

3.4.1 Z8671 Microcomputer 

The 40 external access pins of the Z8671 M C U are comprised of 32 I /O lines, 6 timing 

and control lines, and 2 power supply lines. The function and pin assignment for each of 

these lines is shown in Figure 3.4. A functional block diagram showing the relationship 

between these external lines and the internal architecture of the Z8671 is provided in 

Figure 3.5 [18]. 

The Z8671 utilizes a 16-bit program counter to access three different address spaces; 

program memory, data memory, and a register file. Program memory consists of 2K 

bytes of internal R O M and up to 62K bytes of external R O M , E P R O M , or R A M located 

between addresses 2048 and 65535. The first 12 bytes of internal program memory 
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Figure 3.4: Pin Functions and Assignments for Z8671 MCU 

are reserved for six 16-bit interrupt vectors. The BASIC/DEBUG interpreter, which 

occupies the remaining 2036 bytes of internal ROM, sets these interrupt vectors to point 

to addresses 1000-1011 hex of external memory. 

Data memory consists of up to 62K bytes of external ROM, EPROM, or RAM also 

accessed between addresses 2048 and 65535. In order to distinguish between data and 

program memory, one of the 1/O lines can be programmed as a DM control line. When 

configured in this way, the Z8671 will pull the DM fine to the active low state during all 

external memory references which are not instruction fetch cycles. 

The 144-byte register file contains 4 1/0 registers, 124 general purpose registers, and 

16 status/control registers. BASIC/DEBUG maps these registers to program memory 

addresses 0-3, 4-127, and 240-255 respectively, so that they may be individually accessed 
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Figure 3.5: Functional Block Diagram of Z8671 MCU 

by application programs. To perform I/O operations, the software simply reads or writes 

to the appropriate address, 0-3, the same as if an external memory location was being 

referenced. BASIC/DEBUG uses up to 94 of the general purpose registers as pointers, 

internal variables, and scratch pad memory, leaving only 30 registers completely free for 

use by the application software. 

The Z8671 MCU's 32 I/O lines are grouped into four 8-bit ports which may be 

individually configured by the application software. Port 1 is byte programmable as 

either an input port, an output port, or a multiplexed address/data bus for accessing 

both external program memory and external data memory. When used as an I/O port, 

Port 1 may be placed under handshake control. In this configuration, Port 3 lines P33 



Chapter 3. ORAC LATHE INTERFACE 39 

and P34 serve as the RDYi and DAVi control lines which synchronize the data transfer 

between the Z8671 and the external device. The RDYi signal is set by the device reading 

the port whenever it is ready to accept new data. The DAVi signal is cleared by the 

output device whenever new data has been written to the port. 

When used to access external memory, Port 1 provides both address lines A0-A7, and 

data lines D 0 - D 7 . The address lines are output first, and are valid for 70 ns after the 

trailing edge of the active low Address Strobe, AS. During a write operation, the data 

provided by the Z8671 is valid on the leading edge of the active low Data Strobe, DS. 

During a memory read operation, the Z8671 MCU latches the data on the Port 1 lines 

on the trailing edge of the DS pulse. Figure 3.6 gives a complete timing diagram for both 

the read and write cycles. 

Port 0 is hardware configured as two 4-bit nibbles. Each nibble may be individually 

programmed as either input, output, or an expanded external address bus. When used 

as an I/O port, the upper nibble of Port 0 may be placed under handshake control using 

Port 3 lines P32 and P3s as the RDYn and DAVo signals. When used for accessing 

external memory, the lower nibble provides address lines As-An, and the upper nibble 

provides address lines A12-A15. 

The 8 1/0 lines of Port 2 may be individually configured as either inputs or outputs. 

Like the other I/O ports, Port 2 may also be placed under handshake control utilizing 

Port 3 lines P 3 i and P36 as the R D Y 2 and D A V 2 signals. The direction of the handshake 

signals is determined by the 1/0 function assigned to bit 7 of Port 2, and only those bits 

which are assigned the same function should use the handshake signals. 
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Port 3 is hardwired as four input lines (low order nibble) and four output lines (high 

order nibble). In addition to the handshake functions already described, the four output 

lines of port 3 may be configured to provide serial output, internal timer/counter output 

pulses, and a D M control signal to reference external data memory as opposed to external 

program memory. The four input lines may be configured to accept serial input, external 

t imer/clock input, and up to 4 external interrupt request signals. 

The B A S I C / D E B U G interpreter allows quick examination and modification of all 

external memory locations. It is possible, therefore, to expand the I /O capabilities of 

the basic Z8671 system by providing external I /O devices which are mapped into the 

external memory space. B A S I C / D E B U G utilizes this technique by reading external 

memory address F F F D hex once upon start-up or reset to locate the user-selected baud 

rate for serial communications. 

3.4.2 E x t e r n a l M e m o r y 

The B A S I C / D E B U G interpreter occupies the total 2K of internal memory available 

on the Z8671, therefore, application programs must be stored in external memory. The 

required amount of external program memory may be located anywhere in the available 

address space. On power-up or reset, B A S I C / D E B U G searches for external R A M by 

performing a nondestructive test of the memory space from low to high addresses. Only 

one byte is tested for each 256-byte page at relative location x x F D hex. If R A M is 

found at the byte tested, the interpreter assumes that the entire page is R A M . Testing 

continues unti l a byte is found that does not contain R A M . The interpreter then checks 

for an automatic start-up program stored in R O M . The start-up program must begin 

with a B A S I C line number between 1 and 254, and start at location 1020 hex. 
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When B A S I C / D E B U G discovers R A M in the system, it allocates the top page of 

external R A M for the serial input line buffer, the subroutine stack, and the 26 named 

variables. If no R A M is discovered, B A S I C / D E B U G maps these functions to the register 

file. The line buffer is multiplexed with the expression evaluation stack, and the subrou­

tine stack is multiplexed with the variables [19]. This limits the number of variables and 

the length of expressions which may be used by the application software. In each case, 

however, the appropriate pointer registers are initialized to mark the boundaries between 

each area that is assigned a specific use. 

The B A S I C program which controls the O R A C lathe requires approximately 3K of 

memory and utilizes most of the 26 variables available in B A S I C / D E B U G . During 

program development and testing it was more expedient to load the various sections of 

code into R A M rather than R O M . Completed sections could be permanently stored on 

the V A X 11/750 and downloaded when necessary. For final operation, however, it was 

felt that the program should be loaded into R O M so that the auto-start feature could be 

utilized. This would eliminate the need for continual downloading from the V A X each 

time the system was powered up or reset. The memory interface circuitry was therefore 

designed with two 24-pin sockets which may be configured for either a R A M or R O M 

system. For development purposes, both sockets are loaded with 2016 2 K R A M ' s . For 

automatic start-up, a 2732 4K R O M and a 2016 2K R A M are used. The 2K of R A M in 

the automatic start-up system allows all 26 variables and complicated expressions to be 

used. 

The complete external memory interface circuit is shown in Figure 3.7. I /O ports 0 

and 1 are configured as memory reference ports providing the full 16-bit address bus to 

the external circuitry. The multiplexed address bits are latched using a T T L 74LS373 
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octal latch clocked by the inverted A S strobe. Address bits A 1 : l - A i 5 are decoded using 

a T T L 74LS138 3-to-8 line decoder and a 74LS21 A N D gate to provide the necessary 

memory select lines. Three 2K R A M select signals are provided at addresses 1000, 1800, 

and 2000 hex; as well as one 4K R O M select signal at address 1000 hex. 

Two jumper pads are provided for setting the configuration of the left-hand memory 

socket. W i t h both jumpers placed to the right, the socket is configured for a 2K R A M 

using address bits A o - A i o , and both a R E A D and a W R I T E strobe. W i t h both jumpers 

placed to the left, the socket is configured for a 4 K R O M using address bits A o - A n 

and a R E A D strobe only. In both cases the starting address is set to 1000 hex. This 

facilitates both automatic start-up of programs starting at 1020 hex, and the processing 

of interrupts, which are vectored to locations 1000-1011 hex. 

The right-hand memory socket is always configured for a 2K R A M , but the starting 

address is jumper selectable. If the left-hand socket has been configured for a 4K R O M , 

the jumper should be placed to the left. This wi l l map the 2 K R A M directly below the 

4K R O M at address 2000 hex. If the left-hand socket has been configured for a 2K R A M , 

the jumper should be placed to the right. This wi l l map the socket to address 1800 hex, 

creating a contiguous 4 K block of R A M . 

3.4.3 Serial Input/Output 

The serial I /O lines provided by the V A X 11/750 architecture meet the E I A RS-232C 

specifications. In order to interface these ± 12 V RS-232C signals to the T T L level signals 

required by the Z8671's onboard U A R T , the serial I / O interface circuit uses Motorola 

MC1488 fine drivers and MC1489 fine receivers. As shown in Figure 3.8, the output 
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Figure 3.8: Z8671 Serial I/O Interface 

from the RS-232C receiver is directed both to the Z8671's serial input pin, P30, and 

to an additional RS-232C driver connected to the ORAC lathe's BTR serial interface. 

This redirection takes place through a tri-state buffer which is gated by bit 4 of I/O 

Port 3, which is configured as an output. This arrangement permits the Z8671 software 

to selectively allow the ORAC lathe to listen in on information received from the VAX, 

such as when NC programs are being transferred from the VAX to the Z8671 interface. 

By multiplexing ORAC NC programs and Z8671 commands onto one serial line, the 

automatic echo feature of the Z8671 can be used to detect transmission errors on all 

communications. This is a feature not provided by the ORAC BTR interface. 
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3.4.4 Control Signals 

I/O Port 2 lias been configured as an 8-bit output port under handshake control to 

provide the control functions necessary to operate the interface. In order to expand the 

number of control functions available, these 8 output lines are externally divided into a 

4-bit data bus and a 4-bit address bus. The upper nibble of Port 2 provides the address 

bus which is decoded into 16 function select fines. The lower nibble of Port 2 provides 

the data bus which is gated to the input fines of the circuitry providing each function. In 

the present design, only 4 function select fines are in use, leaving 12 functions for future 

expansion. 

The circuitry used to decode the 4-bit address bus is detailed in Figure 3.9. The 

address present on pins P24-P27 is strobed into the 4-bit input latch of a CMOS 4515 

4 to 16 line decoder on the leading edge of the DAV2 signal. The decoded function select 

fine changes from high to low after a propagation delay of approximately 500 ns. The 

input circuit of the selected function uses this falling edge to latch the data present on 

the data bus, P2 0-P2 3. 

In order to ensure that the Port 2 output remains valid long enough for the slowest 

function to latch the data, two monostable multivibrators are used in series to delay 

the RDY 2 input signal. The first monostable multivibrator is triggered on the leading 

edge of the DAV2 pulse, and is configured for non-retriggerable operation. The timing 

resistor and capacitor have been selected to provide a 33.3 ms active low output pulse. 

The trailing edge of this pulse triggers the second monostable multivibrator, producing a 

57.5 ns active low pulse on the RDY2 line. The Z8671 MCU responds to this high to low 
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transition on the R D Y 2 line by pulling the DAV2 line high, which completes the output 

operation. 

The input latches of the 4515 decoder hold the function select line in the active low 

state after the Z8671 output operation has completed. In order to generate a function 

select pulse, such as required by an edge triggered latch, the required function must first 

be selected, then "unselected". Output address zero has been reserved for this function 

and is therefore not connected to any driver circuitry. Each output operation to a non­

zero address must be followed by an output operation to address zero, which wi l l reset 

the selected function driver. 

Output addresses 1 and 2 are used to access two identical C M O S 22102 cross point 

array drivers. Each driver provides 2 arrays of 16 switches arranged in a 4x4 cross point 

pattern. Each of the 16 switches may be individually selected for opening or closing by 

presenting the appropriate 4-bit binary code to the on-chip decoder. Complementary 

switches in both arrays always have the same switch setting. Together, these two IC's 

provide the interface to the O R A C lathe's manual keypad. 

The output signals from the 54 key O R A C keypad (Figure 3.10) are provided to the 

C N C microprocessor on a 34-pin ribbon cable. These 34 signals were decoded using a 

digital logic analyzer and map to the keypad functions as detailed in Table 3.1. The 

data entry and N C programming keys are arranged in a 5x8 cross point array, whereas 

the manual operation and spindle control keys are each individually switched to system 

ground. 

The signal lines corresponding to the Finished (F), Enter (E), Axis Start, Axis Stop, 

Spindle Start, Spindle Stop, cursor positioning, and numeric keys have been connected 
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DATA INPUT FUNCTION MANUAL SPINDLE CONTROL 

Figure 3.10: Layout of ORAC Keypad 

Table 3.1: ORAC Keypad Signal Decoding 

Pin 
# 

Keypad Signal Pin Keypad Signal Pin 
# Section Function # Section Function 

1 Data/Function: Rowi 18 Manual: Feedrate -
2 R0W2 19 Jog Left 
3 R0W3 20 Jog Forward 
4 R0W4 21 Jog Speed 
5 R0W5 22 Jog Right 
6 Columni 23 Feedrate + 
7 Column2 24 Spindle: Spindle Start 
8 Columns 25 Spindle Speed -
9 Column4 26 Spindle Stop 
10 Columns 27 Spindle Speed + 
11 Column6 28 Other: System GND 
12 Column7 . 29 System GND 
13 Columns 30 System GND 
14 Manual: Axis Stop 31 + V Buzzer 
15 Manual Mode 32 + V Buzzer 
16 Axis Start 33 - V Buzzer 
17 Jog Backward 34 - V Buzzer 
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to the 4x4 arrays of the two 22102 IC's as shown in Figure 3.11. (The N C programming 

and manual jog keys are not necessary for automatic operations.) The control lines of the 

22102 chips are wired such that the switch specified by the 4-bit data bus is turned on 

when the cross point array chip is selected, and turned off when the chip is "unselected". 

Table 3.2 lists the Port 2 output values necessary to access each of the available keys. 

Output address 3 selects a C M O S 14175 quad D- type latch. As shown in Figure 3.12, 

the latched data is used to drive three optically isolated O D C 5 output modules. A 

SN75468 octal Darlington transistor array is used to boost the current capacity of the 

C M O S outputs to the input requirements of the O D C 5 modules. Two of the output 

modules are used to switch 24 volts to the two solenoid valves on the pneumatic tool 

changer. The third module is wired to digital input E on the O R A C lathe. The available 

output codes and their actions are listed in Table 3.2. Each O D C 5 output module is also 

complemented by a manual toggle switch. The M A N U A L / A U T O switch on the Z8671 

cabinet determines whether the O D C 5 modules or the toggle switches are active. These 

manual switches allow the tool changer to be operated when the system is not under 

computer control. 

In addition to the control signals provided by Port 2, bit 5 of Port 3 is configured 

as an output signal to provide an emergency stop function. The inverted P3s output 

line drives an optically isolated O A C 5 A C output module. The output side of the O A C 5 

module is wired in series with the emergency stop keyswitch on the O R A C lathe's front 

panel. This control function is implemented differently from the other control functions 

to provide a shorter reaction time, and to facilitate access from Z8 machine language 

routines as well as B A S I C / D E B U G programs. 
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Table 3.2: Port 2 Output Codes and Functions 

53 

Output Code Function 
Binary Hex Decimal Device Action 

0000 xxxx 00-0F 0-15 All IC's: Reset 

0001 0000 10 16 ORAC Keypad: 7 
0001 0001 11 17 8 
0001 0010 12 18 9 
0001 0011 13 19 Cursor Up 
0001 0100 14 20 4 
0001 0101 15 21 5 
0001 0110 16 22 6 
0001 0111 17 23 Cursor Left 
0001 1000 18 24 1 
0001 1001 19 25 2 
0001 1010 IA 26 3 
0001 1011 IB 27 Cursor Down 
0001 1100 IC 28 
0001 1101 ID 29 0 
0001 1110 IE 30 -
0001 1111 IF 31 E 

0010 0000 20 32 ORAC Keypad: Axis Stop 
0010 0001 21 33 Spindle Stop 
0010 0010 22 34 Spindle Start 
0010 0011 23 35 Axis Start 
0010 Olxx 24-27 36-39 (null) 
0010 1000 28 40 Cursor Right 
0010 1001 29 41 6 
0010 1010 2A 42 5 
0010 1011 2B 43 (null) 
0010 1100 2C 44 Page Delete 
0010 1101 2D 45 S 
0010 1110 2E 46 F 
0010 1111 2F 47 (null) 

0011 OOOx 30-31 48-49 ORAC Input E: Open 
0011 OOlx 32-33 50-51 Closed 

0011 OOxx 30-33 48-51 Tool Changer: Down + Retract 
0011 Olxx 34-37 52-55 To Be Avoided 
0011 lOxx 38-3B 56-59 Up + Retract 
0011 llxx 3C-3F 60-63 Up + Extend 
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3.4.5 Status Signals 

The input signals necessary for monitoring the status of the ORAC/Z8671 interface 

are connected to four external 8-bit input ports. These ports are mapped to the top 

four bytes of the Z8671's program memory space, ie. FFFC to FFFF hex. As shown in 

Figure 3.13, each port is comprised of a TTL SN74ALS244 octal tri-state buffer with a 

4.7K active pull-up resistor on each input pin. The output side of each buffer is hardwired 

OR'ed to the Z8671's multiplexed address/data bus. Individual ports are selected for 

reading by mutually exclusive control signals decoded from the full 16-bit address bus 

and the R/W line. 

The lower 4 bits of input Port FFFF hex are wired to the four auxiliary output relays 

of the ORAC lathe. Closing a relay switches the corresponding input bit to ground, 

resulting in a logic 0 being read. An open relay is read as a logic 1 due to the pull-up 

resistors. These outputs are used by ORAC programs to inform the Z8671 when a tool 

change is required, what tool is required, and when the last page of a program is being 

executed. 

Input Port FFFE hex is used to read the settings of the five micro-switches on the 

tool changer. The position of the rotate and clamp pistons are read on input bits 5 and 

4, respectively. The three switches providing the binary code for the turret position are 

read on input bits 0-2. These three switches provide a number ranging from 0 to 7. The 

tool turret, however, has its positions marked as 1 to 8. To correct this anomaly, input 

bit 4 is wired as the binary NAND of bits 0-3. This allows the lower 4 bits of input 

Port FFFE hex to be read as the complement of the current tool turret position. A 

complete truth table for all possible 8-bit input values is provided in Table 3.3. 
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Table 3.3: Tool Changer Position Decoding 

56 

Input Value Read at FFFE Pistons Turret 
Position Binary Hex Decimal Clamp Rotate 
Turret 

Position 

1100 xxxx C0-CF 192-207 Clamped Extended X 
(Error Condition) 

1101 0111 D7 215 Raised Extended 0 

1110 0111 E7 231 Clamped Retracted 8 
1110 1000 E8 232 Clamped Retracted 7 
1110 1001 E9 233 Clamped Retracted 6 
1110 1010 EA 234 Clamped Retracted 5 
1110 1011 EB 235 Clamped Retracted 4 
1110 1100 EC 236 Clamped Retracted 3 
1110 1101 ED 237 Clamped Retracted 2 
1110 1110 EE 238 Clamped Retracted 1 

1111 0111 F7 247 Raised Retracted 0 

The 8 input lines of memory mapped Port FFFD hex are individually connected 

to system ground through an 8 pole DIP switch located on the interface board. The 

BASIC/DEBUG interpreter reads the position of the first three switches once upon 

start-up or reset to determine the baud rate to be used for serial communication. The 

remaining five switches are not used. The required switch settings for the eight available 

baud rates are fisted in Table 3.4. hi order to accommodate the multiplexing of ORAC 

NC programs and Z8671 commands, the baud rate should be set to 2400, as this is the 

fastest rate at which the lathe can accept data. 

Input Port FFFC hex is used to verify the switching action of the 22102 cross point 

arrays. This is done by checking to see if the appropriate ORAC signal fine gets pulled 

to ground when a particular cross point switch is activated. A logic 0 read on input 
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Table 3.4: Z8671 Baud Rate Switch Settings 

57 

Baud Rate Switch 1 Switch 2 Switch 3 

110 C L O S E D O P E N O P E N 
150 C L O S E D C L O S E D C L O S E D 
300 O P E N O P E N O P E N 
1200 O P E N C L O S E D O P E N 
2400 C L O S E D C L O S E D O P E N 
4800 O P E N O P E N C L O S E D 
9600 C L O S E D O P E N C L O S E D 
19200 O P E N C L O S E D C L O S E D 

bits 0-4 indicates a switch closure in columns 1-5, respectively, of the data entry section 

of the O R A C keypad. Bits 5 and 6 provide confirmation of the Axis Stop and Axis Start 

switches. 

Verification of the Spindle Start and Spindle Stop switches is obtained directly from 

the spindle's optical encoder. As shown in Figure 3.14, the 48 pulse/revolution output 

from the encoder is used to trigger a C M O S 14538 precision monostable multivibra­

tor. This multivibrator is configured for retriggerable operation with a time constant of 

161.5 ms. This results in a constant logic level 1 output when the spindle is operating at 

10 rpm or greater, and a constant logic level 0 output when the spindle is stopped. 

The multivibrator signal and its complement are read by the Z8671 M C U on bits 2 

and 3 of I /O Port 3. In addition to being normal inputs, these bits are configured as 

two maskable, negative edge-triggered, hardware interrupts. B y selectively enabling these 

interrupts, the Z8671 software can monitor the spindle for an unexpected change of state, 

either starting or stopping. L i each case, the interrupt handling routine wil l generate an 
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emergency stop on the ORAC lathe to minimize injury and damage. The status of the 

ORAC spindle is also made available to external devices through an optically isolated 

0DC5 output module. A 24 V DC signal indicates that the spindle is running; an open 

circuit indicates that the spindle is stopped. 

3.5 Software Interface 

The overall software interface between the VAX and the ORAC CNC lathe is com­

prised of two cooperating components; one executing on the ZILOG Z8671 microcom­

puter, the other executing as a subprocess on the VAX 11/750 computer. The Z8671 

component provides the interface to the hardware, and is responsible for the low level 

control and status monitoring. The VAX component provides the interface to both the 

operator, and the supervisory level flexible manufacturing software. It is responsible for 

translating the commands received from the supervisory software into the low level func­

tions provided by the Z8671 software, initiating the execution of these functions, and 

reporting the completion status back to the supervisory software. 

3.5.1 Z8671 Software 

3.5.1.1 Languages and Memory Requirements 

The Z8671 component of the VAX to ORAC software interface is written in both 

BASIC/DEBUG and Z8 machine language. BASIC/DEBUG is a subset of standard 

Darthmouth BASIC and recognizes a total of 14 commands and 3 functions as outlined 
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Table 3.5: B A S I C / D E B U G Keywords and Operators 

Commands: 

Functions: 

Operators: 

Ari thmetic: 

Relational: 

Memory: 

GOO 
IF/THEN 
LET 
PRINT 
RUN 

ANDQ 

GOSUB 
INPUT 
LIST 
REM 
STOP 

HEXQ 

+ - / * 
\ [unsigned division] 
'/, [hexadecimal constant] 

<<= = <>>=> 

0 [8-bit memory reference] 
[16-bit memory reference] 

GOTO 
IN 
NEW 
RETURN 

USR() 

in Table 3.5. B A S I C / D E B U G also supports 6 arithmetic operations; addition, sub­

traction, multiplication, signed and unsigned division, and bitwise logical A N D . These 

operations are supported for integers only. Character and floating point data types are 

not supported. A total of 26 16-bit named variables ( A - Z ) are supported. In addition 

to variables and constants, any 8 or 16-bit memory location may be referenced within a 

numeric expression. 

Routines written in Z8 machine language may be called from within B A S I C / D E B U G 

as either subroutines or functions by using the GO@ command and USR function, re­

spectively. The B A S I C / D E B U G interpreter does not process interrupts. Interrupts are 
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vectored through the Z8671 hardware to external memory locations 1000-1011 hex. In 

order to process interrupts, these locations must contain Z8 J U M P instructions to the 

appropriate machine language routines. 

The B A S I C / D E B U G program necessary to monitor and control the O R A C lathe 

hardware occupies 2.95K of memory. In addition to the standard B A S I C / D E B U G func­

tions and variables, this program utilizes seven Z8 machine language routines, and a 46 

byte data array implemented in external memory. Five of the Z8 machine language rou­

tines provide binary operations not supported by B A S I C / D E B U G . These include 8 and 

16-bit binary complement, the setting and clearing of selected bits within a 16-bit value, 

and the reading of selected bits from an 8-bit input port. The sixth Z8 function waits 

mi t i l a specified A S C I I character is received on the serial input line. The remaining Z8 

machine language routine is an interrupt handler which activates the O R A C emergency 

stop output in response to an unexpected state change of the spindle. The data array 

is used to store the output and verification codes for each of the 23 keys on the O R A C 

keypad which are accessible through the hardware. 

Routines written in Z8 machine language are referenced in B A S I C / D E B U G by direct 

memory address. To ensure proper operation, each program segment must be loaded 

into external memory at the correct address. The B A S I C / D E B U G interpreter does not 

maintain any pointers for the machine language code, so it is up to the programmer to 

ensure that these routines are not overwritten by either the B A S I C program or the G O -

S U B stack. Figures 3.15 and 3.16 give a complete memory map showing the relationship 

between each section of code and the memory space used by B A S I C / D E B U G for both 

the 4 K R A M development mode, and the 4K R O M plus 2K R A M automatic start-up 

mode. It should be noted that the 4 K R A M development mode utilizes non-standard 
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Figure 3.15: Memory Map for 4K RAM Development Mode 

locations for both the beginning of the BASIC program, and the base of the GOSUB 

stack. The corresponding BASIC/DEBUG pointers must therefore be adjusted prior to 

loading the software. 

The VAX software component supports both modes of operation. If the Z8671 MCU 

does not enter the automatic start-up mode during the initialization procedure, the VAX 

software will attempt to download the BASIC/DEBUG program, ORAC key codes, and 
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Z8 machine language routines from the VAX text file ORAC-CNTRL.BAS. This file 

contains the appropriate load addresses and may be used as a starting point for future 

development work or as a guide for generating new EPROM's for automatic start-up. 

(Note: This file has been written for use with the download facility provided by the 

VAX component of the software, and contains syntax not supported by BASIC/DEBUG. 

These elements have been added to improve readability and to guide the download facility. 

They are stripped before the program is sent to the BASIC/DEBUG monitor.) 

3.5.1.2 Communication Protocol 

As noted earlier, communications between the Z8671 software and the VAX computer 

take place over a full-duplex RS-232C serial fine driven by the Z8671's onboard UART. 

This communication is a two way process with the Z8671 software sending both status 

information and prompts to the VAX, and the VAX software sending both commands 

and parameters to the Z8671. As with any two-way communication, it was necessary to 

develop a protocol to coordinate the exchange and translation of the various messages. 

The nature of this protocol was largely dictated by the serial I/O capabilities of the 

BASIC/DEBUG interpreter. 

Although the Z8671 MCU is capable of generating an interrupt whenever a serial 

character is received or transmitted, this feature is not supported by the BASIC/DEBUG 

interpreter. Instead, it operates the UART in a polling mode, waiting on each input 

and output character as needed. The input line buffer is only used to store a single 

fine of text—delimited by a carriage return—which is received following the execution 

of an input instruction. Characters which were received by the UART prior to the 

input instruction are ignored. This lack of a true type-ahead buffer dictates that each 
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message exchange must be initiated by the Z8671 software. The VAX software plays the 

subservient role; simply responding to prompts from the Z8671 software. The protocol 

also stipulates that each transmission from the Z8671 must be acknowledged by the VAX 

before another exchange can be initiated. 

As noted earlier, BASIC/DEBUG does not support the character data type. There­

fore, the standard serial input commands, IN and INPUT, only accept ASCII coded 

integers as valid input. In order to read non-integer input, BASIC/DEBUG programs 

must directly access the Z8 machine language serial input driver located at address 61 

hex in internal ROM. This driver reads a single byte of input each time it is called, 

and returns the value as a binary number without any ASCII translation. This option 

was selected for the VAX to Z8671 portion of the communication protocol to facilitate 

more meaningful messages than could be obtained with strictly numerical input. Each 

transmission from the VAX is therefore only one character long. 

The BASIC/DEBUG interpreter only supports one serial I/O channel. This means 

that the Z8671 to VAX portion of the protocol must take into account the messages 

transmitted by the BASIC/DEBUG monitor as well as those from the Z8671 software. 

All error and informational messages transmitted by the BASIC/DEBUG monitor are 

followed by the three character system prompt, "<CR><LF>:". Because the <CR> and 

<LF> precede the colon—which is the most significant character—they are not suitable 

delimiters if the source of the message is to be easily identified. For this reason, the Z8671 

to VAX communication protocol ignores all carriage control characters and uses three 

different printable characters to both delimit and identify the three different message 

types. All transmissions ending with a colon are treated as messages from the Z8671 

monitor. Messages terminating with a question mark signify a prompt for information 
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from the Z8671 software. A.number sign is used to terminate all status messages from 

the Z8671 software. 

3.5.1.3 Functional Overview 

The BASIC/DEBUG software is comprised of an initialization header, a command 

monitor, the routines necessary to perform each command, and an error handler. The 

basic operation of the software is summarized in Figure 3.17. The initialization header 

first configures the Z8671 I/O architecture (as outlined in the hardware description) 

using the internal status and control registers, and then sets all output devices to the 

required initial state. The current states of the tool changer and spindle are then read 

and reported to the VAX software. 

The command monitor informs the VAX software that it is ready to accept a command 

by issuing the Command? prompt, and then waits for a response. Upon reception of a valid 

command, a subroutine call is made to the program segment responsible for executing 

that command. Each program segment is responsible for initiating and monitoring a 

complete operation on the ORAC lathe; each starting and ending with the ORAC CNC 

microprocessor at the top level of its menu-driven interface. Functional support for these 

operations is provided by a hierarchial subroutine structure. The low level subroutines 

provide such universal functions as; delaying program execution for a given period of 

time, writing a specified value to output Port 2, turning an output module on or off, and 

pressing an individual key on the ORAC keypad. The middle level routines provide such 

combined functions as updating the system status variables and changing the tool turret 

to a specified position. 
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The first action taken by each program segment is the selection of the appropriate 

options from the O R A C menu structure. If a particular menu selection requires additional 

information, it is requested with a prompt string unique to that operation. When all 

menu selections have been successfully executed, the V A X software is informed of the 

current mode of the O R A C lathe as a check on the command translation. The Z8671 

software then sets the necessary control outputs, and monitors the corresponding input 

signals. Monitor ing continues unti l either the operation completes successfully, or an 

error condition is detected. If successful, program execution is returned to the command 

monitor which sends the Finished^ message to the V A X software before requesting the 

next command. If an error is detected, program execution branches to the error handler. 

There are two types of error conditions that may occur during a given O R A C oper­

ation. Non-recoverable errors, such as an emergency stop, require the O R A C lathe to 

be reset to the main menu. Recoverable error conditions, such as a sticky solenoid valve 

or low air pressure, may be cleared without resetting the lathe. Each subroutine which 

detects an error is responsible for setting both an error number and a recovery address 

before branching to the error handler. Non-recoverable errors are indicated by setting 

the recovery address to zero. 

The Z8671 software reports each error to the V A X by numeric reference rather than 

by a descriptive message. The error number is then translated into the corresponding 

error message by the V A X software, which is not as constrained by memory limits. If the 

corresponding recovery address is non-zero, the error handler sends the Retry? prompt to 

the V A X software. If the V A X software responds with a Y , program control is branched 

back to the specified recovery address and normal monitoring continues. If the V A X 

software responds with a N, or if the error is non-recoverable, the current operation is 
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aborted. The error number variable is set to zero, the subroutine call stack is cleared, 

and execution resumes at the first line of the command monitor. 

In addition to the error monitoring performed by software, the spindle status is con­

stantly monitored by the Z8671 interrupt hardware. A maskable hardware interrupt re­

quest, either IRQ0 or I R Q i , is generated each time the spindle changes state. The Z8671 

software disables these requests whenever a state change is expected, such as when the 

spindle Start or Stop key is being pressed, and enables them when the required state 

has been achieved. If a state change occurs while the interrupts are enabled, program 

control is vectored to the Z8 machine language interrupt handler loaded at address 1E80 

hex. This routine sets bit P3s to generate an ORAC emergency stop condition which 

immediately stops both the spindle and the X and Z axes. The interrupt routine disable 

the spindle monitoring function just prior to returning control to the BASIC/DEBUG 

software. This allows manual recovery without generating a second emergency stop con­

dition. 

This hardware monitoring of the spindle status provides the shortest possible reaction 

time for generating the emergency stop, but it also means that the BASIC/DEBUG 

software is not immediately aware that anything has happened. To ensure that these 

errors get trapped and correctly reported to the VAX software, each of the low level 

functions checks the status of the P3s output bit prior to performing any I/O operations. 

The status of this output is also polled along with the appropriate input signals whenever 

the BASIC/DEBUG software is waiting for a state change. 
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3.5.1.4 Command Vocabulary 

The Z8671 software presently recognizes a total of 4 single-character commands which 

perform the following functions: 

M Permit Manual operation of the spindle. 

L Load NC programs to the ORAC lathe. 

E Execute the NC program currently loaded. 

S Prepare the system for Shutdown. 

Each of these commands result in a further dialogue between the Z8671 and the VAX 

and axe described in the following paragraphs. 

Manual Command The Z8671 software first disables the interrupt monitoring of the 

spindle, sends the Manual̂  confirmation message, and then waits for a response to the 

Continue? prompt. Whenever a character is received, the Spindle Stop key is pressed and 

interrupt monitoring is restarted as soon as the spindle comes to rest. The received input 

is not translated, therefore any character will have the same effect. Program execution 

is then returned to the command monitor, so the ORAC lathe must be left at the main 

menu. 

Load Command The Z8671 software makes the appropriate ORAC menu selections 

to prepare the lathe for program reception at 2400 baud. The tri-state buffer allowing 

the ORAC lathe to listen jn on the serial transmissions from the VAX computer is then 
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enabled. The confirmation-message LOADING^, is sent to the VAX to indicate that 

serial transmission of the NC program may be started. 

Each character of the NC program is read by the Z8671 software using the single-

character input driver. The echo provided by the input driver is used by the VAX software 

to check for serial transmission errors. Each received character is checked for an ASCII 

control D which signifies the end of the NC program. This comparison is performed in 

Z8 machine language to ensure the fastest possible transmission rate. Program control 

is then passed back to the command monitor. 

Execute Command The appropriate menu selections are made to bring the ORAC 

lathe to the Tool Offset submenu. The VAX software is then prompted for one of three 

possible options. 

Q The Quit option causes the Z8671 software to exit the Tool Offset menu, leaving 

both the floating zero point and the tool offsets at their current settings. 

M The Manual option disables spindle monitoring to allow the operator to manu­

ally set the floating zero point and/or tool offsets. As with the Manual command, 

execution continues whenever a serial input character is received. Unlike the Man­

ual command, however, the lathe must be returned to the Tool Offsets submenu 

rather than the Main menu. 

Z The Zero option is used to automatically reset the floating zero point. The Z8671 

software will press the appropriate keys to cause the ORAC microprocessor to 

accept the current position as 20.0 mm in X, and 0.0 mm in Z, with zero offset. 
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After the selected Tool Offset option has been completed, the Z8671 software presses 

the ORAC F key to exit the Tool Offset menu and start execution of the NC program. 

During the machining sequence, the lathe's auxiliary I/O signals provide the only com­

munication path between the ORAC microprocessor and the Z8671 MCU. The NC part 

program must contain the correct sequence of I/O statements to inform the Z8671 soft­

ware whenever a new tool is required and when the last program statement is about to 

be executed. 

To ensure proper synchronization between the NC program and the Z8671 software, 

a simple request/acknowledge handshake protocol requiring three ORAC Auxiliary I/O 

statements is used for each data transfer. The NC program must first request the atten­

tion of the Z8671 software by setting all four auxiliary outputs to a logic 1, and then wait 

for an acknowledgement on auxiliary input E. The Z8671 software detects this request 

during its periodic polling of input Port FFFF hex, arid acknowledges reception of the 

request by providing a 24 V signal to auxiliary input E. The Z8671 software then waits 

for the NC part program to write a new value to its auxiliary output port. If the new 

value represents a valid tool number, ie. 1-8, it is interpreted by the Z8671 software as a 

request for a new tool. H the new value is 14, the Z8671 software assumes that the end 

of the machining process has been reached. 

In addition to the correct protocol, the NC program must follow certain guidelines 

as to the placement of these auxiliary I/O statements. Each program which includes an 

ORAC machining instruction must contain at least one tool change request. This request 

must be placed directly between the Program Datum instruction and the first machining 

instruction. This placement ensures that the tool changer is at a safe location when the 

Z8671 software activates the pneumatic pistons. For each subsequent tool change, the NC 
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program is responsible for positioning the tool holder at a safe location, preferably the 

program datum, prior to the tool change request. In order to ensure proper machining 

of subsequent parts, the NC program must specify a tool change to tool position 1 and 

move back to the program datum prior to sending the End of Program code. 

Whenever a tool change request is detected, the Z8671 software first ensures that the 

spindle and axes are stopped by pressing the appropriate keys on the ORAC keypad. If 

the turret is not already in the required position, the pneumatic pistons are activated to 

reposition the turret. The spindle and axis start keys are then pressed to resume program 

execution, and the current tool position is reported to the VAX software. When the End 

of Program code is detected, program execution is returned to the command monitor. 

Shutdown Command This command is issued by the VAX software to signify that 

it no longer requires access to the ORAC interface. The Z8671 prepares the lathe for 

shutdown by turning off the spindle, stopping the X and Z axes, and clamping the tool 

changer in its current position. All output modules and cross point switches are turned 

off just prior to termination of the control program. 

3.5.1.5 Communication Summary 

The syntax and expected response for all messages used by the Z8671 software is 

provided in Table 3.6. The syntax of a generic BASIC/DEBUG error message is also 

provided. Items enclosed in braces indicate that one item from the specified range or list 

of items is to be substituted. A single character preceded by a caret is used to represent 
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Table 3.6: Z8671/VAX Communication Summary 

From Z8671 MCU From V A X 11/750 

Tool={ l-8}# <CR> 
Spindle={0|l}# <CR> 

Command? {M|L|E|S} 

[M] Manual# <CR> 
Continue? <CR> 

[L] Loading# <CR> 

[E] Offsets? {M|Q|Z} 

[M] Manual# <CR> 
Continue? <CR> 

Machining# <CR> 

Tool={ l-8}# <CR> 
Spindle-{0|1}# <CR> 

[S] < C R x L F > : 

Finished# <CR> 
or 

Error={l-18}# <CR> 
Retry? {Y|N} 

<error>!"G AT <line><CR><LF>: 
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the specified control character, however, the standard carriage control characters, "J and 

~ M , are written in their more common forms, <CR> and <LF>. 

The relative timing of each message is indicated in Table 3.6 by its position. Messages 

which are single spaced always follow one another in the specified order. Messages which 

occur in response to a previous prompt are indented to show their dependence. When 

more than one response is possible, the dependant messages are grouped together and 

preceded by the corresponding response enclosed in square brackets. 

3.5.2 V A X Software 

The VAX component of the VAX/ORAC software interface is contained in an exe­

cutable image named ORAC_driver.exe. This module serves as a middleman between 

the low level Z8671 software and the upper levels of the software architecture. It is re­

sponsible for establishing communications with the Z8671 MCU and for keeping track 

of the current state of both the Z8671 and the ORAC lathe. It is also responsible for 

establishing communications with both the operator and the supervisory software using 

the standard protocols developed for this purpose. 

Functionally, this component of the software is similar to the Z8671 software; incor­

porating an initialization sequence, a command monitor, a module for monitoring and 

reporting status information, and an error handler. The data channels used by each 

segment, however, are different from those used by the corresponding Z8671 segments. 

A pictorial description of the various data channels used by the VAX component of the 

ORAC interface software is presented in Figure 3.18. In this diagram the parent process 
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is the FMC supervisory software and the ORAC driver software has been executed with 

the subprocess name 0RAC1. 

3.5.2.1 Communications with the Z8671 M C U 

The VAX software communicates with the Z8671 over one of the standard terminal 

lines provided by the VAX 11/750 hardware. The only stipulation placed on the choice 

of a terminal line is that it be a direct connection configured for non-network commu­

nications. (Serial lines that are connected through a terminal server may not be used 

because the corresponding virtual device names are floating and get incremented after 

each session, making it difficult for these lines to be allocated by application programs.) 

The other necessary characteristics, such as baud rate and type-ahead buffer size, are set 

by the VAX software after the terminal line has been successfully allocated. 

The protocol developed for communications with the Z8671 requires the VAX soft­

ware to handle asynchronous messages of varying length with nonstandard terminators. 

The standard I/O interface provided by FORTRAN isn't capable of providing this func­

tionality, so the ORAC driver module makes use of the VAX system service routines to 

directly access the full I/O capabilities of the VMS terminal driver. These capabilities 

include a 2K type-ahead buffer, user defined message terminators, and interrupt han­

dling of asynchronous events. The terminal driver is analogous to a telephone answering 

service; dividing the incoming characters into complete messages terminated by either 

a colon, a question mark, or a number sign, and storing them until read by the ORAC 

driver software. 



Chapter 3. ORAC LATHE INTERFACE 

Figure 3.18: Data Channels used by ORAC Driver Module 
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Since the Z8671 input driver echoes all received characters, the actual messages from 

the Z8671 software will be interspersed between characters transmitted by the VAX. To 

ensure that these characters do not interfere with the proper translation of the Z8671 

messages, they are pulled from the buffer as soon as they received. This allows the routine 

which writes to the Z8671 to do an error check on the transmission, and also ensures that 

characters are not overwritten before the Z8671 software has a chance to read them. 

The ORAC driver software accesses the type-ahead buffer in both the interrupt and 

polled modes. The interrupt mode is used whenever the driver is busy performing other 

tasks, or when the time between messages is not precisely known. The wait with timeout 

mode is used whenever a response is expected within a known timeframe, such as when 

waiting for the Command? prompt after receiving notification that the previously issued 

command has successfully completed. This technique maximizes the software's ability to 

detect a failure on the serial line or a loss of synchronization. 

The syntax of each message read from the type-ahead buffer is checked using the same 

subroutine, regardless of the access mode used to read it. The termination character is 

first checked to determine the message type. The text of the message is then parsed from 

left to right and compared to the keywords recognized for that message type. If the syntax 

is valid, the appropriate state variables for the Z8671 MCU, the ORAC lathe, the tool 

changer, and/or the spindle are updated and displayed on the screen. An invalid message 

is indicated by setting the Z8671 state variable to the Z8-MSG-ERR condition. These 

state variables are monitored by the calling routines to ensure that the communication 

protocol outlined in Table 3.6 is not violated. 

All transmissions which take place over the serial line are recorded in a permanent disk 

file to help trace any communication problems which may arise. The one exception being 
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Figure 3.19: O R A C Driver Status Window 

that characters echoed back by the Z8671 are not recorded unless an error is detected. 

Each message is preceded by an arrow indicating the direction of travel; a right-hand 

arrow, =>, denotes a message from the Z8671 software, and a left-hand arrow, <==, 

denotes a message from the V A X software. The filename is comprised of the subprocess 

name appended with the characters "_Z8.log" to allow easy identification of the source 

in a multi-machine environment. 

3.5.2.2 Initialization Sequence 

In order to communicate with the various components of the supervisory system the 

O R A C driver module must first assign a channel number to each of the I/O devices using 

the process specific logical names created by the parent process. When all data chan­

nels have been successfully assigned the Startup message is sent to the SYSSOUTPUT 

device to notify the parent process that the driver is executing properly. The ORAC 

driver then sends a message to the SMG_hdplx mailbox requesting that the SMG process 

create a status window on its behalf. This window contains the 7 subwindows shown in 

Figure 3.19. The actual name of the O R A C driver subprocess is substituted in the label 

field when it is created, and the SMG process is requested to place the window in the 

next available location. 
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Each, subwindow (with the exception of the Chuck subwindow) is filled in during the 

ensuing power-up sequence. The operator is first instructed to power on or reset the 

Z8671 controller. This should be performed with both the ORAC lathe and the external 

24 V power supply turned off because the initial state of both the output modules and the 

cross point array switches is indeterminate. The ORAC driver then waits for a message 

from the Z8671. If no message is received within the timeout period, an Error message is 

sent to the parent process indicating that the ORAC interface could not be initialized. If 

the Z8671 enters the monitor mode, indicated by the system prompt, the ORAC driver 

prompts it for the upper and lower limits of RAM in the system. If the required 4K 

of RAM is available, the ORAC driver will download the Z8671 software through the 

BASIC/DEBUG monitor. A RUN command is then issued to start program execution. 

When the Z8671 software is initialized and ready to accept a command, the operator 

is instructed to turn on the ORAC lathe and the 24 V power supply. The X and Z axes 

must then be calibrated by manually loading a piece of barstock and setting the initial 

zero point for each axis. The size of barstock used is unimportant as it will not be used to 

machine a part. However, the menu structure of the ORAC lathe does not allow access 

to the tool offset menu unless a valid program is loaded and executed. Consequently, a 

dummy NC program containing no machining instructions is downloaded to the lathe. 

The Z8671 software is then instructed to execute this program using the Manual option 

for setting the tool offsets. 

When the ORAC lathe has been successfully advanced to the Tool Offset menu, the 

operator is instructed to set the floating zero point and tool offsets as necessary. As 

noted earlier, the floating zero is defined by setting the offsets for tool number zero. 

With the tool turret correctly loaded for the ORACAP package, the right-hand finishing 
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tool located in position one serves as both the reference tool and tool one. If the turret 

is not in the required position, the manual toggle switches may be used to reposition it. 

The ORAC X axis is coincident with the spindle axis and does not change position 

from piece to piece. It is therefore an absolute axis and is precisely defined by the stan­

dard ORAC procedure. The standard Z axis, however, is a relative axis and its position 

depends on the length of the individual workpiece. To accommodate the automatic ma­

chining of randomly sized parts, an absolute reference must be obtained so that the 

relative axis may be correctly adjusted. This pseudo axis is calibrated by setting the 

initial Z axis zero point and providing the ORAC driver software with an accurate mea­

surement of the distance between the machined face and the outermost face of the chuck 

jaws. (This location is the same for both sets of chuck jaws supplied with the lathe.) 

Once the zero point has been set, the offsets for tools 1 through 9 must be entered 

into the ORAC's memory. The ORAC architecture supports the reading of these offsets 

from either the keyboard or the mini-cassette, but not the serial interface. Unfortunately, 

the mini-cassette recorder uses a parallel interface which is handled directly by the 6809 

CNC microprocessor and could not be duplicated in hardware without more information 

on the ORAC software. The Z8671 does have access to the keyboard and could enter the 

tool offsets through the ORAC editing facility if a record was kept on the VAX computer. 

This process was found to be much slower than reading from the mini-cassette, and still 

required a manual transfer from the ORAC to the VAX every time a tool was replaced 

or repositioned. Considering the fact that the zero point has to be set manually, it was 

decided that it would be more efficient to have the tool offsets stored on a mini-cassette 

and updated as necessary. 
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When both the zero point and offsets have been set, the operator must leave the 

ORAC lathe at the Tool Offset menu so that the remaining program steps may be 

executed by the Z8671. The X and Z axes will move to the program datum, which is now 

absolutely defined, prior to termination of the program. Upon receiving confirmation 

from the Z8671 software, the ORAC driver sends the Ready message to the supervisory 

software signalling that it is ready to accept commands. 

3.5.2.3 Command Vocabulary 

The ORAC driver vocabulary is made up of five commands with qualifiers and param­

eters as outlined in Table 3.7. In keeping with the standard DEC syntax, all qualifiers are 

preceded by a backslash and are placed between the command keyword and the parame­

ter list. Qualifiers which are mutually exclusive are indicated by a vertical list, with the 

default value being enclosed in square brackets. Parameters are indicated by a descrip­

tion of the required data type enclosed in angle brackets. Commands and qualifiers may 

be specified in either upper or lower case, and may be abbreviated to as many characters 

as necessary to make them unique. Individual arguments may be delimited by one or 

more space or tab characters. 

The M A N U A L and E X E C U T E commands provide direct access to the equivalent single-

character commands recognized by the Z8671 software. As indicated in Table 3.7, the 

M A N U A L command does not require any parameters or qualifiers. The E X E C U T E com­

mand accepts one qualifier which determines how the Offsets? prompt will be answered 

when it is issued by the Z8671 software. The default action is to answer with a Q; thus 

leaving the floating zero at its current position. 
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Table 3.7: ORAC Driver Command Syntax 

MANUAL 

SET-ZERO <value> 

SET-DIRECTORY <directory> 

LOAD [/NOOVERWRITE] <fUe> 
/OVERWRITE 

EXECUTE [/QUIT] 
/MANUAL 
/ZERO 

The LOAD and SET-DIRECTORY commands provide access to the ORAC lathe's 

download facility. When the ORAC driver software is executed, it inherits the default 

directory that the parent process was initiated from. The SET-DIRECTORY command 

allows this default to be adjusted so that it points to the subdirectory containing the 

user's NC programs. Other directories may still be accessed by specifying the complete 

disk path in the filename parameter of the LOAD command. The ORAC driver software 

keeps a running record of the file currently loaded into the ORAC lathe's memory. If 

the same file is specified in a subsequent LOAD command the default action is to simply 

return to the command monitor. In the event that the program stored in the lathe is lost 

or corrupted, the OVERWRITE qualifier may be used to force the file to be reloaded. 

The SET-ZERO command is used to reset the ORAC's floating Z axis from its current 

position to the one specified in the command. The required parameter is the distance 
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from the chuck jaws in millimeters. This command must be issued for each new part, 

prior to downloading the NC program for the part. The ORAC driver software first 

compares the position specified in the SET_ZERO command to the currently recorded 

Z axis position. If the difference is less than 0.01 mm—the single axis resolution of the 

lathe—no action is taken. If greater than or equal to 0.01 mm, the Z axis is adjusted by 

downloading and executing two NC programs. The first program is executed with the 

/ Q U I T qualifier and contains a single point-to-point instruction which moves the reference 

tool to a location whose absolute coordinates are 20.0 mm in X, and the specified value 

in Z. The second program is executed with the /ZERO qualifier which instructs the 

Z8671 software to reset the floating Z axis to the current tool location. This program 

doesn't contain any machining instructions, but specifies a program datum of X=35.0 

and Z=50.0 to move the tool changer to a safe location. 

3.5.2.4 Error Handling 

The ORAC driver module is responsible for monitoring all of its data channels to 

ensure that the corresponding syntactical rules and communication protocols are strictly 

observed. It is also responsible for relaying error conditions that are detected by the 

Z8671 software. These conditions are generally non-fatal and may be recovered from 

with the operators help. Other errors, such as those detected by the VMS operating 

system, are non-recoverable and result in the termination of the ORAC driver process. 

When reporting a recoverable error, the ORAC driver first queues up an SMG request 

to gain exclusive access to the shared message window. When the request is granted, 

the error message is printed along with the command that was executing when the error 

occurred. The operator is then requested to select from a number of available options. 
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The EXECUTE , SKIP, and ABORT options are always available, whereas the RETRY 

option is provided only if the Z8671 software has reporting an error that does not require 

the ORAC to be reset. 

The EXECUTE and SKIP options cause the last command sent to the Z8671 to be 

either repeated or skipped, respectively. As a general rule all LOAD commands should be 

repeated to ensure that the NC program is free of errors when it is executed. In the case 

of an EXECUTE command the operator may decide to abandon the current workpiece 

and to proceed to the next part. Both of these options require the lathe to be reset to 

the Main Menu before continuing. If the operator selects the ABORT option, the ORAC 

driver will report the error condition to the parent process as an unrecoverable error. 



Chapter 4 

PUMA ROBOT INTERFACE 

4.1 PUMA 560 Industrial Robot 

The PUMA 560 industrial robot is a six degree of freedom, anthropomorphic, servo-

controlled manipulator, with a rated payload of 2.5 kg. All six joints are revolute in 

nature, and have the range of motions shown in Figure 4.1. Each axis is fitted with 

an optical encoder and is digitally servoed by its own dedicated 6809 microprocessor, 

resulting in an overall rated repeatability of ±0.1 mm. 

Each axis is also equipped with a potentiometer which provides a coarse measure 

of the absolute position of the joint. These potentiometer signals have a resolution 

corresponding to approximately 1/4 revolution of the motor shaft. This resolution is not 

fine enough for precise motion control, but is sufficient to provide a reference position 

upon power-up. Each axis may then be calibrated by moving through one revolution until 

a high precision index signal is read from the incremental encoder. This combination of 

potentiometer and encoder signals eliminates the need to manually move the robot into 

a predefined calibration position upon power-up. 

86 
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Waisi rotation 320° 

Figure 4.1: PUMA 560 Joint Configuration 

The overall operation of the robot system is controlled by the VAL II operating soft­

ware which executes on a DEC LSI/11 microprocessor. Robot motions may be controlled 

directly from the system terminal, a hand held teach pendant, or through programmed 

instructions. The VAL II programming language is an interpretive BASIC-like program­

ming language which allows the robot to perform numerous tasks. This language provides 

a distinction between location data, numeric data, and program instructions which may 

all be generated independantly. All generated data is automatically stored in battery 

backed memory but may also be stored on floppy disk. 

The VAL II operating system provides for communication over a number of different 

I/O channels as shown in Figure 4.2. The most advanced of these are the ALTER and 

SUPERVISOR channels which allow the VAL II controller to communicate with external 
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Figure 4.2: VAL II System Information Flow 
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computers. The Alter channel allows a previously programmed robot path to be modified 

in real-time based on information received from the external computer. The Supervisor 

channel allows an external computer to enter into a dialogue with the VAL II command 

monitor and directly control the overall operation of the system. It is this channel that 

has been utilized in the development of the interface to the VAX 11/750. 

4.2 V A L II Supervisory Communication Protocol 

The VAL II Supervisor interface provides a structured alternative to the standard 

terminal emulation mode of supervisory computer control. All communications between 

VAL II and the external computer are subjected to a rigorous, multi-layered communi­

cations protocol which ensures error free transmission/reception, and provides a limited 

set of possible responses. Message translation is further simplified by the omission of 

all headers and other optional text, and the substitution of numeric codes for standard 

informational, warning, and error messages. The use of a separate RS-423 serial fine 

for the supervisory communications also permits both the system terminal and the disk 

drive unit to remain accessible during supervisory control. 

The supervisory communications protocol is implemented within VAL II as a software 

hierarchy consisting of three distinctive layers. Each layer is responsible for implementing 

a specific portion of the overall protocol and correspond respectively to the Application, 

Transport, and Communications Subnet levels of the general communication standard 

adopted by the International Standards Organization (ISO) [16]. 

The top layer of the hierarchy is comprised of four subtasks which are responsible 

for managing four distinct VAL II functions; status monitoring, command translation, 
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Table 4.1: Logical Units used by VAL II Supervisory Interface 

90 

LUN Data Type Transmitted VAL II Logical Switches 
Initialization Data Format 

0 Network manager commands NETWORK 
1 Robot status information (none) 
2 Synchronous monitor commands/messages SUPERVISOR INTERACTIVE 
3 Asynchronous monitor messages SUPERVISOR INTERACTIVE 
4 Input and output from user programs REMOTE.PIN MESSAGES 
5 Disk commands and data transfers DISK.NET 

program execution, and file management. Each subtask deals with a specific type of data 

which it receives and transmits over one of five internal data channels. These channels 

are assigned logical unit numbers (LUN) ranging from 1-5, and are dedicated to the 

specific data types indicated in Table 4.1. All data transfers are initiated by the VAL II 

subtasks, with the external device providing the required response. 

All communications from the top layer are directed to the appropriate hardware 

through the middle layer protocol. Because separate data channels are used for each 

message type, the communications from each subtask may be directed independent of 

the others. During normal operations, the first three subtasks have their communica­

tions directed to the system terminal, while communications from the fourth subtask are 

directed to the local disk drive unit. When supervisory control is enabled—by setting 

the VAL II N E T W O R K logical switch to on—any combination of logical units 2-5 may 

be dynamically selected for communications over the network channel by enabling the 

corresponding switches indicated in Table 4.1. 

http://DISK.NET
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When selected for network operations, communications between each of the four top 

layer tasks and the external computer are directed through the network manager. This 

module multiplexes the five logical data channels so that they may all talk over the single 

physical line. Outgoing messages are accepted via interrupt from all five logical units 

and are queued for serial transmission in a first-in first-out buffer. Incoming messages are 

accepted from the bottom layer software and routed to the proper top layer task based 

on the logical unit address embedded in the message. 

The network manager enforces a handshaking protocol that ensures that each trans­

mission from a VAL II logical unit is properly acknowledged by the external computer 

before another output request is accepted from that logical unit. This rule does not 

prevent other logical units from sending or receiving messages while one logical unit is 

waiting for its response, provided that all communications are initiated by VAL II. The 

supervisory computer may, however, cancel all outstanding communications by sending 

an abort request directly to the network manager, which is accessed as LUN 0. This 

request, which may be sent at any time, is not acknowledged directly by the network 

manager, but rather it results in an abort command being sent from each VAL II task 

that is waiting for input. The supervisory computer must then acknowledge each abort 

command as if the cancellation had been initiated by the VAL II controller. Normal 

communications are resumed when the VAL II monitor task requests a new supervisory 

command over LUN 2. 

The bottom layer of the communication protocol provides an interface between the 

middle layer and the actual communication hardware. Its main task is to ensure that each 

message is transmitted and received error free. It achieves this by implementing a single-

node version of the Digital Data Communications Message Protocol (DDCMP) developed 
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by DEC. This protocol accepts variable length input messages, and does not require any 

specific termination characters. Both an 8-byte header and a 16-bit polynomial Cyclic 

Redundancy Checksum (CRC) are appended to all messages prior to serial transmission. 

The CRC is capable of detecting 98% of all possible single bit transmission errors, and 

DDCMP automatically calls for retransmission whenever an error is detected. 

The complete format of all message records transmitted over the supervisory interface 

is shown in Figure 4.3. The ID byte provides the address of the logical unit which is to 

receive the message. The 1-byte function code is used by VAL II to indicate the type of 

action being requested. The six valid codes and their respective actions are detailed in 

Table 4.2. The response from the supervisory computer should contain the same function 

code with the acknowledge bit (bit 7) set. The 2-byte function qualifier is logical unit 

dependant and is employed by VAL II to provide further control information, such as the 

numeric codes that replace standard text typed at the terminal. The function qualifier 

in records received from the supervisory computer is interpreted by VAL II as a status 

code indicating the success (positive) or failure (negative) of the requested action. The 

ASCII coded message data field is used by both VAL II and the supervisory computer to 

convey function dependant data which can not be numerically coded, such as command 

strings and file data. 

4.3 VAX Software Interface 

The VAX software necessary to incorporate the PUMA 560 robot into the supervisory 

control architecture is contained in an executable image named VAL_II_driver.exe. As 
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Figure 4.3: VAL II Supervisor Message Format 

Table 4.2: VAL II Function Codes 

Function Code Action Requested by VAL II 

0 Open/close Supervisor disk file 
1 Abort outstanding communication 
2 Read data from Supervisor 
3 Write data to Supervisor 
4 Prompt Supervisor for a reply 
5 Read Supervisor disk directory 
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the name indicates, this module is really an interface to the VAL II supervisory com­

munication protocol, and may therefore be used to supervise any industrial robot which 

utilizes the VAL II operating system. This software has the same responsibilities as the 

ORAC_driver.exe module, and therefore has a similar overall structure. The advanced 

nature of the VAL II communication protocol, however, requires a more substantial mes­

sage handling capability, and allows an expanded command vocabulary. 

4.3.1 Communications with the VAL II Controller 

The software required to implement the DDCMP portion of the supervisory commu­

nication protocol is available on the VAX 11/750 as part of the DECnet software package. 

The protocol may be initiated on any valid terminal line, provided that it has previously 

been declared as a network device by the system manager. Once initiated, the DDCMP 

module is transparent to the application software, and all standard I/O routines may be 

used to access the I/O channel. 

In compliance with the requirement for flexibility, the VAL II driver software has 

been written such that the terminal line used to talk to the VAL II controller may be 

specified at run time. Currently, the only VAX terminal line which has been set up as a 

network device is "_TTB5:". If the VAL II driver is to be used with other terminal lines, 

it is important to realize that the I/O characteristics of a VAX network device can not 

be altered by the application software. Consequently, the baud rate must be set to 9600 

prior to declaring the terminal line a network device. 

When deciding how to implement the rest of the VAL II protocol a number of factors 

had to be considered. Although the VAX/VMS operating system is capable of supporting 
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real-time computations, it was necessary for the VAX 11/750 to remain accessible as a 

multi-user system during both development and implementation. The large variations 

in the effective processing power available to each user required a trade off between 

the desire to keep the communication overhead low, and the need to provide sufficient 

buffering to ensure that information was not overwritten. 

Another factor to be considered was the relative priority of the four different types 

of data received from the VAL II controller. The VAL II network manager accepts and 

transmits data from all five logical units at the same priority. This scheduling format is 

adequate for the VAL II side of the network because it plays the dominant role of sup­

plying the current state, whereas the remote side merely supplies the acknowledgement. 

From the supervisory computer viewpoint, the status information received from LUN 1 

has the highest priority as it directly affects the sequencing of other events—including 

the processing of data received from other logical units. The VAL II controller transmits 

this data on a continual basis (as opposed to an event-driven basis) of one record every 

second, requiring the translation and comparison of a large number of records. The time 

critical nature of each record requires that the LUN 1 data be processed as quicldy as 

possible to ensure that all decisions are based on current information. 

As noted earlier, the VAX AST interrupt service only supports one level of user inter­

rupts in a single process. The VAL II driver was therefore designed as two cooperating 

tasks. One task provides the standard interface to both the SMG and flexible manufac­

turing software, as well as the translation of all VAL II messages from logical units 2-4. 

The other task handles all of the direct I/O interactions with the RS-232C serial line, 

and serves as a combined network manager and status monitoring task. This structure 
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allows the LUN 1 data to be processed promptly, and also provides the buffering needed 

for messages received from the other logical units. 

The network manager/status monitoring task is created as a subprocess by the VAL II 

driver software, and is therefore transparent to those images executing at higher levels 

of the hierarchy. As with all subprocesses, it is created with a unique name and an 

associated termination mailbox. The subprocess name is derived by concatenating the 

characters "_LUN0" to the name of the parent VAL II driver process. This convention 

guarantees a unique name, even if more that one VAL II controller is being supervised. 

The various data channels used to transfer data between these two tasks are illustrated in 

Figure 4.4, and are described in detail in the following paragraghs. In this illustration the 

VAL II driver image has been executed in the context of a subprocess named PUMAl. 

The network manager/status monitoring subtask is consequently named PUMA1-LUN0. 

In addition to the data channels shown in Figure 4.4, the VAL II driver processes also 

communicate with the SMG and cell management software using the standard mailbox 

architecture outlined in Chapter 2. 

The combined network manager function reads incoming messages from the VAL II 

controller directly from the RS-232C serial line, while outgoing responses from the parent 

VAL II driver process are read from the "LUNG1" mailbox. All messages and responses 

are read via interrupt, and are first checked to see if they comply with the handshaking 

protocol outlined for communication with VAL II logical units. Messages or responses 

which are received out of order are discarded; with the exception of abort requests, 

which may be received at any time. Valid responses are queued for serial transmission to 

the VAL II controller over the RS-232C line, whereas valid messages are routed to the 

appropriate function or process depending on the value specified in the logical unit field. 



Figure 4.4: Data Channels used bv VAL II Driver Subtasks 
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Valid LUN 1 messages are handled directly at the interrupt level by the status moni­

toring function of the LUNO subprocess. The five status fields of the LUN 1 message are 

translated and the resulting values compared to the eight corresponding state variables. 

If a state change is detected, the affected variables are updated and a screen update 

request is sent to the SMG process via the SMG-hdplx mailbox. This update request, if 

required, is mailed using the nowait option so that the LUNO subprocess is not unduly 

delayed. The required LUN 1 acknowledge record is queued for serial transmission by 

mailing it to the LUNO mailbox. Program control is then returned to the main routine 

for servicing of the next interrupt. 

As illustrated in Figure 4.4, the eight state variables updated by the LUN 0 subprocess 

are stored in a reserved section of memory which has been declared as a global page section 

using the VAX/VMS memory management routines. This declaration allows two or more 

cooperating processes to share physical memory by requesting that specified portions of 

their local virtual variable space be mapped to the reserved section. This technique 

does not support interrupt handling, such as provided by the I/O routines, but it does 

provide the fastest means of interprocess communication. This ensures that the VAL II 

driver process is always making its decisions based on the most recently available state 

information. 

Valid VAL II messages received from logical units 2-4 are not handled by the LUNO 

subprocess, but are passed on to the parent process via the "SUPER" mailbox. This 

mailbox has been sized so that it may buffer up to four complete data messages and 

three abort requests—the maximum number of valid transmissions that may be received 

from the VAL II controller while waiting for a response to a previous message. This 
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technique implicitly applies a lower priority to these messages compared to the LUN 1 

messages. 

Messages which are placed in the SUPER mailbox are read sequentially by the VAL II 

driver process using the queued I/O interrupt service. The interrupt handler uses the 

first three numeric fields of each message to update the state variables for the specified 

logical unit. If the message data field is blank and no further action is required, the 

VAL II message is acknowledged directly at the interrupt level. If further processing is 

required, the message data field is copied into a separate buffer reserved for the specified 

logical unit. Program control is then returned to the main routine which translates the 

data and writes the appropriate response to the LUNO mailbox. This scheme relieves the 

main modules from the more mundane message handling, but also reduces the amount of 

time spent at the AST level. This is a necessary requirement if a balanced response time 

is to be provided to both the VAL II controller and the higher levels of the hierarchy. 

As with the ORAC driver software, a permanent disk file is used to log the com­

munications that take place between the VAX software and the VAL II controller. The 

VAX filename is generated by concatenating the character string "_VAL.log" to the name 

of the VAL II driver process. Both valid and invalid transmissions are recorded for all 

logical units except LUN 1. LUN 1 transmissions are not recorded due to the enormity of 

their numbers. Each of the four components of the VAL II message format are recorded 

in the log file in columnar format. The logical unit number is enclosed in square brackets 

and is followed by an arrow indicating the direction of travel. 
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PUMA1 Status 
Speed: 111113 ID: 1 Z Z 3 Program: i 1 t i ^ 3 I 1 

Cal Mode: i 1 PC Prog: r 3 t j ^ 1 I 1 

Net: MON: i \ Cmd: t 1 

Figure 4.5: VAL II Driver Status Window 

4.3.2 Status Display 

The 8 state variables affected by the LUN 1 status messages represent a small subset of 

the approximately 65 state variables required to completely monitor the VAL II interface. 

From these 65, a subset of 15 variables has been selected for continual display through the 

SMG screen interface. The format of the status window used to display these 15 variables 

is illustrated in Figure 4.5. The name of the VAL II driver process which requests the 

window is included in the label when it is created. The actual placement of the window 

on the screen is left up to the SMG process. 

The ID field is used to display a 13 character string which identifies the particular 

robot system being supervised. The string contains both the serial and model numbers 

of the robot, as well as the version number of the VAL II software currently executing 

on the controller. The Speed, Mode, and Calibration (abbreviated to Cal) fields combine 

to provide the current state of the robot subsystem. The speed which is displayed is the 

VAL II monitor speed, which is not a true rate, but rather a percentage scaling factor 

that is applied to all speeds specified within a program. The Calibration state variable 

is a simple on/off binary flag and is self-explanatory. The Mode variable indicates the 
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Table 4.3: Valid States for VAL II Subsystems 

101 

Robot Mode Program Status Command Monitor 

ARM POWER OFF RUNNING NEXT COMMAND 
MANUAL PROMPT READ CMD DATA 
TEACH WAIT PROMPT 
COMP DRY. RUN WAITING 
PROGRAM COMPLETED WARNING 
HOLD PAUSED ERROR 
FATAL FAULT HALTED ABORTED 

ERROR 

current status of the robot's motion control software, and can take on one of the eight 

values listed in Table 4.3. 

The current state of the VAL II program interpreter is displayed in the last four status 

fields of row 1 for Robot Control programs, and row 2 for Process Control (PC) programs. 

(Process Control programs are user-written status monitoring programs which may be 

executed in parallel with the actual robot motion programs.) The first two program 

status fields display the Name and Mode of either the current or most recently executed 

program. Of the eight Program Modes listed in Table 4.3, the first four are execution 

states which apply to currently executing programs; whereas the last four are completion 

states that indicate the reason why program execution terminated. The last two program 

status fields display additional completion information and are therefore cleared during 

program execution. If a program terminates due to an error condition, the error number 

corresponding to that condition is displayed in the third status field. The fourth field 

displays the fine number of the last VAL II program instruction executed, regardless of 

the completion status. 
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The third row of the status window contains three fields which display information 

relating to the Supervisory communication network. The first field displays the number of 

network communication errors which have been detected. The Monitor field (abbreviated 

to MON) displays the current value of the combined state variable for LUN's 2 and 3. 

The seven valid states for this variable are also listed in Table 4.3. The Cmd field contains 

the first 34 characters of the last VAL II monitor command sent out over the network. 

4.3.3 Start-up Sequence 

The VAL II driver's first task is to assign a channel number to each of the mailboxes 

required for communicating with the cell management level. The Startup message is then 

sent to the parent process as confirmation that the VAL II driver subprocess is executing 

properly. A message is then sent to the SMG process requesting the creation of a new 

VAL II status window. 

The next task is to create the I/O architecture required to communicate with the 

VAL II controller. The global page section is created and mapped to the common block 

containing the VAL II driver state variables, which are initialized to zero. The two 

mailboxes that will be used to talk to the network manager subprocess are created and 

assigned channel numbers along with a mailbox to receive a termination notice should 

the subprocess fail. The LUNO subprocess is then created with the LUNO and SUPER 

mailboxes designated as the default input and output devices. The default error device 

is set to point to a permanent disk file so that system errors may be trapped without 

interfering with the screen display. The file name is generated using the standard practice 

of concatenating the ".err" extension to the process name. 
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When the LUNO subprocess has assigned all of the required I/O channels, and has 

successfully initiated the DDCMP protocol, it informs the VAL II driver process by 

setting its state variable to ACTIVE. The operator is then instructed to power up the 

VAL II controller and to enable the NETWORK and SUPERVISOR logical switches. 

These commands are required to initiate the Supervisor interface and must be issued 

at the VAL II system terminal. If the VAL II controller does not respond with a valid 

network message before a specified timeout, the VAL II driver sends an Error message to 

its parent process and terminates execution. 

If a message is received, the initial state of the VAL fl controller is determined by 

invoking the LUN 1 status monitoring function, and by issuing various status commands 

to the LUN 2 monitor task. If the robot is not calibrated, the operator is asked to make 

sure that it is in a safe location before the VAL II driver issues the calibrate command. 

The Ready message is then sent to the parent process, indicating that the VAL II driver 

is ready to accept commands. 

4.3.4 Command Vocabulary 

The VAL II driver software recognizes a command vocabulary made up of fifteen 

keywords with specific qualifiers and parameters as outlined in Table 4.4. This command 

structure is similar to that used by the ORAC driver module and the same rules and 

conventions described for Table 3.7 in Section 3.5.2.3 apply. With the exception of the 

SET-DIRECTORY command, the VAL II driver commands correspond directly to the 

equivalent VAL II monitor commands. 
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Table 4.4: VAL II Driver Command Syntax 

CALIBRATE 

SPEED <value> 

ENABLE <VAL U switch> 
DISABLE <VAL H switch> 

DELETE [/ALL] <program> [,<program>,...] 
/PROGRAMS <program> [,<program>,...] 
/LOCATIONS <location> [,<location>,...] 
/REALS <variable> [,<variable>,...] 

SET_DI RECTORY <directory> 

STORE [/ALL] [VAX] [/COMMENTS] <file> <program> [,<program>,...] 
/PROGRAMS /FLOPPY /NOCOMMENTS 
/LOCATIONS 
/REALS 

LOAD [/ALL] [VAX] [/COMMENTS] <file> 
/PROGRAMS /FLOPPY /NOCOMMENTS 
/LOCATIONS 
/REALS 

DO <instruction> 

EXECUTE <program> 
PCEXECUTE <program> 

PCABORT 
PCEND 
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Although the VAL II driver performs an automatic calibration during the initialization 

sequence, the CALIBRATE command may be used to force a new robot calibration at any 

time. The potentiometer vs. encoder data required for calibration is generally loaded from 

the local floppy disk drive unit during the VAL II boot-up sequence. However, a defect 

in version 2.0B of the VAL II operating software causes this action to fail sporadically. 

As a guard against this anomaly, the VAL II driver software first attempts to overlay 

the calibration data file for the particular robot from the local floppy disk drive. If this 

file is not found on the diskette currently loaded, the operator will be asked to load the 

VAL II system diskette into the disk drive. The operator is also asked for confirmation 

of the robot position and mode prior to issuing the VAL II calibration command. 

The ENABLE and DISABLE commands provide access to the eleven VAL II logical 

switches. As noted in Table 4.1, six of these switches directly affect the operation of the 

network interface and should be used with caution. In particular, the NETWORK and 

SUPERVISOR switches must remain enabled at all times, and should not be disabled by 

user programs. The INTERACTIVE and DISK.NET switches are utilized in both modes 

by the VAL II driver, and in general should not be changed. The REMOTE.PIN and 

MESSAGES switches are initially enabled by the VAL II driver, but should be selectively 

disabled so that the network does not become bogged down by verbose programs. The 

DRY.RUN switch provides a means of testing the logic of programs that have been 

written off-line without actually moving the robot. 

The DELETE, STORE, and LOAD commands provide a means of manipulating the 

contents of the VAL II controller's memory space. With the exception of the command 

qualifiers, the syntax is similar to the equivalent VAL II commands. All three com­

mands accept one of the four Data Type qualifiers; /ALL, /PROGRAMS, /LOCATIONS, 

http://DISK.NET
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and /REALS. For the DELETE and STORE commands this qualifier performs the same 

function as the comparable command variations found in VAL II. The Data Type qual­

ifier in the LOAD command is simply used to append a suitable file extension if none 

is specified. The STORE and LOAD commands also take a File Source qualifier that 

denote the device that the named file is to be loaded from, or stored to. This facility 

enables programs currently loaded on floppy disks to be uploaded to the VAX. The 

/ N O C O M M E N T S qualifier may be used to conserve VAL II memory space by stripping 

all comments when downloading a file from the VAX. The SET-DIRECTORY command 

may be used to specify a default directory for all VAX files. 

The DO command executes the single VAL II program instruction specified in the 

calling sequence. This facility provides an alternative way to download locations or 

variables to the VAL II controller. It offers the advantage of not requiring a separate 

editing session to create data files; but has the disadvantage of being slower than the 

LOAD command for any more than two or three records. 

The EXECUTE and PCEXECUTE commands oversee the execution of programs which 

have been previously loaded into the VAL II controller. Unlike the parallel VAL II 

commands, these VAL II driver commands do not return to the command monitor un­

til program execution has terminated. Consequently, the multi-tasking utility of the 

VAL II PCEXECUTE command is lost, and it functions identical to the EXECUTE 

command. Multi-tasking can be achieved, however, by executing the PC program from 

within the Robot Control program by using the VAL II PCEXECUTE and PCEND pro­

gram instructions. If this option is used, any currently executing PC programs should 

be terminated prior to sending the VAL II driver EXECUTE command. The PC ABORT 

and PCEND functions have been added to the VAL II driver vocabulary for this purpose. 
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4.3.5 Special Considerations for Programs Using A L T E R 

The VAL II operating system supports real-time path control of robot motions through 

the ALTER function. This function modifies the programed motions by adding carte­

sian offsets to the current location in either a cumulative or non-cumulative mode. The 

required offset data can come from two different sources. In the EXTERNAL mode the 

offset data is transmitted to VAL II from an external computer over a dedicated serial 

line. Alternatively, the path control data can be computed by a Process Control pro­

gram running in parallel with the Robot Control program. This latter mode is called 

INTERNAL ALTER and is the mode currently be used for force-control experiments in 

the UBC Mechanical Engineering Department. 

The INTERNAL ALTER mode requires the Process Control program to send a com­

plete set of offset data to the motion control software every 28 ms. If this mode is used in 

conjunction with the supervisory control interface the LSI 11/2 microprocessor is placed 

under a set of time constraints that it can't always meet. Because the ALTER mode 

is given a higher priority, the possibility exists that some network communications may 

be interrupted. The result is a lost of synchronization between the supervisory com­

puter, which is still waiting for the message, and the VAL II controller, which believes 

that the message was sent. These conflicts can be avoided by adhering to the following 

programming guidelines: 

• Remove all unnecessary TYPE and PROMPT statements; or disable the RE­

MOTE.PIN switch so that these instructions display their data on the VAL II 

system terminal, rather than over the network. 
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• Always start the PC program first, and provide at least a 1 second delay between 

the PCEXECUTE and ALTER instructions. 

• Always stop the ALTER mode and PC program explicitly. The NO ALTER, PCEND, 

and STOP instructions should be executed in the stated order, with at least 1 sec­

ond delay between each instruction. 

• Use the REACTE instruction to specify an error handling subroutine that will 

perform the above shutdown sequence if an error occurs. 

• Perform all time delays using the TIMER() function rather than the DELAY in­

struction. The VAL II interpreter implements the DELAY as a series of robot 

motion commands which specify the current location as the destination. This im­

plementation produces unpredictable results at the best of times, but even more so 

when the ALTER mode is active. 

4.3.6 Error Handling 

The VAL II driver software is responsible for detecting and reporting communication 

errors and for relaying errors that are detected by the VAL II controller, in the same 

manner as the ORAC driver. The recovery options offered to the operator are dependant 

on the actual conditions but are generally the same as those offered by the ORAC driver, 

that is to skip or repeat the offending command. 

VAL II user programs may also report application specific errors by using the Type 

instruction. The VAL II driver software checks the first 10 characters of all messages 

received from LUN 4 to see if they contain the "PGM ERROR" identifier. If present, the 
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VAL II driver treats the transmission as an error message and expects the corresponding 

error number and text to follow the identifier in that order. These values are stored in 

memory until the program terminates. If the program terminates through a VAL II STOP 

instruction these values are written to the program state variables and the operator is 

informed as if a VAL II error was detected. However, if a legitimate VAL II error occurs 

before the STOP instruction is executed it will cause the user supplied values to be 

overwritten. 



Chapter 5 

S U P E R V I S O R Y L E V E L S O F T W A R E 

5.1 O R C A M 

The name ORCAM is an acronym for ORAC Computer Aided Manufacturing. It 

is a supervisory level software package that utilizes the ORAC and VAL II drivers to 

carry out the specific task of automatically machining a number of user-defined parts. 

This task involves the coordination of the loading and unloading activities performed 

by the PUMA robot, with the NC machining activities performed by the ORAC/Z8671 

combination. The majority of these activities are sequential in nature, and very little 

opportunity exists for overlapping. Accordingly, ORCAM issues its fixed series of driver 

commands in a sequential manner; waiting for each command to successfully complete 

before processing the next one. 

5.1.1 Input Data 

The sequence of events for automatic manufacturing requires a knowledge of the 

physical dimensions of the part—both before and after machining—as well as the name 

and location of the NC programs. ORCAM has been designed to obtain this information 

110 
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from the output of the ORACAP package. ORACAP is capable of generating ORAC 

NC code for parts to be externally machined on one or two ends, without the use of the 

tailstock [13]. The NC programs produced are in a form suitable for downloading to the 

ORAC lathe, and may optionally include the auxiliary I/O instructions necessary for the 

Z8671 tool changer interface. 

In addition to the NC code, ORACAP also generates CAD and file content informa­

tion which it stores in a somewhat scattered group of 5-9 different text files. As explained 

in reference [13], the naming convention used for these files may either be based on a 

Part Mode, or be user-defined. ORCAM requires that the Part Mode be used, and that 

all output files be stored in one directory. The direct inputs to ORCAM are therefore 

the part name, the file directory, and the number of parts to be machined, which are all 

entered interactively. 

5.1.2 V A L II Programs and Locations 

The VAL II programs that are executed by the ORCAM software take advantage 

of the flexible nature of the VAL II programming language to reduce the number of 

programs required, the number of robot locations that must be explicitly taught, and the 

amount of variable data that must be communicated between the VAX and the VAL II 

controller. 

One such feature is the ability to move to a given location with any number of different 

tool definitions. The PUMA 560 robot is equipped with a standard Unimation pneumatic 

gripper that has a parallel stroke of 18 mm. To accommodate the ORAC's full range 

of barstock diameters with this small stroke, it was necessary to design a set of fingers 
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4.25 inn — 17.02 mn 

17.02 nn — 28.4 nn 

28.4 nn — 38.56 nn 

Figure 5.1: Gripper used to Grasp Workpieces of Varying Diameters 

with three staggered grasping points, as shown in Figure 5.1. Each 120° V-notch centers 

its full range of workpiece diameters in the indicated position, and corresponds to one 

of three different tool definitions. These tool definitions are stored on the VAX and 

assume that both the Lord Corporation Remote Center of Compliance (RCC) and the 

JR3 Inc. six-axis force/moment sensor are mounted between the robot's toolplate and 

the gripper. The correct tool definition is set by each individual VAL II program based 

on the diameter to be grasped, which is part of the data received from the ORCAM 

package. 
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The VAL II language allows robot locations to be denned in terms of cartesian trans­

formations. These transformations may be explicitly taught by recording the current 

robot location, or they may be defined numerically in terms of both constants and vari­

ables. Transformations may also be combined to form new robot locations relative to 

existing transformations or to user defined coordinate frames. Frames are special trans­

formations that are created by specifying the location of an origin and three other points 

that define the orientation and positive sense of the X and Y axes. 

These features allow the VAL II programs to handle various workpieces without re­

quiring a large number of taught points. The actual locations for each new workpiece are 

generated implicitly by applying relative transformations to pre-defined frames. Each 

relative transformation involves a single translation, and is generated numerically from 

axial offsets received from the ORCAM software. Because these offsets are transmitted 

as numeric constants rather than location variables, the amount of data that must be 

transferred for each new location is reduced by a factor, of 12. 

The locations for picking up the barstock are all defined relative to the input pallet. 

At the present time a temporary, single component, non-sensored input pallet is being 

used. It consists of a base plate with a 90° V-groove to cradle the barstock, and a back 

plate to ensure proper axial positioning. The position of the pallet is defined by a frame 

whose X axis is coincident with the root of the V-groove, and whose origin is located at 

the intersection of the X axis and the back plate. This frame is generated interactively 

by executing the VAL II program Teach.input. This program instructs the operator to 

place a prepared blank into the robot gripper, and to move the robot into position such 

that the blank is properly seated in the input pallet as shown in Figure 5.2. The current 

robot location is then recorded and the frame is generated from an accurate measurement 
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Figure 5.2: Reference Frame for the Input Pallet 

of the barstock diameter and the axial distance between the back plate and the forward 

edge of the gripper fingers. 

All of the locations required for loading the barstock, turning around the partially 

machined component (if required), and unloading the finished workpiece are defined 

relative to the lathe. The position of the lathe is defined by a frame whose X axis is 

coincident with the spindle axis, and whose origin is located at the intersection of the X 

axis and the outermost face of the chuck jaws. This frame is generated by the VAL II 

Teach.lathe program. This program instructs the operator to teach two locations that 

define the location of the spindle axis. As indicated in Figure 5.3, these locations are 

taught using a hardened steel pointer held in the robot's gripper, a specially designed 

chuck center, and a standard tailstock center. 

At the present time, all finished workpieces are dropped off at the same location, so 

no frame is required for this operation. This Output location and a Safe home position 
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Figure 5.3: Reference Frame for the ORAC Lathe 

are taught simply by moving the robot into the required position. Once taught, these 

two positions and the Input and Lathe frames completely define the workcell, and do not 

have to be retaught unless the equipment is moved with respect to the robot. Although 

the VAL II controller has battery backed memory, all locations are uploaded to the VAX 

as part of the interactive teaching process to guard against accidental loss. 

The three major activities performed by the PUMA robot are controlled by three 

descriptively named VAL II programs; Load.chuck, Flip.workpiece, and Unload.chuck. 

Each program is responsible for both the generation of locations and the execution of 

a complete handhng sequence; including the grasping, positioning, and releasing of the 

workpiece. To carry out this task, each program uses an appropriate subset of the nine 

input variables that completely define the workpiece, as outlined in Table 5.1. In each 

case the diameter variable is used to set the tool definition; the offset variables are used 

to define the position of the grasping or release point relative to the lathe frame; and 

the clamped.len variables are used to define the approach and retract positions required 
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Table 5.1: Workpiece Data Required by VAL II Programs 

116 

Load. Chuck Flip. Workpiece Unload. Chuck 

load.diameter 
load.off set 
clamped .len[l] 

flip, diameter 
flip.offset[l] 
fhp.offset[2] 
clamped.len[l] 
clamped.len[2] 

unload.diameter 
unload.offset 
clamped.len[2] 

to clear the chuck jaws. The Load.chuck program also uses the indicated input data to 

generate the pickup location relative to the input pallet frame. The X axis offset is found 

by adding the Load.offset and Clamped.len[l] values, and the Z axis height adjustment 

is calculated from the Load.diameter value. 

Each VAL II program is also responsible for the coordination of the robot motions 

with the opening and closing of the chuck jaws. Since the automatic chucking device 

has not yet been implemented, this coordination is presently done through a prompt to 

the operator, who must manually open or close the chuck jaws. While performing the 

requested action, care must be taken not to rotate the chuck as all VAL II programs 

monitor the Z8671 Spindle Running signal while the robot is in the lathe's work area. 

This signal is monitored on digital input 1003, and causes an interrupt if unexpectedly 

activated. The interrupt handling routine immediately stops the robot, opens the gripper, 

and then retreats out of the work area before generating a user detected error. 
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5.1.3 Calculation of Workpiece Data 

The 7 diameter and offset values required by the three VAL II programs are calculated 

based on CAD data generated by ORACAP. This data includes the material, barstock 

diameter, the number of ends to be machined, as well as the length and shape of the 

machined section. The shape is denned in terms of a number of adjacent sections. Each 

section has a known diameter at both endpoints, and has a characteristic profile; circular, 

parabolic, linear, or threaded. Sections are connected at transition points that have a 

known axial position relative to a datum at the end of the workpiece. 

The two Clamped.len values needed by the VAL II programs depend on the type of 

chuck jaws that are being used. The ORCAM package was originally designed to deal 

only with the standard jaws that are capable of gripping the ORAC's rated range of 

workpiece diameters. The ORCAM software has since been expanded to recognize the 

oversize jaws used for handling large barstock, but the workcell is still limited by the 

capabilities of the gripper, ie. 38.5 mm. Each set of jaws is characterized by a minimum 

and maximum diameter, a minimum clamping length, and a minimum offset to prevent 

interference between the jaws and the gripper body. 

The first step taken by ORCAM is to check the barstock diameter against the mini­

mum and maximum diameters for the gripper and the chuck jaws. If the diameter is in 

range, the variables corresponding to the chuck loading location are initialized. The load 

diameter is set equal to the required barstock diameter, while the load offset and first 

clamped length are set equal to the minimum values specified for the currently loaded 

chuck jaws. 
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The second task is to determine the length of the blanks required to machine the 

parts. For those parts that are to be machined on both ends, this is equal to the length 

of the machined section and is obtained directly from the CAD file. For those parts that 

are only to be machined on one end, a section of material must be added to allow the part 

to be clamped in the chuck. The amount added depends not only on the type of chuck 

jaws, but also on the shape of the finished workpiece. The list of CAD sections is scanned 

from top to bottom to find a location suitable for grasping the part after machining. This 

requires a linear section with both a constant diameter and a length greater than the 

width of the gripper fingers. If a suitable section is found, the added length is set equal 

to the minimum length required for clamping in the chuck jaws plus 5 mm to ensure that 

the cutting tool does not collide with the chuck. If the machined section doesn't contain 

a suitable unloading location, the 5 mm insurance section is replaced by the minimum 

length required to grasp the barstock without causing a collision between the gripper and 

the chuck jaws. 

Ii the part is only to be machined on one end, all of the required data is now known. 

If a suitable section was found, the unload position is set to the first location in the 

section that has an offset greater than the minimum required by the chuck jaws. The 

unload diameter and offset are set accordingly. If no suitable section was found, the 

unload diameter and offset are set equal to the corresponding load values. In both cases 

the two Clamped.len variables are equated, and the "flip" variables are set to zero. 

If a part is to be machined on both ends, the next task is to find a section suitable 

for clamping in the chuck once the part is turned around. Each section that is to be 

machined in the first pass is checked, starting at the outermost section. If the section 

isn't suitable for clamping, it is also checked to see if it will fit inside the 18 mm spindle 
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bore. If it does, the search continues; if it doesn't, an error is generated. If and when a 

suitable section is found, the second clamped length is set accordingly. 

The flip diameter and the first flip offset are then set equal to the corresponding load 

values. This assignment is valid due to the fact that the ORACAP package always splits 

the part into two sections at a point located at least 40 mm from the end that is clamped 

first. The second flip offset is then calculated from the previous values. 

The last step is to find a suitable unloading location for the parts to be machined on 

both ends. This position may be in any section that is far enough away from the chuck 

jaws, regardless if it is machined in the first pass or the second pass. If a suitable section 

is not found, an error is generated. If one is found, the appropriate unload values are set, 

and all nine values are then written to a data file in a form suitable for downloading to 

the VAL II controller. 

5.1.4 Execution of O R C A M 

The ORCAM task image may be executed directly using the VAX RUN command 

or it may be executed from the ORCAM.com command file. The command file option 

will ensure that all subprocesses created by the ORCAM software are properly deleted 

in the event of an unrecoverable error. The command file also sets the terminal type 

prior to execution, and should always be used when running the program on a terminal 

connected to the VAX through the terminal server. 

http://ORCAM.com
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The first task performed by the ORCAM image is the creation of the SMG process 

with its associated mailboxes. The operator is then asked if the PUMA robot is ac­

tive. This option has been provided to allow the automatic features provided by the 

ORAC driver to be used even if the robot is not functioning properly. If the robot is 

active, the VAL II driver subprocess is created based on information contained in the 

ORCAM_machines.dat file located in the [kean.ORCAM] directory. This file contains the 

subprocess name, the driver task image name, and the terminal fine to be used for both 

the VAL II controller and the ORAC/Z8671 interface. 

When the VAL II driver has successfully completed its initialization sequence, the 

VAL II programs and the most recent locations are downloaded to the controller. The 

operator is then asked for confirmation prior to moving the robot to the required starting 

location. The operator is then given the opportunity to reteach each of the required 

frames and locations on an individual basis. If any of the locations are retaught, the 

current data is updated by issuing a STORE command to the VAL II driver. 

The ORAC driver subprocess is then created using the name and terminal fine spec­

ified for the ORAC/Z8671 interface. As with the VAL II driver, ORCAM waits for the 

full initialization sequence described in Chapter 3 to be completed before continuing. 

The operator is then prompted for the type of jaws that are currently loaded into the 

chuck. This completes the setup sequence, and the workcell is now ready to manufacture 

components. 

ORCAM allows any number of different parts to be machined in varying batch sizes. 

The three required inputs of part name, file directory, and number of parts are prompted 

for at the beginning of each batch machining sequence. These inputs are then used to 

locate and translate the ORACAP CAD files. If any errors are found while calculating 
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the required offsets and diameters the operator is informed of the error and prompted for 

new input data. If the operator wishes to edit or regenerate the offending CAD files he 

must exit ORCAM. This may be done by entering a carriage return in response to the 

part name prompt. In this case the machine parameters are lost and the initialization 

sequence will have to be repeated when ORCAM is restarted. 

If no errors are found while translating the CAD files, the resulting diameters and 

offsets are downloaded to the robot controller. The operator is then instructed to load the 

input pallet with the corresponding number, material, length, and diameter of blanks. 

(At the present time the input pallet has not been automated so each blank must be 

loaded individually.) As with any robotic handling operation, the initial placement of 

the blank affects the accuracy of the rest of the operation. Each blank must therefore 

be cut to length and faced prior to loading to ensure that it will sit square against the 

backing plate. Although the NC programs produced by ORACAP contain a facing pass, 

it is mainly for cosmetics and best results are obtained if the blank is faced to the proper 

length prior to loading. 

When the operator confirms that the input pallet is properly loaded, ORCAM ini­

tiates the machining sequence by sending the appropriate SET-ZERO command to the 

ORAC driver subprocess. The blank is then loaded into the chuck by instructing the 

VAL II driver to execute the Load.chuck program. The first end of the workpiece is then 

machined by successively downloading and executing the necessary NC programs. For 

the majority of parts there will only be one NC program per end, but complicated parts 

using parabolic sections may require up to three different NC programs. 

After the first end has been successully machined the workpiece will either be unloaded 

by executing the VAL II Unload.chuck program, or it will be turned around by executing 
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the Flip.workpiece program. If the part is turned around the second end is machined in a 

similar fashion, with the ORAC Z axis zero point being reset if necessary. This sequence 

is repeated until all of the requested parts have been machined. 

The ORCAM package successfully demonstrates the communication abilities of the 

supervisory control package but it does not utilize the simultaneous processing capabili­

ties. In fact the ORCAM package points out the major reason why the use of industrial 

robots as workpiece handling devices has not found widespread acceptance in plants with 

the traditional process-type layout. Because machining times tend to be much longer than 

handling times, the robot's capacity is not well exploited in the single machine applica­

tion and is not economically justifiable [17]. The use of the manufacturing cell layout is 

a necessity if robots are to be justified in the machining industry. 

5.2 FMC 

The FMC cell management software was written to demonstrate the simultaneous 

processing capabilities of the supervisory control system. This program is an open-ended 

supervisory level package which may be used to directly access both the VAL II and 

ORAC drivers, and indeed any other drivers that may be implmented in the future. 

Unlike the ORCAM software which is dedicated to the task of machining parts, this 

package may be used to accomplish a number of different tasks, such as component 

assembly, or simple pick and place. The sequence of events required to accomplish the 

desired tasks must be decided externally and passed to the FMC package as text files. 

Simultaneous execution of different tasks is supported in FMC by coding the instuc-

tions for each task in separate files which are then processed in parallel. To facilitate this 
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parallel processing the FMC program keeps track of which machines are busy process­

ing a command and which ones are idle. Idle machines are switched from one task file 

to another as the need arises. A locking mechanism is provided which may be used to 

group a number of commands into a single block. This ensures that critical operations 

which require the devoted attention of more than one machine are not interrupted. In 

particular, this mechanism should be used to ensure that each machine is in a suitable 

state before it is switched to another task. 

Each individual machine is identified in the FMC environment by a user supplied tag 

which may be up to five characters long. These tags are read from the FMC_machines.dat 

data file which must be used to identify each new machine to the FMC program. In 

addition to the machine's ID tag, this file specifies the name of the executable image that 

contains the associated subprocess driver, and the name of the VAX terminal line used 

to communicate with the machine. 

The syntax of the commands which may be included in an FMC input file are detailed 

in Table 5.2. The INITIALIZE command must be the first command in every FMC task 

file and must include the indentity tag of each machine accessed by the task. The LOCK 

command is used to gain exclusive access to the specified machines, and together with 

the U N L O C K command serve to group the intervening instructions into a single entity. 

The R E P E A T and E N D - R E P E A T commands function as a D O construct and may be used 

to repeat a group of instructions the specified number of times. The FMC program uses 

dynamic memory allocation to keep track of the return address and loop counter for 

each new R E P E A T command so these constructs may be nested to any desired depth. 

Commands which are to be sent to an individual machine driver are preceeded by the 

identity tag associated with that machine. 
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Table 5.2: FMC Command Syntax 

INITIALIZE <machine ID> [<machine ID> ...] 

LOCK <machine ID> [<machine ID> ...] 
UNLOCK <machine ID> [<machine ID> ...] 

REPEAT <number> 
END-REPEAT 

<machine ID> <machine driver command> 

The FMC program may be executed directly using the VAX RUN command or it 

may be executed from the FMC.com command file. The command file option allows 

the names of the FMC task files to be entered on the command line. If no names are 

entered, or if the RUN option was used, the FMC program will prompt for the file names 

interactively. In both cases, the first task file entered is the one that is processed first, 

and therefore decides the starting assignment for each machine. 

http://FMC.com


Chapter 6 

C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 

The work described in this thesis has resulted in a functional FMC that is capable 

of producing turned components in a semi-automatic mode. The vast majority of the 

required operations including the generation, downloading, and execution of both NC 

and robot control programs have been completely automated. At the present time the 

operator is only required to load the input pallet and to operate the manual chucking 

device. This manual intervention is due to a lack of suitable equipment rather than any 

inherent limitations in the system. The present system is sufficient to demonstrate the 

principles of flexible manufacturing and has been invested with enough flexibility to allow 

the remaining two manual operations to be automated in the future. 

The development of this workcell shows that stand alone machines may be successfully 

integrated into a supervisory control system. It has also demonstrated, however, that 

the level of integration achievable is highly dependant on the communication abilities 

built into these machines. The VAL II controller used to control the PUMA robot 

represents the high end of the spectrum and is capable of full integration. The ORAC 

lathe represents the lower end of the spectrum. Although many of the desired monitoring 

functions can be achieved by an external interface such as the Z8671 controller, the 

inability to directly sense the microprocessor's state is a limiting factor in these types 
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of machines. These h'mitations often make the time and money required to design the 

external interface unjustifiable in an industrial environment. 

Although the machining capabilities provided by ORCAM represent the achievement 

of the original goal, the modular structure employed in the software design provide a 

sound basis for future expansion. The modular design and use of communication proto­

cols allow a number of the components to be separated and put to other use. In particular 

the operator interface and the VAL II driver are completely general in nature and are 

not restricted to machining operations. 

The FMC program has been designed mainly to support future development work. 

In order to take full advantage of its capabilities of simultaneous control more machine 

drivers are required. It is worth noting that the definition of a machine used by the FMC 

program does not restrict it to mechanical devices. Any device that exercises some form 

of control or monitoring function may be added to the supervisory control system, as 

long as it can communicate over a serial channel. One particular device which is seen as 

a possible target for future development is the JR3 force sensor currently mounted on the 

PUMA robot. A communication interface between this sensor and the VAX 11/750 could 

be added to the FMC program to allow the development of an articulated assembly cell 

capable of changing the force-motion parameters of the robot to suit the desired task. 

In addition to providing more device drivers for the existing FMC package, it is 

recommended that the FMC language be expanded to provide more functionality. While 

the current version allows simultaneous action of more than one machine, this feature 

is restricted to separate task files. In many instances this restriction does not provide 

enough connectivity between the operations of the individual machines. If complicated 
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tasks requiring a high degree of interaction are to be supervised, the FMC language 

should be expanded to provide: 

• Parallel processing within the same task file. 

• More structured constructs such as IF-THEN-ELSE. 

• Instruction labels that may be used to refer to previous commands when specifying 

how long a machine should stay on a particular task. 

Although the VAX 11/750 has proven to be satisfactory for the present work, its 

role as a multi-user system represents a limiting factor in its usefullness for an expanded 

control effort. If future expansion of either the ORCAM or FMC programs is to be 

undertaken it is recommended that they be transferred to the proposed VAXstation 

3200. 
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