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ABSTRACT

The thermal effects of stitch welding the coolant
conduits of a water-cooled flat plate solar collector to its
absorber plate have been studied. A physical model of the
heat transfer process from the plate to the fluid flowing
inside the tube has been presented. The heat transfer
coefficient based on the difference between bond temperature
and fluid bulk mean temperature is an important factof in
determining the collector efficiency factor F'.

| The upper and lower limits of the actual value of F'
have been predicted by considering two extreme boundary
conditions to which the fluid is subjected. For a thick and
conductive tube wall, F' does not depend on spot size and
spot spacing, and tends to an upper limit of 0.883. For a
thin and non-conductive tube wall, the boundary condition
comprises of a series of step changes in both the axial and
circumferential directions of the heat flux. In this case,
the heat transfer coefficient and hence F' approach their
lower limits which are determined by the welding spot
configuration. It was also found that F' increases with the
following parameters: the spot angle; the percentage of tube
length being weided; and the number of spots among which the
welding is being distributed. Furthermore, the temperature
distribution 1inside the fluid has alsc been computed for

this case.
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1. INTRODUCTION

1.1 GENERAL

Heat transfer phenomena in a water-cooled solar
collector include solar radiation, conductive and convective
cooling to the ambient, and internal flow forced convective
heat transfer. The most common type of solar collector used
in building heating and water heating is the flat plate
water-cooled type as shown in Figure 1.1. Figure 1.2 shows
the manner in which the various modes of heat transfer are
involved.

‘The black, .solar energy-absorbing plate has means for
transferring the absorbed energy to a fluid, usuaily through
welded tubes in which flowing water carries away the heat
being absorbed. Calculating the amount of heat being carried
away 1is the aim of forced convective heat transfer analysis
in internal flows. One or two envelopes cover the solar
absorber surface. The covers are transparent to incoming
solar radiation but opague to the thermal radiation from the
absorber plate, thus reducing convective and radiative
losses to the atmosphere. A back insulation is included to
reduce conductive losses [1].

Flat plate collectors are almost always stationary and
positioned with an orientation optimized for the particular
location in question, and for the time of year in which the
solar device 1is intended to operate. Without optical

concentration, the flux of incident radiation is, at Dbest,



1100 W/m?. Both beam and diffuse radiation are being
absorbed by the <collector, which can be designed for
applications reqﬁiring energy delivery at moderate
temperatures,

The flow of coolant in the welded tube is commonly in
the laminar regime. Laminar flow heat transfer is of great
technical importance since it occurs in many heating and
cooling devices. The heat transfer coefficient between the
absorber plate and the cooling water is an important factor
in solar collector design since it determines the collector
efficiency, “and hence the economic value of the
installation.

The performance of a solar water heater is directly
proportional to its efficiency factor F', which represents
the ratio of the actual useful energy gain to the useful
energy gain that would result if the <collector absorbing
surface had been at the‘local fluid temperature. Ancther
interpretation of F' 1is that it 1is a measure of the
efficieﬁcy of the design as a heat exchanger [2]. A
cross-section of the plate and tube arrangement is shown in

Figure 1.3. The collector efficiency factor is

1/UL

Wi 1/[UL(b+(W-b)F)] + 1/Cb + 7/(nDkw) + 1/(«Dh)} ,

F' =

(1.1)
where the dimensions are as indicated in Figure 1.3, and the
other terms, which appeared in the "LIST OF SYMBOLS", are

repeated here :



U, = overall coefficient of heat transfer from’the flat
plate to the outside air, including allowance for
rear losses,

h = coefficient of heat transfer from the tube wall to
the water in the tube, |

k_,k = thermal conductivities of the plate and tube

materials respectively,

Cb = thermal conductance of the tube-plate bond,
tanh[m(wW-b) /2]
F = = fin efficiency;
m(W-b) /2
m =

= V(UL/ksé).

In equation (1.1) the four terms in the right hand
denominator can be thought of as the relative resistance to
the passage of heat from the plate into the water due to :

(1) conduction of heat along the flat plate towards the

tubes,
(2) conduction of heat from the plate to the tube through
the tube-plate bond,
(3) conduction throughout the tube wall to the inner surface
of the tube,
(4) transfer of heat from the tube inner surface into the
waier.
The governing equations of fluid flow inside a circular
tube, namely, 1) the continuity equation, 2) the momentum
equation, and 3) the energy eQuation, have been well

formulated and extensively studied. Although an energy



equation can be written to describe the temperature of the
water flowing 1inside the <collector tube, the boundafy
conditions on the water depend on the configuration of the
collector. An important aspect is the fashion in which the
tube ié welded onto the fin (the absorber plate). A number
of common ways of bonding are shown and briefly described in
Figures 1.4(i) - (iv). An ultrasonic spot welding process is
often used for economic reasons. In this case the boundary
condition in the axial direction can be considered as a
series of step changes (Figure 1.4(iv)).

In conventional studies of convective heat transfer,
the .mathematical model of the problem includes well defined
boundary conditions concerning the temperature or the heat
flux., The temperature or the heat flux is clearly specified
mathematically at the boundary of the region of interest,
which 1is the 1inside tube wall in the present case. ‘In
reality, because of axial and peripheral heat conduction 1in
the tube material, the flowing water 1is subject to a
boundary condition at the wall which can neither be
described in terms of wall temperature nor wall heat flux.
The so-called "conjugated problem" deals with this situation

by taking into account the conduction in the solid material.

1.2 OBJECTIVE OF THE PRESENT WORK

Although laminar convective heat transfer has been
extensively studied for various kinds of boundary

conditions, no practical solution is available for flows in



the spot-welded tube as shown in Figure 1.4(iv). The
objective of this work is to investigate the effects of the
spot and spacing dimensions on the heat transfer coefficient
between the tube wall and the fluid. Knowing this
coefficient, the consequential effect on collector
performance, and in particular the <collector efficiency
factor can be determined.

The question of spot spacing 1is of. great economic
importance since the welding process is slow and consumes
energy. By knowing how far apart the spots can be located
before the collector efficiency is significantly reduced, an
optimum set of spot length and spot spacing. can be
determined (taking welding costs into account). As a start,
however, the heat transfer process from the spot-welded tube
to the fluid flowing inside must be understood. This
understanding should be in terms of the dimensionless
temperature distribution 1in the fluid, and in terms of the
mean Nusselt number, which is the dimensionless form of the
mean heat transfer coefficient from the circular tube to the
fluid.

Obviously, the heat flux into the water is higher
through the welding spots than through the rest of the tube.
An extreme case exists when the tube wall is vanishingly
thin so that peripheral and axial conduction within the wall
material is negligible, and the heat flux from the absorber
plate enters the water only through the welding spots. At

the other extreme, if the tube material is highly conductive



and the wall is thick, conduction within the wall material
occurs in all directions and temperature variation in the
wall will be reduced. In this case, the water is subject to
a boundary of wuniform temperature. In reality, however,
neither of these conditions prevail.

Analytical solutions to the convective heat transfer
process involvéd in the above extreme cases were sought for
various configurations of spots and spacings wand checked
against numerical solutions. The results of the collector

efficiency factor of these extreme models can be used as

limits of the realistic situation.

1.3 LITERATURE REVIEW

Internal flow convective heat transfer in wvarious
geometries wunder various boundary conditions has been
studied in great detail in the literature. A major review of
work in laminar flow forced convection has been done by Shah
and London [3],> including various duct geometries and
boundary conditions. The scope of the present review is
restricted to forced convective laminar flow for a Newtonian
fluid with constant properties, passing through stationary,
straight, non-porous ducts ofv constant circular cross
section. The literature was reviewed under four problem
categories :

1. Entry length problems in'duct flows;
2. The Graetz problem and 1its two classical methods of

solution;



3. Problems with circumferential variation, with an axially
developed or developing thermal profile; and
4, Conjugated problems, where heat conduction in the tube

material is taken into consideration.

1.3.1 THE ENTRY LENGTH PROBLEM

In forced ¢convective heat transfer in ducts, fluid flow
is often categorized according to its velocity and
temperature profile. The temperature and velocity profiles
of the fluid.begin to develop at the entrance to a tube. The
flow is termed hydrodynamically developed where the velocity
profile is already fully established and does not change as
the fluid travels downstream. Similarly, where the heat
transfer coefficient is axially invariant the flow is
considered to be thermally developed. The downstream
distances from the entrance required before the flow becomes
hydrodynamically and thermally developed are called the
hydrodynamic and thermal entry lengths, respectively, as
illustrated in Figure 1.5.

A thermally and hydrodynamically developing flow is
more complicated than a thermally developing but

hydrodynamically developed flow. It has been shown [4],

however, that if +the Prandtl number Pr of the fluid is
greater than about 5, the velocity profiie development leads
the temperature profile development and it is sufficiently
~accurate to consider the flow at the entrance as

hydrodynamically developed, even though there is no



hydrodynamic starting length.,

1.3.2 GRAETZ PROBLEM

Graetz [5] ih 1883 considered an incompressible fluid
with constant physical properties flowing through a circular
tube, hydrodynamically fully developed and with a developing
thermal profile. The tube is maintained at a constant and
uniform temperature. The energy equation is

oT 92T 1 98T

u——= af
)4 dR? R 3R (1.2)

The boundary conditions are :

For X <0, T = Tin= constant,

for X >0 at R=a, T = Tw= constant,

at R = 0, aT/8R = 0.
The physical situation is as shown in Figure 1.6, and is now
known as the Graetz problem. A review of earlier work on the
Graetz problem has been done by Drew [6]. Brown [7] also
provided a comprehensive literature survey for the Graetz
problem. The closed form solution to this problem has been
obtained primarily by two methods : the Graetz method and
the Leveque method.

.The Graetz method uses the separation of variables
technique and as a result the differential equation (1.2) is
reduced to the Sturm-Liouville type. The solution is then
obtained in the form of an infinite series expansion of

eigenvalues and eigenfunctions. The number of terms required



for a desired accuracy increases sharply as x = X/(a.Re.Pr)
approaches zero.
The Graetz solution to the problem, in terms of the

temperature distribution, is presented in an infinite series

(=]
- - - = -2
6 = (T - T )/(T; - T)) n§1 c R exp(-Alx) , (1.3)
where R, are the eigenfunctions in r, AL are - the
eigenvalues, and c¢ are constants. Graetz and Nusselt

n

obtained only the first two and three terms, respectively,
of the series [3]. Sellars et al. [8] independently
determined the first ten eigenvalues and constants, and
presented asymptotic formulas for the higher ones.

The Leveque [9] method employs the similarity
transformation technique and its solution to the resulting
eqguation is valid only near x = 0. It employs the "flat
plate” solution as an asymptotic‘ approximation near the
point where the step change in temperature occurs.. The
velocity distribution 1in the thermal boundary layer was
assumed linear and having the same slope as that at the wall
with u = 0 at wall. The situation is illustrated in Figure
1.7. Levegque obtained the following solution for the

circular tube :

6 = (T - T )/(T, - T) =[1/I(4/3)] fg exp(-z3)dz , (1.4)

1 - R/a
(9x/2) 5

where 17
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and I' is the gamma function : I'(n) = f;(e_zzn_1)dz .

Mercer [10], Worsoe-Schmidt [11] and Newman [12] have
extended the Leveque solution by a perturbation method
solving the energy equation (equ 1.2) directly. The

corresponding solution is
— n )
6(&,7) -ngo £°6 (n) , (1.5)

where £t = (9x/2)V?® for the cifclar tube. The first term in
this series correspohds to Leveque's solution. Thié solution
is valid for intermediate values of x where both the Graetz
and Leveque solutions are not accurate.

Grigull and Tratz [13] solved equation (1.2) using the
finite difference method with two different boundary
conditions : (i) a wall with uniform temperature, 1i.e. T,=
constant; and (ii) a uniformly heated wall,'i.e. g=constant.
Results are presented on graphs which show spatial

distributions of dimensionless temperature 6(R,X), local

Nusselt number Nu(X), and mean Nusselt number Num(X).

153.3 PROBLEMS WITH CIRCUMFERENTIAL VARIATION

All.the above mentioned studies related to Graetz and
Leveque methods are based on the simple boundary conditions
where there 1is no circumferential variation at the
wall-fluid interface. Moreover, the fluid temperature at the
inlet (the step change in wall condition) is assumed to be
uniform. For example, water at uniform temperature flows

into a step change in wall temperature or wall heat flux.
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There is axial symmetry in the tube because the boundary
conditions do not vary in the circumferential direction.

Reynolds [14] obtained the solutions (temperature
distributions) for any prescribed heat flux g(¢) around the
circumference of a circular tube, without axial wvariation.
He first obtained the solution corresponding to  heat
transfer across a small portion of the circumference as a
Fourier series, and then obtained the solutions for
arbitrary peripheral heat flux wusing superposition. This
solution, however, does not describe the temperature profile
development near the tube entrance, but only the peripheral
distribution of the thermally developed flow further down
the tube.

Bhattacharyya and Roy [15] took one further step in the
arbitrary wall heat flux problem. First, they expressed the
variable circumferential heat flux as a Fourier series in ¢,
the peripheral angle, ’and obtained the temperature
distribution in the thermal entrance region. The solution is

of the form

t(R,¢,X)

k(T - Tin)/(qa)

t,(X) + t,(R) + t;3(R,¢) + t,(R,9,X) , (1.6)
where q is the peripheral average wall heat flux, and

- [~ . '

gl t +m§1 (a cos m¢ + b_sin m¢)] = k 3T/9R = q (1.7)

represents the wall heat flux which is a function of the

angle only. Applying Duhamel's superposition theorenm, the
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solution for an arbitrary wall heat flux distribution
al¢,x) = qQ(x)[1 + £ (a (X)cosmp + b (X)sinmg)]l  (1.8)

can be obtained. The solution is expressed in terms of an
infinite series of eigenvalues and eigenfunctions. This work

will be further discussed in Section 3.2.

1.3.4 CONJUGATED PROBLEM

Rather than wusing a priori fluid boundary conditions
and obtaining the solution for the fluid only, the
conjugated problem is formulated for the entire solid-fluid
medium system, and a solution for both the fluid and solid
temperature is obtained.

Luikov et al. [16] solved the conjugated problem for
the circular tube. However, no numerical results were
presented for the complicated closed-form solution.

Mori et al. [17] considered two thermal boundary
conditions at the outside wall of .the circular tube : (1)
constant heat flux, @}, and (2) constant temperature, (T) '
They assumed the wall-fluid interface temperature
distribution 1in the axial direction as a power series with
unknown‘coefficients. The solution to the energy equation
for the fluid was then obtained by superposing the Graetz
solution, Equating the temperature and heat fluxes across
the interface of the solid and fluid media they obtained the -

unknown coefficients for the power series. A conclusion

'See Table 2.1
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relevant to the present work is that for a "thin" wall with
constant heat flux specified at the outside wall, the local
Nu(x) approaches that for the conventional @} convection
problem. For a "thick" wall, however, it approaches the (T)
solution because axial heat conduction tends to equalize the
temperature inside the wall. A wall may be considered thin
when /L < 0.0001 for Rw 2 2x10-7 and when 7/L £ 0.001 for
R, 2 10°% [3].

Faghri and Sparrbw [18] considered the effect of
simultaneous wall and fluid axial conduction 1in a
hydrodynamically developed laminar flow. Since only the
thin-walled tubev was considered, the radial temperature
gradient in the wall was neglected. The problem was also
considered to have no circumferential dependence because of
symmetry around the axis. The circular tube considered had
an insulated region (x < 0) and a region of direct heafing
(x 2 0) where the heat flux at the outside wall of the tube
was constant. Solutions were obtained by an elliptic-finite
difference method employing an iterative scheme which dealt
consecutively with the fluid and the tube wall. Plots of the
axial distribution of the convective heat flux g, wall and
bulk mean temperatures, T, and Tm respectively, and
Nusselt number were presented. Those graphs show that axial
conduction depends on the Peclet number, Pe, and the
dimensionless’ wall conductance parameter .B = kwy/ka.

Substantial amounts of convective heat transfer can occur

along the non-directly heated portion (x < 0) of the tube
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because of wall conduction. These effects of preheating are
propagated downstream by the flowing fluid,/so there is a
substantial increase in both the wall and bulk temperatures
all along the tube; It was found that the effect of wall
conduction can readily overwheim the effect of £fluid axial
conduction. In the region- of direct heating (x 2 0), the
Nusselt number attains a fully developed value of 48/11,
independent of axial conduction.

Barozzi and Pagliarimi [19] analysed the interaction
between convection and axial heat conduction along the tube
wall aSsuming a convective boundary condition at the outer
face of the tube. They considered a wall whose thickness
possessed periodic step variations in the axial direction.
An iteratie procedure was set up starting with guessed
distribution of 1local Nusselt no. and £fluid bulk mean
temperature, and temperature distribution in the solid
region was determined by the finite element method. Their
results show that axial wall heat conduction has a definite
influence on heat flux g(x) and the Nusselt no. Nu(x)
distribution especially near the thermal inlet section. Step
variations in the wall thickness produce periodic
oscillation in the distribution of Nu(x) and q(x), whose
amplitude nevertheless reduces 1in a relatively short
downstream disfance, where their profiles approach that of a
uniform thickness wall. However, overall heat £flux can
accurately be predicted by ordinary methods disregarding

axial conduction.
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The above review, although by no means complete,
provides an overall idea of the available results relevant
to the present work. No work has been found in the
literature that directly inveétigates the stitch welding
effect on the Nusselt number, and hence on solar <collector
performance. The next chapter describes the modelling of the
problem, concentrating on the convective heat transfer

aspects for the two extreme cases mentioned in Section 1.2.



2. MATHEMATICAL MODEL

To analyze the heat transfer from the solar collector
absorber plate to the water flowing through its spot-welded
tube, a mathematical model describiﬁg the physical and
geometrical situation must be developed. The applicable
differential equations and boundary conditions for both the
solid and fluid media are discussed in this chapter.
Enormous simplification is obtained by restricting attention
to a certain class of flows and by making certain
assumptions. Those assumptions c¢an be Jjustified for the
typical flat plate solar collector wused 1in building and
domestic water heating. The simplified mathematical model of
the heat transfer process is presented, and other important

terms are defined.

2.1 GOVERNING EQUATIONS

As the investigation involves heat transfer in a moving
fluid medium, the three conservation equations in fluid
mechanics have to be satisfied. They are presented here in
vector form : |
1. Conservation of Mass :-

Dp/Dr = —-p V « V (2.1)
2. Conservation of Momentum :-
pDV /Dr = p g+ V S ; (2.2)
3. Conservation of Internal Energy :-

p DI/Dr = - V - g + heat sources + S( V V ) ; (2.3)

16
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where standard notations 1in vector calculus are used .
D( )/Dr is the substantial derivative, where r denotes time.
S is the stress tensor and the term S( V V ) represents the
complete contraction 2, The resultant of all body forces
acting on the medium is represented by g .

It should be noted that these equations are applicable
to any continuum, solid as well as liguid. For a stationary
solid, the energy equation becomes

pdl/31r = - V as + heat sources . (2.4)

Solving the geﬁeral equations (2.1) to (2.4) as they
stand is very difficult. One can only hope to obtain
reasonably applicable solutions for4special idealized cases.
A number of assumptions have been made in modeling the solar
collector of interest, which can be justified by examining

the physical parameters involved.

2.2 IDEALIZATIONS

A table of dimensions and relevant physical properties
for a typical flat-plate solar collector is given in
Appendix A. The following assumptions are made based on the
figures given in the table.

1. Since the fluid medium is water and temperature
variations are small (AT = 10 °C), it is considered to
be incompressible as well as Newtonian. Furthermore,
other properties are assumed to stay constant.

2. The water flow is laminar because Re =lﬁD/v =~ 1,400 .

25ee Appendix C
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3. Dissipation can be neglected because flow velocity is
only a few cm/s and Mach number is low.

4. No heat source is present in the fluid as only solar
energy is being absorbed by the plate.

5. Although there is no hydrodynamic starting length at the
tube entrance, the velocity profile develépment is known
to lead the thermal profile development significantly.
This can be seen by realizing that, for water at

moderate temperature, the Prandtl number,

v momentum diffusivity

a thermal diffusivity

Therefore, the velocity profile can be assumed to be
already fully developed at the entrance [4]. This
results in enormous simplification because the well
known parabolic velocity profile as shown in Figure 1.5,
can be substituted directly into the energy equation
without having to solve equations (2.1), (2.2) and (2.3)
simultaneously. This assumption results in a
conservative estimate of the heat transfer
coefficient.?

6. Axial <conduction 1is negligible. Dimensional analysis
[18] shows that this is the case when the Peclet number
is large (Pe = Re.Pr > 100). Fufther discussion is given

in Appendix B.
3 The heat transfer coefficient is greater with a uniform
velocity profile, which is found in slug flows and at the
duct inlet during simultaneous development of velocity and
temperature profiles [20].
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7. Only steady state performance is considered. Thus all
the partial derivatives with respect to time, 9( )/o7,

can be discarded from the governing equations,

2.3 SIMPLIFIED EQUATIONS

" Assuming the velocity profile of the fluid to be fully
developed at the tube entrance, the radial velocity
distribution is assumed to be known and invariant with axial
distance. Due to cifcular symmetry, the velocity 1is also
independent of peripheral angle. That is,

V=u(R)T =U[l 1 - (R/A)Z2] T , (2.5)
where u is the axial component of the velocity, and U, which
can be calculated from the mass flow rate® is the peak
velocity of the flow. This parabolic profile is known as the
Poiseuille flow velocity distribution for incompressible
Newtonian fluid with constant properties. Its. form 1is
derived in detail in Burmeister [20].

As a consequence of the velocity distribution being
known, the continuity and momentum equations need not be
considered. Only the energy eguations for both the fluid and .
solid media are of concern. For the solid media, under
steady state conditions and with constant thermal

conductivity
kSVZT = sources . (2.6)

For the absorber plate, the heat source 1is equal to the

* See Appendix A.
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difference between the incoming solar radiation and the heat
loss to the ambient through the resistance 1/UL.
For a Newtonian incompressible fluid, equation (2.3)

reduces to
p DH/D7 = Dp/Dr + heat sources - V - q + ud ,

where H = I + p/p is the enthalpy per unit mass, and & is
the dissipation function®. Applying the assumptions that the
water properties stay constant, that no heat source is
present, and that dissipation 1is negligible, the energy

equation further reduces to [20] :
p chT/Dr = kVaT ., (2.7)

Substituting equation (2.5) directly into (2.7), the steady

state energy equation for the fluid is found to be
Ult - (R/a)?] 38T/3X = aV?T (2.8)

where a = k/pcp is the thermal diffusivity.
Equation (2.8) 1is to be solved under certain boundary

conditions as discussed in the next section.

2.4 THERMAL BOUNDARY CONDITIONS

A set of specifications describing temperature and/or
heat flux conditions at the inside wall of the duct must be
obtained to solve the fluid energy equation (equ.2.8). A

large variety of these thermal boundary conditions can be

SSee Appendix C for details.
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specified for the classical problem concerning the thermal

profile development. Shah and London [3] attempted to

systemize the boundary conditions studied in the literature.

A few well-studied cases are shown in Table 2.1.

In general, however, because of conduction in the tube
wall, well-defined temperature or heat flux "conditions are
seldom encountered at the insidg wall of the duct. Oﬁly in
extreme cases can those conditions be specified. Two extreme
cases exist for the water flowihg through the spot-welded
tube under study, determined by the "thickngss" of the tube
wall :

1. For a thick and highly conductive wall, the axial and
peripheral conduction of heat from the welding spot to
the rest of the wall is considerable compared to the
radial heat transfer into the flowing water (Figure
2.1(i)). Conduction occurs until the whole tube wall
comes to a uniform temperature.

2. For a thin and low conductive wall as shown in Figure
2.1(ii), the wall peripheral and axial conductance is
negligible compared with the raidal conductance.
Therefore, solar radiation being absorbed ~by .~ the
collector plate passes into the water only radially
through the welding spots. Thus the flowing water is
subject to a wall boundary which consists of spots of
heat flux.

The definition of a "thin" wall has been given 1in Section

1.3.4.
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‘For the idealized case (2), the boundary conditions can
be depicted by mathematical expressions quite straight
forwardly. Peripherally, the heating spots occupy the
angular range -¢,; < ¢ < ¢o. Where ¢, < ¢ < (27-¢,), the heat
flux is zero. This distribution can be expressed in terms of

a Fourier series,

Q 14 _¢OS¢S¢O
f(¢) - { sol
' 0, otherwise
(Qsol¢o/n) [1 +m§1 (amcosm¢) 1, (2.9)

where a_ = 2(sinm¢y)/(m¢,)

f(¢) is as shown in Figure 2.2. It should be noted that

Qsol(¢o/ﬂ) =g

is the peripheral mean heat flux through the wall.
Axially, the spots are of fixed length and are located
at fixed intervals. The heat flux, as a function of both «x

and ¢, can be expressed as follows :

gle,x) = £(¢)H(x) - f(¢)H(x-xl) + f(¢)H[x~(xl+xs)]
- f(¢)H[x-(2xl+xs)] e (2.10)
0, x <0

where H(x) = {
1, x 20

is the Heaviside wunit step function. The illustration of

q(x,¢) where -¢, < ¢ < ¢o is in Figure 2.3.
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Closed form solutions of reasonable applicability can
be obtained only for the above two extreme cases, where the
boundary conditions are clearly predefined. Extreme case (1)
corresponds to the Graetz problem and its solution is well
known. The analytical method and solutions for case (2) are
the subject of the next chapter. The analytical results were
checked against and supplemented with a numerical 'procedure

which will be described in Chapter 4.



3. ANALYTICAL SOLUTIONS

The governing energy equation and associated boundary
conditions for the heat transfer problem under study have
been presented in Chapter 2. This chapter describes briefly
the analytical methods of éolutions available in the
literature. The method employed in arriving at the solution
for the extreme case (2) of Section 2.4 is detailed in this
chapter. The principle of superposition is shown to be of

great usefulness in this kind of linear problem.

3.1 OVERVIEW OF ANALYTICAL SOLUTIONS

The analytical solutions for hydrodynamically developed
thermal entrance flows are obtained primarily by the
following four kinds of methods :

1. Separation of Variables and Similarity Transformation
methods;
2. Vafiational Methods;
3. Conformal Mapping Method; and
4, Simplified Energy Equation Method.
- These methods and their sources in the literature have
been briefly described by Shah and London [3]. Attention
will be given here to the separation of variables method,

which was employed in solving the present problem.

24
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3.2 SEPARATION OF VARIABLES METHOD

| The separation of variables method was used in the
first study by Graetz [5] of the thermal entrance region of
a circular tube. Many of the solutions of later work were
obtained by similar methods. The method involves separating
the wvariables in the energy equation (2.8) and determining
the eigenvalues and constants of the resulting ordinary
differential equations by various approaches. The solution
is presented in terms of an 1infinite series 1involving
eigenvalues, eigenfunctioné, and constants. Examples of work
where this method is employed to the circular duct are that
by Reynolds [14], Sellars et al.[8], and by Bhattacharyya
and Roy [15], which have been cited in Section 1.3.

The work by Bhattacharyya and Roy can be described in
two parts. First, the temperature solution was obtained for
the thermal entrance region for developed laminar flow in a
circular tube with variable circumferential wall heat flux.
The energy -equation 1is rewritten here, in cylindrical
co-ordinates:

oT 92T 1 9T 1 92T

U(1-R%2/a?) — = al +—_— + — ),
X oR?2 R 3R RZ 3¢2 : (3.1)

where the axial conduction term 232T/3X? has been omitted.

The boundary conditions are:

at R = a : kaT/dR = q = g[1 + n

ne418

1 gm(¢)] r (3.23)
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where gm(¢) = a cosm¢ + bmsinm¢ , (3.2b)

and g is the mean wall heat flux over the circumference;

at X =0 : T = Tin . (3.2¢c)

The dimensionless forms of the above equations were

expressed as

ot 0%t 1 ot 1 9%t
(1-r?) — = 4+ '
3x or? r ar r2ae¢? (3.3)
r =1 : dt/or = 1 + m§1 gm(¢) , (3.4)
x=0:t =20, (3.5)
where t = k(T - Tin)/qa ,
X = aX/Ua? = X/a.Pe ,

r = R/a . ' (3.6)

The equations (3.3) to (3.5) were solved by separation

of variables and the result was :

t = 4x + r? - r%/4 - 7/24 + g (rm/m)gm(¢)

m

1
, Z_c_ R gm(¢)exp(—Bm;x) y

- ¥ ‘ —-n 2 _ %
sé COsROSexP( 6OSX) m§1s=0 ms ms (3.7)

where Rms(r,ﬁms) are eigenfunctions, 6ms are eigenvalues,
and Chs are the corresponding constants. For deﬁails of the
mathematics the reader is referred to Ref.[15] where useful
values of the eigenfunctions and eigenvalues are given.

The advantage of dimensionalizing the variables as 1in

equations (3.6) is perhaps best seen from the expfession of

the Nusselt number, i.e. the dimensionless heat transfer
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coefficient. By definition, the 1local Nusselt number is

given by :
Nu(¢,X) = { q(¢,X)/[T_(¢,X) - T _(X)] }(D/k) . (3.8)

The term in braces is the local heat transfer coefficient,
commonly denoted by h. Expressing in terms of the

dimensionless temperatures, with

mcpATm= g(2ra)AX ==> b =4%

equation (3.8) takes the form

2[1 + £ gm(¢)]

Nu(¢,x) =- : m= 1
11/24 +m§1 [gm(¢)/m] -521 cOsROS(1fﬁOS) exp(—ﬁoéx)
- m§1 550 [cmsRms(1,ﬁms)gm(¢) exp(-B_ 2x) ]

(3.9)
The peripheral average Nusselt number, according to the

definition of Shah and London [3], is given by:
Nup(X) = { q(X)/[Twm(X) - Tm(X)] }(D/k) , (3.10)

where g(X) = (1/2ﬂ)Igﬂq(¢,X)d¢ '

- 27
Twm(X) = (1/21r)f0 Tw(¢,X)d¢ .

According to the expression of t in equation (3.7), the
peripheral average Nusselt number can also be written as

2

Nup(x) =

[=-]
- - 2
11/24 s§1 COSROS(1'BOS) exp( BOSX) * (3.11)

Whereas the first part of Bhattacharyya and Roy's work

deals with a tube with no axial variation in wall heat flux
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besides the entrance step change, the second part involves

obtaining the solution for an arbitrarily heated tube - wall.

The solution was obtained by applying Duhamel's
superposition formula on equation (3.7). The resulting
series solution 1involves <complicated integrals and is
impractical for engineering calculation, A simpler

superposing technique is applicable to the present problem.

3.3 SOLUTION FOR "THIN" TUBE USING SUPERPOSITION

Consider a boundary value problem whose governing

differential equation is
A (t) =0,

where A 1s a 1linear "operator, and has derivative
boundary conditions (*)

t bdry= H1+ H2+ seee T H2N .

Suppose there exist 2N functions t1,té°... ton’ satisfying

the following:

A(tl) =0 ’

H i=1,2,...,2N ,

tilbdry= ir

. N
then their sum, E t

;£; tjr will be the solution to (*) because

it satisfies the differential equation as well as the

boundary conditions :

N N -
Al 151 ti) = i; [A(ti)] =0 ,
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N " _ N - _
( 121 ti)lbdry' 151 (tilbdry) - H1+ H2+ seee 7 H2N_'

Substituting the following operator for A in (*)

ve

92 19 1 92 2
[ —+—— +—— = (1-r?) — ]
or? r 3r r¢a¢? 0x

4

and letting H,

f(p)H(x) ,

H

, = - E(@H(x-x))

H, f(¢)H[x-(xl+xS)] , etc,

the problem posed by equations (3.3) and (2.10) is the same

as the system (*). The solution is then

N
t(r,¢,x) =i§1 ti(r,¢,x) , (3.12)

where t, is identical to the function t in equation (3.7),

o
]

5 - t1(r,¢,x—xl)H(x-xl) ,

o+
]

3 t1(r,¢,x—(xl+xs)) H[x—(xl+xs)] , etc. (3.13)

t1(r,¢,x) of equation (3.12), with appropriate
constants, describes thg témperature distribution of a
steady laminar flow entering a circular tube which is heated
over a fraction of its circumference, a situation
illustrated by Figure 3.R. Axially, the heating starts at
x=0 and 1is invariant with distance. The "mathematical
expression for this boundary condition is

ql(¢,x) = £(¢) H(x) ,

where f(¢) is given in equation (2.9).
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The Nusselt number corresponding to solution (3.12) can

also be found by superposition:
For —¢o £ ¢ < ¢o,

i/mute,n = 8 (e, - e /2 = BN DM (e01 (3010

1=1 w,1

where Nu1(¢,x) is given by equation (3.9), and

1/Nu2(¢,x) (t -t )/2

w,2 m,2

"H(X—Xl) / Nu1(¢1x—xl) '

1/Nu3(¢,x) = (t -t

w,3 m,3

etc., ' (3.15)

)/2 = H[x—(xl+xs)]/Nu1(¢,x—(xl+xs)),

For other values of ¢, the Nusselt number 1is zero since
there is no heat flux through the wall.

The peripheral average Nusselt number Nup(x) can be
found by similar superposition on equation (3.11). The
effect on the Nusselt numbers of neglecting fluid axial

conduction is discussed in Appendix B.

3.4 GRAPHICAL ILLUSTRATION OF ANALYTICAL RESULTS

The boundary condition (2) of Section 2.4 depicts the
extreme situation where the tube wall is so thin that solar
energy passes into the water only radially through the
welding spots. The analytical solution for the temperature
diséribution in this case is given by equations (3.12) and
(3.13). With 1/8 of the tube circumference being welded

continuously along its length®, a = sin(m¢,) (2/m¢,) and b =0

¢ The spot angle of 45°,"i.e. ¢, = 7/8 was chosen
arbitrarily to enable comparison with other cases.
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in the function gm(¢) which appears in the expression of .

The solution is written here for r=1:

t(1,0,x) = 4x + 11/24 + m§1 [amcosm¢)/m]

- & -g 2
s§1 cOsROS(1’ﬁOS) exp( ﬁosx) (3.16)
- =1 e - 2
m§1 S§0 [cmSRms(1,ﬁms) (amcosm¢) exp( ﬁmsx)].
The value of t at r = 1 was plotted against x for

various values of ¢ in Figure 3.3. This diagram shows the
axial development of the wall temperature at various angular
positions. As expected, the temperatures at those angular
positions which are directly heated increase sharply near
the entrance. Further downstream, the temperatures at all
angles assume a linear relationship with distance, a
situation termed as thermally developed. There 1is a
significant difference in temperature between the angular
position which is just 1inside the directly heated region
(¢=7/10) and the one which is just outside (¢=27/10).

The local and peripheral average Nusselt numbers for
the above situation were plotted against x in Figure 3.4.
The local Nusselt number Nu(¢,x) was only shown for two
angular positions inside the welded region, since its value
is zero for those positions outside that region. It might be
noticed that Nup(x) is identical to that of a wuniformly
heated tube. This should come 4ds no surprise if the
~definition of Nup(x) (equation(3.10)) is understood. In any

case, the thermal entrance has an effect of increasing
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sharply the heat transfer coefficient, as can be seen from
the Nusselt numbers near x=0.

To illustrate the effect of superposition on equation
(3.16), a tube as in Figure 3.2 with two welding spots
occupying 60% of its length was considered. The spot angle
was kept at 45°, i.e. ¢o = n/8. The solution becomes, for

the wall temperature,

N
t{1,¢,x) '15“1 t, (1, ¢,%)
where t, is given by equation (3.16),
t,= -t1(1,¢,x—xl) H(x-xl) )
t,= t1(1,¢,x-(xl+xs)) H(x-(xl+xs)) ,
t,= -t1(1,¢,X~(2xl+xS)) H(x-(2x1+xs)) ,
etc,

with 2x,= 0.6(tube-length) ,
2x = 0.4(tube-length) .

t(1,¢,x) was plotted against x in Figure 3.5. It can be
noted that the axial temperature fluctuation is much more
pronounced in the range of ¢ that is directly heated. Again,
there is a significant difference in temperature from ¢=7/10
to ¢=27/10. The general trend of temperature increasiﬁg
downstream can also be observed.

It was intended to compare the mean Nusselt number Num
between different welding spot configurations, given a fixed
total weld length and a fixed spot angle, and hence a fixed
- total heat input. The tube could be welded to the absorber

plate at any number of equally spaced and identical
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stitches, while a stitch angle of 45° and a total weld
length of 60% of the tube length were arbitrarily chosen as
invariants. Results of two different cases were shown in
Figures 3.6 (i) and (ii), where the tube was welded at : (i)
a single stitch; and (ii) 4 stitches, respectively. It can
be observed that a higher number of stitches results in a
higher mean Nusselt number since they introduce more
"thefmal entrance effect" to the temperature profile.

The correctness of the analytical results can be
checked by solution obtained through numericai methods. The
next chapter describes the finite difference formulation of
the same problem; The finite difference results were

‘compared with those described in this chapter.



4, NUMERICAL SOLUTIONS

The analytical solutions and results presented in the last
chapter are those for the idealized boundary condition where
the fluid is bounded by spots of heat flux at the wall. This
chapter describes a numerical approach to the same boundary
value problem. The results serve both as a check and a
supplement to the analytical solutions. The basic
assumptions outlined in Section 2.2, and hence the
simplifications, are retained, and the same dimensionless

variables defined in equation (3.6) are used.

4,1 OVERVIEW OF NUMERICAL METHODS

The thermal entrance solutions: for hydrodynamically
~developed flows can be obtained by several methods. The
analytical methods have been outlined in Section 3.1, while
the numerical methods can be classified as follows:

1. Finite Difference Methods:

2. Monte Carlo Method; and

3. Finite Element Method.

A brief description o£ these methods and their sources
in the 1literature can be found in Shah and London [3]. The
method used in‘the present work solves the finite difference
formulation of the dimensionless energy equation using an
iterative techniqgue. The next section 1is devoted to the

details of this formulation.

34
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4.2 FINITE DIFFERENCE FORMULATION

A program was developed to solve the 3-dimensional
equation (3.3) numerically, and hence the temperature
distribution of the fluid inside the tube was obtained. The
Nusselt number distribution was then computed directly from
the temperature values wusing the definitions in equations
(3.8) to (3.10).

The tube volume was divided by radial, circumferential,
énd axial grids, with corresponding grid spacing of Ar, Ag¢,
and Ax, respectively, as shown in Figure 4.1. The location
of each node was defined by a cylindrical coordinate in
terms of the grid numbers. Thus the temperature at all nodes

can be stored in a 3-dimensional array, t(Nr,N Nx)’ where

¢I
N, =0,1, ... M_ is the radial grid number,
N¢ = 0,1, ... M¢ is the circumferential grid number,

and Nx = 0,1, ... Mx is the axial grid number of the node.
Written in finite difference form, the energy equation

takes the following form:

t3 - 2t5 + t1 1 t3 - t1 1 tz - 2t5 + tu to—ts

+o—— o —— = (1-r2)
(Ar)? r 2Ar r? (Ag)? Ax

(4.1)
where ty,...,ts represent the temperatures at the locations
indicated in Figure 4.2. This equation is written for the

point (Nr’N 'Nx) whose temperature is to, , and r = Nr-Ar is

¢
the dimensionless radial coordinate of that point. Two

different cases need to be considered separately:
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(i) r # O:

tg = [a1t1 + az(t2+ta) + azt; + asts] / dgo (4.2)

where a, = (Ar)2?(1-r2?) / Ax ,
a; =1 - Ar/2r ,
a, = (Ar/rA¢)? ,
a; = 1 + Ar/2r ,
asg = - 2 - 2a, *+ aqy .
(ii)r = 0 :
2 — - 2
29 ( )/ ( )
= t{(1,N,,N_-1 M +1
where tavg = Ni=0 VR ¢ )

is the average temperature at the immediate neighborhood

of the tube center-line. So

to =’(4Ax/Ar2)ta + (1 - 4aAx/Ar?)t, . (4.4)

vg

An imaginary surface N.= M. + 1 was added outside the
tube wall to implement the temperature gradient at the wall
as determined by the pre-described heat £flux. The
temperature at a node on that surface was determined by
whether the node's peripheral and axial location was within

that of a welding spot:

(i) within spot : At/Ar = 7n/¢o ,’

t(Mr+1,N ,Nx) = t(Mr-1,N¢,Nx + 2Ar(n/¢o) (4.5)

¢

apcosm¢) = /¢, when —¢,S¢<¢g.
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(ii)not within spot : At/Ar = 0 ,

t(Mr+1,N Nx) t(Mr-l,N Nx). (4.6)

¢’ ¢’

Therefore, the _temperature at each node can be
expressed in terms»of the temperatures at its neighborhood
nodes. After initializing the 3-dimensional array of
temperatures with a non-zero function, a new value for each
node was obtéined using equations (4.2) to (4.6). Evaluation
of temperatures was done one circular cross—-section after
another, starting from the tube entrance N =0. The
temperature at the entrance was always kept at 0 to conform
with the boundary condition t(r,¢,0) = 0. After the
temperature at all nodes had been updated, the process was
repeated until deviation between two successive evaluations
was less than 0.5% at any node. Convergence was then

considered attained and the array t(Nr,N 'Nx) would contain

¢
the solution temperature distribution.

4,3 CALCULATION OF NUSSELT NUMBERS

Having obtained the temperature distribution throughout
the fluid body, the heat transfer coefficient h, and its
'dimensionless form, the Nusselt number, were computed
according to definitions. The definition of the peripheral
average and mean Nusselt numbers are reproduced here:

2/[twm(x)—tm(x)], if x fails within a spot;

Nu_(x) = {
p 0, otherwise, ’ (4.7)
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Num(x) = (1/x)ngup(x)dx , (4.8)

where tw(¢,x)= dimensionless local wall temperature,

twm(x) = peripheral average wall temperature,
- 2m .
= (1/27) IO tw(¢,x)d¢ ,

tm(x) = bulk mean temperature,

(1/0A) f,(ut)da = (2/ma?) f,(1-r?) t da ,

and  x-outside-spot if x 2 nxl+(n-1)xs and x < n(xl+xs)
where n = 1,2,.....

x-within-spot otherwise. (4.9)

In finite difference formulation, the above integrals

were computed as follow:

M. -1
4 t(M NN )+ e (M, M N
£ (n) = M OUN) 2 g, Yo Mo x
m X
2 M¢ (4.10)
M M¢-
tm(Nx) = (2/ﬂ){N§=1»[UTDA(Nr,O,Nx) + 2 N¢§1 UTDA(N N¢,N )
+ UTDA(N ,M N )1 + t(0O,N N ) w(Ar)z} ,
¢’ ¢’ (4.11)
where UTDA(Nr,N¢,Nx) = (1-r?). t(Nr,N¢,Nx) (A¢/2)(r,2%-r,2),
and ry = N_-Ar , r, = (Nr+1)-Ar . (4.12)

4.4 PRELIMINARY RESULTS OF NUMERICAL PROCEDURE

With the basic algorithm as outlined in the previous
two sections, the computational program was developed in
several. stages. The results of each stage were checked

against those obtained by other methods, 1if available,
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before another stége was developed. This section presents
those results stage by stage.

First; the simplest case of a wuniformly heated tube
wall was taken as the boundary condition to test the
program. This problem has been well studied and results have
been  tabulated in Shah and London[3]. The computed
temperature, as expected, does not depend on the peripheral
angle ¢, and its value at various radial coordinates r was
plotted against x in Figure 4.3. Compared with the tabulated
values of the wall temperature, the finite difference result
was found to be higher near the entrance, although the two
results converge at large x (x>80). This discrepancy at the
entrance was found in all the later results and it was found
to be due to the coarseness of the grid system. The Nusselt
number ( Nu(¢,x) = Nup(x) in this case) is shown in Figure
4.4, with Shah and London's values plotted against the same
axes.

Next, a wall was chosen to have 1/8 of its
circumference directly heated (the welding spot) and
insulated everywhere else. This 'situation is as shown in
Figure 3.1. Figure 4.6 shows the wall temperature plotted
against x, for wvarious angular positions at the wall as
shown in Figure 4.5, Compared with the analytical results
.for the same problem®, the entrance discrepancy can be
observed as in the case of the uniformly heated tube. 1In

this case as well as in that of the uniformly heated tube, a

8Shown in Figure 3.3.
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linear relationship between t and x can be observed far
downstream, a region where the flow 1is described as
thermaliy developed. The reader 1is cautioned that when
comparing the dimensionless temperatures between different
cases, for example between those in Figures 4.3 and 4.6, it
should be remembered that the definition of t depends on the
value of g which in turn depends® on ¢,.

Further complicating the boundary conditions by
introducing axial step changes c¢f heat flux, the problem
shown in Figure 3.2 was solved by the program. The wall
temperature obtained is shown in Figure 4.7. The temperature
profiles agree well with the analytical results'?® except at
a short distance downstream from all the step changes. The
temperature distributions further inside the tube at various
radial coordinates are also shown : Figure 4.8 for r=4/5 and
Figure 4.9 for r=1/5. The inner fluid close to the wall
(r=4/5) has a substantially lower temperature than that at
the wall, especially at those angular positions within a

welding spot (¢=0 and ¢=7/10). This radial temperature

gradient is what permits the heat flux from the weld to pass
into the inner fluid. Close to the tube centre-line, at
r=1/5, the temperature hardly rises or fluctuates with flow
length. Furthermore, circumferential heat transfer 1is much
less pronounced in the inner fluid as can be seen from the

smaller circumferential temperature gradient. It should be

s q=Qsol(¢o/7r)
'°Shown in Figure 3.5.
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this case because there 1is axial variation of boundary
conditions all along the flow length.

'Finally, the fléw length to be considered was halvened
to allow finer divisions of the grids without much increase
of memory space, and the same two cases.which resulted in
Figures 3.6(i) to (ii) were solved by the program. Whereas
the Nusselt numbers were calculated using simple analytical
expressions outlined in Section 3.3, they were now computed
directly from definitions, using equations (4.7) to (4.11).
As can be seen from Figures 4.10(i) and (ii), the numerical
method produced the same results as the analytical method.

That the numerical solutions converge to the analytical
ones as grid épacing gets finer reassures that both methods
work. Further results appropriate to collector efficiency
evaluation are shown 1in the next chapter. Implication of
those results to collector performance will also be

elaborated.



5. APPLICATION TO COLLECTOR EFFICIENCY FACTOR

As mentioned in Chapter 1, the collector efficiency factor
F' is given by
1/UL

w{ 1/[U (b+(W-b)F)] + 1/C,_+ ~v/(aDk_) + 1/(xDh)} .
L b v (1.1)

o=

The heat transfer coefficient h appropriate to this
expression was determined from a definition for Nu(x)
slightly different than that 1in equation (3.10). The
relationship between this Nu and x was calculated for
various spot angles (2¢,), welded percentage w of tube
length, and total number N of spots along a tube. Choosing a
spot angle as invariant, the relationship between F' and
spot configurations (i.e. w and N) can be illustrated.

The results for the "thick™ tube all tend to the
uniform wall temperature case since the heat transfer
coefficient does not depend on spot configuration. This
result can be regarded as the upper 1limit of actual
performance. On the other hand the results for the "thin"
tube are more interesting because spot configuration is
important in determining F'. This result serves as the lower
limit of actual performance, and will be the major concern

of this chapter.

42
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5.1 HEAT TRANSFER COEFFICIENT BASED ON BOND TEMPERATURE

The common definition of Nup(x) (e.g. equation(3.10))

is based on the difference between the peripheral average

wall temperature and the bulk mean temperature of the fluid.

A careful analysis of the classical fin problem reveals that-
a Nusselt number based on the difference between the bond

temperature and the bulk mean temperature should be used in

conjunction with equation (1.1). The result of the classical
fin problem associated Qith the flat plate collector with
"thin" tubes is briefly outlined below.

The wuseful energy gain per unit of length in the flow

direction for a collector tube can be shown [1] to be
q,= [(W-b)F + b][Qsol— UL(Tb-Ta)] , (5.1)

where QSol is the solar energy absorbed by unit area of the
plate, Tb is the temperature at the plate-tube bond, T, is
the ambient temperature, and the remaining terms are defined
in Section 1.1, Ultimately, the wuseful gain q, must Dbe
transferred to the fluid. The resistance to heat flow to the
fluid comprises that of the bond, the tube wall, and the
fluid to tube resistance. The useful gain can be expressed

in terms of these three resistances as

Tb— Tm

1/Cb+ 7/kaw+ 1/#Dh .

9y

It has been shown [2] that the bond resistance 1/Cb is
negligible compared with the other resistances. Furthermore,

since the tube wall is assumed extremely thin, the radial
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resistance offered by the wall —y/erkw is also negligible.

The useful energy gain per unit of flow length per tube is

Tb— Tm

1/#Dh . (5.2)

But q (X) = 2raq(X), so the following familiar form is

obtained :
h, (X) = q(x) / [T (X)-T (X)] . (5.3)

At the axial positions where no welding is done; a thin
~layer of air between the tube and the fin offers a large
radial resistance to heat flow, and both g and h, in the
equation can be taken as zero. Thus, equation (5.3) applies
whether X falls within a welding spot or not. Furthermore,
since the bond and the wall resistance are both negligible,
the fluid temperature at R = a and ¢ = 0 can be taken as the
bond temperature (Figure ©5.1). Therefcre the mean heat

transfer coefficient over the entire flow length L is

1L q(x)dx
h = —
L % r@,0,%) -1 _(x) . (5.4)

bm

In dimensionless form, equation (5.4) becomes

h

bm (k/D)Nubm

(k/D1) féNub(x)dx , (5.5)
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where Nub(x) 2/[t(1,0,x)-4x]), if x-within-spot,

0 , if x-outside-spot, (5.6)

and 1 = L/a-Pe .

Solving equation (5.2) for T, and substituting into

equation (5.1), one obtains
qu= WF [Qsol_ UL (Tm_ Ta)] !

1/UL

w{1/[UL(b+(w—b)F)] + 1/(thbm)} (5.7)

where F' =

The same expression for F' can be obtained from -equation
(1.1)' if the resistances due to the bond and‘the tube wall
are neglected.

| The Nusselt. no. based on bond temperature Nub as in
equation (5;6) was calculated using the series solution and
superposition method discussed in Chapter 3. The collector
efficiency factor can then easily be calculated. Before
comparing the value .of F' for different welding-spot
configurations, one configuration was arbitrarily chosen to
illustrate the bahaviour of Nub(x) and Nubm(x) psing this

definition. This is illustrated in the next section.

5.2 BEHAVIOUR OF NU(X) FOR A CONTINUOUSLY WELDED TUBE

To calculate Nub(x), the dimensionless temperature

difference t(1,0,x)-4x 1is required. For a continuously

welded tube with spot angle 2¢,, this difference can be

found using equation (3.16) :



46

Nub(x) = 2/{t(1,0,x)-4x]
2
= o co °
- —R2

[ 11/24 +m2=:1 am/m s§1 cOSROSexp( ﬁosx)

=] =] _ 2

mEISEO cmSRmSamexp( Bmsx) ] (5.8)
Nub plotted against 1000x appears in Figure 5.2 for

various values of ¢,. The case ¢, = m corresponds to the
well known case of a uniformly heated wall, where t(1,0,x)
equals the peripheral average wall temperature. Thus the
Nusselt curve for ¢,=7 coincides with the accepted Nup(x)
curve for a wuniformly heated tube '' and approaches the
expected asymptotic value of 48/11.

As the spot angle 2¢, decreases, so does the Nusselt
number based on bond temperature. This is not the case for
the Nusselt number based on. peripheral average wall
temperature Nup(x), which does not depénd on ¢, but conforms
with the uniformly heated case. It is obvious that the
larger the_spot angle, the higher the mean heat transfer
coefficient based on bond temperature hbm and hence the
efficiency factor F'. This increase in F' is obtained at the

cost of more welding.

5.3 BEHAVIOUR OF NU(X) OF SPOT WELDED TUBE

A larger spot angle results in a higher F' for the
spot-welded as well as the continuously welded tube. For the

spot-welded tube, the higher the percentage w of tube length

''Shown in Figure 3.4
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being welded to the absorber plate (from which heat flows in
through the spots), the higher is hbm' Furthermore; for a
given w and ¢,, distributing the welding into a larger
number N of spots reéults in a higher hbm‘ This 1is because
more spots introduce more thermal entrance effect.

The expression (5.8) for the continuously welded tube
can be superposed to obtain the Nubm(x) and hence h, =~ for
the spot-welded tube. Following a similar argument outlined

in Section 3.3, one obtains
1/Nu, (x) = LN [1/Nu.. () ] (5.9)
b P51 ib ' :
where Nulb(x) is given by equation (5.8), and
1/Nu2b(x) = -H(x—xl),/ Nu1b(x-xl) ,

1/Nu3b(x) = H[x-(xl+xs)] / Nu1b(x—(xl+xs)) ,

etc. (5.10)

It should be noted that Nu1b(x) in equation (5.9)
corresponds to the continuously welded tube.

To calculate the mean Nusselt number the

Nubm’
integration in equation (5.5) was computed using Simpson's
One-third Rule. Figure 5.3 shows Nu, (x) and Nubm(x) for the
arbitrarily chosen case of ¢§=w/10, w=60% and N=2, while
Figure 5.4 shows Nubm(x) for ¢o=7/10, w=60% and N=8. Because
of the discontinuous nature of Nub(x), Nubm(x) in both cases

possess abrupt fluctuations. Nonetheless, the fluctuations

stabilize downstream and Nubm(x) approaches an asymptotic
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value. In reality, the fluctuations of Nubm(x) as well as
that of the temperature profiles stabilize at a shorter
downstream distance than is shown due to conduction in the

tube wall [19].

5.4 EFFICIENCY FACTOR FOR VARIQOUS SPOT CONFIGURATIONS

The wultimate goal of developing closed form solutions
illustrated in the previous two sections was to predict the
lower lim}t of the <collector efficiency factor F' of a
spot-welded tube. This section presents graphical
illustrations of F' for various spot configurations.

Fixing the tube inner radius a to be 4.5 mm, and the
Peclet number to be 5060,'? the tube 1length of 2m
corresponds to the dimensionless distance x of 0.088; The
Nusselt number averaged over the tube length was found by
evaluating Nubm(x) at x = 0.088. The spot configuration 1is
completely determined by the half-spot angle ¢,, welded
percentage w of tube length, and the total number N of spots
along a tube. This 1is based on the assumption that spot
length and spot spacing are invariant with position for a
particular set of ¢,, w and N. For a tube spacing W of 0.15
m, the value of Nubm(.088) was plotted against N in Fiqgure
5.5 for ¢, = n/10 (i.e. spot angle = 36°) for various values
of w. The corresponding F' was computed and was plotted in
Figure 5.6.

'2See Appendix A
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As expected, the efficiency factor F' decreases as w
decreases, and the decrease is faéter when w is small. The
more interesting aspect is the increase of F' with N, It can
also be observed that increasing N beyond about 40 does not

increase F' significantly.



6. DISCUSSION AND CONCLUSIONS

The problem of a series of spots of heat flux has been
solved by two independent methods. The analytical method and
its results of this problem have been described in Chapter
3. The same problem has been solved using a finite
differencg formulation with an iterative scheme (Chapter 4).
A comparison of the two methods and their results is

appropriate.

6.1 DISCUSSION OF ANALYTICAL AND NUMERICAL METHODS

The analytical solution to the "thin" spot-welded tube
was obtained by superposing the available solution due to
Bhattacharyya and Roy [15]. The energy equation (equ.(3.3))
.thaf was to be solved 1is linear. Furthermore, the axial
boundary condition of this problem assumes a form'?® which is
a simple summation of Heaviside unit step functions, shifted
and inverted along the x-axis. The solution can therefore be
obtained by simply shifting, inverting, and summing up a
number of the same solution (the solution to the
continuously welded tube whose axial boundary condition
consists of a single unit step function).

To calculate the Nusselt numbers for the continuously
welded tube using Bhattacharyya and Roy's solution, only the
wall temperature t(1,¢,x) needs to be computed. This is

because the bulk mean temperature is simply given by

'311lustrated in Figure 2.3 and depicted by equation(2.10).
50
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tm(x) = 4% .

The computation of t(1,¢,x) involved three infinite series

which appeared in eguation (3.16) :

(i) m§1 [amcosm¢)/m] ,

where a_= 2sin(m¢o)/(m¢o) ;

(ii) §1 cOSROS(1,BOS) exp(—Boéx) ;

n1g n

(iii)

nZ SEO [cmsRmS(1,ﬁms) (amcosm¢) exp(-ﬁm;x) ] .

Convergence of the first series was slow and sometimes
uncertain because of the fluctuation of the term cos(mé¢)
with m. Convergence was tested only after 200 terms had been
included in the series. Although the same problem also
occurred in the third series, the expression in square
brackets decayed exponentially with increasing m and s and
was insignificant when m=s>10. The number of terms required
by the second and third series increased when x was small
(i.e. x < 5x10°3%).

The superposed solution for the spot-welded tube did
not increase the computational time significantly once the
solution for the continuously welded tube had been stored as
a function of x. This was the main advantage of the present
method over directly applying Duhamel's superposition
formula.

It should be pointed out that the analytical solution
is relatively easy computationally for the wall temperature

because the eigenvalues and eigenfunctions involved have
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been tabulated in Bhattacharyya and Roy's paper, and can be
readily used. The temperature distribution inside the tube
(i.e. r<1) has not been computed because those eigenvalues
and eigenfunctions for r<1 , which require much computation,
are not tabulated.

On the other hand, the finite difference method aimed
at obtaining the temperature distribution throughout the
entire tube volume. The program developed was expensive to
run in terms of CPU time and memory space required. This is
because the boundary condition involves variation in all
three dimensions. The grid spacing had to be small and as a
result the number of nodes involved was very large (Mx=400,

M_=10, and M =20 for a 2m tube).

¢

Computing the Nusselt numbers by definition (as in
equations (3.8) and (3.10)) and comparing with their
analytical counterparts offered a check to the correctness -
of the numerical results, since the temperature in the
entire volume was involved in the expression of the bulk
mean temperature t . A picture of the internal distribution
of temperature increased the understanding of the
3-dimensional heat transfer occurrihg inside the fluid. This
understanding was not obtained through the analytical
solution.

Nevertheless, it 1is wunfair to compare the computing
cost required by the two methods. This 1is because the

eigenvalues and eigenfunctions required by the analytical

solution were already given and its computational effort
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cannot be accounted for.

6.2 RECOMMENDATIONS

If material cost is not an.important consideration in
designing the flat plate colleétor, a thick copper tube is
recommended for spot welding. Peripheral and axial
conduction inside the tube wall allows heat to be
transferred into the fluid throughouf thebentire tube wall
(Figure 2.1(i)), instead of through the welding spots alone.
It should be noted, however, that a thick tube is more prone
to thermal étresses. The mean Nusselt number for this case
approaches an upper 1limit : Num for the wuniform wall
temperature case. This mean Nusselt no. Num(.088) is
tabulated in Shah and London [3] to be 4,776, and
corresponds to an efficiency factor F' of 0.883. The actual
value of F' is, of course, lower and depends on the total
amount of welding being done, as well as the thickness and

conductivity of the tube wall.
| If a low material cost is desired and the tube wall has
to be thin and'non—conductive, attention should be paid to
the welding spot configuration. When 4/L < 0.0001 for R, 2
2x10-7, or when 9/L.< 0.001 for R 2 10'5, the heat transfer
from the fin to the £fluid can bé. thought of as being
restriﬁted to the passage provided by the welding spots
- (Figure 2.1(ii)). The mean Nusselt no. based on bond
temperature Nubm and the efficiency factor F' for this case

approach the 1lower 1limits given in Figures 5.5 and 5.6,
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respectively. The actual value is higher ana increases with
the increase of (7/LRw). The efficiency factor F' is also a
strong function of the tube spacing, W, as illustrated in
Figures 6.1 and 6.2, where the spot angle have been kept at
$po=7/10.

In any case, spot welding should be done over a large
percentage of the tube length and of the circumference. This
becomes more important when the tube is thin and
non-conductive. This, of course, has to be weighed against
the cost of welding. Moreover, spot welding should be done
over a large number of closely separated, short spots
instead of a small number of widely separated, 1long spots.
The total number of spots should be over 40 per tube (for a
typical tube length of 2m). This consideration, important
for the thin and non-conductive tube, is to be taken against
the controllability of the welding mechanism, usually an
industrial robot.

Finally, it should be pointed out that the spot
configuration 1is just one factor determining the efficiency
of the spot-welded solar collector. Other ' parameters,
. including overall heat transfer coefficient U, plate
thicknéss, tube spacing and bond width, etc, affect the
spot-welded collector as well as the conventionally welded

collector.
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6.3 CONCLUSIONS

The objectives of the present work have been achieved.
Two ideal models for the heat transfer process inside the
spot;welded collector tube were set up in which the boundary
conditions could be formulated mathematically. Attention was
given to the thin and non-conductive tube, results for which
corresponded to the lower limit of performance.

An understanding of the detailed heat transfer
phenoménon was obtained through the finite difference
solution of the -energy equation, which described the
temperature distribution inside the entire tube volume. The
effect on collector efficiency factor due to spots of heat
input was investigated using the analytical solution. This
analytical solution was obtained by superposing existing
solution available in the 1literature. The technique of
superposition was demonstrated to be of great usefulness in
this kind of linear problems. For the thin and
non-conductive tube, an interesting finding was that
distributing a given amount of welding over a large number

of short spots resulted in a higher efficiency factor.
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FIG 1.3 Cross section of plate and tube arrangement
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-(1)Tube is soldered throughout its length onto plate

(ii)Tube embedded in trough formed by plate

FIG. 1.4. Common ways of plate-tubelbonding.



(iii)Plate includes conduit within itself

insulation

(iv)Tube is welded onto plate at separated spots

FIG 1.4 Common ways of plate-tube bonding

62



Laminar flow

Yoy

¢
~.
u

o—

—
plsthes=s

'

Le

le——— Hydrodynamic entrance region ————)‘

FIG 1.5 Hydrodynamic and thermal entry lengths

Le

le Unhe;ted >
section Heated section
LLLl 2 L
— — \ {67
T Tw T T, ~— ‘
——
- — _— = __1_ e
-
L— &r
222
T, <Tyy

pe—  Thermal entrance region ————>|

63



\ J\E}/

__.‘
1)
—

FIG 1.6 Physical situation of Graetz problem

VE

T"" Tw
N

W\ \‘\\‘\\(t\\\\ TSNS NSO
X P

FIG 1.7 Linear velocity profile assumed in Leveque method
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Designation Description Applications
©) Constant wall temperature Condensers. evaporators, automotive
peripherally as well as radiators (at high flows). with negligible
axially wall thermal resistance

Constant axial wall temperature
with finite normal wall
thermal resistance

Nonlinear radiant-flux
boundary condition

Constant axial wall heat flux
with constant peripheral wall
temperature

® ® © @

Constant axial wall heat flux
with uniform peripheral wall
heat flux

Constant axial wall heat flux
with finite normal wall
thermal resistance

Constant axial'wall heat flux
with finite peripheral wall
heat conduction

Exponential axial wall heat flux

e ©® ©6

Constant axial wall to Auid
bulk temperature difference

Same as those for (T) with finite wall
thermal resistance

Radiators in space power systems. high-
temperature liquid-metal facilities.
high-temperature gas flow systems

Same as those for @for highly
conductive materials

Same as those for@for very low
conductive materials with the duct
having uniform wall thickness

Same as those for with finite normal
wall thermal resistance and negligible
peripheral wall heat conduction

Electric resistance heating. nuclear heating.
gas turbine regenerator. counterflow heat
exchanger with Ci,. Cooe = L. all with
negligible normal wall thermal resistance

Paralle! and counterflow heat exchangers

Gas turbine regenerator

Table 2.1 Thermal boundary conditions for developed and

developing flows through singly connected ducts



(i) A thick and conductive wall

(ii) A thin and non-conductive wall

FIG 2.1 Two extreme cases of thermal boundary conditions
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FIG 2.2 Peripheral distribution of wall heat
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flux
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FIG 2.3 Axial distribution of wall heat flux
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FIG 3.1 Continuously welded tube with spot angle of 456

FIG 3.2 Spot welded tube with 2 spots occupying
60% of its length
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3.3 Dimensionless wall temperature of continuously

welded tube with spot angle 45° versus
dimensionless axial distance 1000x=1000X/a-Pe.
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FIG 4.1 Grid division of tube volume.
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radial distances : finite difference
results,
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results.
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FIG. 4.5. Angular positions represented by various
curves in Figures 4.6 - 4.9.
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4.6.

Dimensionless wall temperature versus
dimensionless axial distance 1000x =
1000X/a-Pe : finite difference results for

a continuously welded tube with spot angle
45°,
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Dimensionless wall temperature versus
dimensionless axial distance 1000x =
1000X/a-Pe : finite difference results for
a spot-welded tube with 2 spots occupying
60% of its length, spot angle 45°.
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FIG. 4.8. Dimensionless temperature inside the tube at
radial co-ordinate r=4/5 versus dimensionless
axial distance 1000x=1000X/a+Pe for a spot-welded
tube with 2 spots occupying 60% of its 1length,
spot angle 45°.
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spots occupying 60% of its length, spot
angle 45°, '
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-FIG 5.1 Bond temperature T, (X) approximated by T(a,0,X)
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Nu Based on Bond Temperature
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APPENDIX A

Specifications of a Typical Two-cover Solar Collector

Collector Dimensions

Tube inner radius, a = 4.5x10 3m

Cross sectional area of tube, A = 6.36x10" °m?

Tube length, L 2m

2m x 1m

Collector area
Absorber plate thickness, § = 2.54x10 *m
Tube wall thickness, 4y = 5x10 " %m

Distance between tubes, W = 0.15m

Fluid Properties (50°C)

Specific heat capacity, cp= 4.174 kJ/kg°C
Thermal conductivity, k = 0.644 W/m°C
Thermal diffusivity, a = 1.561x10-7 m2?/s
Density, p = 988.8 kg/m?

Dynamic viscosity, u = 5.62x10 *kg/ms
Kinematic viscosity, » = 5.68x10-"m2?/s

Prandtl no., Pr = v/a = 3.64

Other Parameters

Coolant flow rate per tube, m = 5.55x10 3kg/s
Mean flow speed, u = m/pA = 0.088 m/s

Reynolds no. of coolant flow, Re 1390
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Peclet's no. of coolant flow, Pe RePr = 5060

Thermal conductivity of plate and tube material(copper),

_ — (o]
ks— kw- 385 W/m°C

Collector overall heat transfer coefficient,

- 1 /20
UL = 4 W/m?°C
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APPENDIX B

Effect of Fluid Axial Conduction

Fluid axial conduction has not been accounted for in
the analysis as its representative term 9%t/9x? was omitted
from the energy equation at the beginning. This term is
important only when Peclet No. 1is small(Pe<100). 1In any
case, 1its effect 1is obvious only at a short distance from
the step change in thermal boundary condition, as can be
. Sseen from the results of Hsu[21] for the uniformly heated
tube. Taking axial conduction into account, the Nusselt no.
Nu(x) obtained for x<10-% is lower than that obtained with
axial conduction neglected (which corresponds to the case
where Pe==), and this discrepancy increases as x decreases.

For Pe=5000, an axial distance X of one tube radius

corresponds to
x = X/a-Pe = 1/5000 = 2x10-%,

Since the superposed solution, i.e. Nu(x), for the "thin"
spot-welded tube makes use, along the entire flow length, of
values corresponding to very small x, the effect of fluid
axial conduction has caused concerns, especially when the
spot length is of the same order of magnitude as the radius.
However, the error can be shown to be insignificant.

Let Nu(x) and Nu_(x) represent the Nusselt no.
distribution of a continuouély welded tube with Pe<= and

Pe== respectively, and Nu®(x) and Nui(x) represent the
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Nusselt no. distribution of a spot-welded tube with Pe<« and

Pe=> respectively. Also let

1/Nu(x) - 1/Nu_(x) = e(x) ,

then 1/Nu®(x)

1/Nu(x) - H(x—xl)/Nu(x—xl) +
H(x—xl—xs)/Nu(x—xl—xs) = e
= 1/Nu_(x) + e(x)
- H(x—xl)[1/Num(x—xl) + e(x-xl)] +
H(x—xl-xs)[1/Nu(x—xl—xs) + e(x—gl—xs)] - e
= 1/Nu2(x) + e(x) - e(x—xl)H(x—xl) +

e(x—xl-xS)H(x—xl-xs) " v

Thus, the error 1/Nu°(x) - 1/Nui(x)

= e(x) - e(x—xl)H(x-xl) + e(X—xl—xs)H(x~xl—xs) ~ eeen

When x is small, e(x) is small since both Nu®(x) and Nu:(x)

are large. When x is large (x>10-2), Nu®

approaches Nu: and
€(x) approaches zero. Furthermore, the individual terms 1in
the error series have a cancellation effect on each other,
so that there is no accumulating error involved in the
superposed solution,

In conclusion, the discrepancy between Nu® and Nu:(x)
exists not only at small x but along thevwhole tube length.

However, the large Peclet no. of 5060 in the present case

renders that discrepancy negligible.



APPENDIX C

Expression of S( VYV ) and @ in Cartesian Coordinates

The stress tensor :

Sxx Sxy Sxz

S = 5
Syx  Pyy  Syz

Szx Szy Szz /'

where syx denotes the stress acting along the x direction

on the surface normal to the y-axis.

The Velocity Deformation Tensor :

du/9x du/dy du/dz

«l
<
]

av/ox ov/dy ov/0z
ow/0x ow/dy ow/0z/ ,

where u, v, w are the x-, y-, z-component, respectively, of

the velocity V .

97



98

The Complete Contraction :

S(VV )=+ S, OU/3X + Syx du/dy + s, du/dz
+ sxy ov/9x + syy ov/dy + szy ov/23z

+ S., ow/dx + Syz ow/dy + S,z ow/dz.

The Dissipation Function

¢ = 2 [(du/0ax)2% + (av/dy)? + (dw/dz)? ]
- (2/3)(V « ¥V )% + ( 3u/dy + av/dx )2
+ ( 3v/3z + ow/dy )? + ( dw/dx + du/dz )?



